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Abstract

Clustering algorithms attempt the identification of distinct subgroups within heterogeneous

data and are commonly utilised as an exploratory tool. The definition of a cluster is de-

pendent on the relevant dataset and associated constraints; clustering methods seek to

determine homogeneous subgroups that each correspond to a distinct set of characteristics.

This thesis focusses on the development of spatial clustering algorithms and the methods

are motivated by the complexities posed by spatio-temporal data. The examples in this

thesis primarily come from spatial structures described in the context of traffic modelling

and are based on occupancy observations recorded over time for an urban road network.

Levels of occupancy indicate the extent of traffic congestion and the goal is to identify dis-

tinct regions of traffic congestion in the urban road network.

Spatial clustering for spatio-temporal data is an increasingly important research problem

and the challenges posed by such research problems often demand the development of be-

spoke clustering methods. Many existing clustering algorithms, with a focus on accommo-

dating the underlying spatial structure, do not generate clusters that adequately represent

differences in the temporal pattern across the network. This thesis is primarily concerned

with developing nonparametric clustering algorithms that seek to identify spatially con-

tiguous clusters and retain underlying temporal patterns. Broadly, this thesis introduces

two clustering algorithms that are capable of accommodating spatial and temporal depen-

dencies that are inherent to the dataset. The first is a functional distributional clustering

algorithm that is implemented within an agglomerative hierarchical clustering framework as

a two-stage process. The method is based on a measure of distance that utilises estimated
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cumulative distribution functions over the data and this unique distance is both functional

and distributional. This notion of distance utilises the differences in densities to identify

distinct clusters in the graph, rather than raw recorded observations.

However, distinct characteristics may not necessarily be identified and distinguishable by a

densities-based distance measure, as defined within the agglomerative hierarchical cluster-

ing framework. In this thesis, we also introduce a formal Bayesian clustering approach that

enables the researcher to determine spatially contiguous clusters in a data-driven manner.

This framework varies from the set of assumptions introduced by the functional distri-

butional clustering algorithm. This flexible Bayesian model employs a binary dependent

Chinese restaurant process (binDCRP) to place a prior over the geographical constraints

posed by a graph-based network. The binDCRP is a special case of the distance dependent

Chinese restaurant process that was first introduced by Blei and Frazier (2011); the binD-

CRP is modified to account for data that poses spatial constraints. The binDCRP seeks to

cluster data such that adjacent or neighbouring regions in a spatial structure are more likely

to belong to the same cluster. The binDCRP introduces a large number of singletons within

the spatial structure and we modify the binDCRP to enable the researcher to restrict the

number of clusters in the graph. It is also reasonable to assume that individual junctions

within a cluster are spatially correlated to adjacent junctions, due to the nature of traffic

and the spread of congestion. In order to fully account for spatial correlation within a

cluster structure, the model utilises a type of the conditional auto-regressive (CAR) model.

The model also accounts for temporal dependencies using a first order auto-regressive (AR-

1) model. In this mean-based flexible Bayesian model, the data is assumed to follow a

Gaussian distribution and we utilise Kronecker product identites within the definition of

the spatio-temporal precision matrix to improve the computational efficiency. The model

utilises a Metropolis within Gibbs sampler to fully explore all possible partition structures

within the network and infer the relevant parameters of the spatio-temporal precision ma-

trix. The flexible Bayesian method is also applicable to map-based spatial structures and

we describe the model in this context as well.
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The developed Bayesian model is applied to a simulated spatio-temporal dataset that is

composed of three distinct known clusters. The differences in the clusters are reflected by

distinct mean values over time associated with spatial regions. The nature of this mean-

based comparison differs from the functional distributional clustering approach that seeks

to identify differences across the distribution. We demonstrate the ability of the Bayesian

model to restrict the number of clusters using a simulated data structure with distinctly

defined clusters. The sampler is also able to explore potential cluster structures in an

efficient manner and this is demonstrated using a simulated spatio-temporal data structure.

The performance of this model is illustrated by an application to a dataset over an urban

road network, that presents traffic as a process varying continuously across space and time.

We also apply this model to an areal unit dataset composed of property prices over a period

of time for the Avon county in England.
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Chapter 1

Introduction

1.1 Overview

Clustering is an unsupervised learning method that seeks to identify homogeneous clusters

in heterogeneous datasets. This thesis focusses on developing clustering algorithms that

are able to identify spatially contiguous clusters by accommodating spatial, temporal and

network dependencies in spatio-temporal data. The developed clustering methodologies are

primarily motivated by examples from traffic modelling for an urban road network. More

specifically, the examples focus on the spread of congestion across the network and highlight

the algorithm’s ability to identify regions that exhibit similar traffic congestion patterns.

Differences in the spread of traffic congestion are indicated by the varying levels of occupan-

cies across the urban road network and occupancy is the percentage of time that a location

on the network is occupied by vehicles. Levels of traffic occupancy across an urban network

vary over time and the development of appropriate clustering algorithms that adequately

incorporate spatial and temporal dependencies enable the study of traffic congestion pat-

terns. In general, spatio-temporal datasets are associated with observations recorded over

time for vertices arranged as in a grid-style graph network; we focus on spatial structures

where each vertex has a limited number of adjacent vertices. In this thesis, we demonstrate

applications to observations recorded over time for junctions in an urban road network and

also for observations over time associated with areal unit data.

15



CHAPTER 1. INTRODUCTION 16

The methods developed in this thesis seek to explore various scenarios of temporal patterns

associated with a spatial structure. Temporal patterns at spatial locations can be repre-

sented by summary statistics, the underlying multi-modal distributions or can be adapted

to appropriate transformations. Figure 1.1 displays temporal patterns that correspond to

three distinct clusters (as displayed in Figure 1.2) for two different scenarios. For exam-

ple, in Figure 1.1a, the observations over time have common variances but differ by the

mean values. This differs from Figure 1.1b, where the observations over time for each

cluster (identifiable by colour) vary by defined mean values and variance. The ability to

adequately accommodate the underlying patterns improves the quality of clustering output

and leads to meaningful clusters. For example, an algorithm that averages over a tempo-

ral pattern (for the dataset displayed in Figure 1.1b) would generate misleading clusters

that do not represent differences in distribution. Spatio-temporal datasets are composed

of multiple dependencies, pose multiple challenges to the development of spatial clustering

methods and benefit from a variety of techniques to adequately accommodate the under-

lying complexities. In addition, the number of clusters need not necessarily be known and

excessive reliance on personal input may lead to a biased and inaccurate selection. A clus-

tering algorithm that is able to determine the number of clusters in a data-driven manner

removes the need for this preliminary knowledge.

As an example, we utilise an urban road network in Downtown San Francisco. This network

is composed of 158 junctions and road segments between the junctions, where observations

are recorded over time for each junction. In Figure 1.2a, the network of interest is highlighted

within the Downtown San Francisco area using a brown border. A darker line within the

network highlights the Market Street and determines a clear division between the two regions

within the network of interest. The corresponding graph network is described in Figure 1.2b.

These 158 junctions are divided to form three clusters (A, B, C), where the clusters are

represented by the different colours (purple, green, yellow). Cluster A is formed over the

area below Market Street and represents a region with lower simulated occupancy levels. In

comparison, clusters B and C over the Financial district area represent a concentration of

higher vehicular occupancy levels. Cluster B is formed over both the top right and bottom
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Figure 1.1: Example scenario: temporal patterns for three different clusters (A, B and C).
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right region of the network and includes regions above the Market Street (Embarcadero)

and below the Market Street (South Beath, Rincon Hill). These clusters are differentiated

by differences in the mean and the variance.

(a) Downtown San Francisco

 

 

1

2

3

(b) Relevant graph network

Figure 1.2: Urban traffic network in Downtown San Francisco

In Figure 1.2, three junctions labelled as 1, 2 and 3 are highlighted in the network structure.

Each of these junctions are located in three different cluster regions.

Figure 1.3: Occupancy observations over time for junctions 1, 2 and 3 (as highlighted in Figure 1.2)
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More specifically, junction 1 is in cluster B, junction 2 is in cluster A and junction 3 is in

cluster C. The corresponding occupancy observations for these three junctions are presented

in Figure 1.3. These observations in Figure 1.3 represent temporal patterns that are similar

to Figure 1.1b and highlight the differences between distinct clusters.

We present nonparametric clustering algorithms in this thesis that seek to identify spatially

contiguous clusters using spatio-temporal data. More specifically, the clustering algorithms

are introduced to determine spatially contiguous clusters that represent distinct temporal

characteristics. We first introduce the functional distributional clustering algorithm devel-

oped within an agglomerative hierarchical clustering framework. The measure of distance

is defined using cumulative distribution functions (CDFs), where CDFs are estimated using

nonparametric kernel density estimators. To the best of our knowledge, a clustering ap-

proach that is both functional and distributional has not been previously introduced. This

notion of distance is able to retain differences in distribution over time for each spatial loca-

tion using densities and this method is particularly suitable for datasets that record consecu-

tive ‘jumps’ for observations over time. We also introduce a relevant three-dimensional plot

that is able to visualise these differences in densities over time for each cluster. However, this

two-stage ad hoc clustering approach is not implemented within a formal statistical frame-

work. A second method introduced in this thesis is a formal Bayesian approach, developed

as a nonparametric spatial clustering method, to determine spatially contiguous clusters in

a data-driven manner. This model seeks to accommodate the underlying spatial, temporal

and network dependencies in a more comprehensive manner. This flexible Bayesian model

first places a binary dependent Chinese restaurant process (binDCRP) over the graph as a

prior; the binDCRP seeks to incorporate the geographical constraints imposed by the nature

of the network. We also introduce a modification to the binDCRP that allows the formation

of new clusters to be controlled and enables the number of clusters to be restricted. In this

binDCRP-based model, the recorded occupancy observations over the network are assumed

to follow a Gaussian distribution. In an urban road network, it is reasonable to assume

that traffic occupancies in junctions are correlated to neighbouring junctions. To fully in-

corporate these spatial dependencies within the suggested clusters, a type of conditional
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auto-regressive (CAR) model is utilised to accommodate spatial dependencies and a first

order auto-regressive (AR-1) model for accommodating temporal dependencies. A relevant

spatio-temporal precision matrix is defined and the availability of a unique observation for

every space and time combination enables the utilisation of Kronecker product identities.

These relevant identities are implemented within the data model and improve the compu-

tational efficiency of the model. The Metropolis within Gibbs sampler is utilised to explore

all potential cluster structures within the network and also infers relevant parameters. The

posterior suggests a potential partition structure composed of spatially contiguous clusters.

In the Bayesian approach, the observations are assumed to follow a Gaussian distribution;

this is unlike the functional distributional algorithm framework that is developed to model

multi-modal distributions. The algorithms are motivated by different variations in temporal

data and are developed to meet challenges posed by the complex nature of spatio-temporal

datasets.

1.2 Thesis outline

The rest of the thesis is organised as follows. Chapter 2 provides a literature review of

commonly used clustering methods and their relevance to spatial and temporal datasets.

The literature review broadly describes partitional clustering, hierarchical clustering and

relevant clustering evaluation methods. This review also highlights Bayesian inference, mix-

ture models and nonparametric Bayesian approaches and their associated applications to

clustering.

Chapter 3 introduces a spatial clustering algorithm for spatio-temporal data motivated by an

example in traffic modelling. This two-stage clustering method labelled as the ‘functional

distributional clustering’ is implemented within an agglomerative hierarchical clustering

framework and utilises a unique measure of distance that is both functional and distribu-

tional. This method seeks to identify spatially contiguous clusters that are distinguished

by differences in density functions and are able to account for variations in the underlying

distribution (includes both mean and variances).
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Chapter 4 describes the Chinese restaurant process (CRP), an alternative view of the Chi-

nese restaurant process, the distance dependent Chinese restaurant process (ddCRP) and

introduces a special case of the ddCRP for spatial data called the binary dependent Chinese

restaurant process (binDCRP).

Chapter 5 introduces a flexible Bayesian model as a holistic approach to clustering spatio-

temporal data. This mean-based nonparametric clustering algorithm determines the num-

ber of spatially contiguous clusters from the underlying data. The Bayesian model places

a binDCRP prior over the spatial structure and assumes that the observations recorded

over time follow a Gaussian distribution. We introduce a relevant Metropolis within Gibbs

sampler to explore all possible clustering structures within the network and infer the pa-

rameters within the spatio-temporal precision matrix.

Chapter 6 demonstrates the performance of the binDCRP-based clustering using an appli-

cation to simulated data. The simulated data is utilised to compare the cluster structures

generated by the binDCRP based clustering approach and demonstrate the ability to re-

strict the number of clusters. The application to real data is illustrated using multiple

examples, including occupancy observations recorded for an urban road network and for

areal unit data associated with property prices that are recorded over a period of time.

Conclusions and future work are discussed in Chapter 7. Algorithms, figures and tables,

introduced through the thesis, are presented as lists, before the first Chapter.



Chapter 2

Review of clustering methods

2.1 Introduction

Clustering is a fundamentally important unsupervised learning problem (i.e., the group la-

bels are unknown) and clustering approaches typically seek to detect clusters (or groups)

within a heterogeneous dataset. Clustering is often utilised as a tool for exploratory analysis

and serves as a means to better understand recorded datasets. An identified cluster is typi-

cally associated with a set of distinct characteristics and common applications of clustering

include image segmentation (Orbanz and Buhmann, 2008, Zeng et al., 2014), clustering

related genes from gene expression data (Lu et al., 2018, McDowell et al., 2018), social

networks (Levine and Kurzban, 2006, van Dam and Van De Velden, 2015), and disease

modelling (Anderson et al., 2014, Wakefield and Kim, 2013). The definition of a meaning-

ful cluster is dependent on the context of the research question and the underlying data.

The need for clustering approaches to accommodate a combination of varied constraints in

complex datasets demands the development of bespoke clustering algorithms. For a general

description and more detailed comparison of existing clustering algorithms, see Alpaydin

(2009), Friedman et al. (2001). This chapter summarises several relevant and commonly

used clustering methods. Section 2.2 briefly discusses deterministic clustering approaches

(hierarchical, non-hierarchical, spectral), its implementation and evaluation of the cluster-

ing output. Section 2.3.1 summarises Bayesian inference and discusses finite mixture models

and non-parametric Bayesian methods.

22
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2.2 Deterministic clustering

This section reviews both hierarchical and non-hierarchical clustering algorithms including

K-means, agglomerative hierarchical clustering and spectral clustering.

2.2.1 Hierarchical clustering

Hierarchical clustering (Johnson, 1967) is a widely used unsupervised learning method and

produces not just one clustering but a family of clusterings. This method uses a series of

successive mergers to cluster a set of objects. Hierarchical clustering defines a measure of

dissimilarity between groups of data objects to generate a hierarchy of clusters. For a given

choice of dissimilarity measure (e.g., Euclidean) between objects, the dissimilarity matrix

D is defined as

D �

�
�������

d11 d12 . . . d1N

d21 d22 . . . d2N
...

...
. . .

...

dN1 dN2 . . . dNN

�
������

where dij � dpxi, xjq is the distance between objects xi and xj . The dissimilarity defined in

the matrix D between clusters (that are composed of such objects) is quantified in multiple

ways. This includes single linkage, complete linkage and group average, among other choices.

Formally, let two clusters be denoted as G and H and the distance between the two clusters

are as below. The single linkage dSLpG,Hq defines the dissimilarity of the closest pair of

objects in clusters G and H such that

dSLpG,Hq � min
iPG,jPH

dij .

The complete linkage dCLpG,Hq defines the dissimilarity of the furthest pair of objects such

that

dCLpG,Hq � max
iPG,jPH

dij .

Broadly, hierarchical clustering can be divided into agglomerative and divisive methods.

Single linkage and complete linkage are one among several agglomerative hierarchical clus-

tering methods. In an agglomerative hierarchical clustering method, each object is initially

assigned to its own cluster and iteratively merged at each level to the two closest clusters.
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This process continues until every object belongs to a single cluster and the algorithm gen-

erates a sequence of groupings. Similarly, in a divisive method all objects initially belongs

to a single cluster and clusters are formed by dividing the data at each iteration. The

process continues until each leaf has a single object such that clusters correspond to a set of

singletons. (The agglomerative hierarchical clustering algorithm adapted to accommodate

spatial and temporal constraints is described in detail in Chapter 3.)

The choice of dissimilarity metric and linkage within the hierarchical framework influences

the clustering output and relies on the nature of application. Both hierarchical and non-

hierarchical clustering approaches are commonly based on a notion of distance or dissimi-

larity measure that is defined between a set of objects. A class of distance measure, called

the Euclidean distance, is based on the locations of the objects. Non-Euclidean distance

measures are not based on the location of objects and the notion of average between the

objects need not necessarily be defined. Instead, this class of distance is based on the prop-

erties of the objects. Examples include the Jaccard distance, Cosine distance and the Edit

distance. A more detailed comparison of distance measures can be found in Ackermann

et al. (2010), Hassan et al. (2014), Jaskowiak et al. (2014), Shirkhorshidi et al. (2015). In

this thesis, we focus on utilising distance measures that summarise the underlying data as-

sociated with an object. A hierarchical clustering result can be visualised as a dendrogram,

where inner nodes represent nested clusters with varying number of objects that belong

to each cluster. In other words, a dendrogram organises clusters in a hierarchical manner

to provide a useful summary of the data. The hierarchical clustering algorithm provides

minimal guidance towards choosing the optimal number of clusters or the level at which to

cut the dendrogram. Different decisions about dissimilarities and choices about the cluster

structure of interest can often lead to vastly different dendrograms. Figure 2.1 displays a

dendrogram that represents a hierarchy of clusters and different clusters can be identified

depending on the decisions about the desired partition structure.
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Figure 2.1: Dendrogram that visually represents a hierarchical organisation of clusters

Hierarchical clustering algorithms are commonly adapted to spatial datasets by defining a

measure of distance that accommodates the geographical constraints. Spatially adjusted

hierarchical clustering methods are motivated by many applications (Dumont et al., 2018,

Zhang et al., 2017, Zhu and Guo, 2014) and various definitions for the distance measure are

defined within the method.

2.2.2 Non-hierarchical clustering

Non-hierarchical (or flat) clustering approaches partition a given set of objects into distinct

groups based on a defined distance or dissimilarity measure. K -means (Hartigan and Wong,

1979) is a commonly used partitional clustering method that seeks to cluster a dataset of

N unlabelled objects into K user-specified clusters. The K-means method requires K

number of clusters to be specified and an appropriate distance measure between objects to

be defined. The algorithm is dependent on an initial choice of K and the N objects are

partitioned into K distinct clusters. In each iteration, an object is assigned to a cluster

that has the closest defined centroid, over all clusters. The cluster centroid is then updated

to include the new object (if assigned to a new cluster). This is repeated until all objects

simply remain in the same cluster structure. This results in a set of clusters that are well-

separated. Figure 2.2 displays an application of K-means to a given set of data objects,

when an initial choice of two clusters is made. In Figure 2.2, the objects are initially assigned

to two specified clusters and successive iterations then assign the objects to the eventual
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clustering output highlighted in blue and red.

Figure 2.2: K-means clustering for initial choice of two clusters.

Spatially adjusted K-means approaches have been developed in combination with other

methods to incorporate the geographical constraints of the underlying data (Ilea and Whe-

lan, 2006, Mignotte, 2011, Xie et al., 2015); such approaches have often been motivated by

research questions in image segmentation. However, the reliance of the algorithm on the

initial choice of number of clusters and the dependence on the ability to compute a selected

summary value reduces the flexibility of the algorithm. In addition, K-means struggles to

detect non-spherical clusters (see spectral clustering in Section 2.2.3) and can lead to a mis-

leading clustering result. Both K-means and hierarchical clustering methods are commonly

combined with other algorithms to improve the quality of the clustering output.

2.2.3 Dimensionality reduction

Spectral clustering treats the process of clustering as a graph partitioning problem without

introducing assumptions about the form of the clusters. In spectral clustering, each element

in the similarity matrix Sij represents how similar data object i is to data object j. The

similarity matrix is then transformed to an eigenvector domain that allows the eigenvectors

to provide an ability to identify the most significant features within a dataset of objects.
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The clusters are identified and labelled using a clustering algorithm such as K-means. The

objects in the dataset are mapped to a low-dimensional space such that they are separated;

this enables them to then be easily clustered. For a more detailed explanation of spectral

clustering, see Ng et al. (2002), Von Luxburg (2007).

Spectral clustering has numerous applications (Bach and Jordan, 2006, Higham et al., 2007)

and seeks to cluster data with convex boundaries that may not necessarily be identified by

other methods. Spectral clustering methods are more flexible and capture many geometric

shapes. This is a class of methods that is based on eigendecompositions of the dissimilarity

matrices. They have shown superior empirical performance as compared to many competing

algorithms such as K-means (For a detailed comparison of spectral clustering methods to

K-means, see Verma and Meila (2003)). In Figure 2.3, data objects that are arranged as

a spiral are not recognised accurately by K-means but are distinguished by the spectral

clustering method.
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(c) Spectral clustering

Figure 2.3: K-means fails for datasets that are not linearly separable and is unable to identify two

spirals. As demonstrated, spectral clustering works well in this case.
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2.2.4 Clustering evaluation

Evaluation of clustering results is a complex process that can be performed internally as

well as externally. Differences in the chosen number of clusters can be due to a variety

of reasons within the clustering process. A well-performing clustering algorithm results in

clusters with good inter-cluster separation and intra-cluster homogeneity. Many evaluation

methods can be used to assess the quality of clustering algorithms based on internal criterion

such as the Davies-Bouldin index (Davies and Bouldin, 1979), Dunn index (Dunn, 1973)

and Silhouette index (Rousseeuw, 1987). These measures are also described in Chapter 3.

Internal indices can be used to choose the best clustering algorithm as well as the optimal

number of clusters. Since availability of information about datasets is often limited, inter-

nal validation methods are more useful. External indices are based on information about

the data, e.g., the optimal number of clusters are useful for selecting the best clustering

method. External evaluation measures compare the clustering output to a given true cluster

structure. For example, Rand index (Rand, 1971), Adjusted Rand Index (Hubert and Ara-

bie, 1985), Jaccard index (Downton, 1980), etc. For a comprehensive review of clustering

evaluation approaches, see Ansari et al. (2015), Kovács et al. (2005), Milligan and Cooper

(1987), Petrovic (2006).

