
 
 
 
 
 
 
 

https://theses.gla.ac.uk/ 
 
 
 

 

Theses Digitisation: 

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ 

This is a digitised version of the original print thesis. 

 

 
 
 
 
 
 
 

Copyright and moral rights for this work are retained by the author 
 

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge 
 

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author 
 

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author 
 

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 
 
 
 
 
 
 
 
 
 
 
 
 

 
Enlighten: Theses 

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk


T h e  S i g n i f i c a n c e  o f  D u p l i c a t i v e  VSG G e n e  

A c t i v a t i o n  d u r in g  A n t i g e n i c  V a r i a t i o n  in  

A f r i c a n  T r y p a n o s o m e s

N ic k  R o b in so n  

W e l l c o m e  C e n t r e  f o r  M o l e c u l a r  P a r a s it o l o g y  

T h e  A n d e r s o n  C o l l e g e  

U n iv e r s it y  o f  G l a sg o w

Submitted for the degree of Doctor of Philosophy 

October, 1999



ProQuest Number: 10391210

All rights reserved

INFORMATION TO ALL USERS 
The qua lity  of this reproduction  is d e p e n d e n t upon the qua lity  of the copy subm itted.

In the unlikely e ve n t that the au tho r did not send a co m p le te  m anuscrip t 
and there are missing pages, these will be no ted . Also, if m ateria l had to be rem oved,

a no te  will ind ica te  the de le tion .

uest
ProQuest 10391210

Published by ProQuest LLO (2017). C opyrigh t of the Dissertation is held by the Author.

All rights reserved.
This work is protected aga inst unauthorized copying under Title 17, United States C o de

M icroform  Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway 

P.Q. Box 1346 
Ann Arbor, Ml 4 81 06 - 1346



A c k n o w l e d g e m e n t s

I would also like to acknowledge the members of the Trypanosome Research Team, 

especially Nils Burman and Richard McCulloch, for their advice and assistance, 

which has proved invaluable during my three years at WUMP.

Thanks also to Sara Melville, Vanessa Leech and Caroline Gerrard for kindly 

recommending the PFG conditions utilised in this thesis.

This work was supported by a studentship from the Medical Research Council, with 

additional frmding fr om the Wellcome Trust.

' 3

Many thanks to my supeivisor, Dave Barry, for providing continual encouragement 

and guidance throughout this studentship.

111



VAT (variable antigen type) expression......................................................... 26

1.11 The minichromosomes of T. brucei 28

1.12 Differences between monomorphic and pleomorphic

trypanosome lines............................................................................................... 30

IV

I

C o n t e n t s

Title.......................  i

Declaration......................................................................................................................... ii

Acknowledgements......................................................................................................... iii

Figures list.....................................................   ix

Tables list xii

Abbreviations xiii

A b s t r A C t 1 

C h A p t e r  1

(Introduction)................................................................................................................... 4

1.1 General introduction 5

1.2 Antigenic variation.................................................................................................8

1.3 Structure of the VSG coat..................................................................................... 9

1.4 The bloodstream expression sites (BESs) 12

1.5 The genetic mechanisms for antigenic variation.............................................. 14

1.6 The metacydie variable antigenic types (MVATs) 19

1.7 Gene expression in trypanosomes 20

1.8 Life cycle dependent stage-specific regulation of VSG expression 22

1.9 Regulation of a single active BB S ......................................................................24

1.10 The dynamics of trypanosome antigenic variation and hierarchical



C h A p t e r  2

V

■■
ï

(Materials and Methods)..............................................................................................32
.....................................................

(Reagent abbreviations)  33 ;s
a.

2.1 Routine handling of trypanosomes................................................................... 35

2.1.1 Host immunosuppression, trypanosome growth and collection,

and stabilate manufacture..................................................................... 35

2.1.2 Trypanosome cloning............................................................................. 36

2.1.3 Preparation of blood smears for immunofluorescence and

plasma for immune lysis...................................................................... 36

2.2 Serology................................................................................................................37
a-

2.2.1 Immune lysis assay............................................................................... 37

2.2.2 Immunofluorescence 38

2.3 Reverse transcription polymerase chain reaction (RT-PCR).......................... 38

2.3.1 RNA isolation......................................................................................... 38

2.3.2 Reverse transcription 39

2.3.3 PGR amplification of VSG specific cDNA..........................................39

2.4 Cloning of PCR amplified VSG specific cDNAs.............................................40

2.4.1 Ligations................................................................................................. 40

2.4.2 Transformations and plasmid retrieval................................................41

2.5 Isolation and purification o f trypanosomes from blood 41

2.6 Isolation of genomic DNA 42

2.6.1 Preparation o f genomic plugs from live trypanosomes 42

2.6.2 Standard genomic DNA preparations 43

2.7 Gel electrophoresis and Southern blotting........................................................ 43

2.7.1 General gel electrophoresis....................................................................43

2.7.2 Genomic digestions................................................................................43

2.7.3 Pulsed field gel electrophoresis (PFGE).............................................. 44

2.7.4 Southern blotting.................................................................................... 45

2.8 Probe manufacture and DNA hybridization..................................................... ,45

2.8.1 Radiolabelling........................................................................................ 45

2.8.2 Hybridization.......................................................................................... 46

2.8.3 Stripping of nylon filters........................................................................47



2.9 Manufacture and screening of minichromosomal libraries............................ 47

2.9.1 Isolation o f minichromosomal D N A .................................................. 47

2.9.2 Manufacture o f the minichromosomal libraries.................................48

2.9.3 PCR screening of the minichromosomal libraries............................. 49

2.10 Phenol/ chloroform extractions.......................................................................... 49

2.11 S equencing..............................................................................   50

C h A p t e r  3

(The order of VSG expression in a chronic, pleomorphic,

T. brucei infection)......................................................................................................... 51

3.1 Introduction 52

3.2 Derivation of the ILTat 1.2 pleomorphic clone................................................53

3.3 Initiation and progression of the cln*onic ILTat 1.2 infections.......................53

3.4 Immune lysis dissection of the first relapse peak 58

3.5 Further ILTat 1.2 infections, and additional

immune lysis investigations.............................................................................. 61

3.6 Immunofluorescent typing of the VATs........................................................... 63

3.7 Reverse transcription PCR (RT-PCR) amplification o f the VSG genes 66

3.8 Allocation of ILTat numbers to previously unidentified VATs 69

3.9 A PCR approach for analysing rapid switch products 70

3.10 Single relapse study o f the high switching pleomorphic

line ILTat 1.61c.....................................................................  74

3.11 Summaiy............................................................................................................... 78

C h A p t e r  4

(Genetic analysis of the VSG switching mechanisms utilized by 

pleomorphic trypanosomes)........................................................................................ 79

4.1 Introduction.......................................................................................................... 80

4.2 Genomic analysis of the VSG genes activated during

the first relapse peak...........................................................................................81

vi



4.3 ILTat 1.2 VSG gene copies in expressor and non-expressor clones.............. 82

4.4 Activation of the ILTat 1.25, 1.67 and 1.68 VSG genes................................. 85

4.5 Activation of the ILTat 1.69, 1.21 and 1.64 VSG genes................................. 89

4.6 RAD51 control hybridizations........................................................................... 93

4.7 Activation of the ILTat 1.25 VSG gene from the ILTat 1.61c high

switching single relapse investigation..............................................................94

4.8 Pulsed field gel electrophoresis (PFGE) analysis of the VSG genes

activated during the first relapse peak..............................................................95

4.9 Chromosomal location of the ILTat 1.2 VSG genes........................................95

4.10 PFGE analysis of the ILTat 1.25, 1.67 and 1.68 VSG genes.......................... 96

4.11 PFGE analysis of the ILTat 1.69, 1.21 and 1.64 VSG genes........................ 100

4.12 Resolution of the 1.8 Mb cluster......................................................................101

4.13 Resolution of the minichromosomal BCs....................................................... 103

4.14 Summary............................................................................................................. 104

C h A p t e r  5

(Characterization of the upstream flanking region of the ILTat 1.21 

minichromosomal PSG gene) 106

5.1 Introduction........................................................................................................ 107

5.2 Identification of restriction sites suitable for minichromosomal

library manufacture...........................................................................................108

5.3 Construction of the minichi omosomal libraries............................................. 113

5.4 Screening the minichromosomal libraries.......................................................114

5.5 Characterization of the ILTat 1.21 and 1.25 upstream flanks.......................121

5.6 Identification of the ILTat 1.21 upstream duplication boundaiy..................128

C h A p t e r  6

(Discussion)...................................................................................................................136

6.1 Antigenic variation............................................................................................ 137

6.2 Pleomorphism and monomorphism; significant differences between

tiypanosome lines resulting from laboratory attenuation.............................140

6.3 The hierarchical order of VSG gene expression in chronic infections.......143

vn



6.4 VAT appearance in the chronic ILTat 1.2 infection ................................ 144

6.5 Mode of VSG gene activation in the ILTat 1.2 and 1.61c pleomorphic

infections: the predominance of duplicative transposition..........................146

6.6 Telomeric VSG genes are activated most frequently, and predominate

in the early stages of infection........................................................................ 149

6.7 The occurrence of a dominant BES..................................................................153

6.8 The ILTat 1.21 minichromosomal VSG upstream flanlc................................154

6.9 Future work 155

R e f e r e n C e s .............................................................................................................. I6 i

V lll



IX

i

F ig u r e s  l is t

C h A pt e r  1

1. Simplified life cycle of T. brucei....................................................................... 7

2. The arrangement of dimeric membrane-form (mf) VSG

molecules attached to the lipid membrane by GPI anchors........................... 11

3. Longitudinal section o f an African tiypanosome.............................................11

4. Schematic representation of a BES and the chromosomal internal

BC genes.............................................................................................................. 13

5. The mechanisms of activation in T. 18 ,  ; ;.................
6. Typical parasitaemic profile o f a trypanosome infection in

a mouse host........................................................................................................27
iï
I
-?■

C h A pt e r  3

7. Derivation of the 77 switched clonal stabilates isolated from the

ILTat 1.2 chronic rabbit infection.....................................................................56

8. Parasitaemia of the ILTat 1.2 chronic rabbit infection over the 30 days,

determined by microscopy 57

9. Immune lysis typing of the 36 trypanosome clones isolated from the

first relapse peak of the ILTat 1.2 chronic rabbit infection 60

10. Summary of the onset of lytic activity in four separate rabbits against

the six VATs that were isolated from the first relapse peak in rabbit A 62

11. Summary of the immunofluorescence results for the six VATs isolated

from the first relapse peak.................................................................................65 |

12. RT-PCR of the VSG transcripts of the six VATs isolated from the first

relapse peak........................................................................................................ 67

13. Physical maps of the ILTat 1.2 and VAT A-F VSG genes............................. 68

14. Schematic representation of the PCR method for analysing high

switching VSG gene products........................................................................... 73

15. Derivation of the 11 switched clones generated from the ILTat 1.61c

single relapse investigation................................................................................75

16. VSG gene cDNA generated by RT-PCR for the 11 switched clones

isolated from the ILTat 1.61c single relapse investigation............................76 |



C h A pt e r  4

17. PFGE separation of chromosome-size DNA from 3

tiypanosome stocks.............................................................................................81

18. ILTat 1.2 VSG gene copies in ILTats 1.2, 1.25, 1,67 and 1.68......................83

19. ILTat 1.2 VSG gene copies in ILTats 1.2, 1.68, 1.21 and 1.64......................84

20. Activation of the ILTat 1.25 VSG gene.............................................................86

21. Activation of the ILT at 1.67 VSG gene.............................................................87

22. Activation of the ILTat 1.68 VSG gene.............................................................88

23. Activation o f the ILTat 1.69 VSG gene.............................................................90

24. Activation of the ILTat 1.21 VSG gene.............................................................91

25. Activation of the ILTat 1.64 VSG gene.............................................................92

26. RAD51 single copy gene control probing........................................................ 93

27. Activation of the ILTat 1.25 VSG gene fr om the ILTat 1.61c high

switching experiment.........................................................................................94

28. Clrromosomal location of the ILTat 1.2 VSG genes 96

29. ILTat 1.25 VSG cDNA probing of PFGE separated

chromosome size DNA 97

30. ILTat 1.67 VSG cDNA probing of PFGE separated

chromosome size DNA 98

31. ILTat 1.68 VSG cDNA probing of PFGE separated

chromosome size DNA 99

32. Transposition of the duplicated ILTat 1.69, 1.21, and 1.64 VSGs.................100

33. 600s PFGE resolution o f the 1.8 Mb comigrating cliromosomes,

probed with ILTat 1.2 cDNA................................................... ........ .............101

34. 600s PFGE resolution of the 1.8 Mb comigrating cliromosomes,

probed with ILTat 1.2 or 1.69 cDNA.............................................................102

35. PFGE resolution of the minichromosomes 103

1



50. AgeV î^si\ and AgeV ifr'/zdlll double digests of ILTat 1.2 and 1.21 

genomic D N A .................................................................................................. 131

51. Restriction analysis of the ILTat 1.21 barren region................................... 133

C h A pt e r  6

52. Construction of the full length ILTat 1.21 minichromosomal clone.......... 158

53. The five suggested constructs for manipulation the 70 bp

repeat region...................................................................................................... 160

xi

:
:

