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Summary

The mouse major conductive (aorta and carotid and superior mesenteric arteries) and 

small resistance arteries (first branch mesenteric artery) have a multiple population of 

adrenoceptor (ARs) and angiotensin II (Ang II) receptors capable of initiating 

contraction or relaxation. This thesis uses pharmacological methods to describe 

responses mediated by these receptors and to explore interactions between them.

On mouse aorta Ang II had a dual effect that could be best observed in the presence of 

elevated tone (by 5HT), initially causing contraction at lower concentrations, followed 

by a slow relaxant effect that became dominant over time or at higher concentrations. 

The contraction was attenuated by Losaitan and the relaxation by PD123319 (AT; and 

AT2 antagonists, respectively) indicating physiologically opposing actions of AT; and 

AT2 receptors. The relaxation was abolished by L-NAME or endothelium removal, 

revealing a larger contraction to Ang II. This indicates an AT; action to contract 

vascular smooth muscle directly and an AT2 action on endothelium to release nitric 

oxide.

The potential influence of Ang II on the effects of noradrenaline was studied. First the 

interaction of the relaxant (endothelial) effects of the two agents was explored by testing 

the effect of a “relaxant” concentration of Ang II (30nM) against the effects of 

UK14304, an oci-AR agonist, serving as a suiTogate for noradrenaline in order to avoid 

activation of other adrenoceptors. This revealed no synergism or other significant 

interaction, which contrasted with a strong interaction between Ang II and the 

contractile effects of (%2 -AR activation in other blood vessels.

Ang II was then tested against the contractile effects of noradrenaline, applied as a 

cumulative concentration response curve. Preincubation with Ang II (30nM) 

significantly reduced the contractile response to NA (p<0.0001); this effect was
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enhanced by losartan and blocked by PD123319. Thus the major influence of Ang II 

upon noradrenaline’s actions is an ATz-mediated attenuation that becomes greater if 

AT 1 receptors are blocked.

In both carotid and superior (main) mesenteric arteries the contractile effect of Ang II 

was dominant. In first branch mesenteric arteries the main effect of angiotensin II was 

relaxation; this was reversed to contraction by L-NAME suggesting that it was of 

endothelial origin. The balance of smooth muscle contractile (AT;) and endothelial 

relaxant (AT2) -mediated responses, thus varies amongst arteries.

A fluorescent derivative of Ang II, Rhodamine-Angiotensin II-Human (Rho-Ang II-H), 

was used to visualise angiotensin receptors on dissociated arterial cells and intact 

vessels, employing confocal microscopy. Losartan and PD123319 were used as 

competitor ligands to identify the receptor subtypes that were labelled by the fluorescent 

compound. This provided evidence for the presence of both AT receptor subtypes on 

both smooth muscle and endothelial cells. This was accomplished on both aorta and 

main (superior) mesenteric arteries.

In conclusion, mouse arterial endothelium has AT2 that promote the release of nitric 

oxide, detectable as smooth muscle relaxation and vascular smooth muscle has 

contractile AT;. This shows that the previously demonstrated dual, opposing actions of 

angiotensin II are due to receptors situated on different cell types. There was also, 

however, evidence for the presence of both receptor types on both smooth muscle and 

endothelial cells.

Next, the a 2 -AR-mediated relaxation response was studied. A vasodepressor response 

to CX2 -AR agonists has been shown on the blood pressure of conscious mice and has 

been studied in vitro in other species, though not in mice; the subtypes of receptor 

involved are not well characterised due to the relative lack of specificity of test drugs.
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The opportunity was taken to study its pharmacology in the mouse so that further 

experiments could be performed on genetically modified mice with “knockouts” of one 

of the a 2 -ARs.

UK14304-mediated vasodilator responses were studied on wire myograph-mounted 

mouse aorta, carotid, main mesenteric and first branch mesenteric arteries with a view 

to determining cells involved, mechanisms of action and subtypes of az adrenoceptors 

(Œ2-AR).

In aorta, carotid and main mesenteric arteries, in the presence of induced tone, UK14304 

produced a concentration-related vasodilatation that was abolished by rauwolscine, L- 

NAME or endothelium removal indicating that endothelial az adrenoceptors can release 

nitric oxide. In the first branch mesenteric artery rauwolscine and endothelium removal 

were effective but L-NAME was ineffective at blocking the response.

In t h e  a 2 A / D - a d r e n o c e p t o r  k n o c k o u t  m o u s e  a n d  t h e  D79N m o u s e ,  a f u n c t i o n a l  k n o c k o u t  o f  

t h e  a 2 A / D - a d r e n o c e p t o r ,  a o r t a  a n d  c a r o t i d  a r t e r i e s  t h e  r e l a x a n t  e f f e c t s  of UK 1 4 3 0 4  w e r e  

l o s t  i n d i c a t i n g  t h e  i n v o l v e m e n t  o f  t h e  o t 2 A / D - t t d r e n o c e p t o r  i n  t h e s e  a r t e r i e s .  H o w e v e r ,  i n  

t h e s e  k n o c k o u t s  r e s p o n s e s  p e r s i s t e d  i n  t h e  main a n d  f i r s t  b r a n c h  m e s e n t e r i c  a r t e r i e s .

UK14304 could also contract aorta: a small contraction occurred at high concentrations, 

was enhanced by L-NAME and was absent in the aio-adrenoceptor knockout mouse 

indicating activation of the aio-adrenoceptor. There was no evidence in any artery tested 

of a contractile (%2 -adrenoceptor-mediated response.

The visualization, on aortic endothelial cells, of rauwolscine-sensitive binding of a 

fluorescent ligand, QAPB, provided direct evidence for the presence of a 2-adrenoceptors 

on the endothelium.
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The studies of endothelial ai-adrenoceptor, showed overall that in mouse major 

conducting arteries an aiA/D-adrenoceptor promotes the release of nitric oxide, detectable 

as smooth muscle relaxation and which can be directly visualised. Main and first branch 

mesenteric arteries also have an endothelium-mediated relaxation via (%2-adrenoceptors 

but the subtype involved is not the aaA/n-adrenoceptor and, therefore, must be either the 

Œ2B-adrenoceptor or the a2c-adrenoceptor. Endothelium-mediated relaxation to a2-AR 

activation in the first branch mesenteric artery, in contrast to the other vessels, does not 

involve nitric oxide; this is consistent with other agents in rat small mesenteric arteries, 

though not Ang II in the mouse (see above).

In the course of investigating the endothelium-mediated effects of Ang II and 

adrenoceptor agonists several issues arose which were further pursued in relation to a 

greater diversity of response than was initially anticipated. These included the nature of 

the contractions to i) L-NAME and ii) UK14304 and the variation of responses to 

adrenoceptors and AT receptors with age.

L-NAME (O.lmM) caused a contractile response in aorta that was inhibited by 

BMY7378 (O.ljuM) by approximately 60%. In the am-AR Knockout mouse this 

contractile effect was much smaller than in the wild type and was not sensitive to 

BMY7378 (0.1 pM) but was reduced by approximately 35% by 5MU (O.lpM). This 

susceptibility to a-blockers would be consistent with the established proposal that a- 

adrenoceptors can be constitutively active. We now hypothesise that this spontaneous 

contraction is normally held back by constitutive release of nitric oxide and that L- 

NAME removes the influence of nitric oxide. The constitutive activity has previously 

been associated with otm-AR and uncovering it required manipulation of extracellular 

calcium. This new evidence indicates additional involvement of constitutively active 

aiA-AR and suggests that it is there normally, at least under in vitro conditions, but is 

held back by inhibitory agents.
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The relaxant response to UK14304 (IpM) was lost after L-NAME (O.lmM) (see 

above). In these circumstances UK14304 produced a contraction, additive to that of L- 

NAME, that was absent in the aio-AR Knockout, providing further evidence that its 

contractile action was via aio-AR. UK14304 acted as a partial agonist of aio-AR, 

causing weak contraction in high concentration that was absents in the am-KO and 

antagonising aio-mediated contraction to phenylephrine in both intact and denuded 

vessels. In the presence of tone UK14304 produced relaxation that was absent in D79N 

or removal of the endothelium. Thus UK14304 contracts smooth muscle directly via
1

aiD-AR and relaxes smooth muscle via an endothelial effect indirectly.

subtypes at different ages and strains were studied. In aorta and superior mesenteric 

arteries, noradrenaline (NA) and phenylephrine (PE) produced responses related to age 

and strain. Comparisons of young D79N with WT showed reduced contractile responses 

to PE, suggesting reduced functionality of a;-ARs in D79N. Laser scanning confocal 

microscopy showed that QAPB-binding intensity was reduced in the presence of in both 

control and BMY7378. This suggests a regulation of oti-AR dependent on functional 

ot2 -AR. The AT% mediated relaxation response to angiotensin II in young mice 

disappeared with age. Conversely, ai-AR mediated relaxation was greater in older 

mice. This shows a remarkable age switch in the vasodilator influence of the renin- 

angiotensin II and adrenergic systems, in mouse major conductive arteries, in favour of 

adrenergic.

:i.

The possible variations in involvement of different adrenoceptor and AT receptor
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Fig. 3-10: Relaxation response to UK14304 cumulatively in six months wild type in 

presence and absence of L- NAME (O.lmM), Nashville D79N mouse (n=6) and (%2A- 

KO (n=4) carotid artery.

Fig. 3-11; Trace- Four months wild type mouse carotid artery, effect of single 

concentration of UK14304 (IpM ) on top of U46619 (O.lpM) and then adding 

rauwolscine (O.lpM). rauwolscine could reverse relaxation response to UK14304 to 

contraction.

Fig. 3-12: Cumulative concentration of UK14304 on top of U46619 (O.lpM) in four 

months (n=7) wild type in presence and absence of L-NAME (lOOpM), Nashville 

D79N (n=5) and (X2 A-KO (n=4) mouse superior mesenteric artery.

Fig. 3-13: Trace- Effect of single concentration of UK14304 (IpM) and rauwolscine 

(O.lpM) on mouse superior mesenteric artery. Rauwolscine could reverse relaxation to 

UK14304 to contraction.

Fig. 3-14: Cumulative concentration of UK14304 on top of U46619 (O.lpM) in four 

(n=7) and fourteen (n=5) Months wild type in presence and absence of L-NAME 

(lOOpM) and four months Nashville D79N (n=5) mouse superior mesenteric artery.

Fig. 3-15: Comparison between relaxation response to UK14304 in different situation 

in four months wild type mouse superior mesenteric artery (n=6).

Fig. 3-16: CCRC to UK14304 in four months wild type mouse first branches of 

mesenteric artery (n=7), In presence of L-NAME (O.lmM) and damaged endothelium 

(n=4).

Fig. 3-17: Trace', From Powerlab, four months wild type mouse first branch mesenteric 

artery.
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Fig. 3-18: Traces together; Effects of UK14304 (IpM) and rauwolscine (O.lpM)on 

four months wild type aorta, carotid, superior and first branch mesenteric arteries.

Fig. 3-19: Comparison between relaxation responses to single concentration of 

UK14304 (IpM) in four months WT (n=7) and Nashville D79N (n=5) mouse superior 

mesenteric artery.

Fig. 3-20: Preconstricted, CCRC to UK14304 in four months aio-KO aorta, wild type 

carotid artery, superior and first branch mesenteric arteries (n=7).

Fig. 3-21: Preconstricted, CCRC to UK14304 in four months wild type aorta, carotid 

artery, superior and first branch mesenteric artery (n=7).

Fig. 3-22: Preconstricted, Compaiison in size of response and potency in CCRC to 

UK14304 in four months wild type aorta, carotid artery, superior and first branches of 

mesenteric artery (n-7).

Fig, 3-23: Cumulative response curve to UK14304 in Nashville D79N mouse aorta, 

carotid artery and superior mesenteric artery.

Fig. 3-24: QAPB antagonism on cumulative concentration response to Phenylephrine in 

young rat aorta, control, time control, Inm, lOnm and lOOnm of QAPB (n=6) (Graph 

from Dr. C. Daly and S. p. MacGrory).

Fig 3-25: QAPB affinity on (%2-AR in aiD-KO mouse aorta (n=5).

C hapter three Images

Image 3-1: Four months wild type mouse aorta endothelial cells which treated by 

Losartan (AT;-antagonist) (lOjtiM) and then stained with QAPB (O.lpM) and Rho-Ang

II-Human (50nM).

Image 3-2: Four months wild type mouse aorta endothelial cells which stained with 

QAPB (O.lpM). (X-ARs are localised by green colour in both endothelial cells and 

smooth muscle cells.
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Image 3-3: Four months wild type mouse aorta endothelial cells which treated by both 

of losartan (lOpM) and BMY7378 (O.lpM) then stained with QAPB (O.lpM) and Rho- 

Ang II-Human (50nM).

Image 3-4: Amira 3D model image of an endothelial cell stained with QAPB (O.lpM) 

after treatment by BMY7378 (O.lpM).

Image 3-5: Amira 3D model image of an endothelial cell stained with QAPB (O.lpM) 

and Rho-Ang II-Human (50nM) after treatment by losartan (lOpM) and BMY7378 

(O.lpM).

Image 3-6: Four months wild type mouse aorta treated with losartan (lOpM), 

rauwolscine (IpM ) + BMY7378 (IpM ) then stained with QAPB (O.lpM) and 

rhodamin-Ang II (50nM). Mosaicism related to cxl-ARs in endothelial cells.

Image 3-7: Four months wild type mouse aorta, stained with QAPB (O.lpM) (n=6).

Image 3-8: Unstained ais-Knockout mouse aorta (n=3).

Image 3-9: Control-Four months ot; B-Knockout mouse aorta, stained with QAPB 

(O.lpM) (n=3).

Image 3-10: Only BMY7378 (O.lpM) {ocm-AR antagonist}, on four months (Xib- 

Knockout mouse aorta, stained with QAPB (O.lpM) (n=3).

Image 3-11: BMY7378 (O.lpM) {aio-antagonist} and 5MU (O.lpM) {aiA-antagonist}, 

on four months (XurKnockout mouse aorta, stained with QAPB (O.lpM) (n=3).

Image 3-12: Only rauwolscine (O.lpM) {a2-AR antagonist}, on four months aiB" 

Knockout mouse aorta, stained by QAPB (O.lpM) (n=3).

Image 3-13: BMY7378 (O.lpM) {aio-antagonist} and 5MU (O.lpM) {aiA-antagonist} 

and rauwolscine (O.lpM) {a2-AR antagonist} together on four months a;B-Knockout 

mouse aorta, stained with QAPB (O.lpM) (n=3).
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Fig. 3-14: Summery of 3D Orthoslice and Voltex together in four months aiB~ 

Knockout mouse aorta (n=3).

Image 3-15: Unstained a 2A-Knockout mouse aorta (n=3).

Image 3-16: Control-four months cxiA-Knockout mouse aorta, stained with QAPB 

(O.lpM) (n=3).

Image 3-17: Only rauwolscine (O.lpM) {ct2-AR antagonist}, on a 2 A-Knockout mouse 

aorta, stained by QAPB (O.lpM) (n=3).

Image 3-18: BMY7378 (O.lpM) {am-antagonist} and 5MU (O.lpM) {aiA-antagonist}, 

together on aiA-Knockout mouse aorta, stained with QAPB (O.lpM) (n=3).

Image 3-19: BMY7378 (O.lpM) {aio-antagonist} and 5MU (O.lpM) {aiA-antagonist} 

and rauwolscine (O.lpM) {a2-AR antagonist} on a 2A“Knockout mouse aorta, stained 

with QAPB (O.lpM) (n=3).

Image 3-19: Control-four months aiB-KO mouse superior mesenteric artery QAPB- 

binding presented in control.

Image 3-20: Four months wild type mouse superior (main) mesenteric artery, stained 

with QAPB (O.lpM).

Image 3-21: Unstained and control a 2 A-Knockout mouse superior mesenteric artery. 

Image 3-22: BMY7378 (O.lpM) {am-antagonist} and 5MU (O.lpM) {aiA-antagonist} 

or/and rauwolscine (O.lpM) on a 2 A-Knockout superior mesenteric artery, stained with 

QAPB (O.lpM).

Image 3-23: Unstained oc2 A-Knockout mouse superior mesenteric artery. Internal 

Elastic Lamina (lEL) autofluorescence (n=3).

Image 3-24: Control-four months a 2 A“Knockout mouse superior mesenteric artery 

QAPB-binding present in the endothelial cells (n=3).
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Image 3-25: BMY7378 (O.lpM) {aio-antagonist} and 5MU (O.lpM) {aiA-antagonist}, 

on azA-Knockout superior mesenteric artery, stained with QAPB (O.lpM).

Image 3-26: Only rauwolscine (O.lpM) {a 2 -AR antagonist}, on a 2 A-Knockout superior 

mesenteric artery, stained by QAPB (O.lpM) (n=3).

Image 3-27: BMY7378 (O.lpM) {aio-antagonist} and 5MU (O.lpM) {aiA-antagonist} 

and rauwolscine (O.lpM) {ag-AR antagonist} on a%A-Knock out superior mesenteric 

artery, stained with QAPB (O.lpM) (n=3).
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Chapter Four

Fig. 4-1: Comparison between CCRC to in four months wild type mouse aorta (n=7). 

Fig.4-2: comparison between cumulative concentration response to UK14304 in four 

months wild type in presence and absence of BMY7378 (O.lpM) in mouse aorta (n=5). 

Fig. 4-3: Comparison between four months wild type (control) and aiD-Knockout 

mouse aorta in cumulative response to UK14304 (n=7) on top of U19 pre-constriction. 

Fig 4-4: Preconstricted, CCRC to UK14304 in four months wild type {intact and 

denuded} (n=5), Nashville D79N (n=4), am-KO (n=7) and apA-AR Knockout (n=4) 

mouse aorta. Each point represents mean ± standard error.

Fig. 4-5: Effect of cumulative concentration of UK14304 on four months wild type 

(n=5) and Nashville D79N (n=4) mouse aorta.

Fig 4-6: Effect of UK14304 (IpM ), prazosin (O.lpM) and BMY7378 (O.lpM) to shift 

CCRC to phenylephrine in four months wild type {intact and denuded} mouse aorta. In 

denuded aorta UK14304 could produce pre-constriction response due to lack of the 

endothelium.

Fig. 4-7: Trace', Using L-NAME (O.lmM) revealed the presence of constitutively active 

aiD“AR in four months wild type aorta.

Fig. 4-8: Trace", Four months aiD-Knockout mouse aorta. Using L-NAME (O.lpM) 

revealed the presence of constitutively active Uia-AR.

Fig. 4-9: Trace', High magnification. Four months am-Knockout mouse aorta. Using L- 

NAME (O.lpM) revealed the presence of constitutively active aiA-AR.
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Chapter Five

Fig.5-1: Comparison between CCRC response in four and fourteen months wild type 

mouse aorta to phenylephrine (n=7).

Fig. 5-2: Comparison between CCRC response in four and fourteen months wild type 

mouse aorta to noradrenaline (n=7).

Fig. 5-3: CCRC to noradrenaline and phenylephrine in four months wild type mouse 

aorta (n=7).

Fig. 5-4: CCRC to noradrenaline and phenylephrine in fourteen months wild type 

mouse aorta (n=6).

Fig. 5-5: Comparison between CCRC response in four and fourteen months wild type 

superior mesenteric artery to phenylephrine (n=6).

Fig. 5-6: Comparison between CCRC response in four and fourteen months wild type 

superior mesenteric artery to noradrenaline (n=6). |

Fig. 5-7: CCRC to noradrenaline and phenylephrine in four months wild type mouse 

superior mesenteric artery (n=6).

Fig. 5-8: CCRC to noradrenaline and phenylephrine in fourteen months wild type 

mouse superior mesenteric artery (n=4).

Fig. 5-9: Comparison between four and fourteen months wild type mouse aorta in 

response to CCRC to UK14304 (n-5).

Fig. 5-10: Comparison between four and fourteen months wild type mouse superior 

mesenteric artery in response to UK14304 cumulatively (n=6).

Fig. 5-11: Comparison between four and fourteen months wild type mouse aorta in 

response to angiotensin II cumulatively.

Fig. 5-12: Comparison between four and fourteen months wild type mouse superior 

mesenteric artery in response to angiotensin II cumulatively (n-6).
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Fig. 5-13: Comparison between response to CCRC to phenylephrine in wild type, D79N 

and a 2A-KO mouse aorta (n=7).

Fig. 5-14: Comparison between response to CCRC to phenylephrine in wild type and 

a 2 A-KO carotid artery (n=4).

Fig. 5-15: Comparison between CCRC to phenylephrine in wild type and a2 A-KO 

superior mesenteric artery (n=6).

Fig. 5-16: Comparison between young & old wild type and am-KO mouse aorta in 

response to UK14304 cumulatively on top of U46619 pre-constriction (n=7).

Fig. 5-17: Comparison between young & old am-KO mouse aorta in response to 

UK14304 cumulatively on top of U46619 preconstriction (n~7).

Fig.5-18: comparison between old WT and am-KO mouse aorta in response to 

UK14304 cumulatively on top of U46619 preconstriction (n=7).

C hapter five images

Image 5-1: Four months wild type (WT) and D79N mouse aorta smooth muscle cells 

which treated by both of losaitan (lOjiM) and BMY7378 (O.lpM), then stained with 

rhodamine-angiotensin Il-human (50nM) and QAPB (O.lpM).

Image 5-2: Four months WT and D79N mouse aorta smooth muscle cells which only 

stained with QAPB (O.lpM).

Final Conclusion images

Images FC-1: Four months wild type mouse aorta treated with losartan (lOpM), 

rauwolscine (IpM) + BMY7378 (IpM) then stained with QAPB (O.lpM) and 

rhodamin-angiotensin II (50nM). Mosaicism related to myoendothelial connections. 

Images FC-2; Young rat mesenteric artery endothelial cells, which connected to 

smooth muscle cells through the Internal Elastic Lamina (lEL) fenestrations.
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5HT
A
ACH 
ADP 
Ang II 
Ang-(l-7) 
Ang II-F 
ATP
BMax

AT-R
BODIPY
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2+
c
Ca 
[C a 'ii 
CCRC 
CRC
Cyclic AMP/cAMP
Cyclic GMP/cGMP
CDNA
Cl
cpm
CRC
DAG
DR
DMSO
ECso/pECso

EDRF
EDTA
EEL
En do
eNOS
FC
FM
g
GDP 
GIRK K+

G protein
GPCR
GRK
GTP
lEL
iNOS

5-Hydroxytryptamin
Aorta
acetylcholine 
adenosine 5’-diphosphate 
angiotensin II
amino-terminal heptapeptide fragment 
angiotensin II-Fiuorescein 
adenosine 5’-triphosphate
maximum specific binding, expressed in fmol of radioligand/mg 
protein
Angiotensin II -Receptors
4,4-Difluoro-4B ora-Fluoresent Dihydropyridine
8- [2-4(2-Methoxyphenyl)“ 1 -Piperazin-
8-azasprio[4,5]decane-7,9-dione-dihydrochloride
Carotid artery
Calcium
Intacellular calcium
Cumulative Concentration Response Curve
Concentration Response Curve
adenosine-3’, : 5’cyclic monophosphate
guanosine-3’ : 5’cyclic monophosphate
single stranded DNA
confidence interval
counts per minute
concentration response curve
diacylglycerol
dose retio
dimethylsulfoxid [(CH3)2SO]
The molar concentration of an agonist that produces 50% of the 
maximum response of that agonist/negative logarithm to base 10 
of EC50

Endothelium Derived Relaxing Factor
ethlenediaminotetra acetic Acid
External Elastic Lamina
Endothelial cell
endothelial NOS
Final conclusion
First branch mesenteric artery
gravity
guanosine diphosphate
G Protein-gated Invardly Rectifying channel (A type of ion 
channel which found in Heart and CNS)
GTP-dependent regulatory proteins 
G protein coupled receptor 
G protein receptor coupled Idnase 
guanosine triphosphate 
Internal Elastic Lamina 
inducible NOS
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NOS
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kilobase
equilibrium dissociation constant of an antagonist/ negative 
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concentration of radioligand which occupies 50% of receptors 
at equilibrium 
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concentration of competitor that will bind to 50% of receptors
in the absence of radioligand or any other competitor at equilibrium/
negative logarithm to base 10 of K, (Ki = EC50/1+ [Ligand]/Kd)
knockout / aio-knockout
Potassium
Potassium chloride
N-nitro-L-arginine Methyl Ester
Losartan
Noradrenaline
Nitric Oxide
Nitric Oxide Synthase
Phenylephrine
S - [+] -1 - [(4-dimethylamino] -3 -methylphenyl) methyl] 

-5-[diphenylacetyl] -4,5,6,7-tetrahydro-lH-Imidazo 
[4,5,-C] Pyridine-6 carboxylic acide 
prostaglandin
Propidium Iodide (PW= 668.4)
Quinazolinyl piperazine borate-dipyrromethene 
Rhodamine-Angiotensin II (Human)
Rauwolscine
Standard EiTor of the Mean 
Superior mesenteric artery 
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Definitions
Different types of antagonism

1) Competitive (Reversible or Irreversible): A competitive antagonist affects on 

agonist by acting at the same point of receptor chain.

The term antagonist refers to any drug that will block, or partially block, a response. 

When investigating an antagonist the first thing to check is whether the antagonism is 

surmountable by increasing the concentration of agonist. The next thing to ask is 

whether the antagonism is reversible. After washing away antagonist, does agonist 

regain response? If an antagonist is surmountable and reversible, it is likely to be 

competitive

A good example of this type of antagonism is Tubocurarine on response to 

Acetylcholine at the motor end-plates of skeletal muscle,

a) In reversible competitive antagonism, antagonist can shift CCRC to agonist to the 

right. However, the maximum response to agonist doesn’t change.

b) In ineversible competitive antagonism. Antagonist does not shift the CCRC to 

agonist to the right (no changes along X-axis). However, the maximum response to
■ ?

Reversible Corrp^ltive antagonism Irreversib le C om petitive an tag o n ism

 __________ Cb crease tftinity ^

M ^ a i is t [ 1 n M l  anla^jTisl [ ia ilV ! antagonist [10CHW]

Antagonist [InM]100-mIOO1
Antagonist [lOnMj

A ntagonist [lOOni75-

D e c re a s e
e ffica c yO 50-50-

25-25-

1
-4 -10 9 •8 •7 ■6 ■4■5-10 -6 -59 •8 ■7

Ljog concentration of agonist Log c o n c en tra tio n  of ag o n is t
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agonist will decrease.

A competitive antagonist binds reversibly to the same receptor as the agonist. A dose- 

response curve performed in the presence of a fixed concentration of antagonist will 

be shifted to the right, with the same maximum response and (generally) the same 

shape.

Gaddum derived the equation that describes receptor occupancy by agonist in the 

presence of a competitive antagonist. The agonist is drug A. Its concentration is [A] 

and its dissociation constant is Ka. The antagonist is called drug B, so its 

concentration is [B] and dissociation constant is Kb. If the two drugs compete for the 

same receptors, fractional occupancy by agonist (f) equals:

f .  [A]

The presence of antagonist increases the EC50 by a factor equal to 1+[B]/Kb. This is 

called the dose-ratio.

You don't have to know the relationship between agonist occupancy and response for 

the equation above to be useful in analyzing dose response curves. You don't have to 

know what fraction of the receptors is occupied at the EC50 (and it doesn’t have to be 

50%). Whatever that occupancy, you'll get the same occupancy (and thus the same 

response) in the presence of antagonist when the agonist concentration is multiplied 

by the dose-ratio.
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The graph below illustrates this point. If concentration A of agonist gives a certain 

response in the absence of antagonist, but concentration A' is needed to achieve the 

same response in the presence of a certain concentration of antagonist, then the dose- 

ratio equals A'/A. You'll get a different dose ratio if you use a different concentration 

of antagonist.

If the two curves are parallel, you can assess the dose-ratio at any point. However, 

you'll get the most accurate results by calculating the dose-ratio as the EC50 in the 

presence of antagonist divided by the EC50 in the absence of antagonist. The figure 

below shows the calculation of dose ratio.

a>
g
01 Agonist

Alone /  Plus 
f  Antagonist

I
I

Dose Ratio = A'/A

A A'

[Agonist]

2) Non-competitive antagonism: A Non-competitive antagonist affects on agonist by 

acting at some other point of receptor chain which different from agonist binding

area.

Majid Malekzadeh Shafaioudi, IBLS, University o f  Glasgow, April 2004 X X X ll



XXXIII

3) Physiological / Functional antagonism: An antagonist acts on separate cells, 

physiological system or another second messenger inside, the effector to antagonise 

the agonist effect.

4) Pharmacokinetic antagonism: A pharmacokinetic antagonist reduces the 

concentration of agonist at its site of action by effecting on the pharmacoldnetic of 

the agonist. For example Phenobarbitols can increase hepatic metabolism of 

Warfarin.

5) Chemical antagonism: A chemical antagonist chemically react with the agonist 

itself, the agonist is changing chemically and its activity as an agonist will loose. 

For example; mercury (Hg 2+) can combines with the sulphydryl groups of enzyme 

and co-enzyme and inactive them.

Schild (Competitive test) Plot:

Schild analysis is used to determine the nature of antagonists to its receptor. Schild plots 

also give information on the potency of competitive antagonists and can hint at the 

presence of multiple binding sites. The Schild equation is;

Schild Equation:

(From curvefit.com. Copyright 1999 by GraphPad Software, Inc. All Rights 

Reserved.)

(conc. ratio - 1) = (antagonist conc.) /  Kb
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If the antagonist is competitive, the dose ratio equals one plus the ratio of the 

concentration of antagonist divided by its Kd for the receptor. (The dissociation 

constant of the antagonist is sometimes called Kb and sometimes called Kd)

D o se  ratio [Antagonist]

Kb

A simple rearrangement gives:

Dose ratio _i J A n a g o n ist]
Kd

log(dose ratio -  1) -  log([Antagonist]) -  log(K^)

If you perform experiments with several concentrations of antagonist, you can create a 

graph with log(antagonist) on the X-axis and log(dose ratio -1 ) on the Y-axis. If the 

antagonist is competitive, you expect a slope of 1.0 and the X-intercept and Y-intercept 

will both equal the Kd of the antagonist.

(conc. ratio - 1) = (antagonist conc.) /  Kb

Conc. ratio = Conc. of agonist producing a defined response in the presence of an 

antagonist, divided by the concentration producing the same response in the absence of 

the antagonist. So antagonist EC50/ agonist EC50.

Kb = dissociation equilibrium constant for the antagonist

From the Schild plot a value known as the pAg can be found. The pAg is the negative 

logarithm of the concentration of antagonist, which would produce a 2-fold shift in the 

concentration response curve for an agonist, and is a logarithmic measure of the 

potency of an antagonist.
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The pA scale is useful as it performs as an empirical measure of antagonist potency, 

which theoretically could characterise activity, specificity, and time-action 

relationships. This scale allowed scientists to present findings empirically instead of 

describing their results as "very sensitive". The pÀ2 is calculated by extrapolating the 

value on the x-axis when y=0

So in this example the pA% is 6.

Schild Plot

0
1
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1
05 4 2 137 6

log(molar antagonist conc.)

The slope of the Schild plot gives information about the nature of the antagonist i.e. 

whether or not it is competitive binding and information on the cooperativity. The 

steepness of slope depends upon both the equilibration time and the degree of 

antagonism.

When the slope of the Schild plot is not 1 a number of possibilities arise; (1) the 

antagonist is not competitive, (2) a multimolecular interaction between drugs and 

receptors is being observed, (3) equilibrium conditions have not been attained in the 

experimental procedure.

The third condition is important as dynamic equilibrium in contrast to true equilibrium 

conditions may distort the nature of the antagonism; i.e. a competitive antagonist could
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appear to be non-competitive. This could occur in isolated tissues, which possess 

uptake and/or degradative mechanisms for either the agonist or antagonist.

When the Schild slope is equal to 1 this indicates that the antagonism is competitive 

and reversible. It also indicates that the agonist is acting at a single receptor subtype, 

and that the tissue has no uptake mechanism for the agonist. It can also be concluded 

that the antagonist causes a parallel rightward shift of the log agonist concentration 

response curve with no loss of maximal response.

Synergy:

The application of two or more agonists results in a response that is much larger 

than the sum of the individual responses of the agonists alone.

Stupecky et al. (1986) performed study in the rabbit aorta using concentrations of 

agonists that gave a O.lg response and combined them. Response size varied from 0.5g 

to 2.7g.

Also did various dose response curves and described two types of synergy originally 

described by Draskoczy & Trendelenburg (1968) and later by Asano & Hidaka (1980) 

Potentiation synergism: Presence of a synergist shifts dose response curve to the left in 

parallel fashion

Threshold synergism: Presence of a synergist shifts dose response curve to the left at 

threshold but converges with control curve: considered to be an additive effect. 

(Stupecky et al. termed this Threshold synergism)
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Potentiation synergism: Phenylephrine Synergy with 5-HT

Norm PE data

<D
(0
CO

s
QC

125-1

00

75-

50-

25-

Qj

■459 8 7 610

- " - 1 s t  PE 
- ^ T i m e  Control PE 
- F - P E  +10nM 5-HT 
- ^ P E  +30nM 5-HT

log [PE]

(Ali Zeeshan results on PE Synergy with 5HT);

* PE response driven primarily via ociD-ARs-Minor role of aiB-ARs in contraction 

5-HT response mainly mediated via S-HTzA receptors 

In the SWT mouse aorta the 5-HT response is partially aio-AR mediated: minor 

role

Adding 5-HT involves the recruitment of a ‘new’ component to the PE response 

here
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Threshold synergism: 5-HT Synergy with Phenylephrine

Norm 5-HT data
125

1004

75- 

50- 

25- 

0 -

-10 -9 -8 -7 -6 -5

log[5-HT|

-m-1st 5-HT
Time Control 5-HT 

■^5-t-rr+IOnMPE 
■^5-HT+30nMPE

-4

(Ali Zeeshan results on 5HT Synergy with Phenylephrine):

* Synergy only using 30nM PE, no synergy observed with lOnM PE

* Curve shifts to left but converges

Formulas:

A) Formula for calculation of concentration related to molecular weight (MW of 

FW), amount weighted (AW) and Volume (V) of dissolved drug.

IF:

V= Volume (ml), AW= Amount Weighted (mg)

Conc.= Concentration required (Mol), MW= Molecular Weight (g)
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So:

V = A W /(C onc. >̂̂ MW)

B) Formula for changing in concentration related to volume.

IF:

M l= concentration drugl (Mol/Litter or Molar), V l=  volume of drug 1,

M2= concentration of drug2 (Mol/Litter or Molar), V2= volume of drug2 

So:

M l V l= M2 V2

Amira and Imaris Software definitions

Calibration: A 2D series of images has both an XY resolution and a Z speacing. The 

XY resolution defines the number of Pixels per micron for a given set of conditions 

(i.e., objective power, wavelength etc.). The Z spacing describes the distance between 

XY planes in the axial (optical axis) dimension. For accurate measurement and 

effective visualisation, this geometry must be maintained when constructing iso­

surfaces or 3D volumes.