2.3 Bayesian clustering

Hierarchical and non-hierarchical clustering approaches briefly described in Section 2.2 are

better suited for clusters that are well separated. However, they do not provide an assess-

ment of clustering uncertainties. Model-based clustering methods provide an approach that

utilises formal principles of statistical inference and clustering analysis in this framework

is based on a probability model. Mixture models are commonly used for the purpose of

clustering, are able to accommodate overlaps associated with clusters and these models are

suitable for data that cannot necessarily be represented by a simple distribution. Instead,

a population is treated as composed of several distinct sub-populations. In this section,

we briefly describe finite mixture models with a focus on its implementation in a Bayesian
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framework and also discuss nonparameteric Bayesian models. In Section 2.3.1, we first pro-

vide a brief introduction to Bayesian inference. A more comprehensive review of Bayesian

inference can be found in Gelman et al. (1995), Robert et al. (2010), Rogers and Girolami

(2016).

2.3.1 Bayesian Inference

The primary goal of statistical inference is to learn about the population parameter θ. In

both Bayesian and frequentist approaches to inference, we seek to make inferences about

a population parameter θ and a likelihood ppx | θq over the data x. In the frequentist

approach, the population parameter θ can be learned using method of moments or the

maximum likelihood and associated with point estimators, their variances and confidence

intervals. However, unlike the frequentist approach, the Bayesian framework treats the

population parameter θ as a random variable and this enables a probability distribution to

be specified for the parameter θ. Bayesian inference is concerned with the calculation of

the posterior distribution of unknown quantities, given both data and the prior opinions

on those parameters. Accordingly, the Bayesian framework paints a more comprehensive

picture of the underlying uncertainty.

The prior represents our beliefs of the distribution of θ before observing information about

the data x. ppθq, the prior, is the probability of the population parameter θ. The prior varies

according to the knowledge of the relevant unknown parameter. The likelihood, as a function

of parameters, is the probability of x conditioned on θ and determines the probability of

observing the data x under different values of the parameter θ. The posterior distribution

represents the beliefs of the distribution of the parameter θ, after observing the data. The

posterior distribution for θ is calculated as follows using the Bayes theorem:

ppθ | xq �
ppθqppx | θq

ppxq
9ppθqppx | θq. (2.1)

The above rule can be re-written as:

Posterior 9 Prior� Likelihood
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It is of interest to utilise a prior that has the same functional form as the likelihood, so

that the posterior distribution belongs to the same family of distributions as the prior dis-

tribution. Such priors are referred to as conjugate priors and enable the posterior to be

evaluated in a simple manner. However, in many situations, the posterior is intractable

and the posterior is approximated using sampling methods; intractable calculations are re-

placed by relevant simulated approximations. The most commonly used family of sampling

methods is Markov Chain Monte Carlo (MCMC) simulations (for a complete review, see

Gamerman and Lopes (2006)). MCMC methods were introduced by Gelfand and Smith

(1990), Tanner and Wong (1987) as an alternative to numerical integration and can be

traced back to Metropolis et al. (1953) and Hastings (1970).

2.3.1.1 Simulation

The posterior is generated by prior assumptions and the likelihood function defined over

the data. However, its exact computation is often dependent on cumbersome integrations.

Instead, one has to adopt other simulation-based strategies to obtain the posterior. Monte

Carlo methods are simulation-based approximation techniques that are motivated by the

law of large numbers and refers to any method that utilises random sampling. However, gen-

erating independent and identically distributed samples is not necessarily feasible. Markov

chain Monte Carlo (MCMC) methods are capable of drawing samples from the posterior.

These draws are dependent and form a Markov chain. More formally, a Markov chain is

said to be a sequence of random variables for which:

p
�
θpt�1q | θp0q, θp1q, . . . , θptq

	
� p

�
θpt�1q | θptq

	

This is such that that the distribution of θpt�1q depends on only the previous draw θptq and

is independent of all other draws θ0, θ1 . . . θpt�1q. The probability of each current draw is

conditionally dependent on the previous draw.

2.3.1.2 Metropolis-Hastings

The Metropolis-Hastings algorithm (Hastings, 1970) constructs a Markov chain such that

for a given state θptq, the candidate state θpt�1q is drawn from a proposal distribution
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qpθpt�1q | θptqq. This candidate state θpt�1q is accepted with probability r such that

r � min

#
1,
ppθpt�1qqq

�
θptq | θpt�1q

�
ppθptqqq

�
θpt�1q | θptq

�
+
, (2.2)

where ppθpt�1qq is the target distribution at the state θpt�1q. When the state θpt�1q is

rejected, the chain continues to remain at the current state θptq. In order to accept the

candidate state with probability r, the acceptance probability r is compared to a random

variable u that follows a uniform distribution, Unifp0, 1q, such that the candidate state

θpt�1q is accepted if u   r. A Metropolis-Hastings step is summarised as below.

Algorithm 1: Metropolis-Hastings step

• Draw the candidate θpt�1q from qpθpt�1q | θptqq

• Compute r � ppθpt�1qqqpθptq|θpt�1qq
ppθptqqqpθpt�1q|θptqq

• Accept the candidate state with probability mint1, ru, otherwise remain at θt when

θpt�1q � θptq.

In general, the Metropolis-Hastings algorithm (Hastings, 1970) is a generalisation of other

commonly utilised MCMC algorithms. This includes the Metropolis algorithm (Metropolis

et al., 1953), where the proposal distribution is symmetric such that q
�
θpt�1q | θptq

�
�

q
�
θptq | θpt�1q

�
.

2.3.1.3 Gibbs sampling

A special case of the Metropolis-Hastings algorithm is introduced as the Gibbs sampler such

that the proposal is always accepted. Each iteration of the Gibbs sampler cycles through

the conditional distribution of all the parameters. In each iteration, new parameters are

generated and the defined conditional distributions to be utilised for the next iteration are

updated.

The sampler is suitable for situations where the joint distribution of the parameters of in-

terest is difficult to sample from. For example, let p pθ1, θ2, θ3q be a joint distribution that is

difficult to sample from. However, the conditional distributions p pθ1 | θ2, θ3q, p pθ2 | θ1, θ3q
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and p pθ3 | θ1, θ2q are possible to simulate from and are often referred to as full conditionals.

The advantage of Gibbs sampling is that it simplifies a complex high-dimensional problem

and breaks it down into simpler low-dimensional problems. Formally, the algorithm is de-

scribed as follows such that θ consists of b blocks at iteration t.

Algorithm 2: Gibbs sampling step

• Draw θ
pt�1q
1 from p

�
θ1 | θ

ptq
2 , θ

ptq
3 , . . . , θ

ptq
b

	

• Draw θ
pt�1q
2 from p

�
θ2 | θ

pt�1q
1 , θ

ptq
3 , . . . , θ

ptq
b

	

• . . .

This corresponds to one iteration of the Gibbs sampler and produces a single draw

of θpt�1q; the above set of iterations are repeated many times.

This completes one iteration of the sampler and produces one draw of θpt�1q. The Gibbs

sampler is based on a property of the full conditionals as specified by the Hammersley-

Clifford theorem; the full conditionals fully specify the joint distribution. However, it is not

to be assumed that a set of proper well-defined conditional distributions will determine a

marginal distribution. As a variation of Gibbs sampling, the Metropolis-Hastings sampler is

utilised within the Gibbs sampler for updates of one or more of the conditional distributions.

Such an approach is referred to as the Metropolis within Gibbs sampler. Other variations

include the blocked Gibbs sampling and the collapsed Gibbs sampler.

2.3.1.4 MCMC convergence

An integral step of every MCMC is to check for evidence of convergence; Markov chains

typically do not converge to the posterior distribution immediately. Sampling output from

the posterior is visualised as a trace plot and relevant trace plots are typically examined

to visualise the performance of the MCMC. Ideally, trace plots should look like ‘fat hairy

caterpillars’ and Figure 2.4a displays an example of such a trace plot. An example of poorer

performance of the MCMC is displayed in Figure 2.4b. It is often desirable to discard the

beginning values of the Markov chain and this idea is known as burn-in. This eliminates
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dependency on arbitrary initial values from the results. Burn-in is not necessarily required

since a chain that is run long enough can reduce the impact of the initial values and lead

to the same result. However, the removal of the initial values of the chain speeds up the

process of achieving a valid result.

(a) (b)

Figure 2.4: Visual analysis: Trace plot

Besides visual diagnostics, more formal statistical diagnostic tests are also utilised to assess

chain convergence. A popular statistic is the Gelman-Rubin diagnostic test (Brooks and

Gelman, 1998, Gelman et al., 1992) that is based on analysing multiple simulated Markov

chains. This is done so by a comparison of variances within each chain and the variance

between chains for each model parameter. Extensive deviations between the estimated

inter-chain and intra-chain variances indicate poor convergence of the chains. Examples of

other diagnostic tests include the Geweke test (Geweke et al., 1983) and the Raftery and

Lewis test (Raftery and Lewis, 1991). For a comparative review of convergence diagnostics,

see Cowles and Carlin (1996).

Consecutive draws to generate a posterior sample from the MCMC chain can be highly

correlated. This is referred to as auto-correlation and measures the dependency among the

chains. A proposal being rejected very minimally is not necessarily positive since it indi-

cates that the proposals are too cautious. This represents very small movements around
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the posterior distribution and also leads to high auto-correlation. High auto-correlation

diminishes the effectiveness of the number of samples, the goal of MCMCs is to simulate

i.i.d. samples drawn directly from the target distribution. Ideally, samples should show

low correlations, lower auto-correlation typically indicates better mixing of the chain and a

faster rate of convergence.

2.3.2 Clustering

A probability-based approach to clustering overcomes many of the challenges that are found

in the deterministic approaches to clustering (e.g., K-means). In this model, the data

distribution is assumed to be a weighted sum of K component distributions. In the Gaus-

sian mixture model (GMM), K component distributions follow a Gaussian distribution and

each component corresponds to a cluster in the data. More formally, a GMM is given by

ppx | Θq �
Ķ

l�1

αlppx | θlq where K denotes the number of Gaussian sources in the GMM,

αl is the weight of each Gaussian and θl � pµl,Σlq represents the relevant parameters.

The inference of parameters in Gaussian mixture models utilises computationally intensive

methods such as MCMC methods, EM algorithm, etc. Finite mixture models have been

extended and applied to datasets that pose spatial and temporal constraints (Blekas et al.,

2004, Zhang et al., 2007). In parametric models (e.g., Gaussian mixture models), select-

ing the number of parameters is often difficult. Nonparametric or Infinite mixture models

(Rasmussen, 2000) have several advantages over the finite mixture models; primarily that

the number of clusters is determined from the dataset. Bayesian approaches to mixture

modelling allow for the complex structure to be simplified through the use of latent vari-

ables. The Bayesian approach has been argued to be particularly suitable for scenarios

where the number of components is unknown (Richardson and Green, 1997). In general,

nonparametric does not mean ‘no parameters’, rather it means that the number of param-

eters grows with the number of data points. For example, a growing number of parameters

can be in the context of more friend groups in social networks (Lim et al., 2016) or var-

ious representations within image segmentation results (Ghosh et al., 2011, Orbanz and

Buhmann, 2008), etc. Such models have an infinite capacity to include number of clusters
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and numerous nonparametric Bayesian models can be derived by starting with a standard

parametric model. Nonparametric Bayesian models are an approach to constructing very

flexible models and are able to better deal with the complexities of real data.

A common assumption is independence such that the joint probability can be expressed as

the product of the probabilities of each data object.

ppx1, . . . , xN q �
N¹
i�1

ppxiq

Exchangeability is a weaker assumption that nonparametric Bayesian methods exploit. A

data sequence is said to be infinitely exchangeable, if the distribution of any N data points

is not altered when permuted. For any permutation σ,

ppx1, . . . , xN q � ppxσp1q, . . . , xσpNqq (2.3)

In many statistical analyses, the random variables are independent and identically dis-

tributed (i.i.d.) and i.i.d. random variables are always infinitely exchangeable. However,

an infinitely exchangeable sequence is not necessarily i.i.d. and this broader concept is

used to define the De Finetti’s theorem. The De Finetti’s theorem states that a sequence

px1, . . . , xN q is infinitely exchangeable if and only if, for all N ,

ppx1, . . . , xN q �

» N¹
i�1

ppxi | θqppθqdθ (2.4)

The motivation to utilise parameters and likelihoods and to place priors is justified by the

De Finetti’s theorem. The prior need not be finite dimensional and this provides a justifi-

cation for non-parametric Bayesian priors.

A mixture model with infinite number of components is applied to a finite training set and

results in only a finite number of components being used to model the data. As a Bayesian,

model, the most common prior to use is the Dirichlet process (DP). The DP also induces

a distribution over the partition of integers called the Chinese restaurant process (CRP).

The Chinese restaurant process (CRP) (Pitman et al., 2002) is a discrete time stochastic
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process that is utilised to produce exchangeable data and illustrates a generative model for

data (this process is described in Chapter 4). The literature for Dirichlet processes and the

alternatives to defining the DP is extensive and we do not attempt to provide an overview

in this chapter. For a more comprehensive review, see Teh (2011). The generative model for

observations from a CRP partitioning is referred to as a Dirichlet Process Mixture model

(DPMM) (Rasmussen, 2000). This process is also known as the infinite Gaussian mixture

model, such that the number of clusters can arbitrarily grow, to better accommodate data

as needed, along with the assignment of relevant data points. Finite representation of infi-

nite clusters avoid the problem posed by infinite number of parameters for inference.

However, the infinite Gaussian mixture model and relevant extensions have multiple restric-

tions. More specifically, the classical CRP does not have the ability to incorporate depen-

dency information from non-exchangeable data. Non-exchangeable data includes datasets

that have constraints (e.g., measurements at different geographic locations, observations

recorded over time, network connectivity) such that the order does matter. Exchange-

ability is an assumption that is beneficial for many reasons, however, the data in many

domains are not exchangeable. The traditional CRP based mixture model cannot incor-

porate such non-exchangeability. Models built on an assumption of exchangeability have

limited applications and lifting the restrictions for domain specific applications can lead to

very complex models. The distance dependent Chinese restaurant process (ddCRP) was

introduced by Blei and Frazier (2011) to represent an alternative strategy for modelling

non-exchangeability. This process expands the available infinite clustering methods and

allows for numerous non-exchangeable distributions as priors on partitions. A detailed re-

view of other priors related to the ddCRP as well as other priors adapted to deal with

non-exchangeability is presented in Blei and Frazier (2011). The ddCRP has been utilised

previously for image segmentation (Ghosh et al., 2011), clustering in combination with

spectral methods for dimension reduction (Socher et al., 2011), a hierarchical generalisation

(Ghosh et al., 2014), partitioning voxel measurements (Janssen et al., 2016) and clustering

in phylogenetics (Cybis et al., 2018). A summary of the CRP, the ddCRP and a special case

of the ddCRP that allows for the modelling of spatial constraints in a network is described
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in Chapter 4.



Chapter 3

Functional Distributional

Clustering

3.1 Introduction

Clustering is an unsupervised learning method that seeks to identify clusters with homo-

geneous characteristics. Conventional methods of this exploratory approach include hier-

archical (Ward Jr, 1963) and partitional (e.g., K-means (MacQueen et al., 1967), etc.)

techniques. A brief description of these deterministic clustering methods is included in

Chapter 2. Hierarchical methods (divisive or agglomerative process) generate a set of clus-

ters in which smaller clusters are nested within larger clusters and a dendrogram illustrates

the arrangement of clusters generated by the clustering framework. On the other hand,

K-means is a partitioning process which assigns objects to a pre-specified number of clus-

ters. The ability of distance-based clustering methods such as hierarchical clustering and

K-means to identify distinct clusters in heterogeneous data depends on the distance or

dissimilarity measure (Hartigan, 1975, Kaufman and Rousseeuw, 2009, Shirkhorshidi et al.,

2015). This chapter focusses on the development of a spatially adjusted clustering method

within a hierarchical framework. Spatially adjusted clustering algorithms based on com-

monly used distance measures (e.g., Euclidean) might fail to preserve characteristics about

the underlying data. Distance measures determined using nonparametric estimators do

not make any assumptions about the distribution (e.g., Gaussian) of the data. Assuming

38
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Gaussianity implies that differences between clusters should manifest in differences between

means. However, domain knowledge might suggest that differences occur not just in the

mean but also other aspects of the distribution such as spread and dispersion. A histogram

is a widely used non-parametric density estimator and histogram clustering methods de-

fine a distance measure in numerous ways. For example, Kim and Billard (2013) define

a distance between cumulative density functions using non-overlapping subintervals rather

than individual observations and Irpino and Verde (2006) proposed a distance using the

Wasserstein metric within an agglomerative hierarchical clustering framework. A measure

of distance determined over data divided into classes (e.g., intervals and histogram-valued

observations) enables a clustering algorithm to identify clusters that possess varying an-

alytic characteristics but correspond to the same mean or median value. Kernel density

estimators are visually similar to smoothed histograms and unlike histograms are smooth

and provide a continuous representation. Numerous clustering algorithms exist for func-

tional data (Jacques and Preda, 2014, Tarpey and Kinateder, 2003) and relevant measures

of dissimilarity for functional data (Chen et al., 2014, Tzeng et al., 2016) have been defined

between curves (e.g., over a time domain) to determine subgroups of representative curves

that differ in shape and variation. However, fewer spatially adjusted clustering algorithms

have been developed for functional data (Delicado et al., 2010, Giraldo et al., 2012, Hag-

garty et al., 2015, Secchi et al., 2011).

This chapter proposes a functional distributional clustering algorithm in an agglomerative

hierarchical clustering framework such that a unique measure of distance is defined be-

tween conditional cumulative distribution functions (CDFs), where CDFs are estimated

at different locations in space. A distance measure, defined using cumulative distribution

functions rather than probability density functions (for a review see Cha (2007)), enables

spread and dispersion (e.g., temporal patterns) in the distribution to be retained such that

comparisons are not restricted to differences in summarised values (e.g., mean). This hi-

erarchical clustering algorithm defines a measure of distance that is both functional and

distributional since it defines a conditional cumulative distribution function using local av-

erages of cumulative distribution kernels and density kernels over the recorded time series



CHAPTER 3. FUNCTIONAL DISTRIBUTIONAL CLUSTERING 40

and seeks to identify spatially contiguous clusters that correspond to groups of curves with

distinct characteristics. To the best of our knowledge, a clustering approach that is both

functional and distributional has not been previously introduced. This chapter focusses on

the development of a relevant approach within a spatially adjusted agglomerative hierarchi-

cal clustering framework. The study seeks to highlight the use of hierarchical clustering as

an exploratory tool and demonstrates the ability to visualise the differences in distribution

over time, within the spatially contiguous clusters, using a series of three-dimensional plots.

For our analysis, we assume that a network is composed of sensors that are arranged in

a way that can be used to define a neighbourhood structure, or to be more precise, an

adjacency matrix. Formally, we assume that the network of sensors can be represented as

an undirected graph with sensors as vertices and edges linking neighbouring sensors. Let

G � pV,Eq be a graph, where V is a set of vertices and E is a collection of edges. Assume

that V � tv1, . . . , vNu and the adjacency matrix of graph G is a square matrix W with

elements Wij � 1 if tvi, vju P E (i.e., if there is an edge between vertices vi and vj) and

Wij � 0 otherwise. The examples in this chapter come from traffic modelling, where we

assume that the urban road network is made up of junctions and road segments that link

relevant junctions. Occupancy is the percentage of time that a location on the road is occu-

pied by vehicles and a measurement of occupancy that describes congestion is available for

each junction and unit of time. Junctions which are joined directly by a road segment are

considered to be adjacent and our objective is to identify contiguous areas of similar traffic

patterns. The development of clustering algorithms for urban road networks, using recorded

occupancy observations, is of fundamental importance to traffic operators and traffic control

centres (TCC) (Ji and Geroliminis, 2012, Saeedmanesh and Geroliminis, 2016, 2017). This

is because the shape of aggregated models is affected by the spatio-temporal distribution of

congestion in traffic networks; these models are used for traffic monitoring by traffic engi-

neers and TCC. Traffic congestion usually propagates upstream in the network, to random

locations, which can lead to noisy measurements being recorded by traffic sensors about

adjacent regions. The spatial sensing area cannot necessarily be characterised by a regular

disk or a radius. Therefore, geometric assumptions related to a measure of distance (e.g.



CHAPTER 3. FUNCTIONAL DISTRIBUTIONAL CLUSTERING 41

Euclidean) are not necessarily appropriate for monitoring spatio-temporal phenomena (such

as traffic flow in urban traffic networks). Clusters obtained from the proposed method can

be used from traffic control centres to apply innovative traffic management policies such

as traffic signal control and perimeter control in order to mitigate traffic congestion and

improve mobility (see e.g., Aboudolas and Geroliminis (2013), Aboudolas et al. (2009), Da-

ganzo (2007)).

Figure 3.1 presents different scenarios that describe the distribution of occupancy observa-

tions for an individual junction. Successive jumps in occupancy levels over a period of time

would be lost by clustering methods that fail to accommodate the distribution of occupancy

levels and only include summary values. Instead, the distance measure incorporates dis-

tributions by utilising functions that are defined to account for temporal patterns. Figure

3.1a displays occupancy data, where levels of occupancy range between 0% and 100% and

the overall mean value is 47%. In addition, Figure 3.1b, Figure 3.1c and Figure 3.1d also

display occupancy observations that have a mean value of 47%. A clustering algorithm ap-

plied to the overall mean of these time series would be unable to detect differences between

the four scenarios. Instead, the measure of distance in our approach, that is both functional

and distributional, is able to account for dynamics in the recorded observations and retain

information about underlying temporal patterns.

