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Abstract summary 

 

Primary visual cortex receives approximately 90% of the input to the retina, 

however this only accounts for around 5% of the input to V1 (Muckli, 2010). The 

majority of the input to V1 is in fact from other cortical and sub-cortical parts of the 

brain that arrive there via lateral and feedback pathways. It is therefore critical to 

our knowledge of visual perception to understand how these feedback responses 

influence visual processing.   

The aim of this thesis is to investigate different sources of non-visual feedback to 

early visual cortex. To do this we use a combination of an occlusion paradigm, 

derived from F. W. Smith and Muckli (2010), and functional magnetic resonance 

imagining. Occlusion offers us a method to inhibit the feedforward flow of 

information to the retina from a specific part of the visual field. By inhibiting the 

feedforward information we exploit the highly precise retinotopic organisation of 

visual cortex by rendering a corresponding patch of cortex free of feedforward 

input. From this isolated patch of cortex we can ask questions about the 

information content of purely feedback information. 

In Chapter 3 we investigated whether or not information about valance was 

present in non-stimulated early visual cortex. We constructed a 900 image set that 

contained an equal number of images for neutral, positive and negative valance 

across animal, food and plant categories. We used an m-sequence design to allow 

us to present image set within a standard period of time for fMRI. We were 

concerned about low-level image properties being a potential confound, so a large 

image set would allow us to average out these low-level properties. We occluded 

the lower-right quadrant of each image and presented each image only once to 

our subjects. The image set was rated for valance and arousal after fMRI so that 

individual subjectivity could be accounted for. We used multivariate pattern 

analysis (MVPA) to decode pairs of neutral, positive and negative valance. We 

found that in both stimulated and non-stimulated V1, V2 and V3, and the amygdala 

and pulvinar only information about negative valance could be decoded. In a 

second analysis we again used MVPA to cross-decode between pairs of valance 
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and category. By training the classifier on pairs of valance that each contained two 

categories, we could ask the question of whether the classifier generalises to the 

left out category for the same pair of valance. We found that valance does 

generalise across category in both stimulated and non-stimulated cortex, and in 

the amygdala and pulvinar. These results demonstrate that information about 

valance, particularly negative valance, is represented in low level visual areas and 

is generalisable across animal, food and plant categories.  

In Chapter 4 we explored the retinotopic organisation of object and scene sound 

responses in non-stimulated early visual cortex. We embedded a repeating object 

sound (axe chopping or motor starting) in to a scene sound (blizzard wind or 

forest) and used MVPA to read out object or scene information from non-

stimulated early visual cortex. We found that object sounds were decodable in the 

fovea and scene sounds were decodable in the periphery. This finding 

demonstrates that auditory feedback to visual cortex has an eccentricity bias 

corresponding to the functional role involved. We suggest that object information 

feeds back to the fovea for fine-scaled discrimination whereas abstract information 

feeds back to the periphery to provide a modulatory contextual template for vision.  

In a second experiment in Chapter 4 we further explored the similarity between 

categorical representations between sound and video stimuli in non-stimulated 

early visual cortex. We use video stimuli and separate the audio and visual parts in 

to unimodal stimuli. We occlude the bottom right quadrant of the videos and use 

MVPA to cross-decode between sounds and videos (and vice-versa) from 

responses in occluded cortex. We find that a classifier trained on one modality can 

decode the other in occluded cortex. This finding tells us that there is an overlap in 

the neural representation of aural and visual stimuli in early visual cortex. 

In Chapter 5 we probe the internal thought processes of subjects after occluding a 

short video sequence. We use a priming sequence to generate predictions as 

subjects are asked to imagine how events from a video unfold during occlusion. 

We then probe these predictions with a series of test frames corresponding to 

points in time, either close in time to the offset of the video, just before the video 

would be expected to reappear, the matching frame from when the video would be 

expected to reappear or a frame from the very distant future. In an adaption 
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paradigm we find that predictions best match the test frames around the point in 

time that subjects expect the video to reappear. The test frame from a point close 

in time to the offset of the video was rarely a match. This tells us that the 

predictions that subjects make are not related to the offset of the priming 

sequence but represent a future state of the world that they have not seen. In a 

second control experiment we show that these predictions are absent when the 

priming sequence is randomised, and that predictions take between 600ms and 

1200ms to fully develop. These findings demonstrate the dynamic flexibility of 

internal models, that information about these predictions can be read out in early 

visual cortex and that stronger representations form if given additional time.   

In Chapter 6 we again probe at internal dynamic predictions by using virtual 

navigation paradigm. We use virtual reality to train subjects in a new environment 

where they can build strong representations of four categorical rooms (kitchen, 

bedroom, office and game room). Later in fMRI we provide subjects with a 

direction cue and a starting room and ask them to predict the upcoming room by 

combining the information. The starting room is shown as a short video clip with 

the bottom right quadrant occluded. During the video sequence of the starting 

room, we find that we can read out information about the future room from non-

stimulated early visual cortex. In a second control experiment, when we remove 

the direction cue information about the future room can no longer be decoded. 

This finding demonstrates that dynamic predictions about the immediate future are 

present in early visual cortex during simultaneous visual stimulation and that we 

can read out these predictions with 3T fMRI. 

These findings increase our knowledge about the types of non-visual information 

available to early visual cortical areas and provide insight in to the influence they 

have on vision. These results lend support to the idea that early visual areas may 

act as a blackboard for read and write operations for communication around the 

brain (Muckli et al., 2015; Mumford, 1991; Murray et al., 2016; Roelfsema & de 

Lange, 2016; Williams et al., 2008). Current models of predictive coding will need 

to be updated to account for the brains ability to switch between two different 

processing streams, one that is factual and related to an external stimulus and one 

that is stimulus independent and internal 
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Chapter 1 

1 General introduction 

 

How humans perceive the world has long been a topic of debate amongst 

scientists and philosophers for centuries. At the beginning of the modern study of 

perception, it was thought that vision began with a stimulus which forms an image 

on the retina, and through a cascade of forward brain processes a visual percept 

was formed of that stimulus (Fechner, 1966). The difficulty for vision scientists of 

the time was that visual information enters a “black box” where the output is a self-

generated report of the resulting visual percept. It was only through subsequent 

post-mortem analysis that inferences about the underlying mechanisms of the 

brain and their relationship with behaviour could be made. In rare circumstances 

an individual would survive catastrophic injury to the brain and inferences could be 

drawn from pre- and post-injury reports, as shown in the famous case of Phineas 

Gage (Harlow, 1993). Today, modern brain imaging techniques such as functional 

magnetic resonance imaging (fMRI) allow us to look inside the “black box” and ask 

questions not only about how humans perceive the world but how vision is 

achieved at different stages of processing as it is actually happening.  

How the brain forms the visual percept is now framed as its ability to solve the 

inverse problem of vision (Pizlo, 2001). The inverse problem is related to the large 

amount of information about the relationships of three dimensional objects that is 

not present in the two dimensional retinal images. To solve this inverse problem 

the brain must make inferences about these relationships. It does so by using 

information it has learned and retained about the world. This information is used in 

a predictive manner, which we call feedback, for hypothesis testing information as 

it enters and moves through the visual system. Discovering what information the 

brain stores and how it uses this information to achieve vision is critical to our 

understanding of the brain.   

In this chapter we will present, in brief, how the visual system is organised in the 

brain and how this organisation gives us clues as to the mechanisms underlying 
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perception. We will then discuss the theoretical frameworks that have been 

constructed around these observations. We follow this with an overview of the 

many roles feedback plays in visual perception, including discussions on feedback 

from both visual areas and non-visual areas. Finally, we will introduce the 

conceptual idea of counterfactual processing before outlining the rationale of this 

thesis. 

 

1.1 Organisation of the visual system 

 

The visual system of the brain is organised in a hierarchy beginning with the 

encoding of light information at the retina. The retina is an extension of the brain 

that contains layers of neurons that convert photons in to nerve impulses through 

a cascade of chemical processes. Information propagates along the optic nerve 

before reaching the optic chiasm where the left retinal image is diverted to the left 

hemisphere and the right retinal image is diverted to the right hemisphere (Figure 

1.1). In both hemispheres, retinal information reaches the respective left and right 

superior colliculus and lateral geniculate nucleus where some initial processing 

begins. 

 

Figure 1.1: A schematic of the left and right retinal images being diverted to the left and right 

hemispheres of the brain. 
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The first step in cortical visual processing is primary visual cortex. Primary visual 

cortex, or striate cortex (V1), gains its name from the visible line of Gennari that 

represents the myelinated axonal input from the LGN. Neurons in V1 have very 

small receptive fields estimated at a single degree of visual angle (Levitt & Lund, 

2002). V1 neurons are tuned to low-level properties such as orientation, spatial 

frequency, contrast and ocular dominance (Hubel & Wiesel, 1959). Neurons with 

similar tuning properties are typically found together forming cortical columns 

(Hubel & Wiesel, 1968). As a result of these neuronal properties V1 contains a 

highly precise spatial mapping of the visual field. The lower part of the visual field 

is mapped inverted to the upper bank of the calcarine sulcus while the upper part 

of the visual field is mapped inverted to the lower bank of the calcarine sulcus. 

Due to the retina containing a fovea much of V1 represents the centre of the visual 

field with less of V1 representing the periphery.  

After information is processed at the level of V1, information is next processed at 

secondary visual cortex, or prestriate cortex (V2, typically referred to as part of 

extrastriate cortex). V2 is where visual processing begins to diverge in to the 

dorsal stream for visual-motor processing and the ventral stream for object and 

form representation (Goodale & Milner, 1992). The receptive field size of neurons 

in V2 also increases relative to V1. Extrastriate cortex is the next stage in the 

visual hierarchy which is comprised of V3, V4 and V5. Again, receptive field size 

increases along the hierarchy with neurons receiving input from more of the visual 

field. At the level of V5 specific functions begin to emerge such as visual motion 

and direction selective cells (Zeki, 2015). 

Each level of the hierarchy is building on the one below it until the final percept is 

achieved. The flow of information so far described is a traditional view of visual 

processing within the context of the classical receptive field model. It is referred to 

here as being feedforward and is typically described as being “driving” such that 

information is processed at one level of the hierarchy before being processed at 

the next level. An example of how driving feedforward information moves along the 

visual hierarchy can be seen in Figure 1.2 (adapted from Larkum (2013)). 
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Figure 1.2: A schematic of the feedforward processing steps at different levels of the visual 

hierarchy. 

In this feedforward model of visual processing, low-level features are processed 

first at the lowest level of the hierarchy. At each subsequent level, more and more 

complex features are combined until the full image is constructed at the highest 

level and the visual percept finally reaches consciousness. Feedforward 

computational models are a good approximation of visual processing as 

demonstrated by a feedforward deep neural network (DNN) (Güçlü & van Gerven, 

2015). However, the problem with feedforward computational models is that they 

do not reflect the connectivity and dynamics of the human brain. 

It has been observed that the tuning properties of V1 neurons can change over 

time to respond to more global image properties (Lamme & Roelfsema, 2000). 

This is due to the influence of top-down and lateral processes. The classic 

receptive field is bounded by a near and far receptive field. Angelucci and 

Bressloff (2006) suggest that the classic receptive field is driven by input from the 

LGN with lateral connections extending in to the near surround, whereas the far 

surround of the receptive field is influenced by top-down processes. This 

integrated model is referred to as the non-classical receptive field model and 

demonstrates how top-down information, which we call feedback, can modulate 

the response to stimuli in a recurrent network.  
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1.2 The recurrent network and prediction 

 

Each of our eyes produces a retinal image. These two images are then combined 

in to a single image within the brain. However, there are an infinite number of 

solutions to explain the relationships between the objects contained within the two 

retinal images. This is an example of an inverse problem. The brain must find a 

solution to the information collected by the eyes by making inferences from what it 

already knows about the world. The brain’s knowledge of the world is learned from 

experience and familiarity. To solve the inverse problem the brain makes use of 

feedback pathways that allow high-level information to guide low-level sensory 

processing. If we take V1 as an example, V1 has ten times as many feedback 

connections from V2 as it has feedforward connections from the LGN (Muckli & 

Petro, 2013). Brain areas further along in the hierarchy send information down the 

visual hierarchy in effect informing low-level areas with high-level information. As 

neurons in higher cortical areas have larger receptive fields, low-level receptive 

fields are being modulated by information from much larger parts of the visual 

field, as described above in the non-classical receptive field model.  

The leading theory to explain how the brain solves the inverse problem of 

perception is known as predictive coding (Rao & Ballard, 1999). One of the first 

recurrent models to be proposed combining both feedforward and feedback 

processes to explain vision was put forward by Rao and Ballard in 1999, which 

was building on previous work by David Mumford. Mumford had proposed the idea 

that the brain learns statistical regularities that it uses to make sense of sensory 

input. The brain generates a number of hypotheses which it sends to the 

thalamus, which in turn chooses the most likely hypothesis as being correct. This 

information is then broadcast throughout the cortex (Mumford, 1991). Mumford 

also introduced the idea of reciprocal cortical loops of higher areas communicating 

abstract information with lower areas, the latter of which deals with more concrete 

information (Mumford, 1992). Rao and Ballard (1999) built on these concepts 

introduced by Mumford to explain vision. Their model included the concept of high 

level predictions informing low level areas. The main difference with this new 
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model was that hypothesis testing was done at each level of the hierarchy and the 

output of this was a residual error signal. If the error signal was small the 

prediction was good. If the error signal was large the prediction could be then be 

updated. This new model was attractive as it also explained certain visual 

response properties such as ‘end-stopping’ (Hubel & Wiesel, 1965) and other non-

classical receptive field effects (Angelucci & Bressloff, 2006).    

One of the limitations of the Rao and Ballard (1999) model however was that it 

was a linear model which makes it restrictive in its application. A revised model for 

visual processing was then proposed by T. S. Lee and Mumford (2003) that 

introduced hierarchical Bayesian inference to the predictive model. Conceptually 

this revision to the model introduces top-down priors or beliefs that “explain-away” 

the low-level input, in effect biasing or reinforcing inferences towards these beliefs. 

This model is similar to the previous model but instead of the sensory input being 

converted to an error signal, there are alternate layers of error detection and 

prediction. Another difference between the two models is that the parameters in 

the model represent the probability distribution of the sample rather than represent 

the sample itself. The alternating layers of error detection and prediction act to 

create an inference process that estimates and updates the mean and variance of 

the probability distribution of the sample, which itself is assumed to be normally 

distributed. 

Hierarchical Bayesian models of predictive coding have been shown to be in good 

correspondence with the anatomical organisation of the neocortex (Friston, 2003, 

2008). However these models were criticised for not being a neuronal model. 

Hierarchical Bayesian models demonstrate how the computations may work but 

not how the brain implements them. George and Hawkins (2009) approached this 

criticism by introducing the Hierarchical Temporal Model. This model approximates 

how the neocortex generates inferences on to anatomy by way of nodes in a tree-

like structure. Using this structure the neocortex builds a model of the world using 

a spatio-temporal hierarchy. Spatial patterns are stored in the higher nodes, 

termed internal models (Clark, 2013), which represent larger amounts of space 

and longer periods of time. George and Hawkins (2009) speculate that this 

organisation is optimal for learning and generalisation as it reflects the spatio-

temporal structure of causes in the external world. But why would the neocortex be 
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organised in this way? This remains an open question, however Friston (2010) 

suggests that the unifying principle is that the role of the brain is to minimise its 

free energy; to optimise its computations between alternating layers of error 

detection and prediction.  

An example of how a predictive 

coding model might work can be 

seen in Figure 1.3. Predictive 

coding proposes that the brain 

contains internal models (Clark, 

2013) about the world. In the 

example, the feedforward input is 

tested against the top-down 

prediction. The accuracy of the 

prediction (error signal) 

propagates through the system. 

 

1.3 How feedback influences visual processing at the neuronal level 

 

The visual system is part of the neocortex 

which contains both excitatory and inhibitory 

neurons and is characterised by six layers. The 

primary excitatory neuron in visual cortex is the 

pyramidal neuron. Pyramidal neurons have 

been found in all but the first cortical layer. The 

layer IV pyramidal neuron (Figure 1.4, adapted 

from Spruston (2008)) is important in the 

context of vision as it receives its synaptic 

connections, or bottom-up information, 

primarily from the thalamus. Top-down, or 

feedback information, arrives at the deep (V 

and VI) and superficial (I and II) layers.  

Figure 1.3: Feedback (red) carries predictions. These 

are compared with sensory input. An error signal (blue) 

carries information forward about the accuracy of the 

comparison between prediction and sensory input. 

Figure 1.4: Schematic of a layer 4 

pyramidal neuron. 
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How and when the neuron fires is dependent on how this information is integrated 

across the cell. Some cells may be tuned to fire based on coincident input to the 

tuft and peri-somatic areas (Larkum, 2013). This can be seen in detail in Figure 

1.5 in which Larkum (2013) proposes the backpropagation activated calcium 

(BAC) firing hypothesis. Pyramidal neurons change their firing properties when 

they receive both feedforward and feedback input simultaneously (Figure 1.5 a). 

Areas higher in the visual hierarchy can send predictions down the hierarchy to 

superficial tuft layers of cortex. This information is integrated with the feedforward 

somatic input at layer 4 and the cell output is modified. In this manner, feedback 

from higher areas can influence the output of lower-level areas (Figure 1.5 b). 

 

Figure 1.5: (a) Changes in neuronal firing when feedforward (blue) and feedback (red) are 

coincident. (b)  Feedforward input (blue) arrives at the somatic layer and feedback input (red) 

arrives at the superficial layer.  

Recent work in rodent models has revealed that within the set of level 5 pyramidal 

neurons in primary somatosensory cortex, a subset of these neurons is 

responsible for perceptual detection (Takahashi, Oertner, Hegemann, & Larkum, 

2016). The authors of this paper found that the threshold for perception could be 

manipulated by increasing and decreasing the Ca2+ activity in the apical dendrites. 

This finding is suggestive of a neuronal mechanism that would allow feedback to 

modulate whether or not perception is detected. 
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1.4 The many influences of feedback on vision 

 

The human brain relies on internal models to make inferences about the world. 

This raises important research questions. What is the information content of 

feedback responses? What role do they play at different levels of visual 

processing? One source of information that feedback provides to lower visual 

areas is that of context. This theory proposes that one role of feedback responses 

is to provide context for extracting behaviourally relevant information. This is 

important because the visual world can be ambiguous or noisy. As an example, 

consider the diagram in Figure 1.6 (top). Here the centre Figure can be 

interpreted either as the number 13 if it is read from left to right, or the letter B if it 

is read from top to bottom. The interpretation of ambiguous objects can change 

based on the context we find them in. 

 

Figure 1.6: (Top) The importance of context can be seen in the interpretation of I3, whether it is 

read from left to right or from top to bottom. (Bottom) The same object is placed in two different 

scenes. Depending on the context, the interpretation of the object differs. 
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In an example by Bar (2004) the same object is placed in two different degraded 

visual scenes (Figure 1.6, bottom). In the left scene, the object is interpreted as a 

hairdryer as the context of the scene is a bathroom. However, in the right scene 

the context is now a tool bench and the interpretation of the object is that it is a 

power drill. The object itself never changes; the context of the surrounding scene 

shapes our interpretation of what it is.  

Context is a useful tool not only for resolving ambiguities of degraded stimuli, but 

also useful in the case of occlusion. We encounter occlusion frequently in 

everyday life as objects pass behind other objects as we move around. Neurons in 

V1 are known to be active even when their receptive fields are occluded due to the 

influence of feedback (T. S. Lee & Nguyen, 2001). The content of feedback 

information can be investigated in the laboratory by using techniques such as 

blindfolding or by occluding part of the visual field. These methods either fully or 

partially block the feedforward sensory input. Due to the highly precise retinotopic 

mapping of the visual field in early visual cortex, occlusion results in an area of 

visual cortex that is cut-off from feedforward input. Therefore, any responses from 

this “occluded” patch of cortex are the result of top-down processes. 

This method of partial occlusion has proven useful for investigating the role and 

information content of feedback responses. F. W. Smith and Muckli (2010) 

developed an occlusion paradigm by masking the bottom right quadrant of 

complex natural images with a white occluder. Using pattern analysis techniques, 

they reported that feedback responses were dissimilar for different categories of 

images in V1 and that these top-down representations of the stimuli could be 

reliably decoded. They further report that the feedback responses are similar to 

the feedforward responses when the occluder is removed. This study 

demonstrates that contextual feedback responses are influencing the feedforward 

sensory input by providing context that is similar to the missing part of the image. 

Follow-up studies have shown that contextual feedback information in V1 is found 

within the superficial layers of the cortical sheet and that the feedback patterns in 

these layers are tolerant to shifts of the surrounding scene by up to 2° of visual 

angle (Muckli et al., 2015). Feedback responses in V1 and V2 have also been 

shown to be generalisable across different categorical exemplars (Morgan, Petro, 

& Muckli, 2016). Taken together these studies provide evidence that feedback 
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information is categorical and abstract to some degree, allowing it to tolerate shifts 

in visual angle and to generalise between categorically matching exemplars.  

 

1.4.1 Object tracking through occlusion by top-down processes 

 

Despite objects being partially or even fully occluded we still retain information 

about those objects. This is demonstrated in occlusion studies with children as 

young as 4 months old who can learn to predict the re-emergence of a square in 

motion as it passes behind an occluder (Johnson, Amso, & Slemmer, 2003). This 

is due to top down processes tracking objects as they move through our visual 

field. This has been demonstrated in studies using the illusion of apparent motion 

(Edwards, Vetter, McGruer, Petro, & Muckli, 2017; Muckli, Kohler, Kriegeskorte, & 

Singer, 2005). In simple apparent motion studies, two white squares blink in an 

alternating pattern producing the illusion that a single square is moving across the 

screen. Simple apparent motion paradigms like this can be considered occlusion 

paradigms as one of the possible hypotheses to explain the illusion is that there is 

a black occluder hidden in the black background which the stimulus is moving 

behind. The apparent motion trace across the visual field can be detected in V1 

despite the white squares never entering the receptive fields of neurons along the 

apparent motion path (Muckli et al., 2005). Even when attention is diverted away 

from the stimuli the apparent motion trace persists. This supports a strong top-

down influence of feedback “filling-in” the expected motion. This is further 

evidenced by Edwards et al. (2017) who show that predictions made pre-saccade 

are updated to a new retinotopic location post-saccade demonstrating that 

predictions are highly dynamic.  

