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Abstract 

 
Manufacturing is currently experiencing a paradigm shift in the way that products are 

designed, produced and serviced. Such changes are brought about mainly by the 

extensive use of the Internet and digital technologies. As a result of this shift, a new 

industrial revolution is emerging, termed “Industry 4.0” (i4), which promises to 

accommodate mass customisation at a mass production cost.  For i4 to become a 

reality, however, multiple challenges need to be addressed, highlighting the need for 

design for agile manufacturing and, for this, a framework capable of integrating big 

data analytics arising from the service end, business informatics through the 

manufacturing process, and artificial intelligence (AI) for the entire manufacturing 

value chain.  

This thesis attempts to address these issues, with a focus on the need for design for 

agile manufacturing.  First, the state of the art in this field of research is reviewed 

on combining cutting-edge technologies in digital manufacturing with big data 

analysed to support agile manufacturing. Then, the work is focused on developing an 

AI-based framework to address one of the customisation issues in smart design and 

agile manufacturing, that is, prediction of potential customer needs and wants.  

With this framework, an AI-based approach is developed to predict design attributes 

that would help manufacturers to decide the best virtual designs to meet emerging 

customer needs and wants predictively.  In particular, various machine learning 

approaches are developed to help explain at least 85% of the design variance when 

building a model to predict potential customer needs and wants.  These approaches 

include k-means clustering, self-organizing maps, fuzzy k-means clustering, and 

decision trees, all supporting a vector machine to evaluate and extract conscious and 

subconscious customer needs and wants.  A model capable of accurately predicting 

customer needs and wants for at least 85% of classified design attributes is thus 
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obtained.  Further, an analysis capable of determining the best design attributes and 

features for predicting customer needs and wants is also achieved. 

As the information analysed can be utilized to advise the selection of desired 

attributes, it is fed back in a closed-loop of the manufacturing value chain: design → 

manufacture → management/service →→→ design...  For this, a total of 4 case 

studies are undertaken to test and demonstrate the efficacy and effectiveness of the 

framework developed.  These case studies include: 1) an evaluation model of 

consumer cars with multiple attributes including categorical and numerical ones; 2) 

specifications of automotive vehicles in terms of various characteristics including 

categorical and numerical instances; 3) fuel consumptions of various car models and 

makes, taking into account a desire for low fuel costs and low CO2 emissions; and 4) 

computer parts design for recommending the best design attributes when buying a 

computer.  The results show that the decision trees, as a machine learning approach, 

work best in predicting customer needs and wants for smart design.   

With the tested framework and methodology, this thesis overall presents a holistic 

attempt to addressing the missing gap between manufacture and customisation, that 

is meeting customer needs and wants.  Effective ways of achieving customization for 

i4 and smart manufacturing are identified.  This is achieved through predicting 

potential customer needs and wants and applying the prediction at the product design 

stage for agile manufacturing to meet individual requirements at a mass production 

cost.  Such agility is one key element in realising Industry 4.0. At the end, this thesis 

contributes to improving the process of analysing the data to predict potential 

customer needs and wants to be used as inputs to customizing product designs agilely.  
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ways of applying computational intelligence to address agile manufacturing. My main 
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predict potential customer needs and wants to be used as inputs to customizing 

product designs agilely.  
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Chapter 1 Introduction 

In the digital age enabled by information and communications technology and the 

Internet, the manufacturing sector has been exposed to various circumstances that 

are ever more significantly impacted upon by customer needs and wants, the inclusion 

of advanced digital technologies allow innovation to improve and individualise the 

customer experience by meeting these needs and wants [1]. These circumstances 

have led companies to react with a strong customer focus, short-cycle adoption, and 

batch-sizes reduction [2]. The Internet is changing the production floor with more 

paradigms leading to advancements in how products are designed, customised and 

manufactured. Present technologies, such as the Internet-of-things (IoT), cyber-

physical systems (CPS), cloud-based manufacture, Internet of services (IoS), big data, 

and smart manufacturing, are driving the advent of the “Fourth Industrial 

Revolution”, i.e., “Industry 4.0” (i4)  or Industrie 4.0 as coined in German [3]. 

Design and manufacture, as well as service and engineering management, strategies 

that rely on only the manufacturer’s own decisions without considering the customer’s 

individual needs, are experiencing challenges attracting the customer’s wants in the 

Internet era.  In this ever more connected society, individualized products and 

services become more in demand than mass-produced ones [4]. Taking this trend into 

account, manufacturers are considering customer satisfaction by focusing on design 

conception and flexible production [5]. This is one of the major principles of i4, where 

designs are obtained beforehand with the power of internet-based designs, data 

mining, collaborative systems, and CPS. Agile design and manufacture are considered 

part of flexible digital manufacturing, where customer-oriented production and 

knowledge-driven technologies enable agile mass customization, these can be 

compared with a mass-production when trying to save time and costs [6]. 
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These developments and trends lead to the investigation of what Industry 4.0 will 

impact on the ways products are designed and manufactured for achieving mass 

customization. This chapter of the thesis will first discuss the importance of this 

“industrial revolution”, and a way forward with i4 concepts and approaches. Gaps 

between current manufacturing systems will also be discussed, together with 

challenges achieving mass customization in an i4 environment, hence identifying the 

research problem to be tackled in the work presented in this thesis. The aims of this 

research and contributions are then outlined.  

1.1 Industry 4.0 

The first three industrial revolutions came about as a result of centralization for 

production. Now, businesses are investigating global networks that incorporate their 

machinery, warehousing systems and production facilities in the shape of a cyber-

physical system, comprising “smart machines”, storage systems and production 

facilities capable of autonomously exchanging information, triggering actions and 

controlling each other independently [7]. These technologies form a “smart factory” 

that would allow individual customer requirements to be met, whilst efficiency 

obtained in automated production is maintained. This means that even one-off items 

or a product of a batch size of one can be manufactured profitably.  

Different from what other smart technologies, digitalization, and future 

manufacturing perspectives might propose, some of the relevant aspects of i4 are 

described in the bullet points below, according to [8]. 

• Innovative economy. The key aspect in the way businesses are conducted in 

the digital era are leading to efficient ways of exchanging information, and 

most of all decision making. This is owing to upgraded value and supply chains 

with efficient information flows, which will be discussed in detail later in this 

chapter. 
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• Solution to current challenges for manufacturers. Industry 4.0 perspective 

gives the opportunity for companies to adapt to the ever-changing global 

market and be more responsive to business trends and societal demands. Here 

is also included the complexity of manufacturing products, and shorter product 

life cycles, and the use of data to the production floor turned innovation floor 

for producing a more informed product and helping with the decision-making 

process. 

• Customer-centred production. Individualized production based on single 

users’ demand is a key feature of smart technologies. Digitalization is driving 

customization, allowing faster design processing and alterations for meeting 

changing customer needs and wants. 

• Human-centred production. In i4 vision, humans play a centre role, despite 

what the technological revolution implies a complete substitution of human-

labour by the extensive use of machines. Industry 4.0 stipulates only to 

minimize manual tasks that can be done faster and simpler by machines, but 

workers will participate in supervision what machines are doing, which means 

that interaction between humans and machines is essential under i4 principles. 

Summarizing the above relevant aspects, the key characteristics i4 brings to the 

current state of manufacturing are decision-making processes becoming smart, 

adaptive businesses models, customization, and human-interactive digital 

systems. In this way, customer-centred and human-centred production are 

differentiated because of the context of customization as a driver for i4, human-

centred production here means that working people inside the manufacturing 

processes will play a key role, not as customers, but as providers of intellect, 

expertise, amongst other valuable tasks.  
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1.1.1 Why Industry 4.0 Is Important 

The first three industrial revolutions came about as a result of mechanization, 

electricity and information technology. Now, with the digital flexibility and Internet 

connectivity, the introduction of the Internet of Things and Services into the 

manufacturing environment is ushering in a “Fourth Industrial Revolution”, or i4 for 

short. This is the first “industrial revolution” that is engineered before it takes place, 

promising that with it businesses will establish global networks that incorporate their 

machinery, warehousing systems and production facilities in the shape of a cyber-

physical system. In a manufacturing environment, the CPS comprises smart machines, 

storage systems and production facilities capable of autonomously exchanging 

information, triggering actions and controlling each other independently.  

Such a “smart factory” will allow individual customer requirements to be met, whilst 

efficiency obtained in automated production is maintained, meaning that even one-

off items or products or components of a batch size of one can be manufactured 

profitably. In i4, dynamic business and engineering processes would enable last-

minute changes to production and offer the ability also to respond flexibly to 

disruptions and failures. End-to-end transparency is provided over the manufacturing 

process, also facilitating optimized design and decision-making.  

Despite that manufacturing companies generally oppose to growing global 

competition, more individualized customer demands, new technologies and rapid 

technological progress, as well as strict environmental regulations, i4 will dynamically 

enable business and engineering processes to deal with last-minute requirements or 

changes to production and deliver the ability to respond flexibly to disruptions and 

failures. These trends lead to an increase in product variety, shorter product life 

cycles, uncertain and fluctuating demands, as well as higher cost pressure. Figure 1–

1 illustrates how mass production to mass customization is likely to shift in future 

times [9]. 



5 
 

 

Figure 1–1 Trend to mass customization according to [9]. 

 

Moving forward, i4 will lead to new ways of creating value and novel business 

models. For example, it will provide start-ups and small businesses with the 

opportunity to develop and provide downstream services. To economies developed 

and developing, i4 will reduce factory-floor requirements and help progress 

humanity. 

1.1.2 Components of Industry 4.0 

What today are named “industrial revolutions” started with the incorporation of 

manufacture. Technological advances have carried paradigm shifts ever since. Figure 

1–2 shows those advances [3]. 
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Figure 1–2 Industrial Revolutions and evolution of manufacturing towards Industry 
4.0 [3]. 

Today, with advances in digitalisation and the internet, “smart manufacturing” and 

“smart factories” are becoming a reality, where the manufacturing value chain in the 

physical world can be integrated with its virtual copy in the cyberspace through CSP 

and IoT, and then be seamlessly integrated with IoS. Tempted by these future 

expectations, the term “Industrie 4.0” or “Industry 4.0” was coined a priori by the 

German government promoting their “High-Tech Strategy 2020 Action Plan” in 2013 

for a planned “4th industrial revolution”, the i4 project represents a major 

opportunity for Germany to establish itself as an integrated industry lead market and 

provider [3, 10, 11]. 

The terminologies “Smart Industry” and i4 describe the same technological evolution 

from the microprocessor embedded manufacturing systems to the emerging CPS, 

smartly linked across manufacture (i), demand to manufacture (ii), supply chain (iii), 
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and services by the internet (iv). Via decentralising intelligence, object networking 

and independent process management interact with the virtual and real worlds, 

heralding a crucial new aspect of the future industrial production process that 

integrates the above four processes. In short, i4 represents a paradigm shift from 

“centralised” to “decentralised” production, a reversal of the logic of production 

process thus far. The design principles of i4 components are shown in Table 1—1[11]. 

Table 1—1 Design principles of each Industry 4.0 component. 

 
Design & 

customisation 
CPS Smart Factory IoT IoS 

Modularity X - - - X 
Interoperability X X X X X 

Real-Time Capability ? - X - - 
Virtualisation X X X - - 

Decentralisation X X X - - 
Service Orientation X - - - X 

For each design principle is necessary to describe how it matches with i4 components: 

• Modularity: modular systems can flexibly adapt to changing requirements by 

replacing or expanding individual modules. For that reason, modular systems 

can be easily adjusted in case of seasonal fluctuations or changed product 

characteristics. Another concept for Smart Factory plant is the Plug&Play 

principle, which can also add new modules. Via the IoS, new modules are 

identified automatically and can be utilized immediately, based on 

standardized software and hardware interfaces [12]. 

• Interoperability: an important enabler of i4, because, for companies running 

with i4 principles, CPS and humans are connected over the IoT and IoS. A 

success factor for communication will be standards, between CPS of various 

manufacturers. In the context of Smart Factory plant, interoperability means 

that all CPS within the plant (work-piece carriers, assembly station and 

products) are able to communicate with each other “through open nets and 
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semantic descriptions”, for design and customization is of importance because 

here is where the virtual part of the product is linked and feedback to the 

process in order to reach individual necessities for customers, therefore 

customizing it [12]. 

• Real-Time Capability: for organizational tasks, it is necessary that data is 

collected and analysed in real time. In the Smart Factory, the status of the 

plant is permanently tracked and analysed. Thus, the plant can react to the 

failure of a machine and reroute products to another machine. Yet for design 

& customisation, it’s still debated if can be processed real-time, or if it’s 

suitable for the physical process [13]. 

• Virtualization: this means that CPS are able to monitor physical processes. 

Data is collected from the sensors allocated in various parts of the physical 

process, then this sensor data is linked to virtual plant models and simulation 

models. Thus, a virtual copy of the physical world is created. In the Smart 

Factory plant, the virtual model includes the condition of all CPS. In case of 

failure, a human can be notified. In addition, all necessary information, like 

next working steps or safety arrangements, are provided. For design and 

customisation virtualization means that once created the virtual copy of the 

product, here it can be modified with different settings already fed from the 

customer needs and wants analysis through big data. Hence, humans are 

supported in handling the rising technical complexity [12]. 

• Decentralization: rising demand for individual products makes it increasingly 

difficult to control systems centrally. Embedded computers enable CPS to make 

decisions on their own. Only in cases of failure tasks are delegated to a higher 

level. For quality assurance and traceability, it is necessary to keep track of 

the whole system at any time. In the context of Smart Factory plant, 
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decentralization can be exemplified as the Radio Frequency Identifier (RFID) 

tags “tell” machines which working steps are necessary. Therefore, central 

planning and controlling are no longer needed. For design & customisation 

means that, based on the selected modifications to reach customer needs and 

wants, the decision within the system or process enables the product to be 

manufactured [13]. 

• Service Orientation: services of companies, humans, and CPS are available 

over the IoS and can be utilized by other participants. Smart Factory plant is 

based on a service-oriented architecture in which service can be offered 

internally and across company borders. All CPS offer their functionalities as an 

encapsulated web service. This result on the product-specific process 

operation, that can be composed based on the customer specific requirements 

provided by the RFID tag making more reliable the process of designing and 

therefore customizing products [13].  

Based on technological concepts where Design & Customisation, IoS, IoT and CPS 

come together and facilitates the vision of what a Smart Factory is, and as 

discussed above the key is the decentralized system, which within the modular 

structured Smart Factories, the CPS monitor physical processes, create a virtual 

copy of the physical world and make decisions. The connection and communication 

between the CPS and the IoT allow co-operating with each other and humans in 

real time. Internal and cross-organizational services are offered and utilized by 

participants of the value chain via the IoS.  

Several industries in Germany show interest in developing and lead a well-integrated 

methodology to optimize connection through the Internet and smart devices pursuing 

a service-oriented strategy and strong customization of products under the conditions 

of high flexible production [3]. With the introduction of methods that can be 
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adaptable, self-learning, self-aware, self-predicted, self-optimized, self-

configuration and self-maintained, allow the required automation technology to be 

improved, which outstands as an innovative feature for business models that totally 

changes the way of making products and services [14].  

Once defined what i4 is and its components and design principles, the next section 

discuss briefly the Smart Factory concept. 

  

1.1.3 Smart Factory 

Research and developments are heading the smart industry to a well-structured model 

which can be optimized and automated. Smart factory products, resources and 

processes are characterized by the CPS, providing significant real-time quality, time, 

resource, and cost advantages in comparison with classic production systems. The 

smart factory can be designed according to sustainable and service-oriented business 

practices, for which those rely upon adaptability, flexibility, self-adaptability and 

learning characteristics, fault tolerance, and risk management.  

High levels of automation come as standard in the smart factory: this being made 

possible by a flexible network of CPS-based production systems which, to a large 

extent, automatically oversee production processes. Flexible production systems 

which are able to respond in almost real-time conditions allow in-house production 

processes to be radically optimized. Production advantages are not limited solely to 

one-off production conditions but can also be optimized according to a global network 

of adaptive and self-organizing production units belonging to more than one operator. 

Smart factory production brings with it numerous advantages over conventional 

manufacture and production. These include: 
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• CPS-optimized production processes: smart factory “units” are able to 

determine and identify their field(s) of activity, configuration options and 

production conditions as well as communicate independently and wirelessly 

with other units. 

• Optimized individual customer product manufacturing via an intelligent 

compilation of ideal production system which factors account product 

properties, costs, logistics, security, reliability, time, and sustainability 

considerations. 

• Resource efficient production. 

• Tailored adjustments to the human workforce, so that the machine adapts to 

the human work cycle. 

Conversely, despite the significant penetration of cloud computing and smart 

manufacturing approaches, many companies are staying out of it, the reason seems 

to be the resistance of users because sometimes the low time response of some 

applications. Depending on the task users have, delays on data transferring or 

applications may affect the interaction between the system and end-user, so the 

biggest challenge cloud computing is facing at present is having a faster link to load 

and download information [15]. 

1.2 Aims of This Research 

In this work, the main focus for considering smart technologies and i4 principles for 

manufacturing is to develop a methodology capable of addressing customization under 

smart manufacturing principles. This needs to go upstream in the value chain, 

notably, to the product design stage, for example. Highlighted in the previous section 

of this chapter, the role of data on the use of the manufactured goods have been 
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underlined as a key aspect of the digital revolution [16] [17]. In this sense, such 

downstream data is fed back to the upstream and can thus be considered as the 

starting point of how to connect information to customized product designs for smart 

manufacturing.  

This idea is used for establishing a scope since i4 and smart manufacturing comprise 

a vast number of challenges and work to be carried out, as the i4 concept is still under 

development. Moving forward with the above-presented challenges for mass 

customization, we anticipate that an effective integration of concepts, cutting-edge 

technologies capable of responding to complex processes, and simple or intuitive ways 

of making design and manufacture more smartly have been the missing gaps. Thus, 

while it has been recognised that CPS and IoT are considered to be the main drivers 

of the fourth industrial revolution, data are considered to be the driver of 

customization since data analytics can lead to meet individual needs and wants 

through virtual product designs.  

In this sense, for closing the value chain loop from design to manufacturing and to 

IoT-based services, it is desirable to select the best product attributes for the design 

in anticipation, meaning that the selection of the best product design that matches 

individual needs is chosen with prediction. This thesis, therefore, aims at improving 

ways of analysing the data for an informed representation of customer needs and 

wants on a manufacturing system, such that this helps the decision-making process of 

selecting the best product design for manufacture. This is the main reason why this 

work is focused on data analysis with artificial intelligence (AI), but also concentrates 

on smart environments that match i4 principles. In practice, machine learning 

approaches can be used to obtain meaningful and useful information about customers’ 

behaviour, needs, and wants. With this information, then several aspects of design 

elements can be obtained directly from the data analysis using AI. Once the results 
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are extracted, a decision for i4-ready design and manufacture can be made with the 

collected information and experts’ opinion.  

Specifically, this thesis will address one of the customization issues in smart design: 

prediction of customer needs and wants for smart production. Thus, the main 

objectives of this thesis are: 

1. Develop an AI-based methodology to automatically predict the design 

attributes that best reflect what customers need and want in a product for 

customised manufacture; 

2. Obtain a model capable of accurately predict customer needs and wants for 

at least 85% of classified design attributes; 

3. Contribute by identifying effective ways of achieving customization for i4 

and smart manufacturing; 

4. Develop a machine learning approach that would explain at least 85% of the 

variance when building a model to predict customers’ needs and wants; 

5. Obtain an analysis capable of determining the best design 

attributes/features that can be utilized to predict customer needs and 

wants; 

6. Contribute useful knowledge for a closed-loop value chain to advise 

individualized production in smart manufacturing and i4 environments. 

These objectives are for efforts on closing the gap between smart design and 

manufacture for i4 and its commercial potential. The determination of the prediction 

interval of at least 85% is taken from [18], where is explained that the region where 
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true outputs of new attributes (in this case) might fall, and the use of this interval 

give us the opportunity to validate against trained data if predictions are good or not. 

Moreover, when true classified values fall into this region, is still possible to perform 

a separation of reliable predictors, and minimize the rate of false positives, this can 

be obtained with the adjustment of the model. 

To begin, a critical review will be carried out to attempt some answers to the 

following questions: 

1. Where in the industry value chain most value is added? 

2. What are the major benefits of predicting needs and wants in i4 environment 

to the customer? 

3. How to design smart products agilely in this value chain? 

4. What benefits will predict customer needs and wants in i4 environment bring 

to the manufacturer? 

5. What are major challenges to predict customer needs and wants in i4 

environment? 

6. How will i4 add most value and/or efficiency? 

With the above questions and objectives, this thesis mainly contributes to improving 

the process of analysing the data to predict potential customer needs and wants to 

be used as inputs to customizing product designs agilely.   

This thesis aims at agile manufacturing, which is an approach to manufacturing to 

focus on meeting the needs of customers while designing and maintaining with high 
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standards of quality and controlling the overall of production. The analysis in the 

thesis is therefore focused on the reduction of the number of design attributes 

selected in a predictive way through a closed-loop framework that integrates many 

of the key drivers of Industry 4.0 and smart manufacturing principles (IoT, cloud 

computing, CPS, data analytics, digital aided design, etc.).  It also integrates concepts 

like computer automated design (CAutoD) and AI to help improve the decision-making 

process of customizing products according to subconscious individual requirements. 

The motivation on the used case studies or datasets for performing the analysis lies 

on the concept that will be discussed in detail in Chapter 2, section 4, i.e. big data 

and business informatics. Most of the datasets used to perform data analytic tools 

come from sales/markets environments because of the nature of the problem 

presented and predicting what customer needs and wants are. In this context, the 

collected data can lead us to obtain valuable information about individual needs, and 

turn such needs and wants into design attributes for customizing products. 

1.3 Outline of the Thesis 

The remaining chapters are organized as follows: Chapter 2 gives an overview of 

literature and a critical review of research in the area of this work, where the review 

includes smart manufacturing developments, Cyber-Physical Integration realising 

smart products, big data and business informatics for i4, AI for smart manufacturing, 

and finalizing with a summary and study cases. Chapter 3 presents the methods used 

for predicting attributes under smart design principles, here the Cyber-Physical 

Integration, considered Machine Learning approaches, Smart Design under i4 

principles, and a summary and motivation are covered. Chapter 4 includes the 

proposed frameworks for predicting potential needs and wants, the different aspects 

and improvements are presented as sections in this chapter, which are value chain 

for predicting potential customer needs and wants, AI closed-loop, Classification 

learner, Genetic search, and summary. In Chapter 5, the application, evaluation of 
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machine learning approaches, and case studies are presented, where each dataset is 

introduced, a motivation of selecting the case studies is given, the data analysis and 

results for each dataset are shown, and the obtained results are summarized in the 

last section of this chapter. Finally, in Chapter 6, the conclusion and future work are 

discussed. 
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Chapter 2 Literature Review 

2.1 Smart Manufacturing Developments 

It is stated in [19] that smart manufacturing represents a collection of technologies 

that promote strategic innovation having an impact on the existing manufacturing 

industry by converging technology, humans, and information. The innovation for smart 

manufacturing has been also spread thanks to the extensive use of internet 

technologies, allowing faster communication between customers, stakeholders, 

machines, and shop floor workers; this communication enables actions towards 

better-informed decisions.  

Part of the main goals of i4 is the concept of Smart Factory as the most complete 

development, in which all the cutting-edge technologies take place as one of the main 

drivers of the fourth industrial revolution. According to [20] a Smart Factory is 

identified as a manufacturing solution that provides flexibility and adaptability to 

production processes, these capabilities give a solution to the encountered problems 

in a dynamic and faster way where complexity increases and traditional ways of 

making products are not possible. Automation is essential to maintain production 

according to desired standards and quality in a Smart Factory, here information and 

Internet technologies, mechanics, and internet applications can lead to optimize 

manufacturing resources, resulting in minimizing the waste of resources and 

unnecessary labour.  

Developments and design involved inside Smart Factory concept required a 

background vision, this vision was first addressed in [21], where it was described a 

physical world that is connected and interlaced with actuators, sensors, computer 

elements and displays, and all these elements are seamlessly embedded into daily life 

objects. A network is the mean of connection between objects, machines, and people, 

which then this vision was transferred to manufacturing issues. Thanks to the 
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evolution of information and communications technology, virtual and digital 

developments, and global network technologies the factories are experiencing a 

change because of the fusion of physical and virtual worlds allowing smart 

technologies to drive this paradigm shift [22]. 

Thanks to smart factory development distribution, real-time collection, and access of 

manufacturing relevant information can be retrieved and accessed anytime and 

anywhere [20]. These developments enable decentralized information and 

communication structures for smart manufacturing since the process can handle 

faster changes because of the vertical and horizontal integration of information 

systems, an example for this is the assignment of material and flow of information 

inside and outside an enterprise. In terms of context-aware according to [20] the 

applications in a Smart Factory need to answer the following questions: 

1) Identification stage � how is an object identified? 

2) Positioning stage � where is an object located in the factory? 

3) Status knowledge � what is the status or situation of an object? 

The above questions lead to consider some challenges that arise with these topics. 

These challenges are described as follows: 

• Identification: information of the real world is assigned to objects that are 

suitable to be identified, tagged, sensed, and establish a connection to a 

facility. The object is identified, and a task is assigned to be processed in rough 

industrial environment. 

• Localization: having information about the position of objects (tools, 

components, materials, etc.) can improve the process and reduce idle times. 
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For smart environments, this positioning system needs to have a certain level 

of robustness and work on large scale in accordance with environmental 

influences, noise of dust, electromagnetic fields, etc. 

• Status knowledge: users need to be informed or as discussed before, the 

context-awareness of objects is key in smart factories to know the status of 

processed jobs in the system. 

• Update of smart management systems: status or location of an object has to 

be communicated to the systems inside a smart factory periodically. 

• Support for different queries: a smart factory has to support different types of 

queries (object-based, location-based, temporal, and combination of all types) 

as part of assistance systems. 

• Integration of heterogeneous information: different systems inside a company 

can cause challenges when interfaces, information models, and data formats 

are not based on a common language in order to achieve synchronization. This 

challenge can be resolved easily by integrating and building a common 

platform.  

• Real-time characterized reaction: in order to give support to people and 

machines, the information has to be processed in seconds. For this information 

and communications technology and database management address this 

challenge. 

These challenges encompass and describe how customers and companies 

communicate with each other by interacting with objects in common. For the 

challenges above, in [20] is discussed that customers need to be aware only of the 

status knowledge and localization stage, and companies should manage the rest of 
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the challenges. Smart Factory vision at the end of the day makes the job easy for 

companies to make better decisions, to reduce waste, to increase profits, and most 

important to satisfy customer needs and wants. The next section discusses mass 

customization paradigm under i4 principles.  

2.2 Industry 4.0 - Mass Customization and the Entire Value 
Chain 

Discussed in [11, 12], it is central to the vision of i4 to address individualised 

production at mass production costs, where mass production costs represent large 

quantities of products mass-produced, but in i4 individual needs can be meet and still 

get the benefit of the product cost being mass-produced. Because of the increased 

influence of Internet and globalization, companies worldwide started to consider a 

shift on how to conduct business and develop strategies [23], leading to the conclusion 

of include production plans that satisfy customers’ needs and wants but as well 

considering the benefits of mass production efficiency [24]. Mass customisation in 

manufacturing supply chain has some implications that concerns material flow and 

information, this leads to the connection between product types and the decoupling 

point, affecting customer satisfaction [25].  

The manufacturing companies today are facing major challenges providing a high level 

of product variety at mass production costs. Adequate operational systems and 

machinery need to carry out manufacturing processes capable of dealing with 

individualised flexibility but at the same time using resources efficiently and ensuring 

quality as well [23]. Flexibility and autonomous adjustment can be achieved with the 

CPS, allowing analysis of individuals for future events without reducing reliability to 

the workpiece once processed which can be automatically adjusted for individual 

processes [23]. The quality of the final product can be automatically checked by 

comparing the end-up product with a target or desired data created on the Computer-

Aided Design (CAD) system. In this last process we consider that automation can find 
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a better application if the virtual design is optimised from an initial stage, taking into 

account what has been proposed in [26, 27] as CAutoD when customers’ needs and 

wants are detected a priori the quality target can be set and compared in a closed-

loop.  

The importance of i4 for individualised production is that the recent developments in 

technologies like digital technology, manufacturing technology, and network 

technology are integrated to boost design-production-management-service [28]. 

Companies nowadays are realising that customers are getting involved more and more 

in the design processes, and that puts them in the position of being no longer 

considered passive buyers, this concluding in the need to address the social element 

of customer demands by developing flexible production methods that can meet 

customers’ needs and wants of multiple individuals [28]. Moreover, traditional 

manufacturing production methods currently cannot meet the social aspect of 

manufacturing development requirements. Simultaneously, market supply chains and 

manufacturing enterprises share an information barrier, that in this context according 

to [3] i4 includes two big subjects: 1) intelligent production and 2) a smart factory. 

This will allow machine fleets to self-organize, and the supply chain to automatically 

be coordinated. 