For example, Figure 3.1a and 3.1b have the same mean function over time: in both figures,

the mean is around 30% for the first three hours and around 60% afterwards. The difference

between the two scenarios is in the dispersion. Thus a clustering algorithm that is based

on the mean function would not be able to detect a difference between these two scenarios.

The marginal distribution of occupancies (ignoring time) is the same for scenarios displayed

in Figure 3.1a and 3.1c. Only a clustering method that can capture temporal dynamics can

differentiate between these two scenarios. The proposed method is both functional and

distributional, so it would be able to detect differences between any of the four scenarios.

Figure 3.2 displays a series of three-dimensional plots to describe the scenarios in Figure

3.1a, Figure 3.1b, Figure 3.1c and Figure 3.1d. Each plot displays a unique set of curves that
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Figure 3.1: Each scenario displays occupancy measurements recorded over six hours (21600 seconds)

for an individual junction. The mean value over observations in each scenario is � 47%

vary in shape, concentration of occupancies and range of values over time. The differences

within each plot in Figure 3.2 highlights the need for our functional distributional approach

as opposed to other available hierarchical clustering algorithms. The example in this chapter

focusses on observations associated with a grid style urban traffic network and is described

in the context of traffic modelling. However, the functional distributional clustering method

is applicable to any dataset associated with a spatial structure (e.g., data recorded over grid

style networks or areal unit data for maps) and where observations are recorded over time

for each unit.

The rest of the chapter is organised as follows. Section 3.2 provides a background of den-

sity estimation and summarises histograms and the kernel density estimator. Section 3.3

proposes the functional distributional clustering algorithm and the relevant bandwidth se-

lection method. This section also describes methods to choose the optimal number of

clusters and a measure of clustering similarity between identified clusters and a given set
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Figure 3.2: Series of three-dimensional plots corresponding to the scenarios displayed in Figure 3.1.

of ‘true’ clusters. The functional distributional clustering algorithm and corresponding

components described in this chapter are available for implementation in the R package

FdiClust at https://github.com/AshwiniKV/FdiClust. Section 3.4 presents an appli-

cation of this algorithm to pre-defined data generated from an accurate micro-simulator

for a 2.5 square miles network area in downtown San Francisco, CA. The simulation study

evaluates the performance of the algorithm by comparing pairs of clusters obtained using

distance measures with and without CDFs. The simulation study is also extended to in-

clude a comparison to clusters obtained from algorithms that use functional data analysis

(FDA) related techniques within a spatially adjusted agglomerative hierarchical clustering

framework. We show that the functional distributional clustering algorithm beats FDA-

based approaches (that use principal component analysis (PCA) or the B-spline basis) as

well as a recently developed Ward-like hierarchical clustering method named ClustGeo. In

Section 3.5, we illustrate the application of this algorithm to real data for the same traffic

https://github.com/AshwiniKV/FdiClust
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network and duration, but with no knowledge of underlying ‘true’ clusters. The clustering

algorithm serves as an exploratory tool, where the clustering output and the series of three

dimensional plots are used to highlight differences in the distribution across time. Finally,

in Section 3.6, we summarise the algorithm and highlight its advantages and disadvantages.

3.2 Background: Density estimation

Density estimation is an important topic in statistical research and numerous approaches to

density estimation exist including Parzen windows, histograms and kernel density estima-

tors. A primary component for the development of the functional distributional clustering

algorithm is the utilisation of non-parametric estimators. A non-parametric density esti-

mator, unlike a parametric estimator seeks to estimate the density directly from the data

without assuming a particular functional form for the underlying data. Let there exist a

random variable X, where fpxq is the probability density function (PDF) of X. The PDF

fpxq satisfies two conditions namely, fpxq ¥ 0 and
³
fpxqdx � 1. In general, determined

probabilities relate to the area under the defined PDF and can also be represented using

a cumulative distribution function (CDF). Let the CDF be defined as F pxq �
³x
�8 fpuqdu

and F pbq � F paq �
³b
a fpxqdx. In this section, we focus on the ability to construct the

probability density estimate over the set of data points.

3.2.1 Histograms

The simplest form of a nonparametric estimator of a probability distribution is the his-

togram. A histogram is constructed by considering equal sub-intervals from the relevant

data i.e., bins and the relevant end point of the bins. In other words, the histogram re-

quires two parameters to be defined, the bin width and the starting position of the first

bin. To construct a simple example, first assume that Xi P r0, 1s such that ppxq is non-zero

within [0, 1]. The histogram seeks to partition the set [0, 1] into M bins and this leads to

a partition as

B1 �

�
0,

1

M



, B2 �

�
1

M
,

2

M



, . . . , BM�1 �

�
M � 2

M
,
M � 1

M



, BM �

�
M � 1

M
, 1

�
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The density for a point x P Bl is estimated from the histogram as

p̂pxq �
number of observations within Bl

n
�

1

length of bin
�
M

n

ņ

i�1

IpXi P Blq

This density estimator assigns an equal density value to points within the bin. The bin Bl

contains x and the ratio of observations within this bin is 1
n

°n
i�1 IpXi P Blq. The ratio of

observations should be equal to the density estimate times the bin length 1
M .

Histogram-based clustering techniques have been implemented in combination with many

methods (e.g., hierarchical, support vector machine, K-means, etc.); such methods have

been primarily motivated by problems in image segmentation research. However, the his-

togram has several drawbacks; primarily the density estimate depends on the starting po-

sition of the bins. In addition, the discontinuities of the estimate are not dependent on

the underlying density; making understanding the structure of the data challenging. For a

more comprehensive review of histograms and its utilisation in clustering, see (Freedman

and Diaconis, 1981, Tsai and Chen, 1992).

3.2.2 Kernel density estimators

The kernel density estimator serves as a way to alleviate the problems posed by the com-

monly used histogram method. Kernel density estimators are non-parametric density esti-

mators that do not have a fixed functional form and determine an estimate over all available

data points. The kernel density estimator removes the dependence on the starting points

of the bins (in histograms) by defining a kernel function at each data point.

Formally, kernel density estimators smooth the contribution of each observed data point

over the local neighbourhood of the relevant data point. Let the kernel function be denoted

as K and its bandwidth be denoted as h. A random sample of data exists from an unknown

distribution and is said to have a probability distribution function denoted by fpxq and a

cumulative distribution function F pxq. The estimated density at any point x can also be



CHAPTER 3. FUNCTIONAL DISTRIBUTIONAL CLUSTERING 46

written as:

f̂hpxq �
1

nh

ņ

i�1

K

�
x� xpiq

h
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Figure 3.3: Commonly used nonparameteric estimators

Let
³
Kptqdt � 1 and Kpxq ¥ 0, i.e., @ -8   x   8 K is a non-negative function that is

symmetric around zero and integrates to 1. The Gaussian kernel function is most commonly

chosen but other kernel functions including Uniform, Triangle, Epanechnikov, Rectangular,

etc can also be chosen. Figure 3.4 displays densities estimated using different kernel func-

tions, namely the Gaussian, Epanechnikov and Rectangular kernel functions.
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Figure 3.4: Estimated densities using different kernel functions
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The quality of a kernel estimate is directly affected by the choice of the value of bandwidth

h. This leads to a need to choose the appropriate bandwidth such that it is not too small

or not too large. Small values of the bandwidth h lead to estimates that are spiky, while

larger values of the bandwidth h obscure the structure of the underlying data. In other

words, small values of the bandwidth undersmooth the data, larger values oversmooth the

data. In Figure 3.4, the plots display density curves at different values of the bandwidth

(h � 0.001, h � 0.3 and h � 9).
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Figure 3.5: Density curves at different bandwidth values

Ideally, a formal process of choosing the bandwidth h minimises the error between the esti-

mated density and the true density. A natural measurement of discrepancy for estimation

at a single point x is defined using the mean square error (MSE). In this chapter, the func-

tional distribution clustering method utilises a distance measure that is defined using the

kernel density estimator and the rest of the chapter describes this method and its relevant

components.

3.3 Clustering model

This section proceeds in two stages to set out the proposed functional distributional cluster-

ing method that identifies spatially contiguous clusters across the network and incorporates

temporal patterns of recorded observations. The first stage utilises a hierarchical agglom-

erative clustering algorithm and generates a series of cluster configurations. The clustering
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algorithm is built on a measure of distance that is defined using estimated conditional cumu-

lative distribution functions (CDFs) for each cluster. The measure of distance is determined

utilising functions calculated over individual observations rather than aggregated summary

values. In the second stage, we use a clearly defined criterion to determine the optimal

number of clusters and generate a distinct partition structure of the network. We also

describe a measure of clustering similarity to examine the accuracy of identified clusters.

3.3.1 Hierarchical agglomerative clustering algorithm

In a hierarchical clustering approach, a partition occurs at each level to determine non-

overlapping clusters. Let observations for sensor j at time ti be denoted by xij , where

i � 1, . . . , n and j � 1, . . . , N and Table 3.1 describes the recorded observations.

i 1 2 3 . . . n

times (ti) t1 t2 t3 . . . tn

sensor readings (j � 1) x11 x21 x31 . . . xn1
...

...
...

...
...

...

sensor readings (j � N) x1N x2N x3N . . . xnN

Table 3.1: Representation of the observations xij recorded over time ti � t1 . . . tn for j � 1 . . . N

sensors.

The probability density function (PDF) for observations relevant to sensor j at x0 is esti-

mated by f̂ pjqpx0q �
1

nhx

ņ

i�1

φ

�
xij � x0
hx



, where the contribution of observation xij to an

estimate at x0 depends on how apart xij and x0 are and φp.q is a standard normal PDF.

Hall et al. (2004) and Li and Racine (2008) propose that the probability density function

(PDF) conditional on ti is estimated at x0 as

f̂
pjq
ti
px0q �

1

hx

ņ

i�1

φ

�
xij � x0
hx



wt0ptiq. (3.2)

In Equation (3.2), wt0ptiq �

φ

�
t0 � ti
ht



ņ

η�1

φ

�
tη � ti
ht


 , ht is a bandwidth defined for time and hx is a

bandwidth which corresponds to recorded observations. The basic kernel density estimator



CHAPTER 3. FUNCTIONAL DISTRIBUTIONAL CLUSTERING 49

is modified to reasonably account for variation over time when applied to observations

recorded over time. Let a set of clusters Cl�1 be represented by C1 � tC1, . . . , Cku. In

an agglomerative hierarchical clustering framework, each cluster is initially composed of

a single sensor; the set of clusters can accordingly be written as C1 � tC1, . . . , Cku �

tt1u, t2u, . . . , tNuu. In this case, k is equal to N . At subsequent levels of the algorithm,

clusters are consolidated and eventually form a single larger cluster (k � 1) composed of all

N sensors in the network such that C1 � tC1u. The conditional probability density function

for a cluster C is determined over observations recorded for relevant sensors and is defined

as f̂
pCq
ti

px0q �
1
|C|

¸
jPC

f̂
pjq
ti
px0q. The estimator of the conditional cumulative distribution

function (CDF) is defined as

F̂
pjq
ti
px0q �

ņ

i�1

Φ

�
xij � x0
hx



wt0ptiq, (3.3)

where Φp�q is a standard normal CDF and F̂
pCq
ti

px0q �
1
|C|

¸
jPC

F̂
pjq
ti
px0q. The relevant theo-

retical properties for the estimated conditional density functions are described in Fan and

Yim (2004). A single observation for each sensor provides less information about temporal

patterns compared to a single value from F̂
pjq
ti
px0q and the conditional CDF retains all the

sensor readings over time.

Within the hierarchical clustering framework, a pair of clusters C1 and C2 are merged if

they have the lowest distance compared to distances calculated for all other pairs of clusters.

The distance d is built using a L1 norm, rather than the more commonly used L2 norm

or squared L2 norm and distance d is determined over estimated conditional CDFs rather

than individual observations. Let the distance d between cluster C1 and cluster C2 at time

ti be defined as the area between the two CDFs, i.e.

d
�
F̂
pC1q
ti

p�q, F̂
pC2q
ti

p�q
	
�

» ���F̂ pC1q
ti

px0q � F̂
pC2q
ti

px0q
��� dx0 � ∆

Ş

s�1

���F̂ pC1q
ti

pξsq � F̂
pC2q
ti

pξsq
���

(3.4)

for a regular grid ξ1, . . . , ξS with ξs�1 � ξs � ∆.

Accordingly, let D be a distance matrix, where distance between cluster C1 and C2 in the
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matrix is defined as the sum of the above distance over time t1, . . . , tn.

DC1,C2 �

$''&
''%

ņ

i�1

d
�
F̂
pC1q
ti

p�q, F̂
pC2q
ti

p�q
	

if C1 � C2

8 otherwise

(3.5)

and C1 � C2 indicates that calculating the distance between clusters is feasible only if a

link exists between any two sensors in the clusters. This condition ensures that identified

clusters are spatially contiguous and any two clusters are merged at each iteration such that

they correspond to the lowest distance d. The CDFs corresponding to the clusters C1 and

C2 are also merged as:

F̂
pC1YC2q
ti

px0q �
|C1|

|C1| � |C2|
F̂
pC1q
ti

px0q �
|C2|

|C1| � |C2|
F̂
pC2q
ti

px0q. (3.6)

Updated CDFs are then utilised to calculate the distance d at each subsequent iteration and

this process continues until a single larger cluster containing every sensor in the network is

obtained.

Algorithm 3: Functional distributional clustering

Input : Initialize Cl�1, where C1 � tC1 . . . , Cku. At this level, the Nth sensor

belongs to the kth cluster, i.e., C1 � tC1 . . . , Cku � tt1u, . . . , tNuu.

Output: Hierarchical set of clusters, ζ.

1 if |Cl| ¡ 1 then

1. For all pairs of clusters, compute distance d as defined in Equation (3.5).

2. Set tC1, C2u = argmin
C1,C2PCl

pDC1,C2q to identify the pair of clusters that correspond to the

minimum distance.

3. Merge the pair of clusters C1 and C2 as C1 Y C2.

4. Update Cl to ClztC1, C2u Y tC1 Y C2u and F̂
pC1q
ti

px0q and F̂
pC2q
ti

px0q using Equation

(3.6).

2 else

3 return ζ;

4 end
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3.3.2 Bandwidth selection

This section addresses the selection of smoothing parameters or bandwidths to estimate

the conditional PDF f̂
pjq
ti
px0q defined in Equation (3.2). A data driven method such as

cross-validation (Bowman, 1984, Rudemo, 1982) selects the bandwidth that corresponds to

the minimum of the expected loss function and avoids the arbitrary selection of bandwidths

that can lead to under smoothing or over smoothing. We use an extended cross-validation

method developed by Fan and Yim (2004) to select optimal bandwidths hx and ht and

denote an estimated conditional PDF for a cluster C dependent on the bandwidths as

f̂
pCqh
ti

px0q. The integrated squared error (ISE) is defined as

ISE �
1

|Cl|
¸
CPCl

�
1

n

ņ

i�1

»
tf̂

pCqh
ti

px0q � f
pCq
ti

px0qu
2 dx0

�

�
1

|Cl|
¸
CPCl

�
1

n

ņ

i�1

»
f̂
pCqh
ti

px0q
2 dx0 �

2

n

ņ

i�1

»
f̂
pCqh
ti

px0qf
pCq
ti

px0q dx0

�
1

n

ņ

i�1

»
f
pCq
ti

px0q
2 dx0



.

The last term is not dependent on bandwidth h and accordingly can be ignored in the

bandwidth selection process. A reasonable estimator of the ISE is

CV phq �
1

|Cl|
¸
CPCl

�
1

n

ņ

i�1

»
f̂
pCqh
ti

px0q
2 dx0 �

2

n|C|

ņ

i�1

¸
jPC

f̂
pCqh
ti,�ij

pxijq

�
, (3.7)

where f̂ti,�ij estimates the conditional density function over the data sample, where the

data sample excludes the observation xij for sensor j. The optimal bandwidth parameter

corresponds to the minimum cross validation error ĥ � argmin
h�

CV ph�q. The optimal

bandwidths, i.e., hx and ht are determined through a grid search. One could argue that the

bandwidth should be re-tuned for each update in the cluster structure; however, to reduce

the computational footprint we determine the optimal bandwidth only at the beginning

of the algorithm. Towards the end of the algorithm, clusters are substantially bigger and

there could be scope to further reduce the bandwidths. We have found that using the same

bandwidth throughout the algorithm usually gives similar clusterings.
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3.3.3 Optimal number of clusters

A major challenge in clustering is the identification of the optimal number of clusters. In

hierarchical clustering algorithms, the assignment of parameters to determine clusters often

relies on the number of ‘true’ clusters, which may not necessarily be available or easily

defined. Methods of cluster validation to determine the ‘true’ number of clusters include

the CH index (Caliński and Harabasz, 1974), Dunn index (Dunn, 1973), Davies-Bouldin

index (Davies and Bouldin, 1979), and the Silhouette index (Rousseeuw, 1987) and these

methods seek to identify compact and well separated clusters, where clusters are deemed

to be more distinct for smaller values of the index. In comparison to other methods, the

time complexity for computation of the Davies-Bouldin index was found to be far lower

than for the Silhouette method (Petrovic, 2006). Alternatively, the gap statistic (Tibshirani

et al., 2001) compares within-cluster errors in the observed data to within-cluster errors

calculated for data from an appropriate null reference distribution and removes the need for

calculating validation scores. However, the need to bootstrap samples in the gap statistic

approach leads to the method being rather computationally expensive and inefficient for

calculating the number of clusters.

We modify the clustering balance criterion (Jung et al., 2003), a method similar to the

Davies-Bouldin index, to compare the inter-cluster distances and intra-cluster distances in

a computationally efficient manner for larger datasets. Let the aggregated CDF over all

sensors in a cluster C be defined as F
pCq
ti

p�q � 1
|C|

¸
jPC

F
pjq
ti
p�q. Using this definition, let Λ �

ņ

i�1

¸
CPCl

¸
jPC

d
�
F
pjq
ti
p�q, F

pCq
ti

p�q
	

be the intra-cluster distance sum calculated for all k identified

clusters in Cl. The inter-cluster distance sum is defined by Γ �
ņ

i�1

¸
CPCl

d
�
F
pCq
ti

p�q, F
pC0q
ti

p�q
	

,

where F
pC0q
ti

p�q � 1
|Cl|

¸
CPCl

F
pCq
ti

p�q. Within an agglomerative hierarchical clustering frame-

work, the intra-cluster sum Λ has zero distance for singleton clusters and this value is

maximised when all sensors in the network belong to a single cluster. On the other hand,

the inter-cluster sum Γ is minimised when all sensors belong to a single cluster and max-

imised when each sensor is a singleton cluster. Accordingly, the clustering balance is defined
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as ε � αΛ�p1�αqΓ, where weights α and 1�α are assigned to Λ and Γ. In the examples,

we used an α value of 0.5. The hierarchical clustering algorithm described above yields a se-

quence of nested partitions. We then retain the partition minimising the above modification

of the clustering balance criterion, which is deemed to have optimal number of clusters.

3.3.4 Measure of clustering similarity

The optimal number of clusters determines objects within each cluster by utilising the con-

structed hierarchy of clusters. This set of defined clusters and their elements are compared

against external criteria such as a pre-defined cluster structure or known set of labels. Let a

set of sensors in the network be defined as J � t1, 2, 3, . . . Nu and U and V are two partitions

of J , where U � tU1, . . . , Uuu is defined as the set of u true clusters and V � tV1, . . . , Vvu

represents a clustering result composed of v clusters. Let a be the number of pairs of sensors

in J that are in the same cluster within U and the same cluster within V, b be the number

of pairs of sensors in J that are in the same cluster in U but not the same cluster in V,

c be the number of pairs of sensors in J that are not in the same cluster in U but in the

same cluster in V, and d be the number of pairs of sensors in J that are in different clusters

for both U and V. Similarity measures between clustering results and ‘true’ clusters can

be calculated using a method called the Rand index (RI) (Rand, 1971). The Rand index

is then defined as RI � a�d
a�b�c�d , where a+d refers to the number of agreements between

the clustering output of the developed algorithm and the given truth and a � b � c � d

includes both agreements and disagreements. Values of the RI lie between 0 and 1, where 0

represents little agreement and 1 represents strong agreement. However, the expected value

of the RI for two random partitions does not necessarily take a constant value and the RI

approaches an upper limit of unity as the number of clusters increases. A modified version

of the RI was introduced by Hubert and Arabie (1985) to account for problems within the

RI method and is called the Adjusted Rand index (ARI). In general, a larger ARI indicates

a higher agreement between two partitions and the ARI has a maximum value of 1 but can

also take negative values. This index is typically recommended as the choice for measuring

agreement between any two clustering results even when the number of clusters are different
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(Milligan and Cooper, 1986) and is computed using:

pa� b� c� dqpa� dq � rpa� bqpa� cq � pc� dqpb� dqs

pa� b� c� dq2 � rpa� bqpa� cq � pc� dqpb� dqs
. (3.8)

3.4 Simulated occupancy data

In this section, the group of sensors arranged as a network correspond to junctions within

an urban road network, where adjacent junctions are linked by road segments. An urban

road network constitutes a network which can be represented as an undirected graph with

junctions as vertices and road segments that link relevant junctions as edges.

3.4.1 Data

We simulate occupancy data over a 2.5 square miles network area in Downtown San Fran-

cisco, California composed of N � 158 junctions and 316 links to reflect a heterogeneous

network composed of homogeneous clusters. Correlated occupancy data is generated in R

version 3.4.2 (R Core Team, 2013) using a spatio-temporal precision matrix to define three

distinct clusters in the network, where within each cluster in Cl, a given state space model

generates zero and one values corresponding to defined occupancy levels. We assume that

each junction within an urban road network has a maximum of four links to adjacent junc-

tions. The presence of a limited number of road segments between junctions in the network

leads to a sparse spatial precision matrix modelled as a type of conditional auto-regressive

(CAR) model (Leroux et al., 2000). The temporal precision structure is defined as a first or-

der auto-regressive model (AR-1) and occupancy observations for each junction are recorded

over a period of six hours (21600 seconds) with a sampling rate of 60 seconds. Figure 3.6

illustrates the simulated occupancy data to represent distinct clusters. Occupancy values

(20 – 50%) displayed in purple for cluster A are typically lower and variations in jumps

between successive observations reduce over time. The values (40 – 100%) plotted in yellow

for cluster C are composed of both higher and lower values, with differences between suc-

cessive observations reducing marginally over time. Occupancy values (70 – 100%) in green

for cluster B are typically higher in the first three hours and display greater variation (50

– 90%) over the next three hours.
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Figure 3.6: Occupancy measurements generated for three distinct clusters.