In a second apparent motion paradigm, Chong, Familiar, and Shim (2016) 

combine apparent motion with apparent rotation. Two black and white gratings 

with orientations of 45°±10° and 135°±10° are flashed alternately. Subjects are 

cued prior that the direction of rotation is either clockwise or anticlockwise. This 

produces two apparent rotations along the apparent motion trace, either horizontal 

(90°) or vertical (0°). They find in V1 that the apparent rotation is reconstructed 

along the apparent motion trace. Critical to this study is that the rotated grating is 
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never seen, not even as an illusion. This is further support for highly dynamic top-

down predictions that are tracked across the visual field. However the “filling-in” 

theory may be best explained by a mental simulation of the rotation facilitated by 

the flexibility of the internal model.         

 

1.4.2 Figure ground segregation 

 

An important role of vision is the ability to decipher from a cluttered environment 

what is an object and what is background. The brain achieves this by defining 

boundaries around objects to segregate them from background information. 

Neurons in V1 have very small classical receptive fields which only contain 

information about local features in the feedforward flow of information.  To know 

anything about the global scene the brain must rely on information from feedback 

processes. Electrophysiology study of awake non-human primate V1 has shown 

that feedforward processes are sufficient for the purpose of boundary detection 

(Lamme, Rodriguez-Rodriguez, & Spekreijse, 1999). Boundary detection happens 

around 80ms post stimulus and is followed by a top-down process filling-in 

between the edges of the boundary (Lamme et al., 1999; Lamme & Roelfsema, 

2000). This finding has been replicated in the human brain. In an electrophysiology 

and fMRI study by Scholte, Jolij, Fahrenfort, and Lamme (2008), the authors report 

that boundary detection occurs in early visual cortex around 92ms. This process 

then spreads towards parietal and temporal lobes. Surface segregation, or filling-

in, then occurs around 112ms in temporal areas before spreading to parietal and 

then occipital areas. Work by Self, van Kerkoerle, Super, and Roelfsema (2013) 

has revealed how these feedforward and feedback processes occur in the different 

layers of the cortical sheet. In behaving monkeys, researchers recorded from all 

layers in V1 while the monkeys performed a Figure-ground segregation task. 

Recordings revealed that boundary detection occurs first in layer 4 followed by 

labelling of the Figure region in superficial and deep layers. Finally, region filling-in 

occurs in layer 1, layer 2 and layer 5 characteristic of feedback processing. 
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1.4.3 Expectation, Attention & Memory 

 

Visual perception can be modulated by expectation. For example objects placed in 

congruent scenes are detected faster than objects placed in incongruent scenes 

(Bar, 2004). This is an example of visual expectation. Visual expectation facilitates 

perception by biasing inferences towards what has been seen before 

(Summerfield & Egner, 2009) and can shape how we perceive noisy and 

ambiguous stimuli (Fig 1.6). The strength of expectation on perception can be 

seen in a study by M. L. Smith, Gosselin, and Schyns (2012). In this study, white 

noise stimuli were presented to subjects with the knowledge that half of the stimuli 

would contain a low-resolution, noisy, ambiguous face. In fact none of the stimuli 

contained a face. By subtracting all the non-face stimuli from the self-reported face 

stimuli, what was revealed was a ghost-like face representation that subjects had 

projected on to the noise where no face existed. This revealed each subjects 

internal representation of what an expected face should look like. Visual 

expectations therefore facilitate perception by sharpening visual representations, 

as has also been demonstrated experimentally by Kok, Jehee, and De Lange 

(2012). 

Temporal expectation can also influence visual processing prior to the onset of a 

stimulus. At the neuronal level, neural responses can demonstrate an expectation 

or preparatory signal before a stimulus is presented. Work by Sirotin and Das 

(2009) have shown that there are two components to the haemodynamic signal in 

V1 of non-human primates during a simple fixation task. There is one component 

that is predictable from neuronal responses to the stimulus and a second 

component that is entrained to the predicted trial onsets. The expectation of the 

appearance of a stimulus directs arterial blood to primary visual cortex in 

anticipation of stimulus onset. In a number of similar experiments, Sharma et al. 

(2014) show that expectation and attention are tightly interwoven as the temporal 

expectation signal was absent in the task that did not require explicit attention. 

Such findings has led some to propose that there is significant overlap of attention 

and expectation mechanisms (Summerfield & Egner, 2009). 



 

14 
 

Expectation and attention are also tightly interwoven with memory (Gazzaley & 

Nobre, 2012). Memory is the mechanism by which brain states are reinstated long 

after the visual input that created them has ended (Muckli & Petro, 2017). In a 

recent study by Van Kerkoerle, Self, and Roelfsema (2017), researchers 

demonstrated the influence of memory on V1 neurons in a behaving monkey. 

They used current-source density measures to investigate V1 neuronal responses 

to both attention and memory tasks. In a curve drawing task where the stimulus is 

shown briefly then hidden, they found increased activity in superficial and deep 

layers of the cortical sheet after the stimulus was hidden. Interestingly, when a 

mask was used to disrupt visual working memory the V1 memory activity 

temporarily disappeared before being reinstated by memory processes. 

 

1.4.4 Reconstructing representations 

 

Feedback to early visual cortex can also be useful for the purpose of 

reconstructing stimulus representations. This is demonstrated in a fMRI study by 

Williams et al. (2008) in which cubed, smoothed and spikey pairs of objects were 

presented in the far periphery of the visual field. Subjects were tasked with either 

identifying object differences or object category. Researchers found that 

information about the objects was fed back to the fovea. This finding could be 

attributed to the influence of attention, as attention is known to spread outwards in 

the visual field towards areas which do not contain a stimulus (Serences & 

Boynton, 2007). However in a third experiment investigating the spatial specificity 

of the information patterns across eccentricity, the authors show that feedback 

information only occurs in the fovea and not in any other retinotopic locations, 

such as unstimulated periphery, making their finding unlikely to be attributed to 

attention and more likely due to reinstating low-level features.  

In this same study, behavioural performance steadily increased over time which 

was correlated with the emergence of category information in the fovea. The 

researchers suggest that the fovea may act as a blackboard to compute task-

relevant visual information (Williams et al., 2008). This idea was also coined by 
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Mumford (1991) and has been growing in its acceptance not only for vision (Muckli 

et al., 2015; Roelfsema & de Lange, 2016) but also for other types of sensory input 

(Murray et al., 2016). 

 

1.5 Non-visual feedback 

 

Top-down input to V1 can originate from both visual and non-visual areas, such as 

auditory cortices. Within a predictive coding framework, aural input to auditory 

cortex can trigger rich internal models that feed back to visual cortex (L. S. Petro, 

Paton, & Muckli, 2017). At the level of the single neuron, V1 is modulated by 

auditory input. For example, in areas 18 and 19 of the cat visual cortex, 40% of 

neurons respond to sounds (Morrell, 1972). In mice, tones and bursts of noise 

invoke response in both superficial and deep layers of primary visual cortex (Iurilli 

et al., 2012). Interestingly, approximately 10% of level 2 and level 3 neurons in 

primary visual cortex of awake mice respond to sounds alone (Meijer, Montijn, 

Pennartz, & Lansink, 2017). 

In humans, auditory input influences visual processing at the earliest level of the 

visual hierarchy. Bursts of noise activate primary visual cortices with hemodynamic 

response profiles that demonstrate facilitation for multisensory input when 

compared with unisensory input (Martuzzi et al., 2006). Such simple auditory 

stimuli have been shown to directly modulate perception. For example, when a 

single flash is paired with two ‘beep’ sounds this is perceived as two flashes 

(Shams, Kamitani, & Shimojo, 2000). Additionally, looming tones facilitate faster 

detection of perceived motion than either modality does in isolation (Cappe, Thut, 

Romei, & Murray, 2009). These examples demonstrate a direct modulation of 

perception at the earliest level of visual processing by simple auditory sounds. 

However, early visual cortex is also modulated by more complex auditory stimuli. 

In such cases, it is less clear what the information content actually is, and how this 

information might facilitate perception.  

Early levels of visual processing can be influenced by much more complex 

sounds. In a series of experiments by Vetter, Smith, and Muckli (2014) it has been 
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shown that information about categorical sounds can be read out from feedback 

responses in early visual areas V1, V2 and V3 in healthy subjects who are 

blindfolded. These categorical response patterns were also shown to be similar 

amongst congruent categorical exemplars. This evidence provides further support 

for the theory that feedback responses triggered by complex sensory input are 

contextual in the earliest levels of visual processing. In this same study the authors 

also report that these feedback responses can be triggered by just imagining the 

sounds (Vetter et al., 2014). In a follow up study it was also shown that contextual 

feedback responses can be read out in non-blindfolded subjects (L. S. Petro et al., 

2017). This demonstrates that uninformative feedforward input doesn’t “wash-out” 

the feedback input. Taken together this would suggest that auditory triggered 

feedback plays a modulatory role on visual perception. This does raise an 

interesting question about whether the auditory influence is direct from auditory 

cortex or from high-order internal models. If it is the latter then this would suggest 

that feedback responses should be similar whether they are triggered by auditory 

or visual sensory input. However recent evidence does not support this idea (Jung, 

Larsen, & Walther, 2018).  

It is unclear whether auditory information arrives at the encoding space of early 

visual cortex directly from auditory cortices, or indirectly from higher-order cortical 

areas involved in audiovisual integration (Koelewijn, Bronkhorst, & Theeuwes, 

2010). Evidence for direct auditory cortico-cortical connections to early visual 

cortex comes from anatomical research. In the macaque brain, monosynaptic 

afferents from auditory association areas have been reported to terminate in 

macaque V1 and V2. Auditory afferents that terminate in striate and extrastriate of 

the macaque do so in layers 1 and 6 of the cortical sheet (Rockland & Ojima, 

2003). These connections are also described as being most dense in extrastriate 

cortex compared to striate cortex, and similarly most dense in peripheral areas 

compared with fovea areas. Another interesting finding within the macaque model 

is that auditory afferents terminate close to V2 neurons that have direct feedback 

connections to V1. Taking both findings together shows a cortical circuit that 

allows for both a direct and an indirect influence of feedback on neurons in primary 

visual cortex (Laramée, Kurotani, Rockland, Bronchti, & Boire, 2011). If these 

connections exist in the human brain, they may act as an anatomical constraint 
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that explains why sounds are consistently found to be decodable in the periphery 

and to a lesser extent in the fovea.  

While it is unclear how anatomical constraints affect feedback to visual cortex, 

there is support linking auditory cortex with visual cortex functionally in both 

sighted (Eckert et al., 2008) and blind (Klinge, Eippert, Röder, & Büchel, 2010; 

Qin, Xuan, Liu, Jiang, & Yu, 2014) individuals. These functional studies also report 

a bias towards the periphery (Eckert et al., 2008). Functional MRI studies also 

reveal visual cortex activation for sounds in sighted (Specht & Reul, 2003; Vetter 

et al., 2014) and blind (Ricciardi, Tozzi, Leo, & Pietrini, 2014). Transcranial 

magnetic stimulation (TMS) at subthreshold intensity induce the perception of 

phosphenes when the TMS stimulation is coupled with an auditory stimulus 

(Bolognini, Senna, Maravita, Pascual-Leone, & Merabet, 2010). The optimal site 

for stimulation was found to be in peripheral areas of cortex. Applying stimulation 

to the fovea did not induce perception of phosphenes (Bolognini et al., 2010). A 

second TMS study replicated this finding and related visual cortex excitability to 

auditory dimensions of pitch and bandwidth (Spierer, Manuel, Bueti, & Murray, 

2013); although they don’t explicitly state the effect is stronger in the periphery. 

 

1.5.1 Counterfactual feedback  

 

The brain makes use of extensive 

feedback connections to make sense 

of the feedforward sensory input it 

receives. This is happening all the 

time while we are engaged with our 

environment. In this thesis we make 

the distinction of referring to this type 

of feedback as being factual feedback. 

By using the term factual feedback, 

we refer to this type of feedback as 

being stimulus dependent. This 

Figure 1.7: An overview of the default mode 

network. 
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distinction allows us to separate factual feedback from another kind of feedback 

we call counterfactual feedback. Counterfactual feedback relates to feedback that 

is stimulus independent.  

When the brain is not actively engaged in an external task that requires attention, 

the mind is free to wander and engage in counterfactual thought. For example, 

when you are at the dentist for a check-up, while you sit in the dentist’s chair you 

can plan what you are going to do after you leave your appointment; which route 

you are going to take home, whether you are going to stop at the store to pick up 

something for dinner, what you are going to cook, where in the store those 

ingredients are, the quickest path to collect them, etc. Counterfactual thinking 

encompasses a wide range of cognitive processes including mind-wandering 

(with- or without attention) (Schooler et al., 2011), past & future thought (Schacter, 

Benoit, & Szpunar, 2017), imagery (Pearson & Kosslyn, 2015) and mental 

simulation (Hamrick, Battaglia, Griffiths, & Tenenbaum, 2016).  

A network of brain regions known as the default mode network is engaged during 

counterfactual thinking (Andrews-Hanna, Reidler, Sepulcre, Poulin, & Buckner, 

2010) and this network is anti-correlated with the executive network at both rest 

(Fox et al., 2005) and during task (Hellyer et al., 2014). The default mode network 

consists of a midline core (Figure 1.7; red) that includes posterior cingulate cortex 

(PCC) and anterior medial prefrontal cortex (aMPFC). A medial temporal lobe 

(MTL) subsystem (Figure 1.7; blue) includes ventral medial prefrontal cortex 

(vMPFC), posterior inferior parietal lobule (pIPL), retrosplenial cortex (RSP), 

parahippocampal cortex (PHC) and hippocampal formation (HF) (Andrews-Hanna 

et al., 2010; Zhu, Zhu, Shen, Liao, & Yuan, 2017). The midline core is related to 

self-relevant affective decisions. The MTL subsystem is related to internally 

constructing mental scenes based on memories. However during future thought, 

both systems are engaged likely due to constructing mental images from episodic 

memory (Andrews-Hanna et al., 2010). 

Engaging in counterfactual thinking is linked with a phenomenon known as 

perceptual decoupling (Schooler et al., 2011). Perceptual decoupling has been 

described to occur when a person engages in thought that is unrelated to the here 

and now, or when attention to the outside world waxes and wanes over time. 
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There are many physiological indicators that show when someone is engaging in 

counterfactual thought, or when a person is perceptually decoupled. For example, 

longer fixation durations during mindless reading (Franklin, Smallwood, & 

Schooler, 2011), erratic eye-movements (Reichle, Reineberg, & Schooler, 2010) 

or increased blinking before people catch themselves mind wandering (Smilek, 

Carriere, & Cheyne, 2010) and cessation of phasic pupil diameter changes 

normally observed during tasks to external stimuli (Smallwood et al., 2011). 

Electrophysiology studies report a reduction in several markers of attentiveness to 

external stimuli during perceptual decoupling and mind wandering. The P300 

event-related potential (ERP) wave is driven by decision making and is found to be 

attenuated during perceptual decoupling  (Smallwood, Beach, Schooler, & Handy, 

2008). Similarly visual markers such as the P1 and N1 ERP amplitudes have been 

shown to also be attenuated (Kam et al., 2011) suggesting a reduction in 

processing of visual input. During a meditation task it was found that there is also 

a reduction in the faster alpha and beta frequency oscillations and an increase in 

slower theta and delta oscillations before people had caught themselves going off-

task and engaging in mind wandering (Braboszcz & Delorme, 2011). 

When we engage in counterfactual thinking, although our attention to the outside 

world decreases, the outside world does not go away – we don’t suddenly become 

blind. This is an important concept because current predictive coding models do 

not account for the alternation between perceiving the external world and 

perceiving our own internal world. This leads to a number of important research 

questions. How does counterfactual feedback “take-over” from perception? As a 

very basic description, at the microscopic level, visual input arrives at the mid-

layers of the cortical sheet. Factual feedback arrives at the deep and superficial 

layers. Where does counterfactual feedback arrive? How do counterfactual 

feedback and factual feedback co-exist? Incorporating counterfactual feedback in 

to current prediction models will be an important step in understanding how 

perception, and ultimately the brain, works. 
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1.6 Thesis rationale  

 

Visual cortex, particularly primary visual cortex V1, is influenced by many different 

sources of non-visual input that originate from both cortical and sub-cortical 

sources (Muckli & Petro, 2013). It is important to understand what influences these 

non-visual types of feedback have on perception for informing our overall 

understanding of how vision works. Similarly, it is important to understand how and 

why low level visual areas help to shape our internal perceptions when the only 

building blocks the brain has access to are independent of any external stimulus, 

as is the case with counterfactual feedback. 

To this end, the aim of this thesis was to study the influence of non-visual factual 

and counterfactual feedback to early areas of visual processing. To do this we use 

a combination of functional magnetic resonance imagining and multivariate pattern 

analysis (MVPA) (Haxby, 2012) with occlusion paradigms. FMRI is a non-invasive 

brain imagining technique that measures a blood-oxygen-level dependent (BOLD) 

signal in cubes (voxels) of tissue. MVPA is a method of analysis that compares 

patterns of activity across multiple voxels. This method of analysis is particularly 

useful with occlusion paradigms as we are blocking the feedforward input to 

neurons within each occluded voxel therefore these voxels contain non-spiking 

neurons. Changes between voxels are subtle and MVPA is sensitive to these 

changes. Occlusion paradigms allow us to either partially or fully occlude visual 

stimuli. Fully occluding an image is the same as not presenting it at all, however 

we can consider this as ‘occlusion by omission’, for example, by removing a 

sequence of frames from a video clip. By occluding part of the visual field we 

render a corresponding patch of cortex as being resting state. Therefore, the only 

influence on neurons within the set of occluded voxels is from feedback, or top-

down processes.   

In Chapter 3 we were interested in whether or not non-social affective information 

is fed back to early visual areas. We used a path-guided de-bruijn m-sequence in 

a fast event-related design to present to subjects a 900 affective image data set 

were each image had the bottom-right quadrant occluded by an occluder matching 

the background screen colour. The images were from three categories (animals, 
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foods, plants) with 100 images for each category for neutral, positive and negative 

levels of valance. We chose this method as we wanted to know if we could decode 

affect information, specifically valance, independent of image category and low-

level image statistics. After adjusting the images for individual subjectivity based 

on ratings of valance, we found a consistent story of being able to decode from 

both feedforward and feedback responses information about negative stimuli. We 

could not decode positive versus neutral in any region of interest. However we 

could consistently decode positive versus negative and neutral versus negative 

images. This tells us that when the classifier has information about positive (or 

neutral) valance and negative valance, it is the negative valance that is important 

for classification.  

We then went a step further and performed cross-classification. Here we are 

including category information. We train the classifier to learn to distinguish 

between two levels of valance for two of the three categories. We then test the 

classifier on the left out category. We do this leaving one category out as the test 

category each time, before averaging. We find a similar pattern as before. Only 

from V2 feedback responses and in the amygdala could positive versus neutral be 

decoded.  

In Chapter 4 we investigated the peripheral bias associated with auditory 

feedback in visual cortex. We wanted to know whether different types of sound 

may feedback to visual cortex at different eccentricities. We hypothesised that the 

peripheral bias commonly observed with regards to auditory feedback to visual 

cortex could be related to abstract forms of information such as category, but that 

more concrete information, for example about objects, may feedback to foveal 

areas as is the case with visual objects presented in the periphery (Williams et al., 

2008). To do this we presented two different scene sounds to subjects. During a 

scene sound, a brief, repeating object sound could also be played. This created 

four conditions which could be analysed to decode the scene information keeping 

the object information the same, or to decode object information keeping the 

scene information the same. We found that scene information was only decodable 

in the periphery whereas object information was only decodable in the fovea. 
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We were also interested in understanding what the information content was of 

feedback responses in early visual areas to highly-matching categorical sounds 

and videos. We hypothesised that if both modalities are triggering the same 

internal models then within a predictive coding framework the information content 

of feedback responses should also be similar. So far, this has not proven to be the 

case (Jung et al., 2018). To do this we chose three categorical videos containing 

dynamic objects and split the auditory and visual components in to unimodal 

stimuli. We presented audio and visual stimuli independently and alternately, and 

also occluded the bottom-right quadrant of each video with a white occluder. We 

found that we could decode the category of sound stimuli from feedback 

responses in visual cortex as well as category of videos from feedback responses 

in occluded visual cortex, replicating previous work (L. S. Petro et al., 2017; F. W. 

Smith & Muckli, 2010; Vetter et al., 2014). This finding adds evidence to the theory 

that complex sensory stimulation triggers a top-down modulatory influence on low-

level processing. Our new finding was that a classifier trained on feedback 

responses to discriminate between sounds could decode feedback responses 

about videos (and vice versa). This finding tells us that there is some information 

in the feedback responses in early visual cortex that is common to both modalities. 

This finding fits well with predictive coding theories. 

In Chapter 5 we turn our attention to counterfactual feedback. In these 

experiments we are interested in how internal models can be triggered and then 

manipulated to make predictions about the immediate future. For example, before 

crossing the road you may ask yourself, “Can I cross to the other side before the 

car hits me?” To answer this question the brain needs to have knowledge and 

mechanisms that allow it to predict the future. To test this, we chose three 

categorical video clips, decomposed them in to individual frames and presented a 

sequence of them at 100ms per frame. We would show subjects a sequence of six 

frames followed by a 800ms blank interval before showing them a final test frame. 