Orthoslice: Orthoslicing is a mean of re-sectioning an image volume in a user defined 

axes. Typically this enables viewing in the X-Z or Y-Z plane. However, some software 

packages allow non-oithogonal slicing which enables an image volume to be viewed 

from any angle, plane or viewpoint.
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Iso-Surface: An Iso-suiface is formed by creating triangles or other geometric shapes, 

the points of which are located at areas or equal intensity. Thus, an Iso-surface is a map 

of intensity values which can be assigned different colours, transparencies and textures 

such that multiple surfaces can be more easily visualised.

Voltex: This module is used to render a 2D series of images into a 3D volume for 

visualisation. Rendering can be achieved by a variety of algorithms. Regardless of 

rendering method, generally each 3D Pixel (Voxel) is assigned both a colour and 

transparency value.

Deconvolution: Deconvolution provides the same exclusion of out of focus blur at a 

given point as confocal microscopy does, but the mechanism is mathematical 

processing by computer. In its best case, having been given the size of each pixel and 

information about the particulars of the optics, an algorithm excludes out of focus blur 

that is not from light scattering in the plane of focus and reassigns scattered light that 

should be in the plane of focus to its proper location.
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Chapter 1

Literature review and introduction
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1-1. Introduction;

Part of the study of the circulation system in vertebrates is focused on the vascular 

system. This part includes arteries, veins and lymphatic vessels. There are different type 

of arteries and veins in the bodies of vertebrates. These vessels have a major role in 

maintenance of blood pressure through the vascular smooth muscle in their media, and 

different other types of cells in intima and adventitia. The main system controlling 

blood pressure in the body is the sympathetic nervous system. At the end of Axons of 

the sympathetic system there are many variscosities, which contain noradrenaline in 

vesicles that can cause contraction in smooth muscle cells (SMC) of vessels. But also 

there are some hormones and other factors, which can act on Smooth muscle cells. One 

of them is the renin-angiotensin system. These neurotransmitters and chemical 

substances act on some complex molecules on cell membrane, which are called 

receptors. Receptors mediate some effects in cells by using second messengers. Many 

receptors exist on the cell membrane of vascular smooth muscle, including adrenergic 

receptors and angiotensin II receptors. There is also some interaction between these 

receptors. Understanding these interactions between receptors, vascular morphology, 

and modification which occur in pathological conditions in different parts of the 

vascular structure is useful for treatment of hypertension. Several methods will be used 

for study of vessels, particularly arteries, including wire and perfusion myography. 

Laser Scanning Confocal Microscopy (LSCM), Fluorescent Microscopy, 

Immunofluorescent Microscopy, Electron Microscopy (SEM & TEM), Light 

Microscopy and Histochemistry (using different staining and ligands). The aim of this 

literature review is to review vascular structure, particularly arteries and some current 

methods for study of them in normal and pathological conditions, study of receptors 

especially adrenergic and angiotensin II receptors and interaction between them, and 

definition of the role of these interaction in remodelling of vascular structure, methods
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for localisation of receptors intracellular or on the cell membrane, and methods for 

tracing of these receptors during desensitisation or when any other changes occur in cell 

structure.

Ï-2. Arterial Morphology:

Resistance arteries may be defined as pre-arteriolar vessels with a luminal diameter of 

less than 500pm in human (Bloom & Fawcett 1968), However the lumen diameter is 

showed different size among animals, (i.e. in cat is less than 300pm) (Johnson 1962). 

In common with larger arteries, resistance arteries comprise an outer tunica adventitia, a 

central tunica media, and an inner tunica intima.

The tunica adventitia is composed of connective tissue, which contains both elastin and 

collagen as well as other bodies such as fibroblasts, macrophages and sckwann cells. 

This is also the layer of the blood vessel, which contains the nerves associated with 

sympathetic inervation (Lee et cd., 1983). These nerves are bundles of primarily 

adrenergic axons and do not penetrate into the media layer. Axons close to the 

adventitial-medial layer are found in the numbers of between 1 and 11 per bundle 

whereas remote outer areas of the adventitial-medial border contain bundles of axons up 

to 50 in number. A majority of these nerves are unmyelinated and surrounded by 

schwann cells. Each of the adrenergic axons contained in the adventitial layer have 

variscosities which, for example in the guinea pig submucosal artery, are less than 3 

pm. Contained with these variscosities there can be anything up to 500 vesicles of 100 

nm in diameter containing a number of neurotransmitters but predominantly 

noradrenaline. As a result of stimulation of these nerves the neurotransmitter from the 

vesicles is released upon which random diffusion takes place towards receptors located 

on the surface of the vascular smooth muscle cells.
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The tunica media of resistance arteries is composed of vascular smooth muscle cells 

bound by an internal elastic lamina. In small resistance-sized arteries the external elastic 

lamina in fragmented or absent (Carlson et a l, 1982).

The smooth muscle cells are airanged circumferentially around the vessel diameter with 

an angular set up of less than 2°, although it has been reported that smooth muscle cells 

in the vascular wall can have pitch angles of +/- 10° or more (Gattone et al, 1986) 

(Miller et a l, 1987) (Walmsley et a l, 1982) (Walmsley et a l, 1983) (Mulvany et a l, 

1978) (Lee gra/., 1983).

The number of layers of smooth muscle within the blood vessel wall is directly 

proportional to the diameter of vessel (Lee et a l, 1983). In vessels with a diameter of 

around 300 pm there are approximately six layer of smooth muscle in the media 

whereas there may only be a monolayer of vascular smooth muscle cells in the media 

layer of arteries with a diameter of between 30 to 50pm (Miller et a i, 1987). The 

tunica media comprises approximately 70-80% of the vessel wall. This does not alter 

with decreasing lumen diameter.

The third and last layer of a resistance artery is the tunica intima. This layer comprises 

of a monolayer of endothelial cells orientated in the direction of the long axis of the 

artery and in the direction of blood flow. These cells have the approximate dimensions 

of 30-50pm length, 10-20pm width and 2pm thickness (Carlson et a l, 1982). This layer 

is bounding by a sheath of elastin known as the internal elastic lamina.

The endothelial layer plays an important role in the blood vessel’s ability to modulate 

arterial tone. This is due to the ability of these cells to release substances known as 

endothelial derived relaxing factors, arguably the most important being Nitric Oxide,
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This substance is released when stimulation acts on the surface of the endothelial cells. 

This may be due to mechanical factors such as sheer stress across the endothelial 

surface caused by viscosity and flow or to chemical stimulus by agonists or other 

agents. Examples of endothelium dependent agonists include acetylcholine, bradykuiin, 

angiotensin U and a range of prostaglandins.

Within the internal elastic lamina there are small holes known as fenestrations, these 

allow nutrients and other substances to pass through the blood vessel wall from blood to 

the tissues and from tissues to the blood. Frequently endothelial cells in the tunica 

intima protrude through these holes and make direct physical contact with the smooth 

muscle cells in the tunica media (Carlson et a i, 1982) (Smeda et a l, 1988). Although 

the endothelial cells form a monolayer they are not packed tightly into the internal area 

of the artery but are loosely spaced and connected by elastin fibers and collagen fibrils. 

This allows the movement of substances across the vessel wall and determines 

endothelial permeability an important factor in vascular physiology.

1:
7

.!

I
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1-3. Smooth Muscle Cell Contraction Mechanism:

In striated muscle sliding of one set of filamentous proteins (myosin) related to another 

(actin) leads to contraction. In skeletal muscle and cardiac muscle troponin and

tropomyosin regulate the degree of interaction between actin and myosin and therefore î
_  I

the degree of contraction. Ca binding to troponin regulates this activity. However, the a

regulation of smooth muscle contraction has completely different mechanism.

In smooth muscle cells myofibrils (bundles of myosin and actin) are arranged in a spiral 

formation, the origin and insertion on the membrane is marked by a dense body. Thus 

on contraction, the smooth muscle cell may twists as it shortens. Smooth muscle cell 

has no troponin and the role of tropomyosin is unknown.

In all muscles G-actin forms a-helical filaments, associated with F-actin is tropomyosin, 

a rod shaped protein. The myosin filament consists of two main parts.

1-Light meromyosin (LMM) a coiled coil a-helix

2-Heavy meromyosin (HMM) consists ofHMM SI and HMM S2. 4  

HMM SI divided info three sections:

h) 25 KD ATPase activity site

c) 20 KD light chain attach
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HMM Si is a globular protein that can bind to a particular site on actin. There is a 

molecular hinge between HMM Si and HMM S2 and this movement cause the relative 

sliding of myosin with respect to actin.

7 )

[Contractile filaments diagram in skeletal muscle cells]

Bound to each globular head is an additional proteins termed myosin light chains, These 

proteins are thought to play a major role in the regulation of contraction in smooth 

muscle. Each globular head contains two types of light chain (LCi and LC2) each with a 

molecular weight of approximately 20000 KD. In general, smooth muscle has more 

actin than striated muscle and less myosin. {1 mole of myosin / 4 mole of actin VS 1 

mole of myosin / 40 mole of actin}. Despite these differences the maximal force 

generated by smooth muscle per cross sectional area is very close to that generated by 

striated muscle.

1-The time a cross bridge spends attached to actin in smooth muscle is approximately 

500 msec. However, in striated muscle this is only 10 -20 msec.

2-This phenomenon is also reflected in the speed of contraction of smooth muscle that 

is much slower than striated muscle.

3-Therefore the rate of breakdown of ATP is again less.
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4-Thus force production from smooth muscle is much more economical than 

comparable level of force in striated muscle but at the cost of slowness of response.

1-4. Regulation of contraction:

a) Thick filament regulation:

In smooth muscle myosin-based regulation is thought to be the main mechanism for 

regulation. As with other muscles fCa^^] at rest is equal to 100-200nM but, to initiate of 

contraction [Ca^'*']=lpM. The main Câ "*" sensitive protein in smooth muscle is 

calmodulin

4Ca^^ + CaM(Calmodulin).^ 2  CaM(Ca) 4
►

CaM(Ca)4 + MLCK(Mvosin Light Chain Kinttse) CaM(Ca)4 .MLCK

[Inactive] [Active]

MLCK is an enzyme that catalyses the phosphorylation of myosin light chain-1 (LC-1) 

in this situation. Myosin can interact with actin and generate force (and breakdown 

ATP). Relaxation would only occur if LC-1 on myosin dephosphorylated. Myosin Light 

Chain Phosphatase (MLCP) is the enzyme responsible for the dephosphorylation of LC- 

1 on myosin.
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4Ca"+ + CaM

i
CaM(Ca)4

I

ActinMyosin-P-Myosin

MLCP

b) Thin Filament Regulation:

This regulation is due to troponin-like protein called caldesmon and calponin. Both of 

them bind to actin and inhibit actin-myosin interaction. However, the phosphorylated 

form of caldesmon or calponin has a very low affinity for actin.

P K A

Myosin

+ CaM

I
CaM(Ca)4

M I r v
Phosphorylation

Dephosphorylation

MLCP

(A (A

Actin-Calponitr
P K C

( +)

/
Myosin-P Actin <-> Force 

\ r+f

AA

C a l^ sm o n ^

/  ^
PKC Actin-Caldesmon ^ PKC
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Agonist induced changes in the responsiveness of contractile protein to Ca2+.

ai-adrenoceptor

Rise in intracellular [Ca^‘̂]

^ N A _ ^  pi-adrenoceptor

Modification of responsiveness 

of contractile proteins 

Lowering interacellular [Ca^^]

“̂ M o re  Force

Modification in responsiveness 

of contractile proteins

Less Force

Endpthelin

Phosr)d]inase-C

AA—inhibition of MLCP

Ryanodine R on SR ^ DG PLD

Phosphorylation of

dldesmon & Calponin ContractionCa release ^KC

Inhibition of MLCPPKC cascade PKC

PKC
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Phenylephrine can stimulate PKC without a rise in intracellular This effect may

have a role in the maintenance of basal tone in smooth muscle.

c) cAMP & cGMF affects on smooth muscle lead to Relaxation:

Atrial natriuretic factor

& NO (Nitric Oxid)

Noradrenaline 

Bj-adrenoceptor

Adenylate
cyclase

Guanylate
cyclase

G Protein

cAMP 4- nniA T PCGMP + ppi GTP

PKA

C a P u m p
Decrease the affinity of 
MLCK for (Ca)4CaM

ADP + pi
SR

Relaxation
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1-5. Renin-Angiotensin-AIdosterone mechanism:

The juxtaglomerular apparatus:

The juxtaglomerular apparatus (JGA) is a specialisation of the glomerular afferent 

arteriole and the distal convoluted tubule of the coiTesponding nephron and is involved 

in the regulation of systemic blood pressure via the renin-angiotensin-aldosterone 

mechanism.

The juxtaglomerular apparatus is made up of three components, the macula dens a of 

distal convoluted tubule, renin-secreting juxtaglomerular cells of afferent arteriole and 

extragiomerular mesangial cells.

Macula densa:

On returning to the cortex from renal medulla, the ascending thick limb of the loop of 

henle becomes the first part of the distal convoluted tubule and comes to lie in the angle 

between the afferent and efferent arterioles at the vascular pole of the glomerulus. The 

macula densa is an area of closely packed, specialised cells lining the distal convoluted 

tubule where it abuts onto the glomerular vascular pole. Compared with other DCT 

lining cells, the cells of macula densa are taller and have larger more prominent nuclei, 

which are situated towards the luminal surface. The basal cytoplasm is crammed with 

mitochondria. The basement membrane between the macula and underlying cells is 

extremely thin. The cells of the macula densa are thought to be sensitive to the 

concentration of sodium ions (or chloride ion) in the fluid within the DCT; decrease in 

systemic blood pressure results in decreased production of glomerular filtrate and hence 

decreased concentration of sodium ions in the distal tubular fluid.
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Juxtaglomerular cells:

Juxtaglomerular cells (J) are specialized smooth muscle cells of the wall of the afferent 

arteriole forming a cluster around it just before it enters the glomerulus. Juxtaglomerular 

cell cytoplasm contains immature and mature membrane-bound granules of the enzyme 

renin. Juxtaglomerular cells show characteristics of protein-secreting cells, including an 

abundant rough endoplasmic reticulum, a highly developed Golgi complex, and 

secretory granules measuring approximately 10 -14nm in diameter.

Extragiomerular mesangial cells:

Also called goormaghtigh cells or lacis (L) or polldssen cells, these cells form a conical 

mass, the apex of which is continuous with the mesangium of the glomerulus: laterally 

it is bounded by the afferent and efferent arterioles and its base situated onto the macula 

densa. The lacis cells are flat and elongated with extensive fine cytoplasmic processes 

extending from their ends and surrounded by a network (lacis) of mesangial material. 

Despite their central location in the JGA, the function of the extragiomerular mesangial 

cells remains obscure. They have previously been attributed the function of secretion of 

the hormone erythropoietin which stimulates red cell production in the bone marrow.

Role of the Juxtaglomerular Apparatus in control of blood pressure:

The Juxtaglomerular apparatus is believed to act both as a baroreceptor and 

chemoreceptor controlling systemic blood pressure by the secretion of renin by the 

juxtaglomerular cells.

The juxtaglomerular cells are suitably placed to monitor systemic blood pressure, with a 

fall in blood pressure, resulting in renin secretion. Reduction in blood pressure results in
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reduced glomerular filtration and consequently a lower concentration of sodium ions in 

the DCT. Acting as chemoreceptors, the cells of the macula densa in some way then 

promote renin secretion.

Renin diffuses into the bloodstream, catalysing the conversion of angiotensinogen, an 

alpha2-globulin synthesized by the liver, into decapeptide angiotensin I. In the lungs, 

angiotensin I change to angiotensin II by angiotensin Converting Enzyme (ACE) which 

is a potent vasoconstrictor. Angiotensin II formation in rodent vessels is almost totally 

A CE-dependent (Okumishi et ciL, 1993). However, Animal studies have identified 

ACE-independent angiotensin II generation in a variety of species and preparations: 

chymostatin-sensitive Ang II generation (CAGE) has been observed in canine 

mesenteric arteries and monkey pulmonary and mesenteric arteries (Okunishi et a l, 

1984) (Mangipane et al, 1994). In human myocardial tissue, angiotensin II generation is 

mediated by both ACE and chymase, with the latter pathway predominant (Urata et a l,

1990). Vascular ACE-independent Ang II generation has also been observed in 

adventitial cells. Thus, 60% of the Ang-I mediated contraction in human gastroepiploic 

arteries is ACE-independent (Bund et a l, 1989). Angiotensin II raises blood pressure in 

two ways:

1- Constriction of peripheral blood vessels and release of aldosterone from the adrenal 

gland cortex.

2- Aldosterone promotes the reabsorption of sodium ions and therefore water from the 

DCT and collecting tubes, by stimulating ADH release from parsnevrosa of 

hypophesis, thus expanding the plasma volume and hence increasing blood pressure

(Burkitt e ta l, 1996) (Jeffrey 2000) (Junqueira et al, 1998).
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Angiotensin II properties:

Angiotensin II is well known to cause potent increases in systemic and local blood 

pressure via its vasoconstrictive effect, to influence renal tubules to retain sodium and 

water, and to release aldosterone from adrenal gland. Angiotensin II may play a central 

role not only in the aetiology of hypertension but also in the pathophysiology of cardiac 

hypertrophy and remodelling, heart failure, vascular thickening, atherosclerosis and 

glomerulosclerosis in humans. Angiotensin II directly causes cell growth, regulates the 

gene expression of various bioactive substances {vasoactive hormones, growth factors, 

extracellular matrix components (ECM), cytokines and so on}, and activates multiple 

intracellular signalling cascades {tyrosine kinases, mitogen-activated protein (MAP), 

kinase cascades, various transcription factors, and so on}. Angiotensin II may directly 

cause cardiovascular and renal diseases, independent of its blood pressure-elevating 

effect (Kim et ai,  2000).

Majid Malekzadeh Shafaroudi, IBLS, University o f  G lasgow, April 2004 15



16

1-6. Classification of vascular smooth muscle cell surface receptors:

There are three different groups of receptors, which situated on the cell membrane of 

smooth muscle cells.

1) G-protein coupled receptors:

This type of receptors acts where slower events are modulated at slow synapses or for 

hormones, (seconds or minutes)

-Acetylcholine (Muscarinic Receptors) {M% in heart and M3 vascular smooth muscle 

cells}

-Adrenaline and Noradrenaline (a l ,  a2, p i, P2-receprors)

-Serotonin (5HT-receptors)

-Glucagon

-Angiotensin II (ATi, AT2 -receptors)

“Most other small amines and peptides.

2) lon-channel receptors:

Ligand-gated receptors ion channels act at fast synapses, where rapid onset and rapid 

termination are necessary for function. (Millisecond)

-Acetylcholine {ligand-gated ion channels include nAChR (nicotinic acetylcholine 
receptor) channel.
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-Purinergic receptors (P 2x at neiwe muscle junction )

3) Kinase receptors:

-Transforming growth factor-beta superfamily.

1-7. Classification and biomedical characteristics of angiotensin II receptors:

The existence of two subtypes of Ang II receptors, including ATi and AT2 . In rat and 

mice, AT] receptors consists of two subtypes, ATia and ATib which have 94% 

homology with regard to amino acids sequence and have similar phannacological 

properties and tissue distribution patterns.

ATi Receptors:

The ATi receptor is a member o f the seven transmembrane-spanning, G protein-coupled 

receptor family; binds to heterotrimeric G proteins which mediates virtually a majority 

of the known physiological actions of Ang II in cardiovascular, renal, neuronal, 

endocrine, hepatic, and other target cells. These actions include the regulation of arterial 

blood pressure, electrolyte and water balance, increase in cardiac contractility, 

facilitation of catecholamine release from nerve ending, thirst, hormone secretion, and 

renal function (De. Gasparo et al, 2000). The ATi receptor also induced growth 

response particularly after birth. In addition recent accumulating in vivo and in vitro 

evidence supports the notion that Ang II, mediated by ATi receptor, may participate 

directly in the pathogenesis of various cardiovascular and renal diseases (OWcubo et al,

1997).
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ATi receptors can cause intracellular signalling cascades via activation of PLC, PLAg, 

PLD, adenylyl cyclase and ion channels such as L-type and T-type voltage-sensitive 

calcium channels lead to several intracellular signalling pathway such as Câ "̂ , Ip3 , 

cAMP and DG. This can extend into the nucleus, which regulate gene transcription and 

the expression of proteins that control growth responses and cell proliferation in several 

Ang II target tissues.

Human ATi receptor gene is mapped to chromosome 3 and ATia and AT%b receptor 

genes in rat are mapped to chromosomes 17 and 2, respectively.

Numerous selective and potent nonpeptide ATi receptor antagonists have been 

developed, such as losaitan, candesajtan, valsartan, irbesartan, eprosartan, telmisartan, 

tasosartan, and in recent years, several of these compounds, including losartan, 

candesartan, and valsartan have been in use clinically for treatment of hypertension 

(Bauer and Reams 1995) (Johnston 1995) (Pitt and Konstam 1998).

AT2  Receptors:

The AT2 receptor belongs to GPCR Superfamily which its gene is localised as a single 

copy on X chromosome. There is no evidence for subtypes of the AT2 receptor (Kim 

and Iwao 2 0 0 0 ).

The AT2 receptor is ubiquitously expressed in developing foetal tissues, suggesting a 

possible role of this receptor in feotal development and organ morphogenesis. In 

contrast, AT2 receptor expression rapidly decreases after birth, and in the adult, 

expression of this receptor is high mainly to the uterus, ovary, certain brain nuclei, and 

adrenal medulla (Kim and Iwao 2000). Ang II actions via AT2  receptor paradoxically 

decreased blood pressure and produced a negative chronotropic effects (Masaki el a l,

1998) (Tsutsui et a i, 1999). In contrast to the hypotension and impaired vascular 

responses observed in ATi-deficient mice, knockout of the AT2 receptor leads to
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elevation of blood pressure and increased vascular sensitivity to Ang II (Hein et a i,

1995). This has suggested that the AT2 receptor may exert a protective action in blood 

pressure regulation by counteracting ATi receptor function (Tanaka et al, 1999).

AT2 -dependent dilation represented 20% to 39% of flow-induced dilation in mesenteric 

resistance arteries in rat, and AT2 -receptor mRNA was found in mesenteric resistance 

arteries. Thus, resistance arterial tone was modulated in situ by locally produced 

angiotensin II, which might participate in flow-induced dilation through endothelial AT2  

receptor activation of Nitric Oxide release. Angiotensin II in the presence of losartan 

(selective ATi antagonist) increases the diameter of rat mesenteric artery, an effect that 

can be inhibited by PD123319 (AT2 antagonist). PD123319 or losartan had no effect 

after Nitric Oxide synthesis blockade or after endothelial disruption. (Matrougui et a l,

1999).

Robert et al, have reported that angiotensin II (200 pmol/kg per minute IV) alone 

could increased blood pressure from a control of 112+3 to 168+7 mm Hg (P<0.0001) 

and losartan (30 mg/kg) alone decreased blood pressure to 89±7 mm Hg (P< 0.0001 

from control) in anesthetized rats. Angiotensin II administered together with losartan 

decreased blood pressure further to 71+4 mm Hg (P<0.0001 from eontrol and losartan 

alone). AT2 receptor antagonist PD123319 completely bloeked the hypotensive 

response to losartan combined with angiotensin II (P= NS from control). In another 

study in conscious rats (n=5 per group), CGP-42112A (CGP, selective AT2 receptor 

agonist) (70 |ag/kg pre minute) also decreased blood pressure in ATi Blocked conscious 

rats. Blood pressure decreased from 119+3 mm Hg to 8 6 + 6  mm Hg during 3 days of 

valsartan alone, (P< 0.00001) and decreased further to 65+ 7 mm Hg (P< 0.001 from 

daily VAL alone) with 7 days of CGP in presence of valsartan. They strongly suggested 

that the AT2 receptor induces a systemic vasodilator response mediated by Nitric Oxide
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that counterbalances the vasoconstrictor action of angiotensin II at the ATi receptor 

(Robert et al, 2001). Vascular media thickness in peripheral resistance arteries was also 

increased in AT2 blocked rats rather than ATi blocked animals (Levy et a l, 1996) (Cao 

et a l, 1999).

In uterine myometrium the AT2 receptor is expressed under non-pregnant conditions 

and declines during pregnancy, but returns to non-pregnant level after parturition (de 

Gasparo et a l, 1994).

Selective AT2 receptor antagonists include PD123177, PD123319, CGP42I12, L-162, 

6 8 6 , L-162, 638, EXP801 and CGP42112A (Kim and Iwao 2000). Among these 

antagonists PD123319 has provided evidence for a variety of functions of the AT2 

receptor in several different type of cells and tissues including cardiovascular, renal, 

adrenal, central nervous as well as mesenchymal systems.

The AT2 receptor seems to open a delayed rectifier K"̂  channel at least in hypo-thalamic 

neuronal tissues (Kang, et a l, 1994 and 1995) to close a T-type Ca^^ channel (Buisson, 

et a l 1992 and 1995) to suppress tissue and cellular growth (Nakajima et al, 1995) 

(Meffert et a l, 1996) to induced neuronal cell differentiation (Laflamme et a l, 1996) 

(Galhnat et a l, 1997) (Gendron et a l, 1999) and support apoptosis (Yamada et al,

1996) (Chamoux et a l, 1999) (Galhnat et a l, 1999). In addition, the AT2 receptor may 

exert hypertensive effects (Scheuer and Perrone 1993).
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Hisophysiology of Angiotensin II receptors

It has been extensively documented that the renin-angiotensin system is a major factor 

in the regulation of cardiovascular homeostasis, including blood pressure, mineral 

balance and tissue remodelling (Weber 1998) (Fig. 1-1). Angiotensin II mediates its 

biological actions by binding with two major subtypes of receptors, which have been 

identified and cloned as AT] (ATia and ATib) and AT% (De. Gasparo et a i, 2000) 

(Griendling et ai, 1996). These receptors are differently localised and have different 

functions. Angiotensin II mediates the effects of the renin-angiotensin system by 

stimulating the ATi receptor, to produce vasoconstriction and proliferation, and the AT2 

receptor, to produce vasodilatation, anti-proliferation and promote apoptosis (Anti­

remodelling receptor) (Horiuchi et a l, 1999). The ATi receptor, which is prominent in 

adult tissues, also stimulates cell growth (Matsukada and Ichikawa 1997). Angiotensin 

II receptors have been localised in vascular beds, heart, nervous system, kidneys and 

adrenal glands. However, there are different anatomical distributions of these receptors 

as well as differences in signalling pathways and function. In the foetal period, AT2 

receptor is the dominant subtype, although this situation rapidly reverses after birth to 

ATi being the dominant subtype in adult (Matsubara 1998) (Horiuchi et al, 1999) 

(Xoriuch et a i, 1999). Therefore, there is lower expression of AT2 in adult tissues 

except in uterus, ovary and adrenal medulla and some parts of brain (Zhuo et a i, 1995). 

Since 1998, there has been increasing evidence suggesting that the AT2 receptor may 

play a greater role, particularly in vasodilator and anti growth effects as well as 

downregulating the ATi receptor (Matsubara 1998) (Horiuchi et a t, 1999) (De. Gasparo

et a l, 2 0 0 0 ) (Unge 

natriuresis and oppos

1999). For example: AT2 receptor plays its role in pressure 

ng the antinatriuretic effects of ATi receptor, so that PD 123319 (a
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selective AT] antagonist) decreases urinary sodium excretion in renal hypertensive rat 

while valsartan or losartan exert the opposite effect (Siragy and Carey 1999). 

Meanwhile, the beneficial effect of ACE inhibitors on tissue remodelling appear to be 

independent, at least in part, of their effects on blood pressure (Linz et a l, 1995). In this 

respect, angiotensin II can either be generate in kidney and subsequently released in the 

circulation activating different plasma membrane receptors or it can be produced in 

different tissues to exert its effects at the place of production (Danser and Schalekamp 

1995).

In vasculature Chang and Lotti have reported the presence of AT] receptors comprising 

approximately 40% of AT receptors in rat aorta (Chang and Lotti. 1991). Also 

autoradiography provided some evidence for AT] in kidney vasculature (Zhuo et a l, 

1995 and 1997) (Matsubara 1998) (Miyata et a l, 1999). Thus, AT] is dominant in 

adventitia of the human renal artery and interlobar arteries (Goldfarb et al,, 1994) (Zhuo 

et a l, 1997). AT] receptors are also present in endothelial and vascular smooth muscle 

cells (SMCs) in small resistance arteries such as coronary arteries (Akishita et a l, 

2000).

Due to their role in regulation of cell proliferation, we expect AT] receptor expression 

to increase in inflammed and injured areas. There is some evidence that confirms this 

theory. For example, AT] receptor expression increases in skin during wound healing 

(Kimura et a l, 1992) (Viswanathan and Saavedra 1992). Likewise, an inflammatory 

cuff model caused over-expression of AT] in Media/neointima of mouse femoral artery 

(Akishita et al., 2000).

Both receptor subtypes (AT] and AT]) exist in the heart of most animals studied. AT] is 

the minor subtype and is expressed at low levels in adult rat cardiomyocytes (Bushe et
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al, 2000). However, AT] expression level increased in both absolute terms and relative 

to AT] receptors in hypertrophied rat and failing hamster heart (Lopez et a i, 1994) 

(Ohkubo et al, 1997). Moreover, myocardial infarction increased expression of AT] 

receptors from a basal state of 10% up to 50% during the first week after rat heart attack 

(Busch etal., 2000).

Although animal studies indicate that the AT] is dominant in adult hearts, the AT] 

location has a prominent in human heart. In both normal non-infarcted and 

hypertrophied human hearts, there is a predominance of AT] receptor binding sites in 

the cardiac myocytes (Brink et a l, 1996).

In human heart, autoradiography and immunohistochemical studies have generally 

shown an increase in the ratio AT]/AT]. The AT] receptor is mainly localised on 

fibroblasts at the site of fibrosis. However in immunohistochemical studies AT] was 

confined on myocytes in arterial tissue obtained from coronary artery bypass graft 

surgery patients (Brink et al., 1996) (Tsutsmi et al, 1998) (Wharton et a l, 1998) 

(Matsumoto et al., 2000).

There is growing evidence for intracellular actions of angiotensin II not related to 

activation of classical plasma membrane receptors. Brailou et al. have reported effect of 

intracellular angiotensin II on rat aorta contraction, independent of activation of plasma 

membrane angiotensin II receptors (Brailoiu et a l, 1999).

Intracellular angiotensin II was reported to increase cytosolic [Ca^^] in vascular smooth 

muscle cells (Hailer et a l, 1996) and to affect L-type Câ "̂  channels in a specific manner 

(Dimitropoulou et a l, 2001). Since the AT] and AT] receptors mediate opposing actions 

and they are both expressed on smooth muscle and endothelial cells, they are situated 

such that they can directly oppose each other’s actions. Consequently the net action of
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angiotensin II in a given tissue should depend on the ratio of ATi to AT% receptors. In 

order to, quantify the contribution of each receptor to the net action of angiotensin II, it 

is possible to use a mathematical model to predict that the changes in receptors 

populations will augment the switch from the positive growth effects of angiotensin II 

to the negative growth effects and vice versa (Nora, Elizabeth Hart 1999).

ATi and AT2  signalling pathway:

It seems that the signalling transduction mechanism is different in the two family types 

of angiotensin II (ATi and AT2 ) receptors. AT2 coupling stimulates protein phosphatase 

(Protein Tyrosine Phosphatase or PTPase) which directly inhibits the protein kinase 

pathway associated with the ATi receptor (Horiuchi et a l, 1999). MAP-1 is one of the 

phosphatases involved in AT2 receptor transduction (Fischer et a l, 1998).

►Protein kinase pathway -►Proliferation & contractionA T iR

Protein phosphatase

Both ATi and AT2 receptors also could increase cyclic GMP level in cultured bovine 

aortic endothelial cells, suggesting that ATi and AT2 receptors have the same direction 

at least at the level of cGMP production Via Nitric Oxide dependent pathway (Wiemer 

et a l, 1996). A stimulatory effect of angiotensin II on cellular NO and cGMP level has 

also been reported in other aortic endothelial cell preparations (Pueyo et a l, 1998). 

Nitric Oxide can be produced by two alternative pathways; directly through AT2 

receptors and indirectly from effect on AT2 receptors on bradykinin 2  receptors (B2 -R)
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(Abadir et al, 2003). Angiotensin II also could stimulate NO release directly in isolated 

blood vessels (Thorup e ta l,  1998) (Thorup e ta l, 1999).

There is also a direct link between AT2 Receptor activation and bradykinin synthesis 

and release. Both endogenous and exogenous angiotensin II could stimulate an increase 

in cyclic GMP, which in turn could stimulate NO release indirectly via bradyldnin 2 

receptor (B2 -R). Thus infusion of Ang II in SHR (hypertensive model of Rat) could 

increase both AT2 receptor and Bradykinin levels in renal artery. All of these effects 

were abolished by the AT2 blocker (PD 123319), B2 -R blocker (Hoe140 or icatibant), 

NOS blocker (L-NAME or L-NMMA) and also cyclooxygenase inhibitor indomethacin, 

suggesting that bradykinin 2  receptor modulates both internal prostaglandin Eg and 

nitric oxide. (Siragy and Carey 1996) (Siragy and Carey 1997) (Siragy et a l, 1997) 

(Siragy and Carey 1999).
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1-8. a-Adrenoceptors 

ai-Adrenoceptors:

The alpha 1 receptors that belong to GPCR superfamily are divided to alpha 1 A/C (C8 ), 

alpha IB (C5), alpha ID (C20) and alpha IL according to pharmacological 

classification. It has a single polypeptide chains, ranging from 429 to 561 amino acids 

in length (is very similar to that of rhodopsin T he light -activated retinal receptor’).

The aiB subtype was considered to have low affinity for phentolamine and 

oxymetazoline, to be completely inactivated by CEC, to not require Câ '*' influx for 

signaling but rather to mobilize Ca^^ from intracellular stores, and to be expressed 

prototypically in rat liver, spleen, and cerebral cortex (Robert et ah, 1996).

The aiD-AR subtype is expressed in variety of tissues, including conducting vascular 

smooth muscle, cerebral cortex, and probably rat lung. In rat aorta and iliac artery, it 

appears to be the predominant subtype mediating vasoconstriction 

(Perrez et ai, 1991) (Piascik et a l, 1994) (Piascik et a l, 1995).

Stimulation of alpha adrenoreceptors (a-ARs) results in the activation of various 

effector enzymes including PLC, PLA2 , PLD as well as activation of Câ "̂  channels, 

NaNH^ and NaVCa^"  ̂ exchangers and activation or inhibition of IC channels 

Additionally early and late response gene transcription. In most cells alpha-1 

stimulation causes intracellular Câ "̂  signalling, but can provide IP3, DG, PKC pathway 

as an intracellular signalling (Robert et al, 1996).