3.4.2 Results

The proposed algorithm introduced in Section 3.3.1 is applied to simulated occupancy ob-

servations generated within the urban network as described in Section 3.4.1. Each junction

is initially treated as a singleton within the agglomerative clustering framework. The condi-

tional CDF F
pCq
ti

px0q for a cluster C is estimated over a sample of 360 observations (sampling

rate of 60 seconds), where bandwidths hx = 10 (occupancies recorded in %) and ht = 6

(time in seconds) are selected using the extended cross validation method described in Sec-

tion 3.3.2. Conditional CDFs are estimated for each cluster and stored outside individual

iterations of the algorithm to improve the proposed algorithm’s computational efficiency.

The distance d is calculated between adjacent clusters using Equation (3.4) and (3.5) and

individual clusters are merged at each iteration of the algorithm corresponding to the min-

imum distance. This process stops when all junctions belong to a single larger cluster and
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we obtain a series of merged clusters from the hierarchical clustering algorithm.
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Figure 3.7: Clustering algorithm applied to data simulated in the network for a period of six hours.

Figure 3.7 displays networks with clusters identified by three different clustering algorithm

scenarios and the defined ‘true’ clusters. These ‘true’ clusters in Figure 3.7a correspond to

the simulated occupancy data in Figure 3.6. Figure 3.7b displays clusters identified when

the distance measure uses Equations (3.2) and (3.3) with only observations over time and

without the functions φ and Φ. Cluster C is not identified as distinct from cluster B and

the distributional only algorithm is unable to determine the ‘true’ clusters. In particular,
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the algorithm is unable to identify the cluster C which is composed of occupancy observa-

tions that successively jump between high and low values. Figure 3.7c depicts three clusters

identified by the functional only algorithm, where Equation (3.3) is determined using obser-

vations aggregated over time. In Figure 3.7c, the identified clusters reflect the diminished

ability of the algorithm to distinguish between cluster C and cluster B as compared to the

clusters identified in Figure 3.7d. The clustered network in Figure 3.7d displays results of

the functional distributional clustering algorithm that calculates F
pCq
ti

px0q using all compo-

nents in Equation (3.3). This algorithm is functional and distributional because distance

measures are calculated using conditional CDFs for occupancy observations recorded over

time. The clusters identified by the functional distributional algorithm are nearly equiva-

lent to the three ‘true’ clusters displayed in Figure 3.7a. This indicates the ability of the

functional distributional algorithm to recover the true spatially contiguous clusters when

each cluster corresponds to a distinct distribution of occupancy observations.

The optimal number of clusters within the network is determined using both the com-

monly used gap statistic and a clustering balance criterion defined in Section 3.3.3. For

each clustering algorithm, the gap statistic and clustering balance criterion are calculated

for scenarios ranging from when the network has ten clusters to a scenario when the all

the sensors belong to a single cluster. Figure 3.8a and Figure 3.8b display the clustering

balance criterion and gap statistic against the corresponding number of clusters for results

determined by the functional distributional clustering algorithm. The clustering balance

criterion selects k � 3 for α = 0.5 and for higher and lower values of α. The gap statistic

chooses minimum k such that Gap(k) ¥ Gap(k � 1) – sk�1 and this rule also determines

that k � 3. However, determining bootstrap samples for the gap statistic is computationally

expensive and we utilise the clustering balance criterion to determine the optimal number

of clusters in Section 3.4.3 and Section 6.

To compare the clusters identified by the functional and distributional clustering algorithm

to the ‘true’ clusters displayed in Figure 3.7a, we calculate the Adjusted Rand index (ARI)

discussed in Section 3.3.4. ARI indicates agreement between a set of clusters V that is de-

termined by the functional distributional clustering algorithm and a set of ‘true’ clusters U

and is equivalent to 0.93. Similarly, V determined by the functional only algorithm results
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Figure 3.8: Methods to determine the optimal number of clusters.

in an ARI of 0.68 for three clusters and V determined by the distributional only algorithm

leads to an ARI of 0.57 for two identified clusters. The functional only algorithm is unable

to correctly identify all the junctions belonging to cluster B and the distributional only

algorithm is able to only identify two out of three distinct clusters.

Figure 3.9 displays three-dimensional density plots for occupancy observations that corre-

spond to clusters identified by the functional distributional algorithm in Figure 3.7d. These

plots describe a relationship for each cluster between 100 occupancy observations (values

between 0% and 100%), a time period of six hours (21600 seconds) with a sampling rate

of sixty seconds and estimates for a Gaussian kernel density (over occupancy observations

within the relevant cluster) with bandwidth equivalent to 15%. This value of bandwidth

enables meaningful comparisons among curves within a cluster; lower values result in ‘chop-

pier’ density curves that inhibit the ability to identify differences. In Figure 3.9, the sub-plot

for cluster A represents observations with density levels between 0.015 and 0.025 but are

concentrated at lower occupancy levels between 10% to 40%. There is also a steady increase

in density values over six hours. The sub-plot for cluster B displays observations with den-

sity levels reaching approximately 0.020 and occupancy levels concentrated between 30%

to 75%. This sub-plot also reflects the concentration of occupancy data for cluster B in

Figure 3.7d towards higher levels over the first few hours and a decrease in concentration
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reflected by lower density over the latter half of the time period. The sub-plot for cluster

C represents varied density and occupancy levels through the observed time period. This

corresponds to the variation identified within the cluster C in Figure 3.7d and reflects the

ability of the clustering approach to adequately represent the differences in the shapes of

curves and the spread of occupancy values over time described in Figure 3.6.
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Figure 3.9: Three-dimensional density plots for distinct clusters determined using the functional

distributional clustering algorithm.

Figure 3.10 summarises the distribution of occupancy observations for the three clusters A,

B and C. The first boxplot, for cluster A, describes a range over lower levels of occupancies.

The boxplots for cluster B and C are drawn over similar ranges of occupancies; cluster C does

have a lower minimum occupancy level compared to cluster B. In addition, the boxplot for

cluster C displays a skewed distribution as compared to the reasonably symmetric boxplot

for cluster B.
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Figure 3.10: Boxplot that summarises the occupancy observations for three clusters A, B and C.

These results indicate the temporal patterns of simulated occupancy observations for the

San Francisco grid style network on a weekday morning. Within the network, the traffic

is simulated such that the initial traffic at the start of the time period is concentrated

above Market street. More specifically, this is represented by the yellow and green cluster.

The green cluster displays greater occupancy values in the network over the period of six

hours. In the network, as displayed in Figure 3.11, the green cluster corresponds to areas

both above (includes the area around the Embarcadero) and below the Market street divide

(includes the East Cut and South Beach). Based on the geographical constraints of the

network, the spread in traffic is expected towards the green cluster from the yellow cluster.

The Financial district area is composed of both the yellow cluster and a part of the green

cluster. This is reflected by the multiple density curves in the three dimensional plots

displayed in Figure 3.9. The yellow cluster has higher occupancies (at values similar to the

green cluster) between 8:00 am to 10:00 am; this typically indicates people’s commute to

work and resulting increase in vehicular traffic. The subsequent fall in occupancy before

the spike in occupancy suggests the increase in traffic over lunchtime. This is unlike the

region presented as the purple cluster that has fewer number of restaurants and retail areas

and accordingly has far lower occcupancy levels.
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Figure 3.11: Downtown San Francisco Network with highlighted region of interest

3.4.3 Simulation study

This section provides a quantitative analysis of the proposed functional distributional clus-

tering algorithms to validate the clustering results in Section 3.4.2 for varied/various datasets.

To this end, we simulated datasets as described in Section 3.4.1 with seeds from one to hun-

dred to evaluate the developed algorithm’s ability to identify clusters. The determined

cluster structure is compared to the ‘true’ number of clusters as described in Figure 3.7a.

For a given seed, the optimal number of clusters is determined using the defined clustering

balance criterion. At the selected number of clusters, the ARI measures its agreement to

the ‘true’ number of clusters. We average the ARI over all simulation results and present a

comparison between the functional distributional algorithm, the functional only algorithm,

and the distributional only algorithm. The mean and corresponding standard error of the

ARI for all three algorithms are presented in Table 3.2. In addition, the 25th quantile, the

median, and the 75th quantile of the determined optimal number of clusters are described

for different algorithms.
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ARI Number of Clusters

Algorithm Mean SE 25th Q 50th Q 75th Q

Functional Distributional 0.85 0.174 3 3 4

Functional only 0.69 0.176 2 3 3

Distributional only 0.59 0.070 2 2 2

Table 3.2: Results aggregated over 100 simulations with varied seeds for the functional distributional

clustering algorithm, functional only algorithm, and distributional only algorithm.

The functional distributional algorithm generates clusters that are reasonably similar to the

defined ‘true’ clusters, as indicated by the aggregated ARI value equivalent to 0.85. The

functional only algorithm has a lower mean ARI equivalent to 0.69 while the distributional

only clustering algorithm struggles to identify three clusters with ARI equivalent to 0.59.

This is reflected by the lower ARI and the suggested two optimal clusters. The functional

distributional clustering method is also compared to other algorithms that utilise functional

data analysis (FDA). The FDA-based approaches in this comparison study are implemented

within a spatially adjusted agglomerative hierarchical clustering framework. In other words,

the two-stage approach to clustering functional data is composed of a step using functional

data analysis (FDA) techniques (Ramsay and Silverman, 2007) and a second step for the

implementation of hierarchical clustering. More specifically, the study considers coefficients

that describe the data, such that coefficients can be principal component scores resulting

from principal component analysis (PCA) or coefficients from basis approximations (e.g.,

B-splines). In Figure 3.12a, the coefficients of basis expansions that represent functional

data are utilised to define the distance and a clustering result shows two identified clusters.

In Figure 3.12b, PCA within an agglomerative hierarchical clustering framework is imple-

mented for spatio-temporal data to identify heterogeneity within the network. Figure 3.12b

displays clustering output when principal component scores that explain highest percentage

of variance are used within the clustering framework and the relevant clustering output has

an ARI equal to 0.92.

In Figure 3.13, we apply the ClustGeo (Chavent et al., 2017) method to the same simu-
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Figure 3.12: FDA bases approaches implemented within the agglomerative hierarchical clustering

framework

lated dataset and set the parameter α � 0.99 in order to encourage the incorporation of

neighbourhood constraints. This Ward-like hierarchical clustering algorithm generates three

clusters (in Figure 3.13a) and is evaluated against the true cluster structure to determine

an ARI = 0.21. Similarly, an output with four clusters (in Figure 3.13b) leads to ARI =

0.33 and output with five clusters (in Figure 3.13c) leads to ARI = 0.30.
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Figure 3.13: ClustGeo: Ward-like hierarchical clustering algorithm

We present simulation results for the FDA-based approaches and the ClustGeo in Table 3.3;

the simulations are conducted exactly as mentioned earlier in this section. Table 3.3 presents

the mean and corresponding standard error of the ARI for the B-spline based clustering

approach, PCA based clustering approach and the ClustGeo method. The results of the B-

spline based clustering approach indicate that it performs similar to the functional approach
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results in Table 3.2. The PCA based clustering approach has performance that is nearly

equal to the distributional approach.

ARI Number of Clusters

Algorithm Mean SE 25th Q 50th Q 75th Q

Using coefficients of B-Spline basis 0.63 0.143 2 2 2

Using principal component (PC) scores 0.58 0.258 3 4 8

ClustGeo 0.32 0.023 4 4 5

Table 3.3: Results aggregated over 100 simulations with varied seeds for FDA-based clustering

methods and the ClustGeo method.

3.5 Application

3.5.1 Occupancy data

To illustrate the functional distributional algorithm, we apply the developed clustering

method to occupancy data generated for the 2.5 square miles network area in downtown San

Francisco, CA. High resolution spatio-temporal data for urban road networks are not readily

available in open data sources and so we use an AIMSUN microscopic traffic simulator to

mimic relevant origin-destination traffic demand scenarios. These scenarios are simulated

to broadly represent three different clusters. 120 observations are recorded over six hours

(21600 seconds) with a sampling rate of 180 seconds and we seek to identify the differences

in occupancy levels that reflect the spread of congestion across the network. Since data

within the first two hours is limited to very low levels of occupancy across the network,

the functional distributional algorithm is applied to 80 occupancy observations recorded

between 10 am to 2 pm (14400 seconds). In general, it is expected that the traffic increases

through the day with a peak in the concentration of occupancy around noon. This increase

in occupancy could reflect the traffic at lunch time in the downtown area of San Francisco.
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3.5.1.1 Results

In the described dataset, the underlying structure in the network for the ‘true’ number of

clusters is unavailable and making assumptions of the partition structure is challenging.

Rather, given the nature of occupancy data, we expect the functional distributional clus-

tering algorithm would determine more relevant clusters than algorithms with differently

defined distance measure scenarios. The clustering algorithm is implemented using the dis-

tance measure specified in Equation (3.5) and bandwidths are calculated using the extended

cross validation method described in Section 3.3.2. Selected bandwidths for hx and ht are

equivalent to 15 (occupancy in %) and 7.5 (time in seconds) and conditional functions are

estimated over the sample of 80 occupancy observations. The clustering balance criterion

suggests optimal number of clusters for the functional and distributional algorithm, func-

tional only algorithm and distributional only algorithm. In Figure 3.14c, the functional

distributional clustering algorithm partitions a network into nine clusters with three main

clusters (green, purple, and orange). This is in contrast to the clusters obtained in Figures

3.14a and 3.14b, where the clustering balance criterion suggests a single larger cluster for

the distributional only clustering algorithm and a main larger cluster along with several

smaller clusters for the functional only clustering algorithm.

Figure 3.15 displays the corresponding density distributions for the clusters determined

by the functional distributional clustering algorithm. Within a sub-plot for an individual

cluster, Gaussian density curves (bandwidth equivalent to 15%) over relevant occupancy

observations are displayed at defined time points (at 30 minute intervals) over the period

of four hours (14400 seconds). This value of the bandwidth enables density curves to re-

tain differences within each curve and allows for comparisons between clusters. Individual

curves also describe the concentration of occupancy and their corresponding values between

0% and 100% through the day. The curves in the three-dimensional sub-plot for the green

cluster have a higher magnitude in density levels as compared to the sub-plots for the or-

ange and purple cluster. The sub-plot for the green cluster also displays variations in the

concentration of occupancies and the range of occupancy values over four hours. The occu-

pancy levels are concentrated at higher levels closer to mid-day before falling back to the
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Figure 3.14: Clustering results using micro-simulated data over four hours (14400 seconds).
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Figure 3.15: Three dimensional plots for the identified clusters in Figure 3.14c.

lower levels, as presented for earlier in the day. A similar set of variations can be viewed

in the sub-plot for the yellow cluster but far more pronounced. The purple cluster has

occupancy values that are concentrated at higher values for the majority of the time time

period and the change in occupancy levels is not entirely concentrated around the middle of

the day. On the other hand, the orange cluster has occupancy values that are concentrated

far more equally at lower and higher values and with lower change in the distribution of

density values through the period of four hours. The sub-plots on the third row display

density curves and variations in occupancy levels that correspond to the smaller distinct

clusters in the lower part of the network. In general, these plots are able to identify the

expected overall traffic patterns within the San Francisco Network. The traffic is concen-

trated above the Market area in the morning with a spread in traffic to other part of the

network through noon. The spread is gradual, reaching areas below the Market area and

towards the east. The levels of occupancy steadily increase from 10:00 am (the start of this

period from 10:00 am to 2:00 pm is marked as 0 in Figure 3.15), reach a peak around noon



CHAPTER 3. FUNCTIONAL DISTRIBUTIONAL CLUSTERING 68

and start to diminish by 2:00 pm. These differences in temporal patterns are differentiated

by the functional distributional clustering method, as opposed to a static spatially-focussed

clustering method.

3.6 Discussion

This chapter proposes a functional distributional clustering algorithm within an agglomer-

ative hierarchical framework to identify spatially contiguous clusters using spatio-temporal

data. The algorithm seeks to identify homogeneous regions within a heterogeneous network

such that individual clusters reflect differences recorded in the readings of the sensor. In

the traffic example studies, these clusters correspond to distinct temporal patterns in oc-

cupancy observations and congestion levels through the network. Within the framework

of this clustering approach, the algorithm is both functional and distributional, such that

a distance measure is defined utilising cumulative distribution functions, to account for

temporal patterns present in the available data rather than summarised values. In this

proposed non-parametric method, conditional CDFs are determined and stored outside in-

dividual iterations of the algorithm in order to improve the computational efficiency for

larger datasets. This algorithm generates a hierarchy of clusters and decisions to estimate

the optimal number of clusters in the network are dependent on defined methods. The sim-

ulation study demonstrates the superior ability of the functional distributional clustering

algorithm in identifying ‘true’ clusters compared to the functional only, distributional only,

FDA-based algorithms and a Ward-like hierarchical clustering method ClustGeo. We also

applied this algorithm to real data to describe the clustering process when knowledge of the

underlying ‘true’ clusters is limited. In general, the proposed method identifies spatially

contiguous clusters that accommodate temporal patterns but do not change shape over

time. In future work, we seek to extend the functional distributional clustering algorithm

to be capable of identifying dynamic clusters and illustrate further applications.



Chapter 4

Binary dependent Chinese

restaurant process

This chapter formally defines the binary dependent Chinese restaurant process (binDCRP)

that is able to accommodate spatial constraints and encourage the discovery of connected

segments. We utilise a modified version of this defined binDCRP as a prior in the flexible

Bayesian clustering approach in Chapter 5. Section 4.1 formally describes the classical Chi-

nese restaurant process (CRP) as a distribution over partitions. However, this process relies

on the assumption of exchangeability, which can be unrealistic. Section 4.2 describes an

alternative view of the Chinese restaurant process formulated to accommodate sequential

data. The sequential CRP can be generalised to include the non-sequential case and this gen-

eralised view is called the distance dependent Chinese restaurant process (Blei and Frazier,

2011). This chapter also summarises the distance dependent Chinese restaurant process in

Section 4.3; the ddCRP is capable of modelling random partitions of non-exchangeable data

(both sequential and non-sequential). The clusters generated by the ddCRP are biased in

nature such that each object is more likely to be clustered to data points that are identified

as being nearer. Section 4.4 extends the non-sequential view of the ddCRP to accommodate

the spatial constraints imposed by the geographical structure of the networks. This process

is labelled the binary dependent Chinese restaurant process.

69
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4.1 Chinese restaurant process (CRP)

The Chinese restaurant process (CRP) is a probability distribution over partitions (Pitman

et al., 2002) described by specifying how a sample is drawn from it. The CRP is described

using culinary metaphors and the restaurant is assumed to have an infinite number of tables

with an infinite capacity to seat customers. Let a sequence of n customers, t1, . . . , nu, enter

the restaurant such that each customer sits at a randomly chosen table. A customer sits

at an existing table k with probability proportional to the number of customers nk already

seated or at a new table with probability proportional to α. The real valued parameter

α controls how often a customer sits at a new table. Formally, let zi denote the table

assignment for customer i and z1:pi�1q denotes customers already assigned to occupy K

tables.

Definition 4.1.1 The traditional CRP draws a table assignment zi for customer i such

that

ppzi � k | z1:pi�1q, αq9

$'&
'%
α for k � K � 1

nk for k ¤ K

In Figure 4.1, the first customer is seated at Table 1 with probability α
α and the second

customer is seated with probability 1
1�α . This continues for subsequent customers and the

table assignments of the customers t1, . . . , 5u are z1 � 1, z2 � 1, z3 � 2, z4 � 1, z5 � 2. Each

table in this framework has a dish that represents a combination of parameters.

Figure 4.1: Chinese restaurant process (CRP)

To summarise, a potential partition structure of customers that enter and are seated at the

restaurant is tt1, 2, 4u, t3, 5uu. The probability of seating customers in this order within the
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restaurant is determined by:

α

α
�

1

1� α
�

α

2� α
�

2

3� α
�

1

4� α

Formally, this can be defined for n customers that have been seated at K tables as:

αK
K¹
k�1

pnk � 1q!

α � � � pα� n� 1q
(4.1)

The probability of being seated in this order is proportional to αK � α2. In general, after

n customers have been seated, the seating plan gives a partition of the customers over K

tables. In this process, customers that enter the restaurant are identified with observations

and observations associated with the same table belong to a cluster. The table selected

to be seated at is chosen at random and this results in a process that lets the number of

clusters be determined by the underlying data. The process is exchangeable, such that

under any permutation of the ordering of customers, the probability of a specific partition

of customers is invariant. However, this assumption of exchangeability is not reasonable for

many clustering applications that rely on the ability to incorporate an underlying structure

(e.g., spatial) or order in the data.

4.2 An alternative view of the CRP

An alternate approach to the CRP is called the sequential CRP and can also be used to de-

scribe a distribution over partitions. The sequential CRP is constructed with a dependence

on the order in which customers arrive and a new customer chooses an existing customer as

a friend to sit with. The sequential CRP can be viewed as a way to accommodate temporal

constraints and tables are allocated as a deterministic function of the friendships between

customers. Formally, let ci be the ith customer assignment that denotes the customer with

whom the ith customer is seated and c be the set of all customer assignments.