The test frame could either be the matching frame that would be expected after 

800ms, or a mismatching frame from 300ms, 600ms and 4000ms. This design 

was a fast event-related design and allowed us to test whether or not predictions 

generated by the image sequence were extrapolated into the immediate future 

during the blank interval. We could test whether these predictions were more 
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similar to the video immediately after onset (300ms condition), or similar to the 

frame that best matches (800ms condition), or something between (600ms 

condition). Using deconvolution general linear modelling we found that the frame 

closer in time, the 300ms condition, was never a good match to the prediction. 

Both the 600ms and 800ms test frames were better matches to the prediction of 

the brain’s extrapolated future. This demonstrates that the brain is capable of 

extrapolating sensory input in to the immediate future to make predictions. These 

predictions are not accurate as the 600ms condition proved to be the most 

predictable test frame suggesting either a “best approximation” made by the brain, 

or temporal compression where predictions unfold faster in time in the brain than 

they do in the external world. 

In a follow up control study we wanted to test whether the predictions we find in 

the first experiment were indeed predictions. We modified the paradigm to include 

a condition were the initial sequence of images was shuffled. This change would 

make the future unpredictable allowing us to compare predictable and 

unpredictable conditions. Due to time constraints we only used the 4000ms test 

frame. We hypothesised that regardless of whether or not the future is matched, 

we should still find a prediction in the sequential frames condition versus no 

prediction in the non-sequential frames condition. We also wanted to test whether 

predictions need more time to build-up, therefore we included two additional 

conditions were the timing was increased to 200ms per frame. We found that the 

expected versus unexpected conditions with 100ms timing were indistinguishable. 

However there was a significant difference in the expected versus unexpected 

conditions with 200ms timing. This control study demonstrates that what we are 

testing are predictions about the future based on previously seen information, and 

that these predictions require somewhere between 100ms and 200ms to ‘build-up’. 

In Chapter 6 we were interested in exploring counterfactual processing that 

occurs concurrently with factual processing. In Chapter 5 we tested our 

hypothesis about predictions of the future that are extrapolating over a period of 

time while subjects are viewing a black screen. There is no informative 

feedforward input as the prediction is developing. In this new study we wanted to 

induce counterfactual processing during periods of meaningful feedforward 

processing. This is an important distinction because it allows us to test whether we 
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can read out factual and counterfactual feedback that is happening at the same 

time. We also wanted to have control over which internal models were being used 

to make predictions about the future. In Chapter 4 subjects had never seen the 

stimuli before so we could not be sure what information subjects were using to 

make predictions. To control for this we turned to virtual reality. We spent a year 

developing a virtual house that subjects could freely explore. We designed the 

house around a middle cube-shaped room. This design meant there would be four 

adjoining rooms with each room accessible from the middle room. The rooms were 

categorical and contained common objects that would normally be found within the 

context of each specific room (kitchen, bedroom, office, game room). Virtual reality 

allowed us to train our subjects to become familiar with our virtual house and we 

could then use videos from the virtual house as stimuli with fMRI.  

In a fMRI paradigm we designed trials beginning with a direction cue. This could 

either be left or right. We followed this with a video sequence of a first person 

perspective camera moving in a linear direction out of one of two rooms that were 

designated as starting rooms and opposite one another. A final video sequence 

was shown of the same camera perspective moving in a linear direction in to one 

of the two remaining rooms which were designated as end rooms and opposite 

each other. Subjects in this experiment were asked to predict the upcoming end 

room during the first video of the start room. This was possible by combining the 

direction cue with the identity of the first room. Both video sequences had a white 

occluder in the bottom right quadrant of the video so that we could analyse voxels 

which only received feedback input. The design of the experiment was orthogonal, 

allowing us to balance direction cue and destination to ask questions about the 

factual experience, or direction cue and start room to ask questions about the 

future. We found that in extrastriate areas we could read out information about the 

two future rooms from feedback responses.  

In Chapter 7 we discuss these findings in the context of current literature and 

propose ideas for expanding on the paradigms presented in this thesis to answer 

the remaining unanswered questions.  
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2 General methodology 

 

2.1 Functional magnetic resonance imaging 

 

Throughout this thesis we use functional magnetic resonance imagining (fMRI) as 

our primary method for imaging the brain. FMRI is a non-invasive brain imaging 

technique that uses blood-oxygen-level dependent (BOLD) contrast. This 

technique exploits the fact that neurons receive energy directly from the blood. 

Neurons that are performing computations receive more oxygen from the blood 

than those neurons that are under less computational load. Differences in the 

relative levels of oxygenated and deoxygenated blood lead to differences in 

contrast in the magnetic resonance image. Research has subsequently confirmed 

that the observed BOLD signal is related to the underlying neurological processing  

(Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001). 

 

2.2 Data analysis 

 

Functional and anatomical data were pre-processed using BrainVoyager QX 2.8 

(Brain Innovation, Maastricht, Netherlands). The first two volumes of each 

functional run were discarded to avoid magnetic saturation effects. Functional data 

underwent slice time correction, 3D motion correction and high-pass temporal 

filtering using a Fourier basis set (Kay, Rokem, Winawer, Dougherty, & Wandell, 

2013). No spatial smoothing was performed. The data was then spatially 

normalised by transformation into Talairach space. Functional data were aligned 

with the anatomical data in the form of an inflated surface, and alignment was 

checked using custom MATLAB scripts. The alignment of all functional runs was 

checked with respect to their corresponding anatomical data. For each subject 

alignment was highly correlated (r > 90).  
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2.2 Occlusion paradigm 

 

 

Figure 2.1: An example of an occluded image. The bottom right quadrant is occluded by a white 

mask. As part of the process to isolate voxels that have receptive fields in the occluded quadrant, 

we add independent “Surround” and “Target” conditions to our experiments. These conditions 

flicker inverting chequered boards in the part of the visual field occupied by the occluder. 

 

In Chapters 1, 2 and 4 we use an occlusion paradigm. This paradigm is illustrated 

in figure 2.1. The lower right quadrant of an image or video stimulus is occluded by 

a white mask. Due to the retinotopic organisation of visual cortex, this blocks any 

feedforward information about the stimulus to a patch of cortex that corresponds to 

the occluded part of the visual field. Any changes to the BOLD signal in voxels that 

are occluded are therefore attributed to feedback processes. 

In the occlusion paradigm we ask subjects to fixate in the centre of the screen. 

Subjects are monitored by camera to ensure that they are capable of fixating 

properly.  
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2.3 Retinotopic mapping and contrast mapping 

 

In each chapter, we collected retinotopic mapping data. We used a rotating 

flickering chequered board wedge stimulus to measure voxel responses to 

different parts of the visual field. We also used a rotating flickering chequered 

board annulus stimulus to measure voxel responses to different eccentricities in 

the visual field. A correlation analysis of the retinotopic mapping data was 

projected on to the cortical reconstruction to localise foveal and peripheral V1, V2 

and V3 of early visual cortex (EVC).  

The t-map from a general linear model (GLM) from experimental runs was 

projected onto a reconstruction of the cortical surface to localise occluded regions 

from the contrast between mapping conditions (target > surround). Only significant 

activity in response to the target mapping contrast in the occluded region bounded 

by V1, V2, V3, was considered as a ROI for the occluded region.  

We further ensured that voxels were occluded by estimating a receptive field for 

each voxel and selected only those with receptive fields within the occluded area. 

We further restricted our search for occluded voxels by only selecting those with a 

t-value greater than 1 for the difference between the “Target” minus “Surround” 

conditions, as shown in figure 2.1. 

 

2.4 Population receptive field mapping 

 

The retinotopic mapping data was also used to estimate receptive fields for each 

voxel in early visual cortex (Dumoulin & Wandell, 2008). For each individual voxel, 

we fit multiple 2D isotropic Gaussian functions to the response profile to both polar 

and eccentricity mapping data. We accepted the best-fit model as the receptive 

field for a particular voxel. We eliminated voxels from our analysis that had a low-

quality estimate for its receptive field.  
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2.5 General linear modelling & multivariate pattern analysis 

 

For multivariate pattern analysis we used general linear modelling to estimate a 

beta (β) value for each voxel independently. This is done for each run 

independently. The voxel activations are z-scored prior to modelling and each 

experimental condition is modelled by a single regressor in the model. This 

produced β values for each condition for each voxel for each run.  

The β  values were then used to train a linear support vector machine classifier 

(SVM; using LIBSVM (Chang & Lin, 2011)). Linear SVMs were chosen as 

research suggests that they generally perform well compared with other classifiers 

(Ku, Gretton, Macke, & Logothetis, 2008; Misaki, Kim, Bandettini, & Kriegeskorte, 

2010; Mitchell et al., 2004) and suffer less from over-fitting than non-linear SVMs 

(Cox & Savoy, 2003; LaConte, Strother, Cherkassky, Anderson, & Hu, 2005). The 

linear SVM classifier was trained on n-1 runs of data, where n is the total number 

of runs in the experiment. The classifier was then tested on the independent nth 

run of β values. This procedure was repeated for each run for the purpose of 

cross-validation.  

 

2.7 Statistical testing 

 

Following the cross-validation procedure above, each classifier produced N 

classifier accuracies. The mean of these was taken as the classifier accuracy for 

that subject for that region of interest for that condition. The group mean classifier 

accuracies for each condition and region of interested were then bootstrapped to 

attain a distribution of classifier accuracies whose 95% confidence interval would 

contain the true value. We report the median and 95% confidence interval for each 

condition in each ROI whose 95% confidence interval does not contain the chance 

classifier accuracy (50%) and is therefore deemed significantly above chance 

classification. 

We chose the approach of using a second level analysis with a t-test as it has 

been widely used within the field of research (Haxby et al., 2001; Haynes et al., 
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2007; Spiridon & Kanwisher, 2002). However, a recent paper by Allefeld and 

colleagues has brought to light that second level analysis using a t-test does not 

allow one to infer that the observed effect generalises to the population, only that 

there is an effect within the group of subjects tested (Allefeld, Görgen, & Haynes, 

2016). This conclusion about second level t-test analysis should be kept in mind 

when considering the results within this thesis.  
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3 Information about non-social negative valance objects is 

present in non-stimulated early visual cortex 

 

3.1 Abstract 

 

Regions of early visual cortex that do not receive meaningful feedforward 

stimulation still however contain information about the surrounding visual scene (F. 

W. Smith & Muckli, 2010). This surrounding contextual information is transferred to 

early visual cortex by cortical feedback (Muckli et al., 2015). Investigating the 

contribution of contextual feedback to low-level visual areas is central to 

understanding how internal brain signals interact with visual processing. Using 

human functional brain imaging (fMRI) and multivoxel pattern classification, we 

investigated if information patterns fed back to V1, V2 and V3 included emotional 

content. We used 900 partially-occluded positive, negative and neutral valance 

colour images from three distinct categories (animals, foods, plants). The images 

were presented to subjects during fMRI in a unique path-guided de-Bruijn m-

sequence with third order counterbalancing to allow for the modelling of carry over 

effects of one stimulus on a subsequent stimulus. The unoccluded images were 

then rated afterwards to account for individual subjectivity. Adopting a 

classification approach, we can discriminate between valance pairs that include 

negative valance from stimulated and non-stimulated voxels, independent of 

category information, in V1, V2 and V3. We also find this pattern in the amygdala 

and pulvinar. Additionally, using a cross-classification approach, we show that a 

classifier trained on valance pairs for two categories can generalise to the same 

valance pair on the remaining test category using stimulated voxels. As before, 

this is only possible when negative valance information is available to the classifier 

in each of V1, V2 and V3. For non-stimulated voxels neutral versus negative is 

generalisable in V1 and neutral versus positive is generalisable in V2. Neutral 

versus positive is also generalisable in the amygdala. Our data are in accord with 

previous work that indicates that information about negative valance images are 

privileged in the set of valance images. We show that negative valance information 
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is important even at the earliest stage of cortical visual processing and that this 

information is generalisable across visual categories. 

 

3.2 Introduction 

 

Primary visual cortex (V1) receives the majority of the retinal input, however the 

retinal input only accounts for approximately 5% of the excitatory information to V1 

(Muckli, 2010). Most of the information to V1 is non-geniculate, arriving via lateral 

and top-down feedback pathways from many different cortical and subcortical 

sources (Muckli & Petro, 2013). Understanding the interaction between non-

geniculate and geniculate brain signals in low-level visual areas is critical to 

understanding visual processing. 

One category of non-geniculate input to the early levels of visual processing is that 

of emotion information. Emotion information is a unique category of information 

due to its ability to bias perception. As a result of the brain’s overall limited 

processing capacity, stimuli will compete for processing resources (Petersen & 

Posner, 2012). The emotional content of a stimulus can influence processing 

towards a stimulus that contains higher emotional content versus one that contains 

little or no emotional content (Anderson, Christoff, Panitz, De Rosa, & Gabrieli, 

2003; Pourtois, Schettino, & Vuilleumier, 2013). The emotional content of a 

stimulus can further bias perception depending on whether or not it is presented 

centrally or peripherally (Almeida, Soares, & Castelo-Branco, 2015; D’Hondt, 

Szaffarczyk, Sequeira, & Boucart, 2016) and it can also bias perception based on 

its valance (D’Hondt et al., 2016).  

The influence on brain responses due to the emotional content of a stimulus can 

vary along several distinct dimensions including valance (negative versus 

positive), arousal (low versus high) and sociality (social versus non-social) (Britton 

et al., 2006). The distinction between social and non-social categories is important 

as they recruit overlapping yet different networks (Britton et al., 2006). Further 

differences between social and non-social processing can be observed in the 

distinct temporal windows in which emotional cue extraction occurs for both types 
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of stimuli. Face cue extraction occurs approximately 170ms after stimulus onset 

whereas cue extraction for complex emotional scenes occurs approximately 220-

230ms after stimulus onset (Bekhtereva, Craddock, & Müller, 2015). Therefore, 

although both social and non-social stimuli can vary along dimensions of valance 

and arousal, they should be treated differently.  

With respect to social stimuli, it has been shown that brain responses from both 

stimulated (eye and mouth regions) and non-stimulated retinotopic locations of V1 

can be used to discriminate between emotional and non-emotional faces using 

multivariate pattern analysis (Lucy S Petro, Smith, Schyns, & Muckli, 2013). This 

finding suggests a top-down influence on low level visual areas by high level social 

emotion information. It is currently unknown whether information about non-social 

stimuli can be read out from brain responses in non-stimulated retinotopic visual 

locations, as has been demonstrated for object category information (Williams et 

al., 2008). Whether non-geniculate information arrives at low-level visual areas 

from higher cortical areas or from sub-cortical areas, such as the amygdala or 

pulvinar, remains an open question. 

To test whether information about non-social stimuli can be read out from non-

stimulated visual cortex we composed a 900 non-social image data set. The image 

set contained 300 images from a non-human animal category, 300 images from a 

food category and 300 images from a plant category. Each category contained 

100 images for neutral, positive and negative levels of valance. The image set was 

used in a fMRI fast event-related design employing a path-guided de Bruijn m-

sequence paradigm with third level counterbalancing (Aguirre, Mattar, & Magis-

Weinberg, 2011). A unique m-sequence was generated for each subject who 

viewed each image from the data set only once across ten fMRI runs. Each image 

was partially occluded by masking the bottom right quadrant of the image with an 

occluder that matched the RGB colour of the background. Due to the high spatial 

resolution and retinotopic organisation of visual cortex, occlusion restricts 

geniculate input to a corresponding patch of visual cortex (F. W. Smith & Muckli, 

2010). As V1 is not always involved in processing emotion information, either by 

TSM interference (Yaple, Vakhrushev, & Jolij, 2016) or due to cortical blindness by 

bilateral V1 damage (Ajina & Bridge, 2018), we collected brain responses from V2 

and V3 as well as the amygdala, the pulvinar and lateral occipital cortex (LOC) to 
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test in our multivariate analysis. After MRI, we asked subjects to rate the 

unoccluded image set for both valance and arousal on a 9-point Likert scale 

identical with that used with the International Affective Picture System (IAPS; 

Lang, Bradley, and Cuthbert (1997)). We did this to obtain individual ratings to 

control for domain-specific and sex-specific biases (Fernández-Martín, Gutiérrez-

García, Capafons, & Calvo, 2017). 

In a multivariate classification analysis, we find that we can reliably decode from 

both stimulated and non-stimulated retinotopic locations in early visual cortex 

information about negative valance independent of category. This was also true in 

both the amygdala and pulvinar. In LOC we can read out information about each 

level of valance independent of category. In a second multivariate cross-

classification analysis, we find that information about valance generalises across 

category. These findings demonstrate that information about non-social valance 

exists in non-stimulated early visual cortical areas and is in line with previous 

studies that demonstrate that negative valance is unique in terms of emotion 

processing within the brain (Kuniecki, Wołoszyn, Domagalik, & Pilarczyk, 2017; 

Vida & Behrmann, 2017). 

 

3.3 Results 

 

3.3.1 Negative valance information is important in early visual processing. 

 

It has been shown that information about emotional faces can be read out from 

non-stimulated early visual cortex (Lucy S Petro et al., 2013). It is less clear 

whether or not information about affective non-social objects can be read out of 

non-stimulated early visual cortex. 

To test whether valance information is present in early visual cortex, we used 

general linear modelling to first filter out information about category, information 

about changes in lightness during the sequence of image presentation and 

information from carry-over effects. We then used general linear modelling for a 
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valance model on the residual data from the first analysis. This produced 

multivoxel patterns of beta weights for valance for each run independent of the 

filtered information. Next, we trained a linear support vector machine classifier 

(SVM) to distinguish between two levels of valance on N-1 runs of data and then 

tested the classifier on the Nth run of data. This provided classifier accuracies for 

10-folds which were averaged across to produce the final classifier performance. 

The group classifier accuracies for each pair of valance for reach ROI were 

bootstrapped to create a distribution from which the median and 95% confidence 

interval could be found. This was done for V1, V2 and V3 and for the amygdala 

and pulvinar.  

In early visual cortex found that from feedforward responses we could decode 

neutral versus negative in V1 (median: 67%, CI: 56%:78%, p = 0.01), V2 (median: 

68.5%, CI: 59%:79%, p = 0.01) and V3 (median: 69%, CI: 59%:79%, p = 0.01). 

We could also decode positive versus negative in V1 (median: 74.5%, CI: 

67%:82.5%, p = 0.01), V2 (median: 70.5%, CI: 61.5%:78.5%, p = 0.01) and V3 

(median: 78%, CI: 70%:86%, p = 0.01). 

From feedback responses we could decode neutral versus negative in V2 

(median: 60%, CI: 49%:70.5%, p = 0.05). We could also decode positive versus 

negative in V1 (median: 66.5%, CI: 58%:74%, p = 0.01), V2 (median: 66.5, CI: 

56%:78%, p = 0.01) and V3 (median: 67.5%, CI: 56.5%:78%, p = 0.01). 

In the amygdala region of interest, we could decode neutral versus negative 

(median: 65.5%, CI: 56%:74.5%, p = 0.01) and positive versus negative (median: 

66.5%, CI: 57.5%:74%, p = 0.01). In the pulvinar region of interest we could only 

decode positive versus negative (median: 61.5%, CI: 55.5%:67.5%, p = 0.01). In 

LOC however, we could decode neutral versus positive (median: 60%, CI: 

50.5%:66.5%, p = 0.05), neutral versus negative (median: 74%, CI: 64%:84%, p = 

0.01) and positive versus negative (median: 79%, CI: 67%:89.5%, p = 0.01). 

Our inability to reliably decode positive versus neutral valance across V1, V2, V3, 

the amygdala and pulvinar tells us that the classifier was using the negative 

information as the mechanism for performing successful classification. In these 

regions of interest positive and neutral valance were indistinguishable. However, in 

LOC the classifier could reliably decode each level of valance. 
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Next, we performed a second analysis without filtering category information. This 

analysis was a cross-classification analysis. Here we modelled pairs of category 

and valance individually along with carry-over effects and changes in lightness. 

This produced multivoxel beta patterns for animal neutral, food neutral, plant 

neutral, animal positive, food positive, plant positive, animal negative, food 

negative and plant negative. In a similar cross-validation procedure described 

above, a classifier was trained to distinguish between two levels of valance for two 

categories (for example, animal neutral and food neutral versus animal positive 

and food positive) and tested on the remaining category (for example, plant neutral 

versus plant positive). Here we aim to test whether valance information overlaps 

amongst category. 

We found that in early visual cortex we could cross-decode from feedforward 

responses neutral versus negative in V1 (median: 56.34%, CI: 53.84%:58.67%, p 

= 0.01), V2 (median: 57.34%, CI: 54.34%:60.5%, p = 0.01) and V3 (median: 55%, 

CI: 51%:60%, p = 0.01). We could also cross-decode positive versus negative in 

V1 (median: 53.83%, CI: 50.34%:57.33%, p = 0.05), V2 (median: 55.33%, CI: 

52.17%:58.67%, p =0.01) and V3 (median: 58.95, CI: 55.15%:63.16%, p = 0.01). 

From feedback responses we could cross-decode neutral versus negative only in 

V1 (median: 55.17%, CI: 50.18%:59.32%, p = 0.05).  

Surprisingly we can cross-decode neutral versus positive in V2 (median: 52.49%, 

CI: 49.99%:54.99%, p = 0.05). We can also only cross-decode neutral versus 

positive in the amygdala (median: 54.01%, CI: 50.17%:58.67%, p = 0.05). 

In the pulvinar we can only cross-decode positive versus neutral (median: 53.5%, 

CI: 52%:55%, p = 0.01).  

As before, negative valance is important for the classifier’s ability to distinguish 

between conditions. However, for the first time we can distinguish between neutral 

and positive valance from feedback responses in V2 and in the amygdala. In both 

ROI no other information was cross-decodable. This tells us that valance 

information is present in non-stimulated early visual cortex and that valance 

information is generalisable across category. 
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Figure 3.1: Boxplots showing decoding performance for pairs of valance in a) stimulated early 

visual cortex (feedforward) and b) non-stimulated occluded early visual cortex (feedback). The 

centre line of a box denotes the median, the whiskers the 95% confidence interval and dots are 

individual subject data. Chance was 50%. 