Without the context of i4 and smart manufacturing, customisation, as considered from 

the business perspective, requires the operating network to be dynamic because the 

purpose at the end of mass customisation is to adapt one-to-one, allowing customers 

to design their needed products themselves [29]. Some of the advantages of mass 

customisation include: 

• Increased cash flow: payment in advance (minimize receivables), minimize 

inventories…maximise cash flow. 



22 
 

• Maximised market share by maximising customers’ satisfaction and number of 

clients. 

• Reduce cost of inventories and material waste: implementing just-in-time, not 

produce to stock, and minimize inventory of finished goods (make-to-order). 

• Shorten time of responsiveness: flexible manufacturing and organization 

structure can result in adaption to different demands quickly. 

• Ability to supply a whole line of services and goods at bottom prices: the key 

is to differentiate products to particular demands, resulting in wider 

companies’ product lines and minimal risk of obsolete inventory. 

The advantages presented above considering the context of i4 and smart factory focus 

on the technologies not described above: IoT, IoS, and CPS. Those technologies work 

as enablers of i4 [30] and bring the concept of make-to-order to a different level of 

manufacture, in which all the advantages presented before came as a result of the 

interaction between customers and companies both connected to a common network 

in which a constant feedback is necessary to facilitate the design process and desired 

quality. In this way, production happens after the customer place an individual order, 

and the company knows exactly what to produce, involving which material, process 

involved, quantities, and quality.  

Finally, to complement the revision of what customisation for i4 is, the following 

approaches to mass customisation are highlighted [29]: 

• Adaptive customers: standard product can be bought and customers have the 

option of modifying those by themselves according to their own needs. 
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• Collaborative customizers: companies create a dialogue with customers to 

address their needs and wants and then develop customised outputs to meet 

those needs. Examples of this approach are Nike, Dell and Levi’s which basically 

in each shop a computer system is provided to measure settings in terms of 

customers’ needs, the information is sent to the shop floor where the company 

produce a custom-fitted good.  

• Transparent customizers: companies provide custom products and the 

customers do not know that a product has been customised for them. This 

approach can be found in business like Amazon or Netflix, in which each profile 

is tracked how each individual uses the service and then start to suggest 

features that customer might find useful.  

• Cosmetic customizers: a standard product is produced but packaged differently 

for each customer. The examples are chip producers that need to use different 

packages for each customer, like Lays, other retailers or supermarket brands. 

The basic approaches shown above describe what customisation can bring to the 

business perspective of i4 but also consider the manufacturing part. In the next 

subsection will be presented the value chain concept in accordance with digital 

manufacturing. 

2.2.1 Entire Value Chain 

Value chain for i4 is described by many authors like [31] as a further developmental 

stage in organisation and management of the entire value chain process involved in 

the manufacturing industry. Digital manufacturing and design draw attention to 

innovators, those new digitally-enabled technologies that include advances in 

production equipment, smart finished products, and data tools and analytics across 

the value chain. As many companies start adopting this information and 
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communications technology the boundaries between the real world and virtual world 

are closing the gap to have a more integrated Cyber-physical Production System 

(CPPSs). The CPPSs work as online networks of social machines, with mechanical and 

electronic components the communication with each other, is via the network. Smart 

machines continually share information about stock levels, problems or faults, and 

changes in orders or demand levels. CPPSs not only network machines with each other, 

but they also create a smart network of machines, properties, information and 

communications technology systems, smart products and individuals across the entire 

value chain and the full product lifecycle.  

Value chain concept was popularized and developed by [32], defined as the amount 

buyers are willing to pay for what a firm provides, the value chain is the combination 

of nine generic value-added activities operating with a firm, activities that work 

together to provide value to customers. Then first, value is a subjective experience 

that is dependent on context, the more the necessity of something, the most value is 

added to; second, value occurs when needs are met through the provision of products, 

resources, or services; and finally, value is an experience and it flows from the person 

(or institution) that is the recipient of resources, it flows from the customer. These 

concepts point out what is a key difference between a value chain and a supply chain, 

they flow in opposite directions. Shown in Figure 2–1 is the order fulfilment value 

chain as a pictorial of the comparison [33]. 
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Figure 2–1 A comparison of a Value Chain with a Supply Chain [33]. 

This framework presented in Figure 2–1 helps to see the loop and constant feedback 

necessary in customer’s needs and wants fulfilment, then for the question stated in 

the previous chapter as part of aims of this research: Where in the Industry Value 

Chain, most value is added? Is compulsory to think that customer plays a key role and 

most precisely that for i4 principles, smarter way of manufacture products adds value, 

the potential lies on highly customized products at mass production costs. It is 

expected that i4 allows for a faster response to customer needs than it is possible 

today. It improves the flexibility, speed, productivity, and quality of the production 

process. And it lays the foundation for the adoption of new business models, 

production processes, and other innovations. This will enable a new level of mass 

customization as more industrial producers invest in i4 technologies to enhance and 

customize their offerings. 

In summary for the above-presented concepts and approaches, it is necessary to 

discuss what focus smart design can bring when used according to i4 vision. Going 

through all the revised concepts, technologies and approaches surrounding i4 lead us 

to include in this revision one of the key technologies and concepts that researchers 
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[3, 11, 12] discuss about enabling customised designs at larger scale, which is CPS 

technology. The next section shows a detailed revision of what CPS contributes and 

means to i4, and some developments will be also discussed. 

2.2.2 Gaps Between Current Manufacturing Systems and Industry 4.0 

Groover [34] stated that many researchers agreed that manufacturing systems are 

influenced by different factors, such as the number of workstations, types of 

operations, system flexibility, and automation level. These factors are used as a 

baseline to set the fundamentals of i4. The following types of manufacturing systems 

are included in i4 fundamentals: single-station automated cells, single-station 

manned cells, automated assembly systems, manual assembly systems, flexible 

manufacturing systems, and cellular manufacturing systems [34]. 

• Single-station automated cells: These stations or cells are fully automated, 

and the machines involved are not attended by workers during most of the 

machine cycles. This type of manufacturing considers production increments 

and labour costs decrement. The system nonetheless, also targets constant 

product batches. This type of manufacturing system is the beginning of 

digitalization on the factory floor and automation but differs with the i4 

principles in the lower flexibility for customizing products [35]. 

• Flexible manufacturing system: These are highly automated systems, where 

several workstations are connected to an automated transport that constantly 

feeds assembly lines, and the digital part that controls the system is 

distributed. Workpieces inside this system are identified in the entire 

production cycle, which enables instant changes in processing. Usage of 

material, inventories, and maintenance of equipment is improved. 

Additionally, because of the high flexibility, the system is capable of 

performing quick responsiveness required to make changeovers. Here, i4 
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advances this type of system because of the extensive use of computational 

systems, and the digitalization of the workstations enables workers to bring 

innovation to the workshop [36]. 

• Automated assembly system: These systems replace human labour with 

industrial robots (e.g. handling system), to bring full automation of pre-fixed 

orders and schedule manufacturing of specific products. This system requires 

high stability without changing product design during the production process. 

One of the key features here is the massive product demand, which normally 

handles at least millions, and considered to be more profitable. Similar to 

assembly systems in i4, components like quality, safety monitoring, and 

sequence control are automated. Here, i4 shares the automation of quality, 

control, and mass production, but clearly in a more flexible way. 

• Computer-integrated manufacturing system: In this system computers control 

the whole functionality. Ideally, this manufacturing implicates that automation 

in the factory level involves materials management, design, production line, 

and distribution. The reduction of error can be detected rapidly with the 

constant retrieval of information using integrated computers. For i4 principles, 

this manufacturing system shares the feature of being capable of cooperative 

automation [37]. 

• Reconfigurable manufacturing system: This system is created for adjusting to 

sudden changes either in the market or regarding requirements from the same 

line of products. Six capabilities are identified in these systems: integration 

ability, modularity, convertibility, customization, diagnosing ability, and 

scalability. These systems aim to increase the changing response of different 

requirements, paying more attention to personalized flexibility than production 

flexibility. These type of systems cope very well with the i4 principles, in the 
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sense that they seek more personalized or customized features, and bring the 

flexibility capable of achieving mass customization[38]. 

Figure 2–2 summarizes these manufacturing systems and compares them with i4 

principles. The single-station automated cell is digital and wired to achieve flexibility. 

It is hard to find the automated assembly system standardized, which is due to the 

computer-integrated manufacturing system that is executed beforehand. In both 

reconfigurable and flexible manufacturing systems, customers can order goods based 

on their ideas. Nonetheless, current flexible manufacturing systems lack real-time 

responses. It is clear that flexible and reconfigurable manufacturing systems are the 

closest to what i4 aims to achieve. Hence, the systems depicted in Figure 2–2 are 

concepts that are difficult to achieve with current manufacturing systems. To realize 

these manufacturing systems, there needs to be a shift in the way processes are set 

up. For i4 developments, our research aims to meet some of these concepts in all 

directions and propose a solution to achieve a process that can be self-configured, 

self-optimized, self-aware, and help with decision making. This can finally close the 

gap between current manufacturing systems and i4.   

On the other hand, there is still more than one thing to improve on the side of 

manufacturing, underlining that those improvements had to be the future directions.  

Many levels need to be scaled up, and the ability to provide consciousness to processes 

intelligence is extremely difficult. 
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Figure 2–2 Research gap between recent manufacturing systems and i4 [39]. 

 

2.3 Cyber-Physical Integration Realising Smart 
Manufacturing 

According to [40],  CPS are systems of collaborating computational entities which are 

in intensive connection with the surrounding physical world and its on-going 

processes, providing and using, at the same time, data-accessing and data-processing 

services available on the internet.  

CPPS relying on the newest and foreseeable further developments of computer 

science, information and communication technologies, manufacturing science and 

technology may lead to the 4th Industrial Revolution, frequently noted as Industry 

4.0, which holds a big potential to change every aspect of life.  

Concepts like autonomous cars, robotic surgery, intelligent buildings, smart 

manufacturing and implanted medical devices are just some of the practical examples 
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that have already emerged as the opportunities that CPS can offer as part of the 

Research and Developments are leading by several groups [41]. 

A well-funded approach for Cyber-Physical Integration is shown in Figure 2–3, 

proposed by [40]. 

 
 
 
 
 

 
 
 
 

                                                          
                  
 

 
 

          

 

                      
Figure 2–3 Integrated Approach to develop CPS -. [40]. 

In [42] it is highlighted that analysis is a key issue in current networked cyber-physical 

system developments, the desire to integrate various objects, design methods and 

tools, aspect-oriented development methods and tools, multi-domain physical 

modelling methods and tools, and formal methods that address different aspects of 

the development process of cyber-physical systems. Cyber-physical systems 
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specification, modelling and design method integration involves many aspects of 

integration and different levels: 

• The integration of physical world dimension, communication dimension and 

computation dimension. 

• The integrated object-oriented methodology, multi-domain methodology, 

aspect-oriented methodology and formal techniques. 

• The integration of different design views. Views refer here to dimensions used 

as starting point for modeling and design. 

• The integration of the methods used to specify and implement systems 

requirements. 

• The integration of tools that support these methods. 

• The integration of physical components and cyber components. 

• The integration of different representations. 

• The integration of the multiple specification fragments produced by applying 

these methods and tools. 

• Integration between informal specification methods and formal specification 

methods is desired.  

In the following subsection are considered the Model Integration, Methodology and 

Tool Integration developments as part of the CPS applications. These developments 
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at the end will address cases of study that will help to develop a specific case to focus 

on. 

2.3.1 Cyber-Physical Integration 

CPS is an important component of i4, from the point on which the fusion of the 

physical and the virtual world comes together. This fusion is a reality with CPS. CPS 

are “integrations of computation and physical processes. Embedded computers and 

networks monitor and control the physical processes, usually with feedback loops 

where physical processes affect computations and vice versa” [43]. 

Three phases characterize CPS developments [44]: 

First generation� includes identification technologies like RFID tags, allowing unique 

identification. 

Second generation� CPS equipped with sensors and actuators with a limited range of 

functions. 

Third generation� able to store and analyse data, equipped with multiple sensors 

and actuators, also network compatible. 

Development: Model Integration 

As discussed before, the key in CPS is to develop methodologies that integrate models, 

techniques, tools that can be used in a design customized within its models and 

components. Components and Models in cyber-physical systems are heterogeneous, 

span multiple domains (physical – thermal, mechanical, electrical, fluid..., and cyber–

software, computing platforms), and require multiple models to soundly represent 

physical aspect, the requirements, architectures, behaviour, spatiotemporal 

constraints , and interfaces, at multiple levels of abstractions [42]. 
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In [45] a new integration model for the OpenMETA suite is proposed, basic design flow 

is implemented as a multi-model composition/synthesis process that incrementally 

shapes and refines the design space using formal, manipulated models. Include 

analysis and testing steps to validate and verify requirements and guide the design 

process to achieve least complex, therefore the least risky and least expensive 

solutions. Figure 2–4  shows the proposed design flow by [45]. 

 

Figure 2–4 Model Integration: OpenMETA framework. – [45]. 

The main procedures of this design flow sketch the following phases:  

1) Combinatorial design space exploration using static finite domain constraints 

and architecture evaluation. 
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2) Behavioural design space exploration by progressively deepening from 

qualitative discrete behaviours to precisely formulated relational abstractions 

and to quantitative multi-physics, lumped parameter hybrid dynamic models 

using both deterministic and probabilistic approaches. 

3) Geometric/Structural Design Space Exploration coupled with physics-based 

nonlinear finite element analysis of thermal, mechanical and mobility 

properties. 

4) Cyber design space exploration (both HW and SW) integrated with system 

dynamics. 

Development: Method Integration 

Many researchers agreed on having a methodology which integrates modelling 

languages, in order to control Cyber and Physical environments, mathematical models 

in this sense can bring together those abstractions that are imported from the 

individual languages and required for modelling cross-domain interactions. Proposed 

by [45] the language called CyPhyML is constructed as a light-weight, evolvable, 

composable integration language that is frequently updated and morphed. While 

these DSMLs may be individually quite complex (Modelica, Simulink, SystemC, etc…) 

CyPhyML is relatively simple and easily evolvable. This “semantic interface” between 

CyPhyML and the domain-specific modelling languages (DSML) shown in Figure 2–5  is 

formally defined, evolved as needed, and verified for essential properties (such as 

well-formedness and consistency) using the methods and tools of formal 

metamodeling. By design, Cy-PhyML is moving in the opposite direction to unified 

system design languages, such as SySML or AADL. Its goal is specificity as opposed to 

generality, and heavyweight standardization is replaced by layered language 

architecture and specification of explicit semantics. 
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Figure 2–5 Method Integration Framework. – [45]. 

In Figure 2–5 it is observed as part of the Model Integration that a large suite of 

modelling languages and tools for multi-physics, multi-abstraction and multi-fidelity 

modelling are included; OpenModelica, Dymola, Bond Graphs, Simulink/Stateflow, 

STEP, ESMOL and many other software that are useful for analysis. In the end, 

CyPhyML model integration language provides the integration across this 

heterogeneous modeling space and the FORMULA - based Semantic Backplane provides 

the semantic integration for all OpenMETA composition tools [45]. 

Development: Tool Integration 

Considering the approach proposed by [45] in which the Tool Integration Framework 

of the OpenMETA incorporate a network of model transformations that include models 

for individual tools and integrate model-based design flows, these model-

transformations are used in the following roles: 

1) Packaging. Models are translated into a different syntactic form without 

changing their semantics. For example, AVM Component Models and AVM 
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Design Models are translated into standard Design Data Packages (Figure 2–5, 

.ACM and .ADM files) for consumption by a variety of design analysis, 

manufacturability analysis and repository tools. 

2) Composition. Model- and component-based technologies are based on 

composing different design artefacts (such as DAE-s for representing lumped 

parameter dynamics as Modelica equations, input models for verification 

tools, CAD models of component assemblies, design space models, and many 

others) from appropriate models of components and component 

architectures. 

3) Virtual prototyping. Several test and verification methods (such as 

Probabilistic Certificate of Correctness – PCC) require test benches that 

embed a virtual prototype of the designed system executing a mission 

scenario in some environment (as defined in the required documents). We 

found distributed, multi-model simulation platforms the most scalable 

solution for these tests. We selected the High-Level Architecture (HLA) as the 

distributed simulation platform and integrated FMI Co-Simulation 

components with HLA. 

4) Analysis flow. Parametric explorations of designs (PET), such as analysing 

effects of structural parameters (e.g. length of the vehicle) on vehicle 

performance or deriving PCC for performance properties frequently require 

complex analysis flows that include a number of intermediate stages. 

Automating design space explorations require that Python files controlling 

the execution of these flows on the Multidisciplinary Design Analysis and 

Optimization (OpenMDAO6) platform (that we currently use in OpenMETA) 

are auto-generated from the test bench and parametric exploration models 

(Figure 2–4). 
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The OpenMeta model and tool integration technology needs and infrastructure for 

creating and executing complex analysis flows. Based on “software-as-a-service” 

aspect of this development, it allows end users (individuals, research groups, and 

large companies) to repositories, analytic services and design tools to lower the costs, 

and exclude the high costs of acquiring and maintaining desktop engineering tools. In 

Figure 2–6 is presented the platform for executing the part of tool integration, 

according to [45]. 

 

Figure 2–6 Tool Integration Framework. – [45]. 

With these fundamentals shown in Figure 2–6, it is clear that another matter needs to 

be addressed for this platform. The evolution of data is key in order to obtain better 

results and optimise the performance of this development. The importance of data 

management can result in ways to address customer needs and wants and improve 

designs in smarter ways. The next section includes the AI in the form of machine 
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learning approaches that helped to analyse the data and obtain useful knowledge for 

personalizing product designs. 

2.3.2 Embedded Manufacturing Systems 

Information and communication technologies form the bedrock upon which 

tomorrow’s innovative solutions are built. Embedded systems and global networks are 

two major information and communications technology motors driving technological 

progress. Embedded systems already play a central role in today’s lives, as are used 

to control many devices in common use today [46]. 

Embedded Systems are basically a computer system with a dedicated function within 

a larger mechanical or electrical system, constraints are often with real-time 

computing [47]. Those systems are the intelligent central control units at work in most 

modern technological products and devices. They typically operate as information-

processing systems “embedded” within an “enclosing” product for a set range of 

device-specific applications. These “connect” with the outside world using sensors 

and actuators; allowing embedded systems to be increasingly interconnected with 

each other and the online world. 

The difference between embedded systems and CPS, as discussed in [48] is that CPS 

describe an integration of computation with a physical process, then an embedded 

computer and network monitors and controls the physical process. CPS is about the 

intersection of the physical and cyber aspects of the manufacturing process or else, 

not the union. Thus, CPS means physical components and software (complete system), 

while embedded systems describe only the executable (computer) platform of the 

manufacturing process. 
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2.3.3 CPS and Data Analytics for Smart Manufacturing 

In recent years, the use of sensors and networked machines has increased 

tremendously, resulting in high volumes of data known as big data being generated 

[49]. In that way, CPS, which exploits the interconnectivity of machines, can be 

developed to manage big data to reach the goal of resilient, intelligent, and self-

adaptable machines. Boost efficiency in production lines for meeting customers’ 

needs and wants is key in i4 principles, and since CPS are still under development 

according to [48], a proposed methodology and architecture described in [50] which 

consists of 2 main components: (1) the advanced connectivity that guarantees real-

time data procurement from the physical world and information feedback from the 

digital space; and (2) intelligent data analytics, management, and computational 

capability that constructs the cyberspace. Figure 2–7 presents the value creation 

when combining CPS from an earlier data acquisition and analytics. 

From the above framework, the smart connection plays an important role, hence 

acquiring reliable and accurate data from machines including components and 

customers’ feedback telling the insides of the design that best approaches to their 

needs and wants. Here is where enterprise manufacturing systems intervene such as 

enterprise resource planning (ERP), manufacturing execution system (MES), and 

supply chain management (SCM). Data is obtained from those types of systems that 

update information in real time and provide a reliable inside of the product, from 

there all that collected data can be transformed into action [50].  
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Figure 2–7 Architecture for implementing CPS [50] 

i4 also describes the overlap of multiple technological developments that comprise 

products and processes. The purpose of this work is to provide a robust methodology 

to find possible solutions to fill the missing gaps that big data offers to individualistic 

manufacture (customized production). The next section gives a focusing on data 

managing (Cloud Computing) as well as big data environments is expanded as future 

directions for this literature review. 

2.4 Big Data and Business Informatics for Industry 4.0 

Considering business informatics according to i4 principles, companies need to tackle 

2 factors: (i) the lack of an automated closed-loop feedback system that can 

intelligently inform business processes to respond to changes in real-time based on 

the inputs received (for example, data trends, user experience, etc.), and (ii) existing 

analytical tools cannot accurately capture and predict consumer patterns. These 

factors are due to business performance and the response to analysis outcomes, and 
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therefore it is essential to achieve real-time analytics to improve customer-business 

relationships as well as give customers an accurate product life-cycle in order to meet 

customers’ desired usability of the product [51]. 

The use of digital models can be a possible way forward to address factor (i), such 

digital model needs to be capable of achieving automation in a closed loop. The vision 

of i4 is to utilize existing web-based technologies, internet marketplaces, and internet 

services where digital products are used as starting points to evolve better designs. 

Companies will have to be prepared for a digital transformation if they want to get 

the most out of i4 technologies. Cyber-security and data management will be critical 

problems to solve. 

The use of intelligence for data businesses should also be in the collection of data, 

which can be viewed as an intelligent action. This is a possible solution to (ii). The 

intelligence in this way comes from an expert’s knowledge that is integrated into the 

analysis, the knowledge-based methods used for analysis, and the new knowledge 

created and communicated by the analysis process. 

Relevant to business informatics for i4 is prediction and analysis in customer needs 

and wants. Customer analytics for conducting business is concerned with analysing 

data, which also requires standard techniques such as data mining, statistics, 

intelligence data analysis, and machine learning. 

Many statistical tools for achieving prediction in customer relations are not realistic 

for real-world applications [51]. In addition to this, [52] discussed real-time 

applications for IoT. The following tools and approaches were selected because of 

their promising results under smart environments and IoT according to [51] and [52]. 

• Data analysis using linear models, regularly performed in simple ways by 

utilizing linear functions, often does not represent the reality, as it is difficult 
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to describe real-world problems using such models. The problem relies on the 

use of linear statistics that involves numerous implicit assumptions about 

mutual independence between variables and normally distributed values. 

However, nonlinear models are more powerful for this. 

• The hidden Markov models (HMM) [53] can be used for creating predictions on 

time-stamped events. Stochastic methods are represented by Markov models 

focused on the analysis of temporal sequences of separate (discrete) states. 

• Using Bayesian networks [54] to analyse customer satisfaction is based on a 

graphical model, representing inputs as nodes with directed associations among 

them. Nonetheless, Bayesian networks do not provide all necessary levels of 

intuition, automation, or integration into corporate environments. Hence it is 

not very suitable for smart manufacturing. If Bayesian networks improve and 

find a way to be applicable to smart environments, it would enable accessibility 

to business users. 

The term “big data” is a composite term, describing emerging technological 

capabilities in solving complex tasks. Highly acclaimed by industry analysts, business 

strategists, and marketing experts as a new frontier for innovation, competition, and 

productivity, big data leads to the new era of smart businesses, manufacturing, and 

virtualization of companies around the world. 

Big data motivates researchers from fields as diverse as physics, computer science, 

genomics, and economics; it is seen as an opportunity to invent and investigate new 

methods and algorithms capable of detecting useful patterns or correlations present 

in big amounts of data. Analysing more data in shorter spaces of time can lead to 

better and faster decisions in areas spanning finance, health, and research. 

A very simplified big data value chain includes at least 4 stages [55]: 
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1) Data is collected where it originates. During the data-generation stage, a 

stream of data is created from a variety of sources: sensors, human input, etc. 

2) The raw data is combined with data from other sources, classified, and stored 

in some data repository. 

3) Algorithms and analytics are applied by an intelligence engine to interpret and 

provide utility to the aggregated data. 

4) The outputs of the intelligence engine are converted to tangible values, 

insights, or recommendations. 

2.4.1 Role of Big Data Analytics in IoT 

In the conception of i4 and smart manufacturing there was always this emerging topic 

known as IoT. What exactly does the IoT has to do with shifting the way businesses 

are made, products are manufactured, and services are given? The answer relies on 

the architecture behind the IoT that allows a wide range of controllers, sensors, 

appliances, and devices to be connected as part of the vast Internet [56].  

Briefly what really motivates this work is how to bring together intelligent systems 

and automated decisions to execute them in many environments. The challenges that 

need to be considered are encountered in the following questions [52]: 

1) How does an intelligent system effectively learn from data, and dissociate 

signal from noise? 

2) How can an intelligent system integrate expert knowledge with observed 

patterns? 
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3) How can an intelligent system understand the context (Where, When, Who, 

Where) and act accordingly? 

4) How can an intelligent system comprehend the consequences of and 

interference between different actions? 

5) How does an intelligent system plan for causality that is not instantaneous, but 

takes place over time, across control iterations, and can fail? 

The above questions can represent challenges not only for IoT, but as well for domains 

that similarly can take benefit of machine learning, AI, and expert systems. 

Nonetheless, the particular interest for exploration rises up for IoT domains because 

of the availability of big data inside of it. Furthermore, these aforementioned 

questions are linked to this work specifically in predicting customer needs and wants, 

since is relevant to know how an intelligent system learn from data and integrates 

this knowledge to put it into context applicable to individual needs when the design 

needs to be tuned accordingly.  The next list gives a classification to decision systems, 

describing the required analytics, and different degrees of control capabilities, 

according to [52]. 

• Reactive systems: described as systems that take certain actions when a 

condition or criteria is met. The clearest example is the smart lighting systems 

that have sensors to detect the presence of persons in specific areas or rooms 

if the sensor does not detect a person, the lights remain off. 

• Knowledge-driven intelligent systems: these systems try to capture the 

relationship between various domains, optimise decisions across these 

domains. Experts specify commonly the knowledge base, they might run a 

partial automated deep learning of cause and effect correlations within and 

across domains. 
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• Visual Analytics: these techniques facilitate the process of data analysis 

presenting relevant information displayed thoughtfully in a dashboard 

interface. Designed to boost peoples’ decision process by presenting adequate 

information, and presenting it a cohesive and easily understandable manner.    

• Control and optimize: these systems work in closed-loops in which decisions 

lead to instant actions, considering always the possibility that actions might 

fail meeting the optimisation goal. Attempting to optimise the behaviour of 

specific variables and consider cases as well when deciding action outcomes 

can fail, the control loop decision systems can also generate an action plan, 

execute it, observe the response in the closed-loop, and recover from a failure 

to meet a goal.  

• Behavioural and Probabilistic Systems: in IoT human beings as users are an 

intrinsic part. Therefore, both become sources of data and means of control, 

using messages, suggestions, and incentives. Including human models as part 

of the entire IoT system, is what behavioural systems try to achieve and 

sometimes address stochastic (non- uniform) behaviour. Here is where fuzzy 

and probabilistic systems can incorporate non-deterministic models for 

decision-making, this stays on top and beyond failures.  

• Alerts and warnings: end users provide decision logic in these systems. Then 

the information retrieved is used to interpret and classify the arriving data for 

raise alerts or make warnings. When users deal with large volumes of data, a 

kind-of automated predefined analysis to help detect or highlight situations of 

interest that might become critical.  

• Complex systems: these systems are capable of understanding a context and 

interaction between many decision loops. The complex systems are also 
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capable of taking high-level decisions that span multiple dimensions within a 

single domain.  

The above-discussed decision systems for IoT applications that have the most similar 

use to what we find applicable to our research line are the combination of visual 

analytics, control and optimise, and behavioural and probabilistic systems. Is central 

to our research interests to have a system capable of customising designs according 

to customer needs and wants, and here is where customers’ behaviour needs to be 

fed into the system in order to recognize patterns, interact with customers, get the 

desired quality and design, and finally build the customised product tailor-made. The 

various aspects and applications of IoT enable or enhance the applicability inside the 

IoT by the integration of tools like visual analytics and optimisation for which machine 

learning, evolutionary algorithms, and AI, in general, have a natural way of solving 

these problems. 

In the next section is presented the way AI can help giving solutions to the 

aforementioned IoT applications for smart manufacturing and enhance product design 

according to customer needs and wants. 

2.4.2 Big Data Analytics Tools for the Smart Manufacturing Value 
Chain 

As stated at the beginning of this section, for i4 and smart manufacturing processes 

dealing with large data storage, sharing data, processing, and analysing are becoming 

key challenges to computer science research. These challenges are (i) efficient data 

management and (ii) rapid time-critical processing requirements. Additional 

complexity arises from dealing with semi-structured or unstructured data. To 

understand massive amounts of data, advanced visualization and data exploration 

techniques are required [57]. 
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The necessary features that need to be considered when big data are involved are 

categorized by two sources of data: (i) human-generated data, and (ii) machine-

generated data. In specific, and for the purposes of this work, human-generated data 

includes needs and wants, amongst all types of data generated by people. Both 

present huge challenges for data processing. Big data cannot be defined by data 

volume alone. Complexity arises from the speed of data production and the need for 

short-time or real-time data storage and processing, from the heterogeneous data 

sources, from semi-structured or unstructured data items, and from dealing with 

incomplete or noisy data due to external factors. All these aspects render the analysis 

and interpretation of data a highly non-trivial task. It becomes even more challenging 

when data analysis and decision-making must be carried out in real time. Existing 

technologies for big data and machine learning [57] are presented in Table 2—1. 