Blockade of L-type Câ "̂  channels with dihydropyridines or removal of extra cellular 

Câ "̂  was found to inhibit alpha lA, but not alpha IB-mediated contractile response in

Majid Malekzadeh Shafaroudi, IBLS, University o f  Glasgow, April 2004 2 6



2 7

isolated vascular smooth muscle or influx in hepatocytes. On the basis of such 

findings, it was suggested that (%iA gate Câ "*" influx through voltage-dependent Câ "*" 

channels, whereas aiB mobilise intracellular Câ "̂  via a PLC/IP3 mechanism (Minneman 

e ta l, 1988),

a2-adrenoceptors

The Alpha 2-adrenoceptors belongs to GPCR receptor family. Three subtypes of %- 

adrenoceptors exist in human and animals (0 (2 A, 0 C2 B, cc2 c)- In human they are located on 

the human chromosomes 10, 2 and 4, respectively (Byalund et a l, 1994).

The a 2 -ARs are coupled to several signaling pathways, including activation of GIRK iC  

channels (Acetylcholine also can act via this type of channel), mitogen activited protein 

Idnases (MAPK) and phospholipase D as well as inhibition of Câ "̂  channels and 

adenylyi cyclase.

Despite the abundance of a 2C“AR in adult human heart in foetal human heart (%2c and 

Œ2A-ARS has not been detected (Perala et al., 1992). All the three subtypes of Œ2-AR 

expression have been detected at the quantitative level in endocardium of adult human 

heart. However, frequency of Œ2C-AR is greater than Œ2 B-AR (a 2c-AR expression is 30- 

fold less than aiA-AR) and CC2 A-AR, respectively ( 0 0 2 0  > %B >0 C2a) (Perala et al, 1992 

and Berkowitz c / <2 /., 1994).
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a 2 -adrenoceptors were abundantly expressed in normal human foetal and adult tissues, 

including spleen, kidney, adrenal glands, plexus choroid, cerebral cortex, caudate 

nucleus and sldn (Perala et a l, 1992).

In the mouse embryonic development, during midgestion (day 9-11), all three aj- 

adrenoceptors subtypes are abundantly expressed in the embryonic and extraembryonic 

tissues, including placenta and yolk sac. The a 2 B-AR is the major subtype that is 

expressed in the placenta. Mice lacking all three Œ2-AR subtypes did not survive beyond 

day 11.5 of embryonic period due to a defect in formation of foetal blood vessels in 

yolk sac and placenta (Philipp et ah, 2002).

The a 2 A-AR involves in presynaptic feedback inhibition of noradrenaline release, 

hypotension, anlgesia, sedation and inhibition of epileptic seizures (Brede et a l, 2004). 

The a 2B“AR involves in hypertension, placenta angiogenesis and analgesic effect of 

nitrous oxide (Brede et al., 2004) and the c%2c-AR involves in feedback inhibition of 

adrenal catecholamine release, analgesic of moxonidine and modulation of behavior 

(Brede et al., 2004).

1-9. Interaction between ATi & ATz and ai & aa-adrenoceptors:

The vasoconstriction action of angiotensin II is subserved by ATi receptors. 

Angiotensin II receptors similai* to the ATib subtype subserve enhancement of 

transmitter noradrenaline release (Cox and Story 1996).

Angiotensin 11 can increase the IC5 0  value of noradrenaline. The angiotensin ATi 

receptor antagonist, DUP753 (losartan), not only blocked this action but also decreased 

the I C 5 0  value of noradrenaline. Activation of angiotensin 11 ATi receptors in the 

nucleus tractus solitarii may reduce the transduction of the 0 (2 -adrenoceptors and thus 

the ag-mediated vasodepressor responses (Firo et ah, 1994).
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There is some evidence that angiotensin II can inhibit norepinephrine reuptake and 

increase its biosynthesis and responses mediated via both extrasynaptic alpha 2  and 

intrasynaptic alpha 1-adrenoceptors (Saxena 1992). AT% receptor blockade with 

losartan significantly reduced the angiotensin II induced increase in norepinephrine 

concentration (Teisman et a l, 2000).

In normal pregnancy angiotensin AT2 receptors play a role in maintaining intrauterine 

blood flow for the fetus. When angiotensin II levels are elevated for a prolonged period 

this protective effect is lost paitly because angiotensin ATi receptors are down 

regulated (McMullen et a l, 1999).

Several reports described the stimulatory effects of angiotensin II on release of 

noradrenaline from sympathetic nerve terminals and adrenaline from adrenal medullary 

cells (Zimmerman 1978) (Duckies 1981) (Boke and Malik 1983) (Maclean and Unger, 

1986) and also it has been shown that angiotensin II increases noradrenaline activity on 

smooth muscle cells by inhibiting its reuptake into nerve terminals (Panisset and 

Boiirdois 1968) (Khairallah 1972) (Day and Moore 1976). However, the synergism was 

dependent on calcium influx through nifedipine-sensitive calcium channels (L-type 

calcium channel). Similarly, noradrenaline induced amplification of the angiotensin II 

response. It has been shown also that noradrenaline induced a bigger response when 

smooth muscle cells had already been induced by angiotensin II in rabbit femoral artery 

by specific mechanisms which involved ai-adrenoceptors (Prins et al., 1992).

From observations in whole animals, it was initially suggested that postjunctional 0 C2 - 

adrenoceptors were located extra-junctionally responding to circulating catecholamines 

(McGrath 1982). Responses to electrical field stimulation were virtually abolished by 

the selective ai-adrenoceptor antagonist prazosin (O.lpiM). In contrast, nerve-mediated 

responses were enhanced in the presence of both the selective a 2 -adrenoceptor
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antagonist ramvolseine (IpM) and Ang II (O.OSjaM). Ang II (0.05|iM) was without 

effect on nerve-mediated responses in preparations previously exposed to rauwolscine 

(IpM). In contrast, responses in preparations previously exposed to prazosin (0.1 pM) 

were markedly enhanced in the presence of Ang II (O.OSpM). These enhanced responses 

observed in the presence of prazosin and Ang II were subsequently susceptible to 

rauwolscine (IpM). This clearly indicates that under normal in vitro experimental 

conditions, nerve-released NA acts upon postjunctional oti-adrenoceptors to produce the 

functional contractile response. Under these conditions rauwolscine (IpM) enhanced 

nerve-mediated responses, an effect consistent with its well-documented action on 

prejunctional a 2 -adrenoceptor mediated autoregulation (Stark 1987). Ang II also caused 

a potentiation of responses to nerve stimulation. While this may be due partly to an 

increase in the release of neuronal transmitter (Ziogas and Story 1987), a postjunctional 

site of action is implicated by the observation that this agent introduced a prazosin- 

resistant component of responses to sympathetic nerve stimulation as it does to the 

adrenoceptor agonists UK-14304 (Dunn et al, 1989). This prazosin-resistant response 

introduced by Ang II was abolished by rauwolscine at a concentration which has 

previously been shown to be selective for a 2-adrenoceptors in this preparation (Dunn et 

a l, 1989) and which, prior to exposure to Ang II, and enhanced responses to 

sympathetic nerve stimulation. This study therefore clearly demonstrates a role for 

postjunctional (%2 -adrenoceptors in mediating the end-organ response of the distal 

saphenous artery to electrical field stimulation. Suggesting that potentiation by 

angiotensin II requires that ^-adrenoceptors are available for activation (Dunn et ai,

1991).

Daniel Henri on et a l, in 1992 reported that angiotensin II amplifies arterial contractile 

response to noradrenaline without increasing Ca^^ influx. They studied rabbit facial 

artery segments mounted isometrically and measure the Câ "̂  influx and net uptake in
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response to noradrenaline. The contractile response to noradrenaline in the presence of 

angiotensin (synergism) was not associated with changes in noradrenaline- induced Ca^^ 

influx or net uptake. This amplification was prevented by pretreatment with either 

Staurosprine (lOiiM) or Calphostin C (lOOnM), two inhibitors of Protein Kinase C. 

Hence, angiotensin II potentiation of noradrenaline-induced vascular tone occurs in the 

absence of changes in stimulated Câ '*' entry, and may be due to an increase in 

intracellular sensitivity to Ca^^, possibly mediated by protein Kinase C. (Henrion et al.,

1992)

In 1991 Dunn, et al, reported that on isolated distal saphenous artery angiotensin II 

mediated synergism that allowed noradrenaline to act via postjunctional a 2 - 

adrenoceptors. They reported that angiotensin II made responses to noradrenaline less 

susceptible to the antagonistic action of prazosin. This was particularly evident on the 

lower portion to the CCRC for noradrenaline. This evidence suggests that in the 

presence of angiotensin II, noradrenaline produce contractile responses by an action 

mediated through a prazosin-resistant adrenoceptor. After use of a receptor protection 

procedure involving the combination of rauwolscine (a 2-antagonist) and 

phenoxybenzamine (ai-antagonist), no responses were observed to oc-adrenoceptor 

agonists noradrenaline (oci and (%2 -agonist), phenylephrine (selective aragonists) or 

UKI4304 (selective 0 2̂-agonist). However, in the presence of angiotensin II, 

concentration-dependent contraction was observed to each of these agonists (UK14304 

> NA > Phenylephrine).

This phenomenon is consistent with that of an effect mediated through postjunctional a 2 - 

adrenoceptors. The responses to noradrenaline, after the protection protocol, in the 

presence of angiotensin II, were susceptible to the selective a 2-adrenoceptor antagonist, 

rauwolscine (IpM), but resistant to the selective oti-adrenoceptor antagonist, prazosin 

(O.ljuM). Inducing a small degree of tone with a low concentration of the selective a p
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adrenoceptor agonist, phenylephrine, markedly increases the threshold sensitivity to the 

selective adrenoceptor agonist UK14304, in a manner analogous to that seen with 

angiotensin II.

These above mentioned results indicate that responses mediated via postjunctional a%- 

adrenoceptors in rabbit isolated distal saphenous artery are dependent upon a degree of 

vascular smooth muscle stimulation by an other receptor system. It is hypothesised that 

the contraction response to noradrenaline or phenylephrine is caused by stimulation of 

ai-adrenoceptors, while after a%-adrenoceptor blockade the necessary positive influence 

can be provided by stimulation of angiotensin II receptors (ATi receptor). It seems there 

is some interaction between a-adrenoceptor subtypes, (ai and ocz) and angiotensin II 

receptors in demonstrating prazosin-resistant, rauwolseine ((%% antagonist)-or yohimbine 

antagonist)-sensitive response in isolated blood vessels (Dunn et a l, 1991).

Œi-adrenergic receptors are known to have a critical role in regulating neurotransmitter 

release from sympathetice nerves and from adrenergic neurones in the central nervous 

system. There are at least three subtypes of (%2-adrenergic receptors, (XzA/u, 0t2c- 

Both of Œ2A/D and c%2c, are required for normal presynaptic control of transmitter release 

from sympathetic nerves in heart and central noradrenergic neurons. (%2A/D-adrenergic 

receptors inhibit transmitter release at high stimulation frequencies, whereas the (%2c- 

subtype modulates neurotransmission at lower levels of nerve activity. Both low-and 

high-frequency regulation seem to be physiologically important, as mice lacking both of 

these receptors have elevated plasma noradrenaline concentrations and develop cardiac 

hypertrophy with decreased left ventricular contractility by four months of age (Hein et 

aA, 1999).

The contraction of aortic strips generated by angiotensin II in the mice was significantly 

greater in the AT% gene-deleted mice than the control, which was completely abolished
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by ATi antagonist (losartan). The aortic content of ATi receptor was significantly 

increased in the AT2 null mice (212 +/- 58.9 fmol/mg protein) compared with control 

(98.2 +/- 55,9 fmol/mg protein). While both ATi and ATg mRNAs were expressed in 

the aorta of the control mice, only ATi mRNA was expressed in the AT2 Knockout 

mice. The expression of ATi mRNA in the AT2 Knockout mice was significantly higher 

(1.5-fold) than that in the control. It seems AT2 works against AT,-mediated vascular 

action of angiotensin II through downregulation of AT, receptors by a crosstalk 

between these receptors by some as yet unknown mechanism (Tanaka et al., 1999).

Majid Maiekzadeh Shafaroudi, IBLS, University o f  Glasgow, April 2004 3 g



34

1-10. Angiotensin- (1-7) and (1-5):

ACE

MAS AT: AXAT

Renin

Atigl

Ang II Ang IVAng (1-5) Ang (1-7)

1-Laboratory studies have characterised the enzymatic pathways of formation of amino- 

terminal heptapeptide fragment, angiotensin- (1-7) or Ang (1-7). Two types of 

endopeptidase are forming Ang- (1-7) which implicated in the metabolism of 

vasodilator peptides such as bradykinin and atrial natriuretic factor (Carlos and Ferrario 

2002).

2-Ang (1-7) have vasodilator actions due to effect of it on Mas receptors. Activation of 

mas receptors could reduce calcium signal processing in rat cai'diac myocytes (WaUher 

et al.) 2001).

3-Angiotensin-(l-7), the amino-terminal angiotensin heptapeptide, is a biologically 

active peptide of the renin-angiotensin system that has both vasodilatory and 

antiproliferative activities that are opposite to the constrictive and proliferative effects 

of angiotensin II. Angiotensin- (1-7) can downregulate the AT; receptor in vascular
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smooth muscle as an endogenous angiotensin II antagonist (Clark et ai ,  2001) (Ueda et 

al., 2000).

4-Inhibition of ACE blocks metabolism of angiotensin- (1-7) to angiotensin-(l-5) and 

can lead to elevation of angiotensin- (1-7) levels in plasma an tissue. In animal models, 

angiotensin- (1-7) itself causes or enhances vasodilatation and inhibits vascular 

contraction response to angiotensin II. Angiotensin- (1-5) inhibited plasma ACE activity 

with a potency equal to that of angiotensin I but had no effect on arterial contraction. 

Hence, both of angiotensin- (1-7) and (1-5) can inhibit ACE. However, only 

angiotensin- (1-7) can downregulate the AT] receptors (Roks et ai ,  1999).
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1-11. Angiotensin IT-mediated cardiovascular and renal diseases;

There are opposing actions of AT]-Receptor (excitatory) and AT2 -Receptor (inhibitory) 

on cardiovascular system. Blockade of ATi-R has emerged as an effective hypertension 

and heart failure treatment as well as ACE inhibition (Matsubara 1998 and 2001) 

(Horiuchi et a l, 1999).

Unlike ACE inhibitors, A T rR  blockade increases circulating levels of Ang II that could 

provide more ATz-R stimulation, which leads to additional complementary therapeutic 

benefit. PD123319 and Hoe 140 attenuated these effects. However, did not effect the 

losartan-induced fall in blood pressure (Dukel et ai., 2003).

The progression of left ventricular hypertrophy and cardiac fibrosis in hypertensive heart 

disease is influenced by sex and age. However, angiotensin II converting enzyme 

inhibition has been shown to prevent progression of the disease in postmenopausal 

women (Grohe et a i, 1998).

Thus, there is apparently marked tissue heterogeneity, which is likely to reflect the 

balance of AT;/AT2 receptor expression in various tissues, including greater diversity 

effects of AT2-R on cardiac hypertrophy than cardiac fibrosis, which reflects the greater 

AT2-R expression in cardiac fibroblasts (Ohkubo et a l, 1997) (Tsutsumi et al, 1998).
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1-12, General materials and methods for study of receptors;

1) Isolated Organ Bath Studies with use of wire myography;

Wire myography is the most common method for study of vessels. An advantage of this 

method is the possibility for further histological studies of the fixed artery (Thybo et ai, 

1995). Wire myography was introduced by Bevan and Osher in 1972, to study 

functional responses in resistance arteries. But, it was not until 1976 that Mulvany and 

Halpern first used wire myography to study the structure of small arteries (Mulvany et 

al, 1976). This technique involves threading two 40-micron stainless steel or tungesten 

wires through small-dissected arteries of approximately 2mm. The two wires are held in 

position between two heads, one attached to a micrometer and the other one to a force 

transducer (Fig. 1-2). This allows the tension and the internal circumference of the artery 

to be measured and controlled. The dimensions of the artery wall can be calculated by 

placing the myograph on to the stage of a microscope fitted with a lOX magnification 

water objective lens. This will allow measurement such as the wall to lumen ratio and 

the cross sectional area to be measured with an accuracy of 1pm. Other important 

parameters, that can be measured including the internal diameter and length of blood 

vessel, the mean wire thickness (t) and the mean distance between the inner edges of the 

wires (d). By using these obtained measurements the internal circumference (Ci) of an 

artery mounted on a wire myograph can be calculated using the following formula:

Ci = 2tiR , Ri = 2t + d / 2

Ri = internal Radius lumen of vessel, Ci = internal circumference

t = mean wire thickness

d = mean distance between inner edges of the wires
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Then we can get the following formula: Ci = 7i (2t + d)

Male wild type or transgenic mice (aged between 4-6 months) were killed by C02 and 

the vessels (aorta, carotid artery, tail artery, mesenteric artery and....) removed. 

Connective tissue including adipose tissue was then removed and the samples dissected 

into rings. Tissues were mounted in warm Krebs solution (NaCl 118.4mM, KCl 4.7mM, 

CaCl2 2.5mM, KH2PO4  1.2mM, MgS0 4  1.2mM, NaHCOs 25mM & glucose 11.1 mM 

bubbled with 95% 0% 5% CO2 to pH 7.4) at 3TC  in a multi-myograph (myo-interface, 

model 600M Version 2 and 610M Version 2.2, Aarhus) using 40 micron tungsten wires. 

An isometric force transducer (linseis L6512B, Belmont Instruments that calibrated for 

Ig force as sixty small boxes and Powerlab software Version 4.2.2 for windows 98 on a 

Pentium III computer which calibrated for Ig force as a 1 Volt) was used to measure 

force development (Fig. 1-2 and 1-3). The vessel rings were placed under appropriate 

initial tension and left to equilibration period for 30-45 minutes. Experiments had 

specific start-up protocols, designed for particular aims or hypothesis testing.

2) Perfusion Pressure myography:

Perfusion pressure myography was developed as a tool for studying the function of 

small artery preparations from normotensive and hypertensive rats. (Halpern et a i, 

1978) This technique involves securing a resistance vessel to a fine glass cannula, 

which is filled with physiological salt solution (PSS). The vessel is secured at one or 

both ends with fine strands of silk teased from surgical suture thread. Any blood within 

the lumen of the vessel is gently flushed out before the second end of the vessel is 

secured to the other cannula or tied off with another strand of silk thread. A system of 

PSS filled tubing is attached to the cannula via a pressure transducer. The opposite end
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of the tubing form the vessel is attached to either a servo-pump or a fluid reservoir, to 

control the pressure to which the vessel is exposed. Once mounting is complete the 

myograph is placed on to the stage of a microscope. A video camera is attached to the 

microscope, which allows images to be taken of the blood vessel under magnification. 

The signal from the camera is shown on a monitor so that the experimenter can visualise 

the vessel throughout the experiment. The signal is also fed into a video dimension 

analyser. This allows continuous measurement of the lumen diameter and wall thickness 

to be made. It also allows the experimenter to make measurements along the length of 

the vessel as the position of lines on the monitor can be manually adjusted using 

controls on the analyser box (Fig. 1-4). These measurements can be added together and 

a mean arterial wall thickness and lumen diameter can be calculated. Other 

measurements, which can be made using this myograph system, include arterial 

diameter and arterial length. To measure the arterial diameter the video camera is 

rotated until the image on the monitor is horizontal. The lines can then be placed on the 

inner margins of the wall and a value can be read from the video analyser display. 

Similarly the vessel length can be calculated by turning the camera until the vessel is 

vertical. The measurements made for length are between 2 natural landmarks in the 

vessel or between two lightly tied silk threads placed at opposite ends of the vessel. The 

natural landmarks are often isolated fat cells on the surface of the vessel or larger darker 

cells in the adventitial layer or the wall. This method of using video measurements is 

very precise as the measuring lines on the monitor can be calibrated using a calibrating 

grid placed on the microscope stage. The only disadvantage to video measurements is 

that it is very subjective and biased, as the experimenter has to decide where to measure 

in the arterial wall. Although it has this disadvantage, it has a high rate of 

reproducibility, approximately 5% of error was noted between observers looldng at the 

same vessel. In one study a computerised diameter measuring system was used to make
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a comparison with video measurements. The results showed an excellent correlation 

between the diameter measurements and manual measurements. The regression 

coefficient was 0.992 showing that there are near similarities and validity between both 

methods (Lew et a l, 1992),

Once again this method can be combined with histological studies of the blood vessels 

and therefore a more detailed analysis of the cellular structure of the blood vessels wall 

can be made. Often fixatives are used to hold the vessel in the shape it takes under 

pressure. Once the vessel has been fixed it is embedded in paraffin wax or resin, 

sections are cut and stained allowing the experimenter to identify distinct cell types in 

the layers of the artery wall. Placing these sections over a morphometeric grid can make 

morphometeric measurements. Due to the fact that the pressure myograph offers more 

physiologically correct conditions for blood vessels, a more morphologically correct 

structure of the vessel wall is seen.

3) Laser Scanning Confocal Microscopy:

One of the most novel methods currently being used to study vascular morphology is 

the technique of combination of pressure myography and laser scanning confocal 

microscopy (LSCM) in order to visualise the component cells with in the vessel wall. 

Several methods have been described using confocal microscopy to study the vascular 

wall at the cellular level.

There are different types of laser scanning confocal microscopy:

1) Slit Laser Scanning Confocal Microscopy, which is more susceptible for 

quantitative measuring of fluorescent compound. It’s more sensitive. However, Can 

not create clear specific images due to penetration of more waves whereas
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interfering to each other into the sensor in order to localisation of receptors. So 

images from this type of microscope need to more deconvolution.

2) Pinhole Laser Scanning Confocal microscopy, which can create sharper and better 

images in order to localise receptors (Fig. 1-5).

The laser scanning confocal microscopy is using three types of common range of 

wavelength using laser bulbs {argon (445nm-488nm wavelength), Green Heeni (515- 

580nm wavelength) and Neon (580-680nm wavelength)}. For each of the wavelength 

range we need to use particular emission filter to delete non-excitation waves from 

sources.

a) Jeffrey Dicldiout and Robert Lee described a method using mesenteric arteries from 

normotensive or hypertensive rats (Dickhout and Lee 1997).

The rats were anethetizesed with sodium pentobarbital and the mesenteric vessels were 

exposed and cleared of blood by perfusion with hanks basic salt solution (HBSS) 

containing 1 pmol/L sodium nitroprusside. The arteries were measured to ensure that an 

in vivo length was maintained after mounting on the pressure myograph. Once the 

blood is removed and the ties put in place for length measurements the arteries are 

transferred to the bath of the myograph where they are mounted as previously described 

on to glass cannula. The artery is then repressurized under 70 mmHg, which is required 

to expand the arteries to their in vivo length. The arteries were then fixed using a 

fixative containing 3.5% formaldehyde, 0.75% gluteraldehyde in 0.05 mol/L phosphate 

buffer which preserved the artery structure with little non-specific autofluorescence 

(normal fixatives contain 2.5% gluteraldehyde which gives high levels of unwanted 

autofluorescence). Then fixed vessels were washed repeatedly with Hanks Buffered salt 

solution (HBSS), which removed most of the fixative. Any traces of free aldehyde were 

removed by reduction with 1 mg/L sodium borohydhde for 5 minutes. The tissues are 

then again washed with HBSS but this time it contains 0.1% Triton X-lOO (pH=8 ),
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which is used to permeabilise the cell membrane. Once the cell membrane is 

permeabilised the nuclear dye ethidium bromide in a reduced form was added to the 

bath. The arteries were stained for 20 minutes and the washed with HBSS to remove 

any excess stain. After washing the arteries were mounted in 1:1 glycerol/HBSS on a 

concave glass slid and exposed to ultraviolet light to redevelop the reduced ethidium 

bromide into its normal state (orange fluorescent characteristic). Then vessels were set 

up on the confocal microscope for imaging. Dickout and Lee used an Argon Ion Laser 

with emission lines at 488nm; this gave the best excitation of the dye with the lowest 

non-specific autofluorescence. The images were taken from random planes more than 

10 pm above the artery. A computer aided tracing package was used to determine the 

area of each optical section in the medial layer, This allowed calculation of media 

volume to be made as a Cavalierian estimator of the volume:

Volume = S(Area) * ôT

Volume = volume of the medil layer.

Area = area of medial layer found in each optical section.

ÔT = distance between each optical section.

b) Another study in which confocal microscopy is used to study morphological aspects 

of arteries was earned out by Anibas et al (Anibas el ah, 1997).

Mesenteric arteries were removed from WKY or SHR rats and mounted on either a wire 

or perfusion myograph as previously described. Measurements were made in both cases 

and values calculated for cross-sectional area, wall thickness, wall to lumen ratio, 

internal diameter and equivalent pressure.

In the perfusion pressure system the vessels were fixed with 10% formal saline and 

stored for further analysis on the confocal microscope. A comparison was also made in 

this study between live and fixed vessels. Arribas et al, used five arteries to compare
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perfusion myography and Laser Scanning Confocal Microscopy (LSCM) 

measurements.

Arteries are mounted on the perfusion myograph and pressurised under 50mmHg. After 

an equilibration period (30 minutes) measurements were made using the dimension 

analyser. Once measurements were made the physiological salt solution (PSS) was 

replaced with PSS containing the vital dye Hoechst 33342 for 30 minutes. This dye was 

also perfused intraluminally for two minutes to enhance the staining of the endothelial 

layer. The myograph was then placed on the stage of the confocal microscope and 

measurements of the lumen were made. Following this the PSS was replaced with 

fixative and the vessels were fixed under 50mmHg pressure and measurements were 

again made using the LSCM and the video dimension analyser system. Vessels were 

prepared for imaging on the confocal microscope by placing the blood vessels on a 

glass slide and covering it with a coverslip attached to the slide by a thick layer of 

vacuum grease. This ensured that the coverslip did not press against the artery therefore 

minimising any changes, which may occur in the wall of the vessel if the coverslip lay 

directly on top of the artery.

Measurements of parameters could be make by using either data obtained from the 

VDU system or the laser scanning confocal microscope. These include:

Wall cross section area (CSA) = external CSA -  internal CSA

External CSA = n  (lumen 12 + wall thickness)(lumen / 2 + wall thickness) Internal CSA 

-  71 (lumen / 2)(lumen / 2)

Total number of cells for each layer:

Cell number = number of nuclei per stack x number of stacks per vessel 

Luminal circumference = 2tiR = 2tc (diameter / 2)

Luminal surface = 2rtRh = Luminal circumference x length of vessel
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1”13. Differences between wire and perfusion pressure myography;

Wire and perfusion myography have been compared in a few studies. However, Arribas 

et al, have shown: larger lumen, smaller wall thickness and smaller wall to lumen ratio 

for perfusion compared with wire myography. These differences may lie in the 

theoretical assumptions necessary for the wire myography. For example physical 

differences such as the axial distension with increasing pressure that occurs in perfusion 

myography, but is not experienced on a wire myograph (Arribas et a l, 1997).

1-14. Difference between LSCM and Perfusion myography;

Arribas et al, found significantly larger wall thickness and Cross section area (CSA) 

measurements with Lasei’ Scanning Confocal Microscopy (LSCM) under both live and 

fixed conditions, compared with the perfusion method. This was not due to a general 

calibration problem of the LSCM because lumen measurements were similar when 

taken with both methods, provided the condition was the same (live or fixed vessel). 

They suggested that the differences observed in wall thickness measurements between 

the two methods is due to an underestimation of wall thickness when measured with the 

perfusion myography VDA (video dimension analyser). Often adventitia is more 

translucent than the media, and it is difficult to detect when the vessel is brightly 

illuminated for optimal visualisation of lumen. It is likely that much of the adventitia 

and intima are not included in the wall measurement taken with the VDA. In addition, 

the terminology used in the literature to define “wall” measurements is confusing, 

reflecting the difficulty of clearly measuring different layers. Some studies use the term 

“wall thickness” others use media thickness and one established that “media” was 

clearly discernible but considered it “wall”. Also it is considered that the images can be 

inadequate for providing an exact measurements of these layers because the outer limits
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of adventitia and intima were not always clearly shown. Only the ability to distinguish 

between cell types with use of nuclear dyes allows visualisation and separate 

measurement within the different layers in the wall. Another important factor is the 

capacity of the different cell nuclei to capture the dye; this is always less for the 

endothelial nuclei, even when the dye is applied intraluminally (Anibas et al, 1997).
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4) Fluorescent ligands for study of receptors:

Ligands attach to receptive sites on receptors in proportion to the numbers of each. The 

basis of radioligand binding is that ligands bind to receptors long enough, on average, 

that sufficient will still be present after rapidly washing away unbound ligand to give a 

signal proportional to the amount of ligand-receptor complex. Theoretically, exactly the 

same principles could be applied to fluorescent ligands.

Many attempts have been made at conjugating fluorescent molecules to receptor ligands 

in the hope of identifying their binding sites. This was aimed mainly at the localisation 

of the receptors rather than studying their properties.

1-15. Advantages of Fluorescent ligands Compared with radioligands:

1 -Fluorescence is relatively safe and inexpensive compared with tritiated or iodinated 

compounds.

2~Spatieal resolution is greatly enhanced compared with autoradiography or cell 

fractionation

3-Experiments can be performed at true equilibrium.

4-Fluorescent ligands can be displaced from their binding site by non-fluorescent 

ligands. Using image subtraction it is thus possible to identify the sites recognized by 

the non-fluorescent ligand.

5-Bleaching of certain fluorescent molecules (i.e. those which are only fluorescent when 

bound) can be used for fluorescent recovery after photo-bleaching type experiments. 

Once an area has been bleached the rate of recovery of fluorescence provides 

information on the association of the fluorescent ligand.
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6 "The signal does not degrade. Although photo-bleaching of individual molecules can 

occur, the Kinetic nature of binding replenishes the site with an undamaged ligand This 

also allows signal averaging, of radioligand decay.

7-Different fluorophores are available to suit particular experimental set-ups. This 

enables the use of multiple fluorescent ligands or co-localisation of ligands and 

antibodies.

8 -Live or fixed tissue can be used.

9-Small amounts of tissue or single cells can be studied.

10-Immediate results are obtained.

1-16. Disadvantages of fluorescent ligands compared with Radioligands:

1 -The large fluorescent group can affect the affinity of some (but not all) ligands.

2-The yield of a single fluorescent molecule may be different for different fluorophores 

and may be affected by the binding conditions. This complicates the calculation of a 

Pmax.

3-Very sensitive detectors may be required for the low concentrations of fluorescent 

ligands, which are required to maintain specificity.

4-Bleaching will occur if the excitation source is too great or the ligand concentration 

too low. In some cases it may be difficult to find the right balance if the source light is 

not tunable.

5-Tissue autofluorescence can cause significant problems in some samples. Elastin is 

particularly problematic.

6 -If fluorescent ligands are internalised in live tissue or cells they may be subject to 

degradation (McGrath e ta l,  1996).
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1-17. Fluorescent Ligands:

Cell surface G-protein-coupled receptors are notoriously difficult to localise accurately, 

even in fixed tissue using antibodies, due to the non-specificity caused by the high 

degree of conservation of sequence, or using radioligands due to the inherent low 

resolution of autoradiography. However, high affinity fluorescent ligands based on

OMe

“antagonist” drugs/ ligands could be used in a manner analogous to radioligands, but 

with much higher spatial resolution and in real-time on live tissue, if their concentration 

can be measured photometrically.

The structure above is a fluorescent alphal-adrenoceptor antagonist based on pj-azosin. 

This particular form of BODIPY is excited at 488nm and emits above 515nm. The 

compound was obtained from molecular probe and is listed in their catalogue as 

^'BODIPY FL“prazosiii’’ but since it lacks the furan group which defines prazosin, as 

opposed to other compounds which share the quinazolinyl piperazine group, such as 

doxazosin, we refer to it by an acronym, QA.PB, derived from its chemical name 

(quinazolinyl piperazine borate-dipyiTomethene).
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1-18. Discussion:

According to the World Health Organisation (WHO) dependent to the United Nations 

Organisation (UN) many people around the world have involved in cardiovascular 

diseases which control by multifactorial system. Although genetic background has a 

main role in cardiovascular disease,

However, many of changes in normal situation, which leads to pathological condition 

are acting via changing in receptors balance. A majority of these receptors are situated 

on both smooth muscle and endothelial cells of the vascular system. We often know 

their molecular structure and function. However, interaction between these receptors is 

much complicated. Identification of these interactions between receptors is very useful 

for defining mechanism in hypertension, vascular remodelling and cardiac dysfunction, 

which are involved in cardiovascular diseases. Scientists have described several 

methods for studies of the circulatory system, particularly the vascular system. 

However, the big problem is difference between in vivo and in vitro studies. We don’t 

know exactly, whether this knowledge, which discovered in vitro actually applies in 

vivo or not. It is necessary to know this in clinical treatment of hypertension and 

cardiovascular diseases. Also distribution and expression of receptors are different in 

different species of animals. Scientists have made progress in this field of knowledge, 

However, there is still much work to be done. Most studies on the vascular system are 

based on work in animal models, such as dog, rabbit, rat and also mice. Recently, the 

use of transgenic animals, new drugs, fluorescent LSCM and better technology 

particularly using fast processor computers and new softwares have provided more 

details about the different types of receptors. However, scientists need to more evidence 

for interpretation of every aspect of hypertension, vascular remodelling mechanism and 

effect of adventita or intima in these processes.
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Chapter two

Effects of angiotensin II on different mouse arteries.

mediated vasodilatation that can overcome ATj mediated 
contraction at high concentrations. This inhibitory effect is the 
mtÿor of Afig 22

I n  b o th  c a r o t id  a n d  s u p e r io r  ( m a in )  m e s e n te r ic  a r te r ie s  t h e  c o n tr a c t i le  
e f f e c t  o f  A n g  I I  v ia  A T j  r e c e p to r s  is  d o m i n a n t
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2-1. Abstract:

1. Angiotensin II (Ang II) mediated vasodilator responses were studied on wire 

myograph-mounted mouse aorta with a view to determining contributions and sites of 

action of receptor subtypes and potential synergism between the angiotensin receptor 

and adrenoceptor families.

2. Ang II had a concentration-related dual effect in the presence of elevated tone (5HT), 

causing contraction at low concentrations and a relaxant effect at higher concentrations, 

losartan (Selective ATi antagonist) or PD1233I9 (Selective AT% antagonist) attenuated 

contraction and relaxation, respectively. This indicates a role for ATi and ATg receptors 

in Ang II mediated vasoconstriction and vasodilatation respectively. The relaxation was 

abolished by L-NAME or endothelial removal, revealing a larger contraction. This 

indicates an ATi action to contract vascular smooth muscle and an ATg action on 

endothelium to release nitric oxide.

3. Ang Il-mediated relaxation had no detectable synergistic effect on UK14304- 

mediated relaxation in mouse aorta.