  



 

37 
 

3.4 Discussion 

 

3.4.1 Negative valance is uniquely represented in visual processing.  

 

In the literature of visual processing of emotion stimuli, negative valance images 

are a privileged set of stimuli. For example, fixating on an object is faster for 

negative images versus neutral images (Kuniecki et al., 2017). This is particularly 

true for a subset of negative valance images that includes snakes (Gomes, Silva, 

Silva, & Soares, 2017), spiders (LoBue, 2010), guns (Subra, Muller, Fourgassie, 

Chauvin, & Alexopoulos, 2018) and syringes (Blanchette, 2006). However, the 

modern negative non-social valance images within this subset do not always 

demonstrate that they belong to this privileged set, which has led to some 

researchers suggesting that negative images are only privileged when they 

represent an evolutionary threat (Vida & Behrmann, 2017). Despite this, studies 

continue to contradict the evolutionary framework by demonstrating that modern 

threating images are privileged versus evolutionary threatening images (Subra et 

al., 2018). This recent finding would suggest that the underlying mechanism that 

categorises negative valance images in to a privileged set is based on the 

relevance of the stimulus to the individual. Within this framework, attention is 

captured for negative images that biases perception to specific stimulus features 

that are relevant to the individual from moment to moment (Pessoa & Adolphs, 

2010). 

In our study of valance information processing in early visual cortex, we find that 

we can read out from both feedforward and feedback responses in V1, V2 and V3, 

information about negative valance images only. This finding aligns well with the 

current literature regarding negative valance processing with respect to relevance. 

In our set of images only 22 out of 300 negative valance images are of snakes or 

spiders. As these 300 images are averaged across 10 runs in a fast event-related 

fMRI design, and each snake and spider image are only viewed once, it is unlikely 

that this is the driving factor for our finding. It is more likely that the relevance of 

negative stimuli to the individual was the driving factor for this finding in our 
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experiment. This is even more likely considering the images were rated by 

subjects and individual subjectivity taken in to account.  

Additionally in the literature there has been debate about cortical and sub-cortical 

differences with regards to emotion stimuli representation (Vida & Behrmann, 

2017). In our experiment we find that we can also read out from responses in the 

amygdala and pulvinar information about negative valance images only. This 

would suggest that in this experiment negative valance information is privileged in 

both cortical and sub-cortical structures of interest. Surprisingly in LOC, an object-

category specific region, we can read out information about all levels of valance 

independent of categorical information. This difference may be due to the fast 

rapid-event related design of our study. We present each image for a single 

second. As we have discussed, the brain responds faster to negative valance 

images (Kuniecki et al., 2017). By responding faster to negative images, these 

images will undergo faster processing which may lead to more well-defined 

representations in low-level visual areas and small, deep sub-cortical structures 

compared with positive and neutral images. This would explain why we can read 

out information about positive valance in LOC, a higher cortical area with more 

refined representations with respect to low level visual areas.  

 

3.4.2 Is valance feedback information in early visual cortex from a cortical 
or sub-cortical source?  

 

Emotion processing in the human brain is thought to involve both a cortical and 

sub-cortical pathway (Pessoa & Adolphs, 2010). The sub-cortical pathway 

includes both the pulvinar and the amygdala. The pulvinar is situated at the 

posterior of the thalamus and has been described as a hub that the cortex is 

shaped around. Its unique position hints at its connectivity. The pulvinar has 

bidirectional connectivity with all visual areas as well as cross-modal and attention 

networks (Pessoa & Adolphs, 2010). Similarly, white matter connectivity analysis 

using diffusor tensor imaging (DTI) has also revealed a feedback architecture 

between early visual areas and the amygdala (Gschwind, Pourtois, Schwartz, Van 

De Ville, & Vuilleumier, 2011). 
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Due to the inter-connectivity between the pulvinar and the rest of the cortex, it is 

thought that the pulvinar is responsible for rapid detection of environmental 

threats. This can be demonstrated in cases of cortical blindness, where 

information about fearful faces still enter awareness even when presented in the 

blind field (Bertini, Cecere, & Làdavas, 2013) likely due to recurrent connectivity 

between the amygdala and pulvinar and the pulvinar and the cortex (Pessoa & 

Adolphs, 2010). When the pulvinar is damaged there is a slower response to 

visual threat (Ward, Danziger, & Bamford, 2005) and overall impaired emotion 

recognition (Ward, Calder, Parker, & Arend, 2007). Conversely, when the 

amygdala is damaged there remains an intact ability to detect fearful faces when 

awareness is directed to specific stimulus features (Adolphs et al., 2005), again 

likely due to the role the pulvinar plays in relaying information between different 

parts of the brain. 

Although we cannot conclude that there are any differences between sub-cortical 

and cortical representation of non-social affective images in our study. There are a 

several limiting factors that should be mentioned. One such limitation is 

differences in emotion processing in dorsal and ventral visual streams. For 

example, it has been show that the brain can make rapid distinctions between 

fearful body expressions versus neutral body expressions as early as 80ms in the 

dorsal visual stream (Meeren, Hadjikhani, Ahlfors, Hämäläinen, & De Gelder, 

2016). As we occluded the bottom-right quadrant of our images, we were 

restricted to only analysing non-stimulated cortex in the dorsal stream. Therefore, 

our feedback decoding and cross-decoding analysis are only applicable to dorsal 

early visual cortex and we cannot make any inferences about the ventral visual 

stream. There are also differences in how the brain processes affective images 

with respect to right and left hemispheric specialisation (Gamond, Vecchi, Ferrari, 

Merabet, & Cattaneo, 2017; Shobe, 2014). As we had no a priori hypothesis about 

differences in right and left hemispheres, this was not included in our model that 

the m-sequence was designed from. This omission could also have an impact on 

our results as the m-sequence design boosts the detection power for the signal 

expected from the model derived from the hypothesis.  

An additional limitation of our study was the issue of arousal. It has been shown 

that the complexity of an image is correlated with levels of arousal (Madan, Bayer, 
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Gamer, Lonsdorf, & Sommer, 2018), and arousal is related to subjective feelings 

and enhanced attention (Lindquist, Satpute, Wager, Weber, & Barrett, 2015). In 

our analysis, arousal is averaged across 300 images for positive, neutral and 

negative valance but our analysis is not independent of arousal. Arousal therefore 

remains a confound in this study. 

3.5 Methods 

 

3.5.1 Subjects.  

 

Ten subjects (age range 18-33; 5 female) participated in this experiment. Each 

subject was recruited via the subject data pool maintained by the School of 

Psychology at the University of Glasgow. There were no exclusion criteria for 

recruitment. Ethical approval was granted for this study from the College of 

Science and Engineering at the University of Glasgow. 

 

Figure 3.2: (A) Hypothesis model for generating the path-guided m-sequence (B) Modelling the 

main effects, carry-over effects and changes in lightness. 
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3.5.2 Stimuli and Procedures.  

 

For this study we collected 900 colour non-social images by way of Google image 

search. Each image was collected at a high resolution before being resized to 800 

pixels by 800 pixels. Each image was classified as belonging to one of nine 

categories by the experimenter. These were; ‘neutral animal’, ‘positive animal’, 

‘negative animal’, ‘neutral food’, ‘positive food’, ‘negative food’, ‘neutral plant’, 

‘positive plant’, ‘negative plant’. During fMRI these images were projected on to a 

rear projection screen using a projector system (1024 x 768 resolution, 60Hz 

refresh rate). Images spanned 22 by 15 degrees of visual angle. Subjects were 

asked to maintain fixation on the centre of the screen and tasked with detecting a 

one-back repetition of category. The bottom right quadrant of each image was 

occluded with a 128, 128, 128 RGB occluder. This was also the same colour used 

as the default background. 

A unique path-guided de Bruijn sequence (Aguirre et al., 2011) was generated for 

each subject. Sequences were generated with third-level counterbalancing 

resulting in sequences with 1000 elements. This included 100 repetitions of each 

of the nine conditions plus 100 null trials. A sequence was split in to 10 shorter 

runs. So that the runs could be stitched back together in to a single run, the last 15 

elements of run N were added to the beginning of run N+1. The last 15 elements 

of run 10 were added to the beginning of run 1 such that the sequence cycles 

around from start to finish. These overlapping elements were then removed when 

the runs were stitched back together. 

Images were presented for 1 second in a fast event-related design with an inter 

stimulus interval of 2 seconds. The onset of image presentation was jittered 

between 0 and 1500 milliseconds and a null trial was 6 seconds long. Each of the 

900 images was presented to the subject only once throughout the experiment. At 

the end of each run a contrast-inverting chequered board was presented for 12 

seconds either along the inside of the occluder or deep within the occluded region. 

These were included for contrast mapping, to identify the occluded region of visual 

cortex. The contrast mapping conditions were discarded when the 10 runs were 

stitched into a single run.  
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The experiment was performed using Presentation® software (Version 0.70, 

Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com). 

 

Figure 3.3: Examples of the affective stimuli used in the experiment. 

 

http://www.neurobs.com/
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3.5.3 Image Rating. 

 

After fMRI, subjects were then instructed to rate the 900 unoccluded images for 

both valance and arousal on a 9-point Likert scale following the same procedure 

used for the International Affective Picture System database (Lang et al., 1997). 

These ratings were used to sort the image data set and fMRI data set trials in to 

positive, neutral and negative for each subject. 

Due to individual differences, images that were rated as neutral, positive or 

negative by the experimenter were not always rated so by subjects. To account for 

this, we made a small number of corrections to subject ratings. Neutral was 

designated ‘5’ on the Likert scale. If a subject rated a neutral image either ‘4’ or ‘6’ 

this was corrected back to ‘5’ as the change from neutral to either negative or 

positive was deemed negligible (a deviation of one on the scale). However, if a 

neutral image rated either negative or positive by a deviation of more than one on 

the scale then this new rating was accepted (see supplementary).    

 

3.5.4 fMRI acquisition.  

 

Data were collected at the Centre for Cognitive Neuroimaging, University of 

Glasgow. Functional and anatomical MRI data was acquired using a 3 Tesla Tim 

Trio MRI scanner (Siemens, Erlangen, Germany) with a 32-channel head coil and 

integrated parallel imaging techniques (IPAT factor: 2). Functional multi-band EPI 

sequences were used to acquire partial brain volumes of resolution 3mm isotropic, 

inter-slice thickness of 0.3mm, TR-1s, TE-30, 30 slices, FOV of 220mm and a flip 

angle of 62°. Anatomical scans (3D MPRAGE) were acquired with a resolution of 

1mm isotropic, TR-2.3s and 192 volumes. 
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3.5.5 Data analysis.  

 

Data were stitched together by removing the 15-trial overlap at the beginning of 

each run. For classification, we created 3 regressors to model the three 

categories, 3 regressors to model the three levels of valance, a single regressor to 

model the null condition, 9 regressors to model the carry-over effects for first, 

second and third level counterbalancing and a single regressor to model the 

change in image lightness from the background default lightness. A general linear 

model analysis was performed that included all regressors minus the 3 regressors 

for each level of valance. Then on the residuals from this first analysis we 

performed a second general linear model using only the 3 regressors for valance. 

The beta estimates from this second GLM were used as patterns for MVPA. 

For cross-classification, we created 9 regressors to model the pairwise 

combinations of valance and category. We included a single regressor to model 

the null condition, 9 regressors to model the carry-over effects for first, second and 

third level counterbalancing and a single regressor to model the change in image 

lightness from the background default lightness. A general linear model analysis 

was performed that included all regressors. Beta estimates were then used as 

patterns for MVPA. 
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3.6 Supplementary 

 

 

Figure 3.4: Histograms showing the distribution of uncorrected valance ratings for the 900 images 

for each individual subject (2-10) and the averaged uncorrected valance ratings for the group. 
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Figure 3.5: Histograms showing the distribution of corrected valance ratings for the 900 images for 

each individual subject (2-10) and the averaged corrected valance ratings for the group. 
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Figure 3.6: A GIST descriptor was computed for each image in the 900 image set. The descriptor 

represents the image as a lower dimensional representation. These GIST descriptors were then 

correlated and organised by either category or valance to visually inspect the similarity structure 

within the image set. Plant and food images are similar within their category whereas animal 

images were neither similar within category or across category, with the exception of the positive 

animal image subset which was similar across category. When organised by valance, the positive 

images were similar within the group and somewhat similar with the neutral and negative images. 

The negative images were dissimilar within their own group. 
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Figure 3.7: Each image was split in to red, green and blue colour channels and colour histograms 

were computed. For each colour channel, the colour histograms were correlated to visually inspect 

the similarity structure between images. The resulting correlation matrices were then organised by 

category or valance.  
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4 Auditory feedback shows eccentricity biases and overlap in 

neural representation with well-matched congruent visual 

exemplars 

 

4.1 Abstract  

 

Early visual cortex receives cortical feedback information about complex auditory 

stimuli. However the information content and function of complex auditory 

representations in early visual cortex remains poorly understood. Using functional 

magnetic resonance imaging, we investigated where in the retinotopic space of 

early visual cortex we can read out information about auditory scenes and objects. 

We find that we can read out auditory scene information is in the periphery of early 

visual cortex and that we can read out auditory object information in the fovea of 

early visual cortex. We then follow this study by investigating whether complex 

auditory sounds are cross-decodable with complex silent videos when they are 

well matched. We replicate previous work showing that auditory information can 

be read out from early visual cortex, and find that auditory feedback information 

within an occluded patch of early visual cortex is representationally similar to 

categorically matching visual feedback information. Our results provide evidence 

supporting the theory that auditory information in early visual cortex is organised 

by eccentricity, and that abstract auditory feedback responses in early visual 

cortex share an overlap in their representation with that of congruent visual 

feedback responses. 
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4.2 Introduction  

 

Visual processing is a highly predictive mechanism that utilises top-down 

expectations to make inferences about simple, complex and noisy visual stimuli. 

Predictions in visual cortex originate from rich internal mental models that are 

triggered by all sensory stimuli (Spratling, 2017). A growing body of work is 

revealing that auditory driven predictions inform perception at almost all stages in 

the visual hierarchy. For example, auditory scene sounds are decodable in primary 

and secondary visual cortex (Vetter et al., 2014), and much later in higher areas of 

visual cortex (Jung et al., 2018).  

Complex auditory sounds are composed of many different sound sources. These 

sound sources can take the form of abstract scene representations or more 

concrete object representations. No study to date has investigated the retinotopic 

structure of auditory feedback from different sound sources. There is evidence for 

a retinotopic structure of feedback responses found in studies of visual object 

recognition. Objects presented in the periphery are decodable in the fovea, likely 

due to the need for fine discrimination which the high spatial resolution of the 

fovea provides (Williams et al., 2008). It is unclear whether an individual sound 

source in isolation, such as an object, would feedback only to the fovea or be 

distributed across all eccentricities. On the contrary, the current literature on 

auditory feedback reveals a bias towards the periphery of early visual areas 

(Falchier, Clavagnier, Barone, & Kennedy, 2002). There is very little evidence of a 

functional role of auditory feedback to the fovea.    

Auditory feedback in striate and extrastriate cortex are cross-decodable between 

contextually similar exemplars (Vetter et al., 2014). This demonstrates that the 

information content between congruent sounds is abstract and contextual at the 

encoding space of visual cortex. To date, contextually similar visual and auditory 

exemplars have been shown to be distinct and non-generalisable in early visual 

cortex (Jung et al., 2018). It is not until much later in the visual hierarchy that 

contextually matching auditory and visual information converge and become 

cross-decodable (Jung et al., 2018). This lack of finding is surprising as feedback 

information about visual stimuli have been shown to be cross-decodable with their 
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feedforward counterparts in early visual cortex (F. W. Smith & Muckli, 2010), 

across cortical layers in early visual cortex (Muckli et al., 2015), and cross-

decodable across stimulus features (Radoslaw Martin Cichy & Teng, 2017), 

suggesting that visual feedback is generalisable to an extent. If feedback from 

both modalities is abstract and contextual, it would follow that they both inform 

perception in a similar manner. It is possible that the lack of cross-decoding 

between modalities in low-level areas of visual cortex is due to a combination of 

methodological choices.  

To test these ideas we performed two experiments. In the first experiment we 

combined auditory scenes and objects in a 2x2 block design. Each auditory scene 

(forest, blizzard) was presented for 12 seconds. One of two auditory objects (axe 

chopping wood, pull-start motor) was randomly presented in 7 or 8 of 10 possible 

one second time bins during the scene sound. This made the onset and offset of 

the object sound unpredictable, requiring attention for the full presentation time. In 

total there were four types of trial; forest axe, forest motor, blizzard axe, blizzard 

motor. Linear support vector machine classifiers were trained and tested on scene 

or object pairs.  

In the second experiment we created independent blocks of auditory and visual 

stimuli from three distinct categorical videos (cars, cows, hammering). To isolate 

cortical feedback we occluded the lower right quadrant of the video stimuli. By 

occluding this area of the visual field, we render an area of left dorsal visual cortex 

as resting state during visual stimulation. To avoid the possibility of spill-over into 

the occluded region from neighbouring feedforward voxels, inverting chequered 

boards were used to map out the border and inner target patch of the occluder. 

In experiment 1 we find that auditory scene information can be decoded only in the 

periphery and that auditory object information can be decoded only in the fovea. 

This demonstrates that auditory feedback arrives at visual cortex from multiple 

pathways - a peripheral pathway that carries abstract contextual scene information 

and a foveal pathway that carries object information. In experiment 2 we find that 

cortical feedback for dynamic auditory and visual scenes are generalisable in 

occluded visual cortex. Generalising between the two modalities means that there 

is an overlap in the neural representation of auditory and visual feedback 
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information at the earliest stages of visual processing. Therefore auditory feedback 

must be informing visual processing in a similar way to visual feedback. We also 

replicate previous findings that auditory and visual stimuli are decodable in early 

visual cortex.  This new evidence supports the hypothesis that auditory and visual 

information are processed by anatomically and functionally shared neural 

populations in early visual cortex. 

 

4.3 Results 

 

4.3.1 Auditory objects feedback to foveal visual cortex.  

Although previous studies report that the influence of auditory feedback on 

perception is biased towards the periphery, it is unclear if this is true for both 

complex auditory scene and object stimuli. In the first experiment using functional 

magnetic resonance imaging (fMRI) we tested where in the retinotopic space of 

early visual cortex auditory objects and scenes can be decoded. To do this we 

created a 2 by 2 block design (auditory scene [forest/blizzard] x auditory object 

[axe/motor]). Scene sounds were presented for 12 seconds followed by 12 

seconds of baseline. Each scene sound was divided in to an equal number of 1 

second time bins in to which a 1 second object sound could be presented (Fig 

4.6a). A single object sound was randomised in to either 7 or 8 bins, 

counterbalanced, during a scene sound. This was done to make the object sound 

unpredictable in its appearance and to make it stand out from the scene.  

Subjects were instructed to keep their eyes-open and to fixate on the centre of the 

screen where a small fixation-cross was placed. They were tasked with 

responding to a 200ms colour change of the fixation cross during the baseline. We 

trained a linear support vector machine classifier to discriminate between either 

the object sounds while the scene sound was the same, or the scene sounds while 

the object sound was the same. We trained the classifier on n-1 runs of data and 

decoded object or scenes from the nth run of data. We found that auditory objects 

could only be decoded in the fovea of V2 (median: 52.26%, CI: 50.47%:54.13%, 

p=0.05) and V3 (median: 52.03%, CI: 49.89%:54.03%, p=0.05) (Fig 4.1) and that 
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auditory scenes could only be decoded in the far periphery of V2 (median: 

52.27%, CI: 50.21%:54.88%, p=0.05) (Fig 4.2).  

This confirms previous work that shows scene sounds are encoded in the 

periphery of visual cortex. We also show new evidence supporting the idea that 

the fovea is additionally recruited for auditory object processing, either as a means 

to segregate objects from background sounds or for finer discrimination. 

 

 

Figure 4.1: Experiment 1, decoding axe versus motor object sounds in early visual cortex. 
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Figure 4.2: Experiment 1, decoding forest versus blizzard scene sounds in early visual cortex. 

 

4.3.1 Auditory and visual feedback is contextually similar. 

 

In the second experiment we investigated whether information about complex 

auditory scenes could be decoded in retinotopically mapped early visual cortex. 

We also explored whether image category could be decoded in occluded 

peripheral visual cortex, and whether a linear support vector machine classifier 

could generalise between modality. To do this we measured brain activity while 

eighteen new participants listened to categorical auditory scenes and viewed silent 

videos in alternating blocks while maintaining central eye-fixation (Fig 4.6b). 

Participants were randomly prompted by fixation colour change to respond by 

button press with the category of the stimulus. On a single trial basis, pattern 

classifiers were first trained (for each participant) to discriminate between patterns 

of beta values for the three auditory scene categories of n-1 runs of data. These 

pattern classifiers were then applied to the nth run of unseen data to see if they 

could decode the three auditory scenes. We found that the pattern classifiers 

could decode auditory category significantly above chance in many different 

retinotopically mapped regions. These included the fovea of V1 (median: 37.12% 
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CI: 34.44%:39.90%, p=0.01), V2 (median: 37.13% CI: 34.08%:40.2%, p=0.01), V3 

(median: 37.41% CI: 34.06%:40/75%, p=0.01) and the periphery of V1 (median: 

35.66% CI: 32.87%:38.33%, p=0.05), V2 (median: 37.96% CI: 35.00%:41.02%, 

p=0.01) and V3 (median: 37.04 CI: 33.90%:40.10%, p=0.01) (Fig 4.3).  

Next, we tested whether we could decode visual scene category from occluded 

voxels in early visual cortex and whether or not a classifier trained on one modality 

could decode the other. To do this analysis we chose only those voxels that were 

occluded during image stimulation. An occluded voxel during visual stimulation 

only receives information from top-down processes involved in cortical feedback. 

