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Abstract

In this thesis, we study the energetics of two-dimensional flow through a flexible-walled chan-
nel, where we mainly consider two models.
The first model we consider is a fluid-membrane model in a long domain where the upper wall
is replaced by elastic membrane under external pressure. The normal viscous stress, wall damp-
ing, wall inertia and membrane tension are all included in the membrane equation. We establish
the corresponding eigenvalue problem of this model and trace the neutrally stable curves of this
system across the parameter space. In agreement with previous work, we identify three different
modes of instability (i.e. Tollmien-Schlichting waves (TS), traveling-wave flutter (TWF) and
static divergence (SD) waves). We classify these instabilities into two classes (i.e. class A and
class B form Benjamin [3]) using wall damping. Class A waves are destabilised by wall damp-
ing while class B waves are stabilised by wall damping. Furthermore, we consider the energy
budget of the fully nonlinear system as well as that of the linearised system in order to determine
whether the energy budget can be used to distinguish these different classes of instability. We
found that the concept of ‘activation energy’ that connects with instability mode classification
(Landahl [45], Cairns [17]) is not easily identified with terms in our energy budget. In particular,
this wave energy is not equal to the work done by the fluid on the wall in our energy budget, as
has previously been attributed to TWF.
The second model we consider is a finite length fluid-beam model formed from a two dimen-
sional channel, where one segment of the upper wall is replaced by a plane strained elastic beam
subject to an external pressure. A parabolic inlet flow with constant flux is driven through the
channel. We apply the finite element method with adaptive meshing to solve the fully nonlinear
system numerically. We demonstrate the stability of the system after small stimulation, where
the system exhibit large amplitude self-excited oscillations. In addition, large amplitude vor-
ticity waves are found in the downstream segment of the flexible wall. The energy budget of
this fully nonlinear system is calculated; the energy budget of the system balances the kinetic
energy, the rate of working of external pressure and the dissipation energy over one oscillation.
Moreover, we form the corresponding eigenvalue problem of the fluid-beam model by linearis-
ing the system about the corresponding static state to second order. A finite element method
(similar to that of the fully nonlinear system) is employed to solve for the linear eigenfunctions.
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ABSTRACT ii

The observation of stability calculated from the eigenvalue problem are consistent with that cal-
culated from the fully nonlinear problem. We identify the stability of the system and establish
the neutral stability curve in the parameter space spanned by the beam extensional stiffness and
Reynolds number. Two modes of instabilities are identified (i.e. mode-2 and mode-3, here the
system is mode-i when the oscillation to the elastic beam contains i half wavelengths). Finally,
we derive the energy budget of the linearised system at second order. The energy budget of the
linearised system exhibits a balance between the averaged second order dissipation energy, the
work done by non-linear Reynolds stresses and the rate of working of perturbation fluid stress on
the elastic wall. We anticipate that the precise balance of energy might serve as a robust method
to distinguish the different modes of oscillation, although this has yet to be confirmed.
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Chapter 1

Introduction

There are many examples of collapsible tubes in the human body. When a fluid flow is driven
through these tubes, a variety of interesting physiological phenomena can arise. In the arter-
ies, the internal blood pressure is normally greater than the external pressure in the surrounding
tissue, so these arteries are usually subject to a positive transmural pressure (internal minus ex-
ternal pressure). However, there are many cases when other blood vessels are subjected to a
negative transmural pressure which leads them to collapse. For example, in veins above the
heart, the transmural pressure is subatmospheric due to the hydrostatic pressure decrease with
height so spontaneous collapse can occur in these vessels (Wild [75]).
These collapsible vessels are very sensitive to changes in internal fluid pressure. This leads to
interaction between the fluid and the solid wall of the vessel, which can promote many phys-
iological phenomena, such as flow limitation and self-excited oscillations. One application of
self-excited oscillation is so-called ‘Korotkoff sound’ generation during blood pressure mea-
surement. In this method the brachial artery is compressed by a large external pressure through
an inflated cuff tied around the upper arm; as the external pressure decreases, self-excited os-
cillations occur and generates a noise known as the ‘Korotkoff sound’ (Ur and Gordon [72],
Bertram et al. [11]). This noise initialise when the external pressure is equal to the systolic
pressure. As the external pressure continues to drop, the Korotkoff sounds persist. At the point
that the external pressure equals to the diastolic pressure, the Korotkoff sound stops. This is a
useful method to detect the pressure range of the heart and is used widely by clinicians.
Self-excited oscillations are frequently observed in experiments involving Starling resistors (e.g.
Bertram et al. [13], Bertram and Tscherry [15]), and the problem of understanding their origins
has grasped researchers’ attention over the last 30 years. Studies of such systems have pro-
gressed from lumped parameter models (e.g. Katz & Chen [43]), one-dimensional models (e.g.
Shaprio [64], Jensen [39]), two-dimensional models (e.g. Pedley [56]; Luo and Pedley [49]; Luo
et al. [48]; Stewart et al. [69], and three-dimensional models (e.g. Heil [31], Marzo et al. [53],
Zhang et al. [78]). In particular, Luo et al. [48] carried out a stability analysis of a fluid-beam

1



CHAPTER 1. INTRODUCTION 2

system in a flow through a rigid channel where one segment of the channel is replaced by an
elastic beam. Their results revealed a cascade structure in the flow-driven system that included
different modes of oscillations where the profiles of the oscillations have different numbers of
extreme (i.e. mode-2, mode-3 and mode-4). Hao et al. [25] developed a more efficient numeri-
cal method based on a similar two-dimensional model as Luo et al. [48].
In this thesis, we analyse the energy budget of a two-dimensional channel fluid-structure inter-
action system. Calculating the energy budget of the system could be a useful way to analyse
the stability mechanism in collapsible channel flow system. Jensen & Heil [42] showed that
self-excited oscillation can grow by extracting kinetic energy from the mean flow and two-third
of the kinetic energy flux is dissipated by the oscillation for pressure-driven problem. Stewart
et al [68] showed that energy budget behaviors differently between different modes of oscilla-
tion.
This chapter is arranged as follows. We give an introduction to some pertinent laboratory ex-
periments of the fluid-conveying elastic tube in Sec. 1.1. The theoretical models used to analyse
the self-excited oscillation are summarized in Sec. 1.2. Then we review local instability in un-
bounded channel flows (Sec. 1.3). Finally, we outline the structure of this thesis in Sec. 1.4.

1.1 Experiments

Figure 1.1: Sketch of the experimental setup, which is known as Starling resistor. Here p1, p2

represent the upstream and downstream pressure of the elastic tube, respectively. The total
pressure and flow rate on the far upstream are denoted as pu and Q, respectively. While the
pressure on the far downstream is denoted as pd . The cross-section area of the inlet tube is
indicated as A and the external pressure subjected to the tube in the chamber is indicated as pe

(Bertram [5]).

Many experimental works on flow driven through collapsible tubes have observed a variety of
flow-induced oscillations using a standard laboratory experiment setup called the ‘Starling re-
sistor’, sketched in figure 1.1. A segment of collapsible tube is mounted between two ends of
rigid tubes. The elastic segment is contained in a pressure chamber, with external pressure pe
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applied to this segment. We denote pu and pd as the pressure on the far upstream and down-
stream (shown in figure 1.1), respectively. Also p1 and p2 are the pressure on the upstream and
downstream elastic segment, respectively. The upstream and downstream pressures, p1 and p2,
can be measured and controlled by resistance in the upstream and downstream rigid tubes. We
denote the cross-sectional area of the inlet tube as A, and Q is the flow rate at the inlet boundary
of the rigid tube. Fluid is driven through the tube, and can be controlled either by fixing the
pressure drop between the far upstream and downstream rigid tubes ∆pud = pu− pd or by fixing
the flow rate Q.
When the external pressure pe is sufficiently large, the tube will collapse. A buckled tube
is highly compliant, so that even a small variation in external pressure can lead to extensive
changes in cross-section area. Some early experiments of flow driven through collapsible tube
have been reviewed by Bertram [6]. Experimentalists exhibit the relationship between the pres-
sure drop along the elastic tube ∆p12 = p1− p2 and the flow rate Q under different control
conditions. When the pressure difference between the outlet pressure and the external pressure,
∆pe2 = pe− p2 is held fixed, the pressure drop ∆p12 is constant for large enough flux Q, thus
∆p12 is independent of flux Q (see figure 1.2(a), Bertram et al. [12]). This is known as the
‘pressure-drop limitation’. Conversely, when the pressure difference between the inlet pressure
and the external pressure, ∆pe1 = pe− p1 is held fixed, the flow rate reaches a maximum value as
∆p12 initially increases and then decreases (shown in figure 1.2(b)). The flow rate is essentially
independent of ∆p12 where the curves are close to vertical, and this is known as ‘flow limitation’
(Bertram and Castles [7]).

(a) (b)

Figure 1.2: The pressure drop ∆p12 against flow rate Q for (a) constant pressure difference ∆pe2

(from Bertram et al. 1990); (b) constant pressure difference ∆pe1 (from Bertram et al. 1999).

For ranges of parameters with Reynolds number not less than 200, large-amplitude flow-induced
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oscillations have been observed whereas steady flow could not be obtained. A systematic series
of experiments on these self-excited oscillations with thick-walled silicone rubber tubes has
been made by Bertram and his coworkers (Bertram [4], [5], Bertram et al. [12], [13]). They
showed that self-excited oscillations appear in four frequency bands for minimal downstream
resistance under different parameter settings [5]. They then investigated the oscillations for four
different tube lengths using the same apparatus as in [5], and divided the self-excited oscillations
into 3 well-separated bands, i.e. low, intermediate and high frequency. Tube length did not
influence the frequency of self-excited oscillation strongly, whereas their predominant effect was
predisposed a particular mode of oscillation for the system, i.e. intermediate frequencies could
not be achieved in the shortest tubes while they replace high frequencies in the longest tubes [12].
Bertram’s [13] paper gives examples that demonstrate the evolution of the downstream pressure
p2 against time t for different tube lengths: this system exhibits a variety of qualitatively different
types of self-excited oscillation (shown in figure 1.3).

Figure 1.3: Self-excited oscillation : pressure on downstream elastic tube p2 against time t under
different controlled condition (from Bertram et al. 1991).

Later experiments used a laser Doppler anemometry to measure the velocity of flow just down-
stream of the collapsible segment during self-excited oscillations, and flow features have been
studied for a variety of Reynolds numbers in the range 300−550 (laminar flow, Bertram et al.

[14]) to Reynolds number about 10000 (turbulent flow, Bertram et al. [8], Bertram and Nu-
gent [9]).
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1.2 Theoretical models

Theoretical models of flow in a collapsible channel (or tube) have been developed to understand
the vast dynamical features observed from experiments using the Starling resistor. Earlier studies
of this fluid-structure interaction problem began with lumped parameter models (Conrad [21],
[43], Bertram & Pedley [10]). For these models, the system was described by variables which are
averaged in cross-sectional area and length, i.e. the variables used in these models are only time-
dependent variables. Bertram & Pedley [10] showed that the energy loss due to flow-separation
at the downstream flexible segment of the tube is important for the generation of self-excited
oscillation. Although approximate, the results of these mathematical models agreed qualitatively
with some experimental observations. However, the weakness of the lumped parameter models
lies in its failure to capture some of the mechanical properties of the tube.
In this section, we discuss the spatially one-dimensional models (Sec.1.2.1), two-dimensional
models (Sec.1.2.2) and three-dimensional models (Sec.1.2.3) used to analyse flexible-walled
channels (tubes) conveying flow.

1.2.1 One-dimensional models

One-dimensional models are useful ways to understand a variety of collapsible tubes or chan-
nels conveying flow. The variables considered in these models are usually evaluated as a cross-
sectionally averaged. The system is governed by equations of conservation of mass and mo-
mentum, coupled with elastic properties described by a tube law, i.e. a relationship between
transmural pressure (internal minus external) and the corresponding cross-sectional area.
Shapiro [64] developed a general one-dimensional theory in a thin-walled flexible tube, which
employed a long-wavelength approximation. He described the flow as choked when the flow
speed became comparable to the wave speed. At this state, the steady flow is unable to be sus-
tained and unsteady behavior appears; flow limitation is usually produced as a result.
Cancelli & Pedley [18] developed a one-dimensional model to describe flow in collapsible tubes.
Two significant characteristics of this model were the inclusion of longitudinal wall tension and
energy loss due to flow separation downstream of the collapsible segment. They also described
a choking mechanism for a tube whose collapsible segment is long enough. Solving the system
numerically using a finite-difference scheme, they showed self-excited oscillation can be found
when the flow became supercritical (i.e. the flow speed exceeds the wave speed), also the gen-
eration of these oscillations is a result of the coupling of the pressure wave and the position of
the flow separation point.
Jensen & Pedley [41] methodically investigated steady solutions using the same model as Can-
celli & Pedley [18]. For fully attached flow (i.e. neglecting energy dissipation), they divided a
parameter space into four areas and identified a region with no existence of the steady solution,
as well as a region with multiple steady solutions. These results are similar to those of Reyn [59],
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but the elasticity relationship of the tube they applied is much simpler. Jensen and Pedley also
showed that there always exists a steady solution of the model when the energy loss due to flow
separation downstream of the flexible segment is included.
Jensen [39] further investigated the linear stability of the steady flows identified in Jensen &
Pedley [41], by introducing small time-dependent perturbation to these steady solutions. He
was able to show that these steady solutions could be unstable to mode-2, mode-3 and mode-4
(or even mode-5) oscillations. Here mode- j represents the oscillatory mode whose perturbation
over the whole tube contains j half-wavelengths. These different modes of oscillation fall into
distinct frequency bands. Jensen [40] later investigated nonlinear mode interactions giving rise
to quasiperiodic oscillatory behavior that agreed with experimental observations.
Other numerical researches of one-dimensional models (e.g. Hayashi et al. [26] and Ikeda
et al. [37], [68] etc.) all revealed a rich variety of self-excited oscillations.
Another family of one-dimensional models which include energy losses due to viscous dissi-
pation but not due to flow separation were proposed by Jensen and coworkers. In particular,
Stewart et al. [68] introduced energy budget analysis of instability in a pressure driven system
and conclude 2/3 of the energy extracted from the mean flow is lost to viscous dissipation,
which agreed with Jensen & Heil’s [42] prediction of a two-dimensional system (see discussion
below). Using a similar model, Xu et al. ( [76], [77]) identified low-frequency self-excited os-
cillations and a ‘sawtooth’ oscillation when the downstream rigid channel is sufficiently long.
More recently, Stewart [65] considered a flux-driven problem with high Reynolds number and
large uniform external pressure using a similar fluid-membrane model as mentioned above
( [68], [77]). He predicted multiple static solutions of the system at large Reynolds number
and identified these static states were unstable to distinct families of oscillation modes. A mech-
anism of energy transfer to maintain the self-excited oscillations was also given: the oscillation
increases the mean minimal channel width over a period of oscillation compared with corre-
sponding static state, which reduces the overall dissipation in the system, and this excess energy
sustains the oscillation.

1.2.2 Two-dimensional models

Despite the fact that one-dimensional models have been a successful tool in understanding com-
plex dynamical behavior of collapsed tubes conveying flow, their disadvantage in using ad−hoc

assumptions pushed researchers to develop rational two-dimensional theory. We consider a
finite-length channel with one segment of the upper wall replaced by an elastic material.
Pedley [56] considered a symmetric two-dimensional channel, with one segment of both of the
upper and lower wall replaced by elastic membranes which were held under longitudinal tension.
Pedley analysed the system using lubrication theory, which assumed small membrane slope, low
Reynolds number, and that wall inertia was negligible. He concluded that the steady solution
would break down if the membrane longitudinal tension reaches zero. Later development of the
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collapsible channel model conveying fluid using lubrication theory has been made by Matsuzaki
& Fujimura [54], who also included bending stiffness in the membrane equilibrium equation.
They conclude that steady solutions exist when longitudinal tension is small or even zero.
Lowe & Pedley [47] considered a Stokes flow (fluid at zero Reynolds number) in a two-dimensional
channel, in which one segment of the upper wall was replaced by an elastic membrane under
longitudinal tension. They adopted an iterative method to solve the system numerically. The
fluid and membrane wall were discretized independently and an iteration scheme was used to
obtain a coupled solution between fluid and solid. Their prediction of the steady solution at high
wall tension agreed with the results obtained using lubrication theory (Pedley 1992). However,
the breakdown at low wall tension was believed to be a consequence of numerical iteration rather
than the mechanism analysed by lubrication theory (Pedley [40]).
Following a similar iteration method, Luo & Pedley [49] studied steady flow in a fluid-membrane
coupled system. The finite element method was used to solve the Navier-Stokes equations for
a given membrane shape. They predicted a range of steady solutions and illustrated the change
of wall shape when varying the longitudinal tension. They showed that when the tension falls
below a critical value, the upstream end of the membrane begins to bulge out while the down-
stream of the membrane remains collapsed, a beam shape which can also be observed in our
two-dimensional fluid-beam model in chapter 3. However, at sufficient small tension, they failed
to obtain converged solutions.
Rast [58] considered a similar fluid-membrane system as Luo & Pedley [49], at finite Reynolds
number (1−600). He computed the system using a fully-coupled finite element method, where
the fluid and membrane are solved simultaneously. The fluid field is discretized using an adap-
tive spines mesh (Ruschak [60]) and displayed a range of complex steady solutions. In particular,
a series of downstream recirculation eddies developed when increasing Reynolds number.
Luo & Pedley [50] extended the numerical method used by Rast (1994) and developed a time-
dependent simulation with variable time increments for a fluid-membrane problem, to obtain the
unsteady behavior of the coupled system. They assumed a vertical movement of the elastic sur-
face for simplicity of tracking material points on the wall. They found that for sufficiently large
Reynolds numbesr, the steady solution broke down as tension decreased below a critical value.
As tension continues to decrease, self-excited oscillation appears and a series of period-doubling
bifurcations are observed, which agreed with experimental observations [12]. Furthermore, dur-
ing each cycle of oscillation, a series of large-amplitude vorticity waves downstream of the
elastic segment were captured. This prediction is similar to what was observed experimentally
(Pedley & Stephanoff [57]), as well as in our two-dimensional fluid-beam model in later chapter
3.
Luo & Pedley [51] continued above approach to investigate the effect of wall inertia on the
self-excited oscillations in a collapsed channel. They found a flutter-type self-excited oscillation
with relatively high frequency superposed on original large-amplitude, low-frequency oscilla-
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tion when including wall inertia into the system. In addition, a different phase between the wall
pressure and wall displacement enabled the fluid to do work on the wall. Thus they concluded
that this flutter-type high-frequency oscillation is caused by the energy transfer from the fluid
to the wall. A possible mechanics for the generation of these vorticity waves through spatially
localised growth was presented by Stewart et al. [67].
Luo & Pedley [52] used their approach described above ( [50], [51]) to investigate the steady
and unsteady behavior of collapsible two-dimensional channel with flow limitation. They illus-
trate both steady and unsteady solutions when the flow is limited and conclude that there is no
direct correlation between the onset of self-excited oscillation and flow limitation. Moreover,
the instability of steady solutions was found to be deeply affected by the unsteady boundary
conditions (e.g. varying Reynolds number while keeping upstream and downstream transmural
pressure fixed).
Jensen & Heil [42] considered a fluid-membrane model with finite length channel for high
Reynolds number. They studied the unsteady behavior of a pressure-driven system using two
approaches: an asymptotic approach at large membrane tensions and a fully coupled finite ele-
ment method to solve the Navier-Stokes equations at lower membrane tensions. They concluded
that oscillations can grow when extracting kinetic energy from the mean flow is faster than the
energy lost to viscous dissipation, two-thirds of the net flux kinetic energy is lost to dissipation
energy and the remainder modifies the mean flow. They identified axial sloshing motions driven
by the oscillations upstream and downstream of the membrane.
Cai & Luo [16] employed a more general and realistic model compared with the fluid-membrane
model, i.e. a fluid-beam model where the membrane was replaced by a plane strained elastic
beam with large deflection. Both extensional and bending stiffness of the elastic beam were
taken into consideration. They analysed the system using both asymptotic and numerical meth-
ods. The latter was a finite element method with rotating spines. They illustrate that if the
stretch-induced tension is small compared with the initial tension, the steady behavior of the
fluid-beam model is similar to the fluid-membrane case. However, different behaviors were ob-
tained when varying the wall stiffness.
Considering a similar model ( [16]), Luo et al. [48] discussed the unsteady behavior and linear
stability of the fluid-beam collapsible channel. The initial membrane tension was chosen to be
zero to ensure a stress-free initial configuration and finite Reynolds number (200-600) was con-
sidered. Two approaches were used: unsteady finite element stimulation with rotating spines;
and linearized eigenvalue stimulation solving the Orr-Sommerfeld equation directly. Different
modes of self-excited oscillations were identified (mode-2, mode-3, and mode-4). They discov-
ered a cascade of instabilities in parameter space spanned by Reynolds number and wall stiffness
for a flow-driven problem (i.e. keeping the upstream flux fixed). The system first lost stability to
mode-2 oscillations when reducing wall stiffness; as the wall stiffness reduced further the system
re-stabilized through a ‘tongue shape’ region and then became unstable to mode-3 oscillation.
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Mode-4 self-excited oscillations were observed for sufficiently small wall stiffness. Following a
similar idea, we develop our two-dimensional fluid-beam model but with a modified beam law
(discussed in later chapter 3).
Liu et al. [46] analysed the stability and energy budget of the similar fluid-beam model ( [16],
[48]) with the pressure-driven problem (i.e. keeping the upstream pressure fixed). Unlike flow-
driven problem, they did not find a cascade instability structure for a pressure-driven problem.
Also, the dominating unsteady mode is mode-1 instead of mode-2 in a flow-driven problem.
They concluded that for particular mode-1 oscillations, the generation of self-excited oscillation
was by extracting kinetic energy from the mean flow and two-thirds of the net kinetic energy flux
was consumed by viscous dissipation, as already shown by Jensen & Heil [42]. However, this
mechanism failed to explain mode-1 oscillations with large wall deformation as well as mode-2
oscillations.
Stewart et al. [66] studied the instability of a fluid-membrane model, with high Reynolds num-
ber flow driven through a finite-length channel. One segment of the upper channel wall was
replaced by a massless membrane under longitudinal tension. A pressure-driven problem was
considered. The system exhibited a high-frequency sloshing oscillation at high tension and per-
formed a slamming oscillation at low membrane tension. They analysed the energy budget for
the system and illustrated that the growth of the oscillations was affected by the transfer of
kinetic energy to a viscous dissipation energy.

1.2.3 Three-dimensional models

Two-dimensional models discussed above proved to be a useful analog of flow driven through a
collapsed three-dimensional tube. However, these two-dimensional models ignore many three-
dimensional effects. Therefore, three-dimensional theories of collapsible tube conveying flow
have been developed. In this section, we give introductions of the development of these three-
dimensional models.
Earlier theories of steady three-dimensional flow driven through three-dimensional compliant
tubes have been developed by Heil & Pedley ( [28], [29]) and Heil [30]. They represent the wall
using geometrically nonlinear Kirchoff-Love shell theory coupled to the fluid that was described
using lubrication theory. A finite element method was used to analyse this fluid-solid system. A
mechanism involved in the axisymmetric deformation of the tube has been made by examining
a range of boundary conditions corresponding to various experimental setups ( [28]). Linear
stability of this cylindrical shell conveying flow has been conducted and demonstrated how the
stability and buckling deformation of the tube can be affected by the variations in the upstream
pressure and the axial pre-stretch ( [30]). An analysis of the post-buckling deformations of the
system ( [29]) demonstrated that a violent collapse of the tube after the buckling emerged if the
volume flux was fixed, while this collapse can be prevented by the fluid-solid coupling if the
pressure drop was fixed.
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Heil [31] studied Stokes flow through the similar three-dimensional tube as mentioned above.
He investigated the behavior of the fluid-solid system for different boundary conditions cor-
responding to experiments and showed good agreement between numerical and experimental
results. He also noted that lubrication theory predictions were consistent with the predictions of
this full Stokes system.
Hazel & Heil [27] investigated the steady Navier-Stokes equations using a similar model as
mentioned above. They showed the tube can buckle non-axisymmetrically under sufficiently
small transmural pressure. The fluid inertia (absent in the lubrication theory) can promote tube
buckling in a phenomenon known as the Bernoulli effect.
As many experiments are conducted using a thick-walled elastic tubes, Marzo et al. [53] studied
a three-dimensional thick-walled tube conveying steady flow. The system of elastic wall cou-
pled with steady Navier-Stokes equations was solved using FIDAP finite-element software. The
numerical predictions of this system showed good agreements with Hazel and Heil (2003) when
a small thickness tube was specified, as well as with the results of the experiments.
Heil & Waters [32] considered unsteady flows with small-amplitude, high-frequency oscillations
in thin-walled elastic tubes. Numerical and asymptotic methods have been employed to analyse
this coupled system. They showed that wall-motion induced unsteady flow is independent of the
steady flow for sufficiently small amplitudes and transverse flow in the tube cross-sections is the
dominant flow during oscillation.
Heil & Waters [33] extended above simulation of unsteady flows in a three-dimensional tube to
analyse the overall energy budget. Whittaker ( [74], [73]) studied the energetics of prescribed
small-amplitude oscillations of a three-dimensional tube, as well as their applications to flow
conveying through an axially non-uniform tube. These studies established a critical Reynolds
number at which the wall extracts kinetic energy from the mean flow, and thus oscillation be-
comes favorable. This is similar to the sloshing mechanism proposed by Jensen & Heil [42] for
two-dimensional models.
Zhang et al. [78] established a numerical method for three-dimensional flow conveying through
a hyperelastic collapsible tube. The Arbitrary Lagrangian-Eulerian (ALE) method and the
method of rotating spines were used to solve the system numerically.

1.3 Local instability in unbounded channel

A variety of studies have investigated the stability of small-amplitude perturbations to flow in
an unbounded channel, i.e. no upstream and downstream boundary conditions, and discovered
many local instabilities. For a detailed review of these studies see Carpenter [19]. In this sec-
tion, we give an introduction of three most common modes of local instabilities in a coupled
fluid-flexible wall system: Tollmien-Schlichting (TS), traveling-wave flutter (TWF) and static-
divergence (SD). A classification scheme is summarized as well.
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A well-known classification was introduced by Benjamin ( [2], [3]) and Landahl [45] to distin-
guish different modes of instabilities: they divided these instabilities into three categories class
A, class B and class C. Class A waves are destabilised by wall damping and irreversible energy
transfer from the fluid to the wall while class B is stabilised by wall damping and irreversible
energy transfer from the fluid to the wall [2]. Another way to distinguish these classes is by in-
troducing a concept of ’activation energy’, which is defined to be the energy required to generate
the mode ( [45], [3]). The activation energy of class A waves is negative, class B waves have
positive activation energy, and class C waves have zero activation energy and not influenced by
wall damping (Cairns [17]).
TS waves are hydrodynamic modes of instability in fluid boundary layers first identified in rigid
channels by Tollmien [71] and Schlichting [61]. This TS mode is only slightly modified by wall
compliance but is destabilized by wall damping (Carpenter et al. [20]). TS waves are class A
waves that can be stabilised by energy transfer from the fluid to the wall.
Traveling-wave flutter (TWF) instability is a class B instability that is stabilized by wall damp-
ing. The energy transfer from the flow to the wall destabilise these waves. Viscous effects con-
fined to critical layers is shown to led to TWF (Davies and Carpenter [22], Huang [35]). Stewart
et al. [69] discussed local instabilities of an infinitely long channel consisting of a massless elas-
tic membrane and a rigid wall conveying a Poiseuille flow with constant flow rate. A Chebyshev
spectral method was used to solve the eigenvalue problem based on the Orr-Sommerfeld equa-
tion. Different modes of instability were identified, e.g. Tollmien-Schlichting (TS) waves and
traveling-wave flutter (TWF). They proposed a new asymptotic mechanism for TWF based on a
weak critical layer at the center of the channel.
Static-divergence (SD) instability is either a class A or C instability depending on the context,
i.e. the activation energy of SD is revealed to be negative or zero (Davies & Carpenter [22]).
Stewart et al. [69] showed SD to be class A in an asymmetric long channel.

1.4 Thesis structure

In this section, we illustrate the structure of this thesis. We mainly study two models. In chapter
2, we study an infinitely long fluid-membrane two-dimensional model where the upper wall is
replaced by an elastic membrane subject to an external pressure gradient. We include the effect
of longitudinal tension wall, inertia and damping. We consider the eigenvalue problem of the
fluid-membrane model to discuss linear stability and energetics of this system in chapter 2. The
eigenvalue problem based on the Orr-Sommerfeld equation is considered to discuss the local
instability of the system, three modes of instabilities (TS, TWF, and SD) are found in parameter
space. The stability of these modes of instability is discussed for different parameters. We derive
the energetics for the fully non-linear system as well as for the linearised system. Finally, the
second order energy budget is calculated at several neutrally stable points.
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In Chapter 3 we study a two-dimensional finite length fluid-beam model where one segment of
the upper wall is replaced by an elastic beam under constant external pressure.
Chapter 3 considers a finite fluid-beam channel based on the model developed by Luo et al. [48]
with modified beam equations. A finite element method with rotating spines is employed to
consider the instability of this system. The corresponding fully non-linear energy budget is
derived and calculated numerically.
Chapter 4 studies the linear stability of the fluid-beam model and the corresponding energy
budget is derived. Similar to the fully non-linear system, a finite element method with rotating
spines is used to solve the eigenvalue problem numerically. The growth rate and frequency of the
oscillation are considered. A neutrally stable curve is calculated in the parameter space spanned
in wall stiffness and Reynolds number. A flow chart of the structure of the energy budget for the
fluid-beam model is shown in figure 1.4.
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Figure 1.4: Flow chart of system energy budget calculations



Chapter 2

Fluid-membrane model

In this chapter, we analyse the energetics of flow through an infinitely long flexible-walled chan-
nel where one wall of the channel is rigid and the other is an elastic wall subject to an external
pressure. We first summarize the model in Sec. 2.1, then we establish the governing equations
for the coupled system (Sec. 2.2). In Sec. 2.3, we derive the energy budget for the fully non-
linear membrane-fluid system. We then linearize all the variables in Sec. 2.2 and retain terms
up to second order to introduce the perturbation governing equations (Sec. 2.4). Our next step is
substituting the linearized variables into fluid energy equation to obtain the second order energy
budgets (Sec. 2.5). By assuming a wavelike form for all the first order variables, we obtain the
eigenvalue problems in Sec. 2.6. We solve the eigenvalue problem in Sec. 2.6 using a Chebyshev
spectral method, we give neutrally stable curves for four different cases and the corresponding
second order energy budgets over one period of time and wavelength (Sec. 2.7).

2.1 The model

We consider the flow setup shown in Figure 2.1 in a channel of baseline width a. The channel
carries parabolic flow of flux Q, while ρ and µ are the density of the membrane and viscosity
of the fluid, respectively. We establish Cartesian coordinates along the rigid wall denoted x and
y, while g1, g2 are the unit vectors in horizontal and vertical directions of the coordinate. Let
u = u(x,y, t)g1 + v(x,y, t)g2 and p be the velocity and pressure of the fluid, respectively.
We consider a simplified membrane model which we ignore the axial motion, when the mem-
brane is under large axial prestress. We note that certain modes of instability are not possible in
this model [44], [63]. The membrane is located at y = h(x, t) at time t, and the membrane sub-
jected to an external pressure pe. We denote T0, d0 and m as the longitudinal tension, damping
and the mass of the membrane, respectively. Here the damping that due to membrane itself will
contribute to an irreversible energy transfer from fluid to the flexible wall, and will be used for

13
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instability classification in later section 2.7.4.

𝑥

𝑦
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𝑝𝑒

𝑄 𝑈

Figure 2.1: The fluid-membrane model, the channel carries steady Poiseuille flow of dimen-
sional flux Q.

2.2 Governing Equation for Fluid and Membrane

We introduce the dimensionless variables (marked with tilde) using the following scalings,

ũ =
ua
Q
, p̃ =

pa2

ρQ2 , t̃ =
tQ
a2 , x̃ =

x
a
. (2.2.1)

Using the same scaling, we obtain the dimensionless parameters (marked with tilde) as,

R̃ =
Qρ

µ
, T̃ =

aT0

ρQ2 , d̃ =
ad0

ρQ
, m̃ =

m
ρa

, (2.2.2)

where R̃ is the Reynolds number of the flow, T̃ is the dimensionless membrane tension, d̃ is
the dimensionless wall damping and m̃ is the dimensionless wall mass. We henceforth drop the
tildes for convenience.
The fluid flow is governed by the incompressible Navier-Stokes equations in 2D,

ux + vy = 0, (2.2.3)

ut +uux + vuy =−px +R−1(uxx +uyy), (2.2.4)

vt +uvx + vvy =−py +R−1(vxx + vyy). (2.2.5)

We apply the no-slip and no-penetration boundary conditions on the rigid wall, in the form

u = 0, v = 0, (y = 0). (2.2.6)



CHAPTER 2. FLUID-MEMBRANE MODEL 15

while on the flexible membrane, the boundary conditions of no-slip and the kinematic conditions
on the elastic membrane take the form

u · t = 0, u ·n =
ht√

1+h2
x
, (y = h), (2.2.7)

which become

u =− hthx

1+h2
x
, v =

ht

1+h2
x
, (y = h), (2.2.8)

where t = (1,hx)/
√

1+h2
x and n = (−hx,1)/

√
1+h2

x are the tangent and normal unit vectors
for each point on the membrane.
The motion of the membrane is governed by a normal stress balance,

p− pe =−
T
Ra

+ma ·n+R−1 [(
∇u+∇uT)n

]
·n+dv ·n, (2.2.9)

where Ra =
(
1+h2

x
)3/2

/hxx is the dimensionless radius of membrane curvature. While v =

(0,ht) and a = (0,htt) are the membrane velocity and acceleration, respectively. For simplicity,
we ignore axial motion of the membrane by assuming the membrane is under large axial pre-
stress here, although this is permitted in the model considered in chapter 3 and chapter 4. Here
the transmural pressure (i.e. p− pe) is balanced by the wall tension, the wall inertia, the viscous
stress and wall damping in normal direction.
Expressing Ra, a and v in terms of channel width h(x, t), the membrane governing equation
(2.2.9) becomes

p− pe =−
T hxx

(1+h2
x)

3
2
+

mhtt

(1+h2
x)

1
2
+

2
R(1+h2

x)

[
vy−hx(uy + vx)+h2

xux
]

+
dht

(1+h2
x)

1
2

(y = h). (2.2.10)

2.3 Energy Budget of the System

We want to analyse the energy budget of the modes of instability which occur in this collapsible
channel system. We obtain this budget by taking the scalar product of the momentum equations
(2.2.4), (2.2.5) with the fluid velocity u in the form,

(uut + vvt)+u(uux + vvx)+ v(uuy + vvy)+
1
2
(u2 + v2)(ux + vy)

=−upx− vpy +R−1(u∇
2u+ v∇

2v)− p(ux + vy), (2.3.1)
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where ∇2 denotes the 2D Laplacian operator in Cartesian coordinates.
Since the fluid is incompressible, we can rearrange (2.3.1) into the following form,

1
2
(u2 + v2)t +

[
1
2

u(u2 + v2)

]
x
+

[
1
2

v(u2 + v2)

]
y
+(up)x +(vp)y−R−1(u∇

2u+ v∇
2v) = 0.