4. In Aorta pre-incubation with Ang II (30nM) significantly reduced the maximum 

response to NA (p<0.0001): this effect was increased by losartan and blocked by 

PD1233I9.

5. In both carotid and superior (main) mesenteric arteries the contractile effect of Ang II 

was dominant.

6 . In first branch mesenteric arteries the main effect of angiotensin II was relaxation. 

This was reversed to contraction by L-NAME suggesting that it was of endothelial 

origin.
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7. A fluorescent derivative of Ang II, Rhodamine-Ang II-H, was used to visualise 

angiotensin receptors on dissociated arterial cells and intact vessels, emplying confocal 

microscopy. Losartan and PD123319 were used as competitor ligands to identify the 

receptor subtypes that were labelled by the fluorescent compound. This provided 

evidence for the presence of both AT receptor subtypes on both smooth muscle and 

endothelial cells. This was accomplished on both aorta and main (superior) mesenteric 

arteries.
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2-2. Introduction:

Studies of the mouse cardiovascular system have increased markedly in the past 2-3 

years reflecting the development of genetically modified mouse strains, lacldng 

(knockout) or over expressing (transgenic) individual receptor subtypes. These can be 

used to clarify the role of such receptors, for example where the pharmacology is 

complicated by multiple subtypes responding to the same agonist (Daly et a l, 2002).

Being the largest vessel available, the mouse aorta is of interest for pharmacological 

analysis. Its general pharmacological properties resemble that of the much studied rat 

aorta allowing its use to unravel the large database of vascular biology available from 

that and other species. For example contractile responses of mouse and rat aorta to 

noradrenaline are mediated by aio-adrenoceptors (Yamamoto & Koike 2001) (Tanoue 

et al, 2002) (Daly et al, 2002) and both contract well to 5HT and appropriate 

prostaglandins (Russell & Watts 2000). However there are some reports of differences, 

one of which is a relatively smaller response to angiotensin II in the mouse (Russell & 

Watts, 2000).

The mouse vascular system has been shown to possess two opposing actions of 

angiotensin II, mediated by its two receptors. ATi receptors mediate vasoconstriction. 

There is an increased vascular reactivity to Ang II in AT2 knockout mice. This suggests 

that AT2 receptors mediate an effect that counteracts the effect via ATj. This is 

believed to be at least partly due to an increased vascular ATi receptor expression, 

suggesting that AT2 counteracts AT^-mediated vascular action of Ang II through 

downregulation of ATi receptor by a crosstalk between these receptors by some as yet
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unknown mechanisms (Tanaka et al, 1999; Akishita et al, 1999). Angiotensin II is 

reported to be weakly efficacious on mouse aorta compared with NA and 

phenylephrine. In a study of strips of mouse aorta, (Russell and Watts 2000) reported a 

weak ATi mediated vasoconstrictor effect of Ang II and a lack of any AT% mediated 

vasodilatation. This failure to find a direct vascular AT% mediated response is 

disappointing given the documentation on the role of Ang II in maintaining mouse 

blood pressure (Oliverio et la., 1998) (Siragy et a l, 1999) and thus its utility as a model 

system for the human renin-angiotensin system: although as a conducting artery the 

aorta need not be involved in such a response.

The present study have uncovered and analysed the constrictor and relaxant effects of 

angiotensin II in the mouse aorta, using straightforward pharmacology and myograph- 

mounted aortic rings, showing that the contractile and relaxant actions are mediated by 

vascular smooth muscle ATi and endothelial AT], respectively. In order to demonstrate 

these actions on other vessels, e.g. carotid and superior mesenteric arteries. We also, 

tried to localise Ang II receptors in both smooth muscle and endothelial cells using 

fluorescently labelled Ang II detected by Laser Scanning Confocal Microscopy (LSCM) 

and selective antagonists. In order to clarify the location of these receptors, in relation to 

another major vasoactive family of GPCRs we used QAPB (Fluorescent Prazosin) 

which binds to adrenoceptors. In this way, we revealed the position of adrenoceptors 

compared with angiotensin receptors in mouse aorta and superior mesenteric artery.

We were also interested in possible synergism between az-AR and AT receptors. There 

are many reports of the presence of ATi receptors in different vessels which can 

amplify arterial contractile responses to NA in a synergistic fashion (Rat and rabbit) 

(Dunn et al, 1989) (Henrion et a l, 1992) (Gasparo et a l, 2000) (Mats us aka et a l.
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1997). However, a synergistic link between Ang II receptors and ot2-ARs mediating 

vasodilatation seemed worth investigating in the mouse.

We used wire myograph-mounted aortic rings to ensure minimal damage to the vascular 

endothelium (relative to the damage with spiral strips). Previous studies used strips of 

aorta (Tanaka et a l, 1999) which may account for their failure to find endothelium- 

mediated relaxation to Ang II. It was the relative fragility of drug-induced relaxant 

responses in spiral strips that led Furchgott and Zawadski (1980) to discover 

endothelium derived relaxant factors.

The overall aim of the study was to establish the characterisation of AT2-mediated 

vasodilatation in mouse aorta, and to investigate the presence of any functional 

interaction between this receptor and both ATi receptors and adienoceptors.
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2-3. Materials and Method;

Wire Myography:

The strains of mice employed were Swiss wild type (129/sv/C57BL6) and the (%2A/D- 

adrenoceptor mutant D79N mouse (MacMillan et al, 1996, 1998), which had been back- 

crossed on to C57BL/6; this is a strain which loses an endothelium-mediated response 

mediated by another receptor (the (%2 A/o-adrenoceptor, see Chapter 3) and indeed the 

Ang II response acts as another control for that lost response. In the current chapter this 

simply shows that the Ang II responses are similar in another strain of mouse.

Male mice (aged 4 months) were killed by CO2 inhalation and the descending thoracic 

aorta, carotid, main mesenteric and first branch mesenteric were removed, cleaned of 

connective tissue then dissected into rings (2-3mm in length).

Endothelium was removed, where appropriate, by gently rubbing the intimai surface. 

Tissues were then mounted in Kreb’s solution (NaCl 118.4mM, KCl 4.7mM, CaCl2 

2.5mM, KH2PO4 1.2mM, MgS0 4  1.2mM, NaHCOg 25mM & glucose ll.lm M  bubbled 

with 95% O2 5% CO2 to pH 7.4) at 37°C in a multi-myograph (myo-interface, model 

600M,DMT, Aarhus) using 40pm stainless steel wires (Mulvany and Halpern. 1976, 

1977). Aortic rings were placed under a resting tension of Ig; carotid artery 0.33 g; 

superior (Main) mesenteric artery and first branch mesenteric artery each 0.25g; and left 

to equilibrate for 30-45 minutes. Reproducible responses were obtained to 5HT 

(O.lpM), NA (O.lpM), phenylephrine (O.lpM), or U46619 (lOnM), according to 

protocol, before commencing experiments. Tissues were tested with increasing 

cumulative concentrations of Ang II in 0.5 log unit increments from InM -lpM , added 

at four minute intervals (cumulative concentration response curve, CCRC)
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At the plateau of contraction to noradrenaline (0.1 or IpM), 5HT (0.1 or IpM) or 

U46619 (0.01 or O.lpM), Acetylcholine (IpM) was added to assess endothelial 

integrity. Criteria for functional endothelium was >50% and for denuded endothelium 

was < 5% relaxation. At the end of each experiment endothelium was re-checked using 

the same criteria and samples included only if meeting criteria at both times. All four 

arteries relaxed to Acetylcholine (IpM).

Tissues were washed at 5 minutes intervals following each experimental protocol and 

given a 60 minutes recovery period. Following the rest period, selective antagonists 

were added where appropriate for at least 30 minutes before construction of a second 

cumulative concentration response curve (CCRC).

b) Visualisation of arterial angiotensin II receptors;

Visualisation of angiotensin II receptors on endothelial cells in large arteries (aorta and 

main mesenteric artery) using fluorescent-angiotensin II microscopy presents technical 

challenges related to (i) the 3-dimensional nature of the endothelial layer and its close 

proximity to background fluorescence from elastin in the internal elastic lamina and (ii) 

the presence of both ATi and AT2 that bind the ligand.

The first factor was overcome by the use of 3-dimensional confocal microscopy as 

summarised in “Results”. The second factor was overcome by a strategy that eliminated 

the binding to either AT 1 or AT2 .

Rhodamine fluorophore can be specifically conjugated to human angiotensin II to make 

a fluorescent analogue of angiotensin II (Rhodamine-An g II-Human) without altering 

the biological activity of the parent compound (Yaday et al, 2002). Rhodamine-Ang II- 

Human has affinity for both ATi and AT2 . However, it can cause downregulation of 

receptors that seems to be greater in extent with ATi, A study on cultured bovine
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adrenal cells (BAC), which express both receptor subtypes and PC12W and R3T3 cells, 

which express only ATg receptors, using the [^H] uridine-thiouridine method, indicated 

that AT 1-binding sites decreased by more than 50% within the first three hours (ATi 

receptor internalisation), an effect proposed to result from agonist-induced 

internalisation and down regulation. The rhodamine-angiotensin II effectively binds to 

ATi receptors causing internalisation of clathrin coated vesicles by endocytosis. In 

contrast, ATg-binding sites and mRNA remained stable within the first six hours of Ang 

II treatment, and AT2-binding sites declined much more slowly with half-life of about 

sixteen hours (Ouali et a l, 1997). This indicates that rhodamine conjugated peptides can 

be used in ligand-receptor binding and also in ligand-receptor complex internalisation 

but that both issues must be taken into account.

Thus, we set out to create a protocol in which we could identify binding sites for 

fluorescent Ang II on smooth muscle and endothelial cells that could be proved to be to 

one or other subtype by eliminating the other type with the selective antagonists losartan 

and/or PD123319.

We wanted to avoid complex image analysis and to enable a simple yes or no decision 

on whether antagonists had been effective. We had expected to find ATi on smooth 

muscle and ATg on endothelium maldng the analysis simple. Unexpectedly we found 

evidence that there were AT2 on smooth muscle cells and ATi on endothelium which 

complicated the analysis. We used the selective antagonists for ATi (losartan) and AT2 

(PD123329) at concentrations that we could show to be selective in these tissues with 

classical agonist/antagonist functional pharmacology. In these circumstances we 

visualised Rhodamine-Ang II-H binding at low concentrations to endothelial cells that 

could be completely removed by the antagonists. For localising angiotensin II 

receptors, it was useful to employ QAPB (Fluorescent-Prazosin) to identify the cells, 

since this ligand bound to all endothelial and dissociated vascular cells. QAPB has high
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affinity for of c%i -A R and lower affinity for (%2 -AR (Fig. 2 -15 and 2 -16). BODIPY- 

Ang II (Rhodamine-Ang II) also revealed the same characters as normal angiotensin II 

which could appear contractile response via ATi (Fig. 2-17) and relaxation via AT2 in 

presence of losartan (Fig. 2-18).

c) Laser Scanning Confocal Microscopy (LSCM):

Cell dissociation:

1) Male SWT or D79N mice (aged 4 months) were killed by CO2 inhalation and 

the descending thoracic aorta or main mesenteric were removed, cleaned of 

connective tissue, dissected into rings (2-3 mm in length) and then their lumen 

was opened (any coagulated blood was removed from inside the arteries).

2) Following dissection, tissue were placed in Buffer One* (see appendix) and 

stored at 4 °C until dissociation. (We can change also the tissue from PSS to 

Buffer One three hours before dissociation. All the vessels were cut by blade to 

small pieces to increase the effectiveness of enzymes). ^Buffers are listed in the 

Appendix.

3) Arteries were washed once in Buffer One (Spin at 13000 rpm, for one minute) 

and supernatant discarded (using electrical pipette).

4) Arteries were resuspended in 200pL of Buffer 2A (containing papain and 

dithioerythritol- see appendix) and incubated at 35 °C (optimum temperature for 

enzymes) for 30 minutes.

5) Buffer 2A (see appendix) was removed by centrifuging at 13000 rpm for one 

minute and arteries resuspended in 200pL of Buffer 2B (containing collagenase 

II and hyaluronidase-see appendix) for no longer than one minute (because 

collagenase has potential to destroy receptors situated on cell membranes of
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SMCs, endothelial and fibroblast cells (dissociated cells)}. Dissociation of cells 

was accelerated using an electrical Pasteur pipette (lowest suctioning rate) inside 

a glass pipette, aspirated repeatedly (BSA, Bovine Serum Albumin which 

included in Buffers, prevents dissociated cells and tissues attaching to glass). We 

can observe dissociation by disappearance of tissue pieces inside the eppendorf.

6 ) Cells are centrifuged at 13000 rpm for one minute and supernatant discarded.

7) Cells are resuspended in 200 juL of Buffer Two (the volume of Buffer Two at 

this stage depends on the density of cells, which are dissociated in Buffer 2A & 

2B and required).

8 ) A defined volume of Buffer Two which contain dissociated cells is transferred 

on 0 . 0 0  number coverslips inside special medium petri dishes and stored for at 

least 30 minutes at 4 °C in fridge.

9) After 30 minutes for settlement of dissociated cells and their on coverslips. We 

added antagonists (30 minutes before staining) or Fluorescent dyes (QAPB and 

Rhodamine Ang II-H) according to the volume of supernatant on coverslips.

10) Following incubation, without washing, dissociated arteries cells on a coverslip 

(0.00 Number) were inverted and placed in the sample well of a glass slide 

prepared using high vacuum grease.

Tissue Preparation:

2-3mm segments of aorta and Superior mesenteric artery from wild type and D79N 

mice were incubated for 60 minutes in QAPB (0.1 juM) and Rhodamine-Ang II-H 

(50nM) at room temperature with or without losartan (lOpM) and/or PD123319 

(lOjiM), Following incubation, without washing, aortic and superior mesenteric artery
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segments were cut open and placed endothelial side up in the sample well of a glass 

slide. The well containing the tissue and prior incubation medium was sealed with a 

glass coverslip (No.T.5).

Image Capture:

Serial optical sections were collected on a Biorad 1024 & Radiance 2100 

confocal laser scanning microscope. The Excitation/Emission parameters 

used were 488/515nm for QAPB and 567/610nm for rhodamine angiotensin II 

(Rho-Ang ITH). In all experiments the laser power, gain and offset (contrast 

and brightness) were kept constant. The distance between optical sections 

was maintained at 1pm for each image stack. Tissues were visualised using a 

X40 oil immersion objective on which the numerical aperture is 1.00 and 

therefore optimal pinhole setting is 1.5. Image size was set to 512 x 512 

pixels which equates to a field size of 289um x 289um. (Each 1pm is equal to 1.77 

pixels).

Image Analysis:

3D volumes (image stacks) were transfeiTed to either Metamoiph (Universal 

Imaging, Version 4.2) or Imaris (Version 3.2) or Amira (TGS, Version 3.2) software 

packages for subsequent analysis and volume visualisation respectively. 3D volumes 

containing two channels of data are pseudocoloured green and red for QAPB & Rho- 

Ang II-H respectively. Where two channels co-localise and their intensities are 

roughly equivalent, the co-localised area is displayed in yellow. Spatial 

localisation of fluorescent signals was achieved using orthogonal viewing 

of the XY, XZ & YZ planes. 3D views were rendered using the Amira Voltex' 

module.
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Drugs:

All drugs were of analytical grade and were dissolved in either distilled water (H2 O), 

ethanol or DMSO as indicated below. Noradrenaline dilution included 23uM EDTA to 

prevent oxidation.

noradrenaline (H2O), Phenylephrine (H2O), angiotensin II (H2O), Acetylcholine chloride 

(H2O), Losartan (DMSO) [MERCK USA], PD 123319 (H2 O), 5HT (H2 O), U46619 

(ethanol), L-NAME (N-Nitro-L-Arginine Methyl Ester) (H2 O), rauwolscine (H2O) 

[Sigma-Aldrich Co; Poole, UK]. UK14304 (DMSO),

Fluorescent compounds:

Fluorescent prazosin (QAPB) (DMSO) [Molecular Probes INC; EUGENE-USA], 

Fluorescin Conjugate angiotensin II (F-AII) (H20) [Sigma-Aldrich Co: Gmbh, 

Germany], rhodamine-angiotensin Il-human (Rho-Ang II-H) (H20) [Phoenix 

Pharmaceuticals INC; Germany].

Statistics:

Values are means ± Standard error mean from n experiments. Difference between 

maximal contraction response to CCRC to agonist in presence and absence of drugs was 

compared with one-way ANOVA followed by Bonferroni’s Multiple Comparison Test 

and two-tailed none-parametric (Mann-Whitney test) and unpaired t-test for different 

population and strains. Statistical and graphical analysis was earned out using Excel 97 

and GraphPad Prism 3.00 for PC. Data used to plot the concentration response curves 

are the mean contraction induced at each concentration of the agonist.
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2-4. Results:

jijFfT /or oZ»fervmj2 coĤ Ywr/fZe
o r  r e la x a n t  e f fe c t s  in  m o u s e  a o r ta :

In the absence of other drugs, or of induced tone, angiotensin II produced weak or no 

contractions (not shown). The vessel contracted in a concentration-dependent manner 

to several other vasoconstrictors, including 5HT, NA, PE, UK14304 and U46619 

(Figure 2-1), It was found that raising the tone submaximally with other agents allowed 

reproducible and consistent contractile or relaxant responses to be superimposed. With 

angiotensin II this could be achieved satisfactorily with phenylephrine, 5HT or U46619 

but for the purposes of the present study, where oti-adrenoceptor-mediated activation 

would be confounding, we employed 5HT or U46619 at submaximal concentrations 

(based on Fig. 2-1). Endothelial cell functional integrity was assessed using ACh (IpM) 

on top of the response to 5HT or U46619. ACh-induced relaxation was completely 

abolished by adding L-NAME (O.ImM) in intact aortic rings (not shown). In 

endothelium-denuded aortic rings, no relaxation was produced to ACh and, indeed, 

contraction was produced in denuded aortic rings due to direct activation of vascular 

smooth muscle.

In Aorta:

In four month old wild type mouse aorta preconstricted with 5HT (O.lpM), the short 

exposures to each concentration of Ang II during construction of a CCRC, produced 

contractions to low concentrations (Ang II; l-30nM) whilst higher concentrations (0.1- 

I jliM) produced relaxation. The maximum Ang II contractions represented a 10%
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increase in 5HT tone and the maximal relaxation was approximately 5%. In the D79N 

strain relaxation attained higher values of approximately 10%. However, two-tailed 

none-parametrical t-test (Mann-Whitney test) revealed no significant difference (P 

value: 0.3829 > 0.05) between wild type and D79N (Figure 2-2).

The responses during a CCRC were consistent but were not well-maintained, maldng it 

obvious that the dual effects of Ang II coupled with some desensitisation, made analysis 

complex. In separate experiments a single concentration of Ang II (30nM) was 

employed in place of a cumulative concentration response curve, to avoid 

desensitisation and achieve equilibrium. During a CCRC this concentration had 

produced a contraction. When given as a single concentration it produced a short lived, 

small contraction followed by a slow relaxation that achieved an equilibrium of around 

15% relaxation (of 5HT tone) in over 10-15 Minutes (n=18). This relaxation was lost in 

endothelium-denuded arteries (intact, relaxation of -14.9 ± 2.2 %; denuded, contraction 

of +16.7 ±3.5 %) (n=15) (Fig 2-3).

T/ze of AT o»

Losartan (ATi antagonist; IpM, 30 minutes) abolished the contractile effect of Ang II in 

the CCRC. In contrast, there was no significant effect of losartan versus the relaxation 

response. PDI23319 (ATi antagonist; IpM, 30 minutes) abolished the relaxation 

component to Ang II leaving only the contractile component that now extended to 

higher concentration (Figure 2-4).

L-NAME (0.1 mM) could completely blocked relaxation response to cumulative Ang II. 

However, In presence of both losartan (0.1 jxM) and L-NAME (0.1 mM) adding Ang II 

cumulatively could produced bigger contraction (Fig. 2-5). This shows presence of AT2 - 

R in smooth muscle cells, which could co-operate with AT]-R to provide greater 

contractile effect to cumulative concentration of Ang II (Fig. 2-6a and 2-6b-Traces).
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awff 77 re c e p to r

Effects of Ang II on contraction to noradrenaline:

Tissue rings were incubated with Ang II at a concentration just subthreshold for 

relaxation of 5HT-induced tone in the CCRC, but which produced a slow relaxation 

when given as a single concentration (30nM; 10 minutes). In the absence of pre- 

established tone it produced no change in basal tone but it caused a reduction in a 

subsequent CCRC to noradrenaline compared with control (n=12). The combination of 

losartan (IjuM) with Ang II further decreased the contractile effect of NA (P<0.0001, 

One way ANOVA followed by Bonferroni’s Multiple Comparison Test) (Figure 2-7). 

In contrast, incubation with PD 123319 (IjuiM) for 30 minutes could prevent the decrease 

in the contractile effect of NA. The difference between control and PD 123319 was 

significant (P< 0.05, One way ANOVA- Bonferroni’s post test) (Figure 2-7). In a time 

control experiment, three consecutive CCRC to NA did not show any alternation in 

sensitivity over (data not shown).

This is a potentially complicated experiment with the possibility of many subtypes of 

adrenoceptor and angiotensin receptor being activated. Nevertheless the outcome 

clearly shows that an ATz-mediated relaxant effect of angiotensin II was its dominant 

action against noradrenaline-induced tone and that this could be enhanced by 

eliminating its ATi mediated contractile action or blocked by eliminating AT2 with 

PD123319.

Interaction o f vasorelaxant responses to Ang II and an %-AR agonist:

Synergism between relaxant responses to activation of adrenoceptors- and AT receptors 

was sought by comparing a single effective concentration of UK14304 (ljuM) in the 

presence and absence of a single effective concentration of Ang II (30nM), on top of 

5HT (O.lpM) preconstriction (Fig. 2-8). Relaxation to both Ang II (AT2 , as validated
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above) and UK14304 (oczA-AR, as demonstrated in Chapter 3) (Fig. 2-8) were blocked 

by L-NAME (100p,M) (Fig. 2-5) (Fig. 3-9, see chapter three). This was cairied out in 

both WT and Nashville D79N. The relaxant response to UK14304 was not significantly 

different in the presence and absence of Ang II (n=15) (Figure 2-8). Again, this is a 

potentially complicated scenario, with the possibility of many receptor subtypes being 

activated. However the concentrations of agonists were chosen to produce dominant 

endothelium-mediated relaxation. Thus, the failure to find any meaningful synergism 

contrasts with the dramatic synergism found between the contractile effects of 0 C2-AR 

and Ang II, suggesting that endothelial AT2 and Œ2 -AR receptors are worldng 

independently.

Response to angiotensin II in old mouse aorta:

In sixteen months old wild type mouse aorta studied under identical conditions only 

contraction with no relaxation was observed to either cumulative or single 

concentrations of Ang II (n=I8 ) (Fig. 5-11, See chapter five).

Other arteries:

The mouse carotid, main mesenteric and first branch mesenteric arteries responded in a 

concentration-related manner to a range of vasoconstrictors. In general, of the drugs 

tested, U46619 was most potent and had the highest maximum, while noradrenaline, 

phenylephrine and 5HT produced responses of similar size and with similar potency 

(Figs. 2-9, 2 -iI , 2-13). A diversion from this was that phenylephrine was more potent 

than noradrenaline in the first branch mesenteric artery (Fig. 2-13)*
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On this basis U46619 (0.1 p,M) was chosen as the basis for studying CCRCs to Ang II. 

In both carotid and superior (main) mesenteric arteries the contractile effect of Ang II 

was dominant (Figs. 2-10 and 2-12). In first branch mesenteric arteries the main effect 

of angiotensin II was relaxation (Fig. 2-14). This was reversed to contraction by L- 

NAME (0.1 mM) suggesting that it was of endothelial origin (Fig. 2-14).
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Selectivity of Fluorescent Ligands:

The most important feature of a fluorescent ligand is that its potency and/or selectivity 

are comparable with the non-fluorescent ligand form. The fluorescent form of Prazosin 

(QAPB) has been extensively characterised and has been shown to exhibit 

approximately 1 0  fold lower affinity for ai-adrenoceptors compared with the native 

ligand in functional and binding experiments (Daly et al, 1998; Mackenzie et al, 2000) 

(Fig. 2-15). In addition, the potency of QAPB at Uz-ARs is confirmed by its action on 

UK14304-mediated relaxation in am-Knockout mouse aorta (Fig. 2-16 and 3-26-See 

chapter three).

Functional studies using Rhodamine (BODIPY)-Angiotensin II indicate that the 

fluorescent-angiotensin retained most of its agonist properties (Fig. 2-17 and 2-18). 

Having gained confidence in the activity and selectivity of the fluorescent ligands, 

imaging studies can then beconducted.

Preliminary studies have shown that it is often not possible to displace a fluorescent 

ligand with a non-fluorescent competitor. This is presumably due to the slow 

dissociation rate of the fluorescent ligand. Furthermore, classical agonist/antagonist 

studies always rely on pre-incubation of the selective competitor prior to addition of the 

agonist.

In addition, if live tissue is used, and as anticipated receptor recycling is induced, then 

later application of a competitor drug will not have access to the full population of 

fluorescent ligand bound receptors. Therefore, a pre-incubation protocol seems more 

appropriate.

Visualisation of adrenoceptors on endothelial cells using fluorescence microscopy 

presents several technical challenges. The cells form a monolayer, on a convoluted 

surface caused by folds in the internal elastic lamina. The central parts of the cell
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containing most of their material are also well spaced out. There is thus no single two 

dimensional plane with a high probability of locating cells. This is addressed by using 

Laser Scanning Confocal Microscopy (LSCM), allowing scanning in the z direction to 

locate cells. The images were obtained from the endothelial side of vessels opened 

longitudinally. The convolutions remain, however, so that the typical 2D image 

contains endothelium, the edges of the internal elastic lamina and smooth muscle cells 

are located beyond the lamina (Fig. 3-3, 3-4 and 3-5-See chapter three). The elastin of 

the lamina is autofluorescent over a broad range of wavelengths, so cannot be avoided. 

However, visualising autofluorescence at its longest emission wavelength produces an 

image of autofluorescence without revealing fluorescent-ligand (which has a narrower 

emission spectra). Thus, the “autofluorecence only” image can be subtracted from the 

image of autofluorescence plus ligand to show only the fluorescent-ligand. With this in 

mind, the endothelial cells binding QAPB can be seen attached to the folds of the lEL. 

Pre-incubation of aortic segments with ai-AR subtype selective drugs enabled isolation 

of the Œ2 -AR population. QAPB (0.1 pM) bound to endothelial cells following pre­

incubation with BMY7378 (am-AR antagonist) and 5MU (Œia-AR antagonist) in 

Knockout mouse. This indicated the presence of endothelial C(2 -ARs. This is further 

supported by the complete absence of QAPB-binding following pre-incubation with 

BMY7378, 5MU and rauwolscine (selective Œ2-AR antagonist) in aiB-Knockout mouse 

aorta and superior mesenteric arteries (Images: 3-13).

Fluorescent angiotensin II:

A similar pre-incubation protocol was used to examine the binding of Fluorescent Ang 

II to the smooth muscle and endothelial cells of mouse aorta.
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Fluorescent Ang II binding showed an EC50= 4.2nM of the Rho-Ang II contraction (for 

angiotensin IIEC50 was equal to 1.9nM) (Fig. 2-17) and relaxation response to losartan 

revealed EC50= 7nM for Rho-Ang II compared with 40nM for angiotensin II in young 

mouse aorta (Fig. 2-18).

Pre-incubation with both PD 123319 (AT2 selective antagonist) and losartan (AT; 

selective antagonist) eliminated fluorescent Ang II binding to endothelium. Binding of 

angiotensin can be blocked by a combination of AT receptor antagonists (second 

bottom row from image 2-4).
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Visualisation results;

Incubation for one hour in fluorescent angiotensin II produced red fluorescent 

“staining” of cells in the endothelium and smooth muscle of aorta and superior 

mesenteric artery. This fluorescence could be prevented by prior and concomitant 

incubation with AT receptor antagonists. Simultaneous incubation with a fluorescent 

derivative of prazosin (QAPB) produced labelling of all cells (in a different colour - 

green) so that when AT receptors were blocked the cells could still be visualised. The 

reciprocal arrangement is used in the next chapter when the objective is to analyse a- 

adrenoceptors. In both arteries there was autofluorescence from the internal elastic 

lamina which helped orientation for location of endothelial cells since they are located 

directly on top of it (as viewed from the lumen). The autofluorescence has a broad 

spectrum and so shows up in both green and red channels.

The concepts are built up through a series of images. The first series deals with aorta, 

followed by another on superior mesenteric. In each case the experiment was repeated 

5 or 6  times and the images are representative.

Aorta:

Image 2-1 shows a 3D Model of the aorta viewed from the intimai surface stained with 

fluorescent angiotensin (red). Autofluorescence of Internal Elastic Lamina (lEL) is 

recognisable as a green grooved surface and helps orientate the viewer. Both Smooth 

Muscle Cells (SMCs) and Endothelial (Endo) cells show up in red, set off against the 

green of the lamina and it is clear that the endothelial cells characteristically lie in the 

laminar grooves.

Image 2-2 shows the same 3D Model as in Image 2-1 viewed from intimai and 

adventitial sides. Internal External Elastic Lamina (lEL) & External Elastic Lamina 

(EEL) are both recognisable from green autofluorescence. The external lamina is less
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dense and appears as loose network of fibres. The high degree of fluorescence on 

adventitial fibroblasts indicates a high level of AT receptor expression.Image 2-3 shows 

the same model, this time as a Black & White view from the intimai side. This time the 

layers in the z direction have been separated. The upper panel shows those z layers that 

constitute the internal elastic lamina, while the lower panel shows the layers that lie 

above and below this. The ovoid forms of their perinuclear staining show the 

endothelial cells lying above the lamina, arranged in its grooves. The elongated smooth 

muscle cells (SMCs) run at right angles to the grooves and are seen to run in and out of 

the field around the grooves.

Image 2-4 shows single planes, viewed from the lumen that cut through the ridges of the 

lamina with endothelium attached. This figure allows comparison of the localisation, 

on endothelial cells, of fluorescent angiotensin II (red) and a fluorescent prazosin 

analogue (QAPB, green). Dense “waves” of fluorescence are the autofluorescence of 

the ridges of elastic lamina immediately under the endothelium. Binding of angiotensin 

can be blocked by a combination of AT receptor antagonists. The “mosaic” nature of 

the endothelium is shown up by eliminating the ATi receptors and the major a- 

adrenoceptors: some cells show only Red and others only green; thus, the AT% and 

minor AR & a^g-ARs) are not present in every cell (for analysis of AR types see 

next chapter). Image 2-5 shows that different receptor types have different localisations. 

An individual endothelial cell is seen layered on an Internal Elastic Lamina groove. The 

data set is a 3D volume. 3 different 2D views are shown. The issue was treated with 

BMY7378 (0.1 pM) and losartan (lOpM) before staining by Rhodamine-Ang II-Human 

(0,1 pM) and QAPB (O.lpM). The Green colour “granules” reveal a^-AR (a j^ & cXjb) 

subtypes or Og -ARs and Red granules illustrate AT2 -Receptors inside the cell, around 

the nucleus (aiTows). Image 2-6 shows that, when ATi receptors are eliminated, AT2 

receptors are seen to be intracellular. In this example individual smooth muscle cells,
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dissociated from four months wild type aorta, are stained with QAPB (O.lpM, green) 

and Rhodamine-Ang II-H (O.lpM, red). This is an Amira” view which provides a 

“surface” connecting regions of equivalent fluorescence density. A first cell is shown in 

the upper row without other drugs. On this cell the two ligands are seen to be located in 

similar regions of the cell, particularly on the surface. A second cell from the same 

source, shown on the lower row, treated with losartan (lOpM) for 30 minutes and then 

stained in the same way as control. The red channel shows a “shrunken” ! image 

compared with the green channel and when the two are superimposed it can be seen that 

there are few AT-Receptors on the cell surface, where green oc-AR now dominate. In 

the right hand image a translucent view shows that the red receptors lie “inside” the 

green ones, indicating an intracellular location for the AT%-R. In image 2-7 a different 

view (“Imaris” software) shows the surface location of ATi and intracellular location of 

AT%. The image in the first row illustrates that a majority of angiotensin II-Receptors 

are present on the cell membrane. In the lower row losartan (lOpM) treated SMCs from 

the same source show that the membrane compartment containing angiotensin II- 

Receptors is reduced in volume with losartan treatment. This suggests that a majority of 

cell surface angiotensin Il-receptors are ATi-R and implies that the AT%-R are 

dominantly localised inside the SMCs, particularly around the nucleus. Image 2-8 

makes a further comparison of receptor location. The upper panels show that a majority 

of AT-Receptors (Red) are located around a convoluted nucleus with some present on 

the surface. However, a-ARs (Green) are dominant on cell membrane. The lower panel 

shows the predominantly surface location of ATi receptors when ATz binding is 

blocked with PD123319 (lOpM).

Image 2-9 shows another view of the surface location of ATi alongside a-ARs that 

emphasises how the different receptors occupy their distinctive territories. Cells treated 

with PD123319 (lOjaM) show AT%-Receptors localised to the cell surface while
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Losartan (lOjuiM) shows intracellular location of ATj-Receptors. In image 2-10 losartan 

(10|uM) and BMY7378 (0.1|uM) are used to eliminate the ATi (previously shown to be 

on the cell surface) and am-ARs (generally considered to be intracellular) leaving AT2 - 

Rand a^j^-AR or otig-AR. AT2 -Receptors are seen to be localised mostly inside the cell 

and a j A or B-adrenoceptors are dominant on the cell membrane.

Superior Mesenteric Artery Image 2-11 shows the localisation of AT and AR on 

superior mesenteric artery. The internal elastic lamina has a different form, being 

thinner with regular holes known as “lamellae”. In this vessel it is easy to see 

endothelial cells from their binding of fluorescent angiotensin II and QAPB. In this 

example the fluorescence is simply shown as a pseudocolour image in which 

fluorescence intensity is mapped to a palette of colours. Left and right lower images 

show these intensity maps for the Ang II (Left) and QAPB (Right) channels. SMCs and 

Endothelial Cells both show both receptor families. Image 2-12 illustrates a further 

localisation of receptors showing endothelial and smooth muscle cells. The AR show up 

particularly well in the SMCs. Image 2-13 shows a different view of the images in 2-12. 

