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Abstract

Prediction of pathogen dynamics and the design of effective interventions to con-

trol and eliminate disease are key goals in epidemiology. While progress has been

made towards the elimination of many infectious diseases, only two, smallpox

and rinderpest, have been globally eradicated. Mass vaccination can greatly re-

duce the burden of vaccine-preventable diseases. However, there is relatively little

scientific guidance on the optimal duration, frequency and placement of control

interventions for achieving elimination. Such insights could greatly inform policy

and practice.

Rabies is a deadly and terrifying disease that exacts a heavy toll on human lives

and national economies, with over 50,000 human deaths each year and many

millions more requiring expensive life-saving post-exposure vaccines. Elimina-

tion of rabies is feasible through vaccination, and oral rabies vaccination (ORV)

campaigns have eliminated fox rabies from Western Europe. However, scien-

tific guidance could improve elimination efforts elsewhere, and is still needed for

contingency planning to maintain rabies freedom and for emergency response to

incursions.

My thesis focuses on two pivotal questions in infectious disease ecology: what

are the underlying determinants of disease persistence, and how can vaccina-

tion strategies be optimized to eliminate infection? To answer these questions, I

analysed a rich and highly resolved spatial dataset of fox rabies cases and ORV ef-

forts over three decades in Germany and neighbouring countries. The long-term,

large-scale nature of these data provides a unique opportunity to improve our

understanding of wildlife rabies dynamics in response to vaccination using novel

spatial modeling techniques.

In chapter 2, I explore the extent to which metapopulation persistence depends

on local transmission (within regions) or spatial coupling (between regions) using

a hierarchical Bayesian state-space model. In chapter 3, I extend the model

developed in chapter 2 to determine the best vaccination strategy, in terms of

scale and duration of ORV efforts for three common epidemiological scenarios:

endemic circulation of rabies; high-risk situations when rabies-free but neighbor

endemic areas; and an endgame scenario when only a single endemic foci remains.

In chapter 4, I develop a space-time model of fox rabies dynamics and explore
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the effect of scale on estimates of transmission terms by aggregating rabies case

data at different spatial resolutions. I then relate these estimates to the scaling

of individual interactions to regional dynamics through population mixing.

Collectively, the findings from this thesis contribute to our understanding of how

infectious diseases persist and can be controlled through vaccination. The meth-

ods generated can be used to explore tradeoffs in the scale and duration of ORV

efforts, and generate recommendations on the time horizon and investment re-

quired to achieve and maintain freedom from disease. The model developed in

chapter 4 also presents the first steps to developing a highly resolved spatial model

of local rabies dynamics. These findings have immediate application to the design

of cordon sanitaires in Europe, and to strategies aiming to rapidly eliminate re-

emergence in high-risk countries such as Greece and Turkey. The analytical and

statistical framework developed in this thesis is also applicable to answering anal-

ogous questions for the elimination of dog-mediated rabies and for other vaccine

preventable diseases.
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Introduction

Prediction of pathogen persistence and the design of effective interventions to reduce infec-

tious disease prevalence and work towards disease elimination are key goals in epidemiology.

While progress has been made towards elimination of endemic diseases, only two infectious

diseases, smallpox and rinderpest in people and cattle respectively, have been successfully

eradicated. There is relatively little scientific guidance as to how long control programmes

must operate and how they should be best implemented to achieve elimination (Klepac et al.,

2013). Although it is well known that complex spatial, demographic and stochastic processes

determine patterns in disease persistence, we lack full understanding of how these processes

influence disease dynamics and how they can inform control programmes. Policy and practice

should benefit from insights into what drives spatial and temporal patterns of persistence,

how pathogens respond to control strategies, and most crucially, from statistical approaches

that enable the exploration of control programmes to determine the most effective strategies.

I begin by introducing some general definitions and concepts relating to disease dynamics. I

then summarise the processes influencing pathogen persistence and vaccination.

1.1 Concepts in disease dynamics

1.1.1 Definition of persistence

A range of definitions of persistence exist in the literature, with most authors using the term

to suggest some degree of ‘permanence’ (Freuling et al., 2013; Hay et al., 2009; Lloyd-Smith

et al., 2005a; Onstad & Kornkven, 1992). However, how they apply the term differs and very

few state the time or spatial scale over which persistence operates. Some authors reserve the

term to describe when the “endemic state’ is reached (Onstad & Kornkven, 1992), others

use persistence to also refer to the duration of an epidemic (Lloyd-Smith et al., 2005a).

For example, Onstad & Kornkven (1992) define endemicity as “the persistence or constant

presence of a pathogen in an ecologically proper spatial unit over many generations.” In

contrast, other studies often focus on the levels of infection (proportion of host population

infected) in the endemic state (Hay et al., 2009) and/or the presence of detected infection
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1.1 CONCEPTS IN DISEASE DYNAMICS

(Freuling et al., 2013).

In my thesis, I use persistence to refer to the continued circulation of a pathogen without

extinction and I will specify a timeframe over which a pathogen persists. From a theoretical

perspective persistence needs to be defined in probabilistic terms (every disease will go ex-

tinct eventually), but the debate about how to define persistence and elimination is a very

practical one. Measurable criteria are needed for elimination programmes to work towards.

Explicit time and spatial scales are critical when planning control strategies as these measures

determine the spatial extent and duration of sustained effort required. Working definitions of

persistence (or alternatively of elimination or control targets) will therefore change depending

on the aims of control strategies and the geographic area and time periods that are defined.

In the thesis I use the term elimination to refer to when the disease no longer circulates within

a defined local extent, whereas the term eradication is reserved for when a disease is absent

globally. In practice, the assessment of elimination generally relies on surveillance which is

used to determine if the disease is no longer present.

1.1.2 Threshold Populations and Critical Community Size

A great deal of work in infectious disease epidemiology has focused on identifying thresholds

at which a pathogen will persist or fade out. The basic reproductive number, R0, is defined as

the number of secondary infections arising from a single case in a fully susceptible population

(Anderson et al., 1992). When R0 is greater than 1, disease can spread and invade the

population (Anderson et al., 1992). The effective reproductive number, Reff , is defined as the

expected number of secondary cases caused by each infectious individual in a partially immune

population (Lloyd-Smith et al., 2005a). Therefore, many control measures aim to reduce the

transmission such that Reff is less than 1 (Barlow, 1991, 1996; Wobeser, 2002). Theoretical

formulations of R0 are typically derived for populations where homogeneous mixing (that is,

individuals interacting randomly and uniformly with all others in the population) is assumed.

Consequently, R0 is never intended to apply once susceptibles are depleted. Alternative

metrics and approaches have been proposed to address more complex situations (e.g. multiple

classes of host (Diekmann et al., 1990); spatial structure at the household and farm level (Ball

et al., 1997; Fulford et al., 2002; Keeling, 1999; Prentice et al., 2017); mechanistic movement

between groups (e.g. (Cross et al., 2005; Hess, 1996; Keeling & Rohani, 2002; Thrall et al.,

2000)). Although empirical estimates of R0 take into account heterogeneous mixing, data is

often lacking for many populations. Similarly, analytical solutions can be difficult to calculate

in applied cases (Ball et al., 2015; Cross et al., 2007).

The concept of a threshold population has been a central one in epidemiology since the work of

Bartlett on measles in the mid 1950s (Bartlett, 1956, 1957). Bartlett (1956, 1957) found that

larger susceptible populations were able to better support pathogens than smaller populations
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and introduced the concept of the critical community size (CCS) to define the population size

for which the probability of persistence (ongoing non-extinction) after a major epidemic is 50

percent. Bartlett’s seminal work has provided a basis for the use of population thresholds for

disease persistence in the subsequent development of quantitative epidemiology (Lloyd-Smith

et al., 2005a). Lloyd-Smith et al. (2005a) defines critical community size (CCS) as “the host

population size above which stochastic fadeout of a disease over a given period is less probable

than not.” Stochastic fadeout can occur either from the endemic or epidemic state. Endemic

fadeout has been defined as the “extinction of the disease from a stable endemic state owing

to random fluctuations in the number of infected individuals” (Lloyd-Smith et al., 2005a).

The main difference between endemic and epidemic fadeout is that epidemic fadeout can also

occur when the pool of susceptible individuals is depleted following an epidemic, reducing the

potential for ongoing transmission. Epidemic fadeout can arise from random fluctuations in

the number of infected individuals or from a protracted period with Reff <1 (Lloyd-Smith

et al., 2005a).

Local elimination of infection can be achieved by driving incidence below the persistence

threshold, which is defined as the point at which the disease is likely to go extinct during

the troughs between epidemics (Bolker & Grenfell, 1996). However, because this does not

preclude reinvasion by the disease which can be frequent (see Metcalf et al., 2013), many

theoretical estimates focus on the invasion threshold, the population density below which a

pathogen is unable to invade the host population. Reinvasion, also termed ‘rescue effects’,

may occur due to the migration of infected individuals (incursions) into a population fol-

lowing local extinction (Keeling & Grenfell, 1997; Metcalf et al., 2013). Invasion thresholds

relate to whether the remaining susceptible population during epidemic troughs can sustain

ongoing circulation until susceptible replenishment can support a new epidemic. As a result,

many control strategies aim to reduce the susceptible population below the invasion threshold

through either culling or vaccination.

Vaccination decreases the probability of contact occurring between susceptible and infected

individuals. Herd immunity is used in the literature to refer to the vaccination level at

which there is an indirect form of protection from infectious disease that occurs when a large

percentage of the population is vaccinated (Fine et al., 2011). Considerable work has been

spent defining threshold proportions of immune individuals to eliminate disease for diverse

pathogens (Anderson, 1991; Fine et al., 2011). Early theoretical work estimated the critical

minimum proportion to be vaccinated as Vc = (1− 1/R0) assuming homogeneous mixing of

populations and vaccines inducing complete immunity against infection (Fine et al., 2011).

Other work has extended this basic model to include more realistic assumptions includ-

ing imperfect immunity, heterogeneous populations, nonrandom vaccination, and freeloaders

(Keeling & Rohani, 2008; Vynnycky & White, 2010).

Although some success has also been achieved in estimating the CCS in measles epidemics
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(Bartlett, 1957), perhaps due to its short infectious period and high transmissibility, most

diseases are unlikely to have an abrupt threshold effect, that is, a critical community size sep-

arating dynamical regimes of persistence and extinction (Lloyd-Smith et al., 2005a). Instead,

fadeout rates are determined by relationships between population size and the timescales of

demography and transmission. The CCS is difficult to operationalize, especially for multi-host

diseases, and fails to account for other relevant epidemiological characteristics such as sub-

population connectivity (Mancy, 2015; Viana et al., 2014). Quantifying the CCS for wildlife

diseases is associated with several additional challenges, most notably a low level of study

replication, lack of control effort, and little documentation on population size and failed inva-

sion or persistence compared to datasets of infections in humans, making it difficult to assess

the existence of a population threshold (Lloyd-Smith et al., 2005a). Real world complexities

including spatial and social structure (Hagenaars et al., 2004; Keeling, 2000; Swinton et al.,

1998), demographic processes (Barlow, 1996; Sibly et al., 2003), host pathogen coevolution

(Woolhouse et al., 2005), and environmental or behavioural variation (Bjørnstad et al., 2002;

Grenfell et al., 2002) also violate the assumptions of a well-mixed host population living in a

constant environment for directly transmitted pathogens (Lloyd-Smith et al., 2005a). Still,

threshold concepts provide a useful framework for characterising epidemics, designing control

strategies, and providing targets for managers when population sizes are easily measured.

Persistence increases gradually with population size (Keeling & Grenfell, 1997), therefore

the size of the population can help to identify populations at greater risk. However, dis-

ease persistence also depends on demographic and transmission processes. Investigating the

processes underlying thresholds including population connectivity (e.g. immigration), host

demography (e.g. birth and death), and transmission can provide fundamental insights.

1.1.3 Modelling transmission

Transmission is fundamental to disease spread and persistence but is difficult to quantify.

Transmission encompasses the contact rate between susceptible (S) and infectious (I) indi-

viduals, and the probability that transmission will occur during a contact (Anderson, 1991;

Antolin, 2008; Begon et al., 2002). In many cases these processes are captured by a sin-

gle transmission term, β, and contact is assumed to be either frequency dependent (βSI/N

where N is the total host population) or density dependent (βSI). While these simplified

transmission forms are mathematically convenient, they fail to capture nonlinearities and

heterogeneities in transmission arising from population distribution and connectivity, local

susceptible depletion, individual movement, and differences in individual behaviour. Another

challenge is the scale at which transmission is approximated. Individuals tend to have more

contacts with their neighbours, and the distribution of hosts and infected individuals will vary

according to habitat suitability and landscape heterogeneities. However, incidence and host

data is often aggregated at administrative units rather than biologically relevant units that

capture local movement. Accounting for nonlinearities and heterogeneities in transmission
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and extending epidemiological models to account for the spatial nature of these processes

should lead to a better understanding of these processes and increase our ability to model

disease dynamics.

1.2 Processes influencing persistence

1.2.1 Population connectivity

Population connectivity, also referred to as ‘spatial coupling’ (Bolker & Grenfell, 1996; Keel-

ing & Rohani, 2002), affects both the time it takes to achieve elimination as well as how

freedom from disease can be maintained once it is achieved. The distribution and density of

susceptible hosts affects where disease spreads, the numbers that can be infected, and how

long the disease circulates in a given location. Social systems often lead to natural fragmen-

tation between social groups or age classes, broken only by introductions or contact with

infected groups (McCallum & Dobson, 2002). Similarly, aggregation of resources will also

increase contact rates (Becker et al., 2015). Landscape heterogeneity and habitat quality

influence both the distribution and abundance of hosts in an area as well as the reach of the

pathogen. Regions with poor habitat quality and patchy resources are likely to support only

weakly connected small groups of susceptible host species. Habitat fragmentation can result

in decreased or limited movement of individuals between habitats and weakened connectivity

between subpopulations. Fragmentation can have a positive effect of diminishing the impact

of disease on a population by acting as an effective ‘quarantine’ on the infected patch. Mc-

Callum & Dobson (2002), found that where movement of the infected organism is severely

limited, a ‘quarantine’ effect may occur, where the disease is confined to the isolated subpop-

ulation. Understanding the connectivity of populations is particularly important therefore in

the context of ‘rescue effects’. By seeding new epidemics and preventing localised extinctions,

rescue effects prolong disease persistence (Brown & Kodric-Brown, 1977; Earn et al., 2000,

1998; Hanski, 1998; Keeling, 2000).

1.2.2 Host demography

Demography refers to the processes of emigration, immigration, birth and death in a pop-

ulation. Host demography affects the rate of susceptible replenishment by determining the

number of susceptible individuals that enter the population (birth, immigration) and the rate

at which vaccinated individuals leave the population (death, emigration). Vaccination works

to interrupt the transmission of infection as contacts with vaccinated individuals, which do

not result in infections, occur more frequently. Indirect protection of non-vaccinated indi-

viduals from infectious disease can occur when a sufficient proportion of the population is
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vaccinated to achieve ‘herd immunity’, often defined as the critical vaccination coverage, Vc

, above which incidence will decline (Fine et al., 2011). Herd immunity is spatially and tem-

poral dynamic as a result of demographic processes, including the birth of new susceptible

individuals and deaths of both vaccinated and non-vaccinated individuals. This is especially

true for wildlife populations which are often characterized by faster population turnover com-

pared to humans and where seasonal birth pulses are frequently observed (Peel et al., 2014).

Influxes of new susceptible animals may support ongoing transmission by reducing levels of

herd immunity (Peel et al., 2014). It is therefore important to consider how demographic

processes may affect vaccination strategies for wildlife. The timing and causes of seasonality

can substantially impact herd immunity and should be considered in determining how and

when control measures should be applied. Optimal timing in relation to demographic pro-

cesses should be explored. Birth pulses are common in many wildlife populations (Peel et al.,

2014). Birth pulses increase the overall size of the susceptible population and reduce the

proportion of the population vaccinated and herd immunity. As such, vaccination strategies

should be coordinated to coincide with the timing of important demographic events such that

levels of herd immunity are maintained.

1.2.3 Behaviour and internal dynamics

Various other factors can affect persistence such as heterogeneities in transmission, includ-

ing extended incubation periods, and animal behaviour (e.g. biting and running) (Hampson

et al., 2009). An individual’s infectiousness (i.e. the number of individuals infected) depends

on host, environmental, and individual factors. Contact may occur at specific times of the

year in response to seasonal drivers of food resources or at key points in the life cycle such

as the mating period (Hosseini et al., 2004). Another example is the seasonality in measles

that is driven by mixing associated with school terms (Bolker & Grenfell, 1995). Together

these factors can cause transmission to vary seasonally and act in combination with external

factors with unknown impacts on disease dynamics (Bjørnstad et al., 2002; Grenfell et al.,

2002; Koelle & Pascual, 2004). ‘Superspreading events’, in which certain individuals infect

an exceptionally large number of secondary cases, are more common in disease spread than

previously thought (Lloyd-Smith et al., 2005b). Contact tracing has been used to investigate

variation in transmission (Gani & Leach, 2004; Hampson et al., 2009). Lloyd-Smith et al.

(2005b) investigated the role of individual variation in outbreak dynamics using continuous

distributions to describe the ‘individual reproductive number’, ν to represent the number of

secondary cases caused by a particular infected individual. While the importance of these

factors are increasingly recognized, data on individual movement patterns and individual

variation in immune responses and/or incubation periods are limited. In many cases, trans-

mission is still modeled as an average transmission rate across a population of individuals

(Diekmann & Heesterbeek, 2000).
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1.3 Vaccination

Vaccination reduces the probability of transmission by interrupting the chain of infection

as contacts occur between infected and vaccinated individuals. However, coverage, that is

the proportion of the population vaccinated, is temporally and spatially dynamic as a result

of demographic processes. As herd immunity wanes due to population turnover, isolated

infections can become reconnected with susceptible hosts, maintaining transmission. Once a

disease has been eliminated from a given region, the movement of infected individuals between

regions and the transmissibility of the pathogen determine the probability of re-emergence, or

‘rescue effects’ (Klepac et al., 2013). In the absence of vaccination, the number of susceptible

individuals in the population may increase, leaving the region vulnerable to potentially large

outbreaks if infection is reintroduced. It is therefore important to understand the role of

turnover and population connectivity on disease dynamics when determining the timing and

placement of vaccination efforts (Beyer et al., 2012; Bourhy et al., 2016).

Traditional efforts to control wildlife disease typically aim to reduce the size of the susceptible

host population below a threshold, such that the population of susceptible hosts is small

and weakly connected (Grenfell & Dobson, 1995; Ramsey et al., 2002). Target vaccination

coverages are determined for individual pathogens depending on their transmissibility (R0)

and demographic turnover (Pulliam et al., 2007). However, common metrics used to study

disease persistence including R0, critical community size, and population thresholds, do not

account for heterogeneity of populations and control efforts over space and across time which

can mean that empirical observations differ from theoretical predictions (Bolker & Grenfell,

1996; Lloyd-Smith et al., 2005a).