(2.3.2)

Now we integrate equation (2.3.2) across the channel width (0 ≤ y ≤ h) to obtain the energy
equation,

∫ h

0

1
2
(u2 + v2)t dy︸ ︷︷ ︸

I

+
∫ h

0

[
1
2

u(u2 + v2)

]
x

dy︸ ︷︷ ︸
II

+
∫ h

0

[
1
2

v(u2 + v2)

]
y

dy︸ ︷︷ ︸
III

+
∫ h

0
[(up)x +(vp)y] dy︸ ︷︷ ︸

IV

−R−1
∫ h

0
(u∇

2u+ v∇
2v)dy︸ ︷︷ ︸

V

= 0. (2.3.3)

We label the above terms I, II, ...,V as the label of underbraces and consider each term in turn.
We take the time derivative outside the integral for term I in the form,

I =
[

1
2

∫ h

0
(u2 + v2)dy

]
t︸ ︷︷ ︸

K

−1
2

ht
(
u2 + v2)∣∣∣y=h

. (2.3.4)

We denote the first term K, the rate of change of kinetic energy.
Using the Leibniz’s rule and the no-slip condition (2.2.6), the term II can be written in the form,

II =
[

1
2

∫ h

0
u(u2 + v2)dy

]
x︸ ︷︷ ︸

F

−1
2

hxu(u2 + v2)
∣∣∣y=h

. (2.3.5)

We denote the first term F , the kinetic energy flux into the system.
Using the no-slip condition(2.2.6), the term III can be written in the form,

III =
1
2

v
(
u2 + v2)∣∣∣y=h

. (2.3.6)

We group the last terms in both I, II and term III, then apply boundary condition (2.2.8) we
have [

1
2
(ht +hxu− v)(u2 + v2)

]y=h

=

[
1
2
(ht−h2

xv− v)(u2 + v2)

]y=h

= 0. (2.3.7)



CHAPTER 2. FLUID-MEMBRANE MODEL 17

For IV , we take the derivative with respect to x outside the integral for the first part and apply
boundary condition (2.2.6) for second part, we have

IV =−p(uhx− v)
∣∣∣y=h

+

[∫ h

0
(up)dy

]
x︸ ︷︷ ︸

P

. (2.3.8)

We denote the second term as P, the rate of working of pressure forces axially.
We add extra zero term R−1

(
∇ ·(∇u)T

)
·u= 0 to term V to facilitate manipulation of the energy

budget into its required form,

V =R−1
∫ h

0

[
u∇

2u+ v∇
2v+

(
∇ · (∇u)T

)
·u
]

dy.

Rearranging we obtain,

V =R−1
∫ h

0

[
(uux + vvx)x−u2

x− v2
x−u2

y− v2
y
]

dy+R−1
[
uuy + vvy

]y=h

y=0

+R−1
∫ h

0

[
(uux + vuy)x−u2

x− v2
y−2uyvx

]
dy+R−1

[
uvx + vvy

]y=h

y=0
.

Using the membrane equation (2.2.10) and the boundary condition on the wall (2.2.6, 2.2.8) we
obtain

V =ht

(
p− pe +

T hxx

(1+h2
x)

3
2
− mhtt

(1+h2
x)

1
2
− dht

(1+h2
x)

1
2

)y=h

−R−1
(∫ h

0

[
2u2

x +2v2
y +(uy + vx)

2
]

dy−
[∫ h

0
(2uux + vvx + vuy) dy

]
x

)
︸ ︷︷ ︸

D

. (2.3.9)

We denote the second term as D, the rate of energy loss due to fluid viscosity in the bulk.
Note that the viscous term vanish in the first term after applying the elastic membrane equation
(2.2.10).
Gathering the first terms in both IV and V , and denoting this as E, the rate of working of fluid
stress on the membrane, we have

E =

[
p(uhx− v)+ht

(
p− pe +

T hxx

(1+h2
x)

3
2
− mhtt

(1+h2
x)

1
2
− dht

(1+h2
x)

1
2

)]y=h

. (2.3.10)

Applying the boundary conditions (2.2.8) on the elastic wall, we have

E =

[
−ht pe +

T hthxx

(1+h2
x)

3
2
− mhtt

(1+h2
x)

1
2
− dht

(1+h2
x)

1
2

]y=h

. (2.3.11)
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In conclusion, the energy budget (2.3.3) can be written as,

K +F +P−E +D = 0, (2.3.12)

where

K =

[
1
2

∫ h

0
(u2 + v2)dy

]
t
, (2.3.13)

F =

[
1
2

∫ h

0
u(u2 + v2)dy

]
x
, (2.3.14)

P =

[∫ h

0
(up)dy

]
x
, (2.3.15)

E =

[
−ht pe +

T hthxx

(1+h2
x)

3
2
− mhtt

(1+h2
x)

1
2
− dht

(1+h2
x)

1
2

]y=h

, (2.3.16)

D = R−1
(∫ h

0

[
2u2

x +2v2
y +(uy + vx)

2
]

dy−
[∫ h

0
(2uux + vvx + vuy) dy

]
x

)
. (2.3.17)

where K is the rate of change of kinetic energy, F is the kinetic energy flux into the system, P is
the rate of working of pressure axially, E is the rate of working of fluid stress at the membrane
and D is the rate of energy loss due to fluid viscosity in the bulk.

2.4 Linear Stability Analysis

We assume the velocity and pressure of the steady flow when the membrane is flat to be of the
form,

(u,v) = (U(y),0) = (6y(1− y),0) , p = P(x) =C−
(

12
R

)
x, pe = P(x), h = 1.

(2.4.1)

where C is a constant. This is a solution to equation (2.2.3-2.2.8). We note that the external
pressure is not constant in this case, we are instead applying an external pressure gradient to
maintain a flat base state.
We add a small perturbation to this steady flow in the form,

(u,v, p,h) = (U(y),0,P(x),1)+ ε(φ̂y,−φ̂x, p̂, η̂)+ ε
2(φ̆y,−φ̆x, p̆, η̆)+O(ε3), (2.4.2)

where ε� 1, φ̂ and φ̆ are the perturbation streamfunctions at O(ε) and O(ε2). Note that (2.2.3)
is satisfied automatically as we have expressed the perturbation velocity in terms of the stream-
functions φ̂ and φ̆ .
We substitute the linearised variables into the Navier-Stokes equations (2.2.4-2.2.5), the bound-
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ary condition (2.2.6, 2.2.8) and the membrane equations (2.2.10). At O(1) these equations are
satisfied automatically as the assumption we made for the velocity and pressure for the steady
flow (2.4.1). At O(ε), the governing equations of the system becomes,

φ̂yt +U φ̂xy− φ̂xUy + p̂x−R−1(φ̂xxy + φ̂yyy) = 0, (2.4.3)

φ̂xt +U φ̂xx− p̂y−R−1(φ̂xxx + φ̂xyy) = 0, (2.4.4)

φ̂y = 0, φ̂x = 0, (y = 0), (2.4.5)

φ̂y = 6η̂ , φ̂x =−η̂t (y = 1), (2.4.6)

p̂ =−T η̂xx +mη̂tt +
2
R

(
6η̂x− φ̂xy

)
+dη̂t , (y = 1). (2.4.7)

At O(ε2) the governing equations of the system becomes,

φ̆yt +U φ̆xy−Uyφ̆x + p̆x−R−1(φ̆xxy + φ̆yyy) = φ̂xφ̂yy− φ̂yφ̂xy, (2.4.8)

φ̆xt +U φ̆xx− p̆y−R−1(φ̆xxx + φ̆xyy) = φ̂xφ̂xy− φ̂yφ̂xx, (2.4.9)

φ̆x = 0, φ̆y = 0, (y = 0), (2.4.10)

φ̆y−6η̆ + η̂ φ̂yy−6η̂
2 + η̂xη̂t = 0, φ̆x + η̂ φ̂xy + η̆t = 0, (y = 1), (2.4.11)

p̆+T η̆xx−mη̆tt +
2
R

(
φ̆xy−6η̆x

)
−dη̆t =

2
R

[
−η̂ φ̂xyy +12η̂η̂x− η̂x

(
φ̂yy− φ̂xx

)]
− η̂ p̂y,

(y = 1). (2.4.12)

2.5 Perturbation Energy Budget

In this section we obtain the corresponding energy budget at O(ε) and O(ε2) by substituting
the expansion (2.4.2) into the energy equation (2.3.1). At the first order (i.e. O(ε)) the energy
equation becomes,

U φ̂yt +U2
φ̂xy−UUyφ̂x =U

[
−p̂x +R−1(φ̂xxy + φ̂yyy)

]
+(−Px +UyyR−1)φ̂y, (2.5.1)

which can be simplified into,

φ̂yt +U φ̂xy−Uyφ̂x =−p̂x +R−1(φ̂xxy + φ̂yyy). (2.5.2)

Equation (2.5.2) is the same as (2.4.3), so no new information is provided. Only at higher orders
does the energy budget provide some useful information.
Therefore we analyse the energy equation (2.3.1) at the second order (i.e. O(ε2)) we have,

(U φ̆yt +U2
φ̆xy−UUyφ̆x)+(φ̂xφ̂xt + φ̂yφ̂yt +U φ̂xφ̂xx +2U φ̂yφ̂xy−Uyφ̂xφ̂y +U φ̂xφ̂yy),
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=
[
−U p̆x−Pxφ̆y +R−1(U φ̆yxx +U φ̆yyy +Uyyφ̆y)

]
+
[
−p̂xφ̂y + p̂yφ̂x +R−1(φ̂yφ̂yxx + φ̂yφ̂yyy + φ̂xφ̂xxx + φ̂xφ̂xyy)

]
; (2.5.3)

rearranging we obtain,

1
2
(φ̂ 2

x + φ̂
2
y )t +

1
2

U(3φ̂
2
y + φ̂

2
x )x− (U φ̂xφ̂y)y +(φ̂y p̂)x− (φ̂x p̂)y−R−1[φ̂x(52

φ̂)x + φ̂y(52
φ̂)y]

+U φ̆yt +U2
φ̆xy−UUyφ̆x +U p̆x +Pxφ̆y−R−1(U φ̆yxx +U φ̆yyy +Uyyφ̆y) = 0. (2.5.4)

Gathering the terms consisting of breved variables and denoting as ε̆ , we obtain

ε̆ =U φ̆yt +U2
φ̆xy−UUyφ̆x +U p̆x +Pxφ̆y−R−1(U φ̆yxx +U φ̆yyy +Uyyφ̆y). (2.5.5)

These terms can then be manipulated to obtain,

ε̆ =U
[
φ̆yt +U φ̆xy−Uyφ̆x + p̆x−R−1(φ̆xxy + φ̆yyy)

]
+Pxφ̆y−R−1Uyyφ̆y. (2.5.6)

We substitute equation (2.4.8) for the term in square brackets and with Px =−12/R to obtain,

ε̆ =U(−φ̂yφ̂xy + φ̂xφ̂yy)+

(
−12

R
φ̆y

)
−
(
−12

R
φ̆y

)
=U(−φ̂yφ̂xy + φ̂xφ̂yy). (2.5.7)

We substitute ε̆ back into the energy equation at O(ε2) (2.5.4), to obtain the perturbation energy
equation in terms of hatted (first order) terms only,

U(−φ̂yφ̂xy + φ̂xφ̂yy)+
1
2
(φ̂ 2

x + φ̂
2
y )t +

1
2

U(3φ̂
2
y + φ̂

2
x )x− (U φ̂xφ̂y)y +(φ̂y p̂)x− (φ̂x p̂)y

−R−1 [
φ̂x(∇

2
φ̂)x + φ̂y(∇

2
φ̂)y
]
= 0. (2.5.8)

This can be rearranged to the well known Reynolds-Orr equation (Schmid and Henningson [62]),

Uyφ̂xφ̂y−R−1 (
φ̂

2
xx + φ̂

2
yy +2φ̂

2
xy
)
+

[
−1

2
U(φ̂ 2

x + φ̂
2
y )− p̂φ̂y +R−1 (

φ̂xyφ̂y + φ̂xxφ̂x
)]

x

+
[
p̂φ̂x +R−1 (

φ̂yyφ̂y + φ̂xyφ̂x
)]

y = φ̂xφ̂xt + φ̂yφ̂yt . (2.5.9)

To obtain the corresponding perturbation energy budget, we integrate (2.5.8) across the channel
(0≤ y≤ 1) to obtain,

∫ 1

0

1
2
(φ̂ 2

x + φ̂
2
y )t dy︸ ︷︷ ︸

I

+
∫ 1

0

1
2

U(3φ̂
2
y + φ̂

2
x )x dy︸ ︷︷ ︸

II

−
∫ 1

0
(U φ̂xφ̂y)y dy︸ ︷︷ ︸

III

+
∫ 1

0
(φ̂y p̂)x− (φ̂x p̂)y dy︸ ︷︷ ︸

IV
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−R−1
∫ 1

0

[
φ̂x(∇

2
φ̂)x + φ̂y(∇

2
φ̂)y
]

dy︸ ︷︷ ︸
V

+
∫ 1

0
U(−φ̂yφ̂xy + φ̂xφ̂yy)dy︸ ︷︷ ︸

Ŝ

= 0. (2.5.10)

We label above terms in I, II, ...,V and consider each term in turn. We label the last term as Ŝ,
the rate of work of nonlinear Reynolds stresses, which occurs due to the second order terms in
the perturbation expansion.
For I, we take the time derivative outside the integral to obtain,

I =
[

1
2

∫ 1

0

(
φ̂

2
x + φ̂

2
y
)

dy
]

t︸ ︷︷ ︸
K̂

. (2.5.11)

We denote I as K̂, the rate of change of kinetic energy.
As U is only dependent on y, we take the derivative in respect of x outside the integral for term
II to obtain,

II =
[∫ 1

0

1
2

U(3φ̂
2
y + φ̂

2
x )dy

]
x︸ ︷︷ ︸

F̂

. (2.5.12)

We denote II as F̂ , the net kinetic energy flux extracted from the mean flow.
We apply the no-slip boundary conditions for III, as U(0) =U(1) = 0, we have,

III =U(1)
(
φ̂xφ̂y

)∣∣∣y=1
−U(0)

(
φ̂xφ̂y

)∣∣∣
y=0

= 0. (2.5.13)

We apply boundary conditions to IV to obtain,

IV =

[∫ 1

0
(φ̂y p̂)dy

]
x
− (φ̂x p̂)

∣∣∣y=1

y=0
=

[∫ 1

0
(φ̂y p̂)dy

]
x︸ ︷︷ ︸

P̂

−(φ̂x p̂)
∣∣∣y=1

. (2.5.14)

We denote the first term as P̂, the rate of working of pressure forces axially.
We add zero term R−1φ̂y

[
(φ̂y)xx− (φ̂x)xy

]
−R−1φ̂x

[
(φ̂y)xy− (φ̂x)yy

]
= 0 to V . After rearrange-

ment and applying integration by parts we have,

V =R−1
∫ 1

0

[
(φ̂xφ̂xx + φ̂yφ̂xy)x +(φ̂xφ̂xy + φ̂yφ̂yy)y− (φ̂xx)

2− (φ̂xy)
2− (φ̂xy)

2− (φ̂yy)
2] dy

+R−1
∫ 1

0

[
(φ̂yφ̂xy− φ̂xφ̂yy)x +(φ̂xφ̂xy− φ̂yφ̂xx)y− (φ̂xy)

2− (φ̂xy)
2 +2φ̂xxφ̂yy

]
dy;

we then apply the boundary conditions φ̂x = φ̂y = 0 at y = 0 to obtain,
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V =−R−1
(∫ 1

0

[
4φ̂

2
xy +(φ̂yy− φ̂xx)

2] dy−
[∫ 1

0

(
2φ̂yφ̂xy + φ̂xφ̂xx− φ̂xφ̂yy

)
dy
]

x

)
︸ ︷︷ ︸

D̂

+R−1 (2φ̂xφ̂xy + φ̂yφ̂yy− φ̂yφ̂xx
)∣∣∣y=1

. (2.5.15)

We denote the first term as D̂, the energy loss due to viscous dissipation.
Gathering the leftover terms from IV and V and denote it as Ê, the rate of working of fluid stress
on the membrane. We have

Ê =
[
φ̂x p̂+R−1 (2φ̂xφ̂xy + φ̂yφ̂yy− φ̂yφ̂xx

)]y=1
. (2.5.16)

Therefore, energy equation at O(ε2) (2.5.10) becomes,

K̂ + F̂ + P̂− Ê + D̂+ Ŝ = 0, (2.5.17)

where,

K̂ =

[∫ 1

0

1
2
(φ̂ 2

x + φ̂
2
y )dy

]
t
, (2.5.18)

F̂ =

[∫ 1

0

1
2

U(3φ̂
2
y + φ̂

2
x )dy

]
x
, (2.5.19)

P̂ =

[∫ 1

0
(φ̂y p̂)dy

]
x
, (2.5.20)

Ê =
[
φ̂x p̂+R−1 (2φ̂xφ̂xy + φ̂yφ̂yy− φ̂yφ̂xx

)]y=1
, (2.5.21)

D̂ = R−1
(∫ 1

0

[
4φ̂

2
xy +(φ̂yy− φ̂xx)

2] dy−
[∫ 1

0

(
2φ̂yφ̂xy + φ̂xφ̂xx− φ̂xφ̂yy

)
dy
]

x

)
, (2.5.22)

Ŝ =
∫ 1

0
U(−φ̂yφ̂xy + φ̂xφ̂yy)dy. (2.5.23)

Here K̂ is the rate of change of kinetic energy, F̂ is the net kinetic energy flux extracted from
the mean flow, P̂ is the rate of working of pressure force axially, Ê is the rate of working of
fluid stress at the membrane, D̂ is the energy loss due to viscous dissipation and Ŝ is the work of
nonlinear Reynolds stresses. Note that the second term in D̂ will disappear over one wavelength,
the form of the first term suggests that the value of D̂ is not less than zero over one wavelength
(all terms appear as quadratics).
In this derivation, we eliminate the breved variables in ε̆ (2.5.5) in favor of first order variables
and then integrate it across the static channel (0≤ y≤ 1) to obtain the term Ŝ. However, we can
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also manipulate ε̆ directly into terms including breved variables. Rearranging ε̆ we have,

ε̆ =
(
U φ̆y

)
t +

(
3
2

φ̆yU2
)

x
−
(

1
2

φ̆xU2
)

y
+(U p̆)x + φ̆yPx

−R−1 [U (φ̆yyy + φ̆xxy
)
+Uyyφ̆y

]
. (2.5.24)

Integrating (2.5.24) across the static channel (0≤ y≤ 1) we obtain,

Ŝ =
∫ 1

0

(
U φ̆y

)
t dy︸ ︷︷ ︸

I

+
∫ 1

0

[(
3
2

φ̆yU2
)

x
−
(

1
2

φ̆xU2
)

y

]
dy︸ ︷︷ ︸

II

+
∫ 1

0

[
(U p̆)x + φ̆yPx

]
dy︸ ︷︷ ︸

III

−R−1
∫ 1

0

[
U
(
φ̆yyy + φ̆xxy

)
+Uyyφ̆y

]
dy︸ ︷︷ ︸

IV

, (2.5.25)

we label above terms in I, II, ..., IV and consider each term in turn.
For I, we take the time derivative outside the integral to obtain,

I =
[∫ 1

0
U φ̆y dy

]
t︸ ︷︷ ︸

K̆

. (2.5.26)

We denote I as K̆, the rate of working of kinetic energy that contains second order variables.
For II, taking the derivatives with respect to x and y outside the integrals we have,

II =
[∫ 1

0

(
3
2

φ̆yU2
)

dy
]

x
−
[

1
2

φ̆xU2
]y=1

y=0
=

[∫ 1

0

(
3
2

φ̆yU2
)

dy
]

x︸ ︷︷ ︸
F̆

. (2.5.27)

We denote II as F̆ , the contribution to the kinetic energy flux that contains second order vari-
ables. We also apply U(0) =U(1) = 0 here.
Similarly, for III taking the derivatives outside the integrals we obtain,

III =
[∫ 1

0
(U p̆) dy

]
x
+

[
Pφ̆y

]y=1

︸ ︷︷ ︸
P̆

. (2.5.28)

We denote the first term as P̆, the work done by the pressure force that contains the second order
variables. Here we apply the boundary condition (2.4.10), φ̆x = 0 at y = 0 for the second term,
while the remainder of this term will contribute below.
For IV , similar to the derivation of D̂ (2.5.15), we add zero term R−1 [U ((φ̆y)xx− (φ̆x)xy

)
−Uxyφ̆x

]
=
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0 to obtain,

IV =R−1
∫ 1

0

[(
U φ̆yy

)
y−Uyφ̆yy +

(
U φ̆xy

)
x +
(
Uyφ̆y

)
y−Uyφ̆yy

]
dy

+R−1
∫ 1

0

[(
U φ̆xy

)
x−
(
U φ̆xx

)
y +Uyφ̆xx−

(
Uyφ̆x

)
x +Uyφ̆xx

]
dy,

taking the derivatives outside the integrals and applying boundary conditions φ̆y = 0 at y = 0 we
obtain,

IV =R−1
[
U φ̆yy +Uyφ̆y−U φ̆xx

]y=1

y=0
+R−1

[∫ 1

0

(
2U φ̆xy−Uyφ̆x

)
dy
]

x

−R−1
∫ 1

0
2Uy

(
φ̆yy− φ̆xx

)
dy,

=R−1
[
Uyφ̆y

]y=1

︸ ︷︷ ︸
Ĕ

−R−1
∫ 1

0
2Uy

(
φ̆yy− φ̆xx

)
dy−R−1

[∫ 1

0

(
2U φ̆xy−Uyφ̆x

)
dy
]

x︸ ︷︷ ︸
D̆

.

(2.5.29)

We denote the first term as Ĕ, the work done by the fluid stress at the membrane that contains
second order varibales. We denote the second term as D̆, the work done by dissipation that
contains second order variables.
Therefore, equation (2.5.25) becomes,

Ŝ = K̆ + F̆ + P̆− Ĕ + D̆, (2.5.30)

where,

K̆ =

[∫ 1

0

(
U φ̆y

)
dy
]

t
, (2.5.31)

F̆ =

[∫ 1

0

(
3
2

φ̆yU2
)

dy
]

x
, (2.5.32)

P̆ =

[∫ 1

0
(U p̆) dy

]
x
+

[
Pφ̆y

]y=1

, (2.5.33)

Ĕ = R−1
[
Uyφ̆y

]y=1

, (2.5.34)

D̆ = R−1
∫ 1

0
2Uy

(
φ̆yy− φ̆xx

)
dy−R−1

[∫ 1

0

(
2U φ̆xy−Uyφ̆x

)
dy
]

x
. (2.5.35)

Here K̆ is the rate of working of kinetic energy that contains second order variables, F̆ is the net
kinetic energy flux extracted from the mean flow that contains second order variables, P̆ is the
work done by the pressure force that contains the second order variables, Ĕ is the work done
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by the fluid stress at the membrane that contains second order variables, D̆ is the work done by
dissipation that contains second order variables.
In total, the linearized energy budget at O(ε2) can also be expressed as,

(
K̂ + K̆

)
+
(
F̂ + F̆

)
+
(
P̂+ P̆

)
−
(
Ê + Ĕ

)
+
(
D̂+ D̆

)
= 0. (2.5.36)

Here Ê + Ĕ is total energy exchange between the fluid and membrane at O(ε2).

2.6 Eigenvalue problems

To solve equations (2.4.3-2.4.7), we assume all the hatted variables and breved variables are in
the wave-like forms

f̂ (x,y, t) = f (y)ei(kx−ωt)+
(

f (y)(ei(kx−ωt)
)∗

, (2.6.1)

ğ(x,y, t) = g1(y)e2i(kx−ωt)+g0(y)+
(

g1(y)e2i(kx−ωt)
)∗

, (2.6.2)

where k is wavenumber and ω is frequency, while ∗ denotes complex conjugation. We use
f̂ and ğ to represent all the hatted variables (φ̂ , p̂ and η̂) and breved variables (φ̆ , p̆ and η̆),
respectively.
Substituting (2.6.1) into the system governing equations at O(ε) (2.4.3-2.4.7), we have(

U− ω

k

)
φy−φUy =−p+(ikR)−1 (−k2

φy +φyyy
)
, (2.6.3)

k2
(

U− ω

k

)
φ =−py +(ikR)−1 (−k4

φ + k2
φyy
)
, (2.6.4)

φ = 0, φy = 0, (y = 0), (2.6.5)

φy = 6η , φ =
ω

k
η , p = T k2

η−mω
2
η +

2
R

ik(6η−φy)−diωη , (y = 1). (2.6.6)

Combining (2.6.3) and (2.6.4) by eliminating p, we obtain the classical Orr-Sommerfeld equa-
tion (Schmid and Heinningson [62]),(

U− ω

k

)(
φyy− k2

φ
)
−Uyyφ = (ikR)−1 (

φyyyy−2k2
φyy + k4

φ
)
. (2.6.7)

We solve this eigenvalue problem for φ using a Chebyshev spectral method. We fix the wavenum-
ber k ∈R and compute the corresponding frequency ω = ωr + iωi ∈C. Details of the numerical
scheme are given in Stewart et al. [66]. This scheme has been substantially modified to include
the influence of wall mass.
Substituting (2.6.1) and (2.6.2) into the second order Navier-Stokes equation (2.4.8) and bound-
ary conditions (2.4.10,2.4.11), we consider steady streaming terms which are independent of
both x and t (here we drop the time dependent terms as these terms will make no contribution to
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the steady system after one period of time) to obtain ODEs in the form,

φ0yyy = R
[
(ikφy)φ

∗
y +(ikφy)

∗
φy− (ikφ)∗φyy− (ikφ)φ∗yy

]
, (2.6.8)

φ0y = 0, (y = 0), (2.6.9)

φ0y =−η
∗
φyy−ηφ

∗
yy +12ηη

∗−2kωηη
∗, (y = 1). (2.6.10)

We find that the additional boundary condition (kinematic boundary condition) is identically
zero. Here we assume η0 = 0 at y = 1 to ensure the mass of fluid stays fixed. By integrating
(2.6.8) and applying boundary conditions (2.6.9, 2.6.10) we have,

φ0y =
∫ y

0

∫ y′

0
R
[
(ikφς )φ

∗
ς +(ikφς )

∗
φς − (ikφ)∗φςς − (ikφ)φ∗ςς

]
dς dy′+C1y, (2.6.11)

φ0yy =
∫ y

0
R
[
(ikφς )φ

∗
ς +(ikφς )

∗
φς − (ikφ)∗φςς − (ikφ)φ∗ςς

]
dς +C1, (2.6.12)

where the constant C1 is,

C1 =−
∫ 1

0

∫ y

0
R
[
(ikφς )φ

∗
ς +(ikφς )

∗
φς − (ikφ)∗φςς − (ikφ)φ∗ςς

]
dς dy

+
[
12ηη

∗−η
∗
φyy−ηφ

∗
yy− (ikη)∗(−iωη)− (ikη)(−iωη)∗

]y=1
. (2.6.13)

Using the predictions of eigenfunctions from (2.6.7) and substituting into the above equations
(2.6.11) and (2.6.12), we can obtain the numerical predictions of the time and space averaged
breved variables. Therefore, we can compute the breved energy budgets (e.g. P̆, Ĕ, D̆, etc.) as
well as the hatted terms (Ŝ, D̂, P̂, etc.) directly. This is a significant step forward from the work
of Stewart et al. [69] who only compute the hatted energy budget.

2.7 Numerical Results

For fixed Reynolds number R and wavenumber k, solving the eigenvalue problem (2.6.7) using
Chebyshev spectral method, we obtain the corresponding eigenvalues ω (frequency) and eigen-
functions φ̂ . The system is unstable when the imaginary part of frequency ωi > 0 and stable
when ωi < 0. For a given R, wavenumber k that separates stable from unstable is called neu-
trally stable point (i.e. ωi = 0).
In this section, we search for neutrally stable curves in the parameter space spanned by R and k

using a bisection method. In particular, we consider four different slices through the parameter
space (figures 2.2 - 2.5). We also calculate the system’s corresponding average energy budgets
over one period and wavelength for several points on the neutrally stable curves, listed in the
tables 2.1 and 2.2.
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2.7.1 Case with no wall mass or damping

As a baseline case, we show the neutrally stable curves in the parameter space spanned by
Reynolds number R and wavenumber k for tension T = 10, mass m = 0, and damping d = 0,
shown in figure 2.2 (a). These parameter values were previously considered by Stewart et al.

[69].

Figure 2.2: (a) Neutrally stable curves (i.e. ωi = 0) in wavenumber k against Reynolds number
R, for m = 0,T = 10, and d = 0. For low wavenumber k, the system is unstable to TWF, for
large R the system is unstable to TS in a tongue-shape region; (b) Corresponding neutrally stable
curves in wave speed c against Reynolds number R, for m = 0,T = 10 and d = 0.

We identify three neutral points P1-1, P1-2, P1-3 in this figure. For low wavenumber k, the
system is unstable to traveling-wave flutter (TWF), see Davies and Carpenter [22] and Stewart
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et al [66] for more details. For large R the system is unstable to Tollmien-Schlichting wave (TS)
in a tongue-shape region (Stewart et al [66]).
The corresponding wave speed of the neutrally stable perturbations c = ω/k against Reynolds
number is plotted in figure 2.2 (b). The wave speed of TWF wave is much faster than the wave
speed of TS wave, and it tends to a finite value (3/2) as R→ ∞ (Stewart et al. [69]).

2.7.2 Case including wall mass

Figure 2.3: (a) Neutrally stable curves (i.e. ωi = 0), wavenumber k against Reynolds number R

for mass m = 1, tension T = 10, and damping d = 0, the system is unstable to TS in the tongue-
shaped region, and unstable to TWF for lower k. (b) Corresponding neutrally stable curves in
wavespeed c against Reynolds number R, for m = 1,T = 10 and d = 0.
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To assess the change to the neutral curve including wall mass, figure 2.3(a) gives the neutrally
stable curve in parameter space R against wavenumber k for small wall mass m = 1, tension
T = 10 and damping d = 0. Similar to figure 2.2, the system is unstable to TS in the tongue-shape
region for large Reynolds number R, and unstable to TWF for low wavenumber k. However, the
unstable region of TWF is significantly enlarged compared to the baseline case. We identify
five neutrally stable points P2-1, P2-2, P2-3, P2-4 and P2-5, and give the numerical results of
frequency and second order energy budgets over one period of time and wavelength in table
2.1,2.2 below.
Figure 2.3(b) plot the corresponding wave speed against R when m = 1, T = 10 and d = 0.
Similar to the case with no wall mass and damping, the wave speed of TWF is much higher than
the wave speed of TS wave and it tends to 3/2 when R→ ∞.
Figure 2.4 shows the neutrally stable curve in parameter space wall mass m against wavenumber
k for fixed Reynolds number R = 100, tension T = 10 without considering damping, i.e. d = 0,
shown in Figure 2.3. The system is unstable to TWF for low wavenumber and stable for high
wavenumber. We observe that the system eventually becomes short wavelength unstable as
m→∞, as well as that the critical wavenumber kc ∼m but we do not explore this scaling further
here.

Figure 2.4: Neutrally stable curves (i.e. ωi = 0), in parameter space wavenumber k against
wall mass m for fixed R = 100,T = 10, and d = 0. The system is unstable to TWF for low
wavenumber, and stable to higher wavenumber.
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2.7.3 Case including wall mass and damping

Figure 2.5: (a) Neutrally stable curves (i.e. ωi = 0), wavenumber k against Reynolds number
R for mass m = 10, tension T = 10, and damping d = 10, the system is unstable to TS in the
tongue-shaped region, unstable to TWF for lower k, and unstable to SD in loop-shape region;
(b) Corresponding neutrally stable curves in wavespeed c against Reynolds number R for m =

10,T = 10 and d = 10.

Figure 2.5(a) shows the neutrally stable curve in parameter space R against k for wall mass
m = 10, tension T = 10 and damping d = 10. Similar to the previous two figures (figures 2.2
and 2.3), the system is unstable to TWF for low wavenumber k and unstable to TS in the tongue-
shape region for large Reynolds number. However, we also found an additional loop-shaped
neutrally stable curve inside which the system is unstable to Static Divergence (SD). This SD is
destabilized by wall damping consistent with a class A instability. We track the frequency and
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linearized energy budgets over one period of time and wavelength for five neutrally stable points
labels as P4-1, P4-2, P4-3 P4-4 and P4-5 in tables 2.1 and 2.2 below. The corresponding wave
speed against R is plotted in figure 2.5(b). The wave speed of TWF wave is faster than that of
SD wave, as well as the wave speed of TS wave.

2.7.4 Stability of TS, TWF and SD wave

Figure 2.6: (a) TS neutrally stable curves (i.e. ωi = 0), in wavenumber k against R for T =

10,d = 0 and m = 0,1,2; (b) zoom in of (a); (c) TS neutrally stable curves in wavenumber k

against R for m = 1,T = 10 and d = 0,10,30.

In this section, we discuss the stability of TS, TWF and SD wave, respectively. We plot the
neutrally stable curve in parameter space (k,R) for different modes of instability where we
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control the the value of wall mass and damping.
Figure 2.6 considers the neutrally stable curve of the TS wave. Figure 2.6(a) and 2.6(c) show
the neutrally stable curve while we change the wall mass as m = 0,1,2 and the wall damping as
d = 0,10,30, respectively. Figure 2.6(b) gives the zoom in figure of lower branch of TS neutrally
stable curve of figure 2.6(a). The TS wave is slightly destabilised by wall damping (shown in
figure 2.6(c)), which agrees with the observation by Davies & Carpenter [22]. This behavior
indicates a class A instability (Benjamin [2], Landahl [45] and Benjamin [3]). Figure 2.6(a), (b)
show that the TS wave is also mildly destabilized by the wall mass as well.

Figure 2.7: (a) TWF neutrally stable curves (i.e. ωi = 0) in wavenumber k against Reynolds
number R for T = 10,d = 0 and m = 0,1,2; (b) TWF neutrally stable curves in wavenumber k

against R for m = 1,T = 10 and d = 0,1,3.

Figure 2.7 considers the neutral stability curve of TWF mode. Figure 2.7(a) and 2.7(b) plot the
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neutrally stable curve in parameter space (k,R) for wall mass m= 0,1,2 and damping d = 0,1,3,
respectively. The TWF mode is slightly stabilized by wall damping (shown in figure 2.7(b)),
which implies a class B instability (Benjamin [2], Landahl [45] and Benjamin [3]). Similar to
the TS wave, the TWF mode can be destabilised by wall mass (shown in figure 2.7(a)).

Figure 2.8: (a) SD neutrally stable curves (i.e. ωi = 0) in wavenumber k against R for T = 10,d =

10 and m= 8,9,10; (b) SD neutrally stable curves in wavenumber k against R for m= 10,T = 10
and d = 10,11,12.