Table 2—1 Existing technologies for big data analysis and machine learning 

Platform 
Name 

Type of 
Analysis 

Features 

R Project 
Statistical 
Analysis 

• Combine statistical methodologies 
• Produce output to feed decision support systems 
• Process massive data from different sources 

WEKA 
project 

Data 
mining 

• Flexibility for machine learning methods 
• Support the whole process of data mining, 

preparation of data, and statistical evaluation 
• Open-source software is written in Java 
• Support streamed data processing 

KNIME 
Data 
analytics 

• Provides integration of new algorithms and tools 
and data manipulation 

• User interface allowing interactive exploration 
of analysis results or models 

• Continuously maintained and improved 
• Combined with powerful libraries such as WEKA 

data mining toolkit and R statistical language 
Apache 
Mahout 

Machine 
learning 

• Provides machine learning algorithms that are 
scalable for large amounts of data 
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• Many algorithms have been implemented for 
data clustering, classification, pattern mining, 
dimension reduction, among others 

MATLAB 
Data 
analytics 

• Streaming algorithms perform stream processing 
• Machine learning toolbox 
• Hadoop enables MapReduce toolbox to work 

through the cloud 
• Cloud computing for extracting analysis and 

processing data without maintaining a data 
centre 

In addition to the information presented in Table 2—1, there are some specific 

platforms that have applications for IoT according to [52] and [58]. Central to this 

work is to revise platforms and technologies that can cope with smart environments. 

These platforms need to have connectivity that can cope with IoT. The following list 

complements the existing technologies presented in Table 2—1. 

• Apache Spark, developed by the University of Carolinas' Berkeley AMP Lab. This 

platform is an alternative to Hadoop and can perform in-memory computations. 

The Spark platform is a general engine for large-scale processing that supports 

Python, Scala, and Java. For certain tasks, it is up to 100 times faster than 

Hadoop MapReduce when the data can fit in the memory, and 10 times quicker 

when data resides on the disk. Recently, this platform was run on Amazon 

Elastic Map-Reduce [58]. 

• Microsoft Azure, Microsoft’s response to big data analytics. This platform 

provides flexibility over the MapReduce by allowing users to have more control 

over the coding. Has a C#-like environment, and uses LINQ (a parallel language) 

and cluster execution. Part of its advantages is the debugging and development 

using Visual Studios as the tool for language interoperation [58]. 

• Google Cloud Platform & MillWheel, developed by Research Google. This 

platform is used for low-latency data-processing applications. The Google 
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Cloud platform includes many features for big data analytics and includes a 

machine learning application. Features of the machine learning approach 

include training and building models using the TensorFlow library [52]. 

The following list presents the requirements for an integrated platform for big data 

analysis based on the analysis discussed in [30], where several applications or case 

studies were considered. These requirements are considered as well for the existing 

technologies for big data and machine learning, which have been presented in Table 

2—1. 

• Functional requirements. 

• Data integration: addressing problems from real-world application domains. 

Platforms must be capable of accessing multiple different data sources and 

dealing with inconsistent or noisy data. 

• Statistical analysis: analysis of data can be simple or complex. Platforms must 

support different types of data analysis, including calculation of statistical key 

figures like quantiles or correlation coefficients. 

• Interactive exploration: the platform has to support intuitive visualization for 

visual analytics and easy interaction with the data. 

• Decision support: in addition to the analysis of data, the platform should also 

provide mechanisms for domain-specific data interpretations that are valuable 

for decision-making. 

• Non-functional requirements. 
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• Scalability: the platform and its various constituents have to be able to handle 

huge amounts of data. All components must be designed in such a way that 

they can be deployed in a distributed computing environment. 

• Near real-time processing: fast processing is the main requirement of some 

applications (use cases). The core platform must be able to support near real-

time processing in combination with selected components. 

• Resource efficiency: while keeping the objectives of throughput and speed, the 

system resources should be utilized efficiently. 

All these requirements can also fall into three different research areas: 

• Database Technologies: distributed databases, parallelism, and NoSQL 

approaches. 

• Information Systems: design of an integrated platform with the scalability of 

all components and efficient usage of IT resources, making use of current 

system architectures (multi-core) and increased availability of main memory. 

• Algorithmics: design of efficient algorithms for external memory, and 

algorithms fitting into the MapReduce paradigm or other parallelization 

patterns. Streaming algorithms are used for efficient processing of amounts of 

data that are so huge that scanning it more than once is infeasible, or for 

processing data that naturally arrives as an event stream. 

Once requirements for big data are shown, it is necessary to see what needs are 

relevant to big data analytics. According to [32], the growth of the digital universe is 

expected to change from 898 exabytes to 6.6 zettabytes between 2012 and 2020, or 
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more than 25% a year, i.e., growth will double about every 3 years. In Figure 2–8 is 

presented the estimation made by the International Data Corporation. 

 

Figure 2–8 Expected growth in digital data from 2010 to 2020 [59]. 

Knowing that the growth of data would be constant nowadays, the question is, are 

the data analysed for useful information proper for instant usage? The value of a big 

data implementation will be judged based on one or more of these 3 criteria [33]: 

• Able to provide more useful information; 

• Able to improve the reliability of the information; 

• Able to improve the timeliness of the response. 

Thus, a big data application framework that meets the above criteria inevitably 

provides reliable, useful, and timely information, enabling a quick response by the 

data owner. If these criteria are not met, the big data is worthless. 

Big data processing has become imminent for enterprises that wish to process a large 

amount of data mainly from social networks, the semantic web, sensor networks, geo-
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based service information, patient information, and employee-based or transaction-

based applications. These areas observe the quick growth of large data and need 

either timely analytics or batched processing. Thus, the challenge is to analyse and 

mine these big data to effectively exploit the information and improve efficiency and 

quality of service for consumers and producers alike. Computing capabilities of 

current multi-core microprocessors are unable to meet the data mining requirements 

to effectively mine the data on time, which means there is a need of parallel 

acceleration hardware, such as a graphics processor unit (GPU), to accelerate the 

data mining. MapReduce framework-based applications, such as Apache Hadoop and 

Drill (which are free and stable), are suitable for large-scale data processing. 

2.5 Challenges Achieving Mass Customization 

With the CPS-enabled i4 factory and big data advised design for agile manicuring, the 

remaining challenge is how to achieve agile customisation, which is the focus of this 

section.  For manufacturing, mass customization is the term used to describe the 

automated manufacturing of tailor-made products. Here, digital manufacturing and 

smart factory concepts are included. Where Direct Digital Manufacturing (DDM) 

happens all the way from the vertical integration, and the design of a product is 

passed on in a virtual form to the suppliers. The design can be passed on as a whole 

product or in several components. After that, each supplier contributes to adding 

specific data backwards to produce single components. Data then is passed to 

machines, and each part is produced directly from that data [60]. 

Production and many aspects of traditional manufacturing are affected by smart 

manufacturing. In the future, mass customization should start in the cloud. Since it 

can be difficult for a specific individual or team to handle all customizations, enabling 

public access for customers and suppliers to complete design and configuration along 

the value chain is a possible way forward. Fitting customers' needs and wants is 

located here, this takes place when customers place the order and deal with the 
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design and product configuration. ERP, such as customer relationship management 

(CRM), can be based on the cloud for historical orders, and also provide data analysis 

for self-aware properties. All the components involved in the integration framework 

for mass customization are shown in Figure 2–9 [61]. 

 

Figure 2–9 Horizontal and vertical integration in mass customization [60]. 

Components of the above figure encompass processing orders on the cloud, for which 

suppliers and customers collaborate at the moment of Design and Configuration (D & 

C), ordering, and process production (PP). Once the order is placed, it gets to 

processing for production stage, where just before producing, the simulation takes 

part in the following: planning investments, engineering construction, building and 

testing, optimizations, maintenance, and upgrades. Production integration continues 

until the package is dispatched and the order is delivered. The manufacturing 

software tools involved in this vertical and horizontal integration are as follows: CRM, 
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the Manufacturing Enterprise System, the Quality Manufacturing System (QMS), 

Computer-Aided Exchange (CAX), and the Transaction Processing System. 

Stock, et al [17] discuss opportunities for sustainable i4 environments from a macro 

and micro perspective. These are summarized as follows: 

• Business models: Smart data is a driver for new evolving business models 

in i4, enabling new services. In the long-term, sustainable business models 

are necessarily characterized by competitiveness. In the same way, selling 

the accessibility and functionality of products instead of selling only 

tangible products will be a leading concept [17]. 

• Value-creation network: In Figure 2–9, a value creation network as a 

crossed-linked cycle in i4 gives new opportunities for realizing closed-loop 

product life cycles and industrial cooperation. Having this cooperation of 

all parts on the cloud allows for efficient coordination of the material, 

product, and energy throughout the product’s lifecycle as well as between 

different factories. The closed-loop life cycles also enable multiple use 

phases with remanufacturing or reuse in between [17]. 

• Products: Designing products under i4 principles is focused on realizing 

closed-loop life cycles for products by enabling the remanufacturing and 

reuse of specific products or by applying cradle-to-cradle principles. As the 

outcome of the manufacturing process, product quality can provide much 

insight on machine conditions via backwards reasoning algorithms [62]. 

• Processes: Data-driven and cloud-based technologies are key to achieving 

self-aware and self-learning machines. The design of proper manufacturing 

process chains by introducing data-driven techniques enable these 

characteristics. The importance of leveraging on additional flexibility and 
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capabilities offered by cloud computing is imminent, but adapting 

prognostics and health management algorithms to efficiently implement 

current data management technologies requires further research and 

development [62]. 

Considering what is addressed by [16] and [17] when trying to achieve mass 

customization, it is clear that the role of data, how is managed, and used represents 

a key challenge for further applications. CPS under the i4 vision will implement mass 

production and intercommunication through IoT, but mass customization needs to be 

designed in advance. However, it is often found that customers are not clear about 

their needs and wants [63]. Suddenly, how data is managed will lead to evolution of 

the innovation floor because the constant communication and linkage that IoT 

enables. In specific, data aims to move from manual settings to the automation and 

innovation of this process. Moving to an automated selection of design patterns and 

attributes is the purpose of this work, aimed to obtain the customized design of 

products. 

For any company trying to address customer needs and wants, it is discussed in [64] 

that part of the main challenge is for the business to be responsive to the market 

speed, reason why is adopted the term “agile” since the company can improve its 

agility of product manufacturing by strengthening its ability of responding or 

controlling future market changes. Agile customization then is described as the 

specific task of adjusting and being responsive to customer needs and wants in such 

environment where individual desires change rapidly [65].  

2.6 Summary  

In this chapter, the main focus has been a review of the state of the art of smart 

manufacturing approaches and related research for the forthcoming Industry 4.0.  

Table 2—2 summarises the main ideas of reviewed research papers. 
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Table 2—2 Summary of the state of the art  

Development Authors/year Main focus (ideas) 
A High-Fidelity 
Temperature 
Distribution 
Forecasting 
System for Data 
Centers 

Jinzhu Chen, Rui 
Tan, Yu Wang, 
Guoliang Xing, 
Xiaorui Wang, 
Xiaodong Wang, 
Bill Punch, Dirk 
Colbry 
(2012) 

• Cyber-physical approach for temperature 
forecasting in data centres, which 
integrates Computational Fluid Dynamics 
(CFD) modelling, in situ wireless sensing, 
and real-time data-driven prediction. 

• Simulated temperature distribution and 
sensor measurements are then used to train 
real-time prediction algorithm. 

• CFD is a numerical tool that can simulate 
the future evolution of temperature 
distribution of data centres, often yields 
highly variable accuracy, poor scalability, 
and prohibitive computational complexity. 

• Use linear models as well to achieve real-
time prediction. 

• Provide a well-founded methodology as 
well as the models used to train the GA 

• The approach can accurately predict the 
temperatures up to 10 minutes into the 
future, even in the presence of highly 
dynamic server workloads. 

• CFD models created for large-scale data 
centres typically have a coarse granularity 
and considerable error, this work has a 
better fit for minimum-scale data. 

Cloud 
computing for 
industrial 
automation 
systems a 
comprehensive 
overview 

Omid Givehchi, 
Henning Trsek, 
Juergen 
Jaspernite. (2013) 

• Latest concepts of cloud computing 
technology for industrial automation focus 

• Growing of Industrial Revolution 4.0 based 
on intelligent production 

• Summary of all the authors, approaches and 
work done form the hand of cloud 
computing 

• Cases of cloud computing applied to 
automation, an architecture developed to 
improve information flow 

• Outlook the gap for cloud solutions in 
automation applied to lower levels 

• Control level achieve reliability and real-
time issues 
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Collaborative 
systems for 
smart 
environments: 
Trends and 
challenges 

Luis M. 
Camarinha-Matos, 
Hamideh 
Afsarmanesh 
(2014) 

• Survey of trends and challenges for smart 
environments (modelling, design and 
development of collaborative systems). 

• Address paradigms like cyber-physical 
systems, Internet of Things, Internet of 
Events and Sensing Networks as supported 
technologies.  

• Related aspects: ambient intelligence, 
ambient assisted living, and sensing 
enterprise.  

• Areas of application: smart home, smart 
cities, intelligent infrastructures, 
intelligent transport systems and smart 
grid. 

• Highlights that modelling is a fundamental 
part of the development of future smart 
environments.  

• Point technical aspects like human-systems 
interaction, risks and security, 
technological basis, cloud computing, big 
data/data science.  

Cyber-physical 
production 
systems: 
Roots, 
expectations 
and R&D 
challenges 

László Monostori 
(2014) 

• Cyber-Physical Production Systems relying 
on the newest and foreseeable further 
developments in computer science, 
information and communication 
technologies, and manufacturing science 
and technology lead to the 4th Industrial 
Revolution (Industry 4.0). 

• Industrial production of the future will be 
characterized by strong individualization of 
products under the conditions of highly 
flexible (large series) production, extensive 
integration of customers and business 
partners in business and value-added 
processes, and the linking of production and 
high-quality services leading to hybrid 
products. 

• Grid computing led to grid manufacturing, 
and similarly, cloud computing to cloud 
services to manufacturing. 

• Several acknowledgements’ have driven to 
join Manufacturing and AI for learning and 
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prediction process now called Intelligent 
Manufacture Systems. 

• Overview of the evolution Industry has led 
through the years and the future 
perspective of Cyber-physical systems. 

• Research and Development expectations 
towards CPS and CPPS are versatile and 
enormous: robustness, autonomy, self-
organization, self-maintenance, self-
repair, transparency, predictability, 
efficiency, interoperability, global tracking 
and tracing, etc.… 

• CPPS can be considered an important step 
in the development of manufacturing 
systems. 

Global 
footprint design 
based on 
genetic 
algorithms – An 
“Industry 4.0” 
perspective 

Guenther Schun, 
Till Potente, 
Rawina Varandina, 
Torben Schmitz  
(2014) 

• Comparative study of network structures 
for optimizing costs in different scenarios. 

• Global footprint defined as the global 
distribution of production sites for a 
company.  

• Solution for unpredictable planning 
environment of manufacturing systems 
using GA’s. 

• Simulation and virtualization reduce and 
optimize costs, improve decisions and 
solutions for a future production with 
accelerated development process. 

• Methodology for approaching the 
optimization and migration paths of 
production networks. 

• Optimization handles different scenarios, 
select the promising ones, GA’s where 
helpful to obtain the best solution. 

• Improve the results of the production 
network design process and lead to further 
cost optimizations. 

• More analysis needs to be done to improve 
methodology. 

Recent 
advances and 
trends in 
predictive 

Jay Lee, Edzel 
Lapira, Behrad 
Bagheri, Hung-an 
Kao (2013) 

• Acknowledge the concept of predictive 
manufacturing as manufacturing sector 
next transformation.  
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manufacturing 
systems in big 
data 
environment 

• By embracing emerging technologies such 
as cyber-physical systems and advanced 
analytics manufacturers will improve 
efficiency and productivity.  

• Discuss the needs and technologies for 
predictive manufacturing systems in big 
data environment.  

• Give framework for predictive 
manufacturing and a cyber-physical model 
for enhanced predictive manufacturing 
system.  

• By implementing the prognostics and health 
management as well as analytical 
algorithms can accurately increase 
productivity. 

• Cyber-physical models integrated with 
simulation can continuously record and 
track machine conditions during several 
stages proposed. 

Service 
Innovation and 
smart analytics 
for Industry 4.0 
and big data 
environment 

Jay Lee, Hung-An 
Kao, Shanhu Yang 
(2014) 

• Manufacturing and new service trends on 
big data prediction to achieve high 
productivity through industrial 
virtualization and Industry 4.0 

• Control machines to become self-aware and 
self-learning by managing together the 
whole interaction system 

• Assembly lines are highly automated and 
require new technology as well as 
intelligent systems to handle all the data 

• Cyber-Physical system is key between the 
physical world and cyber (computational) 
space, how the system interact with the 
machines to obtain optimal solutions 

• Prognostics and Health Management (PHM) 
Algorithm an is used and with clustering, 
it’s set up the rules for how the system get 
the knowledge and adapt it to the changes 
through time 

 
Smart Factory - 
A Step towards 
the Next 

Dominik Lucke, 
Carmen 
Constantinescu, 
Engelbert 

• Sketched Smart Factory approach 



60 
 

Generation of 
Manufacturing 

Westkämper 
(2008) 

• Decentralized information and 
communication to achieve real-time 
production 

• Highlight 3 challenges: Identification 
phase, Positioning phase, and Status 
knowledge.  

• The enabling of technology involves the 
concepts of embedded systems, (wireless) 
communication technology, automatic 
identification technologies, positioning 
technologies, federation platform, 
situation recognition, and sensor fusion. 

• Presented a functional architecture for a 
manufacturing enterprise which basically 
focuses on Product Data management, 
manufacturing execution, maintenance, 
education, and training functions. 

• Sensor technologies and integration of 
knowledge aim to increase the 
transformation of the factory. 

• Integration of heterogeneous information 
systems as horizontal and vertical reduces 
information deficits. 

• Based on Nexus Platform, vision the next 
generation real-time and context-aware 
production systems. 

Survey of 
Recent Progress 
in Networked 
Control Systems 

Ke-You You, Li-
Hua Xie (2013) 

• Provide a review of the state of art of 
Networked Control Systems, discussing 
various network conditions like minimum 
rate coding for stabilizing linear systems, 
network topology, and event-based 
sampling for energy and communication 
efficiency. 

• Properties of existing networks adopted in 
NCS since the development of the control 
technology in NCS, motivated by the type of 
networks used. 

• Evolution of control system technologies is 
reviewed. 

• Control technologies are affected by 
instrumentation for implementing control 
systems.  
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• Discuss the minimum data rate problem for 
stabilization of linear systems over 
noiseless and noisy feedback channels, 
respectively. 

• Discuss a random down-sampling method to 
deal with the temporal correlations of the 
packet loss process. 

• Control of multi-agent systems which 
consist of multiple interacting linear 
systems is discussed. 

• Suggest research directions such as 
information transmission theory of NCS, 
performance control, network topology and 
data rate for multi-agent systems, 
cooperative control over uncertain large-
scale networks and cyber security and fault 
tolerant control.  

Summarizing those related works and developments leads to focus on the following 

aspects when facing i4: 

1) The methodology that integrates collaborative systems, in this case, many 

researchers suggest that a well-funded methodology that integrates CPS, cloud 

computing, virtual designs and real-time analysis, is key to achieve a high 

productivity because the system at the end becomes self-aware and self-

predictive among other properties that are suitable for study. 

2) Decentralized intelligence, this paradigm comes along with the idea of keeping 

information and communication between the system components 

decentralized and by simulation and virtual design the manufacturing keeps 

improving, therefore optimization tool is used as well as control tools when 

setting the system scenarios. 

3) Model-based integration, this approach requires significant future research 

effort. Many authors agree that modelling from the CPS is a big obstacle for 
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companies that handle big data, and profitable analysis obtained for 

prediction. Other focusing suggest tackling uncertainties within the data 

analysis. Tool integration and support from model-based systems and rapid 

construction of domain-specific toolchains is another suggestion from research. 

4) Experimental research to validate scientific results of the theoretical work is 

also what authors suggest. Validation and implementation of these approaches, 

because with the fast rhythm of acquiring knowledge and developments, what 

is trending now, in few more years will not be the same. When launching these 

projects like smart manufacturing and Industry 4.0, companies need to stay 

one step beyond and put effort into innovative resources, in order to get better 

results. 

Collaborations to trigger necessary technology for Industry 4.0 are found in many 

study cases included in this section, many of those applications show how CPS can 

interact with the manufacturing process or system. Having a variety of high-tech 

machinery is not all, integration methodologies to minimize error, and to make 

interactive the system with human support is also key. By keeping a simple and useful 

interaction of virtual-physical-human part of each process is essential. Visualization 

tools can represent for human tasks a high-value development, in order to constantly 

supervise the process and minimize performance errors. 

Design attributes can play the role of customer needs and wants and as discussed in 

chapter 1, there is a way of informing the manufacturing process what attributes are 

more desirable for individual users. It is seen that with the CPS-enabled i4 factory and 

big data advised design for agile manicuring, the major research challenge remaining 

is how to achieve agile customisation, as described earlier in section 2.5 in this 

chapter. This is therefore the focus of this thesis.  The next chapter will hence analyse 

and develop suitable methodologies for achieving agile customisation for i4. 
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Chapter 3 Methods for Attribute Prediction Using 
Smart Design Principles  

In this chapter, the methodologies that according to the literature review may lead 

to a solution to the missing gaps in the i4 concept are presented. In this sense, the 

solution means finding an effective way of individualizing product production and still 

being able to continue with the benefits that mass production offers. Now, according 

to the reviewed literature, the possible directions are considering a full integration 

of technologies (same as concepts) that can cope with all the necessary tasks a smart 

factory require. Many of the challenges for i4 and smart factories is the integration of 

information and communications technologies, CPS, and IoT. The integration of these 

technologies should be suitable for automation and a predictive closed loop. In this 

chapter, Smart Design Principles are considered to be equal to i4 principles that were 

already discussed in Chapter 2, but extended from the i4 view since in this thesis the 

smart design is a key aspect when addressing customer needs and wants for i4 

environments. 

Another perspective suggests considering the potential as well that data brings to 

manufacturing and design in the digital age. In this sense, data analytics bring a 

complete focus to find a possible solution for customization. The use of AI and 

machine learning approaches are key in this process. As discussed in [66], there is no 

single algorithm or approach that works better than the others on a general basis. 

Therefore, for each problem, an appropriate algorithm needs to be assigned. The 

selected algorithm needs to provide the desired performance and results for each 

specific application. 

The following sections show the methods that unite these two perspectives 

considering the perspective that designs can be customized digitally and improved 
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according to individual needs. The first section presents the CPS integration and gives 

three different developments that help us to set up a starting point for proposing a 

framework. The second part includes the machine learning approaches as part of the 

data analysis and meet customer needs and wants for obtaining better and more 

informed designs. The third part included in this chapter discusses the smart design 

and automation approach since this is one of the key points when addressing customer 

satisfaction. Finally, a summary is presented with the motivation of choosing these 

approaches.   

3.1 Hypotheses to Set the Scene 

Based on the reviews of the state of the art and the problems that need to be solved, 

this section presents research hypotheses to set the scene.  The first hypothesis 

addresses the general approach to develop a framework to automatically predict the 

design attributes that best reflect what customers need and want in a product, looking 

for research and technical evidence to support that such framework can be 

developed. 

Hypothesis I 

It is possible to develop a framework capable of automatically predict the design 

attributes that best reflect what customers need and want in a product. 

Hypothesis I is expected to be clarified with the following research questions: 

1. How can a generalized framework that automatically predicts the design 

attributes that best reflect what customers need and want in a product be 

developed? 
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2. Which approaches can effectively help to predict the design attributes that 

match customers’ requirements? 

3. How can products be designed efficiently? 

Hypothesis II 

It is possible to obtain a model capable of accurately predict customer needs and 

wants for at least 85% of classified design attributes. 

Hypothesis II is expected to be clarified with the following research questions: 

1. How can design attributes be used to provide meaningful insight of customer 

needs and wants? 

2. Which artificial intelligence approaches can be tested to obtain 

classification models that best represent customers’ needs and wants? 

3. Can a classification model that scores less or close to 85% be reliable and 

used for prediction? 

Hypothesis III 

It is possible to identify effective ways of achieving customization for i4 and smart 

manufacturing. 

Hypothesis III is expected to be clarified with the following research questions: 

1. What are the identified challenges to be tackled for making effective the 

customization under i4 and smart manufacturing principles? 
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2. Which possible ways for achieving customization are effectively used in any 

current stage for i4 and smart manufacturing? 

3. Do i4 and smart manufacturing deal with customization in particular ways 

different to other approaches already existing, tested, and working? 

The following sections will present methodological considerations that may be used 

to address these hypotheses.  Then a focussed framework and implementation 

approaches will be developed. 

3.2 Artificial Intelligence for the Smart Manufacturing Value 
Chain 

The current stage of manufacturing needs effective solutions to overcome the 

challenges that the extensive use of internet and information brings to global markets, 

and also the requirements of today's’ customer are not the same as previous stages. 

Even though AI methods and same algorithms had been exploited and used for 

decades, the constant development of applications and implementations of AI in day-

to-day life had left a solid foundation on how to actually benefit from it. The 

difference in today’s applications is that implementations of AI are performed in more 

powerful computers, and algorithms had been trained in larger datasets [67]. In terms 

of functionality, algorithms are becoming “smart” because of the cognition aspect 

and the fact that help humans to make better decisions; the cognition aspect involves 

the process of acquiring knowledge, an example is found in machine learning where 

an algorithm is trained to recognize new patterns using the deductive technique. Now, 

if AI and machines had brought a better understanding of how to manufacture 

products and give services, the potential for addressing customer needs and wants for 

product design are huge. 
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The value of decision-making in i4 and smart technologies is central when it comes to 

effectiveness. IoT in i4 perspective is all about decision informatics and adopt the 

recent advancements of technology like processing (real-time analytics), sensing (Big 

Data), learning (deep learning/machine learning), and reacting/adapting (real-time 

decision-making) [68]. The key drivers for i4 are IoT, real-time decision-making 

(RTDM) and AI [59]. These technologies enable prediction (speech and synthesis), 

recognition (voice and video), and understanding behaviour (social-media) 

technologies to improve ineffective applications for i4 [69]. 

What is inside RTDM is a system of integrated computers that need to perform critical 

decision-oriented functions as part of the so-called decision informatics [70]. In the 

framework illustrated in Figure 3–1, there are four technologies (sensing, processing, 

learning, and reacting) for real-time decision informatics [69].  Smart designs will be 

always sensing, processing, reacting, and learning as part of a closed-loop. 

 

Figure 3–1 Framework for real-time decision informatics [69] 

The idea for Figure 3–1  is that from a systems engineering perspective, RTDM 

determines:  

• Data to be sensed, collected and fused from possible various data sources. 
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• Data analysis or processing for obtaining needed information. 

• Reactions required to make informed decisions, decision-making and 

communications included. 

• Learned knowledge to support future decisions and understanding of them. 

This feedback loop from Figure 3–1 helps as well to refine all the steps involved 

(processing, sensing, learning, and reacting), but also includes visualization and 

management of data, mining, wisdom (reliability, quality, pattern analysis, fuzzy 

logic, AI, etc.), and knowledge [69]. How effective this framework is for specific 

problems lies on how relevant the models are for describing the problematic, since AI 

and learning steps are not just about speed but involve the analytical part as well. 

The best way for integrating products, operations, and processes in system 

engineering is a holistic approach in order to be able to adapt to changes since the 

aim for i4 is to have human-centred systems and intelligence-oriented as well.  

However, there are certain conditions and technologies that enable digital 

manufacturing; these are novel materials, cloud computing, and smart robotics. How 

efficient and effective these technologies are based on their general objectives is 

presented in Table 3—1 [69]. 

Table 3—1 Digital manufacturing enabler technologies 

Enabler Methods 
Objectives 

Efficient Effective 

Cloud 
computing 

• Software: unlimited, simulation, 
algorithmic 

• Hardware: unlimited, scalable 
• Cost: pay-as-you-use, cybersecurity 

concerns 

✓ 
✓ 
✓ 

✓ 
✓ 
✓ 
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Novel 
materials 

• Creation: big data analytics, decision 
informatics 

• Technologies: graphene plasmonics, 
smart sensing 

• Cost: toxicity, environmental impact 

✓ 
✓ 
✓ 

✓ 
✓ 
✓ 

Smart 
robotics 

• Software: digital designs, smart 
controls 

• Hardware: smart robots, 3D printing 
• Evolution: cheaper, more efficient, 

more distributed 

✓ 
✓ 
✓ 

✓ 
✓ 
✓ 

Digital designs are considered a key part of smart robotics (CPS) but as well the 

counterpart cloud computing also highlights the use of AI and simulation. These 

concepts embedded inside other technologies and approaches are taking part in the 

big picture that i4 represent. In the end, smart technologies are driving the 4th 

industrial revolution thanks to the state of maturity that many technologies had 

reached. The objectives of digital manufacturing are to make products efficiently and 

effectively, thanks to cloud computing, novel materials, and smart robotics and each 

methodology are now becoming a reality. 