CHAPTER 4. BINARY DEPENDENT CHINESE RESTAURANT PROCESS 72

Definition 4.2.1 The sequential CRP draws a customer assignment ci as:

ppci � j | αq9

$'''''&
'''''%

1, if j � 1, . . . , i� 1

0, if j � i� 1, . . . , n

α, if j � i

In other words, the probability of choosing an existing customer as a friend is proportional

to one and zero for choosing a customer yet to enter the restaurant. A customer can also

choose to befriend themself with probability proportional to α. In Figure 4.2, a link from

customer 4 to customer 1 indicates that customer 4 is friends with customer 1, but does

not imply that customer 1 is also friends with customer 4. Customer 1 is the customer

assignment for customer 4; customer 4 and customer 1 are seated together at table 1. A

self-link at customer 1 indicates that the customer has chosen to befriend themself. Tables

are allocated as a function of the friend allocations ci. Let an induced table assignment

be denoted as zpciq and the set of all such table assignments is zpcq. The assignments are

summarised as c1 � 1, c2 � 1, c3 � 3, c4 � 1 and c5 � 3 and the induced table assignments

zpcq are zpc1q � 1, zpc2q � 1, zpc3q � 2, zpc4q � 1, zpc5q � 2. A determined seating plan is

represented by tt1, 2, 4u, t3, 5uu and the probability of this arrangement is proportional to

α � 1 � α � 1 � 1 � α2.

Figure 4.2: Sequential view of the Chinese restaurant process

The sequential CRP can recover the traditional CRP for the conditions described in def-

inition (4.2.1). In the sequential CRP, the probability of being assigned to each of the

other customers that are already seated at a table is proportional to one. Accordingly, the

probability of sitting at a table is proportional to the number of customers already seated
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there; this is the definition in a traditional CRP. In addition, the probability of a customer

befriending themself and sitting at a new table is proportional to α. To summarise, the α

parameter provides the ability to control the cluster size in both the sequential CRP and

the traditional CRP.

The sequential CRP can also be generalised such that customers are seated with customers

that enter the restaurant in any order. The generalised view includes both the sequential

and the non-sequential case where customers have a choice between sitting by themselves,

with customers that have yet to arrive and with customers that have already been seated. In

other words, the seating plan probability is described in reference to customers befriending

other customers without a focus on the order in which they arrive. This generalised view

is called the distance dependent Chinese restaurant process.

4.3 Distance dependent Chinese restaurant process (ddCRP)

The distance dependent Chinese restaurant process (ddCRP) was first introduced by Blei

and Frazier (2011) to accommodate non-exchangeable data. The probability of determining

a seating plan in a restaurant is determined by friendships between customers and customers

are eventually allocated to a table. In the ddCRP, a customer chooses another customer

as a friend using a measure aij that deems customers i and j to be similar if they satisfy a

notion of ‘proximity’.

Definition 4.3.1 The ddCRP draws a customer assignments ci as:

ppci � j | αq9

$'&
'%
aij, if j � i

α, if j � i

The sequential CRP described in definition 4.2.1 is a specific type of the ddCRP where aij

� 1 for j   i and aij � 0 for j ¡ i. In this special type of ddCRP, customers are said to be

in ‘proximity’ if the order in which customers i and j are seated can be described as j   i.

Accordingly, the measure aij � 1 deems customers i and j to be similar when i and j satisfy

this notion of ‘proximity’. The ddCRP defines a general notion of ‘proximity’ such that the
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order between i and j is no longer relevant. For both j ¡ i or j   i, customers i and j

are labelled as being in ‘proximity’. Customers identified to be similar become friends and

friendships connect the relevant customer. Accordingly, connected customers form a cluster.

The ddCRP prior is not conditioned on the seating of other customers; the representation

of friendships between customers is used to allocate customers to tables. In other words,

two customers that can reach other by traversing a sequence of customer assignments are

allocated to the same table. The ddCRP determines a partition composed of connected

customer assignments such that customers are connected to other customers. Since the

number of occupied tables in a restaurant are random, the number of clusters are determined

by the data. In Figure 4.3, friendships between customers 1, 2, and 4 and customers 3 and

5 are formed with probability proportional to aij = 1 and connected customers then sit at

the two tables labelled as Table 1 and Table 2. Table 2 is a new cluster formed by customer

3 with probability proportional to α. To summarise, customer 1 is friends with customer

2 and 4, customer 2 is friends with customer 1, and customer 4 is friends with customer 1.

Similarly, customer 5 is friends with customer 3 and customer 3 befriends themself.

Figure 4.3: Distance dependent Chinese restaurant process (corresponds to a directed graph with

out-degree equal to one, deg�piq � 1. This is discussed in Chapter 5).

Connected customers form their own table and new customers that enter the restaurant ex-

tend the number of connected customers. In general, multiple configurations of customers

assignments might lead to the same table assignment and customer assignments can result

in the formation of a cycle. For example, the partition structure tt2, 1, 4u, t3, 5uu can be

formed using the configuration displayed in Figure 4.3 as well as using other friendship
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combinations between customers. Customer 1 sits with customer 2, customer 2 sits with

customer 1 and a cycle is formed without either customers befriending themselves.

The assignments are summarised as c1 � 2, c2 � 1, c3 � 3, c4 � 1, c5 � 3 and the induced

table assignments zpcq are zpc1q � 1, zpc2q � 1, zpc3q � 2, zpc4q � 1, zpc5q � 2. The

partition structure that corresponds to this seating plan is tt1, 2, 4u, t3, 5uu. The probability

of determining such a configuration is proportional to 1 � 1 � α � 1 � 1 � α. The determined

probability indicates that the α parameter does not control the number of clusters in a

ddCRP. The formation of the cycle between customer 1 and customer 2 is not formed with

probability proportional to α; the α parameter only controls the formation of self-links and

cannot lend effective control to the number of clusters. In contrast to the traditional and

sequential CRP, the formation of a new cluster in a ddCRP is not dependent on a customer

forming a self-link.

4.4 Binary dependent Chinese restaurant process (binDCRP)

The sequential view of the CRP is a special case of the ddCRP that is defined to accom-

modate temporal constraints. The generalised view of the ddCRP accommodates data

regardless of their order and can also be re-written for spatial data. This process is labelled

as the binary dependent Chinese restaurant process (binDCRP). The binDCRP is a special

case that focusses on the non-sequential view of the ddCRP and customers are assigned to

other customers identified as being similar if they are deemed to be in spatial ‘proximity’.

Definition 4.4.1 The binary distance dependent Chinese restaurant process (binDCRP)

draws customer assignment ci such that:

ppci � j | αq9

$'''''&
'''''%

aij � 1, if j � i

aij � 0, if j � i

α, if i � j.

In other words, the customer assignment ci is assigned to j with probability proportional

to 1 if j is located in ‘proximity’ to i pj � iq and 0 if j is not located in ‘proximity’ to i
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pj � iq. A sense of similarity defined by aij is dependent on the nature of application and

aij � 1 deems customers i and j to be similar if customer j is in ‘proximity’ to customer i.

Similar customers become friends and connected customers belong to a common cluster. In

Chapter 5, we describe the binDCRP for spatial data and define similarity between vertices

identified to be in ‘proximity’ within a relevant binDCRP graph.



Chapter 5

Clustering: A nonparametric

Bayesian model

5.1 Introduction

Spatial clustering methods seek to identify homogeneous regions in a heterogeneous network

using recorded spatial data (e.g., junctions in an urban road network, areal units in a map).

In the following sections, a non-parametric spatial clustering algorithm for a graph network

is proposed within a Bayesian framework such that the primary concerns are to 1) identify

spatially contiguous homogeneous clusters using spatio-temporal data, 2) fully account for

spatial dependencies within determined clusters, 3) accommodate underlying temporal pat-

terns, and 4) determine the number of clusters within the network in a data-driven manner.

This holistic approach, implemented within a flexible Bayesian framework, seeks to identify

mean-based differences in the temporal pattern and overcome several problems that are

associated with the two-stage approach (e.g., functional distributional approach in Chapter

3) to spatial clustering. The functional distributional clustering approach generates a hi-

erarchy of clusters, relies on additional methods to evaluate the number of clusters, is not

based on formal statistical principles and is an algorithm motivated by distinct differences

in both the mean and the variance over time. The flexible Bayesian model introduced in

this Chapter is motivated by spatio-temporal datasets over a road network (e.g., the spread

of occupancy in an urban grid style traffic network) and areal unit data (e.g, the change in

77
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property prices for observations recorded over a map).

This non-parametric spatial clustering model introduced within a Bayesian framework is

developed such that it satisfies the conditions listed above. Within this model, a binary

dependent Chinese restaurant process (binDCRP) is placed as a prior to accommodate ge-

ographical constraints in the network. The binDCRP is developed as a special case of the

ddCRP to accommodate the geographical constraints posed by the network. In order to

fully account for the spatial correlation within individual suggested clusters, a conditional

auto-regressive (CAR) model is utilised to incorporate neighbourhood relationships for ver-

tices within a cluster; the temporal dependencies are accommodated using a first order

auto-regressive (AR-1) model. This model assumes that observations follow a Gaussian

distribution and adopts several Kronecker product identities to improve the computational

efficiency of the sampler. We derive a relevant Metropolis within Gibbs sampler over this

network to fully explore all possible clustering structures and infer the relevant parameters

defined within the model.

In Chapter 4, we formally introduced the binary dependent Chinese restaurant process

(binDCRP) as a special case of the distance dependent Chinese restaurant process to ac-

commodate spatial dependencies. The binDCRP was introduced in Chapter 4 within the

framework of a restaurant using culinary references. Section 5.2 introduces spatial struc-

tures (both a road network and a network imposed over a map to represent areal unit data)

and utilises this spatial framework to describe a binDCRP graph. In an urban road net-

work, junctions represent vertices and road segments represent edges between vertices. A

binDCRP graph is said to be connected if there is a path between every pair of vertices

in the graph and each maximal connected subgraph of a binDCRP graph is a connected

component. Connected components formed within the binDCRP graph provide a parti-

tion structure over the graph network. In Figure 5.1, four road networks are displayed to

summarise the development of a binDCRP graph from an undirected graph to the eventual

formation of a cluster structure in the binDCRP graph. Figure 5.1a displays an urban road

network as an undirected graph, with junctions and road segments between the junctions.
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This undirected graph has no loops and undirected edges are placed between the vertices

in the graph. In Figure 5.1b, an undirected graph with the addition of loops can also be

viewed as a directed graph with loops. All vertices have an edge to a neighbouring vertex

(if a road is present) and directed edges are placed in both directions. In this graph, a loop

is also placed at each vertex. In Figure 5.1c, the binDCRP graph is defined as a subgraph

of the undirected graph with loops such that the out-degree of each vertex in the graph is

equal to one. A cluster structure in the binDCRP is represented by connected components

and the absence of an edge between vertices in the binDCRP graph leads to the formation

of a new cluster. Figure 5.1c displays a single connected component within the binDCRP

graph. An example of a cluster structure, formed within the binDCRP graph, with more

than one connected component is displayed in 5.1d; many other cluster structures using

the same set of vertices can also be formed within the framework of a binDCRP graph. In

Figure 5.1d, each vertex has an edge to only one other vertex or a loop at a given vertex.

Three clusters correspond to three connected components such that vertex 5 has no edges

to other vertices in the network, vertex 6 has no edges to other vertices in the network and

vertices 1, 2, 3 and 4 have no edges to the remaining vertices in the network.

In Section 5.3, we introduce a modification of the binDCRP that allows for the number of

clusters to be restricted. For example, a cluster structure formed using the modified binD-

CRP results in a reduction in the formation of singletons and clusters formed by cycles. The

number of clusters formed in the binDCRP framework is equal to the number of singletons

plus the number of cycles. In Section 5.4, the likelihood is defined using an assumption of

normality over the observations recorded for each vertex and is computed within the de-

fined binDCRP graph framework and the associated canCRP graph. The spatio-temporal

precision matrix described within the definition of the likelihood is rewritten using Kro-

necker product identities to improve the computational efficiency of the model. In Section

5.5, we formally describe and discuss the computational implementation of the elements of

the sampler in the framework of the binDCRP graph. The Metropolis within Gibbs sam-

pler enables the sampler to explore all possible segmentations within the binDCRP graph

framework and enables the inference of relevant parameters in the spatio-temporal precision
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(a) Undirected graph (without loops) (b) Undirected graph (viewed as directed)

(c) binDCRP graph (d) Cluster structure in a binDCRP graph

Figure 5.1: Junctions in a road network
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matrix.

To summarise, this chapter introduces the formal Bayesian model and describes the associ-

ated binDCRP prior, the defined likelihood, and the relevant sampler to explore all possible

segmentations over the spatial structure. In Chapter 6, the performance of this model is

illustrated by an application to a simulated dataset (with a known true cluster structure).

Several applications to real world spatio-temporal datasets (both for an urban road network

and areal unit data) are also discussed in Chapter 6.

5.2 Spatial framework

5.2.1 Notation

Let a graph G � pV,Eq be composed of a non-empty finite set of vertices V � tv1 . . . vnu

and a set of edges E that connect the vertices. An edge e P E between a vertex vi P V and

vertex vj P V is denoted as pvi, vjq and if pvi, vjq P E then vi and vj are said to be adjacent.

If an edge pvi, vjq connects vertex vi to another vertex vj , then the vertex vi is said to be

incident to the edge pvi, vjq. Accordingly, the neighbourhood of a vertex vi is determined

by a set of adjacent vertices and the degree of a vertex in a graph denoted by degpviq is

defined as the number of edges that are incident to the vertex vi. For an edge pvi, vjq in a

graph, the vertex vi is the origin and vertex vj is labelled as the terminus. The in-degree

of a vertex vi, denoted as deg�pviq, is the number of edges with vi as the terminus. The

out-degree of a vertex vi, denoted as deg�pviq, is the number of edges with vi as the origin.

A loop in a graph G is an edge pvi, viq that has an origin and terminus at vi and the loop is

counted in both the out-degree and the in-degree. Spatial data for points in space arranged

as a network can be represented as an undirected graph. We define an undirected graph

(without loops) in Definition (5.2.1) and an undirected graph (with loops) in Definition

(5.2.2), by using spatial data examples.
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5.2.2 Undirected graph (without loops)

Definition 5.2.1 An undirected graph (without loops) G � pV,Eq is defined such that

@ vi, vj P V, pvi, vjq P E ñ pvj , viq P E.

In other words, a graph is defined as undirected if the edge relation between vertices vi

and vj is symmetric and E is considered to be a set of unordered pairs. The directed re-

lationship for an edge pvi, vjq is represented diagrammatically by an arrow from vi to vj ,

i.e., vi  vj . The edge pvi, vjq in an undirected graph represents edge pvi, vjq in direction

vi  vj and edge pvj , viq in direction vj  vi. Since this relationship is symmetric, the edge

is considered to be unordered.

For an undirected graph, let a n�n adjacency matrix A be defined for an undirected graph

G without loops such that

Avivj �

$'''''&
'''''%

1 � Avjvi , if pvi, vjq P E

0, if pvi, vjq R E

0, if vi � vj .

(5.1)

Figure 5.2a presents an undirected graph G in a road network using junctions and road

segments between relevant junctions. In an urban road network, junctions represent vertices

and road segments represent edges between vertices.
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(a) Road Network (b) Map

Figure 5.2: Undirected graph (without loops)

In Figure 5.2a, the undirected graph G as a road network is composed of six vertices

(junctions) V � t1, 2, 3, 4, 5, 6u and a set of unordered pairs of vertices stored as edges

(road segments) in E. Any edge (e.g., p1, 2q) in an undirected graph represents edges in

both directions, i.e., p1, 2q and p2, 1q. The neighbourhood of vertex 1 is t2, 4u and the degree

of vertex 1 is 2, i.e., out-degree, deg�p1q = 2, in-degree, deg�p1q � 2. The adjacency matrix

A for G is defined as:

A �

�
�������������

0 1 0 1 0 0

1 0 1 0 0 0

0 1 0 1 0 1

1 0 1 0 0 0

0 0 0 0 0 1

0 0 1 0 1 0

�
�������������

Figure 5.2b also displays a map with areal units translated to vertices in a graph network.

Neighbouring regions that share a border in a map correspond to an edge between two

vertices in an undirected graph.

A directed graph without loops is subject to the constraints of an edge relation, where

pvi, vjq P E
1 is a distinct edge that does not also imply pvj , viq P E

1. The edge relation can
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be asymmetric and the pair of vertices are ordered. More formally,

G1 � pV,E1q such that @ vi, vj P V and pvi, vjq P E
1, E1 � E.

For example in the road network in Figure 5.2a, an equivalent directed graph is defined

such that the edge (1, 2), vertex 1  vertex 2 and edge (2, 1), vertex 2  vertex 1 are two

distinct edges.

5.2.3 Undirected graph (with loops)

Definition 5.2.2 For an undirected graph G � pV,Eq, the set of edges with loops is defined

by LpEq � E Y tpvi, viq : vi P V u. An undirected graph can be viewed as a directed graph

with loops and is defined as G� � pV,LpEqq.

The degree of loops is counted twice (e.g., p1, 1q � p1, 1q) for both the out-degree and the

in-degree such that deg�pviq � deg�pviq � 2. For example, the degree of the loop at vertex

3 is deg�p3q � 2. In other words, such an undirected graph has an edge between vertices

in both directions and a loop at each vertex through the graph.

For an undirected graph with loops, let a n� n adjacency matrix A be defined such that

Avivj �

$'''''&
'''''%

1 � Avjvi , if pvi, vjq P LpEq

0, if pvi, vjq R LpEq

1, if vi � vj .

(5.2)

Figure 5.3 displays undirected graphs (road network and a map) connected by edges and

with loops at vertices.
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(a) Road Network

(b) Map

Figure 5.3: Undirected graph from Figure 5.2 viewed as a directed graph with the addition of loops.

In addition to a loop at vertex 1, a vertex 1 also has edges in both directions to vertex 2

and vertex 4. This is represented by 1 2, 2 1, 1 4, 4 1, and 1 1. Equation (5.2)

is used to define the adjacency matrix for the road network (undirected graph with loops)

in Figure 5.3a:

A �

�
�������������

1 1 0 1 0 0

1 1 1 0 0 0

0 1 1 1 0 1

1 0 1 1 0 0

0 0 0 0 1 1

0 0 1 0 1 1

�
�������������

A directed graph with loops need not necessarily have edges in both directions between

adjacent vertices and a graph G2 is defined as

G2 � pV,E2q such that @vi, vj P V and pvi, vjq P E
2, E2 � LpEq.

To summarise, Figure 5.4a displays an undirected graph G � pV,Eq, such that E is a set of

unordered pairs. An undirected graph (with loops) can also be viewed as a directed graph

(with loops), such that an edge is present between vertices in both directions and a loop

is present at each vertex in the graph. An undirected graph (with loops) is displayed in

Figure 5.4b and is defined as pG� � V,LpEqq, where the set of edges with loops is defined
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by LpEq. However, a directed graph with loops need not have edges in both directions for

each vertex. A graph G2 � pV,E2q is defined such that E2 � LpEq.

(a) Undirected graph (without loops) (b) Undirected graph (viewed as directed)

Figure 5.4: Junctions in a road network

The undirected graph (with loops) and associated directed graphs (with loops) provide the

framework for introducing the binDCRP graph. In Section 5.2.4, we introduce a special

graph, where the edges are removed such that the out-degree of each vertex is one and refer

to this special graph as the binDCRP graph.

5.2.4 Binary dependent Chinese restaurant process (binDCRP)

5.2.4.1 binDCRP graph

Let S be a graph composed of vertex set V and edge set Eb and the graph S is said to be

a subgraph of the undirected graph with loops if Eb � LpEq.

Definition 5.2.3 The binDCRP graph S for a given problem is defined as:

S � pV,Ebq, Eb � LpEq such that deg�pviq � 1, @vi P V.

To summarise, the binDCRP graph S is a subgraph of the undirected graph with loops and

satisfies a condition that the out-degree of vertex vi P V is equal to one, i.e., deg�pviq � 1.

In other words, each vertex vi P V is allowed to have an edge to only one other vertex
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vj P V or to form a loop. Figure 5.5a and Figure 5.5b display examples of a binDCRP

graph in a road network and in a map. Given the layout of the binDCRP graph in the

road network and the map, a vertex is allowed to have a single edge to another vertex or

to itself. The notion of ‘proximity’ (introduced for a restaurant framework in Chapter 4) in

the road network is enforced by a road segment between two junctions in a road network.

In other words, vi � vj indicates that there is a road segment between the two vertices;

this allows for an edge pvi, vjq to belong to the set of edges Eb. For example, vertex 1 is

allowed to have an edge to vertex 4 or vertex 2 or a loop at vertex 1. There cannot be an

edge between vertex 1 and vertex 3 due to the lack of a road segment, thus there is no edge

in LpEq. Similarly, vertex 5 is allowed to have an edge to vertex 6 or a loop at vertex 5

but there can be no edge to vertex 4. The displayed binDCRP graph is an example of a

potential binDCRP graph for a given set of vertices. There can be multiple configurations

of edges between vertices, leading to many possible binDCRP graphs.

(a) Road Network

(b) Map

Figure 5.5: An example of a binDCRP graph in a road network and in a map (Each vertex vi P V

in both the graph has deg�pviq = 1)

Figure 5.6 displays an example where the required condition for a binDCRP graph is not

satisfied, i.e., the deg�pviq � 1, @vi P V . At vertex 4, there is an edge to vertex 1 and an

edge to vertex 3. This results in vertex 4 having out-degree greater than one, deg�pviq � 2.
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Figure 5.6: Does not qualify as a binDCRP graph

In the binDCRP graph, a path from v1 to vn is a sequence of adjacent edges ppv1, v2q, pv2, v3q,

. . . , pvn�1, vnqq; the length of the path is equal to the number of edges which form the path.

A vertex vj is said to be reachable from a vertex vi, if there is a path from vi to vj . In

Figure 5.7, the path from vertex 1 to vertex 3 traverses edges pp1, 2q, p2, 3q, p3, 3qq and vertex

3 is said to be reachable from vertex 1. The path from vertex 4 to vertex 7 traverses edges

pp4, 5q, p5, 6q, p6, 7q, p7, 7qq and vertex 7 is said to be reachable from vertex 4. Two vertices

in a binDCRP graph are said to be connected if a vertex vj is reachable from vi or vi is

reachable from vj . A binDCRP graph S is said to be connected if there is a path between

every pair of vertices in the graph. Each maximal connected subgraph of a binDCRP graph

S is a connected component. A connected component within a binDCRP graph represents

a cluster and the binDCRP graph in Figure 5.7 is composed of two clusters.