Figure 2.8 plots the neutrally stable curves of the SD mode when we vary the wall mass as
m = 8,9,10 (shown in figure 2.8(a)) and damping as d = 10,11,12 (shown in figure 2.8(b)).
Figure 2.8(b) shows that the SD mode can be destabilised by damping, hence a class A instability
(Benjamin [2], Landahl [45] and Benjamin [3]). Larger wall mass can weakly destabilize the
SD mode (see figure 2.8(a)).
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2.7.5 Energy budgets on neutrally stable points

In this section, we evaluate the second order energy budget of the system over one period of
time and wavelength, and compute at several of the neutrally stable points in figure 2.2-2.5.
First, we simplify the linearized energy budget. For Ŝ in (2.5.23), we rewrite the second term
using integration by parts as,

Ŝ =
∫ 1

0
U
[
−φ̂yφ̂xy +

(
φ̂xφ̂y

)
y− φ̂yφ̂xy

]
dy,

=

[
U φ̂xφ̂y

]y=1

y=0
−
∫ 1

0

(
Uyφ̂xφ̂y

)
dy−

∫ 1

0
U
(
φ̂

2
y
)

x dy,

as U is independent of x. Applying the boundary condition at U(0) =U(1) = 0 we have,

Ŝ =−
∫ 1

0

(
Uyφ̂xφ̂y

)
dy−

[∫ 1

0

(
U φ̂

2
y
)

dy
]

x
. (2.7.1)

The second term will disappear when averaged over one wavelength.
For Ê in (2.5.21), we apply the boundary conditions (2.4.6, 2.4.7) to obtain

Ê =

[
T η̂t η̂xx−mη̂t η̂tt−dη̂

2
t +

2
R
(6η̂x− φ̂xy)φ̂x +R−1 (2φ̂xφ̂xy + φ̂yφ̂yy− φ̂yφ̂xx

)](y=1)

,

=
[
R−1

(
φ̂yφ̂yy−3φ̂yφ̂xx

)
−dη̂

2
t

](y=1)
+

[
T η̂t η̂x−

2
R

(
6η̂ φ̂x−2φ̂yφ̂x

)](y=1)

x

−
(

T
2

η̂
2
x +

m
2

η̂
2
t

)y=1

t
. (2.7.2)

The last two terms will disappear over one period of time and wavelength.
Substituting the wave-like form (2.6.1) for the hatted variables, and taking an average over both
a period of time and wavelength, the energy budget (2.5.17-2.5.23) reduces to,

¯̂S+ ¯̂D− ¯̂E = 0, (2.7.3)

where,

¯̂S =
∫ 1

0
U
[
(ikφ)∗φyy +(ikφ)φ∗yy

]
dy, (2.7.4)

¯̂D = R−1
∫ 1

0

(
8k2

φyφ
∗
y +2k4

φφ
∗+2φyyφ

∗
yy +2k2

φ
∗
φyy +2k2

φφ
∗
yy
)

dy, (2.7.5)

¯̂E =
[
R−1 (

φ
∗
y φyy +φyφ

∗
yy +3k2

φ
∗
y φ +3k2

φyφ
∗)+2dω

2
ηη
∗]y=1

. (2.7.6)

The energy of the perturbed system is extracted from the mean flow by ¯̂S, ¯̂E (work done by
nonlinear Reynolds stresses and rate of working of fluid stress at the membrane) and consumed
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by ¯̂D (energy loss due to dissipation).
Taking an average over one period of both time and wavelength, then substituting wavelike form
(2.6.2) for all the breve variables, the energy budget (2.5.30-2.5.35) becomes,

¯̂S = ¯̆P− ¯̆E + ¯̆D, (2.7.7)

where

¯̆P =−
∫ 1

0

12
R

φ̆y dy =−12
R

φ̆(1), (2.7.8)

¯̆E =−
(

6
R

φ̆y

)y=1

, (2.7.9)

¯̆D =
∫ 1

0

12
R
(1−2y)φ̆yy dy. (2.7.10)

In other words, the system’s energy budget at O(ε2) can also be expressed as,

¯̆P− ( ¯̂E + ¯̆E)+( ¯̂D+ ¯̆D) = 0. (2.7.11)

Using the numerical results computed from the above eigenvalue problems, we can calculate
the terms in the perturbation energy budgets in equation (2.7.11). In figure 2.9, we display the
Reynolds number R against the second order energy exchange from fluid to membrane Ē =
¯̂E+ ¯̆E on several neutral points (including P2-1, P2-2, P2-3, P2-4 and P2-5) in figure 2.3 (m = 1,

T = 10, d = 0). Figure 2.11 shows the Reynolds number against the energy exchange Ē on
points (including P3-1 - P3-5) picked from figure 2.4 (m = 10, T = 10, d = 10). Figure 2.10 and
2.12 show the zoom in plots of figure 2.9 and 2.11, respectively.
The blue line in figure 2.9 shows the energy exchange Ē on neutrally stable points that separate
TWF unstable points from stable points in parameter spanned by space (R,k), shown in figure
2.3. At low Reynolds number, Ē (net energy exchange to the membrane) is positive (see point
P2-5). As Reynolds number increases, Ē decreases rapidly. For point P2-4 (Reynolds number
R = 57.34), there is almost no energy exchange between fluid and membrane (i.e.Ē = 0). For
neutral points whose Reynolds number is larger than R = 57.34, Ē is negative (see point P2-3).
As we continue increasing Reynolds number, Ē eventually increases but approaches zero for
large R. Hence, this wave is class B by its response to wall damping (figure 2.7(b)), yet the work
done by the fluid on the wall changes sign as the Reynolds number increases.
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Figure 2.9: Energy exchange between fluid and membrane Ē against Reynolds number R on
neutrally stable points in figure 2.3 for m = 1,T = 10, d = 0. Points P2-1 to P2-5 are the
neutrally stable points labeled in figure 2.3.

Figure 2.10: Zoom in plot of figure 2.9.

The magenta tongue shape line in figure 2.10 shows Ē evaluated on neutrally stable points that
separate TS unstable points from stable points shown in figure 2.3. For all these neutral points,
Ē are negative (see points P2-1 and P2-2), which also tend to zero for large Reynolds number.
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Figure 2.11: Energy exchange Ē against Reynolds number R on neutrally stable points in figure
2.4 for m = 10,T = 10, d = 10. Points P3-1 till P3-5 are the neutrally stable points labeled in
figure 2.4.

Figure 2.12: Zoom in plot of figure 2.11.

The blue line in figure 2.11 shows Ē calculated on neutrally stable points that separate TWF
instability from stable points shown in figure 2.4. The green loop line demonstrates the value
of Ē on neutrally stable points which separate SD unstable points from stable points shown in
figure 2.4. For all these neutral points, Ē are all greater than zero (see points P3-1, P3-2 and
P3-3), and decrease significantly when increasing the Reynolds number.
Similar to figure 2.10, the magenta tongue shape line in figure 2.12 gives the values of Ē com-
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puted on neutrally stable points which separate the TS instability from stable points shown in
figure 2.4. Ē are less than zero on all these neutral points (see points P3-4, P3-5), and tend to
zero for large Reynolds number. The table 2.1, 2.2 list the numerical results of perturbed energy
budgets for points labeled in Figure 2.2, 2.3, 2.4 and 2.5. As shown in the table 2.1, the per-
turbation energy budget ¯̂T = ¯̂S+ ¯̂D− ¯̂E = ¯̆P− Ē +( ¯̂D+ ¯̆D) = 0 on neutrally stable points listed
(i.e. Im(ω) = 0), as expected. The perturbation dissipation energy budget ¯̂D on all the neutrally
stable points are always positive as expected. Table 2.2 lists the value of all the breve energy
budgets, Ē and D̄ = ¯̂D+ ¯̆D are the total energy exchanged between the fluid and membrane
and the total energy loss due to dissipation at O(ε2) over one period of time and wavelength,
respectively. This table gives the values of Ē on three neutrally stable points P2-3, P2-4 and
P2-5 labeled in figure 2.3, for neutral point at low Reynolds number P2-5, the energy exchange
from fluid to membrane Ē is positive, while for neutral point at high Reynolds number P2-3, the
energy exchange from fluid to membrane is negative. In between, we found one neutrally stable
point P2-4 that the energy exchange between fluid and membrane is zero.
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Ē
is

th
e

sy
st

em
’s

se
co

nd
or

de
re

ne
rg

y
ex

ch
an

ge
be

tw
ee

n
flu

id
an

d
m

em
br

an
e.

D̄
is

th
e

sy
st

em
’s

se
co

nd
or

de
re

ne
rg

y
lo

ss
du

e
to

di
ss

ip
at

io
n.



CHAPTER 2. FLUID-MEMBRANE MODEL 41

2.8 Discussion

In this chapter, we considered the stability and energetics of a two-dimensional fluid-membrane
model. We considered a simple membrane model, similar to the membrane model considered
by Stewart et al. [69] and Luo & Pedley [51], in which the membrane slopes are assuming to
be sufficiently small and its wall shear stress is considered to be small comparing to the initial
tension. We included the normal viscous stress, the mass and damping of the membrane (2.2.10)
and derived the corresponding fully non-linear energy budgets for this system (2.3.12). One
significant difference with the previous energy derivation (Stewart et al. [69]) is that we divided
the work done by viscous forces into two parts: one part is the work done by viscous stresses
on the membrane (E in equation (2.3.16)); the remaining term is denoted as D (in equation
(2.3.17)) which is the dissipation due to the viscosity of the bulk flow, which is always positive
(i.e. energy is always consumed in the bulk).
We obtained the energy budget of the system by perturbing all variables to second order. Here
the system’s average second order energy budget consists of hatted terms ¯̂E, ¯̂D and ¯̂S which
involve productions of first order variables and the breved terms ¯̆P, ¯̆E and ¯̆D which involve
second order variables only. We solved the (first order) eigenvalue problem numerically. We
then substituted the numerical results for first order variables into the second order governing
equations, and after applying the corresponding boundary conditions (equation 2.4.8 -2.4.12),
we were able to obtain breved variables (second order variables) explicitly. These enabled us
to calculate numerical values for all the terms in the energy budgets over one period of time
and wavelength. This is a improvement over existing work (e.g. Stewart et al. [69]), who only
computed the hatted terms and grouped all the breved terms together into the work done by
nonlinear Reynolds stresses.
We first elucidated the neutrally stable curves in parameter space spanned by wavenumber and
Reynolds number (as well as plotting wavespeed and Reynolds number). Similar to previous
work (Davies & Carpenter [22]) we observed three modes of instabilities (TS, TWF and SD).
One important motivation of this work is to determine if the energy budget can be used to
distinguish different classification of instability (i.e. class A,B and C from Benjamin [3]). Our
computational results suggest that even though TWF mode is classified as class B, the work
done by the fluid on the wall over one period of time and wavelength Ē for TWF changes sign
along the neutral curves: Ē is positive for low Reynolds number and then becomes negative as
Reynolds number increases, eventually tending to zero as Reynolds number becomes infinite.
Moreover, this mechanism of TWF differs slightly to that identified by Davies & Carpenter [22],
who state that TWF is sustained by an irreversible energy transfer from the fluid to the wall. In
addition, for TS, Ē is always negative on neutrally stable points, while for SD, Ē is always
positive on neutrally stable points. However, both TS and SD are termed class A. Hence, the
concept of ‘activation energy’ which is linked to the instability mode classification (Benjamin
[3], Landahl [45], Cairns [17]) is not equivalent to the work done by the fluid on the wall.
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Deducing the equivalence between the energy budget and the ‘activation energy’ is an on-going
area of future work.



Chapter 3

Instability of a finite-length fluid-beam
model

In this chapter we consider the energetics of fluid flow through a finite-length rigid channel,
where one segment of the upper wall is replaced by a plane strained elastic beam subject to
a uniform external pressure. We first give a general description of the model (Sec. 3.1) and
summarise the channel geometry (Sec. 3.2). Then the full governing equations for the fluid
and the elastic beam are derived in Sec. 3.3. We isolate static configurations of the system in
Sec. 3.4. We then take the dot product between the governing equations and the velocity to
obtain the energy budget of the system in Sec. 3.5. We further obtain the steady energy budget
for the system in Sec. 3.6. The numerical method used to solve for the fully nonlinear system is
introduced in Sec. 3.7, and the numerical results are given in Sec. 3.8.

3.1 The model

We consider fluid-filled channel of finite length Lu+L0+Ld and constant width D. The channel
is rigid along most of its length, but one segment of length L0 of the upper wall is replaced by
an elasticated beam. The length of the upstream and downstream rigid segments are Lu and Ld ,
respectively. We use Ω, ∂Ωu, ∂Ωd and ∂Ωb to denote the entire domain, the upstream channel
inlet, the downstream channel outlet, and the deformed elastic beam, respectively. This model
is similar to the system introduced by Pedley [56] and analysed extensively by Cai & Luo [16]
and Luo et al. [48].
We consider a parabolic inlet flow to the channel with flux Q (per unit width on the out-of-plane
direction) and average velocity U = Q/D. Conversely, at the downstream end of the channel we
set the outlet fluid pressure, which is chosen to be zero without loss of generality. The fluid is
assumed to be Newtonian and incompressible with constant density ρ and viscosity µ .

43
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𝑝𝑒

𝑄

𝐿𝑢 𝐿0 𝐿𝑑

𝐷𝑈

Figure 3.1: The fluid-beam model, the channel carries steady Poiseuille flow of flux Q. The
average velocity, density and viscosity of the fluid are U , ρ and µ respectively. The beam is
subjected to an external pressure pe, the extensional and bending stiffness of the beam is EA and
EJ,where E is the Young’s modulus. ρm is the density of the beam.

The elastic beam is modeled using the Kirchhoff law [16] of elastic plates and is subjected to a
uniformed external pressure pe. We denote ρm as the beam density and T as the pre-tensional
axial force in the beam. Further, we denote EA and EJ as the extensional and bending stiffness
of the beam, respectively. We denote the beam thickness as h.

3.2 Geometry of the channel

𝐷

θ
ሻ𝐱𝑏(𝑙, 𝑡

𝐞1

𝐞2

𝑝𝑒

𝑄

𝐴

𝒈𝟏

𝒈𝟐

𝐿𝑢 𝐿𝑑

𝐵

𝑈𝜕𝛺𝑢 𝜕𝛺𝑑

𝐿0
𝑜

Figure 3.2: Sketch of the fluid-beam model in dimensional variables

We establish two coordinate systems (both shown in Figure 3.2). Firstly, g1, g2, g3 are the unit
vectors of the Cartesian coordinate system with g1 aligned along the bottom wall of the channel,
g2 parallel to the channel inlet and g3 is normal to the plane of the channel. Hence, a general
point in the channel can be described using the coordinates x = xg1 + yg2 + zg3, where x, y, ,z
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measure displacement along the unit vectors g1, g2, g3, respectively, from the point on the lower
wall where the upstream rigid section joins to the flexible section.
Conversely, e1, e2, e3 are unit vectors of the current coordinates for the deformed beam, where
e1 is the local tangent to the beam, e2 is the local normal to the beam and e3 is normal to the
plane of the channel (g3 = e3). In what follows, we ignore deflections in the out-of-plane direc-
tion and so consider all vectors as purely two-dimensional. In the absence of fluid loading, we
assume the beam is flat and parallel to the channel wall.
In the beam reference description, we denote an arbitrary point B on the flat beam in the Carte-
sian coordinate as xr(l) = lg1 +Dg2 where 0 < l < L0. After deformation we assume point B

moves to,

xb(l, t) = xb(l, t)g1 + yb(l, t)g2. (3.2.1)

So the displacement of the beam described with respect to the reference coordinates is,

xb(l, t)−xr(l) = (xb(l, t)− l)g1 +(yb(l, t)−D)g2. (3.2.2)

We then can calculate relationship between the coordinate systems in the form,

e1 =
1
λ

∂xb

∂ l
=

1
λ

(
∂xb

∂ l
g1 +

∂yb

∂ l
g2

)
, e2 = e3× e1 =

1
λ

(
−∂yb

∂ l
g1 +

∂xb

∂ l
g2

)
, (3.2.3)

where the principal stretch of the beam λ (l, t) is calculated as,

λ =

((
∂xb

∂ l

)2

+

(
∂yb

∂ l

)2
) 1

2

. (3.2.4)

Rearranging (3.2.3) we can express the channel unit vectors in terms of the current coordinate
system of the beam, in the form

g1 =
1
λ

(
∂xb

∂ l
e1−

∂yb

∂ l
e2

)
, g2 =

1
λ

(
∂yb

∂ l
e1 +

∂xb

∂ l
e2

)
, g3 = e3. (3.2.5)

Therefore, the deflection of the beam xb(l, t) can also be expressed with respect to the unit
vectors of the deformed beam configuration as,

xb =
1
λ

(
xb

∂xb

∂ l
+ yb

∂yb

∂ l

)
e1 +

1
λ

(
∂xb

∂ l
yb−

∂yb

∂ l
xb

)
e2. (3.2.6)

The beam velocity can be expressed as the material time derivative of the beam deflection xb.
In this case we take time derivatives for the beam with respect to the reference description i.e.



CHAPTER 3. INSTABILITY OF A FINITE-LENGTH FLUID-BEAM MODEL 46

holding l fixed, so we have

ub(l, t) =
∂xb(l, t)

∂ t

∣∣∣∣
l
=

∂xb(l, t)
∂ t

∣∣∣∣
l
g1 +

∂yb(l, t)
∂ t

∣∣∣∣
l
g2. (3.2.7)

In this chapter, all time derivatives for beam variables are taken holding l fixed unless otherwise
specified.
Substituting (3.2.5) into (3.2.7), after rearrangement we can obtain the expression ub in terms of
the unit vectors of the current (spatial) description,

ub = ub1e1 +ub2e2 = λ
−1
(

∂xb

∂ l
∂xb

∂ t
+

∂yb

∂ l
∂yb

∂ t

)
e1 +λ

−1
(

∂xb

∂ l
∂yb

∂ t
− ∂yb

∂ l
∂xb

∂ t

)
e2.

(3.2.8)

We denote s to be the arclength along the deformed beam between the fixed point A (Figure 3.2)
and any point on the deformed beam in the current configuration, where

s =
∫ l

0
λ (l′, t)dl′,

∂ s
∂ l

= λ , (3.2.9)

for a differential element of the deformed beam. Therefore, we can express the unit vectors of
the reference coordinates (3.2.5) in the current (spatial) description as,

g1 =
∂x(c)b (s, t)

∂ s
e1−

∂y(c)b (s, t)
∂ s

e2, g2 =
∂y(c)b (s, t)

∂ s
e1 +

∂x(c)b (s, t)
∂ s

e2, (3.2.10)

here we use the superscript (c) represent variables expressed with respect to the current (spatial)
description.
The deformed beam position xb and its velocity ub can also be expressed in current (spatial)
description as,

xb
(c)(s, t) =

(
x(c)b

∂x(c)b
∂ s

+ y(c)b
∂y(c)b

∂ s

)
e1 +

(
y(c)b

∂x(c)b
∂ s
− x(c)b

∂y(c)b
∂ s

)
e2, (3.2.11)

ub
(c)(s, t) = u(c)b1 (s, t)e1 +u(c)b2 (s, t)e2,

=

(
∂x(c)b

∂ s
∂x(c)b

∂ t
+

∂y(c)b
∂ s

∂y(c)b
∂ t

)
e1 +

(
∂x(c)b

∂ s
∂y(c)b

∂ t
−

∂y(c)b
∂ s

∂x(c)b
∂ t

)
e2. (3.2.12)

Here the variables with superscript (c) are the push-forward of the corresponding variables
described in reference (material) description (Holzapfel [34]), i.e. x(c)b and u(c)

b are the push-
forward of xb and ub, respectively. Therefore, identities xb

(c)(s, t)= xb(l, t), ub
(c)(s, t)= ub(l, t)

hold true. Note that time derivatives in equation (3.2.12) are material time derivatives, i.e. hold-
ing l fixed [48].
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At points in the following derivations the current (spatial) description will prove useful, but all
final results for the beam will be presented in the material description justifying our choice of
time derivative.

3.3 Governing equations for coupled system

We discuss the governing equations and non-dimensionalisation for the coupled system in this
section.

3.3.1 Governing equations for the fluid

We consider the incompressible Navier-Stokes equations for the fluid and apply no-slip and no-
penetration boundary conditions on the rigid channel walls. So the governing equations for the
fluid are,

∇ ·u = 0, (x ∈Ω), (3.3.1)

ρ

(
∂u
∂ t

+(u ·∇)u
)
= ∇ ·

(
−pI+µ

(
∇u+∇uT

))
, (x ∈Ω), (3.3.2)

u = 0, (y = 0; y = 1,−Lu < x < 0, L0 < x < L0 +Ld), (3.3.3)

u = ub, (x ∈ ∂Ωb), (3.3.4)

where u= u1g1+u2g2 is the velocity (expressed with respect to the Cartesian coordinate system)
of the fluid, p is the fluid’s pressure and σσσ =−pI+µ

(
∇u+∇uT

)
is the Newtonian fluid stress

tensor. Here I is the identity matrix and the superscript T represents matrix transpose. In the
fluid, time derivatives are taken with respect to the current (Eulerian) configuration for the fluid.

3.3.2 Governing equations for the beam

In this section we focus on deriving the governing equations for the beam by first establishing
conservation of momentum (both linear and angular) and then simplifying using the geometry
relationships of the beam (Sec. 3.2).
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Figure 3.3: Sketch of a small displacement along the beam

We consider an elastic beam as shown in Figure 3.3. We consider a virtual displacement and
establish the equations of conservation of momentum for a differential element of the beam first
in the form (Cai & Luo [16]),

∂

∂ t

(
ρm

∂xb

∂ t
∂ l
)
= ∂F+q∂ s, (3.3.5)

∂

∂ t

(
ρmxb×

∂xb

∂ t
∂ l
)
= ∂M+xb×q∂ s+(xb +∂xb)× (F+∂F)−xb×F, (3.3.6)

where ∂ l, ∂ s and ∂xb are the length, arc-length and the displacement of a differential element
of the beam respectively. In the beam momentum equations (3.3.5, 3.3.6), F, F+ ∂F and M,
M+ ∂M are the force and moment acting on the differential element, q is the force applied to
the beam by the fluid.
In the derivations in the following sections we integrate over the shape of the deformed beam,
parameterized by the arc length s (s ∈ ∂Ωb). However, since we assume all time derivatives are
taken holding l fixed, it is convenient to eventually transform back to the reference (material)
description. In this case, we express the beam equations using reference (material) description
and neglect the higher order ( i.e. the product of two or more than two incremental terms) to
obtain (detailed derivation in appendix A.1),

ρm

λ

(
∂xb

∂ l
∂ 2xb

∂ t2 +
∂yb

∂ l
∂ 2yb

∂ t2

)
=

∂F1

∂ l
−λκF2 +λq1, (0≤ l ≤ L0), (3.3.7)

ρm

λ

(
∂xb

∂ l
∂ 2yb

∂ t2 −
∂yb

∂ l
∂ 2xb

∂ t2

)
=

∂F2

∂ l
+λκF1 +λq2, (0≤ l ≤ L0), (3.3.8)

∂M
∂ l

+λF2 = 0, (0≤ l ≤ L0), (3.3.9)

where F = F1e1 +F2e2, M = Me3 and q = q1e1 +q2e2, and the beam curvature κ is determined
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by,

κ =
1

λ 3

(
∂xb

∂ l
∂ 2yb

∂ l2 −
∂yb

∂ l
∂ 2xb

∂ l2

)
. (3.3.10)

The first two equations (3.3.7) and (3.3.8) follow from linear momentum conservation for a
differential element, while equation (3.3.9) follows from conservation of angular momentum.
For later use, we also introduce the polar angle θ which measures the angle between the tangent
vector to the beam e1 and the unit vector along the channel wall g1, θ = arccos(e1 · g1). Here
the time derivatives are material time derivatives, i.e. holding l fixed.
The distributive force here is the fluid stress on the beam, which we denote as q = σ1e1 +(σ2−
pe)e2, where σ1 and σ2 are the components of the (Newtonian) fluid stress tensor in the tangent
and normal directions, so

σ1 = (−σσσe2) · e1, σ2 = (−σσσe2) · e2. (3.3.11)

According to the Kirchhoff law for elastic plates we can write,

F1 = T +EA(λ −1), M = EJ(λκ−κ0), (3.3.12)

where T is the pre-tensional axial force in the beam and κ0 is the initial curvature of the beam.
In our case, we only consider κ0 = 0. This constitutive law is very similar to the one used by
Luo et al [48], the only difference is the principal stretch λ we introduced in the expression of
angular momentum, which is used to ensure the bending stiffness related beam energy budget
term can be written as a complete time derivative (see Sec. 3.5 below).
We then choose F2 to conserve angular momentum (3.3.9). Substituting the distributive force and
(3.3.12) into (3.3.7), (3.3.8) and (3.3.9), the governing equations of the beam become (detailed
derivation see appendix A.1),

ρm

λ

(
∂xb

∂ l
∂ 2xb

∂ t2 +
∂yb

∂ l
∂ 2yb

∂ t2

)
=EJκ

∂ (λκ)

∂ l
+EA

∂λ

∂ l
+λσ1, (0≤ l ≤ L0), (3.3.13)

ρm

λ

(
∂xb

∂ l
∂ 2yb

∂ t2 −
∂yb

∂ l
∂ 2xb

∂ t2

)
=−EJ

∂

∂ l

(
1
λ

∂ (λκ)

∂ l

)
+EAλκ(λ −1)+λκT

+λσ2−λ pe, (0≤ l ≤ L0). (3.3.14)

Equation (3.3.13) is the momentum balance in the tangent direction to the beam and (3.3.14) is
the momentum in the normal direction to the beam.
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3.3.3 Dimensionless governing equations for the coupled system

We introduce dimensionless variables (marked with tilde) using the following scalings based on
the channel width, the steady inlet flow and the inertial pressure scale (where the outlet pressure
has been set to zero),

p̃ =
pD2

ρQ2 , x̃ =
x
D
, ũ =

uD
Q

, σ̃σσ =
σσσD2

ρQ2 , t̃ =
tQ
D2 , l̃ =

l
D
, x̃b =

xb

D
,

ũb =
ubD
Q

, κ̃ = κD. (3.3.15)

Using these scalings, we also obtain the dimensionless parameters (marked with tilde),

R̃ =
Qρ

µ
, L̃u =

Lu

D
, L̃d =

Ld

D
, L̃0 =

L0

D
, T̃ =

T D
ρQ2 , ρ̃m =

ρm

Dρ
,

c̃λ =
(EA)D

ρQ2 , c̃κ =
EJ

ρQ2D
, (3.3.16)

where R̃ is the Reynolds number, L̃u, L̃d and L̃0 are the dimensionless lenghts of upstream,
downstream and collapsible segments of the channel, T̃ is the dimensionless wall tension, ρ̃m is
the dimensionless beam density, c̃λ is the dimensionless extensional stiffness, c̃κ is the dimen-
sionless bending stiffness.
Therefore, we can write out the dimensionless governing equations for the coupled system in
the form (dropping tildes),

∇ ·u = 0, (x ∈Ω), (3.3.17)

∂u
∂ t

+(u ·∇)u = ∇ ·σσσ = ∇ ·
(
−pI+R−1 (

∇u+∇uT)) , (x ∈Ω), (3.3.18)

u = 0, (y = 0; y = 1,−Lu < x < 0, L0 < x < L0 +Ld), (3.3.19)

u = ub
(c). (x ∈ ∂Ωb), (3.3.20)∫ L

0
u1 dy = 1, (u ∈ ∂Ωu), (3.3.21)

σσσn = 0, (x ∈ ∂Ωd), (3.3.22)

∂xb

∂ l
= λ cos(θ), (0≤ l ≤ L0), (3.3.23)

∂yb

∂ l
= λ sin(θ), (0≤ l ≤ L0), (3.3.24)

∂θ

∂ l
= λκ, (0≤ l ≤ L0), (3.3.25)

ρm

λ

(
∂xb

∂ l
∂ 2xb

∂ t2 +
∂yb

∂ l
∂ 2yb

∂ t2

)
= cκκ

∂ (λκ)

∂ l
+ cλ

∂λ

∂ l
+λσ1, (0≤ l ≤ L0), (3.3.26)
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ρm

λ

(
∂xb

∂ l
∂ 2yb

∂ t2 −
∂yb

∂ l
∂ 2xb

∂ t2

)
=−cκ

∂

∂ l

(
1
λ

∂ (λκ)

∂ l

)
+ cλ λκ(λ −1)+λκT,

+λσ2−λ pe, (0≤ l ≤ L0), (3.3.27)

ub = 0, (l = 0,L0), (3.3.28)

∂θ

∂ t
= 0, (l = 0,L0). (3.3.29)

Detailed derivation of equations (3.3.23-3.3.25) are in appendix A.2.
In order to use the energy exchange between the beam and the fluid in later section, we write the
beam governing equations into the current (spatial) description in the form,

ρm

λ (c)

(
∂x(c)b

∂ s
∂ 2x(c)b

∂ t2 +
∂y(c)b

∂ s
∂ 2y(c)b

∂ t2

)
= cκκ

(c)
∂

(
λ (c)κ(c)

)
∂ s

+ cλ

∂λ (c)

∂ s
+σ1,

(s ∈ ∂Ωb), (3.3.30)

ρm

λ (c)

(
∂x(c)b

∂ s
∂ 2y(c)b

∂ t2 −
∂y(c)b

∂ s
∂ 2x(c)b

∂ t2

)
=−cκ

∂ 2(λ (c)κ(c))

∂ s2 + cλ κ
(c)(λ (c)−1)

+κ
(c)T +σ2− pe, (s ∈ ∂Ωb). (3.3.31)

For later use, we also rewrite the beam equations (3.3.30, 3.3.31) in vector form and dot with
the beam velocity to obtain the beam energy equation,

(σσσn) ·ub =− (σ1e1 +σ2e2) ·
(

u(c)b1 e1 +u(c)b2 e2

)
,

=− ρm

λ (c)

(
∂x(c)b

∂ s
∂ 2x(c)b

∂ t2 +
∂y(c)b

∂ s
∂ 2y(c)b

∂ t2

)
u(c)b1

− ρm

λ (c)

(
∂x(c)b

∂ s
∂ 2y(c)b

∂ t2 −
∂y(c)b

∂ s
∂ 2x(c)b

∂ t2

)
u(c)b2

+ cκ

κ
(c)

∂

(
λ (c)κ(c)

)
∂ s

u(c)b1 −
∂ 2(λ (c)κ(c))

∂ s2 u(c)b2

+(κ
(c)T − pe

)
u(c)b2

+ cλ

[
∂λ (c)

∂ s
u(c)b1 +κ

(c)(λ (c)−1)u(c)b2

]
, (xb

(c) ∈ ∂Ωb). (3.3.32)

This final system is very similar to that derived by Luo et. al. [48], the only difference is due to
the different Kirchhoff constitutive law (3.3.12) employed here.
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3.4 Steady governing equations for the system

For some parameter values, this coupled fluid-beam system admits a steady solution (see for
example Luo & Pedley [49], Luo et. al. [48]). We denote the steady flow through the channel
with velocity U = U1g1 +U2g2 with corresponding pressure P and steady Newtonian stress
tensor ΣΣΣ =−PI+R−1 (∇U+∇UT). The curvature and stretch of the steady beam are denoted
K and Λ, respectively and the tangent and normal unit vectors to the steady beam are denoted
N and T, respectively. We say ∂ Ω̄b represents the deformed beam in the static state, while Ω̄

denotes the whole domain in the static state. In the steady state, the governing equations for the
system take the form,

∇ ·U = 0, (x ∈ Ω̄), (3.4.1)

(U ·∇)U = ∇ ·
(
−PI+R−1 (

∇U+∇UT)) , (x ∈ Ω̄), (3.4.2)

U = 0, (y = 0; y = 1,−Lu < x < 0, L0 < x < L0 +Ld), (3.4.3)

U = 0, (x ∈ ∂ Ω̄b), (3.4.4)

cκK
∂ (ΛK)

∂ l
+ cλ

∂Λ

∂ l
+Λ(ΣΣΣN) ·T = 0, (0≤ l ≤ L0), (3.4.5)

− cκ

∂

∂ l

(
1
Λ

∂ (ΛK)

∂ l

)
+ cλ ΛK(Λ−1)+ΛKT +Λ(ΣΣΣN) ·N−Λpe = 0,

(0≤ l ≤ L0), (3.4.6)

∂Θ

∂ t
= 0, (l = 0,L0). (3.4.7)

here all the variables are independent of time, i.e. U = U(x,y),P = P(x,y),Λ = Λ(l),K = K(l).

3.5 Fully non-linear energy budgets

In previous studies of collapsible channel flow, it was found that energy budget of the system is a
useful method to quantify the mechanisms of self-excited oscillations (e.g. Jensen & Heil [42],
Stewart et al [68]). To consider the energy budget, we consider the dot product of the fluid
velocity with the momentum equations of the fluid (3.3.18) to obtain the energy equation in the
form (Schmid & Henningson [62]),

∂u
∂ t
·u+((u ·∇)u) ·u = (∇ ·σσσ) ·u =

[
∇ ·
(
−pI+R−1 (

∇u+∇uT))] ·u,(x ∈Ω). (3.5.1)

As the fluid is incompressible, we can rearrange the above fluid energy equation to obtain the
simplified form (detailed derivation see Sec. A.3),
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1
2

∂ (u ·u)
∂ t

+
1
2

∇ · ((u ·u)u) =−∇ · (pu)+R−1 [
∇ ·
(
(∇u+∇uT)u

)]
−R−1 [Tr

(
(∇u+∇uT)∇u

)]
, (x ∈Ω). (3.5.2)

We integrate (3.5.2) over the domain Ω to get the energy budget of the system,

∫
Ω

1
2

∂ (u ·u)
∂ t

dA︸ ︷︷ ︸
I

+
∫

Ω

[
1
2

∇ · ((u ·u)u)
]

dA︸ ︷︷ ︸
II

=
∫

Ω

[−∇ · (pu)] dA︸ ︷︷ ︸
III

+
∫

Ω

R−1 [
∇ ·
(
(∇u+∇uT)u

)
−Tr

(
(∇u+∇uT)∇u

)]
dA.︸ ︷︷ ︸

IV

(3.5.3)

We label these four terms I− IV as above and consider each in turn.
By the Reynolds transport theorem, term I becomes,

I =
1
2

∂

∂ t

∫
Ω

(u ·u)dA− 1
2

∫
∂Ω

(u ·u)(v ·n)ds

=
∂

∂ t

∫
Ω

(
1
2

u ·u
)

dA︸ ︷︷ ︸
K f

−
∫

∂Ωb

1
2
(u ·u)(u ·n)ds, (3.5.4)

where v and n are the velocity and the normal unit vector of the boundary ∂Ω, respectively. On
the inlet and outlet boundary, v = 0, while on the elastic beam v = u(c)

b = u (3.3.20). We denote
the first term as K f , the rate of working of kinetic energy, while the second term cancels below.
Using the divergence theorem, we can write term II in the form,

II =
1
2

∫
∂Ω

(u ·u)(u ·n) ds =
[∫ 1

0

1
2
(u ·u)(u ·n) dy

]x=L0+Ld

x=−Lu︸ ︷︷ ︸
Ff

+
1
2

∫
∂Ωb

(u ·u)(u ·n) ds.

(3.5.5)

We denote the first term as Ff , the net kinetic energy flux extracted between the channel ends.
Note that the second term on the right hand side of equation (3.5.5) cancels identically with
equation (3.5.4) when we compute the sum of I + II.
By the divergence theorem, term III can be written,

III =
∫

∂Ω

(
− pu ·n

)
ds =

[∫ 1

0
(−pu ·n) dy

]x=L0+Ld

x=−Lu︸ ︷︷ ︸
Pf

+
∫

∂Ωb

(
− pu ·n

)
ds. (3.5.6)
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We denote the first term as Pf , the rate of working of pressure force at the channel ends.
Again using the divergence theorem, term IV can be written as,

IV = R−1
∫

∂Ωb

[((
∇u+∇uT)u

)
·n
]

ds−R−1
∫

Ω

Tr
((

∇u+∇uT)
∇u
)

dA︸ ︷︷ ︸
D f

, (3.5.7)

assuming that the inlet and outlet flows are parallel to the rigid wall (parallel flow assumption).
We denote the second term as D f , the energy loss in the bulk due to fluid viscosity.
We gather the remaining terms (from (3.5.6) and (3.5.7)) evolved on the beam and define E f as
the work done by fluid stresses on the beam in the form,

E f =
∫

∂Ωb

(
− pu ·n

)
ds+R−1

∫
∂Ωb

((
∇u+∇uT)u ·n

)
ds =

∫
∂Ωb

[(σσσu) ·n] ds. (3.5.8)

It follows that we can reverse the position of u and n in (3.5.8) since σσσ is symmetric in the form,

E f =
∫

∂Ωb

[(σσσn) ·u] ds. (3.5.9)

Gathering all the terms from (3.5.3) together, the total energy budget of the system can be written
as,

K f +Ff −E f −Pf +D f = 0, (3.5.10)

where,

K f =
∂

∂ t

∫
Ω

(
1
2

u ·u
)

dA, (3.5.11)

Ff =

[∫ 1

0

1
2
(u ·u)(u ·n) dy

]x=L0+Ld

x=−Lu

, (3.5.12)

E f =
∫

∂Ωb

[(σσσn) ·u] ds, (3.5.13)

Pf =

[∫ 1

0
(−pu ·n) dy

]x=L0+Ld

x=−Lu

, (3.5.14)

D f = R−1
∫

Ω

Tr
((

∇u+∇uT)
∇u
)

dA. (3.5.15)

Here, K f is the rate of working of kinetic energy, Ff is the net kinetic energy flux extracted
between the channel ends, E f is the rate of working of fluid stress on the beam, Pf is the rate of
working of pressure force at the channel ends and D f is the energy loss due to viscosity. This
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dissipation energy is non-negative, since D f can be expressed as

D f = R−1
∫

Ω

[
2
(

∂u1

∂x

)2

+2
(

∂u2

∂y

)2

+

(
∂u1

∂y
+

∂u2

∂x

)2
]

dA. (3.5.16)

This formulation represents an improvement on the energy budget presented by Stewart et. al.

