https://theses.gla.ac.uk/

Theses Digitisation:
https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author
A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

CHARACTERISATION OF TWO NFMBERS OFA MACROSCHIZONT GENE FAMILY, TASHATt AND TASHAT3, FRON THELLERLA ANNULAT 1

by
Rowena I. Stern, B.Sc. (I Ions).
A thesis submitted for the degree of

DOCTOR OF PHHOSOPHY

UNIVERSITY OE GI ASGOW

MARCH 2003

Department of Veterinary Parasitology, University of Glasgow

ProQuest Number: 10586214

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10586214
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Author's declaration

The experimental work described in this thesis was carried out in the Department of Veterinary Parasitology, between January 1997 to June 1999 and also in June and October 2001. Except where stated otherwise, the results are my own.

Abstract

Theileria annulata is a protozoan parasite of cattle, that causes the disease tropical theileriosis throughout sub-tropical regions of the Old World. Theileria parasites have the ability to immortalise the host leukocyte they infect causing clonal expansion and dissemination of infected leukocytes throughout the host. This property has allowed the development of an in vitro system for the culture of bovine cells infected by the macroschizont stage of the parasite. In addition, differentiation of the parasite towards the next life cycle stage, the merozoite, can be induced in culture. The signals that catse the macroschizont to differentiate into merozoites are not fully understood, although it is known that this event is associated with a major elevation in merozoite gene expression (Shiels ef al., 1994).

Recently a small family of parasite genes that are negatively regulated early during differentiation to the merozoite were identified. One momber, known as Tashat? contained predicted Al' hook DNA binding motifs and was shown to be localised to the host cell nucleus. It has been postulated that the Tash Λ T2 polypeptide may play a role in the regulation of macroschizont or modulation of host cell gene expression (Swan et at., 1999). The focus of this project was to characterise TashATl, a second member of the Tashat gene family. To this end, the Tashatl gene was sub-cloned and sequenced and mapped to a region of the genome containing TashAT2 and a third Tashat genc, Tashat3. The 1.4 kb opon reading frame of Tashait/ was virtually identical to the five prime end of TashaT3, indicating that TashATl or TashAT3 (TashAT//3) were derived from a recent duplication event. The predicted amino acid sequence of Tashatl/3 contained four AT hook motifs, a muclear localisation signal and a signal sequence.

Northem blot analysis revealed that TashA'l'1, TashAT2 and TashAT3 mRNA were down regulated early, during differentiation to the merveoite in witro. However, no down regulation was observed for any of the TashAT transcripts in a cell line that was severely attenuated with respect to parasite differentiation. Sequence annalysis of the upstream regions of TashiTM/3 identified a motif element (TashLDM) located 43bp upstream of the putative transcription start site of TashaTl/3 that was highly related to a sequence upstream of Tashat2 and another, mmelated macroschizont gene, Tash1. Preliminary electromobility band shift analysis of TashUM revealed that it bound to a factor found in host and parasite enriched nuclear extract, which appeared to decrease in abundance as the parasite differentiated towards merogony.

Antisera generated against a region of TashAT1 failed to recognise al TashAT1 polypeptide by Western blot analysis. However, a 180 kD a polypeptide that was down regulated with respect to merogony and co-localised to the host nucleus was specifically recognised. The detected polypeptide was identified as TashAT3 on the basis of size, sequence identity and predicted expression profile. Immunoftuorescence analysis showed that the anti-TashAT1 antisera reacted against both the host nucleus and parasite. This reactivity was lost as the parasite differentiated to the merozoite. The host reactivity was probably due to recognition of TashAT3, while it could not be concluded that the parasite reactivity was directed against TashAT1.

Taken together, the results indicated that TashAT3 and possibly TashAT1 are additional candidates for parasite encoded factors that are translocated to the host nucleus, bind to DNA and alter host cell gene expression. This modulation of gene expression could directly or indirectly alter the phenotype of the host cell and be involved in parasite dependent regulation of leukocyte coll division.

Acknowledgement

I would like to thank all the members of the Vetcrinary Parasitology lab, Lniversity of Glasgow, including Colin Chapman and Andy Tait for preparation of antisera and Sue McKcllar, Nazreen Aslam, Kirsten Phillips, Aiobhin McDonell, Frank Katzer for their advice and technical assistance. My appreciation also goes to David Swan, Laura Stadler, Sue McKellar and Brian Shiels for access to unpublished data and use of their antisera. I an grateful to all the nembers of the Wellcome Unit of Molecular Parasitology for their advice and use of sequencing facilities and to Keith Vass of the CRC Bealson Institute (Glasgow) for assistance and use of the densitometric scanner. Thanks also to Allan May of the University of Glasgow, for preparation of many of the photographs presented in this thesis and the BBSRC for providing funding for part of this project.

On a personal level, I would like to thank Caroline Dando, Alistair MeGregor, Julie Nybo, Colin Chapman, Chris Oura and Mark Fox, Afshan Fainley Fot their help, generosity and support. A speciad thanks goes to my sister, Lorna, for her contimued support and guidance, especially during my write up. Finally, the last people I would like to thark are my assigned supervisors Brian Shiels and Andy Tait and my unofficial supervisor David Swan.

I'able of Contents

AUTIOMR' IDFC'I ARATION II
ABSTRACT III
ACKNOWLEDORMFN N
TABIE OF CONAINTS V
Last of Figurles 'ill
Lesf of Tabias x
I ISF OF APPENDICIS XI
AbBratventions XII
Chapter page

1. General introduction 1
1.1 Introduction
1.2 Distribution and Economic Impact of Theileria annulata. 3
1.3 The Lifecycle of Theileria 6
1.3.1 Bovine Host 6
1.3.2 The Invertebrate vector 11
1.4 Pathogenesis of Tropical Theileriosis 15
1.5 Diagnosis 16
1.6 Bovine Immune Response to T. annulata infection 17
1.6.1 Humoral Response 17
1.6.2 Ccll Mediated Resjonse 19
1.7 Control Measures 21
1.7.1 Tick Control 22
1.7.2 Chemotherapy 22
1.7.3 Host Vaccination 23
1.8 Stage Differentiation in T. ahmulata 26
1.9 T. amnulata Induced Alterations of Gene Expression 30
1.9.1 Alterations in Protein Kinase Activity 31
1.9.2 Cytokine Mediated Signal Transduction 32
1.9.3 Metalloproteinases 35
1.9.4 TashAT Genes 36
2. Materials and Methods 40
2.1 Materials 40
2.1.1 General buffers and reagents 40
2.1.2 Cell culture 40
2.1.3 Cell Protein Extraction 40
2.1.4 Bacterial and λ phage Culturc 41
2.1.5 Bacterial Cell Transformation 41
2.1.6 DNA Extraction 42
2.1.7 Polymerase Chain Reaction (PCR) and DNA Modification 42
2.1.8 DNA Electrophoresis and Southern Blot Analysis 42
2.1.9 Radioactive I abelling 43
2.1.10 Nucleic Acid Hybridisation 43
2.1.11 RNA Extraction, Electrophoresis and Northern Blot Analysis 43
2.1.12 DNA Sequencing 43
2.1.13 IFAT and Western Blot Analysis 44
2.1.14 Electromobility Shift Assay (EMSA) 44
2.2 Methods 45
2.2.1 Cell Cuiture 45
2.2.2 Cryoprescrvation and Recovery of Cells 45
2.2.3 Staining of Cells with Giemsa Reagent 45
2.2.4 Preparation of Cell and Nuclear Extracts 46
2.2.5 Culturing and Storing Bacteria 46
2.2.6 Trans formation of E.coli Competent Cells 47
2.2.7 Expression of GST-Fusion Proteins in E.coli Cells 47
2.2.8 Purification of the TashAT1-N Fusion Protein 48
2.2.9 Preparing High Tire λ dash II plage Stocks 48
2.2.10 Preparation of λ dash II 48
2.2.11 Preparation of Genomic DN A 49
2.2.12 Preparation of Plasmid DNA 50
2.2.13 Restriction Digestion of DNA 50
2.2.14 Sub-cloning DNA 50
2.2.15 Amplification of DNA products by the Polymerase Chain Reaction (PCR) 51
$2.2 .165{ }^{\circ}$ RACF (Rapid Amplilication of cDNA Ends) 51
2.2.17 Electrophoresis of DNA 52
2.2.18 Southern Bloting 52
2.2.19 Preparation of R.NA 53
2.2.20 Electrophoresis ol RNA 53
2.2.21 Nothern Blotting 54
2.2.22 Radioactive Labelling of DNA using the Random Primed Method 54
2.2.23 Radioactive Labelling of $D N A$ using the End Labelling Method 55
2.2.24 Densitometric Analysis 55
2.2.25 Automated DNA Sequencing 55
2.2.26 Sequence Analysis 56
2.2.27 Indirect Filuorescence Antibody Test (IFAT) 57
2.2.28 SDS-Polyacrylamide (Gel Electrophoresis (PAGE) 57
2.2.29 Westen Blotting 58
2.2.30 Peptide Blocking 59
2.2.31 Generation of Antisera 59
2.2.32 Electromobility Shift Assays (EMSA) 59
3. Genctic Analysis of TashaT1 and TashA'I3 61
3.1 Introduction 61
3.2 Results 63
3.2.1 Identification of the TashAT1 and TashAT3 genes 63
3.2.2 Scquence analysis or'TashAT1 81
3.2.3 Mapping TashAT1 and other TashAT gemes 110
3.2.3.1 Southern blot analysis 110
3.2 .3 .2 T 7 or T 3 mapping 117
3.2.4 Identification of 'lashAT1 and TashAT3 within the T. anmulata genome 122
3.3 Discussion 127
4. Identifucation and Expression of the Tashat mRNA species and Analysis of a Tashat Upstream Motia. 134
4.1 Introduction 134
4.2 Results. 138
4.2.1 ldentification of the mRNA species encoded by TashA'l and TashAT3 138
4.2.2 Dctermination of the expression profile of TashA'l'mRNA duing differentiation to the merozoite 141
4.2.3 Comparison of the expression protile of TashAT transcripts between cell lines that are competent (D7) or attenuated (D7B12) for differentiation. 150
4.2.4 The expression profile of the TashAT mRNA transcripts in D7B12 cells. 154
4.2.5 Identification of the Transcription Start site of TashAT1 158
4.2.6 Lnvestigation of possible nuclear factors binding to a DNA motif upstream ofTashAT1 and TashAT3 by Electrophoretic Mobility Shift Assay163
4.3 Discussion 168
5. Identification and Expression of TashAT1 and TashAT3 Polypeptide 174
5.1 Introduction 174
5.2 Results 176
5.2.1 Production of a GST-TashATI fusion protein and anti-sera generation 176
5.2.2 Detection and localisation of the TashATI polypeptide 186
5.2.3 TashA'l'3 polypeptide expression during differentiation to the merozoite 199
5.2.4 Localisation of the TashAT3 polypeptide during differentiation to the merozoite 205
5.2.5 TashATl and TashAT3 expression in sporozoiles 209
5.3 Discussion 211
6. General Discussion 216
6.1 Analysis of the TashAT 1/3 Predicted Polypeptide 216
6.2 Tashat Gene Organisation 217
6.3 TashAT mRNA Identification 218
6.4 TashAT mRNA Expression 218
6.5 Tushat Gene Regulation 219
6.6 Identification and Expression of the TashAT1 and TashAT3 Polypeptictes 220
6.7 Possible Functions of the TashAT Polypeptides 221
6.8 Summary 223
6.9 Tuture Work 223
List of References 224

List of Figures

Figure 1.1 Gigotraphichl Dis'ribution of Thehbend 5
 13
Figure 1.3 Diagrammatic summary of the stages involved in merozoite fornation 14
 HMGl AND HMG2 66
FIGURE 3.2 DNA AND PREDICTED AMINO ACID SEQUENCD OF TIIE P600 PRODUCT •ROM λ dDASH 13. 67
 גGTII CLONE, CTI 12. 69
 70
 (ATIOOK1) RROM D DASII 13 71
 ORF FROMEL12 72
 75
 P600 1'CR FRAGNIENT 76
 TASHATZ 7
 ATHOOK1 80
Figuriz 3.11 DNA sequincli and resuriction map of λ TA1 87
 TASHAT1 (PANEE, B). 93
FIGURI: 3.13 DNA SEOUENCE GOMPARISON OF FRAGMANT ATHOOK1, FRON ADASH 13, wIT: IHE L.4KB ORF (TASHAT1) FROM スTAI 94
Fgure 3.14 Predicted pertilaE sfoufnce (omparison or tashatl with Tashatz 97
 99
 SOFTWARE PROGRAN "PHD" 102
 POIYPEPTII: 103
 TASHAT2 AND TASII 104
FGGIRE 3.19 MAP OF POSSIBLE TRANSCRETION FACIOR BINIDNG SITES WTIIN THF IPSTRUAM REGION OF TASHATI 105
 DATAbase 108
Figitre 3.21 Posifion of Probls Ti369 and Athooks in relation to Tashati 113
Figure 3.22 Southirn biot analysis of adash 13 DNA, digested whil various ristrietion fnzymis AND HYBRIIISE:D WTHT PROBLE A THOOR 1. 11.4
FIGURE 3.23 SOUTHERN BLOT ANALYSIS OF A DASH 13 DNA, DIGESTE WITH VARIOUS RESTRICTION LENZYMHS AND HYBRIDISEL WITHPROBE TA369 115
Figure 3.24 Dedecli restric thon enzyme mar derived from Solthfern biolt anat ysis of λ dash 13 HYBRIDISED TO PROBES ATHOOKI AND TA369 116
FIGURE 3.25 T7 restriction mapping tecinique 119
FIGURE 3.26 T7 MAPPING ANAI. YSIS OF 2. DASH 13 DNA. 120
Figurl: 3.27 Restricilion mar of the Tashat gene ct uster from d daser 13 DNA, basi:I on T7 MAPPING 121
Figure 3.28 Southern biot analysis of T finvllata genonic dna mbom d7 Ceils, hybridised with PROBF ATHOOK 125
Figure 3.29 Southerv blot analysis of d 7 Genomk dna from T. annulata :Tybridised to a 2 kb ECORI/SPEI FRAGMENT CORRESPONDING TO THE S' CODING REGION OF TASHATi, 126
Figure 3.30 A rossible evoluilonary mechanism for the reightince of Tashat $\%$ 133
Figure 4.1 Noktibern blot analysis of total rNa derived irom D7 cel in line, hybridised to probe AThook 1 and TA369. 140
Figure 4.2 Northern blot analysis of ortal RNA derived brom d7 cells taken during a DIFFERENTIATION TIME COURSE EXPJRIMINT AND HYBRIDISIED TO TA369. 144
Figlure 4.3 Dfintrometric anaiysis of Tashatl compared to 2p3 and Rhop'rry ginne rna livulas dUTING A DIFLERENTIATION TIME COLRSE OT: D7 CELLS 145
Figuri: 4.4 Plkcentage change in Tasiati, Rhoptry geni anio 2p3 RNA mivilis during a d 7 celi. DHELRHENATGN TIMECOURSE.146
Figilre 4.5 Northern blot analysis of rna mrom D7 celles, during a difierentiaton time course, HY[BRIITSTO TO PROBE \triangle THOOK 1 147
 DURING A DJFEERF:NTATJON IINE COURSE 148
 DH:ERENTIATION TTME COURST 149
 probe AThook 152
 BY DENSITOMETRJC ANAIYSIS 153
TO PROBE ATHOOK1155
A SIFIERLNHAMON INE COURSI:156
 DIFIERENTIATHON TIML COURSE 157
FIGURI: 4.1? DIAGRAM OF FIVI PRIMERACE ANAIYSIS PERJORMI:DJIOR TRSIATI RNA 160
 161
 TASHATI 162
 165
 POI.Y (DG.DC) AND (DLDC) 166
 TIMI: COLPRSE 167
CASIAT 1 - N FLSSON PROTEIN AND TASHAT2 (PANEL B) ... 179
FIGLLRE 5.2 PCR AMPIFICATION OF TA 369 180
 OVERLAPPLNG THE JIVE PRIMIE RFOION OF TASHAT1 181
 TASHAT1 EUSIONJROTEN TA369 182
 P()NIS 183
 184
 185
FIGURE 5.8 WESTERN 1 IOF ANAI.YSIS OF D 7 (CEL PROTEIN FXTRACT AT $37{ }^{\circ} \mathrm{C}$ WITHANTISIRA 107 and 104191
WITII ANCISERA 107192
 107. 193
Figure 5.11 IFAT ANALYSIS OF T. ANNULATA MACROSCIIITONT INFECTED JEUKOCYTES AND BL20 CELLLS WITHVARIOUS ANTISERA194
FIGURE 5.12 IFAT ANAiYSIS OF BOVINE MACROPHAGE CELIS (BOMACS) with sirdlm 107 and DE 39 195
 SERUMM AND DE 39 196
Figure S. 14 Western blot analysis of ceil. fextracts dikived irom rolr T. annulata cell bines andBL20 CONTROI CEIIS REACTED WITH TASHAT1/3 ANTISERA.197
 A.vitisiza 198
Figlre 5.16 Western blot aral.ysis of d7 Cell extracts taken from a differentating timie COURSH 201
Figure 5.17 Western biot anai.ysis of a D7B 12 differentiaton time course 202
 203
Figure 5.19 IFAT ANALYSIS OF D7BI 2 CElls under mhilirevilation time course conditions 204
FIOURE 5.20 Western btot analysis of host and parasite bnilelled nl.cinar extracis from T. DIFFERENIIATION TIME COURSE 207
Figure 5.21 trat analysis of host and parasite enrichis nuclidar mracmegs at $37^{\circ} \mathrm{C}$ from MACROSCHZONT INFECTED LEUKOCYTES 208
FIGURE 5.22 IFAT ANALYSIS OF T. ANVLLATA SPOROZOITES USING ANTI-'ASHAT $1 / 3$ SETRUM 210

List of Tables

TABELE I.I ClASSWICA:LON OF THE/LERLA GivNULATA 2
TABII: 3.1 CLASSIICATION OF AT LIOOK DOMANS IROM TEIETASHAT GINIEANHI.Y 98
 109

List of Appendices

APPENDIX A SEQUENCT:OF PRMMERS 253
Appendix B DiIetion Clones Derived from ital 254
Aphendix C Contighous DNA Stolhince Map of λ TAI 255
 265
 268
 270
 272
Appendix ll Prostri: Search of the Tashati Predicted Polyplemid 273
 275
 Genome Databasi: 27.)
 290

Abbreviations	
an	amino acid
approx.	approximately
bp	base pair
cDNA	complementary DN'A
chg	charge
dATP	deoxyadenosine triphosplate
dCTP	deoxycytidine triphosphate
dGTP	deoxyguansine triphosphate
dile	deoxythymidine triphosphate
DNA	Deoxyribonucleic acid
EMSA	Electromobility Band Shift Assay
GST	glutathione S-transferase
Init	initial
kb	kilo bases
kDa	kilo Dalton
mAb	monoclonal antibody
NLS	Nuclear Localisation Sigral
nut	nucleotide
pGex	Pgex 2 TK
pos	positive
RNA	ribonucleic acid
sbjet	subject
Seq	sequence
sn rRNA	small nuclear ribosomal RNA
spp.	species
TashAT1/3	TashAT1 or TashAT3
transer.	transcription

1. General Introduction

1.1 Introduction

Tropical Theileriosis or Mediterranean Coast Fever is a debilitating and frequently fatal discase of catlie and Asiatic buffalo caused by Theilerin anmulata, a tick boric, protozoan parasite. Originally discovered by Dschunkowsky and Luhs (1904, cited by Norvat et al.. 1992), Theileria annalata is a mentrer of the apiconplexan phylum, or subphylum in some classifications, which includes PIasmodham, Toroplasma, Eimeria and Bahesia (Levine, 1988), so called because all of its members possess an "apical complex". There are thirtyfour specics of Theilerio which mainly infect catte and ruminants, but are also known to infect camels and horses. The most pathogenic species are Theileria ammata and to a greater extent, Theileria paroa, the catsative agent of East Coast Fever. Both T. amulates and T. parva pose a severe comomic burden by constraint of livestock productivity in countries where these species are endemic.

Since its discovery, the classification of Theileriat annulata has often been changed by taxonomists because of the initial poor understanding of the intracelluar stages of this parasite. Dschunkowsky and Luhs initially named T. annulata Pirophasma annhlatum, from the pear shaped bodies observed, known as piroplasms, which were simitar in general form to Babesia piroplasms (Norval et al., 1992). Later electron micrograph studies by Friedhoff and Schlotyseck (1968), Bütner (1967, cited by Norval et al., 1992) and Jarrett and Brocklesby (1966) revealed that Theileria spp belonged to the phylum Apicomplexa because they contained some organelles that formed an apical complex. A typical apical complex consists of a polar ring and rhoptry, but may also include a conoid complex, subpellicular tubules and micronemes and are formed during the budding process of the parasite at some stage in its life cyele (Jura et ctl, 1983; Shaw and Tilney, 1992; Schein et al., 1978). Levine (1973) discovered that Theileria contained a roduced apical complex, restricted to rhoptries and the polar ring. Piroplasma annulata was placed into the Theileria genus with the discovery that this organism contained a schizont stage (Wenyon, 1926, cited by Norval et al., 1992).

The similarity between Babesia and Theileria within the sub-phylum Apicomplexa led to suggestions that Theileria and Babesia were of the same genus. However, Levine (1973) observed that Theileria invades leukocytes, where it transforms into an intracellular
schizont stage, whereas Babesia exclusively infects erythrocytes (Mchlhom and Schein, 1984). Levinc (1973) also showed there were structural differences between the apical complex of the two species. Nevertheloss, controversy over the speciation of some Babesia $s p p$ remains since two species, namely Babesia microti and Babesia Equi, both have a macroschimont stage in equine and rodent lymphoid cells respectively (Schein et al., 1981; Moltmann of al., 1983; Mehlhom and Schcin, 1984). Moreover, neither of these parasites are trans-ovarially transmitted, a common feature of Bahesia (Norval et th., 1992). Current classification of B. microfi and B. equi based on β-tubulin and rRNA analysis have not resolved this issuc and it is possible that these species conld form a new genus. A recent classification of the Theileria species by Irvin (1987) is described below (see Table 1.1):
\(\left.\begin{array}{ll}\hline Sub Kingdom \& Prolozoa, single cell cukaryotes

Phylum \& Apicomplexa: apical complex present at least in some stages;

reproduce sexually by syngany\end{array}\right]\)| Class | Sporozoea; sporogonic stage producing sporozoites |
| :--- | :--- |
| Sub Class | Piroplasmia; piroform, rod shaped or amoeboid; parasites in |
| | erythrocytes and some other cells |
| Order | Piroplasmida; asexual and sexual reproduction; ticks are vectors. |
| Family | Theileriidae; schizont stages in lymphocytes |
| Geus | Theileria; piroplasm stages in erylhrocyles lacks pigment |
| Species | Theileria amulata |

Table 1.1 Classification of Theileria anmulata (taken from Irvin, 1987).

Theileria ammatata is transmitted by the three main species of the ixodid tick Hyalomma (H. anatolicum anatolicum, II. excavanum and H. detritum). T. anmulata causes the syndrome known as tropical or Mediterrancan theileriosis; infections occur in the asiatic buffalo (Bos taurus, Bos Indicus) and the water buffalo (Bubalis bubalis) but the parasite is more pathogenic in exotic, taurine cattle (Uilenberg, 1981; Robinson, 1982). Five other species of Theileria infect cattc, moreover, there are many more Theileria spp that infect bovines and bovids (reviewed by Mehihorn and Schein, 1984). Theileria parva is the most pathogenic of the Theileria spp and is transmitted by ticks of the genus Rhipicephalus. T. parva catiscs East Coast Fever (ECF) and infects the Cape buffalo, Waterbuck, Asiatic buffalo and catte, but is particularly pathogenic to the latter (Maloo et al., 2001; Lawrence et al., 1983; Stagg et al., 1983). Also of significance is Theileria sergenti, the major infective Theileria spp of cattle in East Asia, although this specics usually causcs milder infections than T. parva and T. annulata. The remaining three, less pathogenic or benigr Theileria spp are Theileria mutans (Young et al., 1977); Theileria taurotragi and Theileria velifera (Reviewed by Lilenberg, 1981), which exist mainly in Africa. However, the focus of this study will be on T. cmmulata, with other Theileria specics mentioned as appropriate.

1.2 Distribution and Economic Impact of Theileria annulata

Theileria amulata is distributed across the tropical and subtropical clinatic zones of the old world (see Fig. 1.1). In the west it occurs in Portugal, Spain and Morocco and the range extends eastwards along the Mediterranean coasts of Europe and North Africa. This parasite is also found in South-East Europe, and is spread across the near East, middle East, southem Russia, Siberia, India, Chita and the Far East (reviewed by Robinson, 1982).

The distribution and scasonal occurence of tropical theileriosis is closely related to the distribution of the tranmitting Ibalomma vector and its life cycle (reviewed by Robinson, 1982). These ficks undergo a 2 host cycle, whereby the mymph and larvae may feed on the first host and the adult on a second host, or a 3-host cycle, where all three stages feed on a fresh host. Studics by Flach and Ouhelli (1992) have shown that in Morocco, disease transmission occurs entirely by ticks feeding on cattle in the summer; in the winter months the parasite maintains itself as piroplasms in catte or as zygotes in overwintered ticks. Futher infection of eattle then oceurs when infected nympls develop into adults and feed on the cattle in the spring flach and Ouhelli (1992). Pipano (1989b) also showed that sporadic cases oceur throuphout the yoar in Israel and North Africa. Hyalomma ticks hide in cattle barns where they feed and develop on cattle (Pipano, 1976): the wam and humid conditions have been shown to increase infectivity (Samish, 1977). However, extremes of temperature have a detrimental effect on the development and infectivity of T. parva and Babesia and is likely to affect T, annulata in a similar manner (Fricdhoff, 1988; Lewis, 1950; Lewis and Fotheringhan, 1941; Young and Leitch, 1981). This may explain why this disease is limited to the tropical and sub-tropical zones (Robinson, 1982). Altematively, the geographical distribution of this disease may be linked to tick survival since the related Babesia species is found in Northern Europe (Homer et al., 2000). Other factors which influence infectivity rates are male to female tick ratio, as females have more "e" type salivary cells than males, which are targeted by Theileria kinetes (Young et al., 1980). Finally, the susceptibility of cattle breeds to the disease is a major factor in the spread of tropical theileriosis. In Africa, farming practices have increased the distribution of the disease, by the introduction of exotic, non resistant cattle breeds to endemic areas while limiting calf exposure to ticks, thereby preventing the development of resistance to subsequent parasite challenge (Robinson, 1982; Fivaz et al., 1989; Jahnke, 1982, cited by Norval et al., 1992).

The true economic impact of discase caused by T. anmilata is difficult to assess but it has been estimated that approximately $200-250$ million cattle are at risk fron tropical theiteriosis, mainly in developing countries (Dyer and Tait, 1987). However, the number of cattle that have been infected by T. anmulata is probably underestimated, due to lack of accurate data (Dyer and Tait, 1987). Affected cattle suffer from lymph node hyperplasia, anaemia and death while chronic disease generates weight loss, infertility and low milk yields. The disease thus resulis in reduced productivity, which poses a scvere economic constraint in developing countries where cattle are an important source of nutrition, fertiliser and tractive power. In addition tropical theiterissis halts the introduction of high milk yield livestock, particularly in crossbreed, exotic or imported taume breeds where mortality rates are between $40-60 \%$, hindering the improvement of local breeds (Brown, 1990). By contrast, the indigenous low mifli yield cattle have a mortality rate of approximately 5%, and these cases are mainly restricted to calves (reviewed by Dyer and Tait, 1987). In India, where crossbreeding programmes have been established to increase milk productivity these losses were estimated to be U.S $\$ 800$ million or 10% of the gross national product (Brown, 1990; Devandra, 1995).

1.3 The Life cycle of Theileria

Theileria amulata, like other protozonn parasites, has evolved a life cycle that involves differentiation through a mumber of different life eycle forms that occur either in the bovine host or the tick vector. Differentiation enables parasites to enter, survive and reproduce within the host coll and is fundamental to the long-term maintenance of the parasite populations and their transmission. During the life cycle of T. anmulata (Fig. 1.2), the parasite undergoes sexual reproduction within the tick gut, and travels to the tick salivary glands, where its undergoes asexual reproduction, known as sporogony. In the bovine host, two further stages of asexual reproduction occur in the white blood cells and are known as schizogony and merogony. Liberated merozoites invade aryhocytes resulting in the production of piroplasms. infected crythrocytes are taken up by feeding ticks, thus completing the life cyele of the parasite in the bovine. The individual stages of the life cycle of T. anmiloto are described in more detail below.

1.3.1 Bovine Host

In the bovine, the developmental cycle of T. amulata is initiated when, an adult lick (usually) takes its first bloodmeal and inoculates spororoites derivel from the salivary glands into the bloodstream of the host. Shaw et al. (1991) reported that sporozoitcs were ovoid shaped, approximately $0.9 \mu \mathrm{~m}$ long and $0.8 \mu \mathrm{~m}$ wide, and surrounded by a unit membrane, which enclosed an apical complex consisting of several rhoptries and a polar ring. Micronemes, containing enzymes were also observed in sporozoites. In vitro experiments demonstrated that: T. anmulata sporozoites target Major Histocompatibility complex (MHC) class II positive cells such as monocytes, macrophages or cells of a B type lincage (Glass et al., 1989; Spooner el al., 1989; Camplell et al., 1994; Forsyth el al., 1997, 1999). However, there was less evidence of B cell infection in wivo as ccrtain B cell markers were lost upon infection with T. ammiata (Baldwin et al., 1988). By contast T. parva infects MIIC I positive $\alpha / \beta \mathrm{T}$ cells (Baldwin et al., 1988; Morrison et al., 1996).

Sporozoites contact and penetrate the monocyte in as little as 5 minutes, but usually within 15 minutes, post infection, and infect on average between 10 and 20% of lymphocytes: within a 60 minute interval, up to 15 sporozoites could infect each lymphocyte by in vitro studies (Jura et al., 1983; Shaw et al., 1991). Two subpopulations of sporozoites were found that werc internalised by receptor mediated endocytosis either at the basal end or evenly distributed around the lymphocyte (Jura et al., 1983). Curiously, Jura et al. (1983)
found that T. anmulata sporozoites do not attach to the host cell membrane by their apical complex, unlike other apicomplexans such as Plasmodium, Toxoplasma, Sarcocystis and Eimeria (Mehlhom and Schein, 1984). In addition, in vitro studies with T. parva sporozoites showed that attachment involved the progressive binding of ligands on the parasite to receptors on the host plasma membrane to form a close attachment. 'This "rippering" action continues until the entire sporozoite is enclosed and internalised by the host plasma membrane (Fawcett at al., 1984; Jura et all, 1983). Sporozoite entry was found to be passive, supported by the fact that internatisation can occur at $2^{\circ} \mathrm{C}$ (Fawcelt ef al, 1986) and the host cell fails to develop pseudopodia (Fawcetl of al., 1984). In the case of T. parva, sporozoite internalisation has been shown to be mediated by MHC class I receptors on the host cell surface (Shaw et al., 1995), however, it is not known if the same mechanism applies to T. anmulata sporozoites.

Within thirly mioutes; the sporozoites undergo dedifferentiation: the micronemes and rhoptries discharge their contents, a $10-15 \mathrm{~nm}$ thick "fizzy" layer appears on the sporozoite surface and the host cell membrane is dissolved. In contrast to Plasmodium and Toxoplasma, the use of the apicomplex to destroy the host cell membrane after internalisation means that Theileria is not cncapsulated inside a parasitophorous vacuole (Mehlhom and Schein, 1984). Thus, host lysozymes are unable to fuse with the vacuol membrane and discharge their contents, so enabling the parasite to escape destruction in this way (Fawcett of al., 1984). The final invasive steps involve the formation of an orderly, hammock-like network of host cell derived microtubules aromd the outer layer of the former, dissolved host membrane that previously surrounded the sporozoite. (Shaw et al., 1991; Fawcell et al., 1982; Jura et al., 1983; Williams and Dobbelaere, 1993). Experiments by Shaw et al. (1991) revenied that events subsequent to the entry of the sporozoite into the host cell are energy dependent, requiring the participation of live sporozoites and host cells.

Once the sporozoite has successfully established in the host, it transforms into a transitory minucleate, motile growing stage known as the trophozoite within the next two hours (Jura et al., 1983). Within three hours some parasites have developed a cytosome and by 18-24 hours, bundles of intranuclear, microtubules and spindic pole bodies have appeared, forming an acentric microtubular spindle. Soon after, binary fission occurs to form a binucleate schizont, the first asexual multiplication to ocen in the bovine host. By 72 hours the trophozoite has grown to $2 \mu \mathrm{~m}$ in diameter and undergone more nuclear divisions to form a multinucleate schizont or macroschizont (Irvin et al., 1982; Jura et al., 1983;

Fawcelt et al., 1982, 1984). Multiple infection by sporozoites results in the development of multiple macroschizonts, but these cells die out carly (Stagg et al., 1981).

Shaw and Tilncy (1992) obscrved that the average multinucleate macroschizont contains 15-20 nuclei within its syncitium and is separated from the host cyioplasm by a cell membrane. The nuclei were surrounded by a nuclar mombrane with pores slightly smaller than the nuclear pores of the host. Very few organelles were visible in the macroschizont other than numerous, free ribosomes and some polysomes, randomly scattered mitochondria and some membrane bound vesicles. The snooth and rough endoplasmic reticulum and golgi apparatus appeared to be absent in the schizont cytoplasm by electron microscopy (Shaw and Tilncy, 1992). The ribosomes observed in the schizont were smaller than those of the host although during the onsel of merogony, both host and parasite ribosomes were comparable in size. Shaw and Tilney (1992) had postulated that the ribosomes of the schizont may not be filly assembled and, if so, the parasite nay be dependent on the host for all its metabolic and syathetic requirements.

Amongst the apicomplexan parasites, Theileria macroschizonts have the unique ability to transform the host cell, inducing lymphoblastogenesis and clonal expansion of infected cells. Experiments have shown this process is reversible by treating infected cells with the anti-theileriacidal drug, buparvaguone, demonstrating that the parasite is responsible for this transformation (Dobbelacre et al., 1988). Studies by I'sur and Adler (1963) and Brown et al., (1973) showed that Theileria infected cells can be cultured in vitro indefinitely. Once transformed, the cell becomes enlarged with cytoplasm and the growing macroschizont begins nuclear division. Host cell division occurs at rapid, regular intervals resulting in up to a 10 fold increase in infected cells over a period of three datys or less in vivo (Jarrett et al., 1969; Radley et al., 1974; Irvin et al., 1982). During the early stages of infection and within infected cultured cells, the schizonts have been shown to divide in synchrony with host cell division in vitro due to the foreshortened or absent G_{2} phase of the parasite (Hulliger et al., 1964; lrvin et al., 1982). Studies by Hulliger et al. (1964), Stagg et al. (1980), Vickerman and Irvin (1981) confirmed that synchronous host and parasite cellular division was achieved by the macroschizont attaching to the host mitotic spindle apparatus in prophase and metaphasc. After host division, each daughter cell receives at least one schizont (Dyer and Tait, 1987) and recent studies by Kinnaird et al. $(1996,2001)$ have identified two cyclin dependent kinase genes TaCRK 2 and TaCRK3 in T. annulata and T. parva that are likely to play a central role in all stages of parasite nuclear division.

In wivo, the macroschizont continues to enlarge (up to 6 -10um in diameter) within the host cell until some undefined signal begins the process of merozoite formation which oceurs in a proportion of cells as observed by Shaw and TiIncy, (1992), shown in Fig. 1.3. Here, the enlarged macroschizont differentiates into a transitory form known as a microschizont, 8 10 days post infection. During this process, several ultrastructural changes were detected: these included an extensive elaboration of the nuclear envelope and the formation of an cxtcmal coat on the surface of the schizont plasma membrane, that persists to cover the mature merozoite. Other observed features are the reappearance of the rough and smooth endoplasmic retionlum and golgi apparatus, the micronemes also become visible and the free mitochondria start to associate with cach schizont nuclei (Fig. 1.3A, stage 2). luitially. the DNA becomes condensed in the schizont nuclei, which are aranged at the periphery, so that the schizont becomes rosette shaped (Fig. 1.3A, stages 2 and 3). A polar ring and rhoptrics, thouglt to play a role in nuclear division, form in small clusters at the apical pole of the schizont nuclei and the nucleus becomes attached to the schizont plasma membranes (Fig. 1.3A, stage 3). Beneath the outer plasma membrane of the schizont, tubular structures emerge and connee the rhoptries and the nuclear envelope with the inner schizont plasma membrane in a inwardly projecting peg-like structure (Fig.1.3A and B, stage 4). These structures are thought to be implicated in merozoite budding. Soon after, merozoites bud synchronously from the syncytial schizont, and are liberated by the breakdown of the host cell plasma membrane (Fig. 1.3A: stages 5 and 6). It is nol known whether this breakdown is due to a specific parasite induced lysis or is a physical disruption caused by the large number of merozoites within the host cell (Shaw and Tilney, 1992).

The merozoites released from the schizont as described by Shaw and Tilncy (1992) are pear shaped bodies of approximately $1-2 \mu \mathrm{~m}$ in length and $0.6 \mu m$ in diameter; consisting of one cceentric nucleus, approximately 3 to 6 rhoptries, 1 or 2 mitochondria, microspheres and free ribosomes contained in the cytoplasm. Theileria merozoites lack a fully formed apical complex, in which a conoid or similar apical structure is absent. Upon release into the bloodstream, merozoites quickly infeet the host crythrocytes. (Shaw and Tilncy, 1992; Shaw et al. 1995) found the mechanism of entry by the merozoites into the crythrocytes was similar to sporozoite invasion of the lymphocytes. Merozoites entered the erythrocyte in any orientation by forming a continual close junction after initial attachment to the erythrocyte surface. This is followed by the progressive "rippering" of the two membranes until the merozoite is completely internalised by endocytosis; a process which has been postulated to occur by receptor mediated endocytosis as in Plasmodium spp. (Kawamoto et al.,1990). The encapsulated mero\%oite escapes from the surrounding erythrocyte plasina
membrane by discharging the contents of the rhoptries.

The Theileria parasite, now known as a piroplasin lies free within the erythrocyte cyioplasm but is not attached to host microtubules, unlike the schizont stage. The piroplasms are variable in size and may be spherical or comma shaped. The different forms and sizes occur with different frequencies across the Theileria genera. In T. annulato both Forms occur in approximately equal frequencies, with the comma shaped forms reaching up to 2.5 mm in size. However, in T. parva, 80% of piroplasms are comma shaped and are typically $1.0-1.5 \mathrm{~mm}$ in size. The comma-shaper forms have a simple cell membrane, a small anoun of codoplasmic reticulum and are characterised by a double walled vacuole and an ovoid shaped nucleus at opposite poles. The spherical forms are bounded by a single coll monbrane and contain mitochondria-like organelles. Differences between Theileria and other related apicomplexan intraerythrocytic forms have been described. For example, it is thought that the metabolic processes of Theileria spp are different to that of Plasmodium, as no pigmented residual bodies are seen when Theilerita piroplasms feed on the crythrocytic cytoplasm. ln certain Theilerit spp the host cytoplasm is crystalised, a process thought to be due to partiat digestion of haemoglobin (Young et al., 1978; van Vostenbosch et al.: 1978; Fawcett et al., 1987).

There is disagrement on how piroplasms divide: Mchlhorn and Schein (1984) claim that comma-shaped piroplasms never divide by schizogony but by binary division. By contrast, Conrad et al. $(1985,1986)$ and Fawcett et al. (1987) claim that division occurs by schizogony from the spherical to a maltesc-cross form. It was postulated that the spherical forms could be precursors of gametes (Mehhorn and Schein, 1984). The production of intra-erythrocytic merozoites, which are identical to those released from the schizont stape (Conrad et al, 1985) luads to the destruction of the host ecll. There is unecrtainty whether intra-erythrocytic merozoites from T, parya re-infect erythrocytes, but this is thought to happen in other Theileria spp (Comrad et al., 1985). Transmission of the parasite from bovine host to invertebrate vector occurs when piroplasms in the bloodstream and infected crythrocytes are taken up by feeding hyalonma ticks. In analogy to both Flasmodium and Babesia it is likely that the infective form for the tick vector are the intra-erythrocytic gametocytes (Mchlhorn and Schein, 1984).

1.3.2 The Invertebrate vector

lngestion of parasitised erythrocytes by ticks of the Hyalomma specics usually occur at the larval and nymph stages on the first host before cngorging on a second host in the adult stage (2 -host cycle), alternatively they may feed on a fresh host at all three stages (3-host cycle). Following ingestion, Jysis of the infecled erythrocytes occurs in the tick gut. Some of the free piroplasm "gametocytes" proceed to the sexual stages of development and soon develop ray bodies or "strahlenköper" two to four days post feeding by elcctron micrograph studies where they were thought to be part of the sexual phase of the life cycle of Theileria spp. (Mehlhom and Schein, 1976). Ray bodies are $8-12 \mu \mathrm{~m}$ in length and 0.8μ m in diameter, with thin tubular projections, an electron dense thorn-like structure and a sfender posterior prole bound by a unit membranc (Mchthorn and Schein. 1984). They are formed from the developing ovoid or spherical intra-crythrocytic stages and ane considered to be microgametes because after the fifth day after tick feeding, the ray bodies contain four ruclei and thorn-like structures, which cventually lead to the formation of a uninueleated gamete stage. Withio the tick gut, larger spherical stages of $4.5 \mu \mathrm{~m}$ are also observed: these are the macrogametes (Mehlhom and Schein, 1984; Young er al., 1980).

After six days or less, depending on the temperature, the gametes undergo syngamy, ultimately forming a spherical, diploid zygote and enter the gut epithelium where they grow in clusters (Young and Leitch, 1981), The zygote is not enclosed in a parasitophorous vacuole and it is likely that the aygotes enter ihe gut epithelium through receptor-mediated endocytosis (Walker, 1990; Mehlhort and Schcin, 1984). Eventually a motile, kincte containing an apical complex develops from the zygote that is surrounded by an inner pellicular complex apart from the apical pole, where it forms a modified apical ring (Mchlhorlx and Schein, 1984). The liberation of kinctes appears to be synchronous and may be linked to the moulting stage of the developing tick (Young et al, 1980). Once the tick has formed salivary glands, the kinetes travel to the salivary glands via the haemolymph where they undergo sporogony, stimulated by tick feeding (Bhattacharyuh et al., 1975; Singh et al., 1979; Samish and Pipano; 1978). The developing parasite differentiates into a sporont that becomes multinucleate, the micronemes disappear, while vacuoles and mitochondria increase in number during sporogony (Fawcett et al., 1982, Fawcett et al., 1985). The sytoplasmic and nuclear volume of the sporont grows when the tick feeds, aided by labyrinth structures to increase the surface area of the syncylium, now known as a sporoblast (Fawcett et al., 1982, 1985; Young et al., 1983). Three or four days after tick attachment to the bovine, sporozoitcs are released from the sporoblast into the feeding
lesion they associate with their target cells of the blood and lymphatic systems (Fawcett et al., 1985; Walker, 1990), completing the life cycle of Theileria.

Fig. 1.2: Life cycle of Theileria (taken from A.S. Young in Norval et ai.. 1992)

A

B

Fig. 1.3: Diagrammatic summary of the stages involved in merozoite formation. A: Stages (1-6) of merogony. B: detail of budding merozoite from stage 4 (pancl A), where R: Rhoptiy complex; Mito: mitochondrion; and N : nucleus (obtained from Shaw and Tilney, 1992).

1.4 Pathogenesis of Tropical Theileriosis

The pathology of tropical theileriosis is variable within different bovine species, and is particularly severe in exotic cattle breeds (reviewed by Robinson, 1982). Mortality rates vary from 90% in introduced exotic breeds to 5% in indigenous breeds (Neiz, 1957, cited by Dyer and Tait, 1987; Rafyi et al, 1965). However, the severity of the discasc is also directly proportional to the number of sporozoites injected into the host by the tick and the virulence of the parasitic stock (Uilenberg, 1981; Preston et al., 1992a). The discase affects the lymphoid tissue and the crythrocytes of the host, cansed by the intracellutar schizont and the intracrythrocytic piroplasm stages, respectively. Subsequent to tick inoculation of sporozoites, the lymph nodes swoll, draining the site of tick attachment and bocome large and hyperplastic (Srivastava and Shama, 1981). Schizont infected cells are then disseminated throughout the lymphoid system, including the spleen and thymus forming tumour like masses (Forsyth et al., 1999; Fell et all. 1990). By day 7, schizont infected cells have spread to the non-lymphoid tissue such as the liver, kidncys, lung, ubomasum, adrenal and pituitary glands, finally roaching the brain and heart by day 12 and day 14 , respectively, post infection (Forsyth et al., 1999; Fell et al., 1990). During the early stages of infection, the animal suffers from a persistent fever of $41^{\circ} \mathrm{C}$ until death or recovery. The late stages of the disease are accompanied by merozoites and piroplasm infected cells, which are removed by the liver and spieen, causing the severe haemolytic aracmia often observed in severe cases of tropical theileriosis (Hooshmand-Rad, 1976; Uilenberg, 1981; Barnct, 1977). The animal may also suffer oedema of the lungs at the tominal stages, causing severe respiratory distress (Neitz, 1957). Preston et al. (1992b) has also reported rapid and severe leucopenia accompanied by lymphocytopenia. Other symptoms include, malaisc and dysponea, jaundice, anorexia, diarthoen often accompanied by blood and mucus, swelling of the eyelids and discharge from the cyes and nose. In severe cases ulceration of the abomasum is observed by post-mortem examination (Robinson, 1982; Grootenhuis et al., 1980; Barnelt, 1977). In acute cases death usually occurs within 20 days post infection, allhough in some cases pre-acute episodes may lead to death within 3-4 days (Bamet, 1977; Robinson, 1982). Cattle that survive recover eventually, but in severe cases, recovery is often incomplete and the animal remains debilitated, anorexic and unproductive. These cattle remain as carricrs of piroplasms (Irvin and Morrison, 1987).

Hall and co-workers (Baylis et al., 1992, 1995; Somerville et al., 1998a) discovered that matrix metalloproteases (MMPs) are expressed in T. annulata infected cells in vitro and in
vivo and may play a role in metastasis of the lymphoid cells, leading to disease symptoms such as ulceration of the abomasum and digestion of connective tissue. However, recent studies have challenged the view that the clinical symptoms from an infection with T. ammulata are primarily the result of uncontrolled proliferation of schizont infected lymphoid cells, in a similar fashion to \%. parva (Forsyth et al., 1999). Further studies show that ex-vivo 7 : amulata infected macrophage cells predominantly, produce a number of cytokincs in a cascade including tumour necrosis factor alpha (TNF- α) and interferon alpha-1 ($1 \mathrm{FN}-\alpha_{1}$) that trigger nitric oxide producine natural killer cells and macrophages (Preston et al., 1999). TNF-a was found to be activated by MMPs (Adamson and Hall, 1996), and when administered to cattle, produced similar symptoms to those of a T. anmilata infection, such as high fever, leucopenia, loss of weight and condition (Beutics and Cerami, 1986; Ulich ef al., 1987). TNF- α is also known to suppress red blood cell production, contributing to anaemia. Nitric oxide is thought to cause pathological lesions (Visser et al, 1995). Thus, it is now thought that tropical theileriosis is caused by multiplying, metastasising schizont infected cells (Forsyth et al., 1999) which produce cytokines that contribute to dissemination of the parasite and the clinical symptoms of the diseasc. (Forsyth et al., 1999; Preston et al., 1999).

1.5 Diagnosis

Tropical theileriosis can be detected by the clinical symptoms of infected bovines and by Giemsa stained blood smears, which deteet the macrosehizont and piroplasm stages. The Indirect Fluorescence Antibody Test (IFNT) utilised specilic antibodies generated against Theileria and has been used to distinguish different Theilerta spp (Burridge, 1971; Morzaria et al., 1977; Burridge and Kimber, 1972, cited by Young and Leitch, 1981). IFAT, using monoclonal antibodies can also be used to identify population diversity within a species and a range of monoclonal antibodies raised against the macroschizont stage have also been used for this purpose (Shiels of al., 1986; Ben-Miled et al., 1994). However this technique is labour intensive and inconvenient for mass screening.

A more convenient and sensitive test is the enzyme linked immunosorbent assay (ELISA) developed by Voller et al. (1976) to detect antibodies to Theileria infection. ELISA tests have shown that piroplasm and schizont antigens could be used to detect T. annulata specific antibodics (Manuja et al., 2000). Gubbels et al. (2000) developed an ELISA test based on rccombinant autigens derived from two Tams- 1 alleles that allowed the specific
detcction of T, annulata and not any other Theileria or Babesia species, aside from T. parka which is gcographically distinct from T. ammata.

DNA based techntiques have also been used both in the diagnosis of clinical cases and to discriminate different Theileria spp and stocks. Polymorase Chain Reaction (PCR) based techniques have been successfully used to detect patasite DNA sequences at low concentrations in infected and cartier animals. For example, PCR techniques specifically detect the T. ammiaia gene encoding tie major merozoite surface antigen, Tans-l, from infected callle blood (d.Oliviera et al., 1995; Kirvar et al., 2000) and in vector ticks (Kirvar et at., 2000). Gubbels of al. (1999) used reverse line bloting (RLB) to simultaneously detect different species of bovinc tick borne parasites from Babesia and Theileria in infected and carrier bovines. Meanwhile, DNA probes based on the large sub-unit ribosomal RNA (LSU rRNA) revealded a variable region which could discriminate two closely related Theileria specics (Bishop ot al., 1995). Ben-Miled et al. (1994) has been able to distinguish five variants from 53 different Tunisian stocks of T. ammilta, using two DNA probes.

1.6 Bovine Immune Response to T. annulata infection

Each stage of the T. anmulata life cycle prosents the bovine immunc system with new antigens, to which the host responds by cell-mediated and/or bumoral responses, which are both thonght to play important roles in protection against tropical theileriosis. These responses have been reviewed extensively (Brown, 1990; Tait and Hall, 1990; Hall, 1988; Campbell and Spooner, 1999; Preston et al., 1999).

1.6.1 Humoral Response

When sporozoites are introduced into the bovinc host, they are brienly exposed to the immune system, before invading the lymphocyles, so the sporozoite is the most likely stage to be targeted by protective antibodies. The first indication that antibodies were generated against T. annulata sporozoites came frow studies by Gray and Brown (1981). This work showed that sera taken from animals previously infected with T. annulata sporozoites could neutralise sporozoite infectivity of peripheral blood mononuclear cells (PBMs) in vitro. funther evidence that antibodies were responsible for neutralising sporozoite invasion of PBMs was produced when monoclonal antibodies, such as 1 A 7 blocked sporozoite invasion successfully. Moreover, IFAT tests with sporozoites, but not
macroschizonts and piroplasms using mAB 1A7 were also positive (Williamson, 1988; Williamson et al, 1989). In the bovine, it appears that disease severity is correlated with sporozoite dose as repeated challenge with live sporozoites increased the neutralising activity (Preston at al., 1992a). This would support the postulation that viable sporozoites are bricfly exposed to the immune system and repeated exposure would enhance the humoral response. Preston and Brown (1985) suggested that antibodies derived from calf serum infected with T. ammlata could retard the growth of PBMs infected with trophozoitcs. However, these findings have been revised and it has now been shown that at number of cytokines are likely to be responsible for growth inhibition of trophozoile infected cells by infected calf scrum (Presion ei ch, 1992b). The discovery that maB 1A7, Which recognises the sporozote surface antigen (SPAG-1) could inkibit sporozoite invasion has given rise to a potential sub-unit vaceine. Indeed, a partial protective response has been achieved in cattle inoculated with recombinant SPAG-1 antigen and with its orthologues, p67, in T. parva (Boulter et al., 1995, 1998; Boulter and Hal1, 1999; Musoke, 1992).

Studies have shown that protective immonity against the intracellular macroschizont is cell-mediated, and that this response is a major contribution to the pathology of the disease (reviewed by Tait and Hall, 1990). Antibodies to the schizont stage are detected in T. parva and T. ammulata infected animals (Wagner et al., 1974; Kachani and Spooner, 1992), but these antibodies are not thought to contribute to protective immunity. Thus in the study of Creemers (1982), sera of infected and recovered cattle did not recognise cell membrane antigens of T parva infected cell lines, nor was there evidance of autibodies directed against parasite specific antigens on the surface of infected cells. These results appear to be supported by Pipano et al. (1981), who found that antibodies from recovering animals were directed against the parasite and not the macroschizont infected cell. Furthermore, no correlation was fomn between antibody titre and the degree of protection in this study. Similarly, sera of infected bovines did not illicit a positive response to the surface of T. annulata infected cells by IFAT (Shiels et al., 1989) and serum transfer studies from immune to naive calle did not afford protective immunity in the recipients (Muhammed et al., 1975).

The merozoite stage of the life cycle, like the sporozoite stage is extracellular and could therefore be a target for a protective homoral response. Certainly, piroplasm and merozoite specific antibodies were detected in recovering cattle (Ahmed et al., 1988). Studies on differentiating macroschizont infected cells showed that there was a shift in the antigen
profile from macroschizont to the merozote/piroplasm, whercby some macroschizont antigeus disappeared white other merozoite antigens showed signiffeant upregulated production following the differentiation event (Giascodine et al., 1990). One such antigen was a surface polypeptide,Tams-1, for which there were initially two antigenic types described 'lams-1 and Tams-2, with molecular weights of 30 kDa and 32 kDa , respectively (Glascodine et al., 1990; Dickson and Shiels, 1993). This antigen was shown to be rccognised by infected cattle sera and by a monoclonal antibody, mAb 5R1, and was located to the surface of merozoites and piroplasms (Glascodine et al., 1990). Interestingly, this molecule has been shown to be polymorphic within different stocks of T. ammata and the predicted amino acid sequences of different allelic types consist of divergent N-linked glycosylation sites that could play a role in evasion of the humoral immune response (Shiels of al., 1995; Katzer et at., 1098). Ahmed ef at. (1988) hats also shown that catle immunc sera specifically opsonise free merozoites and that complement induced lysis of meromites can also oceur. Thereforc, merozoites may be targeted directly by the host antibodies. Richardson et al. (1998) and Preston et al. (1999) have postulated that nitric oxide produced by macrophages in response to schizont infection may also be responsible for merozoite destruction. In contrast, studies on piroplasms revealed that that immune sera from cattle did not recognise antigens on the surface of crythrocytes (Ilall, 1988). It can be postulated that there is no specific protective humoral response to the piroplasm in the bovine, probably because this stage of the parasite is intracellular and proliferation and reinvasion of erytbrocytes by the parasite occurs at a low level (Persing and Conrad, 1995).

1.6.2 Cell Mediated Response

Previous studics (Pipano et al.,1981; Dhar and Gautam,1978; Creemers,1982; Emery, 1981; Emery et al., 1981, 1982) had all concluded that the humoral response was not the primary mechanism involved in protective immunity to T. annulata and T. parva infection. It is now believed that cell mediated immunity plays the major role in protection and in pathology, in particular cytotoxic T-cells, natural killer colls, helper T-cells and macrophages. One of the first findings of a cell mediated response to Theileria infection occurred when Emery (1981) transferred T-lymphocytes of the thoracic duct from a calf immunised against T. parva to its naïve chimeric twin, resulting in protective immunity to the recipient. Direct cvidence of cell mediated immunity was generated by Emery et al. (1981), who found that cytotoxic cells capable of killing allogeneic infected lymphocytes were present in the peripheral blood of infected cattle at the latter stages of infection. Other studies proposed that the immune response to T. annulata infection appeared to be similar.

Preston et al. (1983) showed the recovery from tropical theileriosis was accompanicd by the disappearance of macrophages from the lymph nodes and the appearance or cytotoxic cells in the blood and lymphatic system. By contrast, in acute, fatal cases, no cytotoxic cells were found, suggesting that the cytotoxic T cells involved had a protective role.

Data showed that the PBMs of naïve cattle infected with T. annulata showed cytotoxic activity in two peaks: the cells of the first peak occured one to two weeks post infection and were bovine leukocyte antigen (BoLA) (MHC class l) restricted, similar to cytotoxic Tcetls. The second peak occurred three to four weeks post infection and did not show genetic restriction in all animals (Preston et al., 1983). The presence of cytotoxic cells in the blood was concomitant with the disappearance of schizont infected cells. This study also indicated that these cytotoxic responses were protective as they were always associated with recovering cattle and almost never present in calves that died as a result of the diseasc. Similar results were also obtained in a later study by Chaudhri and Subramanian (1992) who found that cattle which recovered from a inoculation with a virulont Theileria stock of sporozoites responded with a single wave of cytotoxic cells, that had the ability to kill autologous schizont infected cells. Calves that did nol survive, showed a weak cytotoxic response or none at all.

Innes et al. (1989) demonstrated that different T cell responses ware elicited depending on whether the animal was infected with autologous or allogoneic infected celis. Here, cattle inoculated with allogeneic T. annufata infected cells only showed mild clinical symptoms, whereas animals infected with autologous infocted colls had severe symptons. The animals infected with the allogencic infected cell line developed a strong cytotoxic response to the allogeneic MHC antigens of the inoculated cell line by day 9 . A second response was directed against the recipients own parasite infceted cells after three weeks. However, the autologous group showed litlic cytotoxic response that was only MHC restricted after nearly three weeks. Both groups showed Bol.A restricted and non-restricted responses against parasite antigens. When challenged with a heterologous sporozoite stock, both groups of cattle were immunc and developed a cytotoxic response. This suggests that MHC molecules are important in eliciting protective cell mediated immunity to different parasite types.

The non-BoLA restricted responses observed by Lucs et al. (1989) and Preston at al. (1993) were thought to bc natural killer (NK) cells, which have been implicated in other protozoan infections. In sublethal infections, NK cells have been shown to produce a
number of cytokines that produce a synergistic cascade that leads to the activation of NK cells and macrophages to combat the infection (Preston et al, 1993, 1999). NK cells trigger the relcase of cytokines such as IFN γ, to stimulate macrophages that in turn produce TNFα and IFN- α. This in turn, stimulates NK cells and induces production of nitric oxide (NO) by macrophages which destroy schizont-infected cells (Preston et al, 1993; 1999; Visser et al., 1995; Richardson et (al., 1998). The adaptive immme system is also triggered by schizont infected cells and is thought to play a co-operative role by activating macroplage anti-microbial activity, via CD4* cells and generating cylotoxic CD8* T cells (Preston er al., 1999). In fatally infected cattle, it is thought that excessive amounts of TNF- α, which could accoumt for most of the disease symptoms in T. amulata and in other related probozan infections, results in death. Indeed, abnormally high levels of $1 f \cdot \mathrm{~N}-\gamma$ and matrix metalloproteinases, which entance levels of TNF-x., were found in fatally infected anmals (Campbelt ef al., 1997, 1998; Adamsom and Hall, 1997).

Evidence cxists to show that schizont infected cells also promote an inappropriate immune response in animals that fail to recover from a primary infection. For example, IL-2, thought to be stimulated by T. parva infection, stimulates the proliferation of macroschizont infected cells (Campbell and Spooner, 1999). Other studies found that IL-2 receptors and MHC class II molecules were expressed on the surface of $\mathrm{CD} 4^{+}$and $\mathrm{CD} 8^{+} \mathrm{T}$ cells from naïve cattle infected with T. ammilata, and was shown to induce the proliferation of autologous, resting T cells in vitro, resulting in a failure to mount a proper, protective T cell response (Campbell et al., 1995, 1997; Campbell and Spooner, 1999). Furthermore, in vivo, it has beell postulated that infected macrophages present antigens to $\mathrm{CD}^{+} \mathrm{T}$ cells, which are inappropriately activated in large numbers within the medulla and not the paracortex- the normal region for priming T cells. This would result in the proliferation of large numbers of polyclonal IL-2R"T cells, which leave the lymph node and abolish an effective immune response against macroschizont infected cells (Campbell and Spooner, 1999).

1.7 Control Measures

Currently, there are three control measures against tropical theileriosis and involve tick control, chemotherapy and host vaccination. Different measures that are currently bcing used or under development are discussed below:

1.7.1 Tick Control

Conventional tick control measures have centred on the use of anti-tick agents known as acaricides, such as amitraz and butocarb, in the form of dips, sprays, impregnated ear tags, slow release rumen boluses and "pour-ons" in cattle (Chizyuka and Mulilo. 1990; Musisi. 1090; Urquhart et al., 1987; do Castro and Newson, 1993). However acaricides are expensive, cause envirommental danage and can result in residual contamination of milk and meat (Drummond et al., 1976). Furthermore, continuous use leads acaracide resistance in ticks and loss of tick-immunity in cattle, making them more susceptible to infection. Improvements have been made to cattle housing by the design of new livestock sheds and bams which discourage or eliminate tick settement and reduce tick infestation levels (Pipano, 1989a). The maintenance of exotic, high yiolding cattle have led to the practice of confinement with regular acaracide treatment and tick free feed. However, this solution is very labour intensive, expensive and often fails leading to infection of some, many or all cattle (Lawrence, 1990).

1.7.2 Chemotherapy

This method of treatment is more widoly used in the control of T. parva and T. sergenti infcctions compared with 7. annulata infections. The most effective anti-theileriacidal drugs are the hydroxynapthoquinones, parvaquone and buparvaquone (McHardy and Morgan, 1985; Tait and Hall, 1990; Hagiwara et al, 1993). These drugs are thought to disrupt the cytochrome $b c_{1}$ complex of the electron transport chain of the parasite (Hall and Baylis, 1993). Buparvaquone has been found to have greater anti-theilcriacidal activity than parvaquone (Hashemi-Fesharki, 1991), but parvaquone is active against all Theileria stages whereas buparvaquone only acts against the schizont and piroplasm. Other drugs that have had some success are the coccidiostat Halofuginone, which, like buparvaquone, acts on the schizont stage of the life cycle, and is cheap (Schein and Voigt, 1979). However, this drug is no longer used because it has a natrow therapeutic range. Antibiotics have been found to reduce the level of parasitosis, such as the ionophorous antibiotic monensin, but this drug has not been used due to adverse side effects (McHardy and Rae, 1982). Oxytetracyclines has been shown to reduce macroschizont development in vitro (Spooner 1990) and has been used with some success in "Infection and treatment" vaccination programmes (see section 1.7.3) but was found to be unsuccessful in acute infections (Singh et al., 1993). The major drawback to chomothcrapy is that it can prevent the development of immunity in the animal. Moreover, drug treatment programmes are expensive, and may eventually lead to

1.7.3 Host Vaccination

Chemotherapeutic agents have been used in "Jufection and treatment" programmes to vaccinate cattle against Theilerid. Long-acting oxytetracyclines have been used for T. parva, whereas buparvaquonc is prefored for T. anmulata. Infection and treatment involves the deliberale inoculation of sporozoites into catle followed by drug treatment at a predetermined and critical time so that bovine immunity is activated after the sporozoites are established in the host's lymphocytes, but before clinical symptoms appear (Mozaria and Nene, 1990). Such treatment results in solid immunity to homogeneous and sometimes heterogencons challcinge, but have not been used widely, due to the large expenses involved. Moreover, piroplasms remain in infeclive carier ammals, which assist in the spread of the disease (Tait and Hall, 1990).

The most common and effective form of vaccination against 7 : anmulata is the attenuated live vaccine. Attemation occurs through long term, in vitoo culture of macroschizont infected lymphocytes, and results in a loss of pathogenicity of the parasite (Brown, 1990). Initially, the parasite loses its ability to produce meromotes and thus piroplasms in most cases (Pipano, 1989a), but afler prolonged culture, also loses its virulence or infectivity (Pipano and Tsur, 1966).

The mechanisms of attenuation are unclcar: research on the related apicomplexan parasite Plasmodium berghei have shown that loss of virulence is associated with genome rearrangements (Fanse ef al, 1992). Studies by Hall et al. (1999) have not been able to demonstrate large, genomic rearrangements in attenuated 7 . ammilaia cell lines, although Preston et al. (2001) found that altcrations to host cell surface antigens were linked to permanent changes in the parasite genome. A second possibility for attenuation is the sclection of avirulent subpopulations: this has been demonstrated in Babesia bovis (Cowman et al., 1984; Carson et al., 1990) and in T. annulata. In the latter case, Melrose (1984) demonstrated that only single isotypes of the enzyme glucose phosphate isomerase (GPI) were found after continuous in vitro culture of infected cell lines that originally contained a number of GPI isotypes. However, this theory does not completely account for attenuation of Theileria infected cells lines, since studies by Preston et al. (2001) have shown that cell lines continue to decline in virulence over long periods of in vitro culture, which was not cansed by preferential growth of particular host cell types. This has led to
the suggestion that altenuation in T. annulata is achieved by alteration of gene expression, resulting in specific alterations to both parasite and host polypeptide production (Sutherland et al., 1996; Shiels et al., 1998; Hall ot al., 1999; Oura et al., 2001). This theory has beon supported by studies that show that long term in vitro culture is accompanicd by the loss of parasite induced expression of host metalloproteinases (MMPs), previotsly shown to be associated with the pathogenesis of tropical theileriosis (Adamson et al., 2000ab; Hall ef al.,1999; Somerville et at.,1998b). Hall et al. (1999) also domonstrated that loss of MMP expression is a stable transferable trait, implying that this process occurs at the genetic level of the parasite. It has been suggested that virulence is caused by the interaction of a number of parasite sub-populations, which, under long tem culture conditions becomes simplified, reducing the complexity of virulence factors below a threshold value (Hall et al., 1999).

Vaccination with aftenated macroschizont infected cefls have been shown to be 95-100\% efficiont at providing immunity to heterologous challenge in cattie (Brown, 1990). Immunity is tested by challenge from live, infected ticks or with sporozoite stabilates, which have given a range of results from mild symptoms (Gill et al., 1976; Ouhclli et ah., 1989) to death in some cases (Ozkok and Pipano, 1981; Shukla and Sharma, 1991; Adalar et al., 1992). Complete attenuation is achieved when cultured schi\%onts no longer cause clinical symptoms in the animal, usually alter $60-250$ passages in culture, with $10^{6}-10^{7}$ infected cells per animal, depending on the isotate (Pipano, 1995). So far, there is no evidence of a reversion to virulence in attenuated coll lines. Furthermore, vaccines can be preserved in liquid nitrogen for a considerable time period without significant loss in viability (Wathanga ei al., 1986). However, protection from subsequent infection after initial immonisation has been reported to decline with time (Tsur et al., 1964; Sergent et al., 1945). 'there have been a number of wide ranging estimates for the length of protection from 3.5 years (Zablotsky, 1983, cited by Pipano, 1995) to 6 months (Beniwal er al., 2000). These conflicting estimates may be explained by immunogenic differences between different T. annulata isolates (Batnet, 1963; Adler and Ellenbogen, 1935, cited by Pipano, 1995). In contrast to T annutata, it has not been possible to generate a live attentated vaccinc for control of T. parva infections (Dolan et al., 1984; Morrison et al., 1981). It is thought that this is due to an inability of T parya schizonts to transfer to cells of recipient animals, thus, failing to remove the histocompatiability barrier against recognition of infected cells by cytotoxic CD8 ${ }^{+}$cells (Musoke et al., 1996; Uilenberg, 1999; Boulter and Hall, 1999). Although this method of vaccination is effective and cheap the main limitations of live attenuated vaccines are storage and delivery: the vaccine has a shelf-life
of approximately 1 week at $20^{\circ} \mathrm{C}$ or 1 month at $4^{\circ} \mathrm{C}$ and there are difficulties in transporting frozen, vaccine to remote regions.

To counteract the difficulties associated with live attenuated vaccination, efforts have also been made to develop a sub-unit vaccinc against Theileria parasites. Recent identification of candidate Theileria antigens, such as Tams-1 and SPAG-1 have generated some promising results. The sporozoite and merozoile stages are the only extracellular stages of the parasite and are, therefore, logical targets for selection of antigen sub-units in develop vacciuses. In the sporozoite, sturlies have concentrated on SPAG-1, because the monoclonal antibody, $1 \wedge 7$, generaled against this molecule was shown to be able to abrogate sporozoite infectivity in vito (Williamson, 1988). Further chatacterisation of this moleculo identified several immunodominant sites, at the N and C terminus, including the epitope recognised by IA7, which were found on this antigen when fragments of SPAG-1 were reacted against a range of bovine immune sera (Boutter, 1996; Knight et al, 1996). In addition, S PAG-I contains C - terminal epitopes, distinct from the mapped 1 A 7 epitope, capable of neutralising sporozoite infectivity (Williamson, 1988, Williamson et al., 1989; Hall and Baylis, 1993; Boulter, 1996; Bonlter el al., 1994, 1995). Partial protection has been achieved in wivo using rccombinant SPAG-1 (Boulter, et al., 1995, 1998; Boulter and 1Iall, 1999). In X : parva, a SPAG-1 homologlue called p 67 has been found and has shown to he cross-reactive with SPAG-1. Parts of the C-tominal domain or SPAG-1 and p67 are similar enough to form a common epitope. Musoke et al. (1992) found that vaccination with recombinant p6 7 provided protection in 6 out of 9 calves against T. parva sporozoites. However, there is evidence that SPAG-1 and p67 could be used to provide immunity against T. parva and T. amulata sporomites: mab 1 A 7 has been shown to neutralise T. parva sporozoite infectivity with 100% efficiency (Knight et al., 1996; Katzer et ah., 1994). Other vaccination trials have shown cross protection against heterologous challenge when cattle immunised with either SPAG-1 or po7 are challenged with T parva or T. annulata sporozoites, respectively (Boultcr et al., 1998; Boulter and Hall, 1999; IVall et al., 2000). Interestingly, a strong T-cell response to the N -terminus of SPAG-I has also been observed in the presence of IL-2 in immune animals suggesting that sub-unit vaccines elicit both cell-mediated and humoral responses (Boulter and Hall, 1999).