■

C h A pt e r  5

36. Physical maps of the ILTat 1.21 and 1.25 VSG full-length cDNAs............ 109

37. Autoradiograph demonstrating the sparsity of restriction sites upstream

of the VSG gene in the ILTat 1.21 minichromosomal BC........................... 110

38. Location of the Nsil sites upstream of the VSG gene in the ILTat 1.21

and 1.25 BCs...........................................................................  112

39. 120 h PFGE separation of the minichromosomes on a 1.2% LMP agarose

gel stained with EtBr........................................................................................ 113

40. PCR detection of the ILTat 1.21 upstream region from the SaW Nsil

minichromo somal library.................................................................................115

41. PCR detection of the ILTat 1.25 upstream region from the SaW Nsil

minichromosomal library.................................................................................117

42. Half-nested PCR reactions of the ILTat 1.25 and 1.21

minichromosomal PCR products .........................................................118

43. PCR amplification of the potential ILTat 1.68 and 1.69

minichiomosomal products from the SaW Nsil library...............................119

44. Determination o f the average insert size of the SaW Nsil

minichromosomal library.................................................................................120

45. Physical maps of the ILTat 1.25 and 1.21 minichiomosomal clones.......... 123

46. 70 bp repeat sequence detected in the ILTat 1.21 genomic clone................125

47. CLUSTAL W analysis of the 1239 bp region homologous with

ESAG3 in the ILTat 1.21 minichromosomal clone....................................... 127

48. Position of the two ORFs within the ESAGS homologous

ILTat 1.21 sequence......................................................................................... 128

49. Southern analysis of the ILTat 1.21 minichromosomal clone 130

S

&

Î



T a b l e s  l is t

1. Working dilutions and derivations o f 37 reference antisera..............................64

2. Summary of the 11 VATs isolated from the rabbit A infection 69

3. VSG loci and activation events 105

Xll



AnTat

BAC

BC

BES

(B)VAT

BATRO

ELC

ESAG

ETat

GPI

GUTat

ILTat

MES

(M)VAT

(M)VSG

PARP

PFGE

UTR

VSG

A b b r e v ia t io n s

Antweip Trypanozoon antigen type 

bacterial artificial chromosome 

basic copy

bloodstream expression site

(bloodstream) variable antigen type

East African Trypanosomiasis Resear ch Organisation

expression linked copy

expression site associated gene

Edinburgh Trypanozoon antigen type

glycosylphosphatylinositol

Glasgow University Trypanozoon antigen type

International Laboratory for research on animal diseases,

Trypanozoon antigen type

metacyclic expression site

(metacyclic) variable antigen type

(metacyclic) variant surface glycoprotein

procyclic acidic repetitive protein

pulsed field gel electrophoresis

untranslated region

variant surface glycoprotein

Reagent abbreviations are listed in Materials and Methods, page 33.

X lil

■3



«1:

A b s t r a c t

African trypanosomes can survive prolonged exposure to the immune responses of 

their mammalian hosts by constantly changing the variant surface glycoprotein 

(VSG) expressed in their surface coat in a process known as antigenic variation. 

Each parasite has a repertoire of approximately 1000 silent VSG genes, which are 

expressed differentially. The VSG genes are expressed exclusively at specialised 

transcriptional units known as the bloodstream expression sites (BESs). 

Approximately 20 of these sites exist in the tiypanosome nucleus, although only one 

is maximally active at a time, ensuring that a single VSG is expressed in the 

parasite’s surface coat. VSG switching is mediated by replacing the VSG gene in the 

active BES, or by silencing the active BES and initiating transcription fi'om a new 

BES.

Investigations into tiypanosome antigenic variation have described several different

VSG switching mechanisms, although the majority of these studies were performed

with laboratory attenuated trypanosome lines. Following repeated syringe

passaging, these “monomorphic” lines have lost the ability to differentiate from the 
.

proliferative bloodstream form. Under normal circumstances these trypanosomes 

cannot be transmitted by the tsetse fly and do not develop tlirough their life cycle. In 

addition, monomorphic trypanosomes display a marked reduction in their VSG 

switch rates, which are up to 4 or 5 orders of magnitude lower than those of non­

adapted lines (Turner, C.M.R. and Bany, J.D. 1989. Parasitology 99: 67-75; Turner, 

C.M.R. 1997. FEMS Microbiol. Lett. 153: 227-231). This raises questions about 

the significance of the switching mechanisms obseived in these lines. It has been 

proposed that non-adapted, or pleomorphic, trypanosomes normally have an active 

VSG switch mechanism, involving gene duplication, that is depressed, or from which 

a component is absent, in monomorphic lines (Barry, J.D. 1997. Parasitol. Today 13: 

212-218). The main aim of this thesis was to examine this hypothesis by analysing 

the switching mechanisms used during VSG activation during the early stages of a 

clironic, pleomorphic infection. Additionally, this investigation examined the 

chromosomal environment of the basic copy VSG genes, to detennine whether a 

chromosome position effect influenced the early order of VSG gene expression.



I
The majority of the work presented in this thesis was derived from a single rabbit 

infection using ILTat 1.2 pleomorphic trypanosomes, which display a switch rate of 

1 X 10'^ switches/cell/generation (Turner, C.M.J. 1997. FEMS Microbiol. Lett. 153; 

227-231). In total, 88 trypanosome clones were isolated from this infection, and it 

was subsequently discovered, by immune lysis assay, that they represented 11 

distinct variable antigen types (VATs). To examine the reproducibility of the timing 

of expression, a further three ILTat- 1.2 infections were undertaken in new rabbit 

hosts and these infections displayed a generally reproducible pattern of VAT 

appearance. Genomic DNA from a representative of each of the 11 VATs was then 

isolated and separated by pulsed field gel electrophoresis (PFGE), or digested with 

Mwdlll, EcoBl or Pstl, and size fractionated on agarose gels. After Southern

blotting, the filters were probed with VAT specific full-length cDNAs, to establish 

the copy number, chromosomal location and the method of activation of each o f the 

11 VSG genes. This analysis revealed that duplicative events predominated during 

the early stages of infection, with at least 9 (possibly 10) of the VSGs becoming 

activated by this mechanism. Only 1 VAT had activated its VSG gene by the 

transcriptional switch that accounts for 2/3 of the switching events observed in the

early stages of monomorphic infections (Liu, A.Y.C. et a l 1985. J. Mol. Biol. 167: I
■k

57-75). At least 8 (and probably 10) o f the activated VSGs originated from i |

telomeric loci, while there was only 1 example of duplication from a chromosome 

internal site, where most VSG genes reside, and this occurred in the second relapse 

peak. PFGE determined that 6 VATs possessed minichromosomal silent copies of 

the respectively expressed VSG, and it appeared that these donors were preferentially 

utilized in the duplicative events. The upstream flank from one of these 

minichromosomal donors was cloned, and it appears that the duplication boundaiy 

delimits at the 70 bp repeat region, which is located upstream of most VSG genes. A 

smaller single relapse study was also initiated using the rapidly switching 

pleomorphic line, ILTat 1.61c, which switches at 3 x 10'^ switches/ cell/generation 

(Turner, C.M.J. 1997. FEMS Microbiol. Lett. 153: 227-231). This yielded only one 

analysable product, which was one of the same 11 genes observed in the rabbit 

infection, and was activated by duplication from a minichromosomal basic copy.

In summary, it appears that, during the early stages of infection, tiypanosome 

antigenic variation is predominated by duplicative transposition o f telomeric VSGs, 

many of which reside on the minichromosomes. These results contrast strongly with



the outcome of analyses of monomorphic trypanosomes, which utilize several 

different switching mechanisms, and most commonly display transcriptional 

switching during the early stages of infection. The work presented in this thesis 

therefore supports the hypothesis of a dedicated duplicative switching mechanism 

that is reduced in (or even absent from) laboratory adapted, monomorphic lines.
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1.1 General introduction

Trypanosomes are unicellular, uniflagellate protozoans, of the order kinetoplastida, 

that diverged early during eukaryotic evolution, and consequently display differences 

in their genetics and metabolism when compaied to higher organisms (Cross,

1990a). Several trypanosome species, including Trypanosoma brucei, T. evansi, T. 

equiperdum, T. congolense and T. vivax (collectively termed the African 

trypanosomes), are extracellular parasites that proliferate in the tissue fluids, 

capillary beds and vascular system of their mammalian hosts (Vickerman, 1985).

Although these infections remain sub-clinical in much of the vast reservoir of 

African wildlife, high-level parasitaemias arise in non-indigenous domesticated 

cattle, resulting in decreased productivity and even death. High parasitaemias are 

also responsible for the severity of acute human sleeping sickness; this disease, 

which is caused by certain variants of T. brucei, is generally fatal if  left untreated. T. 

brucei is now considered to comprise two morphologically indistinguishable 

subspecies, which are identified by their differences in host range and associated f

pathologies (Borst et a l 1981; Tait et a l 1985; MacLeod, 1999). One of these
3.

subgroups possesses two host range variants, T brucei brucei and T. b. rhodesiense. %

The first variant, T. b. brucei, causes Ngana (meaning “loss of spirits” in the Zulu 

language) in cattle and also infects a wide range of the African wildlife, but this 

variant is not resistant to human serum. However, T. b. rhodesiense, the second 

variant, is resistant to human serum and is the causative agent of the acute form of 

human sleeping sickness. The second subspecies, T, b. gambiense, is also
V

responsible for human sleeping sickness, but produces the chronic foim o f the 

disease.

In Africa, trypanosomes are transmitted between hosts mainly by an insect vector, 

which in the case o f T. brucei (and indeed most of the African trypanosomes) is 

Glossina, the tsetse fly. The life cycle of T. brucei is illustrated in Figure 1, and is 

characterized by a succession of different forms adapted to the varied enviromnents 

the parasite encounters (Vickerman, 1985). In the mammalian bloodstream, the 

slender form of the parasite divides and cannot engage in oxidative phosphorylation, 

since mitochondrial functions are repressed. Instead it relies on aerobic glycolysis, 

metabolising glucose to pyruvate, inside specialised organelles termed glycosomes.

%
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As an infection progresses, the population becomes increasingly pleomorphic, 

consisting of the slender dividing form, intermediate forms, and the non-dividing 

short stumpy form, pre-adapted to transmission in the fly. All o f these bloodstream 

types are covered by a coat which is made from a characteristic surface protein, the 

VSG (variant surface glycoprotein) (Overath et al. 1994), which shields the parasite 

horn the mammalian host’s immune system. Once ingested by the fly, the stumpy 

trypanosomes quickly differentiate into the actively dividing non-infective procyclic
3,:

form, in which the VSG coat is replaced with one composed of procyclin (Roditi and 

Pearson, 1990). A recent study (Van Den Abbeele et a l 1999) has demonstrated 

that the number of T. brucei parasites in the tsetse midgut falls dramatically over the 

first few days following the infective bloodmeal. In this investigation, the authors 

estimated that about 7.5 x 10 trypanosomes were ingested during the bloodmeal, 

and demonstrated that after 3 days the parasite number o f the population had 

dropped over 3 orders o f magnitude to 1-2 x 10  ̂ individuals. The remaining parasite 

population, consisting of transfoimed procyclic trypanomastigotes, was shown to 

expand rapidly over the next 3 days, until the number of midgut parasites stabilised 

at 2-5 X 10  ̂ parasites; this population size remained constant thi'oughout the last 18 

days of the observation period.

During the population expansion within the midgut, the procyclic cells move from 

the posterior towards the anterior midgut, while their morphology becomes 

progressively elongated (Van Den Abbeele et a l 1999). The end-point of this 

midgut colonization is indicated by the presence of a long trypomastigote form, 

referred to as mesocyclic cells (Vickerman, 1985), which occur in the anterior 

midgut near the proventriculus; (Vickerman, 1985; Van Den Abbeele et a l 1999).

This mesocyclic tiypomastigote form then enters the proventriculus, changing into 

longer (post-mesocyclic) cells, which begin to replicate their DNA from a diploid to 

a tetraploid state, and migrate to the fbregut and proboscis (Van Den Abbeele et al 

1999). Instead of entering mitosis immediately, the (tetraploid) long trypomastigote 

form differentiates into a long epimastigote cell (with no loss of genetic material) 

and it is suspected that this stage migrates to the salivary glands (Van Den Abbeele 

et a l 1999). The long epimastigote cell then divides asymmetrically generating two «

morphologically distinct (diploid) daughter cells, the long and short epimastigote 

forms (Van Den Abbeele et a l 1999). The short epimastigote trypanosomes then 

attach to the epithelial cells of the salivary glands where they multiply rapidly; the

I



fate of the long epimastigote stage has not been determined, although it is possible 

that it does not develop any further and dies (Van Den Abbeele et al. 1999). 

Development then progresses through a non-dividing intermediate stage, the nascent 

metacyclic (Vickerman, 1985), when the parasites begin to re-express the VSG coat, 

before transforming into infective metacyclic trypanomastigote cells, which are 

transmitted back to the mammalian host when the fly feeds.