[66], where the dissipation term they derived included part of the work done by viscous forces
on the wall and so could take either sign depending on the parameters.
To fully evaluate E f we substitute the beam energy equation (3.3.32) and boundary condition
(3.3.20) to obtain,

E f =
∫

∂Ωb

[(σσσn) ·u] ds =
∫

∂Ωb

[
(σσσn) ·u(c)

b

]
ds,

=−
∫

∂Ωb

ρm

λ (c)

(
∂x(c)b

∂ s
∂ 2x(c)b

∂ t2 +
∂y(c)b

∂ s
∂ 2y(c)b

∂ t2

)
u(c)b1 ds︸ ︷︷ ︸

I

−
∫

∂Ωb

ρm

λ (c)

(
∂x(c)b

∂ s
∂ 2y(c)b

∂ t2 −
∂y(c)b

∂ s
∂ 2x(c)b

∂ t2

)
u(c)b2 ds︸ ︷︷ ︸

I

+
∫

∂Ωb

cκ

κ
(c)

∂

(
λ (c)κ(c)

)
∂ s

u(c)b1 −
∂ 2(λ (c)κ(c))

∂ s2 u(c)b2

 ds

︸ ︷︷ ︸
II

+
∫

∂Ωb

[
cλ

(
∂λ (c)

∂ s
u(c)b1 +κ

(c)(λ (c)−1)u(c)b2

)
+κ

(c)Tu(c)b2

]
ds︸ ︷︷ ︸

III

−
∫

∂Ωb

(
peu(c)b2

)
ds.︸ ︷︷ ︸

IV

(3.5.17)

We label the above four terms I− IV and consider them in turn.
For I, by rewriting the terms in vector form we obtain,

I =
∫

∂Ωb

ρm

λ (c)

(
∂x(c)b

∂ s
∂ 2x(c)b

∂ t2 +
∂y(c)b

∂ s
∂ 2y(c)b

∂ t2

)(
e1 ·u

(c)
b

)
ds

+
∫

∂Ωb

ρm

λ (c)

(
∂x(c)b

∂ s
∂ 2y(c)b

∂ t2 −
∂y(c)b

∂ s
∂ 2x(c)b

∂ t2

)(
e2 ·u

(c)
b

)
ds

=
∫

∂Ωb

ρm

λ (c)

[
∂ 2x(c)b

∂ t2

(
∂x(c)b

∂ s
e1−

∂y(c)b
∂ s

e2

)
+

∂ 2y(c)b
∂ t2

(
∂y(c)b

∂ s
e1 +

∂x(c)b
∂ s

e2

)]
·u(c)

b ds.

(3.5.18)
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We then change the variables back to reference (material) description since all time derivatives
are taken holding l fixed. By applying x(c)b = xb, u(c)

b = ub and substituting the two equations in
(3.2.10) for the unit vectors e1 and e2, we obtain,

I =
∫ L

0

[
ρm

(
∂ 2xb

∂ t2 g1 +
∂ 2xb

∂ t2 g2

)
·ub

]
dl =

∫ L

0

(
ρm

∂ub

∂ t
·ub

)
dl,

=
∂

∂ t

∫ L

0

(
ρm

2
ub ·ub

)
dl︸ ︷︷ ︸

Kb

. (3.5.19)

We denote the final form of I as Kb, the rate of working of kinetic energy in the beam.
For terms II, III we need to use the following identities. In appendix A.4 we derive the time rate
of change of the principal stretch λ and the angle θ in the spatial (current) description in the
form,

∂λ (c)

∂ t
= λ

(c)∂u(c)b1
∂ s
−λ

(c)
κ
(c)u(c)b2 , (s ∈ ∂Ωb), (3.5.20)

∂θ (c)

∂ t
=

∂u(c)b2
∂ s

+κ
(c)u(c)b1 , (s ∈ ∂Ωb). (3.5.21)

In appendix A.2 we relate the gradient of the angle θ to the beam curvature in the material
(reference) description in the form,

∂θ

∂ l
= λκ, (0≤ l ≤ L0). (3.5.22)

To manipulate II, we use integration by parts for the second term to obtain,

II =
∫

∂Ωb

(
cκκ

(c)∂ (λ (c)κ(c))

∂ s
u(c)b1

)
ds−

[
cκ

∂ (λ (c)κ(c))

∂ s
u(c)b2

]S0

0

+
∫

∂Ωb

(
cκ

∂ (λ (c)κ(c))

∂ s
∂u(c)b2

∂ s

)
ds, (3.5.23)

where S0 is the total arc-length of the deformed beam. The second term cancels due to the
boundary conditions (3.3.28). Hence, using (3.5.21) we obtain,

II =
∫

∂Ωb

(
cκκ

(c)∂ (λ (c)κ(c))

∂ s
u(c)b1

)
ds+

∫
∂Ωb

[
cκ

∂ (λ (c)κ(c))

∂ s

(
∂θ (c)

∂ t
−κu(c)b1

)]
ds

=
∫

∂Ωb

(
cκ

∂ (λ (c)κ(c))

∂ s
∂θ (c)

∂ t

)
ds; (3.5.24)
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integrating by parts again we obtain,

II =

[
cκλ

(c)
κ
(c)∂θ (c)

∂ t

]S0

0

−
∫

∂Ωb

[
cκλ

(c)
κ
(c) ∂

∂ s

(
∂θ (c)

∂ t

)]
ds. (3.5.25)

The first term disappears due to the boundary condition (3.3.29). Since time derivatives are
measured with l held fixed, we transform the remaining formula to the reference (material)
description to write as a complete time derivative,

II =−
∫ L0

0

[
cκλκ

∂

∂ l

(
∂θ

∂ t

)]
dl =−

∫ L0

0

[
cκλκ

∂

∂ t

(
∂θ

∂ l

)]
dl. (3.5.26)

We apply (3.5.22) to the second term to obtain,

II =−
∫ L0

0

[
cκλκ

∂

∂ t
(λκ)

]
dl =− ∂

∂ t

∫ L0

0

[cκ

2
(λκ)2

]
dl︸ ︷︷ ︸

Uκ

, (3.5.27)

where we denote the final form of II as Uκ , the rate of working of bending stresses.
For III, in the same manner, we integrate by parts to obtain,

III =
∫

∂Ωb

(
cλ κ

(c)(λ (c)−1)u(c)b2 +κ
(c)Tu(c)b2

)
ds+

[
cλ λ

(c)u(c)b1

]S0

0

−
∫

∂Ωb

(
cλ λ

(c)∂u(c)b1
∂ s

)
ds, (3.5.28)

where the second term disappears due to the boundary condition (3.3.28), and S0 is the arc-length
of the deformed beam. Using (3.5.20) we can write,

III =
∫

∂Ωb

(
cλ κ

(c)(λ (c)−1)u(c)b2 +κ
(c)Tu(c)b2

)
ds−

∫
∂Ωb

cλ λ
(c)

(
1

λ (c)

∂λ (c)

∂ t
+κu(c)b2

)
ds

=−
∫

∂Ωb

(
cλ

∂λ (c)

∂ t

)
ds−

∫
∂Ωb

(
(cλ −T )κ(c)u(c)b2

)
ds. (3.5.29)

Using (3.5.20) again for the second term we have,

III =
∫

∂Ωb

(
−cλ

∂λ (c)

∂ t

)
ds+

∫
∂Ωb

[
−(cλ −T )

(
∂u(c)b1

∂ s
−
(

λ
(c)
)−1 ∂λ (c)

∂ t

)]
ds

=

[
− (cλ −T )u(c)b1

]S0

0

−
∫

∂Ωb

[
cλ

(
1−
(

λ
(c)
)−1

)
+T

(
λ
(c)
)−1

]
∂λ (c)

∂ t
ds, (3.5.30)
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the first term cancels due to the boundary condition (3.3.28) and we transform the second term
into the reference (material) description to obtain,

III =−
∫ L0

0

(
T + cλ (λ −1)

)
∂λ

∂ t
dl =−

∫ L0

0

(
T + cλ (λ −1)

)
∂ (λ −1)

∂ t
dl,

=− ∂

∂ t

∫ L0

0

[
T (λ −1)+ cλ

(λ −1)2

2

]
dl︸ ︷︷ ︸

Uλ

. (3.5.31)

Here, we denote the remaining term in III as Uλ , the rate of working of extensional stresses in
the beam.
For IV , we change to the reference (material) description and substitute expression (3.2.8) to
obtain,

IV =
∫

∂Ωb

(
peu(c)b2

)
ds =

∫ L0

0
(λ peub2) dl =

∫ L0

0
pe

(
ub · e2

)
λ dl︸ ︷︷ ︸

Pe

; (3.5.32)

we denote the remaining term in IV as Pe, the rate of working of external pressure on the beam.
Hence, the rate of working of fluid stress on the beam E f can be written as,

E f =−Kb−Uκ −Uλ −Pe, (3.5.33)

where,

Kb =
∂

∂ t

∫ L0

0

(
ρm

2
ub ·ub

)
dl, (3.5.34)

Uκ =
∂

∂ t

∫ L0

0

[cκ

2
(λκ)2

]
dl, (3.5.35)

Uλ =
∂

∂ t

∫ L0

0

[
T (λ −1)+ cλ

(λ −1)2

2

]
dl, (3.5.36)

Pe =
∫ L0

0
pe

(
ub · e2

)
λ dl. (3.5.37)

Here Kb is the rate of working of kinetic energy of beam, Uκ is the rate of working of bending
stresses, Uλ is the rate of working of extensional stresses and Pe is the rate of working of external
pressure. Substituting (3.5.33) into (3.5.10), we obtain the fully non-linear energy budget,

K f +Ff −Pf +D f +Kb +Uκ +Uλ +Pe = 0, (3.5.38)

where,
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K f =
∂

∂ t

∫
Ω

(
1
2

u ·u
)

dA, (3.5.39)

Ff =

[∫ 1

0

1
2
(u ·u)(u ·n) dy

]x=L0+Ld

x=−Lu

, (3.5.40)

Pf =

[∫ 1

0
(−pu ·n) dy

]x=L0+Ld

x=−Lu

, (3.5.41)

D f = R−1
∫

Ω

Tr
((

∇u+∇uT)
∇u
)

dA, (3.5.42)

Kb =
∂

∂ t

∫ L0

0

(
ρm

2
ub ·ub

)
dl, (3.5.43)

Uκ =
∂

∂ t

∫ L0

0

[cκ

2
(λκ)2

]
dl, (3.5.44)

Uλ =
∂

∂ t

∫ L0

0

[
T (λ −1)+ cλ

(λ −1)2

2

]
dl, (3.5.45)

Pe =
∫ L0

0
pe

(
ub · e2

)
λ dl. (3.5.46)

We will compute the terms in (3.5.38) below to distinguish various models of self-excited oscil-
lation.

3.6 Steady energy budgets

For the static state, all variables are independent of time (detailed in Sec. 3.4). So the system
energy budget K f , Kb, Uκ and Uλ vanish. As the beam velocity in the static state is zero, we also
have Pe = 0. Therefore, the energy budget for the steady system can be expressed simply as,

F(s)
f −P(s)

f +D(s)
f = 0, (3.6.1)

where,

F(s)
f =

[∫ 1

0

(
1
2
(U ·U)(U ·N)

)
dy
]x=L0+Ld

x=−Lu

, (3.6.2)

P(s)
f =

[∫ 1

0
(−PU ·N) dy

]x=L0+Ld

x=−Lu

, (3.6.3)

D(s)
f = R−1

∫
Ω̄

Tr
((

∇U+∇UT)
∇U
)

dA. (3.6.4)

Here we denote the energy budget with superscript (s) as the energy budget in the static state,
i.e. F(s)

f is the net kinetic energy flux extracted between the channel ends in the steady state, P(s)
f

is the rate of working of the steady pressure force at the channel inlet and D(s)
f is the energy loss
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due to viscosity in the steady flow.
In analysing self-excited oscillations, it is useful to consider the excess energy terms due to these
oscillations (i.e. subtracting the steady component), where we compute as,

Fe = Ff −F(s)
f , Pe = Pf −P(s)

f , De = D f −D(s)
f . (3.6.5)

These excess energies are computed in later Sec.3.8.4.

3.7 Numerical method

In this section, we describe the numerical methods used to solve the coupled beam-fluid system
using the finite element method. We first describe the adaptive mesh we use for this system and
then give a detailed explanation of numerical methods we adopt to solve the fully non-linear
system and construct its energy budget.

3.7.1 Mesh

A B C

Figure 3.4: Adaptive mesh for beam-fluid system

We divide the fluid domain into three sections, shown in figure 3.4. The sections under rigid wall
A, C, and section under elastic beam B, as described by Luo & Pedley [50], Luo et al. [48]).
We adopt an adaptive mesh in section B since the beam is deformable, while we use fixed mesh
for section A and C. For sections A and C, the flow is described using a Eulerian description,
whereas the flow is described using an Arbitrary Lagrangian-Eulerian (ALE) method [23] for
section B. The element locations in these subdomains are linked to the elements of the bound-
aries (particularly inlet, outlet and elastic boundaries), so that the elements along the boundaries
contain three nodes.
Across the elastic section (section B), we employ numerical spines, as shown in figure 3.4. We
seed nodes along the rigid wall and connect these to nodes on the beam by straight lines. These
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straight lines are approximately equally spaced initially and cannot cross. Element nodes are
then seeded along these spines covering the entirety of region B in a uniform manner. Each
spine can rotate around its fixed node on the rigid wall, all the nodes along each spine can move
with this spine as the elastic beam is deformed. This allows the mesh to adapt during deforma-
tion of the beam.
Taking spine k as an example, in the initial state, spine k is formed by connecting node on the
undeformed beam (ζ k

b ,η
k
b)

T with fixed node xk
w = (xk

w,y
k
w)

T on the rigid lower wall (see figure
3.4). Node i on spine k is located in (ζ k

i ,η
k
i )

T. After deformation, the node on elastic beam
(ζ k

b ,η
k
b)

T moves to xk
b = (xk

b,y
k
b)

T, while node i moves to xk
i = (xk

i ,y
k
i )

T. Since the relative po-
sition of each node on spine k remains the same, we can express the position of node i in the
deformed state as,

xk
i = xk

w +ω
k
i

(
xk

b− xk
w

)
, yk

i = yk
w +ω

k
i

(
yk

b− yk
w

)
, (3.7.1)

where ωk
i is a fixed scale factor defined as,

ω
k
i =

√(
ζ k

i − xk
w
)2

+
(
ηk

i − yk
w
)2√(

ζ k
b − xk

w
)2

+
(
ηk

b − yk
w
)2
. (3.7.2)

3.7.2 Time derivatives

The time derivatives in the system governing equations (3.3.17-3.3.29) are time derivatives taken
holding the node position fixed (i.e. Eulerian time derivatives). However, nodes in section B are
constrained to move as the elastic beam is moving. Therefore, we apply an ALE method to
shift the Eulerian time derivatives in the system governing equations into time derivatives taken
following a moving nodes along these spines, in the form

δ

δ t
=

∂

∂ t
+

dx
dt
·∇, (3.7.3)

here δ/δ t denotes the time derivative following a moving node, ∂/∂ t denotes the Eulerian time
derivative, x = (x,y)T represents the node position. Taking the position of ith node (3.7.1) on
spine k as an example, dxk

i /dt can be written as

dxk
i

dt
= ω

k
i

dxk
b

dt
, (3.7.4)
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Therefore, the time derivative following a moving node evaluated on ith node in the ALE method
can be written as

δ

δ t
=

∂

∂ t
+ω

k
i

dxk
b

dt
·∇. (3.7.5)

3.7.3 Numerical methods for fully non-linear governing equations

Figure 3.5: Six nodes triangular element in local coordinate (Rast [58]).

The weighted residual method is used to discretize the system governing equations (3.3.17-
3.3.29). We use 6-node triangular elements with second order shape functions for components
of fluid u1 and u2, and linear shape functions for the fluid pressure p. The corresponding shape
functions for beam variables xb,yb,θ ,λ and κ are chosen as second order shape functions eval-
uated on 3-node beam elements (Huyakorn et al. [36]). Each triangular element maps from
Cartesian coordinates (x,y)T to local (ζ ,η)T coordinates in the element, shown in figure 3.5
(Rast [58]). So we have,

u1 =
i=6

∑
i=1

u1iNi(ζ ,η), u2 =
i=6

∑
i=1

u2iNi(ζ ,η), p =
i=3

∑
i=1

piLi(ζ ,η),
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x =
i=6

∑
i=1

xi(xb)Ni(ζ ,η), y =
i=6

∑
i=1

yi(yb)Ni(ζ ,η),

xb =
i=3

∑
i=1

xbiNi(s), yb =
i=3

∑
i=1

ybiNi(s), θ =
i=3

∑
i=1

θiNi(s),

λ =
i=3

∑
i=1

λiNi(s), κ =
i=3

∑
i=1

κiNi(s), (3.7.6)

where s is the deformed coordinate along the beam, Ni is the 6-node quadratic shape function, Li

is the linear shape function, while Ni(s) is the shape function evaluated on 3-node beam element.
Therefore, nodal velocities are evaluated at all nodes of each element whereas pressure is evalu-
ated only at 3 nodes of each element. The coordinate position (x,y)T in section B depends on the
moving beam. From equations (3.7.6) the Jacobian matrix J of the coordinate transformation
for elements under the moving beam (section B) take the form,

J =
∂ (x,y)
∂ (ζ ,η)

=

(
∂x/∂ζ ∂y/∂ζ

∂x/∂η ∂y/∂η

)
. (3.7.7)

In addition, the linear shape functions Li is defined as

Li =
Ai

A
(i = 1,2,3), A = A1 +A2 +A3, (3.7.8)

where Ai and A represent the area of triangle in figure 3.5. The second order shape function can
be expressed as (details see Zienkiewicz [79]),

N1 = L1(2L1−1), N2 = L2(2L2−1), N3 = L3(2L3−1),

N4 = 4L1L2, N5 = 4L2L3, N6 = 4L1L3. (3.7.9)

The above shape functions are non-zero only within each element and have the characteristics
that at each node i the shape function is

N j(xi,yi) = δi j, L j(xi,yi) = δi j, (3.7.10)

here δi j is Kronecker delta function; at each node in an element

i=6

∑
i=1

Ni(ζ ,η) = 1,
i=3

∑
i=1

Li(ζ ,η) = 1. (3.7.11)

The weighted residuals method is used to discretize the system to determine the nodal values of
variables. Multiplying the system governing equations (3.3.17-3.3.29) with shape functions and
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then integrate over the domain, we obtain the discretized matrix equation as (identical to [48]),

M
dU′

dt
+K(U′)−F = R = 0, (3.7.12)

here M is the mass matrix, K(U′) is the stiffness matrix, and F is the external force vector. The
vector U′ = (u1i, pi,u2i,xbi,ybi,θi,λi,κi)

T is the global vector of unknowns. Finally R is the
residual vector, we have

R = (Rc,Rx,Ry,Rex,Rey,Reθ ,Reλ ,Reκ)
T; (3.7.13)

we denote Rc,Rx,Ry as residuals from the continuity equation (3.3.17) and the x and y compo-
nents of the fluid momentum equations (3.3.18), respectively. We denote Rex,Rey,Reθ ,Reλ and
Reκ as the residuals to the beam position xb and yb (3.3.23) (3.3.24), the beam angle θ related
equation (3.3.25), the beam momentum equation (3.3.26) in the tangential direction, the beam
momentum equation (3.3.27) in the normal direction, respectively.
We use different weighting functions when discretizing the system governing equations. For
fluid residuals Rx and Ry we choose the weighting function Nl , whereas the weighting function Lk

is chosen for Rc. The weighting function dNl/dl is chosen for beam residuals Rex,Rey,Reθ ,Reλ

and the weighting function Nl is chosen for Reκ .
For each element we can expand the residual Rc choosing Lk as the weighting function,

Rk
c =

i=6

∑
i=1

u1i

∫ ∫
∂Ni

∂x
Lk dxdy+

i=6

∑
i=1

u2i

∫ ∫
∂Ni

∂y
Lk dxdy = 0. (3.7.14)

Here k = 1,2,3, the same number as that of the pressure unknowns. The transformation of
derivatives of shape functions with respect to global coordinates x and y to local coordinates ζ

and η takes the form,

∂Ni

∂x
=

1
|J|

j=6

∑
j=1

y jAi j,
∂Ni

∂y
=

1
|J|

j=6

∑
j=1

x jA ji, (3.7.15)

here | · | represents the determinant of a matrix and the symbol Ai j is defined as

Ai j =−A ji =
∂Ni

∂ζ

∂N j

∂η
− ∂Ni

∂η

∂N j

∂ζ
; (3.7.16)

The integration transform to the local coordinate as∫ ∫
dxdy =

∫ ∫
|J|dζ dη . (3.7.17)
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For each element we can expand Rx using (3.7.6), the residual using Nl as weighting function to
write in the form,

Rl
x =

i=6

∑
i=1

δu1i

δ t

∫ ∫
NiNl dxdy−

k=3

∑
k=1

i=6

∑
i=1

j=6

∑
j=1

u1iω
k
j
dxk

b
dt

∫ ∫
∂Ni

∂x
N jNl dxdy

−
k=3

∑
k=1

i=6

∑
i=1

j=6

∑
j=1

u1iω
k
j
dyk

b
dt

∫ ∫
∂Ni

∂y
N jNl dxdy+

i=6

∑
i=1

j=6

∑
j=1

u1iu1 j

∫ ∫
∂Ni

∂x
N jNl dxdy

+
i=6

∑
i=1

j=6

∑
j=1

u1iu2 j

∫ ∫
∂Ni

∂y
N jNl dxdy+

i=3

∑
i=1

pi

∫
LiNl (−sin(θ)) ds

−
i=3

∑
i=1

pi

∫ ∫
Li

∂Nl

∂x
dxdy+R−1

i=6

∑
i=1

u1i

∫ ∫
∂Ni

∂x
∂Nl

∂x
dxdy

−R−1
i=6

∑
i=1

u1i

∫
∂Ni

∂x
Nl(−sin(θ))ds+R−1

i=6

∑
i=1

u1i

∫ ∫
∂Ni

∂y
∂Nl

∂y
dxdy

−R−1
i=6

∑
i=1

u1i

∫
∂Ni

∂y
Nl cos(θ)ds = 0. (3.7.18)

Here we applied the ALE method (3.7.5) for the time derivative term. The divergence theorem is
used to eliminate the derivative of pressure in respect to x since pressure varies linearly between
nodes. The divergence theorem is applied for viscous terms to reduce the derivative to first order
as well,

∫
ds denotes integration on the boundary of the node.

Similar to Rx, for each element we use Nl as a weighting function and the expansion of Ry is,

Rl
y =

i=6

∑
i=1

δu2i

δ t

∫ ∫
NiNl dxdy−

k=3

∑
k=1

i=6

∑
i=1

j=6

∑
j=1

u2iω
k
j
dxk

b
dt

∫ ∫
∂Ni

∂x
N jNl dxdy

−
k=3

∑
k=1

i=6

∑
i=1

j=6

∑
j=1

u2iω
k
j
dyk

b
dt

∫ ∫
∂Ni

∂y
N jNl dxdy+

i=6

∑
i=1

j=6

∑
j=1

u2iu1 j

∫ ∫
∂Ni

∂x
N jNl dxdy

+
i=6

∑
i=1

j=6

∑
j=1

u2iu2 j

∫ ∫
∂Ni

∂y
N jNl dxdy+

i=3

∑
i=1

pi

∫
LiNl cos(θ)ds

−
i=3

∑
i=1

pi

∫ ∫
Li

∂Nl

∂y
dxdy+R−1

i=6

∑
i=1

u2i

∫ ∫
∂Ni

∂x
∂Nl

∂x
dxdy

−R−1
i=6

∑
i=1

u2i

∫
∂Ni

∂x
Nl(−sin(θ))ds+R−1

i=6

∑
i=1

u2i

∫ ∫
∂Ni

∂y
∂Nl

∂y
dxdy

−R−1
i=6

∑
i=1

u2i

∫
∂Ni

∂y
Nl cos(θ)ds = 0. (3.7.19)
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The equation number l of Rl
x and Rl

y equals the number of velocity nodal values.
For each element, we choose dNl/dl as a weighting function for Rex to construct,

Rl
ex =

i=3

∑
i=1

xbi

∫ dNi

dl
dNl

dl
dl−

i=3

∑
i=1

λi

∫
Ni

dNl

dl
dl = 0. (3.7.20)

The number of equations evaluated on the elastic boundary l = 3,5,2 as the elements are ori-
ented.
Similarly, choosing dNl/dl as a weighting function, the expansion of Rey can be written as,

Rl
ey =

i=3

∑
i=1

ybi

∫ dNi

dl
dNl

dl
dl−

i=3

∑
i=1

λi

∫
Ni

dNl

dl
dl = 0. (3.7.21)

For each element, choosing dNl/dl as the weighting function, the expansion of Reθ is,

Rl
eθ =

i=3

∑
i=1

θi

∫
Ni

dNl

dl
dl−

i=3

∑
i=1

j=3

∑
j=1

λiκ j

∫
NiN j

dNl

dl
dl = 0. (3.7.22)

Finally, using dNl/dl as a weighting function, the expansion of Reλ can be written as,

Rl
eλ

=
i=3

∑
i=1

j=3

∑
j=1

ρm

(
xbi

δub1 j

δ t
+ ybi

δub2 j

δ t

)∫ dNi

dl
N j

dNl

dl
1
λ

dl

−
i=3

∑
i=1

j=3

∑
j=1

k=3

∑
k=1

cκ

(
κiλ jκk +κiκ jλ j

)∫
NiN j

dNk

dl
dNl

dl
dl−

i=3

∑
i=1

cλ λi

∫ dNi

dl
dNl

dl
dl

+R−1
i=6

∑
i=1

j=6

∑
j=1

k=3

∑
k=1

(
xiu2 j + yiu1 j

)
λk

∫
Ai jNk

dNl

dl
sin(2θ)|J|−1 dl

+R−1
i=6

∑
i=1

j=6

∑
j=1

k=3

∑
k=1

(
xiu1 j− yiu2 j

)
λk

∫
Ai jNk

dNl

dl
cos(2θ)|J|−1 dl = 0, (3.7.23)

where J is the Jacobian matrix. The Eulerian time derivative ∂/∂ t in residual Reλ is equal to
time derivative following a moving node δ/δ t on the elastic beam.
For each element, we choose Nl as weighting function for residual Reκ and apply integration by
parts for the cκ term, we obtain

Rl
eκ =

i=3

∑
i=1

j=3

∑
j=1

ρm

(
xbi

δub2 j

δ t
− ybi

δub1 j

δ t

)∫ dNi

dl
N jNl

1
λ

dl

+
i=3

∑
i=1

[
cκ (λiκ2 +λ2κi)

1
λ2

dNi

dl

]Node 2

−
i=3

∑
i=1

[
cκ (λiκ3 +λ3κi)

1
λ3

dNi

dl

]
Node 3

−
i=3

∑
i=1

j=3

∑
j=1

cκ

(
λiκ j +λ jκi

)∫ dNi

dl
N j

dNl

dl
dl
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−
i=3

∑
i=1

j=3

∑
j=1

k=3

∑
k=1

cλ λiλ jκk

∫
NiN jNkNl dl +

i=3

∑
i=1

j=3

∑
j=1

(cλ −T )λiκ j

∫
NiN jNl dl

+
i=3

∑
i=1

peλi

∫
NiNl dl−

i=3

∑
i=1

j=3

∑
j=1

λi p j

∫
NiN jNl dl

+R−1
j=6

∑
i=1

j=6

∑
j=1

k=3

∑
k=1

(
xiub2 j + yiub1 j

)
λk

∫
Ai jNkNl cos(2θ)|J|−1 dl

−R−1
j=6

∑
i=1

j=6

∑
j=1

k=3

∑
k=1

(
xiub1 j− yiub2 j

)
λk

∫
Ai jNkNl sin(2θ)|J|−1 dl = 0. (3.7.24)

Here superscript ’Node 2’ and subscript ’Node 3’ represent the two end point of elastic beam
since the three points for each element on elastic beam are numbered as 3, 5, 2.

Time integration

An implicit finite difference scheme is used to obtain the time integration of the discrete non-
linear matrix equation (3.7.12) as

M(U′n+1)U̇′n+1 +K(U′n+1)U′n+1−F(U′n+1) = R(U′n+1,U′n) = 0, (3.7.25)

where the subscript n denotes the time step. For the first four time steps, U̇′n+1 is approximated
by a backward-Euler first order scheme with constant time increment (dt), i.e. U̇′n+1 = (U′n+1−
U′n)/dt. Then a varying time increment second order predictor-corrector scheme is applied to
approximate U̇′n+1. A predictor at time step n+ 1 (denote as U′pn+1) is applied by using the
second order accurate Adams-Bashforth explicit scheme

U′pn+1 = U′n +
dtn
2

[(
2+

dtn
dtn−1

)
U̇′n−

dtn
dtn−1

U̇′n−1

]
, (3.7.26)

which gives the truncation error

U′pn+1−U′(n+1) =− 1
12

(
2+3

dtn−1

dtn

)
(dtn)3Ü′n+1 +O(dtn)4. (3.7.27)

Here U′(n+ 1) is the exact solution at time step n+ 1, this truncation error is later used to
estimate the next time increment. Then, a corrector step is applied by solving equation (3.7.25)
for U′cn+1 with time derivation approximation

U̇′cn+1 =
2

dtn

(
U′n+1−U′n

)
− U̇′n, (3.7.28)
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with a truncation error

dn+1 = U′cn+1−U′(n+1) =
1

12
(dtn)3Ü′n+1 +O(dtn)4. (3.7.29)

Combining equation (3.7.27) with equation (3.7.29) we obtain

dn+1 = U′cn+1−U′pn+1−
1

12

(
2+3

dtn−1

dtn

)
(dtn)

3 Ü′n+1 +O(dtn)4, (3.7.30)

from equation (3.7.29) we have(
2+3

dtn−1

dtn

)
dn+1 =

1
12

(dtn)3Ü′n+1

(
2+3

dtn−1

dtn

)
+O(dtn)4. (3.7.31)

Combining equation (3.7.30) and equation (3.7.31) we obtain the relationship

dn+1 =
dtn
(
U′cn+1−U′pn+1

)
3(dtn +dtn−1)

+O(dtn)4. (3.7.32)

Based on the assumption that the norm of next time step’s error should be less than required
input error, we setting ‖dn+2‖ = ξ . Therefore, equation (3.7.32) can be used to estimate the
next time increment,

dtn+1

dtn
=

(
ξ

‖dn+1‖

) 1
3

= SFAC. (3.7.33)

The factor SFAC is calculated at each step, the next time increment dtn+1 is increased when
SFAC > 1 while dtn+1 is decreased when SFAC < 1. For a detailed derivation see Luo & Pedley
[50].

Newton-Raphson iteration

At each time step, a frontal method (Irons & Bruce [38], Rast [58]) is used to assemble the
global matrix equation (3.7.25). A frontal method is based on Gaussian elimination, for which
the elimination is implemented after assembling the system matrix equation. While for frontal
method the elimination and assembly perform alternatively. Frontal method first scans the ele-
ment matrices, when one entry’s degree of freedom has been assembled completely it is denoted
as the pivot, and use the row that contains this pivot to eliminate the rest rows. After the elimi-
nation, the row that contains this pivot is stored in external storage. Repeating previous steps till
all the elements are scanned, and solve for the global vector, eventually.
A Newton-Raphson iteration scheme is applied to solve the global matrix equation (3.7.25) for
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U′n+1 (Luo & Pedley [50]) in the form

∂Rn+1(U′
j
n+1,U

′
n)

∂U′ jn+1

(
U′ j+1

n+1−U′ jn+1

)
≈−Rn+1

(
U′ jn+1,U

′
n

)
, (3.7.34)

where j is the iteration number. When

max|U′ j+1
n+1−U′ jn+1|6 ξ , max|Rn+1|6 ξ , (3.7.35)

we obtain the solution at time step n+1, denoted U′ j+1
n+1.