Studies on the antigenic determinants of the merozoite stage of T. annulata initially identified a 30 kDa surface molecule, Tams-1 (Glascodinc ef al., 1990), which has been shown to exhibit cxtensive arnino acid and antigenic diversity (Dickson and Shiels, 1993; Katzer et al., 1998; Gubbels et al., 2000). This molecule has been shown to display
significant antigenic diversity particularly at putative glycosylation sites located in regions of amino acid hypervariability (Shiels et al., 1995), suggestive of an immone cvasion strategy. Over 40 predicted amino acid variants of lams-1 have been identified and evidence for selection of novel antigenic types following passage through ticks has recently been reported (Gubbels et al., 2001). The level of diversity makes Tams-1 a difficult candidate for a sub- unit vaccine. However, studjes by Ahmed et al. (1988) demonstrated that bovine antibodies could specifically lyse merozoites. It is likely, however, that the best candidates for inclusion in a sub-unit vaccine are antigens encoded by the macroschizont. Theoretically, these antigens are probably processed and presented as peptides on the surface of the inlected leukocyte, in association with the class I MHC molecules. Such antigens could include macioschizont surface polypeptides or proteins secreted by the parasite into the host coll environment. Although the polymorphic inmunodominant macroschizont autigen (PIM) of T. parva (Katende et al., 1998) has been used successfully to identify antibodies against T. paria, a protective schizont antigen has not been identified to date. Future elforts to improve vaccines should focus on an effective antigen delivery system, and these are likely to be based on inoculation of recombinant organisms capable of intracyloplasmic growth that express and produce Theileria antigen genes. Such a system has been successful in inducing a cytotoxic T- cell response against P. falciparum using recombinant Salmonella typhomurium (Aggarwal et al., 1990). To date development of DNA vaccines for Theileria has been limited Trials with a recombinant Tams-1 IDNA vaccine have showed that two thirds of cattle were protected using this technigue, athough no antibodics were detected (d'Oliviera et al., 1997).

In summary, the main priorities for recombinant vaccine development are to find protective antigens expressed by macroschizont infected cells and developnent of an effective antigen delivery system that, possibly, mimics the presentation of the native molecule to the immune system.

1.8 Stage Differentiation in T. annulata

The developonent of stage differcntiation in apicomplexan parasites such as Theileria enables the parasite to establish and multiply within hosts, and transmit itself between hosts. Stage differentiation is accompanied by significant changes to the parasite polypcptide profile, brought about by altered control of gene expression (Shiels et al, 1992, 1994, 1997; Carrington et al., 1995). Ultimately, this results in the shut down of genes encoding the structural and metabolic polypeptides specific to the macroschizont
stage while initiating production of merozoite polypeptides. Most of the research on differentiation in Theileria has centred on the production of merozoites (merogony) as macroschizont infected cells can be cultured and induced to undergo differentiation to the morozoite in witro (Brown, 1990; Shiels et al., 1992). Much effort has been applied to defining agents that can trigger differentiation from one life cycle to another in protozoans, in gencral, and this research has identified a number of signals. These include altcrations in temperature (Hulliger, 1965; Soete et al, 1994, Van der Ploeg, 1985), pll (Socte et al., 1994; Zilberstein et al. 1991), agents that act on the signaling pathways, such as cAMP, (Heath et al, 1990) nitric oxide (Bohne et al., 1994), and intermediates of the TCA cycle (Brm and Schonenberger, 1981, cited by Fox, 1997). However, the most common inducer of differentiation in protozoan parasites is an alteration of temperature in wifro that may mimic temperature fluctuations that may occur in wo as the parasites are transmitted to and from their warm blooded hosts.

It has been proposed that the induction of parasite differentiation at an elevated temperature is directly linked to elevated levels of heat shock proteins (hsps), which could switch on gence expressed by the next life cycle stage (Van der Plocg of al., 1985; Polla, 1991; Wiesgigl and Clos, 2001; Weiss et ai., 1998). Hsps are common in parasites that transfer from poikilothermic voctor to a homeothermic mammal, such as Trypanosoma brucei (Van der Ploeg et al., 1985) and are regulated by alterations in temperature. Mason et al. (1989) isolated the 7 . anntata heat shock protein 70 (hsp70) polypeptide and demonstrated upregulation at the mRNA level when infected cells were placed at $41^{\circ} \mathrm{C}$. However, in a subsequent study, there was no detectable difference in $1 \operatorname{spp} 70 \mathrm{mRNA}$ levels al $41^{\circ} \mathrm{C}$ between a cell line that differentiates well compared to a cel] line that is severely attenuated for the differentiation process. It was concluded that hsp70 gene expression was not directly involved in regulating differentiation (Shiels et al., 1998). This is supported by studies in other protozoan parasites, that show no link between hisp expression and the ability of a cell to differentiate (Shapira et al., 1988; 7.ilbertstein et al., 1991).

When particular Theileria infected ccll lines are maintained at an elevated temperature of $41^{\circ} \mathrm{C}$, the schizont fails to divide in synchrony with the host cell (asynchronous division), aud, after approximately 5 days, merozoite production occurs in a sub-population of cells until the majority of cells produce merozoites and the culture is no longer viable (Hulliger et al., 1966; Shiels et al., 1992). Since Theileria infection induces a fever of $41^{\circ} \mathrm{C}$ in infected cattle, it was thought that an elevation of temperature directly initiates parasite differentiation. However, Jarret et al. (1969) found no correlation between the onset of
fever and merogony. An altemative hypothesis of differentiation based on a mitotic clock was proposed by Temple and Raff (1986) and proposed that differentiation to the merozoite and the appearance of piroplasms in vivo occurred after a set number of mitotic divisions undergone by the infected feukocyle.

Studies by Shicls of al. (1992) showed that when infected cells were placed at $41^{\circ} \mathrm{C}$ and then replaced at $37^{\circ} \mathrm{C}$ for variable time periods differentiation was reversible during the carly stages of the process (up to 4 days), but was irreversible after a certain time period at $41^{\circ} \mathrm{C}$. Shiels of al. (1992) also measured the rates of infected coll growth and differentiation. These parameters were compared in two cell lines, one with a diminished ability to differentiate (diminished) and the other with an enhanced ability to differentiate (enhanced). Differentiation in the enhanced cell line was characterised by an increase in schizont size and nuclear number after two days at $41^{\circ} \mathrm{C}$ and was followed by a decrease in hosl cell division, after day 2 until it eventually stopped. However the parasite continued to undergo nuclear division, and, as the parasite is dependent on host mitosis to undergo celfular division, the parasite size and nuclear number increased significantly, resulting in an enlarged mactoschizont within the host (Hulliger et al., 1966; Shiels et al, 1992). Thus the ability to differentiate did not appear to be linked to a fixed number of mitotic divisions but was associated with an increase in parasite size or condition relative to host cell division. In contrast, in cells with a diminished ability to differentiate, the level of host cell proliferation was elevated, whilst that of the parasite was lower at all time points tested (at $37^{\circ} \mathrm{C}$) and the disruption between parasite and host cell division was markedly reduced when placed at $41^{\circ} \mathrm{C}$. (Shiels et al., 1992). In this case it would take longer for the parasite to reach a predecermined state for differentiation, resulting in its diminished phenotype. It was concluded that disruption in the synchrony between parasite and host cell division was a factor that predetermined differentiation.

Further studies by Shiels et al. (1994) jnvestigating the molecular changes during differentiation to the merozoite, revealed that down regulation of a macruschizont polypeptides was temporally linked to the up-regulation of merozoite polypeptides, including the merozoite surface polypeptide, Tams-1. The expression of Tams-1 polypeptide was first detected very early at day 2 , and its corresponding mRNA at day 0 and its signal increased to day 8 . This indicated that gene products present at high levels in the merozoite were also expressed at low levels in the preceding macroschizont stage. The expression of Tams-1, as detected by the mAb 5E1 by JFAT was found to be reversible in the majority of infected cells placed alternately at $37^{\circ} \mathrm{C}$ and $41^{\circ} \mathrm{C}$ during the initial
(reversible) phasc of differentiation. However, some cells stained intensely with 5E1, and these were postulated to be cells that had becone committed to differentiate. Thus, the asynchronous nature of merogony in 7 . anmulata has led to the suggestion that differentiation is a stochastic process which depended upon merozoitc factors reaching a critical level before the parasite commits to differentiation to the merozoite.

Further evidence of a stoichiometric model for differentiation involving changes to parasite growth and cellular division was provided when infected ceils were treated with agents to disupt parasite protein synthesis (a measure of growth) and host DNA synthesis (a measure ol' host cell clivision) (Shicls et chl., 1997). The drugs respectively caused changes to the rate of parasite growth compared division, and this in turn, altered the timing of macroschizont differentiation to the meromote. Shiels et al. (1997) specifically found that pre-treatment with a DNA synthesis inhibitor resulted in increased levels of parasite differmatiation in the coll population after commitment. Conversely, pre-treatment of infected cells with a parasite protcin synthesis inhbitor postponed the onsel of differentiation in a quantitative manner. Levels of Tams-1 were found to be dircetly proportional to the drug-altered diflerentiation events. These observation led to the proposal that increased levels of polypeptide syuthesis relative to DNA synthesis provides an initial signal for the parasite to undergo merogony (Shiels et al., 1998). These obscrvations led to the postulation of a model that proposes that the commitment to differentiate is brought about by a quantitative increase in levels of polypeptide growth factors present in the preceding macroschizont that regulate merozoite gene expression relative to the levels of the nucleic acid templates they bind to (Shiels ef al., 2000a). Further investigations by Shiels et al. (2000a), of Tams-l regulation during differentiation seemed to confirm this hypothesis: Tam-1 expression was shown to be controlled at least, in part, at the transcription level. Electromobility Band Shift Assay (EMSA) studies revealed two complexes that bound to an upstream region of Tams- 1 in the macroschizont that were found to be elevated during the initial phase of differentiation to the morozoite, whilst a thind complex was detected during the reversible phase of differentiation associated with high level Tams-1 expression.

Similarities exist between the characteristics of a number of protozoan differentiation systems; for example reduced proliferation coupled to an inherent asynchrony, led Shicls $c t$ al. (1998) to hypothesise that a stoichiometric model could be applicable to a range of parasites, such as bradyzoitc formation in Toxoplasma gondii (Soete et al., 1994) and gametocyte production in Plasmodium (Carter ef al., 1979). However it should be pointed
out that alternative mechanisms could be involved. For example, asynchronous division may be explained if there was a requirement for a cell to be at a particular cell-cycle position or state in order to undergo differentiation (reviewed by Shiels et al., 1998).

Studies by Swan et al. (2001b) showed a possible link between macroschizont and merozoite gene regulation by invostigating the expression of two macroschizont gencs, Tashl and Tash 2 in relation to Tams-/, whose expression is associated with commitment to merogony. Tash1 and Tash2 were shown to be down regulated as the Tarns-1 transcript bocame up regulated. Morcover the expression of Tasth1 and Thath2 polypeptides was fomd to be reversible during the initial reversible phase of differentiation when infected cells were alternately pulsed between $37^{\circ} \mathrm{C}$ and $41^{\circ} \mathrm{C}$. This study dennonstrated that that regulation of macroschizont and merozoite gone expression was temporally and perhaps, mechanistically linked (Swan of al., 2001b). It has been postulated that parasite factors involved in host cell division may be down regulated during differentiation to the merozoite, resulting in a reduction or cossation of host cell division (Carrington et al, 1995). Recenlly a small parasile encoded gene Tamily, TashAT, were found to be down regulated early on during differentiation to the merozoite, coincident with the decrease in host cell proliferation (Swan et al., 1999). These genes could be potential parasite regulatory proteins that modulate host cell genos that control host cell proliferation (Swan et al., 1999).

1.9 T. annulata Induced Alterations of Gene Expression

Transformation of host cells by Theileria is characterised by the continuous proliferation of infected cells in culture, without additional growth factors or cytokines (Dobbelaere, 1988). Immortalisation of Theileria infected cells in culture was shown to be accompanied by changes in surface antigens detected by mAbs (Baldwin et al., 1988), pleiomorphism (Naessens ct al., 1985) and short generation times. In addition Irvin et al. (1975) and Fell et al. (1990) showed that Theileria infected cells cause tumour-Iike masses that metastasise throughout the organs of irradiated, athymic or SCID (severe combined immunodeficient) mice, implying that the cells undergo transformation to become cancerous. However, cxperiments with buparvaquone have shown that parasite induced host transformation is entirely reversible and is, therefore, not due genctic changes to the host, but is more likely brought about by parasite induced alteration to the control of host gene expression (Dobbelaere et al., 2000). Higher eukaryotic cellular transtormation is often accompanied by alterations to the cellular enviromment and involves alterations to protein kinase activity,
cytokine mediated signal transduction changes to the levels and activity of transcription factors and metalloproteimase gene expression. These mechanisms have also been defined for immortalised/transformed Theileria infected cells and are detailed below:

1.9.1 Alterations in Protein Kinase Activity

Dyer of al. (1992) reported allerations to the profile of protein kinases in infected cells compared to their uninfected counterparts, two of which were found to be unigue to infected cells. These authors noted the significance of protein kinases as key indicators of cellular transformation in eukaryotic cells that when expressed abnormally can fad directly to at transformed phemotype (Hunter and Seftom, 1980; Hunter et al., 1985; Hanafista, 1986; Seldin and Leder, 1995). More recently, increased levels of host Cascin Kinase II (CKII), a ubiguitous, conserved serine-threonine specific protcin kinase was observed in T. parva infected cells in vito (ole-Moi Yoi, 1995). CKil is involved in receptor mediated signalling pathways and is associated with cellular proliferation and transformation (Pima, 1990; Tuazon and Traugh, 1991; Meisner and Czech, 1991). Experiments showed that CKII levels were found to increase when B cells were stimulated to divide using mitogens (DeBencdette and Snow, 1991). Also, some of the clinical symptoms seen in lymphocytes of transgenic mice with dysregulated CKII levels (Seldin and Jeeder, 1995) are similar to the pathology of T, parva infections, such as tissue infiltration by affected lymphocytes. However there are also significant differences between the Theileria transformed cells and the transgeric mouse model; namely the failure of CKII overexpressing mice to develop B cell lymphomas, the time taken for tumour development and the percentage of T cells that become transformed (Chaussepicd and Langsley, 1996). Later studies by Shayan and Ahmed et al. (1997) showed that CKII expression was down regulated when the parasite was eliminated with buparvaquone treatmont, conlirming that CKII expression was parasite induced. Interestingly, Theileria is known to possess a gene encoding a molecule with significant identity to the catalytic α-subunit of CKII. This parasite molecule contains a sequence motir with significant identity to a signal peptide, and might be inserted into the parasite plasma membrane or transported to the host cell cytoplasm. Here, it could alter the cell cycle regulation of the host by phosphorylation of host molecules or by increasing the levels of host CKII (ole-Moi Yoi et al., 1992; Dobbelaere and Heussler, 1999). Thus host or parasite CKII has the potential to play a major role in Theilerid induced host cell immortalisation.

Further cvidence for the involvement of a signalling pathway was found by Fich et al. (1998) who showed that transformation by T. parva influences the expression of at least one major Sre kinasc member, p60 ${ }^{\text {ly }}$. Sre kinases direct early membrane signalling in T and B cells and many are considered to be proto-oncogenes (Fich et al., 1998). Using tyoosine kinase inhibitors, Fich et al. (1998) showed that proliferation of Theileria infected cells could be blocked, suggesting that tyrosine phosphorylation is essential for the maintenance of the transformed hosi cell. p60 ${ }^{\text {fyn }}$ levels are clevated in T. parva infected cells, but were found to be reduced with buparvaguone treatment. Furthermore, p60 ${ }^{\text {lynn }} \mathrm{co}$ precipitated with two weakly phosphorylated polypepticles. As these phosphoproteins were absent in mon-infected cell lines, it was postulated by Fich et al. (1998) that T. parva protcins either directly or indirectly activate $160^{\circ \text { 3n }}$. However, studies in other eukaryotic systems have shown that Sre activation by cellutar receptors are only transient and are insufficient to stimulate cell tansformation alone (Thomas and Brugge, 1997).

1.9.2 Cytokine Mediated Signal Transduction

Work performed by Dobbelacre et $a($. (1999) has demonstrated that the parasite may interfere with the normal T cell antigen receptor pathway to induce continuous proliferation. Parasite induced disruption of the signalling pathway was suspected due to the fact that some T. parva infected cells express high affinity IL-2 receptors that could be involved in an autocrine loop with IL-2. Moreover, these infected cells did not recpuire antigenic stimulation to divide. Further studies showed that T. parva bypassed the T cell receptor (TCR) pathway, as there was a lack of phosphorylation of receptors typical to that pathway. in addition proliferation was not inhibited by immunosuppressive drugs and the IL-2 receptor was found to be constitutively activated (reviewed by Dobbelaere et al, 2000). Nonetheless it should be noted that the IL-2R/LI-2 autocrine loop is only observed in some cell lines and is therefore not thought to be a primary cause of host cell proliferation (Chaussepied and Langsley, 1996). The only other cytokine shown to enhance host cell proliferation is TNF α, possibly through the parasite induced expression of TNF α receptors, as lymphocytes do not express this cytokinc normally (Preston el al., 1992b; Chaussepied and Langsley, 1996).

A key finding to understanding parasite controlled proliferation of the host cell was the detection of constitutively high levels of NH-кB in infected cells (Ivanov et al., 1989). Intcrestingly it was found that expression of active muclear $\mathrm{NF}-\mathrm{kB}$ protects the infected cell from apoptosis, as treatment with inbibitors or transfection with dominant-ncgative
mutants resulted in cell death (Heussler ot al., 1999). $\mathrm{NF}-\mathrm{kB}$ is a transcription factor complex composed of members of the Rel family that inchude p50 or p 52 sub-units. These members all contain an N -terminal 300 amino acid Rel homology domain that encodes a leucine zipper region for dimerisation, a DNA binding domain and a muclear localisation signal (Joyce et al, 2001). NF-kB has an important role in cell growth as it dircetly controls the cxpression of cyclin D and c-myc, which regulate the GO/G1-S transition phase of the cell cycle (reviewed by Hinz et al., 1999). This molecule is activated by a number of cytokines, including TNF α, and cellular stress and is regulated by IkB proteins, most notably IKBC and IkBB which, bind to $\mathrm{NF}-\kappa \mathrm{B}$ in the cytoplasm, masking the nuclear localisation signals and preventing the molecule entering the nucleus (Joyce et al., 2001).

In T. parva infected cells, it is thought that parasite associated activation of NF-kB occurs via continuous degradation of the IkBs, by phosphorylation via lкB kinases (IKKs), allowing $N F-k B$ to enter the nucleus and activate genes involved in the protection of apoptosis (Dobbelaere et al., 2000). Recently, it has been postulated that continuous degradation of IKB occurs through the association and activation of the molti-protein IKK complex with the macroschizont itself (Dobbelaere and Heussler, 1999). It was envisaged that this could occur by direct activation of the IKK complex by upstrean parasite activators, via $\left[K K-\gamma\right.$, required for stimulation of IKK by $N F_{\kappa} B$ inducing kinase (NIK), or the MAPK/ERK kinase, involved in NFאB activation pathways (Dobbelacre and Heussler, 1999). Alternatively, parasite molecules could interact with the IKK-complex-associated protein, a structural protein that directly interacts with IKK and the upstream kinase NIK (Dobbelaere and IIeussler, 1999). Apoptosis induced by NF-kB inthibition has also been demonstrated in other transformed cell lines, including a lymphoma cell line. Indirectly,
 lymphotrophic virus type-1 induced T-cell leukaemia (Höllsberg, 1999). IL-10 was the only cytokine which showed universal expression in a study performed on a number of \% parva infected cell lines (McKeever et al., 1997).

The mitogen-activated protein kinase (MAPK) pathway and the phosphoinositide-3-kinase (PI-3K) pathways have also been implicated with parasite infection. The JNKs (jun NH_{2}. terminal kinases), a class of MAPK kinases that respond to cellular stress were found to be solely responsible for the activation of the transcription factors $\mathrm{AP}-1$ and $\mathrm{ATF}-2$ via the phosphorylation of c-Jun (Chaussepied et af., 1998; Botteron and Dobbelaere, 1998). It has been postulated that the JNK pathway and NF-KB are regulated by MAPK/ERK kinase
kinase I (MEKK1), which is known to induce both JNKs and NF-kB via the IKK complex (reviewed by Mercurio and Manning, 1999). Ultimately, AP-1 and ATF-1 together with $\mathrm{NF}-\mathrm{KB}$ arc thought to activate a number of genes involved in protection from apoptosis (Dobbelatere et al, 2000).

The second pathway thought to be involved in parasite induced proliferation is the Pl-3K pathway, a group of signal transducers that activate growth factors, immune receptors and also interfere with apoptotic signalling (reviewed by Stambolic ef al., 1999). Thesc molecules are thought to play a role in T. parra induced proliferation, because inhibiting agents of this pathway block host cell proliferation (Dobbelaere et al., 1999). However, it is unclear if the PI-3K pathway protects against cell death as inhibitors of the PI-3K pathway did not catuse the cells to apoptose, unlike the inhibition of NF-kB (Dobbelacre and Heassler 1999; Heussler et al., 2001). Indeed, work by Heussler et al., (2001) demonstrated that a downstream target of $\mathrm{Pl}-3 \mathrm{~K}$ pathway, Ak/PKB, appears to act independently of NF- κ B activation and that NF- $\kappa \mathrm{KB}$ dependent protection against apoptosis does not involve the Pl-3K-Akt/PKB pathway. Studies by Baumgartner et al. (2000) supported the findings that PI3-K activity is necessary for proliferation, and revealed that it was mediated by the induction of granulocyte-monocyle colony stimulating factor However, in contradiction to Heussler et al. (2001), it was found that PI3-K is involved in the constitutive activation of NF- kB and $\mathrm{AP}-1$ (Baumgartncr ot al., 2000). A third possibility is that PI3-K induced proliferation operates in more than one pathway. As the Pl3-K pathway is also implicated in cell motility and cytoskefetal changes, this pathway may also be sequestered to aid host cell proliferation in Theileria infected cells by moving components of the signal transduction pathways via the cytoskeleton to and from the parasite surface. This is supported by the discovery that the IKK complex has been found near to the schizont (see above) (Dobbelaere et al, 2000).

It has been postulated that NF-кB targets cyclin dependent kimases which regulate NF-кB binding to specific cell cycle associated factors (Dobbclacre et al, 2000). The identification of two Theileria specific cyclin dependent kinases, TaCRK3 and TaCRK2, (Kinnaird et al., 1996, 2001), or other related Theileria polypeptides may be two such cyclin dependent kinases that are involved in the specific activation or repression of NF-k B , brought to the parasite via the cytoskeleton. It is possible that TaCRK2 could be a candidate for NF- KB interaction as it is similar in sequence to the higher eukaryotic CDK1/2 family, some members of which are known to regulate NF-kB (Perkins et al.,
1997). However, no data has been generated to date suggesting that TaCRK2 or TaCRK 3 have a functional signal sequence or are transported to the macroschizont surface or host cell cytoplasm/mucleus. Analysis of these genes suggests that TaCRK2 could control parasite nuclear division and this is likely to be their primary function (Kinuaird et al., 2001).

1.9.3 Metalloproteinases

Prolonged culture of Theileria infected cells is known to lead to host cell proliferation and the loss of differentiation potential and virulence. Shiels ef al. (1997) provided a link between reduced differentiation capacity and inereased levels of host cell proliferation in certain infected cell limes, and an inability to up regulate merozote gene expression in a cloned cell line severely attemated for the differentiation process. Other studies investigating attenuation of schizont infected ceils suggested that it is associated by alteration of parasite and host cell genc expression (Sutherland et al., 1996: Hall ef al., 1999). The host gene studied in greatest detail encodes a member of a group of enzymes known as metalloproteinases (MMPs). Initially, the MMP9 metalloproteinase was found to show elevated expression in low passage Theileria infected cells but not in their uninfected counterparts (Adamson and Hall, 1996, Adamson et al., 2000ab). However, expression was significantly reduced in infected cells that had undergone significant passage in vitro. Further data suggested that MMPs also may be associated with parasite virulence and metastasis of Theileria infected cells in SCID mice (Somerville et al., 1998a).

MMP9 was shown to be regulated at the transcriptional level at least in part, by the AP-1 transcription factor (Adamson et al., 2000b). There were several lines of evidence to support this: firstly the bovine MMP9 gene contained an upstrean consensus AP-1 binding sitc; sccondly, promotcr activity was observed in constructs containing an AP-1 binding site by transient transfection. Thirdly, EMSA studies showed one of the specific AP-1 binding mobility complexes was lost in high passage cell lines compared to low passages celis (Adamson et al., 2000b). Interestingly, a potential NF-kB binding site was also found upstrean of the MMP9 genc, which was shown by deletion studies to actively contribute towards MMP9 activity in the low passage cell lines (Adamson et al., 2000b).

It was revealed that both T. annulata and T. parva infection also induces the expression of AP-1 (Baylis et al., 1995; Chaussipied and Langsley, 1996). Moreover, the promoter region of IL-2 contains AP-1 binding sitcs (scc revicw by Rao 1994). Previous studies have shown
that the parasite is responsible for inducing expression of c-Fos, c-Jun and JunD, components of the AP-1 complex, with JunD forming a major patt of the transcriptionally active AP-1 complex (Baylis et al, 1995; Chaussipied and Lanysley, 1996). Taken together, it has been suggested that after prolonged culture, changes in parasite gene expression cause altenuation, in part, by modulating the expression of bovine host genes such as cytokines (e.g. IL2) and virulence factors (e.g. MMP9) (Adamson et al, 2000b), possibly via the induction of AP-1 and NF-kB (Chaussipied and Langsley, 1996). I Iowever, it is likely that these events are not diredty linked to proliceration, although they might influence proliferation ability, because there is no absolute difference between low and high passage cells in their ability to divide.

1.9.4 TashAT Genes

To date, most studies have only identified sccondary events that lead to proliferation after Theileria infects the bost cell, and little is known of how the parasite directly induces and modulates host coll growth and division. Host cell proliferation has been shown to be reduced during differentiation to the merozoite (Hulliger et al., 1966; Shiels et al., 1994. 1997) and it has been suggested that during this process, parasite factors controlling host cell division are down regulated (Carrington of al., 1995). Cloning genes that are down regulated during merogony could identify these parasite factors which induce host cell proliferation. One group of parasite candidates that might modulate host cell gene expression and hence proliferation could be the TashAT gene family, which were shown to be down regulated during merogony at the mRNA level (Swan et al., 1999). Northern blot analysis indicated there were likely to be three members of the Tashat gene family, However, TashAT2, was the only member to be fully isolated and characterised at the time of this study. TashAll, the first Tashat gene to be identified, was only was partially characterised.

Sequence analysis of TashATl and TashAT2 showed they both encoded AT hook motifs. The AT hook motif was originally found in HMG proteins but has since been identified in a wide range of transcription factors with other DNA binding function (see revjews by Aravind and Landsman, 1998). This motif is comprised of mainly basic amino acids, with a core consensus sequence of Argininc-Glycine-Arginine-Proline ($\mathrm{R}-\mathrm{G}-\mathrm{R}-\mathrm{P}$), flanked by posilively charged lysine and arginine residues. These amino acids are known to bind preferentially to A and T residues on the minor groove track of DNA (Bustin et al., 1990; Reeves, 2001). In solution, the AT hook has very litte α helical structure or β sheets, and
is mainly composed of random coiled structures (Reeves and Nissen, 1990; Slama-Schwok et al., 2000; Schwanbeck et al., 2001). However, the AT hook forms an are when bound to DNA by virtue of the Pro residues at close proximity to each other, whilst the Arginine tum or hook at the amino terminus holds the molecule rigid (Recves and Nissen, 1990). HMGI molecules have been found to bind to distorted DNA structures (e.g. cruciform or bent DNA) and also induce conformational changes to the DNA structure such as DNA bending (reviewed by Reeves, 2001). Thus, it was postulated that the presence of AT hook domains within prodicted TashAT1 and TashAT2 polypeptides suggested a DNA binding role for this gene family.

Previous sequence comparisons between the predicted polypeptide of Tash T T? with the SWISS-PROT database showed the AT hooks of TashAT2 were most similar to those of the HMGI(Y) group of proteins (Swan ef al, 1999). These genes have important roles in chromatin structure and also activate genc transcription, in association with other factors (Reeves, 2001). HMGI(Y) binding sites are present in genes whose products have been implicated in the transcriptional activation of mostly positively regulated genes, with the exception of interleukin-4 (Chuvpilo et al., 1993). Many of these genes are associated with the immune system and cell growth, such as tymphotoxin and TNF- β (Fashena ef al, 1992), human papovavirus JC genes (Leger, et al. 1995), the mixed lineage leukaemia (MLL) gene (Ernst, et al., 2001), the α subunit of the IL-2 receptor (IL-2R α) (Reeves et al, 2000), the human insulin receptor (Brunetii ef al., 2001); IFN- β (Thanos and Maniatis, 1992) and c-Fos (Chin et al., 1998). Studies have shown that $\mathrm{HMGl}(\mathrm{Y})$ protcins also bind directly to a number of transeription factors, such as the leucine zipper region of activating transcription factor 2, which enables the complex to bind to the IFN- β promoter (Du and Maniatis, 1994). A number of studies have linked $\operatorname{HMGI}(Y)$ proteins with cell division: HMGI(Y) proteins are known to stimulate adipocyte cell growth and pre-adipocytic cell differentiation (Melillo et al., 2001). By contrast, HMGI(Y) levels were found to be low or undetectable in other fully differcntiated cells (Lundberg et al, 1989; Bustin and Reeves, 1996). Abnormally high levels of $\operatorname{HMGI}(\mathrm{Y})$ have consistently been found to be associated with neoplastic cellular transformation and tumour formation in humans and rats and is thought to be due to the inappropriate activation of genes involved in cell growth (Tallini and Dal Cin, 1999; Beckerbauer et al, 2000; Reeves, 2001; Berlingieri et al., 1995). The similarity betwecn the AT hook domains in $\mathrm{HMGI}(\mathrm{Y})$ and TashAT2 predicted polypeptide led to the postulation that TashAT2 and possibly TashAT1 might have a similar function to that of the $\mathrm{HMGI}(\mathrm{Y})$ family in modulating host cell gene expression or even proliferation.

HMG $I(Y)$ protcins themselves are known to be regulated by environmental stimuli, chemical stimuli, and by a large number of transcription factors involved in cell division, jucluding AP-1, c-Myc, Epidermal growir factor (EGF), transforming growth factor α (TGF- α) and platelet-derived growth Factor (PDGF). Some MMGI(Y) proteins are also strongly activated by members of the PI-3 kinase, the Ras/MAP kinase and the oxidative stress sigualling pathway (Ayoubi er al.. 1999; Zentner et al., 2001). Over expression of cMyc or HMGI(Y) has been shown to lead to cancerons phenotypes. Phorbol esters, which stimulate both $A P-1$ and $H M G I(Y)$, induced neoplastic transformation in some mouse epithelial cell lines (Cmarik ei al., 1998). As some transcriptional activators of HMGI(Y) are also associated with Theileria infections (such as AP-1), it could be conceivable that the TashAT genes may also be regulated by similar transcription factors in the infected host cell.

Sequence analysis of the predicted polypeptide sequence of TashAT2 suggested that it acts on host DNA 10 modulate host gene expression. The potential TashAT2 polypeptide also contains nuclear localisation signals which are capuble of transporting proteins to the nucleus (reviewed by Whiteside and (joodbourn, 1993). In addition, TashAT2 has a potential transcriptional activation domain, which have been found to assist in transcription through protein-protein interactions (Triezenberg, 1995). This suggestion was supported by evidence that TashAT2 was located to the host nucleus of infected cells using antisera generated against the AT- hook encoding region and another distinct region of TashA'l'2 by II゙AT (Swan et al, 1999). Moreover, transient transfection of a recombinant TashAT2 construct into COS7 cells resufted in host nuclear fluorescence, demonstrating that TashAT2 has the structural information required for transport into the host nucleus. This, together with protein translation inhibition and immunoprecipitation studies provided strong evidence that TashAT2 was translocated to the host nucleus.

The aims of this project were to identify and characterise the full length TashAT/ gene, and compare it to Kashat2 sequence and determine any similarity. This project will also attempt to characterise the expression of TashAT1, and other TashAT gene products in cclls that are enhanced (D7) or attenuated (D7B12) with respect to differentiation. Since attenuated infected cells are associated with a lack of differentiation and increased proliferation in the host cell (Shiels et al., 1992), an increase in TashAT gene expression levels might suggest these genes modulate host cell proliferation or parasite differentiation. To elucidate the potential function of the TashATI polypeptide, IFAT will be conducted to locate this gene product in the infected host cell. A host location might support the theory
that TashAT1 modalates host gene expression. The expression profile of Tash AT and TashAl'2 will also be compared in differentiating colls to detemine Tashat gene regulation: similar expression profiles might sugges some fom of common regulation. Finally, any potential regulatory motils upstream of the Tashat genes will be analysed for DNA binding under differentiation conditions. Ultimatcly this might lad to the identification of factor(s) that regulate macrosehizont differentiation or host cell proliferation.

2. Materials and Methods

2.1 Materials

2.1.1 General buffers and reagents

- EDTA: Ethylenediaminetetra-acetic acid disodium salt (BDH), in distilled water and adjusted to pH 8.0
- Tris-cl: Tris(hydroxymelhyl)aminomethane (ICN Biochemicals) in distilled water adjusted to the appropriate pH with concentrated HCl (Sigma)
- 50x TAE stock: 242 g Tris base, 57.1 ml glacial acetic acid (Sigma), 100 ml in EDTA (pH 8.0) made up to 11 with distilled water.
- 10x PBS (Phosphate buffered saline): 80 g NaCl (Sigma), 2.01g KCl (Sigma), 6.1 g $\mathrm{Na}_{2}-\mathrm{TPO}_{1}$ (Sigma), $2 \mathrm{~g} \mathrm{KH} \mathrm{K}_{2} \mathrm{PO}$: (Sigma) adjusted to pH 7.1 and made up to 11 with distilled water.

2.1.2 Cell culture

- Supplemented RI'MI-1640 media: RPMI-1640 medial (with 25 mM Hepes, L-glutamine) (Gibco, BRL), $0.05 \% \mathrm{NaHCO}_{3}(\mathrm{BDH}), 8 \mu \mathrm{~g} \mathrm{ml}^{-1}$ ampicillin. (Sigma), 8 units $\mu l^{-!}$ fungizone (Gibco) with 10% Foetal Calf Serum (Sigma) or 20% myoclone super plus foetal bovine serum FCS (Gibco, BRL), filter sterilised.

2.1.3 Cell Protein Extraction

- $2 \times$ Protein Sample buffer: 100 mM Tris-Cl, pH $6.8,4 \%$ SDS, 20% glycerol, 0.2% bromophenol blue, 200 mM dithiothreitol in distilled water
- Solution A: 20 mM PIPES (Piperazine-N,N'-bis-2-ethanesulphonic acid) (BDH), pH $7.5,15 \mathrm{mM} \mathrm{NaCl}, 60 \mathrm{~m} \mathrm{M} \mathrm{KCl}, 14 \mathrm{mM} \beta$ mercaptoethanol (BDH), 0.5 mM Ethylene glycol-bis(2-aminoethylether)-N,N,N",N’-tetraacetic acid (EGTA) (BDH), 4mM EDTA, 0.15 mM Sperminc (Sigma), 0.5 mM Spermidine (Sigma) in distilled water.
- Solution C: 5mM HEPES (Nw\{2-hydroxyethyl] piperazine-N'-[2-ethanesulphonic acid) (Sigma), $1.5 \mathrm{mM} \mathrm{MgCl} \mathbf{M}_{2}$ (Sigma), 0.2 mM EDTA, 0.5 mM dithiothreitol (Gibco,BRL), 0.5 mM PMSF (Sigma), 26% glycerol (BDH) in distilled water.

2.1.4 Bacterial and λ phage Culture

- LB medium: 1% bacto-tryptone (Difco), 0.5% bacto-yeast extract (Difco), $1 \% \mathrm{VaCl}$ in distilled water.
- LB Top agarose: LB with 1.5% agarose (Gibco, BRL) in distilled water.
- LB Agar: LB with 1\% bactoagar (Difco) in distilled water.
- Supplemented (λ phage) LB agar: I.B Agar plus 0.3% glucose (Sigma), 0.075 mM $\mathrm{CaCl}_{2}, 0.004 \mathrm{mM} \mathrm{FeCl}_{3}$ and $2 \mathrm{mM} \mathrm{MgSO}_{4}$ in distilled water.
- SM buffer: 50 mM Tris-Cl, pH 7.5, 10 mM MgSO (Sigma), $100 \mathrm{mM} \mathrm{NaCl}, 0.01 \%$ gelatin (Sigma) in distilled water.

2.1.5 Bacterial Cell Transformation

- TYM medium: 2% tryptone, 0.5% bacto-ycast extract, $0.1 \mathrm{M} \mathrm{NaCl}, 10 \mathrm{mM} \mathrm{MgSO} .7 \mathrm{H}_{2} \mathrm{O}$ in distilled water.
- Transformation buffer $\mathrm{I}: 30 \mathrm{mM}$ potassium acetate (Sigma), $50 \mathrm{mM} \mathrm{MnCl} \mathbf{M}_{2}$ (BDH), $100 \mathrm{mM} \mathrm{KCl}, 10 \mathrm{mM} \mathrm{CaCl}$ (Sigma), 15% glycerol in distilled water.
- Transformation buffer II: $10 \mathrm{mM} \mathrm{MOPS}, 75 \mathrm{mM} \mathrm{CaCl}_{2}, 10 \mathrm{mM} \mathrm{KCl}$ and 15% glycerol in distilled water.
- X-gal/PTG solution: $5 \mathrm{mg} \mathrm{ml}^{-1}$ of X -gal (5 -bromo-4 chloro 3 indolyl- β-D galactosidase) (Sigma), 25 mM] P G (isopropythio- β-D galactosidasc) (Sigma) in Dimethylformamide (BDH) stored in glass container covered with foil.

2.1.6 DNA Extraction

- TE buffer: 10 mM Tris-Cl, pH $7.5,1 \mathrm{mM}$ EDTA in distilled water.
- $1 \times \mathrm{SSC}$ solution: $0.15 \mathrm{M} \mathrm{NaCl}, 0.015 \mathrm{M}$ trisodium citrate (Sigma) in distilled water.
- Genomic lysis solution: 100 mM Tris-Cl (pH 7.5), $100 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ EDTA and 1% sodium Jauryl sarkosyl (Sigma) in distilled water.
- Resuspension solution: 50 mM Tris- $\mathrm{Cl}, \mathrm{pH} 7.5,10 \mathrm{mM}$ EDTA, $100 \mu \mathrm{gm} \mathrm{m}^{-1}$ of RNAalse A (Sigma) in distilled water.
- Cell Lysis solution: 0.2 M NaOH and 1% SDS (Sodium dodecyl tauryl sulphate) (Sigma) in distillod water:
- Veutralisation solution: 2.55 M potassium acetate, pH 4.8 in distilled water.

2.1.7 Polymerase Chain Reaction (PCR) and DNA Modification

- PCR buffer: $10 \mathrm{mM} \mathrm{Tris-Cl}(\mathrm{pH} 8.3), 50 \mathrm{mM} \mathrm{KCl}$ in distilled water.
- 10x Alkalinc Phosphatase buffer: $10 \mathrm{mM} \mathrm{ZnCl}_{2}$ (Signta), $10 \mathrm{mM} \mathrm{MgCl} \mathrm{M}_{2}, 100 \mathrm{mM}$ Tris-Cl (pH8.3).

2.1.8 DNA Electrophoresis and Southern Blot Analysis

- Loading buffer: 0.25% bromophenol blue (Electron), 0.25\% xylene cyanol (Signa), 40% (w/v) sucrose (Sigma) in distilled water.
- $10 \mathrm{mg} \mathrm{mil}^{-1}$ Ethidium Bromide (Sigma) solution, dissolved in distilled water, kept in darkness.
- Denaturation solution: $1.5 \mathrm{M} \mathrm{NaCl}, 0.5 \mathrm{M} \mathrm{NaOH}$ (Sigma) in distilled water.
- Neutralisation solution: $2 \mathrm{M} \mathrm{NaCl}, 0.5 \mathrm{M}$ Tris- $\mathrm{Cl}, \mathrm{pH} 7.4$ in distilled water.

2.1.9 Radioactive Labelling

- STE buffer: $0.1 \mathrm{M} \mathrm{NaCl}, 10 \mathrm{mM}$ Tris-Cl (pH 8.0), 1 mm EDTA (pH 8.0) in distilled water.

2.1.10 Nucleic Acid Hybridisation

- Hybridisation solution: 250 mM sodium phosphate buffer adjusted to pHi 7.2 with 85% orthophosphoric acid (BDH) : 1 mM EDTA, 7% SDS in distilled water.

2.1.11 RNA Extraction, Electrophoresis and Northern Blot Analysis

- Phosphate Transfer buffer: $25 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}$, adjusted to pH 5.5 with $25 \mathrm{mM} \mathrm{NaH}_{2} \mathrm{PO}_{4}$ in distilled water.
- 5x MOPS solution: 0.2M MOPS (3-Morpholinopropanesulfonic acid) (Sigma), 50 mM sodium acelate, 5 mM EDTA, pH 7.0 in distilled water.
- RNA loading dye: 95% formamide (BDH), 20 mM EDTA, pH 7.6, 0.05\%. bromophenol bluc, 0.05% xylene cyanol FF in distilled water.
- $10 \mathrm{mg} \mathrm{ml}^{-1}$ Elhidium Bromide in distifled water.

2.1.12 DNA Sequencing

- Sequencing stop solution: 98% formamide, 10 mM EDI'A, pH $8.0,0.025 \%$ bromophenol blue, 0.025% xylene cyanol FiF in distilled water.
- 10X TBE stock: 162 g Tris base stock, 27.5 g boric acid (Signa), 9.3 g of EDTA, made up to 11 with distilled water.
- 10% APS: 0.1 g (ammonium persulphate) (Sigma) in 1 m of distilled water.
- TEMED (tetra-methyl-1,2-diamrinocthanc) (Sigma)

2.1.13 IFAT and Western Blot Analysis

- DABCO/glycerol: 50% glycerol with 2.5% (w/v) DABCO (1.4 diazabicyclo 2.2.2 octane) (Sigma), pH 8.0 in distilled water.
- DAPI stain solution: DABCO/glycerol with 1 mg ml ${ }^{-1}$ DAPI (4,6-ciamidino-2phenylindole) (Sigma) and $1 \mathrm{mg} \mathrm{m}^{-1} \mathrm{p}$-phenydiaminc (Sigma) in distilled water.
- SDS-PAGE electrophoresis tank buffer: 50 mM Tris, 384 mM glycine, 2 mM EDTA and 1% SDS in distilled water.
- Comassie Bluc staining solution: 0.001% Coomassic Brilliant Blue R-250 (Sigma). 10% acetic acid, 40% methanol (BWR international) in distilled water.
- Destaining solution: 10% acetic acid, 40% methanol in distilled water.
- Transfer buffer: 25 mlM Tris, 192 min glycine (ICN biochemicals), 20% methanol in distilled water.
- Protein block buffer: 10 mM Tris-Cl, pH $7.4,150 \mathrm{mM} \mathrm{NaCl}, 0.1 \%$ Tween-20 (Signa). 5% non-fat milk powder, 10% horse serum (Sigma) in distilled water.
- Protein wash buffer: 10 mM Tris-Cl, pH $7.4,150 \mathrm{mM} \mathrm{NaCl}, 0.1 \%$ 'Hween-20 in distilled water.

2.1.14 Electromobility Shift Assay (EMSA)

- EMSA binding buffer: 10 mM IIEPES, pIr 7.9 , 1 mM CDTA, 5% Ficoll (Sigma) in distilled water.
- 25% APS: 0.25 g APS in 1 ml distilled water.

2.2 Methods

2.2.1 Cell Culture

The cloned cell lincs, D7 and D7B12 (Shiels et al., 1992), derived fiom T. ammata (Ankara) (Ta^2) macroschizont infected cell lines (Shiels et cl., 1992) were cultured at 37° Cor $41^{\circ} \mathrm{C}$ in the presence of $5 \% \mathrm{CO}_{2}$. Cell counts were measured using a haenocytometer and diluted to a cell density of 1.4×10^{5} cells mil^{-1} every 48 hours. Cells were grown in sapplemented RPMI-1640 media and 10% hea imactivated foetal call serum (FCS) (Sigma) or 20\% myoclone super plus Coetal bovine serum FCS (Gibco, BRL) in the case of D7B12 cells. Uninfected Bovine Lymphosarcoma cells (BL20) (Morzaria el al.. 1982), Tal46A cells (Baylis of al. 1992) and TBL20 cells, a Theileria infected cell line from the same lineage as BI 20 cells (Shiels et al., 1986) were cultured as for D 7 Bl 2 cells al $37^{\circ} \mathrm{C}$.

2.2.2 Cryopreservation and Recovery of Cells

To preserve cells in liquid $\mathrm{N}_{2}, 5 \times 10^{6}$ cells ml^{-1} were centrifuged at 400 xg for 5 minutes and gently resuspended in 3 ml of medium at $4^{\circ} \mathrm{C}$ containing 10% Dimethylsulphoxide (Sigma). The cells were divided into 1.5 ml aliquots in cryotubes, wrapped in cotton wool and placed in a polystyrene box and stored at $-70^{\circ} \mathrm{C}$ for 24 hours, alter which they were transferred to liquid N_{2} storage. Cryopreserved cells were recovered by rapidly thawing the vial at $37^{\circ} \mathrm{C}$ and then added to 10 ml of pre-warmed medium. The cells were centrifuged at 400 xg for 5 mins, given a further wash in 10 ml of medium and resuspended in 5 ml of supplomented medium. After being in culture at $37^{\circ} \mathrm{C}$ for 24 hours, the cells were checked for viability and the culture volume brought up to 10 ml with supplemented medium.

2.2.3 Staining of Cells with Giemsa Reagent

$100 \mu \mathrm{l}$ of cells at an approximate density of $5 \times 10^{5} \mathrm{cclls} \mathrm{ml}^{-1}$ were centrifuged in a Shandon cytospin 2 centrifuge at $240 \times \mathrm{g}$ for 5 minutes onto superfrost glass slides (BDH). The cells were air dried at $37^{\circ} \mathrm{C}$ for 5 minutes, fixed with methanol for 30 minutes and then stained in 4\% Giemsa's stain (Gurr's improved R66, BDH) diluted in distilled water for 40 minutes. The stained cells were rinsed with distilled water and viewed under oil under x 100 objective after drying.

2.2.4 Preparation of Cell and Nuclear Extracts

Total cell extracts were prepared by pelleting approximately 10^{7} cells by centrifugation at 400 xg for 5 minutes. The colls wore washed three times in an equal volume of PBS, resuspended in 0.5 ml of PBS and lysed with 0.5 volumes of $2 x$ protem sample buffer. The lysate was sheared by a 23 gatuge syringe to break down the genomic DNA.

Preparation of host and parasite nuclei was modified from extraction methods developed for Plasmorlium by Lanzer et al. (1992). $10^{7}-10^{8}$ colls were pelieted by centrifugation at 400 xg , rinsed in IxPBS, and resuspended in 6ml nuclear extract solution Λ, to which 0.125 mM PMSF (Plenylmethylsuphonyl fluoride) was freshly added. The cells were homogenised in a dounce homogeniser with a tight pestle for 6 strokes on ice and centrifuged al 400 xg for 5 minutes at $4^{\circ} \mathrm{C}$ to pellet the host nuclei. The supernatant was decanted and re-centrifuged as before to remove any remaining host nuclei. The final supernatant was centrifuged at 2000 xg for 10 minetes at $4^{\circ} \mathrm{C}$ to pellet the parasite naclei. The host and parasite peilcts were resuspended in $300 \mu \mathrm{~L}$ and 160 fl respectively of nuclear extract solution $\mathrm{C}, 10$ which NaCl was added to a total concentration of 300 mM . The extract was incubated on ice for 30 minutes and then centrifuged at 15800 xg for 10 minutes to remove any insoluble material. The supernatant containing the nuclear extracts were either samp frozen in dry ice and stored in $10 \mu \mathrm{l}$ aliquots in liquid N_{2} or SDS protoin loading buffer was added for SDS-PAGE analysis (see section 2.2.27). All samples were stored at $-20^{\circ} \mathrm{C}$. The Protein concentration of diluted nuclear cxtract was estimated by the Warburg-Christian Method (1941/1942 cited by Seidman and Moore, 2000), by measuring, the sample at $O . \mathcal{U}_{280}$ and $O . D_{260}$ in a quartz cuvette and accounting for nucleic acid contamination using the following formula:
$[$ Protein $] \cong 1.55 \mathrm{~A}_{280}-0.757 \mathrm{~A}_{260}$ (in units of mg/mi).

2.2.5 Culturing and Storing Bacteria

The Escherichia coli strains used were JM109 (Yanisch-Perron et al., 1985) and XL1-Blue (Bullock et al., 1987), obtained from Promega and Stratagene, respectively. These strains were grown in LB medium at $37^{\circ} \mathrm{C}$ in an orbital incubator or streaked out on LB agar plates. These strains and derivatives containing recombinant plasmids were storect at $-70^{\circ} \mathrm{C}$ in LB medium containing 25% glycerol. Cells were recovered from glycerol stocks by streaking out onto an LB agar plate, and grown overnight at $37^{\circ} \mathrm{C}$. Single colonies were
then grown up in I.B ntedium.

2.2.6 Transformation of E.coli Competent Cells

To prepare compctent cells for transfomation, 1 ml of IM 109 or XL1-Blue E. coli cells, previously grown overnight at $37^{\circ} \mathrm{C}$ were used to inoculate a 21 flask containing 100 mf of TYM medium. This culture was grown for approximately 2 hours until mid-log phase (optical density reading at 600 urn (O.D. $($ foi $)$ of $0.5-0.9$). At this point. TYM broth was added to the culture to a final volume of 500 ml and the cells were grown until the culturc reached an O.D. malue of 0.6 , whereupon the culture was cooled in ice water. The cells were pelleted by centrifugation at 4200 xg for 15 minutes (at $4^{\circ} \mathrm{C}$), resuspended in 100 ml of cooled transformation buffer I and centrifuged again at 4200 xg for 8 minutes. The pelleted competent cells were resuspended in 20 ml of cold transformation burfer II and dispensed in $0.1-0.5 \mathrm{ml}$ adicquots in pre-chilled microfuge tubes, frozen in liquid N_{2} and stored at $-70^{\circ} \mathrm{C}$.

For the transformation process, competent cells were thawed at room temperalure until they started to melt and then placed on ice. $5-10 \mu 1$ of ligated DNA was added to 100μ of competent cells and incubated for 30 minutes. The colls were then subjected to heat shock at $42^{\circ} \mathrm{C}$ for I mimute and returned to ice immediately. After cooling, $600 \mu \mathrm{~L}$ of LB medium was added to the transformed cells and incubated for 90 minutes in a $37^{\circ} \mathrm{C}$ waterbath. Transformed cells were plated onto LB agat plates supplemented with $50 \mu \mathrm{~g} \mathrm{ml}{ }^{-1}$ of ampicillin, which were previously spread with 150 pl of X -gal/IPTG solution. The plates were covered in plastic wrap, to prevent moisture loss, and incubated at $37^{\circ} \mathrm{C}$ over night. Recombinant colonics containing the sub-clones of interest were chosen on the basis of blue/white colony selection, according to the manufacturer's protocol for XL1-Bluc or JM109 cell transformation (Stratagene or Promega). White colonies were picked with a sterile metal loop and re-streaked onto fresh ampicillin plates for maintenance and stored at $4^{\circ} \mathrm{C}$ and/or kept as glycerol stocks (see section 2.2.5).

2.2.7 Expression of GST-Fusion Proteins in E.coli Cells

Induction of GST-fusion protein expression in XLI-Blue E.coli cells were performed according to the suppliers instructions (Pharmacia) either at $37^{\circ} \mathrm{C}$ or $30^{\circ} \mathrm{C}$ for up to 4 hours.

2.2.8 Purification of the TashAT1-N Fusion Protein

The induced bacterial cell culture was pelleted by centrifugation at 7700 xg for 10 minutes at $4^{\circ} \mathrm{C}$, the supernatant discarded and the cell pellet placed on ice. The pellet was resuspended in 10 ml of $1 \times \mathrm{PBS}$ (see section 2.1.1) and the cells lysed by 6 cycles of sonication on ice (Soniprep 150, MSE/Sanyo) at amplitude 7; Lysis was deemed successfin by a partial clearance of the cell suspension. 20% Triton $\mathrm{X}-100$ (in 1x PBS) was then added to a final concentration of 1% and the cell debris was pelleted by centrifugation at $12000 \times \mathrm{x}$ for 10 minutes at $4^{\circ} \mathrm{C}$ where the supernatant, contaning the fusion protein was transferred to a fresh tube. Purification of the fusion protein was performed on a prepared Glutathione Sepharose 4B column according to the manufacturer's instructions (Pharmacia). The purified fusion protein cluates were pooled together and dialysed against 41 ol $1 \times$ PBS in dialysis tubing (Mcdical Intemational ltd), previously sterilised by boiling in 2% sodium bicarbonate, 1 mM EDJ'A solution and rinsed. The Protein concentration was estimated by a method adapted from Bradford (1976), using the BCA Protein Assay Reagent kit (Pierce), according to the supplicr's instructions. The concentration of the protcin sample was determined by interpolation from the standard curve, geneated from Bovine Serum Albumin (BSA) samples of known concentration versus their absorbance at 562 mm (A $_{56}$).

2.2.9 Preparing High Titre λ dash II phage Stocks

Bacteriophage were grown according to the protocol developed by Promega for Wizard Lambda Preps DNA puritication system. Preparation of high titre stocks of λ bacteriophage were carried out using plate lysis methot, using XL1-Blue cells as a host culture using supplemented (a phage) LB agar: The plate was incubated over night at $37^{\circ} \mathrm{C}$ and then inspected for confluent lysis. To determine the concentration of λ phage stock, plate lysates were prepared from serial dilutions of the λ phage stock (prepared in SM buffer). The number of plaque forming units (pfu) werc counted and calculated according to the method described by Sambrook et al. (1989).

2.2.10 Preparation of λ dash $/ I$

Preparation of λ bacteriophage DNA was based on a method by Sambrook ei al. (1989), using high titre stocks of λ bacteriophage clones (see section 2.2.9). 1 ml of an overnight culture of XL1-blue cells were used to inoculated two 11 flasks, each containing 100 ml of

LB mediun supplemented with $10 \mathrm{mM} \mathrm{MgSO}_{4}$. The flasks were grown at $37^{\circ} \mathrm{C}$ in an orbital shaker until the cells were at a density of $2-3 \times 10^{8}$ cells ml^{-1} (in the growth phase). This density corresponded to an O. D_{600} reading of $0.45-0.6$, using plastic cuvettes. The XLJ-Blue cells werc infected with a total of $2-3 \times 10^{i 6}$ pfu of bacteriophage stock and the flasks were shaken vigorously at $37^{\circ} \mathrm{C}$ in the orbital shaker at 250 revolutions per minute (tpm). Incubation continucd until the cell suspension became clear. At this point $200 \mu \mathrm{l}$ of chloroform was added to the flasks and shaken for a further 15 minutes to release the remaining bacteriophage particles. DNAase I (Sigma) and RNAase A (Sigma) were added to at final concentration of $10 \mu \mathrm{gm} \mathrm{m}^{-1}$ in the lysate and incubated for a further 30 minutes at $37^{\circ} \mathrm{C}$. Phage particles were precipitated by the addition of NaCl to 4%, and PEC (6000) (Sigma) to 10% of the total volume at $4^{\circ} \mathrm{C}$ for 12 hours. The λ bacteriophage were pelleted by centrifugation at 5000 xg for 15 minutes, the supernatant was removed and the pellet was resuspended in 0.5 ml of SM buffer. λ bacteriophage DNA was purified using the Wizard Lambda Preps DNA purification system kil (Promega) according to the manufacturers instructions, using the vacuum manifold method.

2.2.11 Preparation of Genomic DNA

Approximately 2×10^{8} Theileria infected cells cultured at $37^{\circ} \mathrm{C}$ were harvested by centrifugation at 400 xg for 5 minutes and resuspended in 5 ml of $1 \times \mathrm{SSC}$ solution. The cells were then lysed for 2-3 minutes in an cqual volume of lysis solution. To remove all protein, proteinase K (sigma) was added to a concentration of $100 \mu \mathrm{~g} \mathrm{ml}{ }^{-1}$ and incubated at $55^{\circ} \mathrm{C}$ for 2 hours. DNA was progressively extracted by Phenol (Sigma) and then by phenol/chloroform. This procedure involved the addition of phenol (equilibrated to pH 7.8 8.0) saturated with TE to the cell lysis solution in a $1: 1$ ratio of TE saturated phenol: cell lysis solution. The mixture was agitated vigorously, centrifuged for 10 seconds and the aqueous phase removed. The same procedure was repeated with phenol:chloroform (1:1) extraction but this time the aqueous phase of the phenol/chloroform extraction was mixed with chloroform (Sigma) alone to remove any excess phenol that could interfere with downstream enzymatic reactions. The top, aqueous layer of the chloroform extraction was removed and DNA was precipitated by the addition of 2.5 x volume of 100% ethanol (precooled at $-20^{\circ} \mathrm{C}$) and 0.1 x volume of sodium acetate. The DNA was left to precipitate for 12 hours at $-20^{\circ} \mathrm{C}$ and then centrifuged at 20800 xg for 30 minutes for collection. The DNA pellet was washed in pre-cooled 70% ethanol, centrifuged at 20800 xg for 10 minutes, and resuspended in a suitable volume of TE after drying under vacuum pressure and stored at 4
${ }^{\circ} \mathrm{C}$. The concentration was determined by measuring a diluted sample at $\mathrm{O} . \mathrm{D}_{260}$ in a quartz cuvette as described by Sambrook et al. (1989).

2.2.12 Preparation of Plasmid DNA

For small seale preparations of E.coli cells bearing the desired plasmid construct, 3 ml cultures of LB medium, containing the antibiotic ampicilin ($100 \mathrm{mg} \mathrm{ml}^{-1}$ in distilled water), were inoculated with a single colony lifted using a wirc loop and grown overnight at $37^{\circ} \mathrm{C}$. The cells were pelleted by contritugation at 20800 xg for 30 seconds, resuspended in Resuspension solution, then lysed by gentle mixing with cell lysis solution. Lastly, the lysate was neutralised with 0.2 ml of neutralisation solution followed by contrifugation at 20800 xg for 20 minutes. The supematant was decanted into a frcsh tube and the DNA precipitated by the addition of 2 volumes of 100% ethanol. The precipitated DNA was pelleted by centrifugation at 15800 xg for 30 minutes, washed in 70% Ethanol and repelleled as before. Excess ethanol was drained from the tube and then removed by drying at room temperature for approximately 5 minutes. The pellet was resuspended in 50 to $100 \mu \mathrm{l}$ distilled water or TE buffer and stored at $-20^{\circ} \mathrm{C}$. Latger quantities of plasmid DNA ($400 \mathrm{pg}-$ 1.00 mg) were collected using the maxiprep kit (Qiagen) from 100.500 ml of E.coli cell culture according to the manufacturer's instructions.

2.2.13 Restriction Digestion of DNA

DNA was digested with restriction enzymes using the buffers provided by the suppliers (Gibco, BRL or Promega). Typically, $0.2-1.0 \mu \mathrm{~g}$ plasmid or λ dash II DNA or $45 \mu \mathrm{~g}$ of genomic DNA were used for each reaction. In general, 5 units of enzyme were used to digest $1 \mu \mathrm{~g}$ of DNA for 1 hour at the temperature recommended by the supplier.

2.2.14 Sub-cloning DNA

Following electrophoresis of PCR amplificd (sce section 2.2.15) or restriction digested DNA (see section 2.2.13), the DNA fragments of interest were isolated from low melting point agarose gel slices using (JeneClean kit (qbiogen), according to the manufacturer's instructions. PCR products warc ligated into the pGEM-T easy vector according to the manufacturer's instructions. Restriction digested DNA was ligated into pGEM7\%f (Promega) or pGEX-2TK (Pharmacia) vectors, previously digested with the appropriate restriction enzymes and purificd by GeneClean kit as described above. Ligation reactions
were typically performed by adding the following to a 2041 reaction mix and incubating for 12 hours at $16^{\circ} \mathrm{C}$: 50 ng of DVA insert, 50 ng of digested vector, $2 \mu \mathrm{l}$ of 10 x ligation buffer (Gibco, BRL) and 100 mits of T4 DNA ligase (Gibco, BRL).

2.2.15 Amplification of DNA products by the Polymerase Chain Reaction (PCR)

DNA fragments were amplified from the DNA tomplate in a standard 50,1 reaction mixture containing 1.25 units of high fidelity Tay DNA polymerasc (amplitaq); DNA template:0.1-0.5 μ for plasmid/ λ dash II DNA or 0.5-I μ for genomic DNA: 10 pmol of 5° and 3' primers (synhesised commercially by Cruachem): $200 \mu \mathrm{M}$ each dNTP (amplitaq); 2 mM MgCl a and PCR buffer (amplitaq) at the appropriate dilution. The DNA amplification reactions were performed in a Perkin-Elmer 480 thermocycler. A typical reaction involved an intial denaturation step of $95^{\circ} \mathrm{C}$ for 5 minutes, followed by 30 thermocycling steps and finally a 10 minute extension step at $70^{\circ} \mathrm{C}$. The parameters used for each cycle were typically: donaturation: $95^{\circ} \mathrm{C}$ for 1 mintte, anneal: $55^{\circ} \mathrm{C}$ for 1 minute, extend: $72^{\circ} \mathrm{C}$ for 1 minute. However the amoaling temperature (Ta) varied according to the melting temperature (l_{m}) of the primers used, and were calculated using the following formula:
$\mathrm{Tm}=4(\mathrm{G} \div \mathrm{C})+2(\mathrm{~A}+\mathrm{T})^{\circ} \mathrm{C}$.

The Ta was set at $5^{\circ} \mathrm{C}$ below the lowest Tm of the pair of primers to be used (Innis and Gelfand, 1990).

2.2.16 5' RACE (Rapid Amplification of cDNA Ends)

This method was employed to determine the transcription start site of TashATl using the 5'RACE kit, version 2 (Gibco, BRL) and was performed according to the manufacturer's instructions. The 3 ' gene specific nested primers GSP1,2 and 3 were named rspl, 2 and 3 (see Appendix A). The first PCR reaction was performed in a Perkin Elmer thermocycicr as follows: initial denaturation at $94^{\circ} \mathrm{C}$ for 1 minutes then 30 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 1 minute, annealing at $55^{\circ} \mathrm{C}$ for 1 minute, extension at $72^{\circ} \mathrm{C}$ for 1 minute followed by a final extension at $70^{\circ} \mathrm{C}$ for 10 minutes. The second PCR amplification reaction was performed as described above, but in this case the annealing temperature was $45^{\circ} \mathrm{C}$. The
product was electrophoresed and purified from an agarose gel using the GeneClean ${ }^{\circledR}$ kit and ligated into pGem I ' Easy vector (Promega) as described in section 2.2.14, and transformed into XL1-Bluc cells (see section 2.2.6). DNA was purified from recombinant colonies using the GeneClean kit according the manufacturer's instructions and sequenced (sco scction 2.2.24).

2.2.17 Electrophoresis of DNA

DNA separation was carried out as described by Sambrook et al. (1989). The agarose gel (Gibco, BRL) was prepared by melting agatose powder in $1 \times T A E$ to a percentage determined by the size of DVA used, normally 0.7%. Once the agarose had cooled to $55^{\circ} \mathrm{C}$, Ethidium bromide (Sigma) was added to a linal concentration of $0.5 \mu \mathrm{~g} \mathrm{~m}{ }^{-1}$, poured into at casting frame and left to solidify. Low melting point agarose (Sigma) was used when the DNA was to be isolated as a gel slice. In this case the low melting point gel was cast at $4^{\circ} \mathrm{C}$ and DNA elcetrophoresis was performed at $4^{\circ} \mathrm{C}$ to prevent the gel from melting. DNA samples were loaded into wells with an equal proportion of loading buffer. The gel was placed in an electrophoresis apparatus (Phannacia or Gibco, BRL), covered in 1x TAF buffer and arranged so that the negatively charged DNA would run from the wells, nearest the negative cathode, towards the positive anode. Samples were electrophoresed until the dye front was one third from the end of the gel. DNA fragments were visualised as fluorescent bands under u.v. light. 'I he DNA size was estimated by a comparison with the Ikb DNA marker ladder (Gibco, BRI), run alongside the sample. The size of the DNA restriction liagments were detemined by interpolation from a calibration curve of $\log _{10}$ DNA molecular weight markers against distance migrated.

2.2.18 Southern Blotting

After electrophoresis, DNA was treated and transferred to Hybond N (Amersham) by the following method. The gel was placed in denaturation solution for 45 minules and then in neutralisation solution for 30 minutes. Finally, the gel was equilibrated in Phosphate Transfer buffer (see section 2.1.11) for another 30 minutes. DNA was transferred onto a nylon mombrane in transfer buffer for at least 18 hours by capillary action as described by Southerru (1975). The DNA was fixed to the membrane by exposure to 150 Joules of U.V. light radiation in a GS Gene Linker box (BioRad). The membrane was either stored in aluminium foil at $-20^{\circ} \mathrm{C}$ or propared for hybridisation with a radioactively labelicd probe. Hybridisation was performed at $65^{\circ} \mathrm{C}$ over night with a probe radiolabelled by the random
priming method (see section 2.2.22) using the methods and reayents developed by Church and Gilbert (1984). After hybridisation, excess radioactive DNA was removed by washing the lilter three times in $0.2 \times \mathrm{SSC}, 0.1 \%$ SDS solution every 20 minutes; the filter was exposed to autoradiographic film (Kodak X-Omat AR) in a cassette box at $-70^{\circ} \mathrm{C}$ for an adequate time period. To visualise the hybridised bands, the film was submerged in developing solution for 3 minutes (Kodak) followed by 30 seconds in wash solution (3% acetic acid), and then 3 minutes in Llford Hypan fixing solution (Kodak) in darkness. Afterwards, the film was rinsed in water for 5 minutes and dried.

2.2.19 Preparation of RNA

To purify total RNA, approximately $10^{8}-10^{\prime \prime}$ cells were pelleted at 100 xg , and washed twice in 10 ml of $1 \times$ PBS buffer. After the final wash, RNA was purified from the cells using the Tri-Reagent (Sigma) according to the manufacturer"s protocol, using equipmem and reagents pre-treated with DEPC (di ethyl pyrncarbonate) (Sigma). Once purified, the RNA was resuspended in $200 \mu \mathrm{l}$ of 0.5% SDS solution by incubation al $55^{\circ} \mathrm{C}$ for 10 minutes and used immediately or stored at $-70^{\circ} \mathrm{C}$. Poly (A) ${ }^{1}$ RNA was donated by D.G. Swan. Quantification and purity of the RNA sample was determined by spectrophotometric methods as described by Sambrook et al. (1089).

2.2.20 Electrophoresis of RNA

RNA samples were electrophoresed on 1.2% agarose-formaldehyde gels using clectrophoresis apparatus previously treated with DEPC in 1x MOPS buffer. The RNA gel was prepared by melting agarose (low ELO) (Sigma) in distilled water to a concentration of 1.2%. When the solution had cooled to $55^{\circ} \mathrm{C}, 0.2$ volumes of 5 x MOPS solution and 0.02 volumes of 37% formaldehyde (BDH) were added and the gel was cast. RNA samples plus the RNA marker ladder (Gibco, BRL) were prepared in the following solution: $10 \mu \mathrm{~g}$ total RNA, 0.1 volumes of $5 x$ MOPS, 0.18 volumes of 37% formaldehyde, 0.5 volumes of formamide. The RNA was denatured by incubation at $55^{\circ} \mathrm{C}$ for 15 minutes and rapidly cooled on icc. 0.2 volumes of RNA loading dye was added to the samples, which werc then loaded onto the gel and electrophoresed at $30-40 \mathrm{~V}$ for 16 hours with a peristaltic pump attached to recirculate the buffer. Electrophoresis was stopped when the first dye front had reached three quarters of the length of the gel. The RNA marker lane was removed and stained with $60 \mu \mathrm{l}$ ethidium bromide in 250 ml of water for viewing under u.v. illumination.

2.2.21 Northern Blotting

Northern bloting of the remaining RNA was performed according to Sambrook et al. (1989) with IIybond-N membrane using 25 mM phosphate transfer buffer, pH 5.5 , for 18 hours. The RNA was fixed to the membrane as described in section 2.2.18. Hybridisation was carried out as described by Church and Gilbert (1984) at $55^{\circ} \mathrm{C}$. The membrane was washed twice in either $1 \times$ SSC (see section 2.1 .6) or $0.1 \times$ SSC with 0.1% SDS every 20 minutes and the filter exposed to autoradiographic finm at $-70^{\circ} \mathrm{C}$ which was developed as described in section 2.2.18. The size of the R.VA species detected were determined by interpolation from a calibration curve of $\log _{10}$ RNA molecular weight makers against distance migrated.

To re-use radioactively labelled membranes, 11 of boiling 0.1% SDS solution was poured over the membrane, left for 30 minutes, rinsed and checked for radioactivity. The process was repeated until no radioactivity was detected on the membrane. Before being re-fabelied with a second radioactive probe, the stripped membrane was exposed to athradiographic film for a time period equivalent to that used for it's original exposure for longer in the case of abundant RNA species) to check no residual label remained on the membrane.

2.2.22 Radioactive Labelling of DNA using the Random Primed Method

This method was used to prepare ${ }^{32} \mathrm{P}$ radioactively labelled probes for hybridisation with membranes containing DNA or RNA. The probe was prepared using the Random Primed DNA labelling kit (edition 7, Boehringer Mannheim) according to the manufacturer's instructions, using $50 \mu \mathrm{Ci}$ of [$\left.\alpha^{32} \mathrm{P}\right] \mathrm{CTP}$ (CN biochemicals). The desired DNA fragment was excised from a low melting point agarose gel, sterile, distilled water was added ($3 \mathrm{ml} / \mathrm{g}$ of gel) and the solution was heated for 7 minutes at $100^{\circ} \mathrm{C}$ to melt the gel and denature the DNA and was either cooled to $37^{\circ} \mathrm{C}$ for immediate use, or stored at $-20^{\circ} \mathrm{C}$. The DNA sample was denatured by heating the sample to $100^{\circ} \mathrm{C}$ for 5 minutes and then cooling the sample rapidly on ice before it was added to the reaction mix. After incubation at $37^{\circ} \mathrm{C}$ for 1 hour, $80 \mu \mathrm{l}$ of STE buffer was added to stop the reaction and the probe was denatured by boiling for 5 minutes.