1.4 Wildlife disease

Many animal populations are characterised by fast demographic rates compared to humans,

such that the herd immunity achieved through vaccination is relatively short-lived (Grenfell

& Dobson, 1995). Likewise, movement of wildlife is often very different to human movement

(e.g. social groups, territory boundaries, limited dispersal, habitats and geographical features

that direct/impede spread (Altizer et al., 2003)). Moreover, observing transmission directly

is rarely possible. In most cases, the state variable (disease incidence) is only known through

indirect measures, with the probability of observing the disease varying over time. Because

surveillance only captures a small proportion of circulating infections, failed invasions or low

level persistence may be missed entirely. In addition, surveillance data is often aggregated,

making the study of local transmission processes challenging. Wildlife populations are often

not monitored closely, therefore key aspects of their size and spatial distribution are unknown.

Lastly control programmes targeting wildlife are often difficult to implement and monitor.
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Capturing local transmission processes and understanding the spatiotemporal dynamics of

wildlife disease spread from coarse and incomplete data is a major technical challenge that

holds the key to many theoretical questions and practical decisions. A wildlife disease that

can shed light on many of these challenges is rabies.

1.5 Rabies

Rabies is a deadly and terrifying disease that exacts a heavy toll on human lives and national

economies. Rabies is a negative stranded RNA virus belonging to the lyssavirus genus and

causes acute encephalitis in a wide range of mammals (Rupprecht et al., 2008). Despite

infecting and being transmitted by a range of mammalian hosts, reservoirs only include

mammals within the Orders Carnivora (e.g. dogs, raccoons, skunks, foxes, jackals) and

Chiroptera (bats) (Lembo et al., 2010). In the absence of vaccination the disease is nearly

100% fatal. More than 59,000 humans die of rabies each year, with many thousands more

requiring expensive life-saving post-exposure vaccines (Hampson et al., 2015). The majority

of deaths occur in Africa and Asia from dog-mediated rabies, and worldwide economic losses

are estimated at 8.6 billion USD (Hampson et al., 2015).

Figure 1.1: Stages of rabies infection in the red fox. c©Friedrich Loeffler Institut

In Europe, the main wildlife reservoir is the red fox (Vulpes vulpes). In foxes, disease pro-

gression follows several stages (Figure 1.1). Rabies virus is spread through the bite of an

infected animal. After a fox is bitten, the animals passes into an ‘incubation period’, during

which time the virus migrates from the site of the initial infection to the brain through the

peripheral nervous system. During this period, that is on average 21 days (Toma & Andral,

1977), the fox shows no symptoms of the disease. At the end of this period, virus is shed

in the fox’s saliva, and the animal shows signs of the disease. During the infectious period

which lasts on average 5 days, the fox can pass on the infection (Anderson et al., 1981).

The red fox is the most widespread terrestrial mammal (Schipper et al., 2008). Foxes live in
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both rural and urban areas and are found in habitats ranging from tundra to arid environ-

ments (Harris & Smith, 1987; Lindström, 1989; Pils & Martin, 1978; Saunders et al., 2002).

Foxes are territorial and divide the landscape into non-overlapping territories. They follow

a distinct annual cycle: mating, reproduction, breeding, dispersal, resettlement, mating, etc.

(Toma & Andral, 1977). They exhibit a marked birth pulse, with females giving birth to on

average five young cubs with up to 14 cubs per litter (Ansorge, 1990; Lloyd et al., 1976). In

autumn (September-October), the young foxes leave the den and disperse.

1.6 The elimination of fox rabies in Western Europe

The origin of fox rabies in Europe is still a matter of debate. While some scientists believe

that the epidemic of fox rabies started south of Kaliningrad during World War II as a result

of a sustained spill-over from dogs, recent studies have revealed the existence of similar rabies

virus lineages in the Asian part of Russia (Deviatkin et al., 2017; Kuzmin et al., 2004).

Whatever the virus origins, the epidemic in foxes spread rapidly through Europe in coming

decades (Figure 1.2).

Figure 1.2: The decadal spread of rabies from the 1940s to 1990s. c©Friedrich Loeffler Institut
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Rabies has since been eliminated from 9 countries in Western Europe using baits containing

vaccine. Over 30 years, vaccine-loaded chicken heads (Pastoret et al., 1988), later replaced by

fish-meal baits (Brochier et al., 1990), were distributed over 2.36 million square kilometres in

one of the most successful, long-term, and large-scale attempts to control a wildlife disease

(Figure 1.3).

This unique history is captured in the Rabies Bulletin Europe database which consists of

national rabies surveillance data compiled by the World Health Organisation (WHO) Collab-

orating Centre for Rabies Surveillance and Research at the Friedrich Loeffler-Institut (FLI)

in Germany. Spanning over 30 years and 15 countries, the fox rabies database consists of

georeferenced rabies cases and vaccine control efforts (Figure 1.4).

Figure 1.3: Fixed wing aircraft were used to distribute vaccine-loaded chicken heads in the early

days of vaccine distribution. c©Friedrich Loeffler Institut

The data is characterised by a wealth of natural experiments in the form of differences in the

commencement, geographic extent, and timing of vaccination campaigns. The long-term and

large-scale nature of the data provides the opportunity to explore the dynamics of spread and

persistence in differing epidemiological situations. The high temporal and spatial resolution

of the data also allow for the development and application of sophisticated spatial modelling

techniques. Together these data have the potential to generate fundamental and applied

insights into the elimination of infectious disease, specifically those relating to persistence

and invasion dynamics.

The continued presence of rabies in Europe highlights the need for technical guidance and

contingency planning to prevent outbreaks, maintain rabies freedom, and strategically im-

plement control measures to rapidly eliminate emerging disease. Effective planning of vacci-

nation programmes is central to achieving these objectives. However, we have only a limited

quantitative understanding of how control measures should best be implemented under dif-

ferent scenarios. A key challenge faced by managers is determining realistic timelines for

control and elimination. Ending control measures too early could lead to re-emergence (e.g.

rinderpest), but costs of continued control can be difficult to justify especially when new

cases are no longer being reported (Klepac et al., 2013). Similarly, the impact of delayed or
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Figure 1.4: Map of Western Europe showing detected rabies cases (red dots) and areas vac-

cinated (blue polygons). Over 30 years, 2.36 million km2 (2 times the size of Europe) were

vaccinated leading to the elimination of rabies from 9 countries in Western Europe.

missed campaigns, due to budget or operational constraints, on time to elimination is not well

understood. Until elimination is achieved in all regions, vaccination efforts, surveillance, and

mobilized public health and veterinary staff are required in both affected and neighbouring

areas. Realistic estimates of the time to eliminate a pathogen and greater understanding of

the impact of logistical constraints on this timeline should help to guide policies and better

manage expectations.
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1.7 Thesis overview

My thesis focuses on two pivotal questions in infectious disease ecology: what are the under-

lying determinants of disease persistence and how can vaccination strategies be optimized to

eliminate infection? To answer these questions, I analysed a rich and highly resolved spatial

dataset of fox rabies cases in Germany. The long-term, large-scale nature of these data from

the oral rabies vaccination (ORV) programme that eliminated rabies from over 9 countries,

provides a unique opportunity to improve our understanding of wildlife rabies dynamics in

response to vaccination using novel spatial modelling techniques.

Variability in epidemiological data arises from infectious disease dynamics, including stochas-

tic spatial transmission processes, and observation errors in detecting cases. I used two

Bayesian approaches to deal with these sources of uncertainty: state-space modelling and

latent Gaussian models. Bayesian state-space models are able to accommodate uncertainty

in epidemiological data through linked biological and observation process models. In the sec-

ond approach, I fit the model using the computationally efficient integrated nested Laplace

approximation (INLA) approach developed by Rue et al. (2009). INLA is designed to fit la-

tent Gaussian models in a Bayesian context in which spatial and temporal autocorrelation in

the latent field assume a shared spatial structure and are reflected by Gauss Markov random

fields (GMRF) (Rue & Held, 2005). The flexibility and computational capacity of INLA has

great potential to provide novel insights into epidemiological processes through the analy-

sis of complex spatial data. Within the INLA framework, the stochastic partial differential

equations (SPDE) approach constructs flexible fields that are able to handle datasets with

complex spatial structure (Krainski, 2018; Lindgren et al., 2011). Krainski (2018) has further

extended these models to consider non-separable space-time models that are closely-linked to

heat equations in physics and simultaneously capture spatial and temporal autocorrelation.

The temporal extensions offered by this non-separable model mean that spatially-explicit

dynamical problems can now be approached with numerical efficiency and provide the op-

portunity to generate new insights into these processes through fitting these models to data.

This approach may be able to capture the spatiotemporal nature of disease transmission and

therefore has considerable application for understanding epidemiological processes in disease

ecology, particularly for wildlife diseases such as rabies that spread through direct contact.

1.8 Thesis organisation

My thesis is compiled as a collection of 3 chapters in paper format. As each chapter has its

own introduction and discussion, I include only a brief introduction (chapter 1) and a general

discussion (chapter 5).
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Capturing regional connectivity and understanding the effectiveness of vaccination campaigns

has immediate application to the rabies situation in Europe and elsewhere. In chapter 2, I

create a model that incorporates local transmission (within regions) and spatial coupling

(between regions) by fitting a Bayesian state-space model to three decades of observed fox

rabies incidence and oral rabies vaccination campaigns from Eastern Germany.

Realistic estimates of the time required to eliminate a pathogen and greater understanding of

the impact of missed campaigns should help to guide policies and better manage expectations.

In chapter 3, I extend the model developed in chapter 2 to determine the best vaccination

strategy, in terms of scale and duration of ORV efforts, for three common epidemiological

scenarios: (1) endemic: rabies circulates endemically across all of space; (2) high-risk: several

areas are rabies-free but neighbour endemic areas; (3) endgame: rabies has been largely

eliminated but remains present in one region.

Targeted spatial vaccination planning has great potential to reduce costs and inform elimina-

tion strategies. However, developing models that can capture and explain the spatiotemporal

infectious processes in wildlife populations remains a challenge. In chapter 4, I develop a

space-time model capable of capturing the spatial and temporal dynamics of fox rabies dy-

namics over the last 3 decades in Eastern Germany. I then used the output from this model to

estimate the spatial dependence between cases and explore the effect of scale on the estimates

of transmission terms by aggregating incidence data at different spatial resolutions.

In chapter 5, I discuss how insights gained from my PhD work have helped shed light on

fundamental questions of how infectious diseases persist and can be controlled. I then explain

how these findings can be used to improved policies to guide elimination programmes. I also

discuss the methodological contributions made in this thesis.
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Capturing rabies transmission and metapop-
ulation persistence in European foxes

2.1 Abstract

Disease dynamics play out across space, irrespective of borders. Yet, both data collection

and control strategy implementation are often carried out at the level of administrative

units rather than epidemiologically relevant ones. Capturing local transmission processes

and spatial coupling between regions from coarse and incomplete data is therefore a major

technical challenge that holds the key to both theoretical questions and practical decisions.

The European fox rabies epidemic has been brought largely under control by immunizing

foxes using baits containing vaccine. Currently, the European Union (EU) co-finances oral

vaccinations to eliminate rabies in EU member and border states and to maintain disease

freedom via a cordon sanitaire. Developing a model to capture within region dynamics and

spatial coupling has immediate application in Europe and to other parts of the world where

oral vaccinations are planned.

By fitting a Bayesian state-space model to three decades of observed fox rabies incidence

and oral rabies vaccination campaigns from Eastern Germany, I show that biological un-

derstanding can be gained from inference from partially observed data on wildlife disease.

Specifically I find that (i) incorporating heterogeneous mixing into the functional form of

the transmission can help capture rabies dynamics at the regional level; (ii) by allowing for

incursions (migrating infected individuals) from other regions, re-emergence of the disease

is possible even if eliminated locally from a region; (iii) herd immunity achieved through

bi-annual vaccination campaigns is short-lived due to population turnover, highlighting the

need for regular and sustained vaccination efforts. Together, these findings have important

implications for ongoing vaccination efforts in large parts of Eastern and Southern Europe.
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2.2 Introduction

Disease dynamics and their effective control are underpinned by the interplay between popu-

lation connectivity and the localized nature of transmission (Bolker & Grenfell, 1995; Keeling

et al., 2001; Levin & Durrett, 1996; Rohani et al., 1999). Many diseases circulate primarily

through local interactions (Anderson et al., 1992; Keeling & Rohani, 2008), but are managed

at coarse administrative scales. We therefore typically only have aggregate population-level

data on the occurence of infections which makes it difficult to disentangle the extent to

which metapopulation persistence depends on local transmission (within-region) or spatial

coupling between subpopulations (between regions). Researchers therefore model the macro-

scopic characteristics of the disease (metapopulation dynamics) using approximations aiming

to capture interactions between infected and susceptible individuals at the local level (local

dynamics) (Glass et al., 2003; Liu, 1987; Liu & Levin, 1989; Liu et al., 1986; McCallum et al.,

2001, 2017).

Several studies have quantified the spatial components of transmission, including multiple

classes of host (Diekmann et al., 1990), spatial structure at the household and farm level

(Ball et al., 1997; Fulford et al., 2002; Keeling, 1999; Prentice et al., 2017) and mechanistic

movement between groups (Cross et al., 2005; Hess, 1996; Keeling & Rohani, 2002; Thrall

et al., 2000). However, these studies have largely focused on human and livestock populations

where detailed information about movement, transmission, and host populations is available

(e.g. Keeling et al. (2001); Matthews et al. (2003)). Few have studied the role of migrating

infected individuals, incursions, in the persistence of disease in wildlife populations.

Many animal populations are characterised by fast demographic rates compared to humans,

such that the herd immunity achieved through vaccination is relatively short-lived. Likewise,

movement of wildlife is often very different to human movement (e.g. social groups, territory

boundaries, limited dispersal, habitats and geographical features that direct/impede spread).

Approaches to understand interactions between spatial and demographic processes are likely

to reveal key insights into the persistence of disease in wildlife populations.

Epidemiological data are inherently complex due to variability arising from both the infectious

disease dynamics, including stochastic spatial transmission processes, and the observation

errors in detecting cases. The study of wildlife disease dynamics is particularly challenging

for several reasons. First, observing transmission is rarely possible and surveillance only

captures a proportion of circulating infections. Wildlife populations are often not monitored

closely, and knowledge of their size and spatial distribution is typically limited and imprecise.

Estimates of abundance are often based on hunting data rather than more costly density-

based methods making it difficult to reliably estimate population density (Sonnenburg et al.,

2016). In many cases, the state variable (disease incidence) is only known through indirect

measures (veterinary records, hunting reports), with large observation errors that may vary
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over time. Low levels of disease detection mean that failed invasions or low level persistence

may be missed entirely. Second, surveillance data is often necessarily aggregated in time

and space based on administrative management units. This makes it challenging to capture

and understand local dynamics of disease spread occurring at finer spatial scales. Finally,

vaccination programmes targeting wildlife are often difficult to implement and monitor.

To capture the effect of individual interactions on disease dynamics at the population level,

researchers have typically focused on population mixing. Traditional epidemiological models

that assume homogenous mixing (that is, individuals interacting randomly and uniformly

with all others in the population) have yielded important insights such as thresholds for

disease invasion and control (Anderson et al., 1992; Kermack & McKendrick, 1927; Smith

et al., 2005). But these models have not accounted for heterogeneous mixing as a result of

local movement, which will be critical for directly transmitted diseases in wildlife popula-

tions. Individual-based models that include explicit interactions within discrete spatial or

social neighbourhoods (Bolker & Grenfell, 1995; Pastor-Satorras & Vespignani, 2001) require

detailed data that is rarely available for wildlife populations. Ecologists and epidemiologists

have begun to use different approaches to account for heterogenous mixing when the details

of individual-level processes are unavailable. For example, heterogeneous mixing parameters

to capture variation in contact patterns between susceptible and infected individuals (Glass

et al., 2003; Liu et al., 1986; Roy & Pascual, 2006) as well as to prevent unrealistic epidemic

sizes in predictions (Glass et al., 2003). In practice, these parameters can be difficult to esti-

mate because they are confounded with other transmission parameters in the model. These

approaches have been effective for human diseases such as cholera (Koelle & Pascual, 2004)

and measles (Bolker & Grenfell, 1995), but have not been applied to wildlife diseases such as

rabies.

Rabies has been eliminated from fox populations throughout much of Europe by immunizing

foxes using baits containing vaccine. In just over three decades, vaccine baits distributed

across 2.36 million km2, through Oral Rabies Vaccination (ORV) programmes, have resulted

in the elimination of the disease from Western and Central Europe (Cliquet et al., 2014;

Freuling et al., 2013; Müller & Freuling, 2012; Müller et al., 2015). Since the late 1980s the

European Union (EU) has co-financed ORV fox rabies elimination programmes in member and

border states (Demetriou & Moynagh, 2011; Freuling et al., 2013; Müller & Freuling, 2012).

Understanding the role of regional connectivity and the effectiveness of vaccination campaigns

therefore has immediate application to the rabies situation in Europe and elsewhere.

Metapopulation models explicitly model the spatial structure of processes by representing

space as a network of multiple subpopulations or patches with different rates of movement

(or coupling) between them (Bolker & Grenfell, 1996). Combined with state-space methods

capable of accounting for the uncertainty inherent in epidemiological data, and a transmis-

sion process that approximates the scaling from individual interactions to metapopulation
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dynamics, these models provide a framework to model local (within region) dynamics and to

estimate the rate of incursions (migrating infected individuals).

Several studies have been central for guiding control of fox rabies in Europe. Anderson et al.

(1981) incorporated red fox population biology into a simple deterministic, compartmental

model to summarize the dynamics between host and pathogen interactions and to predict the

effect of control methods such as culling and vaccination. Spatially explicit individual-based

models (IBM) have been used since to evaluate vaccination strategies for elimination (Eisinger

& Thulke, 2008; Thulke et al., 1999) and emergency vaccination of rabies under limited

resources (Eisinger et al., 2005; Thulke et al., 2008). My model adds to this considerable

body of work by being the first to estimate the rate of incursions using a model fit to data.

Capturing local transmission and external incursions is key to modelling metapopulation per-

sistence and has important implications for the planning of ongoing vaccination programmes

in EU member and border states. Here, I examine fox rabies dynamics in response to vacci-

nation using a hierarchical Bayesian state-space model fit to fox rabies incidence data from

Eastern Germany from 1982-2013. I use a metapopulation approach to study rabies persis-

tence and to quantify the rate of external incursions. Through simulation I demonstrate how

incorporating heterogeneous mixing is important to capturing local (within region) rabies

dynamics. Lastly, I evaluate the impact of ORV on rabies incidence. This study presents

a first step towards capturing local transmission processes and connectivity between regions

from coarse and incomplete data for wildlife rabies.

2.3 Methods

I investigated monthly time series of fox rabies cases for the period 1982-2013 from 5 fed-

eral states in Eastern Germany (Brandenburg, Mecklenburg-Vorpommern, Sachsen, Sachsen-

Anhalt, and Thüringen) in relation to the timing of ORV campaigns in these areas. A

hierarchical Bayesian state-space model was developed to explore within-region and between-

region dynamics of rabies transmission and to evaluate the impact of ORV on monthly rabies

incidence. I begin with an overview of the data used and then describe the structure of the

state-space model and the fitting process.

