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Abstract 

The N170, a negative amplitude peak occurring at approximately 170 ms post-

stimulus onset, is an event-related potential (ERP) component observed during 

electroencephalography (EEG) recordings that preferentially responds to faces 

compared to other objects (Bentin, Allison, Puce, Perez, & McCarthy, 1996; 

Bötzel, Schulze, & Stodieck, 1995). EEG research has suggested that the N170 

may be modulated by the eye region, however this has received much debate 

(e.g. Bentin et al., 1996; Eimer,1998; Taylor, Itier, Allison, & Edmonds, 2001). 

Most recently, Rousselet, Ince, Rijsbergen, & Schyns, (2014) used Gaussian 

apertures (‘bubbles’) (Gosselin & Schyns, 2001) in a reverse correlation 

experiment to demonstrate that increased visibility of the contralateral eye 

leads to larger and earlier N170s in a face versus noise detection task. However, 

these results may be explained by the phenomenon of ‘left gaze bias’ – a 

preferential looking towards the left visual field. To understand if contralateral 

eye sensitivity can be explained by a non-feature specific attentional bias to the 

left, in the first study (Chapter 2) we investigated contralateral eye sensitivity 

to faces of different image sizes in a face versus noise detection task. Using 

reverse correlation and Mutual Information (MI) we found that contralateral eye 

sensitivity is size tolerant, suggesting that contralateral eye sensitivity does 

reflect feature encoding rather than a general left attentional bias. Next we 

wanted to address whether eye coding precedes other feature encoding in a 

more heterogeneous face set. The traditional ‘bubbles’ technique relies on 

stimuli being spatially aligned i.e. the eyes, nose, mouth of all images in the 

stimulus set to be in comparable positions for averaging bubble-masks across 

stimuli. To overcome this limitation, we used an adaption of BubbleWarp (Gill, 

DeBruine, Jones, & Schyns, 2015) a new technique outlined in Chapter 3, to 

retrospectively ‘warp’ Gaussian bubble masks to an average face image. Using 

this new technique, in Chapter 4, we tested the assumption that contralateral 

eye sensitivity preceded sensitivity to other facial features, specifically the 

mouth, in a gender and expressive versus non-expressive (EXNEX) categorisation 

task in young adult participants. Using MI onset analysis, we found idiosyncratic 

differences in MI onsets suggesting preferential encoding of the eye before other 

facial features for ~65 % of participants. This revealed that whilst there is an eye 
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coding preference, there is not a constraint to encoding the contralateral eye 

before other facial features. Aging is marked by a decline in processing speed 

(Salthouse, 1996) and previous work has suggested that whilst older adults 

process the contralateral eye in face versus noise detection tasks, this 

processing is weaker and delayed compared to younger adults (Jaworska, 2017). 

In Chapter 5 using the same task as in Chapter 4, we quantified age-related 

differences in feature processing speed by calculating 50 % integration times in 

younger and older participants. There was a ~20 ms delay in eye encoding for 

older compared to younger adults. We found a 9 ms delay in mouth encoding in 

the gender task and no differences in mouth processing speed in the EXNEX task. 

This suggests that there was not a general, uniform delay in processing speed of 

all facial features across tasks. Overall, our results demonstrate for the first 

time that 1) contralateral eye sensitivity is tolerant to changes in stimulus size, 

stimulus set, task demands and age, 2) contralateral eye sensitivity 

preferentially precedes sensitivity to the mouth but is not a prerequisite in 

gender or EXNEX categorisation tasks and 3) older adults process the same facial 

feature information as younger adults, but feature coding is not uniformly 

delayed compared to younger adults.  
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Chapter 1 - Introduction 

Faces are important social stimuli for achieving mutual understanding and 

communicating a wide range of signals, such as threat and aggression. We 

engage in many basic face processing tasks automatically in naturalistic settings, 

such as judging the age, sex and emotional state from others faces. However, 

our understanding of the computational stages that visual processing undergoes 

from initial sensory input to decision making, and how these information 

processing stages are affected by healthy ageing remains elusive. 

Of particular interest to psychophysicists (and others) is the posterior lateral 

electro and magneto encephalographic response (EEG / MEG) occurring in the 

range of 140 to 200 ms subsequent to the presentation of a face stimulus. This 

response – the N170 event-related potential (ERP) in EEG and its MEG equivalent 

the M170 – has been a subject of considerable debate (Earp & Everett, 2013). 

Specifically arguments have concentrated on whether there is specialist face 

processing in the brain. This has resulted in arguments over whether the N170 is 

face sensitive (i.e. is modulated more but not exclusively by faces than other 

objects) or face specific (i.e. is modulated exclusively by faces but not objects). 

Assuming the N170 is at least face sensitive, until recently little has been 

understood about the specific information, i.e. what is being processed during 

the time window of the N170, and its underlying mechanism, nor how that 

mechanism may change with ageing observers.  

This thesis will expand upon work suggesting that the N170 predominantly 

encodes information about the contralateral eye (Rousselet, Ince, van 

Rijsbergen, & Schyns, 2014). The main contributions of this work are: 

1. Demonstrating that contralateral eye sensitivity is tolerant to changes in 

stimulus size, stimulus set, task demands and age.  

2. Testing whether encoding of the contralateral eye is task invariant i.e. 

whether contralateral eye encoding is the first stage of visual processing 

in a range of categorisation tasks (face versus texture; male versus 

female; expressive versus non-expressive). 
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3. Testing whether the timing of contralateral eye encoding is consistent 

relative to tasks involving another facial feature, namely the mouth.  

4. Quantifying age-related differences in the strength and timing of feature 

encoding  

Firstly, we will outline why faces are important stimuli and why difficulties 

processing faces have negative social consequences for older adults. Next, we 

will assess the evidence of the existence of the N170 and its neurological 

underpinnings. We will then address how the N170 in older adults’ compares to 

that in younger adults and how these differences may reflect a general 

phenomenon of change in the visual processing system with ageing. Lastly, we 

will address evidence that the N170 is sensitive to and modulated by the 

presence of the contralateral eye in younger and older adults.  

Faces are important social stimuli 

Faces are important social stimuli with high evolutionary importance. Faces are 

dynamic tools for achieving mutual understanding and communicating social 

signals, such as threat and aggression (Zhang, 2018). Every day we judge the 

identity, age, sex, personality traits and emotional state of faces we encounter. 

Those who experience difficulty in face processing, for example due to 

developmental prosopagnosia, experience negative psychosocial consequences 

such as anxiety and the avoidance of social situations (Dalrymple et al., 2014; 

Yardley, McDermott, Pisarski, Duchaine, & Nakayama, 2008), suggesting that 

face processing is an integral component of our social interactions with others.  

Age-related differences in face processing have 
important social consequences for older adults 

Difficulties in processing faces as we age, such as reduced ability in older adults’ 

recognition of facial identities (Boutet, Taler, & Collin, 2015; Konar, Bennett, & 

Sekuler, 2013; Meinhardt-Injac, Persike, & Meinhardt, 2014), assessment of sex 

and age (Carbon, Grüter, & Grüter, 2013) and emotion recognition (Ruffman, 

Henry, Livingstone, & Phillips, 2008; Sullivan, Campbell, Hutton, & Ruffman, 

2017; Sullivan & Ruffman, 2004) may have similar negative psychosocial 
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consequences as those seen in developmental prosopagnosia. Difficulty with 

emotion recognition may be particularly problematic for older adults, as an 

inability to respond appropriately to social cues may lead to social isolation, 

reduced quality of life and may even increase physiological decline with ageing 

due to loneliness (Hawkley & Cacioppo, 2007).  

Face processing   

Faces may be processed qualitatively differently from other objects. For 

example, there may be a double-dissociation between specific impairments in 

the recognition of faces (prosopagnosia) and non-face objects (object agnosia) 

following lesion to the temporal lobe (Henke, Schweinberger, Grigo, Klos, & 

Sommer, 1998). It has also been suggested that faces are processed more 

“holistically” than other non-face objects - which are processed in a more “part-

based” fashion (Piepers & Robbins, 2012). “Holistic” processing suggests that the 

combined processing of two or more of the basic features of a face (eyes, nose 

mouth) results in “emergent features” of the face becoming apparent – i.e. 

properties that cannot be derived from purely the properties of the individual 

facial features. Emergent features necessarily suggest that the interrelations 

between facial features are important (i.e. configural information). Configural 

information can be understood at two levels – first-order relational properties 

(i.e. the basic configuration of a face, such as 2 eyes above a central nose and 

mouth) and second-order relational properties (i.e. variations in the inter-

feature spacing and positioning between features) (Piepers & Robbins, 2012).  

The “two-streams hypothesis” of visual perception differentiates the dorsal-

stream of vision as primarily encoding spatial relationships between objects, 

from the ventral-stream which encodes features related to object recognition. 

Within the ventral stream, complex objects, including faces, can be represented 

in a distributed or clustered manner. For example, the fusiform gyrus cluster for 

face processing. However, the dorsal stream may also hold behaviourally 

relevant information for face processing as well (Jeong & Xu, 2016).  

There may also be differences between processing of familiar compared to 

unfamiliar faces. Familiar and unfamiliar faces may be represented differently, 

such as evidence from prosopagnosia patients demonstrating a dissociation 
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between familiar and unfamiliar face processing across a range of tasks 

(Johnston & Edmonds, 2009). However, it has been suggested that whilst the 

familiarity of the face may modify later ERP components, early stages of face 

processing may not be modulated by face familiarity (Johnston & Edmonds, 

2009). 

The N170 is a ‘face selective’ component 

Event-related potentials (ERPs) are stimulus time-locked EEG changes in voltage. 

ERPs are the summed activity of post-synaptic potentials produced by pyramidal 

neurons (discussed later in this chapter: The N170 neuronal sources). Early ERPs 

are thought to reflect physical properties of the stimulus, whilst later 

components are thought to reflect information processing (Sur & Sinha, 2009). 

Several ERPs components have been shown to be modulated by faces. For 

example, the N100 (a negative potential at around 100 ms post stimulus onset) 

may by modulated by affect, such as a larger N100 for fearful faces (Luo, Feng, 

He, Wang, & Luo, 2010). The P300 (positive voltage at approximately 300 ms) on 

the other hand is thought to reflect greater attention and stimulus evaluation. 

Much focus of the face processing literature however has ben directed to the 

N170.   

The N170, a negative amplitude peak occurring at approximately 170 ms post-

stimulus onset, is one of the earliest ERP components  observed during EEG 

recordings that preferentially responds to faces (Bentin et al., 1996; Bötzel et 

al., 1995) (the P1 occurring before the N170 may also be face sensitive (Itier & 

Taylor, 2004)). The N170 is typically right lateralised, with larger amplitude over 

the right than left hemisphere, though there are individual differences to this 

pattern. The N170 has been shown to typically have larger amplitude for faces 

compared to other non-face objects (Rousselet, Husk, Bennett, & Sekuler, 2008) 

and varies in latency compared to other object categories (Nemrodov, Anderson, 

Preston, & Itier, 2014). The N170 response is also larger when objects are 

perceived as containing a face, even when a face is not there (so called ‘face-in-

things’ stimuli) than for objects where no face is perceived (Proverbio & Galli, 

2016). The N170 component and it’s MEG equivalent the M170, are apparent 

even for schematic faces (Bentin, Sagiv, Mecklinger, Friederici, & von Cramon, 

2002).  
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The N170 does not appear to be specific to human faces, with animal faces 

eliciting the N170 in human observers as well, though with a delayed peak 

(Carmel & Bentin, 2002; Rousselet, Mace, & Fabre-Thorpe, 2004). The N170 is 

elicited by human faces even when faces are not attended (Carmel & Bentin, 

2002), though may diminish with repeated presentations of unattended face 

stimuli (Heisz, Watter, & Shedden, 2006a, 2006b; Mercure, Kadosh, & Johnson, 

2011).  

The N170 may be best understood as a late variant of the N1 component that 

occurs in the EEG signal in response to objects (Rossion & Jacques, (2011), 

though see Itier & Taylor, (2004) who argue the N170 is qualitatively different 

from the N1). As such, the N170 may be an enhanced N1 in response to faces. 

The magnitude and timing of the N170 in response to faces is idiosyncratic across 

participants, stimuli and task (Rossion & Jacques, 2011) and may also be 

influenced by methodological design, such as whether the same electrode is 

used for analysis across all participants, or whether electrode selection is 

optimised on a participant-by-participant basis. The increase in the amplitude 

for faces compared to objects could reflect alternate phenomena – either an 

increase in neural activity to faces compared to objects or a greater consistency 

in single-trial latency leading to decreased inter-trial jitter (Rossion & Jacques, 

2011). Differences in the latency of the N170 may reflect the time taken to 

activate face representations, or the speed of accumulation of evidence at the 

neuronal level. 

The N170 and individual differences 

Individual differences in the latency and amplitude of ERP waveforms are rife, 

but inter-participant variability in ERPs is to be expected in EEG research (Luck, 

2005). However, between-participants idiosyncrasies are consistent across 

sessions within participants, suggesting that these differences between 

participants are predominantly stable (Luck, 2005). These inter-participant 

differences may reflect anatomical differences e.g. in the folding pattern of the 

cortex affecting the size of the ERP component at scalp electrodes depending on 

its location – i.e. whether a generator of an ERP component is in the sulci or gyri 

(Luck, 2005). As a consequence of large individual variation, group results in the 

EEG literature should always be treated with caution in the absence of 
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supporting individual participant data and effect sizes. In this thesis we detail 

throughout the wide inter-participant variability in ERPs. 

The N170 bottom-up / top-down debate 

The underlying processing mechanism of the N170 is still heavily debated. Some 

authors suggest that the N170 reflects a bottom-up (i.e. stimulus driven) 

structural encoding of face features, proceeding the conscious detection of a 

face (Eimer, 2000; Sagiv & Bentin, 2001). However, others suggest a top-down 

(i.e. task or experience driven) mechanism, wherein the N170 may be modulated 

by task requirements, or experience - such as when geometrical shapes not 

normally processed as face components are primed to be interpreted as face 

patterns (Bentin & Golland, 2002; Kato et al., 2004). This suggests that the N170 

may, in part, be modulated by an individual’s subjective experience of 

perceiving a stimulus as a face, rather than objective reality. As such, the N170 

may reflect a complex mixture of bottom-up and top-down influences. 

The N170 neuronal sources 

Identifying the neuronal sources underpinning the N170 is still controversial. This 

is in part due to the problem of estimating the location and distribution of the 

neuronal sources responsible for producing a given pattern of electrical 

potentials recorded on surface level scalp electrodes (the inverse problem). The 

EEG signal is primarily thought to reflect a summation of the excitatory and 

inhibitory potentials of the long perpendicular dendrites of cortical pyramidal 

neurons (Kirschstein & Köhling, 2009). Whilst individual neuronal action 

potentials are too small and fleeting to be recorded at the scalp, post-synaptic 

potentials have a longer duration and the summation of these can be recorded 

via EEG (Kirschstein & Köhling, 2009). Pyramidal neurons create electrical 

dipoles between the body of the neuron and the dendrites, with 

excitation/inhibition depending upon the distance of the excitatory postsynaptic 

potential in relation to the neuronal body (Jackson & Bolger, 2014). The EEG 

signal consists of the summation of these multiple, potentially counter-

directional dipoles, so long as enough of the dipoles are in parallel and are 

synchronously active (Jackson & Bolger, 2014). The net summed positivity or 

negativity recording by any single given electrode will depend upon its relative 
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position to the positive or negative end of the (summed) dipoles, as well as the 

orientation and distance of the dipoles from the electrode (Jackson & Bolger, 

2014). The polarity of the measured signal does not reflect the current within 

the neuron, as a positive or negative EEG signal depends upon whether the 

inhibitory or excitatory postsynaptic potential is closer or further from the scalp 

(Jackson & Bolger, 2014). Thus, the challenge for localising the source on the 

N170 is to try to reconstruct and distinguish between the multiple possible 

sources producing a recorded EEG signal.  

Those who have attempted to conduct source analysis on the N170 suggest the 

involvement of the superior temporal sulcus (STS) region (Itier & Taylor, 2004). 

This result is consistent with the conclusions of combined EEG-fMRI (Nguyen & 

Cunnington, 2014) and EEG-MEG (Burra, Baker, & George, 2017) studies, which 

benefit from combining the high temporal resolution of EEG with the spatial 

resolution afforded by other brain imaging techniques. Whilst the STS is thought 

to be involved in the processing of ‘changeable’ aspects of faces, such as eye 

gaze direction and expression (Haxby, Hoffman, & Gobbini, 2000), a wider face-

perception network has also been identified. This diffused face-perception 

network is thought to include the Fusiform Face Area (FFA) (Deffke et al., 2007), 

which may be involved in processing ‘invariant’ aspects of faces (such as facial 

structure and identity) (Haxby et al., 2000), and the Occipital Face Area (OFA) 

(Pitcher, Walsh, & Duchaine, 2011). Overall, the N170 may be best understood 

as originating from a combination of areas (rather than a single area) within the 

face-processing network (Dalrymple et al., 2011).  

The N170 in healthy ageing  

The timing and amplitude of the N170 may be affected by the process of healthy 

ageing. We will limit our discussion of ageing to ‘healthy older adults’, who for 

the purposes of this thesis can be assumed to refer to individuals over the age of 

60 years old who demonstrate typical levels of cognitive abilities as measured by 

the Mini Mental State Examination (Folstein, Folstein, & McHugh, 1975), 

Montreal Cognitive Assessment (Nasreddine et al., 2005) or similar. However, as 

a note of caution, whilst these participants may pass these cognitive screening 

tests, white matter loss has been documented in the absence of neurological and 

neurodegenerative disease, with an estimated 37 % loss in posterior white 
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matter volume between the ages of 46 and 92 years (Piguet et al., 2009). This 

suggests that even in apparently very healthy individuals age-related cellular 

changes are already occurring. Similarly, pathological changes, for example in 

amyloid deposits and neurofibrillary changes (Braak & Braak, 1991), as well as 

potentially functional brain changes in cerebral blood flow (Beason-Held et al., 

2013) occur before the beginnings of behaviourally evident cognitive decline. 

Therefore, a ‘healthy’ older adult sample cannot be guaranteed on the basis of 

behavioural screening tests alone.  

Compared to younger adults, the N170 in older adults is typically delayed and 

larger (Daniel & Bentin, 2012; Gazzaley et al., 2008; Nakamura et al., 2001; 

Rousselet et al., 2009; Wiese, Schweinberger, & Hansen, 2008). The N170 in 

healthy older adults may also be less lateralised. Whilst in younger adults the 

N170 is predominantly stronger in the right than left hemisphere, older adults 

may demonstrate a reduction in interhemispheric asymmetry due to increased 

activity in the left hemisphere (Daniel & Bentin, 2012).  

Delays in the timing of the N170 peak in older compared to younger adults have 

been interpreted as reflecting age-related differences in face processing speed 

with age. However, comparing N170 peaks across age groups should be treated 

with caution, as the N170 may not reflect the same neuronal process in older as 

younger adults if, for example, visual processing has slowed to such an extent 

that later time windows in older adults become functionally equivalent to the 

N170 in younger adults (Rousselet et al., 2009).   

Older adults however also experience decline on a range of non-face tasks. For 

example in house/letter/face versus texture tasks, older adults were 

consistently slower than younger adults, as measured using behavioural reaction 

times, as well has having a delayed and enhanced N170 peak for all object 

categories compared to younger adults (Jaworska, 2017). Thus it is important to 

consider whether age-related differences in the N170 are face specific or 

general across all object processing tasks. 
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Age-related differences in visual processing speed 
and recruitment of brain areas 

Differences in the N170 in healthy ageing may reflect a wider pattern of age-

related changes in visual processing in general, such as reduced processing 

speed, dedifferentiation (i.e. reduced neural specialisation) and compensatory 

mechanisms in brain activity. As such, we will now discuss the phenomenon of 

age-related decline of efficiency in visual perception more generally.  

Most notable is the argument for a general decline in processing speed with 

ageing (Salthouse, 1996). Salthouse (1996) argues that a decrease in the 

processing speed of simple processing operations results in increased impairment 

for more complex operations, the so called ‘complexity effect’. A slowing of 

neuronal processes may begin as early as the 20s (Salthouse, 2010). Recent 

attempts to quantify the reduction in processing speed using brain imaging 

methods are consistent with the idea that ageing begins during this decade, with 

evidence of an increasingly delayed noise sensitivity in older adults of 

approximately 1 ms per year from age 20 onwards (Rousselet et al., 2010). The 

authors also suggested that there is a qualitative ‘shift’ from a ‘younger’ to and 

‘older’ pattern of brain activity at 47±2 years, suggesting that ageing occurs 

throughout the adult lifespan. Whilst ageing may also affect fine motor skills, 

age-related differences in processing speed based upon pen and paper tasks 

endure even when controlling for age related differences in motor dexterity 

(Ebaid, Crewther, MacCalman, Brown, & Crewther, 2017). 

A decline in processing speed with ageing may reflect either a general age-

related slowing as suggested by Salthouse (1996), or be a consequence of 

dedifferentiation or compensatory neural recruitment (Grady et al., 1994) which 

we shall now discuss.  

If older adults’ brains are trying to compensate for deficits by recruiting 

additional brain areas not seen in younger adults and/or increase in recruitment 

of brain areas seen in younger adults, then this compensatory recruitment of 

brain areas may be an adaptive mechanism by which older adults try to maintain 

task performance. In face detection tasks, compensation may be achieved by 

altering the balance of brain areas recruited (Burianová, Lee, Grady, & 
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Moscovitch, 2013). For example, older adults may recruit the Prefrontal Cortex 

(PFC) more than younger adults to compensate for reduced activity in the visual 

processing regions. This ‘posterior-anterior shift with ageing’ (PASA) model 

(Davis, Dennis, Daselaar, Fleck, & Cabeza, 2008) is suggested to reflect a 

compensatory mechanism (however, an opposite pattern of activity was 

identified using a longitudinal rather than cross-sectional design (Nyberg et al., 

2010)). Additionally, a ‘hemispheric asymmetry reduction in older adults’ 

(HAROLD) model (Cabeza, 2002), has suggested that increased bilateral 

recruitment by older adults is also compensatory (Cabeza, Anderson, Locantore, 

& McIntosh, 2002). However, there is the suggestion that compensatory activity 

may only apply when there are low levels of cognitive load, as according to the 

CRUNCH model (compensation-related utilisation of neural circuity) additional 

recruitment of neuronal resources by older adults is no longer effective at higher 

levels of cognitive load (Reuter-Lorenz & Campbell, 2008). Whilst differences in 

the brain areas recruited for a particular task may not always equate to 

increased task performance for older adults, teasing apart whether performance 

would be more impaired without this increased activity, and whether this 

increased activity is really reflecting a compensatory mechanism is difficult 

(Grady, 2012).  

An alternative view is to ascribe recruitment of additional brain areas by older 

adults as a reflection of a dedifferentiation of neuronal networks. For example, 

a reduction in neural specificity to faces compared to other categories 

(Burianová et al., 2013) would suggest that there is a lack of specificity in the 

neural processing of older adults. Again, teasing apart whether the recruitment 

of bilateral brain areas reflects a compensatory or non-beneficial mechanism is 

difficult when only comparing cross-sectional data.  

Changes in visual processing with age may also reflect the consequences of 

changes in brain structure due to the decline in grey and white matter in the 

brain (Giorgio et al., 2010). Age-related changes in grey and white matter have 

been directly implicated in the slowing of processing speed (Eckert, Keren, 

Roberts, Calhoun, & Harris, 2010). White matter integrity has been related to 

the speed of performance in older adults, so could explain declines in visual 

processing speed (Kerchner et al., 2012). However, yet another approach is to 
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suggest that age-related declines in vision are due to functional rather than 

structural changes (Andersen, 2012). For example, functional differences in 

neurons and neuronal communication in the visual system, such as reduced 

levels of gamma aminobutyric acid (GABA) or acetylcholine (ACh) may play a 

role (Hasselmo & Sarter, 2011; Pitchaimuthu et al., 2017).  

Older adults may also have a reduced ability to ignore task irrelevant 

information in the early stages of visual processing that may interact with 

processing speed (Gazzaley et al., 2008) due top-down modulation deficits 

(Kalkstein, Checksfield, Bollinger, & Gazzaley, 2011). Greater processing of task-

irrelevant information could contribute to the decline in processing speed of 

task-relevant information in older compared to younger adults.  

Age-related macular degeneration and visual 
processing 

Ageing is also marked by degeneration of the eyes and visual function, including 

macular degeneration, glaucoma and cataracts (Owsley, 2011). Hence, one 

explanation for changes in visual processing may be due to deterioration of 

optical functions, such as visual acuity (Gittings & Fozard, 1986) and contrast 

sensitivity (Owsley, Sekuler, & Siemsen, 1983). For example, age-related 

differences in visual acuity and contrast sensitivity could result in delayed 

processing speeds. However, evidence suggests that visual acuity and contrast 

sensitivity alone cannot account for age-related difficulties in face recognition 

(Boutet et al., 2015), and other optical factors such as senile miosis and 

individual differences in pupil size cannot account for ageing differences and 

inter-subject variability in processing speed (Bieniek, Frei, & Rousselet, 2013), 

suggesting that differences in visual processing with ageing cannot be explained 

by low-level factors alone.  

Information Processing during the N170  

We have seen that the N170 is a face-sensitive component of the ERP time 

course that is evident in both younger and older adults, though is delayed with 

ageing – but what is the information content driving this N170 response in 

younger and older adults? Henceforth we refer to the key information content, 
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i.e. the facial features that an individual uses to resolve a face processing task 

as the diagnostic information required for the task. To understand the 

diagnostic information being processed during the time window of the N170 in 

younger and older adults, we first need to review the image sampling techniques 

available for answering this question.  

Using full images of face stimuli is problematic when seeking to understand what 

information is being processed during the N170 as it is unclear what particular 

facial features are driving neuronal responses – any single feature or combination 

of features may potentially be diagnostic. Instead, we need to isolate single 

facial features to understand the relative contribution that their visibility has on 

modulating the N170. Whilst face images can be cropped to reveal particular 

features in isolation (such as cropping a face into rectangles containing only the 

eyes or only the mouth or nose – for an example see Bentin et al., (1996) 

experiment 4) isolating single facial features from the context of a face and 

comparing the pattern of the N170 is problematic – removal of the face context 

may change the shape of the N170 compared to full images of faces (Daniel & 

Bentin, 2012).  

An alternative to using full or cropped face images is to use reverse correlation 

techniques. Multiple methods are available, for example one method used in 

psychophysics would be to present pure noise-based stimuli (i.e. white or 

correlated noise) with instructions to detect a face or object within the noise. 

Such designs have been used to understand ‘internal representations’ of face 

stimuli (Smith, Gosselin, & Schyns, 2012). Another method would be filtering 

face stimuli with noise (i.e. embedding a face ‘base image’ overlaid with noise) 

to introduce random variance to the stimulus on each trial and averaging stimuli 

resulting in a particular behavioural judgement. For example such an approach 

has been used to understand the internal representations of trustworthy, happy 

and angry faces and the diagnostic facial features for these representations 

(éthier-Majcher, Joubert, & Gosselin, 2013).  

Using noise-based stimuli, the diagnostic regions for identifying the illusory 

presence of a face in noise-only stimuli has been used to indicate that face-

perception in the absence of a face relies on an eye/nose/mouth pattern  

(Rieth, Lee, Lui, Tian, & Huber, 2011). However, these approaches are limited 
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when trying to elucidate how particular features may modulate brain responses, 

as the visibility of single features are still not isolated.  

An alternative approach is to sample full face images through a number of 

apertures, so as to reveal a random subset of facial features on each trial. The 

aim of such techniques is to establish the relative importance or contribution of 

particular facial features to e.g. behavioural and/or brain responses, whilst 

maintaining the face context (unlike when cropping facial features as described 

above). This technique was first introduced by Haig (1985) in which an image 

could be segmented into a square checkerboard, with a select number of squares 

revealed on each trial. This technique was then expanded on in a variant known 

as the Bubbles technique (Gosselin & Schyns, 2001). This principled quantitative 

technique involves sampling an image through Gaussian apertures called 

‘bubbles’. These bubbles are placed in random locations trial by trial, 

approximating a uniform sampling of all image regions across trials. In the case 

of images of faces, using this technique allows different face regions and their 

combinations to be sampled on each trial and can be used to resolve what 

information content from a visual display is diagnostic for e.g. correct 

assignment of an image in a categorisation task.  

The N170 is sensitive to the contralateral eye in 
younger and older adults  

Previous EEG research has suggested that the N170 may be modulated by the eye 

region. However, results have been inconsistent. For example, Bentin et al. 

(1996) suggested that the N170 elicited by isolated images of eyes is larger than 

the N170 elicited by images of whole faces. On the other hand, Eimer (1998) 

suggested no difference in N170 amplitude between faces with and without eyes 

& eyebrows, though found that when the eyes & eyebrows were absent from the 

face the N170 was delayed. Taylor, Itier, Allison, & Edmonds (2001) meanwhile 

found a delayed N170 latency for eyes viewed in isolation compared to full face 

images. It is difficult to draw conclusions about the role of the eyes in 

modulating the N170 when comparing whole face images to cropped images of 

eyes where the face context has been removed. Whilst Eimer (1998) made an 

attempt to preserve the face context in eyeless & eyebrowless faces by only 

removing these features from the face, their stimuli resulted in a salient blank 
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expanse over the region where the eye and eyebrow was removed. In an attempt 

to remove eye information whilst maintaining the face context, Jaworska (2017) 

replaced the eye regions with varying amounts of phase noise. Whilst not 

directly comparing ‘no-eyes’ with full faces images, she suggested that weaker 

eye visibility was associated with small amplitude and delayed latency of the 

N170 compared to trials where eye visibility was greater.  

In a study using the aforementioned bubble technique combined with EEG 

recording, Schyns, Jentzsch, Johnson, Schweinberger, & Gosselin (2003) 

suggested that the N170 amplitude increased with increased presence of the eye 

region in a gender and expressive versus non-expressive categorisation task. 

More recent evidence has also suggested that the N170 is eye-sensitive, as the 

increased presence of the contralateral eye leads to larger and earlier N170s in a 

face versus noise detection task in younger adults (Rousselet, Ince, Rijsbergen, 

& Schyns, 2014). The authors suggest that the presence of the contralateral eye 

was encoded during the rising part of the N170, with maximum sensitivity before 

the N170 peak. Increased visibility of the contralateral eye also decreased N170 

latencies, resulting in increased reaction times. In contrast, the latter part of 

the N170 is sensitive to the transfer of facial features across hemispheres, such 

as the encoding of the other eye from the other hemisphere (Ince et al., 2016). 

Sensitivity to other facial features, such as the mouth, are suggested to follow 

subsequently (M. L. Smith, Gosselin, & Schyns, 2007).  

Rousselet et al. (2014) suggest that N170 sensitivity to contralateral eye visibility 

reflects a bottom-up, data driven model of face processing. However, top-down 

interpretation of a particular configuration of a stimulus as representing the 

eyes may also be an important factor for the N170. The N170 to an ‘isolated 

eyes’ schematic (two dots with no face context) elicited a very similar N170 to 

schematic faces, but only after participants were primed to interpret the stimuli 

as eyes (Bentin & Golland, 2002). This may suggest that whether a particular 

shape or feature is inferred as representing the contralateral eye may be 

important in modulating the N170 component. This has implications for whether 

the presence of a face is first inferred by detecting the contralateral eye, or 

whether inferring the presence of a face then leads to processing of the 

contralateral eye.  
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Secondly, the results of Rousselet et al. (2014) could reflect a generic, non-

feature specific orientating towards the left due to a ‘left gaze bias’. In an 

illusory face detection task during which only noise stimuli were presented, 

Rieth et al. (2011) observed a upper-left bias for face detection. This suggests 

that observers may orientate to this location in an automatic fashion, rather 

than this orientating being driven by the presence of the left eye. We outline 

this argument in more detail in Chapter 2.  

Recently, Jaworska (2017) expanded the results of Rousselet et al. (2014) to 

older adults, showing that older adults processed the same facial features (i.e. 

the eyes) in a face detection task, but that the processing of the eyes is weaker 

and delayed in older adults. When comparing single-trial fluctuation of the N170 

between younger and older adults, it was shown that increased visibility of the 

contralateral eye increased the amplitude on the N170 in younger and older 

adults. There was also a reduction in the lateralisation of the N170 in older 

adults, with eye visibility modulating the N170 in the right hemisphere in young 

but not in older participants.  

Aims of the thesis  

This thesis will address the following questions:  

• Can the N170 contralateral eye sensitivity be understood as arising from a 

general non-feature specific orientating to the left?  

• Is the N170 contralateral eye sensitivity tolerant to changes in stimulus 

size, stimulus set and task demands?  

• Does encoding of the presence of the contralateral eye precede sensitivity 

to another facial feature (the mouth) in a male versus female (GENDER) 

and expressive versus non-expressive (EXNEX) categorisation tasks?  

• Do healthy older adults process the same facial features as younger adults 

and how does the strength and timing of feature sensitivity compare in 

older compared to younger adults? 
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In Chapter 2 we present results from a face versus noise detection task where 

we parametrically manipulated the size of face stimuli to demonstrate that the 

N170 contralateral eye sensitivity results previously reported (e.g. Rousselet et 

al. 2014) cannot be explained as arising from a general non-feature specific 

orientating to the left due to a left gaze bias. In addition, we will demonstrate 

that the N170 contralateral eye sensitivity is tolerant to changes in stimulus size 

for all but very small face images.  

In Chapter 3, we will outline a novel approach, Bubble-Warp (Gill et al., 2015), 

to utilising Gaussian bubbles for faces images in which facial features have not 

been spatially aligned. Using a new stimulus set and Bubble-Warp in Chapter 4 

we will demonstrate that visibility of the contralateral eye and mouth modulates 

single-trial N170 responses in both a GENDER and EXNEX categorisation task in 

younger adult participants. We will also demonstrate that the relative timing of 

onset of sensitivity towards the eyes and mouth is idiosyncratic, with processing 

of the contralateral eye preceding processing of the mouth in only 60 – 70 % of 

participants depending on task.  

In Chapter 5 we quantify age related differences in the timing and strength of 

feature sensitivity in the GENDER and EXNEX categorisation tasks. We will 

demonstrate that older adults rely on the same facial features as younger adults, 

though with increased dependence on visibility of the mouth for resolving the 

EXNEX task. We will demonstrate that eye processing is 20 -23 ms slower in older 

compared to younger adults, whilst mouth processing is not delayed in the 

EXNEX task and only delayed by 9 ms in the GENDER task. We will show that our 

results suggest that feature encoding is not uniformly delayed in ageing and has 

consequences for theories suggesting a general decline in processing speed in 

ageing.  
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Chapter 2 - N170 sensitivity to contralateral eye 
area is scale tolerant  

Introduction 

The N170 ERP is an integrated measure of cortical activity that varies in 

amplitude and latency across trials and is primarily associated with the 

extraction of visual information about faces (and other objects). A larger N170 

amplitude has been observed for faces compared to other objects (see Chapter 

1: Introduction) – an effect which cannot be explained by differences in low 

level visual properties, such as differences in amplitude spectra between object 

categories (Rousselet, Husk, Bennett, & Sekuler, 2008) (despite claims by 

Thierry, Martin, Downing, & Pegna (2007) that the N170 is sensitive to ‘inter-

stimulus perceptual variability’ which they claim is greater for faces than other 

object categories - see Bruno Rossion & Jacques (2008) for a critique).  

Quantification of the coding function of the N170 during face processing has 

shown that the presence of pixels around the eye contralateral to the recording 

electrode modulates single-trial variability in N170 latency and amplitude at 

lateral-occipital electrodes (Rousselet, Ince, van Rijsbergen, & Schyns, 2014). 

This result is consistent with previous studies using a different face set and tasks 

(M. L. Smith, Gosselin, & Schyns, 2004). N170 sensitivity to the contralateral eye 

has been suggested to indicate that the first processing step indexed by the 

N170 is the coding of the contralateral eye area, followed by cross-hemispheric 

transfer of the ipsilateral eye (Ince et al., 2016). Contralateral eye sensitivity is 

particularly strong for right hemisphere lateral-occipital electrodes, where 

visibility of the contralateral left eye modulates N170 latency variability, with 

increased visibility of the left eye resulting in an earlier peak of the N170 (Ince 

et al., 2016). Together, this would suggest that the early part of the N170 

predominantly reflects a feature-specific encoding mechanism i.e. sensitivity to 

the contralateral eye.  

However, alternative explanations for apparent sensitivity to the left 

contralateral eye are possible. Rather than this result indicating a feature-

specific encoding of the left eye, it is possible that sensitivity to this area of the 

image may rather reflect a generic, non-feature specific orientating towards the 
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upper left quadrant of the stimulus space in relation to a fixation cross. Under 

this assumption, previous results could be interpreted as indicating a general 

bias in the allocation of visual attention to an area relative to an experimental 

fixation cross (e.g. the upper left quadrant) and not as reflecting any specific 

feature-related encoding mechanism.  

This alternative explanation has roots in research suggesting that human viewers 

routinely demonstrate a left gaze bias (LGB) i.e. a higher probability of first 

gaze directed at the left hemiface (from the viewers perspective) and/or longer 

looking times towards the left hemiface. LGB occurs when viewing faces, 

regardless of task demand, gender, familiarity or facial expression (Guo, Smith, 

Powell, & Nicholls, 2012) and does not appear to be related to handedness or 

eye dominance (Leonards & Scott-Samuel, 2005), though may be related to 

habitual scanning directions used in language (Heath, Rouhana, & Ghanem, 

2005). LGB is present in 6 month old infants (Guo, Meints, Hall, Hall, & Mills, 

2009), and is not limited to human faces, with human viewers exhibiting a LGB 

towards monkey, dog and cat faces as well (Guo, Tunnicliffe, & Roebuck, 2010). 

Whilst a LGB is stronger for upright faces than inverted faces (Leonards & Scott-

Samuel, 2005), there is evidence of a tendency to inspect the left side of 

inverted faces first (Guo et al., 2009). One potential limitation of LGB research 

is the tendency to present stimuli centrally, with trials beginning with fixation 

on the centre of the face. However, LGB has been demonstrated even when 

faces are presented parafoveally (Hui-Wen Hsiao & Cottrell, 2008), though LGB 

was eliminated when faces were presented to the left of the screen (Luke & 

Pollux, 2016).  

One explanation for LGB during face viewing relies on the assumption of a 

biologically based face asymmetry, in which the left hemiface (from the 

viewers’ perspective) could contain more diagnostic information than the right. 

For example, there may be hemifacial asymmetries in the expression of 

emotion, with greater physical movement of the left than right hemiface 

(Nicholls, Ellis, Clement, & Yoshino, 2004) that affects perceptions of 

trustworthiness  (Okubo, Ishikawa, & Kobayashi, 2018) and the recognition and 

expression of emotions (Nicholls, Ellis, Clement, & Yoshino, 2004). Thus LGB may 

have developed through experience as a behaviourally adaptive, task-driven bias 
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due to greater diagnosticity of the left compared to right hemiface for socially 

relevant tasks. If LGB is task-driven, then changing the cognitive demands of a 

task should result in differential gaze patterns relevant for the task at hand. 

Whilst a LGB has been demonstrated across a range of facial expressions tasks 

(Guo et al., 2012), there are notable changes in whether the LGB is orientated 

to the upper or lower part of the face with changing task demands. For example, 

there is a gaze bias for the upper face during identity tasks and a bias for the 

lower face during expression tasks (Malcolm, Lanyon, Fugard, & Barton, 2008) 

suggesting that LGB may vary with task demand.  

Alternatively, LGB may be a result of cortical lateralisation of ‘face-sensitive’ 

brain regions i.e. the typically larger activation of the right than left hemisphere 

Fusiform Face Area (Kanwisher, McDermott, & Chun, 1997). LGB may arise 

because the left hemiface is projected onto the ‘face-sensitive’ right 

hemisphere and so is automatically attended to more readily than the right 

hemiface (as opposed to the left hemiface being attended to because it provides 

more diagnostic information than the right hemiface). Whilst lateralisation of 

face processing may develop in later childhood and may be linked to reading 

acquisition and the development of left lateralisation for written words  

(Ventura, 2014), there is evidence that a LGB is evident in young children (Guo 

et al., 2009; Racca, Guo, Meints, & Mills, 2012). Unpicking whether LGB is 

consequence of cause of right lateralised face processing areas is yet to be 

elucidated.  