Long SlenderMetacyclic

Epimastigote

Short 
Stumpy

•  Procychc

MAMMAL

Figure 1. Simplified life cycle o f T. brucei (adapted from Vickerman [1985]). The VSG coat is 

indicated in the metacyclic, long slender and short stumpy stages by a thicker outline o f the 

trypanosome. The long slender, procyclic and epimastigote stages are proliferative, while the short 

stumpy and metacyclic stages are non-proliferative. Procyclic trypanosomes reside in the tsetse 

midgut, while the epimastigote and metacyclic stages occur in the salivary glands o f the fly.



1.2 Antigenic variation

The African trypanosomes are extracellular parasites, which exposes their surface 

molecules to attack from the immune system of their host. As mentioned before, the 

bloodstream form cells are protected by a VSG coat, which masks the underlying 

surface antigens and inhibits the non-specific immune mechanisms of the mammal 

(Overath et a l 1994). However, the coat itself is highly immunogenic and provokes 

an antibody mediated response, ultimately leading to the destmction of the 

trypanosome. To prevent total elimination of the infecting population, the parasites 

has developed the ability to vary the VSG expressed in their surface coat using a 

mechanism Imown as antigenic variation (for recent reviews see (Cross, 1996; Bany, 

1997a; Borst et a l  1998; Cross et a l 1998)). A single African trypanosome can 

potentially produce at least 100 antigenically novel surface coats (Capbem et a l 

1977), and it seems likely that this is a conservative representation, with an estimated 

1000 VSG genes available in the parasite’s repertoire (Van der Ploeg et a l  1982). It 

therefore seems clear that, with such a vast capacity for variance, the infection can 

remain for prolonged periods in the bloodstream of the mammalian host. However, 

studies performed on cattle have revealed that chronic infection can eventually lead 

to the animal visibly eliminating the trypanosomes from its bloodstream (Nantulya et 

a l  1984; Nantulya et a l  1986; Bariy, 1986). In these cases, the animals displayed 

no further clinical symptoms of disease and appeared resistant to subsequent 

infections from the same trypanosome serodeme (Nantulya et a l  1984; Barry, 1986). 

This phenomenon, known as “self-cure”, is associated with the host exhausting the 

parasite’s repertoire of VSG coats, resulting in acquired immunity to subsequent 

trypanosome challenges.

Antigenic variation enables the trypanosome to avoid immune-destruction and 

therefore prolong the infection period. The selective benefit from this strategy is 

obvious, since the probability of the infection being passed to a new host by the 

tsetse vector is directly dependent on the time that the population can survive within 

the bloodstream.



1.3 Structure of the VSG coat

In bloodstream form tiypanosomes the dense VSG coat completely encompasses 

the surface of the cell membrane, associating as tightly packed dimers (Overath et a l 

1994) (Figure 2). This molecular arrangement appears to thwart complement 

activation (Ferrante and Allison, 1983), while preventing other non-humoral 

molecules from reaching the cell membrane, and shields the invariant surface 

molecules (which probably do not penetrate far into the coat) from immunoglobulin 

(Ig). However, low molecular weight compounds are small enough to pass between 

the VSG molecules and reach transporters on the membrane. Larger host macro­

molecules, some of which are required for trypanosome metabolism, are also 

excluded from the membrane surface. Receptors for these molecules are contained 

within the flagellar pocket (see Figure 3) (Coppens et a l  1988; Grab et a l  1992; 

Webster and Russel, 1993), which is readily accessible to large protein complexes 

and Ig, but not the cellular arm of the host immune system (Borst, 1991a). It has

been suggested (reviewed in Borst and Fairlamb, 1998) that humoral immune 
.responses to these invariant proteins may not be espeeially effective, since the 

antibodies could be cleared from the flagellar pocket by endocytosis.

Each VSG monomer contains about 400-500 amino acids (Carrington et a l 1991) 

and consists of two domains separated by a “hinge” region; (Johnson and Cross, 

1979; Canington et a l  1991). The amino-terminal domain constitutes two-thirds of 

the molecule and represents the epitopes accessible to host antibodies. This region 

displays an enormous variation in its amino aeid sequence, sharing only 13-30% 

sequence identity between VSGs (Miller et a l 1984; Carrington et a l 1991). 

However, some amino-terminus homology has been discovered between VSGs 

originating from the same serodeme (Olafson et a l  1984), and also between 

immunologically distinct VSGs (Barbet, 1985); it has also been demonstrated that 

cysteine residues are conserved within this region (Cross, 1984). Further 

homologies were revealed when Carrington et a l (1991) aligned the amino acid 

sequence of 19 VSGs in the context o f conserved patterns of cysteine residues. The 

authors discovered that the amino-tenninal domains of these VSGs could be divided 

into 3 distinct classes (types A, B and C). Despite differences in amino-terminus 

sequence, the individual VSG molecules appear to fold into a similar three­



carboxy-terminal domains were detected in this study, with the amino-teiminus 

classes A and B associating with each of the carboxy-terminal classes 1,2 and 3.

The greatest degree of amino acid conservation between VSGs occurs in the 

carboxy-terminal hydrophobic tail of the VSG precursor peptide (Holder and Cross, 

1981; Cross, 1990b). This pre-protein is modified in the endoplasmic reticulum, 

where the conserved tail is liberated from the VSG, and a 

glycosylphosphatidylinositol (GPI) moiety is covalently linked to the remaining 

protein. After the attachment of the GPI anchor, these mature molecules are refeired 

to as membrane form (mf) VSGs. During an antigenic switch the mature mfVSGs 

are exocytosed to the cell surface in the flagellar pocket and then diffuse laterally to 

fonn the new coat (Overath et a l  1994), where the GPI anchor attaches the VSG to 

the phospholipid bilayer of the plasma membrane.

The VSG coat is shed when the tiypanosomes differentiate to the procyclic form 

and is replaced by a coat of procyclin, also known as PARP (procyclic acidic 

repetitive protein). It appears that, during transition, the coat is mixed, containing 

both PARP and VSG molecules, resulting from a gradual release of the VSG, which 

ensures that the trypanosome is never “naked” (Ziegelbauer and Overath, 1990; 

Roditi and Pearson, 1990). The PARP coat is not as dense as the VSG coat and this

when compared to the metacyclic and bloodstream form parasites.
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dimensional stmcture, which has been deteimined for two VSGs by X-ray 

crystallography (Blum et al. 1993).

A higher degree of sequence similarity between VSGs is displayed in the carboxy- 

terminal domain, which consists of one or two tightly folded subdomains (Allen and 

Gumett, 1983; Carrington et a l 1991). The greatest homology within this region 

occurs in the 50 amino acids closest to the carboxy-terminus (Matthyssens et al. 

1981; Rice-Ficht et a l 1981), and the work of Carrington et al. (1991) identified 

four classes (types 1-4) of cysteine residue (and glycosylation site) airangement

within this domain. Additionally, different combinations of the various amino and

could presumably result in the membrane-embedded transporters becoming more 

accessible to certain molecules in the procyclin coated insect foim tiypanosomes

f
:

, . j



Antibody

Figure 2. The arrangement o f dimeric membrane-form (mf) VSG molecules attached to the lipid 

membrane by GPI anchors. An invariant surface glycoprotein (ISG) and a host antibody are also 

indicated in this schematic representation. After Overath et al. (1994).

flagellum
mitochondnon

VSG coat

kinetoplast

glycosome

flagellar pocket

Figure 3. Longitudinal section of an 

African trypanosome. This schematic 

representation illustrates the major 

structural features o f the cell. After Borst 

(1991a).
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1.4 The bloodstream expression sites (BESs)

kb from the chromosome end and is sun'ounded by two “barren” regions devoid of 

restriction sites. The upstream barren region extends for several kb and contains 

multiple imperfect 70 bp repeats, while the downstream region is composed mostly 

of telomeric and sub-telomeric hexanucleotide repeats, which constitute the end of 

the cliromosome.

Homology between the individual BESs is high, although there are distinct 

differences. It has been observed that some BESs possess two promoters, which are 

arranged in tandem and separated by 13 kb of DNA (Gottesdiener et a l 1991; 

Gottesdiener et a l 1992). It has been estimated that this second promoter is present 

in half of all the BESs (Gottesdiener et a l  1992; Navarro and Cross, 1996). Much 

of the heterogeneity between the BESs appears in the ESAG sequences, where 

sequence divergence ranges from <10% {ESAG6 and 7) (reviewed in Borst and 

Fairlamb (1998)) to approximately 30% {ESAGl) (Cully et a l 1985); the ESAG set

12

T. brucei has a repertoire estimated at approximately 1000 individual VSG genes 

and pseudogenes, the majority of which reside in long tandem aiTays within the 

chromosomes; these genes are thought generally to be clustered in one or a few loci 

and are known as the chromosome internal, or basic copy (EC) genes (Van der Ploeg 

et a l 1982; Gibson and Borst, 1986). The remaining VSG genes occupy telomeric 

sites, predominantly on the set of about 100 minichromosomes present in the 

genome, which vary in size between approximately 25 and 150 kb (Van der Ploeg et 

a l 1984b; Gibson and Borst, 1986). 7

In the bloodstream-fonn trypanosomes, VSG gene transcription occurs exclusively 

at specialised telomeric regions called bloodstream expression sites {BESs) (Figure 

4) (Johnson et a l  1987; Kooter et a l 1987; Pays et a l, 1989b). It is estimated that 

up to twenty of these units exist within each nucleus (Cully et a l 1985; Borst et a l 

1990), although only one BES is maximally active at a time, ensuring that a single 

VSG is expressed in the protein coat of the parasite (Vanhamme and Pays, 1998;

Chaves et a l  1999). The BES typically consists of a 45-60 kb transcriptional unit 

fl'om the promoter to the end of the VSG gene (Johnson et a l 1987; Kooter et a l 

1987; Pays et a l,  1989b), and is polycistronic, containing several expression site |

associated genes {ESAGs). More recently, a shorter BES, approximately 30 kb in 

length, has also been discovered (Xong et a l  1998). The VSG gene is located 5-10



encoded by different BESs also appears to vary significantly. The proteins encoded 

by the very similar ESAG6 and ESAG7 have been shown to form a heterodimeric 

transferrin receptor (Steverding et al. 1995), while ESAG4 appears to be part of a 

large family of adenylate/guanylate cyclase genes (Alexandre et al. 1996), with at 

least nine additional members outside BESs (Alexandre et al. 1996; Borst and 

Fairlamb, 1998). The remaining ESAGs are not as well characterized (Overath et al. 

1994), but there is some speculation that they could also be involved in membrane 

surface functions (reviewed by Borst and Fairlamb, 1998). However, the ESAGS 

gene is clearly not involved in membrane function, since it produces a protein that 

associates with the nucleus of the cell (Lips et al. 1996).

It has been proposed that the close association of the ESAG genes with the VSG 

genes in each BES indicates that the ESAG proteins are essential for the trypanosome 

during the bloodstream stages of its life cycle (Cully et al. 1985). However, more 

recent studies have discovered genes related to ESAGs {GRESAGs) outside the BESs, 

and have identified ESAG transcripts from BESs in procyclic cells (Pays et al. 

1989b; Graham and Barry, 1991; Alexandre et al. 1996). It therefore appears that 

the control of expression of the ESAG genes is more complex than was originally 

suspected, and it is possible that the ESAG gene products are also necessary in the 

insect stages of the trypanosome life cycle.

BLOODSTREAM EXPRESSION SITE

C ESAGs
g

TELOMERE

7 6  5 4 8 8 3 2 1 70 - bp REPEATS VSG

10 kb

CHROMOSOME INTERNAL SILENT GENES
70 -bp TERMINAL HOMOLOGY 
Rl^EATS ^LO C K S

-0-
VSG

10 kb CASSETTE

Figure 4. Schematic representation o f a BES and the chromosomal internal BC genes. The red flag 

denotes the BES promoter. After Barry (1997a).
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1.5 The genetic mechanisms for antigenic variation

A number of studies have been performed on the African tiypanosomes since the 

early 1980s to elucidate the genetic mechanisms behind antigenic variation. These 

investigations have reported several different ways by which a new VSG gene can 

become expressed by the parasite. However, the majority of these studies were 

conducted using laboratoiy adapted “monomorphic” trypanosome lines (populations 

which do not differentiate into the stumpy bloodstream form, and are not 

transmissible by tsetse fly under normal circumstances), which display VSG 

switching rates several orders of magnitude lower than in non-adapted, pleomoi*phic 

lines (see section 1.12, page 25). The reduced switch rate observed in these 

attenuated parasites is low enough to be explained by background mutation and 

homologous recombination, and this has led some investigators to question the 

relative significance of the different switch events seen in these lines (Bariy, 1997a). 

The five reported types o f DNA rearrangements associated with antigenic switching 

are summarised below and in Figure 5 (page 18):

,

1. Duplicative transposition of a clmomosome internal gene into an active BES.

The BC VSG genes are never expressed within their own clmomosome internal loci. 

For transcription to occur, these genes must be copied and transposed to the active 

BES, forming an expression linked copy (ELC), which replaces the previous EEC 

(Hoeijmakers et al. 1980; Pays et al. 1983a; Myler et al. 1984). This is the only 

route to activation for the chromosome internal genes, which constitute the majority 

of the VSG repertoire, and is thus the dominant mechanism in antigenic variation. 