3.7.4 Numerical method for computing the fully non-linear energy budget

In this section, we use the expansions of variables in the shape functions (3.7.6) to obtain the
discretized fully non-linear system energy budget (3.5.38). We consider the massless beam-fluid
system, so the energy budget can be written as,

K f +D f +Ff −Pf +Uκ +Uλ +Pe = 0. (3.7.36)

For the fluid kinetic energy K f (3.5.39), using the ALE method and the discretization of K f takes
the form,

K f =∑
∆a

(
i=6

∑
i=1

j=6

∑
j=1

(
u1i

δu1 j

δ t
+u2i

δu2 j

δ t

)∫ ∫
NiN j dxdy

)

−∑
∆a

(
m=3

∑
m=1

l=6

∑
l=1

i=6

∑
i=1

j=6

∑
j=1

k=6

∑
k=1

ω
m
l

dxm
b

dt

(
u1iu1 j +u2iu2 j

)
yk

∫ ∫
NlNiA jk|J|−1 dxdy

)

+∑
∆a

(
m=3

∑
m=1

l=6

∑
l=1

i=6

∑
i=1

j=6

∑
j=1

k=6

∑
k=1

ω
m
l

dym
b

dt

(
u1iu1 j +u2iu2 j

)
xk

∫ ∫
NlNiA jk|J|−1 dxdy

)

+∑
∆a

(
l=6

∑
l=1

i=6

∑
i=1

j=6

∑
j=1

1
2
(
u1lu1iu2 j +u2lu2iu2 j

)∫
NlNiN j cos(θ)ds

)

−∑
∆a

(
l=6

∑
l=1

i=6

∑
i=1

j=6

∑
j=1

1
2
(
u1lu1iu1 j +u1lu2iu2 j

)∫
NlNiN j sin(θ)ds

)
. (3.7.37)

Here the double integration
∫ ∫

dxdy is taken over each triangular element ∆a. We then sum
these over the entire domain.
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The discretized form of dissipation energy D f (3.5.42) can be written as

D f =∑
∆a

(
R−1

l=6

∑
l=1

i=6

∑
i=1

j=6

∑
j=1

k=6

∑
k=1

(2u1lu1i +u2lu2i)y jyk

∫ ∫
AlkAi j|J|−2 dxdy

)

+∑
∆a

(
R−1

l=6

∑
l=1

i=6

∑
i=1

j=6

∑
j=1

k=6

∑
k=1

(u1lu1i +2u2lu2i)x jxk

∫ ∫
AlkAi j|J|−2 dxdy

)

−∑
∆a

(
R−1

l=6

∑
l=1

i=6

∑
i=1

j=6

∑
j=1

k=6

∑
k=1

2u1lu2iy jxk

∫ ∫
AlkAi j|J|−2 dxdy

)
. (3.7.38)

The expansion of the net kinetic energy flux energy budget Ff (3.5.40) can be written as

Ff =∑
Ir

[l=6

∑
l=1

i=6

∑
i=1

j=6

∑
j=1

1
2
(
u1lu1iu1 j +u1lu2iu2 j

)∫
NlNiN j dy

]outlet

inlet

 , (3.7.39)

where the
∫

dy is the integration evaluated along each three-node element (Ir) on the inlet and
outlet boundaries. The superscript ‘outlet’ and subscript ‘inlet’ represent the outlet and inlet
boundary of the channel, respectively.
Similarly, the work done by pressure forces at the channel boundaries Pf (3.5.41) is

Pf =∑
Ir

[l=6

∑
l=1

i=3

∑
i=1
−u1l pi

∫
NlLi dy

]outlet

inlet

 . (3.7.40)

The rate of working of bending stresses Uκ (3.5.44) takes the form

Uκ =∑
Ie

(
l=3

∑
l=1

i=3

∑
i=1

j=3

∑
j=1

k=3

∑
k=1

cκ

(
λlκi

δλ j

δ t
κk +λlκiλ j

δκk

δ t

)∫
NlNiN jNk dl

)
, (3.7.41)

where
∫

dl is the integration evaluated along each three-node element (Ie) on the elastic beam.
We then sum these over the entire elastic beam.
The rate of working of extensional stresses Uλ (3.5.45) takes the form

Uλ =∑
Ie

(
l=3

∑
l=1

(T − cλ )
δλl

δ t

∫
Nl dl +

l=3

∑
l=1

i=3

∑
i=1

cλ λl
δλi

δ t

∫
NlNi dl

)
. (3.7.42)

By substituting the normal vector e1 = (−sin(θ),cos(θ))T into Pe (3.5.46), the rate of working
of external pressure Pe can be rearranged as

Pe =
∫ L0

0
peλ [u2 cos(θ)−u1 sin(θ)] dl, (3.7.43)
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which takes the form

Pe =∑
Ie

(
l=3

∑
l=1

i=6

∑
i=1

[
peλlu2i

∫
NlNi cos(θ)dl− peλlu1i

∫
NlNi sin(θ)dl

])
. (3.7.44)

3.8 Numerical results

In this section, we demonstrate numerical results for steady and unsteady cases, as well as the
numerical results of energy budgets for the fully-nonlinear system.
The dimensionless parameters are chosen to be Lu = L0 = 5, Ld = 30, T = 0, ρm = 0, pe = 1.95,
pd = 0 and cκ/cλ = h2/12D2 ≈ 10−5(h/D = 0.01).

3.8.1 Mesh validation

We verified our code by comparing the pressure on the deformed wall in the static state for
different meshes for parameters R = 211.875,cλ = 1600, pe = 1.95. Several meshes: Mesh-1,
Mesh-2, Mesh-3 and Mesh-4 are compared, listed below (table 3.1).

Mesh Number of beam element Total number of elements

Mesh-1 60 6152

Mesh-2 80 12157

Mesh-3 100 18977

Mesh-4 120 22597

Table 3.1: List of meshes

The mid-point pressure on the static deformed beam from the meshes Mesh-1, Mesh-2 and
Mesh-3 is compared to Mesh-4, listed in table 3.2 below.

Mesh pmid percentage

Mesh-1 1.66434 0.8%

Mesh-2 1.66844 0.6%

Mesh-3 1.66944 0.5%

Mesh-4 1.67853

Table 3.2: Mid-point pressure pmid of different meshes.
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We compared the pressure distribution along the deformed beam and the corresponding beam
shape at the static state for Reynolds number R = 211.875, extensional stiffness cλ = 1600 and
external pressure pe = 1.95 using two different meshes: Mesh-2 and Mesh-4, shown in figure
3.6. The pressure distribution and steady beam shape tested are graphically identical. In this
chapter, we use the Mesh-2 of 12157 elements for fully nonlinear system and later eigenvalue
simulations in Chapter 4.

Figure 3.6: Comparison of (a) pressure distribution on static deformed beam; (b) static beam
shape for different meshes when R = 211.875,cλ = 1600, pe = 1.95.

3.8.2 Numerical results for steady case

We demonstrate three beam-shapes that can occur in collapsible tube when conveying fluid
(shown in figure 3.7), i.e. totally bulged out (the blue line in figure 3.7), bulged out near the
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upstream of the elastic beam and collapsed near the downstream of elastic beam (the red line in
figure 3.7), and entirely collapsed beam-shapes (the cyan line in figure 3.7).

Figure 3.7: The three possible steady beam-shapes for different Reynolds number, cλ =

1500, pe = 1.95.

The steady beam-shapes are computed for different Reynolds number with fixed extensional
stiffness cλ = 1600 and external pressure pe = 1.95, shown in figure 3.8. As the Reynolds
number increases, the wall deformation increases (i.e. the channel becomes more constricted)
and the location of maximum wall deformation moves towards the central of the collapsible
segment. The observation is consistent with the one-dimensional models of Xu et al. [76] and
Stewart [65], as well as two-dimensional model of Luo et al. [48]. The beam is sucked towards
the opposite rigid wall through the Bernoulli effect. We hypothesize that the wall deformation
would be entirely symmetric in the inviscid limit (R→ ∞), which is again consistent with Xu
et al. [76] and Stewart [65].
The corresponding minimal channel width ymin is plotted against Reynolds number is given
in figure 3.9 with fixed external pressure pe = 1.95, for three different extensional stiffness
cλ = 1600,1800 and cλ = 2100, respectively. As Reynolds number increases, ymin decreases
rapidly first and then gradually approaches a limit value.



CHAPTER 3. INSTABILITY OF A FINITE-LENGTH FLUID-BEAM MODEL 74

Figure 3.8: The static beam shape for different Reynolds number, cλ = 1600, pe = 1.95.

Figure 3.9: The minimal channel width for different Reynolds number with pe = 1.95 and
cλ = 1600,1800,2100.

3.8.3 Numerical results for unsteady case

In order to test the stability of the system, we apply a small perturbation to the steady solution
(here we use a slightly different steady solution as the initial guess for the system). We say the
system is stable if the solution converges to the corresponding steady solution following per-
turbation, while the system is unstable if the solution grows oscillates with time. The neutrally
stable point is the critical point at which the system becomes unstable.
Figure 3.10 demonstrates the mid-point pressure pmid and minimal channel width ymin of a stable
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case after we apply small perturbations to the steady solution (here Reynolds number R = 207,
extensional stiffness cλ = 1600 and external pressure pe = 1.95), i.e. both pmid and ymin tend to
its corresponding steady solution as time increases.

Figure 3.10: (a) The time evolution of mid-point pressure of stable case;(b) The time evolution
of mid-point velocity of stable case; (c) The time evolution of minimal channel width of stable
case for Reynolds number R = 207, cλ = 1600, pe = 1.95.

Figure 3.11 shows the mid-point pressurepmid and minimal channel width ymin of an unstable
case with Reynolds number R = 214, extensional stiffness cλ = 1600 and external pressure
pe = 1.95. Both pmid and ymin grow in an oscillatory manner and eventually stalemate to a fixed
amplitude limit cycle.



CHAPTER 3. INSTABILITY OF A FINITE-LENGTH FLUID-BEAM MODEL 76

Figure 3.11: (a) The time evolution of mid-point pressure of unstable case;(b) The time evolution
of mid-point velocity of unstable case; (c) The time evolution of minimal channel width of
unstable case for Reynolds number R = 214, cλ = 1600, pe = 1.95.

We plot the maximal and minimal ymin over a period of the fully developed oscillation against
Reynolds number for fixed cλ = 1600, pe = 1.95 (shown in figure 3.12). The system is unstable
when R is greater than the critical point Rc = 210.825, i.e. the neutrally stable point. We compute
the average ymin over one period of oscillation, denoted as triangle in figure 3.12, and find that the
average ymin is slightly greater than the ymin at the static state, however, the differences between
the average ymin and static ymin are very small and stay nearly the same as Reynolds number
increases. This behavior is consistent with that observed by Stewart [65], where he noted that
the bifurcation for fully developed oscillations is supercritical , and that the mean channel width
is increased over an oscillation.
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Figure 3.12: The minimal channel width against Reynolds number for cλ = 1600, pe = 1.95.
Red solid line represents the minimal channel width for steady case; Cross line represents the
maximal channel width over one period of oscillation for unsteady case; Diamond line repre-
sents the minimal channel width over one period of oscillation for unsteady case; Triangle line
represents the average channel width over one period of oscillation for unsteady case.

We demonstrate the streamlines at seven different time instant (as labeled 1−7 in figure 3.14),
as shown in figure 3.13. The generation of vorticity wave downstream has been observed, which
is similar to the observations of Luo et al. [48].
The time evolution of mid-point velocity, pressure and minimal channel width are illustrated in
figure 3.14 in fully developed oscillation at R = 220, cλ = 1600 and pe = 1.95.
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Figure 3.13: The streamlines at seven different times as labeled in figure 3.14 for R = 220,
cλ = 1600 and pe = 1.95.
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Figure 3.14: (a) The time evolution of mid-point velocity; (b) The time evolution of mid-point
pressure; (c) The time evolution of mid-point position for R = 220, cλ = 1600 and pe = 1.95.

3.8.4 Energy budget of fully nonlinear system

Using the numerical solutions of the fully nonlinear system, we are able to numerically calculate
the energy budget of the system. Considering the energy budget of the unsteady system over one
fully developed period of oscillation, the average fluid and beam kinetic energy K(avg)

f , K(avg)
b

and the average of the rate of working of bending and extensional stiffness U (avg)
κ , U (avg)

λ
, as well

as the average of the rate of working of external pressure P(avg)
e should all vanish. Therefore, the

energy budget of the system (3.5.38) over one period of oscillation becomes,

F(avg)
f −P(avg)

f +D(avg)
f = 0, (3.8.1)

where F(avg)
f is the average of the net kinetic energy flux over a period, P(avg)

f denotes the aver-

age of the rate of working of pressure force over a period and D(avg)
f denotes the average of the
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energy loss due to viscosity over a period.
We calculate the corresponding average energy budget of the unsteady system for several Reynolds
numbers with fixed cλ = 1600, pe = 1.95, listed in table 3.3, which also gives the steady energy
budget F(s)

f , P(s)
f and D(s)

f discussed in Sec.3.6. The main energy balance is between the rate of
working of pressure forces and the viscous dissipation for both the unsteady and steady systems.
We also compute the average of the rate of working of fluid stress on the beam E(avg)

f , which are

all positive (relatively small compared with P(avg)
f and D(avg)

f ) and increase as Reynolds number
increases.

R F(avg)
f P(avg)

f D(avg)
f E(avg)

f F(s)
f P(s)

f D(s)
f

210.825 6.9787E-05 2.4117 2.4114 8.4470E-05 1.5587E-06 2.4042 2.4043

215 9.6508E-05 2.3882 2.3875 2.6678E-04 2.1192E-06 2.3740 2.3741

220 1.5461E-04 2.3573 2.3559 8.7346E-04 2.9367E-06 2.3359 2.3360

225 2.4680E-04 2.3269 2.3252 1.6758E-03 3.9507E-06 2.2972 2.2973

230 3.3566E-04 2.2990 2.2991 4.0555E-03 5.1993E-06 2.2588 2.2589

240 4.5760E-04 2.2413 2.2436 1.7601E-02 8.5615E-06 2.1841 2.1842

Table 3.3: Fully nonlinear energy budget for fluid-beam system, here extensional stiffness cλ =

1600, external pressure pe = 1.95.

We then consider the excess energy between the average energy budget over one period of
oscillation and its corresponding steady energy budget discussed in Sec.3.6,

F(avg)
e = F(avg)

f −F(s)
f , P(avg)

e = P(avg)
f −P(s)

f , D(avg)
e = D(avg)

f −D(s)
f . (3.8.2)

Table 3.4 shows the average excess energy for fixed cλ = 1600, pe = 1.95. For R > Rc, the
system is unstable. The absolute value of excess energy increases as Reynolds number increases.
Also we found that D(avg)

e > 0 for R > Rc, which means the presence of oscillation increases the
overall dissipative energy in the system. This is contradictory to the observations of Stewart [65]
who found that the oscillation reduced the overall dissipation energy in the system. We do not
fully understand the mechanism of this phenomena yet.
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R F(avg)
e P(avg)

e D(avg)
e

210.825 6.8228E-05 7.4571E-03 7.0841E-03

215 9.4389E-05 1.4183E-02 1.3449E-02

220 1.5168E-04 2.1440E-02 1.9949E-02

225 2.4285E-04 2.9686E-02 2.7843E-02

230 3.3046E-04 4.0179E-02 4.0213E-02

240 4.4904E-04 5.7162E-02 5.9429E-02

Table 3.4: Excess energy budget for fluid-beam system, here extensional stiffness cλ = 1600,
external pressure pe = 1.95.

3.9 Discussion

In this chapter we considered flow through a finite length flexible-walled channel and obtained
the fully nonlinear governing equations of the fluid and solid by establishing conservation of
mass and momentum. In this calculation we employed a new Kirchhoff law for the elastic
beam, which distinguishes our model from that of Luo et al. 2008. Our new contribution is to
obtain the energy budget of the fully non-linear system. Special notice should be paid to the
work done by viscous forces, which has been divided into two parts. One part contributes to the
rate of working of fluid stresses on the wall (denoted E f ), that is the energy exchange between
the fluid and beam which can be either positive or negative. The remainder goes into the viscous
dissipation in the bulk fluid which is always positive (i.e. viscous effects in the fluid always con-
sume energy). Combining the fluid energy budget with the beam energy budget, we obtained
the energy budget for the fully nonlinear coupled fluid-beam system (3.5.38).
We established a numerical method to solve the fully nonlinear system, using an adaptive mesh
for the elastic section since the beam is deformable. In particular, we applied an ALE method
for this section. A finite element method with six node triangular element was used to discretize
the system governing equations and the Newton-Raphson iteration method was applied to solve
for the residual vector; at each iteration step a frontal method was used to solve for the global
vector of unknowns.
Finally, numerical results were presented in Sec.3.8. Several steady beam shapes were computed
with different Reynolds numbers (figure 3.8). The constriction of the stable channel increases
when increasing the Reynolds number (figure 3.9), consistent with some of the previous results
including one-dimensional models (Xu et al. [76], Stewart [65]) and two-dimensional models
(Luo et al. [48]).
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Two possible unsteady states were demonstrated. The stable solution converge to this corre-
sponding steady solution after small stimulation (figure 3.10). For the unstable solution, a small
perturbation will grow and the amplitude will eventually saturate to a limit cycle (figure 3.11).
The bifurcation plot of the time-averaged minimal channel width against Reynolds number of
this model (figure 3.12) behaves slightly differently to that of Stewart [65], in that it is not
clearly a supercritical bifurcation. The streamlines at seven different time instants were given
(figure 3.13), demonstrating the generation of vorticity waves in the downstream rigid section
which is also observed in Luo et al. [48]. We then calculated the average energy budget of the
fully nonlinear system over one oscillation. The viscous dissipation is always positive as we ex-
pected. However, the time-averaged dissipation energy of the fully saturated oscillation (i.e. the
average dissipation energy budget minus the corresponding steady dissipation energy budget)
is positive, which is consistent with the observation of Liu et al. [46]. This means the driving
pressure must work harder during the oscillation compared to the static state (the converse was
found by Stewart [65], who shared that oscillations required less work overall in his system).
However, the mechanism of the this phenomena, that the average amount of dissipation energy
in the unstable state is greater than its stable state, remains unclear to us and is an on-going topic
of investigation.



Chapter 4

Linear stability eigensolver for the
fluid-beam model

In this chapter, we revisit the model for flow in a collapsible channel of chapter 3. Whereas in
this case we form a fully linearised model by perturbing around the steady state identified in
Sec. 3.4 (Sec. 4.1) to introduce the perturbed governing equations (Sec. 4.2) and the associated
eigen-solver problem (Sec. 4.3). We then derive the corresponding linearised energy budget for
the system (Sec. 4.4). The numerical method and results are in Sec. 4.5 and Sec. 4.6, respec-
tively.

4.1 Linearised variables

The excess energies constructed in Sec. 3.6 are a useful way to quantify the energies of self-
excited oscillations. However, the quantities Fe, Pe and De are often very small compared to
their steady components and so it can be difficult to evaluate these when they are combined with
the effects of error in the numerical computations. An alternative method is to construct the
excess energies of the system directly using a linear stability eigensolver. Such an eigensolver
was presented in this context by Luo et al. [48], which we now extend to also consider the per-
turbation energy budget.
We use the same model as presented in Sec. 3.3 and identical notation. All variables are assumed
already dimensionless unless stated otherwise.
We add a small perturbation to the steady mean flow and the steady beam with constant ampli-
tude ε � 1. For the fluid variables, we express this perturbation in the form,(

u(x,y, t), p(x,y, t),σσσ(x,y, t)
)

=
(

U(x,y),P(x,y),ΣΣΣ(x,y)
)
+ ε

(
û(x,y, t), p̂(x,y, t), σ̂σσ(x,y, t)

)
83
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+ ε
2
(

ŭ(x,y, t), p̆(x,y, t), σ̆σσ(x,y, t)
)
+O(ε3), (x ∈ Ω̄), (4.1.1)

where û = û1g1+ û2g2, and ŭ = ŭ1g1+ ŭ2g2 represent first and second order perturbations to the
steady state. In what follows, the perturbation fluid problem must be constructed on the domain
of the steady configuration. Hence, all boundary conditions on the fluid-beam interface must be
projected back to this static configuration (as considered in related problems with free surface
such as Kelvin Helmholtz instability (Drazin & Crepeau [24]) or in the wave motion of flagellar
sheets (Taylor [70])).
To expand the beam variables we begin in the reference (material) description. This is necessary
as all time derivatives are taken holding l fixed, in the form(

xb(l, t),λ (l, t),κ(l, t),θ(l, t),ub(l, t)
)

=
(

Xb(l),Λ(l),K(l),Θ(l),0
)
+ ε

(
x̂b(l, t), λ̂ (l, t), κ̂(l, t), θ̂(l, t), ûb(l, t)

)
+ ε

2
(

x̆b(l, t), λ̆ (l, t), κ̆(l, t), θ̆(l, t), ŭb(l, t)
)
+O(ε3), (0≤ l ≤ L0), (4.1.2)

where the steady variables, first order variables and second order variables of the system are
denoted with capital letters, hatted terms and breved terms respectively.
We expand the beam variables in current (spatial) description for the use in deriving the lin-
earised energy budget for the system in a later section. However, the linearised beam-related
energy budget must eventually be expressed using the reference (material) description, as the
time derivatives are taken holding l fixed. As previously stated, the perturbed beam equations
are projected onto the steady beam shape. We parametrize the current (spatial) description of
the steady beam using the arc length coordinate S, where

S =
∫ l

0
Λ(l′)dl′, S0 =

∫ L0

0
Λ(l′)dl′. (4.1.3)

Hence, we can express each of the perturbed beam variables using the current (spatial) coordi-
nate in the form,(

x(c)b (s, t),λ (c)(s, t),κ(c)(s, t),θ (c)(s, t),u(c)
b (s, t)

)
,

=
(

X(c)
b (S),Λ(c)(S),K(c)(S),Θ(c)(S),0

)
+ ε

(
x̂(c)b (S, t), λ̂ (c)(S, t), κ̂(c)(S, t), θ̂ (c)(S, t), û(c)

b (S, t)
)

+ ε
2
(

x̆(c)b (S, t), λ̆ (c)(S, t), κ̆(c)(S, t), θ̆ (c)(S, t), ŭ(c)
b (S, t)

)
+O(ε3), (S ∈ ∂ Ω̄b), (4.1.4)

where capital letters represent beam variables in the steady state, while the hatted and breved
terms denote the first order and second order beam variables, respectively.
We denote the first and second order beam velocity as û(c)

b = û(c)b1 T+ û(c)b2 N and ŭ(c)
b = ŭ(c)b1 T+
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ŭ(c)b2 N, respectively. The linearised beam variables in current (spatial) description (denoted with
superscript (c)) at each order are the push-forward variables of the corresponding linearised
beam variables in reference (material) description (Holzapfel [34]), i.e. F(S)(c), f̂ (S, t)(c) and
f̆ (S, t)(c) are the push-forward variables of F(l), f̂ (l, t) and f̆ (l, t), respectively. It follows that
identities F(S(l))(c) = F(l), f̂ (S(l), t)(c) = f̂ (l, t), f̆ (S(l), t)(c) = f̆ (l, t) hold true.

4.2 Linearised governing equations

In this section we discuss the perturbed governing equations. In perturbing the beam equation
we must formally perturb the vector form since the unit vectors to the beam e1 and e2 will be
perturbed too. The total beam momentum equation can be written in the form

M = M1e1 +M2e2 = 0, (4.2.1)

where M1 and M2 represent the components of the beam equations (3.3.26) and (3.3.27), respec-
tively. Expanding, at O(1) we obtain,

M1e1 +M2e2 = M1T+M2N = 0, (4.2.2)

where the over-line represents static quantities. The tangent and normal vectors to the static
beam e1 and e2 will be denoted as T and N in later sections. At O(ε) we have,

M̂1e1 + M̂2e2 +M1ê1 +M2ê2 = M̂1e1 + M̂2e2 = M̂1T+ M̂2N = 0, (4.2.3)

as M1 and M2 are identically zero. Here the hatted quantities represent quantities at the first
order. Hence, the first order expanded beam equations are simply the normal and tangential
components of the beam equations expanded to first order, evaluated with the unit vectors for the
static configuration at that point. A similar idea occurs at the second order, where the expanded
beam equations are the components of the beam equations expanded to second order evaluated
with the unit vectors for the static configuration at that point, since M1, M2, M̂1 and M̂2 are
identically zero, i.e.

M̆1e1 + M̆2e2 + M̂1ê1 + M̂2ê2 +M1ĕ1 +M2ĕ2 = M̆1e1 + M̆2e2 = M̆1T+ M̆2N = 0. (4.2.4)

Here the breved terms denote the quantities at the second order.
Therefore, we can simply perturb the scalar form of the tangential and normal components of
the beam equations to obtain the linearised equations for the system. These equations are used
to obtain system’s eigenvalue problem and perturbed energy in later sections.
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Substituting (4.1.1) into equations (3.3.17-3.3.29), at O(1) we obtain,

∂U1

∂x
+

∂U2

∂y
= 0, (x ∈ Ω̄), (4.2.5)

U1
∂U1

∂x
+U2

∂U1

∂y
=−∂P

∂x
+R−1

(
∂ 2U1

∂x2 +
∂ 2U1

∂y2

)
, (x ∈ Ω̄), (4.2.6)

U1
∂U2

∂x
+U2

∂U2

∂y
=−∂P

∂y
+R−1

(
∂ 2U2

∂x2 +
∂ 2U2

∂y2

)
, (x ∈ Ω̄), (4.2.7)

U = 0, (y = 0; y = 1,−Lu < x < 0, L0 < x < L0 +Ld), (4.2.8)

U = 0, (x ∈ ∂ Ω̄b), (4.2.9)

∂Xb

∂ l
= Λcos(Θ), (0≤ l ≤ L0), (4.2.10)

∂Yb

∂ l
= Λsin(Θ), (0≤ l ≤ L0), (4.2.11)

∂Θ

∂ l
= ΛK, (0≤ l ≤ L0), (4.2.12)

cκK
∂ (ΛK)

∂ l
+ cλ

∂Λ

∂ l
+Λ(ΣΣΣN) ·T = 0, (0≤ l ≤ L0), (4.2.13)

− cκ

∂

∂ l

(
1
Λ

∂ (ΛK)

∂ l

)
+ cλ ΛK(Λ−1)+ΛKT +Λ(ΣΣΣN) ·N−Λpe = 0,

(0≤ l ≤ L0), (4.2.14)

∂Θ

∂ t
= 0, (l = 0,L0). (4.2.15)

These are simply the steady governing equations for the system discussed previously in Sec. 3.4.
At O(ε), the governing equations for the system (3.3.17-3.3.29) become,

∂ û1

∂x
+

∂ û2

∂y
= 0, (x ∈ Ω̄), (4.2.16)

∂ û1

∂ t
+U1

∂ û1

∂x
+U2

∂ û1

∂y
+ û1

∂U1

∂x
+ û2

∂U1

∂y
=−∂ p̂

∂x
+R−1

(
∂ 2û1

∂x2 +
∂ 2û1

∂y2

)
,

(x ∈ Ω̄), (4.2.17)

∂ û2

∂ t
+U1

∂ û2

∂x
+U2

∂ û2

∂y
+ û1

∂U2

∂x
+ û2

∂U2

∂y
=−∂ p̂

∂y
+R−1

(
∂ 2û2

∂x2 +
∂ 2û2

∂y2

)
,

(x ∈ Ω̄), (4.2.18)

û = 0, (y = 0; y = 1,−Lu < x < 0, L0 < x < L0 +Ld), (4.2.19)[
û+

(
x̂(c)b

∂U
∂x

+ ŷ(c)b
∂U
∂y

)]
= û(c)

b , (x ∈ ∂ Ω̄b), (4.2.20)

∂ x̂b

∂ l
=−Λθ̂ sin(Θ)+ λ̂ cos(Θ), (0≤ l ≤ L0), (4.2.21)

∂ ŷb

∂ l
= Λθ̂ cos(Θ)+ λ̂ sin(Θ), (0≤ l ≤ L0), (4.2.22)
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∂ θ̂

∂ l
= Λκ̂ + λ̂K, (0≤ l ≤ L0), (4.2.23)

ρm

Λ

(
∂Xb

∂ l
∂ 2x̂b

∂ t2 +
∂Yb

∂ l
∂ 2ŷb

∂ t2

)
= cκ

(
K

∂ (Λκ̂ + λ̂K)

∂ l
+ κ̂

∂ (ΛK)

∂ l

)
+ cλ

∂ λ̂

∂ l

+

[(
σ̂σσ + x̂b

∂ΣΣΣ

∂x
+ ŷb

∂ΣΣΣ

∂y

)
N
]
·T, (0≤ l ≤ L0), (4.2.24)

ρm

Λ

(
∂Xb

∂S
∂ 2ŷb

∂ t2 −
∂Yb

∂S
∂ 2x̂b

∂ t2

)
=−cκ

∂

∂ l

[
1
Λ

(
K

∂ λ̂

∂ l
+ κ̂

∂Λ

∂ l

)
− λ̂

Λ2 K
∂Λ

∂ l
+

∂ κ̂

∂ l

]
+ cλ

[
ΛKλ̂ +(Λκ̂ + λ̂K)(Λ−1)

]
+
(

Λκ̂ + λ̂K
)

T,

+

[(
σ̂σσ + x̂b

∂ΣΣΣ

∂x
+ ŷb

∂ΣΣΣ

∂y

)
N
]
·N− λ̂ pe (0≤ l ≤ L0), (4.2.25)

ûb = 0, (l = 0,L0), (4.2.26)

∂ θ̂

∂ t
= 0, (l = 0,L0). (4.2.27)

Special notice should be paid to equations (4.2.20), (4.2.24) and (4.2.25), where we need to use
Taylor expansions about the steady configuration to account for the fact that perturbation eigen-
functions (hatted quantities) must be evaluated on the steady configuration. Taking the velocity
boundary condition (3.3.20) on the elastic beam as an example, applying a Taylor expansions to
the linearised fluid velocity on the steady beam in the form,

u
∣∣(

x(c)b ,y(c)b

) =[U+ εû+ ε
2ŭ
](

x(c)b ,y(c)b

) ,
=

[
U+

(
x(c)b −X (c)

b

)
∂U
∂x

+
(

y(c)b −Y (c)
b

)
∂U
∂y

+
1
2

(
x(c)b −X (c)

b

)2 ∂ 2U
∂x2

]
(

X (c)
b ,Y (c)

b

)
+

[
1
2

(
y(c)b −Y (c)

b

)2 ∂ 2U
∂y2 +

1
2

(
x(c)b −X (c)

b

)(
y(c)b −Y (c)

b

)
∂ 2U
∂x∂y

]
(X (c)

b ,Y (c)
b )

+ ε

[
û+

(
x(c)b −X (c)

b

)
∂ û
∂x

+
(

y(c)b −Y (c)
b

)
∂ û
∂y

]
(

X (c)
b ,Y (c)

b

)+ ε
2ŭ
∣∣(

X (c)
b ,Y (c)

b

),
=U
∣∣(

X (c)
b ,Y (c)

b

)+ ε

(
û+ x̂(c)b

∂U
∂x

+ ŷ(c)b
∂U
∂y

)
(

X (c)
b ,Y (c)

b

)

+ ε
2

ŭ+ x̆(c)b
∂U
∂x

+ y̆(c)b
∂U
∂y

+

(
x̂(c)b

)2

2
∂ 2U
∂x2 +

x̂(c)b ŷ(c)b
2

∂ 2U
∂x∂y

(
X (c)

b ,Y (c)
b

)

+ ε
2


(

ŷ(c)b

)2

2
∂ 2U
∂y2 + x̂(c)b

∂ û
∂x

+ ŷ(c)b
∂ û
∂y

(
X (c)

b ,Y (c)
b

) . (4.2.28)
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Whereas, the linearised beam velocity is,

ub
(c) = εû(c)

b + ε
2ŭ(c)

b , (S ∈ ∂ Ω̄b). (4.2.29)

as the beam velocity at the static state equals zero.
Applying continuity of the fluid velocity, at O(1) we have,

U = 0. (x ∈ ∂ Ω̄b). (4.2.30)

At O(ε) we have

û+

(
x̂(c)b

∂U
∂x

+ ŷ(c)b
∂U
∂y

)
= û(c)

b , (x ∈ ∂ Ω̄b). (4.2.31)

At O(ε2), we have

x̆(c)b
∂U
∂x

+ y̆(c)b
∂U
∂y

+

(
x̂(c)b

)2

2
∂ 2U
∂x2 +

x̂(c)b ŷ(c)b
2

∂ 2U
∂x∂y

+

(
ŷ(c)b

)2

2
∂ 2U
∂y2 + x̂(c)b

∂ û
∂x

+ ŷ(c)b
∂ û
∂y

+ ŭ = ŭ(c)
b , (x ∈ ∂ Ω̄b). (4.2.32)

Details of the expansion of the fluid stress tensor on the steady beam are given in appendix (A.5).
The stress and velocity components are consistent with the formulation in chapter 2, where the
membrane can only move parallel to g2, so (x̂(c)b , ŷ(c)b )T = (0, η̂)T. Taking the velocity bound-
ary condition (4.2.20) as an example, since the static and first order fluid velocity in the fluid-
membrane model takes the form

U =
(
U(y),0

)T
=
(
6y(1− y)),0

)T (4.2.33)

û =
(
φ̂y,−φ̂x

)T
. (4.2.34)

Substituting (4.2.33) and (4.2.34) the the velocity boundary condition (4.2.20) at the steady state
(i.e. undeformed membrane for the fluid-membrane model) take the form

(
φ̂y,−φ̂x

)T
+ η̂

(
Uy(1),0

)T
=
(
0, η̂t

)T
. (4.2.35)

Thus, we can conclude the appropriate velocity boundary conditions are

φ̂y−6η̂ = 0, − φ̂x = η̂t , (4.2.36)

these are identical to (2.4.6).
At O(ε2) equations (3.3.17-3.3.29) become,
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∂ ŭ1

∂x
+

∂ ŭ2

∂y
= 0, (x ∈ Ω̄), (4.2.37)

∂ ŭ1

∂ t
+U1

∂ ŭ1

∂x
+U2

∂ ŭ1

∂y
+ ŭ1

∂U1

∂x
+ ŭ2

∂U1

∂y
+

∂ p̆
∂x
−R−1

(
∂ 2ŭ1

∂x2 +
∂ 2ŭ1

∂y2

)
=−

(
û1

∂ û1

∂x
+ û2

∂ û1

∂y

)
, (x ∈ Ω̄), (4.2.38)

∂ ŭ2

∂ t
+U1

∂ ŭ2

∂x
+U2

∂ ŭ2

∂y
+ ŭ1

∂U2

∂x
+ ŭ2

∂U2

∂y
+

∂ p̆
∂y
−R−1

(
∂ 2ŭ2

∂x2 +
∂ 2ŭ2

∂y2

)
=−

(
û1

∂ û2

∂x
+ û2

∂ û2

∂y

)
, (x ∈ Ω̄), (4.2.39)

ŭ = 0, (y = 0; y = 1,−Lu < x < 0, L0 < x < L0 +Ld), (4.2.40)x̆(c)b
∂U
∂x

+ y̆(c)b
∂U
∂y

+

(
x̂(c)b

)2

2
∂ 2U
∂x2 +

x̂(c)b ŷ(c)b
2

∂ 2U
∂x∂y

+

(
ŷ(c)b

)2

2
∂ 2U
∂y2 + x̂(c)b

∂ û
∂x

+ ŷ(c)b
∂ û
∂y


+ ŭ = ŭ(c)

b , (x ∈ ∂ Ω̄b), (4.2.41)

ρm

Λ

(
∂Xb

∂ l
∂ 2x̆b

∂ t2 +
∂Yb

∂ l
∂ 2y̆b

∂ t2 +
∂ x̂b

∂ l
∂ 2x̂b

∂ t2 +
∂ ŷb

∂ l
∂ 2ŷb

∂ t2

)
− ρmλ̂

Λ2

(
∂Xb

∂ l
∂ 2x̂b

∂ t2 +
∂Yb

∂ l
∂ 2ŷb

∂ t2

)
=cκK

∂ (Λκ̆ + λ̂ κ̂ + λ̆K)

∂ l
+ cλ

∂ λ̆

∂ l
+

[(
x̆b

∂ΣΣΣ

∂x
+ y̆b

∂ΣΣΣ

∂y
+

(x̂b)
2

2
∂ 2ΣΣΣ

∂x2

)
N

]
·T

+

[(
(ŷb)

2

2
∂ 2ΣΣΣ

∂y2 +
x̂bŷb

2
∂ 2ΣΣΣ

∂x2 + x̂b
∂ σ̂σσ

∂x
+ ŷb

∂ σ̂σσ

∂y

)
N

]
·T+(σ̆σσN) ·T,

(0≤ l ≤ L0), (4.2.42)

ρm

Λ

(
∂Xb

∂ l
∂ 2y̆b

∂ t2 −
∂Yb

∂ l
∂ 2x̆b

∂ t2 +
∂ x̂b

∂ l
∂ 2ŷb

∂ t2 −
∂ ŷb

∂ l
∂ 2x̂b

∂ t2

)
− ρmλ̂

(Λ)2

(
∂Xb

∂ l
∂ 2ŷb

∂ t2 −
∂Yb

∂ l
∂ 2x̂b

∂ t2

)
=− cκ

∂

∂ l

[
1
Λ

(
K

∂ λ̆

∂ l
+ κ̂

∂ λ̂

∂ l
+ κ̆

∂Λ

∂ l

)
− λ̂

Λ2

(
K

∂ λ̂

∂ l
+ κ̂

∂Λ

∂ l

)
+K

∂Λ

∂ l

(
λ̂ 2

Λ3 −
λ̆

Λ2

)]

− cκ

∂ 2κ̆

∂ l2 + cλ

[
ΛKλ̆ +

(
Λκ̂ + λ̂K

)
λ̂ +

(
Λκ̆ + λ̂ κ̂ + λ̆K

)
(Λ−1)

]
+
(

Λκ̆ + λ̂ κ̂ + λ̆K
)