If left eye sensitivity in face detection tasks is due to a generic, automatic 

orientating to the left side of faces, then we would expect this bias to apply to 

other categories of objects as well, potentially including textures. However, 

when comparing faces and textures in a face discrimination task, there was no 

apparent sensitivity to the equivalent location of the left eye on texture trials 

(Rousselet et al., 2014). This has led to the suggestion that, at least in a face 

detection task, left eye sensitivity cannot be accounted for by a general, non-

feature specific bias in the allocation of attention to eye location. However, 

faces are highly symmetric compared to textures. This symmetry could provoke 

a lateralised attentional bias that is specific for symmetric face images and not 

evident in non-symmetrical landscapes or patterns (Leonards & Scott-Samuel, 
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2005) and potentially suggests that LGB may not be provoked by texture images, 

making textures a poor experimental control for understanding if apparent 

contralateral eye sensitivity in face detection tasks is feature specific. An 

alternative approach would be to compare face processing to other more 

symmetrical object categories such as houses or cars, which also elicit a LGB 

(Levine, Banich, & Koch-Weser, 1984). However, images of front-view houses 

and cars may be perceived to be ‘face-like’ due to configural cues, such as 

windows in a house or the headlights of a car being perceived as ‘eye-like’, 

making it difficult to tease apart feature specific left eye sensitivity from a 

general non-feature specific orientation to the left. 

An alternative approach to comparing face processing to textures or other 

objects would be to use images of faces at a range of different sizes. This 

preserves the face symmetry, whilst also introducing spatial uncertainty by 

interleaving face images of different sizes, so that participants cannot use a 

single face template or allocate attention to a very specific area on the screen. 

If participants have a general left gaze bias that is not specific to any particular 

facial feature, participants should attend to a similar area of the stimulus space 

across trials, regardless of the feature present (e.g. if participants always attend 

slightly to the upper left of the fixation cross, this area could display the eye for 

1 face size, but the nose or forehead for faces of other sizes). If however 

participants attend to the left eye due to eye coding being the first step in facial 

processing, then participants should ‘track’ the eye and direct attention to this 

feature, regardless of its relative position to a centrally presented fixation cross. 

If tracking of the eye occurs across varying face sizes, this would suggest that 

left eye sensitivity is feature specific, rather than due to a general orientating to 

the left due to LGB.  

Does changing the size of facial stimuli affect the N170 differentially? This 

question has not been formally investigated in depth in the psychophysics 

literature. One attempt at addressing this question has focused on the ‘vertex 

positive potential’ (VPP) (Jeffreys, 1989). The VPP is a positive peak in the ERP 

time course to face stimuli that occurs around 150-200 ms post stimulus onset on 

midline central and parietal electrodes. The VPP reflects the same brain process 

as the N170, with both components accounted for the same dipole configuration 
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(Joyce & Rossion, 2005). Early work using line drawings of faces has considered 

the effect of stimulus size on the VPP, and has suggested that changes to the 

size of face stimuli produced potentials of similar amplitude, for all but very 

small images where the face was less distinct (Jeffreys, 1989; Jeffreys, 

Tukmachi, & Rockley, 1992).  

However, more recent research using naturalistic photographs of faces has 

suggested that changing face size may modulate the amplitude of the N170, with 

a larger N170 observed for large compared to small high resolution face images, 

but reversed for low resolution images (i.e. larger N170 for smaller than larger 

faces) (Mercure, Dick, Halit, Kaufman, & Johnson, 2008). This may be due to 

changes in the spatial frequency content of the images that occurs when 

modifying stimulus sizes - reducing the size of a stimulus leads to an increase the 

cycle/degree of spatial frequencies due to compression, whilst simultaneously 

reducing cycles/image causing some high spatial frequency details to be lost 

(Mercure et al., 2008). High resolution large images of faces, and low resolution 

small images of faces in the Mercure et al. (2008) study, shared the same spatial 

frequency as measured by cycles/image which may explain the pattern of their 

results.  

In the current experiment, we set out to resolve whether left eye sensitivity can 

be understood by a generic spatial attention to the left, or whether left eye 

sensitivity is feature specific. Participants completed a face versus noise texture 

discrimination task. Images were presented at 4 different sizes (see Figure 1), 

with trial by trial randomisation of image size and category. For face trials, this 

resulted in variation of the distance of the left eye from the central fixation 

cross, increasing spatial uncertainty. As a consequence, participants could not 

use a single specific face-template or allocate attention to a very specific area 

on the screen. If the N170 contralateral eye sensitivity reflects a generic non-

feature specific orientating towards the left, we would expect a systematic left 

bias across face trials, not specific to the eye region. For example, the same 

spatial location would be attended to, regardless of the underlying facial 

features at that location. If however there is a systematic eye-specific feature 

processing, we can expect that (regardless of stimulus size), it is predominantly 

the eye area as a feature that is modulating behaviour and EEG. Our design also 
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allowed us to secondly investigate the previously untested assumption that the 

encoding of the contralateral eye is tolerant to changes in size of the stimulus.  

We will demonstrate that contralateral eye sensitivity is size tolerant and that as 

face size increases, sensitivity is specifically modulated by the pupil/iris of the 

contralateral eye. We will replicate and expand the group results of Rousselet et 

al. (2014) demonstrating the modulation of the N170 in face but not noise trials, 

but we will also demonstrate that at the individual level there is large 

idiosyncrasies in N170 modulation. 

Materials and Methods  

Participants 

The study comprised 6 participants: 4 women, median age = 23 years (min 21, 

max 26). Participants did not report any eye condition, history of mental illness, 

or were currently taking psychotropic medications, suffered from any 

neurological condition, had diabetes, or had suffered a stroke or a serious head 

injury. Volunteers were also excluded from participation if they had not had 

their eyes tested within the last 3 years, in order to minimise the chances that 

volunteers did not know of an underlying eye condition. Participants’ contrast 

sensitivity and visual acuity was assessed in the lab (Table 1). Contrast 

sensitivity was assessed using the Pelli-Robson chart (Pelli & Robson, 1988). 

Visual acuity at 40 cm and 63 cm were assessed using the Colenbrander mixed 

contrast card set (Colenbrander & Fletcher, 2004), and 6 m assessed using the 

Bailey-Lovie Chart (Bailey & Lovie, 1980). All participants had normal or 

corrected-to-normal visual acuity and normal contrast sensitivity of 1.95 log 

units (Mäntyjärvi & Laitinen, 2001). Participants gave informed consent to 

participate in the study and were compensated £6/hr for their participation. The 

experiment was approved by the local ethics committee. 
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 LC 40 HC 40 LC 63 HC 63 LC 600  HC 600 CS 

P1 
95 

[0.10] 
100 

[0.00] 
98 

[0.04] 
104 

[-0.08] 
97 

[0.06] 
105 

[-0.10] 
1.95 

P2 
97 

[0.06] 
105 

[-0.10] 
95 

[0.10] 
107 

[-0.14] 
97 

[0.06] 
105 

[-0.10] 
1.95 

P3 
96 

[0.08] 
105 

[-0.10] 
100 

[0.00] 
103 

[-0.06] 
103 

[-0.06] 
105 

[-0.10] 
1.95 

P4 
94 

[0.12] 
102 

[-0.04] 
100 

[0.00] 
105 

[-0.10] 
100 

[0.00] 
108 

[-0.16] 
1.95 

P5 
103 

[-0.06] 
105 

[-0.10] 
99 

[0.02] 
105 

[-0.10] 
105 

[-0.10] 
110 

[-0.20] 
1.95 

P6 
93 

[0.14] 
104 

[-0.08] 
95 

[0.10] 
105 

[-0.10] 
89 

[0.22] 
96 

[0.08] 
1.95 

        

Table 1: Visual Acuity and Contrast Sensitivity Scores For each of 6 participants 
independently, visual acuity and Contrast sensitivity (CS) scores are given. Visual acuity scores are 
reported for low contrast (LC) and high contrast (HC) charts presented at 40 cm, 63 cm, and 6 m 
viewing distance, expressed as raw visual acuity scores (VAS). The corresponding logMAR scores 
are presented below in italics, where higher values indicate poorer vision and negative values 
represent normal vision (logMAR score of 0 corresponds to 20/20 vision). Contrast Sensitivity (CS) 
scores are expressed in log units. 

Stimuli 

Stimuli were greyscale images of faces and textures (Gold, Bennett, & Sekuler, 

1999). Face stimuli were 10 greyscale images of front-view faces (5 female, 5 

male). Images were cropped within a common oval frame to remove external 

features (hair, ears) and pasted on a uniform grey background (Gold et al., 

1999). Textures were created by randomising the phase of the face images (0% 

phase coherence) (see Rousselet et al. 2014). As a result of phase randomization 

textures lacked the local edge characteristics of faces, so that all face features 

were theoretically diagnostic, i.e. any feature was theoretically sufficient to 

detect faces. This ensured we were not biasing participants to use a particular 

face feature for accurate face detection. All stimuli had an amplitude spectrum 

set to the mean amplitude of all faces.  

Throughout the experiment we used 4 image sizes (Figure 1, Panel A), 

corresponding to an entire image size of 82 x 82 pixels (size 1), 164 x 164 pixels 

(size 2), 247 x 247 pixels (size 3) and 331 x 331 pixels (size 4). This equated to 3, 

6, 9, and 12 degrees of visual angle respectively. The face oval of each image 

size was smaller, equating to 2.1°x1.5° (size 1), 4.3° x 3° (size 2), 6.4° x 4.5° 
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(size 3) and 8.6° x 6° (size 4) of visual angle. Our size 3 variant was closest in 

size to the stimuli used in previous work, in which the face oval was 7.0° x 4.9° 

of visual angle (Rousselet et al., 2014). Each of the face images were presented 

at each of the different image sizes. 

On each trial, stimulus information was revealed through two-dimensional 

Gaussian apertures. Gaussian aperture size was kept constant across all stimulus 

sizes (s.d. = 10) with only the number of apertures varying among stimulus sizes: 

1 aperture for the smallest stimulus size, increasing to 4, 9 and 16 apertures 

respectively as stimulus size increased. The increase in the number of apertures 

with increasing stimulus size ensured that we approximately matched the 

average sampled area of the stimulus across all stimulus sizes (Figure 1, Panel 

B). Gaussian apertures were randomly located across the stimulus space, with 

the constraint that the centre of each aperture was at a unique position and that 

the centre of the aperture remained within the common oval frame. In the rest 

of this chapter we will refer to these masks with Gaussian apertures as ‘bubble 

masks’, and apertures as ‘bubbles’.  



 

         

34 

 

Figure 1: Example face Stimuli. Example stimuli presented without bubbles (Panel A) and with bubbles (Panel B). Faces images consisted of 10 identities (5 female, 
5 male). Images were presented at 4 different images sizes (size 1 = smallest, size 4 = largest). 
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Procedure 

During the experiment participants sat in a sound attenuated booth and rested 

their head on a chin rest. Viewing distance measured from the chin rest to the 

monitor screen was 80 cm.  

Each participant completed 6 experimental sessions, with each session following 

the same procedure. Stimuli were displayed on a Samsung SynchMaster 1100Mb 

monitor (600 x 8000 pixels, height and width: 30 x 40cm, 21 x 27° of visual 

angle, refresh rate: 85 Hz, bits per pixels: 32). Participants were given 

experimental instructions, including a request to minimise eye blinks and body 

movements during each block. Participants were asked on each trial to decide 

whether they had seen a face or noise texture as quickly and as accurately as 

possible; they pressed ‘1’ for a face stimulus and ‘2’ for a texture stimulus on 

the numerical pad of a keyboard, using the index and middle fingers of their 

right hand. At the end of every block they received feedback on their overall 

performance (median reaction time and mean percentage correct), and, after 

Block 1, on their performance overall across all blocks completed thus far on 

that individual experimental session. Median reaction times and mean percent 

correct remained on the screen until participants pressed a key to move on to 

the next block. 

At the beginning of each session, participants completed 1 practice block of 80 

trials with full images (without bubble masks). Participants then performed 14 

blocks of 80 trials per block of bubbled images. Each block consisted of 10 face 

images presented once at each of the 4 stimulus sizes (i.e. 40 face trials) and 10 

texture trials of each of the 4 stimulus sizes (i.e. 40 texture trials). Face and 

noise texture trials and size of stimulus were randomised within each block. 

Each experimental session consisted of 1200 trials in total, including 80 practice 

trials and 1120 experimental bubbled trials. In each session participants 

completed 140 face and 140 texture trials of each stimulus size. Across the 6 

experimental sessions participants completed 480 practice trials without bubble 

masks and 6720 experimental trials with bubble masks, consisting of 840 face 

trials and 840 texture trials at each of the four stimulus sizes.  
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Each trial began with a small black fixation cross displayed at the centre of the 

monitor for a random time interval of about 500-1000 ms. This was followed by 

either a face or noise texture image presented for ~ 82 ms. A blank grey screen 

followed the stimulus presentation and remained until the participant’s 

response. Participants were required to make a response before the next trial 

began. After a response there was an inter-trial stimulus interval of 800 ms 

before the next trial began. The fixation cross, stimulus, and blank response 

screen were all displayed on a uniform grey background with mean luminance 43 

cd/m2.  

EEG Recording and Pre-Processing 

EEG data were recorded at 512 Hz using an active electrode amplifier system 

(BIOSEMI, Amsterdam, the Netherlands) with 128 electrodes mounted on an 

elastic cap. Four additional flat electrodes were placed on the outer canthi and 

below each of the eyes. Electrode offsets were kept between ±20 µV. 

EEG data were pre-processed using Matlab 2013b and the open-source toolbox 

EEGLAB version 13. Data were band-pass filtered between 1 Hz and 40 Hz using a 

non-causal fourth order Butterworth filter. A second dataset was created by pre-

processing data with a fourth order Butterworth filter – high-pass causal filter at 

1 Hz and low-pass non-causal filter at 40 Hz. Data was then re-sampled to 500 

Hz.  

Data from the two datasets were epoched between -300 to 1000 ms around 

stimulus onset. Baseline correction was performed using the average activity 

between -300 to 0 ms only for the high-pass causal filter data set. For the non-

causal filtered dataset, the channel mean was removed from each channel 

instead.  

Noisy electrodes and trials were then detected by visual inspection of the non-

causal dataset and rejected from the two datasets on a participant-by-

participant basis. The reduction of blink and eye-movement artefacts was 

performed using ICA, as implemented in the infomax algorithm from EEGLAB. 

ICA was performed on the non-causal filtered dataset, and then applied to the 

causal filtered dataset on a participant-by-participant basis, in order to remove 
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the same components from both datasets. Components representing blinks and 

eye-movements were identified by visual inspection of their topographies, time-

courses and amplitude spectrum. After rejection of artefactual components, 

data epochs were removed based on an absolute threshold value larger than 100 

µV and the presence of a linear trend with an absolute slope larger than 75 µV 

per epoch and R² larger than 0.3.  

Finally, we calculated spherical spline current source density (CSD) waveforms 

using the CSD toolbox. CSD waveforms were computed using parameters 50 

iterations, m=4, lambda =10-5. 

Electrode Selection 

Detailed analyses were performed on a subset of electrodes. We pre-specified 

three clusters of posterior electrodes at the left, midline and right hemisphere 

(Figure 2). Our central posterior electrode cluster (CE) comprised 11 electrodes 

from Cz down the vertical midline, including CPz, Pz, POZ and Oz. Our left 

poster electrode cluster (LE) comprised 19 electrodes including P07 and its 

neighbouring electrodes. Our right posterior electrode cluster (RE) comprised 19 

electrodes, including PO8 and its neighbouring electrodes.  

 

Figure 2: Electrode Selection for analysis consisted of three clusters of electrodes. A posterior 
right electrode cluster (RE) consisted of 19 electrodes including PO8 (shown in blue). A posterior 
left electrode cluster (LE) consisted of 19 electrodes including PO7 (shown in green). A midline 
electrode cluster consisted of 7 electrodes including Pz and Oz (shown in red). Image reproduced 
from Jaworska (2017). 
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Statistical Analyses 

Statistical analyses were conducted using Matlab 2013b.  

Mutual Information 

We used Mutual Information (Thomas & Joy, 2006) to quantify the dependence 

between stimulus features and behavioural responses, and stimulus features and 

brain responses. Mutual Information (MI) is a non-parametric measure that 

quantifies (in bits) the difference in entropies and reduction in uncertainty 

about one variable after observation of another (i.e. sampled pixels and 

behaviour; sampled pixels and brain signal responses). One of the benefits of 

using MI is that it is a direct measure of effect size on a common meaningful 

scale, and as such direct comparisons across neural responses can be made. MI 

can be used to study the selectivity of neural and behavioural responses to 

external stimuli in single trials and is sensitive to non-linear effects (Schultz, 

Ince, & Panzeri, 2015). Several tools for computing MI are available through an 

open source toolboxes, including the ‘gcmi’ (Gaussian copula mutual 

information) toolbox (Ince et al., 2017) used for analysis described in this thesis 

(https://github.com/robince).  

We calculated several MI quantities in single participants. For each MI 

calculation, we combined data from each of the 6 experimental sessions. For 

face and texture trials independently, we calculated for each of four stimulus 

sizes:  

• MI(PIX,RT) to establish the relationship between image pixels and 

reaction times for faces and textures at each image size. We copula 

normalised RT’s using the copnorm function. We then computed MI using 

the info_gg function to calculate MI between Gaussian copula normalised 

RTs and Gaussian bubble mask values. MI was calculated with bias 

correction for the entropy of Gaussian variables  (Ince, Giordano, et al., 

2016; Ince, Petersen, Swan, & Panzeri, 2009). 

• MI(PIX, CORRECT) to establish the relationship between image pixels and 

correct responses for faces and textures at each image size. We computed 
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MI using the info_gd function to calculate MI between discrete responses 

(correct versus incorrect) and Gaussian bubble mask values.  

• MI(PIX, [ERP, grad]) to establish the relationship between image pixels 

and ERPs. We calculated bivariate MI, which considers the recorded 

voltage at each time point together with the temporal gradient of the 

ERP. Including the temporal gradient results in a smoothing effect, where 

artificial dips in MI due to the bimodal ERP crossing the zero line are 

smoothed out (Ince et al., 2016). We copula normalised ERPs using the 

copnorm function and computed MI using the info_gg function to calculate 

MI between Gaussian copular normalised ERP and ERP gradient, and 

Gaussian bubble mask values. MI analysis was computed between -300 ms 

pre-stimulus onset to 400 ms post stimulus onset. We calculated MI 

independently at each time point, pixel and electrode, for each 

participant and image size using the non-causal dataset.  

Mutual Information Classification Images 

We refer to MI between pixels and behaviour, or pixels and ERPs as 

‘classification images’. These images reveal the pixels associated with 

modulations of the particular response being calculated. 

Mutual Information Timecourses 

We calculated how MI values between pixels and brain responses were 

modulated over time. For each of three pre-specified posterior electrode 

clusters (LE, RE, CE), for each participant, we took the maximum MI value across 

all pixels and electrodes within each cluster for each time point between -300 

ms pre- stimulus onset to 400 ms post stimulus onset.  

Feature of Interest Analysis 

MI is directionless, in that higher mutual information values can reflect either 

the presence or the absence of a feature in modulating responses. Using a 

reverse analysis, we quantified by how much changing the amount of 

information about the presence of specific image features (e.g. the left and 

right eye) modulated brain responses. To this end, we created ‘feature of 
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interest’ masks for the left and right eye using the average image of all face 

stimuli. We created the masks by taking the classification image of the group 

averaged MI(PIX, [ERP, grad]) to face trials for the largest (i.e. Size 4) faces. 

Then, for the right and left eye separately, we centred a circle (radius = 15 

pixels) on the pixel that showed the maximum MI value for each eye at the group 

level. The same mask was used for each stimulus size, scaled appropriately 

(Figure 3).  

 

Figure 3: Feature of interest masks  We created feature of interest masks using the average of 
all face stimuli (background face) for the contralateral left and right eye by centring an ellipse 
(radius = 15 pixels) on the pixel with the group averaged maximum MI value for each eye 
independently.  

Using the feature of interest masks, we calculated on a trial-by-trial basis the 

visibility of each eye independently; obtained as a scalar value of the sum of the 

total pixel visibility within the ellipse of each feature of interest mask (each 

pixel had a visibility value between 0 – not visible to 1 – completely visible). We 

then split these visibility values into ten equally populated bins ranging from the 

lowest (bin 1) to the highest (bin 10) visibility values. We used these feature 

visibility bins to compare how the degree of feature visibility modulated ERP 

responses to face and noise trials.  

To quantify the effect that visibility of each feature had on brain responses, we 

selected a single electrode of interest from the LE, CE and RE clusters. We 

optimised electrode selection for each individual for each image size, by 

selecting the electrode from each cluster that had the maximum MI value 

between pixels and ERP and ERP gradient (MI(PIX,[ERP, grad])) to face trials 

within the time window of 80 – 180 ms post-stimulus onset. Selected LE 
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electrodes were P7/PO7 or their surrounding neighbours. Selected RE electrodes 

were P8/PO8 or their surrounding neighbours.  

To compare how feature visibility modulated average ERP waveforms, for each 

electrode of interest we sorted single trial ERP’s for each image size into 10 

equally populated bins based on a scalar value of the sum of the pixel visibility 

within the ellipse of each feature of interest mask, ranging from the lowest (bin 

1) to the highest (bin 10) visibility values. For each bin, we averaged ERPs across 

all trials. 

Results 

Behavioural Results 

Behavioural results are given here for trials with bubble masks, unless otherwise 

stated. Practice trials presented without bubble masks revealed the whole face 

image and were used to familiarise participants with the task. We found high 

levels of accuracy and speed across all image sizes for all participants, with both 

accuracy and reaction times being predominantly modulated by visibility of the 

left eye.  

Reaction Times and Percentage Correct 

For each image type (face or texture) and each image size (size 1 = smallest, 

size 4 = largest) we calculated the mean percentage correct and median 

reaction time for each participant (Table 2; Figure 4).  

Participants were generally more accurate and faster in correctly detecting the 

presence of a face for sizes 2-4 relative to accuracy for size 1, the smallest 

faces. This may be due to a response bias towards textures that is particularly 

evident for the smallest faces. A bias towards textures for the smallest faces 

could reflect participants missing the presentation of the stimulus for example 

due to the size of the stimulus, or be a consequence of the smallest faces being 

revealed by a single bubble, where there is only a single area of the image 

revealed. This may be comparatively more difficult, as if a salient facial feature 

such as an eye, nose or mouth is not revealed by the bubble, participants may 

report detecting a texture only, whereas with the larger face sizes multiple 
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bubbles are used, so several areas of the image are revealed, any one of which 

may reveal a salient facial feature for accurate face detection.  

  Participant Size 1 Size 2 Size 3 Size 4 
A
cc

ur
ac

y 
(%

) 

Fa
ce

 

P1 
P2 
P3 
P4 
P5 
P6 

71 
81 
66 
83 
79 
88 

92 
96 
78 
94 
96 
94 

98 
94 
81 
93 
99 
94 

96 
96 
77 
94 
98 
97 

T
ex

tu
re

  P1 
P2 
P3 
P4 
P5 
P6 

98 
89 
98 
87 
96 
98 

96 
95 
99 
91 
99 
95 

98 
93 
100 
98 
99 
99 

98 
96 
100 
97 
99 
98 

R
ea

ct
io

n 
ti

m
e 

(m
s)

 

Fa
ce

 

P1 
P2 
P3 
P4 
P5 
P6 

457 
348 
425 
366 
441 
371 

409 
303 
422 
339 
397 
335 

405 
300 
406 
329 
375 
330 

415 
295 
414 
320 
379 
324 

T
ex

tu
re

  P1 
P2 
P3 
P4 
P5 
P6 

468 
360 
356 
389 
415 
361 

422 
359 
324 
362 
402 
346 

456 
340 
312 
344 
398 
350 

467 
333 
307 
347 
392 
333 

       

Table 2: Behavioural results Behavioural results (mean accuracy and median reaction times) are 
given at each image size (size1 = smallest, size 4 = largest) and each participant separately, for 
face and textures.    

 

Figure 4: Behavioural Results.  Behavioural results for face trials (left) and texture trials (right) for 
four stimulus sizes. Accuracy (top row) is given in percentage points (0-1). Reaction times (bottom 
row) are given in ms. Each line represents an individual participant. 
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Behavioural MI Classification Images 

To determine what image features are associated with behavioural responses, 

we looked at mutual information between pixels and reaction times, MI(PIX, RT), 

and pixels and correct/incorrect responses, MI(PIX, CORRECT).  

Individual classification images for MI(PIX, RT) are presented in Figure 5. In 

general, visibility of the left eye (and occasionally the right eye) modulated 

reaction times across all images sizes and participants, for face but not texture 

trials. In texture trials, there was some sensitivity to the edge of the face oval, 

which may be due to a visible edge between the face oval texture and 

background texture being salient.  

For size 3 images (closest in size to stimuli used in Rousselet et al. 2014) all 

participants showed sensitivity to the left eye (from the viewers perspective) on 

face but not texture trials. This is consistent with the findings of Rousselet et al. 

(2014).  

For larger (size 4) faces all participants showed sensitivity to the left eye in face 

but not texture trials (though MI is weaker for some participants than for size 3 

faces). Additionally, 3/6 participants showed clear sensitivity to the right eye for 

large faces, which for participant P5 was stronger than MI values to the left eye. 

Compared to size 3 faces, the eye hotspot shrinks to a more concentrated area 

around the iris/pupil. This may be due to the relative size of the bubble 

compared to the size of the image. With a comparatively smaller bubble size 

compared to image size, it is possible to see more fine-tuned sensitivity to the 

eye, with a less distributed MI cluster around the eye than in size 3 faces.  

For smaller size 2 and size 1 faces, we again see sensitivity to the left eye in 

face but not texture trials. With reduced stimulus size, the hotspot around the 

eye is more distributed, with a large spread of MI values around the eye region 

due to the bubble to image size ratio. This is particularly the case for our 

smallest faces, where the hotspot covers a large region around the left eye and 

expanding to the nose, with the hotspot drifting away from the pupil. Higher MI 

values around the edge of the face oval in texture trials across all image sizes 
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could be a low level edge detection effect, as there is a visible edge between 

the face oval texture and background texture. 

The relative width and spread of the hotspot demonstrated on each image size 

may be an effect of the comparative bubble size for each image. We maintained 

the same bubble size across images, meaning that for large images a single 

bubble revealed a much smaller portion of the image than a single bubble 

revealed for the smallest faces. To demonstrate what facial features were 

revealed by a single bubble for each image size, for each participant and 

stimulus size we centred a single bubble on the pixel showing the maximum MI 

value in face trials (Figure 6). As image size increases, the bubble shrinks to be 

centred upon the pupil/iris area for all participants. For the smallest faces, our 

MI hotspot drifted towards the centre of the face, rather than being centred on 

the pupil. This may be a result of the ratio between the size of the bubble and 

the size of the image, as centring a single bubble on pixels more towards the 

centre of the face revealed the right eye and nose, in addition to the left eye. 

Higher overall MI values for the smallest faces may be a consequence of having a 

single area of the face sampled, rather than more distributed sampling of the 

face as in the largest face trials, where bubbles may not reveal concurrent areas 

(see Figure 2). 
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Figure 5: Mutual Information Reaction Time classification images We calculated MI(pix, RT) for each of 6 participants for face and noise textures at each image 
size (size 1 = smallest, size 4 = largest). We scaled classification images independently for each participant, depicted by the colour bar for each participant. 
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Figure 6: Information associated with speed of response For each of 6 participants and 4 
image sizes, we placed a single bubble on the pixel with the highest MI value in face trials as 
calculated in Figure 5. This reveals the facial features that are revealed by a single bubble, and 
highlights the increased specificity on the iris/pupil area with increasing stimulus size. For the 
smallest images where the highest MI pixel was often close to the nose, a hotspot centred on this 
location still revealed information about one or both eyes for all participants.   

For individual classification images for MI(PIX, CORRECT) we found weaker 

sensitivity to the left eye for size 2 – 4 faces (Figure 7). This is similar to the 

pattern of results observed by Rousselet et al. (2014) who reported sensitivity to 

the left eye for MI (PIX, CORRECT) for only a few participants. In our results, 

Participant 4 had the clearest example of sensitivity to the left eye, which 

similar to MI(PIX, RT) shrank to the pupil/iris area with increasing image size. 

For sizes 2 - 4, we observed no sensitivity to any single area in texture trials.  

We found the strongest MI values between pixels and correct responses in trials 

where the smallest (size 1) faces were presented. The location of these hotspots 

varied among participants, with 4 participants displaying a hot spot towards the 

left eye/nose area, whereas 1 participant (P2) had the strongest MI for the 
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forehead and P4 had the strongest MI for an area of the right cheek. A hotspot 

centred to the left of the nose and below the eye is comparable to the point of 

first gaze location for face identification identified in some studies (Or, 

Peterson, & Eckstein, 2015; Peterson & Eckstein, 2013). One explanation for 

these differences in optimal performance fixation points on the face is individual 

differences in degradation of contrast sensitivity in the periphery (Peterson & 

Eckstein, 2013), wherein some individuals may have poorer visibility in upper or 

lower peripheral vision. For very small (size 1) faces, the ratio between our 

bubble size and image size may have resulted in bubbles whose centres fell 

below the left eye to be optimal for processing information about the eye in 

viewers with better upper than lower peripheral vision for example.  

For each participant and stimulus size, we centred a single bubble on the pixel 

showing the maximum MI value in face trials (Figure 8). As image size increases, 

the bubble shrinks to be centred upon the pupil/iris area for most, but not all 

participants. For the smallest faces, our MI hotspot drifted towards the centre of 

the face, rather than being centred on the pupil. This may be a result of the 

ratio between the size of the bubble and the size of the image, as centring a 

single bubble on pixels more towards the centre of the face revealed the right 

eye and nose, in addition to the left eye. Higher overall MI values for the 

smallest faces may be a consequence of having a single area of the face 

sampled, rather than more distributed sampling of the face as in the largest face 

trials, where bubbles may not reveal concurrent areas (see Figure 8).  
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Figure 7: Mutual Information Percentage correct classification images We calculated MI(pix, CORR) for each participant (N = 6) for face and noise textures at 
each image size (size 1 = smallest, size 4 = largest). We scaled classification images independently for each participant, depicted by the colour bar for each 
participant.
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Figure 8: Information associated with correct responses. For each of 6 participants and 4 
image sizes, we placed a single bubble on the pixel with the highest MI value in face trials as 
calculated in Figure 7. This reveals the facial features that are revealed by a single bubble, and 
highlights the increased specificity on the iris/pupil area with increasing stimulus size (for most 
participants). For the smallest images where the highest MI pixel was predominantly close to the 
nose, a hotspot centred on this location still revealed information about one or both eyes for all 
participants but P2.   

In summary, we replicated the results of Rousselet et al. (2014) for size 3 faces 

(most comparable to the stimulus size in their experiment) finding strong left 

eye sensitivity in all participants for reaction times for face but not texture 

trials. Whilst most participants’ accuracy was modulated by the left eye region 

for most image sizes, this association was weaker than for reaction times and 

more variable across participants and sizes. We found no comparable sensitivity 

to any single area for texture trials.  

With increasing stimulus size, we found a shrinking hotspot of sensitivity 

between pixels and reaction times revealing sensitivity to the left (and for some 

participants also the right) iris/pupil area. For small faces the hotspot was larger 

covering a wide area around the left of the nose and left eye for both reaction 
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times and accuracy, which may reflect individual differences in optimal viewing 

patterns i.e. a bubble located centrally on small faces offered visibility of both 

eyes simultaneously.   

ERP Results  

We have seen that for all but the smallest images of faces, the left eye region 

modulated reaction times and correct responses, a pattern not identified in 

texture trials. As with previous research, this suggests that the left contralateral 

eye region modulates behavioural responses for face but not texture trials. This 

supports the suggestion from Rousselet et al. (2014) that behavioural modulation 

by visibility of the eye region is not due to retinal bias or attention to the eye 

region, as eye modulation effects were not present in texture trials. In addition, 

these effects were not specific to one image size, but were apparent for images 

presented at a variety of sizes, suggesting that this reflects a general processing 

mechanism used during face detection tasks that is tolerant to changes, at the 

very least, in face size. 

Next, we will consider ERP results. We predicted that we would replicate the 

results of Rousselet et al. (2014), with maximum MI at left and right lateral 

occipital electrodes for contralateral eye sensitivity in face but not texture 

trials, and that this pattern of results would be apparent regardless of image 

size.  

We calculated for every participant for every size separately, the maximum MI 

at each time point and electrode between pixels and brain responses for every 

electrode in the right and left hemisphere cluster from –300 ms pre-stimulus 

onset to 400 ms post stimulus onset. We also computed corresponding 

classification images displaying the maximum MI across all electrodes for each 

hemisphere across all time points. We present results for face (Figure 9) and 

texture (Figure 10) trials separately.  

As predicted we found contralateral eye sensitivity for all faces sizes, though 

this sensitivity was less lateralised and sensitivity was more central for the 

smallest faces. We found no corresponding sensitivity to the eye region in 

texture trials in larger textures, though we did find a dispersed sensitivity in the 
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smallest texture trials. This sensitivity may be explained by increased sensitivity 

to the absence of facial features in texture trials. In the smallest textures the 

bubble revealed an uninterrupted view of a large portion of the stimulus. In 

larger textures, identifying the absence of visible face features, particularly the 

absence of an eye, nose or mouth would require integration of information 

across several occluders (bubbles) in all but the smallest textures, where the 

absence of these features would be more readily apparent.  

For face trials (Figure 9) maximum MI values were similar for P1-3 between the 

two hemispheres, and MI was stronger for the right than left hemisphere for P4-

6.  As with our behavioural results, as image size increased, the MI hotspot 

shrank to an area consisting of the contralateral pupil/iris area, coupled with a 

reduction in the strength of MI for most participants. For some participants and 

face sizes a second later peak is evident, potentially indicating later MI 

sensitivity to the integration of information across multiple bubble occluders.  

For very small (size 1) faces however laterality is reduced, particularly for the 

left hemisphere where the hotspot is shifted towards the middle of the nose 

rather than the contralateral (right) eye area. Whilst our results for size 2-4 

faces are in line with the results of Rousselet et al. (2014), finding maximum MI 

at the left and right lateral occipital electrodes for contralateral eye sensitivity 

in face trials, this result does not hold well for very small faces.  

For texture trials (Figure 10) MI values were weaker for all participants and all 

image sizes. The strongest MI values remained for the smallest (size 1) textures, 

whilst MI timecourses to the largest size 3 and 4 textures was predominantly 

flat. Unlike in face trials, there was no hotspot around the pixels corresponding 

to the iris/pupil for size 2-4 textures – though P1 and P3 had some sensitivity to 

the area corresponding to the eyebrow for size 2 textures only.  

For the smallest textures, some participants demonstrated sensitivity to the area 

corresponding to the eye (see P1 & P3). This sensitivity was weaker, less eye 

centred and more spread out, and less lateralised then that seen in faces trials. 

This pattern of results may be explained by increased sensitivity to the absence 

of facial features in texture trials when the texture images were small and 

occluded by a single bubble.  
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Figure 9: Face MI Timecourse.  For each participant (P1-6) and 4 images sizes (different 
coloured lines), the maximum MI was calculated independently for the left (left column) and right 
(right column) electrode clusters. Classification images were scaled independently for each 
participant, and represent the maximum MI at each pixel across all electrodes and time points. 
Small numbers in the upper right corner of each figure denote the maximum MI value the 
classification image colour map is scaled to for each participant independently.   
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Figure 10: Texture MI Timecourse.  For each participant (P1-6) and 4 images sizes (different 
coloured lines), the maximum MI was calculated independently for the left (left column) and right 
(right column) electrode clusters. Classification images were scaled independently for each 
participant, and represent the maximum MI at each pixel across all electrodes and time points. 
Small numbers in the upper right corner of each figure denote the maximum MI value the 
classification image colour map is scaled to for each participant independently.   
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ERPs by Feature Visibility  

We have seen that the presence of the left eye modulated reaction times and 

accuracy for most participants in face but not texture trials at all stimulus sizes. 

We have also seen that posterior lateral brain signals are modulated by the 

contralateral eye region, at least in larger faces.  

MI does not reveal how the shapes of the ERPs are affected by the presence or 

absence of the left and right eye. Using a reverse analysis in which the face was 

split into 16 horizontal bands, Rousselet et al. (2014) demonstrated that 

increased visibility of the band which included the eyes modulated ERPs for face 

but not noise trials. For face trials, the N170 at both left and right posterior 

lateral electrodes was larger and shifted towards the left (i.e. earlier peak 

latency) as visibility of the eye band increased. We anticipated that we would 

replicate these results, finding that increased visibility of the eye region would 

modulate ERPs in face but not texture trials.  

To establish how visibility of the left and right eye regions affected the shape of 

our ERPs in face and texture trials we conducted a reverse analysis isolating the 

specific EEG modulations associated with the presence of the eye region. Using 

the feature of interest masks (see Feature of Interest Analysis) we calculated 

independently for each participant and image size, the visibility of each eye 

region on a trial-by-trial basis, obtained as a scalar value of the sum of pixel 

visibility within the ellipse of each eye mask. We then split these visibility values 

into ten equally populated bins ranging from the lowest (bin 1) to the highest 

(bin 10) values. We then sorted single trial ERPs into 10 bins, based on the eye 

region visibility in each trial. For face trials, this resulted in ERPs being binned 

based on visibility of the eye. For texture trials, this resulted in ERPs being 

binned based on visibility of texture in the areas corresponding to the eye on 

face trials. We present averaged ERPs within each bin for each image size for 

each participant independently, for face (Figure 11 - Figure 16) and texture 

(Figure 17 - Figure 22) trials.  

For face trials, increased visibility of the contralateral eye region resulted in 

larger N170s and a leftward (i.e. earlier peak latency) shift for both the left and 

right electrode for all participants and image sizes (except P2, size 4, left 
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electrode where modulation was less clear). ERPs to the smallest (size 1) faces 

were typically of a smaller amplitude and delayed compared to larger face sizes. 

A delayed and reduced VPP for smaller faces was also identified by Jeffreys 

(1989).  

In texture trials, increased visibility of the area corresponding to the 

contralateral eye on face trials also modulated the amplitude and latency of 

ERPs for some participants (e.g. see Figure 21). Increased texture visibility in the 

eye area may drive this response due to the presence of structured, high 

contrast elements in the eye area. An N170 response to noise stimuli has 

previously been documented in some participants (Rousselet et al., 2009).  

Our results from face trials are consistent with those reported by Rousselet et 

al. (2014) demonstrating that increased visibility of the contralateral eye region 

modulates single-trial ERPs in face trials for all images sizes. Whilst we found 

modulation for the smallest faces, this was less lateralised in some participants’ 

and the N170 was generally diminished.  

Unlike Rousselet et al. (2014) we did observe modulation of ERPs in texture trials 

in some individuals. This modulation differed between participants, i.e. in some 

participants increased visibility of the area corresponding to the eye region 

increased amplitudes and latencies, whilst in other participants the opposite 

pattern was identified. However,  Rousselet et al. (2014) only present group-

averaged ERP time courses (calculated across 16 subjects). When calculating 

mean ERPs for each bin across the 6 subjects in our experiment (see 

Supplementary 1- Supplementary 2), our results are similar to Rousselet et al. 

(2014) for image size 3 - the closest in size to the images used in Rousselet et al. 