The presence of angiotensin Il-receptors and adrenoceptors is visible in both smooth 

muscle and endothelial cells in all the images but adrenoceptors are dominant. Image 2- 

14 makes a comparison of fluo angiotensin II binding to ATi or AT2 receptors. In the 

first row ATI-Receptors are shown after Ihr with PD123319 (10|iM) and in the second 

row AT2-Receptors are shown after Ihr with losartan (lOpM). The images compare 

location of AT^ and AT2 -Receptors in the endothelial cells. AT^-Receptors are 

predominantly situated on cell membrane and AT2-Receptors are concentrated around 

the endothelial nucleus surrounded by adrenoceptors.
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Chapter Two Graphs and LSCM Images

Effects of Angiotensin II on mouse arteries
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Fig. 2-1: Comparison between CCRC to noradrenaline (O), 
phenylephrine (A ), 5HT (□ ), U46619 (^ )  andUK14304 (V) 

in four months wild type mouse aorta (n=7).
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Fig 2-2; Cumulative concentration effect of angiotensin II on top 
of 5HT (O.ljuM) preconstriction in four months wild type (n=18) 

and Nashville D79N (n=6 ) mouse aorta.
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Fig. 2-7: CCRC to noradrenaline in four months wild type mouse 
aorta in presence of Ang II (30nM) only, PD1233I9 (IpM) -f 
Ang II (30nM) and losartan (IpM) + Ang II (30nM) compare 

with control (n=I2 ).
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Fig. 2-10: CCRC to angiotensin II on top of U466I9 (O.lpM) 

tone in four months wild type carotid artery (n=6 ).
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Fig. 2-11: CCRC to different agonists {noradrenaline (O), phenylephrine 
(A ), 5HT (□ ), U46619 (4^)} in four months wild type mouse superior

mesenteric artery (n=6 ).
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Fig. 2-12: CCRC to angiotensin II in four months wild type 
superior mesenteric artery on top of U466I9 (O.IpM) tone (n=6 ).
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Fig. 2-13: CCRC to different agonists {noradrenaline (O), phenylephrine 
(A ), 5HT (□ ), U46619 (0*)} in four months wild type first branch of mouse

mesenteric artery (n=4).
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Fig. 2-14: CCRC to angiotensin II on top of U46619 (0.1 pM) 
preconstriction in four months mouse first branch of mesenteric 

artery in presence and absence of L-NAME (O.ImM) (n=6 ).
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Image 2-1: 3D Model of aorta 
viewed from intimai surface 
stained with fluorescent 
angiotensin (red) and QAPB 
(green).
Four months wild type mouse 
aorta (Control) stained with Rho- 
Ang II-Human (50nM) 
{Excitation/Emission = 
567nm/610nm}.
Binding to angiotensin II 
receptors shows as red. 
Autofluorescence of Internal 
Elastic Lamina (lEL) is 
recognisable as a green grooved 
surface and shows up on its own 
in the middle panel (QAPB 
Excitation/Emission 
488nm/515nm). Both Smooth 
Muscle Cells (SMCs) and 
Endothelial (Endo) cells show up 
red in the lower panel, indicating 
the presence of AT receptors.
The upper panel shows that 
endothelial cells characteristically 
lie in the grooves of the internal 
lamina.
Laser power: 50%, Iris: 1.5, Gain: 
15, step: 0.5 pm, Speed: 500 imp. 
Objective: 40X Oil, Numerical 
Aperture: 1, Pixel * Lines: 512 X 
512 (1 pm = 1.77 Pixel)
Images developed as a 3D model 
in Metamorph (version 4.2) and 
Amira (version 3.2) software.



Image 2-2; The same 3D Model as in Image 2-1 shows views from intimai 
and adventitial sides. Internal External Elastic Lamina (lEL) & External 
Elastic Lamina (EEL) are recognisable from green autofluorescence. Notice 
the highly stained adventitial fibroblasts, which express high levels of AT 
receptors. Yellow colour is due to overlapping of Green and Red channels 
showing presence of both a-ARs and AT-Receptors in the same region.



Image 2-3: Black & White view from the intimai side of the 3D Model 
from Image 2-1. The upper panel shows the layers which constitute the 
internal elastic lamina while the lower panel shows the layers that lie 
above and below this. The ovoid forms of their perinuclear staining show 
the endothelial cells lying above the lamina, arranged in its grooves. The 
elongated smooth muscle cells (SMCs) run at right angles to the grooves 
and are seen to run in and out of the field around the grooves.
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Image 2-4: Comparison o f localisation on endothelial cells o f fluorescent angiotensin II 
(red) and a fluorescent prazosin analogue (QAPB, green) in single sections. Dense waves o f  
fluorescence are autofluorescence o f  the ridges o f elastic lamina immediately under the 
endothelium. Binding o f angiotensin can be blocked by a combination o f AT receptor 
antagonists (second bottom row). The ^mosaic^’ nature o f the endothelium is shown up by 
elim inating the ATI receptors and the major a - Adrenoceptors (bottom row): some cells 
show only Red and others only green; thus, the AT2 and minor AR ( a ,  & a ,g -A R s) are
not present in every cell. Four Months wild type aorta. Losartan (lO pM ); Rauwolscine (IpM ); 
BMY7378 (IpM ). All except the top row are stained with Rhodamine-Ang 11 (50nM) for AT- 
Receptors (Red) and QAPB (0.1 pM ) for a-A drenoceptors (Green) (n=6).
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Image 2-5: An individual endothelial cell layered on an Internal Elastic 
Lamina groove: this shows different localisation of receptor types. 3
different 2D views are shown of a 3D volume. Tissue was treated with 
BMY7378 (0.1 pM) and Losartan (lOpM) before staining by Rhodamine-Ang 
II-Human (0.1 pM) and QAPB (0.1 pM). LSCM-Imaris analysis, on four 
months wild type (n=6).
The Green colour granules reveal a  1-AR fa,^& a,g) subtypes or a  2-ARs 
and Red granules illustrate AT^-Receptors inside the cell, around the 
nucleus, (arrows).

Laser power: 50%, Iris: 1.5, Gain: 15, step: 0.5 pm. Speed: 500 imp. Objective: 
40X Oil, Numerical Aperture: 1, Pixel * Lines: 512X512 (1pm = 1.77 Pixel)
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Image 2-6: When ATI receptors are eliminated, AT2 receptors are seen 
to be intracellular. Individual smooth muscle cell, dissociated from four 
months wild type aorta, stained with QAPB (0.1 pM, green) and Rhodamine- 
Ang II-H (0.1 pM, red) . LSCM-”Amira” view (n=5).
First row: Without other drugs, the two ligands are seen to be located in 
similar regions of the cell.
Second row: The same source of smooth muscle cells treated with Losartan 
(lOpM) for 30 minutes and then stained in the same way as control. When 
the two channels are viewed together the frequency of AT-Receptors is 
reduced on the cell surface and limited to subcellular levels. This shows 
that ATj-R are located intracellularly.
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Image 2-7: A different view, showing surface location of ATI and 
intracellular location of AT2. “Imaris” software. Dissociated smooth 
muscle cells treated as in Image 2-6. Green-QAPB (0.2|aM) and Red- 
Rhodamine-Ang II-H (50nM) (n=5). First row: This images illustrates that a 
majority of Angiotensin II-Receptors are present on the cell membrane. 
Second row: Losartan (lOpM) treated SMCs from the same source show that 
the membrane compartment containing Angiotensin II-Receptors is reduced 
with Losartan treatment. This suggests that a majority of cell surface 
Angiotensin II-Receptors are AT,-R and implies that the AT2 -R are 
dominantly localised inside the SMCs, particularly around the nucleus.
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Image 2-8: Further comparison of receptor location. Lower panel shows 
the predominantly surface location of ATI receptors when AT2 binding is 
blocked. Four months D79N Smooth Muscle Cell (SMCs) aorta was stained 
with Rho-Ang II-H (50nM) and QAPB (0.2^M) (n=5).
Upper collection: Control- A majority of AT-Receptors (Red) are located 
around the convoluted nucleus with some present on the surface. However, a- 
ARs (Green) are dominant on cell membrane.
Lower collection: The same source of SMCs treated with PD123319 (lOpM) 
and then stained in the same way as control. AT,-Receptors are dominant in 
cell membrane. However parts of the surface show a-ARs.
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Image 2-9: Further demonstration of surface location of ATI.
Dissociated cells from four months D79N mouse SMC aorta stained with 
Rho-Ang II-H (50nM) and QAPB (0.2pM). AT-Receptors stained Red and 
a-ARs stained Green (n=5).
Vertical image: Control
Horizontal images (Above and Middle): Treated with PD 123319 (lOpM) 
30 minutes before staining. Red colour localised AT,-Receptors. 
Horizontal image (Lower): Treated with Losartan (lOpM) 30 minutes 
before staining. Red colour localised AT2 -Receptors.

Both Green and Red channels Green channel onlv Red channel onlv

Image 2-10: Comparison of AT and AR location. Four months D79N 
mouse aorta endothelial cell treated by Losartan (lOpM) and BMY7378 
(0.1 pM) for Ihr then stained with Rho-Ang II-Human (50nM) and QAPB 
(0.1 pM). Green colour shows presence of a,^-AR or a,g-AR and red 
colour AT2 -R. AT2 -Receptors mostly localised inside the cell and 
adrenoceptors are dominant on the cell membrane (n=5).



Image 2-11: Localisation of AT and AR on superior mesenteric artery.
Control, four months wild type mouse. Rho-Ang II-H (50nM) and QAPB 
(0.1 pM) (n=5).
Above-left-Amira: Both Voltex, Internal Elastic Lamina (lEL) 
Above-right-Imaris: Both Channels, SMCs and endothelial cells 
Below both sides-Metamorph: Two raw-pseuodocolour images from Ang 
II (Left) and QAPB (Right), SMCs and Endothelial Cells.
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Image 2-12: Further localisation showing endothelial cells. Control-four 
months wild type, Imaris analysis mouse superior mesenteric artery stained
with Rho-Ang II-H (50nM) and QAPB (0.1 pM). Red for Ang 11-Receptors 
and Green for a-ARs (n=5).

Laser power: 50%, Iris: 1.5, Gain: 15, step: 0.5 pm. Speed: 500 imp. Objective: 
40X Oil, Numerical Aperture: 1, Pixel * Lines: 512X512 (1pm = 1.77 Pixel).



BothVoltex-Ang II + QAPB Voltex only QAPB Voltex only Ang II

Image 2-13: Different views of image 2-12. Presence of Angiotensin II- 
Receptors and adrenoceptors is visible in both smooth muscle and 
endothelial cells in all the images but adrenoceptors are dominant (n=5).

Image 2-14: Comparison of fluo angiotensin II binding to ATI or AT2 
receptors. Four months wild type mouse superior mesenteric artery, 
stained by Rho-Ang II-H (50nM) and QAPB (0.1 pM) (n=5).
First row: AT,-Receptors are shown after Ihr with PD123319 (lOpM). 
Second row: AT2 -Receptors are shown after Ihr with Losartan (lOpM). 
The images compare location of AT, and AT2 -Receptors in the endothelial 
cells. AT,-Receptor is predominantly situated on cell membrane, and AT2 - 
Receptor concentrated around the endothelial nucleus surrounded by 
adrenoceptors.
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2-5. Discussion:

The AT responses were amenable to straightforward classical pharmacology. There 

was contraction of vascular smooth muscle via losartan-sensitive ATi receptors and 

indirect relaxation via NO released by endothelial, PD123319-sensitive AT% receptors.

This confirms the general interpretation of Tanaka et al. (1999) using an AT% knockout 

mouse that loss of relaxation in the KG shows this subtype to be responsible for that 

action. However we do not have a sufficiently detailed analysis to say whether the ATi 

response was upregulated. Superficially, and taking into account our observations with 

noradrenaline, it would appear that the loss of AT2 relaxation was sufficient to explain 

the larger ATrmediated contraction. Our data also shows that the standard AT 

subtype-selective antagonists distinguish the receptors well in this simple mouse 

preparation.

In conducting arteries and large veins from other species the contractile responses via oc- |

AR and AT receptors show considerable synergism (Dunn et al, 1991). Establishing this 

in mouse vessels to enable further investigation of this phenomenon was one of our 

initial objectives. Both receptors, on their own, invoked weak contractile responses, as 

in vessels showing synergism. However, it soon emerged that the characteristic 

interaction was not synergism but negative interaction between excitatory and inhibitory 

effects. This showed up clearly in the interaction between noradrenaline and 

angiotensin II. Despite the potential for involvement of up to eleven receptors, the 

dominant interaction was between the noradrenaline’s contractile response via ocm-AR 

and angiotensin relaxant effect via endothelial AT2 . This is quite different from the 

synergism characteristically seen between contractile Œ2 -AR (of unknown subtype) and 

contractile ATi. However we found no evidence of a contractile (%2 -AR in mouse aorta.

The contractile effect of UK14304 that is uncovered by blocking the endothelial Œ2-AR-
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mediated response has been shown, in a parallel study, to be mediated by aio-AR (See 

chapter three). The response was absent in the aio-AR KO mouse (Fig 3-2 & 3-3, see 

chapter three) and antagonised by selective 0 Cid-AR antagonist, BMY6378 (Fig 4-6 and 

4-7) (Shafaroudi et al, 2002). Presence of AT2 in small resistance arteries like rat first 

order mesenteric arteries was reported which could provide relaxation response in 

presence of losartan which was sensitive to bradyldnine 2-Receptor blocker. So a 

proportion of relaxant effect of Ang II was due bradykinine-2 receptor in rat first branch 

mesenteric artery (Berthiaume et al, 1997) which opposed by a i a /c  -A R contractile 

effect (Rokosh et al, 2002) (Yamamoto et al, 2001) However, angiotensin II could 

stimulate relaxation in absence of losartan up to 13% in mouse first branches of 

mesenteric arteries. This leads to rather obvious conclusion that the interaction between 

angiotensin and catecholamines will depend on the dominant receptor populations in the 

particular blood vessel. However, the dominant influence of the AT2 endothelium- 

mediated response in mouse aorta and first branch mesenteric artery is new and 

unexpected.

Having failed to find a significant synergism between excitatory effects of 

adrenoceptors and angiotensin receptors we sought synergism between their inhibitory 

actions. Despite attempting a wide range of protocols including the one for which we 

present data this proved completely negative.

In conclusion, mouse aortic and endothelium has both smooth muscle AT] receptors 

that initiate contraction and AT2 that promote the release of nitric oxide, detectable as 

smooth muscle relaxation. This provides a useful system for analysis of these receptors. 

The dominant catecholamine-angiotensin interaction is between contractile ctm-AR and 

relaxant AT2 .

For mouse mesenteric arteries the dominant catecholamine-angiotensin interaction is 

between contractile Œia-AR and relaxant AT2 .
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These results have shown stronger presence of AT2 receptor in small resistance arteries 

compared with large conductive arteries like aorta, carotid and superior mesenteric 

arteries. This, may make smaller arteries more susceptible for relaxation to angiotensin 

II and noradrenaline due to direct effect on endothelium AT2  and c%2 -AR stimulation 

respectively or indirect effect on pre-synaptic a 2-AR which is responsible for re-uptake 

of NA (See chapter three).
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Chapter Three

Effect of UK14304 on different mouse arteries

Endothelial ajA/D’̂ ^drenoceptor-mediated vasodilatation in  mouse aorta 
and carotid is  lost in  two a2A/D"(idrenoceptor ‘dmockoiif^ models.

I n  s u p e r io r  and f i r s t  b r a n c h  m e s e n te r ic  a r te r ie s  a n  u n k n o w n  %-ÆR is  
s t i l l  r e s p o n s ib le  f o r  r e la x a t io n  v ia  e n d o th e l iu m  th r o u g h  n i t r ic  o x id e

I n  f i r s t  b r a n c h  m e s e n te r ic  a r te r y  ( r e s is ta n c e  a n d  d i s t r ib u t in g  a r te r ie s )  
E n d o t h e l i u m  D e r iv e d  H y p e r p o la r i s in g  F a c to r  ( E D H F )  m a y  a ls o  b e  
i n v o lv e d  in  t h e  r e la x a t io n  r e s p o n s e .  S in c e ,  L - N A M E  c o u ld  n o t  b lo c k  th e
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3-1. Abstract:

1. UK14304-mediated vasodilator responses were studied on wire myograph-mounted 

mouse aorta, carotid, and mesenteric (main and first branch) arteries with a view to 

determining sites, mechanisms of action and subtypes of ocz adrenoceptors (AR).

2. In ail four arteries, in the presence of induced tone, UK14304 produced a 

concentration-related vasodilatation. This was abolished by L-NAME or endothelium 

removal and was reversed by rauwolscine, indicating that endothelial adrenoceptors 

can release nitric oxide.

3. In the ot2A/D-adrenoceptor Knockout mouse and the Nashville D79N mouse, a 

functional knockout of the aiA/D-adrenoceptor, these relaxant effects of UK14304 were 

lost in aorta and carotid but remained in the two mesenteric arteries. This indicates the 

involvement of the a2a/d-adrenoceptor in aorta and carotid but of another subtype of a j -  

adrenoceptor in the mesenteric arteries.

4. UK14304 could also contract aorta: a small contraction occurred at high 

concentrations, was enhanced by L-NAME and was absent in the aio-adrenoceptor 

knockout mouse indicating activation of the aio-adrenoceptor. There was no evidence 

in any of these four arteries of a contractile a 2-adrenoceptor-mediated response.

5. The visualisation on aortic endothelial cells of rauwolscine-sensitive binding of a 

fluorescent ligand, QAPB, provided direct evidence for the presence of Œ2- 

adrenoceptors as well as am-AR on the endothelium.

6 . Reduction of QAPB binding by antagonists (rauwolscine and /or BMY7378) 

provided evidence for the presence of rauwolscine-sensitive c%2-adrenoceptors as well as 

BMY7378-senstive ociD-adrenoceptors on wild type aortic and mesenteric artery
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endothelial cells. In the presence of rauwolscine, 5MU and BMY7378 fluorescence in 

endothelial cells was still detectable in control mice. Under similar conditions in the 

otiB-Knockout mouse no endothelial cells were detectable suggesting that the QAPB- 

binding in control mice under antagonists (rauwolscine + 5MU and BMY7378) was 

aiB-AR in both of aorta and superior mesenteric artery. Comparing a 2 A-Knockout and 

control images, a relatively good population of fluorescent cells after antagonists, also 

suggests the over-expression of otm-AR in a 2 A~Knockout mouse. In aorta using 

Rhodamine-Ang II-H and QAPB revealed mosaicism in aorta endothelial cells.

7. In conclusion, the endothelium of mouse major conducting arteries has a a 2 A/o- 

adrenoceptor that promotes the release of nitric oxide, detectable as smooth muscle 

relaxation and which can be directly visualised. In mesenteric arteries responses are 

similar but another a 2 -adrenoceptor is involved. Unexpectedly, evidence for endothelial 

aiD and am-AR was found in visualisation studies.
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3-2. Introduction:

Oi2 -adrenoceptors can mediate vasodilatation through release of endothelium-derived 

relaxant factors (Cocks & Angus, 1983). Previously this had been demonstrated in a 

limited range of vessels and species, obscuring its general importance in cardiovascular 

control. However, recent observations of possible links between ot2 -adrenoceptors and 

cardiovascular disease (Gavras et al, 2001; Brede et al, 2002; Bristow, 2003; Small et 

al, 2 0 0 2 ) make it timely to elucidate the mechanisms underlying vascular Œ2 - 

adrenoceptors. We now demonstrate a 2 -adrenoceptor-mediated vasodilator responses 

in a range of mouse arteries. Using a combination of pharmacology, transgenic models 

and fluorescent ligand binding microscopy we have elucidated the site, mechanism and 

receptor subtypes involved.

The three ot2 -adrenoceptor subtypes ((%2 A, 0 (2 B, ot2c) constitute one of the three sub­

families (cti, (%2 , P,) of adrenoceptor through which catecholamines exert autonomic 

control (Bylund et al, 1994). The direct vascular actions of the other two sub-families, 

P-adrenoceptors and ai-adrenoceptors, have already been analysed in a range of mouse 

arteries (Chruscinski et al,  2001; Daly et al, 2002). The objectives of the present study 

were: first to establish the vasodilator phenotypes for (%2-adrenoceptors in the mouse, 

secondly to identify whether the a 2 A/D~adrenoceptor subtype is involved in either 

response by examining the mouse harbouring a “knockout” of this receptor (Altman et 

al, 1999) and the Nashville D79N mouse, a functional knockout of the (%2A/D- 

adrenoceptor (MacMillan et al, 1996, 1998), and finally, to establish the involvement 

of the endothelium and nitric oxide.

(%2 -adrenoceptors have several distinct roles in the control of the vascular system. 

They were first shown to modify the influence of the sympathetic nervous system on the
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cardiovascular system by reducing sympathetic traffic through an effect in the central 

nervous system or by inhibiting the release of transmitters from sympathetic post­

ganglionic nerve varicosities (Langer, 1981; Starke 2001). They were subsequently 

found to have two separate direct effects on blood vessels that can modify vascular 

tone: a vasopressor action (Docherty & McGrath, 1980) through activation of 

contraction of vascular smooth muscle (Demey & Vanhoutte, 1981; Wilson et al, 1991) 

and vasodilatation through release of endothelium-derived relaxant factors (Cocks & 

Angus, 1983).

Distinguishing which of the three cloned subtypes of (%2 -adrenoceptor is responsible 

for each of these actions has proven difficult by classical pharmacological methods due 

to lack of specificity of the relevant agonists and antagonists and the possible activation 

of more than one receptor in a particular test preparation. Targeted deletion or mutation 

of receptors might move this forward but has been applied, so far, mainly in in vivo 

experiments that cannot distinguish between indirect inhibition of the sympathetic 

nervous system and direct dilator effects on the blood vessels.

In mouse strains harbouring knockouts or mutations of the three ^-adrenoceptors, 

blood pressure responses to a 2 -adrenoceptor agonists such as clonidine, suggest that 

ot2A/D- and a 2 B-adrenoceptors are involved in vasopressor responses and that a 2A/o- 

adrenoceptors mediate a vasodepressor response. The authors concluded that the 

pressor response involves the direct stimulation of vascular smooth muscle and that the 

depressor response is due to the effect in the CNS to reduce sympathetic output (Link et 

al, 1996; MacMillan et al, 1996). However the direct vascular actions of a 2 - 

adrenoceptor activation have not been determined in the mouse. Analysis of the 

relevant subtypes remains at the level of classical pharmacology in genetically 

intractable species. This suggests that both responses may be mediated by the Œ2A/D- 

adrenoceptor, e.g. the endothelial a 2-adrenoceptor-mediated response in pig or rat
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arteries (Boclcman et al, 1996) and the direct contraction of various veins mainly from 

rabbit, pig and dog (Guimaraes & Moura, 2001). However, such conclusions are 

controversial and, when knockout technology has been used in conjunction with 

pharmacology to understand the other adrenoceptor mechanisms, the full picture has 

been unexpectedly complex, always involving more than one receptor subtype, e.g. 

vascular a i and ocz-adrenoceptors (Chruscinski et al, 2001), vascular aiA", am- and 

aiD-adrenoceptors (Daly et al, 2002) or pre-junctional azA- and aac-adrenoceptors 

(Hein et al, 1999).

If the mouse does possess endothelial aa-adrenoceptors that mediate vasodilatation, 

this could be at least partly responsible for the “vasodepressor” effect of aa- 

adrenoceptor-agonists, such as clonidine, on mouse blood pressure (Link et al, 1996; 

MacMillan et al, 1996). This aspect of ota-adrenoceptor action is likely to be of 

physiological importance. There is evidence in the rat for a physiological role of nitric 

oxide released by aa-adrenoceptors in protecting the kidney from excessive adrenergic 

vasoconstriction (Zou & Cowley, 2000). Such countervailing actions may be of great 

importance for the protection of specific functions of many vascular beds in the face of 

a generalised sympathetic activation in "fight or flight". It has also been proposed that 

aa-adrenoceptors play an essential role in prevention of heart failure progression, an 

effect hypothesised to be attributable to pre-synaptic aa-adrenoceptors (Brede et al, 

2 0 0 2 ) but which could be attributable to receptors on endothelial or vascular smooth 

muscle cells.

There are two published studies of vascular aa-adrenoceptors in mouse. First, in 

pressurised mouse tail artery antagonist studies suggest that the contractile response is 

mediated by aaA/o-adrenoceptors at 37°C but additionally by aac-adrenoceptors at 28^C 

(Chotani et al, 2000), Secondly, Vandeputte & Docherty (2002) and Vandeputte et al,
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(2003) hypothesised, on the basis of pharmacological analysis and knockouts of azA/o- 

adrenoceptors and NOS-3, that the overall contractile response to noradrenaline results 

from the stimulation of multiple adrenoceptor subtypes. They reported that an %- 

adrenoceptor agonist, xylazine, caused vasodilatation that was absent in the NOS-3 KG 

mouse (Vandeputte et al, 2003) but found that at least part of this response was present 

despite endothelial denudation (Vandeputte & Docherty, 2002). They proposed that 

there was a vasorelaxant effect due to activation of aza/d-adrenoceptors, some, but not 

all, of which are endothelial.

Thus, there is no consensus for the a 2 -adrenoceptor(s) responsible for direct 

vascular actions, constrictor or dilator. Yet both of these responses are potentially of 

considerable significance for the therapeutic use of az-adrenoceptor agonists and 

antagonists, e.g. in anaesthesia or antihypertensive therapy, and for the role of az- 

adrenoceptors in the physiological control of the cardiovascular system.

In the present study we have employed the major conducting arteries in which az- 

adrenoceptor-medi ated vasodilatation and vasoconstriction have been found in other 

species (Guimareas & Moura, 2001) and use rings of arteries mounted on a wire 

myograph to ensure minimal damage to the vascular endothelium. Previous studies 

using strips of mouse aorta have not found evidence for ocz-adrenoceptor-mediated 

vasodilatation (Russell & Watts 2000; Tanaka et al, 1999). It was the relative fragility 

of drug-induced relaxant responses in spiral strips that led Furchgott & Zawadski (1980) 

to discover endothelium-derived relaxant factors. Similarly, in the present study, 

preserving the endothelium uncovers the ocz-adrenoceptors in mouse arteries.

Four strains of “knockout” mouse were employed to simplify inteipretation and 

reinforce the pharmacological analysis. The involvement of the azA/D-adrenoceptor in 

vasodilator responses to agonist was analysed using the azA/o-adrenoceptor KG mouse
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(Altman et a l ,  1999) and mice harbouring the dysfunctional D79N mutation of that 

receptor, which serves as a functional knockout (MacMillan et al,  1996). Aortic 

contraction, even to “selective” azA-adrenoceptor agonists, was a potentially 

confounding factor; we demonstrated that this was via otio-adrenoceptors by 

demonstrating the absence of this response in the knockout of this receptor (Tanoue et 

al, 2002). Finally we set out to make a direct visual demonstration of endothelial %- 

adrenoceptors using a fluorescent ligand. Proof of specificity of binding was 

complicated by the unexpected demonstration of endothelial apadrenoceptors: this was 

overcome by using the knockout of the aiB-adrenoceptor (Walkenbach et al, 1992) 

(Dora et al, 2000) (Cavalli et al, 1997).
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3-3. M aterials and Method:

a) Myography:

Male mice (aged 4 months) were killed by CO2 inhalation and the descending thoracic 

aorta, carotid, main mesenteric and first branch mesenteric were removed, cleaned of 

connective tissue then dissected into rings (2mm in length). The strains of mice 

employed were the azA/D-adrenoceptor mutant Nashville D79N mouse (MacMillan et 

al, 1996, 1998), which had been back-crossed on to C57BL/6; azA/o-adrenoceptor 

knockout C57 Black mice (aza/d-KO, Jackson Laboratories, Bar Harbour, Maine, 

U.S.A.) and the am-adrenoceptor knockout (Tanoue et al, 2002), which is on a 

background of 129SV/C57BL6. We have a colony of 129SV/C57BL6 controls 

(Japanese wild type) for the aio-adrenoceptor knockout (Japanese Knockout) and have 

compared several aspects of adi'energic pharmacology between this and the C57BL/6 

(Swiss wild type) without finding significant differences. Thus in this study we have 

used the 129SV/C57BL6 as control.

Endothelium was removed, where appropriate, by rubbing the intimai surface with a 

human hair. Tissues were then mounted in Kreb’s solution (NaCl 118.4mM, KCl 

4.7mM, CaClz 2.5mM, KH2PO4  1.2mM, MgSO^ L2mM, NaHCOa 25mM & glucose

ll.lm M  bubbled with 95% Oz 5% CO2 to pH 7.4) at 37°C in a multi-myograph (myo- 

interface, model 600M and 610M, DMT, Aarhus) using 40pm stainless steel wires 

(Mulvany & Halpern. 1976, 1977). The data was transfened to a Powerlab (Version 

4.2.2 for windows 98) installed on a Pentium three computer. Aortic rings were placed 

under a resting tension of Ig; Carotid artery 0.333 g; superior (Main) mesenteric artery 

and first branch mesenteric artery each 0.25g; and left to equilibrate for 30-45 minutes. 

Reproducible responses were obtained to 5HT (O.lpM), NA (O.lpM), phenylephrine
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(O.lpM), or U46619 (lOnM), according to protocol, before commencing experiments. 

Tissues were tested with increasing cumulative concentrations of UK14304 in 0.5 log 

unit increments over lnM-30nM.

At the plateau of contraction to 5HT (0.1 pM) or noradrenaline (O.lpM), acetylcholine 

(IpM) was added to assess endothelial integrity. Criteria for functional endothelium 

was >50% and for denuded endothelium was < 5 %  relaxation. At the end of each 

experiment endothelium was re-checked using the same criteria and samples included 

only if meeting criteria at both times.

All four arteries relaxed to acetylcholine (IpM). In all arteries L-NAME (lOOpM) could 

abolish relaxation responses to acetylcholine.

Tissues were washed at 5 minutes intervals following each experimental protocol and 

given a 60 minutes recovery period. Following the rest period, test drugs were added 

where appropriate for at least 30 minutes before construction of a second cumulative 

concentration response curve (CCRC).

b) Visualisation of endothelial az-adrenoceptors:

Visualisation of adrenoceptors on endothelial cells in large arteries using fluorescent- 

ligand microscopy presents technical challenges related to (i) the 3-dimensional nature 

of the endothelial layer and its close proximity to background fluorescence from elastin 

in the internal elastic lamina and (ii) the presence of ai-adrenoceptors that bind the 

ligand.

The first factor was overcome by the use of 3-dimensional confocal microscopy as 

summarised in “Results”.
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The second factor was overcome by a strategy that eliminated the binding to otr 

adrenoceptors. The fluorescent analogue of the “prazosin” family, QAPB has affinity 

for both oti- and otz-adrenoceptors, though with higher affinity for otr (Daly et al, 

1996). We set out to create a protocol in which we could identify fluorescent binding 

sites on endothelium that could be eliminated by rauwolscine. We wanted to avoid 

complex image analysis and to enable a simple yes or no decision on whether 

rauwolscine had been effective. The complications included the expected one that the 

most obvious binding of the ligand at the arterial endothelial-medial region would be to 

{%!-adrenoceptors on smooth muscle. We also discovered the unexpected issue that 

there were ot;-adrenoceptors on endothelium. We do not, however, wish to complicate 

our cuiTent objective by detailing this. For our present analysis we needed simply to 

eliminate it. After extensive consideration of drug combinations that would eliminate 

ai-adrenoceptors while leaving ocz-adrenoceptors we found that a clear-cut situation was 

produced by employing aortae from aiB-adrenoceptor-KO mice and using selective 

antagonists for aia-adrenoceptor (5MU) and am-adrenoceptor (BMY7378). In these 

circumstances we visualised QAPB binding at low concentrations to endothelial cells 

that could be completely removed, as judged by independent blinded observers. QAPB 

(FL-Prazosin) had good affinity on both of a i and otz-AR (Fig. 3 -24 and 3-25).

c) Laser Scanning Confocal Microscopy (LSCM):

Tissue preparation:

2-3mm segments of aorta from WT and am-Knockout mice were incubated for 60 

minutes in either QAPB (IpM) or Rhodamine-Ang 11-H (50nM) in the presence or 

absence of BMY7378 (0.1 |iM) and /or rauwolscine (0.1-lpM) and /or losartan (lOpM)
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introduced 30 minutes prior to incubation with the fiuo-ligand. Following incubation, 

without washing, aortic segments were cut open and placed endothelial side up in the 

sample well of a glass slide. The well containing the tissue and prior incubation media 

was sealed with a glass coverslip (No. 1.5 for confocal use).

Image capture:

Serial optical sections were collected on a Biorad 1024 & Radiance 2100 

confocal laser scanning microscope. The Excitation/Emission parameters 

used were 488/515nm for QAPB and 567/610nm For Rhodamine-Angiotensin 11- 

Human (Rho-Ang II-H). In all experiments the laser power, gain and offset (contrast 

and brightness) were kept constant. The distance between optical sections 

was maintained a 0.3 pm for each image stack. Tissues were visualised using a 

x40 oil immersion objective on which the numerical aperture is 1.00 and 

therefore optimal pinhole (Ms) setting is 1.5. Image size was set to 512 x 512 

pixels which, equates to a field size of 289pm x 289pm.

Thus, each one micrometer (1pm) was equal to 1.77 pixel (512 4- 289 = 1.77).

Image analysis:

3D volumes (image stacks) were transfened to either MetaMorph (Universal 

Imaging, Version 4.2) or Amira (TGS, Version 3.2) and Imaris (Version 3.2) software 

packages for subsequent analysis and volume visualisation respectively. 3D volumes 

containing two channels of data are pseudocoloured green and red for QAPB & Rho- 

Ang 11-H respectively. Where two channels co-localise and their intensities are
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roughly equivalent, the co-localised area is displayed in yellow. Particular 

localisation of fluorescent signals was achieved using orthogonal viewing 

of the XY, XZ & YZ planes. 3D views were rendered using the Amira or Imaris 'voltex' 

module.

Drugs:

All drugs were of analytical grade and were dissolved in either distilled water (H2O), 

ethanol or DMSO as indicated below. Noradrenaline dilution included 23pM EDTA to 

prevent oxidation.

noradrenaline (H2O), phenylephrine (H2 O), Acetylcholine chloride (H2O), 5HT (H2 O), 

U46619 (ethanol), L-NAME (N-Nitro-L-Arginine Methyl Ester) (H2 O), rauwolscine 

(H2 O) [Sigma-Aldrich Co; Poole, UK], UK14304 (DMSO) [Pfizer, Sandwich, UK]. 

BMY 7378 (H2 O) [Sigma-Aldrich Co; Poole, UK], 5MeU (H2 O [Sigma-Aldrich Co; 

Poole, UK].

Statistics:

Values are means ± Standard error mean from n experiments. Differences between 

maximal contraction response to CCRC to agonist in presence and absence of drugs 

were compared with one-way and two way ANOVA followed by Bonferroni’s post test 

and two-tailed unpaired and paired t-test. Statistical and graphical analysis was carried 

out using Excel 97 and GraphPad Prism 3.00 for PC. Data used to plot the concentration 

response curves are the mean contractions induced at each concentration of the agonist.
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3-4. Results:

Sub-maximal contraction provided a basis for observme contractile or relaxant 
effects:

In aorta rings, in the absence of other drugs, or of induced tone, UK14304 produced 

either no response or weak contractions (aorta only) as previously described by Russell 

& Watts (2000) in aortic strips (Figure 3-1.). If the tone was raised submaximally with 

5HT or U46619, in wild type mouse aorta, UK14304 produced a concentration- 

dependent relaxation of pre-constricted tone (Fig. 3-2 and 3-3). In aorta the contractile 

responses to high concentrations also became more apparent (Fig. 3-2, 3-3). Under 

similar conditions of raised tone the other three wild type arteries (Carotid and 

mesenteric arteries) showed only relaxation to UK14304 (Fig. 3-10, 3-12, 3-14, 3-16). 