2.3.1 Data Collection

Records of laboratory-confirmed rabies cases in foxes were compiled from regular reports by

the national veterinary authorities and summarized for each federal state (hereafter referred

to as region) on a monthly basis (Freuling et al., 2013). Specimens of suspect rabid foxes

were submitted by veterinarians, hunters, wildlife managers, and the general public (Freuling
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et al., 2013). From 1993, cross-sectional sampling was also conducted, whereby a proportion of

foxes hunted were tested for rabies providing a measure of rabies prevalence in the population.

The timing of ORV campaigns in each region was also compiled (Müller & Freuling, 2012).

The Rabies Bulletin Europe (RBE), is a database consisting of national rabies surveillance

data collected and evaluated by the WHO Collaborating Centre for Rabies Surveillance and

Research at the FLI in Germany (Freuling et al., 2013). A monthly average number of

confirmed rabies cases was calculated from the RBE quarterly reports for bordering regions

in Poland and the Czech Republic.

2.3.2 Bayesian State-Space Model

A discrete time stochastic metapopulation model with three states: Susceptible (S), Infected

(I), and Vaccinated (V), was developed to model the numbers of foxes and rabies cases in

different regions through time. The Bayesian approach allowed me to complement the rabies

case data with prior information on some of the model’s parameters from historical studies

on fox rabies dynamics and fox demography and to compare explicit mechanistic processes.

The model combined several latent demographic, vaccination, transmission, and observation

processes.

A demographic process was used to model the numbers of susceptible and vaccinated foxes in

each region at monthly time steps. The starting susceptible population and carrying capacity

for each region were extracted from the literature and were based on the average density of

foxes per km2 and multiplying this by the region size (Ansorge, 1990; Iossa et al., 2008;

Lloyd et al., 1976). Births occurred in April of each year, with newborn foxes entering the

susceptible population in July coinciding with when they venture further from their den and

are more likely to encounter a rabid fox. All susceptible and vaccinated foxes older than one

year of age were considered reproductively active. This means that surviving newborns from

the past year give birth the following April. I assume that infected individuals transmit rabies

and die within the same month, such that infectious animals now (t), transmit infection to

new animals that subsequently develop rabies the following month (t+1). No exposed class

was considered because the latent period of rabies infection lasts an average of three weeks

and thus all new infections at t become symptomatic by month t+1 (Toma & Andral, 1977).

Data on the timing of vaccination campaigns in each region were incorporated explicitly.

Here, I describe the model structure in terms of the three state variables: S, I, and V.

Susceptible individuals S in region r, in month t were modeled as a function of juvenile foxes

entering the susceptible population three months after birth jr,t and surviving individuals

Cr,t and those removed due to vaccination Vr,t or infection Ir,t:
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Sr,t+1 = jr,t + Cr,t − Vr,t − Ir,t (2.1)

Where the first term jr,t is a Binomial distributed variable representing juvenile foxes entering

the susceptible population three months after birth and takes the form:

jr,t ∼ Bin(s, ar,t) (2.2)

where s is the survival probability and ar,t are the newborn foxes. Foxes have a maximum

age of about 4 years (Iossa et al., 2008). If we assume that only 1% of foxes are alive at age

4 years (48 months) we can use the following expression to determine the monthly survival

probability: s48 = 0.01, s = 0.01(1/48) = 0.9085176.

ar,t ∼ Poisson(αr,t(Sr,t + Vr,t)e
εy) (2.3)

where αr,t =

αr,t if t = t0 + k12

0, otherwise

εy ∼ N(0, τ) (2.4)

where α is the per capita annual birth rate in region r in month t applied to all susceptible

S and vaccinated V individuals in the system. Fecundity is regulated by annual fluctuations

in the environment, eεy . Here, I use the exponential term eεy and a normal prior centred

around 0 for εy to capture the effect of environmental noise on the size of the birth pulse.

Under the exponential, when ε is 0, then e0 = 1, meaning there is no change in the size of

the birth pulse. An ε smaller or greater than 0 will result in a smaller or larger birth pulse,

respectively. The prior for the precision term, τ , is specified such that the birth pulse can

vary by +/− 10% in line with fluctuations in the birth pulse observed in fox populations in

the wild (Lindström, 1988).

The realised per capita annual birth rate with density dependence takes the form:

αr,t =
bλr

λr + Sr,t + Vr,t
(2.5)

where b is the maximum annual per capita reproductive rate. Here, the inclusion of S and

V leads to density dependence, whose strength is controlled by the parameter λr (derived in

Appendix A) in the different regions r and takes the form:
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λr =
(s− 1)Kr

1− s− b/12
(2.6)

where s is the survival probability and Kr is the carrying capacity in region r. Infecteds

are ignored in expressions 2.5 (birth) and 2.15 (vaccination) because I believe that infected

individuals health is significantly impaired by rabies such that they will not deplete baits

or contribute to the population. There will be exceptions, and there is a question of timing

(did the fox eat a bait before showing rabies symptoms?) but these are thought to be small

enough that they can be ignored.

The second term in equation 2.1 comes from a Binomial distribution and represents the

surviving susceptible individuals in region r and month t,

Cr,t ∼ Bin(s, Sr,t) (2.7)

where s is the survival probability and is assumed to be fixed across time and regions.

Infected individuals are modelled as:

Ir,t = (1− ρr)I∗r,t +
∑
i 6=r

ρili,rI
∗
i,t (2.8)

where the I∗r,t is the number of infected individuals in region r prior to any movement. Infected

individuals leave the region with probability ρr. The summation term represents incursions

from other regions as a function of rabies incidence I∗i,t in region i, the proportion of infected

animals leaving region i: ρi, and li,r the proportion of those moving to region r. This can

be modelled in different ways, but here I chose to equate it to the proportion of the border

of region i that is shared with region r. I only considered the movement of infected animals

as healthy animals are more likely to be faithful to their home range, with the exception

of rare seasonal excursions. Where a healthy fox has moved outside its territory, I do not

believe that there will be significant changes in the population in neighbouring regions that

will affect the carrying capacity and density.

The probability of leaving ρi was calculated as:

ρi =
ρmax

√
Amin√
Ai

(2.9)

Where ρmax is the maximum leaving rate. Under a diffusive assumption for movement the

leaving rate is expected to decrease as the size of the region increases relative to its perimeter
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and the probability that any given infected animal moves outside of its region declines. To

capture this effect, I scaled the leaving rate by dividing it by the area of the region
√
Ai,

which is proportional to how far individuals are from the perimeter of the region.

In the model, new infections are generated within region r from a Binomial distribution:

Ir,t+1 ∼ Bin(pr,t, Sr,t) (2.10)

where the new infected individuals Ir,t at time t + 1 in region r are generated from the

susceptible individuals S with a risk of transmission probability pr,t represented by:

pr,t =
Ir,t

hAr + Ir,t
(2.11)

Here hAr is the half-saturation point for pr,t, that is the number of infected individuals that

raise the transmission probability to 0.5. I assume that this number is only a function of the

total area of the region, appropriately scaled by the constant h which is estimated from the

data. Subsequently, the risk of infection pr,t depends on the density of infected individuals
Ir,t

hAr+Ir,t
in the region, with the transmission rate per infected individual decaying as the

number of infecteds individuals grows.

The biological rationale behind this equation is that in larger areas, susceptible individuals

are expected to be less accessible to infected individuals due to the greater travel distance

required to reach them. The addition of infected individuals in the denominator allows us to

account for saturation effects that occur at high incidence, when infected individuals might

produce less infections because they have fewer susceptibles to infect due to disease-induced

mortality or because local contacts might be made to already latent animals, corresponding

to local correlations in infection. Local susceptible depletion then causes reductions in the

transmission rate of each infected individual at high incidence, that is, each infected individual

has a reduced probability of transmitting infection.

The functional form of the transmission is a special case of the general model in equation

35 from Liu et al. (1986): Influence of nonlinear incidence rates upon the behavior of SIRS

epidemiological models,

SqG(I) = Sq
kIp−1

1 +mIp−1
(2.12)

Where S is the susceptible population, I is the number of infected individuals and k, p, q,

and m are positive constants. If we assume that q is 1, G(I) can be written as
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G(I) =
kIp−1

1 +mIp−1
(2.13)

If we consider the special case where p = 2, m = (hA)−1, k = hA and q = 1 then

G(I) =
kI

1 +mI
(2.14)

G(I) =
k
mI

1
m + I

(2.15)

which is equivalent to

G(I) =
I

hA+ I
(2.16)

The time evolution of the number of vaccinated individuals is modelled as:

Vr,t+1 = vr,t +Xr,t (2.17)

where vr,t represents the newly vaccinated individuals drawn from a binomial distribution

and Xr,t represents surviving vaccinated individuals.

vr,t ∼ B(ν
Sr,t

Sr,t + Vr,t
, Sr,t) (2.18)

where ν is the rate of bait uptake by the population of susceptible and vaccinated individuals

in region r at time t. To account for the depletion of baits by already vaccinated conspecifics,

the rate of bait uptake by susceptible individuals is determined relative to their proportion in

the population
Sr,t

Sr,t+Vr,t
. Vaccination is switched on and off by an indicator variable that is 0

in all months apart from those when a vaccination campaign occurred when it equals 1. The

term X in eq. (10) represents the surviving vaccinated individuals from the previous time

step drawn from a binomial distribution similar to eq. (6) where s is the survival probability.

X ∼ Bin(s, Sr,t) (2.19)

where s is the survival probability.
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I assumed that the true number of infected individuals Ir,t were observed imperfectly each

year with annual probability θy:

Îr,t ∼ Bin(θy, Ir,t) (2.20)

The observation probability θ varies stochastically on an annual basis.

In the cross-sectional sampling regime, hunted foxes Hr,t had a probability of being observed

to be infected equal to the risk of transmission pr,t.

Ĥposr,t ∼ B(pr,t, Hr,t) (2.21)

where Ĥposr,t is the number of positive cases out of the total foxes hunted Hr,t.

2.3.3 Model evaluation

To assess the model fit I used a probability integral transform, testing whether the observed

rabies cases can reasonably be assumed to be arising from the chosen model. This was done by

comparing the observed number of rabies cases to the posterior distribution of the expected

number of infected cases estimated from the MCMC samples, calculating the percentile where

the data point fell within the cumulative distribution function (Czado et al., 2009). Because

the credible intervals are calculated from the posterior of the expected values and not the

posterior of the prediction, which also includes an error term, the credible intervals are more

conservative and reflect only the uncertainty around the regression and not the prediction.

As a result, they are narrower than the credible intervals of the prediction because they do

not include this error.

To assess the model fit through time I plotted the computed monthly probability integral

transform values through time. To explore the full range of potential rabies epidemic scenarios

within the parameter space I simulated from the model providing the same initial conditions

including the size of the region, carrying capacity, initial number of starting susceptible and

infected individuals, and rates of vaccination. I also assessed the model predictions when the

model was provided with the first data point and when the model was provided with 20 data

points.
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2.4 Model Fitting

All models were fitted using the software JAGS (Plummer, 2002) which uses Gibbs sampling

to generate posterior distributions of the parameters given the likelihood, prior distributions

and the data itself. I ran the models for 3,000,000 iterations, with a burn-in of 30,000 and

a thin interval of 300 giving 10,000 samples. I inspected the model for convergence and

effective sample size. To account for the fact that rabies had been circulating in Germany

since the late 1940s, I started the model 10 years (120 time steps) prior to when the time series

began to allow the system to settle at an endemic equilibrium. Fitting of the model required

considerable computational time and a compromise in what parameters were estimated in

order for the model to converge. This was resolved pragmatically by fixing some parameters

that were not central to the research questions or for which good quality information was

available (Table 2.1). I was primarily interested in estimating four main parameters: the

heterogeneity parameter for the transmission equation h, the probability of an infected fox

leaving an area ρmax, the observation rate θ, and the precision τ of the environmental noise

(Table 2.2).

The heterogeneity parameter h for transmission was given a gamma prior with mean 4 and

variance 9. The posterior for h was both within the broad support of the prior and much

more precise that the prior, because of the data.

I experimented with the sensitivity of the model to the parameter θ, quantifying the de-

tectability of cases. Allowing too much flexibility to this parameter caused the model to

explain the majority of cases in terms of detectability, rather than incidence. However, these

more flexible models tended to settle on posterior values for theta that were too large com-

pared to expert opinion for rabies and the known limits of passive disease sampling in general.

Specifically, I found that wider priors for theta (e.g. mean = 0.10, variance = 0.01), went

to biologically implausible areas of parameter space (around 30-40% of cases observed). The

more flexible model also resulted in larger unrealistic values of h and poor model convergence,

that I believe is due to the biological processes not being captured effectively. I addressed

this pragmatically by incorporating expert opinion into our prior for detectability (mean =

0.05, variance = 0.00025). I noticed that the posterior (while still remaining within plausible

detectability values) tended to drift to the right of the prior with only a small increase in

precision (Figure 2.1). The posterior was in the range of realistic values we would expect

for theta. As this did not impact the model fit, this suggests that the functional form of

transmission that I used captured the underlying epidemiological process and was able to

reproduce patterns of incidence at the scale of administrative units.

I chose a prior for ρmax (rate at which infected foxes leave their focal region) where the

posterior, informed by data, would have to move away from 0, ‘no movement’, to support

connectivity between regions. Because infected foxes have a limited dispersal range, I ex-
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Figure 2.1: The posterior distribution and priors for the parameters estimated in the hierar-

chical Bayesian state-space model. The posterior distribution is shaded in blue, the black line

represents the prior distribution. In order from top to bottom and left to right are the parame-

ters representing fluctuations in fecundity due to environmental noise τ , migration of rabid foxes

between regions c i.e. ρmax in the equation, rabies transmission h, and the annual probability

of observing rabies cases θ. The posterior and prior for the transmission parameter h is shown

again in the bottom left panel of the plot to better show the prior chosen.

pected the value of ρmax to be small. To limit the search to a biologically plausible range of

values for the leaving rate, I used a Beta prior with mean 0.004 and variance 0.000005 that

declined with distance from 0. The posterior supports this hypothesis by moving awaying

from 0. The precision of the environmental noise term τ was given a gamma prior with

mean 1000 and variance 5000, based on fluctuations in fox reproductive effort reported in

the literature (Lindström, 1988). This allowed the litter size (or birth pulse) to vary between

0.9 and 1.1 of the mean litter size each year. The posterior distribution shifts to the left

of the prior, which suggests that the population fluctuates slightly more than specified by

the prior. Although this is larger than that reported for Lindström (1988), the posterior for
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fluctuations rarely exceeded 10% with the largest values reaching 15%. This could be due

to more extreme environmental changes during this period or in Germany in comparison to

Sweden where Lindstrom’s study was conducted.

I was not able to get the JAGs model to run with a linear functional form of transmission. I

tested different initial values, as well as including a check to prevent the transmission rate,

which has a binomial distribution from going above 1. However I was still not able to get the

model to run in jags. From what I have observed in the simulation of the model with linear

transmission, if the parameter h is slightly higher, this results in the epidemic fizzling out,

whereas a lower value of the transmission parameter means that the epidemic is very large.

My hypothesis is that the jags model struggles to fit the model because both scenarios are very

far from the data observed. In contrast, the functional form of transmission that incorporates

heterogeneous mixing, prevents this explosive behaviour by including the infected individuals

in the denominator. This means that the transmission rate approaches an asymptote as the

number of infected individuals increase. Because I have not been able to compare the models

formally, I have explored this through simulation.
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2.5 Results

I fit a hierarchical Bayesian state-space model to fox rabies case data and ORV vaccination

efforts from 5 federal states, hereafter referred to as regions, in Eastern Germany for the period

1982-2013 to explore local transmission (within-region) and spatial coupling (incursions) in

metapopulation dynamics and to evaluate the impact of ORV on monthly records of rabies

incidence. My model was able to accommodate uncertainty in the biological and observation

processes, infer missing time series of infected, susceptible, and vaccinated individuals by

latent process methods.

Across all regions the number of reported annual cases ranged from 959-2375 pre-vaccination.

There was 2277 cases in 1990, the first year of vaccination, where vaccination occurred in

either April or April and either September or October (depending on the year) in each region.

This was followed by a swift decline in cases to 1643, 321, 28, 4 in the following years.

Fitting the model to the fox rabies case data generated key estimates of local rabies trans-

mission and spatial coupling between regions that have important implications for rabies

control. The model was able to capture key aspects of fox demography including the birth

pulse, fluctuations in fecundity with environmental noise, and changes in monitoring, yielding

a close fit to rabies case data from all 5 regions (Figure 2.2).

The multi-year peaks in the observed data are largely explained by the annual birth rate

and variations in the annual observation rate and environmental noise which vary over time

(Figure 2.3). The environmental noise term influences the size of the susceptible population

by increasing or decreasing the size of the birth pulse. Under the current model this in turn

results in more infected individuals. Similarly, a larger observation rate will mean that a

greater number of cases were detected and a fewer number of cases overall.

I was not able to fit the model with the linear functional form of transmission in jags,

therefore I cannot formally investigate the effect of individual-level interactions on local rabies

transmission (heterogeneous mixing). However, I can comment on the behaviour observed

when simulating from the model. My simulations of the model with the linear functional

form of transmission show that when a linear transmission form is considered the dynamics

are very fragile. Very small changes in the parameter h (values explored range from 1.6-1.8

(blue to red orange)) result in either an early fade out of disease or an explosive increase

in the number of cases (Figure 2.4). These two characteristics, which disagree with the

time series data provided, may explain why the jags model was unable to fit the model with

the linear transmission form, despite the apparently minor difference in the two functional

forms of transmission: I/(hA+I) compared to I/(hA). An important feature of the functional

form of transmission that incorporates heterogeneous mixing is that it prevents this explosive

behaviour by including the infected individuals in the denominator.

31



2.5 RESULTS

To investigate spatial coupling, I estimated the number of incursions (migrating rabid foxes)

from neighbouring regions. Incursions accounted for on average 1% or less of monthly rabies

cases in a region, with the mean number of incursions varying between 0 and 2 per month in

each region and from 0-12 per year. Low numbers of estimated external incursions from 2000

onwards reflect coincident declines in rabies cases in all 5 regions resulting from coordinated

vaccination efforts.

Herd immunity achieved through regular ORV campaigns, wanes rapidly due to the annual

influx of susceptible individuals. Herd immunity peaked at between 60-75% of the population

vaccinated in each region (Figure 2.2). Swift reductions in herd immunity occurred after en-

try of juvenile foxes into the population three months after the birth pulse (July), decreasing

the percentage of vaccinated individuals in the population by more than half. Between annual

entry of juvenile foxes, herd immunity is maintained as there is no difference between the sur-

vival of vaccinated or susceptible individuals. The rapid change in herd immunity following

entry of juvenile foxes into the population highlights the need for regular and coordinated

vaccination campaigns to maintain coverage. During the study period, the majority of vac-

cination campaigns were coordinated, with 65 campaigns (67%) occurring simultaneously in

all 5 regions and only 12 campaigns (12.3%) conducted in isolation.