(2014) - in that we found no modulation in texture trials with increased visibility 

of the area corresponding to the eye in face trials. We also find no modulation 

for the largest (size 4) textures, though we did still find evidence of modulation 

in size 2 textures (increase in amplitude and earlier N170 with increased 

visibility). For the smallest textures (size 1) we find a flat early time course with 

little evidence of an N170, though there may be modulation later in the ERP 

time course. This suggests there are individual idiosyncrasies in ERP responses to 

increased visibility of texture information in the areas corresponding to the eye 

in face trials that are masked by group-average ERP analysis.  
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Figure 11: ERP modulation by feature visibility on face trials (P1). Average ERPs during face 
trials at the left and right hemisphere electrodes (left and right columns), grouped by the amount of 
visibility of the contralateral eye (highlighted by the red ellipse). ERPs were separated into 10 bins 
based on the degree of visibility of the contralateral eye region, from the least visible (bin 1) to the 
most visible (bin 10) trials. ERP modulations are presented separately for each image size, from 
size 1 (smallest faces) to size 4 (largest faces).  
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Figure 12: ERP modulation by feature visibility on face trials (P2). Average ERPs during face 
trials at the left and right hemisphere electrodes (left and right columns), grouped by the amount of 
visibility of the contralateral eye (highlighted by the red ellipse). ERPs were separated into 10 bins 
based on the degree of visibility of the contralateral eye region, from the least visible (bin 1) to the 
most visible (bin 10) trials. ERP modulations are presented separately for each image size, from 
size 1 (smallest faces) to size 4 (largest faces). 
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Figure 13: ERP modulation by feature visibility on face trials (P3). Average ERPs during face 
trials at the left and right hemisphere electrodes (left and right columns), grouped by the amount of 
visibility of the contralateral eye (highlighted by the red ellipse). ERPs were separated into 10 bins 
based on the degree of visibility of the contralateral eye region, from the least visible (bin 1) to the 
most visible (bin 10) trials. ERP modulations are presented separately for each image size, from 
size 1 (smallest faces) to size 4 (largest faces). 
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Figure 14: ERP modulation by feature visibility on face trials (P4). Average ERPs during face 
trials at the left and right hemisphere electrodes (left and right columns), grouped by the amount of 
visibility of the contralateral eye (highlighted by the red ellipse). ERPs were separated into 10 bins 
based on the degree of visibility of the contralateral eye region, from the least visible (bin 1) to the 
most visible (bin 10) trials. ERP modulations are presented separately for each image size, from 
size 1 (smallest faces) to size 4 (largest faces).  
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Figure 15: ERP modulation by feature visibility on face trials (P5). Average ERPs during face 
trials at the left and right hemisphere electrodes (left and right columns), grouped by the amount of 
visibility of the contralateral eye (highlighted by the red ellipse). ERPs were separated into 10 bins 
based on the degree of visibility of the contralateral eye region, from the least visible (bin 1) to the 
most visible (bin 10) trials. ERP modulations are presented separately for each image size, from 
size 1 (smallest faces) to size 4 (largest faces).  
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Figure 16: ERP modulation by feature visibility on face trials (P6). Average ERPs during face 
trials at the left and right hemisphere electrodes (left and right columns), grouped by the amount of 
visibility of the contralateral eye (highlighted by the red ellipse). ERPs were separated into 10 bins 
based on the degree of visibility of the contralateral eye region, from the least visible (bin 1) to the 
most visible (bin 10) trials. ERP modulations are presented separately for each image size, from 
size 1 (smallest faces) to size 4 (largest faces).  
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Figure 17: ERP modulation by feature visibility on texture trials (P1). Average ERPs during 
noise trials at the left and right hemisphere electrodes (left and right columns), grouped by the 
amount of visibility of the area corresponding to the contralateral eye region on face trials 
(highlighted by the red ellipse). ERPs were separated into 10 bins based on the degree of visibility 
of the area corresponding to the contralateral eye region on face trials,, from the least visible (bin 1) 
to the most visible (bin 10) trials. ERP modulations are presented separately for each image size, 
from size 1 (smallest textures) to size 4 (largest textures).  
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Figure 18: ERP modulation by feature visibility on texture trials (P2). Average ERPs during 
noise trials at the left and right hemisphere electrodes (left and right columns), grouped by the 
amount of visibility of the area corresponding to the contralateral eye region on face trials 
(highlighted by the red ellipse). ERPs were separated into 10 bins based on the degree of visibility 
of the area corresponding to the contralateral eye region on face trials,, from the least visible (bin 1) 
to the most visible (bin 10) trials. ERP modulations are presented separately for each image size, 
from size 1 (smallest textures) to size 4 (largest textures).  
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Figure 19: ERP modulation by feature visibility on texture trials (P3). Average ERPs during 
noise trials at the left and right hemisphere electrodes (left and right columns), grouped by the 
amount of visibility of the area corresponding to the contralateral eye region on face trials 
(highlighted by the red ellipse). ERPs were separated into 10 bins based on the degree of visibility 
of the area corresponding to the contralateral eye region on face trials,, from the least visible (bin 1) 
to the most visible (bin 10) trials. ERP modulations are presented separately for each image size, 
from size 1 (smallest textures) to size 4 (largest textures).  
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Figure 20: ERP modulation by feature visibility on texture trials (P4). Average ERPs during 
noise trials at the left and right hemisphere electrodes (left and right columns), grouped by the 
amount of visibility of the area corresponding to the contralateral eye region on face trials 
(highlighted by the red ellipse). ERPs were separated into 10 bins based on the degree of visibility 
of the area corresponding to the contralateral eye region on face trials,, from the least visible (bin 1) 
to the most visible (bin 10) trials. ERP modulations are presented separately for each image size, 
from size 1 (smallest textures) to size 4 (largest textures). 
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Figure 21: ERP modulation by feature visibility on texture trials (P5). Average ERPs during 
noise trials at the left and right hemisphere electrodes (left and right columns), grouped by the 
amount of visibility of the area corresponding to the contralateral eye region on face trials 
(highlighted by the red ellipse). ERPs were separated into 10 bins based on the degree of visibility 
of the area corresponding to the contralateral eye region on face trials,, from the least visible (bin 1) 
to the most visible (bin 10) trials. ERP modulations are presented separately for each image size, 
from size 1 (smallest textures) to size 4 (largest textures).  
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Figure 22: ERP modulation by feature visibility on texture trials (P6). Average ERPs during 
noise trials at the left and right hemisphere electrodes (left and right columns), grouped by the 
amount of visibility of the area corresponding to the contralateral eye region on face trials 
(highlighted by the red ellipse). ERPs were separated into 10 bins based on the degree of visibility 
of the area corresponding to the contralateral eye region on face trials,, from the least visible (bin 1) 
to the most visible (bin 10) trials. ERP modulations are presented separately for each image size, 
from size 1 (smallest textures) to size 4 (largest textures). 
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Discussion 

Previous work (Rousselet et al., 2014) has suggested that the N170 

predominantly reflects the encoding of the contralateral eye in face detection 

tasks, and is not due to retinal bias or allocation of attention to the eye area of 

the face. In the current experiment using a range of image sizes, we have 

established that the N170 sensitivity to the contralateral eye area is scale 

tolerant though less lateralised for very small faces, and cannot purely be 

explained as a non-feature specific allocation of attention to the left of a 

central fixation cross. 

In the current study we found that participants’ reaction times and accuracy in a 

face versus texture detection task were modulated by the amount of visibility of 

the left eye in face but not texture trials. We also found brain activity was 

modulated by the visibility of the contralateral eye for all face sizes, though 

contralateral eye sensitivity was less lateralised for very small (3 degrees of 

visual angle) faces. With increasing stimulus size, we found a shrinking hotspot 

of association between pixels and behavioural responses and pixels and brain 

responses revealing sensitivity to the iris/pupil area.  

Can these results be explained by a left gaze bias? In texture trials, behavioural 

classification images did not indicate any significant association between pixels 

and behavioural responses. This suggests that participants did not rely on any 

one particular area more than another area in identifying texture trials and goes 

against the explanation of a left gaze bias. Whilst in our experiment changing 

the stimulus size systematically shifted the eye regions increasingly higher and 

into the periphery compared to the central fixation cross, Yi (2018) has recently 

also demonstrated consistent contralateral eye sensitivity to faces that have 

been vertically aligned so as to present the eyes either above, below or in line 

with a central fixation cross. Yi's (2018) results also point against a left gaze bias 

explanation of contralateral eye sensitivity.  

On the other hand, modulation of ERP responses to texture trials with increased 

visibility of the contralateral eye area varied with stimulus size. At the group 

level, for the largest 2 image sizes there was no modulation with increased 

visibility of the contralateral eye, replicating the results of Rousselet et al. 
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(2014). For the smallest 2 textures there was modulation of ERPs with increased 

visibility of the ‘eye’ area at the group level. This may reflect increased noise 

sensitivity towards textures displayed in the eye area for larger textures, which 

could explain why participants were generally faster and more accurate on 

larger compared to small trials. Larger textures are displayed with more, 

comparatively smaller bubbles (compared to 1 large bubble in the smallest 

textures) which may require information revealed by the various bubbles to be 

integrated before a face detection decisions can be made. It may be that the 

absence of a readily visible eye and presence of a visible texture in the eye 

location in the larger texture trials drives sensitivity to the ‘eye’ area in larger 

texture trials.  

In the current experiment we controlled for the percentage of face area 

revealed in the different sizes of face trials by presenting increasing numbers of 

bubbles as stimulus size increased, whilst keeping the size of the bubbles the 

same. We did this to ensure that the amount of overall face revealed across the 

different sized images was the same, so that any differences between image 

sizes could not be accounted for by differences in the overall amount of 

information available. However, this approach may have resulted in differences 

between the face sizes due to the requirement to integrate information across 

more ‘patches’ in larger face images compared to in particular the smallest face 

images where 1 bubble was presented and there was no requirement to 

integrate information across bubbles. The bubbles manipulation may be akin in 

essence to perception of partially occluded faces. Studies investigating face 

amodal completion, where the visual system perceives occluded faces as whole 

and complete, have demonstrated that amodal completion can modulate the 

amplitude of ERPs within the time window of the N170 and that the time 

required for amodal completion increases as a function of the amount of 

occlusion (Chen, Liu, Chen, & Fang, 2009). In the current experiment it is 

unclear the extent to which variations in the degree of occlusion and amount of 

integration across bubbles can explain variations in results between faces of 

different images sizes. It is possible for example that differences in our results 

for the smallest face size in which only 1 bubble was shown may be influenced 

by these factors.  
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Future studies investigating image size should consider the issue of integration 

over differing numbers of bubbles as. An alternative approach to varying the 

number of bubbles across image size would have been to keep the number of 

bubbles the same e.g. 1 bubble for every face size, and increase the size of the 

bubble as image size increased to maintain the same percentage of face area 

revealed across the different image sizes.  

We found large individual idiosyncrasies in ERP modulation towards both face 

and texture trials, with some participants showing consistent modulation of ERPs 

with increased ‘eye’ visibility across all texture trials. This individual variation 

was not apparent when considering group-averaged ERPs. Group-averaged ERPs 

are problematic as they can cause misleading interpretation of results because 

group-averaged data can hide reliable inter-subject differences such as those 

demonstrated in this experiment and elsewhere (Pernet, Sajda, & Rousselet, 

2011; Rousselet, Gaspar, Wieczorek, & Pernet, 2011). It is unclear why 

participants may differ.  

One explanation for individual differences could be differences in preferred eye 

gaze patterns. One weakness of our study was the absence of eye tracking data, 

as in addition to individual differences in preferred eye gaze patterns, changing 

the size of the stimuli may in itself change individual eye gaze patterns. 

Recently Wang (2018) has proposed that when viewing larger images of faces, 

participants fixated more often and for longer on the eye region than when 

viewing smaller faces. In the current experiment however, stimuli were 

presented for a very short time, so participants may not have time to make 

saccades. However, eye tracking data could be useful in ensuring participants 

were fixating on the central cross before a trial began.  

Our results are consistent with a bottom-up data driven model of face processing 

as suggested by others (DiCarlo, Johnson, Gross, & Bruce, 1999; Rousselet et al., 

2014). Under this model, detecting the presence of the contralateral eye may be 

the first step in inferring the presence of a face. This may then be followed by 

the processing of other task-relevant facial features. In the current experiment, 

detecting the presence of the eye was sufficient to accurately judge the 

presence or absence of a face. However, in other, more complex face processing 

tasks, the processing of other additional facial features may be required for 
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accurate performance – such as the processing of the mouth region in an 

expressive versus non-expressive detection task (Gosselin & Schyns, 2001). To 

achieve this aim, we need to test the same participants using the same set of 

stimuli in a variety of face processing tasks relying on other diagnostic facial 

features other than just the eye.    

Whilst we have begun to determine the tolerance of the N170 contralateral eye 

sensitivity to changes in stimulus size, other stimulus related properties are still 

to be fully investigated, including, for example, different stimulus sets and 

changes to the size and number of the Gaussian apertures. Additional work from 

our lab has already demonstrated contralateral eye sensitivity in an alternative 

stimulus set using expressive faces and a single, large Gaussian aperture 

(Rousselet, Gilman, Ince, & Schyns, 2014), as well as demonstrating that 

changing the image contrast delays and reduces contralateral eye sensitivity 

(Rousselet, Gilman, Ince, & Schyns, 2014; Yi, 2018). Similarly, embedding faces 

in a more ecologically valid context, such as presenting faces out with a common 

face oval frame and presenting face images in colour are crucial to formally 

verify the N170 contralateral eye sensitivity as a global phenomenon.   

Controversy exists over whether the N170 is also sensitive to differences in facial 

emotions. For example, a recent meta-analysis of 57 studies concluded that 

angry, fearful and happy faces elicit the strongest N170 amplitudes (Hinojosa, 

Mercado, & Carretié, 2015). If, as we suggest, the N170 reflects the processing 

of the pupil area, as is seen with increasing image size, this could account for 

differences in N170 sensitivity to emotional faces, as the region around the eyes 

is also the most diagnostic area for correct identification of emotion for fearful 

and angry faces (M. L. Smith, Cottrell, Gosselin, & Schyns, 2005). This is 

particularly the case for images of fearful faces where the eye is more open, 

with a larger presentation of the sclera and greater visibility of the pupil. N170 

modulation by fearful faces (Batty & Taylor, 2003) thence may in fact be an 

artefact of greater pupil visibility and thus greater modulation of the N170, 

rather than processing of the emotion of the face per se. One way in which to 

formally test such a hypothesis would be to systematically manipulate the eye 

regions of emotional faces by superimposing ‘fearful’ or ‘non-fearful’ eyes on 
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faces displaying fear or non-fearful emotions and test the resulting N170 

modulations. 

In conclusion, here we show for the first time that N170 contralateral eye 

sensitivity is scale tolerant. Specifically, as image size increases, we observed a 

hotspot around the contralateral eye area which shrank to the iris/pupil area for 

large faces. These results suggest the contralateral eye sensitivity cannot purely 

be explained as a non-feature specific allocation of attention to the left of a 

central fixation cross. Instead, contralateral eye sensitivity reflects the encoding 

of a specific feature – the eye.  
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Chapter 2 Supplementary Figures 

 

Supplementary 1: Right Electrode Group Averaged ERPs  Group averaged ERPs at the right 
electrode for faces (left) and textures (right) at four images sizes (size = 1 smallest, size 4 = 
largest) 
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Supplementary 2: Left Electrode Group Averaged ERPs  Group averaged ERPs at the left 
electrode for faces (left) and textures (right) at four images sizes (size = 1 smallest, size 4 = 
largest) 
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Chapter 3 - Methods for Chapter 4 & 5  

In Chapter 2, we have seen that the N170 contralateral eye sensitivity is scale 

tolerant in a face versus texture detection task. Next, we investigated whether 

the N170 contralateral eye sensitivity result is resistant to further changes in 

task demand, changes in stimulus properties and age of participants.  

In Chapter 4 our aims are twofold: firstly, we quantified the extent to which 

more complex tasks would alter N170 eye sensitivity, where the eyes varied in 

terms of behavioural relevancy for completing the task. Secondly, we 

ascertained whether contralateral eye sensitivity consistently precedes 

sensitivity to other facial features, even under conditions where other features 

are more behaviourally task relevant than the eyes. By varying task demands, we 

tracked not only eye sensitivity as in Chapter 2, but simultaneously tracked 

sensitivity to another facial feature - the mouth. To achieve these aims, we used 

the same stimulus set in two different discrimination tasks (expressive versus 

non-expressive - henceforth ‘EXNEX’ - and female versus male – henceforth 

‘GENDER’) in young participants (see Chapter 4 for more rationale). These tasks 

have been shown to diverge in the features that are behaviourally relevant for 

fast and accurate discrimination, namely that the mouth is the most 

behaviourally relevant feature for the EXNEX task, whilst the eyes are more 

behaviourally relevant for the GENDER task (Gosselin & Schyns, 2001; Schyns, 

Bonnar, & Gosselin, 2002; Schyns et al., 2003; M. L. Smith et al., 2004, 2007).  

In Chapter 5, we expand on the results from Chapter 4 to understand the 

diagnostic information used by older adults; quantify how the N170 contralateral 

eye sensitivity in the two discrimination tasks outlined above compare in healthy 

older adults and understand the timing of feature sensitivity in older compared  

to younger adults (see Chapter 5 for details).  

The following methods, pre-processing and statistical analyses are applicable to 

the experiments reported in both Chapter 4 and Chapter 5. Information on 

participants is covered separately within each Chapter. 

CHOICE OF STIMULI  
 



77 
 

 

In Chapter 4 and 5, rather than using grey-scale images of faces, we utilised the 

MaxPlanck FACES dataset (Ebner, Riediger, & Lindenberger, 2010). This dataset 

contains naturalistic, coloured images of faces displaying different expressions, 

that have been validated (Ebner et al., 2010). This dataset was used in an 

attempt to use more naturalistic stimuli than those often used within the field of 

facial perception research. Attempts at control over stimuli used in facial 

perception experiments has resulted in the preponderance of greyscale image of 

faces being used, which are often cropped within common oval frames where 

the hair, ears and contour of the face are missing (e.g. Gold et al., 1999), have 

unrealistic normalised hairstyles added (e.g. Gosselin & Schyns, 2001) or have 

inter-feature distances normalised (e.g. Dailey et al., 2010) (see Figure 23 for 

examples). This has led to face perception research being dominated by studies 

on unrealistic face stimuli. Cropping images of faces (for example into a face 

oval as in Figure 23; A) may also increase the amplitude on the N170 (Dering, 

Martin, Moro, Pegna, & Thierry, 2011). We argue that utilising a diverse stimulus 

set where stimuli are more naturalistic i.e. coloured images of faces with ears, 

neck, variation in hairstyle and variation in facial feature inter-distances (see 

Figure 25 for examples), could better reveal the strategies observers use in 

natural social interactions. For example, skin colour may affect a variety of 

facial perception tasks including face detection (Bindemann & Burton, 2009) and 

face recognition (Yip & Sinha, 2002) tasks. Facial colour may also affect 

recognition of facial emotions (Nakajima, Minami, & Nakauchi, 2017). For a 

comprehensive understanding of facial perception it is then important to move 

towards methods of using naturalistic datasets.  

 PROBLEMS WITH THE GOSSELIN & SCHYNS (2001) STIMULI   
 
When introducing the Bubbles technique, Gosselin & Schyns (2001) demonstrated 

the utility of the bubbles for understanding task diagnostic information using the 

GENDER/EXNEX task described previously. Since then, several subsequent studies 

(Schyns et al., 2002, 2003, M. L. Smith et al., 2004, 2007) have relied on the 

assumption that in the EXNEX task the mouth is task-diagnostic, whilst in the 

GENDER task the eyes and mouth are task diagnostic. However, we have 

identified that there are particular methodological concerns with using the 

original stimuli used by Gosselin & Schyns (2001) (stimuli are demonstrated in 

Figure 23, C). Our concerns are thus:  
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• Poor application of the normalised hairstyle 

• Non-FACS coded stimuli & inconsistencies in happy expressions (mouth-

open versus mouth-closed) 

• Identification of makeup being worn by female but not male models 

• Too few identities  

Attempts at applying a normalised hairstyle to the stimuli have resulted in 

inconsistent results. For example, in Figure 23 C, top row, third face from the 

left the application of the normalised hairstyle has also artificially smoothed the 

skin on the forehead as well as smoothing and lightening the eyebrows to make 

the eyebrows less distinctive. Smiling can cause wrinkling of the forehead, as 

happy expressions can be characterised by raised inner eyebrows, so artificial 

smoothing of this information may remove diagnostic information.  

The stimuli set have not been subjected to validation for example by the Facial 

Action Coding System (FACS) (Friesen, 1978). This is particularly evident in the 

discrepancy between open-mouth and closed-mouth happy expressions. For 

example, in Figure 23 C, third row, fourth face from the left, this model displays 

a closed-mouth happy expression in contrast to the open-mouth happy 

expressions of all other models in the stimulus set. This may have incurred an 

undocumented response bias for this stimulus, as over trials “closed-mouth” may 

become synonymous “non-expressive” for this stimuli set.  

Female models have been identified as wearing eye makeup. For example, in 

Figure 23 C, first and second row, first face from the left, there is clearly dark 

lines around the eyes indicative of eyeliner/mascara being worn. The darkened 

lips may also indicate that lipstick is being worn. This may enhance the contrast 

of the eye and mouth region in female compared to male faces, making the eye 

and mouth region diagnostic due to the presence of makeup. As cosmetic 

makeup may affect the N170 during face perception tasks (Tanaka, 2016) the 

lack of control in this stimulus set is problematic.  
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The Gosselin & Schyns (2001) stimulus set consists of 10 identities. Viewed over 

multiple trials, this could result in familiarisation with the identities of the 

stimulus set. It is possible that over repeated trials participants may be able to 

use identity as a way of discriminating GENDER. We suggest that too few 

identities are available to use in this stimulus set.  

Hence, for the purposes of our experiment we adopted a new stimulus set that 

overcame the aforementioned methodological issues with the Gosselin & Schyns 

(2001) stimulus set. 

Moving towards using naturalistic stimuli whilst using bubbles is problematic 

however due to the need to average over trials. For example, in Chapter 2, we 

used Bubbles to successfully demonstrate that in a face versus noise detection 

task the N170 was predominantly modulated by visibility of the pixel area around 

the left contralateral eye across a range of stimulus sizes. We achieved this 

result by using a systematically constrained stimulus set i.e. grey-scale images of 

faces cropped within a common oval frame, where the eye positions were 

normalised (see Chapter 2: Stimuli or Figure 23A). This approach is typical in 

perception research as a whole, and historically has been a necessary 

prerequisite in reverse correlation research due to the need to compare across 

trials with different underlying stimuli. Without ensuring that the location of 

facial features between images within the data set are the same (i.e. by 

computer manipulation of the location and inter-feature distances of the nose, 

eyes, mouth) averaging across images becomes problematic. This is because we 

ascertain how visibility of any given pixel modulates brain and behavioural 

responses by averaging across trials, and then relate significant clusters of pixels 

back to which feature or features were revealed by those pixels. By virtue of 

this approach, this requires an underlying assumption that if one cluster of pixels 

reveals e.g. the eye on one image, the same cluster of pixels should reveal the 

eye on a different image within the stimulus set. If facial features are not 

presented in approximately the same pixel location as other stimuli within the 

stimulus set this could potentially become meaningless. This would be the case 

when inter-image variability is large, and the bubble sampling is done with small 

kernels. 
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Figure 23: Example face stimuli Examples of face stimuli used in facial perception research. A) Face images cropped within common oval frame with no visible hair 
or ears (Gold et al., 1999). B) Face images linearly scaled to normalise distance between the eyes and between the eyes and the mouth (Dailey et al., 2010). C) Face 
images with normalised hairstyles (Gosselin & Schyns, 2001). Note the occurrence of eye makeup on the female models (top two rows) and the discrepancy in the 
closed-mouth happy expression for 1 male model.  
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This problem of comparing over trials is more pronounced when using the 

bubbles technique. When using bubbles, methodological decisions need to be 

made as to the size of the Gaussian apertures utilised in the study. In a scenario 

where there is variation within a face dataset (such as in the FACES dataset 

(Ebner et al., 2010) used in Chapter 4 & 5), using a larger Gaussian aperture may 

still ensure the same facial feature is revealed across stimuli, even if the exact 

location of that feature varies among stimuli. For example, with larger apertures 

the pupil and corner of the mouth can be made visible on two different images 

despite inter-image variation in the pixel location of those features (see Figure 

24A & B). As Gaussian aperture size decreases, i.e. the bubbles become smaller, 

averaging becomes more problematic as the same facial feature may not be 

revealed when there is variation in the position of that feature between images. 

For example, a smaller bubble, centred on the same pixel location as the larger 

bubble, may now only reveal the pupil and corner of the mouth on one image, 

but not the other (see Figure 24 C & D).  

In Chapter 2, we kept the size of the bubbles constant across image sizes but 

varied the number of bubbles presented for each image. As image size 

increased, we argued that the hotspot around the eye region shrank, 

increasingly revealing sensitivity to the iris/pupil area. We were able to 

demonstrate this due to having a comparatively smaller bubble (in relation to 

the total face size), where we could precisely link pixels to a certain feature 

across all images in the data set. Hence there is a trade-off between reducing 

the bubble size to achieve a more precise knowledge of the facial features 

revealed by any given pixel, whilst also keeping bubbles large enough to ensure 

overlap of facial features to be able to present naturalistic images of faces that 

vary.  
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Figure 24: Differential feature content across images Panel A & B: Gaussian apertures centred 
on the same pixel location across images (s.d = 15) reveal the pupil and corner of the mouth on a 
‘neutral’ (A) and ‘happy’ (B) face. Panel C & D: Gaussian aperture (s.d = 8) centred on the same 
pixel locations as A & B. The corner of the mouth is visible in C but not D. The pupil is revealed in 
C but only partially in D. Figure shows 1 ID only due to licensing agreement restrictions of the 
dataset.  

In Chapters 4 & 5, we address this issue by using naturalistic faces that vary in 

size, inter-feature distances and hair style. By using a novel technique, 

BubbleWarp (Gill et al., 2015), we are also able to precisely quantify what facial 

feature is revealed on each trial, and relate this to the same facial feature 

revealed by a different cluster of pixels on an alternate facial image. 

BubbleWarp is based upon a process of delineating images of faces using 

landmarks representing salient facial locations (e.g. the corner of the eyes, nose 

and mouth). By computing the average template of all landmarks, we can 

reconstruct for each individual image within the dataset a classification image 

representing the facial features revealed by the randomly located Gaussian 

apertures (bubbles) on each trial (see Warped Bubble Masks for details). The 

advantage of this approach is that:   
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1) We move beyond merely comparing in pixel space and the assumption that we 

can infer content from an analysis of pixels as with the traditional bubbles 

approach (Gosselin & Schyns, 2001), and  

2) Due to having no configural limitation we can use a varied heterogeneous 

dataset of real-world faces that have limited normalisation.  

Stimuli 

The stimuli used in Chapter 4 and Chapter 5 were coloured pictures of faces 

from the Max Planck FACES database (Ebner et al., 2010). Faces from 20 

identities (10 women, 10 men) were front view photographs, with two images of 

each identity, where the image was either expressive (‘happy’) or non-

expressive (‘neutral’). Face models were of younger adult Caucasians within the 

age range of 19-31 years. Example of stimuli displayed in Figure 25 showcase 1 

exemplar from the dataset. Due to licensing issues more exemplars of individuals 

cannot be displayed here, so we also present images of the average of 1) female 

faces; 2) male faces; 3) happy faces; 4) neutral faces (generated by averaging 

across all images of the relevant category used in the experiment).  

Images were first delineated using WebMorph (DeBruine, 2018), a web based 

version of Psychomorph. Faces were delineated using 189 points placed on the 

face following a standardised template system outlining key facial features, such 

as the eyes, nose, mouth and hairline. Images were then adjusted so that the 

centre of each pupil was aligned to the average pupil height across all images. 

This allowed the images to be aligned to correct for images where the head was 

tilted and so the fixation cross appeared approximately in the location of the 

nose. Differences in inter-pupil distances were not altered. Images were then 

cropped to remove blank edges after pupil height alignment and re-sized to 253 

x 294 pixels to reduce image size. Original hairstyle and inter-feature distances 

were maintained. Stimuli spanned approximately 9.2° x 7.9° of visual angle. 

This is approximately equivalent to the visual angle of the size 3 faces presented 

in Chapter 2.  
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Figure 25: Example Stimuli Example stimuli are shown for 1 individual (FACES ID = 066) 
presenting ‘happy’ (A) and ‘neutral’ (B) expressions. Due to licensing agreement restrictions of the 
dataset, only 1 original ID can be demonstrated. Instead, we present average images calculated as 
the average across all images used in the data set presented here for demonstration purposes 
only. C) Average ‘happy’ expression across images. D) Average ‘neutral’ expression across 
images. E) Average ‘female’ face and F) Average ‘male’ face. 

On each trial facial information was revealed through 20 two-dimensional 

Gaussian apertures (s.d. = 15) randomly located across the stimulus space, with 

the constraint that the centre of each aperture was at a unique position (see 

Figure 26). Bubbles were not constrained to the face area and could be located 

anywhere within the image, including non-facial areas such as the hair or 

shoulders. In Chapter 4 and 5 we will refer to these masks with Gaussian 

apertures as bubble masks. This sampling strategy approaches a uniform 

sampling of all face regions across trials, and information sampling was dense 

enough so that on each trial face features were revealed, but sparse enough to 

prevent ceiling effects. 
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Figure 26: Example of bubbled stimuli Examples of stimuli shown in the experiment. One 
identity is shown displaying a ‘neutral’ expression (top row) and ‘happy’ expression (bottom row) 
overlaid with bubble mask. Each bubble mask is composed of 20 Gaussian apertures (s.d. = 15). 
This sampling strategy approaches a uniform sampling of all face regions across trials.  

Procedure 

During the experiments described in Chapter 4 and 5, participants sat in a sound 

attenuated booth and rested their head on a chin rest. Viewing distance 

measured from the chin rest to the monitor screen was 45 cm. At the beginning 

of each of two experimental sessions, participants were fitted with a BIOSEMI 

(Amsterdam, the Netherlands) head cap with 128 electrodes and 4 additional 

ocular electrodes placed at the outer canthi and below each eye.  

Stimuli were displayed on a VIEWPixx monitor (1920 x 1200 pixels; 22.5 inch 

diagonal display size; 120 Hz refresh rate). Participants were given experimental 

instructions including a request to minimise eye blinks and body movements 

during each block. Participants were asked to categorise images as fast and as 

accurately as possible: they pressed ‘1’ for expressive and ‘2’ for non-expressive 

faces (expression task), or they pressed ‘1’ for male and ‘2’ for female faces 

(gender task) on the numerical pad of a keyboard, using the index and middle 

fingers of their right hand. At the end of every block they received feedback on 

their overall performance (median reaction time and mean percentage correct), 

and, after Block 1, on their performance overall across all blocks completed thus 

far. Median reaction times and mean percent correct remained on the screen 

until participants pressed a key to move on to the next block.  
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Before the main experiment on each session, participants performed a practice 

block with full images without bubble masks, to help to minimise spatial 

uncertainty about the stimuli, and for comparison between full images and 

bubble trials as part of the analyses. After the practice block, participants 

performed 14 blocks of the images with bubble masks. All 15 blocks had the 

same structure. They consisted of 80 trials, with 20 face identities; each 

displayed 2 different emotions (expressive ‘happy’ or non-expressive ‘neutral’). 

Each image was presented twice in each block. Participants could take a break 

at the end of each block. Each session consisted of 1200 trials, including 80 

practice trials. All participants participated in two experimental sessions, with a 

different categorisation task in each session. Participants only completed one of 

the two tasks on each session. Task order was counterbalanced across 

participants. Each session lasted about 50-70 mins, including breaks, and 

excluding the time required to apply the EEG electrodes prior to actual testing.  

Each trial began with a small black fixation cross displayed at the centre of the 

monitor screen for a random time interval of ~500-1000 ms. This was followed by 

an image of a face presented for ~100 ms. A blank grey screen followed stimulus 

presentation and remained until participant’s response. After response there 

was a post-stimulus interval of 800 ms before the next trial began. The fixation 

cross, stimulus and blank response screen were all displayed on a uniform grey 

background with mean luminance = ~46 cm/m2.   

EEG Recording and Pre-Processing 

EEG data were recorded at 512 Hz using an active electrode amplifier system 

(BIOSEMI, Amsterdam, the Netherlands) with 128 electrodes mounted on an 

elastic cap. Four additional flat electrodes were placed on the outer canthi and 

below each of the eyes. Electrode offsets were kept between ±20 µV. 

EEG data were pre-processed using Matlab 2013b and the open-source toolbox 

EEGLAB version 13. Data were band-pass filtered between 1 Hz and 40 Hz using a 

non-causal fourth order Butterworth filter. A second dataset was created by pre-

processing data with a fourth order Butterworth filter – high-pass causal filter at 

1Hz and low-pass non-causal filter at 40 Hz.  
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Data from the two datasets were epoched between -300 to 1000 ms around 

stimulus onset. Baseline correction was performed using the average activity 

between -300 to 0 ms only for the high-pass causal filter data set. For the non-

causal filtered dataset, the channel mean was removed from each channel 

instead.  

Noisy electrodes and trials were then detected by visual inspection of the non-

causal dataset and rejected from the two datasets on a participant-by-

participant basis. The reduction of blink and eye-movement artefacts was 

performed using ICA, as implemented in the infomax algorithm from EEGLAB. 

ICA was performed on the non-causal filtered dataset, and then applied to the 

causal filtered dataset on a participant-by-participant basis, in order to remove 

the same components from both datasets. Components representing blinks and 

eye-movements were identified by visual inspection of their topographies, time-

courses and amplitude spectrum. After rejection of artefactual components, a 

fourth order Butterworth 40 Hz low pass filter was performed again and data 

epochs were removed based on an absolute threshold value larger than 100 µV 

and the presence of a linear trend with an absolute slope larger than 75 µV per 

epoch and R² larger than 0.3.  

Finally we calculated spherical spline current source density (CSD) waveforms 

using the CSD toolbox. CSD waveforms were computed using parameters 50 

iterations, m=4, lambda =10-5.  

Electrode Selection 

Detailed analyses were performed on a subset of electrodes. We pre-specified 

three clusters of posterior electrodes at the left, midline and right hemisphere 

(Figure 27). Our central posterior electrode cluster (CE) comprised 7 electrodes 

from Pz down the vertical midline, including Oz. Our left posterior electrode 

cluster (LE) comprised 19 electrodes including P07 and its neighbouring 

electrodes. Our right posterior electrode cluster (RE) comprised 19 electrodes, 

including PO8 and its neighbouring electrodes. Our lateral electrode selection 

excludes those electrodes immediately adjacent to the midline. 



88 
 

 

 
Figure 27: Electrode Selection for analysis  consisted of three clusters of electrodes. A posterior 
right electrode cluster (RE) consisted of 19 electrodes including PO8 (shown in blue). A posterior 
left electrode cluster (LE) consisted of 19 electrodes including PO7 (shown in green). A midline 
electrode cluster consisted of 7 electrodes including Pz and Oz (shown in red).  

Statistical Analyses  

Statistical analyses were conducted using Matlab 2013b and the LIMO EEG 

toolbox (Pernet, Chauveau, Gaspar, & Rousselet, 2011). Throughout Chapters 4 

& 5, square brackets indicate 95 % confidence intervals computed using the 

percentile bootstrap technique, with 1000 bootstrap samples. Unless otherwise 

stated, median values are Harrell-Davis estimates of the 2nd quartile (Harrell & 

Davis, 1982).  

Warped Bubble Masks 

In Chapter 4 and Chapter 5 we employed the use of the FACES dataset (see 

Stimuli). Due to the varied nature of the stimulus set, revealing the same cluster 

of pixels of each image did not reveal the same feature content. To allow 

averaging across the images in our data we re-established the connection 

between visible pixels and underlying facial feature across images within the 

dataset using the novel BubbleWarp technique (Gill et al., 2015). To this end, 

for each trial we retrospectively ‘warped’ the Gaussian bubble mask presented 

on that trial to the average face image (calculated as an average of all stimuli 

within the dataset) so that key facial feature points (such as the corner of the 



89 
 

 

mouth, edge of the iris) were aligned across trials making Gaussian aperture 

masks comparable.  

This was achieved through the following steps: First, prior to the experiment 

each stimulus image (see Figure 28; A) was delineated in Webmorph (DeBruine, 

2018) using facial feature ‘fiducial’ points (see Stimuli for more details). This 

provides a ‘template’ file for each image within the data set, where the co-

ordinates for each of the fiducial points is unique (see Figure 28; B). Each 

template file is tessellated i.e. formed into a ‘mesh’ of imaginary lines joining 

the fiducial points together to make triangles. This is achieved through using 

Delaunay triangulation - a widely used tool in computer graphic algorithms that 

connects points in a nearest neighbour fashion whilst ensuring that the 

circumcircle associated with each triangle contains no other point in its interior. 

Next, we created an ‘average’ face (see Figure 28; D) from all stimuli within the 

data set. This is accomplished by moving the fiducial points for each individual 

image in the dataset to the mid-point location across all images in the data set 

(see Figure 28; C). The difference between the original template for each image 

and the average feature positions defines by how much each image would have 

to change in order to assume the same configuration as the average face. We 

refer to this as the ‘warp-deformation’. In this fashion the original delineation 

points give ‘base’ co-ordinates that are ‘warped’ to achieve the ‘target’ co-

ordinate destination on the average face. It is then possible to ‘warp’ the 

original face image to the average face image, so that the configuration of the 

original face images matches that of the average face image.  

 

Figure 28: Delineation of stimuli A) Example stimulus set (adjusted to average pupil height and 
cropped). B) Example stimulus overlaid with 189 delineation points mapping key features of the 
face. C) 189 delineation points of the average face. D) The average face created by averaging over 
all images within the dataset 
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In this fashion, we warped bubble masks (as seen in the experiment by 

participants) to the average face image, using a custom made Matlab function 

pawarp. For each stimulus we calculated the warp deformation and then applied 

this calculation to the bubble mask on each trial involving that stimulus. 

We refer to the resulting image as the warped bubble masks. As a result the 

bubble masks are equated across all trials, i.e. all bubble masks that revealed 

the eye of a face image in the experiment, regardless of which x-y coordinate 

pixels were actually revealed, would be ‘warped’ to reveal the same features on 

the average face. For instance, if the corner of the mouth was revealed in a 

given trial, the bubble mask is warped to ensure that the warped mask revealed 

the same pixel content (the corner of the mouth) in the averaged face. 

Throughout Chapters 4 & 5, analyses using bubble masks and pixels refer to 

analyses computed using the warped bubble masks.  

 
Figure 29: Bubble mask warping  Column A) Examples of bubbled stimuli as seen by 
participants’ during the experiment. Column B) corresponding bubble masks overlaying the stimuli 
seen in A. We ‘warp’ the original bubble masks (B) to our warped bubble masks (C). In column D) 
we show the warped bubble mask revealing the same features of the average face.  

Mutual Information  

We used Mutual Information (Thomas & Joy, 2006) to quantify the dependence 

between stimulus features and behavioural responses, and stimulus features and 

brain responses. Mutual Information (MI) is a non-parametric measure that 

quantifies (in bits) the difference in entropies and reduction in uncertainty 
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about one variable after observation of another (i.e. sampled pixels and 

behaviour; sampled pixels and brain signal responses). MI can be used to study 

the selectivity of neural and behavioural responses to external stimuli in single 

trials and is sensitive to non-linear effects (Schultz et al., 2015). Several tools 

for computing MI are available through an open source toolboxes, including the 

‘gcmi’ (Gaussian copula mutual information) toolbox (Ince et al., 2017) used for 

analysis described in this thesis (https://github.com/robince). 

Unlike in Chapter 2, in Chapter 4 and 5 we calculated MI quantities using warped 

bubble masks (see Warped Bubble Masks). We sampled the entire stimulus 

space, including the edge of the image where no facial features were presented, 

with the only constraint being that the centre of each bubble was located within 

the image. Over trials, this constraint leads to a systematic under sampling of 

the edge of the image corresponding to the size of the radius of the bubble, as 

there are never bubbles presented in which the centre of the bubble is located 

outside the edge of the image. Bubble masks specify the visibility of each pixel 

between 0 (not visible) and 1 (visible). A systematic under sampling of the edge 

of the image leads to more repeat zero values at the edge of the image than in 

the rest of the image. Due to the MI calculation toolbox we utilised taking the 

trial order when there are tied ranks, this can lead to erroneous MI effects in the 

periphery of the image that represent systematic effects of trial order (rather 

than a stimulus specific effect). For example a systematic slowing of reaction 

times over the course of an experiment may result in high MI values at the edge 

of the image.   

Given that we made no prediction about the role of stimulus specific effects at 

the edge of the image, we minimised any sequential effects in the design by 

‘binning’ our bubble masks prior to calculating MI. We binned the bubble masks 

into 2 bins using a fixed threshold of 0.05 i.e. so that values equal to or larger 

than 0.05 equalled 1, whilst values less than 0.05 equalled 0. Using alternative 

bin thresholds resulted in results consistent with our threshold of choice. This 

negates the issue of tied ranks in our MI calculations. This resulted in pixels 

being treated as a discrete rather than gaussian values, as in Chapter 2.   

 We calculated for each participant separately for the expressive and gender 

task:  
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• MI(PIX, RT) to establish the relationship between image pixels and 

reaction times. We copula normalised RT’s using the copnorm function. 

We then computed MI using the mi_gd function to calculate MI between 

Gaussian copula normalised RTs and discrete bubble mask values. MI was 

calculated with bias correction for the entropy of Gaussian variables  

(Ince et al., 2016; Ince et al., 2009).  

 

• MI(PIX, CORRECT) to establish the relationship between image pixels and 

correct responses. We computed mutual information using the calc_info 

function to calculate MI between discrete responses (correct versus 

incorrect) and discrete bubble mask values.  

 

• MI(PIX, [ERP, grad]) to establish the relationship between image pixels 

and ERPs. For ERP analysis the warped bubble masks were down-sampled 

from 253 x 294 pixels to 147 x 127 pixels using the imresize function 

before the bubble masks were binned (see above) to reduce heavy 

computation time. We calculated bivariate MI, which considers the 

recorded voltage at each time point together with the temporal gradient 

of the ERP. Including the temporal gradient results in a smoothing effect, 

where artificial dips in MI due to the bimodal ERP crossing the zero line 

are smoothed out (Ince et al., 2016). We copula normalised ERPs using the 

copnorm function and computed MI using the mi_gd function to calculate 

MI between Gaussian copula normalised ERP and ERP gradients, and 

discrete bubble mask values.  MI analysis was computed between -300 ms 

before stimulus onset to 600 ms following stimulus onset. We calculated 

MI independently at each time point, pixel and electrode, for each 

participant in each task using the non-causal dataset.   

Mutual Information Classification Images 

We refer to MI between pixels and behaviour, or pixels and ERPs as 

‘classification images’. These images reveal the warped pixels associated with 

modulations of the particular response being calculated.  
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Mutual Information Frequency of Significant Effects 

In order to establish which parts of the classification image showed significant 

association with the behavioural performance, we performed a permutation 

test.  