2.2.23 Radioactive Labelling of DNA using the End Labelling Method

In order to label the 5° end of oligonuclentides with ${ }^{32}{ }^{3}-\gamma$ ATP, it was necessary to dephosphorylate the end termini of the oligonucleotide, using 1 unit of Alkaline Phosphatasc (Sigma) for every μ mol of oligonncleotide, plus $1 \mu \mathrm{l}$ of 10 x alkaline phosphatase buffer in a total volume of 10 pt. The reaction was incubated for 30 minutes at $37^{\circ} \mathrm{C}$ and the enzyme denatured by heat inactivation at $65^{\circ} \mathrm{C}$ for 1 hour in the presence of 3 mM EDTA (pH 8.0). The oligonuclotide was then purificd using (ieneClean kit, according to the manufacturer's instructions. For the end labelling reaction. 10 pmol of oligonucleotide was mixed with $1 \mu 1$ of $160 \mu \mathrm{Ci} / \mu 1^{-1}$ of $\left.\left[\gamma_{-}^{32} \mathrm{P}\right] A\right]$ P (ICN biochemicals), $\left.1 \mu\right]$ of $10 x$ polynucleotide kinase buffer (Promega), int of $\Gamma 4$ polynucleotide kinase (10 units $\mu 1^{-1}$) (Promega) made up with distilled water to $10 \mu \mathrm{l}$. The mixture was incubated at $37^{\circ} \mathrm{C}$ for 30 minutes, after which $40 \mu \mathrm{l}$ of STE was added and the probe purified on a NucTrap(B) column (Stratagene), inside a Beta Shicld device (Stratagene), according to the manufacturer's instructions.

2.2.24 Densitometric Analysis

Densitometric scanting of autoradiographs were performed using a Quantity One scanner (pdl) at the CRC Beatson Institute (Glas\&ow), according to the manufacturer's instructions.

2.2.25 Automated DNA Sequencing

DNA samples were prepared by PCR amplification using infrared fluorophore (laser dye IRD41) labelled primers for detection by a LI-COR model 4000(L) DNA sequencer as described by Middendorf et al. (1992). The LI-COR sequencer contains a laser diode emitting at 785 nm which ciuses excitation of the fluorophore labelled DNA fragments passing through the laser diode during electrophoresis, which are detected by a microscope/detector. The DNA sequence images were collated into one image directly on computer using ImagLR ${ }^{1 \mathrm{M}}$ software.

The sequencing reactions were performed using the Fluoro Sequenase kit (Epicentre Technologies) in the following reaction mix: 50 ng DNA, 2pmol RRD41 labelled primer (T7, T3 or SP6), 2.5 Hl of 10 x sequitherm Execl ${ }^{\text {Tm }} \mathrm{II}$ sequencing buffer (Epicentre
'Technologics), $1 \mu 1$ of biopro themostable DNA polymerase (Bioline) made up to $17 \mu \mathrm{l}$ with distilled water. $4 \mu \mathrm{l}$ of reaction mix was added to each of four themocycler tubes, each containing $2 \mu \mathrm{l}$ of sequitherm Excel ${ }^{\text {TV }} \mathrm{LI}$ dideoxy-ATP, -CTP,-GTP,-TTP termination mix (Epicontre Technologies), respectively. 30 ul of mineral oil were added to each tube, which were placed in a Perkin Elmer themocycler for a total of 30 cycles starting with a $95^{\circ} \mathrm{C}$ denaturation step for 5 minutes and then 30 seconds at $95^{\circ} \mathrm{C}, 30$ seconds at $60^{\circ} \mathrm{C}$ (amealing), 1 minute at $70^{\circ} \mathrm{C}$ (elongation). After $P C R$ amplification, the reactions were stopped with 4μ of sequencing stop solution and stored at $4^{\circ} \mathrm{C}$ in darkness. Just prior to loading, samples were denatured at $95^{\circ} \mathrm{C}$ for 5 minutes.

The acrylamide sequencing gel was prepared by adding 21 g of urea to 6 ml of 50% LongRanger ${ }^{\text {TM }}$ mix (FMC) and 6 ml of 10 x TBE made up to total volume of 50 ml with distilled water and degassed to remove any air bubbles. Polymerisation of the acrylamide gel was achieved with the addition of $25 \mu \mathrm{TEMED}$ and $250 \mu \mathrm{H}$ of 10% APS and cast using LI-COR plates. When the acrylamide was set the plates were assembled into the II-COR sequencer as described in the manufacturer's instructions with $1 \times$ TBE buffer used as electrophoresis buffer. Before the samples were loaded, the gel was pre-rin for 30 minutes until the gel tenmerature reached $50^{\circ} \mathrm{C}$, at which point the sequencing gel was loaded with $2 \mu \mathrm{I}$ of sample and clectrophoresed al $1500 \mathrm{~V}(35 \mathrm{~mA})$ for approximately 6.5 hours. The sequencing image and sequence was retrieved and manually edited on computer using the ImagIR ${ }^{\text {TM }}$ data collection software set designed for the LI-COR model 4000 sequencer.

2.2.26 Sequence Analysis

DNA sequence information was transfered to a database and analysed using the Genctics Computer Group (GCG) Wisconsin package software, version 10.2. Sequence comparisons were performed using the FastA programme. The predicted polypeptide and nucleotide seguences of TashAT1 was compared to other polypeptide and nucleolide sequences using the programs BLAST (for polypeptides) and ENTREZ (for nucleolides) at the ncbi website (http://www.ncbi.nlm.nih.gov/). Preliminary scquence data from the T. parva genome project was obtained from the Institute of Genome Research (IGGR) website at http://www.tigr.org. The predicted molecular weight of 'TashAT1 and the fusion protein was obtained from the Predictprotein program, GCG. Potential motifs and secondary structure predictions were analysed using the following software programs:

PSORT II iPSORT
SMART.
PROSITE
SignalP and TargetP
ProDom
PESTlind
SEG and PITD analysis
Matinspector
http://psort.nibb.ac.jp/
http://hypothesiscreator nel/iPSORT/
http://smart.embl-heidelberg.de/
http://www.expasy.cl/prosite/
http://www.cbs.diu.dk/services/
http://prodes.toulouse.inra. fi'prodon/doc/prodom.hinl http://www.at.embnet.org/embnet/toolsfhio/PESTffind/ hitp://dodo.cpme.columbia.ede/pp/predictprotein.html http://transfac.gbf.de/TRANSFAC.

2.2.27 Indirect Fluorescence Antibody Test (IFAT)

Cell cultures were grown to a density of $1 \times 10^{\circ}$ cellsimb and prepared on slides as described in section 2.2.3. The cells were fixed onto the slides by incubation with acetone at $-20^{\circ} \mathrm{C}$ for 30 minutes and left to equilibrate at room temperature for 5 minutes. $20 \mu \mathrm{f}$ of the first antibody (see section 2.2.30), diluted in RPMI- 1640 media or neat, was applicd to the fixed cells and incobated at room temperature in a humid chanber for 30 minutes. The slides were washed three times in $1 \times \mathrm{PBS}$ and then dried at room temperature for 5 minutes. $20 \mu \mathrm{l}$ of FITC (fluorescein isothiocyanate) conjugated rabbit anti-species igG (Sigma), diluted by 1:200, was applied to the cells (which generates green fluorescence under the microscope), incubated and washed as before. The slides were placed in 0.1% of Evans Blue in $1 \times$ PBS for 2 minutes to counter stain the cells (red under microscope) and then rinsed in PBS. After drying, the cells were momted in DABCO/glycerol solution or DAPI stain and examined under x 60 or x 100 objective for fluresesence with a Leitz ortholux II transmitted light iluorescence nicruscope. Photographs of the images were taken by an Olympus BX60 tluorescence camera, attached to a SPOT digital camera (Diagnostics mstruments Inc), where images were digitally loaded onto a computer and vicwed using the SPOT basic program.

2.2.28 SDS-Polyacrylamide Gel Electrophoresis (PAGE)

This method was developed by Laemmli (1970) and performed in Mini Protean Il gel electrophoresis apparatus (BioRad) using mini-protean II gel plates. The resolving gel varied in acrylamide concentration according to the size of protein to be detected; normally an 8% resolving gel was used. A 10 ml resolving gel conlained 2.7 ml of 30% acrylamide/ $0.8 \% \mathrm{~N}-\mathrm{N}$ Bis-methylene acrylamide (wiv) mix (Scotlab) in 2.5 ml of 1 M TrisCl , pII 8.8 and 0.1 ml of 10% SDS, 4.6 ml of distilled water. The gel was polymerised with the addition of 0.5 ml of freshly prepared 10% APS and 0.5 ml of TEMED (see section 2.1.12), and immediately poured into the casting plates to threc quartors of the height of the
gel plates (approximately Gml gel mix). To prevent uneven polymerisation of the gel at the air interface, the gel was overlayed with water saturated 2 -butanol and polymerisation was complete by 30 minutes. Once the water saturated 2 -butanol was poured off and the resolving gel rinsed with distilled water, the remaining quarter of the gel plates were used for the 4% acrylamide stacking gel, which was pourcd on top of the resolving gel. Preparation of 5 ml of stack gel was made as follows: 0.67 ml of 30% acrylamide $/ 0.8 \% \mathrm{NT}$ - N Bis-methylene acrylamide mix (Scotlab), 1.25 ml of 0.5 M Tris-Cl, pH 6.8 and 0.05% SDS and 3.5 ml distilled water. This gel was polymerised by the addition of 0.025 ml of 10% APS and 0.005 ml TEMED. Approximately 2 ml of stacking gel was required for casting in the mini protean Il plates. The gel apparatus was transferred to the mini protean Il gel clectrophoresis tank, and filled with electrophoresis tank buffer. In order to prepare the samples and molscular weight markers for loading, 0.5 volumes of $2 \times$ protein sample buffer was added to protein samples, boiled for 5 minutes and loaded immediately into the wells. Electrophoresis of polypeptide samples were carried out for 2 hours at 1.00 V and either processed for Westem bloting or stained with Coomassic Blue staining solution for 2 hours to visualise the protein bands. In the latter case, protein bands became visible when the coomassie blue was selectively removed using Destaining solution. The gel was dried under vacuman at $80^{\circ} \mathrm{C}$ for 2 hours in a BioRad gel dryer between clear plastic sheets for long term storage. The molecular mass of the polypeptide(s) of interest was determined by interpolation from a calibration curve of $\log _{10}$ molecular weight markers against distance migrated.

2.2.29 Western Blotting

This method was adapted from Towbin et al. (1979). After electrophoresis, the polypeptides were transferred from the SDS-PAGE gel onto a Protran nitrocellulose membrane (Schleicher and Schucil) in transfer buffer using a mini protean electroblotter apparatus ($\mathrm{Bio}-\mathrm{Rad}$) at $\mathrm{IV} \mathrm{cm}{ }^{-2}$ for 90 minutes. The filter was stained with 0.2% PonceauS (Sigma) dissolved in $3 \% \mathrm{v} / \mathrm{v}$ trichloroacctic acid for 5 minutes, and then washed in distilled water, to check for transfer efficiency. The marker lane was removed and the filter was destained and incubated with block buffer for 1-3 hours. The primary antibody was diluted in a suitable volume of block buffer and incubated with the filter for 8-10 hours in a sealed bag on a rocking platform. The filter was washed of primary antibody solution twice with protcin wash buffer at room temperature for 20 minutes and was incubated with protein block buffer for a further 20 minutes before incubation with the secondary antibody for a further hour. This was either alkaline-phosphatase conjugated anti-rabbit IgG (whole
molecule, Sigma) or peroxidase conjugatcd anti-rabbit IgG (Sigma), both used at 1: 10000 dilution in block buffer. The filters were washed as before in the former case, detection of antibody binding was performed as described by Harlow and I ane (1988), by incubating the filter in bromochloroindoyl phosphatefetrazolium ($\mathrm{BCIP} / \mathrm{NBT}$) which is converted to a purple substrate by alkaline phosphatase. When the polypeptides were sufficiently visible the reaction was stopped by rinsing with distilled water. Detection of antibody/antigen complexes bound to the peroxidase conjugated secondary antibody was performed by ECL (Amersham) according to the manufacturers instructions. When the substrate was added to the filter, chemifuminescence oceurred at the secondary antibody binding site, which was detected on autoradiographic film at increasing time periods, depending on the strength of the signal.

2.2.30 Peptide Blocking

Peptide blocking was performed as described by Mottram et al. (1993). The fusion protein was added to primary antisera diluted in block buffer to an appropriate concentration reguised to bind all the antibodies, for 3 hours at room temperature. The blocked antisera was then incubated with the Western blot as described in section 2.2.28.

2.2.31 Generation of Antisera

Antisera was prepared by A. Tait and raised against the antigen in New Zealand White Rabbits. The antisera was collected from the rabbits and dispensed into 20 ul and $50 \mu 1$ aliquots for storage at $-20^{\circ} \mathrm{C}$. Antisera DE-39 and EL-24 were prepared in the same manner as described by Swan et al. (1999).

2.2.32 Electromobility Shift Assays (EMSA)

DNA binding reactions with host or parasite nuclei were performed in a $20 \mu \mathrm{l}$ reaction volurne containing $10 \mu \mathrm{~g}$ of melear extract, $14 \mu \mathrm{l}$ of EMSA binding buffer, $1 \mu \mathrm{l}$ of 200 ng ml ${ }^{1}$ poly $\mathrm{dG} . \mathrm{dC} . .1 \mu 1$ of $\gamma-{ }^{32} \mathrm{P}$-dATP labelled probe was added and the reaction mix was incubated for 40 minutes at $4^{\circ} \mathrm{C}$. Single stranded oligonuclcotide (MWG) and its reverse complement were annealed to create a double stranded oligonucleotide by incubating 400 pmol of cach oligonucleotide in $100 \mu \mathrm{l}$ of 0.5 x polynucleotide kinase buffer (Promega) at $80^{\circ} \mathrm{C}$ for 2 minutes and gradually cooling to room temperature.

3. Genetic Analysis of TashAT1 and TashAT3

3.1 Introduction

Previous studies of Theileria infected leukocytes demonstrated that this parasite had the ability to induce a transfomed phenotype in the host (Brown, 1990), by some undefined process. In addition, Shiels et al. (1994) found that parasite gencs are expressed in a stage specific manner. These findings led to the postulation that macroschizont factors that are down regulated during differentiation to the merozoite, may be involved in host cell (livision (Carrington of al., 1995). Thus, characterisation of genes expressed in the macroschizont that are down regulated during merogony may lead to the identification of factors that stimulate host cell division.

Swan et al. (1999) performed a differential immunoscreen on polypeptides derived from genomic DNA from the T, anmilata cell line, D7 in order to identify genes that are up regulated in the macroschizont. In this experiment, antigens encoded by constitutively expressed or mero\%oite specific genes were blocked with antisera raised against merozoite stage of the T. annulata life cycle. A bovine serum, previously shown to recognise macroschizont antigens was used to identify genes specifically expressed in the macroschicont. From this screen, a 3.4 kb रgtl1 clone, called cl-12, was isolated (Swan et al., 1999), and preliminary sequence analysis identified a partial open reading frame (called TashATI) with four AT hook motifs. However, when a λ dash II D7 genomic library was screened with cl-12, the resultant isolated gene, only showed 65% identity with TashATi at the DNA level and contained only three $A T$ hook motifs. It was therefore concluded that this now gene was not TashaTl and was called TashaT2 (Swan et al., 1999). Therefore, the first important aim of this project was to obtain the full-length Tashat/ genc clone for further characterisation.

Previous sequence comparisons of the TashAT2 (Swan et al, 1999) showed that its AT hook motifs were most similar to those of $\mathrm{HMGl}(\mathrm{Y})$ protein, which have an important role in chromatin structure and act as co-factors, mainly to positively activate a wide range of genes (reviewed by Reeves, 2001). The similarity between the AT hook domains in HMGI(Y) suggested that the TashAT genc family in Theileria might also bind to DNA and even similar gene targets to $\operatorname{HMGT}(\mathrm{Y})$. This was supported by evidence of TashAT2 within the host nucleus of an infected cell. IFAT studies also found the TashAT2 polypeptide in
the nucleus of COS 7 cells that were transfected with a TashAT2 construct, showing that the potential NLS of TashAT2 might be able to direct the polypeptide to the host nucleus (Swan et al. 1999). Thus a second aim would be to identify any sequence motifs within the TashAT1 predicted peptide, such as a poteutial NLS to deduce the possible function of TashAT1. Similarly, analysis of the upsirean region of TashATI could provide information of possible transcriptional regulators of TashAT/.

Work by Aravind and Landsman (1998), have classified all known AT hook oncoding genes into three classes, based on their extended sequence conservation outwith the corc GRP region, and on their binding alfinities (see Table 3.1). Type I class $\wedge T$ hook domains contain the 9 amino acid residue consensus sequence together with four extra basic residues C terminal to the core GRP, which form a polar network to provide additional binding. Type If class AT hook domains do not posses these extra residues and therefore have a lower affinity to DNA than the type I class of AT hook domains. A third class of AT hook domains, Type III, has properties of both Type I and II classes. The third aim was to identify which class the Tashat genes belong according to the above classification and thus predict the DNA binding capacity of TashAT1 and TashA T'2 polypeptides.

Southern blot analysis of genomic DNA by Swan et al. (1999), using cl-12 as a probe, yielded multiple DNA fragments, some of which could not be attributed to the presence of Tushat2. This finding and the identification of two non-identical genes that both contain AT hook motifs suggested the presence of a small gene family in T. anmulata. Thus the fourth aim was to plysically map the locus of TeshATh, in relation to Tashat2 and to detect any other Tash $A T$ genes.

3.2 Results

3.2.1 Identification of the TashAT1 and TashAT3 genes

Previous screming of a λ dash 11 library derived from D 7 genomic DNA with cl-12, identified λ dash 12, and another λ dash clone, λ dash 13. To isolate TashAT1, two primers, HMG1 and HMG2, designed to flank the AT hook encoding sequence of TashAT2 (see Appendix A), were used to amplify TrishalT/ from both λ dash clones. This produced a 340bp product in λ dash 12 (shown in Fig. 3.1) which was known to correspond to the AT hook region of TershAT2. However, a novel 600 bp PCR producl, called p600, was found in λ dash 13 and could possibly fepresent the ΛT hook encoded region of TashaTl. To isolate TashATl, the 600bp product wats amplified from λ dash 13 and cloned into the pGEM7zf vector after agarose gel extraction (see section 2.2.14).

Sequence analysis of this clone (see Fig. 3.2), revealed that the p600 predicted peptide sequence was in fact 584 bp in size and contained four AT hook domains. A comparison between the p600 fragment and the preliminary TashaTl ORF sequence, from cl-12 showed a 92.6% identity over the firsi 441 bp (see Fig. 3.3), which, barring sequencing errors, might indicate that the p600 product originated from TashaTh.

To clone the full length TashATl gene, λ dash 13 DNA was subjected to restriction digestion followed by Southern blotting using the p600 fragment as a probe. This analysis (shown in Fig. 3.4) identified several DNA fragments that were distinct from the TashAT2 gene. These were a 0.8 kb and a 1.2 kb fragment from the EcoRI digestion; a 3.2 kb SpeI fragment; a 12 b KpnI/Spel fragment and two HindIII fragments at approximately 3.5 kb and 1.6 kb . Two stneared bands at approximately 1.2 kb and 0.8 kb were also observed in the HindIII restriction digestions, which may be due to contamination from the neighbouring EcoRI digestion given their size and the high level of background radioactivity on the autoradiograph. Double restriction digestion of λ dash 13 DNA using ticoRI and three other restriction enzymes, did not abolish the FcoRI DNA fragments, which indicated that the EcoRI fragments were internal to the Spel and HindiII and KpnI fragments. The 0.8 kb and 1.2 kb EcoRI fragments were therefore considered as possible candidates for the Tashatl gene, cloned into a pGEM7zf vector and sequenced.

The sequence results showed that the 0.8 kb EcoRI fragment (called AThookl) contained four potential Al hook encoding domains and was 96.9% identical over the lirst 4786 p to the p600 fragment (see Fig 3.5) and 97.1% identical to the entire TashATl ORF (see Fig. 3.6). This evidence suggested that the AThook I fragment was likely to belong to TashAT/.

To identify the origins of the 1.2 kb fragment, a comparison was made between the partial, preliminary sequence of the 1.2 kb fragment (910hp total lenglh) and the TashAT/ ORF (see Fig.3.7). This showed 89.8% identity over the first 412 bp of the 1.2 kb fragment., but none alter that point, in contrast to the AThookI fragment, which showed 100% identity with Tashati ORF over the entire length of the clone. Therefore, the 1.2 kb fragment, although simitar, was thonght to be distinct from the AThook! Iragment. A third sequence comparison between the 1.2 kb EcoRI fragment and the p600 showed 97.1% identity to the p600 fragment from base pairs $80-588$ of the p600 fragment (Fig. 3.8), whereas the AThookl fragment showed 96.9% identity to p 600 fragment between base pains 148 to 620 of the p600 fragment. This confirmed that the 1.2 kb Ecoll fragment (now called AThook3) and fragment AThook 1 were very similar over the region covered by the p600 Fragment, but may be divergent outwith this region.

To determine if the AThook 3 fragment belonged to Tashat (3.5 kb in Ingth), a sequence comparison between AThook3 and a fragment containing TashAT2 was performed. The results (see Fig. 3.9) showed that there was 97.5% identity between the 1.2 kb EcoRI fragment (from 280 to 910 bp) and TashAT? (between 1450bp to 2075bp) which comesponds to 1372-1997bp from the translation start site of TashaT2. However, the restriction map generated from the TashAT2 sequence (Swan et al., 2001a) lacked a 1.2 kb intcrnal EcoRl fragment, indicating that this 1.2 kb EcoRI fragment was not part of Tashat2. This suggested that the 1.2 kb Ecoki fragment could belong to a third AT hook encoding gene that shared identity with different regions of both TashATY and TashAT2.

In order to isolate TashATI, focus was placed on the KpnI/SpeI restriction digestion of λ dash 13 in Fig. 3.4. The SpeI and Kpni single digestions produced the 3.2 kb and 12 b fragments, respectively. However double digestion of λ dash 13 DNA with EcoRI/Spel and EcoRI/KpnI digested the Spel and KpnI fragments, leaving a 0.8 kb (AThookl) and a 1.2 kb (AThook3) fragment. This suggested that the AThookl and AThook3 fragments may be contained within the 12 b K pnI or the 3.2 kb SpeI fragment. However, size considerations meant that the 3.2 kb Spel fragment was the more feasible to clone and sequence, and was therefore chosen for further study.

Parallel studies by Swan and Pbillips (unpublished, 1997) had proviously purificd and cloned the 3.2 kb Spel fragment in an attempt to isolate the third putative TashaT3 gene. A series of overlapping deletions were made to sequence this clone but work was discontinued after initial sequencing revealed that this clone might be TashaTl. The 3.2 kb Spel fragment was used in this project thereafter to oblain the seguence of Tashath.

To confirm that the 3.2 kb Spel fragment contained TashATl, the 3.2 kb Spel fragment was subjected to restriction digestion to confirm if it contained the 0.8 kb EcoRI fragment. BamFll and Aatll or Sphl were used to linearise the subcloned D.NA, which was then digested with a variety of restriction enzymes, including EcoRI. Southern bloting, using the A Thook 1 fragment as a probe, revealed an 800 bp fragment (see Fig. 3.10, lane 5), confirming the presence of the AThookl fragment. This indicated that the 3.2 kb Spel fragment contained TashATl and was called λ Tal.

Fig. 3.1: PCR amplification of the 600 bp PCR product (p 600) from λ dash clone 13 using primers HMG1 and HMG2. Lane 1: control PCR amplification with no DNA; lane 2: λ dash clone 13; lane 3: λ dash clone 12 . Numbers of the left indicate the sizes of the DNA marker fragment (in Kb).
Arrow heads indicate the PCR products detected.

Fig. 3.2: DNA and predicted amino acid sequence of the p600 product from λ dash 13 . AT hook donains are indicated in bold type.

CAACCTAAACGTAAACGGGGTAGGCCTAGAMNACAGAAATATGAAACTAAAAAAACTTGG

190210230

TMACTTAGACCAGGAAACTGGAAAACTGAAACTAAAAAAACTTGGTGCTTAGACCAAGA AдTGAATCTGGRTCTTTGTACTTTTGACTTIGATTTTTTTGAACCAATMAAMU＇IGGTTCT

 $\begin{array}{llllllllllllllllll}K & Q & K & \mathrm{D} & \mathrm{E} & \mathrm{P} & \mathrm{E} & \mathrm{Q} & \mathrm{P} & \mathrm{K} & \mathrm{R} & \mathrm{K} & \mathrm{K} & \mathrm{G} & \mathrm{R} & \mathrm{P} & \mathrm{R} & \mathrm{K}\end{array} \mathrm{Q} \quad \mathrm{K}$ $310 \quad 330 \quad 350$
TAT＇GAAAC：＇AAAAAAACTTGGTYACTTAGACCABGAAACATCAAAACTGPAACTAAAAAA

Y

$370 \quad 390$ 410

АСТТGGTTACTTAGACGAAGAAAACATAAACCTGAACCTGAACAACCTAMACGTAAACGA


```
T Wllllllllllllllllllllllllll
    4 3 0 ~ 4 5 0 ~ 1 7 0
```

GGTAGACCAAGAAAACAAAAACCTGAACCTGAATCAGATCACTCTGAAGAATCCACTCAA

CCATCTGGTTCW"DTGTTTTTGGACTTGGACTTAGTCTAGTGAGACYMC"DAGGTGAGTT
$\begin{array}{lllllllllllllllllll}\mathrm{G} & \mathrm{R} & \mathrm{P} & \mathrm{R} & \mathrm{K} & \mathrm{O} & \mathrm{K} & \mathrm{P} & \mathrm{E} & \mathrm{P} & \mathrm{E} & \mathrm{S} & \mathrm{D} & \mathrm{H} & \mathrm{S} & \mathrm{E} & \mathrm{J} & \mathrm{S} & \mathrm{T}\end{array}$
$490510 \quad 530$
ССТСATCCTCANGAЛCA $G A A A C T G A A G A T Y C A A T A A A G G C A T T A G G A C E T E C A C C T G A A ~$
GGACTAGGAGTTCTTGTTCTETGACTTCTAAGMTATTTCCGTAATCCTGGAAGTGGACTV

 TTTTCTGGAAAAAGTAAACTATAAATAACACTTCTAGCこCTAmTTAAGCTACTTAGCTTr

K	R	P	F	S	F	D	I	Y	C	E	J	F	D	X	F	D	E	S	N

Fig. 3.3: Sequence comparison of the p600 PCR fragment with TashAT1 ORF derived from cl12: Scores 92.6% identily in a 489 mucleotide overlap

KS HS HK ES EK EH S K H E

Fig. 3.4: Southern blot analysis of restriction digested λ dash 13 DNA hybridised with probe p600. E: EcoRI; H: HindIII; K: KpnI; S: SpeI. EK digestion performed on a separate blot. DNA marker sizes are indicated to the left of the figure (in kb).

Fig. 3.5: DNA Sequence comparison of $\mathbf{p} 600 \mathrm{PCR}$ fragment with the 0.8 kb EcoRI fragment (AThook1) from λ dash $\mathbf{1 3 . 9 6 . 9 \%}$ identity over a 478 bp overlap.

Fig. 3.6: DNA sequence comparison of fragment AThook1, from λ dash 13, with the TashAT1 ORF from cl12. Scores: 97.1% identity in a 765 nucleotide overlap.

Fig. 3.6 cont.

Fig. 3.6 conl
$\begin{array}{llllll}379 & 369 & 359 & 349 & 339 & 329\end{array}$

AThook 1 GTACTTTTAPTGGAAAATTATCCTIAAATAAATCAATATATGTGGGATAATAACGTCAAA
$\begin{array}{llllll}690 & 700 & 710 & 720 & 730 & 140\end{array}$
$\begin{array}{llllll}319 & 309 & 299 & 259 & 279 & 269\end{array}$
†'ahat1 ORT ATATCTCAAGAAKTCAAATTAATTGGARCTAAATATTGGACGTACCAGATCTANACAAGT

AThook 1 ATATETCDAGAATTC
$750 \quad 760$

Fig. 3.7: DNA sequence comparison of the 1.2 kb Ecoll fragment from λ dash $\mathbf{1 3}$ with the TushA'TI ORF from cll 2 . Score 89.8% identity in a 412 nucleotide overlap.

Fig. 3.8: DNA sequence comparison between the 1.2 kb EcoRI fragment from λ dash 13 and the p600 PCR fragment. 97.1% identity over a 509 nucleotide overlap.
lig. 3.9: DNA sequence comparison between the 1.2 kb EcoRI fragment from λ dash 13 aud Tashat2. 93.2\% identity over a 721 nucleotide overlap.

Fig. 3.9 cont.

	1330	1340	1350	360

TashAT2 CAAGAमAACAAAAACCTGAACCTGAATCAG-ATCACTCTGAAGAATCCACTCAACCTCAT
 1.2 kb СААGAAAACAAAAACCTGAACGTGAATCAGAATGACGCTMAGAATCGACTCAACCTCAT $\begin{array}{llllll}34 \mathrm{C} & 350 & 360 & 370 & 380 & 320\end{array}$

TazhAT2 CलTTTTTCATTTGATATTTAT1GSGAAGATCGAGATGCTGAAGATCAATTAAGGAGAAGA
| |
1.2 kb CCTTTTTCATTTGATATTTATIGrGGAAGATCGAGATGCTGAAGATGAATTAAGGAGAAGA
$\begin{array}{llllll}460 & 470 & 480 & 490 & 300 & \text { ら」 }\end{array}$

| 1.690 | 1700 | $1 \% 1700$ | 1730 |
| :--- | :--- | :--- | :--- | :--- | :--- |

TaइhAT2 GCGAAGCGTTTTAGGAGTGAACGICIACAATCACATGAACAAGAGCATACAACTGATGCA

1.2 kb GCGAAGCGTTTCAGGAGTGAACCICTACAATCACATGAACAAGAGGATACAACTGATGCA $520 \quad 530 \quad 540 \quad 500$

1750	1760	1770	1780	1790	1.800

TashAT2 GGAGTGAGFTCAGGTGCAGGGGCTCCACCACCACCCOCAGATGGTTCIGAACGAMCGGAL

1.2k GGAGTGAGTTCAGGTGTAGGGGCTCCACCAACACCCGGAGATGGTLCEGAACCATCGGAT $580 \quad 590 \quad 600 \quad 610 \quad 630$

1810	1.820	18.30	1840	1850	1860

TAShAT2 GGACCAGGAGATTGTCCTCCTCCAGAGOAGGATCAGGACGAMACACHMMTAGTGCAACTG

640	650	660	570

1.2 kb ACACATATTTTTGAAAATGGTTTAARAATTTGTGAAGCTGAGAAGGGAAGCAMACTVTIA $\begin{array}{llllll}820 & 830 & 840 & 850 & 860 & 870\end{array}$

Fig. 3.9 cont .
$2050 \quad 2060 \quad 2070$
2080
2090
2100
 | ||||||||||||||||||||||||

$880 \quad 890 \quad 900$
910

Fig. 3.10: Southern blot analysis of λ Ta1 restriction digested DNA, hybridised with probe AThook1. undigested PGem7Zf control (lane 1); undigested $\lambda \mathrm{Ta} 1$ (lane 2); $\lambda \mathrm{Ta} 1$ digested with BamHI and AatII (lane 3); BamHI, SphI and SpeI (lane 4); BamHI, AatII and EcoRI (lane 5); BamHI, SphI and HindIII (lane 6); BamHI, SphI and EcoRV (lane 7); BamHI, SphI and SpeI (lane 8) and BamHI, SphI and XbaI (lane 9). DNA molecular weight markers are indicated to the left of the figure (in kb).

3.2.2 Sequence analysis of TashAT1

To sequence $\lambda \mathrm{Ta}$, a total of 29 overlapping deletion clones were generated to span the antire clone, on the sense and antisense strands, (shown in Appendix B). λ Tal was sequenced on both strands and assembled into a contiguous fragment from 29 individual deletion clones combincd with 5 sequenced fragments from Swan and Phillips (unpublished, 1997), using the fragment asscmbly program from GCG (see Appendix C). A PCR gencrated fragment, called rsp2 (sce Appendix C), was included to span the region between 1700bp and 1980bp as the deletion clones did not span this region sulficiently on the sense strand.

The results of sequence analysis (shown in Fig. 3.11) revealed a 970bp partial ORF, and a 1.4 kb continuous ORF that was located approximately 470 bp downstram of the 3 ' end of the $970 b \mathrm{p}$ ORF. On inspection, the 970 bp partial ORF was eliminated as a possible Tashath candidate because the predicted peptide sequence did not contain any Al hook motifs, nor did it show any significant similarity to the TashATI ORF, the p600 or AThook1 fragments.

The identity of the 1.4 kb ORF (shown in Fig. 3.12) was confirmed to be TashATl as it was 100% identical to the AThookI fragment at the predicted amino acid level (see Fig. 3.13). The putative amino acid sequence of TashAT1 identified four AT hook motifs (1 to 4) interspersed with two RPRK sequences spanning the 120 amino acid residue domain (see Fig. 3.12). Motifs 2, 3 and 4 were identical to each other but the thive amino acid in motif 1 contained an arginine (R) instead of a lysine (K) residue in motifs 2 to 4.

To determine the degree of similarity between TushAT1 and TushAT2, the predicted amino acid sequence of these genes were compared (see Fig. 3.14). The results showed that Tashatl and Tasha72 were 46.1% identical to each other over the 360 amino acids that corresponded to the AT hook-encoding region. However, TashAT2 had three AT hook domains and also lacked the shorter RPRK repeat sequences seen in TashAT1. Motif 1 of TashAT1 and TashaT2 were identical to each other and motifs 2, 3 and 4 of TashaT1 were identical to motifs 2 and 3 of TashAT2. The only difference between motif 1 and motifs 24 of both TashAT1 and TashAT2 was the third and fouth amino acids of motif 1, which contain arginine and proline, whilst the corresponding amino acids in motifs 2-4 contain lysine and arginine.

The AT hook domains of the TashAT1, Tashat2 and the newly discovered TashAT3 (Swan et al., 2001a) genes (sce Table 3.1) showed that they belonged to class II AT hook domains based on the classification of Aravind and Landsman (1998). The RPRK sequences within the AT hook regions of TashAT/ and TashAT3, are not true AT hook domans but this amino acid sequence is likely to be capable of DNA binding (Aravind and Landsman, 1998)

To identify other motifs, the putative peptide sequence of TashATl was analysed by the software programs ProDom (Corpet et al., 1998), PSOR'T If (Nakai, 1996; Nakai and Iforton, 1999), SMAR'I (Schultz et al., I998) and PROSITF (Hofiman ot al., 1999). These motifs are shown in Fig. 3.12. SMART, PROSITT and PSORT II analysis revealed the presence of scveral muclear localisation signals spanning 21 residues of the $\triangle T$ hook encoding region. The results of the PSORT II analysis revealed both pat 4 and pat 7 continuous nuclear localisation signals (NLSs) and bipartite NLSs within the predicted TashAT1 polypeptide (Fig. 3.12 and Appendix D). Pat 4 continuous NLSs are comprised of 4 basic annino acids (K or R) or 3 amino acids followed by an H or a P residue (Hicks and Raikhel, 1995). Pat 7 .NLSs are composed of 7 amino acids starting with a P residue Collowed by a 3 residue spacer region and then 3 out of 4 basic K/R amino acids (Hicks and Raikhel, 1995). Bipartite NLS5 contain 2 basic residues followed by a 10 -residue spacer and then a basic region comprising at least 3 out of 5 basic residucs (Hicks and Raikhel, 1995).

To determine if TashATl contains a signal sequence, the first 70 N -terminal residues of TashAT1 were analysed for a potential signal peptide using the SignalP program (Niclsen et al, 1997). This gave three values (with a range between 0 and 1) of $0.644,0.959$ and 0.680 for the C (raw cleavage site) score (cut off -0.37); the S (Signal peptide score (cut off $=0.88$) and the Y (combined cleavage site) score (cut off $=0.34$), with a maximum C and Y score of 25 (see Appendix E). The SignalP analysis of these scores concluded that TasiAT1 contained a signal peptide, with a predicted cleavage site between residucs 24 and 25 (the position before the maximal Y score). The predicted amino acid sequence of TashAT1 was also analysed using PSORTII, which did not predict a signal sequence but did identify a signal sequence cleavage site al residue 24 (see Appendix D). However, an updated version of the program PSORTII, iPSORT (Bannai et al., 2002), did predict a signal peptide within the 30 , N-terminal residues of the predicted amino acid sequence of 'TashAl'1, 'lhe Target P program (Enanuelsson et al., 2000) was used to detcrmine the predicted location of lashAT1 within the cell. This analysis gave a score of 0.877 and was
within the highest predicted reliability class score (greater than 0.80) for being secreted into other subcellular compartments of the cell (see Appendix F).

The 'ashAl'l polypeplide was also analysed for PEST sequences, which target the polypeptide For rapid destruction, using the software program PESTfind (Rogers et al. 1986; Rechstemer and Rogers, 1996). These sequences were derined as hydroplitic, but nol positively charged, stretches of amino acids, greater or equal to 12 residues; rich in Proline (P), ghtamic acid (E), serine (S) and threotine (T) and flanked by lysine (K), arginine (R) and histidne (H) residues. The program produces a PEST.FIND score range between -50 and +50 : a potential PEST sequence is defined by a score greater than 0 , but a value greater than +5 has a higher probability of being a PEST sequence. A sequence of 30 amino acids, between residues 212 to 241 , was found within the prodicted polypeptide sequence of TashAT1 (sce Fig. 3.12 and Appendix G). It was given a PESI-FIND score of +17.11 and therefore had a higher probability of being a potential PEST sequence.

Inspection of the Tash $\wedge T 1$ sequence also revealed a potential transcriptional ativation for transactivation) domain in ToshATl (see Fig. 3.12). Transactivalion domains (revewed by Triezenberg, 1995) regulate gene transcription via protcin-protein intaractions and a deffed to be rich in acidic amino acids: in glutamine, proline or serinc, theonine. A potential 21 amino acid transactivation domain of the putative TashATl polypeptide was found that contamed a stretch of mainly acidic amino acids such as glutamine, aspatate, proline (${ }^{2}$), scrine (S), theonine (T) just upstream of the first AT hook motif.

The PROSITE search, identified numerous protein kinase C (PKC) and Casein Kinase II (CKII) potential phosphorylation sites within TashAT/ (seen in Fig. 3.12 and Appendix H). Most of these potential phosphorylation sites were located at the N -terminus of the predicted polypeptide, and none were found within the AT hook domain region. The PROSITE analysis package also identified one myristolation and two N-Glycosylation sites within the predicted TashAT1 polypeptide (lig. 3.12 and Appendix H) and one myristolation site from residues 72-77. By contrast, the PSORTJI program failed to identify any myristolation sites.

To detemine if the putative TashAT 1 polypeptide was similar to other proteins, it was compared to other protein domain families using the software package ProDom. The results (see Fig 3.15) showed homology to six polypcptide families, mostly within four discrete regions of TashAT1 of approximately 30 amino acids. The only significant
homology found was over the last two highlighted regions to protein fanilios PD184102 and PD010330, which cncode the HMGs and histone proteins respectively. As expected, TashAT1 showed identity to the AT hook-encoding region of the PD184102 family and to a region rich in basic amino acids within the PD010330 protein family. Some identity was detected to the E residues between TashAT1 and PD000422 over amino acids 204 to 247 Although the PD001830 family encoded DNA binding bromodomains, and are associated with chromatin and interact with acetylated lysinc (K), the homology between TashAT1 to PD001830 appears to be coincidental with the repeated E (Glu), ER or Q (Gln) residucs of this protein domain fannily. The remaining three protein domain familics (PD148762, PD000422 and PD000002) encoded protein kinases, serine thronine kinases and coilcoiled myosin repeat chain heavy filament heptad repeat muscle protcins respectively. Again the homology between TashAT1 to the protein families PD000002 and PD000422 appears to be coincidental to abundantly repeated E residues in these proteins. The identity between 'TashAT1 and PD148762 protein family was poor, with only three identical residues over one homologous region.

Secondary structure predictions of TashATI were analysed by the software programmes SEG analysis (Wootton and Federhen, 1996) and PHD (Rost, 1996). PHD analysis predicts one dimensional protein structure by profile based on a neural network model. The results of this analysis showed TashATI to be a mixed class polypeptide, containing 9.2% helical structures, 27.0% extended sheets and 63.7% loop structures (see tig. 3.16). Most of the loop structures were found in the 140 amino acids at the C-terminus of TashATt, over the AT hook encoding regions. The extended sheet structures were mainly located at the N terminus and were interspersed with the helical domains, of which there were six in total. However, no helical domains and very few extended sheet structures were found in the last (C- terminal) 130 amino acid residucs of TashAT". Solvent accessibility (SA), a measure of folding and compactness, were low mainly in the 320 residucs from the N -terminus and high over the remaining 139 amino acids.

SEG analysis is a programme that detects regions of low compositional complexity within a polypeptide, which tend to be non-globular, exposed loop structures. This programme revealed that TashATl contained five regions of low compositional complexity: three of which were located at the C - termimus and two in the middle of the predicted peptide sequence (see Fig. 3.17A). The majority of the C-teminal low complexity regions overlapped with the potential AT hook domains of TashAT1. Tertiary structural predictions by the program "GLOBE" showed that the predicted peptide sequence of
'fashAT1 did not contain any globular structures or helix-loop-helix structures (see Fig. 3.17 B), in agreement with the SCG analysis.

To identify any common regulatory motifs within the 5' upstream regions of TashAT/ and TashAT2, the upstream sequences of these genes were compared using the FastA program. The results (shown in Fig. 3.18) revealed that the 5' upstriam region of Tashat2, TashAT1 and subsequently TashAT3 showed poor sequence identity to each other, except for a 31 bp region upstrearn of both genes. This motil was also found in another macroschizont encoded gene, Tashl (Swan et al, 200[b) and was labelled TashAT' upstream motif, or TashUM. The overall identity belween the TashUM of Tashath and TashaT2 was 80.6%. However, an AT and a GC rich motif were found within the TashUM region of TashATI and Tushat2 that showed 100% identity to each other.

The 5' upstream region of TashAT/ was analysed for potential transcription factor binding sites using the software program Matluspector (Quand et al., 1995), to detect ary transcription factors with the same binding site as TashUM or any bovine leukncyie specific factors that might regnlaie Tashath. Analysis with MatInspector did show 74 potential transcription factor binding sites of 5 -20bp within the entire upstream region of TashAT' (sec Fig. 3.19 and Appendix I). IIowever, this analysis failed to identify a potential transcription factor that could bind specifically to the TashUM motif or to the complete AT and GC rich motifs identified within TashUM. The mosi frequently found binding sites were the POU domain encoding Octl transcription factor binding sites (5 in total) which had good matrix similarity scores (all over 0.85). Four SATB (Special AT-rich sequence-binding protein 1) sites also were detected that had good matches with the upstream sequence of TashaTl (all over 0.9). Also of interest were three lymphocyte associated transcription factors: IKRS (Ikaros 1), a potential regulator of lymphocyte differentiation (matrix sim. score 0.916), PU.1- an Ets (oncogene) like factor found in macrophages and B cells (matrix sim. score 0.86). The third lymphocyte associated transcription factor was BCL6, a zinc finger encoding transcription repressor that has been associated with diffuse large cell lymphoma, when altered by translocation events.

To investigate whether the TashAT/ gene was conserved across the Theileria species the predicted amino acid of Tash ATl was compared with the preliminary, and, at of the time of this study, incomplete sequence data from the T. parva genome. TashAT1 showed similatitics to 54 scquences from the T. parva sequence database (see Appendix J). The highest similarity to the putative TashA7'1 polypeptide was from contig 443, a 3073bp
sequence from the T. parva database: this showed an identity score of 41% between 30658 bp and 31611 bp of the contig sequence (see Fig. 3.20). Most of this similarity occurred over the N -teminal region of TashA'tl with little similarity detected over the potential AT hook-encoding region. The sequence comparison between the predicted amino acid sequence of TashAT1 and the preliminary contig sequences of the T. parva genone (see Table 3.2) did not identify any true A'T hook motifs. However, there were two AT hook-like motifs, rich in lysine (K), Arginine (R) and proline (P), which may have the potential to bind to DNA, as they are very similar to a true AT hook motif. In addition, there may be structural similarity in both sequences towards the C-terminus as they both contained repented QT residues approximately every 10 residues.

In summary, the predicted TashATl polypeptide sequence contains four class II AT hook domains; a NLS; a signal sequence, numerous potential phosphorylation sites and a potential transactivation donain. Secondary and Tertiary structure predictions of Tash Λ TI, show that TashATl is non-globular, mixed class polypeptide mainly consisting of loops within the AT hook encoding region (at the C-temmus), and extended sheets and helices (at the N terminus). A 31 bp potential regulatory motif, TashUM, was found upstream of the TashAT1 gene, and of a third TashaT gene, TashAT3. Similar TashUM-like motifs were found upstrean of TashAT2 and an unrchated macroschizont encoded gene, Tashi.

Fig. 3.11: DNA sequence and restriction map of λ Ta1. Protein translation frames a and c show the predicted amino acid sequences (in bold type) of the 9700 p partial ORt' and TeshaTl, respectively.
CTAGTTCTTGTACTAACTTICTCTTATGTAAATC卫TGTGTCTTCACACTTATTAAATADA 1
GATCAAGAACATGATMGAAGAGAA＇IACANIMAGABCACAGAAGCIGAATAAM＂IA＇TA＇I

$$
241
$$

ТСТGGAGAAGTA ATTGTCGATATTGAAATTGATTTTCCGGСATCTACGTCACA AAACATA

TRCTATCCCATACCACCGNTCOCTTCAACASGTCAAAGGAACAAAAAAGGGTTTTCAAAA
121
ATGATAGGGTATGGTGGCTAGGCAAGTTGTGCAGTTTCCTTGTTTTTTCCCAAAAGTTTT
$\begin{array}{lllllllllllllllllll}Y & Y & \mathrm{Y} & \mathrm{I} & \mathrm{P} & \mathrm{P} & \mathrm{I} & \mathrm{F} & \mathbf{S} & \mathrm{I} & \mathrm{R} & \mathbf{Q} & \mathrm{R} & \mathrm{N} & \mathrm{K} & \mathrm{K} & \mathbf{G} & \mathrm{F} & \boldsymbol{S} \\ \mathrm{K}\end{array}$

СATCCAAAAGGTAAGAATAAGAGAAGAAAGDATGTTACTCCTTCAAATGAAGACACTCAA
491

$\begin{array}{lllllllllllllllllllll}H & P & K & G & K & N & K & R & R & K & X & V & T & F & S & N & E & D & T & E\end{array}$ $S \quad K \quad R \quad * \quad E \quad * \quad E \quad K \quad K \quad V \quad C \quad Y \quad S \quad F \quad K \quad * \quad R \quad H \quad * \quad K ゙$

AСТТСТТСАGAAAにTGAAGAAATTVTTAAGTTCAGATATAATGAAAGACCAACTCATVCA

TGANGAAGTCTTTGACTTCTTTAAGAATTCAAGTCTATATTACTTUCTCGTTGAGTAAGT
$\begin{array}{llllllllllllllllllll}\mathbf{T} & \mathbf{S} & \mathbf{S} & \mathbf{E} & \mathrm{T} & \mathrm{E} & \mathbf{E} & \mathbf{I} & \mathrm{L} & \mathrm{K} & \mathbf{F} & \mathbf{R} & \mathbf{Y} & \mathrm{N} & \mathbf{E} & \mathrm{R} & \mathbf{F} & \mathrm{T} & \mathrm{H} & \mathbf{S}\end{array}$

AGAGAACACACAGGTCACACAACCAGT TCATTATCAGATACAATAAGTAATTCATCTGGA
 تСTCTTGTGTGTCCAGTGTGTTGGTCAAGTAATAGTCTATGTTATTCATTAAGPAGACCK $\begin{array}{lllllllllllllllllllll}R & \mathrm{E} & \mathrm{H} & \mathrm{T} & \mathrm{G} & \boldsymbol{H} & \mathrm{T} & \mathrm{T} & \mathrm{S} & \mathrm{S} & \mathrm{L} & \mathrm{S} & \mathrm{D} & \mathrm{T} & \mathrm{I} & \mathrm{S} & \mathrm{N} & \mathrm{S} & \mathbf{S} & \mathrm{G}\end{array}$


```
    TTGCAAGTAGAGGIMCCTCTGGAACGAAGAATTAAAAAACCCCAGAGGAGACAAGCTAAC
    661 ..- ....----+--------------------------------------------------------720
    AACCT"ICATCTCCACGGAGACCJTGCTICTTAATTTTTHGCGCTCTCCTCTETTCGATTG
```


TCTAACAAGTAAAATTAGCAATATMTAGACGACAAATAAATATTAAATATGAGTAAATAA

AGA TICTГCATTVTAATCCTTATAAATCTGCTGTTTATTTATAATTTATACTCA TTTATT

MAGCCCAATTTCAANTGATTAGANTTTAAAAAGATGAATAACTCAGTATGGTTGCTGAAT
TTCGGGTTAAAGTTTACTДATCTTAAATTTTTCTACTTATTGAGTCATACCAACGACTMA

1201
CTATATATAGATTTGAATAATATATGACTCTACGTTTTTTAACTTTTAGAACAAAMTTAC

GGAATTGATCTAAAACAAATTTTGTAGATCATAATAAATATTAATGATCATATCTATTAC
1261
CCTTAACTAGATHTTGTTTAAMACATCTAGTATTATTTATAATTACTAGTATAGAГAATG

$\begin{array}{lllllllllllllllllllll}J & Q & V & E & V & P & L & E & R & R & I & K & K & P & Q & R & R & Q & A & N\end{array}$

ATACCAACTCAAGTTTATCAGGAAGAACTAGAACCTGAAATTTTユGAATTGGAAATATCA
 TATAGTTGAGTTCAAATAGTECTICTMCA PGTVGCACTTTAAAAACTTAACDTTTATAGT

TCAGACAGTGA＇A＇TGGATGI＇GATGAACCHACHCACNCCCANATACAATCCTATGCTATT

AGTCTGTCACTATACCTACAMCTACTPGCATGAGTGAGAGTATATGTTAGGCTACGATAA

ticokv

A工TCAAACAGATATACCAACTAAAGAAACCDCLACCCAXACAGATATCCAACAAACOCAA
$8 \div 1$
－GAGTTTGTCTAFATCGTTCATTTGT＇ICGAGATGGOTTTGTCTATAGGTTGTTTGCGTT

GATATनGДAACPCAAACAGAAAATACAAATGGTTCATC＇TCTTCCACTTAAGAAAAGACCA
901
CTATAACTTFCACITY＇GCTIDTALGTMFACCAAGTAGAGAAGGTCAATTCTETTCTGGT

TAニAAACCAGATTAGTATTATCACAAGCCACCATAATJGAACACAZAAATATATGAATTT

ATATTTATACAAACATCCATGTSATAGTAATATTTTCDATAAGATTAATCTAAATATTTT

```
    1321---------*----------%------------------------------------------
    TATAAATATGTTTGTAGGTACAATATCATTATAAAAGTTATTCTAATTAGATMMATAAAA
    I_ F I Q T S M I * * Y F Q % D D * S K K Y F
        I~
    AT"I'CCCCA'CCAGATU'AGCAAFTTACTGICTTATTTTTAATAGTAGTATAAGCGTTTGA
    1381 -----..n--+-n-----n-+----........+---------+--------------------------
    TAAAGGGGTAGGTCTAGATCGTTAATGACACAATAAAAATTATCATCATATTCGCAAACT
    I S P S R S S N Y C V T F F N S S S T S S V N *
    TGATGGT-GTATTGNAACTCTCTCNCATANTATTTACATTATTTTTTATACCGCGTAAAAT
```



```
    ACTACCAACATAACTTTGAGAGAGTGTATTATAAATGTAATAAAAATATGGCGCATITTA
```



```
    T"GCTTCDTCCGAAA'AT"#\AATTVGCAJAATTTAGATAATCCTAATTTTTATACAATAA
    1501 ---------1--------------------...........- + + +
    AACGAAGAAGGCTTTATAATALAAACCTA'TAAATCTATTACGATTAAAAATATGTTATT
    L L L P K Y Y I W I I * I I L I F F l O *
    MANI'1GT"GNMGNCAGNT'NACTRAGNT"TATGATATTATCTACACCAGAAGATAAGATAA
    1.56.
    TTTAACAACTTCTCTCTAATTGATTCTAACAC"TATAATAGATGTGGTCTTCTATTCTIA"I
```



```
        I lllllllllllllllllllllllllll
    GTGAAATACGTTCTAAAAGGAAACTAÄTTTGGGGAAGCGATCGAGGTGAATATGTTAAAT
```



```
    GACTTTATGCAAGATT?TCCTTTGATTAAACCCCTTCCCTACCTCCACTTATACAÄTTTA
```



```
        E I I R Slllllllllllllllllll
    GTTTMACTAGATTTTCATTTGAATCGTCCGATAAGACATTAATTACCATTGAAATIGGAA
    1691
    CAAAATGATCTAAABGTAAACTTAGCPGGCTAT"CTGTAA!'TAATGGTAACTTTAACCTT
    V L. L D F F F T, N N R P J. R II * L P P Lr K L E
    AI'GCCGTAGATGAAGC'L'EGGAA'1"\"JA'L"L'ACG'GAGCGGGAACTCCTATAAATATATCA
    1741 --.-----..+---...-----+---------+----------+-----------------------
    TACGGCATCTACTTCGATACTTTAAATAAATGCACTCSCCCTTGAAGATA:"TTATATAGT
    M F * M K L * N N T_ F F T * * A G
        A V D E E A M K F F I Y Y V S G G
    ACAAGAGTGACTTTGAGGATTATTACAAAAGTTTTYG"ICAG'AA'IMA"NAAAAL"CCAC
    1.801
    'LG"ICICACICAAACICC"IAATAATGTTTTCAPAAACAAGTCATAAATAATTTTTAAGGTE
```



```
    HindIII
    CAGCTAAGCTXCCAAT"'CCGAGACIGAAAAAAAAIGIAAAAACAGAAAAAGTTGATAAAC
    3.862
    GTCCATTCGAAGGTTAAGGCTCTGACMTMTTTTTACATTUTIGTCTSTWTCAACTATTEG
```



```
    GTAAACTANANCGNGNTAGACAAAGAAAAGATAAACCACAAAGTGAACAACATGATAAAA
    1923.
    CATITGATTTTGCTCTATCTGTTTCTATTCTATTTGGTGTTTCACTEGTGGTACTAREFU
```



```
        K
```

```
            XbaI
            ATGTTGATATAGII"PACAATCATTAGCTGAGGAAGGAATMCATCTAGAAAAGAAAATCG
    1981 -......----+---------+----------------------...........+
    TACAACTATATCAAAGTGTTAGLIAAICGACICCTRCCTTAACTACATCTTOTCTTTTAGC
a
C
    -----------------------------+----------------------------------
```



```
    L A E K N L L iN K O K N N N K N N L L O S O * N
        G
    CAGAAACIA'L"CCAGTGEAACTTCAATCAGATGATGAACAAATTGATGAATCTAATGTAT
```



```
    GTCTTIGAIAAGGTCACCTTGAACITAGTCTACTACTTC'ГTTAACTACTTAGATrACATA
```



```
    CAAAACCTAAAGAATCACATGGAATATMAACTCAGAA-AGATACNCACNAMCNCATATEC
    2.161.
    GTTTTGGPTにTCTTAGTCTACCTTATAATTGAGTCTTATCTATGTGTGTTTGTCTALAAG
```



```
        ECORI
        |
```



```
    2221--------+---------+---------+----------------------------------
    TTCTTTATCTTCTATAACOTTAAGTएTGTCT"TनAAGTACTPAATC=TTTATAACATTETG
```



```
    AAACAGA'I AI'CAAACTAAAGAAAGCTCGA TCAAACAGACATTCAAGAAGT'AGAAGATA
```



```
    K
```



```
    TAGATACACAAACAGACATTCAAGAATTAGAAAATAMYGGTATTCARACAATTGGCAATT
```



```
    ATCTA'IGTCTTTGTCTGTAAGTTCTTAATCTTTTATAACCATAAGTTTGTTAACCCTTNA
    * IM H
    TTTCTGATATMACNGANGTAACCAAGAAACATGAACAACCAGAAGTACCTAAACGTAGAC
    2401
    AAAGACTATATTGTCTECATTGGTTCTITGTACTTGTTGGTCTTCATGGATYMCCNTCTG
a
c
    GTCCATCHGGTTCTTTTGTCTTTGGACTTGGACTTGTTGGATMTGCAI"L'LCOCCATCCG
    O
```



```
    C"IAGAAPACAGAAATATGAAACCAAAAAAACTIGGTTACTTAGACCAAGAAACATGAAAA
```



```
    GATCTITIGTCTTTATACTTTGATTTTTTTGAACCAATGAATCTGGTTCT`TGTAC`TTTT
```



```
        R
    CTGAAACTAAAAAAACTTGGTTACTTAGACCNAGAAAACAGAAACCTGAACCTGAACAAC:
```



```
    GACTTTGATTTTTTTGAACCAATGAATCTGGTTCTTTTETCTTTGGACTTGGACTTGTTG
    L
        E Tllllllllllllllllllllllllll
```

Fig. 3.11 cont.
CTAAACGTABACGGGGTAOGCCTAGAAAACAGAAATATGAAACTAAAAAAACITGGTIAC

A

1	M	M	V	V	L	K	L	S	H	I	I	F	T	L	F	L				
17	Y	R	V	K	F	A	S	S	E	I	L	Y	L	D	N	L	D	N	P	N
37	F	Y	T	I	K	I	V	E	D	R	L	T	K	I	M	I	L	S	T	P
57	E	D	K	I	T	E	I	R	S	K	R	K	L	I	W	G		D	R	G
77	E	Y	V	K	C	F	T	R	F	S	F	E	S	S	D	K	T	L	I	T
97	I	E	I	G	N	A	$\begin{aligned} & \text { V } \\ & \text { * } \end{aligned}$	D	E	A	M	K	F	I	Y	V	S	G	N	F
117	Y	K	Y	I	N	K	S	E	F	E	D	Y	Y	K	S	F	C	S	V	F
137	I	K	I	P	P	G	K	L	P	I	P	R	L	K	K	N	V	K	T	E
157	K	V	D	K	R	K	L	K	R	D	R	$\begin{aligned} & \mathrm{Q} \\ & \star \end{aligned}$	R	K	D	K	P	Q	S	E
177	Q	H	D	K	N	V	D	I	V	S	Q	S	L	A	E	E	G	I	D	L
197	E	K	K	I	V	G	R	E	E	P	T	Q	Q	T	E	K	Q	Q	E	P
	*													*		+	+	+	$+$	$+$
217	T	E	L	E	P	E	T	I	P	V	E	L	E	S	D	D	E	E	I	D
	$+$	$+$	$+$	+	$+$	+	+	+	$+$	+	+	+	+	+	+	+	+	+	$+$	+
237	E	S	N	V	S	K	P	K	E	S	D	G	I	L	T	Q	N	R	Y	T
	+	+	+	$+$	+															*
257	Q	T	D	$\begin{aligned} & \text { I } \\ & \star \end{aligned}$	Q	E	I	E	D	I	G	I	Q	T	E	I	H	E	L	E
277	N	I	V	T	Q	T	$\begin{aligned} & D \\ & \star \end{aligned}$	I	Q	T	K	E	S	S	I	Q	T	D	I	Q
297	E	V	E	D	I	D	T	Q	T	D	I	Q	E	L	E	N	I	G	I	Q
317	T	I	G	N	F	S	D	I	T	E	V	T	K	K	H	E	Q	P	E	V
337	P	K	R	R	P	G	R	P	R	K	Q	K	P	E	P	E	Q	P	K	R
357	K	R	G	R	P	R	K	Q	K	Y	E	T	K	K	T	W	L	L	R	P
377	R	N	M	K	T	E	T	K	K	T	W	L	L	R	P	R	K	Q	K	P
397	E	P	E	Q	P	K	R	K	R	G	R	P	R	K	Q	K	Y	E	T	K
417	K	T	W	L	L	R	P	R	N	M	K	T	E	T	K	K	T	W	L	L
437	R	P	R	K	H	K	P	E	P	E	Q	P	K	R	K	R	G	R	P	K
457	Q	K	P	E	P	S	S	D	T											

B

1. KRRPGRPRK
2. KRKRGRPRK
3. KRKRGRPRK
4. KRKRGRPRK

Fig. 3.12: Predicted polypeptide sequence of TashAT1 (panel A) and AT hook domains of TashAT1 (panel B). Signal sequence: bold italics; Transactivation domain: underlined in blue; AT hook domains: red type; nuclear localisation signals: double underlined; RPRK potential DNA-binding motifs: bold type; N-glycosylation sites: shaded in yellow; myristolation site: shaded in green; protein kinase C sites: pink type; casein kinase II sites: asterix above residues; tyrosine kinase phosphorylation site: boxed; PEST sequences: crosses below residues.

Fig. 3.13: DNA sequence comparison of fragment AThook1, from λ dash 13, with the 1.4kb ORF (TashAT1) from λ T'a $1.100 .0 \%$ identity over a 763 nucleotide overlap.

14 ig .3 .13 com ．

AThOOk1 ATATTGTAACACAAACACATATTCAAACTAAAGAAAGCTCGAT＂$C A A A C M G A C A T T C A A G ~$

Arhook A AGTAGAAGATATAGAっACACAAACACACATTCAAGAATMAGAAAATATPGGTATTCAAA
 TashaTI AACTAGAAGATATAGA ᄀACACAAACAGACAT厂CAAGAATTAGAAAATATTGGTATTCAAT： $\begin{array}{llllll}2360 & 2370 & 2380 & 2390 & 2400 & 240\end{array}$
$160 \quad 170 \quad 180 \quad 200 \quad 210$

A＇lnook

「［ashar＂］CAZ＂IGGGAA＂I＇L＂TC＇GATATAACACAAGTAACCAAGAAACATGAACAACCAGAAGTAC $\begin{array}{llllll}2420 & 2430 & 2440 & 2460 & 2400\end{array}$ $220230 \quad 240 \quad 250 \quad 260$
AThoo：l CTAAACGTAGACCAGGTAGACCAAGAAAACAGAAACCTGAACCTGAACAACCTAAACGTA Tashanl CTAAACGTAGACCACGTACACCAAGABAACAGAAACCTGAACCTGAACAACCTANAGGTA $\begin{array}{llllll}2490 & 2490 & 2500 & 2510 & 2520 & 2530\end{array}$ $280 \quad 290 \quad 300 \quad 310 \quad 320$
AThook 1 AACGCGCTAGGCCTAGAAAACAGAAA＇LACGAAACHAAAAAAACL＂LGMTACTTAGACCAA

1＇AskAZ1 AACGGGCTAGGCCTAGAAAACAGANATATGAAACTAAAAAAACTTGGTTACTTAGACCAZ $\begin{array}{llllll}2540 & 2550 & 2560 & 2570 & 2580 & 2590\end{array}$ $340 \quad 350 \quad 360 \quad 370 \quad 380 \quad 39$
IThook $-1 A A C A T G A A A A C T G A A A C T A A A A A A A C T T C G T T A C T T A G A C C A A G A A A A C A G A A A C C T G ~$
 TashaTl GAAAGATGAAZACNGAAACHAAAAAAACITGGTTACTTAGNCCNAGANANCAGAAACCTG

2600	2660	2620	2630	2640

AThookl AAACTTGGTTACTVAGACCAAGAAACATGAAAACTCAAACTAAAAAAACTTGGTVTCTMA
 TashATA AAACTTCGTTACTTAGACCAAGAAACAGABAACTGAAACTAAAAAAACTTGGTTACTTA $\begin{array}{llllll}2720 & 2730 & 2740 & 2750 & 2760 & 270\end{array}$ $520 \quad 530 \quad 540 \quad 550 \quad 560$
ATBOOk7．GACCAAGAAAACATAAACCTGAACCDGAACAACCTAAACGTAAACGAGGTAGACCAAGAA

AThook A ACAAAAACCTGAACCTLCALCAGACACALAA＇CAACATAAOTACCTCAATAACCCACTT

TashAT1 AACAAAAACC＇GAACC＇TTCATCAGACACATAATCAACATAACTACCTCAATAACCCACTT $\begin{array}{llllll}2840 & 2850 & 2860 & 2870 & 2850 & 2890\end{array}$

Fig. 3.13 cont.
$640 \quad 650 \quad 660 \quad 670 \quad 680 \quad 690$ AThooky. ACACACTCTTATTCTGAGTGTTAACTATAAATAATAGAOAAATAATCTATATTTATTTGT

 $\begin{array}{llllll}2900 & 2910 & 2920 & 2930 & 2940 & 2950\end{array}$ $\begin{array}{llllll}700 & 710 & 720 & 730 & 740 & 750\end{array}$ AJ'kook 1 ACTTTTAATGGAAAATTATCCTTAAATAAATCAA1ATATGTGGGATAATAAGGTCAAAAT

 $\begin{array}{llllll}2960 & 2970 & 2980 & 2990 & 3000 & 3010\end{array}$ 760
AThook1 ATCTCANGANTTC
$||||||||\mid$
'g'ashat \perp ATCTCAACAATTCAMATTMATTGGATCTAAATATTGGACGTACCAGATCTAAACAAGTAT $\begin{array}{llllll}3020 & 3030 & 3040 & 3050 & 3060 & 3070\end{array}$

Fig. 3.14: Predicted peptide sequence comparison of TashAT1 with TashAT2. 46.1\% over 360 amino acid overlap. Exact amino acid matches are represented in bold type. AT hook domains are highlighted in yellow and numbered in italics. RPRK motifs are underlined.

Name of A.T. hook sub-type	11	AT hook sequence	Motif no.
Gencral		KR+RGRPRK	
CLASS II:		KR+RGRPRK	
TashAT 1/3	4	KRRPGRPRK	1
		KRKRGRPRK	2
		KRKRGRPRK	3
		KRKRGRPRK	4
TashAT2	3	KRRPGRPRK	1
		KRKRGRPRK	2
		KRKRGRPRK	3
HMGI(Y) (human)	3	KRGRGRPRK	
		KRPRGRPRK	
		RKPRGRPRK	
CLASS 1		RPRGRPRGSKNK	
CLASS III		PR*RGRPKPK	

Table. 3.1: Classilication of AT hook domains from the Tashat gene family, based on data from Aruvand and Landsman (1998). The consensus sequence of each class of AT hook is represented in bold type. The + position has an equal probability of being a K, G, P or R . The * position denotes residues K, G or P^{3} with equal probabilities. Polar residues are underlined. The number, 11 , shows the frequency of AT hook motifs appearing in cach gene.

Fig. 3.15: Putative domain search for TashAT1 (Ta1) using the PRODOM software. Prodom domain family $1=$ PD000002; $2=$ PD001830; $3=$ PD000422; $4=$ PD148762; $5=$ PD010330; $6=$ PD184102. Coloured regions denote 70% consensus and property of amino acids. $\mathrm{t}=$ polar neutral residue, $\mathrm{h}=$ polar positive, p and c were undefined. Purple $=$ charged; green $=$ hydrophobic; blue $=$ polar .