T +

[(
(x̂b)

2

2
∂ 2ΣΣΣ

∂x2 +
(ŷb)

2

2
∂ 2ΣΣΣ

∂y2 +
x̂bŷb

2
∂ 2ΣΣΣ

∂x2 + x̂b
∂ σ̂σσ

∂x

)
N

]
·N

+

[(
ŷb

∂ σ̂σσ

∂y

)
N
]
·N+

[(
x̆b

∂ΣΣΣ

∂x
+ y̆b

∂ΣΣΣ

∂y

)
N
]
·N+(σ̆σσN) ·N− λ̆ pe,

(0≤ l ≤ L0), (4.2.43)

ŭb = 0, (l = 0,L0), (4.2.44)

∂ θ̆

∂ t
= 0, (l = 0,L0). (4.2.45)



CHAPTER 4. LINEAR STABILITY EIGENSOLVER FOR THE FLUID-BEAM MODEL 90

In deriving the linearised energy budget in later sections, we must integrate over the deformed
static configuration for the beam. Hence, here we rewrite the beam energy equation (3.3.32) in
the current description (using the arc-length coordinate S), at O(ε2) we have

(ΣΣΣN) · ŭ(c)
b +(ΣΣΣn̂) · ûb +(σ̂σσN) · û(c)

b +

[(
x̂(c)b

∂ΣΣΣ

∂x
+ ŷ(c)b

∂ΣΣΣ

∂y

)
N
]
· û(c)

b ,

=cκ

K(c)∂ (Λ(c)K(c))

∂S
ŭ(c)b1 −

∂ 2(Λ(c)K(c))

∂S2 ŭ(c)b2 +K(c)
∂

(
Λ(c)κ̂(c)+ λ̂ (c)K(c)

)
∂S

û(c)b1


+ cκ

κ̂
(c)

∂

(
Λ(c)K(c)

)
∂S

û(c)b1 −
∂ 2
(

Λ(c)κ̂(c)+ λ̂ (c)K(c)
)

∂S2 û(c)b2


+ cλ

[
∂Λ(c)

∂S
ŭ(c)b1 +K(c)

(
Λ
(c)−1

)
ŭ(c)b2 +

∂ λ̂ (c)

∂S
û(c)b1 +K(c)

λ̂
(c)û(c)b2 + κ̂

(c)
(

Λ
(c)−1

)
û(c)b2

]
+T

(
K(c)ŭ(c)b2 + κ̂

(c)û(c)b1

)
− peŭ(c)b2 , (S ∈ ∂ Ω̄b). (4.2.46)

4.3 Global stability eigensolver

In this section, we solve the first order problem for the global perturbation (4.2.16-4.2.27). We
use the reference (material) description of the linearised beam equations and assume all the first
order variables are the wave-like form to obtain the eigen-value problem of the perturbed system,
in the form,

f̂ (x,y, t) = ¯̂f (x,y)eσt +
(

¯̂f (x,y)eσt
)∗

, ĝ(l, t) = ¯̂g(l)eσt +
( ¯̂g(l)eσt)∗ , (4.3.1)

here f̂ (x,y, t) represents all the first order fluid related variables while ĝ(l, t) represents all the
first order beam related variables. Here * denotes a complex conjugate and σ = σr + iσi ∈ C,
where σr is the growth rate of disturbance while σi is the frequency of disturbance. We must
express our beam variables in the material description as time derivatives are taken holding l

fixed in our formulation. Hence, when the real part of the growth rate σr = 0, i.e. what we called
neutrally stable state, the product of two first order variables has a steady (time-independent)
component arising from the product of an eσt = eσrteiσit and an (eσt)∗ = eσrte−iσit term, in
addition to terms e2σt and

(
e2σt)∗. For consistency, although not calculated directly in this

chapter, the formulation requires the second order (breved) quantities to be expanded according
to

f̆ (x,y, t) = ¯̆f1(x,y)e2σt + ¯̆f2(x,y)+
(

¯̆f1(x,y)e(2σt)
)∗

,

ğ(l, t) = ¯̆g1(l)e2σt + ¯̆g2(l)+
( ¯̆g1e2σt)∗ . (4.3.2)
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Substituting (4.3.1) into the first order governing equations (4.2.16-4.2.25) we obtain the fol-
lowing eigenvalue problem for the system,

∂ ¯̂u1

∂x
+

∂ ¯̂u2

∂y
= 0, (x ∈ Ω̄), (4.3.3)

σ ¯̂u1 +U1
∂ ¯̂u1

∂x
+U2

∂ ¯̂u1

∂y
+ ¯̂u1

∂U1

∂x
+ ¯̂u2

∂U1

∂y
=−∂ ¯̂p

∂x
+R−1

(
∂ 2 ¯̂u1

∂x2 +
∂ 2 ¯̂u1

∂y2

)
,

(x ∈ Ω̄), (4.3.4)

σ ¯̂u2 +U1
∂ ¯̂u2

∂x
+U2

∂ ¯̂u2

∂y
+ ¯̂u1

∂U2

∂x
+ ¯̂u2

∂U2

∂y
=−∂ ¯̂p

∂y
+R−1

(
∂ 2 ¯̂u2

∂x2 +
∂ 2 ¯̂u2

∂y2

)
,

(x ∈ Ω̄), (4.3.5)

¯̂u1 = 0, ¯̂u2 = 0, (y = 0; y = 1,−Lu < x < 0, L0 < x < L0 +Ld), (4.3.6)

¯̂u+

(
¯̂xb

∂U
∂x

+ ¯̂yb
∂U
∂y

)
= σ ¯̂xb, (x ∈ ∂ Ω̄b), (4.3.7)

∂ ¯̂xb

∂ l
=−Λ

¯̂
θ sin(Θ)+

¯̂
λ cos(Θ), (0≤ l ≤ L0), (4.3.8)

∂ ¯̂yb

∂ l
= Λ

¯̂
θ cos(Θ)+

¯̂
λ sin(Θ), (0≤ l ≤ L0), (4.3.9)

∂
¯̂
θ

∂ l
= Λ ¯̂κ +

¯̂
λK, (0≤ l ≤ L0), (4.3.10)

ρm

Λ
σ

2
(

∂Xb

∂ l
¯̂xb +

∂Yb

∂ l
¯̂yb

)
= cκ

(
∂ (ΛK)

∂ l
¯̂κ +

∂ (
¯̂
λK +Λ ¯̂κ)

∂ l
K

)
+ cλ

∂
¯̂
λ

∂ l

+

[(
¯̂σσσ + ¯̂xb

∂ΣΣΣ

∂x
+ ¯̂yb

∂ΣΣΣ

∂y

)
N
]
·T, (0≤ l ≤ L0), (4.3.11)

ρm

Λ
σ

2
(

∂Xb

∂ l
¯̂yb−

∂Yb

∂ l
¯̂xb

)
=−cκ

∂

∂ l

(
Λ
−1

(
K

∂
¯̂
λ

∂ l
+ ¯̂κ

∂Λ

∂ l

)
−Λ

−2 ¯̂
λK

∂Λ

∂ l
+

∂ ¯̂κ
∂ l

)
+ cλ

(
ΛK ¯̂

λ +(Λ ¯̂κ +
¯̂
λK)(Λ−1)

)
+
(

Λ ¯̂κ +
¯̂
λK
)

T

+

[(
¯̂σσσ + ¯̂xb

∂ΣΣΣ

∂x
+ ¯̂yb

∂ΣΣΣ

∂y

)
N
]
·N− ¯̂

λ pe, (0≤ l ≤ L0), (4.3.12)

¯̂ub = 0, (l = 0,L0), (4.3.13)
¯̂
θ = 0, (l = 0,L0). (4.3.14)

We solve this linear eigenvalue problem numerically in Sec. 4.5.

4.4 Perturbation energy budgets

In the same manner as section 4.2, by substituting the small amplitude expansions (4.1.1) into
the fluid energy equation (3.5.2) in chapter 3, we can obtain the perturbed fluid energy equation.
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At O(1), after rearrangement we obtain,

1
2

∇ ·
((

U2
1 +U2

2
)

U
)
+∇ · (PU)−R−1 [U1∇

2U1 +U2∇
2U2 +U ·

(
∇ ·
(
∇

TU
))]

= 0,

(x ∈ Ω̄). (4.4.1)

This can be rearranged into the form (3.6.1-3.6.4) presented in Sec. 3.6.
After rearrangement, at O(ε) we have,

(U1û1 +U2û2)t +

[
1
2

∇ ·
((

U2
1 +U2

2
)

û
)
+∇ · ((U1û1 +U2û2)U)

]
+∇ · (Pû+ p̂U)

−R−1 [U1∇
2û1 +U2∇

2û2 + û1∇
2U1 + û2∇

2U2 +U ·
(
∇ ·
(
∇

Tû
))

+ û ·
(
∇ ·
(
∇

TU
))]

= 0,

(x ∈ Ω̄). (4.4.2)

The fluid energy equation (3.5.2) at O(ε2) becomes,

û1û2
∂U1

∂y
+ û2

2
∂V1

∂y
+ û2

1
∂U1

∂x
+ û1û2

∂U2

∂x
+ û1

∂ û1

∂ t
+ û2

∂ û2

∂ t
+ û2

∂ p̂
∂y

+ û1U2
∂ û1

∂y

+U1û2
∂ û1

∂y
+2U2û2

∂ û2

∂y
+ û1

∂ p̂
∂x

+2U1û1
∂ û1

∂x
+ û1U2

∂ û1

∂x
+U1û2

∂ û2

∂x

−R−1û1

(
∂ 2û1

∂x2 +
∂ 2û1

∂y2

)
−R−1û2

(
∂ 2û2

∂x2 +
∂ 2û2

∂y2

)
+U1

∂ ŭ1

∂ t
+U2

∂ ŭ2

∂ t
+2ŭ1U1

∂U1

∂x

+ ŭ1U2
∂U1

∂y
+ ŭ1U2

∂U2

∂x
+2ŭ2U2

∂U2

∂y
+ ŭ2U1

∂U1

∂y
+ ŭ2U1

∂U2

∂x
+U1U2

∂ ŭ1

∂y
+U2

2
∂ ŭ2

∂y

+U2
1

∂ ŭ1

∂x
+U1U2

∂ ŭ2

∂x
+ ŭ1

∂P
∂x

+ ŭ2
∂P
∂y

+U2
∂ p̆
∂y

+U1
∂ p̆
∂x
−R−1ŭ1

(
∂ 2U1

∂x2 +
∂ 2U1

∂y2

)
−R−1ŭ2

(
∂ 2U2

∂x2 +
∂ 2U2

∂y2

)
−R−1U1

(
∂ 2ŭ1

∂x2 +
∂ 2ŭ1

∂y2

)
−R−1U2

(
∂ 2ŭ2

∂x2 +
∂ 2ŭ2

∂y2

)
= 0,

(x ∈ Ω̄). (4.4.3)

This equation admits a distinction between terms at O(ε2) which are linear in breved variables
and others which occur as the product of two hatted variables. We express (4.4.3) as,

ε̂ + ε̆ = 0, (4.4.4)

where,

ε̂ =û1û2
∂U1

∂y
+ û2

2
∂U2

∂y
+ û2

1
∂U1

∂x
+ û1û2

∂U2

∂x
+ û1

∂ û1

∂ t
+ û2

∂ û2

∂ t
+ û2

∂ p̂
∂y

+ û1U2
∂ û1

∂y

+U1û2
∂ û1

∂y
+2U2û2

∂ û2

∂y
+ û1

∂ p̂
∂x

+2U1û1
∂ û1

∂x
+ û1U2

∂ û1

∂x
+U1û2

∂ û2

∂x
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−R−1û1

(
∂ 2û1

∂x2 +
∂ 2û1

∂y2

)
−R−1û2

(
∂ 2û2

∂x2 +
∂ 2û2

∂y2

)
+U1

∂ ŭ1

∂ t
+V

∂ ŭ2

∂ t

+2ŭ1U1
∂U1

∂x
+ ŭ1U2

∂U1

∂y
, (x ∈ Ω̄), (4.4.5)

ε̆ =U1
∂ ŭ1

∂ t
+U2

∂ ŭ2

∂ t
+2ŭ1U1

∂U1

∂x
+ ŭ1U2

∂U1

∂y
+ ŭ1U2

∂U2

∂x
+2ŭ2U2

∂U2

∂y
+ ŭ2U1

∂U1

∂y

+ ŭ2U1
∂U2

∂x
+U1U2

∂ ŭ1

∂y
+U2

2
∂ ŭ2

∂y
+U2

1
∂ ŭ1

∂x
+U1U2

∂ ŭ2

∂x
+ ŭ1

∂P
∂x

+ ŭ2
∂P
∂y

+U2
∂ p̆
∂y

+U1
∂ p̆
∂x
−R−1ŭ1

(
∂ 2U1

∂x2 +
∂ 2U1

∂y2

)
−R−1ŭ2

(
∂ 2U2

∂x2 +
∂ 2U2

∂y2

)
−R−1U1

(
∂ 2ŭ1

∂x2 +
∂ 2ŭ1

∂y2

)
−R−1U2

(
∂ 2ŭ2

∂x2 +
∂ 2ŭ2

∂y2

)
, (x ∈ Ω̄). (4.4.6)

We now manipulate ε̂ and ε̆ in turn.
We add the identically zero term R−1û ·

(
∇ ·
(
∇ûT))= 0 to ε̂ to enable us to rewrite the perturbed

dissipation. We then rearrange ε̂ to obtain,

ε̂ =
1
2

∂
(
û2

1 + û2
2
)

∂ t
+

(
1
2

∇ ·
((

û2
1 + û2

2
)

U
)
+∇ · ((U1û1 +U2û2) û)

)
+∇ · (p̂û)

−R−1
(

û1∇
2û1 + û2∇

2û2 + û ·
(
∇ ·
(
∇ûT))), (x ∈ Ω̄). (4.4.7)

Rewriting the viscous term into tensor form we have,

ε̂ =
1
2

∂
(
û2

1 + û2
2
)

∂ t
+∇ ·

(
1
2
(
û2

1 + û2
2
)

U+(U1û1 +U2û2) û
)
+∇ · (p̂û)

−R−1
(

∇ ·
(
∇û+∇

Tû
))
· û, (x ∈ Ω̄). (4.4.8)

Manipulating ε̆ , we have,

ε̆ =U1

(
∂ ŭ1

∂ t
+U1

∂ ŭ1

∂x
+U2

∂ ŭ1

∂y
+ ŭ1

∂U1

∂x
+ ŭ2

∂U1

∂y
+

∂ p̆
∂x
−R−1

∇
2ŭ1

)
+U2

(
∂ ŭ2

∂ t
+U1

∂ ŭ2

∂x
+U2

∂ ŭ2

∂y
+ ŭ1

∂U2

∂x
+ ŭ2

∂U2

∂y
+

∂ p̆
∂y
−R−1

∇
2ŭ2

)
+ ŭ1

(
U1

∂U1

∂x
+U2

∂U1

∂y
+

∂P
∂x
−R−1

∇U1

)
+ ŭ2

(
U1

∂U2

∂x
+U2

∂U2

∂y
+

∂P
∂y
−R−1

∇U2

)
, (x ∈ Ω̄); (4.4.9)

the last two terms in (4.4.9) disappear due to the zero-order fluid governing equations (4.2.6,
4.2.7), while substituting the second order fluid governing equations (4.2.38, 4.2.39) into the
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remainder we obtain,

ε̆ =−U1

(
û1

∂ û1

∂x
+ û2

∂ û1

∂y

)
−U2

(
û1

∂ û2

∂x
+ û2

∂ û2

∂y

)
, (x ∈ Ω̄). (4.4.10)

Substituting ε̂ and ε̆ back into the full fluid energy equation at O(ε2) we obtain,

−U1

(
û1

∂ û1

∂x
+ û2

∂ û1

∂y

)
−U2

(
û1

∂ û2

∂x
+ û2

∂ û2

∂y

)
+

1
2

∂
(
û2

1 + û2
2
)

∂ t

+∇ ·
(

1
2
(
û2

1 + û2
2
)

U+(U1û1 +U2û2) û
)
+∇ · (p̂û)−R−1

(
∇ ·
(
∇û+∇

Tû
))
· û = 0,

(x ∈ Ω̄). (4.4.11)

After integration across the steady domain Ω̄, the fluid energy equation (3.5.2) at O(ε2) be-
comes,

∫
Ω̄

1
2

∂
(
û2

1 + û2
2
)

∂ t
dA︸ ︷︷ ︸

I

+
∫

Ω̄

∇ ·
(

1
2
(
û2

1 + û2
2
)

U+(U1û1 +U2û2) û
)

dA︸ ︷︷ ︸
II

+
∫

Ω̄

∇ · (p̂û) dA︸ ︷︷ ︸
III

−R−1
∫

Ω̄

[(
∇ ·
(
∇û+∇

Tû
))
· û
]

dA︸ ︷︷ ︸
IV

−
∫

Ω̄

[
U1

(
û1

∂ û1

∂x
+ û2

∂ û1

∂y

)
+U1

(
û1

∂ û2

∂x
+ û2

∂ û2

∂y

)]
dA︸ ︷︷ ︸

Ŝ f

= 0. (4.4.12)

We label these terms I− IV and consider each in turn. We denote the last term as Ŝ f , the work
denoting non-linear Reynolds stresses, which arises from the decomposition (4.4.10). A similar
idea was presented in this context by Stewart et al [66].
For I, we take the time derivative outside the integral directly as we are integrating based on the
static domain (i.e. the domain is independent of time),

I =
∂

∂ t

∫
Ω̄

1
2
(
û2

1 + û2
2
)

dA︸ ︷︷ ︸
K̂ f

. (4.4.13)

We denote above term as K̂ f , the rate of working of perturbation kinetic energy.
For II, we apply the divergence theorem to obtain

II =
∫

∂ Ω̄u

[
−
(

1
2
(
û2

1 + û2
2
)

U+(U1û1 +U2û2) û
)
·g1

]
dS
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+
∫

∂ Ω̄d

[(
1
2
(
û2

1 + û2
2
)

U+(U1û1 +U2û2) û
)
·g1

]
dS

+
∫

∂ Ω̄b

[(
1
2
(
û2

1 + û2
2
)

U+(U1û1 +U2û2) û
)
·N
]

dS,

=

[∫ 1

0

(
1
2
(
û2

1 + û2
2
)

U1 +(U1û1 +U2û2) û1

)
dy
]x=L0+Ld

x=−Lu

+
∫

∂ Ω̄b

[(
1
2
(
û2

1 + û2
2
)

U+(U · û) û
)
·N
]

dS. (4.4.14)

The second term in (4.4.14) cancels as U is zero on ∂ Ω̄b due to the no-slip condition (4.2.9), so
we have

II =
[∫ 1

0

(
1
2
(
û2

1 + û2
2
)

U1 +(U1û1 +U2û2) û1

)
dy
]x=L0+Ld

x=−Lu︸ ︷︷ ︸
F̂f

. (4.4.15)

The above term is denoted as F̂f , the net perturbation kinetic flux extracted from the mean flow.
For III, we again use the divergence theorem to obtain

III =
∫

∂ Ω̄u

[
−
(
(p̂û) ·g1

)]
dS+

∫
∂ Ω̄d

[(p̂û) ·g1] dS+
∫

∂ Ω̄b

[(p̂û) ·N] dS,

=
[∫ 1

0
(−p̂û1) dy

]x=L0+Ld

x=−Lu︸ ︷︷ ︸
P̂f

+
∫

∂ Ω̄b

[(p̂û) ·N] dS. (4.4.16)

We denote the first term as P̂f , the rate of working of the perturbation pressure force at the
channel ends. The remaining term is utilized below.
For IV , we first divide it into two portions (labeled B1 +B2 as follows) and then consider each
in turn

IV =R−1
∫

Ω̄

[(
∇ · (∇û)

)
· û
]

dA︸ ︷︷ ︸
B1

+R−1
∫

Ω̄

[(
∇ ·
(
∇

Tû
))
· û
]

dA︸ ︷︷ ︸
B2

. (4.4.17)

For B1, we apply the identity (∇ ·A) ·u = ∇ ·
(
ATu

)
−Tr

(
AT∇u

)
(here A is a 2× 2 matrix to

obtain,

B1 =R−1
∫

Ω̄

∇ ·
((

∇ûT) û
)

dA−R−1
∫

Ω̄

Tr
(
(∇û)T

∇û
)

dA; (4.4.18)

applying the divergence theorem to the first term we obtain,

B1 =R−1
∫

∂ Ω̄u

[
−
(
(∇û)T û

)
·g1

]
dS+R−1

∫
∂ Ω̄d

[(
(∇û)T û

)
·g1

]
dS
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+R−1
∫

∂ Ω̄b

[(
(∇û)T û

)
·N
]

dS−R−1
∫

Ω̄

Tr
(
(∇û)T

∇û
)

dA,

=

[
R−1

∫ 1

0

(
û1

∂ û1

∂x
+ û2

∂ û2

∂x

)
dy
]x=L0+Ld

x=−Lu

+R−1
∫

∂ Ω̄b

[(
(∇û)T û

)
·N
]

dS

−R−1
∫

Ω̄

Tr
(
(∇û)T

∇û
)

dA. (4.4.19)

The first term in (4.4.19) cancels since we assume parallel flow at the inlet and outlet boundaries
and we write the last two terms in vector form. Therefore, we have,

B1 =R−1
∫

∂ Ω̄b

[((
∇ûT)û) ·N] dS−R−1

∫
Ω̄

Tr
(
(∇û)T (∇û)

)
dA. (4.4.20)

Similar to B1, we again apply the identity
(
∇ ·AT) ·u = ∇ · (Au)−Tr(A∇u) to obtain,

B2 =R−1
∫

Ω̄

∇ ·
(
(∇û)û

)
dA−R−1

∫
Ω̄

Tr
(
(∇û)(∇û)

)
dA. (4.4.21)

We then apply the divergence theorem to the first term to obtain,

B2 =R−1
∫

∂ Ω̄u

− [((∇û)û) ·g1] dS+R−1
∫

∂ Ω̄d

[(
(∇û)û

)
·g1

]
dS

+R−1
∫

∂ Ω̄b

[(
(∇û)û

)
·N
]

dS−R−1
∫

Ω̄

Tr
(
(∇û)(∇û)

)
dA, (4.4.22)

where the first two terms vanish as we assume the inlet and outlet flow are parallel to the rigid
wall, so we have,

B2 =R−1
∫

∂ Ω̄b

[(
(∇û)û

)
·N
]

dS−R−1
∫

Ω̄

Tr
(
(∇û)(∇û)

)
dA. (4.4.23)

We obtain term IV when we compute the sum of B1 +B2, in the form

IV = B1 +B2 = R−1
∫

∂ Ω̄b

[(
(∇û+∇ûT)û

)
·N
]

dS−R−1
∫

Ω̄

Tr
((

∇ûT +∇û
)

∇û
)

dA︸ ︷︷ ︸
D̂ f

.

(4.4.24)

We denote the second term in (4.4.24) as D̂ f , the energy loss due to viscous dissipation in the
perturbation.
We then gather the remaining terms (all evaluated on ∂ Ω̄b) in II and IV to obtain Ê f ; after
rearrangement we have,

Ê f =
∫

∂ Ω̄b

(
− p̂û ·N+R−1 ((

∇ûT +∇û
)

û
)
·N
)

dS
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=
∫

∂ Ω̄b

[((
− pI+R−1 (

∇ûT +∇û
))

û

)
·N

]
dS. (4.4.25)

We use the linearised expression for the fluid stress tensor σ̂σσ (detail in Sec. A.5) to obtain,

Ê f =
∫

∂ Ω̄b

[(σ̂σσ û) ·N] dS. (4.4.26)

Gathering all the terms in (4.4.12), we obtain the perturbation fluid energy budget at O(ε2) as,

K̂ f + F̂f − P̂f − Ê f + D̂ f − Ŝ f = 0, (4.4.27)

where,

K̂ f =
∂

∂ t

∫
Ω̄

1
2
(
û2

1 + û2
2
)

dA, (4.4.28)

F̂f =

[∫ 1

0

1
2
(û2

1 + û2
2)U1 +(û1U1 + û2U2)û1 dy

]x=L0+Ld

x=−Lu

, (4.4.29)

P̂f =

[∫ 1

0
(−p̂û1) dy

]x=L0+Ld

x=−Lu

, (4.4.30)

Ê f =
∫

∂ Ω̄b

[(σ̂σσ û) ·N] dS, (4.4.31)

D̂ f =R−1
∫

Ω̄

Tr
((

∇ûT +∇û
)

∇û
)

dA, (4.4.32)

Ŝ f =
∫

Ω̄

[
U1

(
û1

∂ û1

∂x
+ û2

∂ û1

∂y

)
+U2

(
û1

∂ û2

∂x
+ û2

∂ û2

∂y

)]
dA. (4.4.33)

Here K̂ f is the rate of working of perturbation kinetic energy, F̂f is the net perturbation kinetic
energy flux extracted from the main flow, P̂f is the rate of working of the perturbed pressure
force at the channel ends, Ê f is the rate of working of perturbation fluid stresses on the beam,
D̂ f is the energy loss due to viscous dissipation in the perturbation, and Ŝ f is the work done by
non-linear Reynolds stresses. These terms are all analogous to fully non-linear energy budget
(3.5.11-3.5.16) except for the rate of working of non-linear Reynolds stress.
The perturbation energy loss due to viscous dissipation D̂ f is non-negative, since it can be ma-
nipulated into the form,

D̂ f = R−1
∫

Ω̄

[
2
(

∂ û1

∂x

)2

+2
(

∂ û2

∂y

)2

+

(
∂ û1

∂y
+

∂ û2

∂x

)2
]

dA. (4.4.34)

Similar to the fully non-linear energy budget, we reverse the position of û and N since σ̂σσ = σ̂σσ
T
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(detailed derivation see appendix A.5) to obtain,

Ê f =
∫

∂ Ω̄b

[(σ̂σσN) · û] dS,

now we apply the boundary condition (4.2.20) on the steady beam to obtain,

Ê f =
∫

∂ Ω̄b

[
(σ̂σσN) · û(c)

b

]
dS−

∫
∂ Ω̄b

(σ̂σσN) ·
(

x̂(c)b
∂U
∂x

+ ŷ(c)b
∂U
∂y

)
dS. (4.4.35)

We then substitute (4.2.46) into Ê f (4.4.35) to obtain,

Ê f =
∫

∂ Ω̄b

cκ

(
K(c)Λ(c)K(c)

∂S
ŭ(c)b1 −

∂ 2(Λ(c)K(c))

∂S2 ŭ(c)b2

)
dS︸ ︷︷ ︸

I

+
∫

∂ Ω̄b

cκ

(
K(c)∂ (Λ(c)κ̂(c)+ λ̂ (c)K(c))

∂S
û(c)b1 + κ̂

(c)∂ (Λ(c)K(c))

∂S
û(c)b1

)
︸ ︷︷ ︸

IIa

+
∫

∂ Ω̄b

cκ

(
−∂ 2(Λ(c)κ̂(c)+ λ̂ (c)K(c))

∂S2 û(c)b2

)
dS︸ ︷︷ ︸

IIb

+
∫

∂ Ω̄b

cλ

(
∂Λ(c)

∂S
ŭ(c)b1 +K(c)(Λ(c)−1)ŭ(c)b2

)
dS︸ ︷︷ ︸

III

+
∫

∂ Ω̄b

cλ

(
∂ λ̂ (c)

∂S
û(c)b1 +K(c)

λ̂
(c)û(c)b2 + κ̂

(c)(Λ(c)−1)û(c)b2

)
dS︸ ︷︷ ︸

IV

+
∫

∂ Ω̄b

T
(

K(c)ŭ(c)b2 + κ̂
(c)û(c)b2

)
dS︸ ︷︷ ︸

V

−
∫

∂ Ω̄b

(
peŭb2

)
dS︸ ︷︷ ︸

V I

−
∫

∂ Ω̄b

[
(ΣΣΣN) · ŭ(c)

b +(ΣΣΣn̂) · ûb +

((
x̂(c)b

∂ΣΣΣ

∂x
+ ŷ(c)b

∂ΣΣΣ

∂y

)
N
)
· û(c)

b

]
dS︸ ︷︷ ︸

V II

−
∫

∂ Ω̄b

(σ̂σσN) ·
(

x̂(c)b
∂U
∂x

+ ŷ(c)b
∂U
∂y

)
dS︸ ︷︷ ︸

V III

, (4.4.36)

we label these terms I−V III (as underbraces below) and consider each in turn.
For terms I −V , we need to use the following linearised identities (note the third and sixth
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identities are expressed in reference (material) description),

∂ û(c)b1
∂S

= Λ
−1 ∂ λ̂ (c)

∂ t
+K(c)û(c)b2 , (S ∈ ∂ Ω̄b), (4.4.37)

∂ û(c)b2
∂S

=
∂ θ̂ (c)

∂ t
−K(c)û(c)b1 , (S ∈ ∂ Ω̄b), (4.4.38)

∂ θ̂

∂ l
= Λκ̂ +Kλ̂ , (0≤ l ≤ L0). (4.4.39)

∂ ŭ(c)b1
∂S

=
1

Λ(c)

∂ λ̆ (c)

∂ t
− λ̂ (c)(

Λ(c)
)2

∂ λ̂ (c)

∂ t
+K(c)ŭ(c)b2 + κ̂

(c)û(c)b2 , (S ∈ ∂ Ω̄b), (4.4.40)

∂ ŭ(c)b2
∂S

=
∂ θ̆ (c)

∂ t
−K(c)ŭ(c)b1 − κ̂

(c)û(c)b1 , (S ∈ ∂ Ω̄b), (4.4.41)

∂ θ̆

∂ l
= Λκ̆ + λ̂ κ̂ + λ̆K, (0≤ l ≤ L0). (4.4.42)

detailed derivation of linearization of these identities see appendix A.6.
For I, we use integration by parts to obtain,

I =
∫

∂ Ω̄b

c(c)κ

(
K(c)∂ (Λ(c)K(c))

∂S
ŭ(c)b1

)
dS− cκ

[
∂ (Λ(c)K(c))

∂S
ŭ(c)b2

]S0

0

+
∫

∂ Ω̄b

cκ

(
∂ (Λ(c)K(c))

∂S
∂ ŭ(c)b2
∂S

)
dS,

where S = 0 and S = S0 are two end points of the steady beam (i.e. S(L0) = S0). The second
term then vanish as due to the boundary condition (4.2.44). Using (4.4.41) for the last term we
have,

I =
∫

∂ Ω̄b

cκ

∂ (Λ(c)K(c))

∂S

(
∂ θ̆ (c)

∂ t
− (K(c)ŭ(c)b1 + κ̂

(c)û(c)b1 )

)
dS

+
∫

∂ Ω̄b

cκ

(
K(c)∂ (Λ(c)K(c))

∂S
ŭ(c)b1

)
dS,

=
∫

∂ Ω̄b

cκ

(
∂ (Λ(c)K(c))

∂S
∂ θ̆ (c)

∂ t

)
dS−

∫
∂ Ω̄b

cκ

[
∂ (Λ(c)K(c))

∂S
(κ̂(c)û(c)b1 )

]
dS,

=cκ

[
(Λ(c)K(c))

∂ θ̆ (c)

∂ t

]S0

0
−
∫

∂ Ω̄b

[
cκ(Λ

(c)K(c))
∂

∂S

(
∂ θ̆ (c)

∂ t

)]
dS

−
∫

∂ Ω̄b

cκ

[
∂ (Λ(c)K(c))

∂S
(κ̂(c)û(c)b1 )

]
dS.

The first term then disappears due to identity (4.2.45). We then pull-back the second term to the
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reference (material) description to obtain,

I =−
∫ L0

0

[
cκ(ΛK)

∂

∂ l

(
∂ θ̆

∂ t

)]
dl−

∫
∂ Ω̄b

cκ

(
∂ (Λ(c)K(c))

∂S
(κ̂(c)û(c)b1 )

)
dS,

=−
∫ L0

0

[
cκ(ΛK)

∂

∂ t

(
∂ θ̆

∂ l

)]
dl−

∫
∂ Ω̄b

cκ

(
∂ (Λ(c)K(c))

∂S
(κ̂(c)û(c)b1 )

)
dS.

We apply identity (4.4.42) to the first term to obtain,

I =−
∫ L0

0

[
cκ(ΛK)

∂

∂ t

(
Λκ̆ + λ̆K + λ̂ κ̂

)]
dl−

∫
∂ Ω̄b

cκ

(
∂ (Λ(c)K(c))

∂S
(κ̂(c)û(c)b1 )

)
dS,

=− ∂

∂ t

∫ L0

0

[
cκ(ΛK)

(
Λκ̆ + λ̆K + λ̂ κ̂

)]
dl−

∫
∂ Ω̄b

cκ

(
∂ (Λ(c)K(c))

∂S
(κ̂(c)û(c)b1 )

)
dS,

(4.4.43)

where we have taken the time derivative outside the integral as Λ,K are independent of time. In
this final form, the first term is a complete time derivative (in the material description) and the
second term will be canceled below.
Similarly, for II applying integration by two parts, we have,

II =
∫

∂ Ω̄b

cκ

(
K(c)∂ (Λ(c)κ̂(c)+ λ̂ (c)K(c))

∂S
û(c)b1 + κ̂

(c)∂ (Λ(c)K(c))

∂S
û(c)b1

)
dS

− cκ

[
∂ (Λ(c)κ̂(c)+ λ̂ (c)K(c))

∂S
û(c)b1

]S0

0
+
∫

∂ Ω̄b

[
cκ

∂ (Λ(c)κ̂(c)+ λ̂ (c)K(c))

∂S
∂ û(c)b2
∂S

]
dS,

the second term cancels due to the boundary condition (4.2.26). Applying identity (4.4.38) to
the the final term, we obtain,

II =
∫

∂ Ω̄b

cκ

(
K(c)∂ (Λ(c)κ̂(c)+ λ̂ (c)K(c))

∂S
û(c)b1 + κ̂

(c)∂ (Λ(c)K(c))

∂S
û(c)b1

)
dS

+
∫

∂ Ω̄b

cκ

∂ (Λ(c)κ̂(c)+ λ̂ (c)K(c))

∂S

(
∂ θ̂ (c)

∂ t
−K(c)û(c)b1

)
dS,

=
∫

∂ Ω̄b

cκ

(
κ̂
(c)∂ (Λ(c)K(c))

∂S
û(c)b1

)
dS+

∫
∂ Ω̄b

cκ

(
∂ (Λ(c)κ̂(c)+ λ̂ (c)K(c))

∂S
∂ θ̂ (c)

∂ t

)
dS,

=
∫

∂ Ω̄b

cκ

(
κ̂
(c)∂ (Λ(c)K(c))

∂S
û(c)b1

)
dS+ cκ

[(
Λ
(c)

κ̂
(c)+ λ̂

(c)K(c)
)

∂ θ̂ (c)

∂ t

]S0

0

−
∫

∂ Ω̄b

cκ

(
Λ
(c)

κ̂
(c)+ λ̂

(c)K(c)
)

∂

∂S

(
∂ θ̂ (c)

∂ t

)
dS.
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The second term disappears due to the boundary condition (4.2.27). We again pull-back the
third term to the reference (material) description to obtain,

II =
∫

∂ Ω̄b

cκ

(
κ̂
(c)∂ (Λ(c)K(c))

∂S
û(c)b1

)
dS−

∫ L0

0
cκ

(
Λκ̂ + λ̂K

)
∂

∂ l

(
∂ θ̂

∂ t

)
dl,

=−
∫ L0

0
cκ

(
Λκ̂ + λ̂K

)
∂

∂ t

(
∂ θ̂

∂ l

)
dl +

∫
∂ Ω̄b

cκ

(
κ̂
(c)∂ (Λ(c)K(c))

∂S
û(c)b1

)
dS.