From the plot of the probability integral transform calculated from the MCMC samples of

the model fit, we can see that model fails to capture the largest peaks in the observed cases

(Figures 2.5 and 2.8). The model also misses some of the observed cases between the birth

pulses, when the population is at its lowest. In the model mortality is constant across the

population, however it has been shown in other studies that juvenile foxes experience a higher

rate of mortality in the first months of life. Therefore, one might expect in nature that the

population would swiftly drop after the birth pulse due to high juvenile mortality and be

followed by more gradual changes in the population. The changes in the observed cases are

more variable compared to that expected from the model. This is likely due to the fact

that the model allows for annual changes in the probability of detection and environmental

variability rather than monthly changes. This was a deliberate modelling choice, as I found

that allowing for too much flexibility in the detection probability or environmental noise (i.e.

allowing these variables to vary by month or have a wider prior) resulted in overfitting of

the data and came at the expense of convergence of the other parameters, in particular the

transmission parameter. Even though the fitted model expects a more gradual and smoothed

number of cases than the observed data and the credible intervals are misleadingly narrow, the

expectation is not far off from the actual number of cases observed and the model successfully

captures the effect of vaccination.

To explore the characteristics and predictive capability of the model further, I simulated

from the fitted model providing the same initial conditions including the size of the region,

connectivity between regions, carrying capacity, starting susceptible and infected individuals,
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2.5 RESULTS

and vaccination coverage. I explored the model predictions when provided with the first case

in each region and the first 20 cases in each region using the probability integral transform

to assess the prediction. In both predictions, the most dominant features were oscillations

occurring due to entry of the juvenile foxes three months after the birth pulse (Figures 2.6,

2.7, and 2.8). In the first prediction, when the model is only provided with the first data

point, all of the cases fall within the credible intervals and the majority of data points are

within the middle 50% of the credible intervals. This suggests that the model overestimates

uncertainty (Figures 2.6 and 2.8). The model predictions improves when provided with the

first 20 starting data points and is good at projecting the long-term behaviour and decline

of rabies, however it misses the tail end of the cases (Figures 2.7 and 2.8). Although

the credible intervals around the model predictions reduced when more data was provided.

However, the model was not able to capture multi-year oscillations in cases, which in the

model fit were explained by annual fluctuations in environmental noise and variation in the

annual observation rate.
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2.5 RESULTS

Figure 2.2: State-space model results for 5 federal states in Eastern Germany: Brandenburg,

Mecklenburg-Vorpommern, Sachsen-Anhalt, Sachsen, and Thüringen. The left y-axis is the num-

ber of observed cases, the right y-axis is the percentage of the population vaccinated. The x-axis

indicates the time (months). The gray line represents estimated percentage of the population

vaccinated. The dark blue line is the monthly reported rabies cases for each region. The light

blue shaded region is the 95% credible intervals.
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is the upper 95% CI and the red line is the lower 95% CI. The environmental noise parameter
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.
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Figure 2.4: The total number of simulated rabies cases at monthly time steps across all 5 regions

from the model using the linear transmission form I/(hA+I). Several values for h were explored:

1.6-1.8 (blue to red orange) at 0.025 intervals. The linear form of the transmission equation

seems to be very sensitive to the value of h chosen. The resulting time series show unrealistically

large epidemics early on when values between 1.6-1.7 are chosen(around 20-40,000 cases across

all regions) or an early drop in the number of cases to also unrealistic levels. I hypothesize that

these two characteristics may explain why the jags model was unable to fit the model with the

linear transmission form.
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Figure 2.5: Probability Integral Transform for the model fit. The top panel shows the model

fit to the observed rabies cases over time in Region 1. The dark blue line represents the observed

rabies cases and the light and dark shaded blue region represents the 95% and 50% Credible

Intervals (CI) estimated from the MCMC samples, respectively. The bottom panel shows the

probability integral transform over time (where the observed case falls in the cumulative distri-

bution function). The colours in the probability integral transform plot indicate whether the

observed cases falls inside (red) the 95% CI, outside (turquoise) the 95% CI but within the 100%

CI
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Figure 2.6: Probability Integral Transform: Prediction with first data point. The top panel

shows the model fit to the observed rabies cases over time in Region 1. The dark blue line

represents the observed rabies cases and the light and dark shaded blue region represents the

95% and 50% Credible Intervals (CI) estimated from the MCMC samples, respectively. The

bottom panel shows the probability integral transform over time (where the observed case falls

in the cumulative distribution function). The colours in the probability integral transform plot

indicate whether the observed cases falls inside (red) the 95% CI, outside (turquoise) the 95% CI

but within the 100% CI, or outlier (green) when the case falls outside the CI entirely.
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Figure 2.7: Probability Integral Transform: Prediction with first 20 points. The top panel

shows the model fit to the observed rabies cases over time in Region 1. The dark blue line

represents the observed rabies cases and the light and dark shaded blue region represents the

95% and 50% Credible Intervals (CI) estimated from the MCMC samples, respectively. The

bottom panel shows the probability integral transform over time (where the observed case falls

in the cumulative distribution function). The colours in the probability integral transform plot

indicate whether the observed cases falls inside (red) the 95% CI, outside (turquoise) the 95% CI

but within the 100% CI, or outlier (green) when the case falls outside the CI entirely.
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Figure 2.8: Histograms of the Probability Integral Transform. The panels from top to bottom

show the probability integral transform for the model fit, the model projection with 1 data point,

and for the model projection with 20 data points.
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2.6 Discussion

Capturing local transmission and external incursions (migrating infectious individuals) is key

to understanding disease transmission and is important to regional management of disease.

Here, I present a method to capture local transmission processes and spatial coupling between

regions. My work demonstrates that biological understanding and strategic guidance can be

gained from inference from partially observed data on wildlife diseases.

Specifically I find that (i) incorporating heterogeneous mixing into the functional form of

the transmission can help capture rabies dynamics at the regional level; (ii) by allowing for

incursions (migrating infected individuals) from other regions, re-emergence of the disease

is possible even if eliminated locally from a region; (iii) herd immunity achieved through

bi-annual vaccination campaigns is short-lived due to population turnover, highlighting the

need for regular and sustained vaccination efforts. Together these findings have important

practical implications for designing control measures.

My results show that accounting for heterogeneous mixing is important to capturing fox ra-

bies disease dynamics. In this model I used a decay function to approximate the scaling of

local interactions (heterogeneous mixing) to the population-level. By allowing for a reduc-

tion in transmission as the number of infected individuals increased, the model was able to

better capture rabies dynamics. Earlier studies have accounted for heterogenous mixing in

childhood diseases (Glass et al., 2003; Roy & Pascual, 2006) and influenza (Liu et al., 1986),

however, this study is the first to use this approximation of heterogeneous mixing for wildlife

rabies. This approach has potential application for other diseases that circulate through local

interactions but for which surveillance data is aggregated.

External incursions can play a crucial role in sustaining transmission in the long-term, how-

ever many models don’t consider between region transmission. The model estimated that

external incursions comprise less than 1 % of overall cases, which may reflect the local nature

of rabies transmission which is strongly linked to the movement of the infected fox as opposed

to long-distance translocations. By allowing for resurgence of the disease as a result of incur-

sions from neighbouring regions, my model presents an opportunity to test future vaccination

scenarios (Chapter 3). Synchrony in the fade out of infections is considered advantageous,

since the potential for ongoing transmission resulting from the movement of infected indi-

viduals between separate populations or ‘rescue effects’ is greatly reduced. This underscores

the need for coordinated vaccination efforts between regions that act to isolate the dynamics

(Grenfell & Harwood, 1997). Eastern Germany is a good example of the success of coor-

dinated vaccination efforts. In contrast to the remaining areas in Germany they followed a

common, coordinated vaccination strategy and were able to eliminate rabies more quickly

(Müller et al., 2012).
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The strongest mechanistic feature driving fluctuations in rabies cases was the entry of juvenile

foxes into the population after the birth pulse. This is evident from both model predictions

(Figures 2.6, 2.7). Although the credible intervals around the model predictions reduced

when more data was provided (20 data points compared to 1 data point), the model was

not able to capture multi-year oscillations in cases. In the model fit multi-year fluctuations

were explained by the environmental noise and observation noise parameters (Figure 2.3).

However, it is difficult to pinpoint whether the environmental noise and observational noise

parameters capture the true underlying process generating the peaks in the observed data.

It is highly probable that changes in resource availability and variation in detection explains

some of the variation in the process, however I did not have any data or information to

inform these parameters aside from expert opinion. Furthermore, some of the nuances in the

dynamics may also be obscured due to the aggregation of data. For instance, the behaviour

of the observation process over time suggests either that there are marked differences in the

detection of cases or that there are other things driving the rabies dynamics that the model is

apportioning to the observation rate. Periodic dynamics have been observed in other diseases

(e.g. measles and whooping cough, (Rohani et al., 1999). It is thought that at the local scale,

regional persistence relies on both an adequate replenishment rate of susceptibles and for the

movement of susceptible and infected hosts, i.e. spatial transmission, to be adequate (Keeling

& Rohani, 2002). Because the data is aggregated at a coarser scale, the cases observed are in

fact the result of multiple foci within in a region(as is shown in Chapter 4), making it difficult

to detect truly local dynamics from aggregated data. Although the fitted model expected

a more gradual and smoothed number of cases than the observed data, the expectation is

not far off from the actual number of cases observed and the model successfully captures the

effect of vaccination. Therefore, although the model fit is too confident, overall it does a good

job of capturing the overall disease dynamics.

Herd immunity is temporally and spatially dynamic as a result of demographic processes.

The fox population undergoes rapid changes in size following entry of juvenile foxes into the

population three months after the birth pulse. The influx of new susceptible individuals

reduces herd immunity by more than half. This means that isolated infections can become

rapidly reconnected with susceptible hosts and transmission maintained in the absence of

adequate levels of herd immunity. My analyses of vaccination reveal that herd immunity is

only maintained through regular ORV campaigns. This has important implications for other

wildlife diseases with marked birth pulses (Peel et al., 2014).

Using fox rabies as a case study, I demonstrate how different types of process error and ob-

servation error, unequal sample intervals, and missing values can be accounted for within

the flexible framework of Bayesian state-space models. My model was able to accommodate

uncertainty in the biological and observation processes and was able to recreate observed dy-

namics and infer missing time series by latent process methods. This has important practical

implications for other wildlife diseases where only limited epidemiological and demographic
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data are available.

The use of sophisticated state-space modelling techniques paired with long-term fox rabies

data provide a unique opportunity to understand rabies dynamics and evaluate the impact of

vaccination on rabies incidence. My study adds to the considerable body of work that has been

central for guiding control of fox rabies in Europe (Anderson et al., 1981; Eisinger et al., 2005;

Thulke et al., 2008) by being the first to estimate the number of incursions in metapopulation

persistence using a model fit to data. Together these findings have important implications for

maintaining rabies freedom and ongoing vaccination of large parts of Eastern and Southern

Europe (e.g. Russia and Greece). Lastly, this work makes an important methodological

contribution to the study of spatial disease dynamics in other wildlife diseases where only

limited epidemiological and demographic data are available.
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Optimising spatial and seasonal deployment
of vaccination campaigns to eliminate wildlife
rabies

3.1 Abstract

The continued presence of fox rabies in Europe highlights the need for technical guidance

and contingency planning to eliminate disease and prevent outbreaks. Effective planning

of vaccination programmes is central to achieving these objectives. However, there is little

scientific guidance on how long control programmes must operate or should be strategically

implemented to eliminate disease in areas with varying degrees of endemicitiy.

Using detailed records documenting the long-term oral rabies vaccination (ORV) programme

in Eastern Germany and fox rabies, I developed an epidemiological model that captures the

main features of rabies spread and the impacts of vaccination. Here, I extend the model

to determine the best vaccination strategy, in terms of placement and duration of ORV

efforts, for three epidemiological scenarios characterised by varying degrees of endemicity

representative of current situations found in Europe. I sought to determine where vaccination

campaigns should be strategically placed to increase the probability of elimination in each

scenario and explored the impact of logistical constraints on time to elimination.

My findings indicate that (i) consecutive campaign sets and coordinated vaccination across

all regions are required to rapidly control and eliminate rabies, (ii) Autumn vaccination cam-

paigns, which follow entry of juvenile foxes into the population three months after the birth

pulse, have the greatest impact on increasing the probability of elimination and reducing

time to elimination, (iii) incomplete vaccination (missing campaign sets) compromised time

to elimination with the same or more vaccination effort required to meet similar timelines (iv)

ensuring that sufficient resources are in place to eliminate rabies which requires considerable

time and monetary investment beyond that required for control. To successfully eliminate

rabies from a seasonal wildlife population, managers should implement coordinated vaccina-

tion campaigns, plan for twice the number of campaigns required to control the disease, and

avoid missing campaign sets following the birth pulse.
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3.2 Introduction

Despite a considerable body of theory underpinning the principles for infectious disease con-

trol through mass vaccination (Anderson et al., 1981), there is little scientific guidance as

to how long control programmes need to operate or are best implemented strategically to

eliminate persistent foci of infection (Klepac et al., 2013). A key challenge faced by disease

control programme managers is estimating timelines for control and elimination and their

resulting programmatic and budget implications. Scaling back control measures too early

could lead to disease re-emergence (e.g. rinderpest), but costs of continued control can be

difficult to justify especially when new cases are no longer being reported (Del Rio Vilas et al.,

2017; Klepac et al., 2013). Until elimination is achieved, vaccination efforts, surveillance, and

mobilized public health and veterinary staff are required in both affected and neighbouring

unaffected areas. Theoretical estimates of the time required to eliminate a pathogen are

typically shorter than what is observed in practice (Wearing et al., 2005). Infectious diseases

often persist for prolonged periods at low incidence (Klepac et al., 2013), with at least as

much effort required to achieve elimination as needed to bring disease under control (Freuling

et al., 2013). The epidemiological impact of practicalities that may interrupt the schedule

of control programmes or cause operational delays in implementation, are also not well un-

derstood. Realistic estimates of eliminate time horizons and improved understanding of the

impact of logistical constraints on progress to elimination should inform better policy and

practice.

Vaccination works to interrupt the transmission of infection as contacts with vaccinated

individuals, which do not result in infections, occur more frequently. Indirect protection of

non-vaccinated individuals from infectious disease can occur when a sufficient proportion of

the population is vaccinated, Pcrit, (Fine et al., 2011). The resulting “herd immunity’ is

spatially and temporally dynamic as a result of demographic processes. This is especially

true for wildlife populations which are often characterized by faster population turnover

compared to humans and where seasonal birth pulses are frequently observed (Peel et al.,

2014). Influxes of new susceptible individuals may support ongoing transmission by reducing

levels of herd immunity (Peel et al., 2014). It is therefore important to understand how

demographic processes may affect vaccination strategies for wildlife.

Once a disease has been eliminated from a given region, the movement of infected individuals

between regions and the transmissibility of the pathogen determine the probability of re-

emergence, or “rescue effects’ (Klepac et al., 2013). By seeding new epidemics and preventing

localised extinctions, rescue effects prolong disease persistence (Brown & Kodric-Brown, 1977;

Earn et al., 1998; Hanski, 1998; Keeling, 2000). In the absence of vaccination, the proportion

of susceptible individuals in the population may increase, leaving a region vulnerable to

potentially large outbreaks if infection is reintroduced. Accounting for the connectivity of

populations in the planning of vaccination strategies is central to maintaining freedom from
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disease.

Oral rabies vaccination (ORV) of foxes has, in just over three decades, eliminated fox rabies

from 9 countries in Western and Central Europe (Cliquet et al., 2014; Freuling et al., 2013;

Müller & Freuling, 2012). However, fox rabies remains in large parts of Eastern Europe and

Russia. Since the late 1980s the European Union (EU) has co-financed ORV efforts to elimi-

nate disease in EU member and border states and aims to maintain freedom from disease via

a protective vaccination belt (cordon sanitaire). Determining the best vaccination strategies

for different epidemiological situations has immediate application to the rabies situation in

Europe, including the design of cordon sanitaires to maintain rabies freedom, expanding ORV

efforts to bordering endemic states, and strategies to rapidly eliminate emerging disease in

high-risk countries such as Greece and Turkey.

Using detailed records documenting the long-term ORV programme in Eastern Germany and

fox rabies incidence, I developed an epidemiological model that captures the main features of

rabies spread, uncertainties in detection and environmental fluctuations, and ORV impacts

(Baker et al. Chapter 1). Here, I extend the model, quantifying uncertainty in the outcomes,

to determine the best vaccination strategy, in terms of scale and duration of ORV efforts,

under different epidemiological scenarios. I focus on three common scenarios found in Eu-

rope and elsewhere: endemic circulation of rabies; high-risk situations where rabies has

been partly eliminated from an area but remains in more than half of the regions; and an

endgame scenario when only a single endemic foci remains. I evaluate the effectiveness of

different vaccination strategies in terms of reductions in cases and increases in probability

of elimination. I also identify crucial and sensitive points in a vaccination strategy where

logistic constraints can setback time to elimination. Based on my findings, I generate rec-

ommendations on the time horizon and the placement and timing of vaccination campaigns

required to achieve and maintain freedom from fox rabies.

3.3 Methods

I simulated rabies cases from a hierarchical Bayesian state-space model fit to monthly time

series of fox rabies cases for 5 federal states (area = 16,172-29,479 km2), hereafter referred to

as regions, in Eastern Germany from 1982-2013, for three epidemiological scenarios (Figure

3.1):

1. Endemic: Rabies circulates endemically in all five regions.

2. High-risk: Two regions are rabies free, but neighbour three endemic regions.

3. Endgame: Rabies eliminated from four regions but present in one region.
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Figure 3.1: Map showing epidemiological scenarios investigated in Eastern Germany where

red = Rabies, white = Rabies free. A. Endemic: All regions have rabies, B. High-risk: Rabies

is partly eliminated but remains in more than half of the regions. C. Endgame: Rabies has

been eliminated in all regions but one. D. Illustration of the algorithm used to decide the order

of campaign placement. Campaigns are sequentially placed based on the position (month and

region) that resulted in the greatest increase in the probability of eliminating rabies across all 5

regions. The numbers 1-3 in the grid cells represent when (month) and where (region) the first 3

campaigns were placed. The grey boxes represent possible campaign slots where campaigns can

be allocated for the 4, 5, ... 25 campaigns.

Specifically, I sought to determine: where vaccination campaigns should be strategically

placed to increase the probability of elimination (Figure 3.1D); the time to control and to

eliminate rabies; the impact of incomplete vaccination under the endemic scenario and how

incursions affect vaccination strategies in rabies-free and rabies-endemic regions. Here, I use

the term vaccination campaign to refer to a single vaccination event (i.e. vaccination in one

region) and the term vaccination campaign set to refer to a vaccination conducted in all

regions within a short period of time (1 month).
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In the next sections, I provide a brief description of the hierarchical Bayesian state-space

model full details of which are provided in Chapter 1, followed by details of my simulation.