For each participant independently, we shuffled response labels (RT / correct) 

1000 times. For each iteration, we calculated MI between the warped bubble 

masks and the randomly shuffled response labels, and saved the maximum MI 

value across all pixels. This creates a distribution of MI values under the null 

hypothesis that the variables (pixel MI values and behavioural responses) are 

statistically independent. To obtain the image pixels associated with the 

response at the significance level of 0.05, we compared the original MI scores 

against the 95th percentile of the permutation distribution. For each pixel, we 

calculated the frequency of significant effects, as the total number of 

participants whose MI values were significant for each pixel.     

Mutual Information Timecourses 

We calculated how MI values between pixels and brain responses were 

modulated over time. For each of three pre-specified posterior electrode 

clusters (LE, RE, CE), for each participant, we took the max MI value for every 

pixel from each electrode cluster at each time point between -50 ms pre-

stimulus onset to 450 ms post stimulus onset. We also calculated a 95 % 

confidence interval using the percentile bootstrapping technique with 1000 

permutations. 

Feature of Interest Analysis  

MI is directionless, in that higher mutual information values can reflect either 

the presence or the absence of a feature modulating behavioural responses. 

Using a reverse analysis we quantified by how much changing the amount of 

information about the presence of specific image features (e.g. the eyes and the 

mouth) modulated brain and behavioural responses. To this end we created 

feature of interest masks for the left eye, right eye and mouth (Figure 30). To 

create the masks we centred an ellipse on the left eye, right eye and mouth 

region of the average face (see Warped Bubble Masks).  
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Figure 30: Demonstrated Feature of interest masks We created three feature of interest masks 
demonstrated above by the ellipses surround the 1) left eye, 2) right eye and 3) mouth region. Eye 
ellipses including the area of the eyebrow. 

Using the feature of interest masks we calculated on a trial-by-trial basis the 

visibility of each feature (left eye, right eye, mouth), obtained as a scalar value 

of the sum of pixel visibility within the ellipse of each feature of interest mask. 

We then split these visibility values into ten equally populated bins ranging from 

the lowest (bin 1) to the highest (bin 10) visibility values. We used these feature 

visibility bins to compare how the degree of feature visibility modulated 

behavioural and ERP responses.  

To quantify the effect visibility of each feature had on behavioural judgments, 

for each participant and feature of interest we calculated for each bin the 

percentage of correct responses (between 0-1) and Harrell-Davis estimate of 

median reaction times. We then calculated the difference between the 10th bin 

(most visible) minus the 1st bin (least visible) for each behavioural comparison.  

For each behavioural comparison we also calculated a measure of the 

significance of the difference between high visibility and low visibility of each 

feature of interest. We did this by shuffling the pixel visibility values of each 

feature of interest 500 times and calculating MI between pixel visibility and 

behavioural response. To obtain values associated with a difference between 

high and low visibility at the significance level of 0.05, we compared the original 
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MI scores against the 95th percentile of the permutation distribution. For each 

feature of interest we consider there to be a significant difference in MI 

between high and low pixel visibility of each feature if the original MI value is 

above the 95th percentile of the permutation distribution.  

To quantify the effect that visibility of each feature had on brain responses, we 

selected a single electrode of interest from the LE, CE and RE clusters. We 

optimised electrode selection for each individual in each task, by selecting the 

electrode from each cluster that had the maximum sum MI across the entire 

image, between 120-220ms. This broad window was selected to encompass the 

earliest sensitivity to facial features. Selected LE electrodes were P7/PO7 or 

their surrounding neighbours. Selected RE electrodes were P8/PO8 or their 

surrounding neighbours.  

We calculated MI between feature visibility and brain activity over the time 

period of -300 ms pre-stimulus onset and 600 ms post-stimulus onset. For each 

electrode of interest, we calculated as a scalar value the sum of the pixel 

visibility within each elliptical feature of interest mask on each trial. We then 

calculated the time course of the MI about the feature visibility in the bivariate 

brain response combining EEG voltage with its temporal gradient: MI(feature, 

[ERP, grad]).  

To compare how feature visibility modulated average ERP waveforms, for each 

electrode of interest we sorted single trial ERP’s into 10 equally populated bins 

based on a scalar value of the sum of the pixel visibility within the ellipse of 

each feature of interest mask, ranging from the lowest (bin 1) to the highest (bin 

10) visibility values. For each bin, we averaged ERPs across all trials.  

Mutual Information Onset Analysis  

In order to determine if sensitivity to the eyes began before sensitivity to the 

mouth, we quantified MI onsets to the eyes and mouth using the causal-filtered 

datasets. We calculated the maximum MI across all left and right poster lateral 

electrode clusters between the left and right eye and ERPs and the mouth and 

ERPs. For each participant, we calculated the median baseline (between -50 ms 

and 50 ms around stimulus onset). We localised the first peak after 80 ms whose 
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minimum height was 2.25 times higher than the median baseline. Then, using 

the ARESLab toolbox (Jekabsons, 2016) we built a piecewise linear model using 

the Multivariate Adaptive Regression Splines (MARS) method (Friedman, 1991).  

Event-Related Potential Analyses 

Average ERPs  

We computed average ERPs by optimising electrode selection for each 

participant separately. For each participant, in each task, we calculated the 

mean ERP waveform across bubble trials for each electrode, and then we 

selected one electrode from the left and right posterior lateral hemisphere 

electrode clusters (see Electrode Selection). We selected the left and right 

lateral electrodes that displayed the minimum N170 amplitude in the time 

window around ~150-250 ms (Jaworska, 2017). Electrodes were PO7/PO8 or their 

neighbours. These electrode locations have been associated with N170 activity in 

previous experiments (Jaworska, 2017; Rousselet et al., 2014). We optimised 

electrodes in the same fashion for non-bubble i.e. practice trials within the time 

window of ~130-230 ms. This is because N170s peaked earlier in the practice 

compared to bubble trials. We calculated 95 % percentile bootstrap confidence 

intervals around the mean ERP waveforms by randomly sampling (N = number of 

trials) single trial ERPs with replacement 1000 times and calculating the average 

ERP on each iteration. Using our percentile bootstrap distribution we estimated 

a 95 % percentile bootstrap confidence interval around the mean ERP. 

N170 amplitude and Latency calculations   

We calculated the amplitude and latency of the N170 at the left and right 

hemisphere (using the electrodes as described above) for each participant, in 

each task. We computed the N170 latency for individual participants as the 

latency of the minimum ERP in the time window ~150-250 ms (Jaworska, 2017) 

and its corresponding amplitude. 95 % confidence intervals were computed using 

the percentile bootstrap technique, with 1000 bootstrap samples. 
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Between-group Comparisons  

In Chapter 5 we calculated the group difference between younger and older 

adult participants by estimating the Harrell-Davis median of all pairwise 

differences of the distribution of younger minus older participants for each 

behavioural and brain comparison of interest. We computed a 95 % confidence 

interval around this estimate using a percentile bootstrap technique with 500 

iterations. 

We also calculated the effect size of between-groups comparisons of younger 

and older participants using a robust statistic: Cliff’s delta (Cliff, 1996). Cliff’s 

delta is a robust, non-parametric and normalised effect size based upon all 

pairwise comparisons between observations in two groups. It is not affected by 

outliers or difference of skewness between two groups. Cliff’s delta is computed 

by calculating the probability that a randomly selected observation from one 

group (X) is larger than a randomly selected observation from another group (Y), 

minus the verse probability: delta = (sum(X>Y)-sum(X<Y))/NxNy. Cliff’s delta 

ranges from 1 (where all values from one group are higher than the values from 

the other group) to -1 (when all values from one group are lower than the values 

from the other group). Completely overlapping distributions have a Cliff’s delta 

of 0.  

We also calculated a 95 % confidence interval of the Cliff’s delta estimate using 

a percentile bootstrap with 500 samples. On each iteration, for each group, we 

sampled the original number of observations from each group (N = 24) with 

replacement and recalculated Cliff’s delta. This creates a sampling distribution 

of bootstrap estimates of delta, from which we calculated the 95 % confidence 

interval.  

We calculated Cliff’s delta to compare between group differences in behavioural 

responses (RT & CORRECT) for younger and older participants. We calculated 

Cliff’s delta independently for each response (RT / CORRECT), task 

(EXNEX/GENDER) and feature of interest (left eye / right eye / mouth). We also 

calculated Cliff’s delta to compare between group differences in N170 amplitude 

and latency differences.  
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50 % Integration Times  

To determine differences in information processing speed of the eyes and mouth 

in the absence of peaks in MI in some participants, we calculated 50 % 

integration times of the MI time-course towards the eyes and 50 % integration 

times of MI time-courses towards the mouth. This analysis takes into account the 

entire MI waveform (not just peaks) and normalises MI timecourses for 

comparison between groups. For each participant we computed the cumulated 

sum of the maximum MI across all electrodes in the time window of 0 - 500 ms. 

We then normalised the cumulated sum between 0 and 1, such that for each 

participant their cumulated sum had a value of 0 at stimulus onset and a value 

of 1 at 500 ms after stimulus onset. Finally, we computed the time necessary to 

reach 50 % of that function using a linear interpolation and calculated summary 

statistics based on a 95 % percentile bootstrap confidence interval for the 

Harrell-Davis median based on 1000 samples.  

Group differences in 50 % integration time were calculated using a percentile 

bootstrap on median integration time to compare independent groups under the 

experimental hypothesis of there being an effect (rather than the null 

hypothesis). We used 1000 samples and an alpha of 5 %. Here, if the confidence 

interval does not contain 0 the difference can be considered statistically 

significant in the frequentist sense.  

We calculated median 50 % integration times and CIs for each group (Younger 

and Older) for each feature (eyes and mouth) and task separately. We then 

calculated the difference in integration time between the eyes and mouth 

between younger and older participants and interaction. 
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Chapter 4 - Timing of contralateral eye sensitivity 
compared to other task relevant feature 
modulation is idiosyncratic  

Introduction 

In Chapter 2 we have shown that the N170 sensitivity to the contralateral eye 

area is scale tolerant, and reflects an eye-specific coding mechanism, rather 

than a generic non-feature specific attentional bias. Using a range of face sizes, 

we have been able to sufficiently track sensitivity to the iris/pupil area using a 

reverse correlation method, demonstrating that the N170 is a critical time-

window in human face processing mechanisms that reflects predominantly the 

encoding of the contralateral eye in face detection tasks.  

The next stage is to assess whether the N170 sensitivity to the contralateral eye 

is a task-specific response. If processing of the contralateral eye is a necessary 

first-stage of face processing, regardless of task, then we would expect there to 

be evidence of contralateral eye sensitivity in a range of more complex face-

processing tasks, such as face identity, facial emotion discrimination, age 

judgements, judgements of trustworthiness etc. However, if contralateral eye 

sensitivity is task specific, and the eyes are only prioritised in face processing 

during particular tasks, such as in face versus noise detection tasks, we would 

expect contralateral eye sensitivity to be apparent only in a subset of face 

processing tasks were the eyes carry task-relevant diagnostic information. This 

could, for example, lead to differentiation where the N170 eye sensitivity is only 

apparent in tasks where the eyes are task-relevant, for example in face versus 

noise discrimination tasks (Rousselet et al., 2014), but not in tasks where the 

eyes are less task relevant, for example in an expression discrimination task 

(Gosselin & Schyns, 2001).  

To this end, the aim in this experiment was to present participants the same 

facial stimuli under two different task conditions where the relative task 

diagnosticity of facial features varies between tasks.  Participants completed a 

gender categorisation task (GENDER) and an expressive versus non-expressive 

categorisation task (EXNEX). By utilising the Bubbles technique (see Chapter 3: 

Stimuli) we manipulated on a trial by trial basis the amount of information 
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available about different facial features for the task. During the GENDER task, 

for which the eyes are purported as highly diagnostic (Gosselin & Schyns, 2001) 

changing the amount of information available from the eyes should affect task 

performance, whilst changing the amount of information available about the 

mouth, a feature that is less diagnostic for the task, should affect task 

performance minimally. For the EXNEX task, where the mouth is highly 

diagnostic (Gosselin & Schyns, 2001), changing the available information about 

the mouth should affect task performance more than changing information about 

the eyes, a region that is less task-diagnostic. If the N170 eye sensitivity is task-

independent, we would anticipate that during both tasks there would be 

evidence of contralateral eye sensitivity. If processing the eyes is the first step 

in both of these tasks, then we would anticipate that contralateral eye 

sensitivity would begin prior to sensitivity to other facial features, regardless of 

the extent to which the eyes are task-relevant.  

Previous work has suggested based on data from 2 participants that the N170 is 

modulated by contralateral eye sensitivity in both a GENDER and EXNEX task (M. 

L. Smith et al., 2004), despite the mouth being diagnostic in the EXNEX task for 

accuracy and reaction time. Smith et al. (2004) suggest that the N170 reflects a 

task-independent response to the eyes, whilst the P300 reflects task-dependent 

encoding of the eyes (in the GENDER task) and mouth (in the EXNEX task). This 

suggests that a pattern of contralateral eye sensitivity preceding other task 

relevant feature sensitivity should be observable in future experiments, though  

Smith et al. (2004) did not quantify the relative timing of the onset of mouth 

and eye sensitivity in the EXNEX task. Smith et al. (2004) also relied upon using 

grey-scale images with normalised hairstyles and a very long stimulus 

presentation time (1500 ms). The use of grey-scale face stimuli that are so 

severely normalised as to be homogeneous is problematic in face perception 

research (see Chapter 3 for discussion), whilst a long stimulus presentation time 

that gives viewers the time to scrutinise the stimulus may not result in the same 

pattern of sensitivity as a shorter presentation time. Real faces are 

heterogeneous, with variable inter-feature distances, differences in hairline and 

differences in skin tone. An additional, potentially hugely confounding problem 

with Smith et al. (2004) stimulus set is the presence of eye makeup worn by the 



101 

 

women models in the stimulus set. This may have changed the contrast of the 

eye region making the eyes a more salient feature across both tasks.  

In an attempt to compare how the N170 sensitivity to facial information varies 

across 7 ‘universal’ expressions, Schyns, Petro, & Smith (2007) analysed ERPs for 

3 participants in a forced choice expression categorisation task using bubbles. 

The authors suggested that the N170 integrates facial features from the top of 

the face (e.g. the eyes) downwards, with the N170 peaking when expression-

specific diagnostic information is reached, signalling the end of feature 

integration. The latency of the resulting ERP hence is earlier for ‘eye-

dependent’ expressions (such as ‘fear’), and later for ‘mouth-dependent’ 

expressions (such as ‘happy’). In contrast to Smith et al. (2004) in which the eye 

region was not diagnostic for the EXNEX task, in Schyns et al. (2007) the eye 

region was diagnostic for correct expression identification across all emotions 

(though with idiosyncratic variation between participants). It is worth noting 

that, unlike the stimuli used by Smith et al. (2004), the stimuli used by Schyns et 

al. (2007) were FACS coded (Ekman & Friesen, 1978), were not wearing makeup 

and did not have normalised hairstyles. Similarly, a behavioural-only experiment 

on the same stimuli used by Schyns et al. (2007) with 14 participants was highly 

similar, again demonstrating that the eye region was diagnostic in an expression 

discrimination task (M. L. Smith et al., 2005). Schyns et al. (2007) do however 

support the notion that eye coding precedes coding of other facial features.  

In our experiment, we will treat faces as heterogeneous, and utilising the 

Bubble-Warp technique (see Chapter 3; Warped Bubble Masks) present 

naturalistic coloured images of faces without makeup and with uncontrolled 

variation in facial feature inter-distances and hair line. Smith et al. (2004) also 

ignored individual differences in brain anatomy, with EEG analysis being 

conducted on the same spatial electrodes for every participant, rather than 

optimising electrodes to reflect common information processing and functionally 

equivalent signals across participants. In our experiment we will use mutual 

information (see Chapter 3: Mutual Information) to understand functionally 

equivalent signals across participants. Lastly, Smith et al. (2004) focussed on 

differences in N170 amplitude, whilst more recent work has suggested that 

single-trial N170 latencies code more about the presence of the contralateral 

eye (Rousselet et al., 2014). In our experiment we will consider both single-trial 
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N170 latencies and amplitudes to ensure a fuller understanding of how 

contralateral eye sensitivity modulates the N170 in different tasks.  

In summary, we used two tasks (EXNEX/GENDER) to manipulate the relative task 

diagnosticity of different facial features, and a heterogeneous face data set to 

increase the realism and social relevance of our results. We hypothesised that in 

both tasks, visibility of the contralateral eye would modulate single-trial N170 

responses, whilst the processing of other task-relevant facial features, 

specifically the mouth, would be delayed in comparison.  

The primary contribution of this chapter will be demonstrating that visibility of 

the eyes modulated behaviour (accuracy and reaction times) and brain responses 

more in the GENDER than the EXNEX task, whilst the converse is true of mouth 

visibility. Both the visibility of the eye and the mouth region modulate the N170 

in both tasks. We will also demonstrate that the onset of sensitivity to the eyes 

precedes the onset of sensitivity to the mouth in only 60-70 % of participants, 

suggesting idiosyncratic differences in the timing of feature sensitivity. These 

results will demonstrate for the first time that contralateral eye sensitivity may 

be preferentially encoded before sensitivity to other facial features, but that 

eye coding is not a prerequisite for encoding other facial features, namely the 

mouth.  

Materials and Methods 

Participants 

The study comprised 24 participants: 16 women, 23 right handed, median age = 

23 years (min 18, max 25). Participants did not report any eye condition, history 

of mental illness, or were currently taking psychotropic medications, suffered 

from any neurological condition, had diabetes, or had suffered a stroke or a 

serious head injury. Volunteers were also excluded from participation if they had 

not had their eyes tested within the last 3 years, in order to minimise the 

chances that volunteers did not know of an underlying eye condition. 

Participants’ contrast sensitivity and visual acuity were assessed in the lab 

(Table 3). Contrast sensitivity was assessed using the Mars Letter Contrast 

Sensitivity set (Arditi, 2005). Visual acuity at 40 cm and 63 cm were assessed 
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using the Colenbrander mixed contrast card set (Colenbrander & Fletcher, 2004), 

and 6 m assessed using the Bailey-Lovie Chart (Bailey & Lovie, 1980). All 

participants had normal or corrected-to-normal visual acuity and normal 

contrast sensitivity (equal to or above the lower limit of normal Mars letter 

contrast sensitivity for a person aged 25 years of 1.56 log units (Haymes et al., 

2006). Participants were compensated £6/hr for their participation. The 

experiment was approved by the local ethics committee of the College of 

Science and Engineering (approval no. 300150158). 

LC 40 HC 40 LC 63 HC 63 LC 600 HC 600 CS 
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[0.42, -0.08] 

 
104 

[90, 109] 
 

-0.08 
[0.20, -0.18] 

 
1.8 

[1.64, 1.88] 
 
 
 

       

Table 3: Younger adult Visual Acuity and Contrast Sensitivity Scores Median Visual acuity 
and Contrast sensitivity (CS) sores for younger participants. Visual acuity scores are reported for 
low contrast (LC) and high contrast (HC) charts presented at 40 cm, 63 cm, and 6 m viewing 
distance, expressed as raw visual acuity scores (VAS). The corresponding logMAR scores are 
presented below in italics, where higher values indicate poorer vision and negative values 
represent normal vision (logMAR score of 0 corresponds to 20/20 vision).  Square brackets indicate 
the minimum and maximum scores across participants.  

Stimuli, Procedure, EEG Recording and Pre-processing 

Chapter 3 outlines the methodology for this chapter, and for the subsequent 

chapter (Chapter 5). Stimuli, procedures, EEG recording and pre-processing are 

the same as those outlined in the Methods chapter (see Chapter 3 for details).  

Results 

Behavioural Results  

Behavioural results are given here for trials with bubble masks and practice 

trials. Practice trials presented without bubble masks revealed the whole face 

image and were used to familiarise participants with the task. As bubble trials 

reveal partial face information, we compared behavioural performance between 

practice and bubble trials.  
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Reaction Times and Percentage Correct  

On practice trials i.e. trials without bubbles where the full face image can be 

seen, participants were on average faster on the gender than expression task 

(GENDER = 434 ms [396, 472]; EXNEX = 444 ms [406, 482]; Difference [GENDER minus 

EXNEX] = -22 ms [11, -56]). Participants were as accurate on the gender and 

expression tasks (GENDER = 97 % [95, 98]; EXNEX = 97 % [96, 98]; Difference 

[GENDER minus EXNEX] = 1 % [-2, 1]).  

On trials with bubble masks, participants on the whole were slower on the 

gender than expression task (GENDER = 544 ms [490, 599]; EXNEX = 489 ms [456, 

522]; Difference [GENDER minus EXNEX] = 24 ms [-2, 49]). This is in reverse of practice 

trials on which participants were faster on the gender task. Participants were 

also less accurate on the gender than expression task for bubble trials (GENDER 

= 82 % [79, 84]; EXNEX = 89 % [87, 90]; Difference [GENDER minus EXNEX] = -7 % [-4, -

10]). Again, this was in contrast to practice trials on which participants 

performed similarly in the two tasks. 

Compared to practice trials, on bubble trials participants were slower (GENDER 

[Practice minus Bubble] = -92 ms [-54, -129]; EXNEX [Practice minus Bubble] = -41 [-16, -67]; 

Difference [GENDER minus EXNEX] = -51 ms [-12, -91]) and less accurate (GENDER 

[Practice minus Bubble] = 15 % [13, 17]; EXNEX [Practice minus Bubble] = 8 % [7, 10]; 

Difference [GENDER minus EXNEX] = 6 % [3, 10]) on both tasks. Compared to practice 

trials, bubbling the image had a more negative impact on both reaction times 

and accuracy for the gender than the expression task, suggesting that the impact 

of bubbling affected performance on the gender task differentially. This could 

be due to differentially increasing the difficulty of the gender compared to the 

expression task when information is limited or fragmented.  

This pattern of results is in-keeping with previous research using an adaptive 

version of bubbles where the number of bubbles is varied to achieve a 75 % 

correct performance criterion (Schyns et al., 2002). Under these conditions, 

participants on average required more bubbles i.e. more of the image to be 

revealed on the GENDER task to achieve the same accuracy levels as on the 

EXNEX task.  
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Behavioural MI Classification Images 

To determine what image features are associated with behavioural responses, 

we looked at mutual information between pixels and reaction times, MI(PIX, RT), 

and pixels and correct responses, MI(PIX, CORRECT). Frequencies of significant 

effects were calculated by a permutation test (see Chapter 3: Mutual 

information: Frequency of significant effects). The classification images shown 

in Figure 31 are for MI computed using the warped bubble masks (see Chapter 3: 

Bubble Warp and Warped Bubble Masks).  

In the EXNEX task (Figure 31 panels A-B, top row) all participants RT’s and 

correct responses were modulated by the presence of the mouth. In contrast, in 

the GENDER task (panel A-B, bottom row), there was a very weak relationship 

between the presence of the eyes and modulation of behavioural responses, 

which was only significant for CORRECT for a maximum of three participants at 

any one pixel (individual classification images are available in Supplementary 3).  

 

Figure 31: Younger adult behavioural Classification Images and Frequency of Significant 
Effect (A) Group-average MI maps. Each row corresponds to one task condition, each column 
corresponds to a different analysis condition (RT or CORRECT). The average group MI was 
stronger in EXNEX than in GENDER and is therefore presented on a different scale. (B) Number of 
participants showing significant effects based on a permutation test. Small white numbers indicate 
for each condition the number of participants with significant MI at any pixel (left) and the maximum 
number of participants with significant MI at the same pixel (right).  

As expected, we found evidence of strong and consistent behavioural modulation 

by mouth visibility in the EXNEX task across participants, in keeping with the 
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mouth being the most diagnostic feature for this task (Gosselin & Schyns, 2001). 

However, behavioural modulation by eye visibility in the GENDER task was weak, 

despite previous claims of strong diagnosticity in this task (Gosselin & Schyns, 

2001). This may be due to problems with the Gosselin & Schyns (2001) stimulus 

set outlined in Chapter 3.  

Whilst we did not find a strong eye modulation for behavioural performance, 

there may be a disparity between those features driving behavioural responses, 

and those modulating ERPs.  

Reverse Analysis: Behavioural Results 

The presence of the mouth was associated with correct responses in the EXNEX 

task, whilst the right eye was weakly associated with correct responses in the 

GENDER task for some participants. However, MI is directionless, in that higher 

mutual information values can reflect either the presence or the absence of a 

feature modulating behavioural responses. To this end, we used a reverse 

analysis to check the direction and magnitude of MI effects in their original 

values. Using a reverse analysis we quantified by how much changing the amount 

of information about the left eye, right eye or mouth influenced participants 

behavioural responses. 

Using the feature of interest masks (see Chapter 3: Feature of interest analysis) 

we calculated on a trial-by-trial basis the visibility of each feature (left eye, 

right eye, mouth), and split these visibility values into ten equally populated 

bins ranging from the lowest (bin 1) to the highest (bin 10) visibility values (see 

Chapter 3: Feature of interest analysis for details). For each participant 

separately, we calculated the difference in RT (measured in milliseconds) and 

difference in CORRECT (measured in percentage points (PP) between 0-1) 

between the 10th bin (highest visibility) and the 1st bin (least visibility) for each 

feature mask. For each comparison we also estimated the significance of these 

differences through the use of a permutation test (see Chapter 3: Feature of 

interest analysis for details).  

In the following figures (Figure 32 - Figure 34) we will show that in the EXNEX 

task increased visibility of the mouth resulted in quicker and more accurate 
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responses, confirming MI results in Figure 31. In addition, our reverse analysis 

results highlight that, for some participants, visibility of the left and/or right 

eye also led to quicker and more accurate responses in the EXNEX task, which 

was not highlighted by the MI classification images alone. In the GENDER task, 

increased visibility of the left eye was associated with quicker responses for 

most (19/24) participants, and more accurate responses for nearly all (23/24) 

participants, which was not highlighted by the MI classification image results. 

Additionally, increased visibility of the right eye was also associated with 

quicker responses for most (21/24) participants, and increased accuracy for all 

participants, which was not highlighted by the MI results. Increased visibility of 

the mouth results in quicker reaction times and increased accuracy for half of 

participants. 

 MOUTH VISIBILITY  
 
In the EXNEX task, increased visibility of the mouth (Figure 32, top panel) was 

associated with quicker responses (median difference in bin 10 minus bin 1 = -

105 ms [-137, -73]). All participants (24/24) were on average faster on bin 10 

than bin 1 trials, and MI was significant for 24/24 participants. Increased 

visibility of the mouth (Figure 32, second panel) was also associated with 

increased accuracy than when the mouth was not visible (median difference in 

bin 10 minus bin 1 = 0.25 PP [0.20, 0.30]). All participants (24/24) were on 

average more accurate on trials where there was increased mouth visibility 

(Figure 32, Panel B right), and there was significant MI for 17/24 participants. 

However, even in trials where there was no visibility of the mouth region, 

participants were still able to discriminate between expressive and non-

expressive faces at above chance level, suggesting even in the absence of the 

mouth  as the most diagnostic feature, other features and their combination can 

be sufficient for categorisation.  

In the GENDER task (Figure 32, bottom two panels) increased visibility of the 

mouth was associated with variable behavioural outcomes. Half (12/24) of 

participants demonstrated faster responses with increased visibility of the mouth 

(median difference in bin 10 minus bin 1 = -4 ms [-21, 12]). However, MI was 

significant for 1 participant, whose results were in the opposite direction (slower 

reaction times for increased mouth visibility).  Task order effects could be 
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associated with directionality of speed of responses with increased mouth 

visibility. Of those participants demonstrating faster responses with increased 

mouth visibility, 8/12 participants completed the EXNEX task first, where the 

mouth was the most diagnostic feature for the task. This could potentially 

represent a cross over effect between tasks, with participants primed to use the 

mouth region as diagnostic feature in subsequent tasks. However, no clear task 

order effects are apparent, with patterns of behaviour similar across the two 

groups (see Supplementary 4). 

Similar variability in the GENDER task was evident in the association between 

mouth visibility and correct responses. Whilst nearly no evidence of an effect 

was evident when comparing median differences across the group (median 

difference in bin 10 minus bin 1 = 0 PP [-0.03, 0.03]), at an individual level half 

(12/24) of participants were more accurate with increased visibility of the 

mouth. There was significant MI evident for 1 participant with a difference in 

this direction. 
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Figure 32: Younger adult reverse analysis of behavioural responses by mouth visibility 
Panel A: Individual participant results for each of 10 visibility bins. Top two panels show EXNEX 
results. Bottom two panels show GENDER results. Panel B: Each circle represents one 
participant’s difference between bin 10 minus bin 1.  

In summary, increased visibility of the mouth was associated with increased 

accuracy and quicker responses in the EXNEX task for all participants, though 

even when there was no visibility of the mouth participants were still able to 

perform at above chance accuracy levels, suggesting that whilst the mouth is the 

most diagnostic feature, in its absence participants can use other features well 

for categorisation. In the GENDER task, there was an even split of participants in 

both directions on speed and accuracy modulations with increased mouth 

visibility. Whilst some participants were able to use the mouth as a diagnostic 
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feature for gender categorisation, this could not be explained be a general task-

order cross-over effect, and instead seems to reflect individual variation.  

 LEFT EYE VISIBILITY  
 
Left eye visibility has been shown to modulate reaction times in a face versus 

noise detection task (Rousselet et al., 2014). Visibility of the left eye has also 

been implicated in quicker and more accurate responses in gender discrimination 

tasks (Joyce, Schyns, Gosselin, Cottrell, & Rossion, 2006). In our results, 

visibility of the left eye (Figure 33) had a very variable effect on response times 

and accuracy in the two tasks.  

Increased visibility of the left eye in the EXNEX task (Figure 33, top panel) was 

associated faster responses in 14/24 participants (median difference in bin 10 

minus bin 1 = 7 ms, [-19, 6]). MI was significant for 6 participants, 4/6 

participants showing significant MI were faster with increased left eye visibility, 

and 2/6 participants showing significant MI were slower with increased left eye 

visibility. Concurrently, increased visibility of the left eye in the EXNEX task 

(Figure 33, panel 2) was associated with an increase in accuracy for 17/24 

participants (median difference in bin 10 minus bin 1 = 0.03 PP, [0.01, 0.05]). MI 

was significant for 1/24 participant who showed an increase in accuracy with 

increased left eye visibility.  

In the GENDER task, increased visibility of the left eye (Figure 33, panel 3) was 

associated with faster responses in 19/24 participants (median difference in bin 

10 minus bin 1 = -28 ms, [-41, -16]). MI was significant for 5/25 participants, 4/5 

participants showing significant MI were faster with increased left eye visibility. 

Increased visibility of the left eye (Figure 33, bottom panel) was also associated 

with increased accuracy in the GENDER task (median difference in bin 10 minus 

bin 1 = 0.07 PP [0.05, 0.08]), for 23/24 participants. MI was significant for 3/24 

participants, all of whom showed an increase in correct responses with increased 

left eye visibility. As MI was calculated based on single trial variability, this 

discrepancy between the majority of participants showing a difference in 

medians whilst few participants showing a significant MI, can be explained by 

median differences being less sensitive than MI calculation to single-trial 

variability. There was no apparent effects of task order (see Supplementary 5). 
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Figure 33: Younger adult reverse analysis of behavioural responses by left eye visibility 
Panel A: Individual participant results for each of 10 visibility bins. Top two panels show EXNEX 
results. Bottom two panels show GENDER results. Panel B: Each circle represents one 
participant’s difference between bin 10 minus bin 1. 

In summary, increased visibility of the left eye in the EXNEX task was only 

associated with quicker reaction times and increased accuracy for 14/24 and 

17/24 participants respectively. Results for increased visibility of the left eye in 

the GENDER task were also variable, with 19/24 participants showing faster 

reaction times. Though most (23/24 participants) showed an increase in 

accuracy with increased left eye visibility in the GENDER task, MI was only 

significant for a fraction of participants (3/24) suggesting large single-trial 

variability.  
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Previous work has suggested that the left, but not right eye region drives 

accurate judgements in male versus female categorisation tasks (Schyns et al., 

2002). In our results, nearly all (23/24) participants showed an increase in 

accuracy with increased left eye visibility in the gender task. However, our 

results are in contrast to previous work which has suggested that correct 

categorisation of expressive/non-expressive faces does not involve either of the 

eye regions (Schyns et al., 2002), as in our results increased visibility of the left 

eye was related to increased accuracy for over half (14/24) of our participants.  

 RIGHT EYE VISIBILITY  
 
Whilst left eye visibility has been shown to predominantly modulate behavioural 

responses in gender categorisation tasks (Schyns et al., 2002), research has 

demonstrated that a minority of participants demonstrate a converse right eye 

bias in face versus noise detection tasks (Rousselet et al., 2014). In our results 

we found a much more consistent bias towards right eye visibility modulation of 

behaviour in both the EXNEX and GENDER task than has previously been 

described (Schyns et al., 2002).  

In the EXNEX task, visibility of the right eye (Figure 34, top panel) was 

associated with quicker responses for 14/24 participants (median difference in 

bin 10 minus bin 1 = -8 ms, [-17, 2]). MI was significant for 1 participant who was 

faster with increased right eye visibility. Visibility of the right eye (Figure 34, 

panel 2) was also associated with a small increase in accuracy for 19/24 

participants (median difference in bin 10 minus bin 1 = 0.04 PP, [0.03, 0.05]). MI 

was significant for 1/24 participants, who showed an increase in accuracy with 

increased right eye visibility. 

In the GENDER task, increased visibility of the right eye (Figure 34, panel 3) was 

associated with quicker responses in 21/24 participants (median difference in 

bin 10 minus bin 1 = -29 ms, [-47, -12]). MI was significant for 5/24 participants 

showing faster responses with increased right eye visibility. All participants 

(24/24) showed increased accuracy (median difference in bin 10 minus bin 1 = 

0.10 PP [0.07, 0.12]) with increased visibility of the right eye (Figure 34, bottom 

panel). MI was significant for 10/24 of these participants. There was no apparent 

effects of task order (see Supplementary 6). 
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Figure 34: Younger adult reverse analysis of behavioural responses by right eye visibility 
Panel A: Individual participant results for each of 10 visibility bins. Top two panels show EXNEX 
results. Bottom two panels show GENDER results. Panel B: Each circle represents one 
participant’s difference between bin 10 minus bin 1. 

In summary, in the EXNEX task, all participants were quicker and more accurate 

with increased visibility of the mouth. Increased visibility of the left eye 

decreased reaction times for 14/24 participants and increased visibility of the 

right eye decreased reaction time for 14/24 participants. In the GENDER task 

there was an even split of participants in both directions on speed and accuracy 

modulations with increased mouth visibility. Whilst some participants were able 

to use the mouth as a diagnostic feature for gender categorisation, this did not 

reflect a task-order cross-over effect, but rather individual variation. Increased 

visibility of the left eye was associated with quicker responses (19/24 
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participants) and increased accuracy (23/24 participants). Increased visibility of 

the right eye was associated with quicker responses (21/24 participants) and 

more accurate responses (24/24 participants). As with previous work (Rousselet 

et al., 2014), participants with significant MI showed a significant effect for 

either the left or right eye, but no participants showed significant effects for 

both eyes in either of the tasks. 

In Figure 32 - Figure 34, participant 7 may be considered an outlier. Whilst 

participants 7’s accuracy was comparable to other participants in the EXNEX 

task, this participant’s reaction times were slower. On the GENDER task where 

reaction times were similar to other participants, this participant’s accuracy was 

reduced. However, this participants has not been removed as intra-individual 

differences in accuracy and reaction with different visibility of facial features 

was still evident.   

 FEATURE VISIBLITY BETWEEN-TASK DIFFERENCES  
 
To compare these tasks differences more clearly, we next calculated for each 

feature and behavioural comparison, the difference between the EXNEX and 

GENDER task difference of bin 10 minus 1. 

Comparing differences in reaction time (Figure 35) the majority of participants 

(19/24) were faster with increased right eye visibility in the GENDER than 

EXNEX task. This suggests that increased visibility of the eye area is more task 

diagnostic for the GENDER than EXNEX task. Similarly, 16/24 participants were 

faster with increased left eye visibility in the GENDER than EXNEX task, again 

suggesting that increased visibility of the eye area is more task diagnostic for the 

GENDER than EXNEX task. Conversely, all but 1 participant was faster with 

increased mouth visibility in the EXNEX than GENDER task, highlight the task 

diagnosticity of the mouth region for the EXNEX but not GENDER task.  
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Figure 35: Younger adult reaction time task differences by feature visibility Panel A: The 
difference in reaction time (ms) between Bin 10 minus Bin 1 in the EXNEX and GENDER task for 
the left eye (top), right eye (middle) and mouth (bottom). Each line represents one participant. 
Panel B: Difference of differences. The difference in reaction time between Bin 10 minus bin 1 for 
the EXNEX minus GENDER task for each facial feature of interest.  

Comparing differences in accuracy (Figure 36), increased visibility of the right 

eye resulted in increased gains in accuracy for the GENDER than EXNEX task. 

The majority (19/24 participants) of participants demonstrated a larger increase 

in accuracy with increased right eye visibility in the GENDER than EXNEX task, 

suggesting that visibility of the right eye had more of an effect on accuracy in 

the GENDER than EXNEX task, and hence more diagnostic value. Similarly, 

increased visibility on the left eye resulted in increased gains in accuracy for the 

GENDER than EXNEX task. The majority (20/24 participants) of participants 

demonstrated a larger increase in accuracy with increased left eye visibility in 

the GENDER than EXNEX task, again demonstrating that visibility of the left eye 

had more of an effect on accuracy in the GENDER than EXNEX task, and hence 
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more diagnostic value. Conversely, all (24/24) participants demonstrated a 

larger increase in accuracy with increased mouth visibility in the EXNEX than 

GENDER task. This suggests that visibility of the mouth had more of an effect on 

accuracy in the EXNEX than GENDER task and more diagnostic value.  

 

Figure 36: Younger adult accuracy task differences by feature visibility Panel A: The 
difference in accuracy between Bin 10 minus Bin 1 in the EXNEX and GENDER task for the left 
eye (top), right eye (middle) and mouth (bottom). Each line represents one participant. Panel B: 
Difference of differences. The difference in accuracy between Bin 10 minus bin 1 for the EXNEX 
minus GENDER task for each facial feature of interest. 

In summary, directly comparing task differences in effects on reaction time of 

modulating visibility of the left eye, right eye and mouth has demonstrated that 

increased visibility of the left and right eye led to faster response times and 

increased accuracy in the GENDER than EXNEX task. As the eye region is more 

diagnostic for the GENDER than EXNEX task, increased visibility of either eye 

region has more of a reaction time and accuracy advantage for the GENDER than 
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EXNEX task. Conversely, the mouth region is more diagnostic in the EXNEX than 

GENDER task. Increasing visibility of the mouth region has more of a reaction 

time and accuracy advantage for the EXNEX than GENDER task.  

To ensure these differences between tasks were not due to differences in the 

variability of reaction time and accuracy scores, we conducted a control analysis 

by normalising our data. For each participant, behavioural comparison and 

feature we normalised our data between 1 and -1 by dividing the difference 

between bin 10 minus bin 1, by the difference between bin 1 and bin 10. 

Normalising our data did not change the pattern of differences (Supplementary 7 

- Supplementary 8). 

ERP Results  

We have seen that, behaviourally, in the EXNEX task increased visibility of the 

mouth resulted in quicker and more accurate responses and that visibility of the 

left and right eye also lead to quicker and more accurate responses for some 

participants. In the GENDER task, increased visibility of the left eye was 

associated with quicker responses for most (19/24) participants, and more 

accurate responses for nearly all (23/24) participants. Additionally, increased 

visibility of the right eye was also associated with quicker responses for most 

(21/24) participants, and increased accuracy for all participants. Increased 

visibility of the mouth results in quicker reaction times and increased accuracy 

for half of participants.  

Next, we will consider ERP results. We predicted that if the N170 eye sensitivity 

is task-independent, that during both tasks there would be evidence of 

contralateral eye sensitivity, prior to sensitivity to other facial features, 

regardless of the extent to which the eyes are task-relevant.  

Average ERPs for Practice and Bubble trials  

We started by comparing average ERP time courses in the two tasks for all non-

bubble i.e. practice trials and bubble trials. Trials with bubbles can be 

interpreted as similar to completing an object occlusion task where only part of 

the face is visible. Previous work (Jaworska, 2017) has demonstrated in a face 
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detection task that on bubble trials younger adults N170 is slightly delayed and 

larger than on full-face non-bubble trials.  

We computed average ERPs for each participant, in each task, for the left and 

right hemisphere (see Chapter 3: Average ERPs for details). We also calculated 

the median N170 latency and corresponding amplitude for each participant in 

each task, for the left (LE) and right (RE) hemisphere separately (see Chapter 3: 

N170 amplitude and Latency calculations). We present, for each task the group 

average mean ERP’s for LE and RE (Figure 37) with 95 % confidence intervals, 

and corresponding median N170 latency and amplitude for practice and bubble 

trials (Table 4).  