Figure 5.7: Two connected components of a binDCRP graph

In Figure 5.8, instead of a loop at vertex 3 there is an edge between vertex 3 and 5. This

edge p3, 5q connects the path pp1, 2q, p2, 3q, p3, 3qq and pp4, 5q, p5, 6q, p6, 7q, p7, 7qq such that

the binDCRP graph is composed of a single larger path between all the vertices in the
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graph. In Figure 5.7, vertex 3 is reachable from vertex 1 and vertex 7 is reachable from

vertex 4. However, vertex 7 is not reachable from vertex 1. In Figure 5.8, vertex 7 is to be

reachable from vertex 1 and the binDCRP graph is composed of a single large cluster.

Figure 5.8: Single connected component of a binDCRP graph

5.3 Prior: binary dependent Chinese restaurant process (binD-

CRP)

The distance dependent Chinese restaurant process (ddCRP) was first introduced by Blei

and Frazier (2011) to accommodate non-exchangeable data and Chapter 4 formally describes

this process. In Chapter 4, we also introduced the binary dependent Chinese restaurant

process (binDCRP) as a special case that focusses on the non-sequential case of the dd-

CRP. The binDCRP was introduced within a restaurant framework such that connections

between customers in the restaurant correspond to the formation of a cluster. In this sec-

tion, the restaurant based framework for both the ddCRP and the binDCRP is translated

and adapted to the binDCRP graph.

The generative process of the ddCRP is described using vertex assignments for vertices in

the binDCRP graph. The ddCRP draws a vertex assignment cvi using a general notion of

‘proximity’, avivj . The distribution is determined by the probability of drawing a vertex

assignment cvi for a given vertex vi to connect the vertices pvi and cvi � vjq by an edge

pvi, vjq. A partition structure is composed of K clusters within a binDCRP graph and

the set of all clusters determined by the binDCRP is denoted as C � tC1, C2, . . . , CKu.

For example, in Figure 5.7, two connected components correspond to a set of two clusters
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C � tC1, C2u. Let vertex assignments be denoted by c and the corresponding cluster

representation be denoted by zpcq. Formally, the ddCRP adapted to the binDCRP graph

is described as:

Definition 5.3.1 The ddCRP draws a vertex assignment cvi:

ppcvi � vjq9

$'&
'%
α, if vi � vj

avivj , if vi � vj

(5.3)

However, a special case of the ddCRP is introduced as the binary dependent Chinese restau-

rant process (binDCRP) to accommodate spatial dependencies. The general notion of prox-

imity is adapted to ensure that only adjacent vertices are allowed to be drawn as a vertex

assignment and this enforces a bias towards the formation of spatially contiguous clusters.

In other words, edges between adjacent vertices form a connected component that corre-

spond to a spatially contiguous cluster in the network. The binDCRP generates a clustering

result represented by vertex assignments over the binDCRP graph and is described in the

framework of the binDCRP graph. In Chapter 4, we defined this process looking at an in-

formal description of the neighbourhood. We now restate the definition in a graph-theoretic

context.

Definition 5.3.2 The binDCRP draws a vertex assignment cvi:

ppcvi � vjq9

$'''''&
'''''%

α, if vi � vj

avivj � 1, if vi � vj

avivj � 0, if vi � vj

(5.4)

The defined similarity avivj for the binDCRP is equal to one for a vertex vi that is allowed

to have an edge to vertex vj and zero when a vertex vi is not allowed to have an edge to

vj . A condition vi � vj indicates that a vertex vi is allowed to be assigned to a vertex

vj such that pvi, vjq P Eb; vi � vj indicates that this vertex assignment is not allowed. In

the binDCRP, new clusters are formed by loops with probability proportional to α (as in

definition (4.4.1)) but new clusters can also be formed by cycles between a set of vertices.
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Definition 5.3.3 A cycle in a binDCRP graph is a path ppvi1 , vi2q, . . . , pvin , vi1qq that starts

and ends at the same vertex vi1.

A cycle specific to the binDCRP graph does not have any repeated edges but can have

repeated vertices. An edge that connects a vertex to itself is called a loop. A pair of vertices

vi and vj can also form a cycle in the binDCRP graph, ppvi, vjq, pvj , viqq. An edge pvi, vjq is

said to be redundant given an edge pvj , viq P Eb and pvj , viq is said to be redundant given an

edge pvi, vjq P Eb. However, both pvi, vjq and pvj , viq are not redundant at the same time.

Definition 5.3.4 An edge pvi, vjq in the binDCRP graph S is said to be redundant if

@vi, vj P V , the removal of the edge pvi, vjq from a cycle results in a path that is not a

cycle.

Figure 5.9 displays scenarios that represent different configurations of edges between adja-

cent vertices. In Figure 5.9a, an edge p1, 1q at vertex 1 forms a loop such that the out-degree

of vertex 1 is one and a loop is the smallest possible cycle. In Figure 5.9b, edges (1, 2)

and (2, 1) form a cycle. Given an edge p1, 2q, 1  2 with deg�p1q � 1, the edge p2, 1q is

a redundant edge and vice versa. Figure 5.9c displays a cycle composed of three vertices;

a cycle can be listed in any order such that tp4, 5q, p5, 6q, p6, 4qu � tp5, 6q, p6, 4q, p4, 5qu �

tp6, 4q, p4, 5q, p5, 6qu. For a cycle tp4, 5q, p5, 6q, p6, 4qu, the removal of an edge p6, 4q leads to

a path tp4, 5q, p5, 6qu that is not a cycle and p6, 4q is labelled as a redundant edge. This

holds true for each edge in the cycle but cannot all be labelled as redundant edges.

(a) Loop (b) Cycle (two vertices)

(c) Cycle

Figure 5.9: Vertex assignments and edges in a binDCRP graph

In a binDCRP, each cluster is formed by the presence of a loop at a vertex or by the presence

of a cycle. The number of clusters is equal to the number of loops + number of cycles. In
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Figure 5.8, the graph has a loop at vertex 7 which indicates a single cluster. In Figure 5.7,

there is a loop at vertex 3 and at vertex 7 which indicates two clusters in the binDCRP

graph. However, in Figure 5.10, the binDCRP graph has a loop at vertex 3, a cycle between

vertex 4 and vertex 5 and a loop at vertex 7. This indicates the presence of three clusters,

each shaded by a distinct colour.

Figure 5.10: Three connected components of a binDCRP graph

In a traditional CRP and a sequential CRP, the α parameter controls the number of clusters

by controlling the number of loops. However, as demonstrated in Figure 5.10, new clusters

are also formed by cycles (e.g., ((4, 5), (5, 4))). This reduces the ability of a binDCRP

to utilise the α parameter to control the number of clusters. The lack of control over the

number of clusters is especially problematic in a neighbourhood based model where each

vertex has edges to only a few number of vertices, leading to cycles being highly likely. We

propose a modification to the binDCRP such that a probability of α is introduced to control

both loops and redundant edges that lead to the formation of a cycle. This in turn enables

the α parameter to control the number of clusters.

5.3.0.1 Modified binDCRP

Definition 5.3.5 The modified binDCRP draws a vertex assignment cvi as:

ppcvi � vjq9

$'''''&
'''''%

α, if vi � vj or if a cycle is formed when pvi, vjq is added

avivj � 1, if vi � vj

avivj � 0, if vi � vj
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In other words, for the modified binDCRP, the probability of drawing a vertex assignment vj

to connect vertex vi by edge pvi, vjq is proportional to α if a cycle is formed by the addition

of this edge to the derived binDCRP graph. A loop at a vertex vi is also formed with prob-

ability proportional to α. A vertex vi forms an edge to other vertices in ‘proximity’, with

probability proportional to one, if a cycle is not formed by the addition of the relevant edge.

In Figure 5.11a, the road network is composed of three clusters (colored in blue, green and

red). The loop at vertex 5 and at vertex 6 is formed with probability proportional to α. In

the red cluster, the path from vertex 2 to vertex 3 is written as pp2, 1q, p1, 4q, p4, 3qq. The

addition of the edge p3, 2q to this path with probability proportional to α forms a cycle

between vertices 1, 4, 3, and 2. The path and the resulting cycle can be formed in multiple

ways. The set of vertices and relevant edges in each cluster represent three connected com-

ponents and vertices shaded in the same color belong to a common cluster. The presence

of two loops in the graph at vertex 5 and vertex 6 and a cycle between vertex 1, vertex

4, vertex 3 and vertex 2 suggests three clusters. Given a path composed of three edges,

the addition of the fourth edge to the path forms a cycle with probability proportional to

α. Accordingly, the probability of the partition structure tC1, C2, C3u being generated is

proportional to α3. Similarly, the map in Figure 5.11b is composed of two clusters (coloured

in yellow and red).
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(a) Road Network

(b) Map

Figure 5.11: An example cluster structure in a binDCRP graph where vertex assignments for vertices

are drawn by the modified binDCRP.

Figure 5.12 displays multiple scenarios that correspond to the cluster structure in Figure

5.11a. Figure 5.12a, Figure 5.12b and Figure 5.12c present binDCRP graphs that are

composed of three clusters, with common vertices but different edges between the vertices.

In Figure 5.12a, the path in the red cluster from vertex 3 to vertex 4 is tp3, 2q, p2, 1q, p1, 4qu

and connects all the vertices in the binDCRP graph. Figure 5.12b and Figure 5.12c have

different paths that connect all the vertices in the binDCRP graph. In Figure 5.12b and

Figure 5.12c, the path in the red cluster from vertex 1 to vertex 2 is tp1, 4q, p4, 3q, p3, 2qu. In

Figure 5.12b, there is also a loop at vertex 2 that is not present at vertex 2 in Figure 5.12c.

(a) (b) (c)

Figure 5.12: Different configurations within a binDCRP graph that lead to the same cluster structure.
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In general, a spatial pattern in a graph implies that vertices closer to one another are more

similar than vertices located further away. In this section, we introduced a modified binD-

CRP that is able to accommodate the geographical constraints imposed by the network and

restrict the number of clusters. However, it is also reasonable to assume that vertices are

spatially correlated to adjacent vertices within a cluster. We do not expect the modified

binDCRP to be fully capable of accommodating spatial correlation within individual clus-

ters. In the following section, additional dependencies posed by the structure of network

are described in the context of the model.

5.4 Spatial clustering using spatio-temporal data

5.4.1 Data model

In this section, the likelihood of the observations is defined under the cluster structure sug-

gested by the prior. Let the matrix of observations be denoted by X, θ represent the set

of parameters defined within the model and C be a set of clusters. A cluster structure is

derived from the vertex assignments cvi of each vertex and the resulting connected com-

ponents. Let a vertex assignment cvi for vertex vi belong to vertex assignments denoted

by c and let the clusters that result from the numerous vertex assignments be denoted by

zpcq. For example, in Figure 5.11, let vertices 1, 2, 3 and 4 belong to cluster C1. The

relevant vertex assignments are p4, 1, 2, 3q. Accordingly, the vertex assignments c for the

graph is p4, 1, 2, 3, 5, 6q, the induced cluster representations zpcq is p1, 1, 1, 1, 2, 3q and the

set of clusters is C � tC1, C2, C3u.

The observations recorded over time for each vertex vi is assumed to follow a Gaussian

distribution and the likelihood term is represented by ppX | C, θq. The terms in the likelihood

are decomposed as the following:

ppX | C, θq �
K¹
k�1

ppXCk
| C, θq (5.5)

Let K be the number of distinct clusters generated by the vertex assignments, the kth

cluster be denoted by Ck P C and let XCk
be the matrix of observations that are allocated
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to cluster Ck. The matrix XCk
represents observations over time for all the vertices in the

cluster Ck. (In the following sections, we do not use the factorised definition to help keep

the notation simple. )

The binDCRP for a single observation at each vertex is defined as:

ppX | C, θq �
¹
CPC

»
µ
ppXC | µC , σ

2I|C|qppµqdµ (5.6)

This is essentially a mixed model with random intercept, where the graph chooses the level

each observation is assigned to and is equivalent to

ppX | C, θq � N pX | 0,ΩpC, θqq (5.7)

Within each cluster, it is reasonable to assume that vertices are spatially correlated to

adjacent vertices and the spatial covariance matrix Ω�1 is written as:

Ω�1
ij �

$'&
'%
δσ2I, if vi and vj are in the same cluster

0, otherwise

(5.8)

This is an equi-correlation model that is unrealistic for spatial data. The next step is to

assume a conditional auto-regressive (CAR) model in each cluster. This is the same as

constructing a CAR model for the original graph network with edge set E and removing

all edges to create a cluster boundary. The associated graph is referred to as the condi-

tional auto-regressive network for Chinese restaurant process (canCRP) graph. In Figure

5.13, the formation of the canCRP graph is developed from an initial undirected graph

without loops. In Figure 5.13a, the vertices are each connected to other adjacent vertices

to represent a network. The binDCRP graph is defined within this context, such that the

out-degree of each vertex is equal to one. In Figure 5.13b, two clusters are formed within

this binDCRP graph such that the number of clusters is equal to the number of loops at

vertices. The CAR model for the graph network in Figure 5.13a is developed by removing

all edges to create a cluster boundary. In Figure 5.13c, the edges are removed from the

network to create the clusters formed by the binDCRP graph framework. The Figure 5.13d
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then displays the associated canCRP graph, where a CAR model is assumed in each cluster

and the two clusters are shaded in different colours.

To summarise, the binDCRP is placed as a prior over the graph network and suggests the

partition structure C composed of K clusters. We do not expect the binDCRP to fully

accommodate the spatial dependencies within the network. More specifically, it is expected

that the vertices within a cluster are spatially correlated with neighbouring vertices. In

order to account for this ‘within-cluster’ correlation, we introduce a type of conditional

auto-regressive (CAR) model within the conditional auto-regressive network for Chinese

restaurant process (canCRP) graph. The canCRP is defined within the likelihood, unlike

the binDCRP that is associated with the prior.

5.4.2 Conditional auto-regressive network for Chinese restaurant process

(canCRP)

5.4.2.1 canCRP graph

Definition 5.4.1 The canCRP graph denoted by Sc is defined within an identified cluster

in the binDCRP graph Sb. Let Sb � pV,Ebq be a binDCRP obtained for data from a network

pV,Eq. Then the canCRP graph is Sc � pV,Ecq with pvi, vjq P Ec, if and only if pvi, vjq P E

and there is a path from vi to vj or vj to vi in Eb.

In other words, the adjacency matrix is restricted to edges that only connect vertices within

the identified cluster. The adjacency matrix ASc for the canCRP graph is defined to include

vertices and edges present within a given cluster and not the entire binDCRP graph. For

example, in Figure 5.11a, a subgraph corresponding to the cluster shaded in red is composed

of vertices VSc � t1, 2, 3, 4u and edges ESc � tp1, 4q, p4, 3q, p3, 2q, p2, 1qu and the cluster
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(a) Network (b) binDCRP graph

(c) Split the network
(d) Two canCRP graphs

Figure 5.13: Conditional auto-regressive model in each cluster and associated graph
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represents a canCRP graph. The adjacency matrix ASc of this canCRP graph is:

ASc �

�
�������������

0 1 0 1 0 0

1 0 1 0 0 0

0 1 0 1 0 0

1 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

�
�������������

The adjacency matrix and the relevant definition of the canCRP graph is utilised to define

a conditional auto-regressive (CAR) model.

5.4.2.2 Conditional auto-regressive (CAR) model

Spatial dependence indicates that observations are more similar to neighbouring geograph-

ical units of the data than to those units that are further away. Numerous approaches

have been adopted for modelling such spatial correlation, including simultaneous autore-

gressive models and conditional auto-regressive models. Conditional auto-regressive (CAR)

models include intrinsic and convolution models (Besag et al., 1991), a model proposed by

Cressie (1993) and a model proposed by Leroux et al. (2000). For a formal comparison of

CAR models that describe these conditional auto-regressive models, see Lee (2011). In this

chapter, we introduce a conditional auto-regressive (CAR) model that enables the model

to incorporate information about neighbourhood relationships for vertices within suggested

clusters. More specifically, we use a type of conditional auto-regressive model introduced

by Leroux et al. (2000) to define the spatial precision matrix ΩS as

ΩS � ρpdiagpASc��
q �AScq � p1� ρqI. (5.9)

The spatial precision matrix ΩS is defined over the adjacency matrix ASc in Equation (5.9)

for the relevant canCRP graph Sc. Due to the nature of a grid style undirected graph,

there are limited number of adjacent vertices (for example, each junction has upto four

road segments to other junctions). In the context of such graphs, the precision matrices

exhibit sparsity.
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In the above definition of the spatial precision matrix ΩS , the parameter ρ controls the

correlation between adjacent junctions, diagpASc��
q is a diagonal matrix with elements

equivalent to the row sums of the adjacency matrix ASc and I is an identity matrix.

5.4.3 First order auto-regressive model (AR-1)

The spatio-temporal dataset is composed of measurements for each vertex over time. An

auto-regressive model is defined such that a value is regressed on previous values from the

same series of measurements. In the first order auto-regressive (AR-1) model, exactly the

first of the preceeding values in the series is used to predict the value at the present time.

The first order auto-regressive model at Xvit for vertex vi at time t is given by

ΩT � ρXvit�1 (5.10)

The temporal dependencies can be easily accommodated in other ways such as the Matern

covariance and the choice is not limited to a first order auto-regressive (AR-1) model.

To summarise, assume that an observation recorded for vertex vi at time j, Xvij � µvij�εvij ,

such that µvij � CAR model and εvij � AR(1) model. Accordingly, we define a new spatio-

temporal precision matrix Ω � ΩS b ΩT that accounts for both spatial and temporal

dependencies within the suggested clusters.

5.4.4 Likelihood: Data model

In this section, the likelihood is defined to account for observations recorded over both

space and time. The observations are assumed to follow a Guassian distribution such that

ppX | C, θq � Np0,ΩpC, θqq and the log-likelihood is defined as:

L � lnpppX | C, θqq � �
nN

2
lnp2πq�0.5 ln |σ2I�τ2ΩSbΩT |�0.5vecpXqT rσ2I�τ2ΩSbΩT s

�1vecpXq,

(5.11)

The parameter θ represents λ (the ratio of parameters τ2

σ2 ), φ (from the temporal pre-

cision matrix) and ρ (spatial precision matrix). The definition of the likelihood utilises
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the suggested cluster structure C and includes the defined spatio-temporal precision matrix

Ω � ΩSbΩT . A spatio-temporal precision matrix Ω defined over larger graphs and greater

time periods can result in matrices that are difficult to invert. We exploit multiple identities

that enable us to rewrite different terms in the likelihood and improve the computational

efficiency of the clustering model. The presence of a unique observation for every space and

time combination allows for these identities to be exploited.

5.4.4.1 Kronecker product identities

Identity I: A matrix product with a Kronecker product is written in terms of ordinary

matrix products.

pΩT
S bΩT qvecpXq � vecpΩTXΩSq (5.12)

Identity II: Kronecker product plus a diagonal term is expressed using the eigenvalue

decomposition for the precision matrices such that ΩS � ΓSΛSΓTS and ΩT � ΓTΛTΓTT . In

this identity, ΓT represents a matrix of the eigenvectors of ΩT and ΛT represents a diagonal

matrix of the eigenvalues of ΩT .

pσ2I� τ2ΩS bΩT q � pΓS b ΓT qpσ
2I� τ2ΛS bΛT qpΓ

T
S b ΓTT q (5.13)

The identities introduced above are utilised to rewrite the log of the defined likelihood:

L � �
n �N

2
lnp2πq � 0.5

ņ

i�1

Ņ

j�1

ln |σ2I� τ2ΛT rn, ns �ΛSrN,N s|

�
1

2
vecpΓTTXΓSq

T pσ2I� τ2ΛS bΛT q
�1vecpΓTTXΓSq (5.14)

The terms in Equation (5.11) can be evaluated using these Kronecker product identities for

an efficient solution. Accordingly, the complexity of computing the terms in the likelihood

is reduced from Opn3N3q to Opn2N �N2n� n3 �N3q.

For example, let a spatio-temporal dataset represent 360 observations over time and 158

vertices arranged as a graph network. More specifically, dim(ΩS) = 158 � 158, dim(ΩT ) =
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360 � 360 and this leads to dim(ΩSbΩT ) = 56880 � 56880. The spatio-temporal precision

matrix defined as a Kronecker product results in a very large matrix and is difficult to invert.

The dimension of the matrix X is dim(X) � 360 � 158 and the number of observations in

vec(X) is 56880. The Kronecker product identity I helps to avoid computing the Kronecker

product ΩS bΩT , a matrix of dimension 56880 � 56880. Instead, vecpΩTXΩSq results in

a vector composed of 56880 observations.

Using the defined likelihood in Equation (5.14) and the binDCRP prior (Equation (5.3.5))

placed over the spatio-temporal dataset X, the posterior is defined as

ppcv1:vN | X, θq9
¹

ppcviqppX | C, θq, (5.15)

where the cluster representation is derived from the assignments of vertices to other vertices.

The prior term uses the assignments between vertices to ensure that the adjacency and

proximity structure of individual vertices are accounted for. The likelihood uses the eventual

allocation of clusters to the vertices in the graph. ppX | C, θq represents the likelihood that

is conditional on the allocation of clusters and the log over the defined likelihood is utilised

for computational purposes.

5.5 Posterior inference

The posterior generates partitions for the graph using the relevant data model and the

binDCRP prior. However, the binDCRP places a prior over the combinatorial number

of all possible configurations of vertices and their relevant assignments. This results in

the posterior being intractable (i.e., difficult to directly evaluate). Instead, the algorithm

employs a Markov chain Monte Carlo (MCMC) inference method, a Metropolis within

Gibbs sampler to evaluate the posterior. The parameters defined within the spatio-temporal

precision matrix are learnt by proposing Metropolis-Hastings updates. For generating the

clustering distribution, the model employs a Gibbs sampling scheme over a graph and

possible edges between vertices are explored by replacing an edge at random at each step.