The gene replacement occurs through recombination between regions of homology 

flanking the BC genes and the BES. In their 5’ flank, the BC genes possess several 

of the 70 bp repeats found in the BES (Liu et al. 1983), while there is also 

considerable homology within the highly conserved carboxy-teiminal coding region 

and in the 3’ untranslated region (UTR) (Timmers et al. 1987; Lee and Van der 

Ploeg, 1987). The homology can extend up to 200 bp into the 3’ UTR, which 

contains a block of 16 nucleotides, whose sequence is conserved in most VSG genes 

(Majumder et al. 1981). It is therefore convenient to consider the BC VSG genes I
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and their flanking regions as expression cassettes, which are copied into the BES, 

replacing the previous cassette and resulting in the expression of a new antigen type.

Studies have revealed that the upstream an*ay of 70 bp repeats is frequently

involved in VSG gene recombination (Florent et al. 1987; Lee and Van der Ploeg, 

1987), although it appears that this region is not always utilised in monomorphic 

trypanosomes (Donelson e? «/. 1983; Michiels e? n/. 1983; Pays e? a/. 1983c; Lee 

and Van der Ploeg, 1987). Indeed, the deletion or inversion of the 70 bp repeat 

region of the active BES in monomorphic tiypanosomes had no effect on the 

incidence of VSG duplications into that BES (McCulloch et al. 1997). The 

downstream conserved region of the VSG coding sequence and associated 

environment have also been shown to act as recognition sequences for transposition 

(Pays et al. 1983c; Timmers et al. 1987). Homology within the VSG coding region 

itself can lead to gene partial conversion events, although this is thought to occur 

mainly in the later stages of infection (Bernards et al. 1981; Barbet and Kamper, 

1993).

Although most of the experimental evidence comes from monomorphic lines, 

duplicative transposition has also been demonstrated in high-switching pleomorphic 

lines, and the duplication boundaiy delimits to the 70 bp repeats in eveiy observed 

activation with sufficient mapping (Delauw et al. 1987; Shah et al. 1987; Matthews 

et al. 1990). It therefore appears that this repeat sequence is normally associated 

with recombination in pleomorphic lines, although it is clear that further 

experimentation is necessary, since relatively few switch events have been analysed 

in these trypanosome lines.

2. Duplicative transposition of a silent telomeric VSG gene into an active BES.

This mechanism is also referred to as telomere conversion, and involves the same 

principles as the internal gene transposition. The main difference is that the 

duplication can proceed beyond the boundary of the expression cassette, resulting in 

the replacement of large segments of sequence, and possibly the whole telomere (de 

Lange 1983). Although the majority of duplicative transposition involves the 

chromosome internal genes, telomere conversion remains an important switching 

mechanism, probably providing the main route to activation for the 

minichiomosomal genes (Bany, 1997a).

15



3. Reciprocal telomere recombination

Reciprocal telomere recombination occurs via a classical homologous 

recombination reaction and involves the simple exchange of one telomeric region 

(including its VSG gene) for another (Pays et al. 1985b). This leads to the 

expression of a new variable antigen type (VAT) if a novel VSG gene is incorporated 

into an active BES. It is suspected that telomeric reciprocal recombination is just a 

typical background cross-over event, since there are few reported instances, all of 

which were reported in monomorphic trypanosomes. However, one in vitro 

investigation has suggested that earlier studies may have underestimated the 

frequency of these reactions, confusing changes far upstream of the VSG gene for 

transcriptional switches (Rudenko et al. 1996). Using integrated markers, and 

improved pulsed field gel electrophoresis (PFGE) techniques, this study concluded 

that telomere exchange could be an important, rather than rare, event in 

monomorphic trypanosomes. Reciprocal telomere recombination, however, has not 

been reported in pleomorphic trypanosomes.

4. Mosaic gene foimation

16

This process is also referred to as segmental gene conversion and involves the

formation of a mosaic ELC from the combination of two or more VSG coding

regions, producing an antigenic ally novel surface coat, which protects the parasite

from existing antibodies in the bloodstream (Pays et al. 1985a; Longacre and Eisen,

1986; Roth et al. 1989; Thon et al. 1989; Kamper and Barbet, 1992). These

conversions are thought to be generally associated with antigen types appearing in

chronic infections when the host has acquired immunity to most o f the non-mosaic

genes (Roth et al. 1989; Thon et al. 1990; Barbet and Kamper, 1993). It has been
_

suggested that the additional source of antigenic variation provided by this relatively 

infrequent mode of switching could be important in prolonging the infection period 

(Kamper and Barbet, 1992). The simplest combinations arise when a new VSG gene 

does not completely replace the previous sequence in the BES, producing a chimera 

consisting mostly of the new gene, with the downstream region derived from the 

VSG originally in the BES (Pays et al. 1983d). In such cases, the two VSGs

'



involved have substantial homology with each other. More complicated segmental 

conversions between VSG gene family members result in the foimatioii of mosaic (or 

composite) genes (Pays et a l 1985a). Often, mosaic genes are constructed from 

various VSG members that are incomplete pseudogenes, and therefore cannot encode 

a VSG if  expressed singly (Thon et a l  1989).

5. “in situ” switching: the transcriptional activation of a new BES and silencing of 

the previous VSG gene

The in situ switch is the second major method of antigenic variation after gene 

conversion. Early experiments indicated that although these two processes would 

often occur simultaneously, they were in fact independent o f each other (Myler et al 

1984). in situ switching involves no exchange of genetic material, but requires the 

activation of a previously silent BES and the inactivation of the transcribed BES. 

This results in the formerly expressed VSG gene being silenced, while the VSG gene 

in the newly activated BES becomes transcribed. The regulatory mechanisms that 

ensure that only one BES is transcribed, whilst the other sites are maintained in an 

inactive state, have not yet been determined. Moreover, the potential mechanisms 

involved in executing a transcriptional switch between an active and inactive BES 

are only now being examined. Failure to activate the new BES would result in the 

loss of the surface coat and destmction of the parasite, while continued expression of 

the old BES would cause the production of a mixed VSG coat (Muhoz-Jordan et al 

1996), rendering the trypanosome vulnerable to antibodies raised against the last 

VSG. It had previously been hypothesised that a mobile promoter element, which 

could transpose from one BES to the next, would ensure that the two stages of in situ 

switching remained synchronous. However, in vitro studies on certain trypanosome 

variants demonstrated that more than one BES could be activated concurrently 

(Comelissen et a l 1985a), suggesting a stochastic model for the control of BES 

transcription (each BES is activated and inactivated independently of other BESs). 

Although this model was accepted for some time, a recent study has suggested that a 

more complicated system must operate, in which the activation and inactivation of 

the individual BESs are not independent of each other (further details in section 1.9, 

page 18) (Chaves et a l 1999).

17
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Figure 5. The mechanisms of VSG activation in T. brucei (adapted from (Borst, 1991b)): (1) 

duplicative transposition o f a chromosome internai BC gene; (2) telomere conversion of a silent gene; 

(3) segmental gene conversion; (4) reciprocal telomere exchange; (5) "in situ” transcriptional 

switching. Region A depicts a VSG gene at the active BES\ B, C and D represent chromosome 

internal BC genes; X and Y denote telomeric genes originating in silent loci; M depicts a mosaic 

gene; Z represents a VSG present at a different BES. Expression site promoters are denoted by flags, 

which are raised or lowered to represent activation / silencing respectively; transcription is indicated 

by an arrow under the BES. The vertical bars downstream of the VSGs represent the telomere ends.
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unlikely mechanism for antigenic variation, since an effective switch requires that 

the new VSG possesses a completely novel set of exposed epitopes, and it is 

improbable that this could be achieved through single base changes.

1.6 The metaeydic variable antigen types (MYATs)

In addition to these five mechanisms, it was thought that antigenic variation 

occuiTed during duplicative transposition by the generation of point mutations within 

the ELC (Lu et a l  1994). A more recent study, however, has concluded that point 

mutations are very rarely generated during the gene conversion process (Graham and 

Barry, 1996) and this is consistent with the earlier results of Kamper and Barbet 

(1992). It has also been suggested (Graham and Barry, 1996) that the high point 

mutation frequencies observed in earlier investigations are probably artefactual, 

associated with the intensive selection pressure and prolonged growth during 

experimentation. Indeed, Baltz et a l  (1991) were able to generate point mutations 

by deliberately growing trypanosomes under strong selective pressm'e for prolonged 

periods. Graham & Barry (1996) also implied that point mutagenesis seems an

I

In the metacyclic stage of development a small, specific, subset of KS'Gs is 

activated (1-2% of the total VSG repertoire). It is at this stage of the life cycle that 

the parasites pass from the tsetse salivary glands into the dermal connective tissue of 

a new mammalian host, where a chancre develops, resulting from a local 

inflammatory reaction (Barry and Emery, 1984). Metacyclic VSG {MVSG) gene 

expression occurs at telomeric expression sites (MÉ'5's) that are separate from those 

used by bloodstream forms (Comelissen et a l 1985b; Lenardo et a l  1986), and are 

expressed independently of the bloodstream VSG repertoire (Esser et a l 1982; 

Crowe et a l 1983; Turner et a l 1986). An infecting population of metacyclic 

parasites is polyclonal (Tetley et a l  1987), with the various VATs arising in fixed 

proportions in a particular serodeme (Hajduk et a l 1981), although each individual 

cell expresses only a single VSG in its coat. When the metacyclic parasites enter a 

new mammalian host, they soon differentiate to the long slender, rapidly dividing 

bloodstream form, but still express the MVSGs in situ fi’om the MESs. These 

parasites, known as metacyclic-derived trypanosomes, drain from the chancre into

19



1.7 Gene expression in trypanosomes
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the lymphatic system and eventually reach the bloodstream, where they persist for

approximately the first five days of infection (Esser and Schoenbechler, 1985), after 
.which the MESs are silenced and the BESs activated at around the sixth day of

infection. It is thought that the antigenically heterogeneous metacyclic population 

has evolved as a highly effective means of initiating and establishing an infection in 

a host that may have acquired immunity to various VATs in a previous infection 

(Barry a/. 1990).

Although the MVSG coding regions themselves are not obviously different from 

their bloodstream counterparts and can in fact be transposed to the BES during 

bloodstream infection, their upstream environment differs from that of other 

telomeric VSG genes. It has been demonstrated that this region is either completely 

devoid of the 70 bp repeats (Lenardo et al. 1986), or possesses just 1-2 copies of 

these repeats (Matthews et al. 1990), which presumably reduces the probability of 

recombination with the bloodstream VSG genes, thus accounting for the relative 

stability of the metacyclic genes. However, there is still movement of VSG genes 

through these telomeres, ensuring that the MVAT repertoire is constantly evolving 

(Barry et al. 1983); (Lenardo et al. 1986).

%

The trypanosome genome is thought to be polycistronic and intronless, appearing 

almost eubacterial in its organisation (reviewed in Clayton, 1992). However, the 

work of Marchetti et al. (1998) is indicative of a more complicated genomic 

arrangement. This investigation demonstrated that several RNA polymerase Ill- 

transcribed small nuclear RNA genes appeared to be scattered throughout the 

genome, and interspersed with the closely juxtaposed RNA polymerase II 

transcription units; this arrangement is characteristic of eukaryotic genomes. 

Interestingly, the RNA polymerase III genes constituted the 3’ boundary of the RNA 

polymerase II transcription units in the loci examined in this analysis.

A recent study has revealed that cliromosome 1 of Leishmania major displays a 

remarkable polycistronic gene an*angement, in which the first 29 genes are all 

encoded on one strand, while the remaining 50 genes are encoded on the opposite 

strand (Myler et al. 1999). The only known exceptions to the polycistronic



-

organisation in T. brucei are the MVSG genes, which are expressed in situ from 

monocistronic, telomeric loci (Graham and BaiTy, 1995). Genes within a polycistron 

are generally packed in dense clusters and often contain tandemly arranged copies of 

related genes, as observed for the T. brucei glucose transporters (Bringaud and Baltz,

1993). However, unrelated genes can also occur within a polycistron, and this is the 

case for the VSG BES (Pays et al. 1989b). Although the primary transcription 

within a polycistron is under common control, the individual genes within the unit 

can display markedly different expression levels (Gibson et al. 1988; Bringaud and 

Baltz, 1993; Revelard et al. 1993). This indicates that gene expression is controlled 

primarily at the posttranscriptional level in tiypanosomes.

The polycistronic primary transcripts are segmented into their constituent 

messengers by the RNA processing machinery (Ullu et al. 1993), individual mature 

mRNAs result resulting from the addition of a cap at the 5’ end and a poly[A]’̂ tail at 

the 3’ end. Capping is achieved by trans splicing, a process first described in T. 

brucei (reviewed in Nilsen, 1995), which is mechanistically related to cis splicing of 

introns in yeast and higher eukaryotes. During trans splicing, the 5’ ends of the 

nascent RNA molecules are processed by the addition of a 39 nucleotide pre-capped 

spliced leader, derived from a reaction with a 140 nucleotide mini-exon donor RNA 

(Murphy et al. 1986). The 3’ end of mature mRNAs is generated by cleavage of the 

pre-mRNA at a polyadenylation site, or by trimming from the downstream splice 

site, followed by the addition of a poly[A]’*‘ tail, using a mechanism similar to that 

operating in higher eukaryotes. The trans splicing and polyadenylation processes 

appear to be coupled, and both use a polypyrimidine tract as a recognition sequence 

(Matthews and Gull, 1994; Vassella et al. 1994).