-100
c90\%

```
p.p.t.p.p.....ch..-h
```

204
Tal
1
2
3
4
5
6
c100\%
c 90%
c 80%
c 70%
pp...t.p..pc....p.pp...t

264
3
323
Ta1 EDIGIQTEIHELENIVTQTDIQTKESSIQTDIQEVEDIDTQTDIQELENIGIQTIGNFSD
1
2
3
4
5
6
c100\%

$$
5
$$

c90\%
c80\%
c70\%

324

Ta1
1
2
3
4
5
6100%
c90\%
c80\% QEEEEEEEEEEKEEEEEEEEEEEEEEEEQEEEEEEEEEEEEEEEEEEEEEEEEKEEKQEE QQQQQQQQQQQQQQQQQ

\%.
--
\qquad

Fig. 3.15 cont.

```
4 4 4 ~ : ~ < ~ ] ~ 4 6 5 ~
Ta1 EPEQPKRKR PRPRKQRPEPSSD
EEEEESEEE EQEEEEEEKEE
QQQQQQQQQQQQQOOQQQ----
-------------------------
EKEIK AKRPPAIPRKRNPPPT--
-----KRGRGRPRKDKP
c100%
C90%
c80%
c70% .....tpt.tt.pppp
```

AA	MMVVLKLSHIIFTLELYRVKFASSEILYLDNLDNPNFYTIKIVEDRIITKIMILSTPEDKI
PHD＿scc	
Rel．＿sce	
P＿3＿acc	
¢е̄⿻三－ace	＊＊＊＊＊＊＊＊＊＊＊＊＊＊$* * * * * * * *$
AA	TEIRSKREEIWGSDFGEYVKCFTRFSFESSDKTLITIEIGNAVDEAMKFIYVSGNZYKYI
P（Tl）＿sec	EEEE H\％HHHHHH こEEE EE马 HHHHHHHHIHHE EEEEEE
kel＿sed	
P＿3＿acc	eeb hebeblubeee sebbebbbeebleeeeee ebbebbebbeebluebibbbebebbebb
Rel＿acc	＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
AA	NKSEPEDYYKSFCSVFIKIPPGKLPITRLKKNVKTSEKVDKRKLKEDRQRKLIKPQSEQHDK
PFD＿scc	HHFH\％EEEE
Rel＿sec	
$\begin{aligned} & p^{-}-\mathrm{acc} \\ & \mathrm{Rel} \text { acc } \end{aligned}$	Seeebecbbebbblbbbelo eeebbbeebeeebeeecbeeeebeeeeeeeeeeebee ee
	＊＊＊＊＊＊＊＊＊＊
AA．	NVDIVSQSLAEEGIDLEKKIVGREEPTCOTEKOQEPTELFPFTTPVET RSDDEEIDESNV
PHD＿sec	EEEE EEEEE EE EEEEEEE E
Rel＿sec	＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
$\mathrm{P}_{2} 3^{-} \mathrm{deC}$	bbebubbbubcebucblubclbbeccecceebeceacbecbobebbbbebecceccbecbee
Re1＿acc	＊＊＊＊＊＊＊＊＊＊
$\cdots \lambda$	SKPKFSDGTT，
PHD＿sec	EEEE EGEGEEEEEEE EEEEEEEEE HHHRHHH
Rel＿scc	
P＿3＿acc	cabecbebblbbece bbbbbbbbebbelbebobecbbbbbbibbe eesebbbocbebecbee
Rel＿acd	＊＊＊＊＊＊＊＊＊
4．	IDTQTDIQELENIGIQTIGNFSDITEVTKKHEQPEVPKRRPGRPRKOKP ヨPEQPKRRRGR
PHD sec	HHHHHHHH EEEE HHHH
ReJ＿．．sec	
3 3 acc	beeeeebeebeebbbebbbehbebbebbeepeeep eee eeeeeeeeeeeeeeeeeeee
Rel acc	＊＊＊＊＊
	．．．．37．．．，．．．38．．．，．．．39．．．，．． $40 . . ., \ldots 41 . . ., \ldots .42$
AA	PRKQKYETKKTWLLRPRNMKTETKKTWLLRPRKQKPEPEQPKRKRGRPRRQKYETKKTWL
PTTV＿sed	EEEEEE EEEEE TETE
Rel＿ssc	
P． 3 －acc	eeceeeeeee bbb esebeeeeee bbbeeeeeeeeeeeseeeeveeeeeeeeeee bb
Reम＿acc	＊＊＊＊＊＊＊＊＊＊
	．．．，．．．46．．．，．．．47．．．，．．．48．．．，．．． $49 . . .$. ．．． 50
AA	T，RPRNMKTETKKTWL，LRPRKKHKPEPEQPKRKRGRPRKQKPEFSSDT．
PHD＿sec	ESE EEEE
Rel＿sec	＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
P＿3＿acc	5 eeebeeeeee bbbeeeeceeceeecececeeeceeceesceec
Rel＿acc	＊＊＊＊＊＊＊＊＊＊＊

Fig．3．16：Secondary structure predictions for the theoretical Tashat1 polypeptide using the software program＂PHD＂．AA denotes amino acid；secondary structures （PHD＿sec）：E：extended sheets，H：helices and blank spaces：other（loop）．P－3－acc：solvent accessibility prediction in 3 states where b： $0-9 \%, \mathrm{I}: 9-36 \%$ and e is $36-100 \%$ ．Rel sec and Rel acc represent the reliability index for secondary structure and solvent accessibility predictions respectively，where＊denotes strong reliability predictions．AT hook domains are indicated in bold type；RPRK potential DNA－binding motifs are underlined．

```
A
1 MMVVLKLSHI IFTLFLYRVK FASSEILYLD NLDNPNFYTI KIVEDRL"K」
60 MIISTPEDKI TEIRSKRKLI WGSDFGEYVK CFORFSFESS DKTLITIEIG
120 NAVDEAPKFT YVSGNFYKY \(\perp\) NKSIFEDYYK SFCSVFIKIP PGKGPIPRLK
180 KNVKTEKVDK RKLKRRLRQRK DKPOSBQEDK NVLTVEQSLA EEGIDFFKKKI
240 VGREP'UQT EKOOEPTELE PETIPVEIES DDEEIDEGNV SKPKESDGJL
300 TONRYTQTDT QEIEDTOLOT EFHELLWYVL QTDTQTKESS JO'IDIQEVED
360 IDTOTDLQEL BINIGTQTJGK FSDITEVTKR HEQPEVPKRR PGRPRKQKDE
\(\leq 20\) PFYPKRKRGR PRTOKYFTKK TWLLRPRNMK TETK
480 RKRKRGRPRK QKYETKKCZL LRPRNMIKTET KKTWLLRPRK HKPFPFOPRR
540 KRGRPRKQIKP ESSSDT
```


B

gLOBE prodiction of protein globularity
nexp $=\lambda \beta$ (number of predicted exposed resjdues)
nfit. $=18:$ (number of expected exposed residues!
diff = 105.00 (differerce nexp-nfit)
Your proteim appears not to be globular

Fig. 3.17: Secondary (A) and Tertiary (B) structure predictions for the theoretical TashAT1 polypeptide. A: SEG analysis and B: GLOBE prediction ol globularity. Regions of low-complexity are underlined; AT hook domains are represented in bold type. Numbers refer to the amino acid sequence position.

	AT rich GC rich
	-45
TashAT1/3	$5^{\prime}-$ TAATCTAAATATTTTAT--TTCCCCATCCAGAT-3'
	-37
TashAT2	$5^{\prime}-$ GAATCTAAAAATCTCTTAGTTCCCCATCCAGTT-3'
	-44
Tash1	$5^{\prime}-$ TAATCTAAAATTGTTAA--TTCCCCATCCAGAT-3'

Fig. 3.18: Sequence comparison between the TashAT upstream motif (TashUM) of TashAT1/3, TashAT2 and Tash1. The position of the motif relative to the possible transcription start site is indicated by numbers above each sequence. The sequences within each coloured area are 100% identical. Sequence in red and green type indicate the AT rich and GC rich regions, respectively.

Fig. 3.19: Map of possible transcription factor binding sites within the upstream region of Tashath. A total of 90 matches were found over a 400bp region. Bold type denotes the five prime upstream sequence of TashATL. Potential transcription factors are denoted by $\mathrm{V} \$$ (vertebrate) or $\mathrm{F} \$$ (Fungal) symbols, adjacent to their respective consensus binding sites. Numbers in brackets to the right of the transcription factor names denote the matrix score, where $1.00=$ perfect match and >0.80 is a good match; numbers to the left show the position of the binding site consensus sequence relative to the Tashat/ upstream sequence. + and - denotes predicted binding to sense and antisense strands, respectively. * represents the putative translation starl site of Tash $A T 1$. TashLM motif is underlined. Further details of these transcription factors are described in Appendix I. Figure generated from the Matinspector program (Quandt et al.,1995).
$\left.\begin{array}{ll}\left(\begin{array}{l}(33\end{array}\right) \\ (& 34\end{array}\right)$
+NNNTGGGAATRCC(V\$IKI.01(0.917))
+NATYGATSSS(V\$CDPCR3HD. 01 (0.959))
+ANAGATMWWA(V\$GATA3.02(0.929))
-TTATCTTGT(V\$EVI1.06(0.854))
-NAWTGTITATWT(V\$HFH1.01(0.899))

```
+1"TRWSASNNTAATGRNSCNW(VSISI.1.0t(0.826))
+ANAGATNEWWA(V$GATA3.02(0.935))
    +NNCATNNNWAATNMMRN(V$BRN2.01(0.931))
    &NNNTAATTINN.AT"TANNN(V$CARTT1.01(0.924))
    +CWTAATTG(V$NKX25.02(0.878))
    --WNWATAAACAWNNRR(V$XFD2,01(0.903))
                + ANAGATMWWA(V$GATA3.02(0.933)
                    +TATCTM(F$NIT2.01(1.000))
                FGTTACRTNAN(VSVBP.01(0.900);
```



```
                            +TANAYAAAYANNM(V$]IIII3.01(0.982);
```

W"TGTAGATCATAATAAAIATIAATGATCATATCTATTACATAITYATAC
-NKKTAAWNATTAACC(V\$[1NF $1.01(0.807)$)
-AATTANCATANA(V5OCT1.0G(0.852))
-NTATCTTATCl' V\$EV11.05(0.834))
-TWWKATCTNT(VSGATA3.02(0.950))
-NNWNNNNTATTANWNNTAWNKN(VSSATE1.01(0.92A))
-NRTTACRTAAYN(V\$E413F4.01(0.874))
-NNNNNNYWTVICNAS(VS'IATA.01(0.940))
-NNNNTRI"ITAINTNNW(VEFREAC7.01(0.943))
-NNWATACTTAWWN(V\$NKX31.01(0.843)
-INT"I'IAWANVI(V\$MEF'2.05(0.978))
(258)
(291)
(294)
25.
(290)
(297)
(209)

+ CCGTTCCGCTCTAGATAT (V\$PAX $1.01(0.675))$
I.NNNNNYAATTAN...(V\$S8.01(0.976))
+NMNWTANNWNTAATANNNNWNN(VASATB1.01(0.9251)
+GGIL'AAINWTTAMMN(V\$1INF1.01(0.792))

ATTRCCCATCCAGATCTAGCAATTACTGTGTTATTTTTAATAGTAGTAT

```
-TCCCCNCN(V$MZF1.01(0.974)
    -C11"CCTAGGAATWN(V$BCL6.01(0.771))
        -NNGGTMATTAKWNTMMTWAA(V$PDX1.01(0.744))
            -RGKYWTTTTTARNSMN(VSMNEF2.010.920))
                -NTAATNRSNYAATTAG(V$XVENT2.01(0.823))
```

 *
    ```
Ta1 :MVVLKLSHIIFTLFLYRVKFASSEILYLDNLDNPNFYTIKIVEDRLTKIMILSTPEDKIT 65
        M LKLSHIIFTLFLY ++K ASSEILYLDN+ F IKI+E+R+T+ MI STP+ +IT
T.p :MATLKLSHIIFTLFLYQIKIASSEILYLDNIVGSGFNIIKIIENRITRTMIYSTPDRQIT 30717
Ta1 :EIRSKRKLIWGSDRGEYVKCFTRFSFESSDKTLITIEIGNAVDEAMKFIYVSGNFYKYIN 125
    ++R RKLIW GE +KC T FSFESS K LITIEI N +++KFIY+ N+++Y+
T.p :QVRQGRKLIWMGYPGESIKCLTIFSFESSSKILITIEIENPAYDSLKFIYMHRNYFRYVT 30897
Ta1 :KSEFEDYY----KSFCSVFIKIPPGKLPIPRLKKNVKTEKVDKRKLKRDRQRKDKPQSEQ 181
    K+ FE + K S K PGKLPIPPRLKK +KRK ++ ++ K +
T.p :KAYFETNFAMQAKPLKSPTSKPIPGKLPIPRLKKP------EKRKADAEKSKEAKKKIVG 31059
Ta1 :HDKNVDIVSQSLAEEGIDLEKKIVGREEPTQQTEKQQEPTELEPETIPVELESDDEEIDE }24
    H +++ AE E ++ TQ +KQ EP E I VE+ SDDE D+
T.p :HPSE----TKTEAERQTQTELYTTTSQQTTQP-QKQSEP-----EIIQVEVGSDDEGTDD 31209
Tal : ----SNVSK-------------------PKESD-GILTQNRYTQTDIQEIEDIGIQTEIHEL }27
    S K PKE ILTQ RYTQTD E ED QT+ +
T.p : FLVVSTSQKVDLYSETVDTTTGTAIHPKEQQVKILTQIRYTQTDTHESEDTETQTDTQQS 31389
Ta1 :ENIVTQTDIQTKESSIQTDIQEVEDIDTQTDIQELENIGIQTIGNFSDITEV-TKKHEQP 338
    ++ TQT I T + QT I + DTQTD E + QT+ +D TE T HE
T.p :KDTETQTVILTDSTETQTLIP-TDSTDTQTDTHESKETETQTVIP-TDSTETQTDTHETE 31563
Ta1 :EV---PKRRPGRPRKQ 351
    ++ K R P+KQ
T.p :DIGIQTKLRTRYPKKQ 31611
```

Fig. 3.20: Comparison of the predicted peptide sequence of TashAT1 with the T. parva genomic database. 41% identity over a 351 residue overlap. TashAT1 sequence is denoted by Ta1, T. parva contig 443 sequence is denoted by T.p. Numbers on the right adjacent to TashAT1 and contig 443 sequence refer to the amino acid number of TashAT1 and contig 443, respectively. Regions of good identity are indicated in blue type. The AT hook motif of TashAT1 is indicated in bold type.

| Theileria spp. Gene/Contig | locus | Motif no. | |
| :--- | :---: | :---: | :---: |
| T.parva | 443 | 678649 | PRKRGRKPK |
| | 443 | 50507 | PKKRGKFRK |
| $T \cdot a n n u l a t a$ | $T a s h A T I / 2 / 3$ | | $* * *$ |
| | | KRRPGRPRK | |
| | | KRKRGRPRK | |

Table 3.2: A' hook like motifs found in the T. pary genomic database.
The two types of AT hook motils found in all. Tashat genes (TashATl/2/3) were included for comparison with T. para. * sign denotes the AT hook core.

3.2.3 Mapping TashAT1 and other TashAT genes

3.2.3.1 Southern blot analysis

Southem blot analysis was performed on restriction fragments from λ dash 13 DNA in order to map TashATl and the restriction frayments possibly derived from a third TashAT genc (TashAT3) not yet cloned within λ dash 13. Following restriction digestion, λ dash 13 DNA was hybridised to two probes (see Fig.3.21): AThook1, and a 368 bp PCR product, Ta369, gencrated fiom the five prime region of Tashath. Probe la369 was designed to be specific to Tashat1, whilst probe AThook was capable of detecting all Tashat genes. The restriction enzymes were chosen because they were predicted to digest within the TashAT/ sequence and some were also present within the putative Tashat3 gene.

The Southern blot of restriction digested λ dash 13 DNA was hybridised with probe AThookl (sec Fig. 3.22). As expected, probe AThook 1 also detected some of the restriction fragments (tabulated in Appendix K) hybridised to probe p600 (see Fig. 3.4). These restriction fragments were mapped relative to Tashiti and the putative Tashat3 genes (see Fig. 3.23 and 3.24).

The southern blot in Fig. 3.22 indicated that there were only two copics of the AThook 1 sequence, since only two fragments hybridised to probe AThook1 in all digests except those with Xbal, (which was partially digested). Moreover, the probe AThook d did not possess any of the restriction enzyme sites used in this analysis. Given that there might be only two copics of the AThook 1 sequence within λ dash 13, and one copy is derived from TashAll, then the second copy is likely to be derived from TashAT3.

The 3.2 kb IIindIII fragment was mapped to TashATl as it disappeared together with the 3.2 kb Spel fragment upon double digestion with Hindll! and Spel, leaving a 1.4 kb fragment. By contrast, the 1.6 kb HindIII fragment remained upon double digestion with SpeI, which indicated that it was not derived from TashAT1. In the IlindII/EcoRI double digestion, the 1.6 kb HindIII fragment was removed, leaving the 0.8 kb EcoRI fragment (which belonged to Tashatl) and the 1.2 kb EcoRI fragment only. Since the 1.2 kb EcoRI fragment lies within the 1.6 kb HindIII fragment, and was previously deduced to be derived from TashaT3, then the 1.6 kb HindIII fragment must therefore also be derived from Tashat3. The double restriction digestion with KpnI and SpeI produced a 3.2 kb (SpeI) and an $8 \mathrm{~kb}(\mathrm{Kpnl} / \mathrm{Spcl})$ fragment. Since the 3.2 kb SpeI fragment is known to contain TashATl
only, then the second AT hook-encoding gene, TashAT3, is likely to be derived from the 8 kb Kpnl/Spel fragment.

There were a number of restriction fragments produced in the Xbal, Hindll/Xbal and SpeL/Xbal digests (see Fig.3.22) which were all fient and indistinct, and may have been partially digested. This meant that most of the Xbal sites could not be mapped with respeet to Tashatl or the putative TashAT3 gene. However, the 2.0 kb Spel/Xbal fragment, seen in Fig. 3.23, could be derived from TashAT1 as an XbaI site is present 2 kb from the original 5° Spol site in the restriction map of the sequenced λ Tal (sce Fig. 3.11). The bands produced in the EcoRI/Xbal digestion appeared to be more intense compared to the other bands. This might be due to the presence of two or more copies of these fragments, one of which may be derived from TashAT3, since the increased intensity is not seen in the equivalent restriction digests using probe Ta369.

Io characlerise the region surrounding the 5 ' end of Tashat 7 , the southern blot (shown in Fig. 3.22) was stripped and re-hybridised with the 5' TashAT1 probe, Ta369 (sec Fig. 3.23). The restriction digest with EcoRI produced a 2.5 kb EcoRI fragment, which was reduced to a 2.1 kb fragment upon digestion with Spel. This indicated that the 2.5 kb EcoRI fragment was derived from the 3.2 kb Spel fragment, over the region corresponding to Ti369. Two fragments at 2.8 kb and 3.2 kb were produced upon digestion with Hindlli. The 2.8 kb fragment may correspond to the Ta369 region within TashAT/ as double restriction digestion with EcoRl and Hindll only produced a 2.1 kb fragment. Given the position of the EcoRl and HindIII sites within λ Tal (see Fig. 3.11), the 2.8kb HindIII fragment is the only candidate that could produce a 2.1 kb fragment upon digestion with EcoRI. Therefore the 2.1 kb HindIII fragment is likely to be derived from Tashat1. A second copy of the Ta369 sequence may also be present within the 3.2 kb HindIII fragment as a fragment of identical length was also detected by probe AThook1. However, probe AThookl did not overlap with the region corresponding to $\operatorname{Ia} 369$ (1500-1862bp) in TashATI, so the second Ta369 sequence may be located downstream of TashAT1.

Analysis of the 1.6 kb HindIn/Spel fragment suggested it could also belong to the 3.2 kb HindnI fragment, as its size was inconsistent with the restriction map of Tas/ATl. The 8kb $\mathrm{KpnI} / \mathrm{Spel}$ fragment was detected with the Ta369 and also with probe AThook1 and might comprise of TashAT3 and the second copy of the Ta369 sequence. However it was not clear if the Ta 369 sequence is part of TashAT3.

In summary Southern blot analysis identified and mapped several fragments that belonged to TashATl and another AT hook encoding gene, called TashAT3. Two copies of the Ta369 sequence from TashATl were found within λ dash 13 , one of which was mapped to an 8kb Kpul/Spel restriction fragment that was likely to contain TashAT3. However, it was not possible to map the precise location of various restriction fragments with respect to cach other using this technique. In order to produce a more detailed map of TashAT3, and its relationship with TeshATl and TashAT2, it was necessary to perfom T'7 or T3 mapping arralysis on λ daslı 13.

[^0]
Fig. 3.22: Southern blot analysis of λ dash 13 DNA, digested with various restriction enzymes and hybridised with probe AThook1. E: EcoRI; H: HindIII; K:KpnI; S: SpeI; X:XbaI. Molecular weight markers are indicated (in kb) to the left of the figure.

Fig. 3.23: Southern blot analysis of λ dash 13 DNA , digested with various restriction enzymes and hybridised with probe Ta369. E: EcoRI; H: HindIII; S: SpeI; X:XbaI. Molecular weight
markers are indicated (in kb) to the left of the figure.
Fig. 3.24: Deduced restriction enzyme map derived from Southern blot analysis of λ dash $\mathbf{1 3}$ hybridised to probes AThook1 and Ta369. A and B: deduced restriction maps for TashAT1 and TashAT3, respectively. Grey box indicates the deduced position of TashAT1; black box indicates the location of both probes. Restriction enzyme sites mapped from the Ta 369 Southern analysis are indicated in red type. Restriction fragment positions, marked in bold, were obtained from the λ Tal sequence (see appendix K for restriction fragment sizes). Note, in A, the 0.2 kb EcoRI/SpeI fragment three prime of TashAT1 is not shown in λ Tal sequence.

3.2.3.2 T7 or T3 mapping

T7 or T3 mapping is a technique that reveals the sites of any restriction fragmont in a unidirectional, sequential order from a λ clone insert (shown in Fig. 3.25, for T7 mapping only). The insert is excised from the λ vector by NotI-located in the multiple cloning sites (MCS) of the λ arms that flank either side of the insert. Not sites are unlikely to be found within the insert because it recognises an 8 bp sequence. The $T 7$ and T ' 3 primer sequences are also present within the MCS within the left and right λ arms respectively, and remain with the insert after excision with Notl. The insen is partially digested by the restriction enzyme of interest and as larger fragments are digested to completion, ouly small regions of the insert adjoin the Th or T3 sequence, in the MCS. The order of restriction sites from the MCS can be read from the smallest to the largest, like a sequential ladder, upon hybridisation with a T3 or T7 oligonncleotide.
λ dash 13 was mapped with respect to the $T 7$ primer, initially. ln order to compare the restriction fragments directly, the same restriction enzymes were chosen to map λ dash 13 by T 7 mapping as those used in the Southem blot analysis of this clone (sce Fig. 3.26). From this southern blot, a restriction map was then generated (see Fig. 3.27). The 3.2kb Spel (λ Tal) fragment was identified from the 'l'7 restriction map, and was consistent with that of the sequenced λ Tal fragment (sec Tig. 3.11). Ilence the location of Tashatl was mapped in relation to λ dash 13 .

The position of Tashat3 was found by identifying the 1.2 kb EcoRI and 1.6 kb HindIII fragments, both previously found to be derived from the AT hook-encoding region of Tasha73. The 1.6 kb HindIII fragment, which contained the 1.2 kb EcoRI fragment was located 2.2 kb downstream of the 3^{\prime} end of TashATh. This conffrmed the location of the AT book-encoding region of TashAT3. Inspection of the restriction map, upstream of the 1.6 kb HindIII fragment to the 3^{\prime} end of TashATs, revealed that it was identical to that of the 5^{\prime} region of TashATl.

Previous Southern blot analysis with probe Ta369 identified a 3.2 kb Hindllif fragment (see Fig. 3.23). The only fragment of this size was found adjacent to the 1.6 kb HindIII fragment at the 5' end, and encompassed the AT hook encoding region of TashATI (see Fig. 3.27). In addition, a 3.2 kb HindIII fragment was mapped to the 3 ' end of TashAT, with the probe, AThook1 (see Fig. 3.22). Thus, it appears that the 3.2 kb HindIII fragment detected by probes Ta369 and AThook 1 comprise the second Te369 scquence and part of TashAT3.

Given the close proximity between the sccond Ta369 scquence and the AThook 3 sequence, the Ta369 sequence maly be part of TashAT3. Thus, TashdT1 and TashAT3, separated by a 1.7 kb region, appeared to have almost identical sequences, although the existing data at the time was insulficien to comprehensively map the 5^{\prime} or 3^{\prime} end of Tashat3. However, once the completed Tashat3 gene was sequenced, it was conlimed to be identical to Pashati over the first 1.4 kb (Swan et al., 2001a). Inspection of the EcoRI and Hind lif restriction map at the 5° teminus of λ dash 13 was shown to be identical to that of the 3^{*} end of Tashat'? (Swan et al. 2001a). This indicated that TashAT? was approximately 2 kb from the 5 end of Tashatl.

The restriction map shown in Fig 3.27 revealed that all three Tashat genes were clustered over a 13.5 kb region (inclusive of the entire TashAT2 gene), and that TashAT/ and the five prime region of the putative TashAT3 gene were almost identical in sequence. The restriction map of the Tash T genes, generated from the 77 mapping technique confirmed data produced by sequence analysis (Swan et al.. 2001a).

Fig. 3.25: T7 restriction mapping technique (Smith and Birnstiel, 1976), modified from Birren and Lai (1996). Black boxes represent the left and right ams of λ dash II. Double arrow represents the T 7 hybridisation sitc. Only the intermediary fragments that adjoin theT7 site will be detected upon Southem blotting and hybridisation with the T 7 oligonucleotides.

Fig. 3.26: T7 mapping analysis of $\boldsymbol{\lambda}$ dash 13 DNA. DNA was digested with four restriction enzymes
at 0.5 minutes (1); 2 minutes (2); 10 minutes (3) and 60 minutes (4). Molecular weight markers
are indicated (in kb) to the left of the figure.

Fig. 3.27: Restriction map of the TashAT gene cluster from λ dash 13 DNA, based on T7 mapping.
Numbers represent the size of the DNA fragments or genes (in kb); E: EcoRI; H: HindIII; S: SpeI; V: EcoRV sites. Grey boxes represent the genes or gene fragments identified. White box represents the λ dash II vector sequence; black region represents the cloned insert; striped box represents the 900bp partial ORF. Blue bloxes represent AT hook encoding regions. Dashed lines indicates that the gene is expected to continue.

3.2.4 Identification of TashAT1 and TashAT3 within the T. annulata genome

To verify that the TashAT locus identified within λ dash 13 was a true representation of the Tashat' locus in the T. amulata genome, Southern blot analysis was performed on D7 cell genomic DNA (sec Fig. 3.28), using the same restriction enzymes and probes as those used to map λ dash 13. The resultant restriction fragments were compared to that of λ dash 13 to identify any possible rearrangenents that could have occured when λ dash 13 was cloned.

Inspection of the lane containing genomic DNA from non-infected bovinc lymphosarcoma (BL20) cells digested with FcoRI did not reveal any bands. This contirmed that the AT hrook encoding fragments were derived from the parasite only. By contrast, D7 genomic DNA digested with EcoRl produced a 0.8 kb , a 1.2 kb and a 3.3 kb fragment. The 0.8 kb and 1.2 kb EcoRI fragments were previously found to derive from Tashall and Tasha73, respectively, and the 3.0 kb EcoRI was derived from TashAT2 (Swan et al. 2001a), so it appeared that the AT hook encoding regions of all three TashAT genes were present in the D7 genome.

Inspection of Fig. 3.28 showed that the Spel restriction enzyme produced three fragments at $3.2 \mathrm{~kb}, 3.4 \mathrm{~kb}$ and one at approximately 10 kb . Southern blot analysis of λ dash 13 with Spel produced two fragments at 3.2 kb and over 12 kb . The 3.2 kb Spel fragment was the same size as the λ Tal fragmont, and likely to contain TashAT/. The 10 kb genomic Spel framment is likely to be the Spel fragment (over 12 kb) from λ dash 13 , which contains TashAT3; the 2 kb or more size difference might be due to the polylinker sequence derived from the λ dash 11 vector. The 3.4 kb fragment is likely to be dexived from Tashat2, from the restriction map generated by Swan et al. (2001a).

Two restriction fragments at 1.6 kb and 3.2 kb were generated from the HindIII digestion of genomic DNA, confirming that the HindIL fragments within λ dash 13 , identified by probe AThookl were not rearrangements. The KpnI single digest was not observed and XbaI single digest failed, so restriction digests of genomic DNA with thesc enzymes were not included in this analysis. Overall, the results of these single digests suggest that there are only three copies of the A'r hook encoding sequence within the parasite genome, likely to be from TashAT1, TashA72 and TashAT3.

The double restriction digests of EcoRI, Hindlll and Spel (see Fig. 3.28), were analysed to confirm the location of these fragments in the D7 cell genome. The EcoRI and SpeI double digest, removed all the Spel fragments and the 3.3 kb EcoRl fragment, leaving the $1.2 \mathrm{k} b$, 0.8 kb and a 2.4 kb fragment. The 1.2 kb and 0.8 kb fragments also remained after FcoRI/Spel digestion of λ dash 13 (see Fig 3.22) and it is likely the corresponding genomic fragments are derived from the 3.2 kb (containing TashaTl) and 10 kb Spel (containing Tashai 3) fragments respectively. The 3.3 kb EcoRI fragment is likely to be derived from the 3.4 kb Spel fragment as both fragments arc derived from TashaT2 and would be predicted to produce a 2.4 kb fragment if digested from the restriction map of TashAT? (Swan et al., 2001a). The double digest between EcoRI and Hindill (Fig, 3.28) Failed as only the Hindml fragments were detccted so these fragments could not be mapped. The HindiliSpel double digest removed the 3.2 kb Hindlll and all the Spel fragments, leaving a 1.6 kb fragment (from Hindlli digest only) and a 1.4 kb fragmont. This suggests that the 3.2 kb HindIII fragment was derived from the 3.2 kb Spel fragment containing Tasha7\%. producing the 1.4 kb Spci/findIII fragment, consistent with the restriction map generated for λ dash 13 DNA (see Fig. 3.27). The data from Fig. 3.28 suggests that the .6 kb HindII fragment was either derived from the 3.4 kb Spel fragment or the 10 kb Spel fragment.

To verify the restriction map corresponding to the 5` region of Tashati, Southern blot analysis was performed on restriction digested D7 genomic DNA, bybridised to a 2 kb EcoRI/Spel probe that spaned the 5° coding region of TashATl (see Fig. 3.29). The results revealed that the EcoRI, IIndIII and SpeI digests produced fragments identical in size to those produced upon restriction digestion of λ dash 13 DNA (sce Fig. 3.23), indicating that the restriction map of the five prime region of TashaTl and Tashat3 is likely to be accurate. There was an additional 10 kb Spel fragment absent in the corresponding λ dash 13 DNA digest (see Fig. 3.23), possibly due to the weak hybridisation of the smaller Ta369 probe. Since the two Spel fragments at 10 kb and 3.2 kb were identical in size to those detected by probe AThookl in D7 genomic DNA, these sequences are likely to be derived Tashatl and TashAT3, contained within the 3.2 kh Spel and the 10 kb fragments respectively. The 3.4 kb SpeI fragment was absent, indicating that this fragment does not contain the 5' TashAT1 sequence, consistent with the sequence of TashAT2. Three fragments at $3.2 \mathrm{~kb}, 4.2 \mathrm{~kb}$ and 7 kb were identified in the EcoRV genomic digest. It is likely that the 3.2 kb fragment is derived from FashAT1, as a fragment of similar size extends over this gene from the restriction map of λ dash 13 DNA. Since the HindIII and SpeI digestion only produced two copies of the 5' TashaT1 sequence, the 4.2 kb or the 7 kb
fragment could be derived from Tashat3. One of these FcoRV fragment could represent another copy of the 900 bp ORF previously identified in Fig. 3.11 and within the 2 kb EcoR1/SpeI probe (see Fig. 3.27).

In summary, the fragments produced from restriction digestion with EcoRI, Spel and HindIII in genomic DNA are maintained in the λ dash 13 clone, indicating that the restriction map of TashAT/ and TashAT3 wilhin λ dash 13 is likely to be accurate. The number of AT hook encoding fragments in the genome, suggests that there are ouly three Toshat gencs within the parasile genome.

Fig 3.29: Southern blot analysis of D7 genomic DNA from T. annulata hybridised to a 2 kb EcoRI/SpeI fragment corresponding to the 5 ' coding region of TashAT1. E: EcoRI, V: EcoRV, H: HindIII, S: SpeI. DNA molecular weight markers are indicated (in kb) on the right.

3.3 Discussion

The full length Tashatl gene was isolated from a 3.2 kb Spel fragment derived from λ dash 13 DNA by Southern blot analysis with an AT hook encoding probe corresponding to the TashAT/ ORF. Sequence analysis revealed that TashATl encoled a 1401 bp predicted ORF, and was identical to DNA fragments derived from the TashATI ORF originally identified within the $\lambda \mathrm{gl} 11$ clone, el-12. When the predicted peptide sequence of TashAT/ was compared with that of TushAT2 (Swan et al., 1999), the two genes shared 46.1% overall identity with cach other over the AT hook encoding region, contirning that they were separale, but related genes.

Southern blot analysis of λ dash 13 restriction digested DNA with the po00 probe, comprising the AT hook domains from TashAT\%, also identified other DNA fragments that pointed to the existence of a third TashaT genc. Onc of these fragments was a 1.2 kb EcoRI fragment, which was not found within Tashath or TashAT2, but was almost identical to the AT hook domain of TashATI and a region of TashAT2. The 1.2 kb fragment was subsequently mapped to TashAT3 (Swan et al., 2001a). In fact, the first 1.4 kb of Tashat3 was found to be 99% identical to the entire TashaTI gene, including the AT hook encoding domain and shared 99% identity to Tashat2 over an adjacent 1.4 kb adjacent region (Swan et al., 2001a).

The predicted peptide sequence of TashAT1 or TashAT3 (TashAT1/3) has a number of features that suggests the gene product of Tashatl may be a transcription factor. These features include four AT hook motifs, several nuclear localisation signals (NLS), a signal peptide sequence and a transactivation domain.

The presence of both classical ("pat 4" and "pat 7") and bipartite NLS suggests that TashaTI is transported to the host nucleus. Studies have shown that the basic amino acids of the NLS interact with the nuclear binding protein (NBP) to facilitate transport through the nuclear pore complex, in an ATP dependent manner (Whiteside and Goodbourn, 1993; Hicks and Raikhel, 1995). This process is conserved amongst lower and higher cukaryotes (Hicks and Raikhel, 1995). Whilst there is a danger of false positive results, inspection of the peptide sequence of the related nuclear located transcription factor, HMGI(Y) (Eckner and Birnstiel, 1989; Johnson et al., 1989; Karlson et al., 1989), revealed 4 potential "pat 4" NLS located within the AT hook region. Moreover, several nuclear localisation signals that were found in the predicted TashAT1 polypeptide (sec Appendix D) were also identificd
within the putative TashAT2 polypeptide (Swan et al., 1999). TashAT2 was later detected in the host mucleus of infected cells by IFAT (Swan et al., 1999), and also in the nucleus of uninfected COS7 cells, previously transfected with a TashAT2 construct. This evidence might support the theory ihat TashAT'I and TashAT3 polypeptides may also be transported to the host nucleus. However, to determine if these signals confor host nuclear localisation, BL20 cells could be transfected with a TashATt fusion protein construct, with and without the NLS domains, followed by IFAT analysis.

Further evidence that TashATI/3 might be transported out of the macroschizont is indicated by the presence of a predicted 24-residue short stretch of hydrophobic amino acids located at the extreme N -terminus, recognised as a signal sequence. The signal sequence was predicted for TashAT1 in all but one of thee signal sequence prediction prograns, including TargetP, the best predictor of N-terminal sorting signals (Bamai et al., 2002). The signal sequence betongs to the classical eukaryotic secretory pathway and is essential for secretion of the polypeptide to the endoplasnic reticulum, for further targeting to subceltular compartments of the cell (Nakai, 1996). A similar signal sequence also exists in T'ashAT2, which has been shown to be located within the host nucleus of Theileria infected cells. Moreover, the TargetP results showed that there was a good likelihood that the signal sequence of TashAT $1 / 3$ was secreted. In this casc, the signal sequence might cnable the TashATI/3 polypeptide to be translocated out of the parasite into the host endoplasmic reticulum, where, potentially, NLSs could direct the polypeptide to the host nucleus.

The AT hook motifs found in the potential peptide sequences of TashA'l't, TashAT3 and Tash AT2 all contain class II AT hook domains, which have a lower UNA binding alitinity compared to the class I and III AT hooks (Aravind and I andsman, 1998). Thus, the TashAT polypeptides would be expected to have a refatively low DNA binding affinity. Since TashAT1 and Tashat3 possesses an additional AT hook domain as well as two RKRP elements, potentially capable of binding DNA (Aravind and Landsman, 1998) compared to TashAT2, it would be expected that TashAT1 and TashAT3 polypeptides would have a greater DNA binding capacity than TashAT2.

When TashATI was compared to protein domain families within the ProDom database, the only obvious homology found was to the AT hook motifs of the HMG protein family. This suggested that the main function of TashAT1 was DNA binding. The similarity of the AT hook encoding motifs of the Tashat genes and HMGI(Y) protcins (which also encode
class II A'T hooks) might suggest that TashAT polypeptides perform a similar function to the $H M G I(Y)$ proteins. $H M G 1(Y)$ proteins have been implicated in the transcriptional activation of genes associated with the immune system and cell growth, including the α subunit of the IL-2 receptor (IL-2R α) (Reeves, 2001) and NF-kB (Thanos and Maniatis, 1992, 1995; John ef al., 1995). Studies have shown that HMGI(Y) proteins are involved in normal cell growth regulation, such as adipocytes (Melillo et al., 2001) but are low or undetectable in fully differentiated cells (lundberg et ch., 1989; Reeves and Bustin, 1996). High levels of HMGI(Y) have consistently been found to be associated with tumour formation (Iallini and Dal Cin, 1999; Reeves, 2001). Since TashAT2 polypeptide expression was highest during the macroschizont stage, when the host ecll becomes immonalised (Swan at al. 1999), it is possible that the Tashat 2 or TashAT1/3 polypeptides might also be involved in host cell proliferation of T. annufata infected cell. Alternatively they might be involved in negative regulation of differentiation from the macroschizont to the merozoitc.

TashAll 1 was found to contain a potential transactivation domain, as these domains are thought to elicit transcriptional activation through protcin-protcin interactions (Triezenberg et al., 1995), this might suggests that TashATI might also interact with other proteins. Studies have shown that transactivation domains have a significant role in transcriptional activation: isoforms of NF-AT transeription factors that do not possess transactivation domains show a third of transcriptional activity compared to NF-AT factors that do contain transactivation domains (Imamura at al, 1998). The potential transactivation domains in TashAT1/3 may suggest that the TashA'l polypeptides intcract with one or more polypeptide, when binding to the host DNA target sequence.

The numerous phosphorylation sitcs predicted in the TashAT1, Tashat3 and TashAT2 peptide sequences are of particular interest, as many transcription factors are known to be regulated by phosphorylation/de-phosphorylation. For cxample, HMG $\mathrm{I}(\mathrm{Y})$ proteins are phosphorylated by cdc2 kinase, at the G2/M stage, which resulted in a decrease in DNAbinding activity (Nissen et al., 1991; Reeves et al., 1991). Specific enviromental stimuli also trigger phosphorylation of $\operatorname{HMGl}(\mathrm{Y})$ proteins via the signal transduction pathway, particularly by Casein Kinase 2 and protein kinase C within B-lymphocytes (Wang et al., 1995,1997; Banks et al., 2000; Xiao et al., 2000). Interestingly, Casein Kinase Il (CKII) was also found to be associated with the transformation of host cells by T parva (oleMoiYoi, et al., 1995). It is possible that the function of the TashAT polypeptides may be regulated by phosphorylation, possibly by CKII. However, these resuits would need to be
confirmed experimentally because these sites are defined by a small number of residues.

The predicted N -glycosylation sitcs suggest that TashATl might be secreted to a number of destinations within the cell (Hecmius and Aebi, 2001; Grogan et al., 2002) and these modifications might aid TashAT1 secretion out of the parasite. However, these modifications would have to be verified experimentally, particularly as N glycosylation siles are only defined by four conserved amino acids (see appendix H). This is particularly important for the myristolation site prediction as the PSORTII and PROSITE programs appear to give contlicting results. In addition, there are complex considerations regarding the sequence context when predicting a truc myristolation site (Grogan et al., 2002; Towler et al., 1988).

The delection of a possible PEST sequence within the predicted amino acid sequence of TashATI, indicated that TashATI might be targeted for proteolytic degradation. Studies on PEST sequences (reviowed by Rechstciner and Rogers, 1996) revealed that these sequences are present in metabolic enzymes, protein kinases and phosphatases. Transcription factors , such as Fos, Jun, p53, IkB and cyclins are also targeted for degradation, as a form of biochemical regulation mostly via the 26 -ubiquitin protease pathway. PESI sequences can be either constitutive proteolytic sequences or conditional signals; where, in the latter case they are targeted after modification, such as phosphorylation. One theory put forward is that phosphorylation of serine and thrconine residues activate latent PEST signals for protcolysis (Rechstcincr and Rogers, 1996). Phosphorylation sites overlap with the potential pest sequences of TashaT1/3. Thus, if these phosphorylation sites are proven to exist experimentally, then it seems likely that the predicted PEST soquence of TashAT1 would be a conditional signal. Further studies involving nutational analysis of the PEST sequence are required to verify if there is an active PEST sequence within TashAT1/3. One interesting observation is the high abundance of PEST sequence encoding polypeptides that give rise to immunogenic peptides presented on MHC I molecules (Rechstemer and Rogers, 1996). If TashAT1/3 is shown to be expressed in this way, then these polypeptides could potential be vaccine candidates.

The 5' upstream regions of TashiTl and TashA73, were identical, but had poor identity with the S' upstrean region of TashAT2, apart from a 31bp motif, common to all three TashAT genes and another macroschizont encoded gene, Tashl (Swan et al., 2001b). Thus, this motif might bind a common regulatory factor that controls the transcription of all three Tashat genes, and maybe other macroschizont genes. The TashUM sequence was not
similar to any other eukaryotic transcription factor binding site, in common with CAT1, a possible regulatory motif of the gene encoding the T. ammula merozoite suface protein, Tams / (Shiels et al., 2000) and is therefore more likely to be unique to T. ammlata. This is supported by evidence of other potential regulatory regions in the related apicomplexan, Plasmodium, which were dissimilar to other eukaryotic transcription factor binding sites (Horrocks et al., 1998).

It has been shown that host factors are transtocated into the parasite (Camington ef $a /$. 1995), so the lymphocyte specific factors identified by the Matnspector search are of particular interest, especially as one factor, Pu.I, associated with cell growth and IKRS with lymphoid differentiation. However, this analysis only gives a theoretical possibility There is high probability of mistaken matches as some of the transeription factor binding sites are degencrate or A.T rich (e.g. SATB). This latter case might produce biased results as Theilerid contains more A and T nucleotides in its genome compared to higher eukaryotes. Distance and orientation between promoter elements are also considerations as many pronoter elements are regulated synergistically or antagonistically. Further investigations into the lymphocyte associated transcription factors would be required to determine if they are expressed in Theileria infected cells and are translocated to the parasite.

Secondary structural predictions have predicted that the potential TashAT1 polypeptide is composed of mainly looped structures, parlicularly over the AT hook encoding domains, which is consistent with structural studies of AT hook motifs (Reeves, 2001). The looped structures, together with the high solvent accessibility values over this region and between residues at the C-terminal 139 amino acids suggest that these regions may be exposed on the surface of the TashaT1 protein. It is possible that this exposed looped structure might enable the AT hook motifs to interact with the target DNA sequence. The extended β shect structure over the N - terminus of TashAT1 suggests that the N -terminus is intemal.

To identify the genomic organisation of TashAT1 in relation to TashAT2 and TashAT3, Southern blot analysis was performed on λ dash 13 DNA, using two probes derived from Tashatl. One of the most striking findings was that all the Fash $A T$ genes are located in close proximity to each other. Also, the N-terminal region of TashAT3 is 99% identical to the entire TashATl gene, whilst TashAT3 shares 83\% overall identity with TashAT2, which increases to almost 100% in certain regions. These observations suggest that there has been a relatively recent, tandem duplication event involving TashAT3 and an adjacent gene

TashHN (Stadler, unpublished, 2000) that was partially encoded by the 900bp ORF (see fig. 3.30). Studics by Stadler (unpublished, 2000) have shown that TashATl is not present in all Theileria infected cell lines, supporting the evidence of a recent duplication event. It is likely that Tashatl arose from an intrachromosomal duplication, as these duplicated scquences tend to be physically close together and more similar and shorter than other types of sequence repeats (Achaz et al., 2001). Onc possible reason for this duplication event could be a response to setective pressure. 'ithis reason has been put forward to explain changes in genc expression detected within infected cells after prolonged culture by many groups (Adamson et al., 2000ab; Suthertand et al. 1996; Preston et al.. 1998; Oura et al., 2001). The possibility that TashATl was duplicated under selective pressure of in vilro cultured conditions, is unlikely given that TashAT1 mRNA was found in sporozoites (see Swan ct al., 2001a). The advantages of this duplication event may be to increase the gene dosage of Tashat3 and/or TashHN. Alternatively, TashAT1 might be able to perform a slightly different funclion to TashAT3 that is advantageous to the parasite. Gene duplication has been reported in other apicomplexan parasites such as TgPCNA1 and 2 in Toroplasma gondii (Guerini et al., 2000) and the Mcrozoite Surface Prolein (MSP) gene family in Plasmodium chahaudi (Black et al., 1999) and this cyent may be more common in apicomplexans. One study found more gene repeats in Plasmodium compared to other eukaryotes (Achaz et al., 2001), which was hypothesised to be due to the high selective pressures for scquence variation. A high number of repeats might allow for more recombination events, leading to greater genetic variation and evolutionary rate (\wedge chaz et al., 2001).

A comparison of the prodicted amino acid sequence of TashATI with that derived from the T.parva gentome revealed no equivalent TashaTl or Tashat'3 genes in \% parva, despite the fact that T. amulata and T. parva diverged from a common ancestor (Chansisi et al, 1999). The lack of TashAT gencs and AT hook motifs found in the T. parva genome compared to T. annulata, might suggest these gene products are not essential for T. parva and may relate to the different cell types these species infect. However, the sequencing of T. parva genome is not yct complete and may yet reveal a T. parva homologue of a Tashat gene.
Ancestral
Unequal crossover during
homologous recombination
Duplication
and deletion
(several steps)
TashAT2

Ancestral
Modern
Fig. 3.30: A possible evolutionary mechanism for the existence of TashAT1 by one or a series of non-equal crossover event(s) between the ancestral TashAT2, TashAT3 or other genes, losing the C-terminal part of TashAT2. Coloured boxes represent
areas of homology, with purple box indicating the AT hook encoding region. Grey areas represent open reading frames. HN 1 and 2 represent TashHN1 and 2 respectively.

4. Identification and Expression of the TashAT mRNA species and Analysis of a TashAT Upstream Motif.

4.1 Introduction

In chapter three, two further Tash 4 T genes, TashAT/ and TashAT3 were identified, RFLP mapping located these genes to a 13.5 kb gene cluster together with TishAT2. The sequences of Tashatl $/ 3$ were homologous with TashAT2, within the AT hook domain region. Later sequence comparisons showed that the entire TashaTl ORF was 99.9% identical to the five prime end of TashAT3.

The striking sequcnec similaritics between the Tashat genes and polypeptides coupled to the likely identification of Tashat2 in the host cell nucleus imply that TashAT1 and TashAT3 may also be involved in host/parasite interactions. As the predicter TashATl polypeptide may be involved in regulation of the host cell environment, it was important to define the mRNA species encoded by TashATI, and to determine the expression profile of TashAT1 and TashAT3 during differentiation to the merozoite. This could be achieved by Northern blot analysis on RNA from infected cells undergoing a differentiation time course, using gene specific and common probes. Any variability in the function of the Tashat genes could be investigated by comparing the relative levels of TashAT mRNA transcripts between members of this gene family: a similar profile would provide further evidence that these genes may be under a common regulatory mechanism.

A further aim of this chapter was to confirm regulation of parasite differentiation by Northem blot analysis on parasite infected cell lines attenuated for merogony, such as the D7B12 cell line. If the TashAT genes were associated with differentiation and/or host cell proliferation, such experiments might be predicted to show a lack of down regulation of the TashAT mRNA in the attenuated cell line.

In addition to determining if the expression of TashAT mRNA was associated with differentiation, it was of relevance to investigate how TashATl/3 gene expression is regulated. Such evidence could provide an insight into the manner by which the parasite down regulates macroschizont gene expression during differentiation to the merozoite.

This may due to the simple removal of macroschizont-specific regulators, or it could be due to the inlubition of those factors by regulators specific to the merozoite stage.

Analysis of genes from related apicomplexan parasites shows that most genes have a classical eukaryotic bipartite structure, consisting of a basal promoter and upstream enhancer elements. Examples of such genes are the pfs 25 and $G B P 130$ genes in P. falcipurum (Horrocks ef al., 1998; Horrocks and Lanzer, 1999) and the NPT3 gene in Toxoplasma gondii (Nakaar et al., 1998). A recent review by Ilorrocks et al. (1998) and van Lin ot al. (2000) indicated that Plasmodimm gene transcription oceurs in a monocistronic manner. However, whilst there is similarity in the structure of apicomplexan and higher eukaryotic genes, there is growing evidence that there are differences between higher eukaryotic and apicomplexan transcription mechanisms. For example, the large number of putative transcription factor binding motifs upstream of P. falciparum genes have not yielded functional, homologous binding sites. Moreover, only one putative TATA box binding protein (PCTBP) has been cloned in P. falciparum to date (McAndrew et al., 1993). Although similar in structure to the TBP of higher eukaryotes, the P. falciparum TBP had a low bomology with the 'PBP of higher eukaryotes, despite the normally high evolutionary conservation of this protein amongst other eukaryotes (Nikolov et al., 1994). Furthermore, a comparison of putative enhancer regions of P. falciparum genes show no homology to any other known eukaryote (reviewed by Horocks et al., 1998; van Lin et al., 2000), and implied that P falciparam contains a distinct, mique set of transcription factors. Evidence that Plasmodial transcription differs from that of higher cukaryotes was demonstrated when the common enkaryotic SV40 promoter, was transfected into P. falciparum but failed to result in any reporter gene expression. Conversely promoters from P. falciparum also fail to drive reporter gene expression in COS7 cells (Horrocks et al., 1998 and references therein).

Recent analysis of the T. annulata gene, Tamsl, identified a uniquc, 9tp motif (called CAT1) upstream of the transcription start site (TSS) of Tamsl, which was postulated to function in control of Tams 1 . The CAT1 motif generated a specific band shift in an Electromobility band shift assay (EMSA) associated with parasite enriched nuclear extracts from infected cells compared to control, uninfected BL20 extracts (Shiels et al, 2000). In addition, a mucleotide search failed to produce any strong identity to any known promoters/enhancers, indicating that CAT1 may be a motif unique to Theileria species.

While the CAT-1 motif of Tamsl was initially defined by EMSA, it was also shown to be conserved in the Tams I orthologues of three Theileria species. In chapter three, a highly conserved region located upstrean of the TSS of all the TashAT genes and also in an unrelated macroschizont gene, Tash/ (Swan et al, 2001b) was identified. Overall, the upstream region of TashAT1/3 shared 78.8% identity with the upstream motif of TashAT2, and 87.1% identity with the upstrean motif of Tashl (see Fig. 3.18). This motif is known as TashUM (TashATl/3 upstream motif). TashUM and its homologues upstrean of Tashat2 and Tashl appear to be separated into a proximal region with a relatively abundant GC rich content (70%) and a distal region with an average relatively rich ΛT content of 86.2%. One striking feature of the GC rich region is that the upstream regions of all four genes are almoss identical bar one nucleotide. Thus the Tashum motif was chosers for further analysis because the similarity of the TashUM motif of Tashath/3 with the upstream motif of TashAT2 and TashI clearly implicd functional conservation, possibly of a regulatory factor-binding site. In the absence of a transfection and in vitro transcription system for Theileria, it was decided that a preliminary study of the capability of the TashUM motif to bind nuclear proteins would be performed, using EMSA. If this motif is involved in the regulation of TashATl, such an experiment could be predicted to show a band shift with parasite extracts only. However, the possibility that specific shifts could be generated with host enriched extracts cannot be ruled out, particularly as there is cvidence of translocation of parasite proteins to the host (Swan et al., 1999), and host proteins to the parasite (Carrington et al., 1995).

Structural studies of genes from Plasmodium indicated that Iranseription is not intiated by a TATA box (Horrocks et al., 1998) but by an initiator element (Inr) ; a 7-9bp alternative or complementary TATA box found itı some cokaryotes (Smale and Baltimore, 1989). Potential Inr elements have also been identified upstream of T. annulata genes, such as Tamsl (Shiels et al., 2000), TashAT2 and Tashl (Swan, unpublished, 2001). To characterise the upstream region of TashATI, the method of 5^{\prime} Rapid Amplification of cDNA Ends (RACE) would be used to locate the transcription start site (TSS) of TashAT1. This would enable the identification of any potential Inr element and locate the position of the TashUM motif relative to the TSS. 5' RACE was chosen because it is a rapid, sensitive technique for cloning the five prime end of any mRNA species, by PCR amplification. This techonque has the advantages of amplifying low concentrations ofmRNA and reduces nonspecific products by the use of nested primers and results in a product that can be cloned and sequenced. Other methods that delemine the transcription start site are also available, such as primer extension (Goodbourn, 1996) and S1 nuclease mapping (Berk and Sharp,
1977). However, the use of S1 nuclease (which is specific for single stranded nucleic acids) to map an AT rich DNA scquence often leads to inaccurate results due to partial removal of nucleotides within Al rich sequences that have transiently become single stranded. Furthermore, the primer extension method is insensitive and prone to background problems (Goodbourn, 1996).

In summary the work in this chapter was aimed at determining how TashATl expression is regulated during, differentiation to the merozoite and whether this was similar to oher members of the Tashat cluster, In addition the work set out to define the upstreane region of Tashat/ by identification of the TSS. This would allow further comparison with the upstrean regions of Tashat2 and Tash/ by locating the position of the 31bp Tashum motif. Analysis of this motif for binding parasite nuclear tactors would then be carried out by EMSA.

4.2 Results

4.2.1 Identification of the mRNA species encoded by TashAT1 and TashAT3

In order to identify the mRNA species encoded by TashaTl, Northern blot analysis was perfonned with RVA from nom-differentiating T. annulata infected D7 cells. BL20 RNA was also included as a negative control to demonstrate that the mRNA detected was specific to the parasite. Hybridisation was carried out using two gene specific probes to confirm the identity of Tashatl. Probe AThook 1 was located 799-1556bp relative to the translation start site of the Tashatl. Probe Ta369 was situated $55-423 b p$ relative to the translation start site of the Y'ashATI. Initial hybridisation of D7 RNA with probe AThook! identified three transcripts (shown in Fig. 4.1, lane 2) which were estimated to be 2.1 kb , 3.6 kb and 4.0 kb relative to size standards. No bands were detected with BL20 RNA (Fig. 4.1, lane 1), conliming that these mRNA species were not derived from the host cell. The sizes of two of these transeripts corresponded approximately to the open reading frames of ToshATI (1.4 kb) and TushAT2 (3.6 kb), and after RNA processing, suggested that the 2.1 kb and 4.0 kb transcripts represent TashAT1 and TashAT2 mRNA respectively. The subsequent discovery of the AT hook-encoding gene, TashAT3, with an ORF of 3.0 kb made TashAT3 the most likely candidate for the 3.6 b transcripl. However, it is possible that the higher bands could represent an unprocessed Tash AT1 transcript or another highly related genc. TashATL appeared to be the most abundant messages followed by TashAT2 and lastly TaslıAT3.

To confirm the identity of the TashAT1 transcript the second gene specific probe, Ta369, was used to probe a Northern blot of RNA from D7 cells (see Fig. 4.1, lane 3). Two transcripts werc detected with this probe at 2.1 kb and a feinter band al 3.6 kb ; the 4.0 kh signal was absent. No signal was detected in the BL20 RNA tract with this probe (sce Fig. 4.1, lane 4). Both these transcripts were identical in size to the previous transcripts in Fig. 4.1 (lane 1), deduced to be TashAT1 and TashAT3. In addition, the higher abundance of TashATl relative to TashAT3 detected with the AThook1 probe was also observed with probe Ta369. The mRNA species detected by probe Ta369 were therefore deduced to be TashAT1 (2.1kb) and TashAT3 (3.6kb).

In summary, two common transcripts at 2.1 kb and 3.6 kb were detected using two probes derived from Tashall by Northern blot analysis. These messages were deduced to be TashAT1 and TashAT3 mRNA respectively on the basis of size.

Fig. 4.1: Northern blot analysis of total RNA derived from D7 cell line, hybridised to probe AThook1 and Ta369. $10 \mu \mathrm{~g}$ of RNA was used in each lane. Lanes 1 and 2: D7 and BL20 RNA hybridised to probe AThook1, respectively. Lanes 3 and 4: D7 and BL20 RNA hybridised to probe Ta369, respectively. Arrows indicate the size of the mRNA transcripts (in kb).

4.2.2 Determination of the expression profile of TashAT1 mRNA during differentiation to the merozoite.

To cstablish if TashAT1/3 mRNA expression was down regulated during differentiation to the merozoite, a time course experiment was performed wilh D7 cells, which have an enhanced ability to differentiate (Fig. 4.2). Total RNA from D7 cells was purified from a differentiation time course, incorporating cells cultured at $37^{\circ} \mathrm{C}$ (day 0), and from cells grown for 2,4 and 6 days at $41^{\circ} \mathrm{C}$, transferred onto a northern blot and hybridised with probe Ta369. To control for the amount of parasite RNA present, the same blot was hybridised to a probe representing the T. anmulata $18 \mathrm{~S} \sin \mathrm{rRNA}$ gene, called 2 p 3 (Swan et (al. 1996) The blot was also hybridised to a gene probe encoding a rhoptry protein, which is known to be up regulated at the mRNA level during merogony (Swan, unpublished, 2001) and is therefore a control for differentiation of the parasite (Fig. 4.2C).

Fybridisation with the probe Ta369 (Fig. 4.2A) only detected the TashAT1 transcript (at 2.1 kb), and not the TashAT3 gene transcript, which may have been present at levels too low to detect in this experiment. Hybridisation of these RNA samples with the 2 p 3 and Rhoptry gene probes revealed a 3.5 kb and 3.3 kb transcript in both Fig. 4.2 B and 4.2 C , which corresponded correctly to the sizes of the 18 S snRNA of T. annulata and the Rhoptry gene mRNA species respeetively. 'the signal intensities of hybridised 'rashA't, 2 p 3 and Rhoptry gene RNA transcripts were measured by densitometric analysis (shown in Fig. 4.3) to determine the perentage change in the expression levels of each RNA species (see Fig. 4.4).

The data presented in both Fig. 4.3C and 4.4C, showed that Rhoptry gene RNA had increased markedly from day 0 to day 6 , confirming that the $D 7$ cells were differentiating. By comparison, TashAT1 mRNA levels appeared to increasc from day 0 to day 2 (by 42.3%), then decreased from day 2 to day 4 (by 59.6%), and remained relatively constant from day 4 to day 6 (see Fig. 4.4A). From day 0 to day 2, the levels of 2 p 3 RNA also increased from day 0 to day 2 (by 10.3%), and then increased by 15.3% from day 2 to day 4 but only increased marginally (by 1.7%) from day 4 to day 6 (Fig. 4.3B). Thus, from day 2 to day 4, TashAT1 levels had actually decreased during merogony, in comparison to 2 p 3 RN Λ levels, which actually increased during this time period (see Fig. 4.4 A and B), with both R.NA species remaining approximately constant from day 4 to day 6 . Iowever, from day 0 to day 2 , it was unclear whether TashAT1 mRNA levels had truly increased relative to the levels of 2 p 3 RNA as both TashAT1 and 2 p 3 levels increased. Moreover, in the
absence of an RNA standard of known concentration for cach autoradiograph, it was not possible to compare the relative increase in 2 p 3 RNA levels with TashAT1 mRNA levels.

To compare the expression levels of TashAT1 mRNA with other TashAT transcripts, Northem blot analysis was performed on differentiating D7 time course cultures using the TashATl probe, AThook1 and with probe 2 p 3 (see Fig. 4.5). The smear shown with the $2 p 3$ hybridisation (Fig. 4.5B) was likely to be caused by excess unincorporated radioactive label, or a saturated 2 p 3 signal because no degradation was detected upon hybridisation with) AThookl (Fig. 4.5A). As such, densitometry measurements for the 2 p 3 hybridised blot were carried out on the $3,5 \mathrm{~kb}$ band, excluding the smeared area. The results of the densitometric analysis (sce Fig. 4.6), showed that all three TashAT mRNA expression levels increased from day 0 to day 2 but all decreased between day 2 to day 6 . Meanwhile, 2p3 RNA levels had increased from day 0 to day 6 , but particularly from day 0 to day 2 . However, the level of increase in 2 p 3 RNA could not be deternined as the densitometry realings in Fig 4.6B appear to show that the $2 p 3$ signal has reached saturation point at day 2. Thus, from day 2 to day 6 , the levels of TashAT1, along with TashAT2 and TashAT3 had decreased in comparison to the total parasite RNA load.

Comparing the relative changes in abundance between the TashAT transeripts from Fig. 4.7 revealed that from day 0 to day 2 , the increase in TashAT1 (56.4%) was less rapid than TashAT2 (73\%) and TashAT3 (77\%). However, from day 0 to day 6 , the decrease in TashAT1 mRNA levels were similar to those of TashAT2 and TashAT3. Fig. 4.7B shows that 2 p 3 RNA levels had increased by 46.5% from day 0102 and continued to increase by 4.8% and 9.8% from day 2 to 4 and from day 4 to 6 , respectively. This confimed that the TashAT transcripts had decreased relative to the levels of parasite RNA during this period. It may be noted that the signal intensity of TashAT1 mRNA was greater using probe AThook 1 compared to probe Ta369. This may be due to the presence of nicked RNA in the Northern blot hybridised with probe Ta369, which does not contribute to the signal, but does contribute to the background (Goodbourn, 1996). Futhermore, probe AThook 1 is more than twice the size of probe Ta369, and is therefore likely to produce a stronger signal than probe Ta369.

In summary, TashAT1 mRNA appeared to increase from day 0 to day 2 , but decreased from day 2 to day 6 with respect to merogony. Northem blotting with probe AThook 1 showed that TashAT2 and TashAT3 mRNA increased at a greater rate than TashAT1 mRNA from day 0 to day 2, although the overall abundance of TashAT1 was larger than

TashAT2 and TashAT3 at day 0 and day 2. The rate of decrease of all three TashAT transcripts were approximately similar from day 2 to day 6.

A

| 0 | 2 | 4 | 6 |
| :--- | :--- | :--- | :--- |

TashAT1 (2.1) \longrightarrow

B

C

Rhoptry (3.3) \longrightarrow

Fig. 4.2: Northern blot analysis of total RNA derived from D7 cells taken during a differentiation time course experiment and hybridised to Ta369. $10 \mu \mathrm{~g}$ of RNA was used in each lane. Panels A: Ta369; B: 2p3 and C: Rhoptry gene. The time points for each RNA sample are indicated above each lane (in days). The detected RNA transcripts (in kb) are indicated by arrows.

Fig. 4.3: Densitometric analysis of TashAT1 compared to 2 p 3 and Rhoptry gene RNA levels during a differentiation time course of D7 cells. A: TashAT1 mRNA; B: Rhoptry gene RNA; C: 2p3 RNA; AU: Arbitrary Units.

Fig. 4.4: Percentage change in TashAT1, Rhoptry gene and 2p3 RNA levels during a D7 cell differentiation time course.
Panels A: TashAT1 mRNA; B: Rhoptry gene RNA and C: 2p3 RNA.

Fig. 4.5: Northern blot analysis of RNA from D7 cells, during a differentiation time course, hybridised to probe AThook1. $10 \mu \mathrm{~g}$ of RNA was used in each lane. Panel A: probe AThook1 and panel B: probe 2 p3. The time points for each RNA sample are indicated above each lane (in days). Arrows indicate the mRNA species detected with its corresponding size (in kb).

Fig. 4.6: Densitometric analysis of TashAT mRNA compared to 2 p 3 RNA levels from D7 cells, during a differentiation time course.
Panel A: TashAT mRNA and panel B: 2p3 RNA; AU: Arbitrary Units.

B

Fig. 4.7: Percentage change in TashAT mRNA and 2p3 RNA levels from D7 cells during a differentiation time course.
Panels A: TashAT mRNA and B: 2p3 RNA.

4.2.3 Comparison of the expression profile of TashAT transcripts between cell lines that are competent (D7) or attenuated (D7B12) for differentiation.

To determine if the Tashat mRNA species were differcntially expressed in infected cell lines with altered capacities to differentiate, Tush $\wedge T$ mRNA profiles were compared using Northern blot atalysis. This was achieved using cell lines that are enhanced (D7) and attenuated (D7B12) for differentiation which were then hybridised with probe AThookI, and $2 p 3$ as a control for parasite RNA load. The results (Fig. 4.8) showed that D7B12 and D7 cells expressed the same overall TashAT mRNA profile, with the exception of TashAT? and TashAT3 mRNA levels, which differed between the two cell lines.

Densitometric analysis of this autoradiograph (see Fig. 4.9) confimed that TashAT1 was the most abundant of the TaslinT tanscripts in both D7 and D7B12 cell lines. In D7B12 cells, the abundance of the transcripts relative to the FashAT1 message was 21.6% for TashAT3 mRNA, and $\mathbf{1 5 . 1 \%}$ for TashAT2 mRNA. However, the situation was reversed with respect toTashAT'2 and 'TashA'I'3 within the D7 cell line. Here, TashAT2 was the second most abundant message after TashAT1, with 27.8% of the signal intensity of the TashATI transcript. TashAT3 was the least abundant message in D7 cells, being only 14.03% as intense as the TashAT 1 mRNA spp.. These figures were derived by calculating the proportion of TashAT2 or TashAT3 as a percentage of the total amount of TashAT1 within each cell line.

A comparison of the level of increase of each TashAT mRNA spp. in D7 cells with D7B12 cells (see Fig. 4.9), revealed that TashAT1 mRNA levels may be equivalent in D7 cells relative to D7B12 cells. This was because the intensity of the TashAT1 message was 2.8 times greater in D7B12 cells compared to D7 colls. However, this figure was also approximately equivalent to the overall increase of T. ammlata 2 p 3 RNA in D7B12 cells compared to D7 cells. Although the densitometric readings showed elevated levels of TashAT2 (by a factor of 1.6) in D7R12 cells compared to D7 cells, there was 2.5 times more 2 p 3 RNA in D7R12 cells compared to D7 cells. Therefore, there may not be any real increase in TashAT2 mRNA levels in D7 cells compared to D7B12 cells. By contrast TashAT3 mRNA levels wore 4.3 times more abundant in D7B12 cells compared to D7 cells. This figure was greater than the overall increase in RNA load in D7B12 cells compared to D7 cells, suggesting there may be a real increase in TashAT3 mRNA levels in

D7B12 cells compared to D7 cells.

In summary, TashAT2 and TashAT3 mRNA are differentially expressed in D7 and D7B12 cells, whilst TashATL mRNA levels show little change in both cell lines. TashAT1 mRNA species appears to be present at higher levels relative to TashAT2 and TashAT3 mR.NA.

A
D7 \quad 77B12

TashAT2 (4.0) \longrightarrow
TashAT3 (3.6) \longrightarrow

TashAT1 $(2.1) \longrightarrow$

Fig. 4.8: Northern blot analysis of RNA from D7 and D7B12 cell lines at $37^{\circ} \mathrm{C}$ hybridised to probe AThook1. $10 \mu \mathrm{~g}$ of RNA was used in each lane. Panels A: probe AThook1 and B: probe 2p3. The sizes (in kb) of the detected RNA species are indicated by arrows.

Fig. 4. 9: A comparison of TashAT mRNA and 2p3 RNA levels between D7 and D7B12 cell lines by densitometric analysis.
Panels A: TashAT mRNA and B: 2p3 RNA; AU: Arbitrary Units.

4.2.4 The expression profile of the TashAT mRNA transcripts in D7B12 cells.

To detcrmine if TashAT mRNA expression is associated with parasite differentiation RNA. samples were extracted from D7B12 cells following culturc at $41^{\circ} \mathrm{C}$ to inducc differentiation. Northern blot analysis was performed with the AThook1 probe (Fig. 4.10A) and compared with the equivalent levels of the control RNA species, 2p3 (Fig. 4.10B). These results showed that the abundance of all three TashAT RNA spp. were elevated at day 2 and day 6 compared to day 0 and day 4 . Similarly the levels of $2 p 3$ were also elevaled at day 2 and day 6 compared to day 0 and day 4.

TashAT mRNA and 2p3 RNA expression profiles were quantificed by densitometric analysis of the autoradiograph (sce Fig. 4.11) and the corresponding percentage changes in their expression over time was calculated (see Fig. 4.12). These results confirmed the data presented in Fig. 4.10. From day 0 to day 2 all the three mRNA transcripts increased by an average of 78%. From day 2 to day 4 all TashAT mRNA levels decreased by an average of 61% but then increased again by an average of 39% from day 4 to day 6 . This profile was reflected approximately by the rate of change of $2 p 3$ RNA levels, which increased from day 0 to day 2 by 72%, decreased by 45% from day 2 to day 4 and littally increased from day 4 to day 6 by 32%. The only exception to this was the rate of decrease in TashAT mRNA abundance, which exceeded that of 2 p 3 by 16% from day 2 to day 4 . Thus, the variations in TashAT mRNA profile do not appear to be decreasing during differentiation but follow the protile of parasite RNA, overall. Densitometric radings also show that the levels of all three transcripts remain constant relative to each other from day 0 to day 6 . However, TashAT3 only increased by 25% compared to TashAT1 and TashAT2 mRNA from day 4 to day 6.

In summary, there did not appear to be any evidence of a decrease in TashAT mRNA levels when Northern blot analysis was performed on D7B12 RNA from a differentiation time course, in contrast to Tash Λ T mRNA levels during a D7 differentiation time course. little change was detected in the relative abundance of any TashAT mRNA relative to each other from D7B12 cells during a differentiation time course.

A

$$
\begin{array}{llll}
0 & 2 & 4 & 6
\end{array}
$$

TashAT2 (4.0) \longrightarrow
TashAT3 (3.6) \longrightarrow

TashAT1 (2.1)

B

$$
2 \mathrm{p} 3(3.5) \longrightarrow
$$

Fig. 4.10: Northern blot analysis of D7B12 RNA from a differentiation time course, hybridised to probe AThook1. $10 \mu \mathrm{~g}$ of RNA was used in each lane. Pane1s A: probe AThook1 and B: probe 2p3. Each lane represents a time point (days). Arrows indicate the RNA species and it's corresponding size (in kb).

Fig. 4.11: Densitometric analysis of TashAT mRNA and 2p3 RNA levels from D7B12 cells over a differentiation time course. Panels A: TashAT mRNA and B: 2p3 RNA; AU: Arbitrary Units.

Fig. 4.12: Percentage change in TashAT mRNA and 2p3 RNA levels from D7B12 cells over a differentiation time course. Panels A: TashAT mRNA and B: 2p3 RNA.

4.2.5 Identification of the Transcription Start site of TashAT1

To map the Transcription start site (TSS) of TashATI, which could be predicted to be within an Inr element, the technique of five prime RACE was employed as outined in Fig. 4.13. Three nested primers rsp1, 2 and 3 (see Appendix A) positioned at $341 \mathrm{bp}, 270 \mathrm{bp}$ and 219 bp downstrean of the translation start site of TashAT1, respectively were designed to produce a final product of approximately 250 bp after PCR amplification of the upstream region of TashATl cDNA.