The Markov chain is defined by iteratively sampling each vertex assignment cvi for vertex
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vi, conditioned on the remaining vertex assignments c�vi and data X.

ppcvi | c�vi ,X, θq9ppcviqppX | C, θq (5.16)

The prior ppcviq is defined by Definition (5.3.5) and the likelihood is defined for spatio-

temporal data (Section 5.4). Let zpc�viq denote the cluster representation when the vertex

assignment for vertex vi is removed and zpcq denote the cluster representation when all ver-

tices have a relevant vertex assignment (as specified in the binDCRP graph). The sampling

from Equation (5.16) is a two-stage process. The sampler first removes a vertex assignment

from the existing structure and then considers the probability of new vertex assignments

when replaced and its effects on the likelihood term. More specifically, in the first stage, the

sampler removes the vertex assignment cvi from the current configuration of vertices and

edges between vertices. In the next stage, the prior probability of each possible value of cvi

is determined and its effect on the likelihood term is examined. This is denoted as moving

from ppX | zpc�viqq to ppX | zpcqq. In the first stage, the removal of the vertex assignment

cvi either retains the cluster structure, i.e., zpcoldq � zpc�viq or splits the cluster associated

with vi into two new clusters. After the vertex assignment has been removed at vi, the

second stage is concerned with the reassignment of the vertex assignment. The random

vertex assignment in the graph either leaves the cluster structure intact, i.e., zpc�viq � zpcq

or joins the cluster of vertex vi to a vertex in a different cluster. This enables the sampler

to explore the space of all possible cluster structures within the graph.

Let two clusters C1 and C2 represent the connected components formed by vertex assign-

ments. This representation is used to describe the change in cluster configuration and the

resulting change in the associated likelihood definition when a vertex from cluster C1 is

assigned to cluster C2. The indices C1 and C2 are joined to form cluster C3. Formally,

to represent the sampler, we first remove a vertex assignment cvi of vertex vi that can

potentially split the cluster. The likelihood remains the same for scenarios where the ver-

tex reassignment does not lead to a new cluster. Equation (5.17) describes a scenario

where the vertex reassignment leads to the formation of a new cluster structure such that

zpc�viq � zpcq.
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ppcvi | c�vi ,X, θq9

$'&
'%
ppcviqγpX, C, θq if cvi joins C1 and C2 to form C3

ppcviq otherwise,

(5.17)

where γpX, C, θq � ppXC3 | θq

ppXC1 | θqppXC2 | θq

5.5.1 Example scenario

In order to demonstrate the implementation of the sampler, we construct an example cluster

structure within a binDCRP graph and utilise these structures to construct two different

scenarios. In the first scenario, the initial cluster structure is displayed in Figure 5.14a

and the edge from vertex 5 to vertex 6 is sampled. The edge p5, 6q is removed from the

set of edges such that the sampler searches for a new vertex assignment. The edge is then

replaced from vertex 5 such that the partition structure is returned to the original allocation

of clusters. In this scenario, vi is 5, cvi is 6, c�vi represents all vertex assignments except

c�vi � 6 and zpcoldq � zpc�viq � zpcq. In Figure 5.14a, the initial partition structure

and structure after replacement is tt1, 2u, t3, 5, 6, 9u, t4, 7, 8uu (displayed in Figure 5.14a

and Figure 5.14c). This is an example of a scenario that does not lead to a change in the

partition structure.

(a) Sample an edge (b) Remove the sampled edge (c) Replace an edge

Figure 5.14: First scenario: No change in cluster structure

In the second scenario, the initial partition structure C is composed of tC1, C2, C3u �

tt1, 2u, t3, 5, 6, 9u, t4, 7, 8uu. The edge (5, 6) is sampled and removed. The replacement of
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the edge (5, 6) by edge (5, 8) leads to vertex 5 joining a new cluster. In this scenario, vi

is 5, cvi is 6, c�vi represents all vertex assignments except cvi � 6 and zpcoldq � zpc�viq �

zpcq. Here, the likelihood is computed using Equation (5.17). In Figure 5.15, the partition

structure after replacement is tt1, 2u, t3, 6, 9u, t5, 8, 7, 4uu. This is one example of a scenario

where the reassignment leads to a change in the partition structure.

(a) (b) (c)

Figure 5.15: Second scenario: Change in cluster structure

This sampler is described using two scenarios, where the partition structure remains con-

stant after sampling and where the partition structure is modified after sampling. In the

implementation of this sampler, unless the vertex assignments result in a change in the

cluster structure, cached computations of previous iterations are utilised.

5.5.2 Implementation

The sampler seeks to explore all possible cluster structures within a given graph structure

and infer the relevant parameters pρ, φ, λq within the model. A change in cluster structure

would require the adjacency matrix and the neighbourhood structure to be updated to

reflect the new cluster structure. For example, in Figure 5.16a, the graph is composed of

two connected components; each connected component has one loop. For this graph to

become a single cluster multiple changes are required. In Figure 5.16b, a graph composed

of a single connected components over the same vertices is displayed. The rewiring of edges

in the graph changes the cluster structure and the edges that are changed to create this new

structure are highlighted in red. Each of these updates need to be recorded in an efficient

manner.
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(a) Two clusters (b) One cluster

Figure 5.16: Rewiring to form a new cluster structure in a binDCRP graph framework

The sampler is dependent on the ability to efficiently traverse the graph structure; for this

purpose a flood fill search algorithm is implemented. A breadth first search is utilised

to reach adjacent vertices and other connected vertices. The nature of the graph with a

limited number of adjacent vertices makes a breadth first search more appropriate than a

depth first search and demonstrates better performance. Let the set of neighbours for a

vertex vi be denoted by g � tv1, v2, . . . vgu. For example, in Figure 5.17, vertex assignments

c is p7, 4, 4, 5, 4, 5, 6, 5, 8, 9, 11q and the set of neighbours for vertex vi, say at vertex 4 is

t2, 3, 5, 11u.

Figure 5.17: Graph traversal

More specifically, in the implementation of the sampler, a search algorithm is utilised to

identify connected components (within one level) for each vertex in the graph. The algo-
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rithm starts at a vertex vi, visits the neighbours identified by g and searches for a vertex

within the connected component. This breadth first search is adapted within the framework

of the binDCRP graph. This search algorithm marks all reachable vertices and determines

a path within the connected component. In other words, this search algorithm enables the

identification of the adjacent vertices and all edges connecting the neighbouring vertices to

other vertices.

In Figure 5.18, another traversal through the graph is displayed. The parent vertex is

shaded in grey and each vertex has a vertex assignment to an adjacent vertex. The result

for the vertex coloured in grey in Figure 5.17 is such that all the vertices are marked with a

value of 1 and coloured in yellow. In Figure 5.18, the initial level of connected components

are colored in yellow and all vertices visited as the second level of connected components are

shaded in green. This is unlike Figure 5.17, where a single level of connected components

exist and all the vertices are shaded in yellow.

Figure 5.18: Example of a flood fill search

For example, in Figure 5.18, for the vertex 4, the flood fill traverses the graph using a breadth

first search to identify adjacent vertices. This determines a result such that vertices 3, 4

and 2 are marked with a value of 1 and 5, 8, 9, 10, 11, 1, 6 and 7 are marked with a value

of 2. This search algorithm helps the sampler to monitor changes in the cluster structure,

associated edges for a vertex vi and changes in the vertex assignments. The following two

algorithms enable the updates of vertex assignments, clusters and adjacency matrices of the

network to be carried out within the sampler. In Algorithm 4, clusters C, vertex assignments
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c and the adjacency matrix A for the graph are updated within the binDCRP framework.

More specifically, the adjacency matrix is updated for the vertex vi and the corresponding

neighbours g. A vertex vi is first sampled at random from the graph and a set of neighbours

g is defined for vertex vi. In order to be able to identify the existing connected structure,

a breadth-first search is utilised and the clusters are updated. The spatial precision matrix

Ω is computed over the updated cluster structure and the log-likelihood is defined using

Equation (5.11) over the new spatio-temporal precision matrix. A vertex assignment is

sampled using the probability computed for the binDCRP as in Definition (5.3.5). The

adjacency matrix with the resampled edge and the vertex assignments are updated to store

the new relevant structure.

Algorithm 4: Updates edges with possible cluster change, UC
Input : A single vertex vi

Output: Clustering assignments zpcq, vertex assignments c, Adjacency matrix A

1 Identify the set of neighbours g for vertex vi.

2 Include vertex vi in the set of neighbours g

3 Traverse the network using a breadth first search and update the clustering

assignments zpcq

4 Compute the probability of sampling a vertex assignment, cvi , using Definition

(5.3.5)

5 Compute ΩS for the updated cluster and log-likelihood L using Equation (5.11).

6 Sample the vertex assignment using the probability ppcvi)

7 Update clustering assignments zpcq, vertex assignments c and adjacency matrix A

To improve the efficiency of the graph traversal that explores connected components, Algo-

rithm 5 focusses on the rewiring of edges between vertices within a cluster in the binDCRP

graph. In Algorithm 5, the updates are described for a specific cluster. To begin with, for

a single vertex vi, a set of neighbours g is identified for the vertex. The set of neighbours

is modified to also include vi and restricted to include only vertices that belong to the

same cluster as the vertex vi. The Algorithm searches through the connected component

using the breadth first search and then samples a vertex. The vertex assignments c and the

adjacency matrix A are updated to store this new structure.
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Algorithm 5: Update edges subject to no change in cluster structure - ‘Rewiring’

within clusters; Ufc

Input : A single vertex vi

Output: Adjacency matrix A and vertex assignments c

1 Identify the set of neighbours g for vertex vi

2 Include vertex vi in the set of neighbours g

3 Identify cluster C that vertex vi belongs to.

4 Update vector of neighbours g to only include vertices within the relevant cluster.

5 Traverse the network using a breadth first search

6 Sample a vertex assignment

7 Update vertex assignments c and adjacency matrix A

The Metropolis-Hastings updates for the parameters in the spatio-temporal precision ma-

trix Ω � ΩSbΩT is introduced in Algorithm 6. The algorithm is introduced for an example

parameter θ that accounts for the range of θ and is defined within the temporal precision

matrix ΩT . The algorithm can be also be applied for the parameter φ defined in ΩT . This

algorithm can also be generalised to infer other parameters within the spatial precision

matrix ΩS such as λ and ρ. An initial value is first specified and a candidate parameter

is generated from a Gaussian distribution. The likelihood Lnew is computed with the new

parameter and the acceptance ratio a is then determined. The chain is started from an ar-

bitrary initial value and the set of accepted values represent a sample from the distribution

of the parameter θ.
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Algorithm 6: Metropolis-Hastings updates for a parameter θ of the temporal

precision matrix ΩT

1 Assign an initial value of θ and set the current likelihood as Lold.

2 Generate θ� using θ and from the distribution N p0, 1q.

3 if θ� ¡ 0 then

4 Compute ΩT and ΛT using θ�

5 Compute the likelihood Lnew with the updated ΩT

6 Determine the acceptance ratio a � Lnew
Lold

θ�

θ

7 if a ¡ Up1q then

8 Update ΩT

9 Update the likelihood

10 Accept θ� and assign θ equal to θ�

11 else

12 Reject the candidate and θ remains the same

13 end

14 Return the values of the parameter θ

The Metropolis within Gibbs sampler is composed of Gibbs sampling steps that are utilised

to explore partitioning structures within the network and Metropolis-Hastings updates that

infer the ρ, λ and φ parameters in the spatio-temporal precision matrix. The updates

described in Algorithm 4, 5 and 6 are all utilised within the sampler described in Algorithm

7. The sampler is run over a defined number of iterations and is initialised with a random

clustering of the vertices in the graph network. A sample of vertices from the binDCRP

graph are drawn at random and the re-wiring of the edges within a cluster associated with

each vertex is explored. This process of re-wiring is performed using Algorithm 5. The

relevant changes caused by the re-wiring results in updates in the adjacency matrix and

vertex assignments. A single vertex vi is also sampled and changes in cluster assignments are

explored for the relevant vertex. The probability framework described over the binDCRP

graph is utilised to sample a vertex assignment. Accordingly, the resulting change in the

adjacency matrix, vertex assignments and cluster assignments are stored. These updates

and set of iterations to enable the rewiring within a cluster are repeated for n1 iterations.
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Splitting the process of exploring all possible cluster structures allows for a more efficient

implementation.

Algorithm 7: Inference for the binDCRP based model

Input : Adjacency matrix A and initial values of hyperparameters φ, λ and ρ

Output: Clustering assignments zpcq, vertex assignments c and hyperparameters

1 Initialise random clustering of vertices

2 Set number of iterations

3 Set number of steps as n1

4 for iter in iterations do

5 for steps in 1:n1 do

6 Set n2 as a subset of vertices; vertices sampled at random from the

binDCRP graph.

7 for vi in n2 do

8 Implement Algorithm 5 for vi.

9 Update adjacency matrix A and vertex assignments c

10 end

11 Sample a single vertex vi from the binDCRP graph.

12 Implement Algorithm 4

13 end

14 Implement Algorithm 6 to infer φ, λ and ρ

15 end

Within the same iteration of the sampler, the cluster structure is utilised to compute the

spatial precision matrix ΩS and define the likelihood as in Equation 5.11. The sampler is

run over many such iterations to explore the cluster structure in a comprehensive manner.

5.6 Discussion

This chapter introduces a formal Bayesian clustering method that seeks to determine spa-

tially contiguous clusters over a spatio-temporal dataset. This holistic approach to clus-

tering utilises a non-parametric framework to accommodate the geographical constraints
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imposed by the network and determines the number of clusters in a data-driven manner.

The development of this spatial clustering model for spatio-temporal datasets is motivated

by observations recorded over time for vertices arranged as a graph. In the context of this

model, a spatial structure includes vertices as junctions in an urban road network or as

regions in a map forming areal unit data. The determined spatially contiguous clusters

represent distinct temporal patterns and the model distinguishes between differences in the

mean. This is unlike the functional distributional clustering model, introduced in Chapter

3, that is motivated by datasets with multi-modal distributions and with varying mean and

variance.

In Chapter 4, we introduced the binary distance dependent Chinese restaurant process

as a special case of the distance dependent Chinese restaurant process. The binDCRP is

utilised to accommodate the geographical constraints imposed by the nature of the graph

network. This formal Bayesian model places the binDCRP as a prior; the binDCRP graph

is constructed such that each vertex has an edge to only one other vertex or a loop. In this

chapter, we modified the binDCRP to restrict the number of clusters by defining a parameter

α over the introduction of a loop and a redundant link. The number of clusters is equal to

the number of cycles plus the number of loops. It is reasonable to expect that a vertex is

spatially correlated to adjacent vertices and the binDCRP does not fully incorporate the

within cluster spatial dependencies. A type of conditional auto-regressive (CAR) model is

introduced to account for the spatial correlation within a cluster. The CAR model seeks to

model the spatial correlation between adjacent vertices using neighbourhood relationships

within a cluster. A first-order auto regressive (AR-1) model is also introduced to account for

the temporal dependencies. The spatial and temporal precision matrix is utilised to define

the spatio-temporal precision matrix Ω. The model assumes that observations follow a

Gaussian distribution and that there are no missing observations associated with each vertex

in the dataset. This allows for the defined likelihood to be rewritten using Kronecker product

tricks over the spatio-temporal precision matrix and enables the model to be implemented

in a computationally efficient manner. The Metropolis within Gibbs sampler is described

over the binDCRP graph framework and explores all possible cluster structures.



Chapter 6

Application

Traffic congestion in an urban road network

Traffic occupancy is a process that varies over time and needs to be studied over both space

and time. The formal Bayesian model (as described in Chapter 5) seeks to identify con-

nected components that correspond to distinct temporal patterns within the network. In

traffic modelling, this is applied to identify distinct temporal patterns of occupancies over

time. Several methods exist within the transportation modelling literature that seek to de-

termine spatially contiguous clusters to minimise heterogeneity (Saeedmanesh and Gerolim-

inis, 2016, 2017). However, constraints posed by associated observations recorded over time

pose multiple and often unique challenges. The formal Bayesian approach introduced in

Chapter 5 provides a framework that is constructed to fully incorporate spatial, temporal

and network dependencies and seeks to identify the number of clusters in a data-driven

manner. In this chapter, we first examine several features of the binDCRP based model

using an application to a simulated spatio-temporal dataset over an urban road network.

This study includes the utilisation of varying α parameter values to demonstrate its ability

to restrict the number of clusters and also examines the improvement in the computational

efficiency of the sampler by the adaptation of Kronecker product rules. This method ac-

commodates geographical constraints imposed by the structure of the urban road network

and accounts for the spatial correlation between adjacent junctions within a cluster. We

then apply the method to the dataset generated by the AIMSUN simulator (introduced

113
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in Chapter 3) to illustrate well-defined cluster structures and evaluate the mixing of the

sampler. This chapter also includes an application to areal unit data for property prices

that are recorded from 1995 to 2016 in Avon county, England.

6.1 Simulated data

In this section, data is simulated over the San Francisco network to reflect three distinct

clusters. The occupancy data is simulated over a 2.5 square miles network (network is as

specified in Chapter 3) in downtown San Francisco. This urban road network is composed

of 158 junctions and 316 links. The urban road network is again composed of junctions

that each has a maximum of four adjacent junctions; this limited number of road segments

between junctions in the network translates to a sparse spatial precision matrix. The spatial

correlation is modelled by a type of conditional auto-regressive (CAR) model introduced

by Leroux et al. (2000) and the temporal precision structure follows a first order auto-

regressive (AR-1) model. Occupancy observations are generated for each junction in the

network over six hours with a sampling rate of 60 seconds. Correlated data is generated for

each junction over time and is defined by a spatio-temporal precision matrix that is utilised

to model the spatial and temporal dependencies. The spatio-temporal precision matrix is

utilised to define the three distinct clusters C � tC1, C2, C3u, such that within each cluster,

a state space model generates zero and one values corresponding to defined occupancy levels.

Figure 6.1 displays occupancy observations that are simulated over a period of six hours

for each cluster (represented by blue, green and red). Each cluster represents a temporal

pattern with different mean values but with common variances. Occupancy observations

represented by a temporal pattern in blue (40 - 80 %) have a higher mean value than the

temporal pattern in red (30 - 70 %). These observations both have higher mean values than

the observations presented by the pattern in green (15 - 55 %). These generated values differ

from the data simulated in Chapter 3. The spatio-temporal dataset simulated in Chapter

3 is composed of clusters that represent differences in both the mean and the variance and

the functional distributional clustering algorithm seeks to accommodate multi-modal distri-
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butions. The mean-based Bayesian clustering model assumes that the observations follow a

Gaussian distribution. In this section, we first apply the developed flexible binDCRP-based

Bayesian model to examine its performance over the simulated spatio-temporal dataset with

a known true cluster structure.

Figure 6.1: Simulated data for three clusters in the network

6.1.1 Number of clusters

In the regular ddCRP (described in Chapter 4), the formation of a new cluster is not limited

to the introduction of a loop. The binDCRP, as a special case of the ddCRP applied to

spatial datasets, retains this framework and new clusters are formed by both cycles as well

as loops. However, this results in poorly defined cluster structures and a large number of

singletons. We modified the binDCRP (introduced in Chapter 5) to enable the model to

exert control over the number of clusters using the parameter α. This parameter α restricts

new clusters that are formed by loops and cycles. In the binDCRP graph, the addition of a

redundant edge to a path results in a cycle. We utilise the above simulated spatio-temporal

dataset over an urban traffic network to demonstrate the model’s ability to control the

number of clusters in the model.



CHAPTER 6. APPLICATION 116

Figure 6.2 displays clustered networks at different values of the parameter α. The parameter

determines two clusters at α = 1e-07, three clusters at α = 1e-04 and steadily more clusters

at higher levels of α. At α � 1e� 04, the true cluster structure composed of three distinct

clusters is determined.

(a) α = 0.1 (b) α = 1e-03

(c) α = 1e-04 (d) α = 1e-07

Figure 6.2: Clustered networks with varying number of clusters at different values of α

In Figure 6.3, the number of clusters reduce with a decrease in the value of the parameter

α. Each sub-plot displays a distribution of the number of clusters that are determined from

the sampler (described in Algorithm 7, Chapter 5).
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(a) α = 0.1 (b) α = 1e-03

(c) α = 1e-04 (d) α = 1e-07

Figure 6.3: Distribution of number of clusters at different values of α

6.1.2 Spatio-temporal precision matrix

The spatio-temporal dataset simulated over the San Francisco network is composed of 158

junctions and 360 observations are recorded for each junction over a period of six hours. The

relevant spatio-temporal precision matrix is denoted by Ω and is written as Ω � ΩS bΩT .

The dimensions of the spatial precision matrix, the temporal precision matrix and the

spatio-temporal precision matrix are listed as follows:

dimpΩSq � 158� 158

dimpΩT q � 360� 360

dimpΩq � dimpΩS bΩT q � 56880� 56880

As computed above, the Kronecker product of the spatial and temporal precision matrix

results in a very large matrix. It would be ideal to avoid the computation of this large matrix

and this is possible by the utilisation of relevant Kronecker product identities. By utilising

the Kronecker product identities that are introduced in Chapter 5, the computational time
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is reduced significantly. The implementation of Kronecker product identities assumes the

presence of a unique observation for every space and time combination and this hold for the

simulated spatio-temporal dataset. For example, using Identity I, the computation time to

evaluate ΩT
S bΩTvecpXq is significantly reduced for a single iteration within the sampler.

In the simulated data over the San Francisco network, vecpΩTXΩSq is computed in a tenth

of a second, as compared to pΩT
S b ΩT qvecpXq which takes six seconds. The difference in

computational time for a single iteration leads to a significant reduction time for the overall

sampler. The computation within the likelihood uses the Identity I and Identity II and

simplifies the term vecpXqT pσ2I�τ2ΩSbΩT q
�1vecpXq using eigenvalues and eigenvectors.

This term, when rewritten as vecpXqT pΓSbΓT qpσ
2I� τ2ΛSbΛT q

�1pΓTS bΓTT qvecpXq, can

be computed very efficiently.