T. brucei possesses the three classical RNA polymerases obseiwed in the other 

eukaryotes (Lee and Van der Ploeg, 1997). The polymerase involved in the 

transcription at the loci containing the VSG and procyclin genes appears to be 

resistant to very high concentrations of the drug a-amanitin, while the transcription 

of most other trypanosome protein-coding genes is inhibited by this drug (Kooter 

and Borst, 1984; Kooter et al. 1987). The a-amanitin insensitivity of the VSG and
;;

procyclin polymerase is indicative of RNA polymerase I, an enzyme complex that 

also transcribes ribosomal RNA genes.
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1.8 Life cycle dependent stage-specific regulation of VSG expression

Contrary to the early assumptions that VSG expression could be prevented entirely 

by BES promoter repression in the procyclic cells, it has been demonstrated that the 

BES promoters remain active throughout the bloodstream and procyclic stages of the 

trypanosome life cycle (Zomerdijk et al. 1990; Rudenko et al. 1994). The work of 

Rudenko et al. (1994) has revealed that during the procyclic stage, a low level of 

transcription could be detected from many (if not all) of the VSG expression sites. 

Although this study clearly demonstrated transcripts from more than one BES, it did 

not determine whether these products were representative of transcription from all of 

the BESs, transcribed at a low level, or from just a few BESs transcribed at a higher 

level (Ansorge et al. 1999). Similarly, this analysis could not establish whether all 

of the transcriptional products originated from individual cells, or whether the 

heterogeneity of these transcripts resulted fr om a phenotypically diverse population, 

in which each cell produced only a single (or few) transcript(s) (Rudenko et al. 

1994; Horn and Cross, 1997). Although this work was not entirely conclusive, it 

seems plausible that all the BES promoters display a similarly low level of 

transcription in the procyclic cells, and this model is widely accepted (Alarcon et al. 

1999). Further evidence for this model was provided by an investigation by Navarro 

and Cross (1998). The authors placed a reporter gene 1 kb downstream of a BES 

promoter and discovered that, in the bloodstream stage, transcription from this locus 

differed by 1000-fold, depending on whether the BES was active or inactive. 

However, in procyclic cells the amount of transcription was independent of the 

previous activation state of the BES, and proceeded at a level 100-fold below that 

obseiwed at the active BES in bloodstream form cells. It therefore appears that the 

mechanism of gene silencing operating in procyclic cells is different from that seen 

in the bloodstream stages, when only a single BES is maximally active.

The transcriptional down-regulation of the BESs associated with the procyclic stage 

occurs not only at the level o f transcription initiation (Rudenlco et al. 1994), but also 

by transcription attenuation (Pays et al. 1989a; Zomerdijk et al. 1990; Rudenko et 

al. 1994). This attenuation results in the transcription aborting at approximately 

500-1000 bp downstream of the promoter (Pays et al. 1989a; Zomerdijk et al. 1990; 

Rudenko et al. 1994), thus preventing the expression of any gene within that 

polycistron. The down-regulation of VSG expression observed in procyclic cells
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seems to be both promoter and position dependent. A BES promoter becomes 

derepressed when it is placed in the ribosomal spacer region (Rudenko et a l  1994), 

while a ribosomal promoter demonstrates no change in activity when it replaces the 

endogenous BES promoter (Rudenko et a l 1994; Horn and Cross, 1997).

A recent study, by Navarro et a l  (1999), has suggested that the repression of the 

BES promoters in the procyclic form is dependent on life-stage dependent changes in 

chromatin structure. In this study, a BES promoter was substituted with a 

bacteriophage T7 RNA polymerase (T7RNAP) promoter in trypanosomes that had 

been genetically manipulated to express T7RNAP. It was discovered that T7RNAP 

dependent transcription was unaffected in the bloodstream form, but was repressed 

in procyclic cells, where the effect was demonstrable along the entire length of the 

BES. Since it is unlikely that a bacteriophage-derived polymerase would be affected 

by inherent transcriptional regulation, it seems probable that this repression is due to 

conformational changes in chromatin structure.

The control of VSG expression from the metacyclic repertoire, in contrast to the 

BES regulation observed in bloodstream forms, displays a strict stage specific 

regulation under exclusively transcriptional regulation during the parasite life cycle 

(Graham and Barry, 1995). More recently, it has been revealed that MVSG gene 

promoter activity is also dependent upon cliromosomal location (Graham et a l 

1998). This study analysed the effect of introducing a metacyclic promoter, linked 

to a reporter gene, either back into its endogenous telomere, or into the non­

transcribed spacer region of ribosomal DNA. It was demonstrated that at the 

bloodstream stage of development the promoter was inactive at the telomere, but 

highly active at the chromosome-internal position, while no activity was seen at 

either locus in procyclic tiypanosomes. The regulation of MVSG repertoire is the 

only example of “true life cycle stage-specific control of gene expression by 

transcription initiation” discovered thus far in the Kinetoplastida (Graham and Barry,

1995).

It was previously believed that transcription only occurred from the active BES in 

bloodstream form trypanosomes. However, it has recently been demonstrated, by 

analysis of nuclear RNA following UV irradiation of the cells, that an extremely low 

level of minor transcripts can also be detected from some of the “silent” BESs and 

MESs (Alarcon et a l 1999). An immunofluorescence assay demonsti*ated that the 

number of contaminating (non-clonal) parasites was <1 in 5000 suggesting that these

5
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1.9 Regulation of a single active BES

Î

minor transcripts were not artefactual. It was also noted that, following UV 

irradiation, the proportion of the minor transcripts increased 2-3 fold, while the 

major RNA showed no corresponding increase. This discrepancy also implied that 

the rare transcripts were not derived from other active BESs in rogue cells. Evidence 

for this “leaky” transcription has also been observed in independent studies. For 

example, Ansorge et a l (1999) have demonstrated that, in a bloodstream form 

trypanosome clone expressing the 222 VSG BES, 20% of ESAG6 mRNA (which is 

transcribed exclusively in the BESs (Pays et a l 1989b)) originated from 

independent, supposedly inactive, BESs. In addition, an earlier study had revealed 

that a low level of dmg-resistance was conferred when neo or ble genes were 

inserted 1 kb downstream from a “silent” BES (NavaiTo and Cross, 1996).

By collating the analyses of several laboratories, Alarcon et a l (1999) have 

proposed a model for the regulation of the BESs and MESs throughout the 

trypanosome life-cycle. They suggest an epigenetic regulatory mechanism for the 

control of both BESs and MESs rather than an independent, life-cycle stage specific, 

system for the control of the metacyclic repertoire. This hypothesis can only be 

substantiated by further investigations in metacyclic trypanosomes, using single-cell 

reporter techniques (Barry et a l  1998; Alarcon et a l 1999) and by repeating these 

experiments in pleomorphic bloodstream trypanosomes.

In bloodstream fomi trypanosomes, only one out of the twenty BESs is maximally 

active at any particular time, while the remaining sites are “silenced”, ensuring that a 

single VSG is expressed in the surface coat. The fundamental mechanisms behind 

BES silencing and in situ switching have yet to be determined, despite the growing 

amount of interest and research in this area. It has been observed that switching 

between BESs occurs by regulation of transcription initiation, and this is not 

dependent on promoter sequence specificity (Rudenko et a l 1995). However, the 

method of promoter repression remains unclear. Until vei*y recently it was 

considered that BES repression could be controlled by telomeric silencing associated
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with changes in chromatin conformation, and this was consistent with the 

observation that actively transcribed telomeres grow slightly faster than inactive 

telomeres (Pays et a l 1983b; Myler et a l 1988b). In addition, it has been shown 

that the active and silent BESs display marked differences in their sensitivity to 

DNAasel (Pays et a l 1983b) and single-strand specific endonucleases (Greaves and 

Borst, 1987). However, the latest and most comprehensive analysis of in situ 

switching has suggested that the regulation of BES transcription cannot be controlled 

by telomere silencing alone, and could even be influenced by an entirely different 

mechanism (Chaves et a l  1999). This study utilized trypanosomes in which two of 

the BESs were tagged with different selectable marker genes, enabling the 

investigators to attempt to produce double expressors (with transcription occurring at 

both BESs, therefore resulting in a mixed VSG coat) by drug selection in vitro. It 

was found that double resistant clones arose at a low frequency, and appeared to be 

achieving this phenotype by rapidly switching between the two BESs. The authors 

concluded that the BESs were not activated / inactivated independently and 

suggested that the double expressors were not a stable intennediate during in situ 

switching. They also proposed that BESs can exist in a “pre-active” silent state, from 

which they can be readily activated (explaining the rapid switching between the two

Î

BESs during drug selection). These results indicate that the mechanism of BES 

regulation cannot be explained by telomeric silencing alone and it appears that a

non-stochastic system must operate.

It has also been suggested that the novel modified nucleotide p-D-glucosyl-
!

hydroxymethyluracil (base J) could be involved in telomere inactivation (Gommers- 

A npt et a l 1993). This modification was originally detected following the 

observation that some telomeric DNA was partially resistant to digestion by the 

restriction digestion endonucleases Pstl and Pvull (Bernards et a l 1984; Pays et a l 

1984), and this was subsequently shown to result from presence of a previously
'

unidentified base (Gommers-Ampt et a l 1991). Further analysis demonstrated that 

this modification con-elated with base J, which substitutes approximately 0.5-1.0% 

of thymidine in the DNA of African trypanosomes (Gommers-Ampt et a l 1993).

Base J appears to accumulate around non-transcribed repetitive sequences including

the telomeric repeats (van Leeuwen et a l  1996), the 50 bp repeats that lie upstream 

of the BES promoters and the 177 bp repeats that constitute the majority of



1.10 The dynamics of trypanosome antigenic variation and hierarchical VAT 

(variable antigen type) expression
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minlchromosomal sequence (van Leeuwen et a l 1997). This modification is also 

seen in the VSG coding sequence and associated 70 bp repeats in the silent BESs, but 

is absent from these sites at the active telomere (van Leeuwen et a l  1997); the 

changes at the silent sites are lost reversibly on transcriptional reactivation. 

Although base J is found in non-transcribed VSG genes near telomeres in 

bloodstream from trypanosomes, it does not occur in the chromosome-internal anuys 

and is completely undetectable in procyclic cells.

The association of base J with telomeric repeat sequences has led to the suggestion 

that a modifying enzyme could recognise and bind to these regions and operate for a 

distance along the neighbouring DNA (Bernards et a l 1984). This hypothesis is 

consistent with the observation that the modification becomes progressively more 

pronounced towards the telomere end (Bernards et a l 1984). Alternatively, it is 

possible that putative changes in chromatin structure, associated with the repetitive 

DNA that surrounds the VSG genes in the BESs, could act as a target for such a 

modifying enzyme (van Leeuwen et a l 1997). The fact that the active BES is 

devoid of J in the VSG coding sequence and flanking 70 bp repeats is suggestive of 

competition between transcription and DNA modification in the BESs. However, it 

has not yet been established whether base J modification is the direct cause of BES 

inactivation, or whether it is a consequence of telomeric silencing that could 

facilitate the repression of the inactive state (van Leeuwen et a l  1997).

T. brucei is transmitted to a new mammal when metacyclic parasites are introduced 

into the host dermal connective tissue by the bite of an infected tsetse fly. As 

mentioned previously, these metacyclic trypanosomes rapidly differentiate to the 

long slender bloodstream form, but continue to express the metacyclic VSG genes 

over the first few days of infection. At about day 5-7 it appears that the MESs are 

silenced and transcription commences fr om the BESs, resulting in the expression of 

the bloodstream VAT repertoire (Esser and Schoenbechler, 1985; Barry, J. D., pers.

I



comm.). Often, one of the first BVATs to become activated is the major VAT 

ingested by the tsetse fly when it took its infective feed (Hajduk et al. 1981 ; Delauw 

et al. 1985). As the infection progresses, the parasitaemia displays a continually 

relapsing growth pattern consisting of recurring infective peaks, each embodying 

multiple VAT sub-populations, and troughs of sub-patency. The parasitaemic profile 

of a trypanosome infection can contrast greatly between populations in different 

hosts, with differences arising in the timing of emergence, number and complexity, 

and overall size of the relapse peaks (Barry, 1986). A typical mouse parasitaemic 

profile (representative of a less complicated infection) is presented in Figure 6, and 

displays a classical relapse pattern.

0)  8 .0  —

Many B-VATs

Figure 6. Typical parasitaemic profile o f a trypanosome infection in a mouse host (After Barry, 

1997b; data from Hajduk et al. 1981). The shaded sub-peak represents the expression of the 

metacyclic repertoire. The irregular shape o f the two main parasitaemia peaks is due at least partly to 

the different VAT sub-populations embodied within the population, since each VAT generates a 

distinct sub-peak. As the infection progresses, a series o f complex relapse peaks will be generated.