The results of the first 5° RACE amplification revealed a band approximately 250 bp after two rounds of PCR amplification (Fig. 4.14) upon agarose gel electrophorcsis. Choramphenicol acelyl transferase (CAT) control RNA provided by the 5° RACE kit was used to eheck the reverse transeription reaction (see lane 4) and subsequent PCR amplification steps (see lane 3) were successful, using control primers GSP1,GSP2 and GSP3 provided by the kit. The control RT-PCR reaction in lane 4 produced an RT-PCR product at approx. 500bp (adjusting for uneven DNA electrophoresis), which was the correct size according to the 5^{\prime} RACE kit manual. The control reaction in lane 3 generated four bands at approximately $500 \mathrm{bp}, 700 \mathrm{~b}$, 800 bp and 900 bp . The 500 bp band correctly related to the 500 bp control RT-PCR product described in the manual. The 700 bp band may relate to the 711 bp PCR intermediate PCR product with GSP2. The 900 bp product. could have been a result of mis-priming from the original 891 bp control RNA template or poor quality control RNA. To control for genomic DNA contanination, water was used instead of RNA (sce lane 5), and the absence of any products indicated that there was no DNA contamination present.

The 250bp PCR generated band was excised, purified and cloned into the vector pGem Teasy (Promega). Twenty-four of the cloned PCR products were sequenced to find the TSS of Tashat/. The results (shown in experiment 1 of Fig. 4.15) revealed that 8 ciones (33%) contained sequences locating the TSS to 30bp (-30) upstream of the A nucleotide of the translation start sitc codon for Tashatl: this position appeared to be the most frequent of alf the TSSs mapped. The TSS loci of 7 sequences werc mapped near to the putative -30 TSS locus: at $-26,-27,-31,-33,-35$ relative to the translation start site. This experiment appeared to have a large spread of TSSs, with eight sequences showing a TSS position of under 26 bp or over 36 bp relative to the translation start site, although each of these mapped TSS positions only occurred once.

To confirm the results of the first 5^{\prime} RACE experiment, a second 5`RACE experiments was performed. The results of the second PCR amplification of this experiments also revealed a diffuse band approximately 200 or 300 bp (data not shown), which was cloned into the vector pGem T-casy. After restriction digestion, twenty clones containing inserts of 200 to 300 bp were sequenced and the putative TSS determined. The results, shown in Fig. 4.15 (experiment 2) revealed that almost half of the sequenced clones (9 clones) showed that the TSS of TashAT/ was localed 30bp upstram of the A nucleotide of the translation start site codon. Three sequences showed putative TSS loci at -28 bp and -29 bp relative to the translation slart sile of TashATl. Another three sequenced clones revealed TSS loci of 35 and $36 b$ pelative to the translation start site. A further five more sequences temmated al $17,19,21,26$ and 760 p upstream of the translation stath site of TasinATl. In total fourteen of the twenty viable clones, had TSS loci between 28 and 36 bp relative to the translation start site. However, it appeared that the most frequently found start site focus for the TSS was, again, 30bp upstream of the translation start site of TashATh.

In summary, there were a total of 15 out of 46 TSS loci mapped between 26 and 356 p (excluding the -30 position), upstream of the translation start site in both experiments. although the frequency of each TSS loci was low (3 or less). Whilst it appears that the major TSS for TashATl could be predicted to be 30bp upstream of the translation start site, the variability in TSS loci mapped in both 5' RACE experiments, cannot exclude other TSS positions near to the -300 p locus.

To detemine if the sequence surrounding the TSS of TashATI conformed to a typical Inr motif, the seven mucleotides surrounding the TSS of Tashatl were compared to the consensus Inv sequence. Javahery et al. (1994) determined a loose consensus for the Inr element to be a pyrimidine rich sequence of $\mathrm{YYA}_{+1} \mathrm{NT} / \mathrm{AYY}$, where the 1 l position donotes the TSS. Using this system the putative Inr sequence of TashaTl was deduced to be $5^{\prime}-\mathrm{GTC}_{+1}$ TTAT-3'.

To identify if Tashatl contained an additional TATA box, the upstream region of TashAT1 was analysed using the software program Matlnspcetor (sce Fig. 3.19). This program identified a number of TATA-like boxes, but none confommed to the strict consensus TATA motif. The nearest TATA-like box was also located outside of the normal range of a TATA box (in most cases 30bp or less from the translation starl site).

$\begin{array}{llllll}1 & 2 & 3 & 4 & 5\end{array}$

Fig. 4.14: PCR products from Five Prime RACE analysis of TashAT1. Lanes 1 and 2 show the resultant PCR products after the second round of amplification from D7 mRNA. Lane 4 (control) contained CAT cDNA product after reverse transcriptase amplification reaction using GSP1 primer, lane 3 contained CAT cDNA products after the second PCR amplification reaction using primers GSP2 followed by GSP3, lane 5 contained no DNA. All control reagents were provided by the kit. The DNA markers sizes (bp) are indicated on the right.

A

C
-30
-20
-10

$+1$

Fig. 4.15: Frequency of transcription start sites (TSS) mapped to the upstream region of TashAT1. Panel A shows the entire range of TSS found; panel B shows the most frequently occurring TSS mapped. The site of the most frequently found TSS is shown (underlined) upstream of the TashAT1 gene (panel C). The putative translation start site (at +1) of TashAT1 is indicated by an arrow. The sequence highlighted in red shows the consensus sequence of a possible Inr element.

4.2.6 Investigation of possible nuclear factors binding to a DNA motif upstream of TashAT1 and TashAT3 by Electrophoretic Mobility Shift Assay

To determine if the TashUM motif, upstream of TashATl and Tashat3 was capable of binding to parasite nuclear factors from infected cells, TashCM was end-labelled, incubated with D7 and D7B12 cell muclear extracts and the resulting interactions with nuclear factors cxamincd by EMSA (Fig. 4.16). Control reactions were also carried out with non-infected BL20 nuclear extracts to investigate whether host factors were responsible for any band shifts with macroschizont infected cell muclear extracts.

The results of this analysis, in Fig. 4.16 A , revealed a large band shift (band shift 1) that showed a small retardation with the parasite enriched nuclear fractions derived from both D7 and D7B12 cells. This band was clearly retarded relative to the migration of the TashUM probe with no nuclear extract, and indicated the presence of a factor within the parasite-enriched fraction, which bound to TashUM. No conclusive results could be determined for the EMSA containing BI 20 and host nuclear extracts (Fig. 4.16A) because the concentration of these extracts were too high in both D7 and D7B12 nuclear extracts. However, the rcsults from Fig. 4.16B, which had reduced levels of D7 host-enriched nuclear and BL20 extracts, showed that a band shift was also present in host enriched nuclear extracts. This was retarded to the same extent as the band shift observed in the parasite-entiched nuclear extracts (Fig. 4.16A, band shift I). In addition, a band of lower intensity was obtained in reactions containing nuclear extracts from uninfected cells (see Pig. 4.16B, band shift 2), although it should be noted that a band in a similar position was present in the probe alone track. Furthemore, both BL20 and probe alone bands migrated with a slower mobility than the major shift obtained with the extracts derived from infected cells. Therefore it was unclear whether the band shift observed in the Bl 20 track was the same as the band shift detected with host-enriched nuclear extract.

To assess if this band shift was due to a factor specifically binding to the JashilM oligonucleotide, a "cold competition" band shift assay was included, where a 100 fold excess of non-radioactively labelled TashUM probe was added to the reaction before the radioactive TashUM probe was added. The excess cold probe should bind to all remaining factors, leaving the radioactively labelled probe unbound, resulting in an absence of the band shift upon autoradiography. When the cold TashUM oligonucleotide was added to the
parasite cxtract (see Fig. 4.16: II।, P : lanes) the major band shift was not observed. This preliminary result might indicate that the band shift was caused by a specific interaction between nuclear factors and the TashtM probe.

Two more major band shifts were also detected in both host (band shif 4) and parasite (band shift 3) fractions in Fig. 4.16. The parasite band shift disappeared with the addition of excess cold probe, indicating that there might be specific binding of the factor to the probe, but it was unclear whether this shift was also detected in BL20 nuclear extract, because of the excess BL20 nuclear extract present in the BT 20 track. In Fig. 4.16B, the host band shift also appeared to be present in BL20 nuclear cxtract, but at a greater intensity.

A scparate experiment carried out in collaboration with S. McKellar, using two nonspecitic DNA competitors, poly dI.dC and poly $\mathrm{dG} . \mathrm{dC}$, showed that the major band shift (band shift 1) only formed in the presence of poly dG.dC (Fig. 4.17). This indicated that the factor preferentially bound AT rich DNA. In addition, when D7 host and parasite-enriched nuclear extracts fiom a differentiating time course were analysed by EMSA (Fig. 4.18, band shift 1), a marked decrease was observed in the signal intensity obtained with the day 6 extracts relalive to the day 0 extracts.

In summary, a major band shift, has been identiffed with both host and parasite-enriched nuclear extracts that is out-conpeted with the addition of excess cold probe. From the preliminary analysis that was performed, the origin of this factor, host or parasie, could not be identilicd. However the data demonstrates that the factor(s) responsible for the band shift (1) has an affinity for AT rich DNA. In addition the level of factor(s) responsible for the band shift had decreased during the differentiation process. Other band shifts have also been identified in both host and parasite nuclear fractions, which require further analysis.

\oplus

Fig. 4.16: EMSA analysis of D7, D7B12 and uninfected nuclear extracts at $37^{\circ} \mathrm{C}$. Panels A and B represent two separate EMSA experiments. PA represents probe alone, B represents BL20 control nuclear extract. H and P represent host and
 reaction. Numbered arrows represent the specific band shifts detected.

Fig. 4.17: EMSA analysis of D7 parasite nuclear extract at $37^{\circ} \mathrm{C}$ with non-specific competitors poly (dG.dC) and (dI.dC).
Excess cold probe: +; PA: probe alone (with no nuclear extract). An arrow denotes band shift 1 (Courtesy of S. McKellor).

Fig. 4.18: EMSA of D7 host and parasite enriched nuclear extracts during a differentiation time course. Host and parasite enriched nuclear extracts are denoted by H and P , respectively. Time points (days) are indicated in brackets above each lane. PA: probe alone (with no nuclear extracts). The arrow indicates the major band shifts detected.

4.3 Discussion

The first aim of this chapter was to identify the mRNA species encoded by TashATl. This was demonstrated by Northem blot analysis using two probes derived from TashaTl and TashAT3, which showed that the 2.1 kb RNA message was likely to be TashAT 1 , and the 3.6 kb TashAT3, as they were approximately close to the predicted open reading frames of the corresponding genes. The results of Northem blot analysis with the AThook 1 probe in Fig. 4.1A confirmed the sizes of the TashAT1/3 messages. The 4.0 kb mRNA detected with probe AThook 1 was previously concluded to encode TashaT2 mRNA (Swan ef al., 1999). The apparent size difference between the TashAT messages and their corresponding genes might be explained by the prosence of a 5 or 3^{\prime} untranslated region (UTR) in these transcripts. These are common feature of apicomplexan mRNA specics (Fan and Davidson, 1996; Odberg-Ferragut et al., 1996), where they have been shown to play a role in protein translation and/or message stability (Furger ef al., 1997; Hotz et al.. 1997).

Studies by Swan ef al. (1999) revealed that TashAT2 gene expression was down regulated early on during differentiation towards the merozoite, and as such could be a possible candidate for a gene involved in determining specific gene expression of a macroschizont infected cell. To assess if TashAT1 mRNA was expressed in a similar manner, Northern blot analysis was performed from a differentiating time course. The results revealed that TashAT1, as weil as TashAT2 and TashAT3 mRNA were down regulated from day 2 to day 6 , in a similar manner to each other as host cell division subsides (Shiels et al., 1992). Work by Shiels et al. (1994) demonstrated that the down regulation of macroschizont polypeptides is temporally linked to an increase in merozoitc gene expression. Thus if the down regulation of TashAT mRNA is reflected at the polypeptide level, it is possible that the Tashat genes may be involved in the nogative regulation of parasite differentiation or be associated with the control of host cell division. This is supported by Northern blot analysis of TashAT transcripts in the D7B12 cell line, severely attenuated for differentiation, which did not detect any notable changes in the overall abundance of JashAT mRNA from day 0 to day 6 , alchough it was noted that TashAT3 mRNA levels had not decreased as much as TashAT1 or TashAT2 mRNA from day 4 to 6 . Further work is required to determine if this difference is statistically significant. Therefore, the results so far might suggest that the co-ordinated down regulation of the Tashat transcripts is regulated by common regulatory factor(s).

Whilst TashAT1 mRNA is cxpressed at high levels in both D7 and D7B12 cells, there is some evidence to suggest that Tashatl may not be essential to the control of macroschizont gene expression or host cell proliferation. Swan et ai. (2001a) found reduced or a complete absence of TashAT1 mRNA expression in different T. anmulata cell lines, with some cell lines lacking the TashATl gone in their genome (Stadler, unpublished 2000). One possible explanation for the variability in TashAT1 mRNA expression may be an alteration of the control of parasite gene expression as the infected cells adapt to culture. Many workers (Adamson et al., 2000ab; Sutherland et al., 1996; Oura et al., 2001) have described such variability in host cell gene expression. This alteration could affect Tashat gene expression which could then, theoretically, go on to alter host gene expression. Further experiments would be required on the ability of these cell lines to proliferate or differentiate to elucidate which FoshAT genes are essential in maintaining the proliferative state of the infected host cell or involved in blocking differentiation of D7B12 cells.

The increase in TashAT mRNA levels between day 0 and day 2 could not be determined as a genuine up-regulation since 2 p3 RNA levels had also increased cluring this time period. If this is the case, one explanation for this phenomenon may be a general increase in macroschizont gene expression upon differentiation. Cerfainly, there is a general increase in parasite size and infected cell growth in some Theileria infected cell lines during this period (Shicls et al., 1992). Thus, 2 p 3 levels might also be expected to increase, although this would need to be verificd sithee there is one example of a ribosonal protein in Theilerta (Oura et al. 2002) and other examples of Plasmodium rRNA genes which are differentially expressed (reviewed by Waters et al., 1989). If the TashAT genes are upregulated, this response is unlikely to be directly linked to a classical heat shock response as LESP70 mRNA levels were found to be similar in both D7 and D7B12 cells, the latter of which are attenuated for differentiation (Swan et al, 2001a and references therein). Therefore, to ascertain whether up-regulation has truly occurred, the increase in TasidAT mRNA levels relative to their DNA levels could be compared over this time period.

Densitometric analysis of the northern blots of D7 and D7B12 revealed that the expression profiles of TashAT2 mRNA and TashAT3 message were also altered in D7B12 cells compared to D7 cells. TashAT3 was more abundant than TashAT2 mRNA in D7B12 cells, but less abundant in D7 cells, whilst TashAT1 mRNA levels apparently remained constant between the two cell lines. I'his observation might suggest that differential expression of TasbAT mRNA is caused, by differential binding of regulatory factors to the upstream regions of these genes; either to the TashUM motif and/or to other important control
regions of each Tashat gene. It is possible that the apparent switch between TashAT2 and TashAT3 mRNA could possibly mean that these genes could act as functional substitutes for each other in the two cell lines, and therefore may be controlled in part by shared regulatory factors. Further dominant negative analysis with a TashAT gene mutant in which the AT hook and transactivation domain were removed would help define the role of the Tashat genes in wivo. It would also be interesting to detemine if the quantitative changes in TashAT2/3 gene expression of D7 and D7B12 cells were related to the altered pattern of genc expression recently defined for the cell lines described by Oura et al. (2001).

So far, all studies on Theileria, and other apicomplexan genes have shown that all gene transcription occurs monocistronically (Horrocks et al, 1998). This data and the presence of the TashUM motif upstream of Tash $4 T /$ suggest that TashAT1 maly also be transcribed in a monocistronic fashion. However, nuclear run on analysis as perfomed for Tams1 (Shiels et at, 2000) is necessary to confirm this for TashATI.

In order to define the structure of the upstream region of TashATl, five prime RACD, was performed on D7 mRNA. Two separate experiments showed that the most frequent transcription start site (approximately 33% and 45%) was $30 b p$ upstream of the deduced translation start site. The TSS and adjacent sequence was compared to the consensus Inr motif as described by Javahery et al. (1994). The predicted Inr of TashAT/ conforms in gencral to the cukaryotic Inr motif, with the exception of a G instead of an Λ nucleotide at position +1 (the position of the TSS itself). Deletion studies by Javahery et al. (1994) have shown that at A at +1 is an important mucleotide for Inr activity, if this is mutated the promoter strength is reduced to a greater extent. Although low har activity can be imparted even in the absence of an A at $: 1$, this evidence suggests that the putative TSS found for TashATl would be weak. This result was in contrast to the predicted lir elements of Tams 1 (Shiels et $a l, 2000$) which conformed totally to the predicted Inr sequence. However, inspection of the upstrean sequence of TashATl revealed a potential consensus Inr elements 29-23bp upstrearn of the transtation start site (TTA(+1)TTTT), where A is 27 bp upstream from the translation start site. This fact, and the number of TSSs mapped with lobp of the TSS found suggests it is possible that TSS might be located 27 bp upstream of the translation start site of TashATI. If this is the case, then the frequency of the site at 30bp could be due to a strong block of the reverse transeriptase enzyme due to sceondary structure formation at the 5^{\prime} end of TashATl mRNA (Goodbourn, 1996). This could mask the true TSS and Imr, located further upstream, which could be a few nucleotides. This may even be likely given the longer products detected in the $5^{\circ} \mathrm{RACE}$ experiments, which must
either be from TashAT3 mRNA or another very closely related gene transcript, not identified clearly by southom or northern blotting carried out to date. Further experiments would be required to confirm the exact position of the potential Lne element of Tashati. However, the transcription start site data generated for TashAT2 and Tashl, located at - 37 and - 33 bp from their translation start sites respectively (Swan, unpublished, 2001), suggest that the TSS of Tashat/ is likely to he within the 30bp range from the translation start site. In common with other apicomplexan parasite genes (see Horrocks et al., 1998), no TATA box was found within a 30 bp range of the translation start site of TashITh. Therefore, it appears unlikely that transcription intiation oceurs solely or partly from a TATA box. but firther functional malysis using in witro transeription or transfection techniques would be required.

To obtain further data to slow that the TashUM motif may function (possibly in association with an Inr element) to control gene expression, EMSA analysis was performed with host and parasite enriched nuclear extracts and revealed a major band shift in both extracts. Unfortunately, the presence of this band shift in reactions using both parasite and host emriched nuclear extracts prevented the designation of the binding factors to either the host or parasite. Morcover, given the close proximity of the lower intensity BL20 band shift, it is possible that the shift is generated by a host molecule that is up-regulated in parasite infected cells.

Despite these warning signals and the requirement of further experiments with appropriate controls, for example, iucluding an unrelated probe, it is possible that the TashUM band shift detected with host-enriched nuclear extracts is due to a parasite factor. This factor may have a similar celluar localisation profile as the TashAT polypeptides and be transported into the host cell nucleus. Swan et al. (1999) presented evidence that an antisera raised against the AT hook region of TashAT2 was detected within host and parasite compartments and it is therefore conceivable that DNA binding factors could also be present in both parasite and host entiched nuclear extracts. A more remote possibility is that the pattern of band shifts is related to a host cell factor that is transported to the parasite compartment and such events have been reported by Catrington et al. (1995). In future, EMSAs could include reactions with host or parasite-enriched nuclear extract and oligonucleotides containing binding sites that correspond exclusively to host transcription factors such as NF-kB. These reactions would determine the relative level of crosscontamination in host or parasite-enriched nuclear extracts. Ideally, the development of pure host and parasite nuclear extracts would allow a clearer identification of host or
parasite associated band shifts, including the three band shifts identified in section 4.2.6. The microtubule inhibitor nocodazole, which has been used to produce high quality purified parasite extracts from infected cells (Baumgartner et al., 1999) could be used to this end, although the effect of this drug on TashUM factor binding would have to be tested.

A further result of EMSA analysis was that the major TashUM shift had decreased when incubated with nuclear extracts derived from cultures undergoing merogony, and therefore may be down regulated. The result is interesting regardless of whether the origin of the factor responsible is derived from the host or parasite as it could relate in a factor that detemmincs parasite gene expression at the macroschizont stage. Alternatively this factor could be a parasite controlled host factor involved in the regulation of takocyte gene expression in actively proliferating macroschizont-infected cells.

Experiments using different non-specitic DNA competitors, revealed that the low molecular weight band shift only appeared in the presence of poly $\mathrm{dG} . \mathrm{dC}$, which competes out factors which preferentially bind GC rich DNA, and was blocked by the addition of poly dl.dC. These results showed that the factor(s) binding to the Tashum sequence preferentially bind ATr rich sequence. Recent work by Swan et al. (2001a) purified DNA that showed strong binding to GST-TashAT2 and found that this DNA was AT rich, as expected for an AT hook binding protein. Interestingly, the TAAAT motif, delince by Swan et al. (2001a) is also present in the TashUM oligonucleotide. Swan et al. (2001a) also showed that a 'lashAl'1 fusion protein, containing the AI' hook cneoding motifs preferentially binds to $A T$ rich DNA. Thus, the major band shift could represent a TashAT or closely related polypeptide binding to the TashUM probe. Indeed a preliminary experiment using a concatenated TashUM probe showed that this probe bound to a dgt 11 expression clone, expressing the AT hook region of TashAT1 (McKellar and Shiels, unpublished, 2001). In contrast to these results, EMSA experiments with the TashUM homologue of TashaT2 does not gencrate a major band shift with infected cell nuclear extracts (Swan and Phillips, unpublished, 2001). There is only a 6 bp difference between the TashIM of TashAT1/3 compared to the TashUM of TashAT2; which all occur in the AT rich region of the motif, and this region may be the site of specific binding to transcription factors. Thus, the 6 bp difference is enough to change the binding properties of the 'lashUM region in TashAT2 and might possibly account for the altered expression levels of TashAT2 and TashAT3 in D7 cells compared with D7B12 cells.

Further experiments for this work could involve F.MSA analysis with the TashUM probe with deletions or mutations introduced into the probe. Verification of whether TashATs can bind to the TashUM probe could be established by supershift. andysis using nuclear extracts and antisera generated against TashAT1/3 or TashAT2 or South-western analysis. UV fixation of the TashUM band shift to gain an estimate of the molecula mass of the associated polypeptides proved unsuccessful (McKellar and Shicls, unpublished, 2001). Ulimately, the identity of this factor could be obtained by purification of the factor(s) using the probe bound to a sepharose column followed by peptide sequencing. Alternatively, other proteomic methods could be used to fix the TashUM oligonucleotide onto a membrane, followed by mass spectrometry/protein sequencing. It is conceivable that the transcriptional activators of $\mathrm{HMGI}(\mathrm{Y})$ genes might also modulate TashAT gene expression. Some of these factors, including a number of cytokines and the transcription factor AP-1, have been implicated in attenuation of Theileria infected cell lines. Therefore, it would be useful to perform supershift assays with antisera generated against these transcription factors, to identify any host factors that bind to the TashUM motif upstreans of 'tashatl/3.

The work in this chapter has shown that all Tash AT mRNA species are down regulated during differentiation to the merozoite, in a similar fashion. TashAT2 and TashAT3 mRNA appear to be differentially expression in D7 and D7B12 cell lines. A common motif upstram of the TashATl/3 genes and the Tashl gene (Swan et al., 2001b) appeared to bind to a down regulated nuclear factor(s), which preferentially bound AT rich DNA.

5. Identification and Expression of TashAT1 and TashAT3 Polypeptide

5.1 Introduction

Data presented in previous chapters described the characterisation of a gene, TashAT/ with considerable sequence identity to TashAT2 including conserved AT hook binding donains found in a wide range of eukaryotic polypeptides. TashATl, Tashite and the newly discovered Tashat3 were found to be clustered logether in the T. annulata genome. Northern blot analysis presented in chapter 4 showed that all three genes are down regulated at the mR.VA level during dilierentiation and that this occurs at a time point coincident with the initial reduction of host cell proliferation, between days 2-4 (Shiels et al., 1992).

Sequence analysis of TashAT/ revealed four AT hook DNA binding domains, nuclear localisation signals and an N -terminal signal peptide. This combination of motifs indicate that the polypeptide encoded by TashAT/ could be transported from the parasite to the host nucleus. Evidence that one of the TashAT polypeptides, TashAT2, is transported to the host nucleus was reported by Swan et al. (1999). Antisera raised against two regions of TasinAT2 polypeptide, the AT hook domain and the N -terminal section, that showed no identity with mammalian polypeptides in the dalabase, did react against the host nucleus in addition to the macroschizont. Further experiments showed that TashAT2 was actively translocated to the nucleus of COS7 cells following transfection with a GFP-TashAT2 fusion construct (Swan et al., 1999).

Given the level of sequence identity between TashAT2 and TashAT1, it is likely that the TashAT1 polypeptide performs a similar function to the TashAT2 polypeptide. In particular, the presence of the putative nuclear localisation signals in both TashAT $1 / 3$ and TashAT2 putative polypeptides might suggest that TashAT1 is also transported to the host cell nucleus to modulate bovine gene expression and alter the proliferative status of the leukocyte. Indeed, there is evidence that AT hook encoding genes are involved in cell transformation. Many forms of leukaemia are associated with chromosomal translocations which generate chimaeric polypeptides containing AT hooks that bind to DNA and a transactivation domain which binds to other transcription factors, for example the HIRX gene (Tkachuk et al., 1992; Waring and Cleary, 1997). Thus, the first important aim was to
verify if the TashAT1 polypeptide was actually expressed in Theileria infected cells, and secondly, to determine the location of Tash $\Lambda \mathrm{T}$ d within the macroschi\%ont infected cell. In order to achicve this, it was necessary to generate antisera specific to TashAT1 and then use this reagent to perform Western blot analysis and indirect fluorescent antibody tests (FFAT), respectively.

In chapter 4, TashAT1 mRNA was found to be expressed at the highest level at day 2 during a differentiating time course, but decreased significantly with respect to the 18 S sn rRNA after this time point. Whilst it is likely that this data points to a down regulation of the polypeptide encoded by the mRNA, it is possible that a stable protein could remain functional after this time point. If the latter situation was true, it would indicate that FashATl may not be directly involved in the establishment of the cellular status of the macroschizont or the control of host proliferation. A third aim of this chapter was, therefore, to determine the expression profile of the TashAT1 polypeptide during merogony by Westem blot and IFAT analysis.

Differences in the levels of TashATl mRNA were also discovered between D7 cells and D7B12 cells (a cell line attenuated for the differentiation process) under differentiation conditions. The attemated D7R12 cells are able to proliferate at $41^{\circ} \mathrm{C}$ and show minimal levels of individual differentiating cells, following prolonged culture at an clevated temperature (Shiels et al., 1994). If the TashAT'1 polypeptide was down regutated in differentiating cells (D7), but remained effectively constant in non differentiating cells (D7B12), this would provide an interesting link between the presence of the TashAT1 polypeptide and the inability of the parasites to differentiate. Thus, the fourth aim of this chapter would be to determine the expression levels of TashAT1 polypeptide in D7B12 cells under differentiation conditions.

The fifth and final aim of this chapter was to investigate if TashAT1 was expressed in other T. annulata stages. The sporozote slage was of particular interest as TashAT1 mRNA were identificd in sporozoites by Swan et al. (2001a) where it was suggested that the gene could be involved in sporoblastogenesis or in the establishment of the parasite after sporozoite entry into the leukocyte. If TashAT1 was found to be expressed at the polypeptide level in sporozoites, this could indicate that 'lashATl has more than one function during the parasite life cycle or is involved in the initial phase of establishing infection within the white blood cell.

5.2 Results

5.2.1 Production of a GST-TashAT1 fusion protein and anti-sera generation

To analyse the polypeptide encoded by the Tashatl gene, it was necessary to generate antisera against a portion of this genc. The deduced peptide sequences of Tashat/ and Tashat2 were similar (46.1%) over the AT hook encoding regions in the C-teminal half of Tashath (see chapter 3). Hence, the amino acid sequences were screcned to find a unique region of Tashatl, which would be specific for Tashat/ alone. To eliminate regions of strong homology, a DNA scquence comparison was perfomed between Tashati and Tashat2 and also with the 1.2 kb EcoRI fragment from λ dash 13 , which were found to encode parts of another TashAT gene, subsequently identified as Tashat3. From these comparisons, a 368 bp region located at the five prime end of the TashATl ORF was chosen because it was least similar to any of the related sequences available at that time (see Fig. 5.1). This fragment was positioned $55 b$ p downstream of the first putative translational stat site, excluding most of the potential signal sequence, reducing the possibility of cross reactivity with other Theileria polypentides carrying a similar signal sequence. Furthermore, as the signal sequence may be cleaved off during membrane translocation, in a similar mamer deseribed for the sur 「ace polypeptide Tamsl (Gubbels et al., 2000), it would not be a good target for the generation of antisera for immunolocalisation studies.

Two primers (1 and 2, shown in Appendix A) were designed to amplify the 368bp region using the λ dash 13 clone as template DNA. These primers respectively incorporated EcoRI and BamH1 cloning sites into the tinal PCR framment, so that the PCR fragment could be directionally cloned into the expression vector pGEX2TK, a well established system for expression of fusion proteins from recombinant DNA. The resultant PCR product amplified from λ dash 13 (see Fig. 5.2) and λ dash 1 DNA (which both contain TashAT1) gave a single strong band upon agarose gel electrophoresis contirming that this region of DNA was unique in these clones. Despite attempts to optimise PCK conditions, an additional band at 600 bp was observed in lane 1 , containing D7 genomic DNA. This band may represent a gene sharing identity with TashAT1 or could have been an artefact due to non-specific annealing of the primers to genomic DNA. The 368 bp PCR product was called Tash Λ T1-N, and cloned into pCTX2TK vector. A 0.9 kb FindIII/EcoRV probe
(which overlapped with the five prime region of TashATl) detected a DNA fragment of this size by Southern blot analysis in a restriction digested 'l'ashAT1-N clonc (sec Fig. 5.3), indicating that this producl was derived from Tashatl (lane 2). Although the pGEX2TK vector was also detected by this probe (lane 1), this was likely to be due to bybridisation of remaining vector sequence in the probe. Sequence analysis confirmed this insert was 100% identical to the corresponding region of TashATl (Fig. 5.4), and was therefore suitable for expression of recombinant TashAT1-N.

Initial experiments to induce expression of Tashatl-N in E. coli XL- 1 blue cells produced minimal levels of fusion protein, which may have been caused by high rates of degradation of the foreign fusion protein in these bacterial cells. Therefore the cells were induced at 30° C and $37^{\circ} \mathrm{C}$ over a 4 hour period, in an attempt to reduce the rate of degradation of 'TashATl-N. The data presented in Fig. 5.5 showed the presence of a product at 45 kDa (lanes 10 and 11) after 60 minutes, with a marked increase in levels at 120 minutes (lanes 13 and 14). However a further 120 minutes of incubation did not increase the yiold of the 45 kDa polypeptide (lanes 17 and 18). The 45 kJa product was considered to be the Tashati-N fusion protein because the size of this product approximated the predicted molecular mass of the TashAT1-N fusion protein (41 kDa) and it was only detected in the induced cell extracts. The yields of TashATI-N fusion protein appeared to be equal at both $30^{\circ} \mathrm{C}$ and $37^{\circ} \mathrm{C}$ at all time points (see Fig. 5.5), and indicated that temperature was not the reason for the low yields. The yiclds of TashAT1-N alone (lanc 14) were markedly lower compared to those of the GST polypeptide (lane 15) or the fusion protein, cl10, at approximatcly 70 kDa (lane 16). However, the levels of TashAT1-N polypeptide were estimated to be sufficient for protein purification and antisera production.

To purify TashAT1-N product, XL1-blue cells expressing TashAT1-N fusion protein were sonicated to disrupt the bacterial cell walls (described in section 2.2.8) and the resulting supernatant and pellet fractions analysed by SDS-PAGE as shown in Fig. 5.6. This resuit revealed that the fusion protein was present in both the supernatant and in the pellet fractions, most likely due to TashAT1-N being partially insoluble, as other polypeptides in the sample were fully separated into their respective fractions. Puritication of the fusion protein was performed over a glutathione column (see section 2.2.8). Bound fusion protein was then washed and eluted from the colum by reduced glatathione solution. SDS PAGE analysis in Fig. 5.6 demonstrated that TashAT1-N was successfilly eluted at a greater concentration (lane 4) compared to the induced bacterial supernatant (lane 2). Some minor contamination by residual bacterial proteins that were eluted with TashAT1-N were also
detected (lane 4, Fig. 5.6). To remove the excess salts and to concentrate the fusion protein, the sample was dialysed against PBS as described in section 2.2.8. The concentration of TashAT1-N was increased by approximately 40% (lane . 5, Fig. 5.6).

The total concentration of TashAT1-N was $1.5 \mathrm{mg} / \mathrm{ml}$. Antiscra (called 107 and 104) was generated against TashAT1-N from 2 New Zealand White rabbils after three boosts and antiserum 107 tested on fusion protein extract, shown in Fig. 5.7. The strongest reactivity observed was against purificd TashAT1-N fusion protein, in the induced XL-1 blue cell extract (lanes 4 and 5), and to a lesser extent, (SST alone, at 27 kDa , (lane 2). Reactivity was also detected against the uninduced XI-1 blue coll extract (lane 1). Thus, reactivity of this antiseral appeared to be directed against the 41 kDa TashATI-N polypeptide in cells expressing TashAT1-N fusion protein. Reactivity was also observed with another parasite Gision protein, cl10, at approximately 70 kDa (lanes 6 and 7), which was probably due to antibodies generated against GST. Other minor bacterial proteins were also detected by antiserum 107. These results showed that antiserum 107 reacted strongly to TashAT1-N, and could be of use in the identification of TashAT1 by Western blot analysis of infected cell extracts.

In summary, a GS'T-fusion protein was produced from a region of TashiTl, TashAT1-N, which showed no homology to Tashat2 or any other sequence at the time. Antisera were then generated against the TashATI-N fusion protein, purilied from bacterial cell extract. Westem blot analysis of this antisera showed an increased reactivity to TashAT1-N fusion protein, making it suitable for analysis on infected cell cultures.

A
－MMVVLKLSHIIFTLFむYRVKFASSETLYTDNLDNPNFVTIKIVEDRLTKI

10：NAVDEAMKFIYVSGNヨYKYINKSEFEEYYKSFCSVFIKIPPGKIPTPRT，K
151．KNVKTEKVDKRKLKRDRQREDKPQSEOHDKNVDIVSQSJAZEGIDIJEKKI：
201 VGRELP＇ 2 ＇QQ＇JEKQQEP＇IELヨPETIPVEEESDDEFZDESNVSKPKESDGIL

301 LDTQTDIQELENIGIQTIGNFSDITEVTKKHEQPEVPKKRPGRPRKOKPE

401 ЭKRKRGRPRKQKYETKINWI LRPRNMKTETKKTWELRPRKHKPEPEQFKR
451 KRCRン次KQKIEISSDT
B

Fig．5．1：Putative peptide sequence of Tashat1（panel A）and sequence comparison between the TashAT1－N fusion protein and TashAT2（panel B）．The region designed for the TashAT1－N fusion protein is underlined；the putative signal sequence is indicated in bold．The identity score for the sequence comparison in panel B was 87.5% identity in a 16bp overlap．

Fig. 5.2: PCR amplification of Ta369. D7 genomic DNA (lane 1); λ dash 13 (lane 2); λ dash 1(lane 3) and $\lambda \mathrm{Ta}$ (lane 4). Sizes of DNA fragments are indicated in bp.

Fig. 5.3: Southern blot of Ta369 clone, hybridised with a 0.9 kb HindIII/EcoRV probe overlapping the five prime region of TashAT1. Lane 1: pGEX2TK; lane 2: Ta369 cloned into pGEX2TK; lane 3: $\lambda \mathrm{Ta}$ 1, all digested with EcoRI and BamHI. Arrows indicate the DNA fragments detected (kb).

Fig. 5.4: DNA sequence comparison between TashaTl and the PCR product of the potential Tashat1 fusion protein, Ta369. Sequence comparison shows 100% identity over a 374 nucleotide overlap. Sequence in bold type and underlined indicale the BamHl and EcoRI restriction enzyme sites respectively.

Fig. 5.5: Expression of TashAT1-N fusion protein in XL-1 blue E.coli cell extracts at 5 time points Time points indicated in minutes above the lanes. Lanes 1-4 contains extracts derived from un-induced cells: Lanes 3, 7, 10, 13 and 17 contain extracts of cells expressing TashAT1-N at $37^{\circ} \mathrm{C}$, whereas lanes $4,8,11,14$ and 18 contain extracts of cells expressing TashAT1-N at $30^{\circ} \mathrm{C}$. Arrows on the left indicate the molecular weight markers (in kDa); the arrow head on the right indicates the fusion proteins detected.

Fig. 5.6: Purification of the fusion protein TashAT1-N shown by SDS-PAGE. Lane 1 shows the induced whole bacterial cell extract, lanes 2 and 3 contain the supernatent and resuspended pellet, respectively after sonication. Lane 4 contains the eluate after column purification of the bacterial lysate. Lane 5 contains the eluate after dialysis. Numbers on the left indicate the molecular weight markers (in kDa). The arrow head indicates theTashAT1-N-GST fusion protein.

Fig. 5.7: Western blot analysis of E.coli extracts expressing TashAT1-N, with antiserum 107. Lane 1 : uninduced XL-1 blue cell extract containing pGex alone; lane 2: induced XL-1 blue pGex cell extract expressing GST. Lane 3: induced XL-1 blue TashAT1-N-GST cell extract. Lanes 4 and 5: purified TashAT1-N-GST. Lanes 6 and 7: XL-1 blue cell extract, induced to express the cl-10 GST fusion protein. Numbers on the left indicate the molecular weight markers (in kDa). The arrow heads on the right, indicates the fusion proteins detected.

5.2.2 Detection and localisation of the TashAT1 polypeptide

Western blot analysis was performed with D 7 and BI 20 protein extracts using antisera 104 and 107 to detect the TashAT1 polypeptides and/or the presence of any related polypeptides. Each antiserum was used at a different dilution to determine the optimal concentration. The results, in Fig. 5.8A and B, showed that both antisera reacted to a polypeptide at approximately 66 kDa . From sequence data, the predicted molecular mass of TashAT1 is 55.3 kDa , and atthough the polypeptide detected did not match the size of the predicted mass of TashAT1, it was within range taking into account aberrant mobility and any possible post-translational modifications of this polypeptide. A comparison of sera 107 and 104 revealed that serum 107 was the most sensitive, showing reactivity at a dilution of 1:200, whereas serum 104 only reacted with the polypeptide at $1: 50$. Further Western blot and IFA studies with serum 104 (data not shown) showed that serum 104 recognised the same polypeptides but more faintly. Since serum 104 was found to be less sensitive than 107, the latter was chosen for future work. In lane 1 (Fig. 5.8), a polypeptide of approximately 66 kDa and a larger polypeptide at 125 kDa were also present in the BL20 extract reacted with antisera 107. This result indicated that cross-reactivity had occured with host derived polypeptides.

When further Western blot analysis was performed with D7 and D7B12 using serum 107 (shown in Fig. 5.9), two polypeptides were delected at approximately 66 kDa and 71 kDa and a larger polypeptide at 180 kDa was also detected in D7B12 extract (Fig. 5.9A). The only polypeptide detected in D7 extracts was at 66 kD a in Fig. 5.9A. However, a separate Western blot (Fig. 5.9B) revealed the same three polypeptides, estimated to be approximately 180 kDa and 71 kDa and 66 kDa in D 7 cell extract, within the fimits of the percentage gel used. This demonstrated that detection of polypeptides in D7 cell extracts was variable using antisera 107.

Based on size considerations, the 180 kDa band is unlikely to represent the TashAT1 polypeptide. Given that this band appeared to be specific to Theileria infected cells, it is possible that antisera 107 detected shared amino acid epitopes with a related polypeptide, such as TashAT3. The 180 kDa polypeptide was unlikely to be TashAT2 firstly because of the sequence divergence of TashAT1 and TashAT'2 over the region used to generate the TashAT1 fusion protein, and secondly because the TashAT2 polypeptide was found to be 150 kDa (Swan et al., 1999). Indeed, following the production of the antisera it became apparent that TashAT3 was the most likely candidate for the 180 kDa band because the

Tash Λ Tl-N polypeptide was found to be 100% identical to the N -terminal section of TashAT3. Also this band was within range of the predicted molecular weight of TashAT3 polypeptide (113 kDa). The difference in the predicted and actual sizes of TashAT3 could be due to aberrant molecular mobility of the 'TashAT' polypeptides combined with less accurate size estimation with the percentage of acrylanide used for the SDS-PAGE gel or post-translational modifications.

Due to the recognition of polypeptides in the BL20 cell extract, a peptide blocking experiment was performed to detemine if scrum 107 reacted specifically with the polypeptides detected in D7 cell extacts, by Western blot analysis. In this assay, serum 107 was pre-incubated with its cognate fusion protein, TashAT1-N, before being used to probe a blot of D7 protein extract. If the reactivity was specific and related to epitopes it the fusion protein then it would be expected that all the antisera wonld bind to TashAT1-N, resulting in no, or significantly reduced reactivity compared to the reactivity of antiscra alone with D7 extracts. Fig. 5.10 demonstrates that all three polypeptides detected by nonblocked serun 107 in the D7 extract (Panel C) were blocked upon pre-incubation with TashAT1-N (pancl E). When serum 107 was pre-incubated with induced XL-1 bluc cell extract expressing GST detection of the 180,71 and 66 kDa polypeptides was not blocked (Panel D). Thus this experiment showed that specific detection of the three polypeptides by the 107 antiserum was due to specific epitopes binding in the cognate fusion protein and not due to cross reactivity with epitopes present in GST or a contaminating bacterial polypeptide.

To investigate the localisation of polypeptides detected by sermm 107 within a macroschizont-infected cell, IFAT analysis was performed with cells derived from D7 and D7B12, cultured at $37^{\circ} \mathrm{C}$. The results (Fig. 5.11) showed strong recogntion of both bost cell muclei and the macroschizont in D7B12 cells. Antiscrum fluorescence was also detected in host nucleus and macroschizont of D7 cells (panel D) as confirmed by DAPI staining of the host and parasite nuclei of D7 cells (panel E), but to a lesser extent. This was similar to the pattern obtained with the EL24 or DE39 antiscra raised against TashAT2 (Swan et al., 1999). No reactivity was observed using pre-immune serum with D7 cells (panel B), confiming that antibodies were not generated against polypeptides in the infected cells, other than TashAT1-N. In pancl A, no reactivity was detceted itı the uninfected bovine BL20 with serum 107, indicating that antiserum 107 did not react to host derived polypeptides by IFAT. In contrast repeated Western blot experiments sometimes revealed the presence of a 66 kDa band in BL20 extracts (as shown in Fig. 5.8) and by

Swan et al. (2001a). Therefore based on this data antiserum 107 could not be used to distinguish TashAT1 and TashAT3 by IFAT and was re-named anti-TashAT1/3 serum.

To climinate the possibility that the IFAT fluorescence was due to recognition of TashAT2, the anti- 'IashAT'1/3 scrum was incubated with a Bovinc Macrophage cell line (BoMacs) that had been transfected with a construct expressing the TashAT2 polypeptide (apart from 23 N -terminal amino acids). Fig. 5.12 showed that anti-TashAT1/3 sera did not react with BoMac cells exprossing TashAT2 (Fig, 5.12A), compared to DE39, an antiserum raised against TashAT2, which showed strong nucloar reactivity (Fig. 5.12C). As anti--Tash 1 T1/3 scrum was shown previously to react against D7 cells, the results indicated that TashAT2 is not recognisel by the anti-TashATI/3 serum by TFAT.

Western blot analysis was also performed on 07 extracts using antisera DE39 raised against the $A T$ hook encoding region of TashAT2, that is common to all TashAT genes, to determine if the polypeptides detected by anti-TashAT1/3 serum are also recognised by this antisera. The results in Fig. 5.13 showed that antisera DE39 predominantly detected a number polypeptides, including four major bands estimated to be $58 \mathrm{kDa}, 90 \mathrm{kDa}, 160 \mathrm{kDa}$ and over 200 kDa in D7B12 cell extracts, only the 90 kDa polypeptide was detected in D7 cell extracts. However, none of the polypeptides, detected by antiserum DE39 corresponded to the polypeptides detected by anti-YashAT $1 / 3$ serum, apart from the 58 kDa polypeptide. This latter polypeptide might be a Tash AT'l candidate, although antiserum DE39 detected a number of polypeptides at this size. It was also possible that the 160 kDa polypeptide in lane 4 corresponded to the 180 kDa polypeptide, identified in Fig. 5.9, but the 180 kDa band was not detected in cither D7 or D7B12 cell extracts, (possible due to poor polypeptide transfer onto the membrane) so this could not be verified. The position of the 205 kDa molccular weight marker was deduced from a double log graph of the molecular weight markers (data not shown) as this band was not delected.

Although anti-TashAT1/3 serum detected three polypeptides, it was not known if the host and/or parasite IFAT reactivity corresponded with these polypeptides. Parallel studjes performed at this time (Stadler, unpublishod, 2000) identified two T. annulata cell lines (Ta46A and TBL20) which did not contain TashaTI specific restriction fragments by Southern blotting. However, the TashAT3 gente was thought to be present in Ta46A cells by Southern blot atoalysis (Stadler, unpublished, 2000) and small amounts of TashAT3 mRNA were detected in TBL20 cells by Northern blot analysis (Swan et al., 2001a).

In order to determine if the 66 kDa or 71 kDa polypeptides and the 180 kDa polypeptides were in fact TashAT1 and TashAT'3 respectively, Western blot analysis was performed with Ta46A and TBL20 cell extracts and compared with those of D7 and D7B12 extracts (Fig. 5.14). The results revealed two bands at 71 kDa and 66 kDa (seen as a doublet) and a band at 55 kDa in both the Ta46A and TBL20 cell lines. These bands were identical to the polypeptide profile of D7 and D7B12 respectively (sce lancs 1 and 2). In Fig. 5.14 (lane 5) the same polypeptides and ant additional band at 70kDa were also present in BL20 cell extracl (which shares the same lineage as TBL 20 cells). This clearly demonstrated that the polypeptides detected by anti-TashAT1/3 serum at 66 kDa or 71 kDa were not TashAT1, as they were detcted in twa cell lines that lack the TashaT/ gene and in uninfected cells. The origin of the 66 kDa and $7 / \mathrm{kDa}$ polypeptides in D 7 cells may be host cell derivet, or could be homologues of the TashAT genes.

To investigate further whether either the 71kDa or the 180 kDa were responsible for the reactivity observed in D7 and D7B12 cells by IFAT, Ta46A and TBL20 cells were subjected to IFAT analysis. The results (see Fig. 5.15) showed that anti-TashATI/3 serum produced no reactivity against the host nucleus or the macroschizont of Ta46A cells (Fig. 5.15, panel C), in contrast to D7 and D7B12 cells (Fig. 5.11, panels C and D). However, TBL20 cells, which contained Tashat3 but not TashAT1, showed weak reactivity in the host nucleus but not in the macroschizont (Fig. 5.15, patmel B). These results revealed that neither the 66 kDa band nor the 71 kDa polypeptides could be responsible for the macroschizont and host reactivity detected in D7 cells as no reactivity was detected in Ta46A cells by lFAT, which lacked the TashAT/ gene. The identity of the polypeptide responsible for host nuclear roactivity with anti-TashAT1/3 serum in TBL20 cells could be the 180 kDa polypeptide but this could not be confirmed by Western blot analysis because this molecule was not detected in Fig. 5.14. As no reactivity was detected in BL20 cells (Fig. 5.11, panel A), the host reactivity in TBL20 cells is unlikely to be due to a host polypeptide.

In summary, three polypeptides were initially detected in D'7 and D7B12 cell extracts by anti-TashAT $1 / 3$ serum. Two of these molecules at 66 kDa and 71 kDa were similar in size to the predicted molecular weight of TashAT1 (55.3 kDa). A comparison of these cell lines with other cell lines, lacking the Tashatl gene, showed that the 66 kDa and 71 kDa polypeptides did not represent the TashATl polypeptide. The third polypeptide detected at 180 kDa , was predicted to be TashAT3, based on its size and sequence identity with TashAT1 predicted polypeptide. IFAT analysis with anti-TashAT1/3 scrum showed
reactivity in both the host nucleus and the macroschizont in D7 cells, and to a greater degree in D7B12 cells.

Fig. 5.8: Western blot analysis of D7 cell protein extract at $37^{\circ} \mathrm{C}$ with antisera 107 and 104. Lanes 1 and 9: BL20 control extract incubated with $107(1 / 200)$ and $104(1 / 200)$ respectively. Lanes 2-4: D7 cell extract incubated with 107 at $1 / 1000$ (lane 2), 1/200 (lane 3) and $1 / 50$ (lane 4). Lane 5 : D7 extract incubated with pre-immune 107 serum at $1 / 200$. Lane 6 and 7: D7 extract incubated with 104 at $1 / 200$ and $1 / 50$ respectively. Lane 8 : D7
extract incubated with pre-immune 104 serum (1/50). Numbers on the left represent molecular weight markers (in kDa). The arrow head indicates the polypeptide detected.

Fig. 5.9: Western blot analysis of T. annulata infected leukocyte and BL20 control extract with antiserum 107. Panels A and B refer to two separate western analyses. Numbers on the left indicate the molecular weights markers (in kDa). Arrow heads on the right indicate the polypeptides detected.

Fig. 5.10: Western blot analysis of a D7 cell extract blocked with TashAT1-N using antiserum 107. Panel A: protein extract from XL-1 blue cells expressing TashAT1-N-GST. Panel B: pre-immune serum; panel C: antiserum 107; Panel D: antiserum 107 pre-blocked with XL-1 blue cell extract expressing the GST polypeptide; Panel E: antiserum 107 pre-blocked with TashAT1-N-GST. Numbers indicate the molecular weight markers (in kDa). Arrow heads indicate the polypeptides detected.

Fig. 5.11: IFAT analysis of T. annulata macroschizont infected leukocytes and BL20 cells with various antisera. Cells were counter-stained in red, antisera reactivity is shown in green. Panel A: BL20 cells reacted with
anti-TashAT1/3 serum; B: D7 cells reacted with pre-immune serum; C: D7B12 cells reacted with anti-TashAT1/3 serum; D: D7 cells reacted with anti-TashAT1/3 serum; E: same as panel D treated with DAPI nuclear stain (blue). H indicates the host nucleus; the arrow indicates the macroschizont. $\mathrm{Bar}=10 \mu \mathrm{~m}$

Fig. 5.12: IFAT analysis of Bovine macrophage cells (BoMacs) with sera 107 and DE39. Cells were counter-stained in red; antisera reactivity is shown in green. Panels A and C: BoMacs transfected with TashAT2 with sera 107 and DE39 respectively. Panel E:Non-transfected BoMac cells with DE39. Panels B, D and F are the corresponding DAPI stained cells to panels A, C and E respectively. $\mathrm{Bar}=10 \mu \mathrm{~m}$.

Fig. 5.13: Western blot analysis of macroschizont infected leukocytes with anti-TashAT1/3 and DE39 antisera. Cell extracts: D7B12 (lane 1); D7 (lane 2), BL20 (lane 3); D7B12 (lane 4) and D7 (lane 5). Numbers on the left indicate molecular weight markers (in kDa); dotted line indicates deduced marker position. Arrow heads indicate the major polypeptides detected.

Fig. 5.14: Western blot analysis of cell extracts derived from four T.annulata cell lines and BL20 control cells reacted with TashAT1/3 antiserum. Lane 1:D7B12 cells; lane 2: D7 cells; lane 3: Ta46A cells; lane 4: TBL20 cells and lane 5: BL20 cells. Numbers on the left represent molecular weight markers (in kDa); arrows on the right indicate the polypeptides detected.

Fig. 5.15: IFAT analysis of T.annulata infected cell lines TBL20, Ta46A with various antisera. Cells were counter-stained in red; anti-sera reactivity is shown in green. Panel A: TBL20 cells with pre-immune serum and anti-TashAT1/3 serum in panel B.
Panel C: Ta46A cells reacted with anti-TashAT1/3 serum; panel D: same as panel D treated with DAPI nuclear stain (blue). Panel E:Ta46A cells reacted with positive control serum R881; panel F: same as panel E treated with DAPI nuclear stain. H : host nucleus; arrow head indicates a macroschizont. $\mathrm{Bar}=10 \mu \mathrm{~m}$.

5.2.3 TashAT3 polypeptide expression during differentiation to the merozoite

To compare the expression prolile of the polypeptides detected by anti-TashAT $1 / 3$ serum with that of the TashAT1/3 mRNA transcripts during merogony, Western blot analysis was performed on cell extracts from a D7 cell differentiation time course (rig 5.16). Two bands were detected in the D7 cell extract, one at 180 kDa and a second at approximately 71 kDa that was previously eliminated as a Tashat polypeptide candidate. The levels of the 180 kDa polypeptide increased from 6 hours to 24 hours and stayed at this elevated level until 48 hours, except at the 31 hour time point, which showed diminished levels of this polypeptide. At day 4 (96 hours), only traces of the 180 kDa polypeptide were visible; by day 6 (144 hours), no traces of this polypeptide were observed.

To show that the reduction in the levels of the 180 kDa polypeptide was associated with differentiation, Western blot analysis was performed on the D7B12 cell line (attemuated for differentiation), incubated under differentiation time course conditions (see Fig 5.17). These results showed two bands at approximately 180 kDa and the non-Tashit polypeptides at 66 kDa , and at 71 kDa (from days 4 and 6 only). The levels of the 66 kDa polypeptide remained constant over the time course apart from day 4 , where it was slightly elevated. The 180 kDa polypeptide showed litte variation from day 0 to day 6 , although there was a noticcable inercase in fevels at day 4. The levels of total protein extract, as measured by Ponceau staining (data not shown), did not increase at day 4. Thus, no progressive reduction in the levels of the 180 kDa polypeptide in D 7 B 12 cells was detected from day 0 to day 6 , unlike its profile in D 7 cells.

To confirm the down regulation of host nuclear and/or parasite polypeptides detected by anti-TashAT1/3 during merogony, IFAT analysis was performed on a D7 cell differentiation time course. In general, these results (Fig. 5.18) revealed that both host nucleus and macroschizont reactivity decreased as the macroschizont differentiated towards the merozoite. IIowever, snall differences were observed between the reactivity of the host nuctens and the parasite in this experiment. Reactivity in the host nucleus was relatively weaker than in the macroschizont at day 0 . At day 2 the reactivity in the macroschizont had disappeared in the majority of cells, whereas host reactivity became stronger at this time point. No reactivity was detected in the macroschizont at day 4 and day 6. Host nuclear reactivity became fainter in cach cell at day 4 , and the number of cells showing host nuclear reactivity also became less frequent. This trend continued to day 6 ,
although some host nuclear reactivity was still visible at the last time point, consistent with an asynchronous culture.

To confirm that the decrease in reactivity in the host mucleus and parasite detected by IFAT was due to differentiation, IFAT analysis was performed on D7B12 cells under differentiation time course conditions (see Fig. 5.19). The levels of host nuclear and parasite fluorescence remained constant from day 0 to day 6 , although a slight decrease in parasite reactivity at day 6 was observed in D7B12 cells, but not to the same degree as the reactivity in D7, day 6 cells. Parasite and host nuclear reactivity remained unchanged from day 0 to day 2 , unlike their counterparts in D 7 cells at this time point.

In summary, the results of Western blot analysis showed a reduction in the levels of the 180 kDa polypeptide in D7 cells undergoing merogony. This reduction was not so apparent in D7B12 cells that are unable to undergo differentiation to the merozoite. The results of IFAT analysis of D7 and D7B12 cells under differentiation conditions showed that reactivity of anti-TashAT $1 / 3$ serum had decreased with respect to both the host nucleus and the parasite in D7 cells overall, however, this reduction was not observed for D7B12 eclls.

Fig. 5.16: Western blot analysis of $D 7$ cell extracts taken from a differentiating time course incubated with anti-TashAT $1 / 3$ serum. Time points are indicated (in hours) above each lane; numbers on the left indicate the molecular weight markers (in kDa); the polypeptides detected are indicated by arrows.

Fig. 5.17: Western blot analysis of a D7B12 differentiation time course, incubated with anti-TashAT1/3 serum. Time points (hours) are indicated above each lane; day $0=\mathrm{D} 7$ cells at $37^{\circ} \mathrm{C}$. Numbers indicate molecular weight markers (in kDa). The polypeptides detected are indicated by arrow heads.

Fig. 5.18: IFAT analysis of a D7 cell culture time course at $41^{\circ} \mathrm{C}$. Cells were counter-stained in red; antisera reactivity is shown in green. BL20 cells (panel A); D7 cells reacted with pre-immune serum (panel B) and
anti-TashAT1/3 serum at day 0 (panel C); day 2 (panel D); day 4 (panel E) and day 6 (panel F). H represents the host nucleus and the arrow indicates the macroschizont. $\mathrm{Bar}=10 \mu \mathrm{~m}$.

Fig. 5.19: IFAT analysis of D7B12 cells under differentiation time course conditions. Cells were counter-stained in red; antisera reactivity is shown in green. Panel A: reacted with pre-immune serum; panels B, C,D and E: reacted with anti-TashAT1/3 serum at day $0,2,4$ and 6 respectively. H : indicates host nucleus; arrow indicates a macroschizont. $\mathrm{Bar}=10 \mu \mathrm{~m}$.

5.2.4 Localisation of the TashAT3 polypeptide during differentiation to the merozoite

Previous Western blot analysis identified a 180 kDa polypeptide with anti-TashAT1/3 serum, but IFAT analysis revealed reactivity in the host nucleus and in the parasite. In order to determine where the 180 kD a polypeptides was located during differentiation, Westem blot analysis was performed with host and parasite enriched nuclei extracts over differentiation time course conditions in D7 and D7B12 cclls. The results (Fig. 5.20A) identilied five main bands at approximately $55 \mathrm{kDa}, 66 \mathrm{kDa}, 7 \mathrm{kDa}, 80 \mathrm{kDa}$ and finally 180kDa polypeptide. The size of the latter polypeptide was calculated fiom the deduced position of the 205 kDa molecular weight marker, derived from a double log graph of the standard molecular weight markers because it was not detected by ponceau staining. The 180 kDa polypeptide was enriched in the D7BI2 host nuclear extracts at day 0 and day 9 . By contrast the 180 kDa polypeptide was absent in whole and parasite cxtracts at both time points, although no reactivity was detected in the parasite extracts at day 0 , so this result would have to be repeated with a control for parasite reactivity. The levels of the 180 kDa polypeptide in the host nuclear fraction had decreased from day 0 to day 9: this was consistent with the ponceau stained filter (data not shown), which showed reduced protein concentration in this lane.

Analysis of the 180kDa polypeptide in D7 cells (Fig. 5.20B) also showed an entichnent in host nuclear extracts at day 0 and day 2 , but this band disappeared after day 2 . The decrease in 180 kDa polypeptide levels occurred at an early stage in D7 cells compared to D7B12 cell, where this polypeptide was still detected at day 9 . The profile of the 180 kDa polypeptide was also similar to the equivalent band in whole cell extracts by Western blot analysis (Fig. 5.16) and to the host nuclear reacivity by IFAT (Fig. 5.18), although residual reactivity was also seen in the host nucleus at days 4 and 6 by IFAT. The lack of reactivity with anti-TashTA1/3 serum at day 4 and day 6 in Fig. 5.20 B may be due to the relative insensitivity of Western blot analysis compared to HAT.

In order to confirm nuclear reactivity and verify the purity of the host and parasite fractions in Fig. 5.20, IFAT analysis was performed with enriched nuclear extracts. The results, seen in Fig. 5.21, revealed that the host nuclei are relatively pure, particularly in D7B12 extracts but do contain some parasite material. There appeared to be a lot of host cell debris in the parasite fractions of both D7 and D7B12 extracts, but very few fluorescent host nuclei were observed in the parasite extract. Nonetlocless it is probable that more host material was
present in the parasite fraction. The parasite fractions of D7 and especially D7B12 extracts showed fluorescent paricles that could be macroschizont nuclei. Although this would need further verification by counter staining with DAPI, this might suggest that anti-TashATI/3 serum reacted against the macroschizont nuclei. The apparently low level of contamination in the host cell fraction indicates that the Westem blot results are likely to be reliable with respect to host nuclear enrichment.

In summary, Western blot analysis indicated that the 180 kDa polypeptide was located in the host nuclei and its levels decreased during merogony, consistent with previous data. IFAT analysis also showed reactivity from extracts enriched for host nuelei: there was very litte contamination of host and parasite nuelei fractions from cach other, incticating the results of Western blot analysis were reliable.

Fig. 5.20 : Western blot analysis of host and parasite enriched nuclear extracts from T. annulata infected leukocytes reacted with antiTashAT1/3 serum during a differentiation time course.Panel A: D7B12 cell extracts at day $0(0)$ and day 9 (9). Panel B: D7 cell extracts from day 0 to day 6 . B: BL20 cell extract; W, H and P: whole cell, host and parasite enriched nuclear extracts, respectively. Numbers indicate molecular weight markers (in kDa); dotted line indicates deduced marker position. Arrow heads indicate the polypeptides detected.

Fig. 5.21: IFAT analysis of host and parasite enriched nuclear fractions at $37^{\circ} \mathrm{C}$ from macroschizont infected leukocytes.
Cellular material was counter-stained in red; antisera reactivity is shown in green. Panels A and B: D7 host and parasite nuclei respectively with control pre-immune serum. Panels C and D : D7 host and parasite nuclei respectively using anti-TashAT1/3 serum. Panels E and F: D7B12 host and parasite nuclei respectively with anti-TashAT1/3 serum. Arrow indicates parasite nuclei. H indicates a host nucleus. $\mathrm{Bar}=10 \mu \mathrm{~m}$.

5.2.5 TashAT1 and TashAT3 expression in sporozoites

Previous investigations by Swan et al. (2001a) revealed that TashAT1 and TashAT3 were expressed at the mRNA level in sporozoites. As IFAT analysis appeared to be the most reliable method to detect TashAT3 and possibly TashAT1, T. annulata sporozoites were subjected to IFAT analysis to determine if Tash/T3 or TashAT1 were expressed at this stage (see Fig. 5.22).

The results slowed no reactivity in the T. annmlata sporozoite infected tick salivary gland preparation with the anti-TashAT $1 / 3$ scrum (Fig. 5.22, panel A). To identify the sporozoite nuclei, the infected tick preparation was also counter-stained with DAPI (Fig. 5.22, pane) C). A composite image was prepared from the images in pand A and C (Fig. 5.22, Pancl E), which contimed that the non-reactive material comesponded to the sporozoite nuclei. In contrast, the positive control, monoclonal antibody 1A7 (Boulter et al., 1994), which detects the sporozoite surface antigen, SPAG1, showed ractivity in panel B (Fig. 5.22) that corresponded to the DAPl-stained sporozoite nuclei (see Fig. 5.22, panels D and F). Assuming the IFAT reactivity detected in macroschizont infected cells is caused by recognition of TashATl or TashAT3, this indicated that the TashAT3 or TashAT1 polypeptide might not be expressed at this stage.

Fig. 5.22: IFAT analysis of T. annulata sporozoites using antiTashAT1/3 serum. Sporozoites were counter-stained in red; antisera reactivity is shown in green. Panel A shows reactivity against anti-TashAT1/3 serum; panel C shows the corresponding DAPI stained nuclei (blue); panel E is a composite image of panels A and C. Panel B shows reactivity against mAb, 1A7, with the corresponding DAPI stained nuclei in panel $\mathrm{D} ; \mathrm{F}$ represents the composite image of panels B and D.Arrow indicates the sporozoites and their corresponding nuclei. $\mathrm{Bar}=10 \mu \mathrm{~m}$.

5.3 Discussion

In order to study the expression of the TashAT1 polypeptide, antisera was generated to a unique region of the gene. One of these antisera detected at least three polypeptides at approximately $66 \mathrm{kDa}, 71 \mathrm{kDa}$ and 180 kDa in both D7 and D7B12 cells. However, the 66 kDa and 71 kDa polypeptides were eliminated as candidates for lashatl when they were detected in two cell lines, (Ta46A and TBL20) which lacked the Tashatl gene. It seems likely that these polypeptides are derived from the host as they were also detected in BL20 cell extract. It is possible that the 58 kDa polypeptide detceted by antiserum DE39 may relate to TashAT1, but this would require further verification as DE39 delected al lange number of polypeptides, some of which were of the same size. In addition. a 55 kDa polypeptide was also detected in Ta46A and TBL20 cells.

Bascd on size considerations, detection of the polypeptide at 180 kDa was likely to be due to cross recognition of a distinct polypeptide with related epitopes rather than specific recognition of the TashAT 1 protein. Given the sequence divergence between TashAT/ and Tashat2 over the region used to generate the fusion protein it was concluded that recognition of TashAT2 was not represented by the 180 kD a polypeptide. This was confirmed by the failure of serum 107 to detect BoMAC cells transfected with the Tashat2 gene. However, following the production of the antisera it became apparent that TashAT3 was a likely candidate for the 180 kDa band as the fashAT1-N polypeptide was later found to be 100% identical to the N -terminal section of Tash AT 3 . Moreover, the profile of this molecule closely matches the profile of TashAT3 mRNA with respect to differentiation. However, it is noticeable that there is a size difference in the prodicted size of TashAT3 and the actual size. This difference may be only be accounted for by aborrant migration of this polypoptide through the SDS-PAGE gel or that TashAT3 may be post-translationally modified. A more remote possibility is that the 180 kDa molecule was in fact a related Tashat cluster polypeptide. Confimation that this molecule is TashAT3 could be achieved by immunoprecipitation followed by peptide scquence analysis (Zalut et al., 1980) or mass spectrometry (Ross et al., 2002).

Western blot analysis with host nuclear and parasite enriched extracts together with $\operatorname{FF} A T$ on TBL20 cells provided some evidence that reactivity in the host nucleus was due to the 180 kDa polypeptide, the most likely candidate for TashAT3. When host and parasite enriched fractions of macroschizont infected cell extracts were analysed by Western blot analysis, the 180 kDa polypeptide was found only in the host nuclear enriched fraction.

F $\Lambda \mathrm{T}$ analysis also showed reactivity in the host nucleus as well as the macroschizont in D7 and D7B12 cells. However, the strongest evidence that detection of TashAT3 and not TashAT1, was probably responsible for the lost nuclear reactivity was the fact that fluorescence was observed in TBL20 host nuclei, a cell line which lacked the TashATI gene, but expressed TashAT3 mRNA. No reactivity was observed in BL20 control cells from the same host lineage, reducing the possibility that cross reactivity of a host polypeptide was responsible. Moreover, the weak host reactivity conforms to the weak detection of TashAT3 mRNA in the TBL20 cells (Swan ef al, 2001a). Thus, the reactivity in the host nuclcus suggeses that TashAT3 is translocated to the host mucleus. If TashAT3, like TashAT2 is translocated to the host cell nucleus, then it seems likely that it's function is to bind host DNA and modulate host cell gene expression. However, a more remote possibility is that host reactivity could be due to a further gene related to the TashAT cluster, also translocated to the host nucleus. To verify that TashAT3 is responsible for host cell reaclivity, a TashAT3 construct could be transfected into BoMAC cells to prove the polypeptide has the ability to enter the host nucleus. However, the development of a transfection system in Theileria infected cells would provide conclusive evidence that TashAT3 is transported into the host cell nucleus if performed in a cell line that lacks the TashAT3 gene.

The identity of the polypeptide(s) responsible for the IFAT reactivity against the macroschi\%ont in D7 was not clear since the reactivity detected in the macroschizont of infected cells with anti-TashAT $1 / 3$ serum could not be attributed to any of the polypeptides detected by Westem blot analysis. The 66 kDa and 71 kDa polypeptides were eliminated as possible candidates as they were present in cell lines that do not contain the TashATi gene and were also present in BI 20 cells. The 180 kDa . TashAT3 polypeptide was unlikely to be responsible as it was found to be preferentially localised to the host cell nucleus. Time course studies of D7 cells by IFAT, showed that macroschizont reactivity was switched off just prior to merogony and was barely detectable at the day 2 . It seemed possible that the polypeptide responsible for the macroschizont reactivity in D 7 and D 7 B 12 cells might be TashAT1 but is not recognised by anti-TashAT1/3 serum by Western blot analysis, possibly masked by the presence of other polypeptides that are detected by anti-'TaskA'1 $1 / 3$ scrum, of the same size. This theory is supported by the fact that macroschizont reactivity is not detected in cell lines that lack the TashAT1 gene, in contrast to that observed in D7 and D7B12 cells with anti-TashAT1/3. However it is possible that macroschizont reactivity in D 7 and D7B12 cells by FFAT is catused by a distinct but related polypeptide to TashAT1, which is present at reduced levels in Ta46A and TBL20 cells. Indeed, there is evidence of
other genes with similarity to the N-terminal region of TashATl, which are now being identified by Shiels and McKellar (2000). A more remote option is that macroschizont reactivity in D 7 and D 7 B 12 cells was due to a host factor translocated to the parasite. This possibility has been reported by Carrington et al. (1995), but is highly unlikely in this case as no reactivity was detected against anti-TashATI/3 in BL20 cells.

If the IFAT reactivity against the macroschizont is not due to TashAT1, the likely absence of a TashAT1 polypeptide in Westem blots could indicate that TashAT/ is a pseudogene, which may be transcribed but not translated. Some evidence to support this theory comes from previous work by which revaled that Tashath is unlikely to be an essential gene due to its absence in certain cell lines (Swan ef al., 2001a; Stadler, unpublished. 2000). The fact that Tashatl is almost identical to the N teminus of ToshAT3 might suggest that Tasha' ${ }^{\prime}$ is a functional substitute for Tash ATl. To identify a Tash A'l' polypeptide further studies could involve 2 dimensional gel electrophoresis followed by Western blot analysis to determine the approximated size and isoelectric point of the polypeptide. Future studies could also involve transfection of Ta46A cells (lacking the TashAT/ gene) with an epitope tagged-TashATh construct, followed by IFAT and Western blot amalysis. This would confirm the existence of the TashAT 1 polypeptide using anti-TashAT1/3 serum.