We then apply (4.4.39) to the first term to obtain,

II =−
∫ L0

0
cκ

(
Λκ̂ + λ̂K

)
∂

∂ t

(
Λκ̂ + λ̂K

)
dl +

∫
∂ Ω̄b

cκ

(
κ̂
(c)∂ (Λ(c)K(c))

∂S
û(c)b1

)
dS,

=− ∂

∂ t

∫ L0

0

cκ

2

(
Λκ̂ + λ̂K

)2
dl +

∫
∂ Ω̄b

cκ

(
κ̂
(c)∂ (Λ(c)K(c))

∂S
û(c)b1

)
dS. (4.4.44)

The final terms in I and II cancel each other when we compute their sum (I + II); after rear-
rangement we have,

(I + II) =− ∂

∂ t

∫ L0

0
cκΛK

(
Λκ̆ + λ̆K

)
dl︸ ︷︷ ︸

Ŭκ

− ∂

∂ t

∫ L0

0
cκ

(
(ΛK)

(
λ̂ κ̂

)
+

1
2

(
Λκ̂ + λ̂K

)2
)

dl︸ ︷︷ ︸
Ûκ

.

(4.4.45)

We denote the above terms as Ŭκ , the rate of working of bending stresses that contains the
second order variables and Ûκ , the rate of working of bending stresses that contains the first
order variables.
Similarly, for III, we use integration by parts to obtain,

III = cλ

[
Λ
(c)ŭ(c)b1

]S0

0
− cλ

∫
∂ Ω̄b

(
Λ
(c)∂ ŭ(c)b1

∂S

)
dS+ cλ

∫
∂ Ω̄b

(
K(c)

(
Λ
(c)−1

)
ŭ(c)b2

)
dS;

the first term disappears due to the boundary condition (4.2.44) and we substitute (4.4.40) to the
second term to obtain,

III =− cλ

∫
∂ Ω̄b

Λ
(c)

(
1

Λ(c)

∂ λ̆ (c)

∂ t
− λ̂ (c)(

Λ(c)
)2

∂ λ̂ (c)

∂ t
+K(c)ŭ(c)b2 + κ̂

(c)û(c)b2

)
dS

+ cλ

∫
∂ Ω̄b

(
K(c)

(
Λ
(c)−1

)
ŭ(c)b2

)
dS,

=cλ

∫
∂ Ω̄b

( 1
Λ(c)

λ̂
(c)∂ λ̂ (c)

∂ t
−Λ

(c)
κ̂
(c)û(c)b2

)
dS− cλ

∫
∂ Ω̄b

(
∂ λ̆ (c)

∂ t
+K(c)ŭ(c)b2

)
dS.

(4.4.46)
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For IV , we use integration by parts to obtain,

IV =cλ

[
λ̂
(c)û(c)b1

]S0

0
− cλ

∫
∂ Ω̄b

(
λ̂
(c)∂ û(c)b1

∂S

)
dS

+ cλ

∫
∂ Ω̄b

(
K(c)

λ̂
(c)û(c)b2 + κ̂

(c)(Λ(c)−1)û(c)b2

)
dS;

the first term cancels because of the boundary condition (4.2.26). We then apply identity (4.4.37)
to the second term to obtain,

IV =cλ

∫
∂ Ω̄b

(
K(c)

λ̂
(c)û(c)b2 + κ̂

(c)(Λ(c)−1)û(c)b2

)
dS

− cλ

∫
∂ Ω̄b

λ̂
(c)

(
1

Λ(c)

∂ λ̂ (c)

∂ t
+K(c)û(c)b2

)
dS,

=− cλ

∫
∂ Ω̄b

[
λ̂ (c)

Λ(c)

∂ λ̂ (c)

∂ t
− κ̂

(c)
Λ
(c)û(c)b2

]
dS− cλ

∫
∂ Ω̄b

(
κ̂
(c)û(c)b2

)
dS. (4.4.47)

The first term in III and IV cancels when we compute their sum (III+IV ). After rearrangement,
we have

(III + IV ) =−cλ

∫
∂ Ω̄b

(
κ
(c)ŭ(c)b2 + κ̂

(c)û(c)b2

)
dS− cλ

∫
∂ Ω̄b

∂ λ̆ (c)

∂ t
dS.

We apply identity (4.4.40) to the first term to obtain,

(III + IV ) =−cλ

∫
∂ Ω̄b

[
∂ ŭ(c)b1
∂S

+Λ
−2

λ̂
(c)∂ λ̂ (c)

∂ t
− 1

Λ(c)

∂ λ̆ (c)

∂ t

]
dS− cλ

∫
∂ Ω̄b

∂ λ̆ (c)

∂ t
dS,

=−cλ

[
ŭ(c)b1

]S0

0
+ cλ

∫
∂ Ω̄b

[
− λ̂ (c)(

Λ(c)
)2

∂ λ̂ (c)

∂ t
+

1
Λ(c)

∂ λ̆ (c)

∂ t
− ∂ λ̆ (c)

∂ t

]
dS.

The first term cancels due to the boundary condition (4.2.44). We then pull-back the remaining
term to the reference (material) description to obtain,

(III + IV ) = cλ

∫ L0

0

[
−Λ
−1

λ̂
∂ λ̂

∂ t
+(Λ−1)

∂ λ̆

∂ t

]
dl,

=− ∂

∂ t

∫ L0

0
cλ

[
λ̆ (Λ−1)

]
dl− ∂

∂ t

∫ L0

0
cλ

(1
2

Λ
−1

λ̂
2
)

dl. (4.4.48)

This is a complete time derivative in the material description.
For V , we apply identity (4.4.40) to obtain,
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V =
∫

∂ Ω̄b

T

[
∂ ŭ(c)b1
∂S

+
λ̂ (c)(
Λ(c)

)2
∂ λ̂ (c)

∂ t
− 1

Λ(c)

∂ λ̆ (c)

∂ t

]
dS,

=−T
[

ŭ(c)b1

]S0

0
+
∫

∂ Ω̄b

T

[
λ̂ (c)(
Λ(c)

)2
∂ λ̂ (c)

∂ t
− 1

Λ(c)

∂ λ̆ (c)

∂ t

]
dS,

the first term disappears because of the boundary condition (4.2.44). We rewrite the remaining
terms in the reference (material) description to obtain,

V =− ∂

∂ t

∫ L0

0

(
T λ̆

)
dl +

∂

∂ t

∫ L0

0
T
(1

2
Λ
−1

λ̂
2
)

dl. (4.4.49)

We group terms for −(III + IV +V ) in the form,

(III + IV +V ) =− ∂

∂ t

∫ L0

0

[
cλ λ̆ (Λ−1)+T λ̆

]
dl︸ ︷︷ ︸

Ŭλ

− ∂

∂ t

∫ L0

0

[
1
2
(cλ −T )Λ

−1
λ̂

2
]

dl︸ ︷︷ ︸
Ûλ

.

(4.4.50)

We denote the above terms as Ŭλ , the rate of working of extensional stresses that contains
second order variables and Ûλ , the rate of working of extensional stresses that contains first
order variables.
For V I, we change back to reference (material) description and apply ŭb = ∂ x̆b/∂ t, we have,

V I =
∫ L0

0
pe

(
∂ x̆b

∂ t
·N+ ûb · n̂

)
Λdl =

∂

∂ t

∫ L0

0
pe

(
x̆b ·N

)
Λdl︸ ︷︷ ︸

P̆e

+
∫ L0

0
pe (ûb · n̂)Λdl︸ ︷︷ ︸

P̂e

.

(4.4.51)

We denote the two terms above as the rate of working of external pressure which contain the
second order variables, P̆e, and the work done by external pressure that contains the first order
variables, P̂e, respectively.
Similarly, for V II we change to reference (material) description and apply ŭb = ∂ x̆b/∂ t to obtain,

V II =
∫ L0

0

[
(ΣΣΣN) · ∂ x̆b

∂ t

]
Λdl +

∫ L0

0

[
(ΣΣΣn̂) · ûb +

((
x̂b

∂ΣΣΣ

∂x
+ ŷb

∂ΣΣΣ

∂y

)
N
)
· ûb

]
Λdl,

=
∂

∂ t

∫ L0

0
[(ΣΣΣN) · x̆b]Λdl︸ ︷︷ ︸

S̆b

+
∫ L0

0

[
(ΣΣΣn̂) · ûb +

((
x̂b

∂ΣΣΣ

∂x
+ ŷb

∂ΣΣΣ

∂y

)
N
)
· ûb

]
Λdl︸ ︷︷ ︸

Ŝb

.

(4.4.52)
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We denote the above terms as S̆b, the rate of working of fluid stress tensor on the wall that
contains the second order variables and Ŝb, the rate of working of the fluid stress tensor on the
wall that contains first order variables.
We pull-back V III to the reference (material) description. Since we can describe the shape
of the deformed beam in the static state using Cartesian coordinates, where dx = Λcos(Θ)dl,
dy = Λsin(Θ)dl; substituting these into V III we obtain,

V III =
∫ L0

0

[
x̂b

cos(Θ)
(σ̂σσN) · ∂U

∂ l

]
dl +

∫ L0

0

[
ŷb

sin(Θ)
(σ̂σσN) · ∂U

∂ l

]
dl.

We apply integration by parts to obtain,

V III =
[(

x̂b

cos(Θ)
+

ŷb

sin(Θ)

)(
Σ̂ΣΣN
)
·U
]L0

0

−
∫ L0

0

[
∂

∂ l

((
x̂b

cos(Θ)
+

ŷb

sin(Θ)

)(
Σ̂ΣΣN
))
·U
]

dl = 0, (4.4.53)

where we apply U = Ub = 0 on the static beam.
In total, we substitute I−V III into Ê f in equation (4.4.36) to obtain,

Ê f =−Ûκ −Ûλ − P̂e− Ŝb−Ŭκ −Ŭλ − P̆e− S̆b, (4.4.54)

where,

Ûκ =
∂

∂ t

∫ L0

0
cκ

[
(ΛK)

(
λ̂ κ̂

)
+

1
2

(
Λκ̂ + λ̂K

)2
]

dl, (4.4.55)

Ûλ =
∂

∂ t

∫ L0

0

[
1
2
(cλ −T )Λ

−1
λ̂

2
]

dl, (4.4.56)

P̂e =
∫ L0

0
pe (ûb · n̂)Λdl, (4.4.57)

Ŝb =
∫ L0

0

[
(ΣΣΣn̂) · ûb +

((
x̂b

∂ΣΣΣ

∂x
+ ŷb

∂ΣΣΣ

∂y

)
N
)
· ûb

]
Λdl, (4.4.58)

Ŭκ =
∂

∂ t

∫ L0

0
cκ(ΛK)

(
Λκ̆ + λ̆K

)
dl, (4.4.59)

Ŭλ =
∂

∂ t

∫ L0

0

[
cλ λ̆ (Λ−1)+T λ̆

]
dl, (4.4.60)

P̆e =
∂

∂ t

∫ L0

0
pe

(
x̆b ·N

)
Λdl, (4.4.61)

S̆b =
∂

∂ t

∫ L0

0
[(ΣΣΣN) · x̆b]Λdl. (4.4.62)

Here Ûκ and Ŭκ are the rate of working of bending stresses that contain the first order and
second order variables respectively, Ûλ and Ŭλ are the rate of working of extensional stresses
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that contain first order and second order variables respectively, P̂e and P̆e are the rate of working
of external pressure that contain first and second order variables respectively while Ŝb and S̆b

are the work done by fluid stress that contain first order and second order variables respectively.
Note that Ûκ , Ûλ , P̆e,Ŭλ , Ŭκ and S̆b will disappear upon integrating over a period of oscillation.
We substitute (4.4.54) into the fluid energy budget to obtain the energy budget of the system and
consider it over a period of oscillation. At O(ε2), we obtain the average energy budget (denoted
by overline) for the linearised system in the form,

¯̂Ff − ¯̂Pf +
¯̂D f − ¯̂S f +

¯̂Sb +
¯̂Pe =

¯̂T = 0, (4.4.63)

where,

¯̂Ff =

[∫ 1

0

1
2
( ¯̂u1

2
+ ¯̂u2

2
)U1 +( ¯̂u1U1 + ¯̂u2U2) ¯̂u1 dy

]x=L0+Ld

x=−Lu

, (4.4.64)

P̂f =

[∫ 1

0

(
− ¯̂p ¯̂u1

)
dy
]x=L0+Ld

x=−Lu

, (4.4.65)

¯̂D f =R−1
∫

Ω̄

[
2
(

∂ ¯̂u1

∂x

)2

+2
(

∂ ¯̂u2

∂y

)2

+

(
∂ ¯̂u1

∂y
+

∂ ¯̂u2

∂x

)2
]

dA, (4.4.66)

¯̂S f =
∫

Ω̄

[
U1

(
¯̂u1

∂ ¯̂u1

∂x
+ ¯̂u2

∂ ¯̂u1

∂y

)
+U2

(
¯̂u1

∂ ¯̂u2

∂x
+ ¯̂u2

∂ ¯̂u2

∂y

)]
dA, (4.4.67)

¯̂Sb =
∫ L0

0

[(
ΣΣΣ ¯̂n
)
· ¯̂ub +

((
¯̂xb

∂ΣΣΣ

∂x
+ ¯̂yb

∂ΣΣΣ

∂y

)
N
)
· ¯̂ub

]
Λdl, (4.4.68)

¯̂Pe =
∫ L0

0
pe
( ¯̂ub · ¯̂n

)
Λdl. (4.4.69)

4.5 Numerical method

In this section, we give a detailed explanation of the numerical methods we adopt to solve for
the eigenvalue problem and construct the discretized form of the corresponding energy budget
on each element.

4.5.1 Numerical methods for eigenvalue problem

We linearise the global vector of unknowns in the form U′ = Ū′+ εÛ′, where Ū′ denotes the
steady variable vector, Û′ denotes for the first order variable vector. We then substitute it into
the system’s discretized matrix equation (3.7.12) to obtain

M
(
Ū′+ εÛ′

) d
(
Ū′+ εÛ′

)
dt

+K
(
Ū′+ εÛ′

)(
Ū′+ εÛ′

)
= R

(
Ū′, Û′

)
= 0. (4.5.1)
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Using a Taylor expansion for M
(
Ū′+ εÛ′

)
and K

(
Ū′+ εÛ′

)
we have,

M
(
Ū′+ εÛ′

)
=M

(
Ū′
)
+ ε

∂M
(
Ū′
)

∂ Ū′
Û′+O(ε2), (4.5.2)

K
(
Ū′+ εÛ′

)
=K

(
Ū′
)
+ ε

∂K
(
Ū′
)

∂ Ū′
Û′+O(ε2). (4.5.3)

Substituting (4.5.2) and (4.5.3) into equation (4.5.1), at O(ε) we have,

M
(
Ū′
) dÛ′

dt
+

(
K
(
Ū′
)
+

∂K
(
Ū′
)

∂ Ū′
Ū′
)

Û′ = 0. (4.5.4)

We assume the first order vector Û′ has the wave-like form Û′ = eσtŨ′, where σ = σr + iσi

(σr,σi ∈R). Substituting the wavelike form into equation (4.5.4), we obtain a general eigenvalue
problem

σAŨ′ = BŨ′, (4.5.5)

where

A = M
(
Ū′
)
, B =

(
−K

(
Ū′
)
−

∂K
(
Ū′
)

∂ Ū′
Ū′
)
. (4.5.6)

The scalar σ and vector Ũ′ are eigenvalue and eigenfunction of this eigenvalue problem respec-
tively. We solve the above eigenvalue problem using the Arnoldi-frontal method, which employs
a frontal method during an Arnoldi iteration scheme. This has the advantage that it does not need
to form the large matrices A and B in equation (4.5.5) (details see Hao et al. [25], Arnoldi [1]).

4.5.2 Numerical methods for linearised energy budget

Using the eigenfunction calculated from the eigensolver (4.5.5), we can compute the average
energy budget of the linearised system over one period of time at O(ε2).
We substitute the shape functions (3.7.6) into the second order energy budget to obtain its dis-
cretized form on each element.
Similar to the discretization of fully nonlinear energy budget in chapter 3, we substitute the
discretized variables (4.1.1) into ¯̂D f , the expansion of the viscous dissipation energy budget at
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second order over one period of oscillation takes the form

¯̂D f =∑
∆a

(
R−1

l=6

∑
l=1

i=6

∑
i=1

j=6

∑
j=1

k=6

∑
k=1

(2û1l û1i + û2l û2i)y jyk

∫ ∫
AlkAi j|J|−2 dxdy

)

+∑
∆a

(
R−1

l=6

∑
l=1

i=6

∑
i=1

j=6

∑
j=1

k=6

∑
k=1

(û1l û1i +2û2l û2i)x jxk

∫ ∫
AlkAi j|J|−2 dxdy

)

−∑
∆a

(
R−1

l=6

∑
l=1

i=6

∑
i=1

j=6

∑
j=1

k=6

∑
k=1

2û1l û2iy jxk

∫ ∫
AlkAi j|J|−2 dxdy

)
. (4.5.7)

The double integration
∫ ∫

dxdy is taken over each triangular element ∆a. We then sum up these
integrations over the whole domain.
Similarly, the expansion of the work done by non-linear Reynolds stresses over one period of
oscillation ¯̂S f can be written as,

¯̂S f =∑
∆a

(
l=6

∑
l=1

i=6

∑
i=1

j=6

∑
j=1

k=6

∑
k=1

(
û1l û1iU1 j + û1l û2iU2 j

)
yk

∫ ∫
NlAikN j|J|−1 dxdy

)

−∑
∆a

(
l=6

∑
l=1

i=6

∑
i=1

j=6

∑
j=1

k=6

∑
k=1

(
û2l û1iU1 j + û2l û2iU2 j

)
xk

∫ ∫
NlAikN j|J|−1 dxdy

)
. (4.5.8)

The discretized form of the net perturbation kinetic energy flux extracted from the mean flow
over one period of oscillation ¯̂Ff takes the form,

¯̂Ff =∑
Ir

(
l=6

∑
l=1

i=6

∑
i=1

j=6

∑
j=1

1
2
(
3û1l û1iU1 j + û2l û2iU1 j +2û1l û2iU2 j

)∫
NlNiN j dy

)
. (4.5.9)

This is similar to the discretization of fully nonlinear energy budget, where
∫

dy is the integration
evaluated along each three-node element of the inlet and outlet boundaries and then sum up these
integrations.
The expansion of the work done by perturbation pressure over one period of oscillation ¯̂Pf can
be written as,

¯̂Pf =∑
Ir

(
l=6

∑
l=1

i=6

∑
i=1
−û1l p̂i

∫
NlNi dy

)
. (4.5.10)

For ¯̂Sb, we can first simplify the energy budget ¯̂Sb by applying integration by parts. We denote
the two terms of ¯̂Sb in I and II. To simplify the average ¯̂Sb over one period, we can rearrange it
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as,

¯̂Sb =
∫ L0

0
Λ
(
ΣΣΣ ¯̂n
)
· ¯̂ub dl︸ ︷︷ ︸

I

+
∫ L0

0
Λ

[(
¯̂xb

∂ΣΣΣ

∂x
+ ¯̂yb

∂ΣΣΣ

∂y

)
N
]
· ¯̂ub dl.︸ ︷︷ ︸

II

(4.5.11)

We substitute the expression of the static fluid stress tensor ΣΣΣ (see appendix A.5), the first order
normal vector ¯̂n =−θ̂ cos(Θ)g1− θ̂ sin(Θ)g2 into I, and apply the first order velocity boundary
condition (4.2.20) to obtain,

I =
∫ L0

0

¯̂
θPΛ

( ¯̂u1 cos(Θ)+ ¯̂u2 sin(Θ)
)

dl−R−1
∫ L0

0

(
2 ¯̂
θ ¯̂u1 +

¯̂
θ ¯̂u1 +

¯̂
θ ¯̂u2 cot(Θ)

)
∂U1

∂ l
dl

−R−1
∫ L0

0

(
2 ¯̂
θ ¯̂u2 +

¯̂
θ ¯̂u2 +

¯̂
θ ¯̂u1 tan(Θ)

)
∂U2

∂ l
dl.

We use integration by parts for the final two terms to obtain,

I =
∫ L0

0

¯̂
θPΛ

( ¯̂u1 cos(Θ)+ ¯̂u2 sin(Θ)
)

dl−R−1
[(

2 ¯̂
θ ¯̂u1 +

¯̂
θ ¯̂u1 +

¯̂
θ ¯̂u2 cot(Θ)

)
U1

]L0

0

+R−1
∫ L0

0

∂

∂ l

( ¯̂u1 cos(Θ)+ ¯̂u2 sin(Θ)
)

U1 dl−R−1
[(

2 ¯̂
θ ¯̂u2 +

¯̂
θ ¯̂u2 +

¯̂
θ ¯̂u1 tan(Θ)

)
U2

]L0

0

+R−1
∫ L0

0

∂

∂ l

(
2 ¯̂
θ ¯̂u2 +

¯̂
θ ¯̂u2 +

¯̂
θ ¯̂u1 tan(Θ)

)
U2 dl,

=
∫ L0

0

¯̂
θPΛ

( ¯̂u1 cos(Θ)+ ¯̂u2 sin(Θ)
)

dl;

here we apply the static velocity boundary condition (4.2.9) on the static elastic beam.
We substitute the expression of the static fluid stress tensor ΣΣΣ (see appendix A.5), the static
normal vector N =−sin(Θ)g1 + cos(Θ)g2 into II, and use ûb = ∂ x̂b/∂ t, to obtain

II =
∂

∂ t

∫ L0

0

[ ¯̂x2
b

2
∂P
∂x
−

¯̂y2
b

2R

(
∂ 2U1

∂y2 +
∂ 2U2

∂x2 +2
∂ 2U2

∂y2

)
−

¯̂xb ¯̂yb

R

(
∂ 2U1

∂x∂y
+

∂ 2U2

∂x2

)]
sin(Θ)dl

− ∂

∂ t

∫ L0

0

[
¯̂xb ¯̂yb

∂P
∂x

+
¯̂y2
b

2
∂P
∂y
−

¯̂x2
b

2R

(
∂ 2U1

∂x∂y
+

∂ 2U2

∂x2

)
−

¯̂y2
b

R
∂ 2U2

∂y2

]
cos(Θ)dl

+
∂

∂ t

∫ L0

0

[ ¯̂xb ¯̂yb

R

(
∂ 2U2

∂x∂y
+

∂ 2U2

∂y2

)]
cos(Θ)dl

+
∫ L0

0
¯̂yb

¯̂xb

∂ t

[
∂P
∂x

cos(Θ)+
∂P
∂y

sin(Θ)− 1
R

(
∂ 2U1

∂x∂y
sin(Θ)+

∂ 2U2

∂x∂y
cos(Θ)

)]
dl

+
∫ L0

0
¯̂yb

¯̂xb

∂ t

[(
R−1 ∂ 2U1

∂y2

)
cos(Θ)+

(
R−1 ∂ 2U2

∂x2

)
sin(Θ)

]
dl.

The first three terms vanish over one period of oscillation. We substitute the steady fluid equation
(4.2.6,4.2.7) into the final term to obtain,
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II =
∂

∂ t

∫ L0

0

[ ¯̂x2
b

2
∂P
∂x
−

¯̂y2
b

2R

(
∂ 2U1

∂y2 +
∂ 2U2

∂x2 +2
∂ 2U2

∂y2

)
−

¯̂xb ¯̂yb

R

(
∂ 2U1

∂x∂y
+

∂ 2U2

∂x2

)]
sin(Θ)dl

− ∂

∂ t

∫ L0

0

[
¯̂xb ¯̂yb

∂P
∂x

+
¯̂y2
b

2
∂P
∂y
−

¯̂x2
b

2R

(
∂ 2U1

∂x∂y
+

∂ 2U2

∂x2

)
−

¯̂y2
b

R
∂ 2U2

∂y2

]
cos(Θ)dl

+
∂

∂ t

∫ L0

0

[ ¯̂xb ¯̂yb

R

(
∂ 2U2

∂x∂y
+

∂ 2U2

∂y2

)]
cos(Θ)dl

+
∫ L0

0
¯̂yb

¯̂xb

∂ t

[
2

∂P
∂x

cos(Θ)+2
∂P
∂y

sin(Θ)

]
dl

+
∫ L0

0
¯̂yb

¯̂xb

∂ t

[(
U1

∂U1

∂x
+U2

∂U1

∂y

)
cos(Θ)+

(
U1

∂U2

∂x
+U2

∂U2

∂y

)
sin(Θ)

]
dl

−
∫ L0

0
¯̂yb

¯̂xb

∂ t

[
1
R

∂

∂x

(
∂U1

∂x
+

∂U2

∂y

)
+

1
R

∂

∂y

(
∂U1

∂x
+

∂U2

∂y

)]
dl. (4.5.12)

Substituting the incompressible condition at static state (4.2.5) and again applying dx=Λcos(Θ)dl,
dy = Λsin(Θ)dl into the above terms, we obtain

II =
∂

∂ t

∫ L0

0

[ ¯̂x2
b

2
∂P
∂x
−

¯̂y2
b

2R

(
∂ 2U1

∂y2 +
∂ 2U2

∂x2 +2
∂ 2U2

∂y2

)
−

¯̂xb ¯̂yb

R

(
∂ 2U1

∂x∂y
+

∂ 2U2

∂x2

)]
sin(Θ)dl

− ∂

∂ t

∫ L0

0

[
¯̂xb ¯̂yb

∂P
∂x

+
¯̂y2
b

2
∂P
∂y
−

¯̂x2
b

2R

(
∂ 2U1

∂x∂y
+

∂ 2U2

∂x2

)
−

¯̂y2
b

R
∂ 2U2

∂y2

]
cos(Θ)dl

+
∂

∂ t

∫ L0

0

[ ¯̂xb ¯̂yb

R

(
∂ 2U2

∂x∂y
+

∂ 2U2

∂y2

)]
cos(Θ)dl +

∫ L0

0
4 ¯̂yb

∂ ¯̂xb

∂ t
∂P
∂ l

dl

+
∫ L0

0

[
¯̂yb

∂ ¯̂xb

∂ t
(U1 +U2 cot(Θ))

∂U1

∂ l
+ ¯̂yb

∂ ¯̂xb

∂ t
(U1 tan(Θ)+U2)

∂U2

∂ l

]
dl.

We use integration by parts for the final term to obtain,

II =
∂

∂ t

∫ L0

0

[ ¯̂x2
b

2
∂P
∂x
−

¯̂y2
b

2R

(
∂ 2U1

∂y2 +
∂ 2U2

∂x2 +2
∂ 2U2

∂y2

)
−

¯̂xb ¯̂yb

R

(
∂ 2U1

∂x∂y
+

∂ 2U2

∂x2

)]
sin(Θ)dl

− ∂

∂ t

∫ L0

0

[
¯̂xb ¯̂yb

∂P
∂x

+
¯̂y2
b

2
∂P
∂y
−

¯̂x2
b

2R

(
∂ 2U1

∂x∂y
+

∂ 2U2

∂x2

)
−

¯̂y2
b

R
∂ 2U2

∂y2

]
cos(Θ)dl

+
∂

∂ t

∫ L0

0

[ ¯̂xbŷb

R

(
∂ 2U2

∂x∂y
+

∂ 2U2

∂y2

)]
cos(Θ)dl

+
∫ L0

0
4 ¯̂yb

∂ ¯̂xb

∂ t
∂P
∂ l

dl +
[

¯̂yb
∂ ¯̂xb

∂ t
(U1 +U2 cot(Θ))U1 + ¯̂yb

∂ ¯̂xb

∂ t
(U1 tan(Θ)+U2)U2

]L0

0

−
∫ L0

0

[
∂

∂ l

(
¯̂yb

∂xb

∂ t
(U1 +U2 cot(Θ))

)
U1 +

∂

∂ l

(
¯̂yb

∂ ¯̂xb

∂ t
(U1 tan(Θ)+U2)

)
U2

]
dl,

=
∂

∂ t

∫ L0

0

[ ¯̂x2
b

2
∂P
∂x
−

¯̂y2
b

2R

(
∂ 2U1

∂y2 +
∂ 2U2

∂x2 +2
∂ 2U2

∂y2

)
−

¯̂xb ¯̂yb

R

(
∂ 2U1

∂x∂y
+

∂ 2U2

∂x2

)]
sin(Θ)dl
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− ∂

∂ t

∫ L0

0

[
¯̂xb ¯̂yb

∂P
∂x

+
¯̂y2
b

2
∂P
∂y
−

¯̂x2
b

2R

(
∂ 2U1

∂x∂y
+

∂ 2U2

∂x2

)
−

¯̂y2
b

R
∂ 2U2

∂y2

]
cos(Θ)dl

+
∂

∂ t

∫ L0

0

[ ¯̂xb ¯̂yb

R

(
∂ 2U2

∂x∂y
+

∂ 2U2

∂y2

)]
cos(Θ)dl +

∫ L0

0
4 ¯̂yb

∂ ¯̂xb

∂ t
∂P
∂ l

dl,

here we apply the static velocity boundary condition (4.2.9) on the static elastic beam.
In total, grouping I and II, we simplify ¯̂Sb over one period of oscillation to obtain,

¯̂Sb =
∫ L0

0

¯̂
θPΛ

( ¯̂u1 cos(Θ)+ ¯̂u2 sin(Θ)
)

dl +
∫ L0

0
4 ¯̂yb

∂ ¯̂xb

∂ t
∂P
∂ l

dl. (4.5.13)

Thus, the discretized form of the simplified ¯̂Sb can be written as,

¯̂Sb =∑
Ie

(
l=3

∑
l=1

i=3

∑
i=1

j=3

∑
j=1

k=6

∑
k=1

[
θ̂lPiΛ jû1k

∫
NlNiN jNk cos(Θ)dl + θ̂lPiΛ jû2k

∫
NlNiN jNk sin(Θ)dl

])

+∑
Ie

(
l=3

∑
l=1

i=6

∑
i=1

j=3

∑
j=1

4ŷbl û1iPj

∫
NlNi

dN j

dl
dl

)
(4.5.14)

where
∫

dl is the integration evaluated along each three-node element (Ie) of the elastic beam;
we then sum up these integrations.
We apply n̂ = −θ̂ cos(Θ)g1− θ̂ sin(Θ)g2 for the work done by the external pressure over one
period of oscillation, the expansion of ¯̂Pe takes the form,

¯̂Pe =∑
Ie

(
l=3

∑
l=1

i=3

∑
i=1

j=6

∑
j=1

[
−peΛl θ̂iû1 j

∫
NlNiN j cos(Θ)dl− peΛl θ̂iû2 j

∫
NlNiN j sin(Θ)dl

])
.

(4.5.15)

4.6 Numerical results

In this section, we give numerical results for the eigenvalue problem (4.5.5) for the flow-driven
system (i.e. the flux on inlet boundary is fixed). The growth rate σr and frequency σi of the most
unstable eigenfunction are computed as functions of Reynolds number for several extensional
stiffnesses (see figure 4.1). We then construct the neutral stability curve in the parameter space
spanned by Reynolds number and extensional stiffness (R,cλ ). We elucidate the difference
between the results of Hao et al. [25] (as well as Luo et al. [48]) and our model since we have
modified the beam Kirchhoff law (equation 3.3.12). Finally, we illustrate the numerical results
of the second order energy budget at several points on the neutral stability curve.
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4.6.1 Numerical results for eigenvalue problem

Figure 4.1: (a) Maximal growth rate σr against Reynolds number R for cλ =

500,1000,1800,2400,3000; (b) Corresponding frequency σi against Reynolds number R.

The system is stable when the real part of σ (i.e. σr) is negative (see equation 4.3.1 in Sec. 4.3),
while the system is unstable when the real part of σ (i.e. σr) is positive. We say the system is
neutrally stable when σr = 0.
The maximal growth rate σr and corresponding frequency σi are plotted against the Reynolds
number R for various cλ (see figure 4.1). We observe that the maximal growth rate increases as
the Reynolds number increases for all selected extensional stiffness cλ . The growth rate σr is
negative (i.e. the system is stable) for low R, eventually crossing zero (i.e. the system is neutrally
stable) and reach positive values for large R (i.e. the system is unstable).
The corresponding frequency of oscillation is plotted in figure 4.1 (b). The oscillation frequency
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σi increases as R increases. We note that those frequencies become greater as the extensional
stiffness increases, since the elastic wall will oscillate at a higher frequency for a stiffer wall.
This is similar to that found in Luo et al. [48] and Jensen & Heil [42].

4.6.2 Neutrally stable curve

Figure 4.2: (a) Neutral stability curve in parameter space spanned by (R,cλ ); (b) Zoom in of
neutral stability curve.

We use a bisection method to isolate the neutral stability curve when σr = 0 and plot in the
parameter space spanned by (R,cλ ), shown in figure 4.2. The system is stable on the left side
of the neutral stability curve and unstable on the right side of the neutral stability curve in figure
4.2. The value of cλ on the neutral stability curve grows linearly with Reynolds number for
cλ ≥ 4000. This is similar to observation of Stewart [65], where for his fluid-membrane model
the critical Reynolds number along the neutral curve grows proportional to membrane tension
as tension becomes large.
For cλ < 500, the netrally stable curve shows a small cascade structure. Details of neutral points
are listed in table 4.1.
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Figure 4.3: Neutrally stable curves for the model used in this thesis and in Hao et al. [25].

Hao et. al. [25] (as well as Luo et al. [48]) demonstrated a cascade stability structure in (R,cλ )

space while their system is stable for all Reynolds number when cλ > 2600. Whereas, we
note that our system can be unstable for cλ > 2600 (shown in figure 4.3). Taking point U1
(R = 300, cλ = 2400) as an example point, U1 is unstable for our system while stable for the
Hao system (see figure 4.3). Here we also display the time evolution of mid-point pressure (pmid)
and minimal channel width (ymin) for point U1 using unsteady numerical stimulation elucidated
in chapter 3 (shown in figure 4.5).
Also our neutral stability curve is a mixture of mode-2 and mode-3 neutral points, and neither
do we find mode-4 neutral stable points for this parameter range. Whereas, the neutral stability
curve in Hao et. al. 2016 (as well as Luo et. al. 2008) is consist of mode-2, mode-3 and mode-
4 branches. We suggest that the different behavior of the two systems is caused by the new
Kirchhoff law we employed for our model, though this will need further verification.
Figure 4.4 plots the first order beam shape, the time evolution of first order mid-point location
and the amplitude of the beam calculated from the eigenvalue problem, for three different neutral
stable points N13, N15 and N16. The first order beam shape are evaluated at three different time,
tp = 2π/σi denotes the peroid of each oscillation.
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N13

N15

N16

Figure 4.4: (a), (b): The linearised beam shape at different time; the time evolution mid-point
position ŷmid on the beam, on neutral point N13; (c), (d):The linearised beam shape at different
time; the time evolution mid-point position ŷmid on the beam, on neutral point N15; (e), (f): The
linearised beam shape at different time; the time evolution mid-point position ŷmid on the beam,
on neutral point N16;
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Figure 4.5: (a) The time evolution of mid-point pressure pmid for point U1;(b) The time evolution
of mid-point velocity umid for point U1 (c) The time evolution of minimal channel width ymin

for point U1.

Table 4.1 listed the points labeled on neutral curve (shown in figure 4.2). The corresponding
Reynolds number, extensional stiffness, growth rate, oscillation frequency and instability mode
are also listed in this table. The point S1 (R = 207,cλ = 1600) listed in table 4.1 is a stable point
(i.e. corresponding σi < 0), while the point U2 (R = 214,cλ = 1600) is a unstable point (i.e.
corresponding σi > 0). The neutral points This is consistent with our predictions using unsteady
numerical stimulation (see chapter 3, see figure 3.10 and 3.11).