To ensure that occluded voxels did not receive any spill-over from adjacent non-

occluded voxels, we applied two thresholding measures. This process results in 

non-stimulated voxels from dorsal V1, V2, and V3 of the left hemisphere. From 

these voxels we find that we can decode image category at significantly above 

chance levels in the occluded patch as a whole (median: 54.26% CI: 

49.68%:58.89%, p=0.01), occluded V1 (median: 50.53% CI: 45.58%:55.84%, 

p=0.01), occluded V2 (median: 44.47% CI: 41.79%:47.32%, p=0.01) and occluded 

V3 (median: 42.53% CI: 38.32%:46.89%, p=0.01) (not shown).  

Having demonstrated using a pattern classification approach that we can decode 

auditory scenes in early visual cortex while participants have their eyes open, and 

that we can decode visual scenes from occluded voxels, we tested whether 

feedback information was generalisable between modality. To do this we trained 

pattern classifiers on n-1 runs of data for one modality and tested the classifier on 

the nth run of data for the other modality.  

We tested whether a pattern classifier trained to discriminate between auditory 

categories could decode video category. We find that this classifier can decode 

video category significantly above chance in occluded V3 only (median: 35.21% 

CI: 33.23%:37.30%, p=0.05) (Fig 4.4). We then tested whether a pattern classifier 

trained to discriminate between video categories could decode auditory category. 

We find that the visual pattern classifier can decode auditory category at a level 

significantly above chance in the occluded patch as a whole (median: 35.00% CI: 

33.52%:36.57%, p=0.05), occluded V2 (median: 35.10% CI: 33.02%:37.08%, 

p=0.05) and occluded V3 (median: 36.04% CI: 33.65%:38.33%, p=0.05) (Fig 4.5).  
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The success of the cross-classification analysis suggests that there is some 

overlap in the neuronal representation in early visual cortex of the auditory stimuli 

that also exists in the visual stimuli. This could be related to the context of the 

stimulus. We cannot fully discount the role imagery might play in this finding as it is 

not something we could control in this experiment.  

Although our effect sizes are small in these experiments – as is to be expected in 

an eyes open experiment with auditory stimuli, they are consistent and replicable 

with our methods across different experiments and different laboratories (van den 

Hurk, Van Baelen, & de Beeck, 2017). 

 

 

 

Figure 4.3: Experiment 2, decoding cars, cows and hammer scene object-focused sounds in early 

visual cortex. 
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Figure 4.4: Experiment 2, cross-classification in early visual cortex. Training the classifier to 

discriminate between sound categories then testing it on visual category. 

 

Figure 4.5: Experiment 2, cross-classification in early visual cortex. Training the classifier to 

discriminate between visual categories then testing it on sound category. 
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4.4 Discussion 

 

4.4.1 Auditory object information is important to the fovea.  

 

Visual feedback information is highly organised in early visual cortex (Marques, 

Nguyen, Fioreze, & Petreanu, 2018). It has been demonstrated that visual 

feedback information about objects placed in the periphery can be decoded using 

multivariate pattern classifiers in non-stimulated fovea, but not in other non-

stimulated areas of the periphery (Williams et al., 2008). This information was 

correlated with perceptual discrimination suggesting that feedback of object 

information to the fovea is important for discriminating peripheral objects. 

Consistent with this, in experiment one, we found that we could read out 

information about auditory objects in non-stimulated foveal V2 and V3 but not in 

non-stimulated periphery. Further, we show that auditory scene information could 

be read out only in non-stimulated periphery of V2. 

There is evidence suggesting auditory cortex is functionally connected with the 

periphery of visual cortex (Eckert et al., 2008; Klinge et al., 2010; Qin et al., 2014) 

but less evidence it is functionally connected with the fovea. Studies using 

diffusion tensor imaging in humans have shown that Herschel’s gyrus is connected 

to the periphery and para-fovea of the visual cortex (Anton L Beer, Plank, & 

Greenlee, 2011; Eckert et al., 2008). Transcranial magnetic stimulation (TMS) at 

subthreshold intensity applied to the occipital visual cortex coupled with an 

auditory stimulus leads to the perception of phosphenes (Bolognini et al., 2010). In 

this same study they found that the optimal site of stimulation was in the peripheral 

visual field. When stimulation was in the central visual field, there was no induction 

of phosphenes (Bolognini et al., 2010). Further evidence supporting extrastriate 

cortex as the encoding space of auditory feedback comes from a fMRI study 

reporting that incongruent video-audio pairings decreases classifier accuracy in V2 

and V3, but not in V1, compared with congruent video-audio pairings (de Haas, 

Schwarzkopf, Urner, & Rees, 2013).  
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In non-human primate physiology, monosynaptic afferents from auditory 

association areas have been reported to terminate in striate and extrastriate 

cortex. These terminations occur in layers 1 and 6 of the cortical laminae following 

a feedback profile (Anton Ludwig Beer, Plank, Meyer, & Greenlee, 2013). They 

also follow a density gradient described as decreasing from extrastriate to striate 

cortex, and decreasing from peripheral areas towards the occipital pole. A similar 

pattern of connectivity has also been shown in blind mice where primary auditory 

afferents terminate in both primary and secondary visual cortices. These afferents 

terminate close to secondary visual cortical neurons with feedback connections to 

primary visual cortex (Laramée et al., 2011). 

Taken together, these results support the hypothesis that auditory feedback 

influences perception at both the periphery and the fovea. This is further supported 

by our results from experiment 2. Using sounds that are scenes but contain a focal 

object sound, decoding context is possible in both the periphery and fovea. 

Auditory feedback to the fovea may be more specific, containing information about 

objects and may be driven by higher order areas such as lateral occipital cortex 

rather than directly from auditory areas.  

 

4.4.2 Auditory and visual feedback information about scenes is contextual 
and generalisable.  

 

From previous work we have shown that auditory feedback (Vetter et al., 2014) 

and visual feedback (F. W. Smith & Muckli, 2010) is contextual, which we replicate 

here. It seems like a straightforward, yet non-trivial step to show that these two 

types of feedback information contain similar information for contextually matching 

audio and visual stimuli. In experiment 2, we found that a classifier trained on 

auditory information in non-stimulated V3 - to discriminate between three sounds - 

could decode three contextually matching videos from visual feedback information 

alone. A classifier trained on visual feedback information in non-stimulated V2 or 

V3 - to discriminate between three videos - could decode three contextually 

matching sounds from feedback information alone. For the first time we show that 

auditory and visually induced feedback share an overlap in their neural code at 
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early levels of visual processing. The overlap in the representation of context 

between auditory and visual feedback indicates that both types of feedback can 

guide perception in a similar way. 

It is noteworthy that the auditory feedback classifier can only decode visual 

feedback information in V3, but the visual feedback classifier can decode auditory 

feedback information in V2, V3 and the occluded area as a whole (V1, V2 and V3). 

We propose that this is due to auditory feedback being coarser than visual 

feedback within the domain of vision. A classifier trained on a coarse signal or 

pattern will result in a poorer model than say a classifier trained on a finer signal or 

pattern. The quality of the classifier model within this framework would explain the 

pattern of results we observe. It then remains an open question as to how such a 

coarse auditory signal aids visual perception. One possibility is that a contextually 

matching sound facilitates identification of degraded contextually matching visual 

stimuli (Lu, Zhang, Xu, & Liu, 2018). 

It is also interesting to note that a classifier trained on auditory feedback 

information in early visual cortex cannot decode visual feedforward information. 

This is also true in the reverse case for the classifier trained on visual feedforward 

information. The feedforward signal is a fine-grained signal. That we find no 

overlap in the neural code of these two types of information would indicate that the 

modulatory effect of feedback is related to higher-order information and not the low 

level information that early visual cortex extracts from sensory information. This is 

further supported by those studies that show auditory and feedforward visual 

information do indeed cross-classify but only in higher order multi-sensory 

integration areas (Jung et al., 2018). 

 

4.4.3 Theoretical interpretations.  

 

Within a predictive coding framework (Rao & Ballard, 1999), our results can be 

interpreted as auditory and visual scenes triggering high-level internal models 

which generate predictions about specific stimulus features. These predictions 

back-propagate along descending feedback pathways generating error signals 
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which propagate forward along ascending pathways. When the prediction is well 

matched the error signal is minimised – the prediction was a good one. If the 

prediction is less well matched the model is updated and a new prediction is 

issued. In this manner early sensory areas are adapted with a predictive model for 

upcoming statistically regular sensory information. This would explain why cross-

classification between modality is possible if auditory and visual stimulation are 

triggering the same internal models. 

Our finding that we can decode scene information in the periphery and object 

information in the fovea indicates that we may have two functionally distinct 

signals. We observe one signal in the periphery related to content specific scene 

information, which previous work has shown is generalisable across categorical 

exemplars (Vetter et al., 2014). Here we show that this signal is also generalisable 

across modality in extrastriate cortex. One explanation for this peripheral signal 

could be that it is used as a spatial co-ordinate system for assigning semantic 

labels to other low-resolution features within this space. An example of this would 

be keeping track of cars as they enter and exit peripheral vision as you walk down 

the street. The high spatial resolution of visual cortex compared with auditory 

cortex would make visual cortex well suited to this task (McDonald, Teder-

SaÈlejaÈrvi, & Hillyard, 2000). This could explain why cross-classification is 

possible in visual areas but not auditory areas. However we do not tonotopically 

map auditory cortex which could also explain this null finding.  

It is intriguing that auditory and visual feedback information is generalisable at the 

level of extrastriate cortex but not primary visual cortex. It is possible that due to 

auditory processing beginning in the cochlea and brainstem, that when this 

processed information arrives in visual cortex, it is coherent only at the level of 

extrastriate cortex where visual information has started to undergo some level of 

processing. Auditory feedback to extrastriate cortex does not preclude an auditory 

influence on primary visual cortex. In the macaque, auditory afferents are shown to 

terminate next to V2 neurons with feedback projects to V1 (Rockland & Ojima, 

2003). Within a predictive coding framework, auditory information at V2 could 

refine the prediction that will descend to V1. A functional role of auditory feedback 

to extrastriate cortex could be to refine predictions for informing primary visual 

cortex. 



 

62 
 

Why auditory and visual feedback is generalisable at all is an intriguing question. 

Previous work has reported that there is no overlap in the neural representation of 

auditory and visual stimuli in low level visual cortex (Jung et al., 2018). The 

difference between our study and the study by Jung et al. (2018) is that we used 

dynamic videos instead of static images. By controlling how well the regularity of 

auditory and visual information matched between categorically matching 

exemplars may explain why we find the overlap in neural representation between 

modality that Jung et al. (2018) did not. A recent study by Andric, Davis, and 

Hasson (2017) supports this conclusion. In this study the researchers show that 

the regularity of auditory and visual stimuli is an important feature for multisensory 

audiovisual perception, with specific brain systems for detecting regularity 

mismatch. Regularity matching audio and visual stimuli may explain this finding. 

We also observe a second signal in the fovea related to content specific object 

information. This type of signal could help sensitise the much higher-resolution 

fovea for the purpose of object foveation prior to orienting behaviour. It has been 

shown that a burst of pink noise prior to a flash triggers involuntary orienting which 

in turn aids visual perception (McDonald et al., 2000). Auditory object related 

feedback to the fovea could contain information about specific stimulus features 

which guide perception in an anticipatory way.  It remains an open question 

whether signals from object sounds can be generalised across additional 

congruent exemplars.      

Another explanation for our findings is that auditory stimulation triggers visual 

imagery which is why it is well matched with visual feedback during visual 

stimulation. One argument against this is a study showing that a visuospatial 

imagery task does not inhibit decoding of auditory information in early visual cortex 

(Vetter et al., 2014). This would indicate that visual imagery and auditory driven 

predictions are separate yet overlapping signals in early visual cortex. 

Another possible explanation could be that what we are decoding is attentional 

modulation in early visual cortex. It has been shown that attentional modulation 

can occur for both spatial and feature based responses (Peelen & Kastner, 2014) 

and has its strongest influence towards the periphery (Bressler, Fortenbaugh, 

Robertson, & Silver, 2013). This could explain why we observe a bias towards the 
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periphery for both decoding and cross-decoding in our experiments. However all of 

our sounds show deactivation in early visual cortex with no significant univariate 

differences. Furthermore at 7T, it has been shown that for sounds BOLD 

amplitude and information content are independent from one another (Muckli et 

al., 2015). 

In conclusion, we demonstrate that auditory feedback to early visual cortex follows 

similar eccentricity biases observed in visual processing of visual object and scene 

representation. Furthermore, we show that auditory and visual feedback share an 

overlap in their neural representation when the spatial and temporal regularity of 

the stimuli are well matched. We provide evidence supporting the role of early 

visual cortex as being an area for multisensory perception.  

 

4.5 Methods 

 

4.5.1 Subjects.   

 

In total, 38 subjects (age range 20-39; 21 female) took part in these experiments. 

All subjects gave written informed consent and were compensated monetarily for 

their participation. Subjects were recruited through the University of Glasgow 

subject data pool and ethical approval was attained from College of Science and 

Engineering, University of Glasgow. 

 

4.5.2 Stimuli and Procedures 

 

Experiment 1. Here we used two auditory scene sounds and two auditory object 

sounds. The scene sounds were a blizzard sound and a forest sound, each twelve 

seconds long. The two objects sounds were an axe sound and a pull-motor sound, 

each one second long. Scene sounds were presented in a block design in a 

pseudo-randomised order, with an inter-stimulus interval of twelve seconds. Each 

of the two object sounds were played either 7 or 8 times (counterbalanced) during 
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the presentation of a scene sound (Fig 4.6a). The presentation of each object 

sound repetition was randomised so that it stood out as being independent of the 

scene. This was done to reduce mind wandering or disengagement from the 

stimulus during the twelve seconds. The design resulted in trials that were forest-

axe, forest-motor, blizzard-axe or blizzard-motor. Subjects had their eyes open 

and were asked to fixate on a chequerboard (9 x 9 pixels or 0.2 x 0.2 degrees in 

the fovea) in the centre of the screen. Subjects were tasked with responding to a 

100ms colour fixation change during the baseline. 

Experiment 2. Three scene sounds (Car, Cow, and Hammer) were taken from 

three videos. The videos were then muted and used as unimodal visual stimuli 

(Fig 4.6b). Videos were displayed in full colour on a rear projection screen using a 

projector system (1024 x 768 resolution, 60Hz refresh rate). Videos measured 800 

x 800 pixels and spanned 22 x 15 degrees of visual angle. A circular mask was 

placed over the video such that the lower right quadrant was occluded throughout 

the experiment (occluded region spanned = 10 x 8 degrees). A centralised fixation 

chequerboard (9 x 9 pixels or 0.2 x 0.2 degrees in the fovea) marked the centre of 

the screen. A default grey background (128, 128, 128 RGB) was used throughout. 

Participants were instructed to maintain central fixation at all times and to respond 

to colour changes of the fixation cross (black/white to red/green) reporting 

category. Each of four runs consisted of fifteen blocks of independently presented 

sound and visual stimulation with an inter-stimulus interval of twelve seconds. 

Each run was followed by two mapping blocks. The mapping blocks involved 12 

seconds of stimulation of a contrast inverting chequered board around the inside 

edge of the occluder followed by 12 seconds of stimulation of a contrast inverting 

chequered board inside of the occluder (Fig 4.6c). This was repeated twice in 

each run. All three experiments were performed using Presentation® software 

(Version 0.70, Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com). 

 

http://www.neurobs.com/
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Figure 4.6: (a) Experimental design of experiment 1, (b) Experimental design of experiment 2, (c) 

Contrast mapping of occluder and occluder surround (left) and pRF estimate ‘heat map’ within the 

occluded region (right). 

 

4.5.3 FMRI acquisition.  

 

Data were collected at the Centre for Cognitive Neuroimaging, University of 

Glasgow. Functional and anatomical MRI data was acquired using a 3 Tesla Tim 

Trio MRI scanner (Siemens, Erlangen, Germany) with a 32 channel head coil and 

integrated parallel imaging techniques (IPAT factor: 2). Functional EPI sequences 

were used to acquire partial brain volumes of resolution 3mm isotropic, inter-slice 

thickness of 0.3mm, TR-2s, TE-30, 35 slices, FOV of 220mm and a flip angle of 

62°. Anatomical scans (3D MPRAGE) were acquired with a resolution of 1mm 

isotropic, TR-2300ms, TE-2.96ms and 192 volumes.  
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5 Decoding a future, unseen representation of the world in 

extrastriate cortex during occlusion 

  

5.1 Abstract 

 

The visual system uses internal representations to generate predictions about 

upcoming visual information. These predictions are generated in high level cortical 

areas and are carried to sensory cortices by feedback pathways. Understanding 

predictive processes is therefore essential for understanding how the brain 

internally models the external world. During brief movie-viewing, the visual system 

extrapolates upcoming information based on previously presented frames and 

information from memory. We probed these forward models in early visual cortex 

by introducing a 800ms gap after a 600ms movie priming sequence. We used 3T-

fMRI to investigate how early visual areas predict images that are expected after a 

800ms interval. By probing predictions with test frames that would naturally occur 

within the movie at 300ms, 600ms, 800ms and 4000ms, we found that forward 

models best matched the 600ms and 800ms test frames. In a control experiment 

we found that forward models no longer existed when the priming sequence was 

shuffled and that accurate predictions take 600ms to 1200ms to form and fully 

develop. These results indicate that visual cortex extrapolates beyond previous 

stimulation to generate predictions about future events and that these predictions 

are temporally imprecise. 
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5.2 Introduction 

 

An everyday mundane task like crossing the road requires a series of complex 

cognitive processes. The brain must extract both spatial and temporal information 

from the local environment and compare this information with what it already 

knows from memory to determine when it is or is not safe to cross the road. This 

scenario becomes even more complicated as the flow of traffic increases and 

multiple targets must be tracked at once. Each vehicle must enter awareness and 

its trajectory estimated and projected in to the immediate future to determine when 

to cross. But what are the neural mechanisms by which the brain achieves this 

task so effortlessly? 

Both context and scene analysis are thought to rely on a network involving the 

medial temporal lobe (MTL), medial parietal cortex (MPC) and the medial 

prefrontal cortex (MPFC) (Bar & Aminoff, 2003). Sub-regions of the MTL system, 

including the hippocampus, parahippocampal cortex (PHC) and perirhinal cortex 

(PRC) code for spatial and context information with both long-term episodic 

memory (Burgess, Maguire, & O'Keefe, 2002) and short-term working memory 

(Libby, Hannula, & Ranganath, 2014). The hippocampus also contains allocentric 

place cells which code for spatial information (O'Keefe, Burgess, Donnett, Jeffery, 

& Maguire, 1998). Spatial information and memory are thought to be bound by the 

retrosplenial cortex sub-region of the MPC system (Marchette, Vass, Ryan, & 

Epstein, 2014; Vann, Aggleton, & Maguire, 2009), likely as a mechanism for 

navigation using previously experienced events stored in  episodic memory (R. A. 

Epstein, 2008). Retrosplenial cortex is characterised by theta oscillations during 

rest and has been shown to phase lock with MTL prior to autobiographical memory 

retrieval (Foster, Kaveh, Dastjerdi, Miller, & Parvizi, 2013). 

The networks described share considerable overlap with the default mode network 

(Andrews-Hanna et al., 2010). The default mode network has been implicated in 

internalised cognitive processes such as future thinking (Schacter et al., 2017), 

imagery (Pearson & Kosslyn, 2015) and mental simulations (Hamrick et al., 2016). 

Extrapolation of internal models could be one mechanism by which the brain 

achieves the crossing the road task. Such a mechanism would rely heavily on 
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initiating, tracking and updating of both spatial and temporal information of objects 

in the environment. 

Keeping track of temporal events is thought to involve a motor network (Merchant 

& Yarrow, 2016) that includes the cerebellum (Ivry, Spencer, Zelaznik, & 

Diedrichsen, 2002). The cerebellum is connected with the cerebrum by a top-down 

corticopontine-pontocerebellar circuit and a bottom-up cerebellothalamic-

thalamocortical circuit (Baumann et al., 2015). When the cerebellum is damaged 

not only are there sensory and motor impairments (Therrien & Bastian, 2015) but 

also an inability to adjust temporal models (O'Reilly, Mesulam, & Nobre, 2008) 

leading to the suggestion that one role of the cerebellum is to update temporal 

information about internal predictive models (Roth, Synofzik, & Lindner, 2013). 

The cerebellum is also thought to be linked with the hippocampus which has also 

been shown to represent temporal information in addition to spatial information 

(Nielson, Smith, Sreekumar, Dennis, & Sederberg, 2015). 

Within a predictive coding framework, we hypothesised that initiated internal 

predictions would be updated and adjusted over time and that these predictions 

would filter down to low level visual areas. To test this we developed a paradigm 

based on signal attenuation as a function of time. In a fast event-related fMRI 

design, we first presented six frames in sequence from a short video clip. Each 

frame was presented for 100ms and could be chosen from three different videos. 

Two videos had an allocentric perspective, one of people moving through a 

crowded market and the second of a boat passing a dock. The third video had an 

egocentric perspective of a car driving along a road. Following the initial frames a 

800ms period of black screen was shown. Afterwards, a test frame was presented 

for 100ms. The test frame could be the frame expected after the period of black 

screen. Alternatively the test frame could be the frame expected after 300ms, 

600ms or 4000ms after the offset of the six frame sequence. We surmised that the 

six sequential frames would initiate a prediction which would be extrapolated 

across the 800ms of black screen and match with the 800ms test frame. This 

would result in an attenuated BOLD response to the test frame versus the 4000ms 

test frame. We included 300ms and 600ms test frames to test the accuracy of 

predictions. We investigated signal attenuation of BOLD in retinotopic visual areas 

as well as the hippocampus, retrosplenial cortex and the cerebellum.  



 

69 
 

In a second control experiment we replicated the design of the previous paradigm 

but included a control condition were the six initial frames are shuffled. We 

hypothesised that in this control condition there would be no prediction thus no 

signal attenuation. We compared this condition with the condition where the six 

frames were in consecutive order. In each condition the test frame was the 

4000ms test frame. Again, we hypothesised that regardless of whether the 

prediction is matched or not the condition that generates a prediction would be 

attenuated when compared with the shuffled condition. We also included two 

similar conditions with 200ms frame presentation. These conditions were to test 

whether or not more time is required to develop more accurate predictions. 