Western blot analysis of the TashAT3 polypeptide revealed that this polypeptide was also down regulated from day 2 to day 6 , during differentiation to the merozoite, in a similar fashion to its cognate mRNA. Interestingly, the increased levels of Tash TT 3 polypeptide is also reflected by increased levels of TashAT3 mRNA in D7B12 cells, between day 0 and day 2. By contrast, no decrease was observed for this polypeptide by Western blot analysis or IFAT in the attentated D7B12 cells, although the levels of this polypeptide did fluetuate. This could be explained by previous, unpublished observations by Shicls (2001) that show the levels of polypeptides in D7B12 can vary when these cells are cultured at $41^{\circ} \mathrm{C}$. Therefore, down regulation of TashAl'3 polypeptide may occur by reduction in mRNA production or stability. The early down regulation of TashAT'3 during differentiation suggests that the TashAT3 polypeptide may be associated with differentiation and maintenance of the macroschizont infected cell, cither by blocking differentiation in D7B12 cells or by stimulating cytokinesis.

The clcvated levels of TashAT3 in D7B12 cells might indicate that its cxpression is linked with attonuation. This docs not seem likely, as low levels of TashAT3 mRNA were detected in other attenuated cell lines (Swan et al., 2001a). A more likely explanation for
the high and stable levels of TashAT3 in D7B12 cells is that an unknown and variable alteration occurred when the D7B12 cell line was cloned that caused changes to TashAT expression. Onc possible outcome of such variable expression of TashAT genes in different Theileria infected cloned coll line, is that it could lead to changes in bovine gene expression and molecular phenotypes that have previously been described for these cells (Prcston et at., 2001, 1998; Sutherland et al., 1996; Somerville ef al., 1997, 1998b; Adamson et al., 2000ab; Oura et ah., 2001). To obtain more quantitative data on how TashAT polypeptide levels vary over a differentiation time course, their levels could be compared by densitometric analysis, with those of a constitutively expressed polypeptide using the same samples. In addition, the microtubule inhibitor nocodazole, which induces (reversible) cell cycle arrest in the infected cell (Baumyarther ef al., 1999), could measure the acemmation of TashA' polypeplides compared to a control over a time point and therefore determine the changes in TashAT expression with respect to parasite differentiation.

The detection of TashAll and TashAT3 mRNA in the sporozoite material raises the possibility that these genes are involved in sporoblastogenesis in the tick or in the imitial establishment of the parasite once the sporozoite has invaded the host cell. However, the preliminary IFAT results showed no reactivity in sporozoites with anti-" I'ashAT1/3 serum, although these results would have to be confirmed with pre-immune controls for 1 A 7 mAb or by Western blot analysis. It could be postulated, on the basis of these preliminary findings, that sporozoite specific post-translational modification of these polypeptides could mask detection by anti-TashAT1/3 serum or there may be problems with the sporozoite matcrial tested. However, another possibility could be that these mRNA transeripts are transcribed by the sporozoite but stored in a stable form in preparation for their rapid translation following invasion of the host cell. Alternatively, their expression may be confined to sporogony within the salivary gland of the tick. [t would be of interest to lest for the presence of TashAT1/3 polypeptides, by IFAT, immediately following invasion and differentiation to the trophozoite stage. In addition, other experiments could analyse infected salivary glands to determine, in particular, if the TashaTl/3 gene products are transported to the nucleus of the tick host cell.

The finding that TashAT2 and possibly TasbAT3 are transported out of the parasite, and may be processed and presented on the surface of the infected cell make them a potential target(s) for a schizont vaccine. Moreover, TashAT1/3 contain PEST sequences that are capable of targeting a polypeptide for proteolysis. There is evidence that PEST sequence-
encoding proteins give rise to immmogenic peptides presented on MIC I molecules (Rechsteiner and Rogers, 1996 and references thercin). This possibility could be verified by evaluating the T-cell responses of infected cattle to recombinant 'rasha'l'2 or TashAT3 antigens, as described for Toxoplasma antigens (Fatoohi el al., 2002). Swan et al. (2001a) demonstrated that TashAT2 is common to all macroschizont infected cell lines tested, and would therefore be the best candidate for such a vaccinc. So far these genes appear to be highly conserved, elininating the problem of immune evasion, but further work would be required to show that any protective epitopes are not polymorphic in other T. annulata stocks. Any potential cross-reactivity with bovine polypeptides, as detected by antiTashAT1/3 against BL20 extract (Fig. 5.8) would have to be checked in order to prevent the generation of antibodies against bovine polypeptides. In theory, given these tests, inoculation of the host with a live Attemated Macroschizont Vaccine (AMV) should elicit an immune response against the TashAT polypeptide fragments on the surface of the infected cell, to protect the host against any future infection by Theileria sporozoites. Indeed, previous AMV trials have been successful (reviewed by Shkap and Pipano, 2000) and in one such trial, all AMV immunised cattle were resistant to field challenge, whilst 50\% of the non-immunised cattle developed tropical theileciosis (Viscras et al., 1997).

6. General Discussion

Infection of bovine leukocytes by the protozoan parasite, T. ammalata reversibly induces the host cell to Iransform into a ncoplastic-like phenotype (Brown, 1990). The transformation is associated with, and almost certainly involves, changes to host cell gene expression by the parasite (Adamson et al., 2000a; llall et al., 1999; Suthetland et al., 1996; Oura et al., 2001). In contrast, the parasite factors that induce host cell division have not been identified, although it has been proposed that they are likcly to be down regulated during differentiation to the merozoite (Carington et al., 1995). Thus examination of down regulated macroschizont genes, could provide an insight into the parasite-encoded mechanism that modulates lymphoproliferation (Carrington et al. 1995). Previously, Swan at al. (1999) identified a small family of genes, whose expression is down regulated during merogony. One member of this family, TashAT2, encodes a protein that was found to be localised to the host's mucleus and encodes DNA binding Al' hook motifs. It was therefore postulated to be involved in controlling bovine gene expression and possibly the indtaction of host cell proliferation.

6.1 Analysis of the TashAT1/3 Predicted Polypeptide

One of the primary aims of this project was to clone and characterise the second member of the Tashat genc family, Tashat\%. The results revealed a predicted TashAT1 polypeptide encoded by a single 1.4 kb open reading frame. The Tashatl gene was found to be located within a small, gene rich cluster containing TashAT2 and a third TashAT genc, TashAT3. Two identical, macroschizont specific genes were also identified adjacent to the 5 , and 3 , ends of Tashaty (Swan et al., 2001a; Stadler, 2000, umpublished). Sequence analysis showed that, like ToshAT2, TashATl was predicted to encode AT hook donains, a signal peptide sequence and nuclear localisation signals, which indicated that the TashAT1 polypeptide may be a DNA binding factor that is transported from the parasite to the infected host cell nucleus. A further feature common to the predicted TashAT1 and TashAT2 polypeptides was the large number of predicted phosphorylation sites that might suggest some form of post-translational control of the TashAT1 polypeptide. Such modifications are known to be involved in regulation of transcriptional activation, such as cyclin dependent kinases, which were found to regulate the AT hook encoding HMGI(Y) molecules via positive and negative phosphorylation. One such example is cdc2 kinase, which modulates the Human HMGI(Y) protcin DNA binding in the G2/M-phase of the cell
cycle (Nissen et al., 1991; Reeves et al., 1991). The presence of a putative trancriptional transactivation domain in TashAT1 and TashAT3 provides further evidence for possible protein-protein interactions with other transcription lactors. Certainly, these domains are present in a number of transcription factors including the HMG domain-encoding Sox proteins such as LEF-1, and the POU domain protcins, c.g. Oct-1, which interact in a number of combinations to regulate metazoan embryogenesis (Dailey and Basilico, 2001).

6.2 TashAT Gene Organisation

Striking similatities between the Tashat genes were identified at the predicted polypeptide level, particularly between TashaTl and TashAT3, in which the five prime region of Tashat3 was almost identical to TashAT/. The predicted polypeptide sequence of TashAT3 was also virtually identical with that of TashAT2 over base pairs $1320-2715$ of Tashat3 and 1386-2781 of TashAT2 (Swan et al., 2001a). The close proximity of these genes and their sequence homology, taken together, suggested a recent gene duplication event in this cluster (see Fig. 3.30). This is supported by the identification of the two identical ORlis (TashIIN) that flank TashAl/ and the demonstration of parasite genomes that lack TashAT1. It is reasonable to suggest that of the TashAT genes, TashAT/ is the most recent copy and possibly originated from a gene duplication event involving TashAT3 and TashHN. It is unclear what advantage this gene duplication event might confer, but given the lack of identification of a TashAT1 polypeptide it could be that this advantage is conferred by an extra copy of TashHN. The sequence data, location of the Tashat2 polypeptide in the hosts nucleus and duplication of these genes suggests that the TashAT cluster has an important function for the parasite. However, a comparison of the predicted TashAT1 polypeptide with the preliminary sequence of the most related specics, T. parva, did not retrieve a Tashat homologue with a conserved AT hook domain. The lack of AT hook motifs in the T. parva genome compared to T. annulata may, in part, be due to differences in the cell type that each parasite infects which, in tum, may influence the mechanism each parasite specics deploys to achieve a transformed phenotype. It is of interest, therefore, that while T. anmulata can infect and transform bovine dendritic cells (Stephens and Howard, 2002), T. parva is uable to induce host cell immortalisation, even though it has been shown to invade the cell and form macroschizonts (Wells and McKecver, 1998; Shaw et al., 1993). Thus it might be that the different parasite species are limited by interactions with different subsets of ecll specific gene targets or eell speciffe accessory factors.

6.3 TashAT mRNA Identification

While the Tashat/ gene may not be present in all T. annulata genomes, it was shown to be expressed at the mRNA level in certain infected cell lines. Two TashATI derived probes detected a 2.1 kb transcript, which was closest to the predicted size of the TashAT1 1 mRNA transcript. The probe contaning AT hook encoding motifs, also delected two larger transcripts at 3.6 kb and 4.0 kb which corresponded approximately to the size predicted for TashAT3 and identified for TashAT2, respectively. Given this, it seems likely that the 2.1 kb transcript represents TashAT/; however, isolation of the corresponding TashATI cDNA would be required to demonstrate that TashAT/ is represented by the 2.1 kb transcript. In addition, nuclear tun on experiments with a judicious choice of probes is necessary to detemme if the TashAT/ gene is tanscribed in a monocistronic or polycistronic Cashion. However, it would seem likely that the former case is most likely based on studies of apicomplexan parasite genes, including T. anmalatt, which have all demonstrated that transcription is regulated in a monocistronic fashion (Lanzer ef al., 1993; Horrocks ef a l., 1998; Jean et al., 2001; Shicls et al., 2000).

6.4 TashAT mRNA Expression

In this study, the profile of all three TashAT mRNA specics all showed carly negative regulation (between day 2 and day 4) of parasite differentiation towards the merozoite. Research has shown that this period corresponds with a decrease in host cell division, and also coincides with marked changes to the expression of stage specific gencs (Shiels et al., 1994). Swan et al. (1999) found that the reduction in TashAT mRNA lcvels was carlier in comparison to other macroschizont genes and suggested that early down regulated macroschizont gencs could encode regulatory factors involved in the maintenance of the macroschizont status, perhaps by regulating host cell division and/or parasite differentiation. In the D7B12 cell line, which is derived from the same lineage as D7 cells but is severely attenuated for differentiation, there appears to be greater amount of TashAT3 mRNA compared to TashAT2. By contrast, the levels of TashAT2 mRNA exceed TashAT3 mRNA levels in D7 cells. This indicates that TashAT2 and TashAT3 may be differentially expressed at the mRNA level at least, and could be functional substitutes. The causes of these alterations might have occurred after the cell line was cloned and such in vitro modifications have been widely reported (Hall et al., 1999; Adamson et al., 2000ab; Sutherland et al., 1996; Somerville et al., 1998b). This might account for the
altered host cell gene expression, such as MMP9, observed in cell lines of the same lineage (Adamson et al., 2000ab; Sutherland et al., 1996; Somerville et al., 1998b). Another possibility is that the increased levels of TashA' 3 mRNA detcoted in the severely attenuated D7B12 cell line are associated with negative control of parasite differentiation in Theileria infected cell lines. However, at present, there is no evidence of a direct correlation between Tash $\Lambda T 3 \mathrm{mRNA}$ levels and the ability of infected cells to differentiate and further experiments would be required to establish such an association.

6.5 TashAT Gene Regulation

Sequence analysis of the upstream regions of TashATl with TashAT3, revealed an identical upstream sequence motif (TashlM) at position -45 from the putative transcription start site. Similar TashUM-like motifs were also found upstream of TashAT2 and an unrclated macroschizont gene, Tashl. Such conservation suggests an important functional role for TashUM. EMSA analysis of nuclear extracts and a double stranded oligonucleotide containing the TashUM sequence, revealed binding with a factor that was enriched in parasite-enriched extracts but was also present in host-enriched nuclear extracts. Analysis of parasite extracts derived from cells that were undergoing parasite differentiation suggested that the muclear factor was down regulated with respect to merogony. It is possible that this factor represents a parasite-encoded transcription factor that binds to TushUM to modulate Tash $/ T I$ expression at the macroschizont stage, although the results obtained cannot exclude that it is a host factor transported to the parasile (Carrington et al.,1995). Further experiments with good controls for binding specificity and hosi or parasite enrichment are required to complete this work.

EMSA analysis of TashUM probe using polydG.dC and dI.dC revealed that the TashUM binding factor had an affinity for AT rich DNA. This fact and the finding that TashAT2 binds to AT rich DNA sequences (Swan et al., 2001a) raises the possibility that that one or more of the TashAT polypeptides bind to TashUM in some form of self regulation. Experiments could attempt to isolate and characterise this factor by purification through a column containing the TashUM oligonucleotide and determine it's origin, (host or parasite) and identity by proteomic techniques. To investigate whether the binding factor is in fact a T'ashAT polypeptide(s), binding assays using 'TashAT'l and 'IashA'l'2 fusion proteins and/or supershift assays using antisera generated against the TashAT polypeptides could be performed.

It is possible that the factor(s) binding to the TashUM motif might be at least in part, responsible for the differential expression of TashAT2 and TashAT3. This is because work by Swan and Phillips (unpublished, 2001) failed to obtain a band shift in D7 nuclear extracts using a probe derived from the TashUM-like sequence, upstream of TashAT2. These results indicate that each Tashat gene may be under scparatc control, but that this control must be under some form of co-ordination during differentiation to the merozoite. It would be interesting to perform further EMSA analysis of the five prime region of Tashatl and Tashat2 to discover possible common and gene specitic control elements that could be involved in transcriptional regulation of these genes. In the case of TashATI and ToshAT3, which have identical upstream sequences, differential expression is likely to be achieved via other mechanisms. possibly mediated by the 3° untranslated region (IIolzet al., 1997; Furger et al., 1997) or some other form of post-translational control. One such method could be by targeted destruction, possibly via the potential PEST sequence within TashAT1/3, which is capable of targeting proteins for proteolysis (Rechsteiner and Rogers, 1996). Serine or Threonine phosphorylation is known to activate conditional PEST sequences for destruction (Rechsteiner and Rogers, 1996). As TashAT1/3 have many potential phosphorylation sitcs, it could be envisaged that TashAT1/3 levels are modulated by differential phosphorydation. One such candidate could be Casein Kinase 1 (CKil), which can potentially phosphorylate TashAT1/3 and was found to be elevated in T. parva infected cells (Ole-MoiYoi, 1995). Moreover, CKil has been shown to phosphorylate HMGI(Y) proteins in vivo (reviewed by Reeves et al., 2001).

6.6 Identification and Expression of the TashAT1 and TashAT3 Polypeptides

Attempts to identify the TashAT1 polypeptide proved inconclusive: several polypeptides close to 55.3 kDa , (the predicted size of the TashAT1 polypeptide) were detected, however these polypeptides were discounted as they were detected in a cell line that lacked the Tashatl gene and in the non-infected BL20 cell line. However, the IFAT data suggested that TashAT1 could be responsible for macroschizont reactivity in D7 and D7B12 cells as no macroschizont reactivity was detected in cell lines that lacked TashATl gene. It is possible that the bona fide TashAT1 polypeptide is the same size as these cross recognised polypeptides and so cannot be discriminated by Western blot analysis. This possibility could be verified by performing immunoblot malysis following by 2 dimensional (2-D) electrophoresis, or 2-D analysis and protein sequencing of polypeptides obtained by
immunoprecipitation with the anti-TashAT1 sermm. Alternatively, anti-TashAT1/3 serum could be used to determine reactivity against an in vitro translation TashAT1 product derived from TashAT 1 mRNA (Pelham and Jackson, 1976).

The antisera generated against TashAil also dctected a polypeptide at 180 kDa , which corresponded approximately to the predicted size of TashAT3 (113kDa). This polypeptide was found to be enriched in host cell nuclei by IFAT and Western blot analysis and was down regulated during time course experiments when the parasite was undergoing differentiation to the merozoite. Anti-TashAT1/3 serum did not detect Tasb $A T 2$ by any method so it was postulated that this polypeptide most likely represented TashAT3. During a time course experiment, reactivity agains both subcellular comparments was reduced after day 2 at $41^{\circ} \mathrm{C}$. The reactivity in the host mucleus was consistent with the presence and expression profile of TashAT3, but it was not clear whether the reactivity against the parasite was due to TashAT1 or a further macroschizont polypeptide related to TashAT1. Preliminary IFAT results showed no TashAT1/3 polypeptide reaclivity against antiTashAT1/3 serum in sporozoites, despite the presence of TashAT1/3 mRNA at that stage. The reasons for these are unctear, further experiments are roquired to confirm these results and establish their presence within the tick salivary gland or immediately following invasion of the sporozoite into the host leukocyte.

6.7 Possible Functions of the TashAT Polypeptides

Sequence analysis of all Tash $A T$ genes revealed that they had closest homology to HMGI(Y) proteins over the AT-hook encoding region. Studics of other AT hook encoding genes showed that these proteins bind to a wide range of genes. The HMGI(Y) proteins bind upstream of the cytokines IL-2R α receptor and IL-4 (Chuvpilo et al., 1993) whilst Sox-4 and LEl-1, containing IIMG-binding domains, are involved in T and B cell differentiation by eliciting enhancer activity of CD2 and TCR- α gene (reviewed by Fitzsimmons and Hagman,1996). It has been widely reported that HMG proteins are known to bind to genes involved in cell growth e.g. the leptin promoter, the human insulin receptor (Brunetti et al., 2001) and the viral VHP 18 protein (Bouallaga et al., 2000). Thus, in Theileria infected cells, the function of the Tashat genes may be to target cytokine genes and/or their downstream targets to modulate host cell division, such as $\mathrm{L}-2 \mathrm{R} \alpha$, which is known to stimulate proliferation of host infected cells via the IL-2/LL-2R autocrine loop (Dobbelaere and Heussler, 1999). Inappropriate IL-2R expression and down
regulation of $\operatorname{LL}-4$ mRNA have been shown to occur in the host's 'I'cell response to T. annulota infected celis, which promotes a Thi skewed inappropriate host immune response (Dobbelaere and Heussler, 1999; Campbell and Spooner, 1999). It is possible that this process may be mediated by the TashAT polypeptides since the $\operatorname{HMGI}(\mathrm{Y})$ proteins are known to negatively regulate U-4 expression (Chuvpilo et al., 1993) and stimulate IL-2Ra gene expression.

The early negative regutation of the TashAT genes at the mRNA level in D7 colls during differmtiation, but not in D7B12 cells, which, effectively cannol differentiate, raises the possibility that those genes might have a role in the negative regulation of macroschizont differentiation to the merozoite. If the reactivity detected in D7 macroschizont is in fact TashAT1, then this gene would be the likely candidate. Allhough TashAT1 mRNA levels do not decrease from day 0 to day 2 during differentiation, it is possible that down regulation of the TashATl polypeptide could be achieved at the prolein level. Thus TashATl or a related TashAT polypeptide could regulate parasite gene expression in a stage specific manner.

A third possible role for the TashAT genes might be to modulate host cell proliferation or infected cell survival. This could be achicved by regulation of genes encoding polypeptides that function in these processes. There are a number of studies that show that aberant expression of AT hook proteins can generate neoplasia. Abnormally high levels of HMGI(Y) have consistently been found to be associated with neoplastic cellular transformation in many forms of cancer and are now viewed as a diagnostic marker for neoplastic transformation (Giancotti et al., 1989, 1991). The similarity between HMGI(Y) and the predicted TashAT proteins, coupled to the likely nuclear localisation of TashAT2 and TashAT3 suggesis that the Tashat genes may be involved in host cell proliferation. Indeed preliminary evidence has shown that Tashat2 might be involved in cell division as transfection of the TashAT2-TashHN construct into BoMAC cells, stimulates cell division (Oura, unpublished, 2001). It is also conceivable that the Tashat gencs could be involved in the initial establishment of the parasite within the host infected cells. For example, they may be involved in the expression of IFN- γ within the early stages of the parasite infected cell, and thercby stimulate the production of cytokines, such as $\mathbb{L}-1$ and TNF- α. These cytokines were shown to be directly correlated to infected cell proliferation, and could maintain the parasite within the host cell and/or and prevent apoptosis (Campbell and Spooner, 1999). This may account for the expression of TashAT $1 / 3 \mathrm{mRNA}$ at the sporozoite stage (Swan et al., 2001a), and, based on preliminary results which show no

TashAT1/3 polypeptide in the sporozoitc, these mRNA species might be rapidly translated shortly after invasion. Alternatively, it is possible that the TashAT proteins bind directly to NF-kB, which is instrumental in blocking host cell apoptosis in T. parva infected cells (Dobbelaere, et al., 2000); as there are NF-kB binding sites within the HMGi(Y) molecule (Reeves, 2001).

6.8 Summary

In summary, the studies carricd out in this thesis provide further evidence that the genome of $\%$ ammultat encodes polypeptides which contain motifs that allow their transport from the parasite to the host mucleus where they could bind to AT rich stretches of DNA. Experimental evidence that the TashAT3 polypeptide is located in the host nucleus was obtained. The relative levels of TashAI mRNA were shown to be altered in cells that have lost the ability Lo differentiate. It can be concluted that it is likely that the Tashat farrily of proteins are involved in controlling bovine gene expression of a macroschizont infected ccll.

6.9 Future Work

Clearly there are a number of future directions of research on the Tash $A T$ genes. This would include transfection of a. Tashat genes(s) construct into uninfected host cells and analysis on the effect it may have on host cell division and/or host cell gene expression, followed by identification of the target genes and the TashAl polypeptide binding domains. It will also be important to identify any bovine polypeptides that could bind to the TashAT polypeptides as this may assist in the identification of their function and mechanism of action. Ultimately, studies will need to address fiunctionality of the TashAT proteins in situ. This would involved distupting expression of the Tashat genes in the parasite either by gene knockoul lechnology (Pellicer et al., 1980) or by RNA gene silencing methodology (reviewed by Fire et al., 1998). Such technology will enable further insight into how apicomplexan parasites manipulate their intracellular environments and allow identification of the molecular mechanisms involved. It can be predicted that the TashAT polypeptides are important molecules that perform this function in T : annulata infected cells.

List of References

Achaz, G., Netter, P., \& Coissac, E. 2001, "Study of Intrachromosomal Duplications Among the Eukaryote Genomes", Mol. Biol. Evol., vol. 18, no. 12, pp. 2280-2288.

Adalar, S., Gunay, M., \& Alp, H. 1992, "Protection affordec by inoculation of 10^{6} attenuated cells.", Imt. Symp. Parasite Immunology, 7-9th October, 1992. Pendik, Istanbul, pp. 25-28.

Adamson, R. F.. \& Hall, F. R. 1996, "Matrix metalloptoteinases mediate the metastatic phenotype of Theileria amulata-transfomed cells", Parasitol, vol. 113 (P1 S), pp. 449 . 455.

Adamson, R. E., than, T., Wilkic, G. F., Preston, P. M., Brown, C. G., \& Hall, F. R. 2000a, "Theileria amnulata: reduced host MMP activity profile of long-term culture is transmitted as a parasite-encoded trait", Etp. Parasitol., vol. 94, no. 1, pp. 45-47.

Adamson R, Logan M, Kinnaird J, Langsley G, Hall R. 2000b, "Loss of matrix metalloprotemase 9 activity in Theileria anntata-attenuated cells is at the transcriptional level and is associated with differentially expressed AP-I species." Mol. Biochem. Parasitol., vol. 106 (Pt 1), pp. 51-61.

Aggarwal, A., Kumar, S., Jaffe, R., Hone, D., Gross, M., \& Sadoff, J. 1990, "Oral Salmonella: malaria circumsporozoite recombinants induce specific CD8+ cytotoxic T cells", J. Exp. Med., vol. 172, no. 4, pp. 1083-1090.

Ahmed, J. S., Diesing, I., Oechtering, H., Ouhelli, H., \& Schein, t. 1988, "The role of antibudies in immunity against Theileria annulata infection in cattle", Zentralbl. Bakteriol. Mikrobiol. Hyg., vol. 267, no. 3, pp. 425-431.

Ahmed, J. S., Shayan, P., Hugel, F. U., Bicrmann, R., Ewald, C., Schein, E., \& Gerdes, J. 1997, "Macroschizonts of Theileria annulata as vaccine and diagnostic tools", Trop. Anim. Healh Prod., vol. 29, no. 4 Suppl., pp. 128S-132S.

Adler, S. \& Ellenbogen, V. 1935, "Observations on theileriosis in Palestine", Arch. Inst. Pasteur, vol. 13, pp. 451-471.

Aravind, L. \& Landsman, D. 1998, "AT-hook motifs identified in a widc variety of DNAbinding proteins", Nucleic Acids Res., vol. 26, no. 19, pp. 4413-4421.

Ayoubi, T. A., Jansen, E., Meulemans, S. M., \& Van de Ven, W. J. 1999, "Regulation of IIMGIC expression: an architectural transcription factor involved in growth control and development", Oncogene, vol. 18, no. 36. pp. 5076-5087.

Baldwin, C. L., Black, S. J., Brown, W. C., Conrad, P. A., Goddecris, B. M., Kinuthia, S. W., Lalor, P. A., MacHugh, N. D., Morrison, W. I., Morzaria, S. P., \& . 1988, "Bovine T cells, B cells, and null cells are transformed by the protozoan parasite Theileria parva", Infect. Imnuun., vol. 56, no. 2, pp. 462-467.

Banks, G. C., Li, Y., \& Recves, R. 2000, "Differential in vivo modifications of the $\mathrm{HMGI}(\mathrm{Y})$ nonhistone chromatin proteins modulate nucleosone and DNA interactions", Biochem., vol. 39, no. 28, pp. 8333-8346.

Bannai, H., Tamada, Y., Marıyama, O., Nakai, K.., \& Miyano, S. 2002, "Extensive fcature detection of N -tcrminal protein sorting signals", Bioinformatics., vol. 18, no. 2, pp. 298305.

Barnett, S. F. 1963, "The biological races of the bovine (Theileria) and their host-parasite relationship.," in P. C. C. Garnham, A. E. Pierce, \& I. Roitt, eds. Immunity to Protozot, Blackwell, Oxford, pp. 180-195.

Barnett, S. F. 1977, "Theileria," in J. P. Kreicr, od. Parasitic Protozoa, 4 edn. Academic Press, New York, San Francisco, London, pp. 77-113.

Banmgather, M., Tardieux, I., Ohayon, H., Gomon, P., \& I angsley, G. 1999, "The use of nocodazole in cell cycle analysis and parasite purification from Theileria parva-infected B cells", Microbes Infect., vol. 1, no. 14, pp. 1181-1188.

Baumgartner, M., Chaussepied, M., Moreau, M. F., Werling, D., Davis, W. C., Garcia, A., \& Langsley, G. 2000, "Conslitutive PI3-K activity is essential for proliferation, but not survival, of Theileria parva-transformed B cells", Cell Microbiol., vol. 2, no. 4, pp. 329339.

Baylis, H. A., Megson, A., Brown, C. G., Wilkie, G. F., \& Hall, R. 1992, "Theileria annulata-infected cells produce abundant proteases whose activity is reduced by long-term cell culture", Parasitol., vol. 105 (Pt 3), pp. 417-423.

Baylis, H. A., Megson, A., \& Hall, R. 1995, "Infection with Theileria annulata induces expression of matrix metalloproteinase 9 and transcription factor $A P^{-1}$ in bovine leucocytes", Mol. Biochem. Parasitol., vol. 69, no. 2, pp. 211-222.

Beckerbauer, L., Tepe, J. J., Cullison, J., Reeves, R., \& Williams, R. M. 2000, "FR900482 class of anti-tumor drugs cross-links oncoprotein HMG I/Y to DNA in viva", Chem. Biol., vol. 7, no. 10, pp. 805-812.

Ben Miled, L., Dellagi, K., Bemardi, G., Melrose, T. R., Darghouth, M., Bouattour, A., Kinnaird, J., Shiels, B., Tait, A., \& Brown, C. G. 1994, "Genomic and phenotypic diversity of Tunisian Theileria annulata isolates", Parasitol., vol. 108 (Pt 1), pp. 51-60.

Beniwal, R. K., Sharma, R. D., \& Nichani, A. K. 2000, "Determination of duration of immunity of calves vaccinated with the Theileria annulata schizont cell culture vaccine", Vet. Parasitol., vol. 90, no. 1-2, pp. 25-35.

Berk, A. J. \& Sharp, P. A. 1977, "Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S 1 endonuclease-digested hybrids", Cell, vol. 12, no. 3, pp. 721-732.

Berlingieri, M. T., Manfioletti, G., Santoro, M., Bandiera, A., Visconti, R., Giancotti, V., \& Fusco, A. 1995, "Inhibition of HMGI-C protein synthesis suppresses retrovirally induced neoplastic transformation of rat thyroid cells", Mol. Cell Biol., vol. 15, no. 3, pp. 15451553.

Beutler, B. \& Cerami, A. 1986, "Cachectin and tumour necrosis factor as two sides of the satnc biological coin", Nature, vol. 320, no. 6063, pp. 584-588.

Bhattacharyulu, Y., Chaudhri, R. P., Gill, B. S. 1975, "Studies on the development of Theileria ammulata Dschunskowsky and Luhs, 1904 in the tick-Fyalonma anatolicum anatolicum Koch, 1844", Amn. Parasitol. Hum. Comp, vol. 50, pp. 397-408.

Bishop, R., Allsopp, B., Spooncr, P., Sohanpal, B., Morzaria, S., \& Gobright. E. 1995, "Theileria: improved species discrimination using oligonucleotides derived from large subunit ribosomal R.NA sequences", Exp. Parasitol., vol. 80, no. 1, pp. 107-1 15.

Black, C. G., Wang, L., Hibbs, A. R., Werner, E., \& Coppel, R. L. 1999, "Identification of the Plasmodium chabouti homologue of merozoite surface proteins 4 and 5 of Plasmodium falciparmi", infect. Immun., vol. 67, no. 5, pp. 2075-2081.

Bohne, W., Hecsemamn, J., \& Gross, L. 1994, "Reduced replication of Toxoplasma gondit is necessary for induction of bradyzoite-specific antigens: a possible role for nitric oxide in triggering stage conversion", Infect. Immun., vol. 62, pp. 1761-1767.

Botteron, C. \& Dobbelaere, D. 1998, " Λ P-1 and ATF-2 are constitutively activated via the JNK pathway in Theilerin parva transformed T-cells", Biochem. Biophos. Res. Commun. vol. 246, no. 2, pp. 418-421.

Bouallaga, I., Massicard, S., Yaniv, M., \& Thierry, F. 2000, "An enhanceosome containing the $3 \mathrm{mB} / \mathrm{Fra}-2$ heterodimer and the HMG-I(Y) architectural protein controls HPV-18 transcription.", EMBO Rep., vol. 1, pp. 422-427.

Boulter, N., Knight, P. A., Hunt, P. D., Hennessey, E. S., Katzer, l'., Tait, A., Williamson, S., Brown, D., Baylis, H. A., \& Hall, R. 1994, "Theileria annulata sporozoite surface antigen (SPAG-1) contains neutralizing determinants in the C terminus", Parasite Inmunol., vol. 16, no. 2, pp. 97-104.

Boutter, N. R., Glass, E. J., Knight, P. A., Bell-Sakyi, L., Brown, C. G., \& Hall, R. 1995, "Theileria anmulata sporozoite antigen fused to hepatitis B core antigen used in a vaccination trial", Vaccine, vol. 13, no. 13, pp. 1152-1160.

Boulter, N. R. 1996, "Assessment of SPAG-1, a Sporozoite Surface Antigen of Theileria annulata as a Vaceine Candidate.", PhD thesis. University of York.

Boulter, N. R., Brown, C. G., Kirvar, E., Glass, E., Campbell, J., Morzaria, S., Nene, V., Musoke, A., d'Oliveira, C., Gubbels, M. J., Jongejan, F., \& Hall, F. R. 1998, "Different vaccine strategies used to protect against Theileria annulata", Ann. N.Y. Acad. Sci., vol. 849, pp. 234-246.

Boulter, N. \& Hall, R. 1999, "Immunity and vaccine development in the bovine theilerioses", Adv. Parasitol., vol. 44, pp. 41-97.

Bradford, M. M. 1976, "A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protcin-dyc binding", Anal. Biochem., vol. 72, pp. 248-254.

Brown, C. G., Stagg, D. A., Purnell, R. E., Kanhai, G. K., \& Payne, R. C. 1973, "Infection and transformation of bovine lymphoid cells in vitro by infective particles of Theileria parva", Nature, vol. 245, no. 5420, pp. 101-103.

Brown. C. G. 1990, "Control of tropical theileriosis (Theileria anmiata infection) of catte", Parassitologia, vol. 32, no. 1, pp. 23-31.

Brun, R. \& Schonenberger, M. 1981, "Stimulating effect of citrate and cis-Aconitate on the transformation of Trpanosoma brucei bloodstream foms to procyclic forms in vilro", 7. Parasitenkd., vol. 66, no. 1, pp. 17-24.

Brunetti, A., Manfioletti, G., Chicfari, E., Goldfinc, 1. D., \& Foti, D. 2001, "Transcriptional regulation of human insulin receptor gene by the high-mobility group protein HMGI(Y)", FASEB J., vol, 15, no. 2. pp. 492-500.

Bullock, W. O., Femandez, J. M., \& Short, J. M. 1987, "XLL -blue: A High Efficiency Plasmid Transforming Reca Es", Biotechniques, vol. 5, no. 4, pp. 376-379.

Burridge, M. J. 1971, "Application of the indirect fluorescent antibody test in experimental Hast Coast fever (Theileria parva infection of cattle)", Res. Vet. Sci., vol. 12, no. 4, pp. 338-341.

Burridge, M. J. \& Kimber, C. D. 1972, "The indirect fluorescent antibody test for experimental East Coast Fever (Theileria parva infection of cattle). Detection of antibodies to schizonts in dried blood samples", 7. Tropemmed. Parasitol., vol. 23, no. 3, pp. 328-331.

Bustin, M., Lchn, D. A., \& Landsman, D. 1990, "Structural features of the HMG chromosomal proteins and their genes", Biochim. Biophys. Acta, vol. 1049, no. 3, pp. 231243.

Bustin, M. \& Recves, R. 1996, "High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function", Prog. Nucleic Acid Res. Mol. Biol., vol. 54, pp. 35-100.

Büttner, D. W. 1967, "Fine structure of merozoites of Theileria parva", Z. Tropenmed. Parasitol, vol. 18, no. 2, pp. 224-244.

Campbcll, J. D., Brown, D. J., Glass, E. J., Hall, F. R., \& Spooner, R. L. 1994, "Theileria annulata sporozoite targets", Parasite Inmunol., vol. 16, no. 9, pp. 501-505.

Campbelt, J. D., Howic, S. E., Odling, K. A., \& Glass, E. J. 1995, "Theileria annulata induces aberrant T cel1 activation in vitro and in vivo", Clin. Exp. Immunol., vol. 99, no. 2, pp. 203-210.

Campbell, J. D., Nichani, A. K., Brown, D. J., Howie, S. F., Spooner, R. I.., \& Glass, E. I. 1997, "Parasite-mediated steps in immune response failure during primary Theileria anmulara infection", Trop. Anim. Healh Prod., vol. 29 (Suppl 4), pp. 133S-135S.

Campbell, J. D., Nichani, A. K., Brown, D. J., Glass, E. J., \& Spooncr, R. L. 1998: "A stage-specific, parasite-induced, "window" of in vivo interferon-gamma production is associated with pathogenesis in Theileria ammetata infection", Ann. N. Y. Acad. Sci., vol. 849, pp. 152-154.

Campbell, J. D. \& Spooner, R. L. 1999, "Macrophages behaving badly: infected cells and subversion of immune responses to Thellerin ambalata", Parasitol. Today, vol. 15. no. 1, pp. 10-16.

Carrington, M., Allsopp, B., Baylis, H. A., Mahu, N.-M., Shochat, Y., \& Sohal, S. 1995, "Lymphoproliferation caused by Theileria parva and Theileria ammata", in Molecular Approaches to Parasitology, vol. 12, J. C. Boothroyd \& R. Komuniecki, eds., Wiley-Liss, New York, pp. 43-56.

Carson, C. A., Timms, P., Cowman, A. F., \& Stewart, . . P. 1990, "Babesia bovis: evidence for selection of subpopulations during attenuation", Exp. Parasitol., vol. 70 , no. 4, pp. 404-410.

Carter, R. \& Miller, L. H. 1979, "Evidence for environmental modulation of gametocytogenesis in Plasmodium falciparum in continuous culture.", Bull WIIO, vol. 57(suppl. 1), pp. 37-52.

Chansiri, K., Kawazu, S., Kamio, T., Terada, Y., Fujisaki, K., Philippc, H., \& Sarataphan, N. 1999, "Molecular phylogenetic studies on Theileria parasites based on small subunit ribosomal RNA gene sequences", Vet. Parasitol., vol. 83, no. 2, pp. 99-105.

Chaudhri, S. S. \& Subramanian, G. 1992, "Cell-mediated immune responses to sporozoites and macroschizonts of Theileria annulata", Vet. Parasitol., vol. 41, no. 1-2, pp. 23-34.

Chaussepied, M. \& Langsley, G. 1996, "Theileria transformation of bovine leukocytes: a parasite model for the study of lymphoproliferation", Res. Immunol., vol. 147, no. 3, pp. 127-138.

Chaussepied, M., Lallemand, D., Moreau, M. F., Adamson, R., Hall, R., \& Langsley, G. 1998, "Upregulation of Jun and Fos family members and permanent JK activity lead to constitutive AP.1 activation in Theileria-transformed leukocytes", Mol. Biochem. Parasitol., vol. 94, no. 2, pp. 215-226.

Chin, M. T., Pellacani, A., Wang, H., Lin, S. S., Jain, M. K., Perrella, M. A., \& Lee, M. E. 1998, "Enhancement of serum-response factor-dependent transcription and DNA binding by the architectural transcription factor HMG-I(Y)", J. Biol. Chem., vol. 273, no. 16, pp. 9755-9760.

Chizyuka, H. G. \& Mulilo, J. B. 1990, "Methods currently used for the control of multihost ticks: their validity and proposals for future control strategies", Paressitologia, vol. 32, no. 1, pp. 127-132.

Church, G. M. \& Gilbert, W. 1984, "Genomic sequencing", Proc. Natl. Acad. Sci. U.S.A, vol. 81, no. 7, pp. 1991-1995.

Chuppilo, S., Schomberg, C., Gerwig, R., Meinfling, A., Reeves, R., Grummt, F., \& Serfling, E. 1993, "Multiple closely-linked NFAT/octamer and HMG I(Y) binding sites are part of the interleukin-4 promoter", Nucleic Acids Res., vol. 21, no. 24, pp. 5694-5704.

Cinarik, J. L., Li, Y., Ogram, S. A., Min, H., Reeves, R., \& Colburn, N. H. 1998, "Tumor promoter induces high mobility group HMG-Y protein expression in transformationsensitive but not -resistant cells", Oncogene, vol. 16, no. 26, pp. 3387-3396.

Comrad, P. A., Kelly, B. G., \& Brown, C. G. 1985, "Intracrythrocytic schizogony of Theiteria annulata", Parasitol, vol. 91 (Pt 1), pp. 67-82.

Conrad, P. A., Denham, D., \& Brown, C. G. 1986, "Intraerythrocytic multiplication of Theileria parva in vitro: an ultrastructural study", hnt. J. Parasitol., vol. 16, no. 3, pp. 223229 .

Corpet, F., Gouzy, J., \& Kahn, D. 1998, "The ProDom database of protein domain families", Nucleic Acids Res., vol. 26, no. 1, pp. 323-326.

Cowman, A. F., Timms, P., \& Kemp, D. J. 1984, "DNA polymorphisms and subpopuations in Babesia bovis", Mol. Biochem. Parasitol., vol. 11, pp. 91-103.

Creemers, P. 1982, "Lack of reactivity of sera from Theileria parva-infected and recovered tatle against cell membrane antigens of Theileria parva transformed cell lines", Vet. Immunol. Immunopathol, vol. 3, no. 4, pp. 427-438.
d'Oliveira, C., van der, W. M., Habela, M. A., Jacquiet, P., \& Jongejan, F. 1995, "Detection of Theileria annulata in blood samples of carrier cattle by PCR", J. Clin. Microbiol, vol. 33, no. 10, pp. 2665-2669.
d'Oliveira, C., Feenstra, A., Vos, H., Osterhaus, A. D., Shiels, B. R., Cornelissen, A. W., \& Jongejan, F. 1997, "Induction of protective immunity to Theileria annulata using two major merozoite surface antigens presented by different delivery systems", Vaccine, vol. 15, no. 16, pp. 1796-1804.

Dailey, L. \& Basilico, C. 2001, "Coevolution of IIMG domains and homeodomains and the generation of transcriptional regulation by Sox/POU complexes", .I. Cell Physiol., vol. 186, no. 3, pp. 315-328.

DeBenedette, M. \& Snow, E. C. 1991, "Induction and regulation of cascin kinase II during B lymphocyte activation", J. Immumol., vol. 147, no. 9, pp. 2839-2845.

Dcvandra, C. 1995, "Animal production systems in south-east and east Asia: potential challenges for research", in P. Gardner \& C. Devandra, eds. Global Agenda for Livestock Research, Proceedings of a Consultation, ILRI, Nairobi, Kenja, 18-20 January 1995. ILRI (International Livestock Research Institute), Nairobi, Kenya, pp. 41-48.

Dhar, S. \& Gautam, O. P. 1978, "A note on use of hyperimmune serum in bovine tropical theilcriosis.", Indian. Vet. J., vol. 56, pp. 738-740.

Dickson, J. \& Shiels, B. R. 1993, "Antigenic diversity of a major merozoite surface molecule in Theileria ammulata", Mol. Binchem. Parasitol., vol. 57, no. 1, pp. 55-64.

Dobbelaere, D. A., Coquerelle, 'T. M., Roditi, I. J., Eichhom, M., \& Williarns, R. O. 1988. "Theileria parva infection induces autocrine growth of bovine lymphocytes", Proc. Nafl. Accul. Sci. U.S.A, vol. 85, no. 13, pp. 4730-4734.

Dobbelaere, D. \& Heussler, V. 1999, "Transfomation of leukocytes by Theileria parya and T. cunuloti", Annu. Rev. Microbiol., vol. 53, pp. 1-42.

Dobbelaere, D., Fernandez, P., Machado, J., Botteron, C., \& Heussler, V. 1999. "Interference by the intraceltular parasite Theileria parva with T-cell signal transduction pathways induces transformation and protection against apoptosis", Vet. immunol. Immunopathol., vol. 72, no. 1-2, pp. 95-100.

Dobbelacre, D. A., Fernandez, P. C., \& Heussler, V. T. 2000, "Theileria parva: taking control of host cell proliferation and survival mechanisms", Cell Microbiol, vol, 2, no. 2, pp. 91-99.

Dolan, T. T., Teale, A. J., Stagg, D. A., Kemp, S. J., Cowan, K. M., Young, A. S., Groocock, C. M., Leitch, B. L., Spooner, R. I., \& Brown, C. G. 1984, "A histocompatibility bartier to immumization against Last Coast fever using Theileria parvainfected lymphoblastoid cell lines.", Parasite Immunol, vol. 6, no. 3, pe. 243-250.

Drummond, R. O., Emst, S. E., Trevino, J. L., Gladncy, W. J., \& Graham, O. H. 1976, "Tests of acaricides for control of Boophilus annulatus and B. microphus", J. Econ. Entomol, vol. 69, no. 1, pp. 37-4.0.

Dschunkowski, E, \& Luhs, J. 1904, "Die Piroplasmosen der rinder", Zentralbl. Bakteriol. Mikrobiol. Hyg., vol. 35, pp. 486-492.

Du, W. \& Maniatis, T. 1994, "The high mobility group protein HMG l(Y) can stimulate or inhibit DNA binding of distinct transcription factor ATF-2 isoforms", Proc. Natl. Acad. Sci. U.S.A, vol. 91, no. 24, pp. 11318-11322.

Dyer, M. \& Tait, A. 1987, "Control of lymphoproliferation by Theileria annulata.", Parasilol. Today, vol. 3, no. 10, pp.309-311.

Dyer, M., Hall, R., Shiels, B., \& Tait, A. 1992, "Theileria anmulata: alterations in phosphoprotein and protein kinase activity profiles of infected leukocytes of the bovine host, Bos taurus", Exp. Parcasitol., vol. 74, no. 2, pp. 216-227.

Eckner, R. \& Bimstiel, M. I.. 1989, "Cloning of cDNAs coding for human $1-\mathrm{MG}$ I and HMG Y proteins: both are capable of binding to the octamer sequence moti「", Nucleic Acids Res, vol. 17, no. 15, pp. 5947-5959.

Emamuelsson, O., Niclsen, H., Brunak, S., \& von Heijne, G. 2000, "Predicting subcellular localization of proteins based on their N -terminal amino acid sequence", J. Mol. Biol, vol. 300, no. 4, pp. 1005-1016.

Emery, D. L. 1981, "Adoptive transfer of immunty to infection with Theileria parva (East Coast fever) between cattle twins", Res. Vet. Sci, vol. 30, no. 3, pp. 364-367.

Emery, D. L., Eugui, E. M., Nelson, R. T., \& Tenywa, 'I'. 1981, "Cell-mediated immune responses to Theileria parve (East Coast fever) duting immunization and lethal infections in catte", Immam, vol. 43, no. 2, pp. 323-336.

Emery, D. I.., Morrison, W. I., Buscher, G., \& Nelson, R. T. 1982, "Generation of cellmediated cytotoxicity to Theileria parva (Last Coast fever) after inoculation of catte with parasitized lymphoblasts", J. Inmunol., vol. 128, no. 1, pp. 195-200.

Ernst, P., Wang, f., Huang, M., Goodman, R. H., \& Korsmeycr, S. J. 2001, "M1.L and CREB bind cooperatively to the nuclear coactivator CREB-binding protein", Mol. Cell Biol., vol. 21, no. 7, pp. 2249-2258.

Fan, J. Y. \& Davidson, E. A. 1996, "Molecular cloning and antigenic mapping of heatshock protein 70 from the malatia species l'lasmodium berghei", Am. J. Trop. Med. Hyg., vol. 55 (pt 5), pp. 570-576.

Fashena, S. J., Rceves, R., \& Ruddle, N. H. 1992, "A poly(dA-dT) upstream activating sequence binds high-mobility group 1 protein and contributes to lymphotoxin (tumor necrosis factor-beta) gene regulation", Mol. Cell Biol., vol. 12, no. 2, pp. 894-903.

Fatoohi, A. F., Cozon, G. J., Greenland, T., Ferrandiz, J., Bienvennı, J., Picot, S., \& Peyron, F. 2002, "Cellular immune responses to recombinant antigens in pregnant women chronically infected with Toxoplasma gondiï", Clin. Diagn. Lab Immunol., vol. 9, no. 3, pp. 7047707.

Fawcett, D. W., Doxsey, S., Stagg, D. A., \& Young, A. S. 1982, "The entry of sporozoites of Theileria parva into bovine lymphocytes in vitro. Dlectron microscopic observations", Eur. .I. Cell Biol., vol. 27, no. 1, pp. 10-21.

Fawcett, D., Musoke, A., \& Voigt, W. 1984, "Interaction of sporozoites of Theileria parva with bovine lymphocytes in vitro. 1. Early events ather invasion", Tïssue Cell, vol. 16, no. 6, pp. 873-884.

Fawcett, D. W., Young, A. S., \& Leitch, B. L. 1985, "Sporogony in Theileria (Apicomplexa: Piroplasmida)", J. Submicrosc. Cytol., vol. 17, pp. 299-314.

Fawcett, D. W. \& Stagg, D. A. 1986, "Passive endocytosis of sporozoites of Theileria parva in macrophages at 1-2 degrees C", J. Submicrosc. Cytol., vol. 18, no. 1, pp. 11-19.

Fawcett, D. W., Conrad, P. A., Grootenhuis, J. G., \& Morzaria, S. P. 1987, "Ultrastructure of the intra-erythrocytic stage of Theileria species from cattle and waterbuck", Tissue Cell, vol. 19, no. 5, pp. 643-655.

Fell, A. H., Preston, P. M., \& Ansell, J. D. 1990, "Establishment of Theileria-infected bovine cell lines in scid mice", P'arasite Immunol., vol. 12, no. 3, pp. 335-339.
[ich, C., Klauenberg, U., Fleischer, B., \& Broker, B. M. 1998, "Modulation of enzymatic activity of Sre-family kinases in bovine T cells transformed by Theileria parva", Parasitol., vol. 117 (PL 2), pp. 107-115.

Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., \& Mcllo, C. C. 1998, "Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans", Noture, vol. 391, no. 6069, pp. 806-811.

Fitzsimmons, D. \& Hagman, J. 1996, "Regulation of gene expression at early stages of Bcell and T-cell differentiation", Cum. Opin. Immunol., vol. 8, no. 2, pp. 166-174.

Fivaz, B. H., Norval, R. A., \& Lawrence, I. A. 1989, "Transmission of Theileria parva bovis (Boleni strain) to catle resistant to the brown car tick Rhipicephalns appendiculatas (Neumam)", Trop. Anim. Health Prod., vol. 21, no. 2, pp. 129-134.

Flach, E. J. \& Ouhclli, H. 1992, "The epidemiology of tropical theileriosis (Theileria amulata infection in cattle) in an endemic area of Morocco", Vet. Parasitol., vol. 44, no. 1-2, pp. 51-65.

Forsyth, L. M., Jackson, L. A., Wilkie, G., Sanderson, A., Brown, C. G., \& Preston, P. M. 1997, "Bovine cells infected in vivo with Theileria ammulata express CD11b, the C3bi complement receptor", Vet. Res. Commun. vol. 21, no. 4, pp. 249-263.

Forsyth, L. M., Minns, F. C., Kirvar, E., Adamson, R. F., Hall, F. R., McOrist, S., Brown, C. G., \& Preston, P. M. 1999, "Tissue damage in calle infected with Theileria annulata accompanied by metastasis of cytokine-producing, schizont-infected monontclear phagocytes", J. Comp. Pathol., vol. 120, no. 1, pp. 39-57.

Fox, M. 1997, "Regulation of TamS l genc expression during differentiation to the merozoite in Theileria annulata.", PhD thesis, University of Glasgow.

Fricdhofl, K., Scholtyseck, E. 1968, "Fine structure of Babesia ovis (Piroplasmidea) in Rhipicephalus bursa (Ixodoidea): transformation from spheroid to vermicule form", Z Parasitenkd; vol. 30, no. 4, pp. 347-359.

Friedhoff, K. T. 1988, "Transmission of Babesia", in M. Ristic, ed. Bahesinsis of Domestic Animals and Man, CRC Press, Boca Raton, FL, pp. 23-52.

Furger, A., Schurch, N., Kurath, U.: Roditi, I. 1997, "Elements in the 3' untranslated region of procyclin mRNA regulate expression in insect fonms of Trypanosoma brucei by modulating RNA stability and translation", Mol. Cell. Biol., vol. 17, no. 8, pp. 4372-4380.

Giancotti, V., Buratti, E., Perissin, L., Zorzet, S., Balmain, A., Portella, G., Fusco, A., \& Goodwin, G. H. 1989, "Analysis of the HMGI nuclear proteins in mouse neoplastic cells induced by different procedures", Exp. Cell Res., vol. 184, no. 2, pp. 538-545.

Giancolli, V., Bandiera, A., Buratti, E., Fusco, A., Marzari, R., Coles, B., \& Goodwin, G. II. 1991, "Comparison of multiple forms of the high mobility group 1 proteins in rodent and human cells. Identification of the human high mobility group I-C protein", Eur. J. Biochem., vol. 198, no. 1, pp. 211-216.

Gill, B. S., Bhattacharyulu, Y., \& Kaur, D. 1976, "Immunisation against bovine tropical theilcriosis (Theileria anmilata infection)", Res. Vet. Sci, vol. 21, no. 2, pp. 146-149.

Glascodine, J., Tetley, L.., Tait, A., Brown, D., \& Shiels, B. 1990, "Developmental expression of a Theileria annilata merozoite surface antigen", Mol. Biochem. Parasioh., vol. 40, no. 1. pp. 105-112.

Glass, E. J., Innes, E. A., Spooncr, R. L., \& Brown, C. G. 1989, "Infection of bovine monocytc/macrophage populations with Theileria antulata and Theileria parra", Vei. Immunol. Imminopathol, vol. 22, no. 4, pp. 355-368.

Goodbourn, S. 1996, "Transcript mapping:" in K. Docherty, ed. Gene Transcription, RNA Analysis, John Wilcy and Sons, Chichester, New York, Brisbane, Toronto, Singapore, pp. 38-44.

Gray, M. A. \& Brown, C. G. 1981, "fi vitro neutralisation of theilerial sporozoite infectivity with immune serum.," in A. D. Irvin, M. P. Cumningham, \& A. S. Young, eds. Advances in the Control of Theileriosis, Martinus Nijhoff Publishers, The Haguc, Boston, London, pp. 127-131.

Grogan, M. J., Pratt, M. R., Marcaurelle, L. A., Bertozzi, C. R. 2002, "Homogeneous glycopeptides and glycoproteins for biological investigation" Anmu. Rev. Biochem., vol. 71, pp. 593-634.

Grootenhuis, J. G., Morrison, W. I., Karstad, L., Saycr, P. D., Young, A. S., Murray, M., \& Haller, R. D. 1980, "Fatal theileriosis in eland (Taurotragus oryx): pathology of natural and experimental cases", Res. Vet. Sci., vol. 29, no. 2, pp. 219-229.

Gubbels, J. M., de Vos, A. P., van der Weide, M., Viseras, J., Schouls, L. M., de Vries, E., \& Jongejan, F. 1999, "Simultaneous detection of bovine Theileria and Babesia species by reverse line blot hybridization", J. Clin. Microbiol., vol. 37, no. 6, pp. 1782-1789.

Gubbels, M. J., d'Oliveira, C., \& Jongejan, F. 2000, "Development of an indirect Tams1 enzyme-linked immunosorbent assay for diagnosis of Theileria annulata infection in cattle", Clin. Diagn. Lab Immunol., vol. 7, no. 3, pp. 404-411.

Gubbels, M. J., Katzer, F., Shiels, B. R., \& Jongejan, F. 2001, "Study of Theileria annulata population structure during bovine infection and following transmission to ticks", Parasitol., vol. 123 (Pt 6), pp. 553-561.

Guerini, M. N., Que, X., Reed, S. L., \& Whitc, M. W. 2000, "Two genes encoding unique protiferating-cell-muclear-antigens are cxpressed in Toxoplasma gondii", Mol. Biochem. Parasilol., vol. 109, no. 2, pp. 121-131.

Hagiwara, K., Tsuji, M., Ishihara, C., Tajima, M., Kurosawa, 'l', Iwai, H., \& T'akahashi, K. 1993, "The Bo-RBC-SCID mouse model for evaluating the efficacy of anti-theilerial drugs", Int. J. Parasitol., vol. 23, no. 1, pp. 13-16.

Hall, I. R. 1988, "Antigens and immunity in Theileria amulata infections", Parasitol. Today, vol. 4, pp. 257-261.

Hall, R. \& Baylis, H. A. 1993, "Tropical Theileriosis", Parasitol. Toder, vol. 9, no. 9, pp. 310-312.

Hall, R., Ilhen, T., Kirvar, E., Wilkie, G., Preston, P. M., Darghouth, M., Somerville, R., \& Adamson, R. 1999, "Mechanism(s) of attentation of Theileria annulata vaccine cell lines", Trop. Med. Im. Health, vol. 4, no. 9, p. A78-A84.

Hall, R., Boulter, N. R., Brown, C. G., Wilkie, G., Kirvar, E., Nene, V., Musoke, A. J., Glass, E. J., \& Morzaria, S. P. 2000, "Reciprocal cross-protection induced by sporozoite antigens SPAG-1 from Theileria ammlata and 107 from Theileria parva". Parasite Immunol., vol. 22, no. 5, pp. 223-230.

Hanafusa, H., Garber, E. A., \& Ilanafusa, T. 1986, "Transformation by po0sre with altered N-terminal sequences", Princess Takamatsu Symp., vol. 17, pp. 233-240.

Harlow, E. \& Lane, D. 1988, "Antibodies: A Laboratory Manual", Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

Hashemi-Fesharki, R. 1991, "Chemotherapeutic value of parvaquone and buparvaguone against Theileria anmilata infection of cattle", Res. Vet. Sci, vol. 50, no. 2, pp. 204-207.

Healh, S., Hieny, S., \& Sher, A. 1990, "A cyclic AMP inducible gene expressed during the development of infective stages of Tippanosoma cruzi", Mol. Biochem. Parasitol., vol. 43, no. 1, pp. 133-141.

Helenius, A. \& Acbi, M. 2001, "Intracellular functions of N -linked glycans" Science, vol. 291, no. 5512, pp. 2364-2369.

Heussler, V. T., Machado, J., Ir., Femandez, P. C., Botteron, C., Chen, C. G., Pearse, M. J., \& Dobbelaere, D. A. 1999, "The intracellular parasite Theileria parva protects infected T cells from apoptosis", Proc. Nath. Acad. Sci. U.S.A, vol. 96, no. 13, pp. 7312-7317.

Heussler, V. T., Kuenzi, P., Fraga, F., Schwab, R. A., Hemmings, B. A., \& Dobbelaere, D. A. 2001, "The Akt/PKB pathway is constitutively activated in Theileria-transformed leucocytes, but does not directly control constitutive NF-kappaB activation", Cell Microbiol., vol. 3, no. 8, pp. 537-550.

Hicks, G. R. \& Raikhel, N. V. 1995, "Protein import into the nucleus: an integrated view", Annu. Rev, Cell Dev. Biol., vol. 11, pp. 155-188.

Hinz, M., Krappmam, D., Eichten, A., Heder, A., Scheidereit, C., \& Strauss, M. 1999, "NF-кB function in growth control: regulation of cyclin D1 expression and Go/G1-to-Sphase transition.", Mol. Coll. Biol., vol. 19, pp. 2690-2698.

Hoffiman, K., Bucher, P., Palquet, L., \& Bairoch, A. 1999, "The PROSITE database, its stalus in 1999.", Nucleic Acids Res., vol. 27, pp. 215-219.

Homer, M.J., Agnilar-Dclfin, I., Telford, S.R., Krause, P.J., Persing, D.H. 2000, "Babesiosis", Clin Microbiol Rev, vol.13, no. 3, pp. 451-69.

Hooshmand-Rad, P. 1976: "The pathogencsis of amemia in Theilerit anhutata infection", Res. Yet. Sci., vol. 20, no. 3, pp. 324-329.

Horrocks. P., Dechering, K., \& Lanzer, M. 1998, "Control of gene expression in Plusmodium falciparm"', Mol. Biochem. Parasitol., vol. 95, no. 2, pp. 171-181.

Horrocks, P. \& Lan\%er, M. 1999, "Mutational analysis identifies a five base pair cis-acting sequence essential for GBP130 promoter activity in Plasmodium falcipartm", Mol. Biochem. Parasitol., vol. 99, no. 1, pp. 77-87.

Höllsberg. P. 1999, "Mechanisms of T-cell activation by human T-cell lymphotrophic virus type I.", Microbiol. Mol. Biol. Rev, vol. 63, pp. 308-333.

Hotz, H. R., Harmann, C., Huober, K., Hug, M., Clayton, C. 1997, "Mechanisms of developmental regulation in Trypanosoma brucei: a polypyrimidine tract in the 3' untranslated region of a surface protein mRNA affects RNA abundance and translation", Nucleic. Acids Res., vol. 25, no.15, pp. 3017-3026.

Hulliger, T., Wilde, J. K.. Brown, C. G., Tumer, L. 1964, "Mode of multiplication of Theileria in cultures of bovine lymphocytic cells" Nature, vol. 203, pp. 728-730.

Hulliger, L. 1965, "Cuitivation of three species of Theileria in lymphoid cells in vitro", I. Protozool., vol. 12, no. 4, pp. 649-655.

Hulliger, L., Brown, C. G., \& Wilde, J. K. 1966, "Transition of developmental stages of Theileria parva in vitro at high temperature", Nature, vol. 211, no. 46, pp. 328-329.

Hunter, T. \& Sefton, B. M. 1980, "Transforming gene product of Rous sarcoma virus phosphorylates tyrosine", Proc. Natl. Acad. Sci. U.S.A, vol. 77, no. 3, pp. 1311-1315.

Hunter, T., Alexander, C. B., \& Cooper, J. A. 1985, "Protein phosphorylation and growth control", Ciba Found. Symp., vol. 116, Wiley Press, New York, pp. 188-204.

Imamura, R., Masuda, E. S., Naito, Y., Imai, S., Fujino, T., Takano, T., Arai, K., \& Arai, N. 1998, "Carboxyl-terminal 15-amino acid sequence of NFAT-1 is possibly created by tissue-specific splicing and is essential for transactivation activity in T cells", J. Immunol., vol. 161, no. 7, pp. 3455-3463.

Innes, E. A., Millar, P., Brown, C. G., \& Spooner, R. I. 1989, "The development and specificity of cytotoxic cells in cattle immonized with autologous or allogeneic Theileria annulata-infected lymphoblastoid cell lines", Parasite Immunol., vol. 11, no. 1, pp. 57-68.

Lumis, M. A. \& Gelfand, D. H. 1990, "Oplimisation of PCRs," in M. A. Lumis, J. J. Sninsky, \& T. J. White, eds. PCR Protocols, Academic Press, New York, pp. 3-12.

Irvin, A. D., Brown, C. C., Kanhai, G. K., \& Stagg, D. A. 1975, "Comparative growth of bovine lymphosarcoma cells and lymphoid cells infected with Theileria pama in athymic mice.", Nature, vol. 255, pp. 713-714.

Irvin, A. D., Ocama, J. G., \& Spooner, P. R. 1982, "Cycle of bovine lymphoblastoid cells parasitised by Theileria parva", Res. Vel. Sci., vol. 33, no. 3, pp. 298-304.

Irvin, A. D. \& Morrison, W. I. 1987, "Immunopathology, inumunology and immunoprophylaxis of Theileria infections," in E. J. L. Soulsby, ed. Immune Responses in Parasilic Infections: Immunology. Immunopathology and Immunoprophylaxis, vol. 3, CRC Press, Boca Raton, Florida, pp. 223-273.

Irvin, A. D. 1987, "Chamaterization of species and strains of Theilcria", Adv. Parasitol., vol. 26, pp. 145-197.
lvanov, V., Stein, B., Bamann, I., Dobbelaere, D. A., Hertich, P., \& Williams, R. (). 1989, "Infection with the lntracelladar Protoroan Parasite Theileria parva Induces Constilutively High Levels of NF-кB in Bovine T I.ymphocytes", Mol. Cell. Biol., vol. 9, no. 11, pp. 4677-4686.

Jahnke, E. E. 1982, "Livestock production systems and livestock development in tropical Africa." Kieler Wissenschaftsverlag Vauk, Kiel.

Janse, C. J., Ramesar, J., van den Berg, F. M., \& Mons, B. 1992, "Plasmodium berghei: in vivo generation and selection of karyotype mutants and non-gametocyte producer mutants", Exp. Parasitol., vol. 74, no. 1, pp. 1-10.

Jarrett, W. F. \& Brocklesby, D. W. 1966, "A preliminary electron microscopic study of East Coast Fever (Theileria parva infection)", J. Protozool., vol. 13, no. 2, pp. 301-310.

Jartell, W. F., Crighton, G. W., \& Pirie, H. M. 1969, "Theileria parva: kinetics of replication", Exp. Parasitol., vol. 24, no. 1, pp. 9-25.

Javahery, R., Khachi, A., Lo, K., Zenzie-Gregory, B., \& Smale, S. T. 1994, "DNA sequence requirements for transcriptional initiator activity in mammalian cells", Mol. Cell Biol., vol. 14, no. 1, pp. 116-127.

Jcan, L., Péry, P., Dunn, P., Bumstead, J., Billington, K., Ryan, R., \& Tomley, F. 2001, "Genomic organisation and developmentally regulated expression of an apicomplexan aspartyl proteinasc", Gene, vol. 262, no. 1-2, pp. 129-136.

John, S., Reeves, R. B., Lin, J. X., Child, R., Lciden, J. M., Thompson, C. B., \& Leonard, W. J. 1995, "Regulation of cell-type-specific interleukin-2 receptor alpha-chain gene expression: potential role of physical interactions between Elf-1, HMG-I(Y), and NF-kappa B family proteins", Mol. Cell Biol., vol. 15, no. 3, pp. 1786-1796.

Johmson, K. R., lehn, D. A., \& Reeves, R. 1989, "Alternative Processing of mRNAs Encoding Mammalian Chromosonal High-Mobility-Group Proteins FMG-I and HMG-Y", Mol. Cell Biol., vol. 9, pp. 2114-2123.

Joyce, D., Albanese, C., Steer, J., Fu, M., Bouzalzzah, B., \& Pestell, R. G. 2001, "NF. kappa B and cell-cycle regulation: the cyclin conncction", Cyokine Growth Factor Rew, vol. 12, no. 1, pp. 73-90.

Jura, W. G., Brown, C. G., \& Kelly, B. 1983, "Fine structure and invasive behaviour of the early developmental stages of theileria amulata in vitro", Vet. Parasitol, vol. 12, no. 1, pp. 31-44.

Kachani, M., \& Spooner, R. L. 1992, "Anti-lymphocyte antibodics gencrated in animals immunised with Theileria anmilato-infected cells", Vet. Inmunol. Immunopathol., vol. 3.3, no's. 1-2, pp. 163-169.

Karlsom, J. R., Mork, E., Iloltund, J., Laland, S. G., \& Lund, T. 1989, "The amino acid sequence of the chromosomal protein $\mathrm{HMG} \mathrm{M}-\mathrm{Y}$, its relation to $\mathrm{HMG}-\mathrm{I}$ and possible domains for the preferential binding of the proteins to stretchos of A-T base pairs", Biochem. Biophys. Res. Commun, vol. 158, no. 3, pp. 646-651.

Katendc, J., Morzaria, S., Toye, P., Skilton, R., Nene, V., Nkonge, C., Musoke, A. 1998, "An enzyme-linked immunosorbent assay for detection of Theileria parva antibodies in cattle using a recombinant polymorphic immunodominant molecule", Parasitol. Res., vol. 84, no. 5, pp. 408-41.6.

Katzer, F., Carrington, M., Knight, P., Williamson, S., Tait, A., Mortison, I. W., \& Ifall, R. 1994, "Polymorphism of SPAG-1, a candidate autigen for inclusion in a sub-unit vaccine against Theileria annutata", Mol. Biochem. Parasitol., vol. 67, no. 1, pp. 1-10.

Katzer, l'., McKellar, S., Ben Miled, L., d'Oliveira, C., \& Shiels, B. 1998, "Selection for antigenic diversity of Tams1, the major merozoite antigen of Theileria annulata", Ann. N.Y. Acad. Sci., vol. 849, pp. 96-108.

Kawamoto, S., Takahashi, K., Kurosawa, T., Sonoda, M., \& Onuma, M. 1990, "Intraerythrocytic schizogony of Theileria sergenti in cattle", Nippon Juigaku. Tasshi, vol. 52, no. 6, pp. 1251-1259.

Kinnaird, J. I., Logan, M., Kirvar, E., Tait, A., \& Carrington, M. 1996, "The isolation and characterization of genomic and cDNA clones coding for a cdc2-related kinase (ThCRK2) from the bovine protozoan parasite Theileria", Mol. Microbiol., vol. 22, no. 2, pp. 293-302.

Kinnaird, J., Logan, M., Tait, Λ., \& Langsley, G. 2001, "TaCRK3 encodes a novel Theileria annulata protein kinase with motifs characteristic of the family of eukaryotic cyclin dependent kinases: a comparative analysis of its expression with TaCRK2 during the parasite life cycle", Gene, vol. 279, no. 2, pp. 127-135.

Kirvar, E., Ilhan, T., Katzer, F., Hooshmand-Rad, P., Zweygarth, E., Gerstenberg, C., Phipps, P., \& Brown, C. G. 2000, "Detection of Theileria ammlata in cattle and vector ticks by PCR using the Tams1 gene sequences", Parasitol., vol. 120 (Pt. 3), pp. 245-254.

Knight, P., Musokc, A. I., Gachanja, I. N., Nene, V., Katzer, F., Boulter, N., Hail, R., Brown, C. G., Williamson, S., Kirvar, E., Bell-Sakyi, L., Hussain, K., \& Tait, A. 1996, "Conservation of neutralizing determinants between the sporozoile surface antigens of Theileria ammiata and Theileria parva", Exp. Porasitol, vol. 82, no. 3, pp. 229-241.

Laemmli, U. K. 1970, "Cleavage of structual proteins during the asscmbly of the head of bacteriophage T4", Nature, vol. 227, pp. 680-685.

Lanzer, M., de Bruin, D., Ravetch, J.V. 1992, "A sequence element associated with the Plasmodium falciparum KAHRP gene is the site of developmentally regulated proteinDNA interactions.", Nucleic Acids Res., vol. 20 (pt 12), pp. 3051-3056.

Lanzer, M., Wertheimer, S. P., de Bruin, D., \& Ravetch, J. V. 1993, "Plasnodium: control of gene expression in malaria parasites", Exp. Parasitol., vol. 77, no. 1, pp. 121-128.