CHAPTER 4. LINEAR STABILITY EIGENSOLVER FOR THE FLUID-BEAM MODEL116

Point R cλ σr σi mode

N1 550 14171.875 -5.4717020E-07 4.088722 mode-2
N2 530 13523.925 -4.9766690E-07 4.020952 mode-2
N3 500 12543.457 5.8052460E-07 3.911252 mode-2
N4 470 11551.757 -5.8001090E-07 3.790225 mode-2
N5 400 9171.8750 4.7121650E-07 3.447506 mode-3
N6 370 8116.215 7.8881270E-07 3.264403 mode-2
N7 300 5669.433 9.4262750E-07 2.705644 mode-2
N8 277.066 5000 1.1594730E-07 2.473291 mode-3
N9 219.195 3500 9.4714320E-07 1.637742 mode-2

N10 215.233 3000 2.1043500E-07 1.522616 mode-2
N11 212.636 2400 -3.5048560E-08 1.417463 mode-2
N12 211.535 2000 -5.9519050E-07 1.353594 mode-3
N13 211.129 1800 -3.9422960E-08 1.321926 mode-3
N14 210.825 1600 3.6688973E-06 1.289915 mode-2
N15 210.853 1000 -4.8466350E-07 1.187952 mode-2
N16 212.382 700 -2.0064561E-07 1.131888 mode-2
N17 216 507.519 8.8535530E-07 1.095395 mode-3

S1 207 1600 -1.1072994E-02 1.2342519 mode-2

U1 300 2400 6.6514461E-02 2.2400386 mode-3
U2 214 1600 7.5386082E-03 1.3363302 mode-2

Table 4.1: Neutrally stable points labeled in figure 4.2.

We denote the eigenmode as mode-i when the oscillation to the elastic wall contains i half
wavelengths (e.g. Jensen [39]), e.g. mode-2 is consists of two humps, while mode-3 consists of
three humps. Figure 4.6 demonstrates the elastic oscillation wall shape for point N14, a mode-2
neutrally stable point (i.e. contains 2 half wavelength) and point N-13, a mode-3 neutrally stable
point (i.e. contains 3 half wavelengths).
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Figure 4.6: The elastic oscillation beam shape for neutral points N13 and N16.

4.6.3 Energy budget of eigenvalue problem

R cλ
¯̂D f

¯̂S f
¯̂Ff

¯̂Pf
¯̂Sb

¯̂Pe
¯̂T/ ¯̂D f

210.853 1000 3.26E-04 1.40E-04 6.63E-08 5.85E-09 -1.83E-04 1.19E-05 -2.76%
210.713 1500 2.09E-04 8.73E-05 3.88E-08 3.48E-09 -1.02E-04 8.32E-06 5.01%
210.825 1600 1.95E-04 8.11E-05 3.58E-08 3.21E-09 -9.42E-05 7.93E-06 6.15%
211.129 1800 1.77E-04 7.81E-05 3.09E-08 2.79E-09 -7.60E-05 6.91E-06 9.13%
219.195 3500 1.12E-04 3.91E-05 1.65E-08 1.54E-09 -3.86E-05 7.32E-06 24.3%

Table 4.2: The average second order energy budget on neutral points.

Using the numerical solution of eigenvalue problem, we can compute the average second order
energy budget over one period of oscillation on neutrally stable points, shown in table 4.2.
The second order dissipation energy budget ¯̂D f is positive-definite, which is consistent with the
theoretical derivation (see equation (4.4.66)). The linearised system energy is mainly balanced
by the perturbation energy loss due to viscous dissipation ¯̂D f , the work done by non-linear
Reynolds stresses ¯̂S f and the rate of working of perturbation fluid stress tensor on the elastic
wall ¯̂Sb. We scale the total second order energy budget ¯̂T = ¯̂Ff − ¯̂Pf +

¯̂D f − ¯̂S f +
¯̂Sb− ¯̂Pe in

equation (4.4.63) (i.e. the numerical error) with ¯̂D f . The error are acceptable for neutral points
with low extensional stiffness (cλ = 1000,1600,1800). However, for higher extensional stiffness
the total error is quit large (cλ = 3500).
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4.7 Discussion

In this chapter we revisited the model for flow in a finite-length flexible-walled channel pre-
sented in chapter 3. However, in this case we assumed small amplitude perturbations from the
static beam and expanded the variables to second order in amplitude. We then substituted these
linearised variables into the system governing equations to obtain the corresponding governing
equations at each order. We assumed a temporal wave-like form for all the first order variables
and substituted into the first order governing equations (4.2.16-4.2.27) to obtain the eigenvalue
problem of the system.
This eigenvalue problem was solved numerically using a numerical method similar to the fully
non-linear problem.
We constructed numerical results for the eigenvalue problems. In particular, using a bisection
method, we found the neutrally stable curve in parameter space spanned by Reynolds number
and extensional stiffness (figure 4.2). The stability behavior of our model is consistent with
Hao et al. [25] (as well as Luo et al. [48]) for extensional stiffness in the range 1000− 2500.
However, for higher extensional stiffness, the stability properties are different. We presume this
difference appears because we adopted a different Kirchhoff law in our model. The growth rate
and frequency of the instability for several points in the parameter space were calculated (table
4.1). For example the growth rate of point R = 207,cλ = 1600, pe = 1.95 is negative while the
growth rate of point R = 214,cλ = 1600, pe = 1.95 is positive, consistent with the observation
of fully nonlinear system in chapter 3. We also calculated the second order energy budget time-
averaged over one period of oscillation at neutrally stable points. However, for high extensional
stiffness (i.e. cλ = 3500) the error (i.e. the total energy in the system) is not yet sufficiently
small. Developing methods to reduce this error is an on-going area of future work. We antici-
pate that once the error is within acceptable limits, the perturbation energy budget may provide
a useful tool to distinguish the various modes of oscillation.



Chapter 5

Discussion and future work

In this thesis we have mainly discussed two models: a fluid-membrane model in an infinitely
long channel and a fluid-beam model in a finite channel. We analysed the energy budget of
both the fully nonlinear system and the linearised system for these two models. In each case
the energy budget was derived in a way where the work done by the viscous forces was divided
into two parts. One part of this work was contributed to the rate of working of fluid stress on
the elastic wall while the other part was the dissipation energy in the bulk (which was positive
definite as expected). Our aim was to then use this energy budget to distinguish the different
modes which occur.
In chapter 2 we considered a fluid-membrane model where the effects of wall inertia, damping
and viscous stresses acting on the membrane were taken into consideration. Three different
modes of instability, i.e. Tollmien-Schlichting waves (TS), traveling-wave flutter (TWF) and
static divergence (SD), were identified (see figure 2.2, 2.3 and 2.5). The classification of these
modes of instability was verified by wall damping: TS waves and SD waves were class A (desta-
bilised by wall damping) and TWF was class B (stabilised by wall damping) (see figure 2.6, 2.7
and 2.8). These were consistent with the observations of Davies & Carpenter [22]. We aimed
to use the overall energy budget of the system to distinguish the different modes of instability
(i.e. class A,B and C from Benjamin [3]). However, we found that the ‘activation energy’ (Lan-
dahl [45] and Cairns [17]) used to classify the instability mode is not equivalent to the work
done by the fluid on the wall in our energy budget.
In future work we will compute the ‘wave energy’ discussed by Cairns [17] to connect the ‘ac-
tivation energy’ (Landahl [45], Cairns [17]) with the Reynolds-Orr style energy discussed in
chapter 2. We will also use the scalings identified in the numerical results as the mass of the
wall becomes large to produce simplified (asymptotic) models of the system.
In chapter 3 and chapter 4 we employed a new beam law for the fluid-beam system compared
with Luo et al. [48]. Both a fully nonlinear system (chapter 3) and a linearised system (chapter
4) were considered. Three possible static beam shapes were illustrated (see figure 3.7). The sta-
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bility of these static shapes was analysed using the eigenvalue problem and the fully nonlinear
simulation (see figure 3.10, 3.11 and points S1, N2 in table 4.1) and the predictions of both meth-
ods compared well. Large amplitude vorticity waves were observed in the plots of streamlines
at different time instant in the downstream rigid section (in figure 3.13), which was previously
observed by Luo et al. [48]. The neutral curve in the parameter space spanned by wall exten-
sional stiffness and Reynolds number was traced, and both mode-2 and mode-3 neutral points
were identified (see figure 4.2). The neutral curve for large extensional stiffness grew linearly
with Reynolds number, which was consistent with the observation of Stewart [65]. The neutral
curve of our model agreed with that of Luo et al. [48] when the wall extensional stiffness was in
the range of 1000−2500 (see figure 4.3) although they diverged strongly for larger stiffnesses.
The energy budget of both fully nonlinear system and the linearised system were calculated.
The derivations elucidated that the average energy budget over one period of oscillation for the
fully nonlinear system exhibited a balance between the average of the net kinetic energy flux,
the excess rate of working of pressure forces at the upstream end and the excess energy loss
due to viscosity over one period (i.e. excess from the corresponding static state). This agreed
with the computational results (see table 3.3). The energy budget of the linearised system was
also calculated on neutral points (see table 4.2). For large extensional stiffness, the average of
the total energy budget over one period (i.e. the error) was too large to be convinced about the
validity of the results. We will continue working on the energy budget of the linearised system
to get better agreement.
The numerical results has been calculated for a flux-driven problem (i.e. fixed inlet flux). For
future work we will analyse the behavior of the pressure-driven problem (i.e. fixed pressure on
inlet channel boundary) for the fluid-beam model used. We will test the energy partition for
the pressure-driven problem identified by Jensen & Heil [42], who shared that two-thirds of the
kinetic energy flux extracted from the mean flow was lost to dissipation energy for neutrally
stable oscillations. This will require a much denser mesh to resolve the narrow Stokes layers on
the channel walls.



Appendix A

Supplementary derivations for the
fluid-beam model

In this appendix we give some detailed explanation of equations used in beam-fluid model.

A.1 Derivation of the beam governing equations

From the first beam momentum equation (3.3.5), rearranging it we obtain,

∂

∂ t

(
∂xb

∂ t
ρm∂ l

)
= ∂F+q∂ s, (A.1.1)

we divide both sides with ∂ l (λ = ∂ l/∂ s) to obtain,

ρm

λ

∂ 2xb

∂ t2 −
∂F
∂ l
−λq = 0. (A.1.2)

We now rewrite the left hand side of (A.1.2) into the tangent and normal directions of beam by
substituting (3.2.10) in Sec. 3.2 to obtain,

ρm

λ

(
∂ 2xb

∂ t2 g1 +
∂ 2yb

∂ t2 g2

)
=

ρm

λ

[(
∂xb

∂ l
∂ 2xb

∂ t2 +
∂yb

∂ l
∂ 2yb

∂ t2

)
e1

]
+

ρm

λ

[(
∂xb

∂ l
∂ 2yb

∂ t2 −
∂yb

∂ l
∂ 2xb

∂ t2

)
e2

]
. (A.1.3)

Firstly, we apply the Frenet Formulae ( [55]) for the derivation of right hand of (A.1.2),

∂e1

∂ s
= κe2,

∂e2

∂ s
=−κe1 + τe3, (A.1.4)
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where κ and τ are the curvature and torsion of the curve. In our problem the torsion τ = 0 for
plane curve, so we have,

∂e1

∂ l
=

∂e1

∂ s
∂ s
∂ l

= λκe2,
∂e2

∂ l
=

∂e2

∂ s
∂ s
∂ l

=−λκe1. (A.1.5)

We rewrite the right hand side of (A.1.2) with tangent and normal vectors of the beam (e1,e2)
and substitute (A.1.5) to obtain,

∂F1

∂ l
e1 +

∂F2

∂ l
e2 +F1

∂e1

∂ l
+F2

∂e2

∂ l
+(q1e1 +q2e2)

=

(
∂F1

∂ l
−λκF2 +λq1

)
e1 +

(
∂F2

∂ l
+λκF1 +λq2

)
e2. (A.1.6)

By grouping the terms in the e1 and e2 directions from (A.1.2) we obtain,

ρm

λ

(
∂xb

∂ l
∂ 2xb

∂ t2 +
∂yb

∂ l
∂ 2yb

∂ t2

)
=

∂F1

∂ l
−λκF2 +λq1, (A.1.7)

ρm

λ

(
∂xb

∂ l
∂ 2yb

∂ t2 −
∂yb

∂ l
∂ 2xb

∂ t2

)
=

∂F2

∂ l
+λκF1 +λq2. (A.1.8)

Simplifying equation (3.3.6) we obtain

∂

∂ t

(
ρmxb×

∂xb

∂ t

)
=

∂M
∂ l

+λxb×q+
∂xb

∂ l
×F+xb×

∂F
∂ l

+
∂xb×∂F

∂ l
. (A.1.9)

Rearranging above equation (A.1.9) to obtain

xb×
(

∂

∂ t

(
ρm

∂xb

∂ t

)
−λq− ∂F

∂ l

)
=

∂M
∂ l

+
∂xb

∂ l
×F+

∂xb×∂F
∂ l

, (A.1.10)

the left hand side of equation (A.1.10) equal to zero after applying equation (A.1.2), therefore
we have

∂M
∂ l︸︷︷︸
I

+
∂xb

∂ l
×F︸ ︷︷ ︸

II

+
∂xb×∂F

∂ l︸ ︷︷ ︸
III

= 0, (A.1.11)

we label above term as I, II and III and consider these in turn.
For I, by applying M = Me3 we have,

I =
∂ (Me3)

∂ s
=

∂M
∂ s

e3. (A.1.12)

We apply (3.2.6) to write terms in the tangent and normal directions to the elastic beam and
neglect the higher order terms (i.e. the product of two or more than two incremental terms) for
II and III in the following derivation.
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For II we have,
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∂ l

[
1
λ

(
xb

∂xb

∂ l
+ yb

∂yb

∂ l

)
e1 +

1
λ

(
yb

∂xb

∂ l
− xb

∂yb

∂ l

)
e2

]
×F

=− 1
λ 2

∂λ

∂ l

[(
xb

∂xb

∂ l
+ yb

∂yb

∂ l

)
e1 +

(
yb

∂xb

∂ l
− xb

∂yb

∂ l

)
e2

]
×F

+
1
λ

[(
∂xb

∂ l

)2

+

(
∂yb

∂ l

)2

+ xb
∂ 2xb

∂ l2 + yb
∂ 2yb

∂ l2

]
e1×F

−κ

(
∂xb

∂ l
yb−

∂yb

∂ l

)
e1×F+

(
∂ 2xb

∂ l2 yb−
∂ 2yb

∂ l2 xb

)
e2×F

+κ

(
xb

∂xb

∂ l
+ yb

∂yb

∂ l

)
e2×F,

≈λF2e3, (A.1.13)

Similarly, for III we have,

III =∂

[
1
λ

(
xb

∂xb

∂ l
+ yb

∂yb

∂ l

)
e1 +

1
λ

(
xb

∂yb

∂ s
− yb

∂xb

∂ s

)
e2

]
×
(

∂F1

∂ l
e1 +F1

∂e1

∂ l
+

∂F2

∂ l
e2 +F2

∂e2

∂ l

)
=

[
∂

(
1
λ

(
xb

∂xb

∂ l
+ yb

∂yb

∂ l

))
e1 +

1
λ

(
xb

∂xb

∂ l
+ yb

∂yb

∂ l

)
∂e1

]
×
(

∂F1

∂ l
e1 +F1λκe2 +

∂F2

∂ l
e2−λκF2e1

)
+

[
∂

(
1
λ

(
yb

∂xb

∂ l
− xb

∂yb

∂ l

))
e2 +

1
λ

(
yb

∂xb

∂ l
− xb

∂yb

∂ l

)
∂e2

]
×
(

∂F1

∂ l
e1 +F1λκe2 +

∂F2

∂ l
e2−λκF2e1

)
≈ 0. (A.1.14)

Therefore, (3.3.6) becomes,

∂M
∂ l

+λF2 = 0.

In total, from the beam momentum equations (3.3.5, 3.3.6), we obtain the beam governing equa-
tions,

ρm

λ

(
∂xb

∂ l
∂ 2xb

∂ t2 +
∂yb

∂ l
∂ 2yb

∂ t2

)
=

∂F1

∂ l
−λκF2 +λq1, (A.1.15)

ρm

λ

(
∂xb

∂ l
∂ 2yb

∂ t2 −
∂yb

∂ l
∂ 2xb

∂ t2

)
=

∂F2

∂ l
+λκF1 +λq2, (A.1.16)

∂M
∂ l

+λF2 = 0. (A.1.17)
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We rewrite the above equations using the material (reference) description to obtain equations
(3.3.7-3.3.9) in Sec. 3.2,

ρm

λ (c)

(
∂x(c)b

∂ s
∂ 2x(c)b

∂ t2 +
∂y(c)b

∂ s
∂ 2y(c)b

∂ t2

)
=

∂F(c)
1

∂ s
−κ

(c)F(c)
2 +q(c)1 , (3.3.7)

ρm

λ (c)

(
∂x(c)b

∂ s
∂ 2y(c)b

∂ t2 −
∂y(c)b

∂ s
∂ 2x(c)b

∂ t2

)
=

∂F(c)
2

∂ s
+κ

(c)F(c)
1 +q(c)2 , (3.3.8)

∂M(c)

∂ s
+F(c)

2 = 0. (3.3.9)

By using the Kirchhoff law (3.3.12) and equation (3.3.9), we have,

∂F(c)
1

∂ s
= EA

∂λ (c)

∂ s
, (A.1.18)

F(c)
2 =−∂M(c)

∂ s
=−EJ

∂ (λ (c)κ(c))

∂ s
, (A.1.19)

∂F(c)
2

∂ s
=−EJ

∂ 2(λ (c)κ(c))

∂ s2 . (A.1.20)

Substituting equations (A.1.18-A.1.20) into beam equations (3.3.7, 3.3.8) we obtain the beam
governing equations (3.3.13,3.3.14) in Sec. 3.2

ρm

λ (c)

(
∂x(c)b

∂ s
∂ 2x(c)b

∂ t2 +
∂y(c)b

∂ s
∂ 2y(c)b

∂ t2

)
=EJκ

(c)
∂

(
λ (c)κ(c)

)
∂ s

+EA
∂λ (c)

∂ s
+σ1, (3.3.13)

ρm

λ (c)

(
∂x(c)b

∂ s
∂ 2y(c)b

∂ t2 −
∂y(c)b

∂ s
∂ 2x(c)b

∂ t2

)
=−EJ

∂ 2(λ (c)κ(c))

∂ s2 +EAκ
(c)(λ (c)−1),

+κ
(c)T +σ2− pe. (3.3.14)

A.2 Derivations of equations (3.3.23), (3.3.24) and (3.3.25) in
Sec. 3.3.3

We introduce the angle θ shown in Figure 3.2 combined with equation (3.2.3). We have

e1 =
1
λ

xb =
1
λ

∂xb

∂ l
g1 +

1
λ

∂yb

∂ l
g2 = cosθg1 + sinθg2. (A.2.1)

From the above formula we obtain that,

∂xb

∂ l
= λ cosθ ,

∂yb

∂ l
= λ sinθ . (A.2.2)
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Sustituting (A.2.2) into the expression of curvature κ we have,

κ =
1

λ 2

[
cosθ

(
∂λ

∂ l
sinθ +λ

∂θ

∂ l
cosθ

)
− sinθ

(
∂λ

∂ l
cosθ −λ

∂θ

∂ l
sinθ

)]
=

1
λ

∂θ

∂ l
; (A.2.3)

rearranging (A.2.3) we obtain

∂θ

∂ l
= λκ. (A.2.4)

A.3 Derivation of fluid energy equation (3.5.1) in Sec. 3.5

In this appendix, we give a detailed derivation of the rearrangement of the fluid energy equation
(3.5.1) in Sec. 3.5.
First we label (3.5.1) in the four terms I, II, III and IV as follow and consider each in turn,

∂u
∂ t
·u︸ ︷︷ ︸

I

+((u ·∇)u) ·u︸ ︷︷ ︸
II

= (∇ · (−pI)) ·u︸ ︷︷ ︸
III

+R−1 (
∇ ·
(
∇u+∇uT)) ·u︸ ︷︷ ︸

IV

. (A.3.1)

We rearrange I as,

I =
∂u
∂ t
·u =

1
2

∂ (u ·u)
∂ t

. (A.3.2)

For II, we first write it into scaler form in the form,

II =u1

(
u1

∂u1

∂x
+u2

∂u1

∂y

)
+u2

(
u1

∂u2

∂x
+u2

∂u2

∂y

)
,

=

(
u2

1
∂u1

∂x
+u1u2

∂u2

∂x

)
+

(
u1u2

∂u1

∂y
+u2

2
∂u2

∂y

)
=

1
2

u1
∂ (u2

1 +u2
2)

∂x
+

1
2

u2
∂ (u2

1 +u2
2)

∂y
,

=
1
2

∇(u ·u) ·u,

then we write it back into vector form and apply (∇ f ) ·u = ∇ · ( f u)− f ∇ ·u (here f is a scalar
function, u is a vector function) to obtain,

II =
1
2

∇ ·
(
(u ·u)u

)
− 1

2
(u ·u)(∇ ·u) , (A.3.3)

as the fluid is incompressible (∇ ·u = 0) we have,

II =
1
2

∇ ·
(
(u ·u)u

)
. (A.3.4)
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For III, by applying the identity ∇ · ( f AAA) = f (∇ ·AAA)+AAA∇ f (here AAA is a 2×2 matrix) we have,

III =−
(

p(∇ · III)+ III∇p
)
·u =−(∇p) ·u;

again we apply (∇ f ) ·u = ∇ · ( f u)− f ∇ ·u and ∇ ·u = 0 to obtain,

III =−∇ · (pu)+ p∇ ·u =−∇ · (pu). (A.3.5)

For IV , using (∇ ·AAAT) ·u =∇ ·(AAAu)−Tr(AAA(∇u)) (here AAA is a 2×2 matrix and u is a 2×1 vector,
derived at the end of this section and Tr represent the trace of a matirx, detailed derivation in
Sec. ??) we have,

IV = R−1
∇ ·
((

∇u+∇uT)u
)
−R−1Tr

((
∇u+∇uT)(∇u)

)
. (A.3.6)

Therefore, we obtain the energy eqaution (3.5.2) in Sec. 3.5,

1
2

∂ (u ·u)
∂ t

+
1
2

∇ · ((u ·u)u) =−∇ · (pu)+R−1 [
∇ ·
(
(∇u+∇uT)u

)]
−R−1 [Tr

(
(∇u+∇uT)∇u

)]
. (3.5.2)

A.4 Derivations of equations (3.5.20) and (3.5.21)

In this appendix, we derive the equations

∂u(c)b1
∂ s

=
(

λ
(c)
)−1 ∂λ (c)

∂ t
+κu(c)b2 , (3.5.20)

∂u(c)b2
∂ s

=
∂θ (c)

∂ t
−κu(c)b1 , (3.5.21)

used during the derivation of beam energy budget in Sec. 3.5.
By changing equation (3.5.20) back to the material (reference) description and applying ∂e1/∂ l =

λκe2 (A.1.5) we have,

∂u(c)b1
∂ s

=λ
−1 ∂ (ub · e1)

∂ l
= λ

−1
(

∂

∂ l

(
∂xb

∂ t

)
· e1 +ub ·

∂e1

∂ l

)
,

=λ
−1
(

∂

∂ t

(
∂xb

∂ l

)
· e1 +ub ·λκe2

)
,

we apply ∂xb/∂ l = λe1 (3.2.3) to obtain,

∂u(c)b1
∂ s

=λ
−1
(

∂λ

∂ t
e1 · e1 +λ

∂e1

∂ t
· e1 +λκub2

)
,
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since (∂e1/∂ t) · e1 = 1/2(∂ (e1 · e1)/∂ t) = 0 and use spatial (current) description we have,

∂u(c)b1
∂ s

=
1

λ (c)

∂λ (c)

∂ t
+κ

(c)u(c)b2 . (A.4.1)

Similarly, for (3.5.21) we change it back to material (reference) description and apply ∂xb/∂ l =

λe1 (3.2.3), ∂e2/∂ l =−λκe1 (A.1.5) to obtain,

∂u(c)b2
∂ s

= λ
−1
(

∂

∂ l
(ub · e2)

)
= λ

−1
(

∂

∂ l

(
∂xb

∂ t

)
· e2 +ub

∂e2

∂ l

)
,

= λ
−1
(

∂

∂ t
(λe1) · e2−λκub1

)
= λ

−1
(

∂λ

∂ t
e1 · e2 +λ

∂e1

∂ t
· e2−λκub1

)
,

=
∂e1

∂ t
· e2−κub1. (A.4.2)

Now we need to derive (∂e1/∂ t) · e2 = ∂θ/∂ t. On one hand we have,

∂

∂ l

(
∂e1

∂ t
· e2

)
=

∂

∂ l

(
∂e1

∂ t

)
· e2 +

∂e1

∂ t
· ∂e2

∂ l
=

∂

∂ t

(
∂e1

∂ l

)
· e2 +

∂e1

∂ t
· ∂e2

∂ l
,

by applying (A.1.5), we have

∂

∂ l

(
∂e1

∂ t
· e2

)
=

∂ (λκe2)

∂ t
· e2 +

∂e1

∂ t
· (−λκe1) =

∂ (λκe2)

∂ t
· e2−λκ

∂e1

∂ t
· e1,

=
∂ (λκe2)

∂ t
· e2.

On the other hand by applying ∂θ/∂ l = λκ (3.5.22) and e2 · (∂e2/∂ t) = 1/2(∂ (e2 · e2)/∂ t) = 0
we have,

∂

∂ l

(
∂θ

∂ t

)
=

∂

∂ t

(
∂θ

∂ l

)
=

∂ (λκ)

∂ t
=

∂ (λκe2 · e2)

∂ t
=

∂ (λκe2)

∂ t
· e2 +λκ

(
e2 ·

∂e2

∂ t

)

=
∂ (λκe2)

∂ t
· e2.

Hence, we have

∂

∂ l

(
∂e1

∂ t
· e2

)
=

∂

∂ l

(
∂θ

∂ t

)
,

which gives us that,

∂e1

∂ t
· e2 =

∂θ

∂ t
. (A.4.3)
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Substituting (A.4.3) into the first term in (A.4.2) and using the spatial (current) description we
have,

∂u(c)b2
∂ s

=
∂θ (c)

∂ t
−κ

(c)u(c)b . (A.4.4)

A.5 Linearise the fluid stress tensor σσσ

The fluid stress tensor can be expressed as,

σσσ =−pIII +R−1(
∇u+(∇u)T). (A.5.1)

For the right hand side of (A.5.1), we linearised the velocity and pressure based on the steady
beam (4.1.1) using Taylor expansion to obtain,

(
− pIII +R−1 (

∇u+∇uT))∣∣∣∣
(xb,yb)

=
(
−PI+R−1 (

∇U+∇UT))∣∣∣∣
(Xb,Yb)

+ ε

(
x̂b

∂

∂x

(
−PI+R−1(∇U+∇UT)

)
+ ŷb

∂

∂y

(
−PI+R−1(∇U+∇UT)

))∣∣∣∣
(Xb,Yb)

+ ε

(
− p̂I+R−1(∇û+∇ûT)

)∣∣∣∣
(Xb,Yb)

+ ε
2
(

x̆b
∂

∂x

(
−PI+R−1(∇U+∇UT)

))∣∣∣∣
(Xb,Yb)

+ ε
2
(

y̆b
∂

∂y

(
−PI+R−1(∇U+∇UT)

)
+

x̂2
b

2
∂ 2

∂x2

(
−PI+R−1(∇U+∇UT)

))∣∣∣∣
(Xb,Yb)

+ ε
2
( ŷ2

b
2

∂ 2

∂y2

(
−PI+R−1(∇U+∇UT)

)
+

x̂bŷb

2
∂ 2

∂x∂y

(
−PI+R−1(∇U+∇UT)

))∣∣∣∣
(Xb,Yb)

+ ε
2
(

x̂b
∂

∂x

(
− p̂I+R−1(∇û+∇ûT)

)
+ ŷb

∂

∂y

(
− p̂I+R−1(∇û+∇ûT)

))∣∣∣∣
(Xb,Yb)

+ ε
2
(
− p̆I+R−1(∇ŭ+∇ŭT)

)∣∣∣∣
(Xb,Yb)

. (A.5.2)

For the left hand side of (A.5.1), we linearise based on the steady beam using Taylor expansions,
where we have

σσσ
∣∣
(xb,yb)

=ΣΣΣ
∣∣
(Xb,Yb)

+ ε

(
x̂b

∂ΣΣΣ

∂x
+ ŷb

∂ΣΣΣ

∂y
+ σ̂σσ

)∣∣∣∣
(Xb,Yb)

+ ε
2
(

x̆b
∂ΣΣΣ

∂x
+ y̆b

∂ΣΣΣ

∂y
+

x̂2
b

2
∂ 2ΣΣΣ

∂x2 +
ŷ2

b
2

∂ 2ΣΣΣ

∂y2 +
x̂bŷb

2
∂ 2ΣΣΣ

∂x∂y

)∣∣∣∣
(Xb,Yb)

+ ε
2
(

x̂b
∂ σ̂σσ

∂x
+ ŷb

∂ σ̂σσ

∂y
+ σ̆σσ

)∣∣∣∣
(Xb,Yb)

. (A.5.3)
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In total, the fluid stress tensor expression (A.5.1), at O(1) we have,

ΣΣΣ
∣∣
(Xb,Yb)

=
(
−PI+R−1 (

∇U+∇UT))∣∣∣∣
(Xb,Yb)

. (A.5.4)

At O(ε) we have,(
x̂b

∂ΣΣΣ

∂x
+ ŷb

∂ΣΣΣ

∂y
+ σ̂σσ

)∣∣∣∣
(Xb,Yb)

=

(
x̂b

∂

∂x

(
−PI+R−1(∇U+∇UT)

))∣∣∣∣
(Xb,Yb)

+

(
ŷb

∂

∂y

(
−PI+R−1(∇U+∇UT)

)
+−p̂I+R−1(∇û+∇ûT)

)∣∣∣∣
(Xb,Yb)

. (A.5.5)

At O(ε2) we have,(
x̆b

∂ΣΣΣ

∂x
+ y̆b

∂ΣΣΣ

∂y
+

x̂2
b

2
∂ 2ΣΣΣ

∂x2 +
ŷ2

b
2

∂ 2ΣΣΣ

∂y2 +
x̂bŷb

2
∂ 2ΣΣΣ

∂x∂y
+ x̂b

∂ σ̂σσ

∂x
+ ŷb

∂ σ̂σσ

∂y
+ σ̆σσ

)∣∣∣∣
(Xb,Yb)

=
(

x̆b
∂

∂x

(
−PI+R−1(∇U+∇UT)

)
+ y̆b

∂

∂y

(
−PI+R−1(∇U+∇UT)

))∣∣∣∣
(Xb,Yb)

+
( x̂2

b
2

∂ 2

∂x2

(
−PI+R−1(∇U+∇UT)

)
+

ŷ2
b

2
∂ 2

∂y2

(
−PI+R−1(∇U+∇UT)

))∣∣∣∣
(Xb,Yb)

+
( x̂bŷb

2
∂ 2

∂x∂y

(
−PI+R−1(∇U+∇UT)

)
+ x̂b

∂

∂x

(
− p̂I+R−1(∇û+∇ûT)

))∣∣∣∣
(Xb,Yb)

+
(

ŷb
∂

∂y

(
− p̂I+R−1(∇û+∇ûT)

)
− p̆I+R−1(∇ŭ+∇ŭT)

)∣∣∣∣
(Xb,Yb)

. (A.5.6)

Substituting (A.5.4) into (A.5.5), we obtain

σ̂σσ
∣∣
(Xb,Yb)

=
(
− p̂I+R−1 (

∇û+∇ûT))∣∣∣∣
(Xb,Yb)

. (A.5.7)

Substituting (A.5.4) and (A.5.7) we have

σ̆σσ
∣∣
(Xb,Yb)

=
(
− p̆I+R−1 (

∇ŭ+∇ŭT))∣∣∣∣
(Xb,Yb)

. (A.5.8)

Therefore, we obtain the perturbed fluid stress on the steady beam,

ΣΣΣ
∣∣
(Xb,Yb)

=
(
−PI+R−1 (

∇U+∇UT))∣∣∣∣
(Xb,Yb)

(A.5.9)

σ̂σσ
∣∣
(Xb,Yb)

=
(
− p̂I+R−1 (

∇û+∇ûT))∣∣∣∣
(Xb,Yb)

(A.5.10)

σ̆σσ
∣∣
(Xb,Yb)

=
(
− p̆I+R−1 (

∇ŭ+∇ŭT))∣∣∣∣
(Xb,Yb)

. (A.5.11)
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A.6 Linearize equations (3.5.20), (3.5.21) and (3.5.22)

Here we linearize two equations

∂u(c)b1
∂ s

=
(

λ
(c)
)−1 ∂λ (c)

∂ t
+κu(c)b2 , (3.5.20)

∂u(c)b2
∂ s

=
∂θ (c)

∂ t
−κu(c)b1 , (3.5.21)

∂θ

∂ l
= λκ, (3.5.22)

used during derivation of the perturbation energy budget in chapter 4. For simplicity, we first
write these three equations using the reference (material) description in the form

∂ub1

∂ l
=

∂λ

∂ t
+λκub2, (A.6.1)

∂ub2

∂ l
= λ

∂θ

∂ t
−λκub1, (A.6.2)

∂θ

∂ l
= λκ; (A.6.3)

Substituting the linearized variables (4.1.2) into above identities (A.6.1-A.6.3), at O(ε) we ob-
tain

∂ ûb1

∂ l
=

∂ λ̂

∂ t
+ΛKûb2, (A.6.4)

∂ ûb2

∂ l
= Λ

∂ θ̂

∂ t
−ΛKûb1, (A.6.5)

∂ θ̂

∂ l
= Λκ̂ +Kλ̂ , (A.6.6)

rewriting above two equations (A.6.4) and (A.6.5) using current (spatial) description, while
keeping using the reference description for the equation (A.6.6) we obtain,

∂ û(c)b1
∂S

= Λ
−1 ∂ λ̂ (c)

∂ t
+K(c)û(c)b2 , (A.6.7)

∂ û(c)b2
∂S

=
∂ θ̂ (c)

∂ t
−K(c)û(c)b1 , (A.6.8)

∂ θ̂

∂ l
= Λκ̂ +Kλ̂ . (A.6.9)
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At O(ε2), the linearised identities using reference (material) description takes the form

∂ ŭb1

∂ l
=

∂ λ̆

∂ t
+ΛKŭb2 +

(
λ̂K +Λk̂

)
ûb2, (A.6.10)

∂ ŭb2

∂ l
=

(
Λ

∂ θ̆

∂ t
+ λ̂

∂ θ̂

∂ t

)
−ΛKŭb1−

(
λ̂K +Λk̂

)
ûb1, (A.6.11)

∂ θ̆

∂ l
= Λκ̆ + λ̂ κ̂ + λ̆K; (A.6.12)

rewriting above equations (A.6.10), (A.6.11) using current (spatial) description and keeping
using reference description for equation (A.6.12), we have

∂ ŭ(c)b1
∂S

=
1

Λ(c)

∂ λ̆ (c)

∂ t
− λ̂ (c)(

Λ(c)
)2

∂ λ̂ (c)

∂ t
+K(c)ŭ(c)b2 + κ̂

(c)û(c)b2 , (A.6.13)

∂ ŭ(c)b2
∂S

=
∂ θ̆ (c)

∂ t
−K(c)ŭ(c)b1 − κ̂

(c)û(c)b1 , (A.6.14)

∂ θ̆

∂ l
= Λκ̆ + λ̂ κ̂ + λ̆K. (A.6.15)
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