 

5.3 Results 

 

To safely  navigate the world around us the brain must extract spatial and 

temporal information from the environment, parse this information from what it 

already knows about the world and make predictions about the immediate future. 

Within a predictive coding framework we hypothesised that these predictions 

about the immediate future would 

filter down to low level visual areas 

for the purpose of hypothesis testing 

incoming sensory input. 

To do this we used a signal 

attenuation paradigm with fast event-

related fMRI (Figure 5.1). We 

presented subjects with six 

sequential image frames taken from 

one of three videos. These test 

frames would initiate a prediction 

about the state of the world as it 

unfolds over time. After a 800ms 

Figure 5.1: The initial sequence of frames generates 

a prediction about how the environment is unfolding. 

This prediction can be probed with a test frame. If the 

test frame matches the prediction then the BOLD 

response will be attenuated. 
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blank period we tested these predictions with one of four test frames. The test 

frames were the frame expected after 300ms, 600ms, 800ms and 4000ms. We 

tested whether the 800ms test frame matched the prediction as would be expected 

compared with the 4000ms test frame. We included 300ms and 600ms test frames 

to test the accuracy of predictions. Our hypothesis was that the BOLD response 

signal would be attnuated when the prediction matched the test frame (Fig 5.1) 

and that the attenuation would vary depending on prediction accuracy. For 

analysis we used deconvolution general linear modelling and tested contrasts 

between the 300ms, 600ms and 800ms test frames with the 4000ms test frame in 

retinotopically mapped early visual cortex, hippocampus, retrosplenial cortex and 

cerebellum in experiment one.  

In experiment two we tested the hypothesis that BOLD signal would be attenuated 

for the condition in which the six initial frames are in order versus when they were 

in a pseudo-random order even when the test frame is a mismatch. To do this we 

only used the 4000ms test frame. We also tested the hypothesis that predictions 

need time to develop so we included conditions in which the test frames were 

presented for both 100ms as in experiment one, and 200ms.  

 

5.3.1 Temporal predictions feedback to extrastriate cortex. 

 

In experiment one, we first analysed differences in signal attenuation between 

conditions across the peak of the signal. This corresponds to deconvolution points 

5, 6 and 7. We found that all test frames were a significant match in left 

hemisphere ventral V3 (300<4000: t = 2.23, p = 0.03, 600<4000: t = 3.7, p = 

0.0002, 800<4000: t = 2.76, p = 0.005) (table 5.1).  

Next, we analysed differences in signal attenuation between conditions after the 

peak of the signal. This corresponds to deconvolution points 6, 7 and 8. We found 

that all test frames significantly matched in left hemisphere ventral V3 (300<4000: t 

= 2.48, p = 0.01, 600<4000: t = 3.67, p = 0.0002, 800<4000: t = 2.94, p = 0.003).  



 

71 
 

Test frames 600ms and 800ms were a significant match in left hemisphere V1 

(600<4000: t = 2.27, p = 0.02, 800<4000: t = 2.21, p = 0.03) and right hemisphere 

V1 (600<4000: t = 2.03, p = 0.04, 800<4000: t = 2.32, p = 0.02).  

Only the 600ms test frame was a significant match in left hemisphere dorsal V2 

(600<4000: t = 2.16, p = 0.03), left hemisphere dorsal V3 (600<4000: t = 2.44, p = 

0.01) and right hemisphere dorsal V2 (600<4000: t = 2.12, p = 0.03) (table 5.2). 

In non-visual regions of interest we find that all test frames match the prediction in 

the pulvinar (300<4000: t = 2.86, p = 0.004, 600<4000: t = 2.04, p = 0.04, 

800<4000: t = 3.147, p = 0.002) and retrosplenial cortex (300<4000: t = 2.44, p = 

0.01, 600<4000: t = 2.071, p = 0.038, 800<4000: t = 3.129, p = 0.002). In the 

cerebellum we find the 800ms a match to the prediction in the anterior cerebellum 

(800<4000: t = 2.05, p = 0.04) and the anterior vermis (800<4000: t = 2.334, p = 

0.02). 

Our results from experiment one demonstrate that predictions generated from 

watching short video clips are extrapolated across short intervals of time. The fact 

that the 300ms test frame is not a match to the prediction in most cases suggests 

that the prediction is not just related to the information of the frame sequence at 

offset but is extrapolated over time. That the prediction matches both the 600ms 

and 800ms suggests that some temporal constriction happens within the brain. 

These predictions also appear to be stronger in extrastriate cortex, particularly in 

the left hemisphere. 
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5.3.3 Temporal predictions take between 600ms and 1200ms to develop.  

 

In experiment two, we analysed differences in signal attenuation between 

conditions across the peak of the signal. This corresponds to deconvolution points 

5, 6 and 7. We contrasted the sequential frame condition, in which a prediction 

was expected, with the shuffled frame condition, in which a prediction was not 

expected. We did this for both 100ms and 200ms frame presentation times. In 

each case the test frame was the 4000ms frame. When comparing signal 

attenuation between Expected100ms < NonExpected100ms we only found a 

significant difference in right hemisphere ventral V2 (t = 2.29, p = 0.02). When 

comparing signal attenuation between Expected200ms < NonExpected200ms we 

found a significant difference in almost every region of interest with the exception 

of left hemisphere V1, left hemisphere dorsal V2, right hemisphere V1 (table 5.3). 

When predictions are well developed they are found in both hemispheres but 

again show a bias towards extrastriate cortex. 
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Figure 5.2: a) Response profile of the HRF for the 4000ms condition and the 300ms condition, 

showing significant difference across deconvolution points 6,7,8 b) Response profile of the HRF for 

the 4000ms condition and the 600ms condition, showing significant difference across 

deconvolution points 6,7,8 c) Response profile of the HRF for the 4000ms condition and the 800ms 

condition, showing significant difference across deconvolution points 6,7,8. 
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Table 5.1: Experiment 1. General linear model contrasts showing their respective t and p values 

for each region of interest, across deconvolution points 5, 6 & 7. 

 300 < 4000  600 < 4000  800 < 4000  

ROI T-value P-value T-value P-value T-value P-value 

LH V1 1.21 0.22 1.81 0.07 1.53 0.12 

LH V2d 0.88 0.38 1.65 0.09 -0.4 0.68 

LH V2v 1.22 0.22 1.68 0.09 1.38 0.17 

LH V3d 1.58 0.11 1.92 0.055 0.6 0.55 

LH V3v 2.23 0.03* 3.7 0.0002** 2.76 0.005* 

RH V1 1.21 0.22 1.64 0.1 1.82 0.07 

RH V2d 1.14 0.25 1.57 0.12 0.57 0.57 

RH V2v 1.00 0.32 1.19 0.24 1.4 0.16 

RH V3d 0.1 0.91 0.93 0.35 0.82 0.41 

RH V3v 1.42 0.15 1.29 0.2 1.69 0.09 

* Significant after correction **Significant after correction for multiple comparisons 

 

Table 5.2: Experiment 1. General linear model contrasts showing their respective t and p values 

for each region of interest, across deconvolution points 6, 7 & 8. 

 300 < 4000  600 < 4000  800 < 4000  

ROI T-value P-value T P-value T P-value 

LH V1 1.41 0.16 2.27 0.02* 2.21 0.03* 

LH V2d 1.08 0.28 2.16 0.03* 0.5 0.61 

LH V2v 1.22 0.22 1.85 0.07 1.86 0.06 

LH V3d 1.71 0.09 2.44 0.01* 1.48 0.14 

LH V3v 2.48 0.01* 3.67 0.0002** 2.94 0.003* 

RH V1 1.37 0.17 2.03 0.04* 2.32 0.02* 

RH V2d 1.48 0.14 2.12 0.03* 1.29 0.2 

RH V2v 1.03 0.30 1.18 0.24 1.56 0.12 

RH V3d 0.47 0.64 1.33 0.19 1.24 0.22 

RH V3v 1.34 0.18 1.26 0.21 1.88 0.06 

* Significant after correction **Significant after correction for multiple comparisons 
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Table 5.3: Experiment 2. General linear model contrasts showing their respective t and p 

values for each region of interest, across deconvolution points 5, 6 & 7. 

 Exp 100 < NonExp 100  Exp 200 < NonExp 200  

ROI T-value P-value T-value P-value 

LH V1 0.5 0.62 1.31 0.19 

LH V2d 0.69 0.49 1.69 0.09 

LH V2v 1.67 0.1 2.72 0.007* 

LH V3d -0.097 0.92 2.07 0.04* 

LH V3v 1.62 0.1 2.47 0.01* 

RH V1 0.92 0.36 1.76 0.08 

RH V2d 0.64 0.52 2.83 0.005** 

RH V2v 2.29 0.02* 2.8 0.005** 

RH V3d 0.89 0.37 2.25 0.02* 

RH V3v 1.82 0.07 2.83 0.005** 

* Significant after correction **Significant after correction for multiple comparisons 
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5.4 Discussion 

 

5.4.1 Visual predictions extrapolate over time in the absence of visual input. 

 

Input to the visual system contains both spatial and temporal information. The 

world we see is not a steady state but a structured set of patterns that change over 

time. Predictive coding theories tell us that the brain actively predicts the incoming 

spatial and temporal information to optimise its internal model of the world (T. S. 

Lee & Mumford, 2003). Accurate prediction relies on detecting patterns and 

predicting how they will develop over time. One prediction of this framework is that 

the brain will continue to generate predictions after the sensory stimulation is 

removed. The question remains, is the prediction related to the spatial information 

of the stimulus prior to stimulus removal, or is the prediction extrapolated over time 

becoming a prediction that is unrelated to the stimulus? 

We tested this in experiment one. We found that a sequence of images viewed as 

a short video clip triggers a prediction. When the visual stimulation is removed the 

prediction continues to unfold. We probed this prediction after a blank interval of 

800ms with a series of test frames. We found that the prediction best matched with 

the 600ms and 800ms test frames. The prediction rarely matched with the 300ms 

test frame. This tells us that the prediction is unrelated to the 300ms test frame. 

Therefore it is likely that the prediction generated by the priming sequence 

continues to be extrapolated over the entire length of the 800ms blank interval 

which is why it best matches the 600ms and 800ms test frames. After the interval, 

the prediction matches a future, unseen, version of the world.  

The generated prediction containing information about a future, unseen, version of 

the world is likely due to mental simulation processes (Ullman, Spelke, Battaglia, & 

Tenenbaum, 2017). Mental simulation suggests that the brain can make 

predictions about the future based on simulations of internal models. Children as 

young as 5-months old can make inferences about how things in the world will 

behave and learn to generalise this information to objects with similar properties 

(Hespos, Ferry, Anderson, Hollenbeck, & Rips, 2016). Recent computational 
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modelling work suggests that the brain may achieve this in a two-pronged 

approach. First by making inferences in a bottom-up approach based on visual 

features, then by using this feature-based inference as a starting point for top-

down simulations (Ullman, Stuhlmüller, Goodman, & Tenenbaum, 2018). Our 

findings fit within this theory. The priming sequence provides the brain with spatial 

and temporal features that act as a starting point to make top-down predictions 

about the immediate future.  

 

5.4.2 Future predictions about the world are temporally imprecise.  

 

In our first experiment we use a priming sequence of frames to induce a prediction 

about the future state of the world. After 800ms of black screen we probe these 

predictions with a test frame. The test frame can either be the frame that would 

appear after 800ms from the offset of the priming sequence, a frame close in time 

to the priming sequence (300ms) or a frame in-between (600ms). We find that the 

600ms and 800ms test frames are the best match to the subject’s prediction. 

Subject predictions best match both the expected frame (800ms) and an earlier 

frame (600ms) suggest that the predictions are temporally imprecise.  

Keeping track of time within the brain is thought to involve a motor network 

(Merchant & Yarrow, 2016) involving the cerebellum (Ivry et al., 2002). Precise 

timing is important for many different types of behaviour, however some motor 

actions are known to compress temporal judgements in both adults and children 

(Droit-Volet, 2017). For example short intervals of time between two briefly flashed 

perisaccadic visual stimuli are judged to be shorter in time than they actually are 

(Morrone, Ross, & Burr, 2005). Temporal compression in this example was 

explained by modelling the space and time transformations that are remapped in 

the receptive fields of visual neurons. This mechanism is described as being 

optimal during fixation but it is not updated perisaccadically which accounts for the 

timing misjudgement (Binda, Cicchini, Burr, & Morrone, 2009). Judgement of the 

duration of tones has also been shown to be affected by time compression when 

the tone is preceded by auditory click trains, flickering visual squares, expanding 



 

78 
 

visual circles and even white noise (Wearden, Williams, & Jones, 2017). Although 

our paradigm used fixation throughout, small eye movements during the blank 

interval could account could induce remapping of top-down information in the non-

classical receptive field. Remapping of top-down predictions to new retinotopic 

locations has been show in a study involving apparent motion (Edwards et al., 

2017).  

Temporal compression is not limited to motor actions. A study of perceptual 

decoupling during mind wandering has shown that judgements of time are also 

compressed (Terhune, Croucher, Marcusson-Clavertz, & Macdonald, 2017). The 

authors attribute this to transient fluctuations in attentional states. This theory fits 

well with the finding from our experiment. During the 800ms blank interval subjects 

are tasked with extrapolating the sequence of events that they were shown in the 

priming sequence. Attentional lapses during this baseline period could account for 

the temporal imprecision we find in subject predictions when probed with the test 

frames. 

Another possibility is that the imprecision of predictions is a useful functional 

feature for applying current internal models to new situations. Flexible predictions 

could be used as a starting point for constructing new internal models or dealing 

with the uncertainty of future events. 

 

5.4.3 Temporal predictions arrive at extra-striate cortex but not striate 
cortex.  

 

Primary visual cortex is known to receive most of its input from non-geniculate 

sources (Muckli & Petro, 2013). This has led to V1 being described as a 

blackboard for performing computations on task-relevant low-level visual 

information by one cortical area that can then be read by other cortical and sub-

cortical areas (Roelfsema & de Lange, 2016). In our second experiment we 

increase the presentation time of frames to allow accurate predictions to develop. 

We find that we can read-out these predictions in extra-striate areas. Primary 
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visual cortex is the only region of interest in both the left and right hemispheres 

where we are unable to read-out predictions. 

One explanation for this finding could be to do with the roles memory and imagery 

play in our paradigm. Mental imagery is known to be decodable in higher cortical 

areas (Reddy, Tsuchiya, & Serre, 2010). Whether imagery can be read-out from 

V1 appears to depend on how memory is engaged by the paradigm and the 

complexity of the stimuli. When a paradigm engages short-term memory or 

working memory, imagery is decodable in V1 for stimulus contrast (Xing, 

Ledgeway, McGraw, & Schluppeck, 2013), orientation (Harrison & Tong, 2009) 

and category (Dijkstra, Bosch, & van Gerven, 2017). However when paradigms 

engage long-term memory, imagery is no longer decodable in V1 for high-level 

representational information such as scenes (Radoslaw M Cichy, Heinzle, & 

Haynes, 2011), objects (S.-H. Lee, Kravitz, & Baker, 2012) and category (Reddy et 

al., 2010). The exception is when paradigms engage long-term memory with 

respect to basic or low-level features such as gratings (Albers, Kok, Toni, 

Dijkerman, & de Lange, 2013; Bergmann, Genç, Kohler, Singer, & Pearson, 2016), 

Figure contrast (Schlegel et al., 2013) and location (Radoslaw M Cichy et al., 

2011). Another exception is from a study that used encoding models that encoded 

for low-level features. These low-level feature models were used to discern 

between the identities of famous paintings from imagery responses in V1 

(Naselaris, Olman, Stansbury, Ugurbil, & Gallant, 2015). This dichotomy between 

short and long-term memory and its relatedness to complex imagery is also 

revealed from BOLD activity in memory related cortical areas. Imagery using 

short-term memory generally results in larger BOLD amplitude when compared 

with imagery using long-term memory (Ishai, Haxby, & Ungerleider, 2002). In our 

paradigm subjects were using a sequence of images to make judgements about 

the future state of the world. This judgement likely relied upon expectations 

derived from long-term memory to make complex predictions about the future  of 

the world (Burgess et al., 2002). We also find that predictions were related to a 

test frame between 600ms and 800ms, but not from a 300ms frame close in time 

to the priming sequence. Therefore the judgements subjects were making were 

less likely to be related to low-level features. If they were we would expect to see 
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predictions matching for all test frames. Making complex future predictions from 

episodic memory could explain why we do not find information in V1. 

5.5 Methods 

 

5.5.1 Subjects.  

Twenty three subjects (13 in experiment one, 10 in experiment two, age range 18-

32; 12 female) were recruited at the School of Psychology at the University of 

Glasgow. Subjects were recruited with either normal or corrected vision and 

hearing. Ethical approval for this study was granted by the College of Science and 

Engineering at the University of Glasgow. 

 

Figure 5.3: Experimental design for experiment one (A) and experiment two (B). A priming 

sequence in order generates a prediction. The prediction is extrapolated over time during the black 

fixation and probed with a test frame. 
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5.5.2 Stimuli and Procedures.  

 

Three categorical videos were decomposed in to 120 individual frames.  Two of 

the videos were from an allocentric perspective of people moving through a market 

square and a boat passing a dock. The third video was from an egocentric 

perspective of a car moving along a road. All of the test frames were greyscale.   

In experiment one (Fig 5.2a), trials were 4000ms long. They comprised of six 

sequential frames chosen from the pool of 120 for each video and presented for 

100ms each. A baseline period followed with a white fixation cross on a black 

background. Subjects were instructed to fixate throughout. After this a test frame 

was shown. The test frame would either be the frame expected after the period of 

baseline (the 800ms test frame) or a mismatching test frame (either the 300ms, 

600ms or 4000ms test frame). The test frame was also shown for 100ms. The task 

for the subject was to respond by button press whether the test frame matched 

their expectation or was a mismatch to their expectation. The onset of the prime 

sequence during a trial was jittered as part of the design. By choosing six frames 

much a larger set allows each trial to have unique set of spatial and temporal 

features. In total we had four conditions plus a null condition, each repeated 32 

times. This resulted in each run being 10 minutes and 40 seconds long. We 

collected 4 runs. 

In experiment two (Fig 5.2b) we used the same design and trial structure as in 

experiment one. In this experiment our conditions included the prime sequence in 

order or a shuffled prime sequence. In each case the test frame was the 4000ms 

frame. These conditions either had a 100ms frame presentation time or a 200ms 

frame presentation time resulting in four conditions in total. In this experiment 

subjects were tasked with responding by button press whether the priming 

sequence was in order or out of order. 
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5.5.3 FMRI acquisition.  

 

Data were collected at the Centre of Cognitive Neuroimaging (CCNi) at the 

University of Glasgow. Data were collected using a 3T Trim Trio MRI scanner 

(Siemens, Erlangen, Germany) using a 32-channel head coil. Anatomical scans 

(3D MPRAGE) were collected with a resolution of 1mm isotropic using a TR of 

2300ms, TE of 2.96ms, for 192 volumes. Functional 2-factor multi-band EPI 

sequences were collected with a resolution of 3mm isotropic, TR of 1000ms, TE of 

26ms and coverage of 38 slices. 

 

5.5.4 Data analysis.  

 

We used BrainVoyager QX 2.8 (Brain Innovation, Maastricht, Netherlands) to pre-

process the functional and anatomical data. First we removed the first two 

volumes of each run of functional data to avoid magnetic saturation effects. Next, 

we performed slice-time scan correction, 3D motion correction and finally high-

pass temporal filtering using a 6 cycle (5 cycle for exp. 2) Fourier basis set (Kay et 

al., 2013). The functional data was then spatially normalised by transformation in 

to Talairach space and aligned with the anatomical data. The success of the 

alignment was checked using custom MATLAB scripts. Alignment was acceptable 

if the correlation between runs was r > 0.9. The alignment between the functional 

runs and the anatomical data are checked by visual inspection. 

To localise V1, V2 and V3 we projected polar and eccentricity data on to a 

reconstruction of the grey-matter white-matter boundary. Ventral and dorsal V1, 

V2 and V3 were then further localised by general linear modelling all four 

conditions for all 20 deconvolution points. We chose only those voxels in regions 

of interest that were significantly active. We localised the hippocampus, 

retrosplenial cortex and thalamus using a Freesurfer brain atlas. The pulvinar was 

localised from the thalamus ROI by taking the posterior commissure as the most 

anterior point of the pulvinar, as described by using a Talairach atlas (Fischer & 

Whitney, 2012). The cerebellum was anatomically segmented into four sub-
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regions; vermis, anterior cerebellum, poster cerebellum above the horizontal 

fissure and posterior cerebellum below the horizontal fissure. 

For each region of interest we performed a 20-point deconvolution general linear 

model that included all subjects. In experiment one we analysed contrasts 

between test frames 300ms<4000ms, 600ms<4000ms and 800ms<4000ms. We 

analysed specifically the three points across the peak response (deconvolution 

points 5, 6 and 7, see Table 5.1) and descending from the peak response 

(deconvolution points 6, 7 and 8, see Table 5.2). In experiment two we analysed 

contrasts between expected and non-expected conditions for both 100ms and 

200ms conditions. We analysed specifically the three points across the peak 

response (deconvolution points 5, 6 and 7, see Table 5.3).  
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6 Reading out the future from feedback responses in 

extrastriate cortex during visual navigation with fMRI  

 

6.1 Abstract 

 

The goal of the visual system is to solve the inverse problem of vision through the 

application and optimisation of prior knowledge. The brain achieves this via 

recurrent predictive processing from the highest visual areas down to primary 

visual cortex. However, the brain can also engage in perception-like thought 

concurrently during complex visual tasks, such as navigating your way to work in 

the morning. This counterfactual processing is exclusively top-down. It is unclear 

how the visual system maintains both factual and counterfactual streams of 

information. We tested this using functional magnetic resonance imaging with 

video clips taken from a virtual house environment. Subjects were first trained to 

learn the layout and the different contextual rooms of a virtual house. Then in fMRI 

they were given a direction cue followed by a partially occluded video of exiting 

one room, followed by a partially occluded video of entering a second room. The 

direction cue combined with the identity of the first room revealed the identity of 

the upcoming room before it was shown to the subject. Using multivariate pattern 

analysis, we show that we can decode from feedback responses (N=20) in V2 and 

V3 the identity of the future room during the first video sequence. In a control 

experiment in which the directional cue is removed (N=12) we show that we can 

no longer decode information about the future room. This finding demonstrates 

that feedback information about counterfactual processing is present in extrastriate 

cortex while subjects perform a navigational task.  
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6.2 Introduction 

 

The human brain is highly interconnected. Communication within the brain largely 

takes place from one brain area to another by feedback or lateral communication. 