Lawrence, J. A., Norval, R. A., \& Uilenberg, G. 1983, "Rhipicephalu. zumbezicnsis as a vector of bovine Theileriac", Trop. Anim. Health Prod., vol. 15, no. 1, pp. 39-42.

Lawrence, J. A. 1990, "Summing-up stratogics for tick-bornc discases control as applics to Africa, especially East Africa.", Parassitologia, vol. 32, pp. 113-115.

Lcger, H., Sock, E., Renner, K., Grummt, F., \& Wegner, M. 1995, "Functional interaction between the POU domain protein Tst-1/Oct-6 and the high-mobility-group protein HMG1/Y", Mol. Cell Biol., vol. 15, no. 7, pp. 3738-3747.

Levine, N. D., 1973, "Protozoan parasites of domestic animals and of man.", 2 edn, Burgess Pub. Co., Minneapolis.

Levine, N. D. 1988, "Protozoa Phy/um Apicomplexa.", CRC, Boca Raton, FL.

Lewis, E. A. \& Fotheringham, W. 1941, "The transmission of Theileria parva by ticks", Parasitol., vol. 33, pp. 251-277.

Lewis, E. A. 1950, "Conditions affecting the East Coast Fever parasites in the tick and in cattle", Easi Afr. Agric. J., vol. 16, pp. 6S-77.

Lundberg, K., Karlson, J. R., Ingebrigtsen, K., Holtlund, J., Lund, T., \& Laland, S. G. 1989, "On the presence of the chromosomal proteins HMG I and HMG Y in rat organs", Biochim. Biophys. Acta, vol. 1009, no. 3, pp. 277-279.

Mallick, K. P., Dhar, S., Malhotra, D. V., Bhushan, C., \& Gautam, O. P. 1987, "Immunization of nconatal bovines against Theileria annulata by an infection and treatment method", Vet. Parasitol., vol. 24, no. 3-4, pp. 169-173.

Maloo, S. H., Rowlands, G. J., Thorpe, W., Gettinby, G., \& Perry, B. D. 2001, "A longitudinal study of disease incidence and case-fatality risks on small-holder dairy farms in coastal Kenya", Prev. Vet. Med., vol. 52, no. 1, pp. 17-29.

Manuja, A., Nichani, A. K., Kumar, R., Rakha, N. K., Kumar, B., \& Shama, R. D. 2000, "Comparison of cellular schizont, soluble schizont and soluble piroplasm antigeus in ELISA for detecting antibodies against Theileria annulata", Vet. Parasitol., vol. 87, no. 23, pp. 93-101.

Mason, P. J., Shiels, B. R., Tait, A., Beck, P., \& Hatl, R. 1989, "Sequence and expression of a gene from Theileria annulata coding for a 70 -kilodalton heat-shock protein", Mol. Biochem. Parasitol., vol. 37, no. 1, pp. 27-35.

McAndrew, M. B., Read, M., Sims, P. F., \& Hyde, J. E. 1993, "Characterisation of the gene encoding an unusually divergent TATA-binding protein (TBP) from the extremely A+T-rich human malaria parasite Plasmodium falciparum", Gene, vol. 124, no. 2, pp. 165171.

McHardy N. \& Rae D. G. 1982, "Antitheilerial activity of the coccidiostat monensin.", Trop. Anim. Heallh Prod., vol. 14, no. 1, pp. 13-14.

McIIardy, N. \& Morgan, D. W. 1985, "Treatment of Theileria annulata infection in calves with parvaquone", Res. Vet. Sci., vol. 39, no. 1, pp. 1-4.

McKeever, D. J., Nyaniui, J. K., \& Ballingall, K. T. 1997, "In vitro infection with Theileriu parva is associated with IL 10 expression in all bovine lymphocyte lincages", Parasife Immunol., vol. 19, no. 7, pp. 319-324.

McKellar, S. \& Shiels, B. R. 2001, Unpublished Work.

Mchilhon, H. \& Schein, E. 1976, "Electron microscope studies on developmental stages of Theileria parva (Theiler, 1904) in the intestine of the tick Hyalomma anatolicum excavatum (Koch, 1844)", Tropenmed. Parasitol., vol. 27, no. 2, pp. 182-191.

Mehlhorn, H. \& Schein, L. 1984, "The piroplasms: life cycle and sexual stages", Adv. Parasitol., vol. 23, pp. 37-103.

Meisner, H. \& Czecl, M. P. 1991, "Phosphorylation of transcriptional factors and cell-cycle-dependent proteins by casein kinase II", Curr. Opin. Cell Biol., vol. 3, no. 3, pp. 474483.

Melillo, R. M., Pierantoni, G. M., Scala, S., Battista, S., Ferdele, M., Stella, A., De Biasio, M. C., Chiappetta, G., Fidanza, V., Condorelli, G., Santoro, M., Croce, C. M., Viglietto, G., \& Fusco, A. 2001, "Critical role of the HMGI(Y) proteins in adipocytic cell growth and differentiation", Mol. Cell Biol., vol. 21, no. 7, pp. 2485-2495.

Melrose, T. R., Brown, C. G., Morzaria, S. P., Ocama, J. G., \& frvin. A. D. 1984, "Glucose phosphate isomerase polymorphism in Theileria anmulata and 1. parva", Trop. Anim. Heallh Prod., vol. 16, no.4, pp. 239-245.

Mercurio, F. \& Manning, A. M. 1999, "Multiple signals converging on NF-kB", Curf. Opin. Cell. Biol., vol. 11, pp. 226-232.

Middendorf, L. R., Bruce, J. C., Bruce, R. C., Eckles, R. D., Grone, D. L., Roemer, S. C., Sloniker, G. D., Steffens, D. L., Sutter, S. L., Brumbaugh, J. A., \& . 1992, "Continuous, on-line IDNA sequencing using a versatile infrared laser scannerjelectrophoresis apparatus", Electrophoresis, vol. 13, no. 8, pp. 487-494.

Molman, U. G., Mehhorn, H., Schein, E., Rehbein, G., Voigi, W. P., \& Zweygarth, E. 1983, "Fine structure of Babesia equi Laveran, 1901 within lymphocytes and eryhrocytes of horses: an in vivo and in vitro study", J. Parasifol, vol. 69, no. 1, pp. 111-120.

Morison, W. I., Buscher, G., Murray, M., Enery, D. L., Masake, R. A., Cook, R. H., \& Wells, P. W. 1981, "Theileria parva: kinetics of infection in the lymphoid system of catte", Exp. Parasitol., vol. 52, no. 2, pp. 248-260.

Morrison, W. L., MacHugh, N. D., \& Jalor, P. A. 1996, "Pathogenicity of Theileria parva is influenced by the host cell type infected by the parasite", Infect. fmmum., vol. 64, no. 2 . pp. 557-562.

Morzaria, S. P., Young, A. S., \& Kimber, C. D. 1977, "The scrological relationship of a British Theileria with other Theileria species using the indirect fluorescent antibody test", Res. Yet. Sci., vol. 22, no. 3, pp. 330-333.

Morzatia, S., Roeder, P. L., Roberts, D. H., Chasey, D., \& Drew, T. W. 1982, in O. C. Straub, ed. "Characteristics of a continuous suspension cell line derived from a calf with sporadic bovine leukosis", Commission of the Europan Communitics. Luxembourg, pp. 519-528.

Moraria, S. \& Nene, V. 1990, "Bovine theilcriosis: progress in immunization mothods", Int. J. Anim. Sci., vol. 5, pp. 1-14.

Mottram, I. C., Kinnaird, J. H., Shiels, B. R., Taii, A., \& Barry, J. D. 1993, "A novel CDC2-related protein kinase from Leishmanio mexicana, ImCRK1, is posttranslationally regulated during the life cycle", J. Biol. Chem., vol. 268, no. 28, pp. 2104421052.

Muhammed, S. I., Lauerman, L. H., Jr., \& Johnson, L. W. 1975, "Effect of humoral antibodies on the course of Theileria parva infection (East Coast fcver) of cattle", Am. J. Vet. Res., vol. 36, no. 4 Pt. I, pp. 399-402.

Musisi, F. L. 1990, "Methods curtently used for the control of East Coast fever: their validity and proposals for future control strategies", Parassitologia, vol. 32, no.1, pp. 1522.

Musoke, A., Morzaria, S., Nkonge, C., Jones, F., \& Nene, V. 1992, "A recombinant sporozoite surface antigen of Theileria parva induces protection in catle", Proc. Natl. Acad. Sci. U.S.A, vol. 89, no. 2, pp. 514-518.

Musoke, A. J., Palmer, G. H., McElwain, T. F., Nene, V., \& McKeever, D. 1996, "Prospects for subunit vaccines against tick-bome diseases", Br. Vet. J., vol. 152, no. 6, pp. 621-639.

Naessens, J.. Newson, J., Bensaid, A., Teale, A. J., Mayondu, J. G., \& Black., S. J. 1985, "De novo expression of T cell markers on Theileria parta-transformed lymphoblasts in cattle", J. Immumol., vol. I35, no. 6, pp. 4183-4188.

Nakaar, V., Bermudes, D., Peck, K. R., \& Joiner, K. A. 1998, "Upstream elements required for expression of mucleoside triphosphate hydrolase genes of Toxoplasma gondii". Mol. Biochem. Parasitol, vol. 92, no. 2, pp. 229-239.

Nakai, K. 1996, "Relinement of the Prediction Methods of Signal Peptides for the Genome Analysis of Saccharomyces cerevisiae and Bacillus subilis", in T. Akutsu, K. Asai, M. Hagiya, S. Kuhara, S. Miyano \& K. Nakai. eds. Genome Informatics Workshop. 1906. Universal Academic Press, Tokyo, pp. 72-81.

Nakai, K. \& Horton, P. 1999, "PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization", Trents Biochem. Sci., vol. 24, pp. 34-35.

Neitz, W. O. 1957, "Theileriosis, gonderiosis and cytauxzoonoses: a review.", Onderstepoort J. Vet. Res., vol. 27, pp. 319-338.

Nielsen, H., Engelbrecht, J., Brunak, S., \& von Heijne, G. 1997, "Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites.", Protein Eng., vol. 10, pp. 1-6.

Nikolov, D. B. \& Burley, S. K. 1994, "2.1 A resolution refined structure of a TATA boxbinding protein (TBP)", Nat. Struct. Biol., vol. 1, no. 9, pp. 621-637.

Nissen, M. S., Langan, T. A., \& Reeves, R. 1991, "Phosphorylation by cdc2 kinase modulates DNA binding activity of high mobility group I nonhistone chromatin protein", J Biol. Chem., vol. 266, no. 30, pp. 19945-19952.

Norval, R.A.I., Perry, B.D. \& Young, A.S. 1992, "The epidemiology of theileriosis in Africa." Academic Press, London, pp. 63-97, 131-154, 181-202.

Odberg-Ferrayut, C., Soete, M., Engels, A., Samyn, B., Loyens, A., Van Beeumen, J., Camus, D., Dubremetz, J. F. 1996, "Molecular cloning of the Toxoplasma gondii sag4 gene encoding an 18 kDa brady\%oite specific surface protein", Mol. Biochem. Parasitol, vol. 82 , issue 2, pp. 237-244.
ole-MoiYoi, O.K., Sugimoto, C., Conrad, P.A., Macklin, M.D. 1992 "Cloning and characterization of the casein kinase II alpha subunit gene from the lymphocytetransforming intracellular protozoan parasite Theileria parva.", Biochem. vol. 31, no. 27, pp. 6193-202.
ole-MoiYoi, O. K. 1995, "Casein kinase II in theileriosis", Science, vol. 267, no. 5199, pp. 834-836.

Ouhelli, H., [nnes, E. A., Brown, C. G., Walker, A. R., Simpson, S. P., \& Spooner, R. L. 1989, "The effect of dose and line on immunisation of cattle with lymphoblastoid cells infected with Theileria anulata", Vet. Parasitol., vol. 31, no. 3-4, pp. 217-228.

Oura, C. A. 2001, Unpublished Work.

Oura, C. A., Tait, A., \& Shiels, B. R. 2001, "Theileria amulata: identification, by differential mRNA display, of modulated host and parasite gene expression in cell lines that are competent or attenuated for differentiation to the merocoite", Exp. Parasitol, vol. 98, no. 1, pp. 10-19.

Oura, C. A., Kinnaird, J., Tait, A., \& Shiels, B. R. 2002, "identification of a 40 S Ribosomal protein (S 17) that is differentially expressed between the macroschizont and piroplasm stages of Theileria anmulua", Int. J. Parasitol., vol. 32, issue 1, pp. 73-80.

Ozkok, U. \& Pipano, E. 1981, "Trials with cell-culture vaccine against theileriosis in Turkey.", in 1. Irvin, M. Cunningham, \& A. Young, eds. Advances in the Control of Theileriosis. Martinus Nijholf Publishers, The Hague, Boslon, London, pp. 256-258.

Pelham, II. R. \& Jackson, R.J. 1976, "An efficient mRNA-dependent translation system fiom reticulocyte lysates", Eur. J. Biochem, vol. 67, pp. 247.

Pellicer, A., Robins, D., Wold, B., Sweet, R., Jackson, J., Lowy, l., Roberts, J. M., Sim, G. K., Silverstcin, S., \& Axcl, R. 1980, "Altering genotype and phenotype by DNA-mediated gene transfer", Science, vol. 209, no. 4463, pp. 1414-1422.

Perkins, N. D., Felzien, L. K., Betts, J. C., Loung, K., Beach, D. H., Nabel, G. J. 1997, "Regulation of NF-kappaB by cyclin-dependent kinases associated with the p300 coactivator" Science, vol. 275, no.5299, pp. 523-527.

Persing, D. H., \& Conrad, P. A. 1995, "Babesiosis: new insights from phylogenetic analysis", Infect. Agenis Dis., vol. 4, no. 4, pp. 182-195.

Pinna, L. A. 1990, "Casein kinase 2: an 'eminence grise' in cellular regulation?", Biochim. Biophys. Acta, vol. 1054, no. 3, pp. 267-284.

Pipano, E. \& Tsur, I. 1966, "Experimental Immunisation against Theileria annulata with a tissue culture vaccine.", Lab. Trials Refuah Vet., vol. 23, pp. 186-194.

Pipano, E. 1976, "Control of tropical theileriosis and anapiasmosis in Israel", Bull. Off. Int. Epizoot., vol. 86, pp. 55-61.

Pipano, E., Samish, M., Kriegel, Y., \& Yeruham, I. 1981, "Immunization of Friesian cattle against Theileria annulata by the infection-treatment method", Br. Vet. J., vol. 137, no. 4, pp. 416-420.

Pipano, E. 1989a, "Vaccination against Theileria anntata theileriosis," in I. Wright, ed. Veterinary Protozoan and Hemoparasite Vaccines. CRC Press, Boca Raton, FL, pp. 203234.

Pipano, E. 1989b, "Bovine thejleriosis in Israel", Rev, Sci. Tech. Off. Mh. Epiz., vol. 8, pp. 79-87.

Pipano, E. 1995, "Live vaccines against hemoparasitic diseases in livestock", Vet. Parasitol, vol. 57, 110. 1-3, pp. 213-231.

Polla, B. S. 1991, "Heal shock protcins in host-parasite interactions", Inmunol. Today, vol. 12(3), pp. A38-41.

Preston, P. M., Brown, C. G., \& Spooner, R. L. 1983, "Cell-mediated cytotoxicity in Theileria anmulata infection of catte with evidence for BoLA restriction", Clin. Exp. Immunol, vol. 53, no. 1, pp. 88-100.

Preston, P. M. \& Brown, C. G. 1985, "mhibition of lymphocyte invasion by sporozoites and the transformation of trophozoite infected lymphocytes in vitro by scrum from Theileria annulata immune cattle", Parasite Immunol, vol. 7, no. 3, pp. 301-314.

Preston, P. M., Brown, C. G., Bell-Sakyi, L., Richardson, W., \& Sanderson, A. 1992a, "Tropical theileriosis in Bos taurus and Bos taurus cross Bos indicus calves: response to infection with graded doses of sporozoites of Theileria anmultat", Res. Vet. Sci., vol. 53, no. 2, pp. 230-243.

Preston, P. M., Brown, C. G., \& Richardson, W. 1992b, "Cytokines inhibit the development of trophozoite-infected cells of Theileria amulata and Theileria parva but enhance the proliferation of macroschizont infected cell lines.", Parasite Immunol, vol. 14, pp. 125-141.

Preston, P. M., Brown, C. G., Entrican, G., Richardson, W., \& Boid, R. 1993, "Synthesis of tumour necrosis factor-alpha and interferons by monontelear cells from Theileria annulata-infected cattle", Parasite Immunol., vol. 15, no. 9, pp. 525-534.

Preston, P. M., Jackson, L. A., Sutherland, I. A., Bell-Sakyi, L., Wilkie, G., Brown, D. J., Schofield, J., Melrose, T. R., Sanderson, A., \& Brown, C. G. 1998, "Theileria annulata: the expression of two novel macroschizont antigens on the surface of infected mononuclear cells differs during in vitro attenuation of a virulent cell line", Exp. Parasitol., vol. 89, no. 2, pp. 228-240.

Preston, P. M., Hall, F. R., Glass, E. J., Campbell, J. D., Darghouth, M. A., Ahmed, J. S., Shiels, B. R., Spooner, R. L., Jongejan, F., \& Brown, C. G. 1999, "Innate and adaptive immune responses co-operate to protect cattle against Theileria annulata", Parasitol. Today, vol. 15, no. 7, pp. 268-274.

Preston, P. M., Jackson, L. A., Sutherland, I. A., Brown, D. J., Schofield, J., Bird, T., Sanderson, A., \& Brown, C. G. 2001, "Theileria annulata: attenuation of a schizontinfcoted cell line by prolonged in vitro culture is not caused by the preferential growth of particular host cell types", Exp. Parasitol., vol. 98, no. 4, pp. 188-205.

Quandt, K., Frech, K., Karas, H., Wingender, E., \& Werner, T. 1995, "Mathed and Matnspector: new fast and versatile tools for detection or consensus matches in nucleotide scquence data", Nucleic Acids Res., vol. 23, no. 23, pp. 4878-4884.

Radley, D. F.., Brown, C. G., Burridge, M. J., Cunningham, M. P., Peirce, M. A., \& Pumell, R. E. 1974, "East Coast fever: quantitative studies of Theileria parva in cattle", Exp. Parasitol., vol. 36, no. 2, pp. 278-287.

Rafyi, A., Maghami, G., \& Houshmand, P. 1965, "On the virulence of Theileria amulata (Dschunkowsky and Luhs, 1904) and the premunition against bovine theiteriosis in Iran". Bull. Off Im. Epizoot., vol. 64, pp. 431-446.

Rao, A. 1994, "NF-ATp: A transcription factor required for the co-ordinate induction of several cytokine genes.", Immunol. Today, vol. 15, no. 6, pp. 274-281.

Rechsteiner, M. \& Rogers, S. W. 1996, "PES'I sequences and regulation by proteolysis", Trends Biochem. Sci, vol. 21, no. 7, pp. 267-271.

Reeves, R. \& Nissen, M. S. 1990, "The A.T-DDNA-binding domain of mammalian high mobility group I chromosonal proteins. A novel peptide motif for recognixing DNA structure", J. Biol. Chem., vol. 265, no. 15, pp. 8573-8582.

Reeves, R., Langan, T. A., \& Nissen, M. S. 1991, "Phosphorylation of the DNA-binding domain of nonhistone high-mobility group I protein by cde2 kinase: reduction of binding alfinity", Proc. Natl. Acad. Sci. U.S.A, vol. 88, no. 5, pp. 1671-1675.

Reeves. R., Leonard, W. J., \& Nissen, M. S. 2000, "Binding of HMG-I(Y) imparts archilectural specificity to a positioned nucleosome on the promoter of the human interlcukin-2 receptor alpha gene", Mol. Cell Biol., vol. 20, no. 13, pp. 4666-4679.

Reeves, R. 2001, "Molecular bjology of HMGA proteins: hubs of nuclear function", Gene, vol. 277, no. 1-2, pp. 63-81.

Richardson, I. O., Forsyth, L. M., Browtı, C. G., \& Preston, P. M. 1998, "Nittic oxide causes the macroschizonts of Theileria annulata to disappear and host cells to become apoptotic", Vet. Res. Commun., vol. 22, no. 1, pp. 31-45.

Robinson, P. M., 1982, "Theileriosis annulata and its transuission a review", Trop. Anim. Heallh Prod., vol. 14, no. 1, pp. 3-12.

Rogers, S., Wells, R., \& Rechsteiner, M. 1986, "Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis", Science, vol. 234, no. 4774, pp. 364-368.

Ross, A. R., Lee P. J., Smith, D. L., Langridge, J. L., Whettort, A. D., \& Gaskcll, S. S. 2002, "Identification of proteins from two-dimensional polyacrylamide gels using a novel acidlabile surfactant", Proteomics, vol. 2, issue 7, pp.928-936.

Rost, B. 1996, "PHD: predicting one-dimensional protein structure by profile-based neural networks", Methods Enzymol., vol. 266, pp. 525-539.

Sambrook, J., Fritsch, E. F., \& Maniatis, T. 1989, "Molecular Cloning: A Laboratory Manual", 2 edn, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Samish, M. 1977, "Infective Theileria annulata in the tick without a blood meal stimulus", Nature, vol. 270, no. 5632, pp. 51-52.

Samish, M., \& Pipano, E. 1978, "Development of infectivity in Hyalomma detritum (Schulze, 1919) ticks infected with Theileria anmulato (Dchunkowsky and Lulss, 1904)", Parasitol., vol. 77, (Pt. 3), pp. 375-379.

Schein, E. \& Voigt, W. P. 1979, "Chemotherapy of bovine theileriosis with Halofuginone. Shorl communication", Acta Trop., vol. 36, no. 4, pp. 391-394.

Schcin, E., Rehbein, G., Voigt, W. P., Zweygarth, E. 1981, "Babesia equi (Laveran 1901) 1. Development in horses and in lymphocyte culture", Tropenmed. Parasitol., vol. 32, no. 4 pp. 223-227.

Schultz, J., Milpetz, F., Bork, P., \& Ponting, C. P. 1998, "SMART, a simple modular architecture research tool: identification of signaling domains", Proc. Natl. Acad. Sci. U.S.A, vol. 95, no. 11, pp. 5857-5864.

Schwanbeck, R., Gymnopoulos, M., Petry, I., Pickicko, A., Szewczuk, Z., Heyduk, T., Zechel, K., \& Wisniewski, J. R. 2001, "Consecutive steps of phosphorylation affect conformation and DNA binding of the chironomus high mobility group A protcin", I. Biol. Chem., vol. 276, no. 28, pp. 26012-26021.

Seidman, I..A. \& Moore, C.J. 2000, "Basic Laboratory Methods for Biotechmology: textbook and laboratory reference", Prentice flall, Upper Saddle River, N...., pp. 401-440.

Scldin, D. C., \& Leder, P. 1995, "Casein kinase II alpha tramsene-jnduced murine lymphoma: relation to theileriosis in cattle", Science, vol. 267, no. 5199, pp. 894-897.

Sergent, E., Donatien, A., Parrot, L., \& Lestoquard, F. 1945, "Études sur les Piroplasmoses Bovines", Institut Pastew d'Algérie, Algiers.

Shapira, M., McEwen, J. G., \& Jaffe, C. L. 1988, "Temperature elfects on molecular processes which lead to stage differentiation in Leishmania", $E M B O$ J., vol. 7, no. 9, pp. 2895-2901.

Shaw, M. K., Tilney, I.. (i., \& Musoke, A. J. 1991, "The entry of Theileria parva sporozoites into bovine lymphocytes: evidence for MHC class I involvement", J. Cell Biol., vol. 113, no. 1, pp. 87-101.

Shaw, M. K. \& Tilney, L. G. 1992, "How individual cells develop from a syncytium: morogony in Theileria parva (Apicomplexa)", J. Cell Sci., vol. 101 (Pt 1), pp. 109-123.

Shaw, M. K., Tilney, L. G., \& McKecver, D. J. 1993, "Tick salivary gland extract and interleukin-2 stimulation enhance susceptibility of lymphocytes to infection by Theileria parva sporozoites", Infect. Immun., vol. 61, no. 4, pp. 1486-1495.

Shaw, M. K., Tilney, L. G., Musoke, A. J., \& Tealc, A. J. 1995, "MHC class I molecules are an essential cell surface component involved in Theileria parva sporozoite binding to bovine lymphocytcs", J. Cell Sci., vol. 108 (Pt 4), pp. 1587-1596.

Shayan, P., \& Ahmed, J. S. 1997, "Theileria-mediated constitutive expression of the casein kinase II-alpha subunit in bovine lymphoblastoid cells", Parasitot. Res, vol. 83, issue 6 , pp. 526-532.

Shiels, B., Mcloougall, C., Iait, A., \& Brown, C. G. 1986, "Antigenic diversity of Theileria anmulata macroschizonts", Vet. Parasitol., vol. 21, no. 1, pp. 1-10.

Shiels, B., Hall, R., Glascodine, J., McDougall, C., Harrison, C., Taracha, E., Brown, D., \& Trait, A. 1989, "Characterization of surface polypeptides on different life-cyele stages of Theileria ammlata", Mol. Biochem. Parasitol., vol. 34, no. 3, pp. 209-220.

Shiels, B., Kinmard, J., McKcllar, S., Dickson, J., Miled, L. B., Melrose, R., Brown, D., \& Tait, A. 1992, "Distuption of synchrony between parasite growth and host cell division is a determinant of differentiation to the merozoite in Theileria annutata", J. Cell Sci., vol. 101 (Pil), pp. 99-107.

Shiels, B. R., Smyth, A., Dicksom, J., McKellar, S., Teiley, I.., Fujisaki, K., Hutchiuson, B., Kimaird, I. 1994," A Stoichiometric Model of Stage Differentiation in the Protozoan Parasite Theileria annulata", Mol. Cell. Different., vol. 2, no. 2, pp. 101-125.

Shiels, B. R., d'Oliveira, C., McKellar, S., Ben Miled, L., Kawazu, S., \& Hide, G. 1995, "Selection of diversity at putative glycosylation sitcs in the immunodominant merozoite/piroplasm surface antigen of Theileria parasites", Mol. Biochem. Parasitol., vol. 72, nо. 1-2, pp. 149-162.

Shiels, B., Aslam, N., McKellar, S., Smyth, A., \& Kinnaird, J. 1997, "Modutation of protein synthesis relative to DNA synthesis alters the timing of differentiation in the protozoan parasitc Theileria ammulata", J. Cell Sci., vol. 110 (l't 13), pp. 1441-1451.

Shiels, B., Swan, D., Mckellar, S., Aslam, N., Dando, C., Fox, M., Ben Miled, L., \& Kinnaird, J. 1998, "Directing differentiation in Theileria annulata: old methods and new possibilities for control of apicomplexan parasites", Int. J. Parasitol., vol. 28, no. 11, pp. 1659-1670.

Shiels, B., Fox, M., McKellar, S., Kinnaird, J., \& Swan, D. 2000, "An upstream element of the TamS1 gene is a site of DNA-protein interactions during differentiation to the merozoite in Theileria annulata", J. Cell Sci., vol. 113 (Pt 12), pp. 2243-2252.

Shicls, B.R. \& McKcllar, S. 2000, "Reciprocal regulation of DNA-binding proteins during stage differentiation in Theileria annulata", XI Molecular Parasitology Meeting 17-21 ${ }^{\text {st }}$ September, 2000. Woods Hole, MA, U.S.A., p. 114.

Shiels, B.R. 2001, Unpublished Work.

Shkap, V., \& Pipano, E. 2000, "Vaccination against tropical theileriosis", Ann. N.Y. Acad. Sci., vol. 916, pp. 484-500.

Shukla, P. F. \& Sharma, R. D. 1991, "Immunization of bovine calves with cell culture vaccine against Theileria annulata", Acta. Vet. BRNO, vol. 60, pp. 79-86.

Singh, D. K., Jagdish, S., Gautam, O. P., \& Dhar, S. 1979, "Infectivity of ground-up tick supernates prepared from Theilerai annulata infected Hyalomma anatolicum anatolicum", Trop. Anim. Healh Prod., vol. 11, no. 2, pp. 87-90.

Singh, D. K., Thakur, M., Raghav, P. R., Varslncy, B. C. 1993, "Chemotherapentic trials with four drugs in crossbred calves experimentally infected with Theileria annulata", Res. Vei. Sci., vol. 54, no. 1, pp. 68-71.

Slama-Schwok, A., Zakrzewska, K., Leger, G., Leroux, Y., Takahashi, M., Kas, E., \& Debey, P. 2000, "Structural changes induced by binding of the high-mobility group I protein to a mouse satellite DNA sequence", Biophys. J., vol. 78, no. 5, pp. 2543-2559.

Smale, S. T. \& Baltimore, D. 1989, "The "initiator" as a transcription control element", Cell, vol. 57, no. 1, pp. 103-113.

Smith, H. O. \& Birnstiel, V. L.. 1976, "A simple method for restriction site mapping". Nucleic Acids Res., vol. 3, pp. 2387.2398.

Soete, M., Camus, D., \& Dubremetz, J. F. 1994, "Experimental induction of bradizoitespecific antigen expression and cyst formation by the RH strain of Toxoplasma gondii in vitro", Exp. Parasitol., vol. 78, pp. 361-370.

Somerville, R. P.. Littlebury, P., Pipano, E., Brown, C. G., Shkap, V., Adamson, R. E., Oliver, R. A., Glass, E. J., \& IIall, Г. R. 1997, "Phenotypic and genotypic alterations associated with the attenuation of a Theileria annulata vaccine cell line from Turkey.". Vaccine, vol. 16, no. 569, p. 575.

Somerville, R. P., Adamson, R. E., Brown, C. G., \& Hall, F. R. 1998a, "Metastasis of Theileria annulata macroschizont-infected cells in scid mice is mediated by matrix metalloproteinases", Parasitol., vol. 116 (Pt. 3), pp. 223-228.

Somerville, R. P., Litlebury, P., Pipano, E., Brown, C. G., Shkap, V., Adamson, R. E., Oliver, R. A., Glass, E. J., \& Hall, F. R. 1998b, "Phenotypic and genotypic alterations associated with the attenuation of a Theileria anmulata vaccine cell line from Turkey", Vaccine, vol. 16, no. 6, pp. 569-575.

Southern, E. M. 1975, "Detection of specific sequences among DN Λ fragments separated by gel electrophoresis", J. Mol. Biol., vol. 98, no. 3, pp. 503-517.

Spooner, R. L., Innes, E. A., Glass, E. J., \& Brown, C. C. 1989, "Theileria annulata and T. parva infect and transform different bovine mononuclear cells", Immunol., vol. 66, no. 2, pp. 284-288.

Spooner, P. R. 1990, "Oxytetracycline inhibition of mitochondrial protein synthesis in bovine lymphocytes infected with Theileria parva or stimulated by mitogen", Parasitol., vol. 101 (Pt 3), pp. 387-393.

Srivastava, A. K. \& Shamma, D. N. 1981, "Sludies on the occurrence, clinical features and clinicopathological and pathomorphological aspects of theileriosis in calves", Veterinary Research Joumal, vol. 4, pp. 22-29.

Stadler, L. 2000, "Characterisation of TashHN: a parasite gene postulated to play a role in the process of cell proliferation and attenuation of differentiation in Theileria anmulata in vitro.", Second Year Practical Report, Unpublished Work.

Stagg. D. A., Chascy, D., Young, A. S., Morzaria, S. P., Dolan, T. 'T. 1980, "Synchronization of the division of Theileria macroschizonts and their mammalian host cells" Amn. Trop. Med. Parasitol., vol. 74. pp. 263-265.

Stagg, D. A., Dolan, T. T., Leitch, B. L., \& Young, A. S. 1981, "The initial stages of infection of cattle cells with Theileria parva sporozoites in vitro", Parasitol., vol. 83, (P^{\prime}. 1), pp. 191-197.

Stagg, D. A., Young, A. S., Leitch, B. L., Grootenhuis, J. G., \& Dolan, T. T. 1983, "Infection of mammalian cells with Theileria species", Parasitol, vol. 86 (Pt. 2), pp. 243254.

Stambolic, V., Mak, T. W., \& Woodgett, J. R. 1999, "Modulation of cellular apoptotic polential: contributions to oncogencsis", Oncogene, vol. 18, no. 45, pp. 6094-6103.

Stephons, S. A. \& Howard, C. J. 2002, "Infection and transformation of dendritic cells from bovine aflerent lymph by Theileria amulata", Parasitol., vol. 124, (Pt. 5), pp. 485493.

Suthertand, I. A., Shicls, B. R., fackson, L., Brown, D. J., Brown, C. G., \& Preston, P. M 1996. "Theileria annulata: altered gene expression and clonal selection during continuous in vitro culture", Exp. Parasitol., vol. 83, no. 1, pp. 125-133.

Swan, D. G., McDonald, F., \& Shiels, B. R. 1996, "A stage regulated cyclophilin gene from Theileria annulata" Mol. Biachem. Parasitol., vol. 81, issue 1, pp. 111-114.

Swan, D. G. \& Phillips, K. 1997, Wnpublished Work.

Swan, D. G., Phillips, K., Tait, A., \& Shicls, B. R. 1999, "Evidence for localisation of a Theileria parasite AT hook DNA-binding protein to the nucleus of immortalised bovine host cclls", Mol. Biochem. Parasitol., vol. 101, no. 1-2, pp. 117-129.

Swan, D. G., Stern, R., McKellar, S., Phillips, K., Oura, C. A., Karagenc, T. I., Stadler, L., \& Shiels, B. R. 2001a, "Characterisation of a cluster of genes encoding Theileria annulata AT hook DNA-binding proteins and evidence for localisation to the host cell nucleus", J. Cell Sci., vol. 114, (Pt. 15), pp. 2747-2754.

Swan, D. G., Phillips, K., McKellar, S., Hamilton, C., \& Shicls, B. R. 2001b, "Temporal co-ordination of macroschizont and merozoite gene expression during stage differentiation of Theileria annulata", Mol. Biochem. Parasitol., vol. 113, no. 2, pp. 233-239.

Swan, D.G., 2001, Unpublished Work.

Swan, D. G. \& Phillips, K. 2001, Unpublished Work.

Tait, A. \& Hall, F. R. 1990, "Theileria annulata: control measures, diagnosis and the potential use of subunit vaccines", Rev. Sci. Tech., vol. 9, no. 2, pp. 387-403.

Tallini, C. \& Dal Cin, P. 1999, "HMGl(Y) and HMGl-C dysregulation: a common occurrence in human tumors", Adv. Anat. Pathol., vol. 6, no. 5, pp. 237-246.

Temple, S. \& Raff, M. C. 1986, "Clonal analysis of oligodendrocyte development in culture: evidence for a developmental clock that counts cell divisions", Cell, vol. 44, pp. $773-179$.

Thanos, D. \& Maniatis, T. 1992, "The high mobility group protein IIMGI(Y) is required for NF-kappa B-dependent virus induction of the human IFN-beta gene", Cell, vol. 71, no. 5, pp. 777-789.

Thomas, S.M., Brugge, J.S. 1997, "Cellular functions regulated by Sre family kinases.", Anm. Rev, Cell Dev. Biol., vol. 13, pp. 513-609.

Tkachuk, D. C., Kohler, S., \& Cleary, M. L. 1902, "Involvement of a homolog of Drosophilk trithorax by 11q23 chromosomal translocations in acute leukemias", Cell, vol. 71, no. 4, pp. 691-700.

Towbin, H., Stachelin, T., \& Gordon, J. 1979, "Electrophoretic transfer of proteins from polyacrylanide gels to nitrocellulose sheets: procedure and some applications", Proc. Nohl. Acad. SciU.S.A, vol. 76, no. .9, pp. 4350-4354.

Towler, D. A., Gordon, J. I., Adams, S. P., Glaser, L. 1988, "The biology and enzymology of eukaryotic protein acylation", Annu. Res. Biochem., vol. 57, pp. 69-99.

Trjezenberg, S. J. 1995, "Structure and function of transeriptional activation domains", Curr. Opin. Genet. Dev., vol. 5, pp. 1990-1996.

Tsur, I., \& Adler, S. 1963, "Growth of Theileria annulata schizonts in monolayer tissue cultures" J. Protozool., Suppl. 10, p. 36.

Tsur, I., Adler, S., Pipano, E., \& Senft, Z. 1964, in A. Corradetti, ed."Continuous growth of Theileria annulata schizonts in monolayer tissue culture." Pergamon Press, Oxford, pp. 266-267.

Tuazon, P. T. \& Traugh, J. A. 1991, "Casein kinase I and II-wnultipotential serine protein kinases: structure, function, and regulation", Adv. Second Messenger Phosphoprotein Res., vol. 23, pp. 123-164.

Uilenberg, G. 1981, "Theileria infection other than East Coast Fever," in M. Ristic \& I. McIntyre, eds. Diseases of Cattle in the Tropics. Martinus Nijhoff Publishers, The Hague, Boston, London, pp. 411-427.

Uilenberg, G. 1999, "Immunization against diseases caused by Theileria parva: a revicw", Trop. Med. Int. Mealth, vol. 4 (9), pp. A12-20.

Ulich, T. R., del Castillo, J., Keys, M., Granger, G. A., \& Ni, R. X. 1987, "Kinctics and mechanisms of recombinant human interleukin I and tumor nccrosis factor-alpha-induced changes in circulating numbers of neutrophils and lymphocytes", f. Immunol., vol. 139, no. 10, pp. 3406-3415.

Irquhart, G. M., Atmour, J., Duncath, J. L., Dumn, A. M., \& Jennings, F. W. 1987. "Veterinary Purasitology", Longman Scientific and Technical, New York.

Van der Plocg, L. II. T., Giami, S. H., \& Camtor, C. R. 1985, "Heat shook genes: regulatory role for differentiation in parasitic prolozoa", Science, vol. 228, pp. 1443-1446.
van Lin, L. II., fanse, C. J., \& Waters, A. P. 2000 , "The conserved genome organisation of non-falciparum malaria species: the need to know more", Int. I. Parasitol, vol. 30, no. 4. pp. 357-370.
van Vorstenbosch, C. J., Uilenberg, G., \& van Dijk, J. E. 1978, "Erythrocytic foms of Theileria velifera", Res. Vet. Sci., vol. 24, no. 2, pp. 214-221.

Vickerman, K. \& Irvin, A. D. 1981, "Association of the parasite of East Coast fever (Theiteria parya) with spindle microtubules of the bovine lymphoblast", Trans. R. Soc. Trop. Med. Hyg., vol. 75, p. 329.

Viseras, J., Garcia-Fernandez, P., \& Adroher, I. J. 1997, "Field trial of immunization with an experimental vaccine against Mediterranean theileriosis in Spain", Vet. Res., vol. 28, no. 4, pp. 397-403.

Visser, A. E., Abraham, A., Sakyi, L. I., Brown, C. G., \& Preston, P. M. 1995, "Nitric oxide inhibits establishment of macroschizont-infected cell lines and is produced by macrophages of calves undergoing bovine tropical theileriosis or East Coast fever", Parasite Immunol, vol. 17, no. 2, pp. 91-102.

Voller, A., Bidwell, D. E., Bartlett, A., Fleck, D. G., Perkins, M., \& Oladehin, B. 1976, "A microplate enzyme-immumoassay for Toxoplasma antibody", J. Clin. Pathol, vol. 29, no. 2, pp. 150-153.

Wagner, G. G., Duffus, W. P., \& Burridge, M. J. 1974, "The specific immunoglobulin response in cattle immunised with isolated Theileria parva antigens", Parasitol., vol. 69, pp. 43-53.

Walker, A. R. \& McKellar, S. B. 1983, "Observations on the separation of Theileria sporozoites from ticks", Int. J. Parasitol., vol. 13, no. 3, pp. 313-318.

Walker, A. R. 1990, "Parasitic adaptations in the transmission of Theileria by ticks-a review", Trop. Anim. Ilealth Prod., vol. 22, no. 1, pp. 23-33.

Wang, D. 7., Ray, P., \& Boothby, M. 1995, "Lnterleukin 4-inducible phosphorylation of HMG-I(Y) is inhibited by rapamycin", J. Biol. Chem., vol. 270, no. 39, pp. 22924-22932.

Wang, D. Z., Zamorano, J., Kccgan, A. D., \& Boothby, M. 1997, "HMG-I(Y) phosphorylation status as a nuclear target regulated through insulin receptor substrate- 1 und the 14R motif of the interleuin-4 receptor.", J. Biol. Chem., vol. 272, pp. 25083-25090.

Waring, P. M. \& Cleary, M. L. 1997, "Disruption of a homolog of trithorax by 11 q 23 translocations: leukemogenic and ranseriptional implications", Curr. Top Microbiol. Immunol., vol. 220, pp. 1-23.

Waters, A. P., Syin, C., \& McCutchan, I. 1. 1989, "Developmental regulation of stagespecific ribosome populations in Plasmodium", Nature, vol. 342, no. 6248, pp. 438-440.

Wathanga, J. M., Jones, T. W., \& Brown, C. G. 1986, "Cryopreservation of Theileriainfected lymphoblastoid cells with functional assessment of viability". Trop. Anim. Heallh Prod., vol. 18, no. 4, pp. 191-197.

Wciss, L. M., Ma, Y. F., Takvorian, P. M., Tanowitz, H. B., Witner, M. 1998, "Bradyzoite development in Toxoplasma gondii and the hap70 stress response" Jufect. Immum, vol, 66, 110.7, pp. 3295-3302.

Wells, C. W. \& McKeever, D. J. 1998, "The entry and development of Theileria parta sporozoites within bovine dendritic cells from the afferent lymph", in Biology, Comm. Eur. Soc. Microse., Brussels, pp. 597-598.

Wenyon, C. M. 1926, "Protozoology: A Mantal for Medical Men, Vetcrinarians and Zoologists" Balliere, Tindall and Cox, London, pp. 1029-1039.

Wenzel, R. \& Herrmann, R. 1996, "Cosmid Cloning with Small Genomes," in B. Birren \& E. Lai, eds. Nonmamnailan Genomic Analysis: A Praciical Guide. Academic Press, San Diego, 「ondon, pp. 197-222.

Whiteside, S. 'T. \& Goodbourn, S. 1993, "Signal transduction and nucloar targeting: regulation of transcription factor activity by subcellular localisation", J. Cell Sci, vol. 104 (Pt 4), pp. 949-955.

Wiesgigl, M. \& Clos, J. 2001, "Heat shock protein 90 homeostasis controls stage differentiation in Leishmania donovani" Mol. Biol. Cell vol.12, issue 11, pp. 3307-3316.

Williams, R. O. \& Dobbelaere, D. A. 1993, "The molecular basis of transformation of lymphocyles by Theileria paria infcction", Semin. Cell Biol., vol. 4, no. 5, pp. 363-371.

Williamson, S. 1988, "A Theileria annulata Sporozoite Surface Antigen as a Potential Vaccine for Tropical Theileriosis.", PhD Thesis, University of Edinburgh.

Williamson, S., Tait, A., Brown, D., Walker, A., Beck, P., Shiels, B., Fletcher, J., \& Hall, R. 1989, "Theileria annulata sporozoite surface antigen expressed in Escherichia coli elicits neutralizing antibody", Proc. Natl. Acal. Sci. U.S.A, vol. 86, no. 12, pp. 4639-4643.

Wootton, J. C. \& federhen, S. 1996, "Analysis of compositionally biased regions in sequence databases", Methods Enzymol., vol. 266, pp. 554-571.

Xiao, D. M., Pak, J. H., Wang, X., Sato, T., Huang, F. L., Chen, H. C., \& Huang, K. P. 2000, "Phosphorylation of HMG-I by protein kinase C attenuates its binding affinity to the promoter regions of protein kinase C gamma and neurogranin/RC3 genes", J. Neurochem., vol. 74, no. 1, pp. 392-399.

Yanisch-Perron, C., Vicita, J., \& Messing, J. 1985, "Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors", (iene, vol. 33, no. 1, pp. 103-119.

Young, A. S. 1977, "Theileria mutans the infectivity for catle of parasites derived from prefed Amblyonana variegatum nynuphs", Tropenmed. Parasilol., vol. 28, no. 4, pp. 521527.

Young, A. S., Grootenhuis, J. G., Smith, K., Flowers, M. J., Dolan, T. T., \& Brocklesby, D. W. 1978, "Structures assuctated with Theileria parasites in eland erythrocytes", Ann. Trop. Med. Parasitol., vol. 72, no. 5, pp. 443-454.

Young, A. S. \& Leitch, B. L. 1981, "Eipidemiology of East Coast fever: some effects of temperature on the development of Theileria parva in the tick vector, Rhipicephalus appendiculatus", Parasitol., vol. 83, (Pt. 1), pp. 190-211.

Young, A. S., Leitch, B. L., Dolan, T. T., Newson, R. M., Ngumi, P. N., \& Omwoyo, P. L.. 1983, "Transmission of Theileria purva by a population of Rhipicephalus appendiculatus under simulated natural conditions", Parasitol., vol. 86, (Pt. 2), pp. 255-67.

7ablotsky, V. T. 1983, "Duration of post-vaccinal immunity in bovine theileriosis", Tt: Vises. hust. viksp. Vet., vol. 57, pp. 56-61.

Zalut, C., Henzel, W. J., \& Harris, H. W. J. 1980, "Micro quantitative Edman manual sequencing", J. Biochem. and Biophys. Methods, vol. 3, no. 1, pp. 11-30.

Zentner, M. D., Lin, H. H., Deng, H. T., Kim, K. I., Shih, II. M., \& Ann, D. K. 2001, "Requirement for high mobility group protein HMGI-C interaction with STAT3 inhibitor PIAS3 in repression of alpha-subunit of epithelial $\mathrm{Na}+$ channel (alpha ENaC) transcription by Ras activation in salivary epithelial cells", J. Biol. Chem., vol. 276, no. 32, pp. 298052.9814.

Zilberstein, D., Blumenfeld, N., Liveanu, V., Gepstein, A., \& Jaffe, C. L. 1991, "Growth at acidic pH induces an amastigote stage-specfic protcin in Leishmania promastigotes.", Mol. Biochem. Parasitol., vol. 45, pp. 175-178.

Appendix A Sequence of Primers

Primers for $\mathbf{p} 600$ synthesis

```
HMG-1: b' TATTGGATCCCAAACAATTGGGAATMT 3'
HMG-2: 5' CAICGAA'NCA'MCTCGATCTCCACAAT 3'
```

5' RACE Primers

| rspl: | $3 \prime$ CCCGCTCACGTAAATAA | 5 |
| :--- | :--- | :--- |
| rsp2: | 3^{\prime} CGGACGATTCNAATGAA | 5 |
| rsp3: | 3^{\prime} CGCTMCCCCAAATTAGT | 5 |

Primers for Tashat1-N syothesis

| 1. | 5' GAMGGAATTCTGG'GGAATITTAATAAA | 3^{\prime} |
| :--- | :--- | :--- |
| 2 | 5' TTTAGGATCCGTAAAATTTGCTTCTTCC | $3 \prime$ |

Sequence in bold type indicales the FcoRI and BamHI restriction sites of primers 1 and 2, respectively.

Appendix B Deletion Clones Derived from λ Ta1

| Clone | Sense strand | size/kb | clone | Antisense strand | size/kb |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | gd1sp6 | 3.6 | 1 | $3 \mathrm{gd1sp6}$ | 3.6 |
| 3 | gd3s | 2.9 | | 6903 gd 1 | |
| 5 | 690gd5 | 2.8 | 2 | 3 gd 'spp6 | 3.2 |
| | gd5st | | 3 | $3 \mathrm{gd} 3 \mathrm{sp6}$ | 2.8 |
| | gd5s | | 1 | 3 gd 4 sp 6 | 2.7 |
| | gd5sp6 | | | 6903 gd 4 | |
| | ngd5 | | 6 | 3 gd 6 s | 2.2 |
| 7 | gd7sp6 | 2.6 | 7 | 3 gd 7 sp 1 | 2.1 |
| | gd7s | | 8 | 3 gd 8 spo | 2 |
| 9 | gdasph | 1.8 | 9 | $3 \mathrm{gd} 9 \mathrm{sp6}$ | 1.9 |
| | gd9 | | | n3gd9 | |
| 10 | gd210sp6 | 1.6 | 10 | 6903gdt 0 | 1.8 |
| 11 | gd11sp6 | 1.4 | | n3gd10 | |
| | | | | 3 gd 10 | |
| 13 | gd13sp6 | 1.2 | 11 | 3gd11s | 1.7 |
| 14 | gdi4sp6 | 1.2 | | 6903 gd 11 | |
| 15 | gd15sp6 | 1.1 | 12 | $3 \mathrm{gd12sp6}$ | 1.4 |
| | ngd.15 | | 13 | n3gdi3 | 1.3 |
| 16 | gd16sp6 | 0.6 | | $3 \mathrm{gd} 13 \mathrm{sp6}$ | |
| 18 | gd18sp6 | 0.8 | 14 | 3 gd 44 sp 6 | 1.2 |
| | ngd18 | | 15 | 3 gd 15 sp 6 | 1.0 |
| 20 | g⿴20sp6 | 0.6 | | 3gdi5s 1 | |
| | | | 16 | 6903 gd 16 | 0.9 |
| | | | | 3 gd 16 sp 6 | |
| | | | | 3gdi6s | |
| | | | | $3 \mathrm{gd16}$ | |
| | | | 19 | 3gd19sp6 | 0.12 |
| | | | | $3 \mathrm{gd19s}$ | |
| | | | | n3gd19 | |
| | | | | 3 gd 19 | |

Appendix C Contiguous DNA Sequence Map of λ Ta1

$>$ Sense strand
＜Antisense strand

gai－6sps
395－6 387－6 6533yd． 3ed．sp6 CONSENSUS
a NC入tCTGttTNACeCGrrinttcte 25

| | |
| :---: | :---: |
| 396－6 | CTTTTTATTSAGaTCTAATAATACTTGTTtAGAtCt |
| 3876 | CTLTLTATTSAGALCTAATAATACTTGTCTAJATCTCGTACGTCCAATATTTACATCCAA 27 |
| 6903 gda | －CTTTTPATTCAGACCTAATAATACTTGTYTAGATCTGGTACGTCCAPTATTTAGATCCAA 3.2 |
| 3gdisp6 | |
| CONSENSU | |

390－1 3gd2ep6 gd20sp6 ga1бsp6 396－6 387－6 6903 gd 1 3gd＿sp6 CONSENSUS

390－1．
3 gd 2 sp 6 qd20sp6 gd15sp6 396－6 387－6 6.903 gd 7 3gd1sp6 CONSENSTJS

GATA．TTMGACCTTATTATCCCACATATAEtGATTTATMTAAG 43

AATTEGAATt CTTGAGATAt TTGACCTTATTAtCCaaCATATATTGATTTATTTAAG 58 TTAATTTGAAt TCTTEAGATATTTTGACCTTATTALCCCACATATATTGATTTATTTAAG 145
 TTAATTTGAATTCTTGAGA羔ATTT．GACCTIATTAT．CCACATATATTGATTTATTTAAG 336
 TTAATETGAATTCTTGAGATATTTaGACCT匕ATTATCCCACRTATATTGATTTATTTAAG 420 －TTAATTTGAATTCTTGAGATATTTTCACCTTATTATCCCACATATATTGNTTTATTTAAG 420

| 390.1 | |
| :---: | :---: |
| 3gd2sp6 | |
| gd20．pp | |
| gdısяря | CAC＝CA |
| 396 | CACTCAGAATAMGKGTG＇G |
| 387－5 | |
| 6903gdi | |
| 3 gclap | A |
| | |

390－1
3gc2sp6
yd20sp6
gА－6spo
396－6
387－6
6903gdi
3GdJ．3p6 CONGENGUE

390－1．
$3 g \mathrm{c} 2 \mathrm{sp} 5$
3d20sp6
galospe
396－5
387－6
CONSENSUS

 TGAAGCTTCACG 502 TGAR ．GGtTCA ．GGT＇TRTtGT 562
－TGRAGGTTGACGTTRTSG

SGGTCTAAGTAACCAAGTTTTTTTAGT工TCATATOTCRGITTTCT 430

gd14sp6 gdisspe gd15sp 6 390－1 3 9习ンスр6 Gd20sp6 CONSFNSTIS
$<$

$>$ ACG 359

－ACGTTГAKGTPGTTCAGGTTCAGGTTTCTGTTTTCTTGGTC®AAGTAACCAAGT厂TTTTT 780
g－14：5p6
gd18：5p6
g 15 5\％
390－1
CONSENS＂JS

＝AGTTTCAGTTWTCATGTCTYTTGGTCTAAGTAACCAAGOtTTTEAGT＇TCALATEПCTG 21

－AGTPTCAGTTTTCATGTMTC1＂GGLCUAAGTAACCAAGTJTTTTTAGTMTCATATTTCIG 840
rugct 8
ngdis
gdl：spe
3 gव．3sp6
gdi4sp6
gdibsp6
gdi5spe
396－1
CONSENSUS

СTтGG 5
CTTOS 5

1. B
 TTTTCJAGGCCIACCCCGTTTACGTTTAGGTTGTTCAGGATCAGGTHTCTGTTTTCTTCC 123
 －

j90－2
ngcl18 ngdis gĩ $1 . \operatorname{sph}$ $3 \mathrm{gd3} \mathrm{sp6}$ gсi．4spe gतา8spe gdissp6 390－1． CONSERSUS

\because TGTACCIGGTCIACGTTMAGGPACTTCTGGZTGTTCATGTOTCTTGGTEACTRCTGTTA2 241

390－3
©di3sp6
390－2 ngcle ngdlb gol1sp6 2gd3sp6 gdi4sp6 gd185p6 gdlラsp6 390－1 CONSENSJS

 $=$ AICAGGAAAATVCCCAATTGT＂IMAR＇ACCAANATTTSCTAATTCTTGAZTGTCTGTTTG B2

 ：ATGAGAAAAATTCC．AATTGTTTGAATACUAATATTTTOTAATTETLGAACGTCFGTTTG 1.3 B

 \＆ATCAGAAAAATTCCCNATTGTTTGANTACCAATATTTTCTAATTGTTGATGTCTGTTG 301
 \Rightarrow ATCAG 5 HE ATCAGAAAAATTCCCAATTGTTTGAATACCAATATTTTCTAATTCTTGAATGTCTCTTTG 1020

390－3 gd13spe 390－2 ngdib ngd1．5 gain．1506 3 gdjs 26 gcidspe 9018506 gi1．5525 CONSENSUS
n3gci3
390－2
gd1．3sp6
390－2
29025 gd7：spg 3 gd 3 sp 6 gdis apg gdi5spt CONSENEUE
 TGTATCTATATCTTCTACTTCTTGAATGTETGTVEGAATCGAGCTEtCJTTAGTETGAAT 131
TGTATCTATATCTTCTACTTCTTGAATGTロTGTTTGAATCGAGCTTTCTTTAGTTTGAAT 142

ТGTAГCTATATCTTCTACITCTTGAATGTCTGTTTGAATCCAGCTTTにTनTAGTJTGAAT 185 GTATCTATATCTTCTACTTЄTTGAATGTCTGTにTGAATCCAGCTTTニTनTAGTTTGAスT 198
 СТТТСТATATCTCCTACTTCTTGAATGTCTOTTTGAATGCAGCTTTGTOTAGTTTGAAT 303 こGTATCTATATCT．CTACTTGTTGAATGTCTGTYTGAAECEAGCTTTE 349

3 gclasp 6
n39613
390－3 g．．13sp6 390－2 gil1sp6 3qd3sp6 gd14 sp6 CONSENSUS
$>$

 TATLTCTTGADTATCTGTTTOTGTGTATCTATMCTGAGTEAATAT

 －MATTTCTTGAATATCPGTTT今TGTGTATCTATSCTGAGTTAATATTCCATCTGATTCTTU 423 －ATTTCTTGAATATCTGTTTGTGTGTATCTATTCTGAGTTAATATTCCATCTGATTCTTT 1乞OO

3 gd 6 s 6903 gd 4 gd2．l0sp6 3gderp n3gd13 390－3 390－2． gd11spe 3 g 33p6 gd1esp6 CONSENSUS
$>$
 ATHATACATTAGATTCATCAAT T：CTTCATCATCJTATTCAAGTTCCACTGGART 95 AGG：TTTGATACATTAGATtCATCQATP「СTTCATCATC 129 AGGTTTTGATACATTAGATTCATCAATTTCTTCATCATCTGATTCAAGTTCCACTGGAAT 294 АGGTTTTGATACATTAGATTCATCAATTTCTTCATCATCTGATTSAAGTTCCACTGGAAT 322 AGGTTTTGATACATEACATTCATGAATTTCTTCATCATGTGATTUAACTTCLACTGCAAL 378 －AGGt TTTGATACATTAGATTCATCAATTTCTTCATCATCTGATTCAAGTTCCACTGGAAT 41．8 －AGGTTPTGATACATPAGATTC AGGTTTTGATACATTAGAT ICATCAATTTCTTVATCATCTCATTCAAGTTCCACTGGAAT 1260

6903 da gaztesp6 3 gd 4 sp 6 390－3 390－2 gd11sp6 3 cod 3 sp 6 CONSENSUS

－AGחt TCTGGTTCTAACTC．GTAGGTMCTTGTTGTCTッTCTGTCTCTTGAGTAOGKTCTTC 478

3gdespe 3gd78pe 3 g ges 6903 gct 4 gd21．0spg $3 \mathrm{qd4} 5 \mathrm{p} 6$ 390－3 390－2 3 gdisp 5 CONSENEUS

3 gatspe 3 gd 7 spe 3ça6： 6903gd4 gd210spe 3 gd 4 sp 6 390－3 390－2 CONSENSUU

3 3c9sps n3ed9 3gdBspf 39d7sp6 igd6s 6903 gct 4 gctiosp6 $3 \mathrm{gd}=\mathrm{mp}$ 3903 300－2 LONSHNEUE

39 ges 6 n3gca
3 yd 8 Ap 6
3gd7spe
3906 s
$6903 \mathrm{gd4}$
gd210sp6
3914 эр6
390－3
390－2
CONSENSUS

ATCAACA？TTTTATCATGTTGTTCACTTTGTGGTTTATCTETCCTETGUCNACTCGTTT 201

AAG 3
TGGGAAG 7
TACTUTACGT TATCNACTT＂KTCTGTTTTTACAT＇T＇TTEI＂LCAGNCTCGGAAT＇ГGGAG 133
TAGTTTACGTTTATCAACtTVUTCTニTTTTTACATTTTLATTCAGOCCGOAB＇H＇GGAAG 16\＆

 TAGTTTACGTTTATCAACTПTTTCTG TTTFACAFT F TKTTTCAGTCTCGGAATEGGAAG 562

[^1]AASTTCCCSCTCACGTAAATAAAMTMCAUAGCTTCATC 3 －ACTCTTGTTGAСATATTTATAGAAGTTCССGСТСАСGTAAATAAATTTCATAGCOTCATC 123 －ACTE＂TGTTGAEATATTTATAGAAGTTCCCGCTCACGTAAATAAATTTCATAGCTTCATC 127
 －ACTCTAGTTGATATATTTATAGДAGTTCCCgCOCACGTAAATAAATTTCATACCTTCATC 288 ＞ACPCTTGTTGATATAT1＇W＇RAGAACLTCCCCCTCACOTAAATAAATTTCATAGCLTCAPC 3 －ACTCTTGTTGATATATTTATAGAAGTTCCCGCTCACGTAPATAAATTTCATAGCTTCATC 408 \＆ЛСTCTTGTTGADATAJTKATAGAAGTTCCTGCTCACGTAAATAAATTECATAGCTTCATC 414 ＝ACTCTTGTEGAEATAETUATAGAAGTTCCCGETCACGTAAATAAAM＇ICA＇AGCU＇LCALC 45G $>\mathrm{ACPC}$ 598
$=$ ACTCTTGYPGATATATTTATAGAAGETCCCGCTCACGTAAATAAATMTOATAGCITCATC－162Q

| gdio | － | 5 C |
| :---: | :---: | :---: |
| 73 gdio | ＞＇TNCGGCATTTCCNATTVCARTGGTAATTAATGTCTTATCGCACGAT＂ICAAATGATAATCS | g |
| 3gcigspg | | 183 |
| n3cd9 | ＞＇TACGGCATT＇TCCAAPTTCAATGGTRAT | 187 |
| 3 gdesp | | 31.3 |
| 3gct 7 ¢pe | | 348 |
| 3gct6s | ＞TACGGCATTTCCAATTTCAATGGTAA1＂AATGTCTTATCGGACOATTCAAZTGAMAATCT | 441 |
| $690.3 \mathrm{gd4}$ | | 168 |
| g621csp6 | | 474 |
| $3 \mathrm{cd4spo}$ | | ¢－5 |
| CONSFNSUS | | 3.68 |

rfs：\ll CGCTHOCOCABALTAGTTICCRETEAGAACO3 31

n3gdio $3 \mathrm{c} d 9 \mathrm{spr}$ n？gd9 3 gdusp6 3 yủ？ 9 p 6 3Gल6： $69030 \mathrm{~g} \leq$
$=A G T A A A C A T$ WAACA＇A＇H＇СACCHCGATCOTTCCCA AATTAGTTTCCTTTTAGAACG $15 B$
－AGTAABACATM＇AACATATTCACCTCGNTCGCTTCCCCAAATTAGTTTCCTMTTBGAACG 243

 AGTAARACAEGTAACATATTCACCLCGA 376

693.3 gat 10
n． 3 gd 10
3ad9spr n3gd9 3gdesp6 6903 ght gd210sp6

n̄ydio
？gd9spg
r．3gd9
39d8s．66
COVGTESUS

＞AACAATTTTTATTGTATAAAAATГAGCA＂MADC＇FAAATVATCCAAATATAAFAT－TCGGA 278

$>$ AACAA＇T 313

$6903 G G 10 \quad \therefore$ AGAAGCAAALTTTACGCGGTATAAAAATAATGTAAATATTATGTGAGACAGGGTCAATAC 299 n． 3 gci 10
3 gds 5 x 6 3g：18 jp CONSLNEOS AGAAGCAAATTTTACGCGGTATAAAAATAATGTAAATATTATGTGAGAGAGTTTCAATAC 338
AGAAGGAAATTTACGCGGTATAAAACTAATGTAAPTATTATGTGAGAGAGGTCAATAC 423
 535
AGAAGCAAATTTTACGCGGLAMAAAATAATGTAAATATTATGTGAGAGAGTTTCAATAC．．．92C
gdispe
ど下 2
6903 gdr 0
n3gdilo 3gd9sp6 CONSENSUS

$>$－AT TCAGTTATK
$=$ FATITCAGTTADCIUPTCTTGTtGTGTAGATAATATCATAATCTTAGTTAATCTGTCTTC 303

\Rightarrow TAT．TCAGt＇IA＇C＇I＇ 542
＜TATVTCAGTEATCTTATETTUTGGTGRAこA 1800
qd7sp6 590 gdt gd5s． 6903 gdl 1 gais．ape 3cdils $3 \mathrm{gd10}$ 3 gdl 2 pp 5 gu9：2p6 rfe． 6903 gdi0
CONSENSUS
$<$
\because
$<$
ATTATFATCTACAAAATTTGTCLCASA

＝מTAAAまа
$=$ ATAAAMA＇GIAAHAGA＇AHGALCATMAATATTTATTATCATCTAOAAAATTTETTГTAGA 2100

gd7s＜AACCATAcTGAGTTALCCALCEt＇1＇I＇LAAALCCTAAECATTTGAAA 45 3cidJ．35p6 gतुक ga＇7sp6 590 gdj gd5®l 6903 gd 11 gd5sps 3ydi1： 3 gdl 0 3gcl：12an gas：ip6 CONGENGU解

＝TATATATCATTCAGCAACCALACDGACTTACTCATCTTTTTAAATTCTAATCATTTЗAAA 2220
ga／s
3cd13．sps
gd3s gd＇sp6
690 gdS
 6903 gd 11 gatsp6 3 çd1s 3 gd 1 c 3 gd 2 sp 6 g＂98p6 CONSENSUS

TTGCOCTT LATTLAMTCATAT＿TAATATYГATTTGLCGWCDNNNTMTCCCTAATTTEAC 1G5
 MTGGGCTTTEATTヒAシTCATATTTAATATTTAMTTGTOGTCTAAATATTCCTAATTMHAC JGG

「TGGGCTC世YATTCACTCATEtCEAATATTヒATCTGTCGTCTAAATATTCCTAATEヒVAC 207

 －TTGGGCTTTTATTTACTCATATTTAATATTRATtTGLCGECTAAATACTCCIAATTGIAC 281
 TIGGOTTTTTATTTACTCA1MTTMAATATTTATTTGTCGTCTAAATATTCCTAATTTTAC 2280
gतthe
gd7s
3 gcij． $3 \operatorname{sp6} 6$
gil． g
gd79p6
6．909d5
gd5sl
6903 gd 11
ge5smb
3ydils
3 qdi 0
3gd1．28p6
gC95F6

AATGGTGAtAtATGACATCAAA＇T＇ヒヒCAA＇IAACA 33
TTCTLAGATGTAGTVANCTAGLECCTEAATAGTGATATATGACATCAAATVECAATAACA 165 TTCTTAGATGTAGIPMATTAGTTCCTTAATGGTGATATATGACATCAAAFTCAATAACA 225
 TTCTTAGATGTAGTTAATTAGTTCCTTAATGGTGATARATGACATCAAATVLCAATAACA 241 TTCTTAGATGTAGTTAATTAGTTCCTTAATGGTGATAPATGACATCNANTVTCNATAACT 263 TPCTYAGATGTAGTYAATVAGTECCTYAATGGTGATATATGACATCAAATCTCAATAACA 267 TTCTIAGAIGTAGTTARTTAGTTCCETAATGGTGATATATGACATCAAAYTTCAATAACA 296 TTCTEAGATGTAGYTAATIAGT二ССTTAATGCTOATATATCACATCAAATTECAATAACA 300 TTCTTAGATGTAGTMAATVAGTTCCTTAZTGGTGATATATGACATCAAATETCAATAACA 315 TTCITAGATGMAGINMATTAGTTCCLTAATGCTGATATATGACATCABATTTCAATAACA 333 TTCTもAGATGTAGTTAATTAGTTCCYTAATCCTGATATATGACATCAAATTTCAATAACA 341 TTETもAGA GTAGTTAMTLMGROCCEtAATGGTGATATATGACATCAAATETCAATAACA 362

3gdjespo
3gdl5s．
rigd 5
gd9
gd5：

3 gd 13 spe
9×17
gd7cっ6
690 cd 5
cdssl
G903gdll
gdesps
3gcille
3 gci 10
2Gci2ept
gd9sp6
GOVEFNSITS

\＆GCt．TНATATGGUCITCCCTVAAGTGGAAGAGAFCAACCATTTGTATTTTCTGODGAGIC 7.53

＞GGGr．．TATA T＇GG＇C＇I＂I＇I＇I＇Cl＇TAAGTGGAAGA

\＆GGTFTATATGGTCTTOTCTtNAGTGGAAGAGATGAPCCATTTGTATTTRCTGTTTGAGTC 482

69039d16 3 gdl 6 sp 6 $3 \mathrm{gdl}=506$ 3cdi6s $3 \mathrm{Gdl5g} 5$ 3gdi．5s1 ngd 5 Gd5s gci76 3ga13sp6 gd3s gd7sp6 6.90 gct 5 gd5sl

3gdl5sps
3gdl5al
ngd5
gd9
ch5 gd7s 3gd13506
gdiss
yd70p6
690gd5
gd5 $=1$
590 3gdil
gd돟 6
3gdl1：
3 gcl 2 spg
gdesp6
CONSENSLSS

＇CaATaTCTTgCGTTTgTTGGATaTCTOTtEgGgニAgagCTTTCUTTAG匕TEGT
1ட7 LこAATATCTEGCGTCTGTVGGATATCTMTTYGGGTAGAGCTETCTTEAGTTCGTATATCT 213 に ：ARMN1CTTGCGTTTGTYGGN＇RTRTGTTTGGGTAGAGCTTTCTTTAGTTEGTATATCT 345

 TCAATATCIMCGGTTTGTTGGATATCPCTTTGGGTAGAGCTC以CTTTAGIFEGUAIAICT 443 TCAATADCIYGCGTYTGTXGGATATCTCTYTGGGTAGAGCTC：CTEヒエG1「FGTATATCT 447 HCAADATCTNGCGTL TCAATATCTPGCGTT GTTGGATATCTGRTTGGGTAGAOCTTTCTTTAGTPGGTNTNTCT 480
 TCAATAtこttGCGttTGttG 481 T欠スATAFलItECGT 495 $>$ TGAATATCH＂IGCGTTTGTTGGATAPCTGTTTGGGTAGAGCTUTCTMTAGTTGGTATATCX 2520

[^2]6903 g .11 ＞GTCINAGI＇AATANCATCgNATTNTATATNGNAGTGAGTAGGGTCATCABCALCCATATCA 536

CONSENSUS \rightarrow GTYHGAGJ＇AATAGCATCGGATTGTATATGGGAGTGAGTAGGTHCATCAACAECCATATCA 2580

6933 gdj 6
30d16sp6
3 cdy 4 sp6
3cd16s
3gd15：p66
3gal．s．？
ncide
gu5：
gd7s
gctss
get7spe
9a5sl
6903 gdl 1
gd5sp6
3gd11s
CONSENSUS

＞CTGTCTGATGATATTRCCAATTCAAAAATTTCAGGT＂CTAGTTCTTCCTCATAAAOLTGA 101

$=$ CTGTCT＇GAOGATAl＂I＇CCAAJ＂LCAAAAATTTCAGGTTCTAGTTCTTCCTGATAAAOTTGA． 216
$<$ СTGTCTGARCATATTTCCAMTTCAAAAA 24

＜CTGTCTGATCATATtt \＆2こ
$<$ GLKLCTCATEATAMTTCCAATMCAAAAATDTCAGGFTARAGTT SC9

$<$ C．T 509
$\therefore \mathrm{C} \quad 5.37$
\therefore MTッTCTGATGATAT＂TCCAa＇l＇I＇\quad 5e？
$>$ CT⿳TCTGATGATA．TTCC．ATr＇OAAA $\quad 581$