3.3.1 Hierarchical Bayesian state-space model

In Chapter 1, I developed a hierarchical model to explain local transmission (within-region)

and spatial coupling (between region) dynamics of rabies and to evaluate the impact of ORV

on monthly rabies incidence for 5 regions in Eastern Germany from 1982-2013. The model

comprised both a biological and an observation process. The biological process consisted

of a discrete-time stochastic metapopulation model with three states: Susceptible (Sr,t),

Infected (Ir,t), and Vaccinated (Vr,t), developed to track foxes and rabies cases in different

regions through time. Susceptible individuals were modeled as a function of new births and

surviving individuals and those removed due to vaccination or infection. Stochasticity in

the form of an environmental noise term was included to account for annual variability in

fecundity (Lindström, 1988). I modeled infections generated from within the region and

incursions (migrating infected foxes) from outside. Incursions were expressed as a function of

incidence in neighbouring regions, the probability of infected animals leaving those regions,

and the length of the border shared between focal and neighboring regions. Heterogeneous

mixing at the population level was incorporated via a transmission function that asymptotes

as numbers of infected individuals increase. Vaccination campaigns were incorporated in the

month when they took place. Because both susceptible and vaccinated individuals consume

baits, I accounted for bait depletion by previously vaccinated foxes in my estimates of the

rate of bait uptake.

I estimated parameters for migration of rabid foxes between regions ρmax, rabies transmission

h, the annual probability of observing rabies cases θy, and fluctuations in fecundity due to

environmental noise τ (Figure 3.2). I was not able to estimate a parameter for vaccination

coverage or efficacy as it was confounded with the transmission parameter h. Therefore the

rate of bait uptake, ν, was drawn from a Beta distribution with mean 0.4 and a variance: 0.001

based on estimates from field studies (Robardet et al., 2016). For the simulation, I assumed

a conservative bait uptake rate of 0.30 based on estimates from field studies (Robardet et al.,

2016).

3.3.2 Rabies Scenario Simulation

For all three scenarios I seeded each region with 30 infected cases. I ran simulations for

4.25 years (50 months) prior to introducing vaccination campaigns to allow the system to

settle towards an endemic equilibrium. In the high-risk scenario (2), cases were removed from

regions 3 and 4 at month 50 to create two rabies-free regions. In the endgame scenario (3),
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cases were removed from all regions at month 50 except for region 1. I used the time series

from the initial simulations of the three scenarios in the absence of vaccination as a baseline

from which to assess increases in the probability of elimination for different vaccination effort.

I restricted my analysis to feasible vaccination strategies within operational and financial

constraints; with a maximum of two campaigns per year, in the Spring (March) and Autumn

(October). To determine the order in which campaigns should be placed to maximize the

probability of elimination, vaccination campaigns were sequentially placed in the 5 regions

from a schedule of predetermined dates corresponding to each March and October over 2.5

years (referred to as Spring 1: month 51, Autumn 1: month 58, Spring 2: month 63, Autumn

2: month 70, Spring 3: month 75) (Figure 3.1D). The location and date of each campaign was

determined based on the placement (i.e. in one of the 25 grid cells, 3.1D) that most increased

the probability of elimination by the end of the simulation (month 201). The process was

repeated to determine the location and date of the next most important campaign, until

rabies was eliminated from all 5 regions in all simulations (Figure 3.1D). Campaigns placed

first were defined as ‘highest priority’ for managers, as they had the greatest impact on the

probability of elimination. The best vaccination strategy was determined based on the timing

and spatial arrangement of vaccination campaigns that eliminated rabies by month 201 (12.5

years after the start of vaccination) with least effort (number of campaigns) for each scenario.

I looked at time to control (months) and time to elimination (months) using metrics based on

levels of incidence and the probability of elimination. I defined time to control as the month

when monthly incidence across all regions was 10% of what would result in the absence of

vaccination. I defined time to elimination as the month when the probability of elimination

in all regions was >99.9%.

For the endemic scenario, I explored how unexpected logistical issues, due to budget or oper-

ational constraints, affect the time to elimination. Assuming the full vaccination programme,

that is 5 complete campaign sets (25 campaigns) that would ideally be carried out in practice,

I explored the impact of missing one campaign set, two consecutive campaign sets, or two

non-consecutive campaign sets. The relative effect of each logistical constraint was estimated

by measuring the delay in time to elimination and the number of additional campaign sets

required to achieve elimination. To account for uncertainty in the parameter fits from my

hierarchical Bayesian state-space model, I took 200 random draws from the joint posterior

distributions of the parameters estimated (Figure 3.2). I ran ten simulation for each draw

to give a total of 2000 iterations of the rabies time series for each vaccination campaign

placement trialed. In order to obtain a set of reproducible simulations to compare different

vaccination configurations and scenarios I set the seed for each draw from the joint posterior

distribution of the time series, with the ten random seeds yielding 2000 iterations (10 seeds

x 200 random draws from the joint posterior distribution).
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Figure 3.2: The posterior distribution and priors for the parameters estimated in the hierarchical

Bayesian state-space model. The posterior distribution is shaded in blue, the black line represents

the prior distribution. In the simulation I took random draws from the posterior distribution of

parameters estimated for rabies transmission h, migration of rabid foxes between regions ρmax,

fluctuations in fecundity due to environmental noise τ , and the annual probability of observing

rabies cases θ. The posterior and prior for the transmission parameter h is shown again in the

bottom left panel of the plot to better show the prior chosen. Random draws were taken from the

posterior distribution of parameters estimated and used to simulate the different rabies scenarios.

3.4 Results

3.4.1 Vaccination placement

The optimal vaccination strategy for a particular area will vary based on the epidemiological

situation encountered. I sought to determine where vaccination campaigns should be strate-

gically placed to increase the probability of elimination for three epidemiological scenarios:
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Figure 3.3: Proportion of runs where rabies was eliminated from all 5 regions in response to

incremental vaccination (mean and shaded 95% CI). In the endemic scenario, 22 campaigns were

required to eliminate rabies from all regions. Labels mark the proportion of runs eliminated in

response to no vaccination and 5, 10, 15 and 20 campaigns. Map showing the endemic scenario

where all regions have rabies. Order of vaccination in the endemic scenario was determined based

on the campaign placement that increased the proportion of runs eliminated.

endemic, high-risk, and endgame. In the endemic and high-risk scenarios, 22 and 20 cam-

paigns respectively were required to achieve elimination in all regions (Figures 3.3, 3.5),

whereas in the endgame scenario, only 9 vaccination campaigns were required to eliminate

the disease (Figure 3.6). I found that Autumn vaccination campaigns had the biggest im-

pact on the probability of elimination across all scenarios (Figure 3.3, 3.5, 3.6). Autumn

campaigns (October) occur after entry of juvenile foxes into the population (July) when the

susceptible population is at its largest following the birth pulse (Figure 3.4. In the endemic

scenario, Autumn campaigns accounted for 8 of the first 9 campaigns conducted, and these 8

campaigns eliminated infection in ˜70% of runs (Figure 3.3). In the high-risk scenario, the

first 7 campaigns were Autumn campaigns, and these eliminated infection in >80% of runs

(Figure 3.5). In the endgame scenario, 4 out of the first 5 campaigns placed were Autumn

campaigns, and these eliminated infection in ˜90% of runs eliminated (Figure 3.6).

In the endemic scenario, effort was evenly spread across the 5 regions, with 5, 10, 15, and

20 campaigns marking when each region had received their 1st, 2nd, 3rd, and 4th campaigns

respectively (Figure 3.3). Each region was vaccinated at least 4 times with only the Autumn

vaccination dates requiring a full campaign set (vaccination in all 5 regions) (Figure 3.3).

However, no strong pattern emerged in terms of the largest or most connected regions (those

sharing the largest proportion of their border with other regions) being prioritized first for

vaccination (Figure 3.3).
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Figure 3.4: Ratio of the proportion of infected individuals in the population with vaccination

and without vaccination (blue) and the proportion of the population vaccinated (grey). Vertical

lines indicate the month where the ratio of infected individuals dropped to 10% and elimination

(> 99.9% of runs eliminated).

In the high-risk and endgame scenarios, early implementation of vaccination campaigns in

endemic regions had the greatest impact on probability of elimination (Figures 3.5 and 3.6).

More vaccination campaigns were required in the endemic regions and the most connected

neighbouring regions (those bordering several other regions, and sharing a large proportion

of their border with other regions) to eliminate rabies in all regions in these scenarios (Figure

3.5 and 3.6). In the high-risk scenario, 4-5 campaigns were required in the endemic regions

and a minimum of 3 campaigns were required in the neighbouring rabies-free regions in order

to eliminate rabies in all regions (Figure 3.5). Similar to the endemic scenario, full Autumn

campaign sets across all regions were required in order to eliminate rabies from all regions.

Overall, earlier vaccination was favoured in the high-risk scenario, with 3 out of the 5 unused

campaign slots occurring in the last vaccination month (Figure 3.5). In the endgame scenario,

the endemic region was vaccinated 4 times and regions neighbouring the endemic region were

vaccinated a total of 5 times: 3 campaigns in region 2, which is the largest neighbouring region

in terms of both size and shared border, and a single campaign in both region 3 and region

4. Vaccinating early in rabies-free regions that bordered endemic regions was not always

the best strategy. Delayed vaccination sometimes had a greater impact on the probability of
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Figure 3.5: Proportion of runs where rabies was eliminated from all 5 regions over time in

response to incremental vaccination (mean and shaded 95% CI). The high-risk scenario required

20 campaigns to eliminate rabies from all regions. Labels mark the proportion of runs eliminated

in response to no vaccination and 5, 10, 15, and 20 campaigns. Map showing the high-risk scenario

where some regions are free (white) but neighbour infected regions (red). Heatmap shows the

order of vaccination in the high-risk scenario determined based on the campaign placement that

increased the proportion of runs eliminated. Vaccination of the endemic regions was prioritised

first, with vaccination after the birth pulse in month 56 and 68 having the greatest reductions in

the proportion of runs eliminated. A minimum of 3-4 campaigns was required in neighbouring,

previously rabies free regions.

elimination in all regions (e.g. in region 2 and 4, Figure 3.6) and meant that fewer overall

campaigns were required.

3.4.2 Time to control vs. time to elimination

To gain a greater understanding of the time required to eliminate a pathogen and the impact

of logistical constraints on these timelines, I estimated the time required to control and

eliminate rabies and the impact of missed campaign sets in the endemic scenario. I found

that more than twice as much effort was required to eliminate the disease than was required to

control rabies in the endemic scenario (Figure 3.4). Employing full vaccination (5 campaign

sets) in the endemic scenario, it took one year and 2 vaccination campaign sets to reduce

montly rabies incidence to 10% of endemic levels in the absence of vaccination (Figure 3.4).

An additional 3 campaign sets over 2.5 years were required to eliminate rabies from across

all 5 regions, that is rabies was eliminated 3.5 years after the introduction of ORV with a

total of 5 campaign sets (Figure 3.4). I estimated that the Autumn campaigns increased

the proportion of the population protected to about 34 and 37% (Sets 2 and 4), with Spring
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Figure 3.6: Proportion of runs where rabies was eliminated from all 5 regions over time in

response to incremental vaccination (mean and shaded 95% CI). In the endgame scenario, 9

campaigns were required to eliminate rabies from all regions. Labels mark the proportion of

runs eliminated in response to no vaccination and 5 and 9 campaigns. Heatmap shows the

order of vaccination in the endgame scenario, determined based on the campaign placement that

increased the proportion of runs eliminated. Vaccination of the last remaining endemic region was

prioritised first. Three campaigns were required in region 2, which is the largest neighbouring

region in terms of both size and shared border. One campaign was required in the two other

neighbouring regions (region 3 and 4).

campaigns increasing the proportion of the population protected by a further 12-13%, with

peak coverage reaching 47 and 49% in Sets 3 and 5 (Figure 3.4). Following entry of juvenile

foxes into the population three months after the birth pulse, I estimate that the proportion of

the population protected declines by about 20% following a single Spring campaign (Set 1).

The following two years, entry of juvenile foxes following the Autumn and Spring campaigns

(Set 2 and 3, and Set 4 and 5), the proportion of the population protected declines by about

32-33%. The proportion of the population protected remains constant between birth pulses

as both susceptible and vaccinated individuals experience the same levels of natural mortality

(Figure 3.4).

To understand how logistical constraints may affect time to elimination, I explored the impact

of different logistical scenarios: missing campaign sets (1 set, 2 consecutive sets, 2 non-

consecutive sets) on elimination timelines with and without additional campaign sets (Figure

3.7 and 3.8). In only two scenarios, where either the 1st or 3rd campaign set was missed,

was elimination achieved in the absence of additional campaign sets (Figure 3.8: Panel 1).

Missing a single campaign set delayed elimination by on average 6 months, but by up to

12 months, as long as one additional campaign set was also undertaken. Missing a Spring
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Figure 3.7: Proportion of runs where rabies was eliminated from all 5 endemic regions over

time under different logistical scenarios (mean and shaded 95% CI). Facets show the impact of

missing 1 set of vaccination campaigns, missing 2 consecutive campaigns, and missing 2 non-

consecutive campaigns and the response of adding one or two additional campaigns. Lines are

coloured according to which set of campaigns were missed as shown in the legend. Sets are labeled

in order of vaccination date: 1st set (month 51), 2nd set (month 58), 3rd set (month 63), 4th set

(month 70), 5th set (month 75) and combinations thereof.

.

campaign set (Set 1 or 3) resulted in shorter delays of 1-3 months compared with 11-12

months when missing an Autumn campaign set (Set 2 and 4) (Figure 3.8: Panel 2). With

the addition of two campaigns sets (Figure 3.8: Panel 3), rabies elimination was achieved

across all logistical scenarios apart from when both Autumn campaign sets were missed (2

and 4). When two campaign sets were missed, the delay to elimination ranged from about

1 to 2 years, with 2 additional campaign sets required to ensure elimination. The longest

delays (˜1.5-2 years) occurred mainly in logistical scenarios where two consecutive campaign

sets (e.g. the 2nd and 3rd or the 3rd and 4th sets) were missed (Figure 3.8: Panel 3).
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57



3.5 DISCUSSION

3.5 Discussion

My findings indicate that consecutive campaigns sets and coordinated vaccination across

all regions are required to rapidly control and eliminate rabies. This appears to be due to

the need to maintain sufficient herd immunity in the face of large birth pulses; Autumn

vaccination campaigns had the greatest impact on increasing the probability of elimination

and reducing time to elimination across a range of epidemiological scenarios. I hypothesise

that this is because vaccinations in Autumn, reach a larger proportion of the population, as

they occur after the entry of susceptible juvenile foxes into the population three months after

the birth pulse, than vaccinations carried out in Spring; incomplete vaccination (missing

campaign sets) compromises time to elimination with the same or more effort required to

achieve elimination and meet similar timelines; missing one campaign set can be remedied

with an additional campaign set and only leads to delays in time to elimination of one month

to a year; in contrast, missing two consecutive campaign sets or two Autumn campaign

sets caused the greatest delays in time to elimination (1-2 years), in some cases requiring a

further campaign set beyond those compensating for the missing campaign sets. Together

these findings have important practical implications for designing elimination programmes

and informing decision-making including contingency plans.

3.5.1 Vaccination Placement

Autumn vaccination campaigns had the biggest impact on the probability of elimination

across all scenarios. Autumn campaigns occur after entry of juvenile foxes into the population,

three months after the birth pulse, at which point the fox population approximately doubles

(Iossa et al., 2008). This large influx of susceptible individuals into the population leads to

a sharp drop in herd immunity. It is unsurprising then that campaigns occurring soon after

entry of juvenile foxes into the population were most critical to achieving elimination, as the

most foxes can be vaccinated at this time. The importance of vaccination campaigns following

the birth pulse is potentially applicable to vaccination of other wildlife with seasonal birth

pulses (Peel et al., 2014). The timing and causes of seasonality can substantially impact herd

immunity and should be considered in determining how and when control measures should

be applied.

Several studies have found that connectivity plays a key role in disease persistence (Bolker &

Grenfell, 1996; Keeling & Rohani, 2002) and that the size of populations also determines time

to control (Keeling & Grenfell, 1997). However, I found no strong pattern in either the largest

or the most connected regions being prioritized first. I hypothesise that the relative gains in

across region probability of elimination may be a combination of the size and connectivity

(in terms of shared borders) of the region as well as the past history of where has already
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been vaccinated. This hypothesis could be tested by exploring the impact of varying the size

and connectivity of regions to determine their influence on vaccination.

3.5.2 Time to control vs. time to elimination

Realistic predictions of the time to eliminate a pathogen and greater understanding of how

logistical constraints set this back can help to manage expectations regarding the impacts of

control measures. Previous work has shown that in practice the final stage of elimination is

often the most challenging, with the same if not more effort required to eliminate the remain-

ing 10% of cases as to eliminate the first 90% of cases (Freuling et al., 2013). My simulations

are consistent with these empirical observations and show that while rabies can be rapidly

controlled through vaccination, more than twice as much effort is required to eliminate the

disease entirely. Incomplete vaccination seriously compromised time to elimination with the

same or more effort (campaign sets) required to achieve elimination. In general, missing one

campaign set delayed time to elimination by on average 6 months with delays of up to 1 year.

However, delays of one to two years in time to elimination occurred when two consecutive or

two campaign sets following the birth pulse were missed, even if missed campaign sets were

followed by the same amount of additional vaccination effort.

Consecutive campaign sets are crucial in building and maintaining high levels of herd im-

munity. In the simulation, herd immunity rapidly declines following influx of new suscepti-

ble foxes into the population after entry of juvenile foxes into the population. Consecutive

campaigns were necessary to achieve high levels of herd immunity and had important conse-

quences when missed. Insufficient vaccination coverage has been predicted to prolong rabies

epidemics in raccoons by increasing the total number of cases, presenting a threat to neigh-

bouring rabies-free areas (Rees et al., 2013). Consecutive campaign sets are important for

disease elimination and logistical scenarios in which consecutive campaign sets are missed

should be considered in contingency planning.

3.5.3 Incursions

Rabies-free regions that are contiguous with endemic areas are vulnerable to reintroduction.

My results show that large and well-connected regions (i.e. those with the longest borders

with endemic regions) are often at highest risk from reintroductions, because they can sup-

port larger susceptible populations and have a greater probability of incursions along their

shared borders. In the high-risk and endgame scenarios early vaccination of endemic re-

gions was prioritized to reduce and prevent rescue effects. Directing surveillance efforts to

areas bordering endemic regions is recommended for early detection and control of incursions

(Castillo-Neyra et al., 2017; Mulatti et al., 2012). Low probabilities of disease detection may
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mean persistent foci may be missed entirely, which could result in a delayed response to

incursions or premature discontinuation of vaccination efforts that could result in resurgence

(Castillo-Neyra et al., 2017; Mulatti et al., 2012; Townsend et al., 2013b).

.