Investigations into the progression of antigenic variation in trypanosomes have 

revealed that some VATs are expressed more frequently than others, clearly 

demonstrating a “semi-predictable” order of antigen type appearance (Gray, 1965);
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controlling the population dynamics of the trypanosome infection, it is important to 

recognise that the actual timing of antigenic variation appears to be independent of 

this influence (Myler et a l  1985).

1

(Capbem et a l  1977; Miller and Turner, 1981; Timmers et a l  1987). It is thought 

that this hierarchical expression of VATs enables the parasites to maximize the 

infection period by ensuring efficient use of the potentially exhaustive VSG gene 

repertoire. Monomorphic studies have revealed that the early switches appear to 

involve predominantly telomeric BC genes (Pays et a l  1983a; Myler et a l 1984; 

Liu et a l 1985), while the chromosome-internal genes, which are presumably 

activated at a lower frequency, must be expressed after the initial stages of infection, 

since they represent the majority o f the VSG gene repertoire (Lee and Van der Ploeg, 

1987; Timmers et a l 1987). Towards the end of an infection, the products of

relatively rare switching events, such as segmental gene conversion, become 

apparent (Thon et a l 1989; Barbet and Kamper, 1993), During an infection it is 

inevitable that more frequently activated VSG genes will become re-expressed by 

some trypanosomes. However, any parasite presenting a VAT that has been 

previously encountered by the host immune system will be eliminated, and this 

provides some explanation of how the less frequently activated VSGs arise in the 

later stages of infection. Although the immune response plays a significant role in 'A

. 1,

:

1.11 The minichromosomes of T. brucei

T. brucei possesses approximately 100 minichromosomes which vary in size

Ibetween about 25 and 150 kb (Van der Ploeg et a l 1984b; Gibson and Borst, 1986). 

These cliromosomes are linear and contain a tandemly repeated 177 bp element 

(Sloof et a l 1983), which constitutes approximately 80-90 % of the entire sequence. 

This repetitive region appears to be indigestible with most restriction enzymes 

(Williams et a l 1982; Weiden et a l 1991), including some that cut frequently, such 

as HaelVl (Weiden et a l 1991). The 177 bp repeats flank a unique stretch of DNA, 

located in the centre of the chi'omosome, which extends for about 5 kb and is termed 

the restriction island, after the discovery of several unique restriction sites within this 

domain (Gull et a l 1998). The sub-telomeric region immediately proximal to the
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177 bp repeats appear to consist of minichi'omosomal specific DNA (Weiden et a l

"4

I
1991), while GC-rich repeat sequence, separated by AT-rich spacers, have been 

detected between the specific sequence and the telomeric repeats (Weiden et a l

1991). The telomeres themselves consist of a conserved (CCCTTA)n repeat that is 

also represented in the telomeres of the larger chi'omosomes (Van der Ploeg et a l 

1984a). VSG genes are the only protein encoding genes that have been discovered 

thus far on minichromosomes (Van der Ploeg et a l 1984b; Weiden et a l 1991), and 

these provide the trypanosome with a large pool of silent telomeric BCs.

There has been no evidence of the VSG genes becoming transcribed from

29

minichi'omosomal loci, and no VSG promoters have been discovered thus far. 

However, Zomerdijk et a l (1992) demonstrated ribosomal promoters on two 

minicliromosomes in 427 monomorphic trypanosomes. One of these promoters was 

located adjacent and internal to the telomeric repeats, which has led to speculation 

that this region is a product o f telomere healing, possibly by de novo telomere 

addition. The authors targeted a neo gene behind this promoter, and subsequently 

demonstrated that it could efficiently mediate weo-mRNA synthesis.

I
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1.12 Differences between monomorphic and pleomorphic trypanosome lines

Trypanosomes rapidly become attenuated in the laboratory as a result of repeated #

syringe passaging. These monomorphic lines no longer differentiate to the stumpy

bloodstream form and under normal circumstances cannot be transmitted by tsetse

fly bite. Additionally, monomorphic trypanosomes display a marked drop in the

overall rate of antigenic variation, which, at 1 x 10'^ -  1 x 10"̂  switches/ a

cell/generation (Lamont et al. 1986), is up to five orders of magnitude lower then in f

the non-adapted, pleomorphic lines (Turner and Barry, 1989; Turner, 1997).

Although this reduced switch rate has facilitated studies into antigenic variation,

allowing cloned populations to remain predominantly of one VAT during expansion,

it is important to consider the possibility that the selection to monomorphism is

associated with alterations in the cell’s recombinational or transcriptional machinery.
.The diminished rate of antigenic variation in monomorphic trypanosomes is low f

enough to be explained by background mutation and mitotic homologous 

recombination, and this raises questions about the significance of the VSG gene 

activation events obseiwed in these lines. Bany (1997a) proposed that the difference 

in VSG gene switching between monomorphic and pleomorphic trypanosomes is 

indicative of a specific gene switching mechanism that might include a dedicated 

enzyme activity catalysing specific recombination, which is reduced in, or even 

absent from, monomorphic lines (further details are given in sections 3.1, page 52 

and section 6.5, page 146).

In monomorphic trypanosome lines, in situ switching predominates during the early

stages of infection (Liu et al. 1985), while duplicative events become more common 

only as the infection progresses (Michels et al. 1983; Lee and Van der Ploeg, 1987; 

Timmers et al. 1987). Both in situ and duplicative events have been observed in the 

relatively few analyses performed using pleomorphic trypanosomes (Delauw et al. 

1987; Shah et al. 1987; Matthews et al. 1990), but the relative frequencies of these 

two activation mechanisms have not been deteimined at any stage of the expression 

hierarchy. If duplicative events are controlled by a dedicated mechanism in 

pleomoiphic lines, then it is logical to expect a higher proportion of duplicative 

switching, relative to in situ transcriptional switches, throughout the entire
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expression hierarchy, when comparing pleomoiphic with monomorphic populations.

The main objective of the work presented in this thesis was to examine this 

hypothesis, by asking thi'ee key questions regarding tiypanosome antigenic variation:

I
1. How are VSG genes activated during early infection, and is there a predominant n 

switching mechanism?
Î

2. Where are the VSG gene donors located, and does their chromosomal 

environment influence their timing o f appearance in the VSG gene expression 

hierarchy?

3. Which BESs are involved in the early switching events, and what are the 

boundaries of duplication during gene conversion?
i
.a

I
I
;
J
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R e a g e n t  A b b r e v ia t io n s

AIX selective plates for blue/ white colony screening:

L-agar supplemented with 0.27 M ampicillin (Sigma, Ltd.), 0.5 mM IPTG 

(Boehringer Manheim), 0.2 M X-Gal (Boehringer Manheim)

CBSS Carter’s Balanced Salt Solution (1 x):

0.023 M HEPES, 0.12 M NaCl, 5.41 mM KCl, 0.55 mM CaCh, 0.4 mM MgS0 4 , 5.6 

mM Na2HP0 4 , 0.035 M glucose, 0.05 mM phenol red, pH to 7.4

DEPC diethyl pyrocarbonate:

Used at 0.1% to remove RNAase

DMSO dimethyl sulphoxide

EtBr ethidium bromide

IPTG isopropyl-p-D-thiogalactopyranoside

NDS solution used for the manufacture of genomic plugs (1 x):

0.5 M EDTA, 0.5 M TRIS base, 0.5 M NaOH, 17 mM lauroyl sarcosine, 

pH adjusted to 8 or 9 with NaOH

PBS phosphate buffered saline (Sigma, Ltd.)

PSG phosphate/ sodium chloride/ glucose buffer (1 x):

0.06 M Na2HP0 4 , 3.6 mM NaH2P0 4 , 46 mM NaCl, 55 mM glucose, pH to 8

SDS sodium dodecyl sulphate

SOC SOB broth + 20 mM glucose
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SOB Bacterial media (per litre):

20 g bacto-tryptone, 5 g bacto-yeast extract, 0.5 g NaCl

SSC sodium chloride/ sodium citrate solution (1 x):

0.15 M NaCl, 0.015 M Na3C6H507 .2H20

TAE TR IS/acetate/EDTA buffer (Ix):

0.04 M TRIS base, 0.04 M glacial acetic acid, 1 mM EDTA

TE 10 niM Tris.Ci, 1 mM EDTA

TBE TRIS/ borate/ EDTA buffer (Ix):

0.089 M TRIS base, 0.089 M ortho-boric acid, 2 mM EDTA

X-Gal 5-bromo-4-chloro-3-indolyl-p-D-galactoside
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Trypanosomes were grown from stabilate in ICR mice that had been 

immune suppressed by cyclophosphamide treatment (250 mg. kg'^ body weight, 

Sigma Ltd.) 24 h previously. Unless otherwise stated, exsanguination was 

performed at the initial parasitaemic peak (typically 3-5 days post infection) by 

cardiac puncture into 5% sodium citrate anticoagulant in CBSS (Fairlamb et al.

1992) (0.1 ml of 5% citrate used per 0.9 ml collected blood).

Stabilates were prepared immediately by mixing the blood 2:1 with 22.5% DMSO 

(in CBSS), and freezing the sample gradually to -70°C over a 24 h period; the

2.1 Routine handling of trypanosomes

The two tiypanosome clones utilized in this study were derived fi'om a 

Trypanosoma brucei EATRO (East African Tiypanosomiasis Research 

Organization) 795 line that is tsetse fly transmissible. The ILTat (I.L.R.A.D. -  

International Laboratory for Research in Animal Diseases -  Trypanozoan antigen 

type) 1.2 expressor clone switches VSG at about 1 x 10'^ switches/cell/generation 

and the ILTat 1.61c clone, derived from a single metacyclic trypanosome, switches 

at about 3 x 10'^ switches/cell/generation (Turner, 1997). The ILTat 1.2 infections 

were undertaken in lop-eared or New Zealand White rabbits (Bantin and Kingman, 

Hull, U.K.), while the ILTat 1.61c investigation involved single relapse infections in 

ICR mice (Bantin and Kingman, Hull, U.K.). The rabbit infections were established 

by the intravenous injection of approximately 1 x 10  ̂ clonal tiypanosomes 

(previously grown in an immunosuppressed mouse infected with the ILTat 1.2 

stabilate), while the single relapse infections were initiated by an intraperitoneal 

injection of the ILTat 1.61c stabilate into an immunosuppressed mouse; subsequent 

cloning steps were performed in non-immunosuppressed mice. Full experimental 

details and clone histories are given in sections 3.2-3.3 and 3.10 (pages 53 and 74 

respectively). Routine procedures are described below.

2.1.1 Host immunosuppression, trypanosome growth and collection, and 

stabilate manufacture

stabilates were then transferred to liquid nitrogen for storage. When a stabilate was 
.required for infection a tube o f it was thawed rapidly at 37°C, mixed with 0.1 ml 5%

'I
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4
foetal calf serum (in CBSS) and injected immediately into the immunosuppressed 

animal.

If a large number of parasites were required (e.g. for preparing genomic DNA), the 

infection was established in an immunosupressed ICR mouse and the blood collected 

at the initial peak as before, but then divided equally and injected intraperitoneally 

into two Wistar rats (Bantin & Kingman, Hull, U.K.). The trypanosomes were then

harvested at the initial peak, typically 24-48 h later.

2.1.2 Trypanosome cloning

Trypanosome clones were isolated immediately from the blood by

micromanipulation. A dilution series of the trypanosomes was prepared in 5% foetal

bovine serum (GibcoBRL, Life Technologies) in CBSS, in the wells of a Terasaki

dish (Greiner labortechnik). These dilutions were examined using a binocular

microscope to establish the number of trypanosomes in each well. When a well

containing a single trypanosome was found, 5 ql 5% foetal bovine serum (in CBSS)

was carefully pipetted into that well. The entire contents were transferred by

micropipette into 100 ql 5% foetal bovine (in CBSS) in a 1.5 ml eppendorf tube. 
.This liquid was then drawn into a syringe containing 0.4 ml of air, and was injected 

immediately, intraperitoneally, into an ICR mouse, using the air to push the last drop 

of liquid from the syringe. The Terasaki plate was kept moist by lining the edges 

with wet tissue, and the procedure was undertaken in an atmospherically controlled 

environment (14°C, 80-95% humidity).

I
'r'
;4:

2.1.3 Preparation of blood smears for Immunofluorescence and plasma for 

immune lysis

Thin-film blood smears were prepared by placing a drop of blood (mixed 1:1 with

CBSS) on a glass microscope slide. The blood was spread along the length of the 
.slide using a slide edge and left to air-dry. The smears where then fixed in acetone

.for 5 min, air-dried, and stored at 4°C sealed in polythene bags containing silica gel 

(to remove any moisture). If trypanosomes were not being collected for other
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purposes, the small amount of blood needed for these smears was taken from the tail 

of the mouse using a surgical lancet.