In AI the aspect that is getting most of the attention of researchers according to [67] 

is machine learning and is largely attributed to the fact that is simple to use, provides 

more insight from big data sets, and gives computers the ability to learn without being 

specifically programmed. Machine learning has evolved from the basics of pattern 

recognition to the construction of algorithms able to learn from data and make 

predictions. Algorithms can build models from sample data inputs, and this is useful 

when dealing with custom-design problems because it gives the opportunity to 

produce reliable, uncover hidden insights, and repeatability on decisions and results 

allowing the possibility for automation plausible.  

The known approaches for AI learning include [69, 71]: 
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• Learning decision trees: the predictive model is obtained from a set of decision 

rules known as trees. 

• Association rule learner: used for discovering useful relations between 

variables in large datasets. 

• Artificial neural networks (ANN) learner: inspired by biological neural networks 

functionality. 

• Deep learning: multiple hidden layers in ANN. 

• Inductive logic programming (ILP): makes a uniform representation for 

background knowledge, input examples, and hypothesis. 

• Support Vector Machine (SVM): used methods for supervised learning for 

classification and regression models. 

• Clustering: observations assigned to a set or subset called clusters 

• Bayesian networks: graphical model or belief network that represents a set of 

aleatory variables and the conditional independences between them. 

• Reinforcement learning: based on the possible way an agent might take actions 

or decide based on objective function for a long-term target. 

• Representation learning: aim to discover better representation of inputs. 

• Similarity and metric learning: identify similarities or distance metric functions 

to predict if new inputs are similar. 
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• Genetic Algorithm (GA): a heuristic method for searching that mimics the 

process of natural selection. 

• Rule-based machine learning: in this method is identified, evolved, or learnt 

rules to manipulate, store, or apply knowledge. 

All the above-mentioned approaches for machine learning find an active field for 

applications inside manufacturing environments. AI and learning methods combined 

with cloud computing, as seen in Table 3—1, gives the opportunity to access unlimited 

source of processing and storage power, which additionally can be reconfigured and 

these features are becoming effective, faster, and cheaper [59]. The ultimate goal 

for machine learning and AI is to find the optimal solution, and when an application 

reaches desired results, successful decision-making can be obtained; this makes a 

positive impact on how effective a business can be. Under i4 and smart manufacturing 

perspective, AI works better when paired with humans, since these methods will only 

help people to understand the faced-problem, and to make the best decision based 

on the inputs and set of rules given to the algorithm. At the end of the day, AI becomes 

a key enabler for i4 allowing to reach the vision of Smart Factory – self-awareness, 

self-learning, self-control, self-adaptive, and self-organized processes. 

As discussed previously, AI will not take a full part in building product-design and 

product manufacturing. It is best to have a methodology or concept inside AI that can 

help customers and designers to make the best decision, but considering users’ needs 

and wants. For this, we present in the next subsection what are the predictive 

approaches to address customization.  

3.2.1 Predictive Models to Address Customer Needs 

In general, the idea of personalized products/services is to tailor features to known 

needs and wants of individual users. With this known features the information can be 
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used and/or stored in a user model to extrapolate which items like services, products, 

or units of information should be shown to another user, and make predictions based 

on known behaviour [72]. These approaches are known as recommendation 

technologies, which mainly use AI to support the identification of items to recommend 

or show to each user [73]. This recommendation technologies allow users as well to 

identify products and services that correspond best to their needs and wants. A basic 

architecture of recommendation system is depicted in Figure 3–2 [72]. 

 

Figure 3–2 Basic architecture of a recommendation system [72]. 

In Figure 3–2 is observed how the user-related preferences are saved in the user 

model. Rates and additional semantic information are characterized in Items section. 

What is presented to the user in form of recommendation is the item catalogue to 

derive a ranked list of options. Here the recommendation system mines or exploits 

the information of the user model.  

Recommendation system techniques have been widely used for online businesses, in 

specific the collaborative filtering approach [74] that represents one of the most used 

recommendation technique. There are many applications of this technique find in [75-

78], and roughly consist of calculating common product features and recommend it 

to new customers during the design process. Nonetheless, the limitations of this 

approach lie on a term described in [79] as a cold-start problem, this means that no 

meaningful recommendation will be suggested to a user because of the lack of initial 
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ratings [80]. The cold-start problem is encountered in two situations: 1) when a first-

time user interacts with the system and no ratings are registered to provide individual 

predictions, and 2) when new items are added to the system and had not been rated, 

therefore cannot appear in the recommendation list [81]. 

Although, techniques like content-based filtering and content-based recommenders 

are commonly used to address individual needs and wants; for this work, we decided 

to focus on the aspect of knowledge-based approaches, i.e. an expert system 

approaches that perform automated reasoning and knowledge (documents, media, 

inputs, etc.) to be leveraged by humans [82]. i4 is all about knowledge-driven 

technologies and it is more suitable for smart environments to have information pre-

processed for better prediction. In knowledge-based techniques, information about 

users and products/services are used to perform reasoning in order to make 

recommendations on how items meet customers’ needs and wants [83]. In knowledge-

based techniques, recommendations are not based on user ratings, therefore the cold-

start problem is not encountered [81].  

Similar to knowledge-based recommendations, it is found in [84] an AI algorithm to 

mine data and generate knowledge on user needs and wants to match specific 

products by using machine learning approaches, in this case, Classification Based on 

Association (CBA) approach. The outputs obtained in the algorithm (knowledge), are 

then used to generate recommendations to new users. Another approach for 

knowledge acquisition is presented in [85] but this application is used when dealing 

with large and complex databases, and the author gives a solution to the bottleneck 

problem of data acquisition. One last interesting case for knowledge-based techniques 

is found in [86], in which the social aspect of customizing products is combined with 

social media by connecting the shopping experience through a common platform, 

where part of the inputs for customising the product are taken from social media 
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interaction. Once a person places an order, friends can get notified and the purchase 

is recommended to them, reaching more recommendations per item.  

All these aforementioned approaches and techniques prove the fact that 

customization has evolved from simple applications for online business to the current 

state of customization and set the foundations for smart technologies and i4 

environments. The tendency for personalized-product-designs is to allow users to get 

involved in the process of building their own products and share 

knowledge/experience with manufacturers in this process. This exchange part is 

pretended to be covered by IoT and Cloud Computing in i4. Recommender techniques 

for sure are helping to alleviate the state of confusion for customers to not know what 

they need and want, so the process of selecting an individual design can be facilitated 

by the use of AI. Using these algorithms and knowledge-based techniques inside design 

for manufacture results in a new paradigm shift called smart design. 

Exploring all the possible ways new technologies and concepts can make i4 successful, 

comes the part of including human emotions to train algorithms to actually make 

decisions based on individual needs and wants. The next subsection discusses the 

affective design approach. 

3.2.2 Affective Design for Mass Customization 

Amongst many strategies that incorporate human emotions for addressing customer 

needs and wants and increasing the competitiveness of products, we have the 

affective design approach [87]. This concept implicates from one side a customer-

oriented product design, and from the other, a manufacturing process that takes full 

account of customer needs and wants integrating several affective factors of 

individual users into the product-design process [88]. The combination of sentiments, 

emotions, and attitudes towards a specific product can be turned into design 

parameters used to meet the requirements of individuals as the custom design [89]. 
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This useful approach involves AI, design, and psychological approaches for mining 

keywords that describe best the sentiment of each individual towards a product, then 

use this information as inputs to improve the decision-making of customizing a design. 

Affective design comes from a technique proposed by [90] called Kansei engineering, 

that translates customer subjective impressions about a product, into design elements 

that can then be used to tune individual design for meeting customer needs and wants.  

There have been many successful applications using affective design/engineering for 

customizing products. For this work, it was decided to focus on the ones that utilize 

learning and AI approaches to fulfil customer desires. Study cases found in [4, 89] 

discusses the use of AI to code affective needs and wants using the Kansei technique 

for obtaining useful attributes to associate with design parameters. Other 

developments presented in [81, 91] suggest the inclusion of virtual platforms in their 

methodologies, this helps customers to select the best product design for vehicles and 

the virtual platform is used as guidance through all the customization process.  

Based on previous research regarding affective design, the idea of subtracting 

meaningful knowledge for training machine learning models and being able to make 

predictions, suggests that is important to create a set of rules based on specific 

products. This means that for every product design process it needs to be specific 

rules associated with personal requirements, but in [81] is discussed the possibility to 

pre-process raw data into training datasets, for which decision trees find a natural 

application since the model can be evaluated and refined iteratively until the desired 

confirmation is reached. This approach is in line with our work and most of the analysis 

obtained targets customer needs and wants in a predictive way, aiming to give a 

complete analysis when recommending personalized designs under i4 principles. 

Customization using affective design approach can utilize many learning techniques 

for making decisions, but since classification techniques can easily associate known 
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attributes or design elements to new data for predicting what an individual might 

select, we decide to focus on this approach. In this context classification helps for 

decision-making because a known structure can be generalized, then as mentioned 

before, apply this to new inputs [92]. An example found in [81] of classification 

framework considering affective needs for making predictions is shown in Figure 3–3. 

In Figure 3–3, the term design element ���	describes any customizable product part, 

and each ���	is characterized by a set of design parameters ����	or attributes that 

represent each element to the particular impression (shape, color, texture, etc.). 

Therefore, ���	 is represented as a set of design parameters ��� =	����	, ����, . . . , ���
�, and each parameter ����	has a set of possible values. It is 

presented the example of a round product made of aluminum, the material selection 

is represented by ��		 = �������� for any given	��	 , in which a set of possible 

options can be selected (alloy, copper, steel, etc.). Based on this design elements, 

users comment their opinion of each presented element, this data is collected to build 

a classification model for each design parameter. Here classification is used to 

identify hidden relationships between each design parameter and customer affective 

needs. If the classification model represents an accurate value, predictions can be 

made of the specific design parameter that satisfies the affective need of new 

customers. 
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Figure 3–3 Prediction process of product configuration for new customers [81]. 

Ideally, many techniques can be adapted and tested to achieve customization. The 

interest and main objective for this work is to put together a methodology that 

encompasses the i4 principles in order to close the gap between current product 

design processes, to customized product designs manufactured in a smart way. 

3.3 Machine Learning Based Approaches 

To tackle affective design for mass customization, machine learning as a means of an 

AI approach may provide a powerful tool. Smart design concept under i4 principles 

aims to deal with large quantities of data in digital environments, and many studies 

focus on intelligent tools that help digital designs cope with RTDM and customer 

satisfaction. Considering this, AI and novel machine learning techniques, suit perfect 

for extracting hidden patterns from data [93], and also have a huge potential to 

provide a clear improvement of many transformation processes, as well as improve 

services by providing reliable insight into what customers really need and want. 
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In this work, it was not only necessary to predict customer needs and wants but to 

focus also on how to improve product-design according to individual desires. For this, 

we decided to include a recommender approach that was able to use the outcomes 

collected from the classification model, and then use it to recommend the best 

selection from the design elements suitable for prediction.  However, it is first 

necessary to understand the characteristics of the data to find the most suitable 

method according to data inputs [71]. A good understanding of the dataset is crucial 

to this choice and the eventual outcome of the analysis. Many of the algorithms 

developed so far are iterative, designed to learn continually and seek optimized 

outcomes. 

We also considered a business informatics perspective that encompassed i4 principles. 

In this perspective companies need to tackle 2 factors:  

(i) the absence of an automated feedback closed-loop method that can inform 

business processes in a smart way how to respond to changes in real-time 

based on the inputs received (data trends, user experience, etc.) and  

(ii) existing analytical tools cannot accurately capture and predict consumer 

patterns.  

These factors are due to business performance and the response to analysis outcomes, 

and thus it is essential to achieve real-time analytics to improve customer-business 

relationships as well as give customers an accurate product life-cycle in order to meet 

customers’ desired usability of the product [51]. 

We previously discussed in [27], that the use of digital models can be a possible way 

forward to address factor (i) since such digital models need to be capable of achieving 

automation in a closed loop. The vision of i4 is to utilize existing web-based 

technologies, internet marketplaces, and internet services where digital products are 
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used as starting points to evolve better designs, i.e. the existing digital products are 

based on designs previously utilized as manufactured products, where the idea is to 

use these product designs to evolve better ones by addressing customer needs and 

wants. 

The use of intelligence for businesses focused on data (data businesses) should also 

be in the collection of data, which can represent an intelligent action. This is a 

possible solution to (ii) [27]. The intelligence in this way comes from an expert’s 

knowledge that is integrated into the analysis, the knowledge-based methods used for 

analysis, and the new knowledge created and communicated by the analysis process. 

The next subsections show the approaches used to analyse the data for predicting, 

pattern-detecting, and selecting suitable design attributes according to customer 

needs and wants. The subsections are organized as follows, cluster analysis used for 

detecting pattern and customer behaviour, classification analysis used for building 

predictive models and detecting significant attributes, and feature selection for 

determining significant design attributes and narrow down options for recommending 

design features. 

3.3.1 Clustering Analysis 

The use of cluster analysis in this work is attributed to the research found in [49], 

where predictive manufacturing methods are introduced for smart environments. In 

this research is found the idea of transforming processes assets’ information to predict 

the health condition of individual machines, give maintenance, and take actions when 

needed, by using machine learning and specifically cluster tools to analyse the data. 

Cluster analysis was used because of the visualization tools, and health information 

(i.e., current condition, remaining useful life, failure mode, etc.) were successfully 

displayed in charts like fault map, radar, health degradation curves, or risk charts. 
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Here it was discussed the idea of including self-organizing maps (SOM) for performing 

the analysis. 

Cluster analysis generally refers to a wide spectrum of methods that try to subdivide 

a dataset �	into �	subsets (clusters), which are partitioned in pairs, all nonempty, and �.	 is reproduced via union [94]. After this, the clusters are designated a hard � −partition of	�. The observations inside the data will have a membership in every 

cluster, the memberships close to unity can be interpreted as high degree of similarity 

between the sample and a cluster, and at the same time memberships close to zero 

denote minimum similarity between the sample and that cluster.  

The intention using this approach for predictive analysis of customer needs and wants 

is to determine significant patterns, features, and properties inside the data that 

should be considered for specific individuals that match specific categories identified 

on the �	clusters. For this, each observation inside the data can present several 

hundred dimensions, the variety of structures is without a bound. Here is clear that 

(i) no clustering measure or criteria of similarity will be universally applicable, and 

(ii) selecting a specific criteria is at least partially subjective, and therefore open to 

question [95].  

In order to explore the capabilities that cluster analysis bring to this work, in the next 

subsections are included the main approaches used for predicting customer needs and 

wants. 

Self-organizing Maps 

To realize the i4 principles, full integration of CPS and powerful tools for optimization, 

clustering, modelling, selection, and prediction, is crucial for a complete analysis 

[49], [7]. The use of adaptive learning and data mining algorithms creates a knowledge 

base representing the scenario performance when either the characteristics (qualities 



81 
 

or features: colour, type, weight, etc.) of a product needs to be considered, or its 

attributes (characteristics to be associated to: specific brand, group of objects, etc.) 

need to be personalized. Then, those mechanisms can be automatically populated. 

The knowledge base will eventually be able to grow with new data to enhance its 

capability of representing complex working conditions that happen in real-world 

scenarios. 

A SOM is a type of ANN that is trained through unsupervised learning, i.e., clustering. 

A SOM is made up of neurons (nodes), each with an associated weight vector. It is 

used in dimensionality reduction problems. Through adjusting the neurons and the 

associated weight vectors, it can produce low-dimensional cluster representations (2D 

map) of a set of high-dimensional input data. 

The obtained map is a � ×� space, where the data are scattered and arranged. The 

number of neurons is set as the square of the map. The function can be summarized 

in 4 steps [96]: 

1) Initialization: all connection weights of each cluster are initialized. 

2) Competition: for each input pattern, the neurons compete against each other 

to win this input. The neuron that adapts its value closest to the input wins. 

The discriminant function can be defined to be the squared Euclidean distance 

between the input vector � and the weight vector ��  for each neuron �, as 

follows: 

����� = 	∑ !�" −	#�"$%&"'( .  (1) 

3) Cooperation: once a winning neuron has been selected, this neuron then 

creates a neighbourhood located close to the previous winner. Therefore, the 
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winning neuron creates a neighbourhood with other neurons to cooperate and 

win future inputs. If )"� is the lateral distance between neurons * and � on the 

grid of neurons, we define a topological neighbourhood +�,,�-�, where .��� is the 

index of the winning neuron and / is the size of the neighbourhood, which 

needs to decrease with time: 

+�,,�-� = 0�1	 2− 34,5�6�7
%87 9.   (2) 

4) Adaption: this last stage is when each neuron creates a neighbourhood or 

becomes a member of a neighbourhood and self-organizes so that the feature 

map between inputs is formed. The equation that describes the appropriate 

weight update is as follows: 

∆#�" = ;�<�. +�,,�-��<�, !�" −	#�"$.  (3) 

For every step, all neurons adapt their weights to the current input, but not as much 

as the winner neuron and its neighbourhood. Visualization of the map presents, in this 

way, every neighbourhood. Each neighbourhood value will be suitable for 

approximation values that have been ordered and shaped. 

Fuzzy clustering 

Cluster approaches can be applied to datasets that are qualitative (categorical), 

quantitative (numerical), or a mixture of both. Usually, the data (inputs) are 

observations of some physical process. Each observation consists of ;  measured 

variables (features), grouped into an ; − �*=0;>*?;@A  column vector BC =	DB(C, … , BFCGH , BC 	 ∈ 	JF[97]. 
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The � observations set is denoted by	K = 	 LBC|N = 1,2, …�Q, and is represented as a ;	 × 	� matrix: 

K = 	RB(( B(% 	⋯ B(TB%( B%% 		⋯ B%T⋯ ⋯				⋯ ⋯BF( BF% 		⋯ BFTU.  (4) 

Clustering techniques can be categorized depending on whether the subsets of the 

resulting classification are fuzzy or crisp (hard). Hard clustering methods are based 

on classical set theory and require that an object either does or does not belong to a 

cluster. Hard clustering means that the data is partitioned into a specified number of 

mutually exclusive subsets. Fuzzy clustering methods, however, allow objects to 

belong to several clusters simultaneously, with different degrees of membership [97]. 

Fuzzy clustering assigns membership degrees between 0 and 1 that indicates their 

partial membership. Cluster partitions are vital for both cluster analysis and 

identification techniques that are based on fuzzy clustering. 

Most analytical fuzzy clustering algorithms are based on the optimization of the basic 

c-means objective function or some modification of the objective function. The 

optimization of the c-means function represents a nonlinear minimization problem, 

which can be solved by using a variety of methods, including iterative minimization 

[98]. The most popular method is the simple Picard iteration through the first-order 

conditions for stationary points, known as the FCM algorithm. Bezdek [95] proved the 

convergence of the FCM algorithm. An optimal c partition is produced iteratively by 

minimizing the weighted within the group sum of the squared error objective function: 

V = 	∑ ∑ !W"�$X�%!Y" , ��$Z�'(F"'( ,  (5) 

where Y"is the dataset in a d-dimensional vector space, ; is the number of data items, 

and � is the number of clusters, which is defined by the user. Furthermore, 2	 ≤ � ≤
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;, W"� is the degree of membership of Y"	in the �<ℎ	cluster, = is a weighted exponent 

on each fuzzy membership, ��	is the center of the cluster �, and	�%!Y", ��$	is a square 

distance measure between object Y" 	and cluster	��. 
The following steps were used inside MATLAB for the fuzzy c-means algorithm. 

1) Input: �= centroid matrix, == weighted exponent of fuzzy membership, ∈	= 

threshold value used as the stopping criterion,	` = 	 �Y(, Y%, … , YF�. 
Output: � = update centroid matrix. 

2) Randomly start the fuzzy partition matrix a =	 bW"�C c 
3) Repeat 

4) Calculate the cluster centres with aC: 
�� =	∑ !W"�C $XY"F"'( ∑ !W"�C $XF"'(d .   (6) 

Update the membership matrix aCe(using 

W"�Ce( =	1 ∑ 2fg4fh49
7�ijk�ZC'(d ,   (7) 

where 

�"� =	lY" −	��l%,   (8) 

until	=@�"�lW"�C −	W"�Ce(l <	∈. 
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5) Return � 
In the next section, the classification approaches are presented in order to give a 

more complete analysis for predicting customer needs and wants. 

3.3.2 Classification Analysis 

For machine learning classification analysis builds a mathematical model through the 

identification of any given set of categories a new observation belongs, this when 

training set of data that contains instances or observations from whose category 

memberships are known [99]. The difference between clustering and classification in 

terms of machine learning is that classification is considered as supervised learning 

(learn from a training set of correctly identified observations), and clustering 

corresponds to the unsupervised learning that basically groups data into categories 

based on criteria of inherent similarities [100].  

Since classification models are widely used for predicting and identifying customers’ 

opinion, choices, and preferences based on previous events (historical data), we 

decided to explore these capabilities for meeting and addressing individual needs 

when building a product design. The next subsections show the considered algorithms 

or approaches for addressing this problem and complete the data analysis. 

Decision trees 

Classification decision trees are typically used for applying inductive learning 

algorithms to a set of training examples	n. Each training sample �	 ∈ n is a tuple	� =	〈�( = p(…	�F =	WF, q = A〉, consisting of ; feature value pairs plus a mapping for the 

single response variable q  to a class label 	A ∈ s. For any new sample, 	�′	∄	n, the 

classification tree provides a mapping	A	 ← v��′�[101]. 
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Classification trees are constructed using recursive partitioning of the training dataset 

[100]. Algorithms in data mining use several splitting heuristics to estimate which 

variable �"  in n  best explains the variation in the assigned values of 	q . Training 

samples then are split into 2 subsets (binary classification is assumed) so that the 

homogeneity of each subset concerning q is maximized. Each node leads to a path, 

and then defines a rule that consists of a conjunction of feature value pairs along the 

path. If the ancestors of *, @"	are defined as all the featured value pairs between the 

root node and node * inclusive, then the conditional probability distribution of q at * 
can be written as 1�q = A|@"�[100]. 

Having the classification tree constructed, the classifier then needs to find the path 

through the tree that satisfies the feature value pairs in the unclassified example	�´. 
The class label of �´ is determined by the distribution of training examples at leaf	*. 
Specifically, for the case presented in equation 9, 

A = 	@qx=@�y	∈z �1	�q = A|@"��   (9) 

Similar to decision trees, classification trees have the potential to grow exponentially 

large. The maximum number of leaf nodes in a classification tree based on ; binary-

valued attributes is	2F. Nonetheless, unlike decision trees, the worst-case size is 

seldom realized for classification trees. Most inductive learning algorithms include 

features such as significance thresholds for splitting, a minimum sample size of leaf 

nodes, and validation pruning that result in parsimonious classification trees. The 

extent to which a final classification tree is smaller than the worst case is difficult to 

assess a priori. Moreover, tree size is determined to a large extent by characteristics 

of the training data, such as signal-to-noise ratio and interdependencies between 

features. 
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For this specific work, ensemble bagged decision trees were used for classification. 

Ensemble methods as described in [102, 103], are machine learning techniques that 

combine several learners, these include boosting, bagging, and stacking. These 

ensemble methods are often used to improve the predictive performance [104]. The 

difference between a normal classification decision trees and bagged trees is the 

combination of other learners since the model is constructed from multiple predictors 

using different training sets. Then the predictors are added from these models 

according to endogenously determined weights. Bagged trees use single base learner 

and choose random training sets combining the results of many decision trees, this 

reduces the effects of overfitting and model generalization is improved [104]. 

Support Vector Machine 

The SVM is a well-known machine learning approach based on statistical learning 

theory [105]. The use of this classification algorithm for this work was based on its 

risk minimization and performance on learning tasks; SVM does not require prior 

knowledge, and a general behaviour description is guaranteed. 

SVM’s classification capability is based on the kernel function and penalty parameters. 

The goal of this linear-based classifier is to find the optimum decision region to get 

better generalizability with limited training data. Here, the boundaries or limits are 

set by the learning capacity of the machine. Mainly, SVM constructs an optimal 

hyperplane or maximal margin hyperplane as a decision surface in a way that the 

margin of separation between 2 classes is maximized[105]. 

The equation of separating the hyperplane is given by �w ∙ x� + b = 0 , where w	represents the vector of coefficients and b is a constant. The set of the 2 tuple 

training samples consists of the data vector �" and its target or class Y" is included in 

equation 10 [106]: 
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��", Y"�, * = 1,2, … , A, � ∈ 	Jf.   (9) 

All the considered parameters should satisfy the following relationship, such 

parameters are represented for handling non-separable data: 

Y"���", Y"� + �� − 1 ≥ 0, * = 1,2, … , A.   (10) 

The class margin 1 = 2/‖�‖  reaches maximum through minimizing ‖�‖% . The 

following equation shows how the problem can be addressed: 

min�,�
12 ‖�‖%, 

>. <. 		Y"!��	 ∙ 	�"� + �$ ≥ 1, * = 1, . . . , A.   (11) 

Usually, this is solved by giving a solution to the following problem: 

max� − (%∑ ∑ Y"Y�y�'(y"'( !�" ∙ 	��$�"�� +	∑ ��y�'( , 

>. <. ∑ Y"�" = 0y"'( , 

�" ≥ 0, * = 1, . . . , A.   (12) 

Thus, it is possible to obtain optimal solutions of the Lagrange dual problem since	@∗ =	��(∗, . . . , �y∗�H. Worth to mention that forming the Lagrangian that involves constraints 

of the form	v" > 0	, the inequality constraints equations are then multiplied by the 

nonnegative Lagrange multipliers (i.e., �" 	> 0 ), and then subtracted from the 

objective function. Then, it is possible to obtain the optimal	�* ≥ 0, * = 1, .		.		 . , A		. 
�∗ =	∑ �"∗y"'y Y"�"   (13) 
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�∗ =	Y� − ∑ �"∗Y"!�"	, ��$y"'(    (14) 

The objective function can be given by solving equation (14). 

v	��� = >x;	!∑ �"∗Y"��" ∙ 	�� + �∗y"'( $  (15) 

The equation presented in (15) is the result of solving equation (14). Under the 

condition of linear inseparable and nonlinear, relaxation �"  and kernel function 

�	��	, �′� = 	 !���� ∙ 	���′�$ are added to the inequality to solve the classification 

problem [105]. 

The next section discusses the feature selection approach used in this analysis. 

3.3.3 Feature Selection Analysis 

In machine learning, feature selection involves finding a subset of input features that 

best describe the underlying system structure better than all available features [107]. 

This approach complements well with classification since, without selecting the most 

significant predictors for the model, insignificant features might become noise and 

alter the performance of the model, therefore producing a not desirable result [108]. 

Although there are many methods for solving the feature selection problem such as 

incremental learning, neural networks, self-organizing maps, classification trees, 

fuzzy clustering, and GAs [109]; in this work we used GAs as the main objective 

function for selecting the best design attributes because of how powerful and 

convenient this approach is under certain conditions.  

Feature selection is divided into two categories shown below. 
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• Wrapper methods, these methods use the output of the learning machine as 

selection criteria. On each iteration/step, the selected subset improves the 

performance of the previous one [110] 

• Filter methods, a faster convergence is obtained because it is used as an 

indirect measure of the quality of the selected features. The right subset 

might fail to be selected if the criteria used is diverted from the one used for 

training the learning machine [111].  

In both cases, GAs had been used to solve feature selection problems obtaining good 

results and performance of the classifier [108].  

When feature selection is considered as a learner, from the sample scheme it can be 

described as: given a set of labelled data pointsL��(, Y(�, . . . , ��y , Yy�Q, where �" 	 ∈	JF	 and Y" 	 ∈ L±1Q , choose a subset of =	 feature 	�= < ;� , in which the lowest 

classification error is achieved. In [112] feature selection is defined as finding the 

optimum ; − �?AW=;	vector /, where /" ∈ L1,0Q, that defines the subset of selected 

features, as found as: 

�� = @qxmin�,� !� �!Y, v�� ∗ 	�, ��$	��	��, Y�$.   (16) 

Where ��∙,∙�	is a cost function that maps the values, �	��, Y�	is the unknown probability 

function from where the data was sampled and is defined	� ∗ 	� = 	 ��(/(, . . . , �F/F�. 
The	Y = v��, ��	function, is the classification engine that is evaluated for each subset 

selection	�	and for each set of its hyper-parameters	�. 