  EXNEX GENDER 
  

LE RE LE RE 

P
ra

c
ti

c
e
 LAT 150.1 

[149.0, 151.2] 
150.0 

[149.9, 150.1] 
150.0 

[149.1, 150.9] 
150.0 

[149.7, 150.3] 

AMP -3.7 
[-6.3, -1.1] 

-3.0 
[-5.6, -0.4] 

-3.5 
[-6.4, -0.7] 

-2.6 
[-5.4, -0.2] 

B
u
b
b
le

  LAT 181.5 
[171.4, 191.7] 

177.7 
[165.0, 190.5] 

180.1 
[170.3, 189.8] 

180.9 
[172.4, 189.4] 

AMP -6.9 
[-9.1,-4.8] 

-6.0 
[-8.6, -3.4] 

-7.1 
[-9.5, -4.7] 

-6.9 
[-9.7, -4.1] 

D
if

fe
re

n
c
e
 

LAT -27.2 
[-36.6, -16.8] 

-27.8 
[-37.9, -17.6] 

-25.5 
[-36.0, -15.0] 

-29.9 
[-40.0, -19.8] 

AMP 3.3 
[1.7, 4.9] 

4.6 
[1.6, 7.6] 

3.6 
[1.1, 6.1] 

5.1 
[1.4, 8.8] 

       

Table 4: Younger adults N170 amplitude and latency  Median N170 amplitude (AMP) in ms and 
latency (LAT) in µV for practice and bubble trials for the left and right hemisphere in the EXNEX 
and GENDER task. Difference was calculated as practice minus bubble trials. Square brackets 
indicate 95 % confidence interval.   

Compared to practice (i.e. non-bubble trials), the latency of the N170 in bubble 

trials was delayed to a similar degree across both tasks and hemispheres (EXNEX 

LE Difference [Practice – Bubble trials] = -27.2 ms [-16.8, -36.6]; EXNEX RE Difference 

[Practice – Bubble trials] = -27.8 ms [-17.6, -37.9]; GENDER LE Difference [Practice – Bubble 

trials] = -25.5 ms [-15.0, -36.0]; GENDER RE Difference [Practice – Bubble trials] = -29.9 ms 

[-19.8, -40.0]). This suggests a general delay in the N170 to bubble stimuli that is 

not task or hemisphere specific.  

There was an increase in the minimum amplitude of the N170 between practice 

and bubble trials (EXNEX LE Difference [Practice – Bubble trials] = 3.3 µV [1.7, 4.9]; 
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EXNEX RE Difference [Practice – Bubble trials] = 4.6 µV [1.6, 7.6]; GENDER LE Difference 

[Practice – Bubble trials] = 3.6 µV [1.1, 6.1]; GENDER RE Difference [Practice – Bubble trials] = 

5.1 µV [1.4, 8.8]). This may be an effect of occlusion of the image. Individual 

ERP plots are provided in Supplementary 9 - Supplementary 12.  

 

Figure 37: Younger adult average group ERP in Bubble and Non-Bubble Trials Mean bubble 
and non-bubble trial ERPs for the left and right hemisphere with 95 % confidence intervals around 
the mean. Vertical lines represent the minimum amplitude peak of the N170 for each task. Bottom 
panel EXNEX minus GENDER for bubble and practice trials. Small grey plot shows the pairwise 
difference of practice minus bubbles trials.  

For comparison we also calculated group averaged ERP waveforms using a 20 % 

trimmed mean. Trimmed means are less affected than outliers and provide a 

better estimation of the location of the bulk of observations. This may improve 

the signal to noise ratio of averaged ERP waveforms. We found no difference in 

the pattern of results when using 20 % trimmed mean (Supplementary 13). 
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Mutual Information Timecourse 

Average ERP’s based upon a single electrode of interest as described above are 

limited, as the above analyses cannot clearly account for single-trial fluctuations 

around the mean. Mutual information at a given time point is a measure of the 

relationship between single-trial fluctuations in the signal at that time, and the 

variation in information from the image.  

We began by calculating MI for each participant at each time point in the two 

tasks between pixels and brain responses for all electrodes. Next, we computed 

the maximum MI across all pixels at each time point for each electrode. Finally, 

we computed the maximum MI at each time point across all electrodes in the 

left and right electrode clusters of interest (see Chapter 3: Mutual Information 

Timecourses). We compared group median MI timecourses in the EXNEX and 

GENDER task for the left and right poster electrode clusters, and the difference 

between tasks (Figure 38). We also calculated the strength of the MI peak for 

individual participants and the corresponding MI latency, and the group median 

of the MI peak and latency (Table 5).  

 

Figure 38: Younger adult MI Timecourses Top row: Group median of individual maximum MI 
timecourses in the EXNEX and GENDER task for the LE and RE cluster. Bottom row: Difference in 
MI timecourses (EXNEX minus GENDER).  
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Figure 38 suggests that maximum MI peaked within the time window of the N170 

during both tasks. However, due to large degrees of individual variability in MI 

timecourses (Figure 39), MI peak latencies varied widely between participants, 

with some individual participants maximum MI peaks occurring outside of the 

time window of the N170. This could reflect a rebound effect, where the latter 

part of the N170 codes the presence of the contralateral eye (Ince et al., 2016). 

Peaks in mutual information for some participants around the time window of 

the P300, particularly in the EXNEX task, could reflect continued representation 

of diagnostic features over this time window (Van Rijsbergen & Schyns, 2009). 

 EXNEX GENDER 
 LE RE LE RE 

LAT 185 
[141.9, 228.1] 

242 
[168.3, 320.7] 

164 
[132.9, 195.1] 

145.6 
[123.9, 167.2] 

MI 0.04 
[0.04, 0.05] 

0.04 
[0.03, 0.05] 

0.03 
[0.03, 0.04] 

0.03 
[0.03, 0.04] 

Table 5: Younger adult group average peak MI and latency Peak MI of the group median of 
individual maximum MI values and corresponding median latency in ms. Square brackets indicate 
95 % percentile bootstrap confidence interval around the medians with 1000 samples. 

Harrell-Davis estimates suggested that MI peaked later in the EXNEX than the 

GENDER task (LE Latency [EXNEX – GENDER] = 33.7 ms [-35.8, 103.2]; RE Latency [EXNEX 

– GENDER] = 119.5 ms [-5.4, 244.5]).  Whilst MI peaked earlier in the LE than RE 

cluster in the EXNEX task, the reverse was evidenced in the GENDER task 

(EXNEX difference [LE minus RE] = -27.8 ms [-118.9, 63.2]; GENDER difference [LE minus 

RE] = 11.5 ms [-65.9, 88.9]).  

 

Figure 39: Younger adult individual Maximum MI Timecourses For each task and electrode, 
individual (N = 24) participants maximum MI time course are shown. Each line represents an 
individual participant.  
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Mean MI time courses have demonstrated that predominantly maximum MI peaks 

within a broad time window around the N170. As we varied the information 

content available on each trial, averaging MI time courses across all trials is not 

meaningful as it does not demonstrate how single trial variability in MI time 

courses are modulated by the information content available on each trial. Next, 

we took an assumption-free approach to look to understand what facial features 

specifically modulate this single-trial variability.  

Brain Classification Images 

To visualise what information is being processed during the entire time course at 

each electrode cluster, for each participant (Supplementary 15) we calculated 

for each electrode the max MI value at each pixel across all time points between 

-300 ms pre-stimulus onset and 600 ms post stimulus onset. We then calculated 

the maximum MI value for each pixel across all electrodes in the LE and RE 

clusters separately. We then took the median maximum MI value for each pixel 

across all participants for each of the two tasks separately, and computed the 

resulting classification image (Figure 40). 

 

Figure 40: Younger adult group Max Mutual Information Classification Image For each 
electrode cluster (LE, RE) the median across participants of the maximum MI value for each pixel 
across the entire time course -300 to 600ms is shown. 

In both the EXNEX and GENDER task, the LE cluster shows a focal hotspot over 

the contralateral right eye area and the RE cluster over the contralateral left 
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eye area, consistent with previous results. In the EXNEX task, both the LE and 

RE clusters show strong hotspots over the mouth region, stronger than that in 

the GENDER task where the mouth region is less diagnostic for task 

performance.  

In summary we have shown that group average MI timecourses were broadly 

similar in the two tasks, though average MI was stronger in the EXNEX than the 

GENDER task. When looking at MI values across hemispheres, MI was stronger for 

the right than left hemisphere in both tasks. Our classification images have 

shown that, for both tasks, the left and right hemisphere ERPs were modulated 

by the presence of the contralateral eye and mouth. We have shown that mouth 

modulation was stronger in the EXNEX than GENDER task, whilst eye modulation 

was slightly stronger for the GENDER than EXNEX task.  

Timing of Feature Sensitivity  

In both the EXNEX and GENDER tasks we have highlighted peaks in mutual 

information between ERPs and pixels around the eye and mouth regions. Next, 

we will quantify the timing of feature sensitivity to the left eye, right eye and 

mouth in the two tasks. Given previous research, we would expect to see 

processing of the contralateral eye on each hemisphere, before processing of 

other task-relevant facial features, such as the mouth in the EXNEX task (M. L. 

Smith et al., 2004).  

First, we examined group MI classification images over time. For each individual, 

we calculated the maximum MI value across all electrodes within the left and 

right hemisphere clusters, for every pixel at each time point. We then calculated 

group median MI value at each time point, presented in Figure 41.  

In both tasks, contralateral eye sensitivity and mouth sensitivity are apparent. In 

both tasks, contralateral eye and mouth sensitivity peaked within the time 

window of the N170. In the GENDER task there was evidence of electrodes on 

the left hemisphere initially coding the contralateral eye, with later sensitivity 

to the ipsilateral eye. This is consistent with previous work suggesting that 

whilst the N170 initially reflects coding of the contralateral eye, this is followed 

by sensitivity to cross-hemispheric transfer of visual features (Ince et al., 2016).
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Figure 41: Younger adult mutual information EEG classification images time course Group median of individual maximum MI values at each pixel and time point 
(in milliseconds, see small numbers on the top row) in each cluster of electrodes of interest in two tasks 
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Modulation of MI Timecourse by Feature Visibility  

Next, we quantified the timing of feature sensitivity seen in our MI classification 

images by examining the MI time courses between feature of interest visibility 

and ERPs. We selected 1 left and right lateral posterior electrode and calculated 

for each feature the time course of the MI about feature visibility – MI(feature, 

[ERP, grad]) (see Chapter 3: Feature of Interest Analysis). We present the mean 

MI time courses for each electrode, task and feature in Figure 42. We also 

calculated the group median of individual MI peaks and corresponding latencies. 

First, we will address left posterior lateral activity (Figure 42). Left posterior 

lateral activity was modulated by the contralateral right eye in both the GENDER 

and EXNEX task, with MI peaking earlier in the EXNEX than GENDER task (EXNEX 

= 150.0 ms [103.5, 198.5]; GENDER = 175.1 ms [141.3, 208.8]; Difference [EXNEX 

minus GENDER] = -37.4 ms [-201.9, 127.0]).  

MI however was stronger for the GENDER than the EXNEX task (Difference [EXNEX 

minus GENDER] = -0.004 bits [-0.001, -0.007]). This is consistent with our behavioural 

results showing that the eye region was more diagnostic for the GENDER than 

the EXNEX task. There was no evidence of modulation of the left electrode by 

the ipsilateral left eye.   

Left electrode activity was modulated by the mouth in both tasks (EXNEX = 0.03 

[0.02, 0.04]; GENDER = 0.02 [0.01, 0.02]), though MI was stronger in the EXNEX 

than the GENDER task (Difference [EXNEX minus GENDER] = 0.01 bits [0.01, 0.02]). This 

is consistent with our behavioural results showing that the mouth region was 

more diagnostic for the EXNEX than GENDER task. Median MI peaked earlier in 

the GENDER than EXNEX task (EXNEX = 230.1 ms [119.6, 341.4]; GENDER = 

173.8 ms [122.9, 224.6]; Difference [EXNEX minus GENDER] = 40.4 ms [-64.4, 145.3]), 

though this may be due to larger MI values in the later part of the time course in 

the EXNEX task.  

Right posterior lateral activity (Figure 42) was modulated by the contralateral 

left eye in both the GENDER and EXNEX task (EXNEX = 0.02 [0.01, 0.02]; GENDER 

= 0.02 [0.02, 0.03]; Difference [EXNEX minus GENDER] = -0.002 bits [0.0, 0.006]). Peak 

latency was also similar between tasks (EXNEX = 166.8 ms [151.0, 182.5]; 
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GENDER = 169.1 ms [149.8, 188.3]; Difference [EXNEX minus GENDER] = 3.4 ms [-18.6, 

25.5]). There was no evidence of modulation of the left electrode by the 

ipsilateral left eye. 

Right electrode activity was modulated by the mouth in both tasks (EXNEX = 

0.03 [0.02, 0.04]; GENDER = 0.02 [0.02, 0.03]; Difference [EXNEX minus GENDER] = 0.01 

[0.01, 0.02]), though peaked earlier in the EXNEX than the GENDER task (EXNEX 

= 180.3 ms [146.5, 214.1]; GENDER = 190.6 ms [123.2, 157.9]; Difference [EXNEX 

minus GENDER] = -7.3 ms [-61.2, 46.5]).  

 

Figure 42: Younger adult mutual Information Timecourse by facial feature Mutual information 
time course for the right and left posterior lateral electrode towards the left eye (top panel), right 
eye (middle panel) and mouth (bottom panel) in the EXNEX and GENDER task. Shaded area 
corresponds to a 95 % confidence interval calculated by a percentile bootstrap with 1000 samples 
around the median. Vertical lines indicate the peak of the MI time course.  

For each participant and task we also analysed MI time courses to the midline 

electrode with the maximum sum MI between 120 – 220 ms (see Chapter 3; 
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Feature of Interest Analysis). Midline electrodes have previously been shown to 

be sensitive to task-relevant facial features (Schyns, Thut, & Gross, 2011). In 

particular, in a face versus noise detection task midline electrodes displayed 

sensitivity to both eyes as well as the nose and mouth areas (Rousselet et al., 

2014). The authors suggested that sensitivity to the nose and mouth area peaked 

at least 20 ms prior to posterior lateral eye sensitivity peaks, and was also 

present in noise trials, suggesting that midline electrode sensitivity may be a 

possible low-level effect, rather than an explicit feature integration process. 

Results from our midline electrode analysis suggested a weaker sensitivity to 

both the eyes and the mouth, which peaked later than contralateral posterior 

electrode activity.   

Next, we compared MI time courses between features to determine if 

contralateral eye sensitivity preceded sensitivity to the mouth (Figure 43). For 

each comparison, we calculated the difference between the MI peak and its 

latency for eye compared to mouth timecourses within the time window of the 

N170 (~120 – 220 ms). 

 

Figure 43: Younger adult Mouth-Eye MI time course differences MI time courses to the 
contralateral eye and mouth for the left and right electrode in the EXNEX and GENDER task. Grey 
plots display the pairwise difference in time courses. Shaded area corresponds to the 95 % 
bootstrap CI around the median.  



128 

 

Right posterior lateral MI for the contralateral left eye peaked earlier than peak 

MI to the mouth in both the EXNEX (Difference [Eye minus Mouth] = -7.1 ms [-20.3, 

6.0]) and GENDER (Difference [Eye minus Mouth] = -5.0 ms [-15.4, 5.4]) task.  

Left posterior lateral MI for the contralateral right eye peaked later than peak MI 

to the mouth in the EXNEX (Difference [Eye minus Mouth] = 9.5 ms [-4.5, 23.6]) and 

the GENDER (Difference [Eye minus Mouth] = 7.1 ms [-2.3, 16.5]) task. 

We found large individual variation in the direction of the difference in MI peaks 

to the mouth and contralateral eye region that were not explained by task order 

effects. We present scatter plots of the difference in individual peak MI to the 

eye and mouth within the time window of the N170 in Supplementary 14. 

However, coding of the eye starts well before the peak of the N170 (Rousselet, 

Ince, van Rijsbergen, & Schyns, 2014), so we should look at MI onset.  

MI Onset Analysis  

Next, we aimed to calculate the onset of MI to the mouth and eyes. For each 

participant in each task, we calculated the maximum MI value at each time 

point combined across both left and right posterior lateral electrodes to the 

mouth and both the eyes. We did this as some participants had stronger MI 

values to the right rather than left eye (Supplementary 15) and using this 

method avoided assumptions about which eye would be processed first. Using 

these timecourses, we used a Multivariate Adaptive Regression Splines (MARS) 

method (Friedman, 1991) to calculate MI onsets for the eyes and mouth (see 

Chapter 3; Mutual Information Onset Analysis).  

Individual results for MI onsets in the EXNEX task are displayed in Supplementary 

16 - Supplementary 17. Four participants’ demonstrated timecourses where no 

clear peak was discernible to the eyes and/or mouth and were removed from 

analysis. For each participant we calculated the difference in the estimate of MI 

onset to the eyes minus the mouth. Results are presented in Figure 44. 
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Figure 44: Younger adult difference in MI Onset For each participant the difference in estimated 
onset times (eyes minus mouth) in the EXNEX (left) and GENDER (right) task. Orange circles 
completed the EXNEX task first. Blue circles completed the GENDER task first. 

There was a negatively skewed distribution in differences in MI onset of the eyes 

compared to the mouth. 14/20 participants has an earlier estimates onset to the 

eyes compared to the mouth. Group estimates of the median difference were -

13 ms [-28, 3]. Whilst some participants demonstrated a preference to 

processing the eyes first, this was not evident for all participants.  

Individual results for MI onsets in the GENDER task are displayed in 

Supplementary 18 - Supplementary 19. Four participants’ demonstrated 

timecourses where no clear peak was discernible to the eyes and/or mouth and 

were removed from analysis. For each participant we calculated the difference 

in the estimate of MI onset to the eyes minus the mouth.  

There was a negatively skewed distribution in differences in MI onset of the eyes 

compared to the mouth. 12/20 participants has an earlier estimates onset to the 

eyes compared to the mouth. Group estimates of the median difference were -

12 ms [-46, 21]. Whilst some participants demonstrated a preference to 

processing the eyes first, this was not evident for all participants.  

Reverse Analysis: EEG Results 

We have examined MI between pixels and ERPs. We have seen that visibility of 

the contralateral eye is associated with modulation of left and right hemisphere 

activity in both the EXNEX and GENDER task. Similarly, visibility of the 

ipsilateral eye was associated with weak modulation of left and right hemisphere 

activity in both tasks. Whilst visibility of the mouth region was associated with 

modulation of left and right hemisphere activity in the GENDER task, this was 

stronger for the EXNEX task.  
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We have used MI to examine the association between facial features and ERP 

modulation. However, MI does not reveal how the shapes of the ERPs are 

affected by our features of interest. To establish how visibility of the left eye, 

right eye and mouth affect the shape of our ERPs, we next focus on reverse 

analysis – isolating the specific EEG modulations associated with the presence of 

specific facial features.  

Using the feature of interest masks (see Chapter 3: Feature of Interest Analysis) 

we calculated on a trial-by-trial basis the visibility of each feature (left eye, 

right eye, mouth), obtained as a scalar value of the sum of pixel visibility within 

the ellipse of each feature mask. We then split these visibility values into ten 

equally populated bins ranging from the lowest (bin 1) to the highest (bin 10) 

visibility values. We then sorted single trial ERP’s into 10 bins, based on the 

feature visibility in each trial. We present group mean ERP’s for each level of 

feature visibility for the left (Figure 45) and right (Figure 46) electrode.  

Left hemisphere ERPs (Figure 45) were modulated by the presence of the 

contralateral (right) eye in both tasks. Modulation of the N170 component was 

stronger in the GENDER than EXNEX task, with increased visibility of the 

contralateral (right) eye increasing amplitude and decreasing latency on the 

N170 (Figure 45). Increasing visibility of the ipsilateral (left) eye similarly 

modulated the N170 component of the ERP in both tasks. There was stronger 

modulation of the N170 in the GENDER than the EXNEX task, with increased 

visibility of the ipsilateral (left) eye increasing amplitude and increasing latency 

on the N170. This increased prominence in modulation of the N170 in the 

GENDER than EXNEX task with increased visibility of the eye region indicates 

that as well as the eye region being diagnostic for behavioural modulation, these 

features also modulated brain activity. Increasing visibility of the mouth region 

modulates the N170 component of the ERP in both the GENDER and EXNEX task. 

In the EXNEX task, where the mouth is behaviourally task relevant, increased 

mouth visibility increases N170 amplitude, whilst decreasing N170 latency 

(Figure 45). In the GENDER task, increased mouth visibility increases N170 

amplitude, though to a lesser extent than in the EXNEX task (Figure 45). This 

reflects a disparity between behaviour, where the mouth is not task relevant 

and not related to increased accuracy or speed of performance, and brain 

activity, where mouth visibility modulates brain activity.  
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Figure 45: Younger adult left Electrode Binned ERPs by feature visibility Each column 
represents one task. Column A (left) shows results for the EXNEX task, column B (right) shows 
results for the GENDER task. Group mean ERP’s are shown for the posterior left electrode. ERPs 
are binned into 10 levels of visibility ranging from bin 1 (least visible) to bin 10 (most visible) for the 
left ipsilateral eye (top row), the right contralateral eye (middle row) and the mouth (bottom row).  

Right hemisphere ERPs (Figure 46) were modulated by the presence of the 

contralateral (left) eye in both tasks. Increased visibility of the contralateral 

(left) eye increased N170 amplitude and decreased N170 latency in both the 

EXNEX and GENDER task (Figure 46). Increasing visibility of the ipsilateral (right) 

eye similarly modulated the N170 component of the ERP in both tasks, though 

modulation was weaker. Increasingly visibility of the ipsilateral (right) eye 

increased N170 amplitudes in both tasks (Figure 46). Increasing visibility of the 

mouth region modulated N170 ERPs in both tasks. As mouth visibility increased, 

amplitude of the N170 increased in both tasks (Figure 46). Modulation of the 

N170 by mouth visibility was greater for activity on the right than left 

hemisphere (Figure 46).  

We have demonstrated modulation of single-trial ERPs due to visibility of 

specific facial features. Left and right hemisphere N170s are modulated more by 
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the contralateral than ipsilateral eye in both tasks. Contralateral eye modulation 

of the N170 was stronger for the GENDER than EXNEX task. Similarly both left 

and right hemisphere N170s were modulated by the mouth region, though this 

modulation was stronger in the EXNEX than GENDER task. Modulation of N170s 

in both task were strongest when manipulating behavioural diagnostic facial 

features i.e. the eyes in the GENDER task, and the mouth region in the EXNEX 

task.  

 

Figure 46: Younger adult right electrode ERPs binned by feature visibility Each column 
represents one task. Column A (left) shows results for the EXNEX task, column B (right) shows 
results for the GENDER task. Group mean ERPs are shown for the posterior right electrode. ERPs 
are binned into 10 levels of visibility ranging from bin 1 (least visible) to bin 10 (most visible) for the 
left ipsilateral eye (top row), the right contralateral eye (middle row) and the mouth (bottom row). 

Our N170 modulations also demonstrate differences in the relative linearity of 

ERP responses. With a linear response, we would expect a linear relationship 

between increasing visibility of a feature and modulation of the N170. This 

linearity of response can be seen for the right hemisphere modulation of the 

N170 to increasing mouth visibility. However, right hemisphere N170 responses 

to the contralateral (left) eye appear more categorical. In the EXNEX task, N170 
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responses among the lowest eye visibility ERPs have minimal variance, with the 3 

highest visibility bands displaying a qualitatively difference N170 response.  

N170 Latency and Amplitude Differences 

We have examined whole ERP modulations in Figure 45 - Figure 46. We have 

demonstrated that the N170 component of our ERPs is modulated by the relative 

visibility of specific facial features. Next, we wanted to quantify this modulation 

of the N170, specifically to compare how the amplitude and latency of the N170 

is modulated by the presence of specific facial features between tasks.  

We looked to quantify the difference in N170 amplitude and latency between 

ERPs when facial features were most visible (bin 10) compared to least visible 

(bin 1). First we calculated for each participant the N170 amplitude and latency 

at each bin, for each feature in each task, for both posterior lateral electrodes. 

We then calculated the difference between bin 10 (most visible) minus bin 1 

(least visible) for N170 latency in the time window ~150–240 ms post stimulus 

onset for each task, feature and lateral posterior electrode. Amplitude 

differences were calculated as a proportion of bin1 (least visible) as a 

percentage, such that an amplitude difference of 50 % means that the amplitude 

of bin 10 (most visible) amplitudes were 150 % the size of the amplitudes in bin 

1. For example, a point at the x, y coordinates 0, 100 would reflect no latency 

difference of the N170 between bin 1 (least visible) and bin 10 (most visible) 

trials but would reflect a amplitude difference of 100 % meaning that the 

amplitudes of bin 10 (most visible) amplitudes were 200 % the size of the 

amplitudes in bin 1. In comparison, a point at the x, y coordinates -15, 0 would 

reflect a latency difference of -15 ms between bin 10 and bin 1 trials (i.e. the 

peak of the N170 in bin 10 trials was earlier) but would reflect no difference in 

amplitude.  

We present median difference across participants in Figure 47 and Table 6, and 

individual differences in Figure 48.  
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Figure 47: Younger adult N170 Amplitude and Latency Differences by Feature Results are 
presented for three features of interest: the left eye (blue), right eye (green) and mouth (red). 
Median N170 latency differences were calculated between bin 10 (most visible) minus bin 1(least 
visible) and are presented in milliseconds. Median N170 amplitude differences are calculated as a 
percentage of bin 1, such that an amplitude difference of 50% means that the amplitude of bin 10 
was 150% the size of amplitudes in bin1. Vertical and horizontal lines correspond to 95% 
confidence intervals. EXNEX results are plotted with squares, GENDER results are plotted with 
circles. Solid lines are the left electrode; dashed lines are the right electrode.  

In both the GENDER and EXNEX task, increased visibility of the mouth increased 

N170 amplitudes at both the left and right posterior lateral electrodes. 

Increased mouth visibility was associated with shorter N170 latencies in the 

EXNEX task at left posterior lateral electrodes, and in the GENDER task at right 

posterior lateral electrodes. This highlights a disparity, with the visibility of the 

mouth modulating N170 latencies and amplitudes in the GENDER task, despite 

the mouth not being task-relevant in terms of modulating behavioural responses. 

Increased visibility of the ipsilateral eye region was associated with increased 

amplitudes in the GENDER task for both the left and right posterior lateral 

electrodes. In the EXNEX task, this was only the case for the right electrode. In 

both the EXNEX and GENDER task there was minimal differences in latency 

modulation.  Increased visibility of the contralateral eye region was associated 

with decreased latencies on the left posterior lateral electrodes in both the 

GENDER and EXNEX tasks, but increased amplitude in the GENDER task only. At 

the right posterior electrode, increased visibility of the contralateral (left) eye 

was associated with increased latency and amplitude of the N170 in both the 

EXNEX and GENDER task.   
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  EXNEX GENDER 
  LE RE LE RE 

L
E
F
T

 E
Y

E
 

LAT 
-0.4 

[-2.2, 1.4] 
-4.4 

[-7.8, -1.0] 
-0.7 

[-2.4, 1.0] 
-10.4 

[-14.8, -5.9] 

AMP 
4.9 

[-10.6, 20.4] 
24.3 

[15.5, 33.2] 
15.8 

[5.7, 25.9] 
27.3 

[9.8, 44.8] 
R

IG
H

T
 E

Y
E
 

LAT 
-4.8 

[-8.9, -0.8] 
-0.1 

[-1.8, 1.5] 
-3.3 

[-7.8, 1.2] 
-0.8 

[-2.6, 1.1] 

AMP 
12.3 

[-6.2, 30.7] 
17.1 

[6.9, 27.3 
23.5 

[8.3, 38.8] 
22.7 

[9.9, 35.5] 

M
O

U
T

H
 LAT 

-4.0 
[-8.0, -0.1] 

-2.5 
[-5.6, 0.6] 

-2.6 
[-7.3, 2.2] 

-7.1 
[-10.4, -3.8] 

AMP 
56.9 

[37.4, 76.5] 
53.8 

[11.2, 96.5] 
23.8 

[8.0, 39.6] 
41.4 

[14.5, 68.2] 

Table 6: Younger adult N170 amplitude and latency differences by facial feature Median 
N170 latency and amplitude differences for the right eye, left eye and mouth for the left and right 
hemisphere in each task. N170 was measured in the time window between ~150-240ms post 
stimulus onset. Median N170 latency differences were calculated between bin 10 (most visible) 
minus bin 1(least visible) and are presented in milliseconds. Median N170 amplitude differences 
are calculated as a percentage of bin 1, such that an amplitude difference of 50% means that the 
amplitude of bin 10 was 150% the size of amplitudes in bin1. 
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Figure 48: Younger adult N170 individual amplitude and latency differences Individual 
differences in amplitude and latency between bin 10 minus bin 1. Median N170 latency differences 
were calculated between bin 10 (most visible) minus bin 1(least visible) and are presented in 
milliseconds. Median N170 amplitude differences are calculated as a percentage of bin 1, such that 
an amplitude difference of 50% means that the amplitude of bin 10 was 150% the size of 
amplitudes in bin1. Squares represent EXNEX whilst circles represent GENDER. Triangles 
represent the difference between EXNEX minus GENDER. Blue symbols represent participants 
completing the EXNEX task first. Orange triangles represent participants completing the GENDER 
task first.  
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Discussion 

To understand whether face processing relies upon a bottom-up, data driven 

model in which the presence of the contralateral eye is the first processing step 

succeeding all other task-relevant feature integration, we need to formally 

quantify contralateral eye sensitivity in face processing tasks during which the 

eyes are highly or lowly diagnostic.  

In the current study using a parametric design we examined what facial 

information was processed under varying task demands, and linked facial 

stimulus space to behaviour and brain responses. We found that increased 

visibility of the mouth led to quicker and more accurate responses in the EXNEX 

task for all participants, though even when there was no visibility of the mouth 

participants were still able to perform at above chance accuracy levels, 

suggesting that whilst the mouth is the most diagnostic feature, in its absence 

participants can use other features well for categorisation. Whilst some of our 

participants were able to use the mouth as a diagnostic feature for GENDER 

categorisation, predominantly participants’ behavioural responses were 

modulated by visibility of the eye regions.  

Increased visibility of the left eye (from the viewers’ perspective) increased 

reaction times and accuracy for some participants in the EXNEX task. In the 

GENDER task, increased left eye visibility led to quicker responses for most 

participants, and more accurate responses for nearly all participants, though MI 

was only significant for a fraction of participants (3/24) suggesting large single-

trial variability. Previous studies have suggested that the presence of the left 

eye is crucial for the correct detection of faces (Jaworska, 2017; Rousselet et 

al., 2014). Here we have replicated these results in a more complex socially 

relevant gender and expressiveness task. Our results suggest that processing of 

the left eye is not limited to face detection tasks but is apparent for face 

processing more generally.  

Whilst our results were consistent to previous results indicating that the mouth 

was the most highly diagnostic feature for resolving the EXNEX task we did not 

replicate the strong diagnosticity to the eye region in the GENDER task (Schyns 

et al., 2002). Instead, our results’ suggested an idiosyncratic preference for the 
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eyes that varied in strength across participants. Our results did not indicate a 

strong dependence on any single feature for resolving the GENDER task. Our 

results may have differed due to using naturalistic coloured images, where there 

was more information from e.g. the hair and skin pigmentation to resolve the 

task. However, no participants’ classification images highlighted strong 

sensitivity to the hair region, suggesting that participants predominantly relied 

on facial feature information. Unlike previous studies which kept performance at 

75 % correct responses (Schyns et al., 2002), we did not set a performance 

threshold for our tasks, and our participants achieved on average 82 % accuracy 

in the GENDER task. Given this higher level of accuracy in our results, we may 

not have evidenced modulations of accuracy by face features in the GENDER 

task. It may be that if we reduced the accuracy of participants that we may 

have observed a stronger association between presence of the eye (or other 

features) and correct responses.  

Another potential explanation is that previous studies (Schyns et al., 2002) may 

have indicated a stronger sensitivity to the eye in the GENDER task due to the 

models in the stimulus set wearing eye makeup. This may have changed the local 

contrast in the eye region by darkening the eye line and lashes making the eye 

region more salient in differentiating women and men in the stimulus set (Schyns 

& Oliva, 1999). This could be readily tested by controlling for the presence or 

absence of eye makeup in an otherwise identical stimulus set and observing 

whether the presence of eye makeup results in increased diagnosticity of the 

eye region.  

Having established that participants use different information from a face to 

perform an EXNEX and GENDER categorisation task we quantified what 

information was coded in the brain. We found that single-trial ERPs are 

modulated by the presence of the contralateral eye region and mouth in both 

the EXNEX and GENDER task. We have shown that mouth modulation was 

stronger in the EXNEX than GENDER task, whilst eye modulation was slightly 

stronger for the GENDER than EXNEX task. This highlights a disparity between 

the task-relevant information for behaviour and that information coded in the 

brain.  
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During the time window of the N170, we highlighted the encoding of both the 

contralateral eye and mouth regions in both the EXNEX and GENDER task. This is 

in stark contrast to Smith et al., (2004) results suggesting that the N170 was 

modulated by the contralateral eye only. We have shown that in both the 

GENDER and EXNEX task, increased visibility of the mouth increased N170 

amplitudes at both the left and right posterior lateral electrodes. Increased 

mouth visibility was also associated with shorter N170 latencies in the EXNEX 

task at left posterior lateral electrodes, and in the GENDER task at right 

posterior lateral electrodes. This suggests that the N170 is not only sensitive to 

the contralateral eye as suggested by Smith et al. (2004), but is also modulated 

by other facial features, namely the mouth. We also found evidence of 

sensitivity to the ipsilateral eye modulating N170 amplitudes during both tasks, 

particularly for the left ipsilateral electrodes. This is in-keeping with a recent 

study suggesting that the N170 reflects the coding of the contralateral eye 

followed by the transfer of communication about the ipsilateral eye (Ince et al., 

2016).  

We attempted to quantify the timing of feature sensitivity to the eyes and 

mouth to elucidate whether eye coding began before coding of the mouth. By 

estimating the onset of MI to the eyes and mouth regions, we found sensitivity to 

either eye preceded sensitivity to the mouth for 14/20 participants in the EXNEX 

task and 12/20 participants in the GENDER task. We evidence negatively skewed 

distributions indicating a large amount of idiosyncrasy in relative timing of MI 

onset. As a result these results should be treated with caution, as estimates of 

onsets on such a small scale may be misleading. Similarly, the large individual 

differences in onsets should be addressed in future studies.  

Our results only indicate the use of facial feature information when resolving a 

very narrow and specific task. Task demands may drive facial feature 

information processing in a top-down manner. For example, diagnostic 

information used to correctly categorise a neutral expression (compared another 

expression/s) differs depending on the task demand and comparison 

expression/s seen (Smith & Merlusca, 2014). The relative timing of facial feature 

integration should be considered under multiple and diverse task demands for a 

more comprehensive understanding of the extent to which eye sensitivity 
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precedes (or otherwise) sensitivity not just to the mouth but other features and 

their combination across a wider range of tasks.  

In the current experiment we considered the left eye, right eye and mouth as 

separate features. Binning based on visibility of a single feature meant that 

idiosyncratic amounts of visibility of other features were present. As such, we 

did not consider what Smith et al. (2004) refer to as ‘second-order’ effects on 

brain signals (i.e. the combinations of features such as the left eye and mouth). 

However  Smith et al. (2004) found no evidence that configurations of facial 

features modulated the N170 differentially than considering facial features in 

isolation. Future studies however may wish to address explicitly if combinations 

of facial features modulate brain activity. 

In conclusion, we have shown that the N170 can be modulated by the mouth as 

well as the eye region in both a gender and expressive/non-expressive 

categorisation task. Whilst there is a trend suggesting that sensitivity to the eye 

regions precedes sensitivity to the mouth, the timing of contralateral eye 

sensitivity compared to other task relevant feature modulation is idiosyncratic.  
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Chapter 4 Supplementary Figures  

 

Supplementary 3: Younger adult individual behavioural classification images for all 
participants. MI(pix, RT) and MI(pix,CORR) for the EXNEX and GENDER task. Left column: 
Participants who completed the EXNEX task first. Right column: Participants who completed the 
GENDER task first. Participants are ordered so that the participants with the highest MI values 
appear at the top.    
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Supplementary 4: Younger adult mouth visibility task order effects Differences between high 
(bin 10) and low (bin 1) visibility of the mouth in the EXNEX (top row) and GENDER (bottom row) 
task. Purple circles are participants who completed the EXNEX task first. Green circles are 
participants who completed the GENDER task first. Behavioural differences are broadly the same 
regardless of task order.  
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Supplementary 5: Younger adult left eye visibility task order effects Differences between high 
(bin 10) and low (bin 1) visibility of the mouth in the EXNEX (top row) and GENDER (bottom row) 
task. Purple circles are participants who completed the EXNEX task first. Green circles are 
participants who completed the GENDER task first. Behavioural differences are broadly the same 
regardless of task order.  
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Supplementary 6: Younger adult right eye visibility task order effects Differences between 
high (bin 10) and low (bin 1) visibility of the mouth in the EXNEX (top row) and GENDER (bottom 
row) task. Purple circles are participants who completed the EXNEX task first. Green circles are 
participants who completed the GENDER task first. Behavioural differences are broadly the same 
regardless of task order.  



145 

 

 

Supplementary 7: Younger adult normalised reaction time task differences by feature 
visibility Behavioural data normalised by dividing the difference of bin 10 minus bin 1 by the 
difference of bin 1 + bin 10 for each participant and facial feature. Panel A: The difference in 
normalised reaction time for the left eye (top), right eye (middle) and mouth (bottom). Each line 
represents one participant. Panel B: Difference of differences. The difference in normalised 
reaction time for the EXNEX minus GENDER task for each facial feature of interest.  
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Supplementary 8: Younger adult normalised accuracy time task differences by feature 
visibility Behavioural data normalised by dividing the difference of bin 10 minus bin 1 by the 
difference of bin 1 + bin 10 for each participant and facial feature. Panel A: The difference in 
normalised reaction time for the left eye (top), right eye (middle) and mouth (bottom). Each line 
represents one participant. Panel B: Difference of differences. The difference in normalised 
reaction time (EXNEX minus GENDER) for each facial feature of interest.  
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Supplementary 9: Younger adult individual mean ERPs (Practice Trials) Mean ERPs for each 
participant (N = 24) are superimposed in grey for the left and right hemisphere in each task. Solid 
black line represents the group mean. Dashed black line represents the latency of the group 
average minimum N170 amplitude.  

 

Supplementary 10: Younger adult individual mean ERPs (Bubble Trials) Mean ERPs for each 
participant (N = 24) are superimposed in grey for the left and right hemisphere in each task. Solid 
black line represents the group mean. Dashed black line represents the latency of the group 
average minimum N170 amplitude.  
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Supplementary 11: Younger adult individual mean ERPs (Bubble minus Practice Trials) 
Difference in Bubble minus Practice trials mean ERPs for each participant (N = 24) are 
superimposed in grey for the left and right hemisphere in each task. Solid black line represents the 
group mean.  

 

Supplementary 12: Younger adult individual mean ERPs (EXNEX – GENDER) Difference in 
Bubble minus Practice trials for EXNEX minus GENDER mean ERPs for each participant (N = 24) 
are superimposed in grey for the left and right hemisphere in each task. Solid black line represents 
the group mean.  
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Supplementary 13: Younger adult 20 % trimmed mean average group ERP in Bubble and 
Non-Bubble Trials 20 % trimmed mean bubble and non-bubble trial ERPs for the left and right 
hemisphere with 95 % confidence intervals around the 20 % trimmed mean. Vertical lines 
represent the minimum amplitude peak of the N170 for each task. Bottom panel EXNEX minus 
GENDER for bubble and practice trials. Small grey plot shows the pairwise difference of practice 
minus bubbles trials.  
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Supplementary 14: Younger adult individual differences in MI peak latency For each 
participant we calculated the difference in the latency of the peak MI between 120-220 ms for the 
contralateral eye minus the mouth. Purple circles are participants who completed the EXNEX task 
first. Green circles are participants who completed the GENDER task first 
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Supplementary 15: Younger adult individual brain classification images for all participants. 
MI(pix, [ERP,grad]) for the EXNEX and GENDER task. Left column: Participants who completed 
the EXNEX task first. Right column: Participants who completed the GENDER task first.  
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Supplementary 16: Younger adult MI eye onset (EXNEX)  For each participant we plotted the maximum MI across the left and right electrode to the left and right 
eyes. For each participant the time course is shown in black. Peaks 2.25 times larger than median baseline are highlighted by a red triangle. Red line depicts the model 
estimation. Blue lines indicate the estimation of the onset of MI, which is stated above each plot. Plots in grey show individuals whose data was not included in the 
analysis as no peak was identified for the eyes and/or mouth time course. 
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Supplementary 17: Younger adult MI mouth onset (EXNEX)  For each participant we plotted the maximum MI across the left and right electrode to the left and right 
eyes. For each participant the time course is shown in black. Peaks 2.25 times larger than median baseline are highlighted by a red triangle. Red line depicts the model 
estimation. Blue lines indicate the estimation of the onset of MI, which is stated above each plot. Plots in grey show individuals whose data was not included in the 
analysis as no peak was identified for the eyes and/or mouth time course.  
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Supplementary 18: Younger adult MI eye onset (GENDER)  For each participant we plotted the maximum MI across the left and right electrode to the left and right 
eyes. For each participant the time course is shown in black. Peaks 2.25 times larger than median  baseline are highlighted by a red triangle. Red line depicts the 
model estimation. Blue lines indicate the estimation of the onset of MI, which is stated above each plot. Plots in grey show individuals whose data was not included in 
the analysis as no peak was identified for the eyes and/or mouth time course. 
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Supplementary 19: Younger adult MI mouth onset (GENDER)  For each participant we plotted the maximum MI across the left and right electrode to the left and 
right eyes. For each participant the time course is shown in black. Peaks 2.25 times larger than median baseline are highlighted by a red triangle. Red line depicts the 
model estimation. Blue lines indicate the estimation of the onset of MI, which is stated above each plot. Plots in grey show individuals whose data was not included in 
the analysis as no peak was identified for the eyes and/or mouth time course.  