Plasma was prepared directly from the rabbit blood. On each day of infection, in 

all four rabbits, 0.4 ml of blood was isolated and this was spun at maximum speed in 

a microcentrifuge for 10 min, to pellet the trypanosomes and the larger blood 

components. The supernatant was then collected and sodium azide was added to a 

final concentration of 0.2% (to prevent microbial growth during storage). Plasma 

(containing specific antibodies) was also prepared from the clonal mice in the ILTat

1.2 study (see section 3.3, page 53). At the initial peak these mice were drug-cured 

with cymelarsan (5 mg.kg’  ̂ body weight; Rhone Mérieux) and the blood was 

collected three days later (allowing sufficient time for antibodies to be raised); the 

plasma was then prepared as above. All the plasma samples were stored in 1.5 ml 

screw-cap eppendorf tubes at 4°C.

2.2 Serology

2.2.1 Immune lysis assay

Trypanosomes were suspended in guinea-pig complement to 5 x 10  ̂cells.mf^ The 

plasma isolated from the clone mice (containing specific antibodies) was diluted 

1 ;20 in guinea-pig complement (Harlan) and mixed with the trypanosome dilution in 

the bottom of a V-welled microtitre dish (Greiner laborteclmik). Incubation was 

undertaken at room temperature for 1 h after which the contents of the well were 

mixed again. A drop (5ql) of the reaction was then placed on a microscope slide and 

sealed with a glass coverslip. Percentage lysis was then detennined by phase- 

contrast light microscopy, with destroyed cells appearing as ruptured “ghosts”. Each 

trypanosome clone was also incubated for an hour in the presence of guinea-pig 

complement alone, as a negative control, to ensm*e that all the lysis was due to the 

action of antiserum. The assay was performed within an hour of blood collection 

and the trypanosomes were stored on ice while the dilutions were prepared.
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2.2,2 Immunofluorescence

S

Indirect immunofluorescence was performed on the acetone-fixed thin blood 

smears that were prepared for each of the clone mice. Reference antisera, which 

originally had been derived in either mouse or rabbit hosts, were used separately as 

the primary antibody (see section 3.6, page 63). Prior to the experiment, the slides 

were marked with a hydrophobic paint pen (Mark-Tex corp., BDH) to produce wells 

for antibody containment. The smears were then rehydrated for 5 min in PBS 

(Sigma, Ltd.), drained and dried between the wells, and transferred to a humid 

chamber. A drop (5ql) of the appropriately diluted primary antibody was then added 

to the wells and incubated at room temperature for 30 min (details of primary 

antibodies and dilutions are indicated in Table 3, section 3.6, page 64). The slide 

was then drained and washed twice with PBS, and dried between the wells.

Afterwards, 5ql anti-rabbit or anti-mouse IgG fluorescein isothiocyanate (FÏTC) 

labelled corrugates (Promega) (diluted 1:100 or 1:50 respectively) were introduced 

into the wells and incubated at room temperature for 15 min. The slide was again
■I

washed twice in PBS and a few drops of PBS:glycerol (1:1) were added, after which 

the wells were sealed with a glass coverslip. Fluorescence was then determined by f

UV light microscopy using an arbitrary scoring system: - no fluorescence, (+) faint 

fluorescence, + slight fluorescence, ++ clear fluorescence and +++ strong 

fluorescence. Positive controls were also performed using the VAT specific mouse 

plasma, generated from the clonal mice, as the primary antibody. The plasma in 

these controls was diluted in 1 x PBS to 1:80, previously determined by an 

optimisation series.

2.3 Reverse transcription polymerase chain reaction (RT-PCR)

2.3.1 RNA isolation

RNA was isolated directly from infected blood (after the parasitaemia achieved 1 x 

10 '̂  ̂ cells.mf^ or greater (Herbert and Lumsden, 1976)) with TRIzol (Gibco-BRL, 

Life-Technologies). The blood was mixed with TRIzol (0.1ml blood: 1 ml TRIzol) 

and incubated at room temperature for 5 min. Following incubation, 200 pi of

Î
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chloroform was added and the tube was shaken vigorously for 15 s before incubation 

at room temperature for 2-3 min. The solution was then spun at maximum speed in a 

microcentrifuge (cooled to 4°C) for 15 min and the colourless aqueous phase was 

eluted. Afterwards, 1 pi of (10 mg.ml'^) glycogen and 500 pi of isopropanol were 

mixed with this eluate, and the reagents were then incubated at room temperature for 

10 min. The RNA was then pelleted by centrifugation for 10 min at 4°C, after which 

the supernatant was removed. The pellet was washed with 1 ml 75% ethanol, air- 

dried and dissolved in 11 pi DEPC-treated water.

2.3.2 Reverse transcription

2.3.3 PCR amplification of VSG specific cDNA

39

cDNA was generated by reverse transcription using Superscript II reverse 

transcriptase (GibcoBRL, Life Technologies). 1 pi of 0.5 pg.pl"^ oligo[dT] primer 

(GibcoBRL, Life Technologies) was added to the 11 pi containing RNA (see Section 

2.3.1, page 38) and heated to 70°C for 10 min. After cooling the solution on ice, 2 pi 

10 X PCR buffer (Advanced Bioteclinologies), 2 pi 25 mM MgCL, 1 pi 10 mM 

dNTPs (Pharmacia Biotech) and 2 pi 0.1 M DTT were added to the reaction, which 

was mixed and warmed to 42°C for 5 min. Next, 1 pi of Superscript II (200 U.pl' ) 

reverse transcriptase was added and the tube incubated at 42°C for 50 min. The 

enzyme was then heat inactivated at 70°C for 15 min after which the solution was 

cooled on ice. Finally, 1 pi o f RNAase H (3.8 U.pl'^) was added and the reaction 

incubated at 37°C for 20 min to remove the single stranded RNA.

DNA representing the expressed VSG gene was amplified from the cDNA using 

two short oligonucleotides (manufactured by Cruachem) as described by Carrington 

et a l (1991). The first primer (tbsl: GTTTCTGTACTATATTG) was a 17mer 

specific to the mRNA spliced leader, while the second primer (tb3ut: 

G tgttA A A A TA TA T C A ) was an antisense 16mer specific to a region in the 

downstream untranslated region (UTR), highly conserved in all VSG genes. The 50 

pi PCR reactions consisted of the following components: 5 pi 10 x PCR buffer 

(Advanced Biotechnologies), 3 pi 25mM MgCh, 1 pi 10 mM dNTPs (Phaimacia

i
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Biotech), 2 pi 5 pM tbsl, 2 pi of both 5 pM primers, 0.5 pi (5 ll.pl'^) Taq polymerase 

(Advanced Biotechnologies), 1 pi cDNA from the RT step and 35.5 pi sterile, 

distilled water. This reaction mix was contained within a thin-walled
■ ' I

microeppendorf tube (Perkin-Elmer corporation), and was overlaid with a drop of 

mineral oil (Sigma Ltd.). Amplification was performed in a Stratagene 

Robocycler96 for 30 cycles of 1 min at 96°C, 1 min at 42°C and 2 min at 70°C; the 

reaction began with a “hot start” at 96°C for 5 min and ended with a 5 min extension 

period at 70°C. An aliquot (usually 10 pi) of the PCR product was run on a 0.7% 

agarose gel at 100 V for analysis.

2.4 Cloning of PCR amplified VSG specific cDNAs

2.4.1 Ligations

.:;4'

Following fractionation on a 0.7% agarose gel, the VSG specific PCR products 

were gel purified using the QIAgen gel extraction kit (following the manufacturer’s 

protocol) and were cloned with the “T-easy” vector (Promega) or PCR Script Amp 

SK(+) plasmids (Stratagene) (following the manufacturer’s protocol); the ligations 

were performed either overnight at 4°C (“T-easy”), or at room temperature for 1 h 

(PCR Script). At each cloning attempt several different insertivector ratios were
;4.,

prepared {e.g. 1, 2, 3 and 5 pi of purified PCR product) to maximize the probability y

of a successful ligation. The “T-easy” vector possesses an open multiple cloning site 

with a 3’ teiminal thymidine at either end. This enables Taq polymerase generated 

PCR products, which contain 3’ terminal adenines, to be ligated directly into the site.

The PCR Script system works by adding an infrequently cleaving restriction 

enzyme, which cuts at a site within the plasmid polylinlcer (producing blunt 

overhangs) into the ligation mix. PCR products generated by Taq polymerase must 

be “polished” (to remove the 3’ A overhangs) using Pfu polymerase before the 

ligation step.
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2.5 Isolation and purification of trypanosomes from blood
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2.4.2 Transformations and plasmid retrieval

Transfoimations were performed by heat shocking competent E. coli DH5a cells 

(GibcoBRL, Life Technologies). Approximately one-third (usually 3 pi) of the 

ligation product was added to a 100 pi aliquot of competent cells (previously thawed 

on ice), mixed gently, and left on ice for 30 min. The cells were then heat shocked at 

42°C for 60 s, and immediately transferred to ice for 1-2 min. Afterwards, 0.9 ml of y

SOC was then added to the cells, which were subsequently placed at 37°C for 1 h.

After this incubation period, the cells were spun down, resuspended in 100 pi SOC,
.4

and spread on AIX selective L-agar plates, allowing blue/white colony screening 

(AIX plates: 0.27 M ampicillin (Sigma, Ltd.), 0.5 mM IPTG (Boehringer Manheim),
y

0.2 M X-Gal (Boeliringer Manlieim)). Transfomied colonies were re-streaked on
y

fresh AIX plates, after which a single colony was selected to inoculate 5 ml L-broth 

(supplemented with ampicillin to a final concentration of 10 pg.m f’). The plasmids 

were then retrieved from 3 ml of this overnight culture using the QIAGEN Mini kit 

(following the manufacturer’s protocol), and the insert size was determined by 

restriction digestion with Nofi (“T-easy” vector) or NotV EcoVl (PCR Script) of 300 

ng plasmid (the enzymes were obtained from New England Biolabs). Resultant §

products were visualised on a 0.7% agarose gel.

%

During some procedures, such as preparing genomic DNA, it was necessary to 

separate the trypanosomes from blood components, and this was achieved on a
i

Percoll gradient (Grab and Bwayo, 1982). A Percoll stock solution was prepared by 

adding 8.55 g of sucrose and 2.00 g of glucose to 100 ml of 100% percoll (Sigma,

Ltd.), and the pH was adjusted to 7.4 by adding solid HEPES. As soon as the blood 

was collected, an equal volume of Percoll stock solution was added and the solution 

was mixed. Another 4 volumes of Percoll stock solution and 2 volumes of CBSS 

were then added and mixed, and this solution was then transferred to 50 ml
y

centrifuge tubes (Nalgene, BDH) (filled to at least 80% of the total tube volume). 7

The tubes were then centrifuged in a JA20 (Beckman) rotor (with a fixed angle of



34°) at 17500g for 15 min at 4°C. This caused the trypanosomes to separate from J

the blood cells, and formed a discrete band near the top of the gradient. The 

parasites were then collected with a disposable plastic pipette. Following pelleting 

(by centrifugation in a swing out rotor at 1500g for 5 min), the trypanosomes were 

washed in CBSS to remove the Percoll; this washing step was repeated at least once 

to ensure that no traces of Percoll remained.

4:

,

2.6 Isolation of genomic DNA

2.6.1 Preparation of genomic plugs from live trypanosomes

IIt was necessary to produce minimally sheared genomic DNA, encased in agarose 

plugs, for the pulsed field gel electiophoresis (PFGE) analysis. Following their 

isolation on a Percoll gradient, trypanosomes were spun down gently (1500g) at 

room temperature and carefully resuspended in PSG buffer. This wash was repeated 

once more, and the concentration of the cells was determined using a 

haemocytometer under a phase contrast microscope. The trypanosomes were then 

spun down again and resuspended in PSG to a concentration of 1 x 10  ̂ cells.ml'^

(twice the final concentration o f the plug) and warmed to 37°C for 1 min. Equal

volumes of the trypanosome suspension and a 1.4% low-melting point agarose 

(InCert agarose, FMC Bioproducts) solution (which had been melted and cooled to 

37°C previously) were mixed together by swirling, resulting in a final concentration 

of 5 X 10  ̂cells.mf' in 0.7 % agarose. Next, 100 pi of this suspension was pipetted
"

into each well of a plug mould (BIO-RAD) and allowed to set. The plugs were then 

placed in NDS at pH 9.0, supplemented with 1 mg.mf^ proteinase K (Sigma, Ltd.),

at 50°C for 24 h. After this period, the plugs were transferred to NDS at pH 8.0, and
:l

supplemented with 1 mg.mf* proteinase K, at 55°C for 24 h. The plugs were then 

stored in fresh NDS at pH 8.0 at 4°C.
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2.6.2 Standard genomic DNA preparations

Tiypanosomes were separated on a Percoll gradient, as described previously, and 

then washed in ice cold digestion buffer (10 mM Tris-HCl at pH 7.5, 1 mM EDTA 

and 100 mM NaCl). The cells were then centrifuged at 1500g and resuspended in 5 

ml digestion buffer, supplemented with SDS to 1% and proteinase K to 1 mg.ml'^ 

and incubated for at least 2 h at 55°C; the solution was swirled gently every 15 min. 