The objective of this approach is to process the data in order to extract, potentially 

useful, novel, valid, and understandable structure in data by identifying relevant and 

meaningless features [113]. 
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From the other hand, what GAs represent for feature selection, this approach 

represents a type of robust problem-solver based on a population of solutions that 

evolve through consecutive generations by means of the applications of three genetic 

operators: mutation, crossover, and selection [114]. This approach is suitable when 

performing exploration in huge search spaces, where other methods (gradient, or 

local searchers) cannot find good results. In the case of feature selection, it uses an 

encoded binary representation of the chromosomes from which then the evolution of 

individuals starts to take place. In Figure 3–4 is presented the basic steps for feature 

selection considering genetic search. 

 

Figure 3–4 Framework for the Feature Genetic Search [108]. 

In the next section, we present how all these approaches and algorithms come 

together in this work, as well as how we decide to use the machine learning tool 

discussed previously. In the next section is presented the perspective of design for 

smart environments and i4 principles. 

3.4 Smart Design Under Industry 4.0 Principles 

Technologies inside a smart factory can also enable communication to inform a virtual 

copy of the process to personalize designs before actually processing in the physical 
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world. The importance of having a good product design can be decisive in terms of 

quality, performance, and customer acceptance. The end-user experiences when a 

product was designed according to their needs and wants, but this is never an easy 

task because this involves putting together the right materials, the proper technology, 

and the adequate hardware aiming to bring the best experience to customers. In the 

era of Internet and information and communications technology, i4 concept lead to a 

new perspective: adapting to individual requirements by bringing flexibility to 

manufacturing processes with the capabilities that CPS and IoT give. The key 

challenge for manufacturers and designers is to understand how to harness and use 

knowledge to innovate goods and interaction with customers.  

Using all these innovative ways of producing a design that considers characteristics 

like focused, informed, and refined according to individual needs and wants is what 

we call a “smart design” [115]. Is implicit in smart technologies that the system tries 

to give each user the opportunity to have a personalized experience, this is why in 

this work we focused on i4 principles to achieve customization. Moving forward with 

these concepts and approaches for customizing products according to smart design 

principles, the existing technologies for personalizing product design need to be 

discussed. The role of automated design for i4 is discussed in the next subsection. 

3.4.1 Automated Design for Industry 4.0 

Used for smart manufacturing environments, the automated design in this sense is 

used in this section as CAutoD, and it aims to reverse a design problem to a simulation 

problem, then automates such digital prototyping by an intelligent search using 

biologically-inspired machine learning, hence accelerating and optimizing a human 

trial-and-error process in the computer prior to physical prototyping. As discussed 

before concepts or tendencies like Industry 4.0 has to integrate several frameworks, 

the main tool for CAutoD is evolutionary computing, including GA, particle swarm 

optimization (PSO) and ant colony optimization (ACO). Intelligent system utilises such 
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computational intelligence to analyse interactions between variables or phenomena, 

so as to identify causes, effects, drivers and dynamics for their modelling, design and 

control in a holistic manner. Since the purpose of this work is to match concepts where 

i4 and networked production meet, biologically-inspired evolutionary computation 

used for search in multi-objective designs, for optimisation of system structures (as 

well as their parameters), and for intelligent and automated virtual prototyping.   

According to [26] a design problem is concerned with finding the best parameters 

within a known or given range through parametric optimisation or learning and is also 

concerned with inventing a new structure beyond existing designs through structural 

creation or machine-invention. If the objective cost function � ∈ ��	,∞� (or, inversely, 

the fitness function �	 = 		/�	 + �� 	∈ 	 ��		�	� is differentiable under practical design 

constraints, the problem is solved analytically. Then the author points that 

unfortunately, this scenario does not usually exist in practice and the problem is 

hence often unsolvable, since the cost function of � is minimize (the lower the better) 

and for � (fitness) the cost function is maximize, in practice the derivative is difficult 

to obtain and many peaks will be encountered. In Figure 3–5 it is shown the 

evolutionary computing transforming process, where the research focus on control 

systems, like Computer-Aided Control System Design (CACSD) and Computer-

Automated Control System Design (CAutoCSD) and how it is transformed manually. 

 

Figure 3–5 CAutoD realised through an evolutionary computing process [26] 
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The key of this approaches to work is to reach the evolved top-performing candidate 

prototypes will present multiple optimal designs and the Evolutionary Algorithm based 

on CAutoD can start from the designer’s existing database or even randomly generated 

candidates. 

Future directions at the moment point that the trend of Intelligent CAutoD for i4 may 

have seamless CPS integration to deal globally with: 

• Predictive data analytics to extract emerging trends in societal needs and 

wants then enhance conceptual designs for smart manufacture. 

• Transform digital prototyping (CAD) to automatic and optimal virtual 

prototyping (CAutoD) on the cloud 

• Reduce traditional product development cycle from: 

concept  →→→→  prototype  →→→→  test  →→→→   fix  →→→→  manufacture 

To: 

concept  →→→→ design, innovate or create   →→→→  manufacture 

Many researchers suggest that experimental research should be considered in order 

to validate scientific results of the theoretical work. Validation and implementation 

of these approaches will help with a fast rhythm of acquiring knowledge and 

developments. Meanwhile, for today’s perspective of i4 is still in process of 

implementation, there is still a way to help in a design and manufacture perspective, 

this can be through the adaption of concepts like CAutoD [7]. 
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Knowing that most of the research and future developments point to those directions 

already discussed, the focusing when talking about i4 is the Integration of a well-

funded methodology for CPS, available technology and infrastructure, intelligent 

approaches that allow automation as well, and as well as considering that everything 

goes through the IoT and IoS. There are enough tools nowadays that can be used to 

develop analysis, which therefore is another focusing that most of the work discussed 

highlights.  

3.4.2 Motivation of Selected approaches 

The selection of algorithms for classification and feature selection has been 

determined based on the literature review on the state-of-art classification tools, 

discussed by [66] and [99]. For this comparison of approaches, it is necessary to 

consider the following questions to assess the output models: 

• How much detail is required? 

• What type of data is used to build the model? 

• How much data is provided, and is it continuous? 

• How important is it to visualize the process? 

• What do we want to achieve? 

• Is storage a limiting factor? 

• Are the considered inputs numerical or categorical? 
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The prediction of customers’ needs and wants is central in this case. The 

methodologies that will help to realize prediction of attributes for smart design under 

i4 principles are as important as the prediction of customers’ needs and wants. Here, 

for i4 environments, authors like [3],[16], and [49] highlighted the importance of 

considering approaches that help to visualize the problem and help human experts 

involved in the processes of decision-making and understanding the data move in the 

right direction. This is the reason why approaches like decision trees were considered 

for testing the cases of study. 

Since the scope of this work was to address customer needs and wants using the 

principles of i4 and smart design, it was found in [4, 81, 91] starting points to consider 

how to mine and analyse the data, in order to predict what customer needs and wants 

can possibly be. The literature review helps us to explore the capabilities that 

machine learning bring when dealing with complex problems, pattern recognition, 

data classification and meet individual needs predictively [27]. In this sense, dealing 

with mass customization can be a very complex task to tackle; however, feature 

selection using GAs can help narrow down options, and act along with classification 

as a recommendation method when customers need to select the most suitable 

design. Once the selection of attributes accurately describe customers’ needs and 

wants, product design can constantly improve and the system can make better 

prediction thanks to digitalization [4]. 

The proposed framework involved the following steps: 

• Data preparation; 

• Selection of an algorithm; 

• Fitting the model; 
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• Choosing a validation method; 

• Examining fit and updating until satisfied; 

• Using a fitted model for prediction. 

Preparing the data help to determine which attributes can be used as predictors and 

which can be used to understand the problem, making this stage a crucial part. 

According to [66], all supervised learning methods start with an input data matrix, 

usually called X in this case. Each row of X represents 1 observation. Each column of 

X represents 1 variable or predictor. Then, the missing entries are represented with 

not-a-number values in X. For each dataset, it must be determined whether a variable 

is considered a predictor or a response. Some variables must be disregarded or not 

considered inside the prediction model since they are not significant for the 

description of the problem. 

In the context of this work, the focusing of predictive analytics used to address 

customers’ needs and wants match perfectly with that used in business intelligence. 

In business intelligence, predictive models extract patterns found in historical data, 

focusing on identifying opportunities and risk [51]. Predictive analytics provides a 

predictive score for each value with the purpose to inform, determine, or influence 

organizational processes that belong to a large number of individuals (customers) 

[116]. The types of models that encompass predictive modelling include the following 

[59]: 

• Predictive models: Models obtained from the relation between a specific 

performance of a unit in a sample and 1 or more known characteristics 

(attributes) of the unit. These models aim to evaluate the probability that 

a similar unit in a different sample will exhibit a specific performance [59]. 

In this work, predictive models in this sense correspond to pattern 
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identification, aimed at identifying and predicting customers’ needs and 

wants. 

• Descriptive models: Here the relationships in data are quantified in a way 

that is commonly used to classify prospects or customers into groups. 

Descriptive models identify different relationships between customers or 

products. In these models, a rank-order of customers is not found. The 

probability of taking a particular action in the way that the predictive 

models do is also not found [59]. Descriptive models can instead be used to 

categorize customers by preferences on products, which reflects the main 

objectives of this work. 

• Decision models: This type of models describes the relationship between 

all elements of a decision. Its purpose is to predict the results of decisions 

that involve several variables. Applications of decision models include 

optimization and maximizing certain outcomes while minimizing others. 

Matching applications of decision models to what is proposed in this work, 

we developed decision logic rules (business rules) to reflect the desired 

actions for individual customers or circumstances [59]. 

Although there are numerous projects and researchers using AI, machine learning, and 

digital models to address customer satisfaction, there is not enough evidence to 

support an effective integration or a methodology that encompass smart design, mass 

customization, and prediction of customer needs and wants using i4 principles. As 

discussed before, many companies address differently the customization problem, the 

solutions are very diverse. Literature review spot out a common idea between 

manufacturers, which is how to make production stage more effective in terms of 

costs, complexity, and time; but not many study cases focus really on the i4 

perspective— what customers’ needs and wants really are [117]. 
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3.4.3 Case Studies of Predicting Potential Customer Needs and 
Wants for Future CAutoD 

Industry 4.0 and big data studies have led to our AI-based framework of a closed-loop 

value chain for smart manufacturing with CAutoD as an engine for smart design.  To 

apply the methodology of attribute prediction using smart design principles, this 

section analyses 8 applicable cases. 

Use case 1: Smart Remote Machinery maintenance [16]. Application development for 

a heavy-duty equipment utilized in mining construction, the author includes several 

health prediction tools for a diesel engine component. In this case an application for 

remote monitoring, data is acquired on a daily basis that includes parameters from 

the diesel engine to the remote location, those parameters include: fuel flow rate, 

pressures, rotational speed of the engine and temperatures. For the output, it was 

necessary to assess the health of the engine, determine what causes the abnormal 

behaviour, then predict remaining life of diesel engine. Using a virtual suite called 

Watchdog Agent® toolbox, allows converting the engine data into health information. 

Including Bayesian Belief Network (BNN) to classify different engine patterns in the 

data to build a model, and this makes suitable the interpretation of anomalous 

behaviour, therefore detect a problem with the engine on an early stage of 

degradation. Finally, for prediction it was used by [16] a fuzzy logic-based algorithm 

or fuzzy membership, minimizing uncertainties in data and making more robust the 

approach. 

Use case 2: Kaiserslautern Smart factory project [118] (source: Siemens / Bosch) Part 

of the German Centre for AI (DFKI) which demonstrates by the use of soap bottles 

indicating how assembly lines and items can communicate each other. Empty soap 

bottles have labels with RFID, those labels communicate with machines and inform if 

the jar must give a white or dark top. With radio signs, an item is constantly speaking 

with its surroundings and transmits an advanced item memory from an earliest starting 
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point. For this case, CPS empowers reality and virtual part of the process which are 

constantly combined. 

Use case 3: Goal control 4D [119] (source: FIFA/ Goal Control GmbH). By integrating 

7 cameras per football-goal entry and located on the rooftop around the football field, 

cameras are associated with a high-performance PC, tracking the development and 

movement of all individuals in the field (players, officials, and minor elements). The 

football is the most vital individual, the position is constantly followed and retrieves 

three coordinates or measurements: X, Y and Z which measures with an accuracy of 

millimetres every time the ball gets closer to the goal line. If the ball crosses the goal 

line, in one second the Central Evaluation Unit sends an acoustic and optical sign-in 

to the collector clock of the mediator. Instantly the cameras record the pictures of 

the event, in order to accept the goal. The word: “Goal” appears on a watch that the 

official has on his/her hand. Other companies are running some tests to use this same 

technology in the automotive industry by supporting virtual accident tests, minimizing 

expenses of raw material, test-hours and time. 

Use case 4: High-end centralized computing for Husky [120] (source: Beckhoff/Intel) 

Collaboration between Beckhoff and Intel for developing processors and Information 

Processing Centre (IPC) for Husky company which is based on Injection molding 

systems that manufactures equipment used in a large range of plastic products 

(closures for beverages, bottles and parts for the medical industry). Part of the 

challenge was the achievement of system accuracy, responsive machinery dynamics, 

and repeatability when designing injection moulding machines; then as well system 

design approach, minimize total cost to produce, at the same time ensure high-quality 

performance. Committed to accelerate Industry 4.0 development, Intel and Beckhoff 

point out the following technologies that suit best the challenge presented by Husky: 

�Intel IoT Developer kit (variety of programming environment, tools, hardware, 

application programming interface, and cloud connectivity solutions); �low-cost 
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Open Platform Communication (OPC) servers for communication to MES; � Intel IoT 

Gateway Development kit used to create a fast prototype that is reliable and scalable  

providing communications, security, manageability among other functionalities; � 

IPC with Intel multicore processors capable of energy management, condition 

monitoring, and highly integrated machine designs (integrate robotics); � The 

Windows Control and Automation Technology (TwinCAT) with Matlab interface for 

creation of process simulation environments for virtual commissioning; � Automation 

interface in TwinCAT for remote access to control programs and to dynamically 

change those based on production situation. Encountered results show the launched 

injection moulding system called: “HyPET* HPP5” equipped with Intel Core i7 and 

high-end computing power by Beckhoff C6930, which provides productivity and cycle 

gains from 3% up to 12%.  

Use case 5: Self-organizing adaptive logistics (source: Daimler) [118]. Here it takes 

place the Product Life Cycle and lifetime. Inside networked production, reliability for 

production logistics processes is crucial for friction- and error-free production 

processes. Automotive industry requires adaptability, amount, variety and option 

accessibility of required parts and supplies. CPS allows transparency in material and 

logistic parts. Integration of CPS allows material and development of parts to optimize 

the entire supply chain. It serves as the technical foundation for a dynamic intra-

logistic controlling in flexible factories.  

Use case 6: Customer integrated engineering [118]  (source: IPA). The ever further-

reaching client requirements, adherence to deadlines and late changes are driving 

the necessity for a fundamental shift within the interaction between classical 

production tasks and the customer or the supply chain. Integrating consumers in the 

developing, planning and value-added activities of the shrunken company results in 

novel transparency and a reactive production in perfect synchronization with all the 

customers involved. 
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Use case 7: Production line for composite components with a gripper spider of 15 

needle grippers [118] (source: SCHMALZ) Used in textile industry, it is required a 

flexible production of fibre composite components, each product changeovers per 

day, each product requires for different material thickness distinct needle stoke. The 

solution proposed by SCHMALZ includes the needle gripper SNG-AE for handling highly 

porous and non-rigid materials. For each cycle, the stroke can be adapted in any 

order, as well as stacking with the use of one single gripper and bidirectional interface 

for enabling communication between the higher-level field-bus systems. This case 

represents a higher benefit for customers because of the elimination of downtime 

during production changeovers, setup time, increased flexibility of production, 

minimal risk, error correction in planned maintenance and error detection during 

operation.  

Use case 8: Smart factory architecture [118] (source: IPA) Along with the thought of 

a product’s lifecycle, several companies have already begun thinking about the 

factory’s lifecycle. It is remarkable how difficult synchronizing these lifecycles 

actually is. Analogous to those lifecycles, a smart factory has its own lifecycle that 

can be designed in accordance with the product. The smart factory offers an 

opportunity to establish a comprehensive lifecycle by associating an HTO approach 

with IT on a meta level. 

Collaborations to trigger necessary technology for Industry 4.0 are found in many 

study cases included in this section, where making the system interactive with human 

support is key. By keeping a simple and useful interaction of virtual-physical-human 

part of each process is essential, visualization tools can represent for human tasks a 

high-value development, in order to constantly supervise the process and minimize 

performance errors. 
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3.5 Summary  

As design attributes play a role of customer needs and wants, there is a way of 

informing the manufacturing process what attributes are more desirable for individual 

users. We shall, therefore, choose a design for manufacture data as four case studies 

in illustrating the methodology and its applications in this thesis. Considering this, we 

shall develop a framework that integrates the technologies and approaches discussed 

above. In the following chapter, we describe the framework for predicting customers' 

needs and wants. 
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Chapter 4 Framework for Predicting Potential 
Customer Needs and Wants 

In this chapter, the frameworks that we propose are presented and discussed, in order 

to predict customer needs and wants. It is clear that the first step needs to include a 

closed-loop value chain framework that encompasses prediction of customer needs 

and wants, in a general way. Once this methodology is proposed, the second stage 

needs to cover specific steps inside the closed-loop framework that includes AI. Next 

stage narrows down the AI approaches to test classification models and train it from 

historical datasets and also pattern recognition with cluster analysis. In the end, the 

selection of best design attributes framework is proposed.   

4.1 Value Chain for Predicting Potential Customer Needs 
and Wants 

This framework is proposed as a first stage and after revising the literature and 

common research work. For this we decide to give an answer to the six questions 

stated in chapter 1, section 4, presented as follows: 

1. Where in the industry value chain, most value is added? 

2. What are the benefits of Industry 4.0 to the customer? 

3. What are the major challenges in Industry 4.0? 

4. How to design smart products efficiently? 

5. How Industry 4.0 will add most value/most efficiently? 

6. What benefits will Industry 4.0 bring to the manufacturer? 
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Taking these questions into account, the answers found are presented next: 

1. Most value is added for customers, since they play a key role and for i4 

principles, smarter way of manufacture products adds value, the potential lies 

on highly customized products at mass production costs. i4 allows for a faster 

response to customer needs than is possible today. It improves the flexibility, 

speed, productivity, and quality of the production process. 

2. The benefits of i4 to the customer, is discussed in [31, 121] that the main 

benefits are mass customisation, opportunity for self-designed and locally-

made unique products, but also be a chance for new business models, and as 

an example companies like YouTailor®, Bombsheller® and MyMuesli® are 

offering through their website products that cannot be found in the store 

shelves, demonstrating that this is not a vision of the future, beyond that, is a 

necessity from the customers. 

3. The major challenges are the integration of technologies and drivers for i4. 

These technologies need to be part of a methodology that effectively and 

intuitively can also address a high level of product variety at mass production 

costs, and at the same time fulfil individual desires. 

4. Designs are improved from a digital platform that considers the analysis 

obtained from historical data. CAutoD is the approach that best matches with 

this problem of design since involves AI and automation. 

5. Value occurs when needs are met through the provision of products, resources, 

or services; and finally, the value is an experience and it flows from the person 

(or institution) that is the recipient of resources, it flows from the customer. 

These concepts point to what is a key difference between a value chain and a 

supply chain, they flow in opposite directions [33]. 
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6. The benefits that manufacturers get from i4 include (i) operational costs 

reduction thanks to the interlinked devices through a network and embedded 

computing, (ii) productivity increment thanks to the flexibility, more efficient 

processes, and improve the decision-making process; and (iii) customer 

satisfaction increment thanks to digital systems able to tune product designs 

to meet customer needs.  

Using this information for proposing a methodology to effectively integrate the 

concepts revised and the encountered challenges for i4, we decided to focus on a 

single task, which is to achieve customer satisfaction in a predictive way. The 

importance of having embedded in the product design process a virtual copy that can 

be modified and tuned according to customer needs and wants is key for addressing 

customer satisfaction. Thanks to the literature review, it was clear for us that the 

CAutoD principle matches perfectly with the design process since involves AI and most 

important, gives the opportunity of keep improving or evolving better designs through 

automation. In Figure 4–1 is presented the proposed framework that includes value 

chain and supply chain for predicting customer needs and wants in a closed loop. 
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Figure 4–1 Value chain closed loop for predictive customer needs and wants. 

With this methodology, a full integration of i4 components, revised from the state-of-

the-art research, is included. For us is clear that for having a predictive feedback for 

addressing customers’ needs and wants it necessary to integrate all these 

technologies, which lead to the following partial conclusions: 

• Design process is suitable for automation with CAutoD 

• Intelligent search within the design process allows needs and wants to be 

covered if the correct data is fed-back. 

• CPS interconnected to the virtual prototype obtain the optimized design and 

manufacture it. 
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• The smart product is obtained and is business informatics role to obtain the 

necessary and reliable data that is going to fed again the loop. 

• Since everything is connected through the cloud this enables to make it fast 

• Decisions for manufacturers are easier to make, with automation. 

Being this the first stage of this research, and a starting point, we decided to focus 

on the AI inside the closed loop and use the CAutoD principle to put in practice the 

capabilities that these approaches can bring. In the next section is presented the AI 

process for addressing customer needs and wants. 

4.2 Artificial Intelligence for a Closed-Loop Framework 

Figure 4–2 depicts the framework proposed to solve several of the aforementioned 

challenges in i4. Based on i4 and smart manufacturing’s key objective, i.e., achieving 

self-prediction, being self-configurable to manufacture products, and providing 

services tailor-made at mass production rates, we propose a closed-loop framework 

that integrates several approaches from AI, concepts from smart environments (Smart 

Services, Smart Design, Smart Products, and Smart Manufacture), and the IoT 

feature/connection to analyse big data on cloud services [27]. 

This framework is presented in [27]. In the first block from Figure 4–2, customer needs 

and wants are first captured and processed to extract key design characteristics, here 

is also where the inputs taken from data are first encountered. This block is similar 

to what is presented in Figure 4–1. This information (collected inputs) is then fed into 

a CAutoD engine [26], where the design requirements, features and performance 

objectives are mapped into ‘genotypes’ for further analyses. This process, which is 

commonly known as rapid virtual prototyping, uses intelligent search algorithms such 

as the GA or particle swarm optimization to explore the design search space for 
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optimal solutions. In the proposed framework, this process takes place over the cloud 

and produces a set of optimized virtual prototype at the end of the search. 

The second block of the closed loop in Figure 4–2 shows the virtual prototype, which 

is obtained from the selection and design process in CAutoD. Through the integration 

of CPS or cyber-physical integration, the virtual prototype in the second block is 

transformed into a physical product, i.e., the smart product. This block is where the 

smart product is manufactured using intelligent approaches. 

The next part of the framework refers to business informatics and how the smart 

products are connected to the IoT.  Here is where big data takes part. Through product 

performance and feedback from the customer, more features can be considered. This 

covers the necessary attributes that make the product manufactured in an optimal 

way. 

Following this, the response obtained from the customer is automatically fed back to 

the system for further analysis and to fine-tune the virtual prototype. This part of the 

closed-loop cycle can be considered as the validation of customer needs and wants, 

where when necessary such validation can lead to better designs and upgrades to the 

current one, here inputs can also be fed-back into the smart design block. This 

analysis uses node or dynamic analysis that can perform clustering, selection, and 

detection of patterns, and visualization. After that, the fuzzy c-means clustering 

completes the update of selected attributes by comparing the latest input to the 

existing cluster and tries to identify the cluster that is most similar to the input 

sample. Then, several features are fed back into the cloud again. This process takes 

no more than 5 minutes to complete in theory, in practice really depends on the 

nature of the problem, as an example in [122] hull designs involves designing process 

of weeks, and to put together the stakeholders for adjusting, customising, and making 
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any alteration to the actual ship or hull is very difficult, retrieving useful information 

to have a smart design can take short time, but the manufacturing cycle takes months.  

 

Figure 4–2 Industry 4.0 automated closed-loop for predicting customer needs and 

wants for customization [27] 

The analysis can result in 2 outcomes [27]: (i) Similar clusters are found. This will be 

reflected as an existing attribute, and the algorithm will update the existing cluster 

using information from the latest sample. (ii) Non-similar clusters are found. The 

algorithm will hold its operation with the current sample until it sees enough count-

of-cluster samples. 

When the number of out-of-cluster samples exceeds a certain amount, there exists a 

new behaviour in the data that has not been modelled. Then, the algorithm will create 

a new cluster to represent such new behaviour. For these cases, feature selection 

approaches can be very adaptive to new conditions. Next, self-growing clusters were 

used as the knowledge base for customization assessment. 

The next section presents an additional step used to classify the inputs and build the 

predictive model, this process takes place inside the previous framework presented 

in Figure 4–2.  
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4.3 Classification Learner Framework for Coding Customer 
Needs 

Inside the closed-loop cycle takes place another process that involves data 

classification as presented in Figure 4–2, data accessing, validation, and data analysis 

using AI. This process encompasses the data analysis in detail, and all the components 

are presented in Figure 4–3. Inside the proposed framework, the prediction models, 

classification of attributes using the machine learning approaches for classification 

and clustering analysis are obtained. 

 

Figure 4–3 Proposed AI-based methodology for predictive data analysis and attribute 

classification. 

The link between Figure 4–2 and Figure 4–3 is the process of predictive customer needs 

and wants after receiving feedback from the smart service, this creates a constant 

feedback that creates a more informed model, therefore a more robust system. In 

Figure 4–2, the block that corresponds to the predictive customers’ needs and wants 

connects to the IoT. Using big data analytics is unfolded into detailed steps in Figure 

4–3. The processes of accessing the data, exploring the data, developing the model, 

test classification, and validation of classified attributes take place inside the closed-

loop in Figure 4–3. The significance of this also relies on automating the process of 

tuning product designs using the classification model, this allows customizing designs 

digitally before the manufacturing process begins. 
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This is achieved using self-organizing maps against fuzzy k-means, bagged decision 

trees, and support vector machine approaches. Hence, this work built better and less 

complex models to help visualize patterns, determine interactions between variables, 

and predict and select attributes. This is useful in the i4 value chain to address 

customization and improve the decision-making process. One of the main discoveries 

using several learning approaches is that decision trees give a more accurate analysis 

and are easy to interpret, but this will be discussed in detail in the following chapters. 

The next section presents the integration of feature selection approach to the closed-

loop cycle framework. This completes the proposed methodologies for predicting 

customer needs and wants using i4 principles. 

4.4 Genetic Search Framework for Selecting Best Attributes 

To complete the whole closed-loop value chain for predicting customer needs and 

wants and suggest product design alteration to meet customer satisfaction we decided 

to add other steps to the framework. Figure 4–4 illustrates the framework proposed 

to solve several of the aforementioned challenges in i4. Based on i4 and smart 

manufacturing’s key objective, i.e., achieving self-prediction, being self-configurable 

to manufacture products, and providing services tailor-made at mass production 

rates, we propose a closed-loop framework that integrates several approaches from 

AI, concepts from smart environments (Smart Services, Smart Design, Smart Products, 

and Smart Manufacture), and the IoT feature/connection to analyse big data on cloud 

services [27]. 

In the first block from Figure 4–4 and identified with number 1, customer needs and 

wants are first captured, described as the data acquisition where all the necessary 

information is gathered. In the second block, identified with number 2 is presented 

the mining of customer requirements, such requirements are processed to extract key 

design characteristics/elements. Inside this stage, it is proposed a CAutoD engine 
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[26], where the design requirements, features and performance objectives are 

mapped into ‘genotypes’ for further analyses and/or selection. This process, which is 

commonly known as rapid virtual prototyping, uses intelligent search algorithms such 

as the GA or particle swarm optimization to explore the design search space for 

optimal solutions. In the proposed framework, this process can take place over the 

cloud or data mining and produces a set of the optimized virtual prototype at the end 

of the search to be recommended to the user. 

The third block identified with number 3 of the closed loop in Figure 4–4 shows the 

modelling part, which is obtained from the selection and design process in CAutoD 

and through mining customer requirements. Through the integration of CPS or cyber-

physical integration, the virtual prototype in the third block can be transformed into 

a physical product, i.e., the smart product. 

The next part of the framework identified with number 4, refers to the validation of 

the model.  This part differs from the one inside blocks 2 and 3 because this validation 

represents the feature selection and classification models together, where in the 

previous blocks the classification and selection where performed and obtained. The 

obtained results from the trained dataset are validated against new inputs and check 

the corresponding accuracy level of the model to see if is good for making predictions 

and proceed with following steps. This covers the necessary attributes that make the 

product manufactured in an optimal way. 

Following this, the next block (5) will make a recommendation to the user based on 

the trained classification and feature selection models. The response obtained from 

the customer is automatically fed back to the system for further analysis and to fine-

tune the virtual prototype. If the requirements of customers are not met, the trained 

dataset needs to be evaluated again, or analysed for better adjustment. This analysis 

uses node or dynamic analysis that can perform clustering, selection, detection of 
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patterns, and visualization. After that, the decision tree classification completes the 

update of selected attributes by comparing the latest input to the existing set and 

tries to identify the attribute that is most similar to the input sample. Then, several 

features are fed back into the cloud again. 