This was of similar magnitude to other standard vasodilators but the concentration 

response curve had a shallower slope, e.g. carotid in (Fig. 3-10).

In endothelium-denuded rings, acetylcholine and UK14304 produced no relaxation and, 

indeed, produced contraction due to direct activation of vascular smooth muscle, as 

found in other species (results not shown).

Mechanism of action of UK14304:

Bip basic responses in aorta:

In aorta, the concentration/response curve was biphasic: the relaxation was at first 

concentration-related but reached a "Maximal" relaxation of 23% at 0.3 pM UKI4304 

(Figures 3-2, 3-3, 3-4), higher concentrations producing, progressively, a smaller 

relaxation then a contraction to beyond the initial pre-constricted tone (Figure 3-2, 3-3).
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This might have been due to desensitisation but subsequent experiments showed that it 

was due to the onset of a countervailing contractile effect.

I n  a o r t a  o f  a z A / o - K O  a n d  N a s h v i l l e  D79N m i c e ,  UK14304 c a u s e d  o n l y  c o n t r a c t i o n  

( F i g u r e  3-2, 3-4, 3-6 a n d  3-7). T h i s  i n d i c a t e s  t h a t  t h e  v a s o d i l a t a t i o n  i s  d u e  t o  a c t i v a t i o n  

o f  a z A / D - a d r e n o c e p t o r s  a n d  a l s o  t h a t  t h e  u p s w i n g  i n  t h e  c u r v e  i n  t h e  c o n t r o l  m i c e  i s  d u e  

t o  t h e  o n s e t  o f  a  c o n t r a c t i l e  r e s p o n s e  r a t h e r  t h a n  s i m p l y  d e s e n s i t i s a t i o n .  T h i s  c o n t r a c t i l e  

r e s p o n s e  o f  UK14304 w a s  a b s e n t  i n  t h e  a  i d - a d r e n o c e p t o r  k n o c k o u t  m o u s e  a o r t a  

i n d i c a t i n g  t h a t  t h e  c o n t r a c t i l e  e f f e c t  i s  a t t r i b u t a b l e  t o  a c t i v a t i o n  o f  t h e  a m - a d r e n o c e p t o r  

( F i g u r e  3-2, 3-3, 3-4, 3-20, 3-21). C u m u l a t i v e  r e s p o n s e s  t o  UK14304 i n  D79N m o u s e  

a o r t a ,  c a r o t i d  a n d  s u p e r i o r  ( m a i n )  m e s e n t e r i c  a r t e r i e s  w e r e  s u m m a r i s e d  i n  f i g u r e  3-23,

The involvement of nitric oxide in the relaxant response was demonstrated in aorta by 

employing a single exposure (non-cumulative) to a moderately high concentration of 

UK14304 (IpM). This produced a small relaxation (-8%) that was converted to a 

contraction by L-NAME (O.lmM). In D79N aorta the same concentration of UK14304 

produced a contractile response that was not significantly affected by L-NAME (Figure 

3-9). This indicates that the azA/D-adrenoceptor subtype is necessary for the production 

of nitric oxide by UK14304. The source of nitric oxide was identified as endothelium 

since UK14304 did not produce relaxation after endothelial denudation (Fig. 3-3). 

Rauwolscine O.lpM produced a reversal of relaxation providing pharmacological proof 

that relaxation is mediated by az-adrenoceptors (Fig. 3-5, 3-6, 3-8 and 3-18 -  traces 

from Powerlab).
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Relaxant responses in carotid artery:

In carotid arteries the relaxant effects of UK14304 were antagonised by rauwolscine, 

were abolished by L-NAME and, as in the aorta, were absent in the azA/D-KO and 

D79N mice (Figs. 3-10, 3-11). In the azA/o-KO mouse, UK14304 produced a weak 

contraction.

Relaxant responses in mesenteric arteries:

UK14304 produced relaxation of preconstricted superior (main) mesenteric arteries and 

their first branch. In each case the response was susceptible to L-NAME and 

rauwolscine (Figs. 3-12, 3-13, 3-14, 3-15, 3-16, 3-17, 3-18) however, relaxant effect of 

UK14304 still present in the azA/D-KO and D79N superior mesenteric arteries (Fig. 3- 

12). In superior mesenteric artery, comparison between the relaxation response to a 

single concentration of UK14304 (IpM ) and maximum response to UKI4304 

cumulatively, revealed desensitisation in the cumulative protocol that reduced the 

maximum relaxant effect up to 45% (Fig. 3-15).

The relaxation response to single concentration of UK14304 in D79N was smaller than 

WT in superior mesenteric artery (n=7) (Fig. 3-19).

After damaging the endothelium the vasodilator response to UK14304 was replaced by 

a small concentration-related contraction in first branch mesenteric artery (Fig. 3-16). In 

first branch mesenteric artery, L-NAME could not remove 100% of UK14304 relaxant 

effect. However, endothelial damaging revealed a small contraction to cumulative 

concentrations of UK14304. This phenomenon may due to the presence of another
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mechanism for relaxation via endothelial cells, which remains effective when nitric 

oxide generation is blocked by L-NAME. This additional relaxation mechanism in 

small resistance distributing arteries like mesenteric branches may make them more 

susceptible for relaxation rather than contraction (Fig. 2-14, 3-16 and 3-22) (see chapter 

two).

Visualisation of endothelial az-adrenoceptors: value of confocal

We obtained images in circumstances that eliminated binding to ai-adrenoceptors to 

allow us to reveal the az- adrenoceptors of the endothelium.

Visualisation of adrenoceptors on endothelial cells using fluorescent-ligand microscopy 

presents technical challenges. The cells form a monolayer, on a convoluted surface 

caused by folds in the internal elastic lamina. The central parts of the cell containing 

most of their material are also well spaced out. There is thus no single two dimensional 

plane with a high probability of locating cells. This is addressed by using Laser 

Scanning Confocal Microscopy (LSCM), allowing scanning in the z direction to locate 

cells. The images were obtained from the endothelial side of vessels opened 

longitudinally. The convolutions remain, however, so that the typical 2D image 

contains endothelium, the edges of the internal elastic lamina and smooth muscle cells 

located beyond the lamina (images 3-3, 3-4 and 3-5). The elastin of the lamina is 

autofluorescent over a broad range of wavelengths, so cannot be avoided. With this in 

mind, the endothelial cells binding QAPB can be seen attached to the folds of the 

Internal Elastic Lamina (lEL). Pharmacological proof that these were az-adrenoceptors 

was then obtained by eliminating the fluorescence with rauwolscine.

Majid Malekzadeh Shafaroudi, IBLS, U uiveisity  o f  Glasgow, April 2004 Qzj.



9 5

Visualisation overview:

Chapters 2 and 3 of this thesis are, respectively, concerned with visualising angiotensin 

(AT) receptors and az-adrenoceptors. In each of these studies, in the control situation in 

the absence of antagonist drugs, both the fluorescent angiotensin and the fluorescent 

analogue of prazosin were capable of binding to every smooth muscle and endothelial 

cell. Thus, when selective antagonists were employed to determine the subtypes of each 

of the two receptors families by preventing binding, the ligand for the other family 

could be used to identify cells that would, otherwise, have been invisible.

Thus, in this Chapter, where the main target was receptors binding QAPB (Fluorescent 

Prazosin) (Fig. 3-24 and 3-25), some initial studies employed this together with 

Rhodamine-Angiotensin II-Human (Rho-Ang II-H). Wild type mouse aorta showed the 

presence of a-AR and angiotensin II receptors (AT-R) in both smooth muscle and 

endothelial cells (images 3-1, 3-2, 3-3, 3-5). This showed some interesting differences 

between the binding when circumstances were created to leave certain combinations of 

receptors. For example, when losartan blocked ATi receptors the predominant 

intracellular location of ATz receptors became apparent and this was shown up by the 

presence of QAPB binding on the cell surface (image 3-1, 3-3). Even more strikingly, 

on removal of the major binding sites for QAPB, az-AR and a^-A R , to reveal the 

minor ajA-AR and aig-AR binding sites, it was found that these were present on only a 

minority of cells (as opposed to the ubiquitous presence of ATz receptors shown 

simultaneously -  in the presence of losartan). This reveals a mosaicism among the 

endothelial cells.
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Wild type mouse aorta

At the outset, we expected to find endothelial binding that was susceptible to 

rauwolscine and, thus classifiable as az-AR. We found good endothelial binding with 

QAPB alone (image 3-2). We employed BMY7378 to eliminate the major smooth 

muscle binding site (am-AR) and found that endothelial binding was, as expected, still 

present (image 3-3). However, binding was still present in the presence of rauwolscine 

(images 3.6 and 3-7) leading us to hypothesis either that our antagonist regime was not 

as selective as we had expected or that there were aiA-AR or aig-AR present on 

endothelium, for which the literature had not prepared us. Since we had no reliable 

aiB-AR antagonist available we decided to pursue the concept that am-AR might be 

present by employing the aiB-KO mouse, since we did have access to aiA-AR-selective 

antagonists.

Aorta of am-AR Knockout

The aorta of the a^-A R  Knockout mouse showed similar autofluorescence to controls 

(image 3-8) and good binding of QAPB to both smooth muscle and endothelium (image

3-9). After elimination of the am-AR with BMY7378 good binding remained on 

endothelium and smooth muscle (image 3-10); the possibilities for binding were now 

reduced to aiA-AR and az-AR. The addition of 5MU to BMY7378 still left binding on 

both cell types but caused a greater reduction of binding on smooth muscle as would be 

expected since all ai-AR have now been eliminated (image 3-11). Rauwolscine on its 

own reduced endothelial binding to a greater extent than the ai-AR antagonists 

providing a strong indication for the expected az-AR (image 3-11). Finally, the 

combination of the aiA-AR and aio-AR antagonists with rauwolscine eliminated all 

endothelial binding (image 3-13) confirming that when all the ai-AR subtypes are taken
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out of consideration the endothelial binding of QAPB is rauwolscine-sensitive and, 

therefore, can be characterised as az-AR. This series of observations is summarised, 

using a 3D view in image 3-14.

Having accomplished this inadvertent diversion into the demonstration of endothelial 

aiB-AR, we then used the azA-KO to consolidate the demonstration that there are 

endothelial az-AR binding sites and to test whether we could further characterise these 

as azA-AR as was suggested by the functional experiments.

Aorta o f a2A-AR Knockout

When unstained, aorta of the azA-KO showed the characteristic autofluorescence of the 

internal elastic lamina (image 3-15). As expected, since fewer azA“AR were 

anticipated, QAPB produced less staining of endothelial cells but, unexpectedly, also 

produced less staining of smooth muscle cells, where most receptors were expected to 

be ai-AR (image 3-16); later experiments demonstrated that the responses via ai-AR 

were attenuated in this knockout strain (see chapter five).

The effects of antagonists were consistent with expectations from the functional study. 

Rauwolscine, on its own, did not make much difference (image 3-17), in line with the 

expectation from functional experiments that this is the endothelial az-AR responsible 

for endotheliium-mediated vasorelaxation. The combination of 5MU and BMY7378 

(image 3-18) or their combination with rauwolscine (image 3-19) resulted in some 

reduction of endothelial binding but left definite endothelial staining, consistent with the 

residual aiB-AR. Smooth muscle cells also showed some binding at this stage, again 

consistent with a low level of aie-AR expression.

Having established these conelations between functional responses and a-AR binding 

on aorta, we then moved on to superior mesenteric artery in which functional
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experiments suggested that there was a functional endothelial az-AR but that it was not 

the azA-AR found in aorta. This artery is large enough to treat in the same way as aorta, 

opening the lumen without causing gross damage. We first employed the wild type and 

then aiB-KO in which the situation is already somewhat simplified and later the azA-AR 

to see whether a different az-AR is present and survives this KO.

Superior mesenteric artery of wild type:

Compai'ison between control and rauwolscine treated intact tissues eliminates presence 

of ai-ARs on endothelial cells of young mouse superior mesenteric artery (image: 3-20- 

second row). The combination of 5MU, BMY7378 and rauwolscine resulted in some 

reduction of endothelial binding, however, left definite endothelial staining, consistent 

with the residual ain-AR (image 3-20-third row).

Superior mesenteric artery o f am-AR Knockout

The unstained vessel showed autofluorescence from a thin but complete internal elastic 

lamina, which showed regular, characteristic lamellae (holes) of this vessel (image 3-21, 

upper), QAPB showed excellent binding on endothelial cells, which in this case, were 

easy to distinguish from the finer elastin (image 3-21, lower). Binding survived the 

presence of the combination of 5MU and BMY7378 (image 3-22, upper) but was 

eliminated in the additional presence of rauwolscine (image 3-22, lower). This is all 

consistent with an endothelial population of az-AR.

Superior mesenteric artery o f Œza-AR Knockout

Again autofluorescence was clearly detectable as a fine continuous lamina with holes 

(image 3-23). There was good binding to both smooth muscle and endothelial cells
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(image 3-24) that was not greatly affected by 5MU and BMY7378 (image 3-25) but 

also survived rauwolscine (image 3-26) or the combination of the ai-AR antagonists 

with rauwolscine (image 3-27). Thus, we cannot finally distinguish between the 

possibilities of az-ARs and Uib-AR, since we do not have the combination that would 

be given by a double « za-AR Knockout and aiB-AR Knockout.
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Chapter Three Graphs and Images

Effects of UK14304 on different mice arteries

The graphs created in Prism (Version 3).
The Images created in Amira (Version 3.20), 

Imaris (Version 3) and Metamorph (Version 4.2).
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Image 3-1: Four months wild type mouse aorta endothelial cells treated 
by Losartan (AT^-antagonist) (lOpM) and then stained with QAPB 
(0.1 pM) and Rho-Ang II-Human (50nM). Green colour has localised a- 
AR and Red AT2 -Receptor (n=6 ).

SMCs

Image 3-2: Four months wild 
type mouse aorta endothelial 
cells stained with QAPB 
(0.1 pM). a-ARs are localised 
by green colour in both 
Endothelial Cells (ECs) 
Smooth Muscle Cells (SMCs) 
(n=6 ).

Image 3-3: Four months wild type 
mouse aorta endothelial cells treated 
by both of Losartan (lOpM) and 
BMY7378 (0.1 pM) then stained with 
QAPB (0.1 pM) and Rho-Ang II- 
Human (50nM). The Green colour 
granules reveal a,-ARs (a,^ & a,g) 
subtypes or a 2 -ARs and Red granules 
illustrate ATj-Receptors inside the 
cell, around the nucleus (arrow). 
Yellow colour is due to overlapping 
of Red and Green on Internal Elastic 
Membrane (lEM).



Image 3-4: Amira 3D model image of an endothelial cell stained with 
QAPB (0.1 pM) after treatment by BMY7378 (0.1 pM). a,-AR  
subtypes (a,^-AR a^g-AR) (White arrows) are localised on a base of 
Internal Elastic Lamina (lEL) around the nucleus. Four months wild 

>e. mouse aorta

Image 3-5: Amira 3D model image of an endothelial cell stained with 
QAPB (0.1 pM) and Rho-Ang II-Human (50nM) after treatment by 
Losartan (lOpM) and BMY7378 (0.1 pM). a,-AR subtypes (a,^-AR 
a , 0 -AR), « 2 -ARs (White arrows) and AIVReceptor (Black arrows) are 
localised on a base of Internal Elastic Lamina (lEL) around the 
nucleus. Four months wild type mouse aorta
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Endothelial

Image 3-6: Four months wild type mouse aorta treated with Losartan 
(lOpM), Rauwolscine (IpM) + BMY7378 (IpM) then stained with QAPB 
(0.1 pM) and Rhodamin-Ang II (50nM). After treating with high 
concentrations o f BMY7378 T Rauwolscine QAPB shows presence of a,^  
or a,jj-AR in some endothelial cells (Green colour). However, a majority of 
endothelial cells are stained only with Rhodamine-Ang II (Red colour) 
which shows ATi-Receptors in endothelial cells. This reveals a mosaicism 
related to a,-ARs in endothelial cells of young mouse aorta (n=6 ).
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Image 3-7: Four months wild type mouse aorta, stained with QAPB (0.1 pM). 
First row: control
Second row: Treated with Rauwolscine (0.1 pM).
Third row: Treated with 5MU (0.1 pM), BMY7378 (0.1 pM) and Rauwolscine 
(0.1 pM).
Antagonists affected on intact tissues one hour before staining. Endothelial cells 
appeared in all three raw (White arrows). Second raw shows presence of a-ARs 
on endothelial cells. Third raw suggests remaining QAPB intensity is due to 
a,g-AR on mouse endothelial cells (n=6).



LSCM on four months aie-Knockout 
Mouse Aorta

Open lumen, live aorta tissues stained with QAPB (0.1 pM) after 
treatment by BMY7378 (0.1 pM), 5MU (0.1 pM), Rauwlscine 

(0.1 pM) alone or in combination and compared with unstained tissue’s
auto ft uo rescence.

LSCM method details: Excitation wavelength = 488nm, 
Barrier = 515nm, Pixel * Lines = 512 * 512 (1pm = 1.77 Pixel) 

Objective = X40 OIL, Speed: 166-500 IPS, Gain =15,
Iris = 1.5, Laser Power = 50%, Step = 0.35pm

All the z-series images developed in Metamorph (Version 4.2) 
and made as 3D images in Amira (Version 3.2) software.

Image 3-8: Unstained a,g-Knockout mouse aorta (Only Autoftuorescence) (n=3).
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Image 3-9: Control-Four months a,g-Knockout mouse aorta, stained with 
QAPB (0.1 pM). Both the Endothelial and Smooth Muscle Cells (SMCs) 
stained perfectly (n=3).

Image 3-10: Only BMY7378 (0.1 pM) {a,Q-AR antagonist) pretreatment, 
on four months a,g-Knockout mouse aorta, stained with QAPB (0.1 pM). 
Both the Endothelial and Smooth Muscle Cells stained perfectly. 
Remaining QAPB staining should be aj^-AR or aj-ARs. Also we already 
have shown using D79N mice that one of the a 2 -ARs present in mouse 
aorta endothelium is a 2  -AR (n=3).

LSCM method details: Excitation waveiength= 488nm, Barrier= 515nm, Pixel * Lines-
512 * 512, ObJective= X40 OIL, Speed: 166-500 IPS, Gain=I5 (<30), Iris= 1.5, Laser
Power= 50%, Step= 0.35pm



Image 3-11: BMY7378 (0.1 pM) {a,p-antagonist} and 5MU (0.1 pM) 
(a,^-antagonist}, on four months a,g-Knockout mouse aorta, stained 
with QAPB (0.1 pM). Both the Endothelial and Smooth Muscle Cells are 
stained less than in the control mice . Since a,g-AR expression is absent 
in a,g-KO mouse, all a,-AR is eliminated and the remaining QAPB 
staining indicates Œ2 -AR (n=3).
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Image 3-12: Only Rauwolscine (0.1 pM) {a2-AR antagonist}, on four 
months a,g-Knockout mouse aorta, stained by QAPB (0.1 pM). Green in 
both Endothelial and Smooth Muscle Cells shows a,-AR expression in 
both cell types. However, there is a reduction in QAPB-Binding overall 
compared with control and BMY7378 treated cases (n=3).

LSCM method details: Excitation wavelength^ 488nm, Barrier^ 5I5nm, Pixel *
Lines= 512 * 512, Objective^ X40 OIL, Speed: 166-500 IPS, Gain=I5 (<30), Iris=
1.5, Laser Power= 50%, Step= 0.35pm



Image 3-13: BMY7378 (0.1 pM) {a,p-antagonist} and 5MU (0.1 pM) 
{ajy^-antagonist} and Rauwolscine (0.1 pM) (a 2 -AR antagonist} together 
on four months a,g-Knockout mouse aorta, stained with QAPB (0.1 pM). 
All the endothelial cells have disappeared through the treatment with 
antagonist drugs. The characteristic lines of punctuate staining in smooth 
muscle cells is also lost indicating that this combination of antagonist 
ligands is validated as removing all a-AR when a,g-AR are absent (n=3).
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Unstained Stained-Control

5MU+BMY7378 Rauwolscine+5MU+BMY7378
Image 3-14: Summary of 3D Orthoslice and Voltex together in four months a,g- 
Knockout mouse aorta. Unstained control (top left) shows elastin 
autofluorescence. White arrows indicate QAPB binding to endothelial cells in 
control (top right). All staining disappears after treatment with Rauwolscine 
(0.1 pM), 5MU (0.1 pM) and BMY7378 (0.1 pM) (bottom right). When only a,-AR  
antagonists are present (bottom left) endothelial binding remains indicating the 
presence of a 2 -AR (n=3).

LSCM method details: Excitation wavelength= 488nm, Barrier= SlSnm, Pixel * Lines= 512 * 512,
ObJective= X40 OIL, Speed: 166-500 IPS, Gain=l5 (<30), Iris= 1.5, Laser Power= 50%, Step= 0.35fan



LSCM on a2A-Knockout 
Mouse Aorta

Opened lumen, live aorta tissues stained with QAPB (0.1 pM) after 
treatment by BMY7378 (0.1 pM), 5MU (0.1 pM), Rauwolscine 

(0.1 pM) alone and together compared with unstained 
(autofluorescence).

LSCM method details: Excitation wavelength = 488nm, 
Barrier = 515nm, Pixel * Lines = 512 * 512 (1pm = 1.77 Pixel) 

Objective = X40 OIL, Speed: 166-500 IPS, Gain =15,
Iris = 1.5, Laser Power = 50%, Step = 0.35pm

All the z-series images developed in Metamorph (Version 4.2) 
and made as 3D images in Amira (Version 3.2) software.

Image 3-15: Unstained a 2 /\-Knockout mouse aorta (Only Autofluorescent) (n=3).
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Image 3-16: Control-Four months ajA-Knockout mouse aorta, stained 
with QAPB (0.1 pM). Both the Endothelial (arrows) and smooth muscle 
cells are poorly stained (n=3).
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Image 3-17: Only Rauwolscine (0.1 pM) {a 2 -AR antagonist}, on Œ2 a- 
Knockout mouse aorta, stained by QAPB (0.1 pM). Green light in Both 
Endothelial (arrows) and Smooth Muscle Cells shows a,-AR expression 
in both cell types (n=3).
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Image 3-18: BMY7378 (0.1 |uM) {a,D-antagonist} and 5MU (0.1 (iM) 
{a,^-antagonist}, together on a 2 A-Knockout mouse aorta, stained with 
QAPB (0.1 pM). Some of the Endothelial cells (arrows) stained 
suggesting that the remaining QAPB-binding may be Œ2 -AR or a,g-AR. 
In smooth muscle cells QAPB intensity reveals the presence of a,g-AR or 
tt2 -AR (n=3).

LSCM method details: Excitation wavelength= 488nm, Barrier= SISnm, Pixel * Lines=
512 * 512, Objective= X40 OIL, Speed: 166-500 IPS, Gain=15 (<30), lris= 1.5, Laser
Power= 50%, Step= 0.35/i»n
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Image 3-19: BMY7378 (0.1 pM) {a,D-antagonist} and 5MU (0.1 pM) 
{a,y^-antagonist} and Rauwolscine (0.1 pM) (aj-AR antagonist} on a 2 A- 
Knockout mouse aorta, stained with QAPB (0.1 pM). A majority of the 
Endothelial cells have disappeared through the treatment with antagonist 
drugs. However, some Endothelial cells still show QAPB-binding 
(arrows). This is likely to indicate a,g-AR in this knockout mouse: 
compare with Image 3-13 in which the same combination of antagonists 
eliminates binding when the a,g-AR has been knocked out. Smooth 
Muscle Cells are stained with QAPB, again probably due to a,g-AR in 
smooth muscle cells (n=3).
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Image 3-20: Four months wild type mouse superior (main) mesenteric artery, 
stained with QAPB (0.1 pM).
First row: control
Second row: Treated with Rauwolscine (0.1 pM).
Third row: Treated with 5MU (0.1 pM), BMY7378 (0.1 pM) and Rauwolscine 
(O.lpM).
Antagonists affected on intact tissues one hour before staining. Endothelial cells 
appeared in all three raw (arrows). Second raw shows presence of a-ARs on 
endothelial cells. Third raw suggests remaining QAPB intensity is due to a,g- 
AR on mouse endothelial cells (n=5).
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Control-QAPB (0.1

Image 3-21: Control-Four months a,g-KO mouse superior mesenteric 
artery QAPB-binding present in Endothelial Cells (n=3).

LSCM method details: Excitation wavelength= 488nm, Barrier= 515nm, Pixel *Lines= 
512 * 512, ObJective=X40 OIL, Speed: 166-500 IPS, Gain=15 (<30), Iris= 1.5, Laser 
Power= 50%, Step= 0.35jtan
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BMY7378 (0.1 5MU^.)$iM)-QAPB (0.1

I

BMY7378 (0.1 nM), 5MU (0.1nM).Rauwo1æine (0.1nM)-QA?B (O.iftM)

Image 3-22: Four months a,g-KO mouse superior mesenteric artery. The 
endothelial cells (arrows) show QAPB-binding in the presence of a,-AR  
antagonists (upper panels) but in the additional presence of rauwolscine, 
endothelial binding disappears (lower panels).
QAPB (O.lpM) after treatment by BMY7378 (O.lpM), 5MU (O.lpM) 
and/or Rauwolscine (O.lpM) (n=3).



LSCM on a2A-K-nockout 
Mouse Superior Mesenteric Artery

Opened lumen, live superior mesenteric artery tissues stained with 
QAPB (O.lpM) after treatment by BMY7378 (O.lpM), 5MU (O.lpM), 

Rauwlscine (O.lpM) alone and together compared with unstained
(autofluorescence).

LSCM method details: Excitation wavelength = 488nm, 
Barrier = 515nm, Pixel * Lines = 512 * 512 (1pm = 1.77 Pixel) 

Objective = X40 OIL, Speed: 166-500 IPS, Gain =15,
Iris = 1.5, Laser Power = 50%, Step = 0.35pm

All the z-series images developed in Metamorph (Version 4.2) 
and made as 3D images in Amira (Version 3.2) software.
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Image 3-23: Unstained a 2 A-Knockout mouse superior mesenteric artery. 
Internal Elastic Lamina (lEL) autofluorescence (n=3).



Image 3-24: Control-Four months aj^-Knockout mouse superior 
mesenteric artery QAPB-binding present in the Endothelial Cells (arrows) 
(n=3).
LSCM method details: Excitation wavelength= 488nm, Barrier= SISnm, Pixel * Lines=
512 * 512, Objective= X40 OIL, Speed: 166-500 IPS, Gain=15 (<30), Irb= 1.5, Laser
Power= 50%, Step= 0.35pm



Image 3-25: BMY7378 (O.lpM) {ajD-antagonist} and 5MU (O.lpM) 
{a,^-antagonist}, on a 2 A-ICnockout superior mesenteric artery, stained 
with QAPB (O.lpM), still plenty of endothelial cells stained. This 
suggests that remaining QAPB-binding is Œ2 -AR or a,g-AR in 
endothelium. In Smooth Muscle Cells QAPB intensity reveals also 
presence of a,g-AR or Œ2 -AR (n=3).

LSCM method details: Excitation wavelength^ 488nm, Barrier^ SISnm, Pixel * Lines=
512 * 512, ObJective= X40 OIL, Speed: 166-500 IPS, Gain=15 (<30), Iris= 1.5, Laser
Power= 50%, Step= 0.35pm



Endothelial

Image 3-26: Only Rauwolscine (O.lpM) (a 2 -AR antagonist}, on a 2 /̂ - 
Knockout superior mesenteric artery, stained by QAPB (0.1 pM). Green 
light in both Endothelial (arrows) and Smooth Muscle Cells shows a ,- 
AR expression in these cells (n=3).

LSCM method details: Excitation waveiength= 488nm, Barrier= SISnm, Pixel * Lines=
512 * 512, ObJective= X40 OIL, Speed: 166-500 IPS, Gain=15 (<30), lris= 1.5, Laser
Power= 50%, Step= 0.35pm
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Image 3-27: BMY7378 (O.lpM) {a,Q-antagonist} and 5MU (O.lpM) 
{a,^-antagonist} and Rauwolscine (O.lpM) {a 2 -AR antagonist} on aj/ -̂ 
Knockout superior mesenteric artery, stained with QAPB (O.lpM). In 
contrast to the ajg-KO mouse (image 3-20), the endothelial cells still 
appear after treatment with antagonist drugs indicating the presence of a,g- 
AR in the endothelium of this vessel. Smooth muscle cells stained with 
QAPB again probably due to a,g-AR (n=3).
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3-5. Discussion:

a 2 -adrenoceptor-activated vasodilator responses:

We have demonstrated an ai-adrenoceptor-activated, endothelium/NO mediated 

vasodilator response in the aorta, carotid artery and mesenteric arteries in the main 

mammalian model organism, the mouse. This is an important observation because 

knowledge of this phenomenon has been scanty and regarded as “species-related”. The 

ability to focus on this phenomenon in the mouse and other model species should 

accelerate appreciation of its role in man.

The demonstration and analysis of vasodilator responses via az-adrenoceptors proved 

straightforward in wire myograph-mounted, pre-constricted arteries from young adult 

mice. Aorta, carotid and mesenteric arteries showed rauwolscine-sensitive relaxant 

responses to UK14304 as their most sensitive response. Subsequent analysis in aorta 

and carotid showed that this represented the vasodilator phenotype of the azA/o- 

adrenoceptor involving endothelium-mediated release of nitric oxide. In mesenteric 

arteries, however, resistance to the knockout or the D79N mutation of the (%2 A/D-AR 

points to another subtype of ai-adrenoceptor.

The carotid artery proved the most straightforward since it showed only relaxant 

responses to UK14304 and these were susceptible to rauwolscine, to knockout or to 

mutation and to blockade of NOS, indicating an aiA/n-adrenoceptor-mediated release of 

nitric oxide and no other obvious action. All other arteries showed some variation from 

this that could be accounted for by activation of other adrenoceptors but which, taken in 

isolation, would confuse the picture.

Majid Malekzadeh Shafaioudi, IBLS, University o f  Glasgow, April 2004 j^QQ
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In the aorta there was a contractile response to UK14304 at a higher concentration 

range. This response was sensitive to knockout of the aio-adrenoceptor indicating it to 

be mediated by the aio-adrenoceptor, the dominant contractile adrenoceptor in this 

vessel (Yamamoto & Koike, 2001; Tanoue et al, 2002; Daly et a l, 2002). Agonists 

that are generally considered to be "az-adrenoceptor -selective" are often partial 

agonists at ai-adrenoceptors; this has been reported in large arteries in the rat (Martin et 

al, 1986). This reinforces the conclusion of Vandeputte et al (2003) that in mouse 

aorta constrictor and dilator (%2 A/D- adrenoceptors act in opposition. Like aorta the 

carotid has dominant contractile oiio-adrenoceptors in rat (Hussain & Marshall, 1997) 

and mouse (Daly et a l, 2002) but the receptor reserve is lower than in aorta, as shown 

by its lower sensitivity to ai-adrenoceptor agonists. Therefore, as an ai-adrenoceptor 

partial agonist, UK14304 will occupy and activate aio-adrenoceptors in these vessels 

but it will not generate a sufficient signal to cause contraction; in the a 2A/n-K0 , 

however, even the carotid showed a small contraction to UK14304 once the endothelial 

inhibitory influence was removed.

The experimental objectives of this study were met equally well by the a 2A/o-KO and 

D79N mice. The former is a straightforward “knockout” in which the receptors will not 

be expressed while the latter produces a mutated version of the (%2A/D-adrenoceptor that 

has been shown to produce phenotypes that carry, in effect, a functional a 2 A/o- 

adrenoceptor knockout due both to poor functionality of the mutated receptor and its 

low expression levels (MacMillan et a l, 1998). Both eliminated the a 2-adrenoceptor- 

mediated vasodilatation in aorta and carotid but not in the two mesenteric artery 

preparations. This produces definitive evidence that the endothelial a 2-adrenoceptor 

response is mediated via the a2A/D-adrenoceptor and validates the tentative 

pharmacological analysis in rat and pig (Boclcman et a l, 1993; 1996) that the a%-

Majid Malekzadeh Shafaioudi, IBLS, University o f  Glasgow, April 2004 ][Q
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adrenoceptor-mediated endothelial response, first demonstrated by Cocks & Angus 

(1 9 8 3 ), is mediated by the a2A/D-adrenoceptor subtype. However, the a 2A/D- 

adrenoceptor was not the only subtype mediating such responses when further vessels 

were investigated.

The main mesenteric artery and its first branch showed clear rauwolscine-sensitive 

relaxant responses to UK14304 that were present in the a 2 A/o“KO and D79N mice 

leaving the subtype unclassified, but either a 2 B~ or (%2c- adrenoceptors. This is novel. 

In the published work on the blood pressure of conscious mice with knockouts of the 

three subtypes, only elimination of the a 2 a /d - adrenoceptors caused the loss of the 

vasodepressor action of clonidine (Link et a i, 1996; MacMillan et al, 1996). However 

an endothelial vasodilatation to (%2B-adrenoceptors or a2c-adrenoceptors might be 

submerged within the overall blood pressure response to countervailing pressor and 

depressor influences of a 2-adrenoceptor agonists. Mesenteric vessels in rat are the most 

commonly employed models of vascular resistance and this is likely to be repeated in 

mouse models so the observation of a possible non-a2A/o-adrenoceptor-mediated 

vasodilatation is significant.

There were subtle differences in the responses found in the two strains which may repay 

further investigation but lie outside our current objectives, viz. in aorta, the (X2A/D-KO 

and D79N mice both lost the relaxant effects of UK14304, but the contractile response 

to UK14304 that survived had a different concentration-response relationship in the two 

strains; this was reflected also in the carotid which showed a small contraction only in 

the a 2 A/D"KO; in the first branch mesenteric artery, compared with aorta, carotid and 

main mesenteric arteries vasodilator responses to UK14304 were slightly bigger.

In contrast to the vasodilator effect, we found no evidence for a contractile ai- 

adrenoceptor in mouse aorta, carotid, main mesenteric or first branch mesenteric

Majid M alekzadeh Shafaioudi, IBLS, University of Glasgow, April 2004 1 02
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arteries. The literature in other species shows that a 2 -adrenoceptor-mediated 

vasopressor responses are easily demonstrated in vivo (Docherty & McGrath, 1980) but 

are difficult to show in vitro, particularly in large conducting arteries (McGrath et a l, 

1989). This is now reinforced and extended in the mouse. In the rat the clearest 

example of a vascular a 2 -adrenoceptor-mediated contraction in vitro is in the tail artery 

(Medgett, 1995; Templeton et a l, 1989; Xiao & Rand, 1989) and this applies also to the 

mouse (Chotani et a l, 2000, McBride et a l, 2002). The few examples in other species 

include vessels such as saphenous artery and vein and ear vein (Demey & Vanhoutte, 

1981; Daly et a l, 1988) for which we have, so far, not identified technically feasible 

counterparts in the mouse.