6.2 AIMSUN simulator

In this section, the Bayesian method is applied to a spatio-temporal dataset that is gen-

erated over the 2.5 square miles network area in downtown San Francisco, CA. The same

dataset is introduced in Chapter 3, but this chapter utilises the data that is recorded over

the entire six hours. In general, higher resolution spatio-temporal data for urban road net-

works is not necessarily available in open data sources and the AIMSUN simulator serves to

replicate multiple scenarios. More specifically, the AIMSUN microscopic traffic simulator

is utilised to mimic origin destination traffic demand scenarios over the network (Barceló

and Casas, 2005, Barceló et al., 2010, Casas et al., 2010). Transportation researchers have

utilised data generated from an AIMSUN simulator for simulation experiments. We gener-

ate data that is able to replicate realistic urban traffic network scenarios in a manner that

also broadly reflects three distinct patterns within the network. The AIMSUN simulated

data suggests an approved way to model the network in simulation experiments and has

been widely utilised in transportation research (e.g., Geroliminis et al. (2014), Saeedmanesh

and Geroliminis (2016)). The nature of spread of traffic congestion, presence of spatial cor-

relation (both across the network and within clusters) and the need to necessarily model

both spatial and temporal dimensions pose multiple challenges.
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Occupancy observations, for each junction in the downtown San Francisco network, are

simulated over six hours from 8 am in the morning to 2 pm in the afternoon. In Figure

6.4, the downtown San Francisco network and the relevant region of interest is highlighted.

The region within the brown border translates to the region of interest and is composed of

158 junctions. The darker brown line along Market Street highlights a divide that indicates

differences in the range of occupancy values for the region. The simulated data reflects the

expectation that the network has lower occupancy earlier in the day and higher occupancy

levels during the middle of the day. The higher levels of occupancy represent an increase in

vehicular traffic that is caused by lunch and associated travel within the urban network.

Figure 6.4: Downtown San Francisco

The scenarios are generated such that there are multiple sources that introduce traffic into

the urban road network. Figure 6.5 displays urban road networks with traffic congestion

levels at 9 am and 1 pm. Figure 6.5a displays the traffic congestion at 9 am, which is con-

centrated in the top part of the network, above Market Street. Congestion is concentrated

to the right, towards the later part of the time period (six hours), as displayed in Figure

6.5b. An initial source of occupancy is at the left of the network, this spreads through

the network and then concentrates towards the right. This reflects the differences in the

traffic demand scenarios corresponding to three distinct clusters in the network. In this sec-

tion, the Bayesian model seeks to identify a cluster structure that reflects these described
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differences in congestion through the day.

(a) 9 am (b) 1 pm

Figure 6.5: Traffic congestion in the network as generated from AIMSUN simulator

In Figure 6.6, the San Francisco network is displayed and the sources that generate vehicular

movement within the network are circled in red, green and blue. We limit the dataset to

only include the circled junctions positioned within the network. The dataset does not

include circled junctions that are positioned outside the network; these sources are circled

in purple, brown and blue and are placed outside the urban road network. The vehicular

traffic initially builds from the purple and red sources and is concentrated around the

neighbouring junctions. This corresponds to the movement of traffic from the region to

the left of the Financial district towards the Financial district. A major proportion of

the traffic in the network is introduced from the sources circled in green and brown. The

vehicular occupancies then concentrate towards the right middle of the network and this is

also displayed in Figure 6.5b. This translates to the movement of traffic from the South of

Market Street and towards the East Cut and the Embarcadero. These transitions in the
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movement of traffic are caused by the expected change around lunchtime. The spread in

traffic occupancy across the network mimics a continuous process and its dynamic nature

poses multiple challenges to the development of clustering algorithms.

Figure 6.6: San Francisco network composed of 158 junctions. Individual junctions that serve as

sources of vehicular traffic in the network are circled and indicate differences in the occupancy

observations. These differences translate to unique temporal patterns and distinct clusters.

The Bayesian model is applied to this described data and the different clustering results are

presented in Figure 6.7. The model is initialised with φ � 0.5, λ � 50 and ρ � 0.75 and 1500

iterations of this sampler are run over the dataset. The defined spatial precision matrix

is over 158 junctions and the temporal precision matrix is defined over 120 observations

such that dimpΩSq � 158 � 158 and dimpΩT q � 120 � 120. The chosen clustering results

are determined as corresponding to the highest probability among other clusterings. In

Figure 6.7d, the clustering result is chosen corresponding to the highest posterior mode at

7.244. The cluster structure is composed of six spatially contiguous clusters and there is an

expected division along Market street between the clusters in purple and pink as compared

to the clusters in green, red, blue and yellow. The numerous singletons that are formed at

higher values of α are less likely to be formed at lower values.
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(a) α � 1e� 05

(b) α � 1e� 10

(c) α � 1e� 15

A

B

C

D

(d) α � 1e� 45

Figure 6.7: Clustering results over the network at different levels of α

In Figure 6.7d, we highlight several junctions in the clustering ouptut and compare the

cluster structure across multiple chains. In each chain, the posterior mode is utilised to

select the cluster structure. For junction A, it belongs to the same cluster in nine out of
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ten such chains. Similarly, the junction labelled B belongs to the same cluster in seven

out of ten, the junction labelled C belongs to the same cluster in six out of ten and the

junction labelled D also belongs to the same cluster in six out of ten. The clustering output

displayed in Figure 6.7d is composed of six clusters and the temporal pattern for each of

the six clusters is presented in Figure 6.8.

Figure 6.8: Temporal pattern corresponding to the determined clusters in Figure 6.7d

The temporal pattern is composed of higher occupancies for the red and blue clusters (par-

ticularly between the second and upto the fourth hour). With the division of clusters along

Market Street, this also corresponds to a temporal pattern composed of lower occupancies

(earlier in the day) for the pink and purple cluster. These patterns of traffic reflect the

nature of the traffic scenarios simulated by the AIMSUN simulator. The generated sources

of traffic are concentrated on the left portion of the network and includes the red, blue,

purple and pink clusters. Accordingly, the increase in traffic is associated with lunchtime

and the patterns presented in Figure 6.8 reflect this increase in traffic. In addition, the

higher values of occupancy (earlier in the day), for the red and the blue clusters, suggest

that the traffic spreads from the South of Market street area towards the Financial district

area, the Embarcadero and the East Cut. The traffic peaks at noon and then steadily starts

to diminish across the network over the remaining two hours of the evaluated time period.

This is also reflected in the patterns generated in Figure 6.9, where multiple clustering

results within the same chain are displayed. The results do not correspond to the highest
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posterior mode (as displayed in Figure 6.7d) but provide other potential cluster structures.

The posterior mode for the structure in Figure 6.9a is 3.164, in Figure 6.9b is 2.748 and in

Figure 6.9c is 1.332.

(a) (b) (c)

Figure 6.9: Cluster structures at lower posterior modes, when α � 1e� 45

6.2.1 Diagnostics

The performance of the sampler is evaluated for the model when the α parameter is set at

1e-45. We examine multiple aspects of the MCMC including mixing, burn-in and the run

length. The sampler should explore the entire parameter space efficiently such that it does

not reject or accept too many proposals. Trace plot is one such important tool that seeks

to assess the mixing of the chain. Figure 6.10 displays the trace plots for the parameters

inferred by Metropolis-Hastings updates. Ideally, a trace plot should not be composed of a

steadily increasing or decreasing pattern. The burn-in is assessed by a glance at the trace

plots for the three parameters, as displayed in Figure 6.10. Figure 6.10a and Figure 6.10b

display trace plots for the λ and φ parameter. Removing the first 300 observations, the trace
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plot hovers between 0.55 to 0.7 for φ and 0.5 to 0.65 for ρ. We also started the sampler at

higher and lower initial values of λ, φ and ρ to ensure that the sampler continues to converge

to the same range of estimated values. This allows the reliability of the output to be assessed

since a sampler can be stuck in a local maximum. Different initial values for the parameter

φ and ρ results in chains that converge to the same range of values. In general, it is rather

difficult to tell how long the chain should be run but the trace plot typically serves as one

such indicator of the efficiency of the MCMC sampler. The trace plot for the parameter φ

indicates very good mixing of the chain, which indicates that the relevant parameter space

is explored efficiently. The trace plot for the λ parameter also indicates reasonable mixing.

However, the trace plot for the ρ parameter shows poor mixing; a well-mixing chain would

move freely without getting stuck in regions of the parameter space. This could suggest

the need for the MCMC sampler to be run over more number of iterations as well as the

need for other modifications to be investigated. In Figure 6.10, the trace plots above are

displayed for the MCMC sampler when the model uses an α value of 1e-45. Similar plots

for other values of α (α = 1e-05, 1e-10, 1e-15 and 1e-80) are provided in the Appendix.
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Figure 6.10: Trace plots for the parameters λ, φ, ρ

6.3 Property prices

6.3.1 Data

This section utilises data for associated geographies, with a focus on middle layer super

output areas (MSOA), over the Avon county in England. The Avon county is composed

of four local authority areas, ‘North Somerset’, ‘Bath and North East Somerset’, ‘Bris-

tol, City of’ and ‘South Gloucestershire’. Residential property transactions from 1995 to

2016 are available from the Office of National Statistics (ONS) for MSOA units across the

Avon county. Additional details of the housing price statistics for small areas (HPSSA)

in England can be found at https://www.ons.gov.uk/peoplepopulationandcommunity/

housing/bulletins/housepricestatisticsforsmallareas. Similarities and differences

https://www.ons.gov.uk/peoplepopulationandcommunity/housing/bulletins/housepricestatisticsforsmallareas
https://www.ons.gov.uk/peoplepopulationandcommunity/housing/bulletins/housepricestatisticsforsmallareas
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in the changes of property values over time, for areal units of interest in the Avon county,

can be identified using the flexible Bayesian model introduced in Chapter 5. Observations

over time (from 1995 to 2016) for MSOA units in Avon county lead to a dataset composed

of 140 units that are each adjacent to a limited number of other units. This defines a sparse

adjacency matrix and corresponding precision matrix. In this spatio-temporal dataset, a

unique observation is present for every combination of space and time.

The Bayesian approach introduced for spatio-temporal data in Chapter 5 is applied to

a map with areal unit associated data. The binDCRP graph framework introduced in

Section 5.2 can also be adapted to this map based spatial structure. The spatio-temporal

matrix is defined over 140 regions in the graph and 22 recorded observations such that

dim(ΩS)� 140� 140 and dim(ΩT )� 22� 22.

6.3.2 Results

Figure 6.11 displays a cluster structure over four local authority areas ‘Bristol, City of’,

‘Bath and North East Somerset’, ‘North Somerset’, and ‘South Gloucestershire’. The clus-

ters are determined using the relevant MSOA units for the local authority areas. The Avon

County is collectively composed of these four local authority areas and the application of

the Bayesian method results in eight clusters. Figure 6.12 displays a plot that describes

the temporal pattern associated with each cluster. The observations for the MSOA units

within the cluster are aggregated to determine a single trajectory over time for each cluster.

Cluster 2 represents a distinct temporal pattern compared to clusters 1, 3, and 4.
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Figure 6.11: Cluster structure of the Avon county composed of four local authority areas. This is

determined using housing prices data recorded from 1995 to 2016 for MSOAs.

In Figure 6.13, the temporal patterns for the eight determined clusters are displayed as

separate plots; this enables individual differences to be studied in an easier manner. The

observations over time for MSOA units in cluster 2 represent higher property prices than

for cluster 3. Aggregating over these observations result in two distinct temporal patterns

as displayed in Figure 6.13b. Cluster 4 is composed of observations over a greater range of

property prices such that there are higher prices as well as lower prices. These are aggregated

to form a temporal pattern above cluster 1 as displayed in 6.13a. In general, the property

prices values for observations associated with cluster 3 are lower than the observations for

MSOA units in cluster 1, 2 and 4. The range of property prices is also narrower for cluster

3 compared to the range of property prices for observations over MSOA units in cluster 1,

2 and 4. In Figure 6.13c, the clusters correspond to trajectories that each have a distinct

temporal pattern. The clusters are also determined to ensure that they satisfy constraints

that result in the formation of spatially contiguous clusters. For example, cluster 7 and

cluster 8 cannot belong to the same cluster unless cluster 1 is broken up; this would lead to
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the formation of a different partitioning.

Figure 6.12: Temporal patterns for clusters using median house price data (from 1995 to 2016)

recorded for Middle Layer Super Output areas (MSOA).
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(a) Cluster 1 and Cluster 4 (b) Cluster 2 and Cluster 3

(c) Cluster 5, 6, 7 and 8

Figure 6.13: Observations over time for the clusters displayed in Figure 6.11

6.4 Discussion

This chapter primarily focusses on illustrating the applications of the binDCRP based

Bayesian clustering model (introduced in Chapter 5). This model is applied to multiple

spatio-temporal datasets and the examples utilised in this chapter are motivated by ob-

servations recorded for junctions in an urban road traffic network as well as observations

associated with a map-based structure. We simulated a spatio-temporal dataset over an ur-

ban road network such that occupancy observations over time are associated with junctions

over the network. In this spatio-temporal dataset, occupancy observations are recorded over

a period of time for each junction in the urban road network. The distinct clusters over

three non-overlapping regions in the network represent occupancy data with different mean

values but with common variance. This simulated spatio-temporal dataset differs from the

dataset simulated in Chapter 3; the simulated dataset in Chapter 3 represents three distinct
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clusters with different distributions (both mean and variance).

In Chapter 5, we modified the binDCRP to control both the number of singletons and the

number of redundant links that lead to cycles. This restricts the number of clusters that

are formed over the spatial structure using the parameter α. In this Chapter, we utilise

the spatio-temporal simulated data to evaluate the ability of the binDCRP based model

to restrict the number of clusters within the urban road network. Different values of the

α parameter are chosen and the associated cluster structure demonstrates the number of

clusters at different values of α. The binDCRP is able to exert reasonable control over the

number of clusters and the model generates fewer number of clusters at lower levels of α.

Within the simulated spatio-temporal dataset, there is a unique observation for every space

and time combination and this allows for the utilisation of Kronecker product identities

introduced in Chapter 5. In this chapter, we also demonstrate the ability to improve the

computational efficency of the model by utilising Kronecker product identities.

This chapter also illustrates the performance of the binDCRP based model by an applica-

tion to the real-world AIMSUN traffic simulator dataset. This dataset was first introduced

in Chapter 3, but we describe this spatio-temporal dataset and the associated scenarios in

greater detail. The dataset generated by the AIMSUN simulator is composed of three differ-

ent demand scenarios and the spread of congestion is simulated as a continuous process over

the network. Unlike the spatio-temporal dataset that is simulated to generate three distinct

clusters, the three different demand scenarios lead to clusters that have considerable overlap

in associated temporal patterns. This dataset does benefit from the Bayesian model’s ability

to accommodate geographical constraints over the network and incorporate spatial correla-

tion within a cluster. It is reasonable to assume that a junction within a cluster is spatially

correlated to adjacent junctions and the model utilises a conditional auto-regressive (CAR)

model to account for this level of spatial dependency. The binDCRP-based model is run

at different values of the α parameter and we select a cluster structure that corresponds to

six distinct spatially contiguous clusters. The Bayesian framework of the binDCRP-based

model also enables us to generate several clusterings associated with the posterior mode.
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We examine the mixing of the sampler and present relevant diagnostic plots. The ability

of the binDCRP-based model to be applied to an areal unit dataset is also demonstrated

by an application to property prices recorded over twenty two years for the Avon county in

England, United Kingdom. The Avon county is composed of four local authority areas and

observations are recorded for middle layer super output areas (MSOAs). Eight clusters are

identified over the Avon county and the mean-based differences between these clusters are

described in this chapter.



Chapter 7

Conclusions

Spatial clustering algorithms seek to adequately accommodate the geographical constraints

posed by the network and generate meaningful clusters. This thesis focusses on the devel-

opment of clustering algorithms that identify spatially contiguous clusters by accounting for

the spatial, temporal and network dependencies within the spatio-temporal data. The spa-

tial clustering methods introduced in this thesis are nonparametric and are also motivated

by challenges posed by different temporal pattern scenarios. The developed methods are di-

rected towards identifying clusters that represent mean-based differences and distribution-

based differences (including both mean and variance). The development of new spatial

clustering methods for spatio-temporal datasets is motivated by the need to identify mean-

ingful clusters in a computationally efficient manner. In this thesis, the clustering methods

are described for a grid-style graph network; a graph network is composed of vertices and

edges between the vertices and each vertex is assumed to have a limited number of ad-

jacent vertices. Spatial structures in this thesis are represented as a road network with

junctions and road segments between junctions as well as a map composed of areal units.

Both these structures can be translated to a graph composed of vertices and edges between

vertices. The examples in this thesis are primarily from traffic modelling, where the goal is

to identify distinct patterns of traffic congestion within an urban road network. Occupancy

observations are recorded over time for each junction and a congested network corresponds

to higher levels of occupancy in the network. In addition, the formal Bayesian approach to

clustering is also described in the context of map based spatial structures and its application

133
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is illustrated using property prices recorded over a period of time for associated areal units.

The first method introduced in this thesis is the functional distributional clustering algo-

rithm and this approach to clustering utilises a measure of distance that is both functional

and distributional. This ad-hoc approach is implemented within an agglomerative hier-

archical clustering framework and the method generates a hierarchy of clusters. In order

to choose the optimal number of clusters from this hierarchy of clusters, we introduce a

modified clustering balance criterion. The clusters are distinguished by differences in the

densities over time and are able to accommodate multi-modal distributions. Unlike mean-

based clustering methods, clusters represent differences in both the mean and the variance

over the temporal pattern. In addition, observations within the method are not assumed to

follow a Gaussian distribution assumption. A visualisation composed of three-dimensional

plots for each cluster is also introduced within the framework of this method. Each three-

dimensional plot describes the change in densities over time and is utilised to effectively

represent the differences between the clusters. The performance of this method is demon-

strated by its ability to detect the underlying true cluster structure within a comprehensive

simulation study. The simulation study highlights the superior performance of a functional

distributional clustering approach compared to functional clustering, distributional cluster-

ing and functional data analysis (FDA) based clustering approaches.

The second method introduced in this thesis is a flexible Bayesian approach to clustering

that is able to determine the number of clusters in a data-driven manner. This is a mean-

based approach that is implemented within a formal statistical framework and the model

assumes that occupancy observations follow a Gaussian distribution. We first introduce a

special case of the distance dependent Chinese restaurant process that is adapted for spatial

data and define this as the binary dependent Chinese restaurant process (binDCRP). The

model utilises the binDCRP as a prior to accommodate the geographical constraints im-

posed by the structure of the network. In this model, the binDCRP is extended to restrict

the number of clusters and the number of clusters corresponds to the number of loops and

number of cycles. The model also assumes that observations recorded for a vertex in the
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graph are spatially correlated to adjacent vertices. In order to fully incorporate the spatial

dependencies within a cluster, a conditional auto-regressive model is utilised. Ideally, a

mixture of CAR models would adequately incorporate the differences in correlation within

the network. However, the binDCRP based model depends on an assumption of conjugacy

and this would no longer hold if a mixture of CAR models is introduced over individually

identified clusters. A first order auto-regressive (AR-1) model is also utilised to accommo-

date the temporal dependencies. The binDCRP based approach is implemented with the

assumption that there is a unique observation for every space and time combination. This

allows Kronecker product identities to be applied to the spatio-temporal precision matrix

(defined within the likelihood), which significantly improve the computational efficiency of

the sampler. We utilise a Metropolis within Gibbs sampler to infer relevant parameters

defined in the model and explore all potential partition structures within the graph net-

work. The ability to search through the network and reach all vertices within a connected

component is aided by a breadth first search. As future work, we seek to develop a compre-

hensive simulation study that compares the Bayesian clustering approach to other existing

nonparametric spatial clustering methods.

The binDCRP based Bayesian clustering method is applied to simulated data over the urban

road network, data generated by a real-world AIMSUN traffic simulator using well defined

origin-destination demand scenarios and to areal unit data. The simulated spatio-temporal

data represents three distinct spatially contiguous clusters, where each cluster is composed

of junctions that are spatially correlated to adjacent junctions and the simulated dataset

is utilised to demonstrate the performance of the model. The AIMSUN traffic simulator

generates data over the same urban traffic network in downtown San Francisco and seeks

to mimic the nature of traffic congestion that evolves over a period of time. We utilised

the spatio-temporal dataset to examine the mixing of the sampler and present relevant di-

agnostic plots. This method is also illustrated by an application to observations associated

with an areal unit dataset; property prices are recorded over a period of twenty years for

areal units in the Avon County in England, United Kingdom.
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In this thesis, both methods were developed to determine spatially contiguous clusters that

represent distinct temporal patterns. However, the determined clusters, generated by the

functional distributional clustering algorithm and the Bayesian approach to non-parametric

spatial clustering, are static in nature. In future work, we seek to extend these developed

methods in a computationally efficient manner to be able to generate dynamic clusters

that also change in shape over time. This would lead to a significant modification in the

framework of the Bayesian method, since Kronecker product identities would no longer be

applicable.



Appendix A

Additional Details

Figure A.1, Figure A.2, Figure A.3 and Figure A.4 display trace plots associated with

different values of α parameter. The alpha parameter is utilised within the Bayesian model

to restrict the number of clusters and these results are from the AIMSUN simulator example

in Section 6.2. The trace plots at each value of α are displayed for ρ, φ and λ and the model

utilises alpha values of 1e-5, 1e-10, 1e-15 and 1e-80. The results described in the AIMSUN

simulator example in Chapter 6 utilises α = 1e-45; the following trace plots are for all other

values of α.
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Figure A.1: Trace plots for the parameters λ, φ, ρ when the model utilises α � 1e� 05
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Figure A.2: Trace plots for the parameters λ, φ, ρ when the model utilises α � 1e� 10
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Figure A.3: Trace plots for the parameters λ, φ, ρ when the model utilises α � 1e� 15
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Figure A.4: Trace plots for the parameters λ, φ, ρ when the model utilises α � 1e� 80
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