Block number 6 corresponds to the part of automation and control. It is suggested in 

[26] that constant development of models can result in a time-consuming task, but 

once your tested model gives accurate results, adaptive control can help to maintain 

the predictions and give a certain level of automation to maintain the process through 

time and constantly making predictions. In this specific case, feedback adaptive 

control can be useful based on the nature of the problem, i.e. closed feedback loop 

that retrieves information constantly. The adaptive control as the name suggests, it 

will adapt to the controlled system proposed in Figure 4–4, and more specifically to 

the customer needs and wants coded into design elements, trying to make an iterative 

learning control system to constantly found the best design attributes. 

At the end of the closed loop cycle presented in Figure 4–4, the last block (7) 

represents the customer satisfaction fulfilment. Here the idea is to maintain a 

constant communication with the user of the product and being able to measure how 

satisfied an individual is with the recommendations and selections made by the 

system. In this part IoT and cloud computing are used to improve predictions of the 

system, and different to what was discussed about stage 4, the validation does not 

happen internally, this validation using data services and cloud is an external 

validation or a real indicator of addressing customer needs and wants. 

The above-presented framework completes the full value chain methodology shown 

in the first section of this chapter. This framework was proposed as a result of 

exploring the capabilities of data mining techniques. At the beginning, suggested by 

literature review, the framework seemed to be a matter of integrating technologies 
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and AI approaches for customizing product designs using big data analytics. In 

practice, we explored a more refined AI-based method for predicting or 

recommending to customers what attributes are most likely to be selected from a 

wide variety of options, since in Chapter 2, section 5 it was discussed that customers 

sometimes are not clear what their needs and wants are and put in practice the 

benefits of automation to make the decision-making process easy to both, customers 

and stakeholders. The transition of methodologies from Figure 4–1 to Figure 4–4 is due 

to experimenting with different case studies that represented different challenges on 

how to analyse the data, but still trying to obtain similar results. 

 

Figure 4–4 Industry 4.0 closed-loop for predicting customer needs and wants using 

data mining approaches 

Inside the final closed-loop framework presented in Figure 4–4, there is another 

methodology that represents only the process involved for feature selection and 

genetic search. Figure 4–5 depicts the used methodology inside the full closed-loop 

framework presented before, the difference is that this framework combines the GA 

steps with the feature selection for mining the design attributes. This framework 
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describes the common approach used for feature selection, combined with the well-

known approach for GA found in [114]. The common procedure for feature selection 

is described in chapter 3, section 2, and subsection 3 (3.2.3), the difference here is 

that the actual process inside Matlab program is depicted here, where we interlinked 

the obtained results in feature selection with the machine learning toolbox for 

obtaining a more accurate result. As described before, this process also involves 

feedback from the classification modelling process, once obtained the training 

dataset and is used to perform the feature selection. The objective function used in 

this step, nested inside block 2 of Figure 4–4, corresponding to the lower part (feature 

selection), was targeting the design attributes that appeared in the classification 

analysis as most significant. This was obtained as described before, by using the 

trained dataset and performing a feature selection algorithm. 
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Figure 4–5 Genetic search framework for feature selection. 

Finally, the next section gives a summary of the discoveries obtained when using this 

different methodologies and approaches to predict customer needs and wants or 

recommend a set of features to complete the product design tuning for addressing 

individual needs. 
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4.5 Summary 

In this chapter all the proposed frameworks were presented, the objective behind was 

to obtain a predictive way to customize product designs that meet individual needs 

and wants. The first framework shown in Figure 4–1 has been obtained out of the 

literature review and used as a starting point. In this first framework, it was clear 

that a closed-loop was more likely to fill the gaps missing in the process of 

personalizing design products, and smart technologies were able to improve this 

process. An application of this framework is found in [122], where it was decided to 

adapt the approach to an energy-efficient manufacturing process for ships and 

vessels, acquiring the perspective of through-life smart design and operational process 

as well. A two-way closed loop that addressed the needs of a specific manufacturing 

process, in this case, ships and vessels represented a perfect example of considering 

a smart way of designing the products, because of the challenge, effort, and money 

that this market entails.  

Moving forward with predicting customer desires, we decided to move from the value 

chain proposed framework to a simple framework that encompassed the key drivers 

and concepts involved in what we wanted to achieve, i.e. predicting customer needs 

and wants. Here a number of applications were used and published in [27, 62, 123], 

and all these case studies use classification methods for mining customer needs and 

wants. In practice and throughout all these applications was discovered that AI 

enables one of the key principles of i4 — self-adapt. The use of machine learning 

approaches to reach the vision of i4 and smart factory concepts now were possible by 

using historical data to train the model for characterizing design attributes and tell 

which individual with certain characteristics, that has been already classified, is keen 

to select specific features.  

In the last stage, it was necessary to encompass optimization tools for obtaining 

accurate results. In this sense, we included GAs for selecting design features as a 
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complementary part of the analysis, since we moved to more complex datasets that 

involved a mix of categorical and numerical attributes, which in the past were not 

considered for applications. A collection of data that involved large quantities of 

variables or predictors lead us to integrate an effective way of pattern exploration, 

significant information, and significant interactions for customer behaviour. In the 

end, how significant was the information and the selection of design attributes, 

resulted in intelligent ways of customizing products. 

The next chapter presents the case studies and shows how the proposed 

methodologies are applied to analysing the data for the i4 objective of customisation. 

The applications include classification, clustering, and feature selection in predicting 

potential customer needs and wants for the purpose of customizing production. 
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Chapter 5 Applications and Case Studies 

The applications and case studies used to test the methodologies and frameworks 

shown in Chapter 4 are presented in this chapter. First, each dataset is introduced as 

part of section 5.1, in order to know the data in detail. Different datasets have been 

used and correspond to the different stages of the research work, which will be 

discussed in detail. After this, the motivation of using these datasets is presented in 

section 5.2, where we give a full description of the afore-mentioned stages is given. 

Followed by section 5.3 that corresponds to the data analysis, in which different 

subsections coincide with the given datasets as case studies. Finally, in section 5.4 is 

presented a discussion of obtained results. 

5.1 Datasets for Applications 

Different datasets were accessed to assess and test the proposed methodologies. At 

different stages of this research work we tried to give a solution to different 

challenges for personalizing design products considering customer needs and wants. 

First, it was the car evaluation dataset, and it was decided to analyse it because of 

the challenge that represented to classify categorical instances that represented 

design attributes of cars, and how good/bad customers were keen to accept those 

different attributes. The car evaluation dataset corresponded to an academic 

repository of data and these datasets can be modified for academic purposes, and it 

was only 7 different variables to analyse. After analysing this data, the automobile 

dataset was accessed from the same academic repository but since there were more 

variables to analyse, this represented a bigger challenge. Once finished with the 

datasets accessed from the academic repository, we decided to move to real data 

that represented a set of historical records and information to be analysed to 

understand customers’ behaviour in specific cases. The fuel economy dataset suited 

perfectly to address this challenge, and it was the first time that part of the challenge 

was how to analyse raw data and how to determine significant information to train a 
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classification model that understand customer needs and wants. Following the same 

example as the fuel economy dataset, we decided to analyse a dataset that had the 

same complexity in terms of dealing with raw data and able to tell us insights from a 

set of historical records. The CPU dataset involves raw data and represents a 

collection of design attributes that can tell us what manufacturers and customers 

should pay attention to.  

The next subsections describe in full the details about the previous-mentioned 

datasets.  

5.1.1 Car Evaluation Dataset 

This dataset was accessed from a trained data found in a machine-learning repository 

[124] in order to run some tests, the information of the data shows an evaluation 

model of cars by acceptability, overall price, buying price, price of maintenance, 

technical characteristics, comfort, number of doors, persons capacity to carry, and 

safety of the car. The dataset comprises of 1728 instances and each record contains 

the subsequent attributes: safety, capability describing the persons to hold, buying 

price, maintenance price, number of doors, the dimensions of baggage boot, and car 

acceptance. For this data set, the attribute of car acceptance is a category label used 

to classify the level of the car that customers accept, then different attributes are 

seen as predictive inputs. In Table 5—1 the dataset contents are presented.  

Table 5—1 Car evaluation dataset [124] 

Attribute name Description Domain 
safety Safety evaluation Low / med / high 

person The number of passengers 2 / 4 / more 

b_price Buy Price v-high / high / med / low 

m_price Repair price v-high / high / med / low 
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size Suitcase capacity Small / med / big 

door The number of the door 2 / 3 / 4 / 5-more 

class level of customer acceptance Unacc / acc / good / vgood 

In order to examine the distributions for getting to know the dataset better, in Figure 

5–1 the categories for the car evaluation set are presented. 

 

Figure 5–1 Distributions of car evaluation dataset for customization. 

Following the methodology proposed in chapter 4 for the AI closed-loop, it was also 

considered the business problem as the following question: what reasonably cars can 

get good assessment? This question is first taking into account, then the obtained 

evaluations are used as target attributes, depending on which attribute. This is then 

reduced to a data mining problem, which is: find out the rules form other attributes. 

5.1.2 Automobile Dataset 

This dataset found in [125], consists of three types of entities: (a) the specification 

of an auto in terms of various characteristics, (b) is assigned insurance risk rating, (c) 

is normalized losses in use as compared to other cars. The second rating corresponds 

to the degree to which the auto is riskier than its price indicates. Cars are initially 
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assigned a risk factor symbol associated with its price. Then, if it is riskier (or less), 

this symbol is adjusted by moving it up (or down) the scale. Actuaries call this process 

"symbolling". A value of +3 indicates that the auto is risky, -3 that it is probably safer.  

The third factor is the relative average loss payment per insured vehicle year. This 

value is normalized for all autos within a particular size classification (two-door small, 

station wagons, sports/speciality, etc...), and represents the average loss per car per 

year. In Table 5—2 the contents of the automobile dataset are shown.  

Table 5—2 Automobile data 

Attribute Attribute Range Attribute Attribute Range 
symbolling -3, -2, -1, 0, 1, 2, 3. curb-weight: Continuous from 

1488 to 4066. 
normalized-
losses: 

Continuous from 65 to 
256. 

engine-type: dohc, dohcv, l, 
ohc, ohcf, ohcv, 
rotor. 

make alfa-romeo, Audi, bmw, 
Chevrolet, dodge, 
Honda, Isuzu, jaguar, 
Mazda, Mercedes-Benz, 
mercury, Mitsubishi, 
Nissan, Peugeot, 
Plymouth, Porsche, 
Renault, Saab, Subaru, 
Toyota, Volkswagen, 
Volvo 

num-of-
cylinders: 

Eight, five, four, 
six, three, 
twelve, two. 

fuel-type Diesel, gas. engine-size: Continuous from 
61 to 326. 

Aspiration Std, turbo. fuel-system: 1bbl, 2bbl, 4bbl, 
idi, mfi, mpfi, 
spdi, spfi. 

num-of-doors Four, two. bore: Continuous from 
2.54 to 3.94. 

body-style Hardtop, wagon, sedan, 
hatchback, convertible. 

stroke: Continuous from 
2.07 to 4.17. 

drive-wheels 4wd, fwd, rwd. compression-
ratio: 

Continuous from 
7 to 23. 
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engine-
location 

Front, rear. horsepower: Continuous from 
48 to 288. 

wheel-base Continuous from 86.6 
120.9. 

peak-rpm: Continuous from 
4150 to 6600. 

Length Continuous from 141.1 
to 208.1. 

city-mpg: Continuous from 
13 to 49. 

Width Continuous from 60.3 to 
72.3. 

highway-
mpg: 

Continuous from 
16 to 54. 

height Continuous from 47.8 to 
59.8. 

price: Continuous from 
5118 to 45400. 

This dataset comprises 205 instances and 26 attributes, as shown in Table 5—2. 

5.1.3 Fuel Economy Dataset 

The dataset was accessed from the fueleconomy.gov website [126], run by the U.S. 

Department of Energy’s Office of Energy Efficiency and Renewable Energy. The U.S. 

Environmental Protection Agency lists different estimates of fuel economy for 

passenger cars and trucks. For each vehicle, various characteristics such as engine 

displacement or number of cylinders were recorded. Along with these values, 

laboratory measurements were taken for the city and highway miles per gallon (MPG) 

of each vehicle.  

The accessed fuel economy dataset includes a collection of characteristics and 

measures made by [126], from the year 2014 to 2016.  They are used to create a 

prediction for 2017. In Table 5—3, each attribute description and attribute type are 

presented. 

In [126], information for many past years could be accessed, but only information 

from 2014 to 2016 was used to train the data using machine learning approaches and 

get a prediction from the training set. Figure 5–2 presents a brief comparison of each 

unit considered for the average of fuel spent, the average CO2 emissions inside cities 

across U. S states, and an average of annual fuel cost on conventional fuel. 
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It is suggested in [127] that when trying to build a predictive model it is best to 

identify single predictors. Hence, it was selected as predicting variables all the 52 

different attributes, in which the variables “spend of fuel over the last five years” 

and “city CO2 rounded adjusted emission” were outlined as significant predictors. The 

selected response was the manufacturer’s name or brand. 

Table 5—3 Description of fuel economy data attribute. 

Attribute 
Attribute 
Type 

Attribute 
Attribute 
Type 

Attribute 
Attribute 
Type 

Model Year Numerical # Cyl 
Numerical 
integer 

Carline 

Mix of 
numerical 
and 
categorical 

Mfr Name Categorical Division Categorical Eng Displ Numerical 

Transmission Categorical 

City FE 
(Guide) - 
Conventiona
l Fuel 

Numerical 
integer 

Hwy FE 
(Guide) - 
Conventio
nal Fuel 

Numerical 
integer 

Comb FE 
(Guide) - 
Conventional 
Fuel 

Numerical 
integer 

City Unadj 
FE - 
Conventiona
l Fuel 

Numerical 

Hwy 
Unadj FE 
- 
Conventio
nal Fuel 

Numerical 

Comb Unadj 
FE - 
Conventional 
Fuel 

Numerical 

City 
UnrdAdj FE - 
Conventiona
l Fuel 

Numerical 

Hwy 
UnrdAdj 
FE - 
Conventio
nal Fuel 

Numerical 

Comb 
UnrdAdj FE - 
Conventional 
Fuel 

Numerical Guzzler? Categorical 
Air Aspir 
Method 

Categorical 

Trans Categorical Trans, Other Categorical #Gears 
Numerical 
integers 

Lockup 
Torque 
Converter 

Y, N 
Trans 
Creeper 
Gear 

Y, N Drive Sys Categorical 
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Max Ethanol 
% - Gasoline 

Numerical 
integers 

Fuel Usage - 
Conventiona
l Fuel 

Categorical 

Fuel Unit 
- 
Conventio
nal Fuel 

Categorical 

Gas Guzzler 
Exempt 
(Where Truck 
= 1975 NHTSA 
truck 
definition) 

Categorical 

Annual 
Fuel1 Cost - 
Conventiona
l Fuel 

Numerical 
integers 

EPA 
Calculate
d Annual 
Fuel Cost 
- 
Conventio
nal Fuel --
--- Annual 
fuel cost 
error. 

Mix of 
categorical 
and 
numerical 

Intake Valves 
Per Cyl 

1, 2 
Exhaust 
Valves Per 
Cyl 

1, 2 
Carline 
Class 

Categorical 

Car/Truck 
Category - 
Cash for 
Clunkers Bill. 

Categorical 
Calc 
Approach 
Desc 

Categorical 
Release 
Date 

Numerical 
integers 

EPA FE Label 
Dataset ID 

Numerical 
integers 

Fuel 
Metering Sys 
Cd 

Categorical 

$ spent 
over five 
years 
(increase 
in fuel 
costs over 
five years 
- on label) 

Numerical 
integers 

City CO2 
Rounded 
Adjusted 

Numerical 
integers 

Hwy CO2 
Rounded 
Adjusted 

Numerical 
integers 

Comb CO2 
Rounded 
Adjusted 
(as shown 
on FE 
Label) 

Numerical 
integers 

Oil Viscosity Categorical     
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Figure 5–2 Relation of fuel economy dataset for the average USD spent, the average 
CO2 emissions, and the average annual fuel costs of conventional fuel. 

5.1.4 CPU Dataset 

It was considered an application that contained detail specifications, costs, release 

dates, amongst other characteristics of computers and components. Because of the 

nature of this dataset, it matches perfectly with the description of the problem we 

wanted to address in this work. This dataset comprises a collection of data based on 

Central Processing Units (CPUs) components, published by [128]. In this collection of 

data there are 45 different columns or variables that involve: product collection, 

vertical segment, processor number, lithography, recommended customer price, 

number of cores, number of threads, processor base frequency, max turbo frequency, 

cache, bus speed, thermal design power, embedded options available, conflict free, 

max memory size, memory type, max number of memory channels, max memory 

bandwidth, error-correcting code (ECC) memory supported, processor graphics, 

graphics base frequency, graphics max dynamic frequency, graphics video max 
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memory, graphics output, support 4k, max resolution HDMI, max resolution display 

port (DP), max resolution embedded display port (eDP) integrated flat panel, direct 

X support, peripheral component interconnect (PCI) express, PCI express 

configurations, max number of PCI express lanes, temperature, intel hyper threading 

technology, Intel Virtualization Technology VTx, intel 64, instruction set, instruction 

set extensions, idle states, thermal monitoring technologies, secure key, and execute 

disable bit.  In total this dataset contains 2283 rows for each column, and Table 5—4 

gives in detail the content of each attribute. 

These attributes were used to predict what customers are most likely to consider for 

a CPU design based on historical data. This helps manufacturers like Intel among 

others to decide the best design and what direction new products should take, but as 

well as customers to select the best choice based on their needs and wants. In this 

data are included computer components that involve specifications that 

manufacturers consider as design elements when creating (manufacturing) products 

of this kind. A wide range of components considered by manufacturers when building 

a CPU is reviewed by an individual that wants to place a purchase, and the aim of this 

analysis is to be able to recommend a set of design features that suit best for each 

individual and make predictions based on previous decisions to constantly improve the 

recommendation system. It was selected as a response the variable “product 

collection”, all the other variables were used as predictors. 

In Figure 5–3 the relation of customer price attribute and the product collection 

(model) are depicted. This plot shows how expensive the processor models can be 

compared to each other. 

Table 5—4 Description of CPU data attribute. 

Attribute 
Attribute 
Type 

Attribute 
Attribute 
Type 

Attribute 
Attribute 
Type 

Product 
Collection 

Categorical 
Conflict Free 

Y, N 
DirectX 
Support 

Numerical 
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Vertical 
Segment 

Categorical 
Max Memory 
Size 

Categorical 
OpenGL 
Support 

Categorical 

Processor 
Number 

Categorical 
Memory 
Types Categorical 

PCI 
Express 
Revision 

Numerical 
integer 

Status Categorical 

Max nb of 
Memory 
Channels 

Numerical 

PCI 
Express 
Configura
tions 

Categorical 

Launch Date Categorical 

Max Memory 
Bandwidth 

Categorical 

Max nb of 
PCI 
Express 
Lanes 

Numerical 

Lithography Numerical 
ECC Memory 
Supported 

Y, N 
Temperat
ure 

Categorical 

Recommend
ed Customer 
Price 

Numerical 

Processor 
Graphics  

Categorical 

Intel 
Hyper 
Threading 
Technolo
gy_ 

Y, N 

Nb of Cores Numerical 

Graphics Base 
Frequency 

Categorical 

Intel 
Virtualiza
tion 
Technolo
gy VTx 

Y, N 

Nb of 
Threads 

Numerical 
Graphics Max 
Dynamic 
Frequency 

Categorical 
Intel 64 

Y, N 

Processor 
Base 
Frequency 

Categorical 
Graphics 
Video Max 
Memory 

Categorical 
Instructio
n Set Categorical 

Max Turbo 
Frequency 

Categorical 

Graphics 
Output 

Categorical 

Instructio
n Set 
Extension
s 

Categorical 

Cache Categorical 
Support 4k 

Categorical 
Idle 
States 

Y, N 

Bus Speed Categorical 

Max 
Resolution 
HDMI Categorical 

Thermal 
Monitorin
g 
Technolo
gies 

Y, N 
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Thermal 
Design 
Power 

Numerical 
Max 
Resolution DP Categorical 

Secure 
Key Y, N 

Embedded 
Options 
Available 

Y, N 

Max 
Resolution 
eDP 
Integrated 
Flat Panel 

Categorical 

Execute 
Disable 
Bit Y, N 

  

Figure 5–3 Relation of recommended customer price attribute vs product collection 
or models attribute. 

5.2 Selected Case Studies to Illustrate the Applications 

As stated before, once completed the process of proposing a closed-loop framework, 

we decided to test the methodology using case studies for validating that the proposed 
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framework actually was giving a desirable solution for predicting customer needs and 

wants.  

In the case of car evaluation and automobile datasets, the data represented a very 

simple challenge since the data was obtained from academic repositories, i.e. data 

that was already manicured for academic purposes and a special treatment for 

analysing it was given in terms of some of the fields were already pre-processed and 

the data to some extent was already trained successfully. Still, the attributes match 

with the results we were trying to obtain from the data analysis. The datasets involved 

instances either categorical or numerical that represented design attributes, so the 

assignation of classes/categories, pattern recognition, and selection of features was 

tested to see how was in practice testing the proposed approach. 

Moving forward with the validation of the proposed framework, we decided to use the 

fuel economy dataset since it represented a bigger challenge. The analysis of this 

dataset helped us to refine the framework and include a more complete analysis. 

Since the source of the set involved raw data that needed to be processed, this was 

also considered as part of the methodology. 

The CPU dataset involved specific design attributes, specifications, and various 

characteristics for computers that manufacturers use when designing a computer. 

Thus, being able to predict which specific characteristics individuals might choose 

from the whole range of computer components was the motivation to use this 

application. It was discovered in practice that part of the challenge when dealing with 

historical data of this nature also involves pre-processing since this was raw data that 

required a certain level of arrangements before analysing it.  
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5.3 Data Analysis 

In this section are comprised the data analysis results obtained when performed the 

classification, cluster, and feature selection analysis to the different case studies. 

The order presented corresponds to the chronological order of accessing the data, 

analyse it, and publish results in papers. As discussed before, each analysis helped us 

to improve the proposed frameworks, from an early stage in which it was clear that 

customization needed to be obtained from a predictive closed-loop, then moving 

forward we discovered that machine learning can actually deal with design attributes 

if the right analysis is conducted. With the use of machine learning approaches to 

training models for predicting customer needs and wants, it was discovered that a 

specific method can lead to an incomplete analysis and for this is better to consider 

a combination of approaches. 

5.3.1 Car Evaluation Dataset Results 

Self-Organizing Map 

This dataset was first analysed using SOM as part of the unsupervised learning or 

cluster analysis, as discussed in chapter 3, section 3.1. The following tables and 

figures represent the analysis obtained when using SOM approach. In Figure 5–4 the 

results of the SOM cluster analysis are shown, in which all the weights connect to each 

other, then compete (pattern recognition), and finally cooperate to create the 

neighbourhood, as part of the process presented in chapter 3, section 3.1. Figure 5–4 

provides evidence about neighbourhoods created: the darker colours represent larger 

distances, and the lighter colours represent smaller distances, these neighbours give 

us inside about the adaption process in which the self-organizing feature creates the 

map displayed [129]. For which the first neuron in the inferior corner on the left 

results to be the strongest one, meaning that attribute selected is “safety”, if the 

input “safety” is low it will directly fall under unacceptable (“unacc”). Whatever 
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estimation of safety is, if “person” value is 1, the entry will fall under unacceptable. 

This is represented in the right part of the figure presented below, where it shows the 

assigned clusters. 

 

Figure 5–4 Results of tested data. SOM weight distances on the left, and SOM 
clusters found on the right. 

Here, the SOM work with 10 hidden neurons, and 200 iterations. The confusion matrix 

is shown in Table 5—5 resulted from the analysis with Matlab. 

Table 5—5 Confusion matrix for the SOM 

a b c d Classified 
1171 28 0 3 a= unacc 
7 292 4 9 b= acc 
0 0 44 0 c= vgood 
0 5 5 37 d= good 

Then, it was also tested the average clustering coefficient with a value of 0.833. This 

means the degree to which nodes in a graph tend to cluster together. Meaning that 

from the clusters 4/5 can be clustered together. To test the accuracy of the model 

obtained, Table 5—6 shows in detail each class evaluated, this table as well is created 

from the Matlab analysis. 

Table 5—6 Model accuracy by class 
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TP Rate  FP Rate Precision Recall F-Measure Classified 
0.974 0.017 0.994 0.974 0.984 unacc 
0.936 0.026 0.898 0.936 0.917 acc 
1 0.006 0.83 1 0.907 vgood 
0.787 0.008 0.755 0.787 0.771 good 

From the results presented above, it can be inferred that the model performs good, 

from all assessing values followed with less serious miss-classification, that there were 

sixty-one entries that show wrong classification, it can be told from Table 5—5 that 

even those values are in a wrong category, most of them are leading a category close 

to their actual categories. Part of the weight adaption when training this dataset can 

be concluded that the set neurones that best self-adapted were the “vgood”, as 

presented in Table 5—6, the approximation shows that the rate obtained of 1 provides 

evidence of featured map became member of this neighbourhood. This analysis 

represents part of the closed-loop proposed in Chapter 4, section 3, Figure 4–3; where 

dataset was accessed, and this step is identified in block number 2 of the 

aforementioned figure as the exploration and data analysis process.  

Cluster k-means 

Clustering was obtained using the WEKA toolbox in Matlab, in this case, it was tested 

against the simple k-means scheme for better results. Table 5—7 shows the results 

when evaluating the model using simple K-means. Two clusters were selected and 10 

seeds and the training set was used to run the algorithm, where all 7 attributes and 

1728 instances were considered.  

Table 5—7 Simple k-means clustering testing 7 attributes. 

Instances Percentage  Classified 

1104 64% Cluster 0 

624 36% Cluster 1 
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Following this, classification of clusters, as the selected mining method to build the 

model was also performed. Classifier decision tree (ID3) was selected because it uses 

greedy strategy to select the best attribute by splitting the dataset on each iteration 

as discussed in [130]. This algorithm helps us to select the best attribute, thanks to 

gain information displayed on each generated node. The results of the model accuracy 

by class attribute are presented in Table 5—8. 

Table 5—8 Model accuracy by class 

TP Rate  FP Rate Precision Recall F-Measure Classified 

1 0 1 1 1 unacc 

1 0 1 1 1 acc 

1 0 1 1 1 good 

1 0 1 1 1 vgood 

In TABLE 5—9 the confusion matrix for this classification using the ID3 method in Weka 

toolbox is presented. 

TABLE 5—9 Confusion matrix for classified attributes. 

a b c d Classified 
1210 0 0 0 a= unacc 
0 384 0 0 b= acc 
0 0 69 0 c= good 
0 0 0 65 d= vgood 

For this classification, there were no incorrect classified instances, and when run in 

Matlab the time to build the model was 0.01 seconds. It can be inferred from Table 

5—8 and TABLE 5—9 that the classification model works well - instances assigned to 

domain unacceptable (unacc) turns to be the ones that have more impact on cluster 

assignation with a value of 1210 instances. Simple k-means clustering and ID3 show 

that classification of domains for each attribute can reflect the exact quantity of 

clusters. On the other hand, attributes like maintenance, buying and doors show more 
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incorrect clustered instances, as presented in Figure 5–5 and Figure 5–6, where the 

interaction of these variables is shown in the scatter plot, and the “x” mark represents 

the incorrect instances classification. 

 
Figure 5–5 Scatter plot for the incorrect classified instances of variables “buy price 

vs “doors” using simple k-means. 
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Figure 5–6 Scatter plot for the incorrect classified instances of variables “buy price 

vs “repair price (maintenance)” using simple k-means. 

According to [131] k-means clustering can represent weaknesses: a)With fewer 

samples of data, initial grouping will determine the cluster significantly; b)The 

number of clusters, k, must be determined beforehand; c)With fewer samples of data, 

inaccurate clustering can occur; d) It cannot be inferred which variable contributes 

more to the clustering process since it is assumed that each has the same weight; e) 

The accuracy of mathematical averaging weakens because of outliers, which may pull 

the centroid away from its true position; and f) The results are clusters with circular 

or spherical shapes because of the use of distance. 

Feature Selection Using Genetic Search 

Once clusters were found, the following step was to use Coefficients Subset Evaluation 

(CfsSubsetEval) that according to [131] and libraries inside WEKA toolbox, means that: 

evaluates the worth of a subset of attributes by considering the individual predictive 

ability of each feature along with the degree of redundancy between them. And as a 
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search method, it was used Genetic Search, with a probability of search equals to 0.6, 

a maximum of generations of 20, mutation probability of 0.033, population size of 20, 

report frequency of 20, number of seeds equals to 1 and starting set number 1. In 

[132] it says that for every single application or experiment, search algorithms can 

have different settings when dealing with test data generation, and therefore needs 

to be empirically tested to find the right combination of settings that work for your 

tested dataset. In this sense, the parameters used for the genetic search were 

determined on the performance and with the objective of gaining time on algorithm 

runtime, which it was decided to sacrifice number of generations and population size 

and use a lower number, but testing it against greater numbers, and the results 

showed no difference between greater number of generations and population size. 