 



156 
 

 

Chapter 5 - Eye but not mouth sensitivity is 
delayed in healthy ageing  

Introduction 

In Chapter 2, we have seen that the N170 sensitivity to the contralateral eye 

area was scale tolerant and reflected an eye-specific coding mechanism. In 

Chapter 4, we have shown that contralateral eye sensitivity is apparent in tasks 

where the eye is purported to be more task relevant (in a gender discrimination 

task) and more task irrelevant (in an expressive versus non expressive 

discrimination task) for behaviour. Unlike previous studies (M. L. Smith et al., 

2004) however, we have also shown that the N170 is also sensitive to the mouth. 

This suggests that the N170 is modulated by multiple facial features, and is not 

just an eye-specific coding mechanism as previously suggested.  

In Chapter 4, we attempted to quantify the timing of feature sensitivity to 

elucidate whether eye coding is a necessary first-stage of face processing 

regardless of the task. By estimating the onset of MI to the eyes and mouth 

regions, we uncovered idiosyncrasies in the onset of feature processing. Whilst 

there was a trend towards a general preference for encoding the eye first, this 

was not systematic across all participants, with only 70 % and 60 % of younger 

participants encoding the eye before the mouth in the EXNEX and GENDER task 

respectively. This suggests that whilst eye and mouth coding appears 

consistently across tasks (sensitivity to the contralateral eye and mouth area was 

found in both tasks) there are individual idiosyncrasies in the relative timing of 

onset of sensitivity to each of these features, and these may interact with task. 

In this chapter, we investigate how task effects on the N170 sensitivity differ in 

healthy ageing. Recently, research has shown that during a face versus noise 

detection task, both younger and older adults responded faster when the 

contralateral eye region was visible, and older adults were more reliant on the 

visibility of the eye region for correct responses (Jaworska, 2017). Furthermore, 

the presence of the contralateral eye modulated ERP’s for both younger and 

older adults, though in older adults this modulation was delayed and weaker, 

and only the N170 amplitude, not latency, was modulated in older adults 

(Jaworska, 2017). Together, these results point towards a dissociation of 
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behavioural and brain responses in older adults, where an increased reliance on 

presence of the eyes is coupled with a delayed and weaker processing of this 

very feature during a face detection task.  

In this chapter we aimed to explore whether older adults rely on processing the 

same facial features as younger adults in the same GENDER and EXNEX 

categorisation task as in Chapter 4, and quantify the relative timing of feature 

sensitivity in older compared to younger adults. We predicted that if the N170 

eye sensitivity  is task-independent, then during both tasks there would be 

evidence of contralateral eye sensitivity prior to sensitivity to other facial 

features (such as the mouth), regardless of the extent to which the eyes are 

task-relevant. We also predicted that whilst older adults would process the same 

facial features as younger adults (i.e. the mouth in the EXNEX task), feature 

encoding would be delayed and weaker in older compared to younger adults. We 

aimed to quantify these differences.  

The primary contribution of this chapter will be demonstrating that older adults 

behavioural and brain responses were modulated by the same facial features as 

younger adults behavioural and brain responses. However, compared to younger 

adults, older adults relied more on the presence of the mouth for resolving the 

EXNEX task. We will demonstrate that whilst older adults integrated information 

about both the eyes and mouth more slowly than younger adults this delay in 

processing speed was not uniform across features and tasks. More specifically, 

whilst older adults were ~20-23 ms delayed in processing the eyes compared to 

younger adults across tasks, the delay in mouth integration was task dependent – 

there was a delay in processing the mouth in the GENDER but not EXNEX task. 

Mouth processing was less delayed than eye processing in the GENDER task, 

suggesting that older adults did not demonstrate a general delay that was 

consistent across all features. 
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Materials and Methods 

Participants 

The study comprised of 24 ‘younger’ participants (described in Chapter 4) and 24 

‘older’ participants: 12 women, 22 right handed, median age = 67 years (min 60, 

max 85). All adults were living in the community at the time of testing. 

Participants were recruited from a subject pool, which had previously been 

established through advertising at the University of Glasgow, active age gym 

classes and a newspaper article. Volunteers were excluded from participation if 

they reported any current eye condition (i.e. lazy eye, glaucoma, macular 

degeneration or a significant cataract), had a history of mental illness or were 

currently taking psychotropic medications, suffered from any neurological 

condition, had diabetes, or had suffered a stroke or a serious head injury. 

Volunteers were also excluded from participation if they had not had their eyes 

tested within the last year, in order to minimise the chances that volunteers did 

not know of an underlying eye condition. One older participant reported having 

cataracts removed from both eyes, and one older participant reported having 

undergone eye surgery to rectify a squint as a child. These participants were 

included because their corrected vision did not differ from that of the others.  

Participants’ visual acuity and contrast sensitivity was assessed in the lab (Table 

3).  Contrast sensitivity was assessed using the Mars Letter Contrast Sensitivity 

set (Arditi, 2005). Visual acuity at 40 cm and 63 cm were assessed using the 

Colenbrander mixed contrast card set (Colenbrander & Fletcher, 2004), and 

visual acuity at 6 m assessed using the Bailey-Lovie Chart (Bailey & Lovie, 1980). 

All participants had normal or corrected to normal visual acuity and normal 

contrast sensitivity (equal to or above the lower limit of the normal Mars letter 

contrast sensitivity for a person aged 60 years of 1.52 log units (Haymes et al., 

2006)). During the experimental session, participants wore their habitual eye 

correction as needed. As a note of caution however, age-related presbyopia 

causes blurred near vision and, whilst participants wearing bi-focal or vari-foca 

glasses may have measured within normal visual acuity parameters on the 

Colenbrander card set, it is possible that participants may still have experienced 

some optical blur when sitting in front of a computer screen.  
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Older adults also completed the Montreal Cognitive Assessment (MoCA) to screen 

for age-related cognitive impairment (Nasreddine et al., 2005). All participants 

were above the cut-off threshold of ≥ 26 out of 30 (median score = 28 [min = 26, 

max = 30]) (Nasreddine et al., 2005).  

Participants were compensated £6/hr for their participation. The experiment 

was approved by the local ethics committee of the College of Science and 

Engineering (approval no. 300150158). 

LC 40 HC 40 LC 63 HC 63 LC 600 HC 600 CS 

85 
[69, 93] 

 
0.30 

[0.62, 0.14] 

95 
[85,103] 

 
0.10 

[0.30, -0.06] 

91 
[80, 105] 

 
0.18 

[0.40, -0.10] 

100 
[90, 110] 

 
0.00 

[0.20, -0.20] 

88 
[77, 96] 

 
0.24 

[0.46, 0.08] 

100 
[88, 105] 

 
0.00 

[0.24, -0.10] 

1.76 
[1.52, 1.84] 

 
 
 

       

Table 7: Older adults Visual Acuity and Contrast Sensitivity Scores Median Visual acuity and 
Contrast sensitivity (CS) sores for older participants. Visual acuity scores are reported for low 
contrast (LC) and high contrast (HC) charts presented at 40 cm, 63 cm, and 6 m viewing distance, 
expressed as raw visual acuity scores (VAS). The corresponding logMAR scores are presented 
below in italics, where higher values indicate poorer vision and negative values represent normal 
vision (logMAR score of 0 corresponds to 20/20 vision). Square brackets indicate the minimum and 
maximum scores across participants. For younger adults visual acuity scores refer to Table 3 (page 
103).  

Stimuli, Procedure, EEG Recording and Pre-processing 

Stimuli, procedures, EEG recording and pre-processing are the same as those 

outlined in Chapter 3.  

Results 

Behavioural Results 

Behavioural results are given here for trials with bubble masks and practice 

trials. Practice trials presented without bubble masks revealed the whole face 

image and were used to familiarise participants with the task. As bubble trials 

reveal partial face information, we compared behavioural performance between 

practice and bubble trials.  

Reaction Times and Percentage Correct  

On practice trials i.e. trials without bubbles where the full face image can be 

seen, participants were on average faster in the gender than expression task 
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(GENDER = 569 ms [521, 617]; EXNEX = 570 ms [505, 634]; Difference [GENDER minus 

EXNEX]  = -17 ms [-84, 49]). Participants were also less accurate in the gender than 

expression task during practice trials, though performed near-ceiling in both 

(GENDER = 95 % [90, 98]; EXNEX = 98 % [97, 99]; Difference [GENDER minus EXNEX] = -3 

% [-7, -1]). 

On trials with bubble masks, participants were slower on the gender than the 

expression task (GENDER = 781 ms [709, 854]; EXNEX = 718 [652, 783]; 

Difference [GENDER minus EXNEX] = 51 ms [-8, 110]). This is in reverse of practice trials 

on which participants were faster on the gender task. This pattern was also seen 

in our younger adult group (see Chapter 4; Reaction Times and Percentage 

Correct). Participants were also less accurate on the gender than expression task 

for bubble trials (GENDER = 65 % [62, 68]; EXNEX = 76 % [73, 79]; Difference 

[GENDER minus EXNEX] = - 11 % [-14, -9]). This is in contrast to the practice trials on 

which participants performed similarly in the two tasks, but in-keeping with the 

pattern of results from our younger adults (see Chapter 4: Reaction Times and 

Percentage Correct). 

Adding bubbles to the image negatively affected older adults’ reaction times and 

accuracy performance in both tasks. Compared to practice trials, on bubble 

trials participants were slower (GENDER [Practice minus Bubble] = -217 ms [-301, -134]; 

EXNEX [Practice minus Bubble] = -112 [-181, -43]; Difference [GENDER minus EXNEX] = -74 [-

146, -1]) and less accurate (GENDER [Practice minus Bubble] = 30 % [26, 33]; EXNEX 

[Practice minus Bubble] = 22 % [19, 25]; Difference [GENDER minus EXNEX] = 8 % [3, 12]) on 

both tasks. Compared to practice trials, bubbling the image had a more negative 

impact on both reaction times and accuracy for the gender than the expression 

task, with an increased delay for the gender compared to the expression task 

and larger reduction in accuracy. This suggests that the impact of bubbling 

affected performance on the gender task differentially. This could be due to 

differential increase of the difficulty of the gender compared to the expression 

task when information is limited or fragmented. This pattern of results is in-

keeping with previous research in younger participants using an adaptive version 

of bubbles where the number of bubbles is varied to achieve a 75 % correct 

performance criterion (Schyns et al., 2002). Under these conditions, participants 

on average required more bubbles i.e. more of the image to be revealed on the 
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GENDER task to achieve the same accuracy levels as on the EXNEX task. This 

was a similar pattern of effect as demonstrated in our younger adult participants 

(see Chapter 4: Reaction Times and Percentage Correct). 

We compared differences in reaction time and accuracy between younger and 

older participants by computing the Harrell-Davis median of all pairwise 

differences of the distribution of younger minus older participants for each 

behavioural comparison of interest. We computed a 95 % confidence interval 

around this estimate using a percentile bootstrap technique with 500 iterations. 

We also calculated as a measure of effect size Cliff’s delta (Table 8). Cliff’s 

delta is a robust measure of effect size that calculates the probability that a 

randomly selected observation from one group is larger than a randomly selected 

observation from another group i.e. P(X<Y) – P(X>Y) (see Chapter 3: Between-

group Comparisons).  

Bubbling the image negatively affected accuracy and reaction times for both age 

groups, but bubbling was more detrimental for our older adult group, 

particularly in the GENDER task. Whilst older adults performed similarly in terms 

of accuracy and reaction times on practice trials, with reduced visual 

information in bubble trials older adults were slower and less accurate, 

suggesting older adults required more information to perform as accurately as 

younger adults, as well as more time to integrate information than younger 

participants, particularly on the GENDER task. 

 Reaction Times Accuracy 
 EXNEX GENDER EXNEX GENDER 

Practice -0.6 [-0.3, -0.8] -0.6 [-0.4, -0.9] -0.2 [-0.5, 0.1] 0.1 [-0.3, 0.4] 

Bubble -0.8 [-0.6, -1] -0.7 [-0.5, -0.9] 0.9 [0.7, 1] 0.9 [0.8, 1] 
     

Table 8: Cliff’s delta behavioural effect size estimates We estimated Cliff’s delta effect size of 
the difference between younger and older behavioural results. Cliff’s delta ranges from 1 (where all 
values from one group are higher than the values from the other group) to -1 (when all values from 
one group are lower than the values from the other group). Completely overlapping distributions 
have a Cliff’s delta of 0.   

On practice trials, younger adults were faster than older adults on both tasks 

(GENDER = -128 ms [-75, -180]; EXNEX = -120 ms [-66, 190]; Difference [GENDER 

minus EXNEX] = 1 ms [-67, 67]) though both groups demonstrated similar levels of 

accuracy (GENDER = 0 % [-1, 2]; EXNEX = -1 % [-2, 0]; Difference [GENDER minus 
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EXNEX] = 1 % [0, 3]) responding close to ceiling. In comparison, whilst younger 

participants were also faster than older participants on bubble trials (GENDER = 

-230 ms [-314, 168]; EXNEX = -217 ms [-291, -154]; Difference [GENDER minus EXNEX] = 

-21 ms [-78, 48]), older adults had an increase delay in bubble compared to 

practice trials (GENDER = 120 ms [58, 120]; EXNEX = 71 ms [17, 135]; Difference 

[GENDER minus EXNEX] = 22 ms [-43, 99]). Younger adults also performed more 

accurately than older adults on bubble trials (GENDER = 17 % [14, 21]; EXNEX = 

12 % [7, 15]; Difference [GENDER minus EXNEX] = 5 % [1, 9]). Compared to younger 

adults, older adults had a larger reduction in accuracy in bubble compared to 

practice trials (GENDER = - 16 % [-13, -20]; EXNEX = -13 % [-10, -16]; Difference 

[GENDER minus EXNEX] = -4 % [-8, 0]).  

In summary, during practice trials older adults were as accurate in both tasks as 

younger participants. However, in practice trials it should be noted both age 

groups performed at near-ceiling accuracy to comparisons between age groups 

here should be treated with caution. Whilst accuracy declined for both age 

groups in bubble trials, older adults’ accuracy was noticeably more diminished. 

Whilst older adults were slower than younger adults in the practice trials, 

reaction times were comparatively more delayed in bubble trials. This is in 

contrast to previous work indicating that older adults were comparably delayed 

in practice and bubble trials in a face detection task (Jaworska, 2017). It is not 

clear to what extent the complexity of our stimuli (coloured images compared to 

grey scale images in a common oval frame) or the complexity of the task (more 

stimulus information may be required for GENDER discrimination than face 

detection) contributed to this disparity. This pattern however may be consistent 

with the indication that older adults’ perception is affected by partial occlusion 

/ stimulus fragmentation, and that the extent to which perception is affected 

may be related to the amount of stimulus information required to successfully 

complete the task. It may be that age-related inefficiency in utilising 

fragmented information is more pronounced in a more demanding GENDER task 

requiring greater integration of sparsely sampled features than in a less complex 

face detection task.  
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Behavioural MI Classification Images  

To determine what image features are associated with behavioural responses, 

we looked at mutual information between pixels and reaction times MI(PIX, RT) 

and pixels and correct responses MI(PIX, CORRECT). For each comparison we 

calculated the group median MI value for each pixel. We also calculated 

frequencies of significant effects (see Chapter 3; Behavioural Permutation). The 

classification images shown in Figure 49 are for mutual information computed 

using the warped bubble masks (See Chapter 3; Bubble Warp and Warped Bubble 

Masks). In the EXNEX task (Figure 49 panels A-B, top row) participants’ reaction 

times and correct responses were modulated by the presence of the mouth. In 

contrast, in the GENDER task (Figure 49 panels A-B, bottom row) there was a 

very weak relationship between the presence of the eyes and modulation of 

behavioural responses, that was only significant for CORRECT for a maximum of 

four participants at any one pixel, and for RT significant for a maximum of two 

participants at any one pixel (see Supplementary 20 for individual classification 

images). 

 

Figure 49: Older adult behavioural Classification Images and Frequency of Significant 
Effects (A) Group median of mutual information at each pixel. Each row corresponds to one task 
condition, each column corresponds to a different analysis condition (RT or CORRECT). Median MI 
values were stronger in EXNEX than in GENDER. (B) Number of participants showing significant 
effects based on a permutation test. Small white numbers indicate for each condition the number of 
participants with significant MI at any pixel (left) and the maximum number of participants with 
significant MI at the same pixel (right). For younger adults behavioural classification images see 
Figure 31 (page 105).  
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We found evidence of strong and consistent behavioural modulation by mouth 

visibility in the EXNEX task across participants, in keeping with the mouth being 

the most diagnostic feature for this task (Gosselin & Schyns, 2001). However, 

behavioural modulation by eye visibility in the GENDER task was weak, despite 

previous reports of strong diagnosticity in this task (Gosselin & Schyns, 2001). 

This was the same pattern of results we observed in our younger participants’ 

(see Chapter 4: Behavioural MI Classification Images). In both cases, this may 

have been due to other diagnostic cues such as pigmentation or inter-eye 

distance being available. 

To compare how older adults’ behavioural responses were modulated compared 

to younger adults (see Chapter 4: Behavioural MI Classification Images), we 

directly compared the median classification images between the two groups in 

the two tasks. We computed the difference (Younger minus Older) in group-

median MI maps for reaction times and accuracy in each task. Relative to 

younger participants, older participants displayed weaker MI values around the 

mouth for MI(PIX, RT) in the EXNEX task (Figure 50), suggesting that younger 

adults’ reaction times were more modulated by mouth visibility than in older 

adults. Only weak differences between younger and older adults were seen in 

any other behavioural comparison. This suggests that, except for MI(PIX, RT) in 

the EXNEX task, older adults behavioural MI estimates were not weaker than 

younger adults at the group level.  

 

Figure 50: Younger and Older Average MI Differences Group median MI differences between 
Younger minus Older adults.  

Comparing group medians can mask the large inter-subject variability in 

responses. To explore differences between groups more thoroughly, we 

calculated for each individual in each age group separately the sum of MI values 

within 3 ROI feature masks – the left eye, right eye and mouth (see Chapter 3: 
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Feature of Interest Analysis). We also calculated Cliff’s delta as a measure of 

effect size (see Chapter 3 Between-group comparisons).  

As can be seen in Figure 51, whilst the younger participants had a comparatively 

stronger relationship between mouth visibility and reaction times than older 

adults when comparing group medians (as denoted by the red rectangle), there 

was a large overlap between younger and older participants at the individual 

subject level, with the upper estimate of Cliff’s delta approaching 0. We found 

weak estimates of effect size when comparing age-related differences in 

medians and a large overlap in the spread of results between younger and older 

participants for all other behavioural comparisons. This suggests that older 

adults did not have weaker sensitivity than younger adults to the eyes in terms 

of behavioural responses, though reaction times tended to be less modulated by 

the mouth in the EXNEX task.  
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Figure 51: Younger and Older adult individual sum MI within regions of interest For each task 
and each behavioural comparison, we calculated the sum of all MI values within each feature mask 
for younger (blue) and older (green) participants. Red bars indicate group median. Red values are 
Cliff’s delta measure of effect size with 95 % percentile bootstrapped confidence interval. 
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Reverse Analysis: Behavioural Results 

The presence of the mouth was associated with behavioural responses in the 

EXNEX task, whilst the right eye was weakly associated with correct responses in 

the GENDER task for some participants. However, MI is directionless, in that 

higher MI values can reflect either the presence or the absence of a feature 

modulating behavioural responses. Using a reverse analysis we quantified by how 

much changing the amount of information about the left eye, right eye or mouth 

influenced participants’ behavioural responses. This reverse analysis also helps 

appreciate the effects on more natural scales. 

Using the feature of interest masks we calculated on a trial-by-trial basis how 

the visibility of each feature modulated behavioural responses for each 

comparison of interest. To quantify the effect of visibility of each feature on 

behavioural judgments, for each participant separately, we calculated the RT 

and CORRECT difference between the 10th bin (highest visibility) and the 1st bin 

(least visibility) for each feature mask. For each comparison and individual 

participant we also performed a permutation test (see Chapter 3: Feature of 

Interest Analyses).  

 MOUTH VISIBILITY  
 
In the EXNEX task, increased mouth visibility (Figure 52, top panel) was 

associated with quicker responses (median difference in bin 10 minus bin 1 = -

158 ms [-216, -100]). Nearly all (23/24) participants were on average faster on 

bin 10 than bin 1 trials, and these differences were statistically significant in 

21/24 participants. Increased mouth visibility was also associated with increased 

accuracy (median difference in bin 10 minus bin 1 = 0.30 PP [0.26, 0.34]). All 

participants (24/24) were on average more accurate on trials where there was 

increased mouth visibility, which was statistically significant in 20/24 

participants. On trials with little to no mouth visibility, some participants 

performed below chance level, and all participants showed a marked decline in 

response accuracy. These results suggest that in the absence of the mouth as the 

most diagnostic feature, other features and their combination, for at least some 

participants, were insufficient for categorisation. This is in contrast to our 

younger participants’ who were all able to use other features and their 

combinations in the absence of the mouth. This suggests that the absence of 



168 
 

 

mouth visibility has a greater effect on accuracy in our older than younger 

participants, and that older adults may rely more upon the presence of the 

mouth to make correct responses. In contrast younger participants could use 

other features and their combination to correctly discriminate ‘happy’ from 

‘neutral’ faces.  

In the GENDER task (Figure 52, bottom two panels) increased mouth visibility 

had weak and variable effects on behaviour. Only 13/24 participants 

demonstrated faster responses with increased mouth visibility (median 

difference in bin 10 minus bin 1 = -14 ms, [-46, 18]). MI was significant for 5/24 

participants, 4 of whom were faster with increased mouth visibility, and 1 

slower with increased mouth visibility.  

It is possible that task order might explain the directionality of effect that 

increased mouth visibility had on reaction times. For example, completing the 

EXNEX task where visibility of the mouth strongly modulated reactions times 

(see Figure 49) first, may have resulted in carry-over effects to the GENDER 

task, even when the feature was no longer task relevant. Older adults have been 

shown to have a deficit in suppressing task-irrelevant information, even with 

prior knowledge of stimulus relevance (Zanto, Hennigan, Östberg, Clapp, & 

Gazzaley, 2010) thus a failure to suppress attention to previously task-relevant 

information is plausible. In our data set however this does not seem be the case. 

Of those participants demonstrating faster responses in the GENDER task with 

increased mouth visibility only 7/13 participants completed the EXNEX task first, 

where the mouth was the most diagnostic feature for the task. Of those showing 

significant MI, 3/4 participants whom were faster with increased mouth visibility 

actually completed the GENDER task first. There was no discernible pattern of 

cross over effect between tasks in our older adult sample (see Supplementary 

21).  

Variability in the GENDER task was also evident in the association between 

mouth visibility and correct responses. The group was evenly split between 

participants demonstrating an increase/decrease in accuracy with increased 

mouth visibility (median difference in bin 10 minus bin 1 = -0.01 PP [-0.06, 

0.04]). MI was not significant for 11/24 participants who were more accurate 

with increased mouth visibility. MI however was significant for 2 participants, 
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with a difference in the opposite direction (i.e. less accurate responses with 

increased mouth visibility).  

 

Figure 52: Older adult reverse analysis of behavioural responses by mouth visibility Panel A: 
Individual participant results for each of 10 visibility bins. Top two panels show EXNEX results. 
Bottom two panels show GENDER results. Panel B: Each circle represents one participant’s 
difference between bin 10 minus bin 1.For younger adult results see Figure 32 (page 109).  

In summary, increasing mouth visibility was associated with increased accuracy 

(24/24 participants) and faster responses (23/24 participants) in the EXNEX task. 

When there was little to no mouth visibility, some participants performed below 

chance level, confirming that the mouth is a diagnostic feature for this task, and 

that older adults rely more upon the presence of the mouth for making correct 

judgments than younger participants. In the GENDER task, there was a near 
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even split of participants in both directions on speed and accuracy modulations 

with increased mouth visibility. Whilst some participants were able to use the 

mouth as a diagnostic feature for gender categorisation, there did not appear to 

be a task-order cross-over effect, but rather individual variation. 

 LEFT EYE VISIBILITY  
 
Left eye visibility (from the viewers perspective) has been shown to modulate 

reaction times in a face versus noise detection task (Rousselet et al., 2014). 

Visibility of the left eye has also been implicated in quicker and more accurate 

responses in gender discrimination tasks (Joyce et al., 2006). In our results, 

visibility of the left eye (Figure 53) had a very variable effect on responses times 

and accuracy in the two tasks.  

Increased visibility of the left eye in the EXNEX task (Figure 53, top panel) was 

very weakly associated with faster responses for 8/24 participants (median 

difference in bin 10 minus bin 1 = -8 ms [-21, 6]). MI was significant for 3/24 

participants, all of whom were faster with increased left eye visibility. Increased 

visibility of the left eye increased accuracy for 18/24 participants (median 

difference in bin 10 minus bin 1 = 0.04 [0.01, 0.06]). MI was significant for 2/24 

participants both of whom showed increased accuracy with increased left eye 

visibility.  

In the GENDER task, increased visibility of the left eye (Figure 53, panel 3) was 

associated with faster reaction times (median difference in bin 10 minus bin 1 = 

-25 ms [-45, -5]) for 18/24 participants. MI was significant for 6/24 participants, 

5/6 were faster with increased left eye visibility, 1/6 was slower with increased 

left eye visibility. Increased left eye visibility was also associated with slightly 

increased accuracy (median difference in bin 10 minus bin 1 = 0.09 [0.06, 0.12]) 

for 22/24 participants. MI was significant for 5/24 participants, all of whom were 

more accurate with increased visibility of the left eye.  
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Figure 53: Older adult reverse analysis of behavioural responses by left eye visibility Panel 
A: Individual participant results for each of 10 visibility bins. Top two panels show EXNEX results. 
Bottom two panels show GENDER results. Panel B: Each circle represents one participant’s 
difference between bin 10 minus bin 1. For younger adult results see Figure 33 (page 111). 

This is inconsistent with previous reports suggesting that the most diagnostic 

feature in a gender discrimination task is the left eye (Schyns et al., 2002). 

Whilst most of our participants were on average more accurate on bin 10 than 

bin 1 trials, there was large inter-trial variability leading to a few participants 

having significant MI differences. Whilst we controlled for the degree of visibility 

of the left eye, trials binned on this basis reflect a mixture of visibility of other 

facial features and their combinations – for example on bin 1 trials with limited 

to no visibility of the left eye, there may have been visibility of the right eye, 

mouth, hair etc. or combination of these features. As most of our older adults 
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managed to maintain an above chance accuracy even with no visibility of the 

left eye, it may be that for the majority of our participants some combination of 

visibility of other features (such as the right eye and/or mouth) was enough to 

resolve the task in the absence of the left eye being visible.  

In summary, increased visibility of the left eye in the EXNEX task was weakly 

associated with quicker reaction times and increased accuracy. In the GENDER 

task, increased visibility of the left eye was associated with quicker reaction 

times (18/24 participants) and more accurate responses (22/24 participants). 

There was no apparent effects of task order (see Supplementary 3). 

Previous work has suggested that the left, but not right eye region drives 

accurate judgements in male versus female categorisation tasks (Schyns et al., 

2002). In our results, nearly all (22/24) participants showed an increase in 

accuracy with increased left eye visibility in the gender task. However, our 

results are in contrast to previous work which has suggested that correct 

categorisation of expressive/non-expressive faces does not involve either of the 

eye regions (Schyns et al., 2002), as in our results increased visibility of the left 

eye was related to increased accuracy for over half (18/24) of our participants. 

 RIGHT EYE VISIBILITY  
 
Whilst left eye visibility has been shown to predominantly modulate behavioural 

responses in GENDER categorisation tasks (Schyns et al., 2002), a minority of 

participants demonstrate a converse right eye bias in face versus noise detection 

tasks (Rousselet et al., 2014). In our results, we found mixed effects of 

increasing right eye visibility in the EXNEX and GENDER tasks (Figure 54). 

In the EXNEX task, increased visibility of the right eye (Figure 54, top panel) was 

associated with faster reaction times for 11/24 participants (median difference 

in bin 10 minus bin 1 = -5 ms [-25, 35]). MI was significant for 5/24 participants, 

4 of whom were faster with increased visibility of the right eye. Increased 

visibility of the right eye was also associated with increased accuracy for 17/24 

participants (median difference in bin 10 minus bin 1 = 0.04 [<0.01, 0.08]). MI 

was significant for 2/24 participants. 1 participant was more accurate with 

increased right eye visibility, whilst the other participant was less accurate.  
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Figure 54: Older adult reverse analysis of behavioural responses by right eye visibility Panel 
A: Individual participant results for each of 10 visibility bins. Top two panels show EXNEX results. 
Bottom two panels show GENDER results. Panel B: Each circle represents one participant’s 
difference between bin 10 minus bin 1. For younger adult results see Figure 34 (page 113). 

In the GENDER task, increased visibility of the right eye (Figure 54, panel 3) was 

associated with faster responses for 15/24 participants (median difference in bin 

10 minus bin 1 = -28 ms [-65, 8]). MI was significant for 5/24 participants, 3/5 

participants were faster with increased right eye visibility, whilst 2/5 

participants were slower with increased right eye visibility. Increased visibility of 

the right eye also increased accuracy for most (19/24) participants (median 

difference in bin 10 minus bin 1 = 0.13 [0.07, 0.18]). MI was significant for 6/24 

participants, all of whom were more accurate with increased visibility of the 

right eye.  
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In summary, in the EXNEX task increased visibility of the right eye was mixed. 

Whilst some participants were faster and more accurate with increased visibility 

of the right eye, some participants showed differences in the opposite direction. 

Increased visibility of the right eye during the GENDER task was similarly mixed, 

with some participants demonstrating faster responses, whilst other participants 

were slower. Nearly all (19/24) participants were more accurate with increased 

visibility of the right eye. There was no apparent effect of task order (see 

Supplementary 23).  

We have demonstrated that in the EXNEX task, increased mouth visibility was 

associated with quicker and more accurate responses. Increased visibility of the 

left eye was only weakly associated with quicker reaction times and increased 

accuracy in the EXNEX task. Increased visibility of the right eye increased 

accuracy and decreased reaction times in some participants in the EXNEX task, 

though some participants showed differences in the opposite direction. In the 

GENDER task, modulation of behavioural responses showed approximately an 

even split between increases/decreases in accuracy and reaction time with 

increased mouth visibility. Increased visibility of the left eye was associated with 

quicker and more accurate responses for most participants. Increased visibility 

of the right eye had a mixed effect on reaction times, with some participants 

demonstrating faster responses. Nearly all participants though were more 

accurate with increased visibility of the right eye.  

 FEATURE VISIBLITY BETWEEN-TASK DIFFERENCES  
 
Having calculated for each individual the difference in accuracy and reaction 

time for bin 10 minus bin 1 trials for each feature of interest (Figure 52 - Figure 

54), we now moved to compare these differences between tasks. For each 

participant we compare how feature visibility affected reaction times and 

accuracy differentially for the two tasks (Figure 55 - Figure 56).  

Comparing differences in reaction times (Figure 55), the majority of participants 

(20/24 participants) were faster with increased right eye visibility in the 

GENDER than EXNEX task, though 1 participant appears to be an outlier showing 

a stronger effects in the opposite direction. This suggests that increased 

visibility of the right eye area was more diagnostic for the GENDER than EXNEX 
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task. Similarly, 17/24 participants were faster with increased left eye visibility 

in the GENDER than EXNEX task, again suggesting that increased visibility of the 

eye area is more task diagnostic for the GENDER than EXNEX task. Whilst 1 

participant may be an outlier due to a larger comparative difference in reaction 

times between bin 10 and bin 1 trials, their pattern of behaviour is in line with 

other participants (i.e. faster with increased left eye visibility in the GENDER 

than EXNEX task).  

 

Figure 55: Older adult reaction time task differences by feature visibility Panel A: The 
difference in reaction time (ms) between Bin 10 minus Bin 1 in the EXNEX and GENDER task for 
the left eye (top), right eye (middle) and mouth (bottom). Each line represents one participant. 
Panel B: Difference of differences. The difference in reaction time (Bin 10 minus bin 1) in the 
EXNEX minus GENDER task for each facial feature of interest. For younger adult results see 
Figure 35 (page 115). 

Conversely, all but 1 participant was faster with increased mouth visibility in the 

EXNEX than GENDER task, highlighting the task diagnosticity of the mouth region 
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for the EXNEX but not GENDER task. Whilst 1 participant may be an outlier due 

to a larger comparative difference in reaction times between bin 10 and bin 1 

trials, their pattern of behaviour is in line with other participants (i.e. faster 

with increased mouth visibility in the EXNEX than GENDER task). 

Comparing differences in accuracy (Figure 56), increased visibility of the right 

eye resulted in increased gains in accuracy for the GENDER than the EXNEX task. 

The majority (19/24) of participants demonstrated a larger increase in accuracy 

with increased right eye visibility in the GENDER than EXNEX task, suggesting 

that visibility of the right eye had more of an effect on accuracy in the GENDER 

than EXNEX task, and hence more diagnostic value. Similarly, increased visibility 

of the left eye had more of an effect on accuracy in the GENDER than EXNEX 

task. The majority (19/24) of participants demonstrated a larger increase in 

accuracy with increased left eye visibility in the GENDER than EXNEX task, again 

demonstrating that visibility of the left eye had more of an effect on accuracy in 

the GENDER than EXNEX task, and hence more diagnostic value. Conversely, all 

(24/24) participants demonstrated a larger increase in accuracy with increased 

mouth visibility in the EXNEX than GENDER task. This suggests that mouth 

visibility had more of an effect on accuracy in the EXNEX than GENDER task and 

more diagnostic value. 
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Figure 56: Older adult accuracy task differences by feature visibility Panel A: The difference 
in accuracy between Bin 10 minus Bin 1 in the EXNEX and GENDER task for the left eye (top), 
right eye (middle) and mouth (bottom). Each line represents one participant. Panel B: Difference of 
differences. The difference in accuracy between Bin 10 minus bin 1 for the EXNEX minus 
GENDER task for each facial feature of interest. For younger adult results see Figure 36 (page 
116). 

In summary, increased visibility of the left and right eye led to faster response 

times and increased accuracy in the GENDER than EXNEX task, whilst the 

opposite was true with increased mouth visibility. As the eye region is more 

diagnostic for the GENDER than EXNEX task, increased visibility of either eye 

region has more of a reaction time and accuracy advantage for the GENDER than 

EXNEX task. Conversely, the mouth region is more diagnostic in the EXNEX than 

GENDER task. Increasing mouth visibility region has more of a reaction time and 

accuracy advantage for the EXNEX than GENDER task.  
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To ensure these differences between tasks were not due differences in the 

variability of reaction time and accuracy scores between the two tasks, we 

normalised our data. For each participant, behavioural comparison and feature 

we normalised our data between 1 and -1 by dividing the difference between bin 

10 minus bin 1, by the sum of bin 1 and bin 10. Normalising our data did not 

change the pattern of differences (Supplementary 24 - Supplementary 25). 

Young minus Older Behavioural Differences  

We have seen that behaviourally our group of older adults are faster and more 

accurate in the GENDER task when there is increased visibility of the left or 

right eye region, and faster and more accurate in the EXNEX task when there is 

increased mouth visibility region.  

Next, we wanted to quantify how the modulation of behaviour by facial feature 

visibility compares between our older and younger (see Chapter 4) participants. 

We begin here by comparing differences in reaction time and accuracy for the 

two groups. We consider comparisons of MI later.  

For each facial feature (left eye, right eye, mouth) we compared distributions of 

the difference between bin 10 minus bin 1 visibility of each facial feature. We 

then calculated the median of these differences between age groups (Younger 

minus Older) and the corresponding confidence interval (Figure 57). For each 

behavioural comparison, we also calculated a corresponding Cliff’s delta with 95 

% confidence interval as a measure of effect size (Table 9) of the between-group 

differences (see Chapter 3: Between-group comparisons).  

 Reaction Times Accuracy 
 EXNEX GENDER EXNEX GENDER 

Left Eye -0.01 [-0.34, 0.33] -0.01 [-0.38, 0.31] -0.14 [-0.46, 0.20] -0.23 [-0.55, 0.13] 

Right Eye -0.22 [-0.52, 0.14] -0.08 [-0.40, 0.25] -0.03 [-0.37, 0.28] -0.15 [-0.48, 0.18] 

Mouth 0.24 [-0.09, 0.55] 0.18 [-0.15, 0.50] -0.28 [-0.58, 0.03] 0.07 [-0.28, 0.39] 
     

Table 9: Older and Younger adult behavioural differences effect sizes Cliff’s delta between-
group comparisons of reaction times and accuracy. Square brackets indicate 95 % percentile 
bootstrap confidence interval with 500 samples. 

In the EXNEX task (Figure 57 left panel) increased visibility of the left eye (bin 

10 minus bin 1) leads to negligible group differences in reaction time 
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modulations (younger minus older difference of medians = -0.65 ms [-16, 15]) 

and accuracy modulations (-0.01 PP [-0.04, 0.02]). Increased visibility of the 

right eye had more of an effect, with increased visibility leading to a stronger 

decrease in reaction times for younger than older participants (-13.47 ms [-4, 

8]), though accuracy differences were still negligible (-0.01 PP [-0.04, 0.02]) and 

estimated effect sizes for both comparisons were weak. Increased mouth 

visibility had more of an effect on reaction times for older than younger 

participants, with older adults having comparatively quicker responses for bin 10 

than bin 1 trials than younger adults (41.05 ms [-23.53, 99.71]), though in 

absolute terms younger adults were still faster than older adults. This may 

suggest that older adults in particular rely on visibility of the mouth region for 

making quicker responses, though differences in accuracy modulations were 

negligible (-0.04 PP [-0.09, 0.01]) suggesting that older adults could still resolve 

the task without visibility of the mouth, albeit slower. In both cases, estimated 

effect sizes for both comparisons crossed 0. 

In the GENDER task (right panel) increased visibility of the left eye (bin 10 minus 

bin 1) lead to negligible differences in reaction time modulations (younger minus 

older difference of medians = -0.81 ms [-23.16, 24.23]) and accuracy 

modulations (-0.02 PP [-0.05, 0.01]). Increased visibility of the right eye had 

more of an effect, with increased right eye visibility being associated with more 

of a decrease in reaction times for younger than older participants (-8.19 ms [-

38.37, 23.17]), though accuracy differences were still negligible (-0.02 PP [-0.06, 

0.03]) and for both comparisons estimated effect sizes crossed 0. It may be that 

younger adults were faster to use the right eye as an additional cue for resolving 

that task than older participants. Increased mouth visibility had more of an 

effect on reaction times for older than younger participants, with older adults 

having comparatively quicker responses for bin 10 than bin 1 trials than younger 

adults (15.98 ms [-13.63, 43.50]), though in absolute terms younger adults were 

still faster than older adults. This may suggest that older adults could rely on 

visibility of the mouth region for making quicker responses, though differences 

in accuracy were negligible (0.01 PP [-0.03, 0.06]), suggesting that older adults 

could still resolve the task without visibility of the mouth, albeit slower. In both 

cases, estimated effect sizes for both comparisons crossed 0. 
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We found an interaction between age group and task differences for correct 

performance with increased levels of mouth visibility. Older adults’ correct 

performance relied more heavily upon visibility of the mouth than younger 

adults in the EXNEX but not GENDER task. Older adults accuracy in the EXNEX 

task was very high on trials with high visibility on the mouth region (refer to 

Figure 52) achieving levels of performance similar to younger adults. When the 

mouth was barely visible, older adults’ performance dropped substantially, 

where as in younger adults they continued to be able to resolve the task from 

other features and their combination.  