Localisation of ai-adrenoceptors:

The visualisation of a fluorescent ligand binding to endothelial cells and its competitive 

elimination by the ctz-adrenoceptor-antagonist rauwolscine provides compelling direct 

evidence for the endothelial location of the 0 £2-adrenoceptors that mediate 

vasodilatation. The existence of myoendothelial connections places doubt on whether a 

smooth muscle response that depends upon endothelium is actually initiated there since 

depolarisation of smooth muscle cells might influence the endothelium (Dora et a l, 

2000) (Oishi et a l, 2001). Until now the vascular localisation of a 2 -adrenoceptors has 

relied on low resolution autoradiography that indicated the presence of receptors in 

smooth muscle but not endothelium, a finding repeated even for acetylcholine 

(Stephenson et a l, 1988). Our present study shows direct proof of oi2 -adrenoceptor 

binding sites on endothelial cells. Thus location and function are in accord.

Majid Malekzadeh Shafaroudi, IBLS, University o f  Glasgow, April 2004 1 03
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Relevance of vascular endothelial ttz-adrenoceptors:

These results show that the blood pressure lowering effect of (%2 -adrenoceptor agonists 

should include a peripheral endothelium/nitric oxide-mediated direct vasodilatation in 

addition to any effects on sympathetic nerve traffic or post-ganglionic transmission. 

Until now the blood pressure lowering effect of (%2-adrenoceptor agonists, such as 

clonidine, has been ascribed entirely to action at neuronal a 2 -adrenoceptors, either those 

in the CNS regulating sympathetic nervous system output or pre-junctional receptors on 

peripheral sympathetic post-ganglionic terminals. Deletion or mutation of the a 2A/o- 

adrenoceptors results in the loss of the falls in both heait rate and blood pressure caused 

by intravenous administration of a 2-adrenoceptor agonists such as UK14304 and 

clonidine in the conscious mouse (MacMillan et a l, 1996; Altman et al., 1999). It has 

been assumed that both arise entirely from withdrawal of sympathetic tone. The present 

data shows that these agonists produce vasodilatation via endothelial a 2-adrenoceptors. 

In major conducting arteries, such as aorta and carotid this would successively increase 

vascular compliance, reduce systolic pressure, reduce afterload, reduce cardiac output 

and, hence, lower mean arterial blood pressure. In resistance arteries, as represented by 

the mesenteric first branch artery, a straightforward hypotensive action through reduced 

peripheral resistance could be expected. It should, therefore, be expected that the 

vasodepressor action of a 2 -adrenoceptor activation would be a combination of 

endothelial activation and sympathoinhibition.

This is important since activation of endothelial relaxant and hypotrophic factors is 

another distinction between the mechanisms of action of (%2-adrenoceptor agonists and 

beta blockers at the various level. This might confer advantages in the treatment of 

particular cardiovascular diseases since activation of endothelial (%2 -AR would cause

Majid M alekzadeh Shafaioudi, IBLS, University o f  Glasgow, April 2004 1 04
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vasodilatation that is independent of sympathetic tone. In contrast p-blockers will 

attenuate of P-adrenoceptor mediated vasodilatation leading to vasoconstriction. 

Vascular endothelial or smooth muscle ai-adrenoceptors may, therefore, be as relevant 

as are pre-junctional receptors to the hypothesis that (%2-adrenoceptors confer protection 

from heart failure (Brede et al,  2002). Their coirect function may be essential to 

regulation of blood flow in critical vascular beds. For example, this may be the 

explanation for the proposed physiological role of nitric oxide released by ai- 

adrenoceptors in protecting the rat kidney from excessive adrenergic vasoconstriction 

(Zou & Cowley, 2000). A range of such countervailing actions may be of great 

importance for the protection of the specialised functions of many vascular beds in the 

face of a generalised sympathetic activation in "fight or flight".

T h e  d e m o n s t r a t i o n  o f  v a s c u l a r  a 2 - a d r e n o c e p t o r s  c o m p l e t e s  t h e  i n i t i a l  a n a l y s i s  i n  t h e  

m o u s e  o f  t h e  d i s t r i b u t i o n  o f  f u n c t i o n a l  v a s c u l a r  a d r e n o c e p t o r s  f r o m  a l l  t h r e e  f a m i l i e s  

( a i - ,  a 2 -  a n d  P - a d r e n o c e p t o r s ) .  T h e  t w o  b e s t  c h a r a c t e r i s e d  s u b t y p e s  o f  p - a d r e n o c e p t o r s  

(Pi- a n d  p 2 - )  a r e  d i s t r i b u t e d  h e t e r o g e n e o u s l y  t h r o u g h o u t  t h e  v a s c u l a r  t r e e ,  b o t h  c a u s i n g  

v a s o d i l a t a t i o n ,  a  f i n d i n g  t h a t  c o n t r a d i c t s  t h e  e a r l i e r  g e n e r a l i s a t i o n  t h a t  a ; - a d r e n o c e p t o r s  

d o m i n a t e  i n  b l o o d  v e s s e l s  ( C h r u s c i n s k i  et al,  2001). V a s o c o n s t r i c t o r  a i - a d r e n o c e p t o r s  

h a v e  a  d o m i n a n c e  o f  a i o - a d r e n o c e p t o r s  i n  l a r g e  a r t e r i e s  b u t  o f  a i A - a d r e n o c e p t o r s  i n  

s m a l l  a r t e r i e s ,  w h i l e  a m - a d r e n o c e p t o r s  p l a y  a  m i n o r  r o l e  ( r e m o d e l l i n g  a n d  i n i t i a t i o n  o f  

c o n t r a c t i o n )  i n  a l l  v e s s e l s  ( D a l y  et al,  2002). W e  n o w  s h o w  a  s h a r p  p h e n o t y p i c  d i v i d e  

b e t w e e n  a r t e r i e s  w h o s e  e n d o t h e l i a l  v a s o d i l a t o r  r e s p o n s e  i s  m e d i a t e d  b y  a 2 A / D -  

a d r e n o c e p t o r s  a n d  b y  o t h e r  s u b t y p e s  o f  a 2 A - a d r e n o c e p t o r s . A t h i r d  g r o u p ,  t y p i f i e d  b y  

t h e  t a i l  a r t e r y  d i s p l a y s  a  d o m i n a n c e  o f  v a s o c o n s t r i c t o r  a z - a d r e n o c e p t o r s  c o m p r i s i n g  a t  

l e a s t  a 2 A / D - a d r e n o c e p t o r s  a n d  a 2 c - a d r e n o c e p t o r s  ( C h o t a n i  et al,  2000; M c B r i d e ,  2002).
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This consolidates the statement of Phillipp et al (2002) that for otz-adrenoceptor 

subtypes “one receptor is not enough”.
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4-1. Abstract:

1. ai and ai-adrenoceptor (a-AR) responses were studied in mouse aorta. In other 

species various subtypes from these receptor families mediate effects directly on smooth 

muscle and indirectly via endothelium. The pharmacological interactions ate very 

complicated so in order to simplify and clarify pharmacological analysis in this study, 

we used genetically modified Nashville D79N (a 2 A/n-AR mutant-C57BL(i), aio-AR 

Knockout (129/sv/C57BL6) mice compared with controls (129/sv/C57BL6) {WT}. This 

enabled us to analyse the rather complicated action of UK14304.

2. Mouse aorta were cut into 2mm rings, mounted on a wire myograph (Mulvany 

et al 1976) and used to acquire single or cumulative concentration response curves to 

UK14304 in presence and absence of L-NAME.

3. Cumulative concentration response curves to UK14304 without pre-constriction 

showed a small relaxation, which was followed at higher concentration by a contraction. 

Damage to the endothelium or L-NAME allowed lower concentrations of UK14304 to 

cause contraction. L-NAME treatment revealed contraction on which the UK14304 

contraction could be superimposed. However the tone was sensitive to BMY7378, 

suggesting that it is due to an action involving aio-AR and indicating the presence of 

constitutively active ai^-AR on smooth muscle cells whose action is revealed by 

withdrawal of the influence of Nitric Oxide, which in turn would appear to be 

constitutive. However, in am-AR Knockout L-NAME contractile response was smaller. 

UK14304 could not produce any contractile effect on top of the L-NAME contractile 

response, and this was sensitive to 5MU but not BMY7378. This revealed also the 

possible presence of some constitutively active aiA-AR on smooth muscle cells.
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UK14304 acted as a partial agonist of am-AR, causing weak contraction in high 

concentration that was absent in the am-KO and antagonising aiD-mediated contraction 

to phenylephrine in both intact and denuded vessels. In the presence of tone UK14304 

produced relaxation that was absent in D79N or removal of the endothelium. Thus 

UK14304 contracts smooth muscle directly via aio-AR and relaxes smooth muscle via 

an endothelial effect indirectly.

4. This indicates overall that the mouse aorta has a multiple population of a- 

adrenoceptors capable of initiating contraction or relaxation and thus it can be used to 

analyse mechanisms involved with such receptors.
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4-2. Introduction:

Adrenoceptors are targeted by the catecholamines adrenaline and noradrenaline. They 

mediate biological effects in different parts of the body including CNS and 

cardiovascular system. To date, nine distinct adrenergic receptor subtypes have been 

cloned from several species: aiA, aiB, aio, otzA, %c, Pn p 2 and p3 (Bylund 1994). 

For several adrenergic receptors, their precise physiological functions and their 

therapeutic potential have not been clear. Despite the fact that a2-adrenoceptors serve a 

number of physiological roles in vivo and have great therapeutic potential, no 

sufficiently subtype-selective ligands are available experimentally and clinically yet. 

Recently, transgenic and knockout mice have added considerable information about 

specific function of the three az-AR subtypes in mouse models cainying targeted 

mutation or deletions in the genes encoding for ai-adrenoceptors (Docherty 1998; Hein 

2001; MacDonald 1997; Macmillan 1998; Rohrer and Kobilka 1998).

Distribution of ai-AR subtypes varies in different parts of the cardiovascular system. 

According to the literature, there are at least four types of ai-AR in the cardiovascular 

system as defined by functional data (aiA, cxib, ocil and ajo). If we consider embryonic 

development, we can postualte that a majority of conductive arteries, which developed 

directly from embryonic branchial arches, contain the primordial version of ai-AR 

called otiD-AR (for example: Aorta and Carotid artery). However, the arteries which are 

more distant from heart are often created from local mesenchyma, and contain further 

versions of ai-AR called otiA-AR, (Xib-AR e.g. resistance or distributing arteries like 

subcLitaneus arteries, coronary arteries, renal, tail and mesenteric arteries (Sandra 1999).
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111

According to Faber et al (1998), in Rat aorta distribution of ai-AR in adventitia and 

media is completely different. The dominant ai-AR in adventitia is aiA-AR (aiA-AR 

44%, aiB-AR 37% and am-AR 19%), whereas, in media the am-AR is the dominant 

adrenoceptor (am-AR 55%, a^ -A R  26% and aiA-AR 19%) (Faber 1998). In mouse 

aorta also am-AR is dominant in media and has a main contractile role (Yamamoto & 

Koike 2001; Tanoue 2002; Daly 2002). Also it has been suggested that a^-A R  often 

have growth or remodelling roles in the cardiovascular system, whereas, aiA and am- 

AR often play contractile roles in vasculature tissues. However, in many resistance or 

distributing arteries the presence of a^-A R  may be a necessity for starting the 

contractile response (Daly 2002).

The involvement of the azA/o-tidmnoceptor was analysed using a mouse harbouring the 

Nashville D79N mutation of that receptor, which serves as a functional knockout, in 

part due to expression of the mutant receptors (that replace the native receptors) at 

lower expression levels (MacMillan 1996).

The reason for the delay between availability of az-adrenoceptor KO mice and the first 

analysis of the direct vasodilator action of ai-adrenoceptors in blood vessels lies in the 

multiplicity of actions via the family of nine adrenoceptors {Three families (ai, P, a 2)} 

and the interactions and synergism between these and other factors. The direct vascular 

actions of a 2 -adrenoceptors are subject to modulation in both directions by other 

vasoactive factors. In particular, because the agonists that are partly selective for a 2 - 

adrenoceptors tend to be partial agonists, responses tend to have a relatively small 

receptor reserve so that agonists may not be able to achieve a maximal, or even a 

threshold, response.

We have employed the major conducting arteries in which a 2 -adrenoceptor-mediated 

vasodilatation has been found in other species (reviewed by Guimareas & Moura 2001)
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and use rings of arteries mounted on a wire myograph to ensure minimal damage to the 

vascular endothelium.

Hypothesis:

1. Is UK14304 (selective a 2 -ARs agonist) a partial agonist at contractile ai-ARs?

If  yes, incubation with UK14304 (IpM ) should shift CCRC to Phenylephrine to the 

right in tissue rings.

2. If UK14304 can shift CCRC to Phenylephrine to the right, which subtype or 

subtypes of ai-ARs are actually involve in this phenomenon?

3. Can UK14304 produce a contraction response via subtypes o f ai-ARs (aiA, cxib and 

aiD-ARs)?

The first step of this study examined effects of incubation with UK14304 on CCRC to 

Phenylephrine in young intact and denuded mice aorta compared with other ai-A R 

antagonists (e.g. Prazosin and BMY7378). The removal of endothelium potentially 

simplifies the situation.

The next step tried to find the source of contraction response to both high 

concentrations of UK14304 and to L-NAME. We hypothesised that constitutive release 

of NO might reveal constitutive actions of ai-AR.

We then tested effects of BMY7378 (more selective am-AR antagonist) and 5MU 

(more selective aiA-AR antagonist) on contractile effect to UK14304 in wild type and 

am-AR knockout. The am-AR knockout has the potential to make a great deal of 

difference since it may eliminate both the direct action of UK14304 and the constitutive 

activity of am-AR, thus altering the action of L-NAME. This may lead us to finding 

which subtype of ai-ARs involves in contractile effect of UK14304.
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4-3. Material and methods:

We chose Young mice (four months) aorta. Both intact and denuded aorta rings are used 

in this project.

We used genetically modified Nashville D79N (ctzA/o-AR mutant-C57BL6), am-AR 

Knockout (129/sv/C57BL6) mice compared with controls (129/sv/C57BL6) {WT}, 

which were killed by C02, and the thoracic aorta (descending part) removed. 

Connective tissue including adipose tissue was then removed and the samples dissected 

into rings (2 mm in length). According to the protocol, in some cases endothelium was 

removed by scrubbing the inside of aorta lumen by a needle or human hair (denuded 

aorta) and others remained intact. Tissue rings then were mounted in Ki’ebs solution 

(NaCl 118.4mM, KCl 4.7mM, CaClg 2.5mM, KH2PO4  1.2mM, MgS0 4  1.2mM, 

NaHCOa 25mM & glucose ll.lm M  bubbled with 95% O2 5% CO2 to pH 7.4) at 37"'C 

in a multi-myograph (myo-interface, model 600M and 610 Version 2.2, Aarhus) using 

40 micron stainless steel wires at 37°C. An isometric force transducer (Linseis L6512B, 

Belmont Instruments and Poweiiab software “Version 4.2.2 for windows 98” which was 

installed on a pentium III computer) that was calibrated at one gram for sixty small 

boxes (mm) (0.016gr for each unit based on one volt sensitivity) and was used to 

measure force development (Mulvany & Halpern, 1976 1977). The aortic rings were 

placed under Igr initial tension and left to equilibrate for 30-45 minutes. Reproducible 

responses were obtained to noradrenaline (O.lpM) or phenylephrine (O.lpM) or U46619 

(lOnM) according to protocol before commencing further experiments. Tissues were 

contracted with different agonists cumulatively according to protocols in 0.5 log unit 

increments beginning with (InM) up to (30pM). At the plateau of contraction, 

acetylcholine (IpM) was added to test the endothelium. 50% relaxation response was 

the criterion for functional endothelium. Also at the end of each experiment
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endothelium integrity was checked by the same concentration of acetylcholine (bigger 

than 50% relaxation responses still required). The tissues were washed every 5 minutes 

at the end of each step of the experiment and left for 45-75 minutes as a resting period. 

After this intervening resting period, the next step of the experiment was started. All the 

antagonists were added at least 30 minutes before agonists.

Drugs:

All drugs were of analytical grade and were dissolved in either distilled water (H2O), 

ethanol or DMSO as indicated below. Noradrenaline dilution included 23pM EDTA to 

prevent oxidation.

noradrenaline (H2O), phenylephrine (H2O), acetylcholine chloride (H2O), 5HT (H2O), 

U46619 (ethanol), L-NAME (N-Nitro-L-Arginine Methyl Ester) (H2O), rauwolscine 

(H2 O) [Sigma-Aldrich Co; Poole, UK]. UK14304 (DMSO). BMY7378 [Sigma-Aldrich 

Co; Poole, UK] (H2 O),

Statistics:

Values are means ± Standard error mean from n experiments. Difference between 

maximal contraction response to CCRC to agonist in presence and absence of 

antagonists were compared with one-way and two way ANOVA followed by 

Bonferroni’s post test and two-tailed unpaired and paired t-test. Statistical and graphical 

analysis was carried out using Excel 97 and GraphPad Prism 3.00 for PC. Data used 

to plot the dose response curves are the mean contraction induced at each concentration 

of the drugs, and hence, the maximum response shown graphically differs from the 

maximum calculated from individual tissue maximum.
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4-4. Results:

Hypothesis:

From chapter three results we found that high concentration UK14304 could produce 

contractile effect in mice aorta, which were antagonised by BMY7378 (0.1 |aM) (Fig. 4- 

1 & 4-2).

Cumulative concentrations of UK14304 from (InM) to (30jiM) in presence and absence 

of BMY7378 (0.1 uM) (more selective am-AR antagonist) showed in wild type mouse 

aorta that BMY7378 not only could delay contraction to high concentration of 

UK14304, but also increased the relaxation range (Fig. 4-2). In order to clarify and 

simplify aio-AR involvement in contraction to high concentration of UK14304 we 

carried out the same protocol on young Japanese aiD-Knockout transgenic mouse. In 

(%iD-KO transgenic mouse there was no contractile response to high concentration of 

UK14304 at all (n=7) (Fig. 4-3 & 4-4).

Contractile effect of UK14304 was greater in Nashville D79N mouse aorta (Fig.4-5) 

and this was antagonised by prazosin (non-selective a-ARs antagonist) (See chapter 

three).

If UK14304 acts as a partial agonist of oCi-ARs then incubation with UK14304 (l^iM) 

should shift CCRC to phenylephrine to the right, and if UK14304 can shift it, it is 

important to distinguish which subtype or subtypes of oci-ARs is actually involved.

In young aorta Phenylephrine was more potent in denuded (EC50 = 0.09jiM) than in 

intact (EC50 = 0.64p.M) (Fig. 4-6). A single concentration of UK14304 (IpiM) 

produced contraction (mean 0.39g) on denuded aorta, but not intact, indicating that an 

inhibitory influence of endothelium on smooth muscle cells can negate the contractile 

effect (Fig. 4-6),
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UK14304 (1|aM) shifted the control curve to phenylephrine to the right in both intact 

(EC50 0.64|aM —> lOjaM, shift 15.6 folder) and denuded (EC50 0.09|liM —> 0.1}xM, shift 

1.1 folder), young aorta (Fig 4-6). These observations indicate that UK14304 can act as 

an antagonist at aio-AR. Since it also has a contractile effect it is classified as a partial 

agonist.

Treating with L-NAME (0.1 mM) also caused contraction. Contraction to UK14304 

came down to 65% after addition of BMY7378 (0.1|iM) (Fig. 4-7, Trace). This suggests 

that constitutively active aio-AR can activate contraction but this is normally 

suppressed by endothelial nitric oxide that, in turn, must be constitutively released. This 

is confirmed by the further observation that in aio-AR Knockout, the L-NAME-induced 

contractile response was very small (Fig. 4-8, Trace). In this case UK14304 could not 

produce any contractile effect on top of the (very small) L-NAME-induced contractile 

response indicating that its contractile effect requires the presence of am-AR and is not 

revealed even when nitric oxide is suppressed (Fig. 4-9, Trace).

The small L-NAME-induced contraction was sensitive to 5MU but not BMY7378, This 

revealed also the possibility of the presence of some constitutively active aiA-AR on 

smooth muscle cells (Fig. 4-8 & 4-9, Trace).

This also shows that UK14304 acts selectively at the am-AR being the main adrenergic 

receptor in mouse aorta, which is responsible for the pressor response to noradrenaline 

and phenylephrine (Fig. 4-1).
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Chapter Four Graphs and images

Multiple action sites of UK14304 on different 
adrenoceptors in mice aorta.

Graphs created in Prism (Version 3) and 
Traces in Powerlab (Version 4.2)
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response to phenylephrine or noradrenaline as well as delay in response to a^Q- 
AR agonists in young wild type mouse aorta. As chart has shown, UK14304 
(IpM) could produce more than 76% contraction on top of preconstriction 
response to L-NAME in mean which again removed by BMY7378 (selective 
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4-5. Discussion;

Patients with high blood pressures have an increased risk for cardiovascular events. 

Drugs that selectively decrease blood pressure may be of interest for these patients.

It may be possible to develop drugs with a higher selectivity for large arteries. Such 

drugs may be good candidates to decrease high blood pressure without substantially 

decreasing mean and diastolic blood pressures.

Continuing understanding of molecular mechanisms of such drugs not only helps to 

identify better drugs for these targets but should also provide an insight into developing 

further drugs with better selectivity and less toxicity.

Drugs particularly in high concentration may be non-selective between receptor. 

However, distinguishing which type of receptor can respond to high concentration of a 

drug is important. G-protein-coupled receptor (GPCR) subtypes are differentially 

distributed in smooth muscle cells. However, it remains unclear how this affects the 

subtype selectivity of particular drugs. Sugawara et al (2002) earned out flow cytometry 

analysis with the fluorescent ligand, BODIPY FL-prazosin, to study the relationship 

between the subcellular distribution of subtype receptors and the subtype-selective 

character of ligands using aiA- and B-adrenoceptors (ARs). aiA-ARs predominantly 

localise inside the cell, while aiB-ARs on the cell surface. This study has illustrated that 

location of receptor in addition to the affinity of the drug for the receptor should be 

taken into account in assessing the subtype selectivity of a drug.

Despite the importance of adrenoceptors to regulation of vasculature tonicity and blood 

pressure, among adrenergic receptors only (3-adrenoceptors have sufficient subtype- 

selective ligands. Selective agonists for the Pz-adrenoceptors play an important role in 

asthma therapy (e.g. Salbutamol), and (31-receptor antagonists (e.g. proparanolol) are in
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the first-line medication for hypertension, coronary heart disease or chronic heart 

failure (Brophy 2001; Frishman and Lazar 1990).

az-adrenoceptors were initially characterised as presynaptic receptors that could provide 

a negative feedback loop to regulate noradrenaline release (Starke 1975). Soon 

scientists found postsynaptic function for az-adrenoceptors. Using pharmacological 

antagonists, revealed that a 2A-adrenoceptor has a major inhibitory presynaptic role to 

release of noradrenaline from sympathetic neurons as part of a feedback loop 

(Trendelenburg 1997). Chapter three of this thesis also explained direct ai- 

adrenoceptors vasodilator effects via nitric oxide release through the endothelium in 

various arteries of mouse.

Agonists that are generally considered to be "(%2-adrenoceptor-selective" are often 

partial agonists at ai-adrenoceptors; this has been reported in large arteries in the rat 

(Naghadeh 1996).

UK14304 is a non-selective (%2 -AR agonist. However, experiments on wild type and 

aiD-Knockout mice using BMY7378 {selective am-AR antagonist} and 5MU 

{selective aiA-AR antagonist} have revealed that in high concentration (higher than

0.3jLiM) UK14304 acts as a partial agonist for am-AR which, disappeared in am-AR 

Knockout mice.

Hence, finding selective agonists or antagonists for a 2-adrenoceptor subtypes may play 

an important role to use them clinically in order to find hopeful view to control blood 

pressure related to cardiovascular disease.
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Chapter Five

Interaction, Ageing and Receptors balance

Majid Malekzadeh Shafaroudi, IBLS, University o f  Glasgow, April 2004 J Ç



1 2 0

5-1. Abstract:

1. Contractile and relaxant effects were studied on wire myograph-mounted mouse 

aorta, carotid, and main mesenteric arteries with a view to determining sites, 

mechanisms of action and involvement of adrenoceptor subtypes at different ages and 

strains.

2 . In aorta and superior mesenteric arteries, noradrenaline (NA) and phenylephrine (PE) 

produced responses related to age and strain.

3. Comparisons of young D79N with WT showed reduced contractile responses to PE, 

suggesting reduced functionality of oci-ARs in D79N. Laser scanning confocal 

microscopy showed that QAPB-binding intensity was reduced in the presence of in both 

control and BMY7378. This suggests a regulation of ai-AR dependent on functional 

ai-AR.

4. The ATz mediated relaxation response to angiotensin II in young mice disappeared 

with age. Conversely, oti-AR mediated relaxation was greater in older mice. This shows 

a remarkable age switch in the vasodilator influence of the renin-angiotensin II and 

adrenergic systems, in mouse major conductive arteries, in favour of adrenergic.
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5-2. Introduction:

Studies earned out on Drosophila melanogaster (Vinegar or fruit Fly) have shown that 

changes in genetic environment (mutant or knockout gene) can affect other part of the 

gene pool and may appear as changes in expression of one or more gene alleles lead to 

changing in phenotypes. For example: mutations in the XPD gene (Xeroderma 

Pigmentosum group D), which require for excision repair of UV-damaged DNA and the 

mechanism with which the cell reads the genetic information and converts it into 

proteins, lead to the highly cancer-pron skin disease XP, trichothiodystrophy (TTD) and 

Cockayne syndrome in human (Weeda 1997; Brabont 2001). In Drosophila 

melanogaster mutation in XPD gene which control the number of hairs on the body of 

the fly could lead to a longer reproductive period from noimal ( 1 2  days) to more than 

45 days and these changes will delete in nature in a short time (Sandoval and Zurita 

2 0 0 1 ).

At the end of the twentieth century geneticists completed human. Drosophila 

melanogaster and yeast gene maps. However, we don’t know too much about the 

internal genetic environment, particularly in mammals.

From 20 years ago providing and using transgenic or knockout animals has been 

considered as a useful model to clarify and simplify responses to drugs acting at 

receptors (Gordon and Ruddle 1982). Particularly, during the past decade, scientists 

started to produce double knockout animals (animals which have not expression or 

lower expressions of two subtypes of a family receptors). However, these transgenic 

animals often show poor survival. Experiences with knockout mice have shown that not 

only is there variability in expression of other receptors, which may not even belong to 

the same family but also the expression of knockout gene may not be the same in
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different parts of the body. If ageing change receptor expression levels. We may face a 

lot of changes in phenotypes compared with the normal case.

The balance between a-adrenergic (a-AR) receptors plays a key role in regulation of 

smooth muscle cells (SMCs) contraction response. Some receptors have opposing 

effects.

For example; oti-AR contraction responses acts on SMCs via three different subtypes 

(aiA. otiB and aio), whereas 0 (2-AR oppose this contraction via another three subtypes 

((%2A, ot2 B and a 2c) which are either situated on presynaptic sympathetic nerve terminals 

inhibits NA release (Ruffolo 1991) (Philipp 2002) or on endothelial cells acting via 

endothelium nitric oxide release (See chapter three). Furthermore (%2 -AR on SMCs can 

facilitate ai-AR-mediated contraction (Dunn 1991).

The presynaptic effect of 0 (2 -AR agonists (Dexmedetomidine or UK14304) was 

completely absents in (%2A-AR knockout mice vas deferens preparation. Deletion of Œ2A- 

AR subtype in Nashville D79N (Macmillan 1996) and Œ2A-AR knockout caused an 

increase in sympathetic activity with resting tachycardia. The results suggest a major 

role for a 2A-AR in regulating Norepinephrine release in synaptic clefts.

These confirm that a 2 B or a 2c-AR may function as presynaptic autoreceptors to inhibit 

transmitter release (Joun 1999). Thus, using gene-targeting strategies indicates 

independent functions for each of the three subtypes of Œ2-AR (Link 1996; MacMillan 

1996). However, deletion of one of them may lead to increased expression of another 

subtype revealing this subtypes involvement in the specific function (Philipp 2002).

The first step in this study was comparing three different responses at young (four 

months) and old (fourteen to sixteen months) mice ages in aorta and superior mesenteric 

arteries.
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1) Contractile adrenoceptor responses (a i-ARs).

2) Relaxant adrenoceptor receptors (a%-ARs).

3) Angiotensin II contraction and relaxation effects (AT% & AT2-R).

Next step tried to analysis the same responses in knockout mice in order to see whether 

the loss of one receptor results in a change in the functional responses to the other 

receptors.

1) First at the young age.

2) Second at the old age.

This design helps us to see how the differences between strains at the young age further 

changes as the animal ages.
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5-3. M aterial and Methods:

a) W ire myography:

Male mice (aged 4, 14 and 16 months) were Idlled by CO2 and the descending thoracic 

aorta, carotid, main (Superior) mesenteric artery, the were removed, cleaned of 

connective tissue then dissected into rings (2 mm in length). The strains of mice 

employed were the Swiss wild type and a 2A/D-knockout mutant, D79N (C57BLü- 

Homozygous) (MacMillan 1996, 1998), (%2 A-knockout (C57BLV129/sv/Adra 2â *’̂ *̂ ‘̂‘) 

(Docherty 2003, Dublin) which had been back-crossed on to C57BLô. Endothelium 

was removed, where appropriate, by rubbing the intimai surface with a human hair or 

small needle. Tissues were then mounted in Kreb’s solution (NaCl 118.4mM, KCl 

4.7mM, CaCl2 2.5mM, KH2PO4  1.2mM, MgSÛ4  1.2mM, NaHCOs 25mM & glucose

ll.lm M  bubbled with 95% O2 5% CO2 to pH 7.4) at 37°C in a multi-myograph (myo- 

interface, model 600M or 610M DMT, Aarhus) using 40 micron tungsten or stainless 

steel wires (Mulvany & Halpern. 1976, 1977). Aortic rings were placed under a resting 

tension of Ig; Carotid artery 0.333 g, superior (Main) mesenteric artery 0.25 g; and left 

to equilibrate for 30-45 minute. Reproducible responses were obtained to, NA (0.1 pM), 

phenylephrine (0.1 pM), or U46619 (lOnM), according to protocol, before commencing 

experiments. Tissues were tested with increasing concentrations of agonists’ in 0.5 log 

unit increments from lnM-30pM. Agonist addition was cumulative also in the other 

arteries.

At the plateau of contraction to noradrenaline (IpM), acetylcholine (IpM) was added to 

assess endothelial integrity. Criteria for functional endothelium was >50% and for 

denuded endothelium was <5%  relaxation. At the end of each experiment endothelium
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was re-checked using the same criteria and samples included only if meeting criteria at 

both times. All four arteries relaxed to Acetylcholine (IpM). In all arteries L-NAME 

(lOOpM) could abolish the relaxation response to acetylcholine.

Tissues were washed at 5 minutes intervals following each experimental protocol and 

given a 60 minutes recovery period. Following the rest period, second cumulative 

concentration response curve (CCRC) obtained.

b) Laser Scanning Confocal Microscopy (LSCM):

Tissue preparation:

2-3mm segments of aorta from WT and D79N mice were incubated for 60 minutes 

in both QAPB (IpM ) and rhodamine-angiotensin II-Human (50nM) in the presence and 

absence of BMY7378 (O.lpM), introduced 30 minutes prior 

to incubation with the fluo-ligand. Following incubation, without washing, 

aortic segments were cut open and placed endothelial side up in the sample 

well of a glass slide. The well containing the tissue and prior incubation 

media was sealed with a glass coverslip (No. 1.5 for confocal use).

Image capture;

Serial optical sections were collected on a Biorad 1024 & Radiance 2100 

confocal laser scanning microscope. The Excitation/Emission parameters 

used were 488/515nm for QAPB and 567/6lOnm For Rhodamine Angiotensin II
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(Rho-Ang II-H). In all experiments the laser power; gain and offset (contrast

and brightness) were kept constant. The distance between optical sections 

was maintained a 0.5pm for each image stack. Tissues were visualised using a 

x40 oil immersion objective on which the numerical aperture is 1.00 and

therefore optimal pinhole setting is 1.5. Image size was set to 512 x 512

pixels, which equates to a field size of 289pm x 289pm.

Image analysis:

3D volumes (image stacks) were transfened to either MetaMorph (Universal 

Imaging) or Amira (TGS) software packages for subsequent analysis and 

volume visualisation respectively. 3D volumes containing two channels of 

data are psuedocoloured green and red for QAPB & Rho-Ang II-H 

respectively. Where two channels co-localise and their intensities are 

roughly equivalent, the co-localised area is displayed in yellow. Spatial 

localisation of fluorescent signals was achieved using orthogonal viewing 

of the XY, XZ & YZ planes. 3D views were rendered using the Amira 'Voltex' 

module.

Drugs:

All drugs were of analytical grade and were dissolved in either distilled water (H2O), 

ethanol or DMSO as indicated below. Noradrenaline dilution included 23pM EDTA to 

prevent oxidation.
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noradrenaline (H2O), phenylephrine (H2O), acetylcholine chloride (H2O), 5HT (H2 O), 

U46619 (ethanol), L-NAME (N-Nitro-L-Arginine Methyl Ester) (H2 O), rauwolscine 

(H2 O) [Sigma-Aldrich Co; Poole, UK], UK14304 (DMSO) [Pfizer, Sandwich, UK]. 

BMY 7378 (HgO) [Sigma-Aldrich Co; Poole, UK], 5MU (H2O [Sigma-Aldrich Co; 

Poole, UK].

Fluorescent compounds:

Fluorescent prazosin (QAPB) (DMSO) [Molecular Probes INC; EUGENE-USA], 

Rhodamine-Angiotensin II-Human (Rho-Ang II-H) (H20) [Phoenix Pharmaceuticals 

INC; Germany].

Statistics:

Values are means ± Standard error mean from n experiments. Differences between 

maximal contraction response to CCRC to agonist in presence and absence of drugs 

were compared with one-way and two-way ANOVA followed by Bonferroni’s post test 

and two-tailed unpaired and paired t-test. Statistical and graphical analysis was earned 

out using Excel 97 and GraphPad Prism 3.00 for PC. Data used to plot the concentration 

response curves are the mean contractions induced at each concentration of the agonist.