3.5.4 Future directions

Patterns of disease spread are influenced by variation in host densities, transmission pro-

cesses and incubation periods (Lloyd, 2001), vaccination coverages (Selhorst et al., 2005;

Townsend et al., 2013b), and landscapes (Rees et al., 2013; Selhorst et al., 2006). Although

undoubtedly important, there is often only limited data on these heterogeneities, especially

for wildlife diseases. The model makes several simplifying assumptions, for example using

a monthly time-step to capture the generation interval, but in practice some longer genera-

tion intervals will occur (Toma & Andral, 1977). Since the model was fitted to large-scale

(regional) data, I expect that the effects of landscape and population heterogeneities will

have been captured in so far as they influence large-scale dynamics. Studies have found that

natural barriers impede rabies spread (Real et al., 2005; Rees et al., 2013; Russell et al.,

2005; Smith et al., 2002). But, I do not expect habitat heterogeneity to greatly influence

rabies in Eastern Germany, as this area is fairly homogeneous with an absence of natural

barriers (e.g. large rivers, mountains, lakes). However, incursions from neighbouring regions,

incomplete vaccination campaigns and rare events not captured in our model, e.g. long in-

cubators, could lead to shorter modelled estimates of time to elimination than observed in

practice (Freuling et al., 2013). I do not consider the location of remaining foci within a

region in my model, so all neighbouring regions are considered under threat even at low lev-

els of incidence. Low probabilities of detection mean that remaining foci are often missed,

leading to delayed responses to incursions or premature discontinuation of vaccination that

could result in resurgence (Castillo-Neyra et al., 2017; Mulatti et al., 2012; Townsend et al.,

2013a). This approach is suited to such situations where there is a lack of spatially resolved

surveillance data and a conservative vaccination strategy is warranted. However, to guide

control programmes in a specific location, geographically tailored simulations would therefore

be required, and finer scale approaches may be necessary for examining spatially strategic

responses to incursions, such as those modelled by Thulke et al. (2008). Extensions to this

approach incorporating how surveillance effort and quality influence disease detection, and

exploring the impact of heterogeneities in the size and connectivity of regions, could further

improve vaccination planning. One of the drawbacks of determining the optimal vaccination

strategy using a sequential approach is that this will naturally miss some optimal scenar-

ios. However, to look at all possible vaccination combinations would have meant testing an

impractical number of scenarios (25! = 15511210043330985984000000 scenarios).
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In practice, vaccination strategies are rarely conducted with equal efficacy across the pop-

ulation. In my simulation, I took a conservative approach, by assuming a low vaccination

uptake, however, an area of future research would be to incorporate scenarios with more re-

alistic heterogeneity in coverage and the probability of uptake across vaccination campaigns

and within regions. Individual based models have been used to demonstrate how spatial

heterogeneity in the landscape interacts with the effectiveness of vaccination (Rees et al.,

2013). Vaccine uptake can be difficult to quantify over large and diverse regions. However,

local knowledge and field studies may be used to inform estimates of uptake rates over time

and across space.

3.5.5 Conclusion

Dynamic demographic processes govern levels of vaccine-induced immunity across popula-

tions and stochastic infection processes underlie patterns of infection in space/time. My

findings have important practical implications that may be useful to guide policies for rabies

containment and elimination in Europe and elsewhere. Overall I recommend i) prioritising

ORV campaign sets following the birth pulse when resources are limited (in Autumn in West-

ern Europe), ii) implementing consecutive vaccination campaign sets to build up and sustain

high levels of herd immunity, iii) ensuring that sufficient resources are in place to eliminate

rabies which requires considerable time and monetary investment beyond that required for

control.

By capturing disease dynamics and quantifying uncertainty in outcomes, modelling strategies

like this one can help managers plan effective vaccination strategies tailored to their local

epidemiological situation and generate realistic timelines for disease elimination. They can

also be used to manage expectations and justify continued control. By presenting different

rabies scenarios and exploring the impact of logistical constraints, I provide insights for

managers to plan vaccination strategies including short and long-term budgeting, as well as to

understand the impact of missed campaigns. Further analyses incorporating how surveillance

effort and quality influence disease detection, heterogeneities in vaccination uptake, and size

and connectivity of regions, can be used to shed further light on these questions and improve

the planning of vaccination.

61



CHAPTER 4

Resolving the spatial scale of rabies

transmission



Resolving the spatial scale of rabies trans-
mission

4.1 Abstract

Models capable of capturing local infection dynamics in wildlife populations have great po-

tential to improve the planning of disease control programmes. However, developing models

that can capture spatiotemporal infectious processes in wildlife populations remains a chal-

lenge, both due to a lack of spatially resolved data and statistical tools capable of dealing

with such data.

Recent advances in statistical computing allow for the development and application of sophis-

ticated modelling techniques to capture the localised spatiotemporal dynamics of diseases in

wildlife populations and to understand the effects of data aggregation on estimates of key

transmission parameters. Using detailed spatial and temporal data on the occurrence of fox

rabies cases, I developed a space-time model in INLA capable of capturing fox rabies dynam-

ics over the last 3 decades in Eastern Germany. I used the output from this model to explore

the effect of scale on the estimates of transmission terms by aggregating incidence data at

different spatial resolutions.

I find that (i) rabies cases are clustered within 5km, with spatial autocorrelation decaying

over an approximately 20 km radius (ii) a heterogeneous mixing term is required even when

data is aggregated at fine spatial scales (2x2 km grid) (iii) local disease dynamics are approx-

imated by lower transmission and more population mixing as incidence data are aggregated

at increasingly coarser scales. Together these findings have important implications for the

understanding of transmission processes.

4.2 Introduction

Developing an understanding of spatial and temporal infection dynamics at a local level has

great potential to improve the planning of control programmes. However, while there is a
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considerable body of theory studying the wave-like spread of infection into new populations

(Diekmann, 1978; Grenfell et al., 2001; Murray & Seward, 1992; Smith et al., 2002) and the

role of seasonal forcing in disease dynamics (Bolker & Grenfell, 1995; Grenfell et al., 2002), less

is known about the endemic spatiotemporal dynamics of wildlife disease. Stochastic infection

processes and the spatial distribution of infected individuals, host populations, and control

interventions underlie patterns of infection in space and time. However, developing models

that can capture and explain spatiotemporal infectious processes at a local level remains a

challenge, due to a lack of high-resolution spatial and temporal data and computationally

efficient statistical approaches for model fitting.

Most diseases circulate primarily through local interactions (Anderson et al., 1992; Keeling &

Rohani, 2008). However, data is often aggregated at the scale of administrative units rather

than epidemiologically relevant ones, obscuring local transmission dynamics. Furthermore,

many wildlife diseases lack the necessary combination of host and pathogen data required to

understand how infection moves.There is therefore a need for approaches that can capture lo-

cal heterogeneities in transmission even when dealing with surveillance data that is aggregated

at larger spatial scales. Approximations have been used to try to capture the heterogeneities

in transmission resulting from localised interactions between infected and susceptible individ-

uals (Glass et al. (2003), Chapter 2). However, it is unclear how well they capture localized

interactions for disease transmission in spatially-structured wildlife populations.

Variability in epidemiological data arises from both infectious disease dynamics, including

stochastic spatial transmission processes, and the observation errors in detecting cases. The

Bayesian approach allows us to incorporate many of the uncertainties inherent in epidemi-

ological data and model latent, unobserved processes hidden from direct observation. Until

recently, high computational costs have limited the simultaneous analysis of spatial and tem-

poral patterns in disease fit to data. Rue et al. (2009) have developed an efficient, and

flexible computational algorithm for model fitting that uses Laplace approximations rather

than simulations (e.g. MCMC). Their method, called the integrated nested Laplace approx-

imation (INLA), is designed to fit latent Gaussian models in a Bayesian context, in which

spatial and temporal autocorrelation in the latent field assume a shared spatial structure

and are reflected by Gauss Markov random fields (GMRF) (Rue & Held, 2005). This pow-

erful approach makes the fitting of complex models feasible by speeding up computation

and providing a flexible framework for fitting different types of spatial data (e.g. point pro-

cess, areal data). Within the INLA framework, the stochastic partial differential equations

(SPDE) approach constructs flexible fields that are able to model datasets with complex spa-

tial structure (Krainski, 2018; Lindgren et al., 2011). Krainski (2018) has extended the SPDE

model to consider non-separable space-time SPDE model that are closely-linked to heat equa-

tions in physics. The non-separable space-time SPDE model simultaneously captures spatial

and temporal autocorrelation in the latent field. The temporal extensions offered by the

non-separable space-time SPDE model mean that spatially-explicit dynamical problems can
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now be approached with numerical efficiency. This approach may be able to capture the

spatiotemporal nature of disease transmission and therefore has considerable application for

understanding epidemiological processes in disease ecology, particularly for wildlife diseases

such as rabies that spread through direct contact.

Rabies is a deadly and terrifying disease that exacts a heavy toll on human lives and national

economies, with over 50,000 human deaths each year and many millions more requiring

expensive life-saving post-exposure vaccines (Hampson et al., 2015). Elimination of rabies is

feasible through mass vaccination; oral rabies vaccination (ORV) campaigns have eliminated

fox rabies from Western Europe. However, scientific guidance could improve elimination

efforts elsewhere and is still needed for contingency planning to maintain rabies freedom and

for emergency response to incursions (when infections are introduced from endemic areas into

disease free areas). The long-term, large-scale nature of the oral rabies vaccination programme

in Europe together with spatially resolved data on rabies cases present a unique opportunity

to study wildlife disease dynamics using sophisticated spatial modeling techniques.

Here, I examine local rabies dynamics and the effect of scale of aggregation of surveillance

on estimate of transmission using a latent Gaussian model fit to GPS locations of observed

rabies cases from five federal states in Eastern Germany pre-vaccination from 1982-1992. The

model is fit using R-INLA Rue et al. (2009) and spatial and temporal autocorrelation in rabies

cases is modelled using a non-separable SPDE model. I first model the infected individuals,

estimating the spatial correlation between rabies cases. In the absence of detailed information

on fox population density, I then simulate the host population stochastically, incorporating

demographic processes and environmental spatiotemporal variability. I then combine the

infected and susceptible density fields generated from the first two steps in a generalized

linear model (GLM), where I model the number of infected individuals as a function of past

infected individuals and the susceptible population to estimate key parameters relating to

transmission. I investigate how the scaling of local processes is approximated as the resolution

of incidence data becomes coarser by aggregating the infected and susceptible individuals at

different spatial resolutions and estimating the transmission parameters from the GLM fit to

these data. Insights from this work can be used to inform our understanding of the effect of

spatial aggregation on estimating key transmission parameters and represents a first step in

capturing local spatiotemporal infection dynamics in a wildlife disease.
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4.3 Methods

4.3.1 Data Collection

Georeferenced laboratory-confirmed rabies cases in foxes were compiled from regular reports

by the national veterinary authorities for 5 federal states in East Germany from 1982-2006 on

a monthly basis. Shape files for each ORV campaign in the area were also compiled (Freuling

et al., 2013).

4.3.2 Space-time SPDE Fox Rabies Model

I performed three steps in analyzing the data: 1. Creating the infected density surface, 2.

Creating the susceptible density surface, 3. Constructing a GLM using the infected and

susceptible density surfaces generated in the first two steps to estimate key transmission

parameters. The infected and susceptible density surfaces were created by modelling the

infected individuals and susceptible individuals respectively using a latent Gaussian model

where spatial and temporal autocorrelation in the latent (unobserved) field were modelled

using a non-separable space-time SPDE model (Krainski, 2018). The computational aspects

of the model fitting were carried out in R-INLA using the INLA approach (Rue et al., 2009).

Lastly, I fit several GLMs to future infectious cases using the susceptible and infected density

fields generated from the first two steps to estimate key terms for rabies transmission. I

investigated how the scaling of local processes is approximated as the resolution of incidence

data becomes coarser by aggregating the infected and susceptible individuals at different

spatial resolutions and estimating the transmission parameters from the GLMs fit to these

data.

1. Creating the infected density surface, 2. Creating the susceptible density surface, and 3.

Constructing a GLM from the infected and susceptible density surfaces.

4.3.3 Creating the infected density surface

I modeled the infected individuals from the space-time location of reported rabies cases,

Î, using a log-Gaussian Cox space-time point process (Simpson et al., 2016) in which the

intensity function (i.e. the intensity of infected individuals), λ(s, t), varies continuously over

time and space. The likelihood of the log-Gaussian Cox space-time point process can be

specified as
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π(Î|λ) =
∏
i

λ(si, ti) exp(|Ω||L| −
∫

Ω,L
λ(s, t)∂s∂t) (4.1)

where Ω is the spatial domain, L is the time domain, (si, ti) is the set of space-time coordinates

for the events i, which in this case correspond to the reported locations and times when

infection occurred.

The number of infected individuals in an area r over a time window l can be estimated by

integrating the intensity function over this domain as

Ir,l =

∫
r,l
λ(s, t)∂s∂t . (4.2)

It also follows that the number of observed cases in a predefined area r (i.e. the grid cells

used for the GLMs) over the time period l is Poisson distributed with mean Ir,l. I model the

intensity function as

log(λ(s, t)) = log(θ) + β0 + d(s, t) (4.3)

where d(s, t) is a latent field that captures the spatial and temporal relationships in the

occurrence of infected individuals and follows a non-separable space-time random process, θ

is the observation probability, and β0 is the mean density of infected individuals per km2 over

time and across space. The intensity field was specified considering the non-separable SPDE

model detailed in B.1 and B.2 in Appendix B. From these equations it is possible to estimate

the spatial and temporal autocorrelation that generate ds,t based on changes in the location

of infected individuals across time and space. In this case, I was predominantly interested

in the spatial autocorrelation. In order to estimate the spatial marginal correlation from

a non-separable model I compute the spatial marginal spectral density by integrating out

the temporal frequency. Then I use the Bochner’s theorem to compute the spatial marginal

correlation, which can be computed with equation 7.23 in Lindgren (2012) rewritten 4.4.

The spectral density f(ω) for an isotropic random field is given for ω =‖ ω ‖. This is then

considered for computing the covariance at distance h =‖ h ‖, r(h), as follows

r(h) = r(h) = (2π)p/2
∫ ∞

0

J(p− 2)/2(ωh)

(ωh)(p−2)/2
ωρ−1f(ω)dω (4.4)

where the spatial dimension p = 2, J(.) is the modified Bessel function of the second kind,

and f(.) is the marginal spatial spectral frequency. This gives me the spatial covariance at

distance h at any time point. In practice, I get the posterior marginal distribution for each

one of the three parameters of the space-time model after fitting the model for the infected

foxes ( equations B.1 and B.2 in Appendix B). I can then take the posterior mean of
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these parameters and plug-in the formula for the spatial marginal correlation from Lindgren

(2012). To account for some uncertainty in the marginal correlation function, I also calculated

the spatial marginal correlation using the 95% quantiles of the posterior marginals for each

parameter.

To create the triangulated mesh on top of which the SPDE/GMRF representation is built,

the spatial domain is first discretized into a triangulated mesh with m nodes. The mesh

function in R-INLA creates a constrained refined Delaunay triangulation (CRDT) in a region

of interest. Using the CRDT, smaller size triangles can be defined in areas that have data

and larger ones in areas with no information. This reduces computation costs and increases

the accuracy of the spatial field where there is data. To avoid boundary effects (i.e. higher

variance near the boundary), (Lindgren & Rue, 2015), I extended the mesh beyond the area

of interest.

4.3.4 Creating the susceptible density surface

The susceptible population was modelled as follows:

Sr,t = αt(1− vr,t) exp(xr,y)Xr (4.5)

where the susceptible individuals Sr,t in a predefined area r (i.e. the grid cells used for the

GLMs) at month t are a function of changes in the population over time resulting from birth

and death, αt, vaccination, where 1 − vr,t is the proportion of the population that is not

vaccinated, and annual fluctuations, xr,y, around the mean susceptible population in each

grid cell Xr. An average density of 2.4 foxes per km2 was assumed based on estimates from

the literature (Ansorge, 1990; Iossa et al., 2008; Lloyd et al., 1976) and used to determine the

mean susceptible population, Xr in each predefined area r (grid cell). xr,y is an environmental

noise term representing spatial and annual fluctuations in fox fecundity resulting from changes

in resource availability. xr,y, represents the latent spatial-temporal correlation in susceptible

individuals across the landscape, and comes from a space-time SPDE xr,y (Appendix B) and

has a mean of 0 and variance of σ2. I set σ2 to allow the birth pulse to fluctuate in a given

area by +/- 10%, based on fluctuations in fecundity observed from a long-term study of

fox population dynamics citeplindstrom1988reproductive. The spatial autocorrelation was

also informed from the literature. Because foxes occupy non-overlapping territories and are

generalists, occupying a wide range of habitats (Baker et al., 2004), one can expect fox

population density to vary across space based on changes in resource availability/habitat

suitability. However, the relationship between specific habitat types and fox density is not

well established. I therefore assumed a gradual spatial autocorrelation range decaying out to

20km for this analysis.
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Changes in the size of the population αt are modeled as a product of the birth pulse, α0 and

the survival rate 1−m as follows

αt = α0(1−m)b (4.6)

where α0 = 3.183977 and m = 0.092, b is the number of months since the birth pulse the

last April. After the birth pulse, newborn foxes remain primarily in the den where they are

sheltered from infectious interactions. Juvenile foxes enter the susceptible population three

months after the birth pulse in July (month 7).

To account for the depletion of baits by already vaccinated conspecifics, the rate of bait uptake

ν by susceptible individuals is determined relative to their proportion in the population where

vr,t is the proportion of the population vaccinated and comes from

where vr,t =


vr,t−1 + ν(1− vr,t−1) if Br,t = 1 and b 6= 7

vr,t−1

αt
if Br,t = 0 and b = 7

vr,t−1 , otherwise

(4.7)

Vaccination is switched on and off by an indicator variable Br,t that is 0 in all months apart

from those when a vaccination campaign occurred when it equals 1. I account for reductions

in the proportion of vaccinated individuals in the population following the entry of juvenile

foxes into the population, by dividing the proportion vaccinated vr,t−1 by the birth pulse

effect αt in July (b = 7) which corresponds to the factor by which the population is changing

(e.g. doubling). When there is no vaccination campaign Br,t = 0 and it is not an entry month

b 6= 7 then the proportion of the population not vaccinated remains the same 1− vr,t−1.

4.3.5 Constructing a GLM from the infected and susceptible density sur-

faces.

In the third step, I used the susceptible and infected density fields from the first step to

estimate the transmission term ρ and the mixing term c in Equation 4.8 using a GLM. I used

only the data before vaccination (1982-1992) to estimate these parameters as transmission

dynamics may vary after the start of vaccination.