In summary, both younger and older adults’ behavioural responses were 

modulated heavily by the mouth region in the EXNEX task, with both younger 

and older adults showing a marked increase in accuracy and quicker responses 

with increased mouth visibility region. This pattern was stronger for the older 

adults, who showed a larger increase in accuracy and larger decrease in reaction 

times with increased mouth visibility in the EXNEX task than younger adults. All 

other behavioural differences were comparatively weak. However, for all 

behavioural comparisons our estimates of effect size crossed 0.  
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Figure 57: Task by age group interaction of behavioural differences. Top panel: Differences in 
reaction time (ms) and accuracy between bin 10 minus bin 1, for younger (circles) and older 
(square) participants. For each facial feature (left eye = blue, right eye = green, mouth = red) the 
median difference between bin 10 minus bin 1 for each age group is shown. Bottom panel: 
Differences between younger minus older medians. Vertical and horizontal lines represent the 95 
% confidence interval.  
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ERP Results  

We have seen that, behaviourally, in the EXNEX task increased mouth visibility 

resulted in quicker and more accurate responses for both age groups, an effect 

that was stronger in older adults. Increased visibility of the left and right eye led 

to quicker and more accurate responses for most, but not all, of our older and 

younger participants, with negligible differences between age groups. In the 

GENDER task, increased mouth visibility had negligible effects on accuracy and 

reaction time for both age groups. Increased visibility of the left and right eye 

led to quicker and more accurate responses for most older adults and nearly all 

younger adults, but group differences were not significant.  

Next, we will consider ERP results. We predicted that if the N170 eye sensitivity 

is task-independent, then during both tasks there would be evidence of 

contralateral eye sensitivity prior to sensitivity to other facial features (such as 

the mouth), regardless of the extent to which the eyes are task-relevant. We 

also predicted that whilst older adults would process the same facial features as 

younger adults (i.e. the mouth in the EXNEX task), feature encoding would be 

delayed and weaker in older compared to younger adults. We aimed to quantify 

these differences. 

Average ERP Timecourses 

The bubbles sampling technique could affect the shape of ERPs differently in 

older compared to younger adults. As such, we started by comparing ERP time 

courses in the two tasks for all non-bubble i.e. practice trials and bubble trials in 

older compared to younger adults to establish if there was an age-related 

differences in the effect of the bubble manipulation on ERP timecourses. We 

found that whilst older adults N170 was no more delayed than younger 

participants on bubble compared to non-bubble trials, the amplitude of the N170 

was affected differentially for older compared to younger adults.  

As we have already demonstrated, older adults experienced reduced accuracy 

and slower reaction times to bubble compared to practice trials. Diminished 

behavioural performance in older adults exceeded the corresponding reductions 

in speed and accuracy in younger adults. As well as affecting behavioural 
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performance, bubbles can also affect the timing of ERPs. Previous work 

(Jaworska, 2017) has demonstrated in a face detection task that both older and 

younger adults ERPs are delayed in bubble compared to non-bubble face trials. 

Whilst older adults N170 latencies to faces were delayed compared to younger 

adults in both bubble and non-bubble trials, this delay was similar between 

practice and non-practice face trials suggesting that the N170 is no more 

delayed by bubbles in older compared to younger participants.  

We demonstrated a delay in bubble compared to non-bubble trials in our 

younger participants (see Chapter 4). To understand if older adults experienced 

a comparable delay, and to ensure older adults were not more adversely 

affected by the bubbles manipulation we computed average ERPs for each older 

adult participant, in each task, for the left and right hemisphere (see Chapter 3: 

Average ERPs for details). We also calculated the median N170 latency and 

corresponding amplitude for each participant in each task, for the left (LE) and 

right (RE) hemisphere separately (see Chapter 3: N170 amplitude and Latency 

calculations). 

We present, for each task, the group average mean ERP’s for LE and RE (Figure 

58) with 95 % confidence intervals, and corresponding median N170 latency and 

amplitude for practice and bubble trials (Table 10).  

  EXNEX GENDER 
  LE RE LE RE 

P
ra

c
ti

c
e
 LAT 151.4 

[147.3, 155.4] 
151.7 

[147.3, 156.2] 
152.6 

[148.5, 156.7] 
152.3 

[146.4, 158.1] 

AMP -9.4 
[-11.8, -7.0] 

-10.0 
[-12.0, -8.0] 

-9.5 
[-10.9, -8.2] 

-10.0 
[-12.0, -8.0] 

B
u
b
b
le

  LAT 194.0 
[184.3, 203.7] 

200.9 
[184.8, 217.0] 

193.4 
[178.1, 208.6] 

195.1 
[181.7, 208.5] 

AMP -5.6 
[-7.3, -4.0] 

-7.0 
[-8.6, -5.3] 

-6.8 
[-8.7, -4.9] 

-7.5 
[-9.2, -5.8] 

D
if

fe
re

n
c
e
 

LAT -40.5 
[-46.9, -34.0] 

-42.4 
[-55.1, -29.6] 

-36.0 
[-45.4, -26.6] 

-39.2 
[-48.9, -29.5] 

AMP -3.3 
[-4.9, -1.8] 

-2.9 
[-5.2, -0.6] 

-3.3 
[-5.9, -0.7] 

-2.2 
[-4.3, 0] 

Table 10: Older adults N170 amplitude and latency Median N170 amplitude (AMP) and latency 
(LAT) for practice and bubble trials for the left and right hemisphere in the EXNEX and GENDER 
task. Square brackets indicate 95 % confidence interval.  
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Compared to practice trials (i.e. non-bubble trials), the latency of the N170 in 

bubble trials was delayed to a similar degree across both tasks and hemispheres 

(EXNEX LE Difference [Practice – Bubble trials] = -40.5 ms [-46.9, -34.0]; EXNEX RE 

Difference [Practice – Bubble trials] = -42.4 ms [-55.1, -29.6]; GENDER LE Difference 

[Practice – Bubble trials] = -36.0 ms [-45.4, -26.6]; GENDER RE Difference [Practice – Bubble 

trials] = -39.2 ms [-48.9, -29.5]). This suggests a general delay in the N170 to 

bubble stimuli that is not task or hemisphere specific. 

There was a decrease in the minimum amplitude of the N170 between practice 

and bubble trials (EXNEX LE Difference [Practice – Bubble trials] = -3.3 µV [-4.9, -1.8]; 

EXNEX RE Difference [Practice – Bubble trials] = -2.9 µV [-5.2, -0.6]; GENDER LE 

Difference [Practice – Bubble trials] = -3.3 µV [-5.9, -0.7]; GENDER RE Difference [Practice – 

Bubble trials] = -2.2 µV [-4.3, 0]). This is the opposite effect seen in younger 

participants whose N170 amplitude increased on bubble compared to practice 

trials (see Chapter 4: Average ERPs for Practice and Bubble trials). This may be 

an effect of occlusion of the image. Individual ERP plots are provided in 

Supplementary 26 - Supplementary 28.  

For comparison we also calculated group averaged ERP waveforms using a 20 % 

trimmed mean. Trimmed means are less affected by outliers and provide a 

better estimation of the location of the bulk of observations. This may improve 

the signal to noise ratio of averaged ERP waveforms. We found no difference in 

the pattern of results when using a 20 % trimmed mean (Supplementary 29). 
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Figure 58: Older adult average group ERP in Bubble and Non-Bubble Trials Mean bubble and 
non-bubble trial ERPs for the left and right hemisphere with 95 % confidence intervals around the 
mean. Vertical lines represent the minimum amplitude peak of the N170 for each task. Bottom 
panel EXNEX minus GENDER for bubble and practice trials. Small grey plot shows the pairwise 
difference of practice minus bubbles trials. 

Next we examined how younger and older adults’ differences in mean ERPs in 

practice (Figure 59) and bubble (Figure 60) trials compared. For each comparison 

of interest, we calculated the group difference between younger and older adult 

participants N170 latency and amplitude by estimating the Harrell-David median 

of all pairwise differences of the distribution of younger minus older 

participants. We computed a 95 % confidence interval around this estimate using 

a percentile bootstrap technique with 500 iterations. We also calculated the 

effect size (Table 11) of between-groups comparisons using Cliff’s delta (See 

Chapter 3: Between-group Comparisons).  
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  EXNEX GENDER 
  LE RE LE RE 

P
ra

c
ti

c
e
 LAT -0.6 [-0.8, -0.4] -0.5 [-0.8, -0.3] -0.6 [-0.8, -0.3] -0.6 [-0.8, -0.3] 

AMP 0.5 [0.2, 0.7] 0.5 [0.2, 0.7] 0.6 [0.4, 0.8] 0.6 [0.4, 0.8] 
B
u
b
b
le

 LAT -0.4 [-0.7, -0.1] -0.4 [-0.7, -0.2] -0.4 [-0.6, 0] -0.4 [-0.6, 0] 

AMP -0.1 [-0.4, 0.2] -0.1 [-0.4, 0.2] 0 [-0.3, 0.3] 0 [-0.2, 0.4] 

D
if

fe
re

n
c
e
 

LAT -0.0 [-0.4, 0.3] -0.1 [-0.4, 0.2] -0.1 [-0.4, 0.2] -0.1 [-0.4, 0.3] 

AMP -0.7 [-0.9, -0.5] -0.6 [-0.8, -0.4] -0.6 [-0.8, -0.4] -0.6 [-0.9, -0.3] 

Table 11: Cliff’s delta N170 effect size estimates We estimated Cliff’s delta effect size of the 
difference between younger and older N170 amplitude and latency differences. Cliff’s delta ranges 
from 1 (where all values from one group are higher than the values from the other group) to -1 
(when all values from one group are lower than the values from the other group). Completely 
overlapping distributions have a Cliff’s delta of 0.  

Previous results have demonstrated that, compared to younger adults, older 

adults N170 latencies for practice (i.e. non-bubble) trials and non-practice (i.e. 

bubble trials) are delayed in a face versus noise detection task (Jaworska, 2017). 

We also observed this pattern of results, with a delay in the peak of the N170 in 

older compared to younger adults in both practice (EXNEX LE = -12 ms [-19.0, -

6.3]; GENDER LE = -11.7 ms [-19.6, -5.1]; EXNEX RE = -10 ms [-17.4, -5.8]; 

GENDER RE = -12.2 ms [-21.2, -7.2]) and experimental (EXNEX LE = -13.3 ms [-

22.7, -1.2]; GENDER LE = -13.2  [-27.4, -0.9]; EXNEX RE = -17.5 ms [-30.0, -4.9]; 

GENDER RE =  -14.0ms [-27.4, -1.8]) trials. Compared to younger adults, older 

adults had an increased N170 amplitude i.e. more negative in practice (EXNEX 

LE = 4.6 µV [1.4, 6.8]; GENDER LE = 5.0 µV [2.0, 7.6]; EXNEX RE = 4.3 µV [1.2, 

7.2]; GENDER RE = 6.4 µV [3.1, 8.9]) but not experimental (EXNEX LE = -0.9 µV 

[-3.1, 1.3]; GENDER LE = 0.1 µV [-2.1, 2.6]; EXNEX RE = -0.7 µV [-3.6, 1.4]; 

GENDER RE = 0.5 µV [-1.7, 2.7]) trials.  

Next we calculated the difference between practice minus bubble trials, for 

Young minus Older participants. There was no group difference between the 

differences in N170 peak latency to practice and bubble trials in either the 

expression (EXNEX LE = -1.7 [-9.8, 6.4]; EXNEX RE = -4.6 [-14.3, 5.2]) or gender 

task (GENDER LE = -2.4 [-12.4, 6.5]; GENDER RE = -1.5 [-10.7, 6.0]). This 

suggests that the N170 is no more delayed by bubbles in older compared to 

younger participants and that any age-related delays in the processing of facial 
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features cannot be attributed to the presence of bubbles. There was however a 

group difference between the differences in N170 peak amplitude to practice 

and bubble trials in both expressive (EXNEX LE = -5.1 [-7.6, -2.7]; EXNEX RE = -

5.7 [-8.4, -2.7]) and gender (GENDER LE = -4.9 [-7.1, -2.5]; GENDER RE = -5.3 [-

8.1, -2.7]) tasks. This suggests that the N170 peak amplitude is significantly 

reduced in bubble compared to non-bubble trials for older compared to younger 

participants. This difference is due to two phenomena. Firstly, older participants 

demonstrated an enhanced N170 (Figure 59) to practice compared to bubble 

trials. Secondly, younger participants demonstrated a converse slightly enhanced 

N170 to bubble compared to practice trials (see Chapter 4).  

Larger N170 amplitudes to full images of faces in older than younger participants 

were also observed by Daniel & Bentin (2012). They compared the N170 

amplitude of full faces to ‘inner components’ of faces (where the eyes, nose and 

mouth remained visible, but the hair, ears and face contour was removed) and 

inner component scrambled faces (where the inner components appeared in a 

random configuration). They found that compared to full images of faces, 

younger participants had an enhanced N170 to inner component only faces and 

inner component scrambled faces, whilst older adults demonstrated a slight 

(though not significant) reduction in amplitude for inner component only faces, 

and a significant reduction in amplitude for scrambled inner component faces.  

On bubble trials, we varied what information was available on each trial. Like 

the inner component faces described above, on bubble trials we removed 

varying degrees of visibility of the hair, ears and face contour. Whilst we did not 

scramble the configuration of facial features, our bubble images may have 

resulted in increased uncertainty as to the configuration of the face underlying 

the image when minimal inner components were visible. Hence our manipulation 

may have led to the same pattern of results as seen by Daniel & Bentin (2012). 
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Figure 59: Non-Bubble ERP task differences by age group Mean practice trial ERPs for the 
Older and Younger by left and right hemisphere with 95 % confidence intervals around the mean. 
Vertical lines represent the minimum amplitude peak of the N170 for each task. Bottom panel 
EXNEX minus GENDER for bubble and practice trials. Small grey plot shows the pairwise 
difference of practice minus bubbles trials.  

In summary, we have seen that younger and older adults N170 timecourses are 

delayed in bubble compared to practice trials and that whilst older adults’ N170 

is delayed compared to younger adults in both bubble and practice trials, older 

adults’ N170 is no more delayed by bubbles compared to practice trials. This 

suggest that, whilst older adults accuracy and reaction times are more affected 

than younger adults’ in bubble compared to practice trials, the processing time 

of bubbles compared to full face images was not different in the two age groups. 

However, we did observe differences in the effect of bubbles on the amplitude 

on the N170. Older adults have an enhanced N170 to full face images compared 

to younger subjects. Whilst bubbling the image significantly decreased the 

amplitude of the N170 for older participants, it slightly increased the amplitude 

of the N170 for younger participants.  
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Figure 60: Bubble ERP task differences by age group Mean practice trial ERPs for the Older 
and Younger by left and right hemisphere with 95 % confidence intervals around the mean. Vertical 
lines represent the minimum amplitude peak of the N170 for each task. Bottom panel EXNEX 
minus GENDER for bubble and practice trials. Small grey plot shows the pairwise difference of 
practice minus bubbles trials.  

Mutual Information Timecourse 

We have seen that on average ERPs are delayed in older compared to younger 

participants. However, average ERPs based upon a single electrode of interest as 

described above are limited, as the above analyses cannot clearly account for 

single-trial fluctuations around the mean. Mutual information at a given time 

point is a measure of the relationship between single-trial fluctuations in the 

signal at that time, and the variation in information from the image. We 

expected to also observe a delay in the mutual information time course of older 

compared to younger participants.  

We began by calculating MI for each participant at each time point in the two 

tasks between pixels and brain responses for all electrodes. Next, we computed 

the maximum MI across all pixels at each time point for each electrode. Finally, 



190 
 

 

we computed the maximum MI at each time point across all electrodes in the 

left and right electrode clusters of interest (see Chapter 3: Mutual Information 

Timecourses). We compared group medians of maximum MI timecourses in the 

EXNEX and GENDER task for the left and right posterior electrode clusters, and 

the difference between tasks (Figure 61). We also calculated the amplitude of 

the MI peak for individual participants and the corresponding MI latency, and the 

group median of the MI peak and latency (Table 12).  

 

Figure 61: Older adult MI Timecourses Top row: Group median of individual maximum MI 
timecourses in the EXNEX and GENDER task for the LE and RE cluster. Bottom row: Difference in 
MI timecourses (EXNEX minus GENDER).  

As can be seen in Figure 61, there was little evidence of a clear group peak 

when comparing median time courses across participants. Comparing group 

medians masks the large amount of individual variability in MI timecourses 

(Figure 62). MI peak latencies varied widely between participants, with some 

participants maximum MI peaks occurring outside of the time window of the 

N170. This could reflect a rebound effect – MI first peaks due to encoding of the 

contralateral eye, and then peaks a second time where the latter part of the 

N170 codes the presence of the contralateral eye (Ince et al., 2016). Peaks in 

mutual information for some participants around the time window of the P300, 

particularly in the EXNEX task, could reflect continued representation of 

diagnostic features over this time window (Van Rijsbergen & Schyns, 2009). 

Other participants had a flat MI time course.  
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 EXNEX GENDER 
 LE RE LE RE 

LAT 218.8 
[90.8, 346.8] 

180 
[129.6, 231.0] 

189.7 
[112.8, 266.7] 

198.6 
[137.7, 259.5] 

MI 0.03 
[0.03, 0.03] 

0.03 
[0.03, 0.03] 

0.03 
[0.03, 0.03] 

0.03 
[0.02, 0.03] 

Table 12: Group average peak MI and latency Peak MI of the group median of individual 
maximum MI values and corresponding median latency in ms. Square brackets indicate 95 % 
percentile bootstrap confidence interval around the medians with 1000 samples 

When comparing the time courses of MI peaks between EXNEX and GENDER, we 

found only a weak group difference in peak latency (LE Latency [EXNEX – GENDER] = -

4.0 ms [-84.3, 76.2]; RE Latency [EXNEX – GENDER] = -23.0 ms [-71.2, 35.2]).  

 

Figure 62: Older adult individual Maximum MI Timecourses For each task and electrode, 
individual (N = 24) participants maximum MI time course are shown. Each line represents an 
individual participant. 

To visualise what information is being processed during the entire time course at 

each electrode cluster, for each participant (Supplementary 31) we took the 

calculated for each electrode their max MI value for each pixel across all time 

points between -300 ms pre-stimulus onset and 600 ms post stimulus onset. We 

then calculated the maximum MI value across all electrodes in the LE and RE 

clusters separately. We then took the median maximum MI value for each pixel 

across all participants for each of the two tasks separately, and computed the 

resulting classification image (Figure 63).  

In both EXNEX and GENDER, the LE cluster shows a weak focal hotspot over the 

contralateral right eye area and the RE cluster over the contralateral left eye 

area, consistent with previous results. In the EXNEX task, both the LE and RE 

clusters show hotspots over the mouth region, stronger than that in the GENDER 

task where the mouth region is less diagnostic for task performance.  
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Figure 63: Older adult group Max Mutual Information Classification Images For each 
electrode cluster (LE, CE, RE) the median across participants of the maximum MI value for each 
pixel across the entire time course -300 to 600 ms is shown. 

In summary we have shown that group average MI timecourses were broadly 

similar in the two tasks, though large inter-subject variability in the strength and 

timing of MI was evidenced. Our classification images have shown that, for both 

tasks, the left and right hemisphere ERPs were modulated by the presence of 

the contralateral eye and mouth. We have shown that mouth modulation was 

stronger in the EXNEX than GENDER task, though again there was large inter-

subject variability.  

Timing of Feature Sensitivity 

In the EXNEX task we have highlighted peaks in mutual information between 

ERPs and pixels around the mouth and left eye region. We found a similar, 

though weaker pattern of results in the GENDER task. Next, we quantify the 

timing of feature sensitivity to the left eye, right eye and mouth in the two 

tasks. Given previous research, we expected to see processing of the 

contralateral eye, before processing of other task-relevant facial features, such 

as the mouth in the EXNEX task (M. L. Smith et al., 2004). 

First, we examined group MI classification images over time. For each individual, 

we calculated the maximum MI value across all electrodes within the left and 

right hemisphere clusters, for every pixel at each time point. We then calculated 



193 
 

 

the group median MI value at each time point, presented in Figure 64. In both 

tasks, contralateral eye sensitivity and mouth sensitivity are apparent. 

Sensitivity is stronger and earlier on the right than left hemisphere in both tasks. 

As it is unclear when sensitivity to the eye and mouth begin, next, we quantified 

the timing of feature sensitivity seen in our MI classification images by examining 

the MI time courses between feature of interest visibility and ERPs. We selected 

1 left and right lateral posterior electrode and calculated for each feature the 

time course of the MI about feature visibility – MI(feature, [ERP, grad]) (see 

Chapter 3: Feature of Interest Analysis). We present the median MI time courses 

for each electrode, task and feature in Figure 66. We present Younger adults MI 

time courses as presented originally in Figure 41 again in Figure 65 for ease of 

comparison 
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Figure 64: Older Adult Mutual information EEG classification images time course Group median of individual maximum MI values at each pixel and time point(in 
milliseconds, see small numbers on the top row) in each cluster of electrodes of interest in two tasks 

 

Figure 65: Younger Adult Mutual information EEG classification images time course Group median of individual maximum MI values at each pixel and time point 
(in milliseconds, see small numbers on the top row) in each cluster of electrodes of interest in two tasks
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Left and right posterior lateral activity was modulated by the contralateral eye 

in both the GENDER and EXNEX task, though modulation was weaker in the 

EXNEX task and the modulation for both tasks was stronger on the right than left 

hemisphere. This is consistent with our behavioural results showing that the eye 

region was more diagnostic for the GENDER than the EXNEX task. Unsurprisingly, 

there was no apparent modulation of the ERPs at either the left or right 

electrode by the ipsilateral left and right eye in either task. Whilst left and right 

electrode activity was modulated by the mouth in both tasks, MI was stronger in 

the EXNEX than GENDER task, though delayed. This is consistent with our 

behavioural results showing that the mouth region was more diagnostic for the 

EXNEX than GENDER task. 

 

Figure 66: Older adult mutual Information Timecourse by facial feature Mutual information 
time course for the left and right posterior lateral electrode towards the left eye (top panel), right 
eye (middle panel) and mouth (bottom panel) in the EXNEX and GENDER task. Shaded area 
corresponds to a 95 % confidence interval calculated by a percentile bootstrap with 1000 samples 
around the mean. Vertical lines indicate the peak of the MI time-course.  
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For each participant and task we also analysed MI time courses to the midline 

electrode with the maximum sum MI between 120 – 220 ms (see Chapter 3; 

Feature of Interest Analysis). Midline electrodes have previously been shown to 

be sensitive to task-relevant facial features (Schyns et al., 2011). In particular, 

in a face versus noise detection task midline electrodes displayed sensitivity to 

both eyes as well as the nose and mouth areas (Rousselet et al., 2014). The 

authors suggested that sensitivity to the nose and mouth area peaked at least 20 

ms prior to posterior lateral eye sensitivity peaks, and was also present in noise 

trials, suggesting that midline electrode sensitivity may be a possible low-level 

effect, rather than an explicit feature integration process. Results from our 

midline electrode analysis suggested a weaker sensitivity to both the eyes and 

the mouth, which peaked later than contralateral posterior electrode activity.   

Next, we compared MI time courses between features to determine if 

contralateral eye sensitivity preceded sensitivity to the mouth (Figure 67). For 

each comparison, we calculated the difference between the MI peak and its 

latency for eye compared to mouth timecourses within the time window of the 

N170 (~120 – 220 ms). 

Right posterior lateral MI for the contralateral left eye peaked earlier than peak 

MI to the mouth in the EXNEX (Difference [Eye minus Mouth] = -32.2 ms [-60.5, -

3.8]) but not in the GENDER (Difference [Eye minus Mouth] = = 4.6 ms [-20.1, 

27.2]) task. 

Left posterior lateral MI for the contralateral right eye peaked earlier than peak 

MI to the mouth in the EXNEX (Difference [Eye minus Mouth] = - 15.7 ms [-34.8, 

3.4]) but not in the GENDER (Difference [Eye minus Mouth] = 8.8 ms [-6.1, 23.8]) 

task. 

We found large individual variation in the direction of the difference in MI peaks 

to the mouth and contralateral eye region that were not explained by task order 

effects. We present scatter plots of the difference in individual peak MI to the 

eye and mouth within the time window of the N170 in Supplementary 30. 

However, coding of the eye starts well before the peak of the N170 (Rousselet, 

Ince, van Rijsbergen, & Schyns, 2014), so we should also look at MI onset. 
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Figure 67: Older adult Mouth-Eye MI time course differences MI time courses to the 
contralateral eye and mouth for the left and right electrode in the EXNEX and GENDER task. Grey 
plots display the pairwise difference in time courses. Shaded area corresponds to the 95 % 
bootstrap CI around the median.  

MI Onset Analysis  

Next, we aimed to calculate the onset of MI to the mouth and eyes. For each 

participant in each task, we calculated the maximum MI value at each time 

point combined across both left and right posterior lateral electrodes to the 

mouth and both the eyes. We did this as some participants had stronger MI 

values to the right rather than left eye (Supplementary 31) and using this 

method avoided assumptions about which eye would be processed first. Using 

these timecourses, we used a Multivariate Adaptive Regression Splines (MARS) 

method (Friedman, 1991) to calculate MI onsets for the eyes and mouth (see 

Chapter 3; Mutual Information Onset Analysis).  

Individual results for MI onsets in the EXNEX task are displayed in Supplementary 

32 - Supplementary 33, and GENDER in Supplementary 34 - Supplementary 35. 

Only 8/24 participants’ in the EXNEX task, and 9/24 in the GENDER task had a 

detectable peak in MI towards both the eyes and mouth. All other participants’ 

timecourses were flat for either the eyes and/or mouth. For those participants 
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where a peak was identifiable, we calculated the difference in the estimate of 

MI onset to the eyes minus the mouth. Results are presented in Figure 68. 

In the ENXEX task, 6/8 participants had an earlier estimated onset to the eyes 

compared to the mouth, with a group median difference of -13 ms. In the 

GENDER task 5/9 participants had an earlier estimated onset to the eyes 

compared to the mouth, with a group median difference was -26 ms. However, 

the very small sample size does now allow the drawing of conclusions.  

 

Figure 68: Older adult difference in MI Onset For each participant the difference in estimated 
onset times (eyes minus mouth) in the EXNEX (left) and GENDER (right) task. Orange circles 
completed the EXNEX task first. Blue circles completed the GENDER task first. 

 

50 % Integration Time 

Due to the lack of clear MI peaks in our older adult participants drawing 

conclusions on onset of MI to the eyes and mouth was not possible. As an 

alternative approach, we instead moved to calculating 50 % integration times of 

the MI timecourse towards the eyes and mouth (See Chapter 3; 50 % Integration 

times). 50 % integration times can be used as a measure of processing speed 

which takes into account the entire MI waveform (not just peaks) and so offered 

benefits over our MI onset analysis where clear peaks needed to be identified. 

Calculating 50 % integration times also offers the advantage of normalising MI 

timecourses for comparison between groups. We calculated median 50 % 

integration times and CIs for each group (Younger and Older) for each feature 

(eyes and mouth) and task separately (Table 13). We then calculated the 

difference in 50 % integration time for the eyes and the 50 % in integration time 

for the mouth between younger and older participants.  

We found that older adults integrated information about both the eyes and 

mouth more slowly than younger adults. This delay in processing speed was not 

uniform across features and tasks. More specifically, whilst older adults were 
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~20-23 ms delayed in processing the eyes compared to younger adults across 

tasks, the delay in mouth integration was task dependent – there was a delay in 

processing the mouth in the GENDER but not EXNEX task. Mouth processing was 

less delayed than eye processing in the GENDER task, suggesting that older 

adults did not demonstrate a general delay that was consistent across all 

features. There were no significant interactions. 

 EXNEX GENDER 
 Younger Older Younger Older 

Eyes 231.4 
[224.9, 240.2] 

250.1 
[244.4, 254.3] 

227.7  
[221.1 235.5] 

254.0  
[248.9 261.2] 

Mouth 274.3  
[259.5 287.7] 

271.7  
[258.9 284.0] 

243.0  
[237.9 248.4] 

253.0  
[247.6 262.6] 

Table 13: 50 % integration time estimates. Median integration times and 95 % confidence 
interval for the eyes (top row) and mouth (bottom row) in the EXNEX (left) and GENDER (right) 
task for younger and older adults.   

 EXNEX FEATURE INTEGRATION   
 
In the EXNEX task (Figure 69; top panel), at the group level, both younger and 

older adults integrated information about the eyes faster than information about 

the mouth (Younger feature difference = -38.7 ms [-53.4 -27.9]; Older feature 

difference = -23.7 ms [-32.4 -12.7]). At the individual level, 22/24 younger and 

22/24 older participants’ integrated eye information faster than mouth 

information. However, the distributions of integration times were positively 

skewed in both age groups, with large idiosyncrasies in timing of integration of 

the two features.  

Comparing the speed of feature integration between the two groups, younger 

adults integrated information about the eyes faster than older adults (Group 

difference = -20 ms [-26.1, -7.6]). However, there was a large overlap of timing 

at the individual level (Figure 70). There was no group difference in time taken 

to integrate the mouth (Group difference = 3.5 ms [-17.2, 24.7]). Older adults 

slower integration of eye but not mouth information suggests that feature 

integration is qualitatively different in older than younger subjects – older adults 

did not demonstrate a general delay that was consistent across all features.  
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Figure 69: Difference in integration time between the eyes and mouth  Difference in 
integration time (eyes minus mouth) for each age group and task. Blue circles indicate participants 
who completed the EXNEX task first. Orange circles indicate participants who completed the 
GENDER tsk first.  

 GENDER FEATURE INTEGRATION  
 
In the GENDER task (Figure 69; bottom panel), at the group level, younger but 

not older adults integrated information about the eyes faster than information 

about the mouth (Younger feature difference = -13.7 ms [-22.5 -4.9]; Older 

feature difference = -3.8 ms [-8.6 7.0]). At the individual level, 19/24 younger 

and 15/24 older participants’ integrated eye information faster than mouth 

information. The distributions of integration times show large idiosyncrasies in 

timing of integration of the two features. 

Comparing the speed of feature integration between the two groups, younger 

adults integrated information about the eyes faster than older adults (Group 

difference = -23.2 ms [-39.3 -16.8]. Whilst there was some overlap of timing at 

the individual level (Figure 70), there was a clearer pattern of group differences 

than in the EXNEX task. Younger adults also took less time to integrate the 

mouth than Older adults (Group difference = -9.3 ms [-21.3 -1.5]), though there 

was less of a delay for mouth than eye integration. Older adults were more 

delayed in integration of eye than the mouth compared to younger adults – older 

adults did not demonstrate a general delay that was consistent across all 

features. 
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Figure 70: Eye integration time by age 50 % integration time in the EXNEX (left) and GENDER 
(right) tasks for the eyes between younger (brown) and older (blue) age groups 

 

Reverse Analysis: EEG Results  

We have examined mutual information between pixels and brain signals and 

shown that older adults’ brain signals are sensitive to the contralateral eye and 

mouth, but are these face features coded by the N170 amplitude and latency in 

older adults?   

Using the feature of interest masks (see Chapter 3: Feature of Interest Analysis) 

we calculated on a trial-by-trial basis the visibility of each feature (left eye, 

right eye, mouth), obtained as a scalar value of the sum of pixel visibility within 

the ellipse of each feature mask. We then split these visibility values into ten 

equally populated bins ranging from the lowest (bin 1) to the highest (bin 10) 

visibility values. We then sorted single trial ERP’s into 10 bins, based on the 

feature visibility in each trial. We present group mean ERP’s for each level of 

feature visibility for the left (Figure 71) and right (Figure 72) electrode.  

Weak modulations of the N170 amplitude and latency were apparent in both 

tasks. Modulations were strongest for mouth sensitivity on the right electrode in 

the two tasks (Figure 72, bottom row).  
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Figure 71: Older adult Left Electrode Binned ERPs by feature visibility Each column 
represents one task. Column A (left) shows results for the EXNEX task, column B (right) shows 
results for the GENDER task. Group mean ERP’s are shown for the posterior left electrode. ERPs 
are binned into 10 levels of visibility ranging from bin 1 (least visible) to bin 10 (most visible) for the 
left ipsilateral eye (top row), the right contralateral eye (middle row) and the mouth (bottom row). 
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Figure 72: Older adult Right Electrode Binned ERPs by feature visibility Each column 
represents one task. Column A (left) shows results for the EXNEX task, column B (right) shows 
results for the GENDER task. Group mean ERP’s are shown for the posterior left electrode. ERPs 
are binned into 10 levels of visibility ranging from bin 1 (least visible) to bin 10 (most visible) for the 
left ipsilateral eye (top row), the right contralateral eye (middle row) and the mouth (bottom row) 

 

N170 Latency and Amplitude Differences  

Next, we wanted to quantify this modulation of the N170, specifically to 

compare how the amplitude and latency of the N170 is modulated by the 

presence of specific facial features between tasks.  

We quantified the difference in N170 amplitude and latency between ERPs when 

facial features were most visible (bin 10) compared to least visible (bin 1). First 

we calculated for each participant the N170 amplitude and latency at each bin, 

for each feature in each task, for both posterior lateral electrodes. We then 

calculated the difference between bin 10 (most visible) minus bin 1 (least 

visible) for N170 latency in the time window ~150–240 ms post stimulus onset for 

each task, feature and lateral posterior electrode. Amplitude differences were 
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calculated as a proportion of bin1 (least visible) as a percentage, such that an 

amplitude difference of 50 % means that the amplitude of bin 10 (most visible) 

amplitudes were 150 % the size of the amplitudes in bin 1. We present median 

difference across participants in Figure 73 and Table 14, and individual 

differences in Supplementary 36.   

 

Figure 73: Older adult N170 Amplitude and Latency Differences Results are presented for 
three features of interest: the left eye (blue), right eye (green) and mouth (red). N170 was 
measured in the time window between ~150-240ms post stimulus onset. Median N170 latency 
differences were calculated between bin 10 (most visible) minus bin 1(least visible) and are 
presented in milliseconds. Median N170 amplitude differences are calculated as a percentage of 
bin 1, such that an amplitude difference of 50% means that the amplitude of bin 10 was 150% the 
size of amplitudes in bin1. Vertical and horizontal lines correspond to 95% confidence intervals. 
EXNEX results are plotted with squares, GENDER results are plotted with circles. Solid lines are 
the left electrode; dashed lines are the right electrode.  

For the majority of comparisons there were no significant differences as 95 % 

confidence intervals contained 0. However, in the EXNEX task, increased 

visibility of contralateral right eye modulated the N170 latency at the left 

electrode (Figure 73; middle box, square with solid lines), whilst the right 

hemisphere N170 amplitude was modulated by increased visibility of the mouth 

(Figure 73; right box, square with dashed lines). In the GENDER task, the 

ipsilateral left eye modulated the amplitude of the N170 at the left electrode 

(Figure 73; left box, circle with solid lines), whilst increased visibility ipsilateral 

right eye modulated N170 latency at the right electrode (Figure 73; middle box, 

circles with dashed lines). Increased visibility of the mouth modulated the 

latency of the N170 also at the left electrode (Figure 73; right box, circle with 

solid lines).  
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  EXNEX GENDER 
  LE RE LE RE 

L
E
F
T

 E
Y

E
 

LAT 
1.4 

[-1.2, 4.0] 
2.2 

[-2.1, 6.4] 
0.2 

[-1.9, 2.4] 
1.9 

[-1.5, 5.4] 

AMP 
6.4 

[-2.8, 15.7] 
1.8 

[-13.9, 17.5] 
9.3 

[2.2, 16.4] 
4.7 

[-9.7, 19.0] 
R

IG
H

T
 E

Y
E
 

LAT 
4.2 

[0.3, 8.0] 
0.1 

[-2.5, 2.6] 
1.6 

[-2.4, 5.5] 
2.3 

[0.2, 4.5] 

AMP 
4.4 

[-8.5, 17.3] 
-1.9 

[-9.1, 5.4] 
-7.1 

[-22.8, 8.7] 
7.1 

[-2.4, 16.6] 

M
O

U
T

H
 LAT 

2.7 
[-0.6, 6.0] 

1.7 
[-1.0, 4.4] 

2.9 
[0.4, 5.4] 

2.1 
[-2.3, 6.5] 

AMP 
17.3 

[-1.1, 35.7] 
20.1 

[6.4, 33.8] 
3.0 

[-4.7, 10.7] 
11.2 

[-8.9, 31.2] 

Table 14: Older adult N170 amplitude and latency differences by facial feature Median N170 
latency and amplitude differences for the right eye, left eye and mouth for the left and right 
hemisphere in each task. N170 was measured in the time window between ~150-240ms post 
stimulus onset. Median N170 latency differences were calculated between bin 10 (most visible) 
minus bin 1(least visible) and are presented in milliseconds. Median N170 amplitude differences 
are calculated as a percentage of bin 1, such that an amplitude difference of 50% means that the 
amplitude of bin 10 was 150% the size of amplitudes in bin1  

Next, we tested the interaction between age and N170 latency and amplitude 

modulation of the N170 i.e. whether the difference in latency and amplitude 

modulation by the presence of a particular feature differs between the two age 

groups. We computed the effect size estimates for the group difference at each 

electrode cluster (Table 14). We found significant group effects, with the 

presence of the contralateral left eye having a stronger effect on the N170 

latency and amplitude modulation in younger than older participants at the right 

hemisphere in both tasks. We also found that the presence of the contralateral 

right eye had a stronger effect on the N170 latency in younger than older 

participants at the right hemisphere in both tasks, whilst the group difference in 

amplitude modulation was only significant in the GENDER but not EXNEX task.  

We also found significant group effects with the presence of the mouth having a 

stronger effect on the N170 latency and amplitude modulation in younger than 

older participants at both hemispheres and tasks.  

In summary our feature of interest analysis suggests modulation of the N170 

latency and amplitude as a mechanism involved in face detection in younger and 

older participants. This mechanism changes with ageing, where both EXNEX and 
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GENDER categorisation tasks are associated with changes in latency and 

amplitude of the N170.  

  EXNEX GENDER 
  LE RE LE RE 

L
E
F
T

 E
Y

E
 

LAT 

-2.2 
[-5.8, 0.2] 

-0.27 
[-0.57, 0.04] 

-8.0 
[-13.1, -3.7] 

-0.55 
[-0.78, -0.27] 

-2.0 
[-4.2, 1.1] 

-0.21 
[-0.49, 0.11] 

-13.5 
[-18.3, -8.9] 

-0.81 
[-0.94, -0.62] 

AMP 

- 0.1 
[-11.9, 11.6] 

-0.0 
[-0.25, 0.32] 

 

-21.0 
[-34.6, -0.85] 

0.34 
[0.02, 0.64] 

-5.3 
[-16.4, 4.4] 

0.18 
[-0.18, 0.54] 

-26.1 
[-44.9, -7.7]  

0.48 
[0.19, 0.74] 

 
 

R
IG

H
T

 E
Y

E
 LAT 

-8.0 
[-12.5, -4.1] 

-0.53 
[-0.77, -0.26] 

0.0 
[-2.8, 3.9] 

0.01 
[-0.34, 0.28] 

-5.8 
[-11.1, -0.1] 

-0.34 
[-0.63, -0.04] 

-3.9 
[-6.2, -1.6] 

-0.43 
[-0.72, -0.11] 

 

AMP 

-13.8 
[-33.1, 3.0] 

0.25 
[-0.08, 0.56] 

-17.8 
[-30.9, -4.3] 

0.43 
[0.11, 0.72] 

-30.0 
[-49.4, -12.7] 

0.46 
[0.18, 0.73] 

 

-16.4 
[-30.1, -3.7] 

0.40 
[0.14, 0.66] 

M
O

U
T

H
 

LAT 

-7.3 
[-10.9, -3.6] 

-0.58 
[-0.81, -0.33] 

 

-7.8 
[-12.2, -4.0] 

-0.55 
[-0.80, -0.26] 

-4.0 
[-7.9, -1.5] 

-0.43 
[-0.68, -0.13] 

-10.7 
[-15.1, -5.6] 

-0.64 
[-0.86, -0.41] 

AMP 

-37.1 
[-59.9, -16.3] 

0.52 
[0.24, 0.76] 

-31.9 
[-69.3, -5.8] 

0.39 
[0.11, 0.66] 

-21.7 
[-35.5, -3.4] 

0.42 
[0.12, 0.69] 

-24.6 
[-45.7, -3.5] 

0.38 
[0.06, 0.64] 

Table 15: Estimates for group differences in N170 modulation Estimate for group differences 
(Younger minus Older) in N170 latency (LAT) and amplitude (AMP). Latency values correspond to 
median latencies expressed in milliseconds. Amplitude values are calculated as a percentage 
points, so that an amplitude difference of - 50 means the amplitude difference in younger adults 
was 50 percentage points larger than the amplitude difference in older adults. Square brackets 
indicate 95% confidence intervals. A corresponding Cliff’s delta estimate is shown in italics.
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Discussion 

In the current study we explored whether there are similarities in the facial 

features processed by younger and older adults in a gender and expression 

discrimination task, and quantified age-related differences in modulation of 

ERPs by feature visibility. We found that whilst younger and older adults both 

relied on the same facial features for accurate categorisation in both tasks, 

older adults were more dependent than younger adults on visibility of the mouth 

for making accurate responses in the EXNEX task. We found a delay in 

information processing in older compared to younger adults, with eye encoding 

being delayed by ~25 ms. In comparison, we found only a slight ~9 ms delay in 

mouth processing in the GENDER task and no delay in mouth processing in the 

EXNEX task. This suggests there is not a uniform age-related delay in processing 

of all facial features.  