For the mentioned criteria, it was disregarded the attribute class. The results 

obtained show that safety was the best attribute. Different to what it was obtained 

for class attribute, disregarding safety as the main attribute, it was selected with a 

higher level of prediction the class attribute. Disregarding all the remaining attributes 

(buying, paint, doors, persons, and lug_boot) present the same selection: class. Based 

on the results presented above, it is clear that the best-selected attribute is class. 

5.3.2 Automobile Dataset Results 

Fuzzy c-means Clustering 

The results of the fuzzy c-means are shown in Figure 5–7. Here, the partition of the 3 

clusters can be noticed. The scatter plot shows the connections between all the 

instances. From here, Matlab function for fuzzy c-means update the cluster centres 

and membership grades of each data point, clusters are iteratively moved from the 

centre to the right location inside the dataset. The selected parameters for the fuzzy 

c-means were 3 clusters, exponent =3, the maximum of iterations = 100, and minimum 

improvement= 1e-05. Since iterations are based on minimizing an objective function 

that represents the distance from any given data point to a cluster centre weighted 
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by that data point's membership grade. Membership function plots obtained are 

presented in Figure 5–8, here for each cluster shows when it reached the maximum of 

iterations, or when the objective function improvement between two consecutive 

iterations is less than the minimum amount of improvement specified. For the given 

dataset, the considered attribute to build the membership functions was “price” 

variable. The values found in “price” range from $5’118 to $45’400, and were 

classified into five fuzzy sets (very low, low, medium, high, and very high), where 3 

clusters were found as shown in Figure 5–7. 

 

Figure 5–7 Results of tested data. Fuzzy c-means with 3 clusters found. 
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Figure 5–8 Membership function. From top to bottom: cluster 1, 2 and 3 results. 

Attribute Classification  

Once the clustering was done, it was processed the training data to obtain the 

attribute classification inside Matlab toolbox for machine learning, where it was as 

well embedded parallel routine for speeding up the whole process. Testing with 

several classifier algorithms, the results are presented in Figure 5–9. 

The confusion matrix presented in Figure 5–9 helps to assess the classifier 

performance, in which this plot was used to understand how the currently selected 

classifiers obtained the desired performance in each class. The confusion matrix helps 

to identify the areas where classification was performed poorly. All those values 

coloured in green show the corrected classified instances, based on the attribute that 

best reflected the desired selection: manufacturer or make. The red slots represent 

the incorrect instances. Here the manufacturer (make) was selected as the predictive 

variable in order to provide which of the observed brands are more attractive to 

customers based on all the considered variables. 
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Figure 5–9 Confusion matrix obtained for positive predictive values. 

For the presented plot in Figure 5–10 can be inferred what type of attributes represent 

the most corrected classified instances to the predictive model. The parallel 

coordinates plot helps to understand relationships between features and useful 

predictors for separating classes, where the standardized values are used to see the 

distribution of the predictors (make) along the mean distribution on the interaction 

between each feature. The selected response variable was the Manufacturer, and 

each colour represents the brand related to the predictors (fuel-type, number of 

doors, body style, engine locations, HP, etc.). For which the strongest relation is 

found with the engine location, number of cylinders and the HP variables. Moreover, 
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once the attribute selection was performed using the GA selection, it was selected 

the following instances: num-of-doors, drive-wheels, height, engine-type, num-of-

cylinders. Those were performed with a crossover probability of 0.6, a max of 

generations of 20, mutation probability of 0.033, initial population size of 20, and an 

initial seed. The parameters were determined, as stated earlier in this chapter, by 

empirically testing the initial settings and obtain the minimum runtime possible for 

the search algorithm. 

 

Figure 5–10 Parallel coordinates plot for membership functions. 

5.3.3 Fuel Economy Dataset Results 

In this section, the results obtained from the fuel economy dataset are presented. We 

imported the fuel economy dataset using the Matlab classification learner app. It was 

selected as main predictors the variables “spend of fuel over the last five years”, 
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“city CO2 rounded adjusted emission”, and “manufacturer name” as a response. One 

of the reasons why this application was selected is because of the automation feature 

that enables us to run several parallel classifiers and see which can obtain the best 

predictive model. The dataset encompassed 52 attributes split into 23 categorical and 

29 numerical ones. The total instances considered for this dataset was 4655. 

Attribute Classification 

In Figure 5–11 to Figure 5–17, the scatter plots for each classification approach tested 

for the fuel dataset are depicted, where the correct and incorrect instances obtained 

from each classification approach are shown, as well as interactions between 

variables and interactions. Figure 5–11 presents the corresponding instances classified 

correctly for the decision tree classifier. In this figure, we only considered vehicles 

made by the following companies: BMW, Chrysler Group LLC, FCA US LLC, General 

Motors, Mazda, Mercedes-Benz, Nissan, Rolls-Royce, Toyota, and Volvo. In Figure 5–

12, similar to the previous figure, the correct classified items are depicted.  

The instances considered were: Ford Motor Company, Maserati, Mitsubishi Motors Co, 

Porsche, Subaru, and Volkswagen Group. For better visualization purposes we decided 

to break down the same classification using different manufacturing names 

(instances). The instances classified correctly presented in Figure 5–13 are: Ferrari, 

Honda, McLaren Automotive, Pagani Automobili S, Quantum Fuel System, Roush, 

Subaru, Volkswagen, and Aston Martin. The incorrectly classified instances are 

depicted in Figure 5–14: Volkswagen Group, Volkswagen, and Aston Martin. The 

corresponding manufacturer colour was identified as well, and as mentioned 

previously the reason why it was decided to show different plots for different 

instances is for a better visualization.  

A comparison of variables spent of last five years of fuel vs the annual cost of 

conventional fuel is presented in Figure 5–15 and considers the following instances: 
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BMW, Chrysler Group LLC, FCA US LLC, General Motors, Mazda, Mercedes-Benz, 

Nissan, and Toyota. In Figure 5–16 presents the other correctly classified instances: 

Ford Motor, KIA, Maserati, Mitsubishi Motors Co, Subaru, and Volkswagen Group. In 

both plots (Figure 5–15 and Figure 5–16), decision trees were used as well, and all the 

correctly classified instances were identified. Figure 5–17 shows the incorrect 

instances for the variable Spent over the five years vs annual fuel cost. The considered 

instances that presented incorrect classification were as follows: Audi, General 

Motors, Maserati, Volkswagen Group, Aston Martin. Finally, Figure 5–18 and Figure 5–

19 show a comparison of the variables, spent of last five years of fuel vs the use of 

fuel in the city. These plots were obtained using the SVM classifier. In both plots, only 

1 colour was identified, which corresponds to General Motors. Considering the entire 

selection of manufacturers' names, including the correct and incorrect instances, only 

displaying the General Motors manufacturer makes this result non-desired. 

For the scatter plots, the following range of colours was used to identify each 

manufacturing name contained in the fuel economy dataset: 

 Audi,  BMW,  Bentley,  Bugatti,  Chrysler Group LLC,  FCA 

Italy, FCA USA LLC,  Ferrari,  Ford Motor Company,  General Motors, 

 Honda,  Hyundai,  Jaguar Land Rover,  Kia,  Lamborghini,  

Lotus,  Mazda,  Maserati,  McLaren Automotive,  Mercedes Benz,  

Mitsubishi Motors,  Mobility Ventures,  Nissan, Pagani Automobili,  

Porsche,  Quantum Fuel System,  Rolls-Royce,  Roush,  Subaru,  

Toyota,  Volkswagen,  Volvo, and  Aston Martin. 
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Figure 5–11 Scatter plot for the correct instances using the decision trees classifiers 
of variable “spent of last five years of fuel” (measured in $USD) vs “use of fuel in 

the city” (measured in miles per gallon). Considered instances: BMW, Chrysler Group 
LLC, FCA US LLC, General Motors, Mazda, Mercedes-Benz, Nissan, Rolls-Royce, 

Toyota, and Volvo. 
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Figure 5–12 Scatter plot for the correct instances using the decision trees classifiers 
of variable “spent of last five years of fuel” (measured in $USD) vs “use of fuel in 

the city” (measured in miles per gallon). Considered instances: Ford Motor 
Company, Maserati, Mitsubishi Motors Co, Porsche, Subaru, and Volkswagen Group. 

 

Figure 5–13 Scatter plot for the correct instances using the decision trees classifiers 
of variable “spent of last five years of fuel” (measured in $USD) vs “use of fuel in 
the city” (measured in miles per gallon).  Considered instances: Ferrari, Honda, 
McLaren Automotive, Pagani Automobili S, Quantum Fuel System, Roush, Subaru, 

Volkswagen, and Aston Martin. 
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Figure 5–14 Scatter plot for the incorrect instances using the decision trees 
classifiers of variable “spent of last five years of fuel” (measured in $USD) vs “use of 

fuel in the city” (measured in miles per gallon). 

 

Figure 5–15 Scatter plot for the correct instances using the decision trees classifiers 
of variable “spent of last five years of fuel” (measured in $USD) vs “annual cost of 
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conventional fuel” (measured in $USD). Considered instances: BMW, Chrysler Group 
LLC, FCA US LLC, General Motors, Mazda, Mercedes-Benz, Nissan, and Toyota. 

 

Figure 5–16 Scatter plot for the correct instances using the decision trees classifiers 
of variable “spent of last five years of fuel” (measured in $USD) vs “annual cost of 

conventional fuel” (measured in $USD). Considered instances: Ford Motor, KIA, 
Maserati, Mitsubishi Motors Co, Subaru, and Volkswagen Group. 
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Figure 5–17 Scatter plot for the incorrect instances using the decision trees 
classifiers of variable “spent of last five years of fuel” (measured in $USD) vs 

“annual cost” (measured in $USD). Considered instances: Audi, General Motors, 
Maserati, Volkswagen Group, and Aston Martin. 

 

Figure 5–18 Scatter plot for the incorrect instances using the SVM classifiers of 
variable “spent of last five years of fuel” (measured in $USD) vs “the use of fuel in 

the city” (measured in miles per gallon). 
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Figure 5–19 Scatter plot for the correct instances using the SVM classifiers of 
variable “spent of last five years of fuel” (measured in $USD) vs “the use of fuel in 

the city” (measured in miles per gallon). 

After obtaining the scatter plots for the predictive models, it was necessary to assess 

the classifier performance, in which a confusion matrix was used to understand how 

the currently selected classifiers obtained the desired performance in each class. The 

confusion matrix helps to identify the areas where classification was performed 

poorly. On the plot depicted in Figure 5–20, each row shows the true class, and the 

columns depict predictive class. Diagonally, each cell shows where the true class 

matched with the predictive class. Cells coloured green indicate that the classifier 

performed well, and observations of this true class were correct. Cells coloured red 

indicate that the classifier worked poorly, and there was no significance of this 

predictor in the model. The obtained results for decision trees classifier bagged trees, 

and SVM are presented in Figure 5–20, Figure 5–21, and Figure 5–22. 
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Figure 5–20 Confusion matrix for decision tree classifier showing true class vs. 
predictive class. 

 

Figure 5–21 Confusion matrix for SVM classifier showing true class vs. predictive 
class. 
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Figure 5–22 Confusion matrix for bagged decision trees classifier showing true class 
vs predictive class. 

Since everything was running in parallel, to determine significant features to include 

or exclude in the predictive model, we used the parallel coordinates plot. Patterns 

are displayed in a 2-dimensional plot but correspond to high-dimensional data. Here 

the selection could be identified, but it also helps to understand relationships 

between features and useful predictors for separating classes. The training data was 

utilized, and misclassified points are depicted as dashed lines in Figure 5–23 and Figure 

5–24. Figure 5–23 presents the plot that corresponds to the categorical instances of 

the fuel economy dataset. The standardized values are used to see the distribution of 

the predictors (manufacturers' name) along the mean distribution on the interaction 

between each feature, for the figure mentioned above.  

It is found that predictors such as Volkswagen and Volvo presented a distribution along 

the mean for correctly classified instances. For the relationship between the variable, 



154 
 

city unadjusted fuel economy and the predictor, the distributions were outside the 

mean. Therefore, the variable, city unadjusted fuel economy is less significant for a 

predictive model. Moving forward with this plot, in the case of Aston Martin predictor, 

the plot depicts a dotted line from the centre to the right, meaning that incorrect 

classification was found, and this predictor could definitely be excluded from the 

model. Regarding model prediction, the significant interactions between variables are 

“fuel usage”, “annual fuel consumption”, “spend over the last five years of fuel”, and 

“CO2 emissions”. 

In Figure 5–24, the parallel coordinates plot for numerical instances using normalized 

values is presented. This figure shows the normalized values or normal distribution of 

the data, for which the variable, city unadjusted fuel economy (FE) spent on 

conventional fuel, is significant for the predictive model. According to the information 

provided in [126], the rates of city unadjusted FE spent on conventional fuel variable, 

describes the consumption of unadjusted conventional fuel, for single-fuel vehicles.  

The other significant interaction between variables is $spent over 5 years vs the 

predictors. The data collected for this variable reflects how much users of vehicles 

spent over the last 5 years compared to average cars and the information provided by 

each manufacturer. The instances Lamborghini, Aston Martin, and Volkswagen 

represent the largest fuel expense and therefore not considered for the predictive 

model. Similar to the plot of categorical variables, the instances Lamborghini and 

Aston Martin presented misclassification. Once these instances (Aston Martin and 

Lamborghini) were not considered in the model, resulted in a better prediction result. 
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Figure 5–23 Standardized values used for the parallel coordinates plot of categorical 

instances of the fuel economy data for selection of features. 

 
Figure 5–24 Normalized values used for the parallel coordinates plot of categorical 

instances of the fuel economy data for selection of features. 
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Fuzzy c-means Clustering 

Cluster analysis was performed by MATLAB, using the fuzzy logic toolbox for 

pattern identification. The fuzzy c-means updated the cluster centres and 

membership grades of each data point. The clusters obtained were iteratively 

moved from the centre rightward in the dataset. The selected parameters for the 

fuzzy c-means were 3 clusters, exponent = 3, the maximum of iterations = 100, 

and minimum improvement = 1e-05. For this objective function, the iterations are 

based on minimizing an objective function that represents the distance from any 

given data point to a cluster centre weighted by that data point's membership 

grade.  

The obtained membership function plots are presented in Figure 5–25. It is shown 

in this plot the times that each cluster reached the maximum of iterations, or 

when the objective function improvement between two consecutive iterations is 

less than the minimum amount of improvement specified. Figure 5–26 shows the 

identification and partition of 3 clusters, which represent each membership 

function. 
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Figure 5–25 Membership function plots for the fuzzy c-means clustering. From 
top to bottom: cluster 1, 2, and 3. 

 

Figure 5–26 Fuzzy c-means partition of 3 clusters plot. 
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Fuzzy clustering was proved to be helpful to demonstrate the framework proposed 

in chapter 4, section 3 as the classification learner approach for i4 environments. 

As stated in chapter 3, section 1 the fuzzy cluster were applied successfully to a 

mix of categorical and numerical inputs, and the instances were split into 3 

clusters, and the membership function plots in Figure 5–25 show the degree of 

belonging to different clusters, represented by each membership function. In such 

analysis, it can be inferred that cluster 2 has a crisper degree of membership, 

noticed by the peak in the plot reaching more than 0.7 degrees of membership. 

5.3.4 CPU Dataset Results 

The results of the CPU dataset analysis are presented in this section, where we 

used the Matlab classification learner app to train the CPUs dataset. To obtain the 

classification model, as mentioned before, product collection variable was 

selected as a response, and all the other variables were considered predictors. 

Matlab classification learner was mainly used because of the automation feature 

that enables us to run several parallel classifiers and see which can obtain the 

best predictive model, also because of the process-ability of importing the raw 

data without investing too much time making adjustments. Since there were some 

attributes that shown no entries or values, we remove those from the trained 

dataset to give a better adjustment to the classification model. Different to the 

analysis presented in previous sections of this chapter, the CPU dataset 

represented a more complete challenge and is addressed by the framework 

proposed in Figure 4–4 from chapter 4, section 4; in which we implemented a full 

analysis, including the statistical analysis as a way of validation for the obtained 

models. Feature selection is now implemented and added to the closed-loop cycle 

to complete the full automation of bigger datasets since in previous cases 

(applications) was not required to perform a complete automated data mining 

analysis. 

This dataset used to train the classification model encompassed 39 attributes split 

into 9 numerical values, and 30 categorical. The total observations considered in 

this dataset were 2298. 
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Attribute Classification 

In Figure 5–27 to Figure 5–32, the scatter plots showing model predictors, and the 

correct and incorrect instances for the CPUs dataset are depicted, as well as 

interactions between variables. Figure 5–27 presents the corresponding instances 

classified correctly for the ensemble bagged tree classifier, the colours presented 

in this figure correspond to each product collection name (response), and the 

identification of colours vs product name will be presented in detail below. In this 

figure is presented the interaction between recommended price vs processor 

number using the correct model predictor instances. In Figure 5–28, similar to the 

previous figure, the incorrect classified observations are depicted. The incorrect 

instances presented in this plot were: Intel Celeron® Processor 1000 Series, 

Legacy Intel Core Processors, Legacy Intel® Pentium® Processor, and Legacy 

Intel® Xeon® Processors.  

For better visualization purposes we decided to break down same classification 

interaction scatter plots using different product collection names (response 

instance). Following with the identification of classification instances shown in 

scatter plots, in Figure 5–29 is presented the correct model predictors for the 

interaction of recommended customer price variable and number of cores, which 

include: Intel® Atom Processor C Series, Intel Itanium® Processor 9100 Series, 

Intel® Xeon Phi x200 Product Family, Intel® Xeon® Processor D Family, Intel® 

Xeon® Processor E3 v3 Family, Intel® Xeon® Processor E5 Family, Intel® Xeon® 

Processor E5 v2 Family, Intel® Xeon® Processor E5 v3 Family, Intel® Xeon® 

Processor E5 v4 Family, Intel® Xeon® Processor E7 Family, Intel® Xeon® Processor 

E7 v2 Family, Intel® Xeon® Processor E7 v3 Family, Intel® Xeon® Processor E7 v4 

Family, Intel® Xeon® Processor W Family, Intel® Xeon® Scalable Processors, 

Legacy Intel® Celeron® Processor, Legacy Intel® Core Processors, Legacy Intel® 

Pentium® Processor, and Legacy Intel® Xeon® Processors identified as true 

predictors. The incorrect classified instances are depicted in Figure 5–30 for the 

interaction between recommended customer price vs number of cores variable, 

and it was encountered the following product collection names: 5th Generation 

Intel® Core i5 Processors, 7th Generation Intel® Core i3 Processors, 7th 

Generation Intel® Core i3 Processors, Legacy Intel® Celeron® Processor, Legacy 

Intel® Core Processors, Legacy Intel® Pentium® Processor, and Legacy Intel® 

Xeon® Processors. 
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 In Figure 5–31 is shown the scatter plot for the correct instances classification of 

variables recommended customer price and temperature, in which all the classes 

were considered to be depicted. The misclassified variables (recommended 

customer price and temperature) are presented in Figure 5–32, where it was found 

the following classes to have an impact on this interaction: 4th Generation Intel® 

Core i5 Processors, Intel® Xeon® Processor E3 v3 Family, Intel® Xeon® Processor 

E5 v2 Family, Legacy Intel® Core Processors, and Legacy Intel® Xeon® Processors. 

The above-mentioned scatter plots help to investigate patterns, features, and how 

the product collection (response) prediction performs against the selected 

predictors (all the other variables). 

For the scatter plots, the following range of colours was used to identify each 

class or the product collection variable, each name corresponds to different 

processors contained in the dataset: 

 4th Generation IntelÂ® Coreâ„¢ i3 Processors,  4th Generation IntelÂ® 

Coreâ„¢ i5 Processors,  4th Generation IntelÂ® Coreâ„¢ i7 Processors,   5th 

Generation IntelÂ® Coreâ„¢ M Processors,  5th Generation IntelÂ® Coreâ„¢ i3 

Processors,   5th Generation IntelÂ® Coreâ„¢ i5 Processors,  5th Generation 

IntelÂ® Coreâ„¢ i7 Processors,   6th Generation IntelÂ® Coreâ„¢ i3 Processors,  

 6th Generation IntelÂ® Coreâ„¢ i5 Processors,   6th Generation IntelÂ® 

Coreâ„¢ i7 Processors,  6th Generation IntelÂ® Coreâ„¢ m Processors,   7th 

Generation IntelÂ® Coreâ„¢ i3 Processors,  7th Generation IntelÂ® Coreâ„¢ i5 

Processors,  7th Generation IntelÂ® Coreâ„¢ i7 Processors,  7th Generation 

IntelÂ® Coreâ„¢ m Processors,  8th Generation IntelÂ® Coreâ„¢ i5 Processors, 

 8th Generation IntelÂ® Coreâ„¢ i7 Processors,  IntelÂ® Atomâ„¢ Processor 

C Series,  IntelÂ® Atomâ„¢ Processor D Series,  IntelÂ® Atomâ„¢ Processor 

E Series,  IntelÂ® Atomâ„¢ Processor N Series,  IntelÂ® Atomâ„¢ Processor 

S Series,  IntelÂ® Atomâ„¢ Processor X Series,  IntelÂ® Atomâ„¢ Processor 

Z Series,  IntelÂ® CeleronÂ® Processor 1000 Series,  IntelÂ® CeleronÂ® 

Processor 2000 Series,  IntelÂ® CeleronÂ® Processor 3000 Series,  IntelÂ® 

CeleronÂ® Processor G Series,  IntelÂ® CeleronÂ® Processor J Series,  

IntelÂ® CeleronÂ® Processor N Series,  IntelÂ® Coreâ„¢ X-series Processors, 

 IntelÂ® ItaniumÂ® Processor 9000 Series,  IntelÂ® ItaniumÂ® Processor 

9100 Series,  IntelÂ® ItaniumÂ® Processor 9300 Series,  IntelÂ® ItaniumÂ® 
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Processor 9500 Series, IntelÂ® ItaniumÂ® Processor 9700 Series, IntelÂ® 

ItaniumÂ® Processors with 400 MHz FSB,  IntelÂ® ItaniumÂ® Processors with 

533 MHz FSB,  IntelÂ® ItaniumÂ® Processors with 677 MHz FSB,  IntelÂ® 

PentiumÂ® Processor 1000 Series,  IntelÂ® PentiumÂ® Processor 2000 Series, 

 IntelÂ® PentiumÂ® Processor 3000 Series,  IntelÂ® PentiumÂ® Processor 

4000 Series,  IntelÂ® PentiumÂ® Processor D Series,  IntelÂ® PentiumÂ® 

Processor G Series,   IntelÂ® PentiumÂ® Processor J Series, IntelÂ® 

PentiumÂ® Processor N Series,  IntelÂ® Quarkâ„¢ Microcontroller D1000 Series, 

 IntelÂ® Quarkâ„¢ Microcontroller D2000 Series,  IntelÂ® Quarkâ„¢ SE 

C1000 Microcontroller Series,   IntelÂ® Quarkâ„¢ SoC X1000 Series, IntelÂ® 

Xeon Phiâ„¢ x100 Product Family, IntelÂ® Xeon Phiâ„¢ x200 Product Family, 

IntelÂ® XeonÂ® Processor D Family,  IntelÂ® XeonÂ® Processor E3 Family, 

 IntelÂ® XeonÂ® Processor E3 v2 Family, IntelÂ® XeonÂ® Processor E3 v3 

Family,  IntelÂ® XeonÂ® Processor E3 v4 Family,  IntelÂ® XeonÂ® 

Processor E3 v5 Family, IntelÂ® XeonÂ® Processor E3 v6 Family, IntelÂ® 

XeonÂ® Processor E5 Family,  IntelÂ® XeonÂ® Processor E5 v2 Family, 

IntelÂ® XeonÂ® Processor E5 v3 Family, IntelÂ® XeonÂ® Processor E5 v4 

Family, IntelÂ® XeonÂ® Processor E7 Family,  IntelÂ® XeonÂ® Processor E7 

v2 Family,  IntelÂ® XeonÂ® Processor E7 v3 Family,   IntelÂ® XeonÂ® 

Processor E7 v4 Family,   IntelÂ® XeonÂ® Processor W Family,  IntelÂ® 

XeonÂ® Scalable Processors,  Legacy Intel AtomÂ® Processors, Legacy 

IntelÂ® CeleronÂ® Processor,  Legacy IntelÂ® Coreâ„¢ Processors,  Legacy 

IntelÂ® PentiumÂ® Processor, and  Legacy IntelÂ® XeonÂ® Processors. 
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Figure 5–27 Scatter plot for the correct instances using ensemble bagged trees 
classifier of variable “recommended customer price” (measured in $USD) vs 

“processor number” (unit number). All classes included. 
 

 

Figure 5–28 Scatter plot for the incorrect instances using ensemble bagged tree 
classifier of variable “recommended customer price” (measured in $USD) vs 

“processor number” (unit number). Considered instances: Intel Celeron® 
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Processor 1000 Series, Legacy Intel Core Processors, Legacy Intel® Pentium® 
Processor, and Legacy Intel® Xeon® Processors.  

 
Figure 5–29 Scatter plot for the correct instances using ensemble bagged trees 
classifiers of variable “recommended customer price” (measured in $USD) vs 

“number of cores” (unit). Considered instances: Intel® Atom Processor C Series, 
Intel Itanium® Processor 9100 Series, Intel® Xeon Phi x200 Product Family, 

Intel® Xeon® Processor D Family, Intel® Xeon® Processor E3 v3 Family, Intel® 
Xeon® Processor E5 Family, Intel® Xeon® Processor E5 v2 Family, Intel® Xeon® 

Processor E5 v3 Family, Intel® Xeon® Processor E5 v4 Family, Intel® Xeon® 
Processor E7 Family, Intel® Xeon® Processor E7 v2 Family, Intel® Xeon® 

Processor E7 v3 Family, Intel® Xeon® Processor E7 v4 Family, Intel® Xeon® 
Processor W Family, Intel® Xeon® Scalable Processors, Legacy Intel® Celeron® 
Processor, Legacy Intel® Core Processors, Legacy Intel® Pentium® Processor, 

and Legacy Intel® Xeon® Processors. 
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Figure 5–30 Scatter plot for the incorrect instances using ensemble bagged trees 

classifiers of variable “recommended customer price” (measured in $USD) vs 
“number of cores” (unit). Considered instances: 5th Generation Intel® Core i5 

Processors, 7th Generation Intel® Core i3 Processors, 7th Generation Intel® Core 
i3 Processors, Legacy Intel® Celeron® Processor, Legacy Intel® Core Processors, 

Legacy Intel® Pentium® Processor, and Legacy Intel® Xeon® Processors. 
 

 
Figure 5–31 Scatter plot for the correct instances using ensemble bagged trees 
classifiers of variable “recommended customer price” (measured in $USD) vs 

“temperature” (C°). All classes included. 
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Figure 5–32 Scatter plot for the incorrect instances using ensemble bagged trees 

classifiers of variable “recommended customer price” (measured in $USD) vs 
“temperature” (C°). Considered instances: 4th Generation Intel® Core i5 

Processors, Intel® Xeon® Processor E3 v3 Family, Intel® Xeon® Processor E5 v2 
Family, Legacy Intel® Core Processors, and Legacy Intel® Xeon® Processors. 

After analysing the scatter plots for the predictive models, it was necessary to 

assess the classifier performance, in which a confusion matrix was used to 

understand how the currently selected classifiers obtained the desired 

performance in each class. The confusion matrix helps to identify the areas where 

classification was performed poorly. On the plot depicted in Figure 5–33, each row 

shows the true class, and the columns depict predictive class. Diagonally, each 

cell shows where the true class matched with the predictive class. Cells coloured 

green indicate that the classifier performed well, and observations of this true 

class were correct. Cells coloured red indicate that the classifier worked poorly, 

and there was no significance of this predictor in the model. 
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Figure 5–33 Confusion matrix for the ensemble bagged tree classifier showing 
true class vs. predictive class. 

Moving forward with the analysis, one of the benefits of training the dataset in 

parallel is to determine significant features to include or exclude in the predictive 

model, using the parallel coordinates plot. Patterns are displayed in a 2-

dimensional plot but correspond to high-dimensional data. Here the selection 

could be identified, but it also helps to understand relationships between features 

and useful predictors for separating classes. The training data was utilized, and 

misclassified points are depicted as dashed lines in Figure 5–34. The standardized 

values are used to see the distribution of the predictors along the mean 

distribution of the interaction between each feature, for the figure mentioned 

above. We found that predictors such as vertical segment, recommended 

customer price, thermal design power, max memory size, temperature, and 

memory type presented a distribution along the mean for correctly classified 
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instances. For the relationship between the variable number of cores, ECC 

memory support, max memory bandwidth, and the response, the distributions 

were outside the mean and showing misclassification. Therefore, these variables 

are less significant for the classification model. 