6903gct16
3gd16：506 3sd． 4 spg 3gd16s ．3gd．15ap6 3gd15：1 CONSLNSUB

；GTTGATATGTTAGCTTGTGTCC1＇C＂GGGGIM＂ITMAAS＂ГCT＂CGDTCCACAGGCACCTCT＝64

\therefore GUTGATATGLTACCTTGLCLCCCCTGGGG 23.4

6503 gill 6
3gdlespe 3 gdj 4 sp6 3gdi6s 3gd＂5s？ CONSENSUS

387－8 $5903 \mathrm{gd1} 5$ 3gd16sp6 3g（11 Ape 3ydles 3gd15s1 CONSENSUS
ACTVGCAATCCAGATGAAMRACTTATTETATCTAATAATGATCTGGTTGTGTAACCTGTG 1.93
 221
ACTTGCAATCCAGATGAAM1ACT1ATTGTRTCTGATAATGAAC～GG～TGTGZACCTGTG 224ACLTCGДATCCAGATGAGTTASTTATTGTATCTEATAATGAACCGGUTGTGOGACOEGTG 226
ACTTGCAATCCAGATGAATTACTTATTGRATCTGATAATGAAC'GGTVGTGTCACCTGTG 2760

 ，TGFACTCITGASTEAGITGGTCIEDCATTATATCTGAACLTANGNVTBTCTTCAGESTCT 281

327－8 6903 gat 6 3gdi6mp6 3gal4spg 3gdl6： 3 gdI 5 si CONSENSUS


``` GAAGAAGE こTCAGTGTCTTCATTMGAAGGAGIAACAIACTYTCTTCTCTTATTGTTACCT GAAGAAGEBTEAGTGTCTTCATTTGAMGGAGTAACNTACNTECRTCTCTTATTOTRACCt
```



``` GMAGANGttTCNGTGTCTTCATTTGAAGGAGTAACATAStTTCTTCTCTTAMTCTTACCT 346 GAAGAAGCTCAGTCJCTTCATTTCAAGCAGTAACATAOTLTCTLCTCTNATLCTTACCT 456
```


11

```56
```

387－8
6903 gdj 6
3gd16sp6
3 gd 1.4 spe
3gd16s
CONSENSUS
 TTTGGATGES＇T＇GAAAACCCtETTTTGITCCTTTGACGTRTTGAACGGATCDGEGGTATC 373 TTTGGATG今STTGAAAACCCg－1＂tTGTTCC $亡 T G A C G T g T T G A A C G g A T C g G T G G T A T G 401$

 －TITGGATGTTTFGAAAACCCTTTTITGT＂ICCT＂THGACGTGI＂TGAAGGGATCGGTGGTATG 2940

39019：p6 3gd19s n3gdig 39 d 6
$>$ $=$ 3

THCTMTJGTATAGMACTA 1.5
＊CrCMTt GTTTTAGGATGAAAAATCTHTGTATESECT＂YTMTTGTATAGTACTA 48 AGTTEtAGGATGAAAAATCTヒヒSTATLGTCTLCTLETIGTATAGTACTA
？

3 gdl9
gī：sp6
387－8 650．3gd16 3cd1．6ヶp6 3 col 4 sph 3gd16s CONEENSUS

TTCAGTTHTAGGATGAAAAATCTTTTロスTHGTCTRCTTTTTGTATAGRACTA 52 TATTCAGTTTГAGGATGAAAAATCTTTGTATTGTCTCCTヒTTTGTATAGTACTA 54
AGtAt：TCAGT：T＂TAGGAICAAAAALCTETGTATTGTCTにCUTTTTGTATAGTACTA 56 GOATAGTATTCAGTTTTAGGATEAnスNNTCTTTGTATTGTCTTCTHETTGTATAGTACTA 21.5 GGATAGTATTCAGTTJTAGGATGAAAAATCITTGTATTGECTECTTETEGTATAOTACTA A33

 ，GGATAGTAT＇CAGTHTVACGATGAAAAATCTTTgTATTGTC？TODTTIMGIALAGLACTA ≤ 65

390195 nsyd19
$3 y c t 16$
3 cyed 9
287－5
gdapp
387－8
6．903gcla
3gd：6sp6
3gd： 4 sps
3gd．．．6s
CONSENSJS

$>$ AGAC？TAAAATC $4 \% 3$

＞AgAC־TAAAATCTTTTUTTGATAAGTTMTTTGATCAATTMCAAAATANTCATETTTTCTT Б2К

3gd．9spe
39di．9s
n．3gd． 9
$3 \mathrm{gd1} 6$
3 gdig
387－5
Gdinos 397－8 30d11 5pf
CONSENSUS

TCTCCAGAATAT TAAATTTTGTAATTGTAATCATTCTGCAT＇تTCTCACCLAACAGAGCA 22日
＇C＇ICCAGANTAT

TCTUCAGAATATTTAAATTTTGワAATTGTAATCATTCTGCAT＂ICTVACCIAACAGAGCA 395 ＇J＇Cr＇cCクGAnTrirTTA 599

GACCATACCAATTETRCTCCATCATAAACCTTTCTAATTGGTTGGTTATTGGTAGGATAA 259

 GACCAFACCAATTETECTCCATCATAAACCTTTCTAATTGGTTGGTTATTGGTAGGATAA 289
 GaCCATACCAATCr＂rCICCATCATAAACSTTTCTAATTGGTTGGTTATTGGTAGGATAA 294 GAOCATACCAATTTTTCTCCATCATAAACOTTTCTAATTGGTTGGTTATTGGTAGGATAA 296
 GADCATACCAATTTTTCTCCATCATAAACCTTTCTAATHGGU＂IGGH＇LATTGGTAGGA＂AA 3240

 T 289
 Al＂CtatalCrPAGTCATSCCATTTTCA．CATATTCGaごATCGGTAATTTJGAATTOTAT 352 АТ Tttat＇CrTAGrCATTCCATTTTCAGCATATTCGARTATCGGTAATTTGGAATTGTAT 3.54 ATTTETATCTTAGTCATTCCATTTPCAGCATATTGGACTATCGGTAATTTHGAATTGTAT 356
 ATTTTTATCTTAGTCATTCCATTTTCAGCATATTCGACTATCGGPAAYTTTGAATCGTA＇ 3300
$3 \mathrm{GC19} 5 \mathrm{~s}=\mathrm{GAAAGTTAGTACAAGAACTAGA} \quad 34=$
$\begin{array}{lll}7 \text { Gell9: } & >\text { GAAGGttAC'JAC } & 333\end{array}$

3gdil $\quad \rightarrow$ ATATCACITATATTTAATAAGTCTGAAGACACAAGATTTACATAAGAGAAZGETAGTACA 4.12

387-8 \leqslant ATДTCДСТTATATVTAATAAGTCTGAAGACACAACATTTACATAAGAGAZAGTTAGTACA 575
CONSENGJS = ATATCACTTAEAT TAATAAGTCTGAAGACACANGADГTACATAAGAGAAAGTTAGTACA .3360

Appendix D PSORTII Analysis of the Predicted TashAT1 Polypeptide

Abstract

Input Sequence QUERY (4бб аa) MUTGTPEDK TEIREKRILI WGSDRGEYVK CFTRFSEESS DKTLITIEIG NAVDEXMKFI YVSGNFYKYI NKSEFEDYYK SECSVFIKIP PGKLIPTPRLK KNVKTEKVDK RKLSRDRQKK DKPQSEQHDK NVDJVSQSLA EEGTDTGKKT VGREEPTQQT EKQQEPFELE PETTPVZIFG DDFFTDFGNV SKPKESDGIL TDTQTDLQEE ENIGIQTJGN FOOT'FVTKK HEQPEVPKRR PGRPRKQKPE PEQPKRKRGR PRKOKYETKK TNLSFPRNMK TETKKTWLLR PRIKQKPDPEQ PKRERGRPMK QKYETKKJWL LRPRNNKTET KKTWTLTRPRK HKPEPEQPKR KRGRPRKQKP EPSSDT

Results of Subprograms

```
pSG: a mew stgnaj peptide precliction method
    N-regiog: -ength 6; pos.chg 1; neg.thg 0
    H-region: iength 11; peak value 10.31
        PSG score: 5.91
GvF: von Heijne's method for signal seg. rerogrition
        possible cleavage sine: between 24 and 2.5
ss> seems to have no N-texminal sigral peptide
ASOM: Kleir; et al's method for IN regicn allocelior
    Injt position for calculatiom: I
    Tentetive number of TMS(s) for the threshold 0.5: 1
    Number of Tws(s) for threshold 0.5: l
    TKTFGRAL TulvelihooG=-2.76 Transmembrane 1 - 17
    OPTDFERAL Likelihood =6.15 (at 94)
    ATrOM wcore: -2.76 (number of TNSs: 1.)
MTOP: Prediction of membreme topology (Wartmamn et al.)
    Center position for calculation: S
    Gharce तifference: 0.0 C(2.5) - N( 2.5)
    N == C:N..l:ermimal. side will be inside
>>> membrane topology: type 2 (eytoplasmic tail 1 to 1)
MTTDISC: discrimination of nitochondrial tarcotting gec
    R content: 1 Fyd Momunt(75): 3.96
    Hyd Momcnu(95): 5.28 G content: 0
    D/E content: S/' content: 4
    Scorc: -3.27
Gavel: predistion of cleavage sites for mitochorngrial preseg
    R-2 motif at 28 YRV;KF
NUCDISC: digerimitation of muclear local,isation signals
    Pat.4: PKRR (4) at 337
    pat.4: KRRP (4) at 338
    pat4: EPRK (4) at 343
    pat4: PKRK (4) at 354
    pat4: KRKR (5) at 355
    pat4: RPRKK (4) at 360
    pat4: RPRK (4) at 390
    pat4: PKRK (4) aL 401
    pat4: KRKR (E) at 402
    pat4: RPRK (4) at 407
    pat4: RPRK (4) at 437
    pat4: RKHK (3) at 439
    pat4: PKRK (4) at 44B
    pat4: KRKR (5) at 449
```

```
pat4: RPRK (4) at 454
pat7: PIFRJKKK (3) at 1.15
pat7: ЭRLKJNV (5) at .147
pat.7: PEVPKRR (3) at 334
pat.7: PKRRPGR (5) at 337
pat7: PGRPRKQ (4) at 34].
pat7: PRKQKRE (5) at. 344
pat7: PR:QPKRK (3) at. 357
pat7: PKRKRGR (5) at 354
pat'7: PRKQKYE (5) at 361
pat7: PRKOKPE (5) at 39].
pat7: PEOPKRK (3) àt 398
pat7: PKRKRGR (5) et. 401.
pat7: PRKQKYE (5) et: 408
pat7: PRKFFKPF (5) at. 438
pat 7: 3RQFKRK (3) at 445
pa-7: PKRKRGR (S) at 448
pat7: PRKQKPE (5) at 455
bipartite: KKNVR'FPKVDKRKIKRRD at. }15
bipartite: RKQKPPPRQPKRKRGRP at 345
bipartite: RKCKPEPEQPKRKRGRP at 392
bipartite: RKHEPEPEQPKRKRGRP at 439
cortent of basic residues: 2%.2%
NuS Score: 12.71
```

KDEL: ER retention motif in the c-texminus: none
ER Membrane Retention 3 ‥gnals: cone
SKL: peroxigomal Largeting signal in the C-terminus: none
SkJa: 2 nd peroxisomal targeting signal: none
VAC: possible vacuolar targeting motif: found KこPI àt 143

RNA-binding motif: mone
Actinin-type actin-binding motif:
type 1: none
type 2: none
NMYR: N-myristoylation patiern : none
Prenylation motif: none
mernyorli: transpoxt motif from ccll surface to Golgi: none
Tyranires in the tail: none
DEleucine motif in the tail: none
Ginecking 63 PROSITE DNA binding motifis: none
checking 71 EROSITE ribosomal protein motifs: none
chcoking 33 prosfl'E prokaryotic: DNA binding moti.Es: none

BNCN: Reinhardt's , method for CyLopiasmic/Nuclear discrimination
Prediction: nuclear
Rel.iability: 94.?
COLL: Jupas's algorithm to detect coiled-coil regions
cotal: 0 residues

Results of the $k-N N$ Prediction

```
k=9/23
    39.1 %: nuciear
    21.7 %: cytoplasmic
    1%.4 %: mitochondrial
    8.7 %: cytockeletal.
    8.7 s: plasma menbrane
    4.3%: vesicles of secretory systen
>> predi.etion for QUERY is nuc ( }\textrm{k}=23\mathrm{ )
```


Appendix E SignalP Analysis of the TashAT1 Predicted Polypeptide

OUTPUT INTERPRETATION (Taken from SignalP analysis program)

Ihe SignalP WWW server will return thee scores between 0 and 1 for each position in your sequence:

C-score (raw cleavage site score)
The output score from networks trained to recognise cleavage sites is. other sequence positions. Trained to be:
high at position 4 (immediately ofter the cleavage site)
low at all other positions.
S-score (signal peptide score)
The output score from networks trained to recognise signal peptide $v s$. non-signalpeplide positions. Trained to be:
high at all positions before the cleavage site
low at 30 positions after the cleavage site and
in the N -terminals of non-sccretory proteins.
Y-score (combined cleavage site score)
The prediction of cleavage sile location is optimised by observing where the C-score is high and the S-score changes from a high to a low value. The Y-score formalises this by combining the height of the C-score with the slope of the S -score.

Spccifically, the Y-score is a geometric average between the C-score and a smoothed derivative of the S -score (i.e, the difference betwecn the mean S-score over d positions before and d positions after the current position, where d varics with the chosen network ensemble).

All threc scores are averages of five networks trained on different partitions of the data.
For each sequence, SignalP will report the maximal C -, S -, and Y -scores, and the mean S score between the N-temioal and the predicted cleavage site. These values are used to distinguish between signal peptides and non-signal peptides. If the your sequence is predicted to have a signal peptide, the cleavage site is predicted to be immediately before the position with the maximal Y-score.

Appendix F TargetP Analysis of the Predicted TashAT1 Polypeptide

```
T A R G E T' I 1.0 prediction resultg
Number of input sequences: 1.
cleavage site predictions not included.
Using NON-PLAN'L networks.
```


INTERPRETATION (Taken from TargetP program)

COLUMNS:

Nome

Sequence name as annotated in fasta file (without initial ">") or on TargetP input page. The a ame may be of any length, but only 30 characters will be preserved throughout the prediction.

Length

Sequence length. Only the 130 N -teminal amino acids are used in the prediction; submitting sequences longer than 130 residues does not improve the prediction (but it does slow down the prediction).

cTP/mTP/SP/other

The neural network output score for each of the possible catcgories. If non-plant version is chosen, cTP is not included is a possible location. The scores are NOT probabilities, and they do NOT necessarily add to one (1). However, the location with the highest score is the most likely one accorting to TargetP, and the relation between the scores may be an indication of how certain the prediction is (see column RC).

Loc.
The subcellular localisation predicted by TargetP:
C : Chloroplast, i.e. the sequence contains a chloroplast Iransit peptide, cTP
M : Mitochondrion, i.e the sequence contains a mitochondrial targeting peptide, $m T P$
S : Secretory pathway, i.e the sequence contains a signal peptide, $S P$:
any other location*: "do not know".
This character appears if cutoff restrictions were demanded and the wining network oulput score for a sequence was BELOW the requested cutoff for that category. The asterisk shows that no prediction was done by TargetP (although the output scores and RCs are presented also for these sequences).

RC
Reliability Class: a measure of the size of the difference (diff) between the highest (winning) and the second highest output scorcs. There are 5 reliability classes, defined as follow:

RC 1: difr>0.800
RC $2: 0.800>$ diff >0.600
RC 3: $0.600>$ diff >0.400
RC 4: 0.400>diff>0.200
RC 5: $0.200>\operatorname{diff}$

TPlen

For sequences predicted to contain a $\mathrm{cTP} / \mathrm{mTP} / \mathrm{SP}$, this is the predicted length of the presequence. For SI's, SignalP is used in this prediction, and for cTPs, Chlorop is used.

Appendix G Pestfind Analysis of TashAT1 for PEST Sequences

ANALYSED SEOUENCE:

```
YKR|.,WNVVLKLSHIIFTLJLYRVKFASSEILYLDNLDNPNFYTTKTVEDR 50
    - -- -- - - - -- - - - - - - - - - - -
LTKIMESSTPFDKITEIRSKRKLIWESDRGEYVKCFTRPSFESGJKTITTM 100
                                    00000
IETGNAVLEAFKF'YVGGN&YKYTNNGEFEDYYKSFCSVFIKIPPGKLPI 150
O0000000000
PRI,KKNV/KTFFVVDKPE゙T,KRDRQR KDKPQSEOFDKNVDTVSQS`PEEGIDL 200
    00000000000000000
AKNTVGREE`TQQTEKQQEPTELEPETIPVELESDDEEIDESNVSKPKES 250
```



```
    0000000000000000000000000000000000000000000
EVEDTDTOTDIQGLENIGIQTIGNFSDTTEVTKKIIFQFTVPKRFPGRORK 3SO
00000000000000000000000000000000
QKPEPEQPKRKRGRPRKQKYETKITFWL_RPRNMKTETKKTwLLRPRKQKP S00
EPEOPKRKRGRPRKQKYEユKKTWIIFRPRNMKRETKTTWWLLRPREHKPEPE 450
```

QPKRKRRGRPRKQKPEDSSDT 470
$++++++\quad$ oossible PEST seguences
....--- poor PEST sequerces
oonooo inva1:d past secquences
POTENTIAT PFST SBQUENCES:
216 KQQEPTELEPETIPVĖESDDEEIDESNVSK 245
mole fracticn of PETST : 58.93
hyorophobicity index : 30.60
PEST-FIND score : +17.11
POOR PEST SEQUENOES :
24 KFASSEILYLDNLDNPNFYTIK 45
PEST.FIND scorc : . 14.64
INVALTD PEST SEQUENCES:
96 KTLITIEIGNAVDEAMK 112
184 KNVDTVSQSLAEEGIDLEK 202
258 RYTQTDIQEIEDIGIQTEIH 277
277 HELENLVFOTDTOTK 291
291 KESSIQTDIQEVEDIDTQTDIOELENTGTQTTGNFSDICEVTK 333

Appendix H Prosite Search of the TashAT1 Predicted Polypeptide

PROSCAN result for ：TashAT1

PROSTTE：Eairoch A．，Fuchen P．and flofinariri K ．The PROSTTE datacase，bts status in 1997 Nucleic Acias Res．（1997）Jan 1；25（1）：2．27－221
PROSCAN ：lPROSCAN has been developed at IBCP．

Prolein TaghATI usinc PROSli＇w．basg as refercnce site file

MMVVLKLSHIIFTLFLYRVXVASSELLYLDNLDNPNFYTIKIVEDRITKTMILSTPEDKITEIRSKRKLIWGS DRGEYVKCヨTRFSFESSDKTLITIEICKAVDEAMKFIYVSCNFYKYINKSEFEDYYKSFCSVFIKIPEGKLFI FRLKKNVKTEKVDKRKLKRDRQRKDKDQSEQFDKNVDIVSQSIAEEGTDTEKKIVGREEPTQQTEKQQEPTEM．
 TDLQLVEU！DJQTDIOELENIGIQTIGNFSDITEVTKKHEQPEVPKRRPGRPRKQKPKUEQPKRKRGRPRKQK YE＇IKKIWLLKPDNMKTETKKTWLLRPRKQKPEPEQコYRKRGRPRKQKYE＂IGK＇IWTITRPRNMKTTTKKTWTIRRP RKYKPEPEQPKRKRGRPRKQKPEPSSDT

Sin：iarity percentage 100

N－ylycosylation site．
Prosite roceess mumber：ps00001
？ronito doaumentation access mumber：PDOC00001．
$N-\{P\}-[S T]-\{D\}$.
Randomised probability：5．138e－03

Site $:$	$L 21$	to	124	NKSE．	Idenlity
site	239	to	242	NVSK．	Identity
Site	320	to	323	NFSD．	Identity．

Protein kinase c phosphoryletion site．
prosite access number：Ps00005
Prosite documentation access number：procooo0．
［ST］－x－［RK］．
Rondomjsed probability： 1.423 e－02

	：	39	to	41	TIK，	Identity．
Ste	：	65	to	67	SKR．	Identity．
Site	：	73	to	75	SDR．	Identjey．
Site	．	90	to	92	Bnk．	Identity．
site	：	155	to	157	「万阶。	Identity．
Site		210	to	232	TEK．	Idemtity．
site	．	328	to	330	TKK．	J．dextity．
Site		368	to	370	TKX．	T．dentsty
Site		383	to	385	TKK．	Trientity
Site		475	to	417	TKK，	ICentity
Site		430	to	432.	TKK：	Jdentity．

Casein kinase II phosphorylation site．
Prosite access number：PS00006
Prosite documentation arcess number：pDocoo006
$[S T]-\mathrm{x}(2)-[\mathrm{DE}]$ ．
Randomised probability：1，482e－02

Site	：	54	to	57	STPE．	Iderntity．
Site	：	55	ビO	58	TPPE．	Identity．
Site	：	123	to	126	STRTE．	Identity．
Site	：	188	to	191	SLAE．	Jdentity．
Site	：	21.7	to	220	TELE．	Identity．
Site	：	230	to	233	SDDE．	Identity．
Site	：	256	to	259	TQTD．	Tdentity．
Site	：	280	to	$2 \mathrm{B3}$	TQTD．	
Siヶe	：	303	LO	306	TQTD．	Iaenlity，

Tyrosire kinase phosphorylation site.
Prosite access number: Psoogo7
procite documentarion access mumber: PDOC00007
$[\mathrm{RK}]-x(2,3)-[\mathrm{DE}]-x(2,3)-Y$.
Rancomised probability: min $=4.074 e-04$ max $-4.083 \mathrm{e}-04$
Site : 122 to 129 KSsFEDYY. Identity.

N-myristoylation site.
Prosite access number: pro000
Prosite documentation access rumber: PDOC0000 8
G- $\{\mathrm{EDRKHPFY} W\}-\mathrm{X}(2)-[S T A G C N]-\{P\}$.
kandomised prooability: 1.397e-02
site : 72 to 77 GSDRGE. Identity.
5 difforent patterms found.
PROSITE result file (text): [PROSITE]

Appendix : Predicted Transcription factors that bind to the TashATf upstream region.

Adupted from a chart by Mathspector analysis of the upstrcam region of TashaTl (sec Fig. 3.19). Sequence in capitals are highly conserved within the transcription factor binding site consensus. Sequence in capital letters denote the core sequence, the highest, consecutive conserved positions of the matrix, usually 4 bp long (see Fig. 3.19 for explanation of Matrix. Sim scores).

Name of family matrix	Further Information	Position	Strand	Matrix sim.	Sequence
V8CDXF/CDX2.01	Cdx-2 mammalian caudal related intestimal transer. Factor	2-20	(-)	0.837	Icctatat T TTAct Cttag
VSMYTUMYTI. 01	My'Tl zine finger transcription factor involved in primary nemogenesi	7-18	(-)	0.842	CtAATH Ttactt
V\$NKXH/NKX25.02	homeo domain factor $\mathrm{Nkx}-2.5 / \mathrm{Csx}$ timman homolog low affinity sites	12-19	(-)	0.895	$\begin{aligned} & \text { CelAAT } \\ & \mathrm{T}_{1} \end{aligned}$
VWOCIP/OCTPP.01	octamer-binding factor 1 POU-specific domain	14-28	(-)	0.900	ClaanAT TCetant
V\$MFP2/AMFF2.01	myocyte enliancer tactor	15-32	(-)	0.824	Tegtel'AA Atattectaa
VSCART/CART1.01	Cart-1 (cartilage homeoprotein 1)	$31-4.8$	(-)	0.854	AttTAAT
					Attatitgtc
VSIKFHTMINF3B.01	Hepatocyte Nuclear Factor 3beta	$33-47$	(t)	0.972	CantaAA TAttaala
VWHNF 1/HNF 1.01	hepatio nuclear factor 1	34-48	(-)	0.802	AtTTA
V\$NKXH/NKX31.01	prostate-specitic homeodomain protein NKX3. 1	$34-46$	(1)	0.851	Atattatll Aant ΛA ATatta
V\$SATESASATB1.01	Special AT-rich secpucnce-binding protein 1 predominantly expressed it thymocyles binds to matrix allachment regions (MARs)	34-55	$(-)$	0.917	Tactcatát TAATall Tattt
VSBRNF/BRN2.01	POU factor Brm-2 (N-Oct 3)	38-53	(-)	0.939	Cteatatt TAATaHI
VSEVLIEV11.04	Licotropic viral integration site 1 encoded factor	45-59	$(+)$	0.834	AAATAL Gagtaaka
V\$IKHID/XIPD 5.01	Xenopus fork head domain factor 3	$50-63$	(+	0.921	TgagtaAA TAaaag
V\$TBPF゙TATA. 01	cellular and viral TATA box elernents	5569	${ }^{+}$)	0.880	AanTAAA Agcccat
VRBRR VFITRN2.01	POUf factor Brim-2 (N ()ct 3)	64-79	(-)	0.938	Atcattga
					A \wedge T $\operatorname{tgg} \mathrm{g}$
V\$1PDX1/ISL1.01	Pancreatic and intestimal lim-romeodontain factor	71-90	(-)	0.817	Tuaatic LANTC
					Atttga
V\$TBPF/MTATA. 01	Muscle Tata box	77-93	(-)	0.851	Centa
					Altefate
V\$MEF2/MEF2.05	MEF2	83-92	(+)	0.969	Aatt TA
					AAda
VSIINFI/HAFt.01	hepatic nuclear factor I	$89-103$	(-)	0.793	AGITIA
					Tteatettil
V\$PIT1/PIT1.01	Pitl GFIF-I pituitary specific pou domain transcription factor	94-103	$(-)$	0.960	AgttAT TCut
V\$MEIS/MEIS 1.01	Ilomeobox protein MEIS 1 binding site	95*106	(-)	0.781	CTGAG Tlattea
V\$AP1FNIL2.01	N1-E2 p45	98-108	(+)	0.861	Atanc TC AGta
V\$OCT1/OCT1.05	octamer-binding factor 1	115-128	$(+)$	0.935	Ctgatga TATATa
VSMEIS/MEIS 1.01	Homeobox protein MEIS1 binding site	119-130	(+)	0.840	ATGAI
					Atatatc
F\$YNITMTT2.01	activator of nitroger-regulated genes	127-132	(+)	1.000	TATCta
VSEVIJ/EVI1.04	Ecotropic viral jutcgration site 1 encoded factor	127-141	(-)	0.857	TAATA Agttagata
V\$NKXILNKX31.01	prostate-specific homeodomain protein NKX3.1	129-141		0.898	TatAA GTitaga
V\$MYT1/MYT1.02	MyT1 zinc finger trauscription factor involved in primary neurogenesis	$130-140$		0.890	AatAAG rttag
V\$TBPFITATA.01	cellular and viral TATA box elements	132-146	$(-)$	0.896	glatata Ataagttt

VSOCT1/OCl1.05	octamer-binding factor 1	142-1.55 (+)	0.905	Tatactga
				GATGCa
V\$OCTV/OCT1.02	octamer-binding Factor 1	150-159 (+)	0.937	GATGC
				Aata
V\$IRTF/RF1.01	interferon regulatory factor 1	156-168 (1)	0.890	Aaanalı
				GAAAat
VSEVII/EVI1.06	Ecotropic viral integration site 1 encoded factor	165-173 (-)	0.854	AcaACr ATII
V\$FKHD / HFHI.01	HNF-3/Fkh IFomolog I	168-179 (-)	0.898	AttiAA
				Caaga
VSOCT1/OCT 1.06	octamer-bincling factor 1	175-186(\cdot)	0.861	Taaatgg
				GAATT
VTIKRSIIKI.01	Ikaros 1 potential regulator of	1/6-188(-)	0.916	AaatGG
	1 ynnphocyte clifferentiation			GAattga
VSCIOXICDPCR3HD. 01	cut-like homeodomain protein	183.192 \dagger	0.958	Aatiga
				TCta
V\$GATA/GATA3.02	GATA-binding lactor 3	184-193 (+)	0.928	AtTGA
				Tetaa
V\$PJ.)X1/ISL. 1.01	Pancreatic and intestimal	203-222 ${ }^{(+)}$	0.826	Tytagat
	lim-honeodomain factor			Gatas
				Taanatl
VKGATAGATA 302	GATA-binding factor 3	204-213 +	0.934	G1AGA
				Tcata
V\$BRNF:BRN2.01	POU factor Bra-2 (N-Oct 3)	208-223 (+)	0.930	AicataatA
				A Alota
VSCARTICART1.01	Cart-1 (cartifage homcoprotcin 1)	200-226 (1)	0.923	lcal'AA
				Taantat
				Aatg
VWNKXHNKX25.02	homeo domain factor Nkx-2.5/Csx	210-217 (1)	0.878	CaIAA
	tinman homolog low affury sites			Taa
VWFKHDIXFD2.01	Xemopus fork head domain factor 2	211-224 (+)	0.903	AtaatAA
				Atalda
VSHNF1/HNF 1.01	hepatic muclear factor 1	212-226 (-)	0.807	CATTA
				Atalttalta
V\$GATA/GATA 3.02	GATA-binding faclor 3	22.3-2.32 (-)	0.933	AatgA
				Ticata
V\$OCTH/OCT 1.06	octamer-binding factor 1	223-234(-)	0.851	Galatgat
				CATT
V\$EVILLEV11.05	Ecolropic viral integration site 1	225-235 (-)	0.833	Agatat
	encoded factor			GATCa
V\$GAlAGATA 3.02	GATA-binding factor 3	228-237 ()	0.949	AtAGA
				Tatga
VSSATB/SATB1.01	Special AT-rich sequence-binding	2.28-249 (-)	0.923	Tatasatal
	protein 1 predominantly expressed			GI'AAT
	in thymocytes binds to matrix			Agatatga
	attachment regions (MARs)			
FSYNT/NTT2.01	activator of nitrogen-regulated genes	231-236 (+)	1.000	TATC'ta
V\$CREB/E4BP4.01	E4LP 46 ZIP domain transcriptional	235-246 (-)	0.873	AatatG
	repressor			TAAta
V\$ IBPF/ATA. 01	cellular and viral TATA box elements	236.250 ()	0.939	GtaTAA
				Atatgrat
VSVBPF/VBP.OI	PAR-type chicken vitellogenin	236-245 (+)	0.899	ATTAC
	promoter-binding protein			\wedge tatt
V9FKHD/FREAC7.01	Fork head RElated Activator-7	238-253 (-)	0.942	TttgtaTA
				AAtatgta
V\$NKXH/NKX 31.01	prostate-specific homendomain protein	238-250 (-)	0.843	(itatAA
	NKX3,1			ATatgta
V\$MEF2/MEF2.05	MEF2	242-251 (-)	0.978	'TgtaTA.
				AAta
V\$PIT1/PIT1.0.1	Pitl GHF-1 pituitary specific pou	243-252 (+)	0.907	Attat
	domain transcription factor			ACaa
V\$3:KlID/HFFI3.01	HNF-3/Fkh Honolog 3 (Freac-6)	246-258 (+)	0.981	TatacAA
				ACatce
VSSATBISATB1.01	Special AT-rich sequence-binding	258-279 (-)	0.913	Catgttal

	protein 1 predominantly expressed in thymocytes binds to matrix attachment regions (MARs)				AgTAA
Tatticaa					

Appendix J Tblastn Analysis of the Predicted Amino Acid Sequence of TashAT1 with the T．parva Genome Database

```
TBLASTN 2,OMD-NashU 「27-Aug-2000: [limux-i686 2,:46:47 28-Aug-2000]
Crpyrjogt (こ) 1996-2000 WasiningLon Univergity, gaint louis, MEzsouxi usA.
All Riglat's Roscrvod.
keference: Gj,sh, w. (1996-200c: Hotp://blasL.wusLl.edu
```

Notice: उtatistical significasee is estivated unde\% Ehe assmmption ohat the
equivalert of one entire redding frame of the dazabase codea for protein and
that signǐidurl al_gmonte will involve only codimg reading frames.
Query= query_sc由utice
(266 Ietzers)
Datubase: /Lsr/lonalidb/ixmg/t parva
5en suquences; 8, 929,689 kolal let-ers.

443	+1	$\leq 2 J$	$1.5 e-47$	3
473	+2	9.	$C .43$	2
500	-3	77	6.31	1
450	-1	85	0.97	

-443

$$
\text { Length - } 814,83 \leq
$$

Rlü SLIGHd HSPs：

```
Score = 244 (91.0 bita), Expect = 2.7e-23, Sum こ(3)=2.7e-23
fdunti&i=s a 59/19B (34%), Positives = 99/198 (10%), Frame = +2
```


Query：1．27 KโfRFPDYYKGEC®VFIKIPPGKEPIPRLKKNVKTEXXXXXYXXYXXXXXXXPOSEOHDKN 181 $\mathrm{K} \mathrm{EF}++\quad \mathrm{SF}+\mathrm{K} \quad \mathrm{RKK} \mathrm{K}+\quad \mathrm{PQ} \mathrm{Q} \mathrm{D}+$

Query： 182 vjtusqsianeecidiek 199

$$
V+Q+E+F E K K
$$

Sojc：：4 1360 EPGVROVKS：EDVEREKK 4i＊ 13

```
Score = 235 (e7.8 מi=s), Expect = 3.0e-39, SumP(3! = 3.00 1%
Icentities = by/lbl {39%}, Positivet = B5/15\ {5G%t, Frame - +2
```


SUICL： 45452 MFRJNVLYLTFVVFVYCTKTASSLTLDLNNTSMSEFHTLELVGNGIIKTIIESTフDRFIT A56． 31

Sojct： 45632 KLCEGCRGこW〇ALPGESARCVIYITSELSKKEDNGTEVDNPVEHQVYYJNRCRTHYVYTT ≤ 5311
Ouery： 122 KSEFEDYYKSPCSVEIKIPP－CKKLFPRI．KK lbl

Query：$\quad 12 \mathrm{~L}$ にKSEPE－JYYKSFCSV－－FI－－KIPRG－－KI．PIPRLKKNXK 154 $K \quad \begin{aligned} & \mathrm{F}+\quad \mathrm{V} \quad++\mathrm{K} \quad K+P I 叉 \quad K+\quad K\end{aligned}$
SUJCL： 35636 TKEMEDPEYAEMARVAKXMERKYSKSSDKVFT？EOFOPKK 3575
 Identjuies $=5 . / 130$（35\％！，Positives $=75 / 130$（574），Frame -+2

Query：$\quad 1.0$ TTFTTFT，YRVKFASSEILYLDNLENPNYY「IIKIVEDRETKIMIESTEEDKITEIRSKRKL 69

Query： 70 TWGSDRGFYVKCFTRFAFFGSDKT工ITIELGNAVDEAMKFIYVSGNFYKYINKS－－－－EF $1 . \bar{Z} 5$

Sbjct： 50228 IWCALSCESAKSITHISSKWSKSMVMTIEVENHVNDDWYYICKI＇RSDYKYVTKEIFDEFF 50407
Muery： 1.26 EDYYKSFCSV 135
－YK＋F S＋
Sb＇ct：50403 VETLXIKTFTGM 5043＂

```
Score - 210 (79.0 ivits), Expect = 5.0e-15, Sum P(3) = 5.0c*15
Idertities=45/119 (27%), Posjtjves = 65/119 {54%), Frame .. +2
```

Query： 2 MVVLKJSHIJFPLFLYRVKFASSEIJMLDNLDNPNFYTIKIVEDRLJTKIMILSTREDKIE 61


```
    Tतentitieg = 43/130 (33%), Positives = 59/130 (53%;. Frame = +2
```

QuEry: $\quad 2$ UVLKLSHITHFLLYRVKमASSELLYLDNLONDNFYTIKIVEDRJTKTMTTSTEFDKITA 62

GOjct: 42278 VFLKKNVGこFAニIFYHIKIVSSAILNINNEONSK上KVVKIVDGWVIKVMIYPMZDNPINE 12457
Query: 63 TRGKRKTIWGSDRGENVKCEIRFSFESSDKTLITIE-GNDVDFAMKFIYVSGNF--YKVT 120

Query: $\quad 12 \mathrm{I}$ NESEFPDYYK 130
$\mathrm{N}+\cdot+\mathrm{F}+\mathrm{K}$
Gbjet: 42632 NENTFDKMLK 4266°
Score $=174 \vdots 66.3$ bits!, Expect $=1.6 \mathrm{e}-10$, Sum $\mathrm{E}(3)=1.6 \mathrm{e}-10$
İentitiea $=39 / 123$ (31? , ? Oositives $=65 / 123$ (52\%), Frame $=12$
Query: $\quad \therefore$ VI,

Skjct : 38249 T.THIEVLFIZLI」YHIKJVTGNVLDLRDIKNSEFHTLELLQOGITKTMIVSTADKEITKI 38428

Query: 124 EFE 126
SDjci: 38609 GFK 386 IT
Score $=42$ (19.8 bitesi, Expect $=1.5$ - -37 , Sum $P(3)=1.50-37$
Identities $=12 / 30(40 \%)$ Foritivot $=17 / 30$ (56号), 「rame - +3

Query： $28 \leq$ ГOTGEASEDTDEQEVEDTDT．QTDIQELE 311
$\div \mathrm{T} E \mathrm{I}+\mathrm{II}+\quad+\mathrm{D}^{\prime} \mathrm{l}^{2}+\mathrm{T} \mathrm{X} \quad \mathrm{J} E$

Sbjct： 264897 LH＇TSESLIKKLOTKPFHGTDTSLKTAI INLE 264936

```
Sccre = 148 (57.2 bits), Expect = 2.4e-13, Sum P(3) = 2.4e-13
T.dem!ities = 45/198 {24%}, EOsitivos=94/l98 i47%}, Frame = +2
```


Sbjct： 25544 MAKLKPTYLVCIVVLCEISAVI，SNTT．DNNJTKFSFYIIOYRKENVNKTIIYSTNESPTM 25723
Gnery： 62 EIRSKRKLINGSIRGEYVECF＇TPFEFESSDKTLITIEIGNAVDFAMKFIYVEGMFYKYTN I2？ $+\mathrm{I} \quad \mathrm{L}++\quad \mathrm{GE}+\mathrm{K} \quad \mathrm{F}++++\mathrm{L}+$＋ $\mathrm{F} \mathrm{INA} \quad \mathrm{K}+\quad+\mathrm{K} \mathrm{I}+$

 $+\quad \mathrm{F} \quad 11 \mathrm{G}+\mathrm{K} \mathrm{F} \dot{\mathrm{F}+\mathrm{H} \quad+-+\mathrm{K}_{+} \div+\quad 1}$
Sbjct： 25901 ER＇D＇LAKFRSIGNK PKYDPSKJVTPGVDPKVQKSFFRKIRKRFRDGFFKEKPTTPODVI 260B0
Query：$\quad 178$ HDKN－－－VDIVSQSLAEE 1.92
1 N 小DL小＋t！－ C
Gbjot： 26081 NIANEPOTDI＂PESFSDE $2613 \Leftrightarrow$

```
Score = 58 (25.5 bita), Lxpect = 3.2e-30, Sum P(3) % 3.2e-39
fdentities = 23/75 (30%), Positives = 36/75 {s86%, Frome = +3
```

Query： 256 TQTDIQ－EIEDIGIQTEIHE＂ENIVPQTDIORKESSIOTDIQLVEDIDTQZDIQELENLG 3.14 $\mathrm{T}+\mathrm{TD}++\quad++\mathrm{ELE} \mathrm{E}++\quad++\mathrm{D}+\mathrm{ES}+\mathrm{TQ} \quad \mathrm{D}$ TQ $+\mathrm{D} \mathrm{E}+\mathrm{N}$
GOj：L：52与72＇IETDSSTKPKSKPLEPEITESQSS－SDSDMDVDESTGPQVIQS－－DATTQTDTHESQNSE 52742
Quexy： 315 IQTTGNFSDITEVTK 329
OT＋S TK
SOjet： 52713 TQ＇V

```
Score - 84 (34.6 bits), Expectm = 7.2e-07, Sump(3) - 7.20-07
zdentities = 20/88 (22年), Posithves = 44/83 (50%), Trame = - 2
```

Query： 43 VEDRLTKIMİSTDEDKITEIRSKRKLIWGSDRGEYVKCヨRRESFESSDKTLITIEIGNA 102

Qiery： 103 VDEAMEFIYVSONFYKY $1 N K S E F E D Y Y K ~ 130$
Sbjct： 27266 TNSYIKYFRFHGGDWVGVDITHFEAYYO 27349

```
Score = 80 {33.2 bitsi, Expect = 1.7e-41, Sum P(3! :- 1.70.41
\thereforedentitj心s #29/日4 (34%), YOsi=ives = 46/84 (54%), Frame +2
```

Quexy： 256 TOTDEOETEDIGTOTEIHELENIVTQTDIO－TKESSIQTD－－－－IQEVEDIDTQ－TDIQD 309

Query：？$\quad 1.0$ L．－－－ENTGIQriGNFSDITEVTKK 330
L＋L ，G1 D $\div T$ 小K

Tdentitics $=27 / 84(32 \%)$, Positives $=67 / 84$（55\％），Frame $=+2$
Queny： 245 ISSGMLTQNTYTQTDIQETFDTGTOTETHELENI－VTQTコ－TOTKESSIOTDIQEVEDID 302 $\mathrm{Sb} \mathrm{L}+\mathrm{N} \mathrm{N}+\mathrm{D}+++++\mathrm{G}+\quad+\mathrm{I} \mathrm{TQT} \mathrm{I} \cdots \mathrm{C}+\mathrm{S}+\mathrm{QT}+\mathrm{t}+$

Qussy： 303 TQTDIQELENTGTQTXGNLSD：IE 326

Sbjet：55658 TQTDPKKTEDSCTQTDAKL－D－QE 55726

```
Score = E8 (29.0 bits), Expect = 9.9, Sum P(3) = . .00
Lder-ities = 28;147 (2.9号), POSitives = 55/147 (37%), Fratu - +2
```

 $+++\mathrm{L} \mathrm{L}+\quad+\mathrm{S}+4+\mathrm{NL} \quad+\mathrm{K}++-\mathrm{K}-\mathrm{I} 5 \mathrm{~T} \quad \mathrm{~T} T+\quad \mathrm{F}$

 Sbjet： 54755 VNSDYLSENCEKIIVNRFAHSRDITVEVILLLKPMI＇IKIKIY KKHKGEYSRI＇KOIFPNKI 54934
 $\mathrm{K} \quad \mathrm{S} \quad \mathrm{P}+\mathrm{P}++\div \quad+\mathrm{E}$


```
Score = 50 (22.7 bits), Expect = 2.2e-38, Sum F(3) = 2.2e-3g
Zdentiti,e:s : 13/40 (32%), Fositwives = 24/40 (60%:, frame = +2
```

Quexy： 258 TDIQEIEDIGIOTEIHELENIVTOTD－OTKESSIQLDIOE 297

Sbjct： 55775 TDSIKAED－GSHGDVTELEKKVFPRDLYHODSSLEFEてRK 55891

```
Score = 269 (90.8 bita; Expert = 7.1e.26, Sum Pi3) = % 10 26
Identities = 57/125 (45%), EOGitives - 75/125 (60%), Frame +.3
```

Chery： 2 MVVT KT．SHTTFTT．FI．YRVKFASSEILYLDNLLNINFYTIKIVEDRLTKIMIESTPEDKIT 61

Query：$\quad 62$ LIDSERKUWSSDRGEYVKCFTRESFESSDKTLITIEIGNAVDEAMKFIYVSGNFYKYIN 121

Query： 122 ESEFE 126
Sbjet： 52095 QETFE 52109
Score $=6 \mathrm{c}(29.0$ bits），Expect $=2.9 \mathrm{e}-40$ ，Sumpi3）$=2.90-40$
Identities $=18 / 40(45 \%)$, Posit立ves $-22 / 40\{55 \%\}$ ，Frame -+3
Query： 258 TDIQEIE－DIGIOTEIIELENVIQTDIQTKESSIQTDIQ 296
${ }^{\prime} \mathrm{L}$＇$\quad I+D \quad Q T+H E+N$ TNT TQF $-\quad Q T \quad Q$
Sbjct ： 52674 TGROVTOSDATTOTDTHESQNSEIQTVIOTSSTETOTKTOि 52793
Score $=49$（22．3 bits），Fxpert $=6.6 e-j 2, \operatorname{sum} p(3 i+6.6 e-12$
Idontities $=9 / 21(42 \%$ ，positives $=14 / 2 i(66 \%$ ，Frame $=+3$
Query：－ 10 IYVSCNजYKYCNKSEFEDYYK I30 1．Y世 N YKYJiN－＋＋YK
Gbjct： 125118 LYIRINNYKYINNYKYINNYK 125180

```
scorg = 42 (19.8 bits), Fxpect = 1.5e-27, Sum p(3) = 1.5e.37
Idertities = נ/38 (23%j, Positives = 20/38 (52%), Frame = - 2
```


$\mathrm{G}+2+++\mathrm{T} \mathrm{N} \quad++\mathrm{T}^{*} \mathrm{E} \quad \mathrm{D}+\quad+\mathrm{V}+\boldsymbol{4} \mathrm{I}$
Sbjct： 410378 GVOEKLKDLSNANTSEPLKPSEEQKDLDVKAENVOKIL゙ 41C49．

```
Score * 250 (93.l bits), Expcet = 6.4e 24, Sum F(3) := 6. &e-24
```


Query：$\quad 52$ EIRGKRKLi＊GSDRGUYVKGFTKF－SFESSIMK＇ITTYRTGNRVDFAMKFIYUSGNFYKYT 120

Query： 121 NXSEHEDYYK 130 1 EFGY Y
Sb：CL：Abge2 BLOEFESRYR 4901

Queqy： 302 DTQTDTQFTFNTGTQTAGNFGDITEV TKKHE 332 DTOTD $\mathrm{E}+\quad \mathrm{QT}+\quad+\mathrm{D} \mathrm{TE} \mathrm{T} \quad \mathrm{H} \Xi$


```
Scoze - 216 (8i.= b:.t.s), Expect = 7.1e-16, sum P(.3) = 7.1e-16
Ibentities :- 47/129 (26多), Positivos= =3/129 (56%), Frame = +3
```


Qiery： 122 KSEFEDYYZ 130 K－FEi KX
SLjct： 47073 KNYFENKYK 17099
Beore $=48(22.0$ bits），Expect $=3.5 e-38$, Sumf（3）$=3.5 e-38$
ldentities $=71 / 29(378)$, Posjnives $\left.=19 / 29(65)^{2}\right)$, Frame -12
Query： 265 ETGIQTFTHFTAFNVTOTD－－－－－QTKFS 289
$\mathrm{D}+\mathrm{I} \mathrm{T}$ н罢 $\mathrm{N}+-\mathrm{T}+\mathrm{T}+\quad \mathrm{I} \mathrm{T}++\mathrm{S}$
Sbjet： 332336 DLAIDTUESEFLNELTRTNPNFNTNTEDS 332422
Score $=153$ i53．9 bits！，Expect $=5.6 c-14$, S＇m P（3）－6．6e－14
Identities $=43 / 150$（ 26% ；Pos！tives $=82 / 160$（51\％），Frame $=+3$

Sbjct： 29064 NARLRFTYLVPVLTFYFINLVUGDKLDINOIYNLNLQRVEYSENGMTMIKIYPTSECTIR 29243
Query ：62 EIRSKRKLIWGSDEGEYVKCFIRFSWESGIMTLITIFTGNAVDEAMKFIYVS－－GNFYKY 11.9 $++\quad+\mathrm{L}+\mathrm{W}+\mathrm{GE} \mathrm{K} \mathrm{T} \quad \mathrm{F}+\mathrm{S}+++++\mathrm{I} \mathrm{V}++\mathrm{K} \mathrm{T} Y+\mathrm{G} \mathrm{S} \mathrm{Y}$
Sbうِセヒ： 29244 QVYDGCNLVNSAJIGERAKVI＇VLKH＇KYSGEVIVKVDIDFPVSKSQK－IYCNRKGN－YQE 2.941 .7
Query： 120 INKSEFEDYXKSFCSVFIKIPPGK，－－－－－－PI2RLKK 15～－

Sbjct：294＿8 LORKTCOLKEQF＇．S＇CUKKNPSKTYQPKTFFYPTPOMRK 29531
Score $=205(77.2$ bits），Expect $=2.4 \mathrm{e}-14, \operatorname{Sum} \mathrm{~F}(3)=2.4 \mathrm{e}-14$ Identicies $=40 / 229(31$ 号），Positives $=73 / 129$（563），Fiame $=+3$

Query： 4 VLKLSHTLF＂LLF＇LYRVKFASSETLYLDNLDNPNFYTTKTVFDRTTKTMTTETEEDKTTEX 63

Sbjct： 43635 LLKILYLFITLTLYHIKIVLSNVLDLRDISSSGFEVAQTHESGMIKPIVLSSFDRQI＇FEV 43814


```
    K R\divL+WT GE VKCT +F K L+T+EI NV + + 小 Y Y : Y Y +K
```

SGjct: 4381b KQCREEVWMGHPGESVKCLTHTTFMRYKKALVTMEINNPVKHDVFYLYNYFSHYVYIGXD 43994
Queny: 124 FFRDYYKSF 132
+++ ++ +
Gbjct: 43995 IYDEKERKY 44021

```
Scoze = 46 (21.3 bits), Expect - 5.6e.033, Sum P(7) 5.6e-.38
Iden=ities = 16/2% {3%%), Positivee = 18/27 {66%;, Эuame = +2
```

Quemy： 279 VTCTDIQTKESSTQTD－IQEVEDID＇O 304

+ TGT－＋＋ $\boldsymbol{3}$ IQT＋＋E E ID I
Sbjet： 50795 TTQTEPPNEOSכTQPEIVEESTIVDKE 50075
Scote $=45$（20． 3 bits），Expect $=7.2 e-38$, Sum $3(1)=7.2 e \cdot 38$
Identities $-14 / 54$（25\％i，Positives $\therefore 25 / 54$（16z），Frame $=+2$

Sbjct： 275420 KOIVVFTGMNOOVGKLAKOLKKASビLUKVIPLQRALNRLG－GHLGLISTIVLIS 275578

Identitius－88／157（56飞），Positives ． $110 /-57$（70 \％），Frame $=+1$
Query： 2 MVV＿FLSHIIFTLFLYRVKFASSEILYLDN－DNPNFYTIK＂VEDRLTEINILSTPEDKIT 61
 sbjct： 30 ล． 8 M

Query：$\quad 62$ 上ıRSKRKLIWGSDRGGYVKCL＂LRFGHESGDKTLITIEIGNAVDERMKFTYVGGNFYKY．．．N i2I

SbjCE： 30718 QVRQGRKLIWMGYPGPSIKCLIP F＇SF＇SSSKIEITIEIENPAYDSLKFJYMHRNYFRYVT 30897
WHETY： 122 KSEFEDYY－－－－KSFCSVFIKIPPGKLPIPRLKKNVK 154
K＋ $\mathrm{FE}+\mathrm{K} \quad \mathrm{S} \quad \mathrm{K}$ פGKLP S PRT．KK K
S1JC4： 30898 KAYFETNFAMQAKこLKSPTSKPT TGKLPIERLKKPEK 31008

Sbjct： 53523 ELUFAGEMENKGRPGESVNSIMHYSFENHHYMLIYTEVDNSAFEDILYFYGRRGTYLDTT $53 \% 02$

GuEry：$\quad .22$ KSEFELYY 129 + EF \quad を
Sbjct： 53703 3EEFFWF， 53726

Query： 419 WLLRPRNMICTETKKTN 434
Sbjci：480G20 WIGYPRNRLKDTTSSW 480673

```
Score = 44 (20.5 bits), Expect = z.Je-1, J, Stm P{3} = 2.1e-11
```

Identities $=8 / 22$ (36\%), بositives $=13 / 22$ (59\%), frame $=+1$

Query： 109 FIYYSGNFYKYINKSEFEDYYK 30

Query： 2 MVV－JKLSHEIPTTFIYRVKEASSEILYLDNT．DNPNFUTTKTVEDRLTKIMILETPEDKIT 61

Sbjet： 32333 MVKVNILYMSFVLIVCRIKIVSSIVLDINEJVNGCJKVFQRVKNGTITMKVFSRPGMPTT $32 Ь 32$
Query： 62 EIRSKRKJIWGSDRGEYVKCPTRFSFESSDKWITIEIGNAVDEAMKFWYVSGNPYKYTN 121

Sうjut： 32533 QILKGSRPIWNGYPGFSVRSJTTFITSEWSSETVLSIEVDNPVKEPTLYLHTFYNHYKYIT 32712

Query: j22 KSEFEDYYK 130
Sbjet: 32713 TQSYNQKIK 32739
Score $=99$ (3g. 3 b ts), Expect $=1.7 e-43$, Sum 3 (3) $=1.7 e-43$
Identities $=33 ; 84(36 \%)$, Posttives $=47 / 84$ (55\%), wrame $=-1$
Query: 2A5 ESDGIETQNRY'LQIDIQEIEDIGIQTE:-.--HELENIV-----TOTDI-OTKESSIOT 293
Sbjct: 31333 QTDTHESEDTETQTDTOOSKDTECOTVILTDSTETOTLIこTDSTDTQTDOHESKE'TETQT 3.1512
CuEry: 294 DIQEVEDIDTOTDICELEXGGTQT 31.7
I + +TQTD E E+IGTO'L
Sbjct: 315t3 vTP-TOSEFTQTDTHETEDIGIQT 31581

Idenlilieg $=-4 / 26$ (53z), Positives $=76 / 25$ i61\%), Frame $=+3$

TQ - OTK + QTD Q4 ED OT
sb-jct: 29.45 TQCAIQTKAAEIQTDSQQTEDPVVQT 30023

Quexy; 2<9 IETQNRYMQTD-OEIEDIGIO'I 270
T T- TQTD Q + ED +QT
Sb: ct: 29958 IGTKAAETOTDSQOTEDPVVQT 30023
Score $=246(91.7$ hita $\}$, Expent $=1.7 e-23$, Sim $2\{3$) $-1.7 e-23$

Bbjct: $395!3$ MVRFNTTAT,TYAGFTYHTKEVYSNTLNIGIIADSGPFTIKVYENGITKIMVESTADKFI\% 39692
Duery: 62 ELRSKRKLLWGSDRGEYVKCFTRFSFESSDKTLITIEICNAVDEAMKFIYVSENSYKYIN 121

Zbjct: 39693 EVRQGPKSIWDSLPGESIKCLTYYOFKGSNFKIMTT TTNNPVKDFMYYTHTHNYNYVYAT 39872
Query: 122 KSEFEDYYCSFCSV--FI--KXPPG--KIO-PPRYKKNVK 154 K FE Y Y +, K KIP!P, K K
Sbjet: 3937 K KMFRERYTRMPRVAKYMHEKYSKSGDKVFIPKOKOPKK 39 O89
Gcore $=43$: 20.2 bits:, Expect $=3.10 .40$. Sum $\mathrm{P}(4)=3.10-40$
Identities $=10 / 34$ (29\%), Fositives : 1 ह/34 (5i\%), Frame +2

SbJCI: 277931 OD二NVSNPDLHPNLRMKIBNPDLESLGGMSDFVE 278032

```
Score = 13 (20.2 bitsi, Expect = 1.2e-3%, Sum p(3) = 1.2e-37
Idouldiog = 10/60 (16%), Fositives = 36/60 (60%), Frame = +2
```


Score $=45$ (20.9 bits), Expect - $2.20 \cdots 38$, Sum $D(2)=2.2 \epsilon-38$
Identities $=13 / 60(21 \%)$, Positives - 21/60 (10\%), Frame $=+3$

Skjct: 708783 LTQNIIDTNNEKANKDSLESTTQYDTQPNQGTKDEEQPNQGIUQCGTQPNQSTKDDIQLNQ 708962

```
Gcore = 98 (39.6 bits), Expect = 2.20-43, Sum P(J) = 2.2e-43
Identities = 25/60 (41%', Positives 32/60 (5%%), l'rame = 41
```

 $I L T+T Q T I+Q T+H E+T Q T=T+Q T D E E D I Q \mathrm{O}^{4}++$


```
Score = 42 (19.8 bits), Expect 2. Be-22, sum p(2) = 2.8e-2%
Identities = 11/22 (50%), Fositives = 1.2/22 (54%), Frame = +2
```

Query： 117 YKYINKSEFBDYYIGSPCBVFIK 138
Y YT S＋YYK F S F K
Sbjct： 809103 YSYIYNSH＊KL．YYKWFFSKFAK 809173

```
Score = 43 (20.2 bits!, Expect - 4.5e-22, Sum i(3) = 4.5e-22
Idcn#ities = 25/93 {26%), %ogitiver = {-/93 {44%!, Frame = +I
```


Gbjct： 235174 SKEFDDLLAKKLEGEXYEFSEASV－IKEPEPSTSREFEPSVTKFSESVEIEEPKPGVRRE 235350
QuEry： 766 XXXXXXXPQSEOHDKNVDIVEQULAGLGEDLEK 198

$$
S+כ+\quad++S+L++S-0+X
$$

Sbjct：2353ち1 AEPMKYSQOSVKFDRVTEMMSEHLEKSGVDSK＜ 2.35449
Gror：$=43$（20．2 bits：，Expert $=4.5$－ 22 ，Sum P（3）$=4.5 e-22$
Jdertities ． $3 / 23$ i．34\％$\}$ ，Positives $=13 / 23$（ 56% ），Frare $=$ ． 2 ．
Guery：$\quad 129$ YVKSFCSVFTKIPPGKIPFPRLK 150
＋V＋FC＋＋＋K KL LZ


```
Score - 4% (l9, a bits), Expect = 1.5e-&7, Sum P(3) = 1.5e-4%
Identiries = 6/16 (37%), FOs=tives = 9/16 (56%), Frame = + %
```

Queny：$\quad 372$ WLLRPRNMKTETTKKTW 387
Skjet： 480626 WIUYPRNRTKONTSSW 480673

Query：2G！פEIEDIGTQTEIHELENEVTQTDTQTKESSTQT：OTQEVRDTDTQ 304
2 IED $\quad+\mathrm{F}_{\mathrm{F}} \quad \mathrm{T} F \mathrm{~F} \quad \mathrm{Q}+\mathrm{+}+\mathrm{E} \quad+\mathrm{HD} \mathrm{D}+$
SOjct：42985 ORIEDKSKESESKALEPETIOFEVSSDEEEALETTSKCDDYDKE 43117

```
Score = 43 {20.2 bitg}, Expert := 3.6e-38. Sum P(2) ب 3.6@-38
LCentjojes = 13/41 (31%), Positives - 21/11 (51%), Frame - +1
```

Query； 268 IQTEIHE－LENIVTQDDIQTKESSTQTDTQEVEDTDTQTDF 307

Identities $=50 /-25$（40ध），Dogsuives $=72 / 125$（57\％），Frame＋1

Q：IEry： 2 MVVLKLSFIIFTHFLYRVKFAGSEILYLDNLDNPNEYTIKIVEDRLTKAMILSTPEDKIT GI
 Sojct：33718 MVRVN Qucry：€2 E－RSERKLIWGSDRGEXVIKCFTRFSFESSDKTコITIEIGNAVDEAMKFIYVGGNFY：KXTN 1．21
 Sbjct： 33898 KVRYGTRVIWEFYSYESVKCWTHYSEELHNKILMTIEISDPVENDMYYFKRRRTHYVYTS 34.077

```
Query: 122 kgPre 126
```

 K EFE
 Sbjct: 34078 KKERE 34092
Score $=15(20.9$ bits), fxpect $=7.2038$, Sura $P\{3:=7.20-38$
ldertities - 7/L5 (45\%), Fositives = $12 / 15$ (30 咢) , Frame $=+1$

Query：$\quad 177$ QHDKNVDIVGQSLAE 191
QHDKN $++\div+\mathrm{Q}-\mathrm{E}$
Sbjこt：33E256 QHDKNTNVMKQAHE⿷ 336300
3473
Length $=1.37,969$
Plus Strand HSPs：
Score $=91(37.2$ bits $)$, Expect $=0.56$, Sum $P(2)=0.43$
三dentities＝33／124（26\％j，Positives＝56／124（45\％），frame－＋ 2
Query： 12 FTEFLYRVKFASSEILYLDN－EDNP\F－－－－YTIKIVEDRLTKIMILSTPEDKETPTRASK GG

Gbjct： 56223 צPHIKYHFDVLKDEMESLESTLDLHNFSDSLFCVBH＝DPRVTREELEARRLSRVTRVNHN 56407

```
Score = <0 (21.3 bits), Expent = 0.86, Sum P(2)=0.58
ICentities = -7/55 i 30%), Positives = 30/55 (54%), F%ame m + 3
```

QLeIy: 274 ELENIVTORDIQTKESSIQTDZQEVEDLD'U'MIOLLLNGGIGIIGNFSDJTEVT 328

Sbjet: 109\%07 DTFN--RFTTTOEKESELRTKELELNEKESQLNNALANNMF---GEFSN-TSLT $10 G B G 0$

```
Scor= =46 (21.3 bits), Txpect - J.8G, Sum F(2) =0.58
Iclentitien = 9/22 (10%), Positives=21/22 (50%), Frame = +2
```

Guery: $\quad 119$ YTNKGEFBTYYYKSFCSVFTKJF 140
Y Y $\because \mathrm{B}$ LYX SF $\quad+\quad+$
Sbjc: : G5RE8 YYHLDENNDYYTSFTKEVPRT? 66883
Scorc :. 48 (22.0 bits), Lxpect $=C .56$, gum $\mathrm{F}(2!=0.4 .3$
Thentities $=1 \mathrm{C} / 13$ (76\%), Positives $=11 / 13$ (94\%), Fr.ince $=-2$
Query: $\quad 115$ NLYKYIN-KSEFコ 126
际"YYYN KS Fヨ
cbjci: 32366 NFYOYINQKSSFE 83404
>500
Lengこh = 1.2.748
Mi:nus Strased HSPe:

```
Score = 77 {32.2 buts), bxpect = 1.6, Y = 0.8.-
Idertities = 2%/10= (26%), Fositives = 47/10} {46%), Frame - . 3
```


Shjct: 11.846 EFITQLRFGNELIFPNDTASNNYN二FVEMFEDFNLKLVSFYVHTMINGLLKEVKRKVISI 11667
Que:y: $\quad 1.3$ GCNFYKYINKSEFEDYYKSFCSVFTKTEFGKLPI-FREKKN 152
$S+Y Y T+E F Y K+\quad++G P F+K N$
Sbjct: 11666 SYDTYSYISNEEF.. MYKINKEIELVSVDTGFKPKHPFVNKN I 1550
>450
Senctiz $=1,309,524$
Minus Stirand Hises:

```
Score = 85 (35.0 bita), Expect =: 3.6, Sum E(2) = 0.97
Iclentities - 30/1.25 {24%}, Positives = 58/125 (46%); Frame . - 1
```

Query：$\quad 11$ IFTLFLYRVKFASSEIEYLDNLDNPNFYTIKI－－VEDRETKJMILSTPEDKJ＇KEIREKLKK 68

Query：Gg LIWG－SDRGEYVKCFTRFSPESSDKTLITYEIGNAVDLANEFSYVSGNFYKYIKKSBFET 1.27

Sbjct： 300048 QTWNRTSVDRELSELKLYRLYGEDFLLFIVSVVDNV－KYYKFYTKOG－－VPWLETS－MEL $2998 B 1$
Ouery： 12 E YXKSF 132
Sbjct： 299880 FNSSF 299866

```
Score = 53 (23.7 bits), kxpect = 3.6, SumP(2) = 0.97
Identities = 16/68 (23%i, Positives = 32/68 (4'7%), Frame = 2
```

Qucry ； 253 NRYTQTDIQEIE－－－－DRGIOTEIHELEN－－－TVOQDIQRKLSULQLUIQEVEDIDTQT 305 NRY＇I＇D＋＋EI $+\quad+\quad \mathrm{EN}+\mathrm{T}+\quad+\quad+\mathrm{D}+\mathrm{Q}+\mathrm{D}+$
Bbjct： 210455 NRYT－TDLKEININTHSLJFSNDFSNPENHNKFNFKTEDYSNSFNSHNDEQHTQDLQDSQ 21.0279
Query： 306 EIQRI ENT $3: 3$ L＋Q＋＋＋＋
Sbjet： 210278 DHQDSQDL 210255

```
Earameters:
    R=20
    cpus=:
    matrix=b... ostim62.
    E=10
    V=20
    Eiユter=seg
    ctxfactor=5.00
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Query} & \multicolumn{2}{|r|}{\＃s Used} & －－－－－ & \multirow[t]{2}{*}{Lambda} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Compu=ed } \\
& \mathrm{K}
\end{aligned}
\]} & \\
\hline Frame & Mat 1 & Matrix ndme & Laminda & K & H & & & H \\
\hline \(+0\) & \(\bigcirc\) & b1osulis & 0.31 .5 & 0.134 & 0.375 & sanc & samo & ふく口tue \\
\hline & & \(\mathrm{Q}=9, \mathrm{R}=2\) & （1， 244 & 0.0300 & 0.180 & r／a & M／a & n／a \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Query & & & & & & & & & & \\
\hline Frame & Mal ID & Tenglit & ビif．\({ }^{\text {finength }}\) & E & S & \％ & T & X & B2 & 52 \\
\hline ＋0 & 3 & 466 & 466 & 10 & 65 & 3 & 13 & 22 & 0.060 & 38 \\
\hline & & & & & & & & 35 & 0.063 & 42 \\
\hline
\end{tabular}
Btatinsic:A:
    Databasc: /usr/locel/ob/ufrg/\varepsilon parva
        Tit:1e: /usr/local/cb/r.f*mg/t parva
        Dosted: 4:06:00 1PM EDT May 3J, 200.1
        Format: BLANST-1.4
        # of letters in database: 8,929,689
        H of scquelices in da!abase: bu4
        # of database secuences satisfying E: 4
    NO. of हtates i.r DFA: 45G [52 KB)
    Total :siz0 oE LJA: 76 KL (128 KB)
    T'me to generate meighborhocd: G.00u 0.00s 0.00t Jlapsed: 00:00:00
    No, of threcds ur: processurs 11sed: l
    Seažch cpu =ime: 4.72心 0.06s 4.78t Elapscd: 0J:00:06
    Total cpu timie: 4.76u 0.05s 4.82t Elaosed: 00:00:96
```

Appendix K Restriction fragment sizes of λ dash 13 derived from Southern blot analysis of λ dash 13 hybridised to probes AThook1 and Ta369.

PROBE	EcoRl	Hindlll	Spel	Xbal	Kpni/ Spel	ECoR1/ Hind III	EcoRl/ Spel	EcoR1/ Xbal	Hindill/ Spel	HindIIIl Xbal	Speli Xbal
AThooki											
	$\dagger 1.2$	*3.2	*3.2	8	$\dagger 8$	$\dagger 1.2$	11.2	*0.8	†1. 6	*3.2	3.2
	${ }^{*} 0.8$	$\dagger 1.6$		P_{5}	*3.2	*0.8	*0.8		*1.4	1.2	${ }^{\text {P }} 3.1$
				$\mathrm{F}_{3} 2$						1	*1.3
				1							1
Ta369											
	*2.5	$\dagger 3.2$	*3.2	8	+8	*2.1	*2.1	*2.5	$\dagger 1.6$	3.2	3.2
		*2.8		${ }^{P} 7$	*3.2			*2.3		${ }^{4} 2.8$	${ }^{P} 2.8$
				3.4							*2.0
				3.2							

Approximate sizes of restriction fragments (in kb) mapped io TashATl and the putative Tashat3 gene (Fig. 3.24) (denoted by $*$ and \dagger, respectively). p : partially digested fragments.

[^0]: Fig. 3.21: Position of probes Ta369 and AThook1 in relation to TashAT1. Arrow at position 1 indicates the putative translation start site. Grey box represents the TashAT1 gene; E: EcoRI sites. Red hatched box indicates AT hook encoding region.

[^1]: СTTACCTGGTGGAATDTTAATAニATACTGAADAAAFACTTTTGTAATAAXCCTCAAAOTC 67

 CETACCDGGUGGAATTTTAATAAATACTGAACAANAAC匕TTTGTAATAATCCTCAAACTC 321
 СTTACCTGGTGGAATETTAATAAATACFGAACAAAAACTETGTaATAMTCGPCAMACTE 354 CH：MCC「GGTGGAATTTTMATAAATACTGAAMAAAAACITUNGTAATAATCCHCAAACTC 395
 CTSACCEGGLGGAAtTTLAATAAATACTGAACAAAAACTTTLET 606 С＂，

[^2]: AACATCCATATCA 13
 ATTGTATATEGGAgヒgAGTAGCTTCATCAACATCCATATCA 41
 CGGATTGTATATGGGAGLGAGUAGGTI＇ATCAACATCCATATCA 44
 ATCGGATTRTATATaggAG1＇gaGTAGGTTOATOnACRTCCATATCA 46
 GTETGAGTAATAGCASCGGATHGTATATGGGAGナGAGTAGGTTCATCAACATCCATATCA 156 ＜GTCTGAGTAATAGCAtCGGATTGTALATGGCAGTGAGTAGGRICATCAACATCCATATCA 217 －GTEEGAGTAATAGCATCGGATEGTATATGGGAGTGAGTAGGFTCNTCAACATCCATATCA 273
 \Rightarrow GTCTGAGTAムTAGCAICGGALTgtAIATUGGACEgACTAGGTLCALCAACALCCA 450 －GTWLGAGTAATAGCATCGOATEGTATATGCGACTGACTAGGL＂CAICAACATCCATATCA 466 －GTTTGACTAATAGCATCGGAI＂IG＇A＇AL＇GGGAGLGAGTAGGTTCATCAACATCCATATCA 491 $<G T t T G A G T A A T A G C A T C G G A T T G T A T A T G G Q A G T G A G T A G G T T C A T C A A C G T ~$ 491
 495
 ＜GTCLGAGTMATAGCARCGGA＇LGUALATGGOAGTGAGTAGGUNCATCAACATCCA ATCA 507