Ir,t = ρSr,t−1I
c
r,t−1 (4.8)
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where ρ is the transmission parameter and c is a coefficient that accounts for heterogeneity in

mixing patterns, hereafter referred to as the mixing term. This can be rewritten as a linear

model in log scale as:

log(Ir,t) = log(ρ) + log(Sr,t−1) + c log(Ir,t−1) + ε (4.9)

where the transmission term log(ρ) becomes the intercept, log(Sr,t−1) is a known offset, and

the mixing parameter c is estimated as the coefficient for log(Ir,t−1) and ε is a noise term. The

biological rationale behind the mixing term is that mixing is not expected to be homogeneous,

especially in larger areas, as individuals that are further apart from one another are less likely

to be in contact with one another. The mixing term c allows us to capture saturation effects

that occur at high incidence, when infected individuals cause less infections due to local

susceptible depletion — either through disease-induced mortality or contact with already

exposed (incubating) individuals.

I hypothesize that the mixing term c is only necessary to approximate the scaling of local

interactions when incidence data is aggregated at large spatial scales. To test the hypothesis

that c approaches 1 and the transmission term ρ is larger as data is aggregated at increasing

smaller spatial scales (where local interactions take place), I aggregated the data for varying

grid sizes r (Figure 4.1) and estimated the transmission term ρ and the mixing parameter c.

4.3.6 Exploring the spatial autocorrelation using kernel density smoothing

To compare the model fit, I also estimated the spatial autocorrelation in rabies cases using

kernel density smoothing. Due to the high computational cost, I did this only for a small

subset of the data in the south-west of Thuringen at a few different time lags. Data was

aggregated at 1 km2 grid sizes. Kernel density smoothing of the rabies cases was conducted

using the spkernel2d function in the splancs package in R, which uses a quartic smoothing

kernel (Berman & Diggle, 1989; Rowlingson & Diggle, 1993).

70



4.4 RESULTS

Figure 4.1: Scales explored when estimating the transmission parameters using a generalized

linear model. Grid sizes range from 50x50 km2 to 2x2 km2.

4.4 Results

Understanding of spatial and temporal infection dynamics at a local level has great potential

to improve the planning of control programmes. Using a log-Cox latent Gaussian model fit
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to infected cases, I investigated the local rabies transmission dynamics using a non-separable

SPDE model to estimate the spatial correlation between cases. The resulting model was

able to capture local spatial dynamics of rabies (Figure 4.3) and yielded a close fit to

rabies case time series reported at the federal state level when the intensity function was

calculated at this level of data aggregation (Figure 4.4). I estimated that rabies cases are

typically clustered within 5km of each other, with a spatial autocorrelation of 0.25, that

decays gradually out to 20km (Figure 4.5). The spatial autocorrelation estimated using

the non-separable SPDE model suggests that rabies cases are clustered more locally (within

20km) compared to the kernel density smoothing estimates calculated from the reported

rabies cases (25-50km) (Figure 4.2). The kernel density estimates also show a slow decay,

with most cases clustered locally (within 5-10km). However, the extent to which the cases

were correlated were variable across time (sometimes decaying to 25km or 50km). Overall the

spatial autocorrelation estimates suggested that cases occurring further away were correlated

irrespective of the bandwidth used (h = 1, 3, 5, 10 km).

Data is often aggregated at the scale of administrative units rather than epidemiologically

relevant ones, obscuring local transmission dynamics. To explore the effect of data aggrega-

tion on the estimate of transmission parameters, I aggregated the data at different grid sizes,

ranging from 2x2 km to 50x50 km, and estimated the transmission rate and heterogeneous

mixing terms using a GLM fit to future infectious cases using the susceptible and infected

density fields. Overall, the models achieved a good fit to the data, with the adjusted R2

in all cases being above 83% Figures 4.8 and 4.9. My results reveal that even when data

is aggregated at a fine-spatial resolution (2x2 km), approximations of local mixing in the

form of a lower transmission rate and greater heterogeneous mixing (c < 1) are needed to

recreate observed rabies dynamics (Figure 4.6). To estimate the transmission parameter ρ

when c is 1 (i.e. homogenous mixing) I extrapolated from the GLM estimates of ρ using a

second order polynomial to get the line of best fit (Figure 4.6). The mean estimate for ρ

was 0.15, however, there is a lot of uncertainty in the prediction, as shown by the wide 95%

credible intervals (dotted blue line). Comparisons to contact tracing studies for fox rabies

and exploring the data at a finer spatial-scales is needed to further assess this prediction.

Similarly, the prediction may be sensitive to the choice for the functional form of the line of

best fit.

To investigate the effect of data aggregation on our estimates of the key transmission param-

eters, I aggregated the data at different grid sizes, ranging from 2x2 km2 to 50x50 km2, and

estimated the transmission rate and heterogeneous mixing terms using a GLM (Model fits in

Figures 4.8 and 4.9. My results reveal that even when data is aggregated at a fine-spatial

resolution (2x2 km2), approximations of local mixing in the form of a lower transmission rate

and greater heterogeneous mixing (c < 1) are needed to recreate observed rabies dynamics.

The transmission rate gets progressively smaller and mixing becomes more heterogeneous at

larger spatial scales (Figures 4.6 and 4.7), with estimates of c declining accordingly. A
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Figure 4.2: Kernel density estimation of observed rabies cases in Thuringen at months 3, 20 and

50. The top panel shows the resulting smoothed kernel density surfaces for different bandwidths

(h = 1, 3, 5, and 10 km) where red = no rabies cases, yellow = rabies cases. The bottom panel

shows the variogram and correlation estimated in cases with distance. Colours represent the

different bandwidths used: h = 1, 3, 5, 10 (black, red, green, blue).
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lower transmission rate ρ and lower mixing term c both reduce the new cases per infected

individual.
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Figure 4.3: Model fit of the true infected individuals over space and time shown at 3 month

intervals from 1987-1989. Colours reflect cases per sq km. Red represents high rabies incidence,

gray represents low incidence, and blue represents little to no rabies incidence. In this plot you

can see the different rabies foci, varying intensity in rabies cases, and the movement of rabies

through time.
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Figure 4.4: Estimated observed rabies cases from the non-separable space-time SPDE model

fit to every 3rd month for each federal state level in East Germany. The red line is the mean fit

to rabies case data, the shaded red region represents the 95% confidence intervals, and the black

x’s represent the observed cases.
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Figure 4.5: Marginal spatial autocorrelation estimate from the non-separable space-time random

process d(s, t) in Equation 4.3 with mean (blue line) and 95% credible intervals (shaded).
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Figure 4.6: Estimates of c, the heterogeneity parameter, and ρ, the transmission parameter.

The multiple black circles are the parameter estimates for the different grid sizes for different

realisations of the Susceptible population simulation. The red dotted line is the line of best fit

used to predict ρ when c is 1. The blue dotted line shows the uncertainty (95% credible intervals)

around the prediction for ρ.
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Figure 4.7: Estimates of c, the heterogeneous mixing parameter (top panel), and ρ, the trans-

mission rate (bottom panel) plotted against the log of the aggregated grid cell size (range: log of

2 km2 to 50 km2).
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Figure 4.8: GLM model fit of infected cases at time t for the smallest 6 grid sizes (2x2 km2-10x10

km2) as a function of past infected cases at time t-1.
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Figure 4.9: GLM model fit of infected cases at time t for the larger 6 grid sizes (13x13 km2-50x50

km2) as a function of past infected cases at time t-1.
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4.5 Discussion

High-resolution spatiotemporal models capable of capturing local infection dynamics in wildlife

populations can generate fundamental insights into transmission processes. Here, I present a

computationally efficient approach for modelling spatial and temporal rabies dynamics fit to

partially-observed case data. Using this model, I estimated the spatial correlation between

cases and explored the effect of scale on estimates of transmission terms. Specifically I found

that (i) rabies cases are clustered within 5km with spatial dependency gradually reducing

out to 20km; (ii) estimates of transmission terms vary depending on the scale at which the

data is aggregated; (iii) local disease dynamics are approximated by lower transmission and

more heterogeneous mixing as surveillance data are aggregated at coarser scales.

Recent rabies outbreaks around the world highlight the need for accurate predictions of dis-

ease spread and spatial planning at a local scale (Castillo-Neyra et al., 2017; Mulatti et al.,

2012; Townsend et al., 2013b). Estimates of spatial models of infection can help us to under-

stand the spatial scale of transmission and inform control strategies by identifying areas of

high prevalence where there is a greater risk of infection. Using this information, intervention

strategies can be matched to the anticipated distribution of cases. The aerial distribution of

baits containing vaccine is highly accurate even for complex spatial distributions (Breiten-

moser & Müller, 1997). It is therefore feasible to tailor vaccination planning to local patterns

in disease incidence.

Previous studies have used the home range of foxes to inform estimates of disease spread

(Thulke et al., 2008). However, studies of rabid animals suggest that behavioural changes

during the infectious stage mean that the distance an infected animal moves is highly variable

and could differ from home ranges of healthy animals (Andral et al., 1982; Hampson et al.,

2007). Furthermore, between-individual variation in transmission may arise from differences

in behaviour, immune status, and environmental and stochastic factors among others, which

play an important role in determining spatial and temporal disease dynamics (Lloyd-Smith

et al., 2005b). By fitting the model to data, one can infer heterogeneities in transmission

directly (Lloyd-Smith et al., 2005b). My estimates show that spatial dependency in rabies

is on the order of 5 km but reaches 10-20 kms. This is similar to patterns reflected in the

rabies cases data which is encouraging. However, the kernel density smoothing approach only

serves as a descriptive inspection of the data and does not include the observation process. By

modeling the latent field using a non-separable SPDE model, we are able to explicitly model

the spatial and temporal relationships in the data and learn about the dynamics of rabies

transmission. These estimates may have important implications for the design of spatial

control strategies and could shed light on whether resources should be concentrated where

the case was detected or in a protective ring around the detected case as a means to build

up immunity (Rees et al., 2011; Thulke et al., 2008).
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Many wildlife diseases are spread through direct transmission, yet surveillance data is often

aggregated at the level of adminstrative units which can vary in size from towns to provinces

to states. Aggregation of incidence data can obscure local dynamics of transmission and

makes it difficult to interpret transmission parameters. Understanding how the scaling of

local processes is approximated as the resolution of incidence data becomes more coarse

can therefore add to our fundamental understanding of disease dynamics by increasing in-

terpretability of transmission parameters by estimating population mixing. I was able to

explore when it becomes necessary to approximate local mixing by aggregating the data at

different spatial resolutions and whether these approximations are an accurate scaling of local

processes. Very rapidly approximations in the form of a lower transmission term and higher

heterogeneous mixing are necessary to capture the scaling up of individual interactions to re-

gional dynamics. Population mixing is known to be heterogeneous, with individuals that are

further apart being less likely to interact ((Glass et al., 2003), Chapter1). The mixing term c

allows me to capture saturation effects that occur at high incidence, when infected individuals

produce less infections due to local susceptible depletion — either through disease-induced

mortality or contact with already exposed (incubating) individuals. These two effects are ap-

proximated by a lower transmission rate and reduced population mixing as the scale at which

the data is aggregated increases. Predictions of the transmission, rho, when c is 1, suggest

that transmission when there is homogeneous mixing can be quite high (0.15) (Figure 4.6),

however, there is a lot of uncertainty in this estimate and further explorations of the data and

comparisons to contact tracing studies are needed to assess the prediction which could also

be sensitive to the line of best fit model choice. Spatial approximations at the administrative

level probably work better for human diseases where social structures act to increase mixing

(e.g. schools) or for wildlife populations that are heavily structured (e.g. herds). The mixing

term, I infer at coarser scales is therefore likely to be quite different from other cases and

should be considered when carrying out similar analyses for other populations.

Many wildlife diseases lack the necessary combination of host and pathogen data required

to understand spatial dependency in infection dynamics. Here, I demonstrate how the host

population can be simulated in the absence of incidence data by modelling the host popu-

lation stochastically incorporating demographic processes and environmental spatiotemporal

variability using the SPDE approach. Further extensions to this work would include relating

the susceptible population to habitat data that could be used to provide more refined esti-

mates of environmental variability. Sensitivity analyses would also reveal how sensitive these

estimates are to assumptions about the spatial variation in population density.

There are several advantages and limitations to the approach I have used in this chapter to

analyse the data. One advantage of the INLA framework and non-separable SPDE approach

is that you can estimate easily latent (unobserved) processes like the spatial and temporal

dynamics of infection. The non-separable SPDE approach assumes that the spatial and

temporal dynamics of infection are not independent of one another, which is realistic for fox
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rabies, where the disease is spread by the movement of infected foxes through time and space.

Another useful feature of the INLA framework is its additive structure. An effect can be easily

removed or added which means that you can add other latent parts to the model and new

hyperparameters and the modelling framework and computations staying the same. However,

one disadvantage of this structure is that you cannot link the components within an SIR model

(e.g. that the infected individuals are removed from the susceptible population). Although

it is not epidemiologically accurate, in the case of rabies where the disease only affects a

very small percentage of the population (less than 1% of the population per month, Katie

Hampson pers. comm), I can assume that this removal of infected individuals is negligible.

Similarly, with the SPDE approach I am constructing a smoothed intensity surface of infected

individuals, meaning that even in regions with no rabies the model assumes there is a small

intensity of infected individuals because it is computational more tractable. To work around

this, in future versions of the model where I wish to explore vaccination strategies, I can set

a threshold for the intensity for when I can include that there are zero cases in an area (i.e.

that rabies has been eliminated locally).

Targeted spatial vaccination planning has great potential to inform elimination strategies,

reduce costs, and guide expectations regarding the impacts of control measures. The model

is able to capture the local dynamics underlying spatial patterns in incidence. There is

the potential to extend this work to inform how newly introduced epidemics spread and

can be controlled by testing different vaccination configurations. This work has immediate

application to the design of cordon sanitaires in Europe and to strategies aiming to rapidly

eliminate re-emergence in high-risk countries such as Greece and Turkey. It may also be

applicable to answering analogous questions for the elimination of dog-mediated rabies and

for other vaccine-preventable diseases in spatially structured populations. The analytical and

statistical framework developed here has the potential to generate fundamental and applied

insights into the elimination of infectious disease and the modelling of wildlife disease data.
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Discussion

To improve our understanding of wildlife rabies, a disease that has major implications for

public health, wildlife conservation and economics, I developed and applied state-of-art sta-

tistical approaches to analyse extensive spatial and long-term surveillance data documenting

the unique history of fox rabies elimination. The work in this thesis contributes to our funda-

mental understanding of how infectious diseases persist and how control programmes can be

optimized to eliminate infection. Lessons learnt from the successful elimination of fox rabies

in Western Europe through oral rabies vaccination (ORV) can be directly applied to increase

the probability of success and reduce the time and money spent on these programmes. Fur-

thermore, the methodological approaches developed demonstrate how strategic guidance and

biological understanding can be achieved from sparse and partially observed data for wildlife

diseases.

5.1 How do infectious diseases persist?

The study of fox rabies in Europe sheds light on the fundamental question of how acute

infectious diseases persist and may be controlled through vaccination. My analyses reveal that

incursions (migrating infected individuals), demographic processes (e.g. birth and death),

local transmission, and heterogeneous mixing all play a key role in rabies dynamics.

Once a disease has been eliminated locally, the migration of infected individuals (incursions)

can lead to re-emergence, termed ‘rescue effects’ Klepac et al. (2013). By seeding new epi-

demics and preventing localised extinctions, rescue effects prolong disease persistence (Brown

& Kodric-Brown, 1977; Earn et al., 2000, 1998; Hanski, 1998; Keeling, 2000). Incorporating

incursions into the Bayesian state-space hierarchical metapopulation model allowed for dis-

ease re-emergence in neighbouring regions. In chapter 3, results from my model simulations

reveal that large and well-connected regions are often at highest risk from reintroductions,

likely due to larger susceptible populations and a greater probability of incursions across

extensive shared borders. Directing surveillance efforts to areas bordering endemic regions is

important for early detection and control of incursions. The Bayesian state-space modelling

approach provides a useful framework for quantifying the role of incursions between regions

and exploring configurations of vaccination campaigns and their deployment.
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INFECTION?

The demographic processes of birth and death played an important role in sustaining in-

fection within the fox population. Foxes exhibit a marked birth pulse in April when the

population more than doubles (Anderson et al., 1981; Iossa et al., 2008). The resulting influx

of unprotected newborn foxes and the relatively short life-span of foxes (˜4 years, Iossa et al.

(2008)) leads to a rapid turnover of the population such that high levels of herd immunity

achieved during ORV campaigns are short-lived. In chapter 3, I found that missing Autumn

vaccination campaigns following the birth pulse lead to the greatest setbacks in terms of

time to elimination. Missing Autumn campaigns should be avoided where possible to avoid

setbacks and the need for additional campaigns. The timing of campaigns in relation to de-

mographic processes should be considered more generally in the planning of vaccination for

other populations with seasonal birth pulses and/or rapid population turnover (Peel et al.,

2014).

Population connectivity and local transmission play a key role in wildlife disease dynamics.

Infected individuals are more likely to spread disease to their neighbours. In a fatal disease,

like rabies, where disease is spread through direct contact and there is a lack of disease in-

duced immunity, this results in redundant exposures of already latent (incubating) animals

and local susceptible depletion as individuals bitten within an area die. As incidence in-

creases, transmission per infected individual decreases as the host population is depleted and

contacts occur with already exposed individuals. In chapter 2 and 4, I found that incorporat-

ing heterogeneous mixing when modelling transmission at the regional level was important

to capturing local patterns of infection..In chapter 2, I used a transmission form that in-

corporated heterogeneous mixing, whereby the rate of transmission depended on the size of

the region. In this functional form, the transmission per infected individual decreased as

the number of infected individuals increased, and was used to account for local susceptible

depletion and contacts occurring with already exposed individuals. In chapter 4, analysis

of georeferenced fox rabies cases allowed me to explore these processes at the local spatial

scale at which they were occurring. My analyses of the monthly spatiotemporal correlation

between rabies cases revealed that fox rabies cases are clustered within 5km decaying to 20

km. Further details of the methodical approaches used are provided in section 5.3.2.

5.2 How can control strategies be optimized to eliminate in-

fection?

Vaccination interrupts the chain of transmission as contacts occur increasingly between in-

fected and vaccinated individuals that do not lead to infection. However, there is little

scientific guidance as to how long control programmes must operate to eliminate infection. A

challenge faced by disease control programme managers is estimating timelines for control and

elimination and their resulting programmatic and budget implications. Theoretical estimates
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of the time required to eliminate a pathogen are typically shorter than what is observed in

practice (Wearing et al., 2005). Models typically do not capture all elements of stochasticity

and heterogeneity of any kind usually prolongs circulation (and thus persistence) of disease.

Moreover, most theoretical models assume closed systems without incursions, however we

know for most diseases that incursions are frequent, and for rabies, my study system, they

are increasingly recognized to be important for persistence (Bourhy et al., 2016; Zinsstag

et al., 2017). Finally, most theoretical models assume idealized implementation of control

strategies, for instance, high and even vaccine coverage, but in practice implementation is

never perfect and therefore we may overestimate the potential the potential impact of inter-

ventions.