In Figure 5–35, the parallel coordinates plot for numerical instances using 

normalized values is presented. This figure shows the normalized values or normal 

distribution of the data, for which the variables recommended customer price, 

processor number, processor base frequency, bus speed, max memory size are 

significant predictors for the classification model. 

The plot presented in Figure 5–36 helps in a different part of the analysis, that is, 

which observations inside the response have poor classification rates.  The 

selected observation is IntelÂ® CeleronÂ® Processor J Series, and show a rate of 

0 %, determined by the current classifier red dot.  This plot refers to the receiver 

operating characteristic (ROC) curve that shows true and false positive rates. And 

the area under the curve measures the overall quality of the classifier. 
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Figure 5–34 Standardized values used for the parallel coordinates plot of 

categorical instances of the CPUs data for selection of features. 
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Figure 5–35 Normalized values used for the parallel coordinates plot of 

categorical instances of the CPUs data for selection of features. 
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Figure 5–36 ROC curve plot showing the misclassification of the observation 

IntelÂ® CeleronÂ® Processor J Series. 

Feature Selection Using Genetic Search 

Once obtained the classification model, and compliant with the accuracy of the 

trained model, it was performed the second part of the analysis according to the 

methodology presented in Chapter 4, section 4.4, which is the feature selection 

analysis. Feature selection was performed using Matlab, combining the 

classification learner toolbox with a genetic search code for feature selection and 

clustering, using the code obtained from the trained dataset. The clusters 

obtained were iteratively moved from the centre rightward in the dataset. 

Feature selection using genetic search was performed using the following 

parameters: 1) probability of search = 0.6, 2) maximum of generations = 20, 3) 

mutation probability = 0.033, and 4) population size = 90. In Figure 5–37 the 

population growth for the GA using the trained dataset classified previously are 

presented.  

Table 5—10 presents the results obtained from the feature selection analysis using 

genetic search. Here we present how possible is for an attribute to be selected, 
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based on how relevant each attribute is for the model. In theory, feature selection 

can be considered as a combination of search technique to propose a new subset 

of features (attributes). In this case, GA was used as the evaluator or objective 

function, each possible subset of attributes was tested, and the percentage shown 

in Table 5—10 how each feature minimized the error rate is presented.  

 
Figure 5–37 Population growth using GA for feature selection. 

Table 5—10 Feature selection results using genetic search 

Selection % Order of attribute Attribute 
90 6 Recommended Customer Price 
90 13 Thermal Design Power (W) 
90 17 Memory Types 
90 39 Thermal Monitoring Technologies 
80 7 Nb of Cores 
80 21 Graphics Base Frequency 
80 22 Graphics Max Dynamic Frequency 
80 23 Graphics VideoMax Memory 

80 27 
Max Resolution eDP Integrated Flat 
Panel 

80 29 PCI Express Revision 
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80 34 Intel Virtualization Technology VTx_ 
80 36 Instruction Set 
80 41 Execute Disable Bit 
70 8 Nb of Threads 
70 9 Processor Base Frequency 
70 10 Max Turbo Frequency 
70 19 Max Memory Bandwidth 
70 28 DirectX Support 
70 31 Max nb of PCI Express Lanes 
70 37 Instruction Set Extensions 
70 38 Idle States 
70 40 Secure Key 
60 14 Embedded Options Available 
60 18 Max nb of Memory Channels 
50 35 Intel 64 
40 4 Processor Number 
40 16 Max Memory Size 
40 24 Graphics Output 
30 5 Lithography nm 
30 25 Max Resolution HDMI 
20 3 Vertical Segment 
20 15 Conflict Free 
20 20 ECC Memory Supported 
20 26 Max Resolution DP 
10 11 Cache 
10 12 Bus Speed 
10 30 PCI Express Configurations 
10 32 Temperature 

 

Cluster Analysis 

Cluster analysis was performed after the feature selection analysis as a 

complimentary evaluation for validating the selected attributes. The cluster 

objective function use iterations based on minimizing an objective function that 

represents the distance from any given data point to a cluster centre weighted by 

that data point's membership grade.  

It is shown in this plot the times that each cluster reached the maximum of 

iterations, or when the objective function improvement between two consecutive 

iterations is less than the minimum amount of improvement specified. Results are 

depicted in Figure 5–38, were in part (a) shows the class interaction for the feature 

selected attributes thermal design power, recommended customer price and the 

response product collection; (b) presents the class partition between processor 
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base frequency, the target, and recommended customer price. This clusters 

found, confirm what the feature selection suggests, which is that the significance 

of thermal design power, and recommended customer price attributes against the 

response (product collection). On the other hand, the selected target for pattern 

recognition when interacting with a not significant attribute does not show 

significance.  

 

 

Figure 5–38 Clusters found for the CPUs dataset. Upper (a), lower (b). 

Statistical Analysis 

Finally, we proceed to validate the significance of the selected attributes using 

statistical test of the coefficient of determination (R2). This test helps to 

determine if the used attributes were significant predictors. The interaction 

tested is depicted in Figure 5–39, showing customer recommended price, thermal 

design power, and max number of memory channels. The R2 value obtained was 

0.9574 after excluding some residual values as shown in figure (b), but without 

removing the residuals, the value scored was 0.8454. This test helped also to 
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detect the significance of other interactions that feature selection did not show, 

like considering the attribute max number of memory channels, leading to 

conclude that validation is always necessary, and data analysis can only be 

considered as a recommendation approach.  

 
Figure 5–39 Surface plot for coefficient determination of predictive significant 

values. 

The next section will present a comparison and evaluation of machine learning 

approaches for mining design attributes, where all the approaches applied in this 

chapter will be evaluated in terms of accuracy. 
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5.4 Evaluation of the Cases as a Result of Machine 
Learning Approaches 

The evaluation of the used AI approaches for predicting customer needs and wants 

is presented in this section. In the previous sections were presented four case 

studies for which the results already lead to preliminary conclusions. Different to 

what is presented before, this chapter discusses which machine learning methods 

scored more accurate results. Therefore, the discussion presented here can help 

to make the final conclusions and annotations when predicting customer needs 

and wants for i4 and smart design. This section also represents the evaluation of 

the model for the training dataset, i.e. validate if the obtained model scores 

desired accuracy or predictive value against the original dataset. 

With the inclusion of comparisons and evaluations, we aim at arriving at answers 

to the objectives stated in Chapter 1. Through these evaluations, we shall 

determine how both manufacturers and customers may benefit from such analysis 

and which methodologies lead to an accurate analysis. 

5.4.1 Car Case Evaluation  

The results obtained from this first stage when analysing the car evaluation 

dataset involved the accuracy of cluster and classification models. In Table 5—11 

the accuracy comparison of the machine learning approaches when analysing the 

car evaluation dataset is presented. 

Table 5—11 Model accuracy evaluation of AI approaches for the car evaluation 
dataset 

Classifier Accuracy % Description 

SOM 97.4% 
Average clustering coefficient = 0.833.  
Training time: 21 sec. 
Categorical predictors: explain 97% of variance. 

Simple k-
means 

100% 

1210 clusters were correctly classified into the 
unaccepted class. 
Training time: 28 sec. 
Categorical predictors: explain 100% of variance. 

Ensemble 
bagged 
trees 

90.9% 
Prediction speed: 5700 obs/sec. 
Training time: 5.152 sec 
Categorical predictors: explain 90.9 % of variance. 

SVM 77.1% 
Kernel function: cubic 
Prediction speed: 11000 obs/sec. 
Training time: 8.3974 sec. 
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Constraint level box: 2 
Multiclass method: one vs one 
Categorical predictors: explain 77.1% of variance. 

In the first evaluated dataset the simple k-means approach proved to be an 

effective method for pattern recognition, therefore unsupervised learning turned 

out to be more accurate. When comparing data mining techniques is necessary to 

have in mind what type of analysis is required, which in this case for the 

customized design it was necessary that the obtained model explained the 

variability of the phenomena involved. In this specific case the level of acceptance 

of car models when involved with other variables like buy price, repair price, door, 

person, size, and safety. Both SOM and simple k-means registered a longer training 

time than ensemble trees and SVM, but the accuracy does not reflect the same 

results.  

5.4.2 Automobile Case Evaluation 

For this case study it was implemented the fuzzy c-means clustering and also 

tested ensemble trees and SVM, but not anymore the SOM and simple k-means 

because of the combination of too many categorical instances. For this cases is 

suggested in [131] that when dealing with categorical values that do not represent 

numbers but enumerations (body style, manufacturer, engine type, etc.) is better 

to consider other methods that do not rely on Euclidian cost function that 

penalizes the performance or accuracy of the predictive model. Reason why we 

evaluated the aforementioned approaches presented in Table 5—12. 

Table 5—12 Model accuracy evaluation of AI approaches for the automobile 
dataset 

Classifier Accuracy % Description 

Fuzzy c-
means 

84.4% 
Prediction speed: 160 obs/sec 
Training time: 36.99 sec. 
Categorical predictors: explain 84.4% of variance. 

Ensemble 
bagged 
trees 

81.5% 
Prediction speed: 550 obs/sec. 
Training time: 6.3474 sec 
Categorical predictors: explain 81.5% of variance. 

SVM 80% 

Kernel Function: cubic 
Prediction speed: 1200 obs/sec. 
Training time: 1.6843 sec. 
Constraint level box: 2 
Multiclass method: one vs all 
Categorical predictors: explain 80.0% of variance. 
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The evaluation presented above shows how the combination of categorical and 

numerical instances for the automobile dataset required different techniques to 

obtain the predictive model and analysis. The fuzzy c-means approach reached 

the highest accuracy rate, but the training time was the longest. Ensemble trees, 

on the other hand, had a bit less accuracy percentage but significantly short 

training time. And finally, SVM’s model performance was a bit short in terms of 

desirability with an accuracy of 80% and a training time of 1.6843 seconds, using 

the cubic kernel function.  

5.4.3 Fuel Economy Case Evaluation 

In Table 5—13, the accuracy of each classifier is listed. The dataset encompassed 

52 attributes split into 23 categorical and 29 numerical ones. The total instances 

considered for this dataset was 4655. 

Table 5—13 Model accuracy evaluation of AI approaches for the fuel economy 
dataset. 

Classifier Accuracy % Description 

Decision 
Tree 

94.2% 
Prediction speed: 30000 obs/sec 
Training time: 10.949 sec. 
Categorical predictors: explain 94.2% of variance. 

SVM 14.3% 

Kernel function: Cubic 
Prediction speed: 53000 obs/sec 
Training time: 39.563 sec  
Constraint level box: 2 
Multiclass method: one vs all 
SVM was tested using several kernel functions apart 
from cubic, those include linear, quadratic, and 
fine Gaussian SVM. It was not able to explain most 
of the variance of the predictive model. 

Ensemble 
bagged 
trees 

99.2% 
Prediction speed: 5500 obs/sec 
Training time: 19.159 sec. 
Categorical predictors: explain 99.2% of variance. 

The accuracy evaluation of the machine learning techniques presented above lead 

to conclude that ensemble bagged trees performed excellently above the other 

tested approaches. Still, the training time reached with the ensemble bagged 

trees was not the shortest, but in terms of prediction is a good model. The decision 

trees also scored a good result, and in less time, but the problem that we are 

trying to solve involves prediction, therefore is better to maintain the most 

accurate model. Lastly, the results obtained from the SVM classification model 
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were poor, and even the time scored is the longest. For this specific case study is 

not recommended to use SVM classifier.  

5.4.4 CPU Case Evaluation 

In Table 5—14, the model accuracy of each classifier technique is listed. This 

dataset used to train the classification model encompassed 39 attributes split into 

9 numerical values, and 30 categorical. The total observations considered in this 

dataset were 2298. 

Table 5—14 Model accuracy evaluation of AI approaches for the CPU dataset. 

Classifier Accuracy % Description 
Ensemble 
Boosted 
Tree 

58% 
Prediction speed: 3600 obs/sec 
Training time: 34.416 sec. 
Categorical predictors: explain 58% of variance. 

SVM 16.4% 

Kernel function: Cubic 
Prediction speed: 14000 obs/sec 
Training time: 129.21 sec  
Constraint level box: 2 
Multiclass method: one vs all 
SVM was tested using several kernel functions 
including linear, quadratic, cubic, and fine 
Gaussian SVM. It was not able to explain most of 
the variance of the predictive model. 

Ensemble 
bagged 
trees 

85% 
Prediction speed: 2000 obs/sec 
Training time: 20.368 sec. 
Categorical predictors: explain 85% of variance. 

This dataset or case study in specific involved a more complex process for 

classification, and the only machine learning technique capable of getting an 

accurate result, or at least one that was above the desired rate was the ensemble 

bagged trees. The ensemble bagged trees scored an accuracy value of 85% and a 

reasonable short training time. Then the ensemble boosted trees did not reach a 

desirable accurate value with 58% and this value cannot be used or is not 

recommended for prediction. The lowest value for accuracy was the SVM and also 

took the longest time, so again for this case study is not suitable to use SVM 

approaches.  

5.5 Summary 

From the results presented in this chapter, it can be concluded that many 

approaches tested are able to obtain satisfactory results of predicting customer 
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needs and wants. Of course, every single case study faces particular challenges to 

overcome, and different ways of analysing the inputs lead to improvements. The 

analysis presented in subsection 5.3.1 for the car evaluation shows good results in 

practice, but in this case study we did not focus on the visualization part. There 

exists room for improvement in regards of presenting as part of the analysis, where 

plots could actually help in the decision-making process. In the analysis presented 

in 5.3.2 for the automobile dataset, the implemented visual part as well could 

lead to a more intuitive analysis. Nonetheless, for the automobile dataset, a 

complete analysis has been performed with simple approaches, where feature 

selection analysis was not necessary since the desired results were already 

obtained.  

The fuel economy dataset presented in section 5.3.3 has represented a bigger 

challenge, and part of the analysis there has involved evaluating several 

classification methods to test the effectiveness of each approach. The plots 

helped visualize the phenomena involved in this particular case, and because of 

this analysis, we were able to detect patterns and behaviours and obtain the 

desired prediction. We have found that fuzzy clustering complements well the 

analysis acquired, and both are useful if the case study or application involving 

many attributes to analyse. 

For the last case study, in section 5.3.4, improvements have been considered.  In 

this particular case, more complete analysis was obtained. The focus there was to 

achieve prediction, but as well to be able to recommend a concise number of 

attributes using feature selection in which both customers and designers would 

benefit. It was decided to include the statistical analysis, as part of the feature 

selection process, just to validate the accuracy of the results. This added 

robustness to the whole closed loop cycle, in terms of making the best decision 

when customizing a product according to individual needs. 

In section 5.4 the evaluation results of machine learning techniques were 

presented. The evaluation consists of a comparison in model accuracy from the 

trained dataset against the original data, to determine if the obtained mathematic 

representation is suitable for use in prediction since one of the main objectives in 

this work was to predict customer needs and wants. Every single case study 

presents a specific challenge.  It is seen that the performance of the classifier 
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mainly depends on the characteristics of the dataset. This is the reason why 

empirical tests need to be performed [92]. Therefore, in this chapter, we have 

presented the necessary tests to determine which classification models are more 

suitable for achieving prediction of customer needs and wants. As a result, it can 

be concluded that a common denominator for accurate results and performance 

along the case studies was found in the ensemble decision trees that always scored 

desired values. Although, simple k-means scored good values on prediction, this 

approach can only work with numerical data, as discussed in [133], where the 

mixture of attributes (categorical and numerical) needs a special treatment for 

the algorithm to code the sample data  represented as discrete space and make a 

Euclidean distance representation to make it meaningful. Conversely, the SVM 

approach has never scored a desired percentage of accuracy. Different kernel 

functions were used for the SVM, and the cubic function presented the most 

accurate results for predictive models, but in practice the larger the attribute 

number was, the less accurate the model was. Thus, this technique is not 

recommended when dealing with a dataset that involves a mixture of categorical 

and numerical inputs, or where the dataset presents larger number of attributes. 

Approaches of SOM, cluster k-means, and fuzzy c-means have proved to be reliable 

when dealing with datasets that do not involve a high level of complexity. 

However, as discussed previously, when analysing data it is necessary to have a 

level of visualization, which none of these approaches provide properly. 
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Chapter 6 Conclusions and Future Work 

This chapter presents conclusions and future work in 3 sections. The first section 

is about the discoveries obtained using the machine learning approaches and data 

analysis in general. The second section concludes the connection of the 

hypotheses stated in Chapter 3 to the obtained results, where the questions that 

correspond to the problem statement of Chapter 1 are also answered. Finally, in 

section 3, future directions are analysed. 

6.1 General Conclusion 

Machine learning for data-mining in this work has helped identify, predict, and 

recommend potential customer needs and wants, which manufacturers can 

consider as design elements for customizing products. The importance of this work 

lies in the need that current manufacturing has when moving to what is considered 

agile manufacturing. It is shown relatively efficient to obtain meaningful results 

from big data for mass customization. Using the perspective of i4 in this 

framework, we have developed a methodology that comprises multiple stages for 

addressing customer needs and wants and dealing with the gaps between the 

factories of today and the vision of i4-customized production. 

This methodology has been tested in several applications as case studies, including 

consumer car evaluation, automotive vehicle characteristics, fuel economy, and 

computer parts. These case studies have helped us consolidate and validate the 

analysis. The following results have been obtained:  

1. A classification approach has accurately predicted potential customer 

needs and wants, and this is achieved most consistently by the ensemble 

bagged trees. 

2. Clustering analysis is able to identify partitioning and identification of 

patterns. The results reveal more specific significant attributes, which help 

narrow the features for design for agile manufacturing. 

3. Intelligent search in the design process allows customers’ needs and wants 

to be covered predictively. Virtual prototypes can hence be tuned 
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beforehand by customers when knowing the significant and predicted 

values obtained in the prediction model. 

4. Considering the decision-making process, visualization helps the analysis be 

more appealing and intuitive. The plots presented in therein are not too 

complex to interpret and help accelerate decision making. 

5. This way, manufacturers can make customer-oriented decisions using 

customer-driven informatics, design, AI-based recommended approaches 

and automation. 

6. Data mining and data analytics help identify the influence of product 

characteristics, classification, attribute selection, clustering, and 

interpretation of customers’ needs and wants. 

7. It has been demonstrated that ensemble bagged trees and complex tree 

classifiers work well when trying to predict and select customers’ needs 

and wants. 

8. These analyses can contribute to manufacturing from the management 

perspective as an enabler of innovation according to customers’ needs and 

wants and thus help companies avoid unnecessary product differentiation. 

Conclusions concerning each dataset are detailed as follow. 

6.1.1 Car Evaluation Dataset 

1. SOM clustering reflects the attributes of the car as revealed in the case 

study, where the customer cares less about the “door” attribute. 

2. The results also reveal that for car customization, “very good” and “good” 

cannot be easily met.  Hence, it is predicted that the manufacturer should 

focus on the attributes on car sealing and on offerings of high-security and 

not on other attributes. 
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3. Simple k-means has been able to obtain a more accurate predictive model 

than other approaches do. For this specific case, this approach is seen 

reliable, although its visualization has presented a less complete analysis. 

6.1.2 Automobile Dataset 

1. In the case study, the results reveal that customer behaviour is based on 5 

attributes (number-of-doors, drive-wheels, height, engine-type, number-

of-cylinders). 

2. Fuzzy c-means has performed a good partition on the dataset and has 

identified 3 clusters for classification. 

3. Fuzzy c-means obtained the predictive model with a better percentage of 

accuracy. For practical implementation, this approach is relatively reliable 

and easy to use. 

6.1.3 Fuel Economy Dataset 

1. The model that accurately predicts customers’ potential needs and wants 

has been obtained with ensemble-bagged trees. With this method, an 

accuracy of 99.3% was obtained.  

2. For the fuel economy dataset, the results have confirmed that the method 

is working, i.e., if the customer wants to acquire a car in which fuel 

consumption is relatively low, then he/she should consider mini-compact 

cars based on the number of cylinders, gears, and type of drive 

(manual/automatic). 

3. The car manufacturers that have presented misclassification to the 

predictive model of the fuel economy dataset are revealed as Audi, Bugatti, 

Chrysler Group, FCA Italy, Lamborghini, Mobility Ventures, Paganini 

Automobili, and Volkswagen. 

4. For the clustering analysis, fuzzy c-means has performed a good partition 

and identification of three clusters, where multiple clustering approaches 
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were tested. Neither the simple k-means nor SOM could handle this 

challenge due to multiple variables or complexity of the datasets. 

5. Through analysing this dataset, it is concluded that the ensemble bagged 

trees approach works better with complex datasets, and the fuzzy c-means 

works better for pattern identification for data analysis. 

6.1.4 CPU Dataset 

1. On the CPU dataset, the analysis has shown a recommended set of 

attributes that manufacturers can use to design a computer that reflects 

the customer’s subconscious needs and wants. Significant features include 

system price, thermal power, memory types, thermal monitoring 

technologies, number of cores, and graphic base frequency, among many 

others. 

2. Classification analysis has helped isolate the product collection Intel® 

Celeron® Processor J Series that has scored a misclassification, thus making 

it insignificant for the prediction model. 

3. The classification approach that has accurately predicted customers’ needs 

and wants is the ensemble bagged trees. The accuracy obtained with this 

method was 85%. 

6.2 Reflections on the Hypotheses 

Given the objectives stated in Chapter 1, this section answers the questions posed 

in the hypotheses of Chapter 3. Recapitulating about the questions for each 

hypothesis, conclusions are drawn as follow. 

HI: It is possible to develop a framework capable of automatically predict the 

design attributes that best reflect what customers need and want in a product. 

Q1. How can a generalized framework be developed, which approaches can 

effectively predict the design attributes, and how to design smart products 

effectively to reflect what customers need and want in a product? 
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A1. In Chapter 4 the different stages of the proposed frameworks are presented. 

At each stage, the thesis has made different discoveries, challenges, and 

ways of addressing customer needs and wants. For this, different frameworks 

have been developed. The main focus was to develop a generalized 

framework able to automatically predict customer needs and wants. 

Consequently, turning customer needs and wants into design attributes for 

manufacturing a product. Through this work, we have discovered that it 

would be best to make predictions based on users’ behaviour. Therefore, 

making easier selecting one setting instead of others, classifying the design 

attributes (based on the behaviour analysis already made), and finally 

recommending which set of attributes describe individual needs for a given 

product.  

Results shown in chapter 5 lead to the conclusion that data mining techniques 

are suitable for predicting effectively design attributes. Moreover, in chapter 

5, section 4 the evaluation results made from a combination of machine 

learning approaches proved to reflect desired conclusions when analysing the 

data. In specific ensemble trees, feature selection, and fuzzy clustering are 

effective approaches for classifying, recognizing patterns, and selecting 

features that best matched with customer needs and wants. Chapter 5 shows 

the results obtained when integrating computational intelligence. Efficiency 

needs to be measured accurately, and data mining techniques give the 

opportunity to know in specific how design reflects what customers need and 

want. Here Computer Automated Design plays a pivotal role, since smart 

products require constant development, and the framework proposed in 

chapter 4, section 1 can deal with automation and prediction by continuously 

evolving designs using AI and automating the process. Designs are improved 

from a digital platform that considers the analysis obtained from historical 

data. 

HII: It is possible to obtain a model capable of accurately predict customer needs 

and wants for at least 85% of classified design attributes. 

 

Q2. How can design attributes be used to make predictions, which AI approaches 

can be tested, and how can classification models be reliable when showing 

less than 85 %? 
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A1. Presented in chapter 3, section 3, design attributes are characteristic 

properties of a product, such is that in this work can be changed by an 

individual in order to fulfil his/her desires when customizing a product. This 

behaviour of changing, selecting, and customizing product designs can be 

classified, based on each individual configuration which in turn can provide 

insight of future events. Once this behaviour is modelled, is possible to match 

what customers would need and want in future events, because the design 

attributes are determined by each product and the way it is manufactured. 

Initially, it was decided to test machine learning approached used commonly 

for example, SOM, simple k-means, SVM, and decision trees for supervised 

learning as shown in chapters 5 and 6.  

Moving forward with the complexity of different case studies, it was 

discovered that ensemble trees provide a more accurate representation of 

customer needs and wants. For every mathematical representation that tries 

to explain the given observations, considered as independent variables in a 

model, many indicators can be used to minimize the error when predicting 

possible values of the dependent variable. In this work, is included one case 

study analysis that shows these statistical indicators when validating 

prediction against the known observations. This error can be minimized once 

the used data is trained with sufficient information, allowing to make 

reliable predictions. It is desirable to use mathematical representations that 

present an accuracy above 95%, and literature suggests that validation is 

essential if is decided to use models that score any percentage below 95%. 

HIII: It is possible to identify effective ways of achieving customization for i4 and 

smart manufacturing. 

Q1. What are the identified challenges to be tackled, which methods are 

effective for achieving mass customization, and what particular ways does i4 

deal with mass customization? 

A1. Extracted from the literature review presented in chapter 2, section 5 shows 

that the challenges focus on business models, value-creation network, 

products, and processes. From here it was concluded that how data is 

managed inside a company can lead to effectively satisfy customer needs 
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and wants, since this is the main goal of customization. Therefore, we 

focused on tackling challenges that had to do with data analytics.  i4 and 

smart manufacturing claim to address mass customization at mass production 

costs, but this challenge can never be achieved if a reliable analysis is made 

beforehand. In chapter 3, section 5 are given several examples of companies 

like YouTailor®, Bombsheller® and MyMuesli® where they offer through their 

website products that cannot be found in the store shelves, demonstrating 

that this is not a vision of the future, beyond that, is a necessity from the 

customers.  

In many i4 demonstrations, manufacturers focus on the use of embedded 

systems interconnected to each other. The success of many current cases of 

mass customization relies on making available a virtual platform where the 

customer can interact with the design stage of their desired product. This 

interaction and selection are stored for future purchases, so the system can 

gain information about individual needs of users, and most important having 

models based on customers’ behaviour. Chapter 2, first section presents how 

i4 and smart manufacturing deals with customization that is by making 

extensive use of the IoT, flexible process provided by CPS and cloud services 

that enable users to track the progress of their order. Many companies in the 

last decade proved that customization is possible, but doing it massively 

requires to overcome the aforementioned challenges. 

In this work, it has been highlighted the importance of customization in the coming 

4th Industrial Revolution. A solid framework has been proposed that integrates 

most of the principles of smart technologies to realize i4. Industry 4.0 is 

characterized by bringing the innovation to the shop floor, and the key aspect for 

this is digitalization, where product design plays a decisive role.  It has been 

discovered that in this stage designs can be customized according to individual 

needs without sacrificing manufacturing time and effort.  

6.3 Future Directions 

While the thesis has focused on predicting potential customer needs and wants for 

agile design and manufacture in an Industry 4.0 environment, future work will 

include integrating affective design approaches to a fully integration of 
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customers’ sentiment about product attributes. The affective design approach can 

bring a more clear analysis and identification of customer needs and wants 

because of the integration of sentiment of design elements to the whole value 

chain and therefore, have a direct indicator of how efficient the model can be 

compared to the levels of affection a customer have towards design attributes or 

elements. Intelligence on customers’ feelings can be coded into design elements 

to reduce misunderstanding and make predictions more accurate, which is 

complementary in point 6 of the general conclusions of this chapter. This approach 

could require the development of a questionnaire or survey, as targeted questions 

about individual feelings can improve the mining of customer needs and wants.  

Further, the prediction may be validated and integrated by using virtual or 

augmented reality to collect more data in real time or to perform an exploratory 

test and train an algorithm with individual sentiment about perceived product 

characteristics, helping to improve point number 4 in the general conclusions in 

this chapter, i.e. decision making in real-time. In this regard, descriptive statistics 

may be integrated to facilitate the analysis and further improvements. Including 

more digitally aided technologies can also lead to improvements in, and 

adjustments of, product designs. Thus, this facilitates the process of an enhanced 

customization of products in real time.  

Ways of measuring customer satisfaction are also a future direction, to help 

extending point number 3 in the general conclusions presented in this chapter. 

Retrieving such measurements can be used as indicators for manufacturers and 

businesses to customize their products more individually, a prediction model can 

be obtained easily when considering an indicator of customer needs and wants, in 

terms of weight attributes for the developed model.  

It was discovered in chapter 5 that simple k-means can be useful when performing 

cluster analysis to numerical values, but not when dealing with a mixture of 

categorical and numerical values. A way forward can be exploring other k-means 

algorithms suitable for mixed attributes to see if are more effective than decision 

trees approaches. 

SVM approaches can also be explored with different kernel functions, since the 

common cubic, linear, quadratic, and fine Gaussian functions were not effective 
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when dealing with datasets that involve a mixture of categorical and numerical 

instances and as well for the response. A way forward can to this can be trying 

with different kernel functions like Radial Basis Function or algorithms capable of 

dealing with canonical correlation analysis to replace features or predictors to 

obtain better prediction or know where to adjust the model. 
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