Feedback and lateral communication vastly outnumbers the traditional feedforward 

flow of sensory processing (Muckli & Petro, 2013). The abundance of feedback 

and lateral communication is contextualised by predictive coding theories (Friston, 

2010; George & Hawkins, 2009; T. S. Lee & Mumford, 2003; Rao & Ballard, 1999). 

When the brain is engaged in a task, the feedforward sensory information is 

compared with information from rich internal mental models (Clark, 2013) that are 

learned by the brain from experience and familiarity. Information from internal 

models descends through all levels of sensory hierarchies to predict and refine the 

feedforward sensory information at each hierarchical level. 

When not engaged in a task the brain is free to wander. During mind-wandering, 

task-related networks become less engaged and the default mode network 

becomes more engaged (Mooneyham et al., 2017). The default mode network is a 

network of structures that allow the brain to engage in counterfactual thought such 

as mind-wandering (Mooneyham et al., 2017), imagining (Pearson & Kosslyn, 

2015), mental simulation (Ullman et al., 2017) and future thought (Schacter et al., 

2017). Counterfactual thinking is an exclusively internalised process. The content 

of counterfactual thought, for example for imagery, has been shown to be 

decodable at the lowest levels of sensory processing (Albers et al., 2013; 

Bergmann et al., 2016; Dijkstra et al., 2017; Harrison & Tong, 2009; Xing et al., 

2013). Critically, counterfactual thought does not stop the processing and 

monitoring of feedforward sensory information. This is most evident when we read 

a book. We read the black words on the white page yet we can simultaneously 

engage in counterfactual thought when we imagine rich and complex scenes in 

our mind. This leads us to the question of how does the brain achieve this? One 

possible solution is that information about the factual sensory experience and the 

internally generated counterfactual experience co-exist. A second solution is that 

feedback about the factual sensory environment is suppressed when we engage 

in counterfactual thinking.   
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To test these ideas we constructed a virtual 4-room “house” that included a 

kitchen, bedroom, office room and a game room. The rooms were orientated in a 

plus-sign configuration. The virtual house allowed us to train subjects in a new 

environment they had not experienced before. Subjects would have to use 

information from the training experience and from memory to form new internal 

models of the virtual house that we could then test in fMRI. During fMRI, trials 

were constructed starting with a 2 second directional cue (left or right) followed by 

a 10 second inter-stimulus interval. Next a 6 second video of a first-person 

perspective camera walking out of one of two rooms (bedroom or game room) was 

shown followed by a 12 second inter-stimulus interval. Finally a second 6 second 

video of a first-person perspective camera was shown walking in to one of two 

rooms (kitchen or office room). The directional cue and the identity of the room 

from the first video reveal the destination that will be shown in the final video. 

Subjects were tasked with maintaining central gaze fixation and told to imagine or 

predict the anticipated room. Each video had the bottom right quadrant occluded 

so that we could identify a group of voxels that were excluded from any 

feedforward sensory information. 

We find that we can decode from brain responses in the right hemisphere 

(feedforward + feedback) the identity of the two rooms shown in the first video and 

the identity of the two rooms shown in the second video in V1, V2 and V3 

replicating previous work (F. W. Smith & Muckli, 2010). We also find that we can 

decode from brain responses in occluded cortex (feedback only) the identity of the 

two future rooms during the presentation of the first video in V2 and V3. It is not 

possible to decode the identity of the two future rooms in primary visual cortex. We 

show that internal expectations about the immediate future can be read out of 

extrastriate cortex using 3-Tesla fMRI and multivariate pattern analysis. 
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6.3 Results 

 

6.3.1 Information about both present and future context exists concurrently. 

 

To date it has been shown that contextual information is made available to early 

visual cortex for the purposes of hypothesis testing incoming visual information 

(Shipp, 2016). In this experiment using functional magnetic resonance imaging 

(fMRI) we tested whether contextual information about the immediate future is also 

made available to early visual cortex. To do this we trained subjects in a four room 

virtual house before showing them video clips of the virtual house in a fMRI 

environment. During fMRI subjects were first cued with a left or right direction that 

lasted 2 seconds. After a 10 second baseline period, subjects were then shown a 

6 second video clip of a first person perspective view of walking out of either the 

bedroom or games room. After a further 12 second baseline period subjects were 

again shown a first person perspective view of walking in to either the kitchen or 

the office room. Subjects were tasked with reporting whether the room they see 

walking in to is the room they were expecting to see based on the cued direction 

and the first room. Subjects were further tasked with maintaining central gaze 

fixation throughout the experiment.  

We trained and tested four linear support vector machine (SVM) classifiers to 

discriminate between multivariate patterns for the following conditions; to decode 

the identity of the two starting rooms during the presentation of the first video, to 

decode the identity of the two unseen upcoming rooms during the presentation of 

the first video, to decode the identity of the two end rooms during the presentation 

of the second video, to decode the identity of the two past rooms during the 

presentation of the second video. Each classifier was trained on N-1 runs of data 

and tested on the Nth run. This produced N classifier accuracies which were 

averaged before the group classifier accuracies were bootstrapped to create a 

distribution containing the true classifier accuracy within the 95% confidence 

interval. This was done for both feedforward regions of interest (right hemisphere 

V1, V2 and V3) and feedback regions of interest (occluded V1, V2 and V3).  
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We found that we could reliably decode from feedforward responses the identity of 

the two rooms shown in both the first and second videos in V1 (first: median: 

72.59%, CI: 67.12%:77.67%, p=0.05; second: median: 95.86%, CI: 

93.59%:97.58%, p=0.01), V2 (first: median: 70.32%, CI: 66.17%:74.55%, p=0.05; 

second: median: 96.72%, CI: 95.40%:97.97%, p=0.01),  and V3 (first: median: 

69.92%, CI: 65.79%:74.06%, p=0.05; second: median: 93.84%, CI: 

91.41%:96.01%, p=0.01). We could only reliably decode the identity of the second 

video from feedback responses in V1 (median: 66.72%, CI: 62.34%:70.64%, 

p=0.05), V2 (median: 58.36%, CI: 54.22%:62.65%, p=0.05), and V3 (median: 

57.67%, CI: 53.77%:61.57%, p=0.05). Finally, we could also decode the identity of 

the two future rooms during the presentation of the first video only from feedback 

responses in extrastriate regions V2 (median: 52.90%, CI: 50.72%:55.08%, 

p=0.05) and V3 (median: 57.67%, CI: 53.77%:61.57%, p=0.05). 

In the control study we remove the direction cue and find that we can still decode 

the factual experience from feedforward responses for both videos from (first 

video: median: 69.27%, CI: 64.19%:74.49%, p=0.01, second video: median: 

98.03%, CI: 97.24%:98.81%, p=0.01) and V3 (first video: median: 62.38%, CI: 

57.04%:68.37%, p=0.01, second video: median: 95.32%, CI: 93.24%:97.26%, 

p=0.01). However we can no longer decode any information about the future 

rooms. This control study demonstrates that in the primary experiment the 

information is related to the immediate future derived from both the cue and the 

context of the first room. 

In this study we replicate previous work showing that context can be decoded from 

both feedforward and feedback responses about the current visual experience (F. 

W. Smith & Muckli, 2010). Importantly, we show that we can also decode from 

feedback responses information about the context of upcoming or expected 

environments before they are experienced. 
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Figure 6.1: Showing decoding performance for feedforward responses in V1 (top left), feedback 

responses in V1 (top right), feedforward responses in V2 (middle left), feedback responses in V2 

(middle right), feedforward responses in V3 (bottom left) & feedback responses in V3 (bottom 

right). 
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6.4 Discussion 

 

6.4.1 Feedback switches between the factual and the counterfactual. 

 

Information processing within the brain is predominantly achieved through 

feedback and lateral communication. When the brain is engaged in a task, a task-

related network triggers feedback to low level sensory areas. When the brain is not 

engaged in a task but is engaged in counterfactual thought, this also triggers 

feedback to low level sensory areas. However when attention is turned inwards, 

the external world does not disappear. Therefore we can infer two conclusions 

from this. The first is that when engaged in counterfactual thought the factual 

experience, or the external world, is monitored to some extent. This is consistent 

with our findings. We find that we can read out from feedforward brain responses 

in V1, V2 and V3 the identity of the perceived rooms during the presentation of the 

first video while subjects are engaged in counterfactual thought. Our ability to 

decode information about concurrent counterfactual thought is evidence that 

factual information is processed through the visual system while attention is turned 

inwards and possibly disengaged from the external world. To what extent attention 

to the external world is disengaged remains unclear. The fact that we can decode 

both types of information suggests that attention may fluctuate between both 

external and internal thought. 

The second inference is that both sensory processing and counterfactual 

processing involve feedback. It is unclear whether feedback information exists for 

both the factual and counterfactual experience, or switches between them both 

depending on the task. We tested this question with 3-tesla fMRI and find that we 

can decode the identity of the future upcoming rooms during the presentation of 

the first video from feedback responses in V2 and V3. We cannot decode the 

identity of the perceived rooms during the first video from feedback responses. 

This is also the case in the control study suggesting that this is due to a 

methodological issue, likely due to the centre of the visual field during the first 

video sequence containing uninformative information about the context of the 

room.  
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A second explanation could be related to perceptual decoupling. When the default 

mode network is engaged and attention is turned inwards for mind wandering, 

future thinking or mental simulation, perception becomes decoupled. To date there 

has been no neuroscientific evidence to explain the mechanism involved in 

perceptual decoupling or specifically the transition between being engaged with 

the external world towards being engaged in internal counterfactual thought. 

Perceptual decoupling could explain this null finding in both experiments if 

subjects are using the first video sequence to orient themselves within the virtual 

house. 

Due to the sluggishness of the BOLD response, it cannot be ruled out from this 

experiment that the two signals occur independently at different times. The first 

video could trigger top-down feedback about the context of the room. As this 

response diminishes, and the subject switches to task, a second response could 

be initiated about the future room. This process would result in finding two neural 

signals in extrastriate cortex at the same time. As this question was not the focus 

of this experiment, we did not control for the timing of events that could trigger 

predictive signals.  

 

6.4.2 Counterfactual feedback is found in extrastriate cortex.  

 

We replicate previous work by showing that during the presentation of the second 

video we can decode the identity of the two perceived rooms from feedback 

responses in V1, V2 and V3 (F. W. Smith & Muckli, 2010). Primary visual cortex is 

the first significant step in visual processing and receives feedback information 

from many different sources including vision, audition and motor cortex. 

Interestingly, during the first video we can decode the identity of the two expected 

future rooms in V2 and V3 but not from V1. This raises the question of why 

extrastriate cortex may be important for counterfactual thinking.  

One possible explanation is that when we engage in counterfactual processing 

striate cortex is reserved for monitoring the statistical regularities of the 

environment. One such type of regularity would be physical regularities. This is 
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consistent with the subjective experience when we drive along the motorway our 

mind can wander and engage in counterfactual thought, yet we remain in control 

of the car. Our attention is then drawn back to the task of driving when the physical 

regularities of the motorway in front of us changes, for example when a bend in 

the road appears or a car on the horizon appears. There is evidence to support 

this idea. The tuning properties of V1 receptive fields match the statistics of the 

natural world (Simoncelli and Olshausen, 2001). V1 is tuned for monitoring 

statistical regularity. Work by Takahashi et al. (2016) has revealed that sensory 

perception is modulated by Ca2+ activity in the apical dendrites in a subset of layer 

5 pyramidal neurons in primary somatosensory cortex in mice. By manipulating the 

activity of apical dendrites the threshold for sensory perception could be 

modulated. If a similar mechanism exists in the human brain for a subset of 

pyramidal neurons in visual cortex, this could provide a mechanism by which 

perception shifts between the external and internal modulated by the content of 

feedback. 

Another possible explanation is that it is computationally expensive to send 

predictions to all of early visual cortex for all of the visual field, especially V1 where 

receptive fields are smallest. Following a free energy principle of predictive coding 

(Friston, 2010) it would be less computationally expensive to send predictions only 

to those areas with larger receptive fields such as extrastriate cortex. 

 

6.4.3 Theoretical interpretations.  

 

Predictive coding theories provide a framework to explain why the brain relies 

heavily on feedback communication (Shipp, 2016). Top-down predictions or 

expectations are triggered from rich internal mental models that descend through 

the cortical hierarchy to hypothesis test sensory input. One problem with predictive 

coding theories is that they don’t fully account for our ability to decouple our 

percept of the external world and engage in counterfactual thought. When a 

person engages in counterfactual thought, the sensory input is not always 

necessary or relevant to the counterfactual task. Yet our experience of the external 
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world does not simply switch-off. Therefore the brain must have a way for 

information about the factual experience and the counterfactual experience to 

either co-exist, or switch between the two. This could be achieved by a neural 

circuit that accommodates two separate non-overlapping processing pathways for 

both factual and counterfactual feedback. Recent evidence has shown that a 

subset of layer 5 pyramidal neurons in somatosensory cortex can modulated the 

threshold for perception by modulating input to the apical dendrites (Takahashi et 

al., 2016). This type of mechanism would allow for internalised thought while 

allowing for the monitoring of sensory input. An alternative to this is that there is a 

shared neural mechanism whereby both types of information co-exist but oscillate 

at different frequencies.  

 

6.5 Methods 

 

6.5.1 Subjects.  

 

Thirty two subjects (age range 18-33; 16 female, N=12 for control study) were 

recruited from the subject data pool at the School of Psychology, University of 

Glasgow. Subjects were recruited without any exclusion criteria. Ethical approval 

was granted for this study from the College of Science and Engineering at the 

University of Glasgow.  

6.5.2 Stimuli and Procedures.  

 

A 3D virtual house was modelled for realism in Blender 3D and then exported to 

the Unity3D game engine for the purpose of using virtual reality. Images from the 

virtual house were rendered from Blender at 30 frames per second to create video 

stimuli showing a first person perspective camera moving through the house. The 

videos were created to present 4 different conditions. The conditions were 1) 

walking out of the bedroom or game room and 2) entering the kitchen or office. 

The camera placement was controlled in each video such that specific features, 
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such as where the walls, ceiling and floor meet, or door aperture position were the 

same in each frame across all 4 videos. The only difference between the videos 

was the contextual objects. 

Subjects were first trained in virtual reality to learn the layout of the virtual house. 

Each subject spent 15 minutes freely exploring followed by 15 minutes of 

performing simple retrieval tasks instructed by the experimenter. Each room 

contained a number of different objects that could be interacted with. Objects were 

categorically matching to their room of origin.  

 

Figure 6.2: Trial sequence design. 

 

After training, subjects were taken to MRI where they performed the experiment. 

Experimental trials were 40 seconds long. They consisted of a 2 second screen-

centred cue for direction, either left or right. This was followed by a 10 second 

period of baseline. The first video clip followed for a period of 6 seconds. This 

video showed the camera perspective walking out of a room which could either be 

the bedroom or the game room. Another period of baseline followed for 12 

seconds. Then the second 6 second video was shown of the camera perspective 

walking in to one of two rooms, either the kitchen or the office. This was followed 

by another 4 second period of baseline. Subjects were tasked with fixating on the 

centre of the screen throughout the experiment, and tasked with predicting or 

expecting the upcoming room during the presentation of the first video. They 

responded by button press during the second video if their expectation was 

correct. 

In the control study, the direction cue was removed and subjects were tasked with 

responding during the second video whether the starting room was now on their 

left or right with respect to the direction they are facing. 
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6.5.3 FMRI acquisition.  

 

We collected our data at the Centre of Cognitive Neuroimaging at the University of 

Glasgow. Data were acquired with a 3-Tesla Trim Trio MRI scanner (Siemens, 

Erlangen, Germany) using a 32-channel head coil. Functional EPI sequences 

were used to collect partial brain volumes of resolution 2mmx2mmx2mm with an 

inter-slice thickness of 0.2mm with a TR of 1390ms, TE of 30ms and coverage of 

22 slices. Anatomical scans (3D MPRAGE) were collected with a resolution of 

1mmx1mmx1mm with a TR of 2300ms, TE of 2.96ms, across 192 volumes. 
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6.5.6 Pattern classification. 

 

 

Figure 6.3: Classifiers were constructed as shown for A) (top) decoding the future unseen room 

(bottom) decoding the current scene in the first videos B) (top) decoding the past (bottom) 

decoding the current scene in the second videos 

 

For decoding the identity of the two perceived rooms during either the first or 

second videos we trained the classifier to discriminate between bedroom versus 

games room trials in the first video and kitchen versus office trials in the second 

video. This allows us to balance each side of classifier for both directional 

information and expected information. For decoding the identity of the future 
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rooms during the first video we train the classifier on bedroom and game room 

trials where the expectation is the kitchen versus bedroom and game room trials 

where the expectation is the office. Due to the orthogonal design of the experiment 

this classifier is also balanced for directional information. To decode the past 

rooms we train the classifier on kitchen and office trials where the past room was 

the bedroom versus kitchen and office trials where the past room was the game 

room. As before this classifier is balanced for directional information. Each 

classifier was trained on n-1 runs of data and tested on the nth run in a leave-one-

run-out cross-validation procedure.  
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7 General Discussion 

 

7.1 Chapter summaries 

 

This thesis aimed to investigate what role non-visual feedback plays in visual 

perception by attempting to gain a better understanding of what information arrives 

at low-level visual areas via feedback pathways. There are two types of feedback 

that we have defined in this thesis. The first is factual feedback that is dependent 

on a stimulus. The second is counterfactual feedback that is stimulus independent. 

This is an important distinction to make within the context of this thesis as the 

literature on memory would define recall, or the remembering of events that 

happened in the past, as being factual feedback. However memories are not as 

salient as vision and can often be false (Brewin & Andrews, 2017; Davies & 

Granhag, 2017). For simplicity, our definition relates one type of feedback to the 

external environment and the other to the internal environment independent of 

what is going on in the outside world. 

To study both types of feedback in early visual cortex we exploited the high spatial 

resolution and retinotopic organisation of early visual cortex by using occlusion. In 

each of our paradigms, we either occluded part of the visual field or the entirety of 

the visual field for a brief period of time. The occluder acts as a gatekeeper for 

feedforward sensory information. By occluding part (or all) of the visual field we 

can control the flow of feedforward information to a corresponding patch of visual 

cortex. Inhibiting the flow of feedforward information effectively renders the 

corresponding patch of visual cortex as non-spiking cortex. This is particularly 

useful as fMRI combined with MVPA is sensitive to non-spiking activity, which 

allows us to investigate the modulatory influence of top-down information (Muckli, 

2010). 

In Chapter 3 we tested the hypothesis that non-stimulated early visual cortex 

contains valance information about non-social affective images. We adopted a 

multivariate pattern analysis approach and found that we could decode pairs of 

valance conditions independent of category when one of those conditions was 
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negative. This finding supports our hypothesis and tells us that negative valance 

was being represented differently to positive and negative valance in non-

stimulated early visual areas. We found a similar pattern of results in stimulated 

early visual cortex as well as in the amygdala and the pulvinar. In lateral occipital 

cortex we found that we could decode positive, negative and neutral valance. A 

second finding from Chapter 3 was that cross-decoding revealed that valance is 

generalisable across category for negative valance versus positive/neutral valance 

in stimulated V1, V2 and V3. From feedback brain responses we found that neutral 

versus negative was generalisable in V1 and neutral versus positive was 

generalisable in V2 and the amygdala. We conclude that feedback pathways do 

provide early visual areas with information about valance and this information is 

represented similarly across the categories we used in this study.  

In Chapter 4 we built on previous work showing that sound categories could be 

decoded from early visual cortex using multivariate pattern analysis (Vetter et al., 

2014). We aimed to replicate this finding and test the hypothesis that visual and 

auditory triggered categorical feedback is representationally similar. An important 

methodological change that we made was that in the previous study by Vetter et 

al. (2014) subjects were blindfolded whereas we adopted an eyes-open fixation 

paradigm. This meant that during auditory stimulation visual cortex was receiving 

uninformative feedforward information. We found that we could cross-decode 

between auditory and visual categories in non-stimulated visual cortex, supporting 

our hypothesis. We also successfully replicated previous work by Vetter et al. 

(2014). In Chapter 4 we also tested a second hypothesis that auditory feedback to 

visual cortex would have retinotopic differences depending on whether the sound 

was a scene sound or an object sound. We found that scene sounds could only be 

decoded from peripheral V2 while object sounds could only be decoded in foveal 

V2 and V3. These findings tell us that categorically matching auditory and visual 

stimuli trigger feedback responses that share an overlap in their information 

content. The triggered feedback also plays an important modulatory functional role 

in the periphery for abstract scene information or in the fovea for concrete object 

information that may require foveation or finer discrimination at a high spatial 

scale.   
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In Chapter 5 we made the switch from studying what we call factual feedback to 

what we call counterfactual feedback. We have so far learned something about the 

modulatory role feedback can play on low-level visual areas. In this study we were 

interested in learning how the brain, within a Bayesian predictive coding 

framework, anticipates the immediate future before it is seen. We used a 

sequence of image frames to create a short video that would trigger expectations 

about how the sequence of events might unfold after the video is switched off. In 

an adaption paradigm we used a test frame to probe how well the test frame 

matched the sequence as it unfolded in our subjects mind 800ms after the image 

sequence offset. The manipulation was that the test frame could be an expected 

frame from 300ms, 600ms, 800ms or 4000ms after the offset of the priming 

sequence. The remarkable finding was that in early visual cortex the 600ms and 

800ms test frames best matched the internally extrapolated sequence of events 

inside the subjects mind, related to a future state of the world that has never seen 

by the subject. In a second experiment in Chapter 5 we demonstrate that 

predictions about unseen events – events that unfold in a subject’s mind - require 

600ms to 1200ms to fully develop. 