 BEHAVIOUR  
 
We found that behaviourally, older adults relied on the same facial features as 

young adults used as diagnostic cues to resolve gender and expressiveness 

categorisation tasks. However, compared to our younger adults, older adults 

were more heavily dependent upon the presence of the mouth to correctly and 

quickly determine expressive and non-expressive faces, whereas younger adults 

could complete the task using other features in the absence of the mouth.  

There was no comparable over-reliance on eye information for resolving the 

gender task. Recently Jaworska (2017) showed that during face versus noise 

detection tasks, both younger and older adults responded faster when the 

contralateral eye region was visible, and older adults were more reliant on the 

visibility of the eye region for correct responses. Older adults in the current 

experiment may not have had over-reliance on the eye region in the gender task 

due to several other cues being available for resolving the task, such as the hair 

or other facial features, or inter-eye distance. This suggests that the absence of 

mouth visibility has a greater effect on accuracy in our older than younger 

participants, and that older adults may rely more upon the presence of the 

mouth to make correct responses. In contrast younger participants could use 
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other features and their combination to correctly discriminate ‘happy’ from 

‘neutral’ faces.  

Despite older adults relying more upon the mouth for correct behavioural 

responses in the EXNEX task, the strength MI between the mouth and reaction 

times (calculated be summing MI within each region of interest) was weaker in 

older compared to younger adults. This suggests that, in the EXNEX task 

dependency on the mouth region for correct responses didn’t translate to 

modulating reaction times for older adults. We did not find any difference in the 

strength of MI towards the eye regions in either task.  

 EEG INFORMATION 
 
We calculated MI between pixels and brain responses. We found that older 

adults’ brain signals were modulated by the same facial features as per younger 

adults, but that MI was weaker.  

 AGE-RELATED DIFFERENCES IN EYE ENCODING   

We attempted to quantify when information is encoded in the brain. We 

calculated 50 % integration time of MI towards the eyes as a measure of 

processing speed. We found that older adults integrated information about the 

eyes consistently slower than younger adults – approximately 20 ms slower in the 

EXNEX and 23 ms in the GENDER task. We calculated integration times over both 

left and right posterior lateral electrodes, with results consistent with those of 

Jaworska (2017) suggesting a 23 – 25 ms delay in processing the contralateral left 

and right eye on right and left posterior lateral electrodes respectively in a face 

detection task. This suggests that the delay in feature processing previously 

observed in a face versus noise detection task is similar to that observed in our 

experiment, suggesting that the delay in processing of the eyes is similarly 

delayed in a range of face processing tasks. Whilst in both the face detection 

task reported by Jaworska (2017)  and GENDER task reported here, the eyes 

were task relevant for behaviour, in the EXNEX task the eyes were minimally 

task diagnostic. This is consistent with the claim that the eyes are processed 

automatically regardless of their task-relevancy and goes a step further by 

suggesting that the delay in eye sensitivity is relatively consistent (at least at 
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the group level) across tasks. Further research could continue to test the 

robustness of this finding by diversifying the range of face processing tasks 

utilised and explore the variability in the timing of eye sensitivity across 

individuals in different tasks.  

 AGE-RELATED DIFFERENCES IN MOUTH ENCODING   

We compared younger and older adults’ speed of processing the mouth in the 

two tasks. In the EXNEX task, we did not find any difference in the processing 

speed of mouth information between younger and older adults. This suggests 

that whilst older adults have delayed processing of the eyes, there is no delay in 

mouth processing. In the GENDER task older adults experienced a delay in mouth 

processing of approximately 9 ms. It is unclear why there is a differential delay 

in mouth processing in the GENDER than EXNEX task. Some explanations could 

be:  

1) Weaker eye coding and increased mouth processing in the EXNEX task may 

reflect older adults processing the mouth more readily, reducing age 

related differences in mouth processing speed  

2) Older adults spend more time encoding the eyes in the GENDER than 

EXNEX task which may delay mouth encoding.  

 EYE-MOUTH ENCODING DELAY    

Previously, it has been suggested that contralateral eye processing precedes the 

processing of other, task relevant features (Rousselet et al., 2014). In the EXNEX 

task both younger and older adults processed information about the eyes faster 

than information about the mouth, though there were large idiosyncrasies in 

relative timing and not all participants showed this effect. In the GENDER task, 

whilst younger adults processed information about the eyes faster than the 

mouth, there was not a significant difference in relative processing times for the 

older age group. The difference between eye and mouth integration was larger 

in the EXNEX than GENDER task for both age groups. This may reflect greater 

encoding of the mouth in the EXNEX than the GENDER task in both age groups.  
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We found that age-related differences in speed of processing is different for 

different features and tasks – there is not a uniform age-related delay in 

processing speed of all facial features in all face processing tasks.  

 AGE-RELATED DIFFERENCES IN N170 ENCODING 
 
We compared how the presence of facial features modulated the amplitude and 

latency of the N170 in older compared to younger adult participants. We found 

that the presence of the contralateral left eye resulted in earlier and stronger 

N170s in younger than older participants in both tasks, whilst the presence of 

the contralateral right eye modulated N170 latencies only (earlier in younger 

than older participants). Similarly increased visibility of the mouth also led to 

earlier and stronger N170s in younger than older participants in both tasks.  

BUBBLES MANIPULATION 
 
In the current experiment, older participants’ reaction times and accuracy were 

more negatively affected by bubbling the image than behavioural outcomes in 

younger participants. This suggests that older adults required more information 

to complete the task to the same level of accuracy as younger participants. The 

bubbles manipulation, where only parts of the image is revealed, may be akin to 

partially occluded or fragmented object perception. It has been suggested 

previously that older adults experience an age-related decline in perceptual 

tasks where visual information is missing or fragmented, such as in perceptual 

closure tasks (Frazier & Hoyer, 1992; Whitfield & Elias, 1992). Previous work 

using bubbles with older adults in a face versus noise detection task (Jaworska, 

2017) has also suggested that older adults experience a larger decline in 

accuracy than younger adults in bubble compared to non-bubble trials.   

However, whilst bubbling affected behavioural responses, our differences in 

brain responses cannot be understood as a result of the bubbles manipulation. 

When comparing brain data, both younger and older adults N170 were delayed 

by the bubbles manipulation. There was however only weak group differences 

between the differences in N170 peak latency to practice and bubble trials in 

either the expression or gender task. This suggests that age-related delays in 

processing of facial features cannot be attributed to the presence of bubbles as 

an experimental manipulation. However, we did observe differences in the 
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effect of bubbles on the amplitude on the N170. Whilst bubbling the image 

significantly decreased the amplitude of the N170 for older participants, it 

slightly increased the amplitude of the N170 for younger participants. It is not 

clear why we observed this effect, though a related pattern was also observed 

by Daniel & Bentin (2012). 

 COMPARISON WITH SCHYNS ET AL. (2002)  

Whilst we found evidence of strong mouth modulation of behaviour in the EXNEX 

task, we found the increased visibility of the eye had only a weak effect on 

behavioural modulation. We found eye sensitivity in some participants, but this 

was weaker than that found previously. Unlike previous work, we found that the 

mouth did modulate the N170 in both younger and older participants.  

Our results may have differed from Schyns et al. (2002) as our naturalistic 

images may have resulted in less dependence upon the eye region due to  

1) Models not wearing eye makeup in the current experiment which may have 

reduced the contrast between images of men and women and reduced the 

saliency of attending to the eye region;  

2) Coloured images used in the current experiment may have increased the 

diagnostic information across the whole face for example due to pigmentation; 

and  

3) Other cues were available in the current experiment for resolving the task, 

for example the hair. For some older adults brain classification images showed 

modulation of ERPs with increased visibility of an area above the shoulder where 

either the background or hair would be visible (depending on hair length and 

style).  

GRAND AVERAGES 

The widespread problem in neuroscience of averaging data and comparing means 

is well known. Comparing grand averages between groups, such as younger and 

older adults, masks the rich patterns and complexities of individual differences. 

Within this thesis individual differences are presented, which have not been 
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reported in previous studies. For example, in Chapter 2 we demonstrated that 

our group results reflected previous findings of contralateral eye sensitivity, but 

that there were undocumented individual variations in this pattern. In Chapters 

4 and 5 we demonstrated that, among other findings, that the onset of feature 

sensitivity is idiosyncratic. The implications of these results are that previous 

studies should be interpreted with caution – whist average effects may be 

reproducible, on an individual level, participants vary widely. In the most 

extreme cases, average results may not represent any individual patterns in the 

underlying data. Future research should more faithfully report individual 

differences, and how many individuals show patterns consistent with average 

data when used.  

LIMITATIONS AND FUTURE DIRECTIONS 

Whilst we attempted to ensure our older adults could be considered as ageing 

healthily through screening for mild cognitive impairment, a healthy older adult 

sample cannot be guaranteed on the basis of behavioural screening tests alone. 

Anatomical and functional brain differences occur before the beginnings of 

behaviourally evident cognitive decline (Beason-Held et al., 2013; Braak & 

Braak, 1991). However, engaging older adults in more stringent screening 

procedures is often not financially feasible and may discourage older adults from 

participating in research if participation is seen as being more demanding (i.e. 

increase on time or number of visits required) or invasive.   

Ageing-related macular degeneration and other optical changes with age may 

also be a problem.  While we attempted to ensure our older adults had normal 

or correct to normal vision by asking that participants have visited an optician 

within the last year, Owsley (2011) suggests that more stringent measures of 

reporting about the ageing eye should be undertaken. The authors criticise using 

self-report and visual acuity cut-off points as measures of healthy ageing, and 

warn that ophthalmologists and optometrists can differ in how they consider 

older adults’ eyes as being clinically ‘normal’. Given these views it may be more 

appropriate to consider using more objective and standardized criteria for 

assessing good retinal health in older adult populations in future studies.  
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Our results are limited due to our choice of stimuli. In our study, our stimulus 

set only consisted of images of young adult faces. We did not account for how 

the perceived age of the face may affect recognition in regard to the facial 

features that are diagnostic for particular facial processing judgments, nor how 

face processing strategies may vary depending on the age of the observer 

relative to the age of the stimuli shown. The age of a face may have 

consequences for some face processing tasks, such as accurate emotion 

recognition. For example, the occurrence of wrinkles and folds with increasing 

face age may lead to increased difficulty in emotion recognition of older faces 

(Fölster, Hess, & Werheid, 2014). Brain responses will also change with the age 

of the face displayed. The N170 may be larger for older relative to younger 

adults faces, regardless of the age of the observer (Komes, Schweinberger, & 

Wiese, 2015; Wiese et al., 2008), though not all studies have suggested that this 

difference in amplitude is significant (Ebner, He, Fichtenholtz, McCarthy, & 

Johnson, 2011).  

An own-age bias (OAB) i.e. better recognition of faces of a similar age to 

ourselves (Anastasi & Rhodes, 2005; Wiese et al., 2008) may mean that face 

processing varies depending on the relative age of the face compared to the 

observer. OAB cannot be explained by an increase in the allocation of attention 

to own versus other ages faces however (Neumann, End, Luttmann, 

Schweinberger, & Wiese, 2015) and expertise or contact based models, in which 

greater expertise with own age faces may be due to supposed increased contact 

with our own-age versus other aged faces, is controversial. Thus it is still unclear 

why OAB is apparent. However, if older adults may perform differently when 

viewing own versus other aged faces, it follows that comparing older adults face 

processing mechanisms only to younger, but not older faces, may not reflect the 

whole picture of age-related differences in face processing. To resolve such an 

issue, the experiment conducted in this chapter could be extended to include 

images of older adult faces that are part of the stimulus database used for this 

experiment with the same participants to quantify if diagnostic features or 

timing in feature encoding is sensitive to differences in the age of face stimuli 

shown.  
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In conclusion, we have shown that the content of early visual ERPs in older 

adults does not differ from that of younger adults, though the processing of 

these same features is weaker and delayed in healthy ageing. Specifically, older 

adults’ processing of the eyes is comparatively delayed compared to younger 

adults across tasks. However, the relative timing of processing other facial 

features, specifically the mouth, is idiosyncratic, with the relative timing of 

feature processing not consistent across tasks, and not uniformly delayed with 

ageing. 
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Chapter 5 Supplementary Figures  

 

Supplementary 20: Older adult Individual behavioural classification images for all 
participants. MI(pix, RT) and MI(pix,CORR) for the EXNEX and GENDER task. Left column: 
Participants who completed the EXNEX task first. Right column: Participants who completed the 
GENDER task first.  
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Supplementary 21: Older adult mouth visibility task order effects Differences between high 
(bin 10) and low (bin 1) visibility of the mouth in the EXNEX (top row) and GENDER (bottom row) 
task. Purple circles are participants who completed the EXNEX task first. Green circles are 
participants who completed the GENDER task first. Behavioural differences are broadly the same 
regardless of task order.  
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Supplementary 22: Older adult left eye visibility task order effects Differences between high 
(bin 10) and low (bin 1) visibility of the mouth in the EXNEX (top row) and GENDER (bottom row) 
task. Purple circles are participants who completed the EXNEX task first. Green circles are 
participants who completed the GENDER task first. Behavioural differences are broadly the same 
regardless of task order.  
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Supplementary 23: Older adult right eye visibility task order effects Differences between high 
(bin 10) and low (bin 1) visibility of the mouth in the EXNEX (top row) and GENDER (bottom row) 
task. Purple circles are participants who completed the EXNEX task first. Green circles are 
participants who completed the GENDER task first. Behavioural differences are broadly the same 
regardless of task order.  
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Supplementary 24: Older adult normalised Reaction time task differences by feature 
visibility Behavioural data normalised by dividing the difference of bin 10 minus bin 1 by the 
difference of bin 1 + bin 10 for each participant and facial feature. Panel A: The difference in 
normalised reaction time for the left eye (top), right eye (middle) and mouth (bottom). Each line 
represents one participant. Panel B: Difference of differences. The difference in normalised 
reaction time for the EXNEX minus GENDER task for each facial feature of interest.  
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Supplementary 25: Older adult normalised Accuracy task differences by feature visibility 
Behavioural data normalised by dividing the difference of bin 10 minus bin 1 by the difference of bin 
1 + bin 10 for each participant and facial feature. Panel A: The difference in normalised accuracy 
for the left eye (top), right eye (middle) and mouth (bottom). Each line represents one participant. 
Panel B: Difference of differences. The difference in normalised accuracy for the EXNEX minus 
GENDER task for each facial feature of interest.  
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Supplementary 26: Older adult individual Mean ERPs (Practice Trials) Mean ERPs for each 
participant (N = 24) are superimposed in grey for the left and right hemisphere in each task. Solid 
black line represents the group mean. Dashed black line represents the latency of the group 
average minimum N170 amplitude.  

 

Supplementary 27: Older adult individual Mean ERPs (Bubble minus Practice Trials) 
Difference in Bubble minus Practice trials mean ERPs for each participant (N = 24) are 
superimposed in grey for the left and right hemisphere in each task. Solid black line represents the 
group mean.  
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Supplementary 28: Older adult individual Mean ERPs (EXNEX – GENDER) Difference in 
Bubble minus Practice trials for EXNEX minus GENDER mean ERPs for each participant (N = 24) 
are superimposed in grey for the left and right hemisphere in each task. Solid black line represents 
the group mean.  

 

 

Supplementary 29: Older adult 20 % trimmed mean average group ERP in Bubble and Non-
Bubble Trials 20 % trimmed mean bubble and non-bubble trial ERPs for the left and right 
hemisphere with 95 % confidence intervals around the 20 % trimmed mean. Vertical lines 
represent the minimum amplitude peak of the N170 for each task. Bottom panel EXNEX minus 
GENDER for bubble and practice trials. Small grey plot shows the pairwise difference of practice 
minus bubbles trials.  
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Supplementary 30: Older adult individual Differences in MI peak latency For each participant 
we calculated the difference in the latency of the peak MI between 120-220 ms for the contralateral 
eye minus the mouth. Purple circles are participants who completed the EXNEX task first. Green 
circles are participants who completed the GENDER task first 
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Supplementary 31: Older adult individual brain classification images for all participants. 
MI(pix, [ERP,grad]) for the EXNEX and GENDER task. Left column: Participants who completed 
the EXNEX task first. Right column: Participants who completed the GENDER task first.   
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Supplementary 32: Older adult MI eye onset (EXNEX)  For each participant we plotted the maximum MI across the left and right electrode to the left and right eyes. 
For each participant the time course is shown in black. Peaks 2.25 times larger than median  baseline are highlighted by a red triangle. Red line depicts the model 
estimation. Blue lines indicate the estimation of the onset of MI, which is stated above each plot. Plots in grey show individuals whose data was not included in the 
analysis as no peak was identified for the eyes and/or mouth time course. 
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Supplementary 33: Older adult MI mouth onset (EXNEX)  For each participant we plotted the maximum MI across the left and right electrode to the left and right 
eyes. For each participant the time course is shown in black. Peaks 2.25 times larger than median  baseline are highlighted by a red triangle. Red line depicts the 
model estimation. Blue lines indicate the estimation of the onset of MI, which is stated above each plot. Plots in grey show individuals whose data was not included in 
the analysis as no peak was identified for the eyes and/or mouth time course.  
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Supplementary 34: Older adult MI eye onset (GENDER)  For each participant we plotted the maximum MI across the left and right electrode to the left and right 
eyes. For each participant the time course is shown in black. Peaks 2.25 times larger than median  baseline are highlighted by a red triangle. Red line depicts the 
model estimation. Blue lines indicate the estimation of the onset of MI, which is stated above each plot. Plots in grey show individuals whose data was not included in 
the analysis as no peak was identified for the eyes and/or mouth time course. 
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Supplementary 35: Older adult MI mouth onset (GENDER)  For each participant we plotted the maximum MI across the left and right electrode to the left and right 
eyes. For each participant the time course is shown in black. Peaks 2.25 times larger than median  baseline are highlighted by a red triangle. Red line depicts the 
model estimation. Blue lines indicate the estimation of the onset of MI, which is stated above each plot. Plots in grey show individuals whose data was not included in 
the analysis as no peak was identified for the eyes and/or mouth time course. 



229 
 

 

 

Supplementary 36: Older adult N170 individual amplitude and latency differences. Individual 
differences in amplitude and latency between bin 10 minus bin 1. Median N170 latency differences 
were calculated between bin 10 (most visible) minus bin 1(least visible) and are presented in 
milliseconds. Median N170 amplitude differences are calculated as a percentage of bin 1, such that 
an amplitude difference of 50% means that the amplitude of bin 10 was 150% the size of 
amplitudes in bin1. Squares represent EXNEX whilst circles represent GENDER. Triangles 
represent the difference between EXNEX minus GENDER. Blue symbols represent participants 
completing the EXNEX task first. Orange triangles represent participants completing the GENDER 
task first.  
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General Discussion  

Faces are important social stimuli for achieving mutual understanding and 

communicating a wide range of signals, such as threat and aggression. We 

engage in many basic face processing tasks automatically in naturalistic settings, 

such as judging the age, sex and emotional state from others faces. However, 

our understanding of the computational stages that visual processing undergoes 

from initial sensory input to decision making, and how these information 

processing stages are affected by healthy ageing remains elusive.  

Through investigating the information processing steps during the most basic 

face processing task, face detection, previous work has revealed that increased 

visibility of the contralateral eye was associated with quicker and more accurate 

behavioural responses, as well as increased eye visibility modulating the EEG 

signal (Rousselet et al., 2014). Furthermore, this pattern of results was also 

evident in older adults, though this association was weaker and delayed 

(Jaworska, 2017). Coupled together, these results suggest that eye encoding is 

the first stage of visual processing in a face detection task across the lifespan, 

and that an age-related slowing of information processing of the same facial 

feature occurs. This age related slowing is in line with Salthouse's (1996) theory 

that perceptual and cognitive impairments in ageing can be accounted for by a 

generalised slowing down of neural information processing with age, as well as 

extending previous results charting a 1 ms per year slowing down of visual 

processing speed (Rousselet et al., 2009). 

In this thesis we aimed to demonstrate that contralateral eye sensitivity in a 

face detection task is not an artefact of a left attentional or left gaze bias, nor 

due to alignment between the size of the Gaussian apertures used to reveal the 

stimulus and the size of the eye region of the stimulus. In Chapter 2, we used 4 

image sizes, maintaining the same Gaussian aperture size across all the stimulus 

sizes, whilst varying the number of the apertures to ensure an approximately 

equal percentage of the stimulus space was revealed. We found that reaction 

times and accuracy were modulated by visibility the eye region for face but not 

noise trials. With increasing image size, we found a shrinking ‘hotspot’ of 

sensitivity, revealing sensitivity to the pupil/iris area with increasing specificity. 

We also found N170 sensitivity to the contralateral eye, also with a hotspot that 
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shrank with increasing face sizes – however, N170 contralateral eye sensitivity 

lateralisation was almost lost for very small faces (3 degrees of visual angle). 

These results suggest that, at least in a face detection task, the feature driving 

behavioural and brain signals is iris/pupil area and that contralateral eye 

sensitivity is size tolerant for all but very small faces. Our failure to find 

lateralisation in the smallest face size was not due to using a single Gaussian 

aperture, as contralateral eye sensitivity has been shown for larger image sizes 

using a single large bubble (Rousselet et al., 2015), but rather seems to be a 

consequence of the very small size of the stimulus being presented foveally. The 

‘tracking’ of the eye across all other stimulus sizes, coupled with no sensitivity 

to the equivalent area on noise tasks, refutes alternative left attentional or gaze 

bias explanations of these results.  

Whilst face detection tasks give us the opportunity to understand face 

processing in its most basic elementary stages and is a good starting point for 

understanding what information the brain processes when it detects a face, in 

Chapter 4 we aimed to shed light on the information processing steps in more 

complex face processing tasks of gender and expressiveness categorisations. 

During face detection tasks trial-by-trial uncertainty is introduced as to whether 

a face will be present or not. In our tasks, participants had top-down knowledge 

that faces would always be presented. Removing this uncertainty and changing 

the task demands from a face-detection to a gender or expressiveness detection 

task may alter the features initially processed. For example, it is possible that if 

processing the eyes is only the initial processing step in a particular subset of 

face processing tasks, including face verses noise detection for example, that 

eye processing may not be evidenced in an expressive versus no expressiveness 

task if the eyes provide no diagnostic information for the task. Alternatively, it 

is also possible that eye processing is a universal initial face processing step, in 

which case eye processing may proceed the processing of other facial features, 

even when the eyes provide no diagnostic information for the task.  

Previously it has been reported that participants rely on the eye and mouth 

regions to resolve a gender categorisation task, whilst they rely only on the 

mouth to resolve an expressive/non-expressive categorisation task (Gosselin & 

Schyns, 2001). Whilst there has been some inconsistency in the supposed 
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features driving behavioural responses in the gender task using the same stimuli 

(e.g. Schyns, Bonnar, & Gosselin (2002) suggest that only the left eye from the 

viewers perspective is used in the gender task, whilst Schyns, Jentzsch, Johnson, 

Schweinberger, & Gosselin (2003) suggests both eyes but not the mouth are 

used), a general consensus from these results can be formed that during the 

EXNEX task participants rely on the mouth, whilst in the GENDER task they rely 

on at least 1 if not both eyes and possibly also the mouth region. In contrast, in 

both tasks modulation of the N170 has been suggested to be associated with 

encoding of the contralateral eye, whilst the later P300 component reflects the 

processing of diagnostic features (the mouth in the EXNEX task and eyes in the 

GENDER task) (M. L. Smith et al., 2004).  

We attempted to replicate these results in Chapter 4 with a new stimulus set 

that offered the advantage of coloured images of faces that had not been 

manipulated to conform to a normalised hairstyle and were not wearing makeup. 

We also employed a new image sampling technique - BubbleWarp – that we 

outlined in Chapter 3, which allowed us to present stimuli with naturalistic 

variation in e.g. inter-feature distances. In addition, we used mutual information 

to quantify the dependence between stimulus features and behavioural and 

brain responses, which offered the advantage of being non-parametric and able 

to detect both linear and non-linear associations.  

We found the strongest behavioural associations between the mouth and 

increased accuracy and reaction times in the EXNEX task, and the eyes and 

increased accuracy and reaction times in the GENDER task. However, 

diagnosticity to the eye region was weak, and our results suggested an 

idiosyncratic preference for the eyes that varied in strength across participants 

for the gender task. We found that single-trial ERPs were modulated by the 

presence of the contralateral eye region and mouth in both the EXNEX and 

GENDER task. We showed that mouth modulation was stronger in the EXNEX than 

GENDER task, whilst eye modulation was slightly stronger for the GENDER than 

EXNEX task though weaker than mouth modulation. This highlights a disparity 

between the task-relevant information for behaviour and that information coded 

in the brain. During the time window of the N170, we highlighted the encoding 

of both the contralateral eye and mouth regions in both the EXNEX and GENDER 
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task. This is in stark contrast to Smith et al.’s (2004) results suggesting that the 

N170 was modulated by the contralateral eye only. We have shown that in both 

the GENDER and EXNEX task, increased visibility of the mouth increased N170 

amplitudes at both the left and right posterior lateral electrodes. Increased 

mouth visibility was also associated with shorter N170 latencies in the EXNEX 

task at left posterior lateral electrodes, and in the GENDER task at right 

posterior lateral electrodes. This suggests that the N170 is not only sensitive to 

the contralateral eye as suggested by Smith et al. (2004), but is also modulated 

by other facial features, such as the mouth. We also found evidence of 

sensitivity to the ipsilateral eye modulating N170 amplitudes during both tasks, 

particularly for the left ipsilateral electrodes. This is in-keeping with a recent 

study suggesting that the N170 reflects the coding of the contralateral eye 

followed by the transfer of communication about the ipsilateral eye (Ince et al., 

2016).  

Vitally, through estimating the onset on MI towards the eyes and mouth regions, 

we quantified the timing of sensitivity to the eyes and mouth, suggesting that 

the onset of MI to the eyes preceded the onset of MI to the mouth region by 13 

ms in the EXNEX and 12 ms in the GENDER task. However, these results should be 

treated with caution as at the individual level we evidenced a heavily skewed 

distribution and the direction of this effect was only apparent in 70 % of 

participants in the EXNEX task and 60 % of participants in the GENDER task. Thus 

we conclude that there is an idiosyncratic preference for contralateral eye 

sensitivity preceding sensitivity to other facial features.  

In Chapter 5, we extended our results to understand how older adults compared 

to younger adults. We found that behaviourally, older adults relied on the same 

facial features as young adults used as diagnostic cues to resolve gender and 

expressiveness categorisation tasks. However, compared to our younger adults, 

older adults were more heavily dependent upon the presence of the mouth to 

correctly and quickly determine expressive and non-expressive faces.  

Comparing the time taken to integrate 50 % of their MI time course, we found 

that older adults integrated information about the eyes consistently slower than 

younger adults – approximately 20 ms slower in the EXNEX and 23 ms in the 

GENDER task, consistent with the 23 – 25 ms delay in processing the 
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contralateral left and right eye on right and left posterior lateral electrodes 

respectively in a previously reported face detection task (Jaworska, 2017). 

Interestingly, our relatively similar delay in eye coding as in a less complex face 

detection task may be in disparity with Salthouse's (1996) theory of generalised 

slowing, as this theory would point towards expectations of an increased delay in 

processing in more complex tasks. However, our results should be treated with 

caution, as, whilst bubbles delayed ERPs in both younger and older adults, using 

bubbled stimuli may have more of an effect on older adults perception, as it has 

been suggested that eye processing is not delayed or weaker in older compared 

to younger adults when the face context is preserved (Jaworska, 2017).  

In contrast to the age-related delay in eye processing, we found a substantially 

reduced delay in processing the mouth in the GENDER task (approximately 9 ms) 

and no delay in mouth processing in the EXNEX task. This suggests that whilst 

older adults have delayed eye integration compared to younger adults, this does 

not result in a simple shift of the entire time course (where feature processing is 

uniformly delayed compared to younger adults) but rather a qualitative shift 

with a variable delay in feature processing that is inconsistent between features. 

These results are inconsistent with the idea of a generalised slowing of neural 

information processing proposed by Salthouse (1996) and instead suggest a more 

differential slowing. Future studies should be conducted to explore whether 

these results can be replicated with another group of participants and in other 

tasks for example. Also, extending analysis to the P300 would be interesting to 

understand how the later ERP time course compared between younger and older 

participants, as our results suggest greater activity around the P300 in older 

adults.  

In the EXNEX task, we found that both younger and older adults processed 

information about the eyes faster than information about the mouth (though 

with large idiosyncrasies) though only younger adults processed the eyes faster 

in the GENDER task. However, our results should be treated with caution, 

particularly in older adults where several participants had flat MI time courses.  

We did not record eye movements in either experiment, though differential gaze 

behaviour may be optimised for peak performance in a given perceptual task. 

For example, in a gender discrimination task, first saccades were to the left of 
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the nose (from the viewers perspective) and below the eye, whilst in comparison 

in an emotion discrimination task fixation points were systematically shifted 

downward (Peterson & Eckstein, 2012). These fixation locations have functional 

importance, with perceptual performance degrading when fixations were forced 

away from preferred fixation locations. Based upon an ideal observer, the eye 

region was identified as containing the most diagnostic information for the two 

tasks, whilst the mouth was also informative, particularly for emotion 

discrimination. However, saccade distributions were not consistent with a 

strategy of fixating on the most informative feature for each task. Instead, 

results were consistent with an optimally foveated strategy. For example, in a 

happy versus neutral discrimination task the foveated ideal observer estimation 

of fixating on the tip of the nose is reminiscent of the distribution of first 

saccades in real participants (Peterson & Eckstein, 2012) with the assumption 

being that visibility of the eyes and mouth are maintained in the periphery. 

However, future studies should consider the influence of ageing on the 

degradation of peripheral vision, as the “useful field of view” may shrink with 

ageing (Ball, Beard, Roenker, Miller, & Griggs, 1988) and result in changes in the 

most optimal fixation strategy. For example, in Chapter 4 older adults were 

more heavily dependent on the presence of the mouth to correctly determine 

happy versus neutral faces, so it may be that older adults’ fixations are shifted 

more downward than in younger adults.   

Similarly, eye tracking could also be used to ensure participants were fixating at 

the centre of the screen. Short stimulus presentation time means that our 

participants may have fixated off the central fixation cross in a systematic way, 

for example due to pre-emptive orientating towards their preferred fixation 

point for a particular task that could have affected results.  

Contribution of the results 

The results of this thesis have contributed to our understanding of face 

processing in several important ways.  
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Firstly, we have expanded on previous research by demonstrating that 

contralateral eye sensitivity in face processing is tolerant to a range of stimulus 

and task modulations. Contralateral eye sensitivity persists despite changes to 

the size of the stimulus, the type of stimulus set used, the age of participants 

and the type of task being completed (i.e. face detection, gender 

categorisation, expression categorisation). This suggests that contralateral eye 

sensitivity seems to be a consistent finding during face processing tasks. 

However, we have also demonstrated that contralateral eye sensitivity is subject 

to idiosyncratic differences between subjects – in our experiments not all 

participants demonstrated contralateral eye sensitivity, and there were 

differences in the timing and strength of contralateral eye sensitivity in those 

who demonstrated this result. Thus, our results suggest that contralateral eye 

sensitivity is not a necessary first stage in face processing as suggested by others 

(Rousselet et al., 2014; Schyns et al., 2007). Instead, we suggest that processing 

the contralateral eye is idiosyncratically preferential. This has contributed to 

the discussion within the research field as to the consistency of the contralateral 

eye sensitivity finding, as well as suggesting that more research is needed to 

understand the purpose of contralateral eye processing. 

Given this result, it is not clear whether contralateral eye sensitivity offers a 

processing advantage, or why there is inter-subject variability in its presence or 

strength. Further research could investigate this matter, for example by 

investigating groups of “contralateral eye processors” versus “non-eye 

processors” to investigate whether there are behavioural differences between 

these groups, and whether there is intra-subject variability in contralateral eye 

sensitivity over different tasks for example to investigate if these differences in 

contralateral eye sensitivity preferences are stable within participants.  

Secondly, our results have contributed to the discussion around age-related 

differences in processing speed. Consistent with other studies, we suggest that 

ageing is characterised by a slowing down of processing. However, unlike other 

studies, we suggest that age-related differences in processing speed may be 

feature and task dependent – whilst there was delayed processing of the eyes in 

both tasks, the delay in mouth processing was substantially reduced and 

potentially task dependent. This is a novel finding, and should be investigated 
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more thoroughly in the future for example by testing the same individuals on a 

greater range of face processing tasks, as well as collecting data from middle-

aged adults to assess when age-related differences begin. In the current 

experiments we did not assess how the recruitment of difference brain areas 

may contribute to age-related differences in processing speed. In the future, 

studies should consider combined EEG-MEG or EEG-fMRI methods to more fully 

investigate how any underlying changes in recruitment of brain areas relates to 

differences in processing speed.  

Finally, our results have contributed to the discussion in the literature 

surrounding age-related differences in the N170. Consistent with other studies, 

we suggest that the N170 in older compared to younger adults is delayed for 

both full face and bubbled images, consistent with the idea that there is a delay 

in information processing with older adults. However, we did not find a clear 

difference in the amplitude of the N170 between younger and older adults 

during bubbled images, but did during full-face images. This suggests that the 

N170 is affected by our stimulus manipulation and that our lack of age-related 

differences in amplitude may be due to this manipulation.  

 

Limitations and Future Directions  

In Chapter 2 faces were interspersed with texture trials. Future research should 

expand investigating contralateral eye sensitivity in tasks during which faces are 

always presented (compared to presenting faces intermixed with noise trials) to 

understand the role of habituation on contralateral eye sensitivity. Repeated 

presentation of a small number of face stimuli may lead to habituation of brain 

responses, such as a habituation in the FFA (Gauthier et al., 2000). The N170 

may also habituate to repeated face presentations, such as a decline in 

amplitude and latency for repeated faces (Heisz et al., 2006b; Itier & Taylor, 

2002). It is unclear how repetition of small face set might affect contralateral 

eye sensitivity over successive repetitions. This could be tested directly using 

the data from Chapter 4 and 5 where faces were always presented, for example 

by quantifying whether there is habituation of the N170 over repeated trials, 

and whether habituation of the N170 is different in older adults. This could for 

example help to elucidate why we found weaker levels of mutual information to 
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the eyes in Chapter 4 and 5 than in a face detection task (Rousselet et al., 

2014). For example, if the function of the N170 is due to a process of face 

detection, top-down knowledge that faces will always be presented and our 

restricted number of face stimuli being repeated may reduce the N170 response 

and strength of MI towards the eye region.  

One limitation of Chapter 4 & 5 is the construct of gender. Gender is a social and 

cultural construct that is not synonymous with biological sex. In Chapter 4 & 5 

participants were asked only to discriminate between ‘male’ and ‘female’ – 

suggestive of a gender or sex binary. We do not know whether participants 

interpreted the instructions of the task as instructing them to consider the sex 

or the gender of the faces. This could have had consequences for our results. For 

example, in Chapter 3 we outlined several criticisms of the stimuli used by 

Gosselin & Schyns, (2001). In particular we highlighted that models appeared to 

be wearing make up in these stimuli which may have altered the contrast and 

diagnosticity of the eye region. However, in a purely gender discrimination task 

makeup (worn by any sex) may be a diagnostic feature for identifying an 

individuals’ expressed gender (but not necessarily congruent with an individuals’ 

sex). An investigation into whether diagnosticity of the eyes changes if 

participants are instructed to categorise a faces sex or gender, and the potential 

confound of eye makeup could be interesting. It is possible that the presence of 

eye makeup is negligible and that the eyes are still diagnostic even in the 

absence of eye makeup – but is there biological sexual dimorphism in the region 

of the eyes that might be diagnostic in a sex discrimination task? Evidence 

suggests that there is sexual dimorphism in the anatomy of the eye orbit (Samal, 

Subramani, & Marx, 2007). In particular the inter-canthal width (distance 

between the inner corner of the left and right eye) and outer-canthal width 

(distance between the outer corners of the left and right eye) is significantly 

different between adult males and females (Kesterke et al., 2016). However, 

sexual dimorphism in the anatomy of the eye orbit may be less pronounced than 

the sexual dimorphism of the lips and mouth (Samal et al., 2007). Whilst some 

participants were more accurate in the gender task with increased visibility of 

the mouth region, the increased visibility of the eye region had more of an 

effect on accuracy. It would be interesting in the future to use image 
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manipulation of the eye region to understand what information from the eyes is 

useful in categorising sex.  

Another limitation of Chapter 5 is ensuring our older adult participants were a 

representative sample of ‘healthy’ older adults. Here, there are two potential 

issues in our study. Firstly, whilst older adult participants passed the MoCA 

cognitive screening test, it is possible that our participants already have 

pathological brain changes, as changes may occur before behaviourally evident 

cognitive decline. Therefore, we cannot guarantee that our ‘healthy’ older adult 

sample can be considered ‘healthy’ on the basis of behavioural screening tests 

alone. However, the time and financial burden of more detailed testing is often 

not practical. Conversely, our older adult participants could also be considered 

non-representative due to potentially being ‘super-agers’. Our older adult 

participants were unusual – older adult participants were recruited within the 

vicinity of the university and also through university links, such as through the 

university staff alumni network. As such it is likely that our sample of older 

adults could be considered more healthy and well-educated compared to their 

peers. Golomb et al. (2012) suggest that with increasing age, older adult 

participants becoming increasingly non-representative of the population they are 

intended to represent, as less vigorous and less healthy older adult volunteers 

may be unable or less inclined to participate in research. Many of our older adult 

volunteers have participated in several EEG research studies, suggesting that 

they are more motivated volunteers. Participation in prior studies may be 

problematic – increased test familiarity may mean that our older adult 

participants behaved unusually in the experiments themselves (for example 

having developed strategies for bubble stimuli due to previous exposure). It is 

also possible that our older adult volunteers also had increased familiarity with 

the MoCA screening test, which may have reduced the effectiveness of using the 

MoCA as a screening tool if test familiarity could compensate enough to mask 

early indicators of cognitive decline. Future research should attempt to ensure a 

more representative sample. For example Shafto et al. (2014) have successfully 

recruited participants using a population-based representative sample through 

GP registrations. It would also be advisable for future studies to consider 

carefully the familiarity of older volunteers to any cognitive screening tests, and 

potentially diversify the cognitive tests utilised within labs as necessary. Whilst 
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the MMSE is less sensitive than the MoCA  (Smith, Gildeh, & Holmes, 2007) and 

may not make a suitable cognitive screening candidate for research purposes, a 

new computerised modified version of the Cambridge Brain Sciences Battery 

(mCBS) may offer a promising solution. Used alongside the MoCA the mCBS may 

provide useful additional information in determining whether older adults with 

borderline MoCA scores should be considered as experiencing mild cognitive 

decline or not (Brenkel, Shulman, Hazan, Herrmann, & Owen, 2017).  

A second limitation of Chapter 5 was comparing older and younger adults in a 

cross-sectional manner in which age was treated as a categorical rather than 

continuous variable. Our results could be expanded e.g. through the recruitment 

and testing of middle-aged participants to examine continuous changes across 

the adult lifespan. For example by recruiting middle-aged participants it may be 

possible to determine if the age-related decline in eye sensitivity is progressive 

or non-linear, for example by using a similar approach as Rousselet et al. (2010) 

who identified a 1 ms/year decline in noise sensitivity. Future studies should 

consider using more longitudinal designs rather than cross-sectional designs. 

Discrepancies between the results of longitudinal and cross-sectional designs 

have been highlighted, such as whether there is a reduction in frontal cortex 

recruitment with ageing (Nyberg et al., 2010). It may be possible using our 

current older adult volunteer base to investigate longitudinal differences of 

some of our older adult volunteers who have participated in research for several 

years. The feasibility of such an approach is yet to be fully explored.  

Our results are also limited due to the low spatial resolution of EEG. It remains 

unclear from the experiments described in this thesis which brain areas 

contributed to the reported effects, nor whether the same sources or processes 

were responsible for the effects reported in the two age groups. This question is 

particularly interesting given the finding of age-related delays in eye processing 

not being followed by a uniform delay in mouth processing. Understanding what 

is happening at the source level could elucidate these results. This issue could 

be addressed by using MEG for example.  

Whilst we have expanded our feature encoding to different stimulus sizes and 

tasks, there are many face processing tasks we have not explored, for example, 

categorising facial identity, eye gaze direction or facial age. The extent to which 
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contralateral eye sensitivity is present in these tasks, and quantification on the 

timing of eye sensitivity compared to the sensitivity of other facial features 

could provide greater understanding of the role of contralateral eye sensitivity 

in face processing.  

In this thesis we introduced a new technique to allow for more heterogeneous 

stimulus sets to be utilised. Our stimulus set however was still relatively uniform 

– all stimuli were front-view faces for example, and facial features were still 

generally close to the average face. The strength of this new technique is yet to 

be fully tested. For example, it would be possible to use this technique to 

explore face processing within natural scenes. This offers potential for future 

studies to explore face processing under more ecologically valid conditions.  
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