Infectious diseases often persist for prolonged periods at low incidence (Klepac et al., 2013;

Tischendorf et al., 1998), with at least as much effort required to achieve elimination as needed

to bring disease under control (Freuling et al., 2013). At the same time, campaigns are often

missed or delayed due to logistical and financial constraints. The epidemiological impact of

these practicalities are not well understood. Realistic estimates of elimination time horizons

and improved understanding of the impact of logistical constraints on progress to elimination

should inform better policy and practice. Dynamic demographic processes govern levels of

vaccine-induced immunity across populations. In wildlife species with a marked seasonal

birth pulse like foxes (Peel et al., 2014), vaccination campaigns following the birth pulse,

when the largest number of animals can be vaccinated, play an important role in maintaining

high levels of herd immunity. Seasonal dynamics are common in a range of diseases and

hosts. Seasonal birth pulses are not limited to animal populations (Martinez-Bakker et al.,

2014). Martinez-Bakker et al. (2014) observed variation in seasonal birth pulses in human

populations across latitudinal gradients and found variations in the timing of birth pulses

had a significant impact on childhood disease dynamics. Seasonal changes may also influence

the spatial distribution of hosts. Seasonal spatial clustering of host populations has been

linked with outbreaks of measles in humans (Bharti et al., 2011), Ebola in Central African

gorillas (Caillaud et al., 2006), and mycoplasmal conjunctivitis in birds (Dhondt et al., 2005).

In chapter 3, I found that consecutive campaign sets (campaigns occurring in all regions in

the same month) and campaign sets following the birth pulse were the most important in

maintaining herd immunity and increasing the probability of elimination. In the absence of

vaccination, the birth pulse can swiftly reduce herd immunity as unprotected newborn foxes

enter the population. Sustained effort in all regions was necessary to eliminate the disease

from all regions. Incomplete vaccination extended time to elimination. The same if not

more effort was required to eliminate the disease after a campaign set was missed. Together,

these findings have important implications for the planning of ongoing control programmes

of fox rabies in Europe and may also apply to other diseases with seasonal dynamics; namely,

managers should strive not to miss campaigns, especially those following the birth pulse, and

should secure funding and plan for additional campaigns in case campaigns are missed for

logistical reasons.
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In chapter 4, I estimated the spatial correlation of rabies cases using a space-time stochastic

partial differential equation (SPDE) model. Rabies cases were clustered within 5 km of ea-

chother, with correlation declining out to 20km. By capturing the local dynamics underlying

spatial patterns in incidence, the space-time model I developed can be used to generate fun-

damental insights into local persistence and inform how newly introduced epidemics spread.

These insights could be particularly valuable for outbreak responses to incursions and be used

to inform the spatial extent of vaccinations. Field studies show that the aerial distribution

of baits containing vaccine is highly accurate even for complex spatial distributions (Breiten-

moser & Müller, 1997). It is therefore possible to explore different spatial configurations that

are not limited to administrative regions and use these findings to inform spatially targeted

vaccination programmes in Europe and elsewhere.

5.3 What advances have been made in the modelling of wildlife

diseases?

Epidemiological data are inherently complex due to variability arising from both the infectious

disease dynamics, including stochastic spatial transmission processes, and the observation er-

rors in detecting cases. Here I describe several reasons why the study of wildlife disease is

challenging, while noting that many of the same challenges exist for infectious diseases circu-

lating in human populations. First, there tends to be less information available for wildlife.

Observing transmission directly is rarely possible. In most cases, the state variable (disease

incidence) is only known through indirect measures, with the probability of observing the

disease varying over time. Because surveillance only captures a small proportion of circulat-

ing infections, failed invasions or low level persistence may be missed entirely. In addition,

surveillance data is often aggregated, making the study of local transmission processes chal-

lenging. Wildlife populations are not usually monitored, therefore key information regarding

their size and spatial distribution are unknown. Wildlife vaccination programmes are sim-

ilarly difficult to implement and monitor. Herd immunity in wildlife is more short-lived

compared to humans due to a higher population turnover. Wildlife movement also differs

compared to humans in terms of social groups, territory boundaries, limited dispersal etc.

(Altizer et al., 2003).

The sources of observation and process error mentioned above can be classified into uncer-

tainty due to incomplete/missing data and challenges in capturing local transmission pro-

cesses at coarse spatial resolution. I present several approaches applied during this thesis for

dealing with these challenges.
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5.3.1 Dealing with incomplete and missing data

The Bayesian framework provides a flexible approach for dealing with missing data and

applying statistical inference to mechanistic models. In the absence of data about a particular

quantity or process, a missing parameter or state can be estimated from a prior probability

distribution that reflect one’s beliefs about the missing quantity before some evidence (usually

the data being modelled) is taken into account. The use of informed priors, based on past

studies and the literature, directs the model fitting to biologically plausible parameter space.

An advantage of the Bayesian approach is that it allows different data sources and data types

to be included when constructing priors. It is also possible to estimate latent processes.

Latent processes are variables or states (when part or all of the population time series are

unknown) that are not directly observed but are inferred through statistical models from

observed processes. In this thesis I used two Bayesian approaches: State-space models and

latent Gaussian models.

State-space models are time series models that are able to accommodate uncertainty in epi-

demiological data through linked biological and observation process models. In the hierarchi-

cal Bayesian state-space modelling approach in chapter 2, I used studies from the literature

on rabies and foxes to inform key parameters including: birth rate, survival rate, carrying

capacity of the susceptible population, environmental noise (representing environmental fluc-

tuations in the birth rate), the transmission rate, and variations in the observation rate. One

of the difficulties I encountered in modelling these data was that certain parameters were

confounded, including population size, transmission rate, and observation probability. These

parameters were difficult to disentangle from one another because the same disease dynamics

could be explained by a larger population and smaller transmission rate, or a lower observa-

tion rate and higher transmission rate. Simulating data with set parameter values and then

assessing whether these parameters could be retrieved by the model was useful for deter-

mining what was confounded and what could be estimated using the hierarchical Bayesian

state-space model in chapter 2. The addition of other data was also useful in disentangling

the parameter estimates. In chapter 2, I was able to estimate the risk of transmission and

observation probability by using cross-sectional hunting data to inform the estimates of the

risk of transmission. This highlights how diverse sources of data can help fill gaps in an

analysis and allow parameters to be estimated that would otherwise be confounded.

The integrated nested Laplace approximation (INLA) approach developed by Rue et al.

(2009) allows for the modelling of hidden (latent) processes to the spatial domain. By fitting

latent Gaussian models in a Bayesian context in which spatial and temporal autocorrelation

in the latent field assume a shared spatial structure and are reflected by Gauss Markov

random fields (GMRF) (Rue & Held, 2005), hidden spatial and temporal processes can be

estimated. These may include effects of unobserved environmental processes (collectively

termed environmental noise) or hidden states (e.g. the susceptible population). In the absence
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of detailed information on the fox population, I simulated the host population stochastically

incorporating key demographic processes and environmental spatiotemporal variability using

estimates from the literature (chapter 4). Bayesian methods can be used to increase our

understanding of epidemiological processes by providing a flexible and practical approach to

fitting data that allows the user to make the best use of the data available.

5.3.2 Dealing with aggregated data

Many diseases spread through local contact, however incidence data is often collected at

coarser scales. Researchers therefore model disease at the population level, necessitating

the use of approximations to account for the scaling up of local processes. In chapter 2, I

found that accounting for heterogeneous mixing and local susceptible depletion was crucial to

capturing fox rabies dynamics. I was unable to fit the model assuming homogeneous mixing

as the model was not able to generate even a poor fit to data. In chapter 2, I used a decay

function to approximate the scaling of local interactions (heterogeneous mixing) within a

region. The biological rationale behind this function was to capture local susceptible depletion

and redundant infection of incubating individuals. I think this was an appropriate solution for

data aggregated at this level, however in chapter 4 I was able to explore in greater detail the

effect of scale on the estimate of parameters related to transmission and population mixing

using a regression model applied to incidence data aggregated at different spatial resolutions.

At very fine spatial scales (2x2 km2) the mixing term approaches but never reaches 1. This

suggests that even at small spatial scales a model with homogenous mixing does not capture

susceptible depletion or redundant infections. Overall, these findings show that reducing the

scale over which rabies incidence is modelled means that the transmission term equates more

to the actual number of contacts an infected individual makes, whereas at larger scales both

mixing and transmission need to be approximated. This takes the form of an increasingly

reduced transmission rate and level of population mixing, supporting my hypothesis that

local transmission dynamics underly patterns in infection observed at regional scales.

5.3.3 Modelling the spatiotemporal dynamics of disease

Encounter rates between hosts and their pathogens are influenced by the density and connec-

tivity of other populations, and these processes can fluctuate through time (Bolker & Grenfell,

1995; Keeling et al., 2001; Levin & Durrett, 1996; Rohani et al., 1999). There are several

ways in which space can be represented ranging from a continuous landscape to a network

(Keeling & Eames, 2005) or as a metapopulation (Hanski & Ovaskainen, 2000). There are

also a variety of ways to quantify the spatial components of transmission, including multiple

classes of host (Diekmann et al., 1990), spatial structure at the household and farm level

(Ball et al., 1997; Fulford et al., 2002; Keeling, 1999; Prentice et al., 2017) and mechanistic
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movement between groups (Cross et al., 2005; Hess, 1996; Keeling & Rohani, 2002; Thrall

et al., 2000). Here I briefly discuss the modelling approaches used to study rabies in the past.

I then present the approaches used in this thesis.

Rabies is well studied in the field of disease ecology and has yielded important insights into

our understanding of spatial infectious disease processes. Early approaches to understanding

fox rabies used reaction-diffusion models of coupled partial differential equations to simulate

rabies spread, that included terms for heterogeneity in the density of foxes (Murray & Se-

ward, 1992). Since then, spatially explicit individual-based models (IBM) have been used to

evaluate vaccination strategies for elimination (Eisinger & Thulke, 2008; Thulke et al., 1999)

and emergency vaccination (Eisinger et al., 2005; Thulke et al., 2008). Similar questions have

been approached in the study of raccoon rabies. Smith et al. (2002) developed a stochastic

spatial model of rabies spread through 169 townships in Connecticut. They found that large

rivers act as semipermeable barriers and together with long-distance dispersal account for

the observed irregular pattern of disease spread across the state (Smith et al., 2002). Russell

et al. (2005) extended the model in Smith et al. (2002) to forecast the spatial spread of rabies

in Ohio and were able to identify regions for vaccine delivery and expanded surveillance effort.

Movement and mating patterns revealed by genetic data have been applied to understand

raccoon rabies infectious disease dynamics in the presence of landscape heterogeneities and

quantify the permeability of barriers such as rivers (Rees et al., 2008, 2009). While these the-

oretical models have led to important insights into rabies dynamics, particularly on rates of

rabies spread into new populations, statistical inference approaches hold several advantages.

Theoretical models can tell us what the logical and quantitative consequences are of a set of

mechanistic assumptions and parameter values. In contrast, statistical inference approaches

can tell us which models and parameters most agree with the data within a predefined space

of models and parameters. Fitting models directly to data allows one to test hypotheses

which are provided in the form of priors.

I used two modelling approaches to understand the spatiotemporal spread of rabies: metapop-

ulation models using state-space modelling, and space-time models fit using R-INLA. Metapop-

ulation models explicitly model the spatial structure of processes by representing space as a

network of multiple subpopulations or patches with different rates of movement (or coupling)

between them (Bolker & Grenfell, 1996). This framework is convenient for understanding

the spatial coupling between regions and is useful for the planning of vaccination campaigns

conducted at a regional level. The state-space modelling approach allowed me to build a

detailed ecological (mechanistic) model of rabies dynamics with data. The underlying model

included a demographic model of the fox population and an epidemiological model of ra-

bies transmission. In this model local transmission was approximated by incorporating local

saturation and heterogeneous mixing into the transmission equation.

The second approach used was a space-time SPDE model fit using R-INLA developed by
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(Krainski, 2018). Krainski (2018) extended the SPDE model developed by Lindgren et al.

(2011) to simultaneously capture spatial and temporal autocorrelation rather than fitting

these processes separately. The temporal extensions offered by this non-separable model mean

that spatially-explicit dynamical problems can now be approached with numerical efficiency

and provide the opportunity to generate new insights into these processes through fitting

these models to data. Using this approach I was able to capture the spatiotemporal nature of

rabies transmission opening up exciting avenues for understanding epidemiological processes

in disease ecology, particularly for wildlife diseases such as rabies that spread through direct

contact. Estimates of spatial dependence can allow us to understand the spatial scale of

transmission and inform control strategies by identifying areas of high prevalence where

there is a greater risk of infection. The tradeoff with this approach is that it did not allow

for the susceptible and infected models to be directly and explicitly coupled. This means

that infected individuals were not removed from the susceptible population. Similarly, the

effects of density dependence on the susceptible population were not included due to similar

constraints. These two processes are undoubtedly important to the transmission of fox rabies

but play a minor role compared to the strong seasonal forcing of the birth pulse.

5.4 Future Work

Lessons learnt from the successful elimination of fox rabies in Europe can be used to increase

our understanding of disease persistence and inform control programmes inside and outside of

Europe including for domestic dog rabies which continues to be a major public health burden

in low- and middle-income countries but is now targeted for elimination. Further work could

focus on exploring how the approaches developed in this thesis can be applied to other areas

and diseases.

The hierarchical Bayesian state-space model presented in chapter 2 provides a useful approach

for modelling disease data at a regional scale. In chapter 3, I demonstrated how this model

can be applied to design the timing and placement of vaccination campaigns to improve

prospects of elimination. This model is easily scalable and may be applicable to other areas

throughout Europe and diverse rabies situations. Further work is required to explore what

size of regions this model is appropriate for and how well it performs in other areas. Similarly,

there is scope to include landscape heterogeneities, which can restrict/direct disease spread,

into this approach. A first test would be to incorporate landscape heterogeneities into the

connectivity matrix used to determine infected fox immigration rates between regions.

The space-time SPDE model in chapter 4 is able to capture key aspects of rabies dynamics

and provides the basis for extending this model to generate realistic spatiotemporal pre-

dictions. The development of this approach opens up an exciting opportunity to develop

strategic guidance for disease control programmes at a local scale. As a first step, this would
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include exploring and predicting the success of different vaccination strategies in Europe.

The approach is also highly flexible and can be expanded to fit more complex observation

processes and to explore the effects of habitat and landscape features on disease spread and

persistence by incorporating important covariate information. This would allow us to ex-

plore the impact of different physical barriers such as lakes, rivers, elevation, and habitat on

connectivity.

5.5 Conclusion

Data-driven modelling has been used to guide policy, design vaccination strategies (e.g. FMD

(Keeling et al., 2003), measles (Grais et al., 2008; Grassly et al., 2006), and predict the impacts

of control programmes (Hampson et al., 2009; Metcalf et al., 2012; Smith et al., 2009) for a

range of infections. My work adds to this body of knowledge by presenting approaches that

can be used to explore vaccination strategies, time to elimination, and capture regional and

local transmission dynamics. Specifically, in this PhD, I have added to our understanding

of how acute infectious diseases persist. I have also generated methods to guide vaccination

policies for disease elimination. The insights and approaches developed in this thesis have

immediate application to the design of cordon sanitaires in Europe and to strategies aiming

to rapidly eliminate re-emergence in high-risk countries such as Greece and Turkey. Through

my research I have been able to explore tradeoffs in the scale and duration of ORV efforts

and generate recommendations on the time horizon and investment required to achieve and

maintain freedom from disease. The space-time model developed in chapter 4 can be extended

to examine practical questions such as the best width of cordon sanitaires and placement

of vaccination campaigns with respect to landscape features. The approaches used in this

thesis also have wider implications and can be used to model and explore the dynamics of

a range of diseases. In particular, the additive structure of the INLA framework means

that heterogeneities (e.g. degree of seasonality in transmission, host demography, spatial

connectivity) can be easily added as covariates or spatial and temporal effects.

The analytical and statistical framework developed in this thesis is also applicable to an-

swering analogous questions for the elimination of dog-mediated rabies and for other vaccine-

preventable diseases. Large reductions in the incidence of rabies have been achieved through

mass dog vaccination, with disease eliminated in several countries, and regional elimination

now targeted (Vigilato et al., 2013). Moreover the World Health Organisation (WHO), Food

and Agricultural Organisation (FAO) and the OIE (World Organization for Animal Health)

have recently committed to the global elimination of canine rabies as a goal. The insights

from this PhD are therefore widely applicable to the study of acute infectious diseases and

the planning of vaccination strategies to eliminate disease.
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Chapter 2: Carrying Capacity Derivation
and Trace, Posterior, and Autocorrelation
Plots

A.1 Carrying Capacity Derivation

Starting with the following population model,

Nt+1 = Nt(s+
by

yr +Nt
) (A.1)

where Nt+1 is the population at time t + 1 and is a function of the survival probability s,

the maximum birth rate b, the reproductive population Nt, at time t which includes both

susceptible S and vaccinated V individuals. The scalar yr controls the strength of density

dependence in the respective regions r.

Setting this to equilibrium at carrying capacity (i.e. Nt = Nt+1 = K),

s+
by

yr +K
= 1 (A.2)

Rearranging gives

yr =
K(1− s)
s+ b− 1

(A.3)

The realised per capita annual birth rate for each region r with density dependence yr takes

the form:

αr,t =
byr

yr + Sr,t + Vr,t
(A.4)
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PARAMETERS

Here, the inclusion of S and V leads to density dependence, while yr controls the strength of

density dependence in the respective regions r.

A.2 Posteriors, Trace Plots, and Correlation of fitted param-

eters

Posteriors, trace plots, and correlation of the fitted parameters for rabies transmission h,

migration of rabid foxes between regions ρmax, fluctuations in fecundity due to environmental

noise τ , and the annual probability of observing rabies cases θ.

All models were fitted using the software JAGS (Plummer, 2002) which uses Gibbs sampling

to generate posterior distributions of the parameters given the likelihood, prior distributions

and the data itself. I ran the models for 3,000,000 iterations, with a burn-in of 30,000 and

a thin interval of 300 giving 10,000 samples. I inspected the model for convergence and

effective sample size. To account for the fact that rabies had been circulating in Germany

since the late 1940s, I started the model 10 years (120 time steps) prior to when the time series

began to allow the system to settle at an endemic equilibrium. Fitting of the model required

considerable computational time and a compromise in what parameters were estimated in

order for the model to converge.
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Introduction to the intrinsically stationary
iterated heat equation in Chapter 4

The non-separable space-time stochastic partial differential equation (SPDE) approach we

are using is based on an iterated intrinsically stationary heat equation with a stationary

spatially correlated driving noise (Krainski, 2018). It can be written as

τ(ρ
∂

∂t
−∆)αtu(s, t) = E(s, t) (B.1)

(1− γE∆)αE/2E(s, δt) = WE(s, δt) (B.2)

where WE is a space-time white noise process, E(s, t) is a spatially correlated stationary

process with white noise properties in time, αt and αE are smoothness parameters which

will usually be fixed when estimating the other model parameters, τ , ρ and γE which are

real positives related to the overall precision, temporal dependency and spatial dependency,

respectively. The full derivations of these equations are provided in (Krainski, 2018).
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Z., Pridotkas, G., Masiulis, M., Niin, E., Olševskis, E. et al. (2016). Rabies in the Baltic
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