Majid Malekzadeh Shafaroudi, IBLS, University o f  Glasgow, April 2004 J 2 7



1 2 8

5-4. Results:

Contractile oci-adrenoceptor responses:

Comparison between contractile responses to cumulative concentrations of 

phenylephrine (PE) in four and fourteen months wild type mouse aorta revealed no 

significant reduction due to ageing (Fig. 5-1). The same result was obtained in wild type 

superior mesenteric artery (CCRC to PE), in which a two tailed unpaired t-test 

confirmed no significant reduction between four and fourteen months (Fig. 5-5).

The experiment was repeated using the Non-selective a-AR agonist, noradrenaline 

(NA), cumulatively. Here also, there was no significant increase in responses for aorta 

and superior mesenteric artery due to ageing, confirmed by two tailed unpaired t-test 

analysis (Fig. 5-2 and 5-6).

Comparing CCRC curves to phenylephrine and noradrenaline together related to age in 

aorta (Fig. 5-3 and 5-4) and superior mesenteric artery (Fig. 5-7 and 5-8) illustrates that 

the potency of noradrenaline and phenylephrine reversed with ageing. However, this 

change was not significant. Closer inspection also reveals that NA curves are biphasic 

in both arteries, though more in aorta.

Table 5-1: Aorta: responses to phenylephrine and noradrenaline with age.

Response/Ages PE PE NA NA

Aorta EC50 Hillslope EC50 Hillslope

Four months 0.1 IpM 0.5493 0.12pM 0.5728
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Fourteen months 0.24pM 0.4246 O.lOpM 0.2326

Table5-2: Superior 

with age.

mesenteric artery: responses to phenylephrine and noradrenaline

Response/Age PE PE NA NA

Mesenteric artery EC50 Hillslope EC50 Hillslope

Four months l.TpM 0.8481 1.76pM 1.045

Fourteen

months

3.18pM 1.031 2.73pM 0.6399

Relaxant ai-adrenoceptors responses:

Responses to UK14304 (selective 0 C2 -AR agonist) were also different in young wild 

type mouse aorta compared with old ones (P value: 0.0044<0.05). At the young age 

there was a relaxation response to low concentration of UK14304 reversing to 

contraction at concentrations higher than 0.3pM, the latter blocked by BMY7378 

(O.ljLiM) (See chapter three). In fourteen months wild type relaxation responses were 

larger, although they waned at high concentration. They never contracted (Two tailed 

unpaired t-test P value: 0.0044<0.05, Significant) (Fig. 5-9).

Responses to cumulative concentrations of UK14304 on wild type superior mesenteric 

artery, where responses are solely relaxant at both ages, increased (two tailed unpaired 

t-test, P value: 0.3815>0.05, Not significant) between four and fourteen months.
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However, this change was not significant (Fig. 5-10). Thus, we uncovered more 

sensitivity and greater relaxant response to an a 2 -AR agonist only in aorta.

Angiotensin II responses (contraction and relaxation):

Cumulative concentrations of angiotensin II (Ang II) had a dual effect on preconstricted 

young mouse aorta. Low concentrations caused around 10% increase in mean 

contraction. At higher than 30nM a relaxant effect started to appear which continued to 

around 6 % under the base preconstriction to 5HT (O.lpM). This relaxation was blocked 

by L-NAME (lOOpM) or denudation of endothelium or PD123319 (See Chapter two). 

However, this dual effect did not appear in fourteen months wild type mouse aorta, and 

was replaced by only a greater contractile response to Ang II (Two tailed unpaired t-test 

P value: 0.0025<0.05, Significant), revealing a change in the balance between ATi and 

AT] receptor expression related to ageing in favour of ATi (Fig. 5-11).

In young wild type superior mesenteric artery cumulative concentration of Ang II 

provided only contraction. In fourteen months this contraction was not significantly 

(Two tailed unpaired t-test P value: 0.1944<0.05) greater than at four months (Fig. 5- 

12).

Therefore, we faced greater expression of ATi receptors only in old aorta compared 

with four months.

We already showed in chapter three that there were no interactions between AT] 

angiotensin II receptor and Œz-adrenoceptors in relaxation (See chapter three).

Contractile ai-adrenoceptor response in Knockout mice:

Cumulative concentration response curves to the selective ai-agonist. Phenylephrine, 

revealed significant differences in maximum contractile responses to ai-AR stimulation 

in young aorta confirmed with ONE WAY ANOVA statistical analysis followed by
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Bonferroni’s post test (P value: 0.0001<0.05) between three different strains of mice 

(Wild Type>Nashville D79N > (%2 A-AR Knockout) (Fig.5-13).

Statistical analysis also confirmed a difference between CCRC to Phenylephrine 

between young wild type and (%2 A-AR Knockout carotid artery (two tailed unpaired t- 

test P value: 0.0185<0.05). However, there was no significant difference between 

strains in superior mesenteric artery (two tailed unpaired t-test P value: 0.493<0.05) 

(Fig.5-14 and 5-15).

Therefore, young (%2A-Knockout strains revealed lower contraction via apA R  compared 

with wild type in aorta and carotid.

Melissa McBride, also has reported that the maximum contractile response to 

noradrenaline and Phenylephrine in D79N {Functionally a 2A/D-AR knockout} tail artery 

were significantly smaller than in wild type (Melissa McBride 2003).

Relaxant a 2 -adrenoceptors response in Knockout mice:

Comparing young wild type and am-AR knockout (KO) mouse aorta showed a 

significant difference in response to cumulative UK14304 in high concentrations (Two 

tailed unpaired t-test P value: 0.0395<0.05) (Fig. 5-16 also see chapter three) revealing 

dominance of relaxation in the KO. However, the sixteen months aio-AR Knockout 

mouse had a significantly smaller relaxation response to UK14304 compared with four 

months Knockout mice (Two tailed unpaired t-test P value: 0.0157<0.05) (Fig. 5-17). 

Thus, the “enhanced” relaxation response in old wild type mice is lost when the 

dominant contractile aio-AR is knocked out (Two tailed unpaired t-test P value: P 

value: 0.0004<0.05) (Fig. 5-18).
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Visualisation results on «i-AR binding site with QAPB (FL-Prazosin) related to 

strains:

Laser Scanning Confocal Microscopy on young wild type and D79N mouse aorta in 

presence and absence of the most selective am-AR antagonist, BMY7378 (0.1 pM), 

revealed significant difference between QAPB intensity in strains. The objective was to 

highlight the a^-AR.

In Nashville D79N mouse aorta visual inspection shows a mai'ked reduction in QAPB 

binding sites in both control and treated with BMY7378 (Images 5-1 and 5-2) intact 

vessels. In order to show cells that lack QAPB binding, Rhodamine-Angiotensin II- 

Human with different Excitation/Emission wavelength 567/610 was used along with 

QAPB (Excitation/Emission is 488/515). In this way cells with no-QAPB binding 

appeared as red coloured cells. This shows that the difference is not due to a loss of 

cells but to a diminished population of receptors that bind QAPB and perhaps, to a 

reduction in number of cells expressing them.
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w r  aorta vs D79N aorta >0.05

Fig. 5-13: Comparison between response to CCRC to phenylephrine 
in wild type (O ), D79N, ( ■ ) and a 2A"KO ( •  ) mouse aorta (n=7).
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Fig. 5-17: Comparison between young & old a^g-KO mouse aorta in 
response to UK14304 cumulatively on top of U46619 preconstriction 
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Image 5-1: Four months wild type (WT) and D79N mouse aorta Smooth 
Muscle Cells which treated by Both of Losartan (lOpM) and BMY7378 
(0.1 pM), then stained with Rhodamine-Ang II-Human (50nM) and QAPB 
(0.1 pM). As the images show Rho-Ang II-H effected more stronger on D79N 
smooth muscle cells compared with WT . Both of these images created by 
Amira (Version 3.2), Both Voltex, in the same condition (n=4).

lOOum

Image 5-2: Four months WT and D79N mouse aorta smooth muscle cells 
which only stained with QAPB (0.1 pM). As the images show, QAPB- 
binding intensity is much stronger in wild type compared with D79N. Both 
of the images created in by Amira (Version 3.2) Voltex QAPB, in the same 
condition (n=4).
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5-5. Discussion:

In the course of determining the basic properties of these receptors, we have found some 

strain- and age-related interactions between responsiveness to (%2 -adrenoceptor- and 

AT2 -activated, endothelium/NO- mediated vasodilator responses and ot]-adrenoceptor- 

mediated contraction in the aorta and main (superior) mesenteric arteries.

For ai-AR, ageing did not significantly change responses to PE (aio-AR in aorta and 

aiA“AR in mesenteric arteries), so the receptors and their signalling system do not 

appear to be greatly modified by ageing. Nevertheless, contraction to UK14304 

decreased, suggesting either a reduction in receptor number or that its response was 

overwhelmed by an increased endothelial action (see below).

a 2 "AR-mediated relaxant responses increased with age, so either their signalling system 

becomes enhanced with age or their expression level on endothelial cells increases. The 

nitric oxide release system showed no overt signs of changing with age according to 

responses to ACh so perhaps a change in expression level of (X2 -AR should be 

considered and examined in future work. The only other equivalent system that we 

tested in old age was relaxation via AT2 receptors and this declined markedly with age, 

a sign perhaps that this system suffers a loss of receptors as age progresses.

T h e r e  w e r e  s i g n s  o f  a  r e c i p r o c a l  b a l a n c e  b e t w e e n  (% i a n d  ( % 2 - A R .  C i r c u m s t a n c e s  t h a t  

d e l e t e  o r  l o w e r  e x p r e s s i o n  o f  o n e  o f  t h e m  s e e m s  t o  a f f e c t  t h e  o t h e r ’ s  e x p r e s s i o n .  

E s s e n t i a l l y ,  g e n e t i c  e l i m i n a t i o n  o f  t h e  o c a A / o - A R  r e d u c e d  r e s p o n s i v e n e s s  t o  a\ w h i l e  

g e n e t i c  e l i m i n a t i o n  o f  t h e  o t m - A R  l e d  t o  a t t e n u a t i o n  o f  t h e  a g e - r e l a t e d  i n c r e a s e  i n  

e n d o t h e l i a l  c t 2 A / D - A R - m e d i a t e d  r e l a x a t i o n
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Endothelial az-ARs and AT2 -Receptors appear to work independently, according to our 

attempts to detect synergism. However, there seems to be an age-related balance 

between expression of angiotensin II reeeptors and az-adrenoceptors at least in mouse 

aorta, adrenoceptors becoming dominant with age. It is not known whether these events 

are connected, but a consequence will be that the ATi receptor will dominate the effects 

of Ang II as age progresses.

Changes related to ageing in mouse arteries show an apparent balance between 

subtypes of adrenoceptors as well as between adrenoceptors and angiotensin II 

receptors. We hypothesise that, in these cases, deleting expression of one receptor may 

reflect a change in the balance of receptors that occurs in ageing. In turn this may 

reflect a natural balance between vasoconstrictor and vasodilator elements in mouse 

arteries.

Essentially, we found unexpected effects on the other receptor of knocking out either 

the aiD-AR or the 0 C2A/D-AR.

In a first example, we found an unexpected difference between young and old a^-A R  

knockout mice, namely a fall in relaxant response to activation of the (%2A/D-AR by 

UKI4304, suggesting that the presence of ai-ARs (Contractile receptors) is necessary 

to maintain an active population of (%2 -ARs (relaxant receptors).

Perhaps related to this, we found that in the D79N mouse aorta, the maximum 

contractile response to cumulative concentrations of Phenylephrine in was around 30% 

less than in normal mice, an effect that was also found, by Dr. Melissa McBride, in the 

tail artery. This is more difficult to explain sinee we do not know the loss of which 

aspect of the Œ2 A/D-AR is responsible for the loss of the am-AR response, but given the 

age-related effect noted above, the balance between the two receptors in their 

vasoconstrictor and vasodilator actions may be a potential mechanism.
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The reduced expression of ai-ARs in D79N aorta, as suggested by the functional 

experiments, is supported by the imaging experiments. QAPB binding intensity was 

lower in aortic smooth muscle cells of D79N. Furthermore, while the binding to 

endothelial cells was reduced in D79N, as would be expected from lower expression of 

0 C2 A/D-AR, there was evidence of a loss of other oti-AR subtypes: treatment with 

BMY7378 could completely remove QAPB-intensity in a majority of D79N aorta 

smooth muscle cells but not in wild type. This suggests a lower expression of the other 

subtypes of ai-ARs (otiA-AR and aiB-AR) in D79N mouse aorta compared with wild 

type. In turn this may suggest a general downregulation of endothelial adrenoceptors in 

response to elimination of the major type, i.e. ot^A/D-AR.

The second example of interest was the age-related loss of the relaxant AT% response in 

aorta, which suggests a greater vasodilatory role for the Renin-Angiotensin-System 

(RAS) in young mice arteries compared with old ones. Thus, this places more functional 

responsibility on other dilator receptors including adrenoceptors. It is also known that 

vasodilator (3-ARs decline with age (Aixibas 1997). Thus, in old mice, more 

responsibility is placed on otz-adrenoceptor. This may provide a more secure way to 

protect against acute high blood pressure. AT2 receptors have a slow action so need at 

least 5-15 minutes to dilate the vasculature. In that situation, adrenoceptors may have a 

more effective and faster role for smooth muscle cell relaxation, in the challenging 

circumstances for ageing blood vessels where atherosclerosis may have reduced lumen 

cross-sectional area.

In old wild type mice, the contractile effect of the ATi-Receptor is stronger even at low 

concentrations where the AT2 response is not detected at four months (Fig.5-11). Since 

AT2 -Receptor expression is believed to down-regulate ATi-R effects (Matsubara 1998)
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(Horiuchi et al, 1999) (De. Gasparo et a l, 2000), it is possible that the loss of AT% and 

gain of ATi are linked. This could have consequences for the effectiveness, in old age, 

of drugs that influence the angiotensin system such as ACE inhibitors or AT-receptor 

blockers. In this respect it is also interesting that dilator a 2 -AR takes a greater role in 

old mice. Therefore, increasing GC2-AR expression could be a compensation for less 

expression of AT2 in normal condition and might place contractile ATi and dilator 

catecholamines in sharper opposition as age proceeds.

Theoretical Context

It is possible to simplify the balance between adrenoceptors by the following formulas: 

IF: S = SMCs and E = Endothelium 

a-ARs response = (dis ~ ocje) ~ ( -  % )

For angiotensin II receptors we can summarise reaction of vascular bed in following 

formula:

Angiotensin II receptors response = ATjs -  (AT2E -  ̂ T 2s)

So for balance between these two separate systems, two above formula can summarise 

in following formula:

a-ARs response ±  angiotensin II receptors response = Constant

Minus (-) for young due to greater expression of AT2 in endotheliun and Plus (+) for 

old mice due to absence of AT2 relaxant effect.
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Thesis General Discussion and Conclusion
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Angiotensin II receptors responses:

The AT-Receptor (AT-R) responses in the mouse arteries were investigated using 

classical pharmacology. There was contraction of vascular smooth muscle via losartan- 

sensitive ATi receptors and indirect relaxation via NO released by endothelial, 

PD 123319-sensitive AT2 receptors. This confirms the general inteipretation of Tanaka 

et al. (1999) using an AT2 knockout mouse that loss of relaxation in the KG shows this 

subtype to be responsible for relaxation. Our data also shows that the standard AT 

subtype-selective antagonists distinguish the receptors well in this simple mouse 

preparation.

In conducting arteries and large veins from other species the contractile responses via a- 

AR and AT receptors show considerable synergism (Dunn et al, 1991). Establishing 

this in mouse vessels to enable further investigation of this phenomenon was one of our 

initial objectives. Both receptors, on their own, invoked weak contractile responses, as 

in vessels showing synergism. However, it soon emerged that the characteristic 

interaction was not synergism but negative interaction between excitatory and inhibitory 

effects. This showed up clearly in the interaction between noradrenaline and 

angiotensin II. Despite the potential for involvement of up to eleven receptors, the 

dominant interaction was between contractile response of noradrenaline via otm-AR and 

the relaxant effect of angiotensin via endothelial AT2 .

The contractile effect of UKI4304 that was uncovered by blocking the endothelial %- 

AR-mediated response was found to be mediated by am-AR. The response was absent 

in the aio 'A R  KO mouse and was antagonised by BMY7378 (Shafaioudi et al, 2002). 

In rat first order mesenteric arteries it was reported that AT2 could invoke relaxation in 

the presence of losartan and that this was sensitive to bradyldnin 2-Receptor blockade.
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Thus, a proportion of the relaxant effect of Ang II was indirectly due to bradyldnin-2 

receptors in rat first branch mesenteric artery (Berthiaume et al, 1997) which is opposed 

by (%i a-A R  contractile effect (Rokosh and Simpson 2002) (Yamamoto & Koike 2001). 

However, angiotensin II could stimulate up to 13% relaxation even in the absence of 

losartan in first order branches of mouse mesenteric arteries. Clearly the interaction 

between angiotensin and catecholamines will depend on the dominant receptor 

populations in the particular blood vessel. However, the dominant influence of the AT^ 

endothelium-mediated response in mouse aorta and first branch mesenteric artery is new 

and unexpected.

These results revealed greater dominance of the ATz receptor in small resistance arteries 

compared with large conductive arteries like aorta, carotid and superior mesenteric 

arteries. Thus, this may make smaller arteries more susceptible to relaxation by 

angiotensin II and noradrenaline due to direct effect on endothelium AT% and ai-AR 

stimulation respectively (see chapter three).

In conclusion, mouse aortic and first branch of mesenteric arteries have both smooth 

muscle ATi reeeptors that initiate contraction and endothelial AT2 that promote the 

release of nitric oxide, detectable as an invoked smooth muscle relaxation. This 

provides a useful system for the analysis of these receptors. The dominant 

catecholamine-angiotensin interaction is between contractile am-AR/or aiA-AR and 

relaxant AT2 .

Localisation of Angiotensin Il-Receptors

Laser Scanning Confocal microscopy on live dissociated cells and intact vessels could 

localised both AT] and AT2 receptors using selective antagonists (losartan and 

PDI23319 respectively) and fluorescent rhodamine label (Rhodamine Ang II-H). Our
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data shows the AT% receptor expressed more inside both smooth muscle and endothelial 

cells compared with AT], which localised more on the cell membrane. This can explain 

the slow onset of AT2 -R relaxation, which is reflected in our pharmacological data.

a 2 “adrenoceptor-mediated vasodilator responses

We have also demonstrated an oc2 -adrenoceptor-activated, endothelium/NO mediated 

vasodilator response in the aorta, carotid artery and mesenteric arteries in the important 

mammalian model organism, the mouse. Clarification of the receptor interaction in the 

mouse and other model species should accelerate appreciation of its role in man.

Analysis of vasodilator responses via ag-adrenoceptors proved straightforward in wire 

myograph-mounted, pre-constricted arteries. Aorta, carotid and mesenteric arteries 

showed rauwolscine-sensitive relaxant responses to UK14304 that were susceptible to 

endothelial damage or inhibition of NOS. This represents the vasodilator phenotype of 

the a 2A/D-adrenoceptor in aorta and carotid arteries since it was absent in the knockout 

and the D79N mutation of this receptor.

The aorta contracts to high concentrations of UK14304. This is sensitive to knockout of 

the aiD-adrenoceptor, the dominant contractile adrenoceptor in this vessel (Yamamoto, 

2001; Tanoue, 2002; Daly, 2002).

(%2 -adrenoceptor -selective agonists are often partial agonists at ai-adrenoceptors; e.g. 

rat aorta (Hussain and Marshal, 1997). This reinforces the conclusion of Vandeputte et 

al (Vandeputte and Docherty, 2003) that in mouse aorta constrictor am - and dilator 

0 C2 A/D- adrenoceptors act in opposition. Like aorta the carotid has contractile am- 

adrenoceptors (Surprenant, 1992; Daly, 2002). It did not exhibit contraction to
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UK14304 in the WT but did in the (%2 A/D-KO, reflecting the greater sensitivity in this 

strain, found also in aorta.

The experimental objectives of this study were met equally well by the c%2A/D-KO and 

D79N mice. The a 2 A/o-KO is a straightforward “knockout” in which the receptors are 

not expressed. The D79N is a mutated version of the a 2A/D-adrenoceptor that is unable 

to activate K+ currents but retains inhibition of voltage-gated Ca^’̂ channels and cAMP 

production (Surprenant, 1992). However, because it is expressed at a reduced density 

relative to wild-type a 2A/o-adrenoceptors it is considered a “functional a 2 A/D- 

adrenoceptor knockout” rather than a selective uncoupler of a particular activation 

pathway (MacMillan, 1996). Both the agA/o-KO and D79N mutant did not exhibit the 

a 2 -adrenoceptor-mediated vasodilatation shown in aorta and carotid artery from WT 

mice. This produces definitive evidence that an endothelial c%2 -adrenoceptor response is 

mediated via the a 2 a / d - adrenoceptor and validates the tentative pharmacological 

analysis in large arteries of the rat and pig (Bockman, 1996; Gumimaraes, 2001) of an 

endothelial a 2 A/o-adrenoceptor subtype.

The phenotype of this vasodilator ^-adrenoceptor in these large arteries contrasts with 

the pre-junctional a 2-adrenoceptor in that only one subtype, the a 2A/o-adrenoceptor, was 

responsible whereas both (%2 A/D- and (%2 c-adrenoceptors were implicated in the pre­

junctional modulation of noradrenaline release and both had to be knocked out to 

eliminate that response (Hein, 2001) There was no evidence of compensatory up- 

regulation of another (%2 -adrenoceptor subtype.

Subtle differences in the two “knockout” strains may repay further investigation but lie 

outside our cunent objectives. Both strains lost the aortic relaxant effects of UK14304, 

but the surviving contractile responses had different concentration-response 

relationships. This was reflected in carotid, which showed a small contraction only in
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the a 2 A/D"KO. These minor differences are likely to be due to different adaptations of 

the strains to the genetic manipulations. Nothing was found that compromised our 

current conclusions.

We found no evidence for a contractile az-adrenoceptor in either artery. In other 

species ai-adrenoceptor-mediated vasopressor responses are easily demonstrated in vivo 

(Docherty & McGrath, 1980) but difficult to show in vitro (McGrath, 1989), This is 

now reinforced and extended in the mouse. The cleaiest example of (%2 -adrenoceptor- 

mediated vasoconstriction in vitro is in tail artery (McBride, 2002).

Localisation of a 2 -adrenoceptors

We visualised the fluorescent ligand, QAPB, binding to aortic endothelial cells and 

eliminated this binding with the a 2 -adrenoceptor antagonist, rauwolscine. We validated 

this by showing that this fluorescent ligand is a functional antagonist of aortic relaxation 

to UK14304. This provides compelling direct evidence for the endothelial location of 

the a 2-adrenoceptors that mediate vasodilatation. There is controversy suiTOunding 

whether the initial step in the release of endothelial relaxant factors is activation of 

receptors on the endothelial cells or receptors on smooth muscle cells that signal to the 

endothelium. The existence of myoendothelial connections could transmit 

depolarisation from smooth muscle cells to the endothelium (Oishi, 2001; Dora, 2001). 

Previous vascular localisation of receptors relied on autoradiography, indicating ai- 

adrenoceptors in the medial layer but not on endothelium (Stephenson, 1987). Our 

present study shows direct proof of ^-adrenoceptor binding sites on endothelial cells as 

well as the “mosaic” nature of the endothelium which may related to myoendothelial 

connections (Images PC-land FC-2). Thus location and function are in accord and a 

direct endothelial effect should be reconsidered.
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A peripheral endotheliam/nitric oxide-mediated direct vasodilatation to a 2-adrenoceptor 

agonists must now be considered in addition to any centrally-mediated sympatho- 

inhibitory effects or pre-junctional inhibition of post-ganglionic sympathetic 

transmission.

We now show vasodilatation may be induced via endothelial az-adrenoceptors. In major 

conducting arteries, such as aorta and carotid this would reduce blood pressure via a 

reduced after-load. Thus, the vasodepressor action of aa-adrenoceptor activation would 

be a combination of endothelial activation and sympathomimetic inhibition.

This is important because activation of endothelial relaxant and hypotrophic factors are 

aspects of az-adrenoceptor agonists that distinguish them from beta blockers. This 

might confer specific advantages in the treatment of different cardiovascular diseases 

since a%-adrenoceptor agonists could cause endothelium-mediated vasodilatation that is 

additional to their effect on sympathetic tone. In contrast the vasodilatory or 

hypotensive effect of {3-adrenoceptor blockade is dependent on central inhibition of 

sympathetic tone and in blood vessels themselves will actually antagonise local 

vasodilatation mediated by (3-adrenoceptors, resulting in peripheral vasoconstriction. 

a 2 -adrenoceptor agonists would, therefore, be advantageous where vasodilatation is 

beneficial but where there is already little sympathetic tone or where circulating 

catecholamines are blocked or not stimulating a beneficial (3-adrenoceptor-mediated 

vasodilatation.

Age related receptor population changing in normal and knockout mouse

We found some strain- and age-related interactions between responsiveness to %- 

adrenoceptor- and AT2-activated, endothelium/NO- mediated vasodilator responses and 

al-adrenoceptor-mediated contraction in the mouse aorta.
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Despite the lack of significant difference in ai-ARs with ageing, ai-AR mediated 

relaxation increased with age. Endothelial oti-ARs and AT2 ~receptors appear to work 

independently, according to our attempts to detect synergism. However, there seems to 

be an age-related balance between expression of angiotensin II receptors and a 2 - 

adrenoceptors at least in mouse aorta, adrenoceptors becoming dominant with age. Loss 

of the relaxant AT2 response in aorta suggests a greater vasodilatory role for the Renin- 

Angiotensin-System (RAS) in young mice arteries compared with old ones.

Therefore, increasing a 2-AR expression could be a compensation for lower expression 

of AT2 in WT mice and might place contractile ATi and dilator catecholamines in 

sharper opposition as age proceeds.

Essentially, we found unexpected effects on the other receptor of knocldng out either 

the aiD-AR or the a 2 A/o-AR.

We found a difference between young and old aio-AR knockout mice, namely a fall in 

relaxant response to activation of the Œ2A/D-AR by UK14304, suggesting that the 

presence of (Xi-ARs (contractile receptors) is necessai'y to maintain an active population 

of rt2-ARs (relaxant receptors) and vice versa. The reduced expression of ai-ARs in 

D79N aorta, as suggested by the functional experiments, is supported by the imaging 

experiments. QAPB binding intensity was lower in aortic smooth muscle cells of D79N.
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Endothelial

Image FC-1: Four months wild type mouse aorta treated with Losartan 
(lOpM), Rauwolscine (IpM) + BMY7378 (IpM) then stained with QAPB 
(0.1 pM) and Rhodamin-Ang II (50nM). Some endothelial cells only stained 
Red and some others still showing QAPB-binding (a,^- or a,„-ARs) (n=6) 
{Mosaicism}. This reveals a mosaicism related to al-ARs in endothelial 
cells of young mouse aorta.



Image FC-2: Young rat mesenteric artery endothelial cells which 
connected to smooth muscle cells (myoenothelial connection) through the 
Internal Elastic Lamina (lEL) fenestrations, (images belongs to Jose Maria 
Gonzales, University of Valencia-Spain, which stained with special 
Lipophilic Tracers DiOCjg (3), (IpM) {Excitation/Emission 
484nm/501nm} for two hours at 37®C and taken at X40 zoom, 1280*1024, 
0.02-0.04 p/Pixel).
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Appendix
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Characteristic of drugs used in the project:

1 4 6

R Drugs-Solubility MW Characters Effects
1 Noradrenaline

(BD'I'A 23,nM & water)

319.3 a r  agonist 

aa-agonist

Contraction

2 Phenylephrine
(w ater)

203.7 Selective ai 

agonist

Contraction

3 U 19 (TX A 2) (water) 350 .4 Thromboxane R. 

agonist

Contraction

4 Prazosin (water) 419.9 Non-Selective a- 

antagonist

a- blocker

5 Phenoxybenzamine (%1 & Œ2 

antagonist

a i & a 2 blocker

6 UK 14304 (DMSO) 292.14 Selective % 

agonist (minor 

a l  agonist)

Contraction if the receptors are 

situated on smooth muscle cells & 

relaxation on endothelial cells.

7 Rauwolscine 390.9 Selective «2  

antagonist

a2 adrenoceptor blocker

8 Yohimbine 390.9 Selective a 2 

antagonist (minor 

a l  antagonist)

a 2 adrenoceptor blocker

9 Nifedipine 346.3 L-type calcium channel 

blocker
Relaxation of tone. Blocker of 

response to some agonists.
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10 Acetylcholine
(water)

181.7 Na+ cliannei agonist 

Muscarinic

Contraction on smooth muscle 

cells. But, in Endothelium 

presence cause relaxation in 

vascular smooth muscle cells via 

Nitric Oxide production..

11 L-name (N-Nitro- 

L-Arginine methyl 

Ester) (w ater)

269.7 Inhibit Nitric 

Oxide synthase

If Endothelium present in vessels 

can provide contraction in 

response to Acetylcholine. Blocks 

any vasoresponses involving NO 

production.

12 Angiotensin (w ater) 1046.

2

AT] and AT2 

agonist

Contraction on smooth muscle 

(AT]) Relaxation on smooth 

muscle (AT2)

13 Losartan (DMSO) 4 6 1 ATI -antagonist No contraction response to Ang II

14 PD 123319 (water) 736.7 Selective AT2 

antagonist

No relaxation response to Ang 11

15 5MU (water) 401.5 Selective a p  

antagonist

More selective for aiA

16 458.43 Selective (Xp More selective fo r  (Xû
BMY 7378 antagonist
(Water)
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Preparing Krebs solution (PSS):

Stock solution (Two Litres):

PSS Solution A:

278.20g NaCl 

14.00g KCl 

5 .11% M g S o 4  

PSS Solution B:

84.00g NaHCo3 

6.40g KH2P04 

Procedure:

Krebs solution (PSS) can be prepared and kept for a maximum of 2 days (including the 

day of preparation). Do not reuse Krebs solution, which has been previously heated.

To make Krebs (PSS) solution (2Lit):

1- Add 100ml of stock A and 100ml stock B to a volumetric flask.

2- Add distilled water to approximately % the volume to the flask.

3- Weight out 4g of Glucose (C6H 12O6) and add it to the flask.

4- Bubble the solution with 95% O2 and 5% CO2 for five minutes.

5- Add 5ml of Calcium Chloride (1 Molar) to the bubbled solution and bubble it for 

further five minutes (This will equilibrate the pH and stop the CaCE precipitation 

out of the solution.

6 - Add 2ml EDTA (23mM) to the solution (this will provide slower degradation of 

noradrenaline).
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Preparing Krebs solution witb ultra-potassium (Potassium Krebs or KPSS):

KPSS Solution A:

92.23g KCl 

1.443gM g SO4 

KPSS Solntion B:

84.00g NaHCOs 

6.40g KH2PO4

To make KPSS solution (One Litre- 125mM):

1- Add 50ml of KPSS stock solution A and 50ml stock B to a one litre volumetric 

flask.

2- Add distilled water to approximately Va the volume to the flask.

3- Weight out 2g of Glucose (C6H 12O6) and add it to the flask.

4- Bubble the solution with 95% O2 and 5% C02 for five minutes.

5- Add 2.5ml of Calcium Chloride (1 Molar) to the bubbled solution and bubble it for 

further five minutes (this will equilibrate the pH and stop the CaCl2 precipitation).

Note: Do not add EDTA to KPSS solution.

We can keep KPSS solution for at least two weeks in a fridge (Refrigerator).
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Cell Dissociation Method:

Preparation of Buffers One and Two and combination of enzymes, which dissolve 
in Buffer Two:

Buffer One:

Final Concentration 

in solution

Name of Component mg/lLit mg/5Lit rC
>

„ 7

I
137mM NaCl 8006.28 40031.4

5mM KCl 372.75 1863.75 :

ImM MgCIz 1ml of 1 Molar 5ml r

l.SinM CaCIz l.Smls of 1 Molar 9mls

lOmM HEPES 2383mg 11915mg

0 .1% Bovine Serum Albumin (BSA) Img 5mg

pH to 7.4 IN NaOH only for pH balance add Drop by Drop Drops

Buffer Two:

Final Concentration 

in solution

Name of Component m g/lLit mg/5Lit

80mM Sodium Glutamate 169 845

54mM NaCl 3155.76 15778.8

5mM KCl 372.75 1863.75

ImM MgClz 1ml of IMolar 5mls

O.lmM CaClz lOOjiL of IMolar 500pL

lOmM HEPES 2383mg 11915mg
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lOmM Glueose (CeHnOe) 1801.6mg 9008mg

0.2mM EDTA 74.44mg 372.2mg

0 .1% Bovine serum albumin (BSA) Img 5mg

pH to 7.4 IN NaOH only for pH balance add Drop by Drop Drops

Preparing Enzymes in SOOpL of Buffer Two:

Buffer 2A:

Papain; 1.7mg + 500pL of Buffer Two 

Dithioerythritoi; 0.7mg + 500pL of Buffer Two

Note: Add two Ependorffs together. So we have 1ml of Buffer 2A now. 

Buffer 2B:

Collagenase II; Img + 500jiL of Buffer Two 

Hyaluronidase; Img + 500pL of Buffer Two

Note: add two Ependorffs together. So we have 1ml of Buffer 2B now
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Results from Craig J. Daly et al., (2002) “A knockout approach indicates a minor 

vasoconstrictor role for vascular alB-adrenoceptors in mouse.” Physiology Genomices. 

9: 85-91.

Table 1. Comparison between potency of 3 antagonists vs. the al-adrenoceptor agonist

Conclusion on
Artery Prazosin 5MU BMY7378

al-A R  subtype

Aorta (WT) 9.8 (1.1) 8.3 (0.9) 8 .8  (1 .0 ) ID, IB

Aorta (ttiB-KO) 1 0 .6  (0 .8 ) 8 .1  ( 1 .0 ) 9.3 (1.0) ID

Carotid (WT) 9.6 (0.9) 7.5 (1.1) 9.7 (0.4) ID, IB

Carotid (am-KO) 10.3 (0.9) 7.6 (1.1) 9.6 (0.9) ID

Mesenteric (WT) 9.0 (1.0) 8.9 (0.9) 7.0 (0.37) lA , IB

Mesenteric (aiB-KO)
8.9 (1.0) 9.4 (0.7) ND lA

Caudal (WT)
8 .8  (1 .1) 8.3 (1.4) ND lA , IB

Caudal (am-KO)
9.2 (1.2) 8.5 (1.1) ND lA

alA-AR (recomb)
9.0 9.2 7.1

alB-AR (recomb)
9.0 7.2 6 .8

alD-AR (recomb)
9.0 7.9 9.3

Human SMRA 9.2 8.5 6.5 lA , ?

Values shown are pA^ calculated by the method of Arunlakshana and Schild, with the 

slope of the regression line shown in parenthesis. Recombinant (recomb) receptor 

binding data taken from Mackenzie et al and Jarajapu et al, WT, wild type; KO, aio-AR  

knockout; recomb, recombinant; 5MU, 5-methylurapidil; AR, adrenoceptor; SMRA, 

skeletal muscle resistance artery; ND, not determined.
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