In Chapter 6 we further explore the brain’s ability to make predictions about the 

immediate future. In Chapter 5 we had no control over the prior information that 

subjects used to extrapolate the priming sequence beyond the occluder into the 

immediate, unseen future. One theory on how the brain achieves this is by 

manipulating dynamic internal models (Clark, 2013). The priming sequence 

therefore acts as a jumping off point, but what prior knowledge or internal models 

subjects are using to make judgements about an unseen future was unknown. In 

an attempt to control prior knowledge about a stimulus set we turned to virtual 

reality to create a virtual house for use in a navigation paradigm. The rationale for 

doing this was so that our subjects could become familiar with a unique 

environment before being exposed to our stimuli. This would allow memories and 

internal models to be created within a 3D reference frame. Although the virtual 

house was filled with common household furniture and objects, any use of existing 

internal models would be fitted to the virtual house template for making 

judgements about the future in our paradigm. In the fMRI paradigm subjects 

combined a direction cue with the current room location to make judgements about 
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a future room they would eventually navigate to. Using multivariate pattern 

analysis we show that we can read out from non-stimulated brain responses in 

extrastriate cortex information about the future room identity. In a control 

experiment where the direction cue is removed this effect disappears. Together 

these findings demonstrate that feedback plays a role in anticipating the future in a 

highly predictive manner. 

 

7.2 What is the information content of feedback responses across our 
paradigms? 

 

One of the major questions that permeate this thesis is, what is the information 

that feedback processes are providing to early visual cortex? The primary analysis 

we utilise through-out this thesis is multivariate pattern analysis. Multivariate 

pattern analysis can inform us of differences between two types of information but 

it cannot tell us what that information is (Norman, Polyn, Detre, & Haxby, 2006). 

However, by using decoding and cross-decoding analysis and careful 

consideration with regards to the design of the paradigm in question, we can draw 

inferences about what the information is likely to be and what it is unlikely to be. 

In Chapter 3 we investigate valance information in non-stimulated early visual 

cortex. We use an m-sequence design to present to subjects 900 images of 

neutral, positive and negative valance. In our decoding analysis we average 

across 300 neutral images, 300 positive images and 300 negative images over ten 

experimental runs to produce multivariate patterns for analysis. We filter out 

category information, carry-over effects and the effect of changes in lightness from 

one image to the next. Therefore our analysis is independent of these filtered 

information categories. We find that we can decode negative valance. We can be 

confident that this finding is unrelated to object category, low-level visual features 

or fluctuations in lightness. Information from memory processes related to the 

familiarity of the content of the image set are also unlikely to be contributing to the 

decoding of negative valance that we observe as each image is only seen once by 

a subject. It is possible that each image is triggering object related internal models 

that descend feedback pathways providing information about the subject matter of 
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the image. However our steps in averaging across a large number of images and 

filtering category information should remove this. If this was not true, we would 

expect all pairwise decoding of valance to work. As we don’t find neutral versus 

positive to reliably decode we can conclude that the successful decoding of neutral 

versus negative and positive versus negative conditions is due to the information 

content of the negative valance category. The null finding for neutral versus 

positive decoding also rules out a role of arousal. If arousal were the driving factor 

we would expect to see a difference between these two conditions also.  

That negative valance information is present in feedback responses is further 

supported by the cross-decoding analysis. We find negative valance generalises 

across category in stimulated early visual cortex and in non-stimulated V1. This 

finding tells us that negative valance information is shared across category and is 

also represented similarly across category. When we compare our findings with 

the literature on emotion processing in vision, we find many parallels showing that 

negative valance is a privileged type of information (Blanchette, 2006; Gomes et 

al., 2017; Kuniecki et al., 2017; LoBue, 2010; Subra et al., 2018). Therefore it is 

likely that in this experiment the information content of feedback responses to 

viewing negative valance images is about negative valance. But what does this 

mean? 

The mostly likely scenario is that negative valance information is privileged in 

visual processing to facilitate visual processes towards visual features related to 

danger (Vida & Behrmann, 2017). This theory has been expressed in the literature 

from both an evolutionary perspective (Gomes et al., 2017) and from the 

perspective of an objects relevance to an individual (Blanchette, 2006). If true, one 

hypothesis that we could postulate from what we have learned from the work in 

Chapter 4 is that valance information about peripheral threats would feed back to 

foveal retinotopic locations. Similar to peripheral object information being routed to 

the fovea, but not other non-stimulated peripheral regions (Williams et al., 2008), 

we could reasonably expect  valance information to be localised to the fovea. 

There is some evidence to support this idea. Almeida et al. (2015) studied sub-

cortical responses to negative snake images presented in both the fovea and 

periphery and found differences in sub-cortical responses to periphery and foveal 
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conditions. These sub-cortical differences may follow the same pattern as outlined 

by Williams et al. (2008) in early visual areas.  

In Chapter 4 we explored the similarity between feedback responses about 

contextually congruent auditory and visual stimuli. Within a predictive coding 

framework the incoming sensory information is tested against internally generated 

predictions (Shipp, 2016). If true, feedback about the internal model should be 

similar whether it was triggered by an auditory stimulus or a visual stimulus. We 

tested this hypothesis and found evidence to support it by observing an overlap in 

the information content of feedback responses for categorically congruent sound 

and visual stimuli within occluded early visual cortex. Interestingly there has been 

no evidence to support this hypothesis in previous work (Jung et al., 2018). One 

obvious difference that may cut to the heart of the discussion is the difference in 

stimuli choice between our study and the study by Jung et al. (2018). In our study 

we compared feedback responses between spatially and temporally dynamic 

sounds and videos. However in the study by Jung et al. (2018) they compared 

feedback responses between spatially and temporally dynamic sounds and static 

scene images. If we conclude that there is no overlap in the neural representation 

between categorically matching dynamic sounds and static images in early visual 

cortex, but there is overlap in the neural representation between categorically 

matching dynamic sounds and dynamic videos, then the overlap in information 

must be to do with the similarity of how the spatial and temporal information is 

changing over time. This could be to do with the matching onset and offset of 

particular stimulus features. Therefore the information content of audio and visual 

feedback responses in early visual cortex in our experiment is not purely 

categorical, but perhaps related to the regularity of the dynamics of the stimuli. 

Recent work by Andric et al. (2017) has shown that the regularity of auditory and 

visual stimuli is an important feature for multisensory integration in visual cortex 

leading them to conclude visual cortex is a junction for integration of temporally-

extended auditory and visual input. 

In a second experiment in Chapter 4 we also explored the peripheral bias that is 

common throughout the human and non-human primate literature regarding 

auditory feedback to early visual cortex (Anton L Beer et al., 2011; Anton Ludwig 

Beer et al., 2013; Eckert et al., 2008; Klinge et al., 2010; Laramée et al., 2011; 
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Murray et al., 2016; Qin et al., 2014; Rockland & Ojima, 2003). It has been shown 

that for objects presented to the periphery information about those objects is 

directed to the fovea via feedback pathways but not to other non-stimulated 

peripheral areas (Williams et al., 2008). This finding is likely due a precursor to 

foveation, likely sensitising the fovea in a preparatory manner. We hypothesised 

that within a predictive coding framework auditory object information should also 

be directed to the fovea for a similar purpose, therefore ignoring the peripheral 

bias for auditory feedback. We found evidence to support this hypothesis and 

further showed that auditory objects were only decodable in the fovea and auditory 

scenes only decodable in the periphery. As the two objects were distinguishable 

from their feedback responses in the fovea the information content must contain 

object specific information. What the object specific information is related to is 

more difficult to infer. There is however some recent functional connectivity work 

relating object information from feedback responses in early visual cortex to lateral 

occipital cortex  (Bennett, Petro, & Muckli, 2016) suggesting it is indeed object 

specific. 

In Chapter 5 we switched focus slightly to a study of counterfactual feedback. In 

this experiment we used a priming sequence of images to trigger predictions and 

then we test the prediction after a short period of occlusion (800ms) with a test 

frame. In this attenuation study we find that the prediction best matches the 600ms 

and 800ms test frames but not the 300ms or 4000ms test frame. In other words, 

the prediction best matches the test frame(s) that would more-or-less be expected 

after the period of occlusion. This is a remarkable finding. It means that the brain 

has generated a prediction about a future unseen state of the world.   

In this experiment we asked subjects to predict how the priming sequence might 

unfold during occlusion. We did not tell subjects how to do this task explicitly, so 

we can’t be sure of the strategies that they used. However we can make some 

suggestion as to what the information might be. One suggestion is that the 

prediction is related to a simulation of the future (Ullman et al., 2017). This is 

derived from the idea that the brain can simulate rigid body physics. An example of 

this can be taken from the game Jenga. Jenga is a game where players take turns 

to remove a single block from a 54 block tower. This can only be accomplished if 

the brain can run simulations on the stability of the tower before a specific block 
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has been removed. There is evidence supporting the brain’s ability to run rigid 

body simulations (Hamrick et al., 2016; Ullman et al., 2018). This would explain 

why in our experiment the best matching test frame (600ms & 800ms) is a better 

match than the earliest test frame (300ms), which itself is more closely related to 

the offset of the priming sequence but not the prediction. 

Another suggestion is that distal cues in the priming sequence act as a reference 

point for subjective judgements of an objects position in space. Work over the past 

four decades has revealed cells in the hippocampus representing an animal’s 

location in space (O'Keefe, 1979), and cells in entorhinal cortex representing an 

animal’s spatial environment (Hafting, Fyhn, Molden, Moser, & Moser, 2005). It is 

possible that the priming sequence provides an idea of ‘where I am’ and more 

distal cues give an idea of ‘where I expect to be.’ There is emerging evidence that 

an animal’s current subjective location is represented in both the hippocampus 

and in V1 (Saleem, Diamanti, Fournier, Harris, & Carandini, 2018). However there 

is little or no evidence supporting the idea of a predicted future subjective location. 

With regards to subjective location, one of the three priming sequences used in 

this experiment was of egocentric motion. The other two priming sequences were 

of allocentric motion. The effect we observe could be driven by predictive 

subjective location judgements from the single egocentric condition. Alternatively 

the effect could be driven from all conditions if the brain also makes predictive 

future judgements about allocentric motion. There is some evidence supporting 

this idea from apparent motion studies that show that the apparent motion trace is 

updated to new retinotopic locations pre-saccade (Edwards et al., 2017). 

Judgements about the future state of egocentric motion, allocentric motion, or 

both, best explain the finding we report in this chapter. 

 In Chapter 6 we investigated whether we could read out from feedback 

responses information regarding expectations about the future during visual 

stimulation. We trained subjects in a virtual environment to develop strong internal 

models of our virtual world through exposure and familiarity. We find that when a 

subject has information about where they are in a virtual space and information 

about which direction to take, we can read out information about the expected 

destination before the subject physically arrives there. For the second time across 

two paradigms we find evidence for a neural signal that is unrelated to the current 
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external state of the world. One suggestion for what the information content of this 

signal could be is that it is categorical room information about the future unseen 

room. This could be tested by having two virtual house configurations and using 

cross-classification analysis to test whether the future information is generalisable 

between the contextually congruent future rooms across the two house 

environments. In other words, do two pairs of independent rooms trigger similar 

predictions if the destination is the same? 

The information could also be related to future judgements of subjective location in 

space, as previously discussed. It has been shown in mice that subjective location 

is represented in both the hippocampus, related to place cells (O'Keefe, 1979), 

and in V1 (Saleem et al., 2018). However in our experiment we do not find 

information about the future room in V1, but in extrastriate cortex. This does not 

mean that V1 does not contain information, but we cannot reject the null 

hypothesis. Finding information about the future room in extrastriate cortex in 

humans versus V1 in mice could be related to differences between visual acuity 

across species. Mice have low visual acuity (Prusky, West, & Douglas, 2000). 

Representing subjective location at a low spatial scale in mouse V1 may be 

analogous to representing subjective future location at a lower spatial scale in 

human V2. The differences could also be related to representing subjective 

judgements of current location and testing them with incoming sensory input in V1 

versus representing future subjective location independent of sensory input. 

Furthermore, the future room information we detect could be related not only to 

place cells but also to grid cells, which provide a spatial representation of the 

virtual environment as a whole. Predictions about whether you would expect to be 

in one future room versus another future room could explain our finding. However 

it is unknown whether or not grid cells respond in an anticipatory way for expected 

or planned movement. They do however exhibit spatial representation during 

mental simulations (Bellmund, Deuker, Schröder, & Doeller, 2016) and imagined 

navigation (Horner, Bisby, Zotow, Bush, & Burgess, 2016) which would support 

this idea. 

In conclusion, we set out to study non-visual feedback to early visual cortex and 

the role feedback may play in visual perception. We learned that non-visual 

feedback in low-level non-stimulated cortex represents information about both the 
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external world and the internal world. This is an important finding with respect to 

current predictive coding models. Feedback plays a role in hypothesis testing 

incoming sensory information (George & Hawkins, 2009; Rao & Ballard, 1999; 

Shipp, 2016). These predictive models are yet to explain how the brain can switch 

from one stream of perception (about the external world) to another (the “inner-

eye”) while simultaneously monitoring sensory input. Predictive coding models will 

need to be updated to include this new type of information.  

 

7.3 Feedback responses to early visual cortex are retinotopically 
organised  

 

In Chapter 4 we find that we can decode auditory scene information in the 

periphery of V2 and auditory object information in the fovea of V2 and V3. This 

finding indicates that we have two distinct signals. One signal in the periphery 

related to scene information and a second signal in the fovea related to object 

information. When object and scene information is combined into a single sound 

we find that we could read this information out from both the fovea and the 

periphery.  

The simplest explanation for finding an auditory object related signal in the fovea is 

that auditory objects require high-spatial resolution for the purpose of finer 

discrimination, a role that the fovea provides and the periphery does not 

(McDonald et al., 2000). This idea is supported by vision studies that show that 

peripherally presented objects feedback information to the fovea (Bennett et al., 

2016; Williams et al., 2008). It is also consistent with central field biases of object 

specific cortical areas such as lateral occipital cortex (Grill-Spector, Kourtzi, & 

Kanwisher, 2001) and eccentricity biases for objects in higher visual cortical areas 

(Hasson, Levy, Behrmann, Hendler, & Malach, 2002). Interestingly Hasson et al. 

(2002) discovered that some objects, such as buildings, are biased to peripheral 

representation only, which would violate this explanation. However they suggest 

buildings are a special case citing R. Epstein and Kanwisher (1998) who suggest 

buildings are landmarks representing local space. While we find that scene 

information - abstract information about local space - could only be decoded in the 
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periphery, replicating previous work (Vetter et al., 2014), this is not the case for the 

visual counterpart which can be decoded in both periphery and fovea (Bennett et 

al., 2016). This difference could be explained by fluctuations between scene and 

object processing over prolonged stimulation periods, suggested by studies that 

show that viewers prefer to look at objects over background (Nuthmann & 

Henderson, 2010).  

Auditory scene information may be biased to the periphery due to local space 

biases (R. Epstein & Kanwisher, 1998; Hasson et al., 2002) such as categorical 

context (Vetter et al., 2014). From an anatomical perspective the periphery is 

anatomically more proximal to auditory cortex than the fovea ,so it is not surprising 

that direct anatomical projections from primary auditory cortex to visual cortex 

terminate in the periphery of non-human primates (Rockland & Ojima, 2003) and 

also possibly in humans (Anton L Beer et al., 2011). An additional functional role 

for auditory feedback in the periphery beyond representing local space context 

could be that it acts as a low (relative to the fovea) spatial co-ordinate system for 

monitoring low-resolution stimulus features or statistical regularities while leaving 

the fovea available for fine discrimination tasks. Vetter et al. (2014) demonstrated 

that natural scene sounds could be read out of the periphery reliably but not the 

fovea during both a working memory task and a visuo-spatial imagery task which 

would support this theory. 

In Chapter 5 and Chapter 6 we investigate counterfactual feedback information 

during occlusion and during concurrent visual stimulation. Counterfactual feedback 

is information that is initialised internally and is independent of an external 

stimulus. A curious finding we observe across both paradigms is that 

counterfactual feedback is localised to extrastriate retinotopic locations. This could 

be a coincidence. Feedback in general has been shown in V1 in a number of 

paradigms (Muckli et al., 2015; Lucy S Petro et al., 2013; F. W. Smith & Muckli, 

2010). However, with respect to stimulus independent feedback as seen in 

Chapter 6, it is possible that V1 may be reserved for background functions during 

counterfactual thinking.    

When a person engages in counterfactual thinking, they engage a brain network 

called the default mode network which is anti-correlated with the executive 
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network (Hellyer et al., 2014). During the engagement of this network for mind-

wandering, for example, a phenomenon known as perceptual decoupling occurs. 

The neural mechanism of perceptual decoupling remains largely unknown. One 

study has related perceptual decoupling during auditory stimulation to a decrease 

in functional connectivity in the auditory pathway (Hove et al., 2015). Perceptual 

decoupling has been described as a reduced awareness of the external 

environment. It is possible that in vision perceptual decoupling utilises the spatial 

fidelity of extrastriate cortex for manipulating dynamic internal models (imagining) 

but spares V1 for monitoring the external environment outside of conscious 

perception. This would fit with the read/write blackboard hypothesis of V1, 

whereby other cortical areas can write information to V1 that can be read by other 

cortical and sub-cortical areas (Muckli et al., 2015; Mumford, 1991; Murray et al., 

2016; Roelfsema & de Lange, 2016; Williams et al., 2008). 

We can explore this idea further by considering under what circumstances 

feedback about counterfactual thought is found in V1 and when it is not found. 

Imagery is a good candidate paradigm for this as it is the most widely studied 

example of counterfactual thinking that also uses brain imaging techniques. A 

pattern emerges across a variety of paradigms invoking imagery. When high-level 

representations are back projected during imagery to low level visual areas they 

are absent from V1 (Radoslaw M Cichy et al., 2011; S.-H. Lee et al., 2012; Reddy 

et al., 2010). However when these back projected representations are manipulated 

by working memory they are then present in V1 (Dijkstra et al., 2017). By contrast, 

low-level representations appear to always be available to V1 (Albers et al., 2013; 

Bergmann et al., 2016; Radoslaw M Cichy et al., 2011; Harrison & Tong, 2009; 

Schlegel et al., 2013; Xing et al., 2013) likely due to V1 being tuned to low-level 

features. These studies point to the importance of task as a factor for whether the 

retinotopic space of V1 is recruited for representing high-level representations. Put 

in other words, if the task of imagery requires fine, detailed spatial scale then V1 is 

recruited. If the task of imagery requires only the broad strokes then V2 is of 

sufficient spatial scale. 
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7.4 Limitations & future directions 

 

One of the major limitations in fMRI research is time. To circumvent this problem 

we used a path-guided de Bruijn m-sequence in Chapter 3 to present to subjects 

a large image set in a typical amount of time for an fMRI experiment. These 

sequences are useful as they provide a measure of signal detection power and are 

particularly useful for the study of categories (Aguirre et al., 2011). However in the 

fast event-related design we could only reliable decode information about negative 

valance information, likely due to its privileged nature in cortical/sub-cortical 

processing of danger (Anderson et al., 2003; Pourtois et al., 2013). Whether 

positive valance information can be read out from non-stimulated early visual 

cortex is unclear. This hypothesis could be tested and our finding replicated by 

reducing the order of counterbalancing (less trials) and increasing the stimulus 

presentation time. We have briefly mentioned the importance of task. In this study 

we used a category 1-back task. This could be another factor explaining why we 

couldn’t decode positive information but could decode negative information 

(privileged) in a fast event-related design. If subjects were attending to category 

and less to valance it would explain why only the privileged information was found.  

In Chapter 4 we show for the first time neural overlap between auditory and 

visually triggered feedback in non-stimulated early visual cortex. Attempts have 

been made in the past to test the hypothesis that there is shared neural 

representation between feedback for auditory and visual modality without success 

(Jung et al., 2018). Therefore our finding should be replicated to provide additional 

evidence. As an additional step more exemplars should be included for the 

purpose of cross-classification. Such an analysis would shed light on whether or 

not cross-classification is achieved due to specific stimulus features shared 

between modality or if it is related to high-level categorical representations. 

In this same chapter we explore the retinotopic nature of auditory object and scene 

feedback to early visual cortex. Due to the realisation that an auditory scene is a 

composition of object sounds we decided to embed a rogue object sound in to a 

background scene sound and vary the onset and offset of the object sound to 

make it stand out from the background. This likely impacted the power of our 
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analysis as the classifier was searching for object information within scene 

information from an already coarse signal. This issue could have been alleviated 

by presenting objects in isolation to form an object sound, or in pairs to form a 

simple scene sound. We also used an unrelated baseline task in this study, which 

likely also impacted our statistical power as the sounds were listened to passively. 

If we had used a task related to objects and scenes we would have increased our 

overall statistical power. 

Chapter 5 and 6 was the beginning of our study on counterfactual thinking. These 

studies were informative as they demonstrated a different type of feedback that 

could be read out from extrastriate cortex. The main question raised from these 

studies is, how can the brain switch between two different streams of perception – 

one that is factual and one that is counterfactual? To answer this question we plan 

to use high-field 7-Tesla fMRI (Olman et al., 2012) to explore the feedback profile 

of both counterfactual and factual feedback in different layers of the cortical sheet. 

We believe that by showing these two different response profiles in the same, or 

different, cortical layers will necessitate a change to current predictive coding 

models to account for the role feedback plays in both the counterfactual percept 

(not testing against sensory information) versus monitoring the external world for 

changes (testing against a possibly limited sensory input). 
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