RNAase was then added to a final concentration of 100 pg.m f’ and incubated at 

50°C for at least an hour. The genomic DNA was then phenol/chloroform extracted 

2-3 times and chloroform extracted once; the phases were separated by centrifuging 

at 10 OOOg for 10 min. Wide-bore disposable plastic pipettes were used to aspire the 

aqueous phase, to ensure minimal shearing. Afterwards, 1/20 volume of 3 M sodium 

acetate was added, and the DNA was then ethanol precipitated by layering 2 volumes 

of 99% ethanol onto the solution and swirling the tube gently; the DNA eventually 

contracted into a tight pellet. The pellet was then spooled using a sealed Pasteur 

pipette hook and placed in 70% ethanol to remove salts. After repeated ethanol 

washes, the pellet was drained and air-dried, after which it was dissolved in TE to a 

final concentration of 1 pg.pl'\

2.7 Gel electrophoresis and Southern blotting

2.7.1 General gel electrophoresis

Standard DNA separations were perfoimed on 0.7% agarose gels (GibcoBRL, Life 

Technologies) run at 100 V in 1 x TAE buffer, using a commercial 1 kb ladder as a 

size marker (GibcoBRL, Life Technologies).

2.7.2 Genomic digestions

Genomic DNA (usually 1 pg) was digested overnight with the appropriate 

restriction enzymes, following the manufacturer’s protocol (New England Biolabs). 

The products were then fractionated on a 0.7 % agarose gel run at 30 V (overnight in
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2.7.3 Pulsed field gel electrophoresis (PFGE)
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1 X TAE buffer) to ensure a high resolution of the bands, after which the DNA was 

transferred to a nylon membrane by Southern blotting (see below).

Chromosome sized DNA was resolved by PFGE using the CHEF-DR. Ill system 

(BIO-RAD). This method of electrophoresis is highly sensitive to changes in buffer 

composition and it is therefore important to ensure that the gel is made from (and the 

genomic plugs dialysed in) the buffer that is circulating in the tank (and not from a |

fresh buffer stock). At least 2 litres of the appropriate buffer were circulated in the 

electrophoresis tank for 10 min, after which a small sample was taken for dialysing |

the genomic plugs. The plugs were dialysed, at room temperature, in 1 ml of buffer, 

which was changed eveiy hour for four hours. After the final change of buffer, the 

plugs were placed at 4°C and left overnight. The following day, 105 ml of buffer 

were taken from the tank and the agarose gel was prepared at the appropriate 

concentration. Following dialysis, the genomic plugs were placed on the comb of 

the gel former (one-half a genomic plug per lane) and 100 ml of the molten agarose 

was then poured, and allowed to set. After 30 min, the comb was removed (leaving 

the plugs embedded in the gel) and the wells were filled with the remaining liquid 

agarose. The three PFGE conditions utilised in this thesis were as follows: (i) 6 -day 

general separation, 1.2% agarose gel at 15°C in 0.089 M Tris-borate, 0.1 mM EDTA 

(1 X TB(O.l)E) (85 V, 1400-700 s pulse time, 144 h); (ii) 1.8 Mb resolving run, =f

identical to the general run except the pulse time was fixed at 600 s; (iii) 

minichromosomal separation, 1.0 % agarose gel at 14°C in 0.045 M Tris-borate, 0.5 

mM EDTA (0.5 x TBE) (200 V, 20 s pulse time, 16 h). The DNA was then
;S'-

transferred to a nylon membrane by Southern blotting.



2.7.4 Southern blotting

Prior to blotting, the agarose gels were stained with ethidium bromide and viewed 

and photographed on a UV transilluminator. The gel was then placed in 200 ml 0.25 

M HCl for 15 min (to nick the DNA), rinsed with distilled water, and immersed in f

200 ml dénaturation solution (0.5 M NaOH, 1.5 M NaCl). After 30 min of jf]

denaturing, the gel was rinsed briefly with distilled water and then placed in 200 ml 

neutralizing solution (1 M Tris-HCl pH 8.0, 1.5 M NaCl) for 30 min. The DNA was 

then transfeiTed to a nylon membrane (Micron Separations, Inc. or Hybond-N) by 

wet blotting using 20 x SSC as the transfer buffer (Sambrook et a l 1989); standard
y

blots were left for 24 h, while PFGE blots were left for 48 h. After transfer, the
,;4

DNA was crosslinked to the membrane using a UV spectrolinker.

2.8 Probe manufacture and DNA hybridization

2.8.1 Radiolabelling

The majority of the probes used in this study were manufactured from the full- 

length VSG specific cDNAs, which were excised from their plasmids by restriction 

digestion and gel purified using the QIAGEN gel extraction kit (following the 

maufacturer’s protocol); radiolabelling was performed using the Prime-It II kit 

(Stratagene). Initially, 50 ng of purified template DNA were mixed with 10 pi of 

random oligonucleotides and sterile, distilled water, in a total reaction volume of 37 

pi. This mixture was then heated to 95-100°C for 5 min, cooled, and centrifuged 

briefly. Afterwards, 10 pi 5 x primer buffer, 2 pi a-^^P labelled dCTP and 1 pi t

Klenow (5 U.pl"’) were added in order, mixed carefully, and incubated at 37°C for 5 

min. The resultant probes were then purified from the unincorporated nucleotides by in
;y

passing them through NucTrap columns (following the manufacturer’s protocol, 1;
"I

Stratagene). Once purified, the probes were denatured at 95°C for 5 min before use.
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Three probes corresponding to the amino-terminus of the ILTat 1.2, 1.21 and 1.25 

VSGs were also produced. Template DNA was generated by PCR amplification 

from the plasmids using the tbsl (spliced leader 17mer) primer (Cruachem) and a 

reverse and complementary VSG specific internal primer (Genosys Biotechnologies 

Ltd.). The three internal 20mer primers were:

NILT1.2, ACATCTGACGCCACCGCT (1 kb into the ILTat 1.2 coding sequence); 

AS ALT, TTTTGGTGTATTAGCGCCGC (1 kb into the 1.25 coding sequence); 

EAGEI, CGTCCCTTGGTGTCGCCGCC (0.4 kb into the 1.21 coding sequence). 

PCR amplification was performed as in section 2.3.3, but the annealing temperature 

was performed at 50°C and the elongation phase of the cycle was shortened to 1 min. 

The PCR products were then gel purified using the QIAGEN gel extraction kit 

(following the manufacturer’s protocol) and subsequently radiolabelled.

2.8.2 Hybridization

■4

The nylon filters were wetted with distilled water, placed between two sheets of 

hybridization mesh (Amersham, Life Technologies) and transferred to a glass 

hybridization tube. Approximately 20 ml of Church-Gilbert solution (0.342 M 

Na2HP0 4 , 0.158 M NaH2P0 4 .2H2 0 , 0.257 M SDS and 1 mM EDTA per litre) was 

added and the filters were prehybridized for a minimum of 1 h at 65°C in a rotating 

hybridization oven. The purified, denatured probe was then added, and the 

hybridization was left overnight at 65°C. After this hybridization step, the filters 

were washed at 65°C in the rotating oven with the following series o f solutions: 5 x 

SSC, 0.1% SDS (twice); 2 x SSC, 0.1% SDS; 1 x SSC, 0.1% SDS; 0.1 x SSC, 0.1%

SDS (50 ml solution used per 15 min wash). The filters were then rinsed at room
■■

temperature in 0.1 x SSC (without SDS), heat-sealed in plastic, and placed next to 

medical photographic film (Konica Medical Corporation) in an autoradiography 

cassette at -80°C for 4-168 h, depending on the expected strength of the signal.

4#
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2.8.3 Stripping of nylon filters

2.9 Manufacture and screening of the minichromosomal libraries

2.9.1 Isolation of minichromosomal DNA

'•I
,1:4.

The nylon filters were stripped with boiling 0.1% SDS. The solution was poured 

onto the filters in a heat resistant container and allowed to cool to room temperature. 

The procedure was then repeated again, after which the filter was rinsed in 2 x SSC 

and was ready for reuse. The PFGE filters required a stronger stripping solution to 

remove the probe (0.4 M NaOH and 0.1% SDS). Following stripping the filters 

were placed next to medical photographic film in an autoradiography cassette at 

-80°C for 24 h, to ensure that the procedure had been successful.

Minichi'omosomal DNA was separated on a 1.2% low-melting point (LMP) agarose 

gel (NuSieve GTG agarose, Flowgen) by PFGE. This gel was run at 15°C in 

TB(0.1)E (0.089 M Tris-borate, 0.1 mM EDTA) (85 V, 1400-600 s pulse time, 120 

h) using all fourteen of the gel wells (one-half of a genomic plug per lane). The 

minicliromosomes were then excised from the gel and dialysed overnight in 10 ml of 

TE at 4°C and then for 3 h at room temperature in 10 ml of TE at pH 6.5. The 

agarose (2.2g isolated in this experiment) was then washed twice for 30 min on ice 

with 5 ml of p-agarase I buffer (New England Biolabs), after which the buffer was 

removed. The gel slices were then melted by incubation at 65° C, cooled to 40°C, 

and incubated with 2pi of p-agarase I (10 U .p f’; New England Biolabs) at 40°C for 

1 h. After the agarase digestion, the DNA was cleaned by phenol/chloroform and 

chloroform extractions, and then it was ethanol precipitated and resuspended in 50 pi 

TE. The amount of DNA produced from this preparation was 0.9 pg, detennined by 

UV spectrophotometry.

'a
■I
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2.9.2 Manufacture of the minichromosomal libraries

48

The DNA was divided into two aliquots and then digested overnight at 37°C with 

either Sall/Nsil or SaWSgEl (New England Biolabs) using 1.5 pi of each enzyme 

{Bglll and Nsil at 10 l i .p f ’; Sail at 20 U.pl’’) in Nsil or Sail unique buffers (New 

England Biolabs) respectively, in a total reaction volume of 30 pi. After digestion, 

the DNA was phenol/chloroform extracted and then chlorofoim extracted. The DNA 

was then ethanol precipitated, and dissolved in 15 pi sterile, distilled water. The 

SaW Nsil minichromosomal libraiy was then prepared by ligating 30, 60 or 120 ng 

of the Sail/ A/y/I-digested minichromosomes into 50 ng of pBluescript K/S (+/-) 

(Stratagene), which had previously been digested with Sail/ Pstl {Pstl produces the 

same 4 base restriction overhang as NsiT); 1 pi T4 DNA ligase (Promega, 3U. p f ’) 

was used per ligation, in a total reaction volume of 10 pi (incubated overnight at 

16°C). A negative control ligation was also prepared (with no insert) to ensure that 

the plasmid did not self-ligate. Next, 3 pi of each ligation was used to transform 

62.5 pi XL 1-BLUE MRP’ E. coli supercompetent cells (Stratagene) by heat 

shocking (see section 2.4.2, page 40) and subsequently spread on AIX plates and 

incubated overnight at 37°C. The colonies were then washed from the 3 plates by 

adding 8 ml L-broth (supplemented with ampicillin to a final concentration of 10 

pg.ml"’) per plate. A 1 ml sample of this liquid library was then taken as a working 

stock and stored at 4°C. Glycerol was added to the remaining stock (15% final 

concentration), which was then divided into 2 ml samples and stored at -80°C. The 

Sail/ Bglll library was prepared in a similar manner but ligated into pBluescript that 

had previously been digested with SaW BamHl {BamBl produces the same 4 base 

restriction overhang as BgllY). The cloning efficiency of this library was lower than 

that of the SaW Nsil library, and consequently two transformations were prepared 

from each ligation to increase the number of colonies.
:,P
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2.9.3 PCR screening of the minichromosomal libraries

This method is described in section 5.4 (page 114). The sequences of the primers

49

used in this screening method were as follows:
y

T7, GTAATACGACTCACTATAGGGC; T3, AATTAACCCTCACTAAAGGG;

E200, CAGCTCCCTGTCTTCACTCC; E890, TAACGCAGTTGCAAGCATTG 

A180, AATACAGGTTGTTGTTGCGA; A550, GTCTCTGCAAGAAATGCTAA 

C190, TGCGCTAGAGTGTTTGTAGC; C390, CTGTCGCGATGCCATACAAA 

D210, GTTAGCTTGTTGGTTGCGTA; D370, TGCCAGGTTGTGATACTTCT.

The primers were manufactured by Genosys Biotechnologies Ltd., and were diluted 

to 5 pM. The PCR reactions were set up as described in section 2.3.3 (page 39), and
'■y

the amplification was performed with a hot start for 5 min at 96°C, 30 cycles of 1 

min at 96°C, 1 min at 55°C and 3 min at 70°C, and a final extension at 70°C for 10
4'|

min; identical conditions were used when the ILTat 1.21 product was generated :

using Long-Jhg DNA polymerase (Stratagene). However, the following conditions 

were used when the ILTat 1.25 product was generated with Pfu polymerase: 37 pi 

distilled water, 5 pi 10 x Pfu buffer (Stratagene), 2 pi 25 mM MgCh, 1 pi 10 mM 

dNTPs (Pharmacia Biotech), 2 pi 5 pM T7 primer, 5 pM E200 primer, 1 pi Pfu 

polymerase (2.5 U.pl"’). The amplification was perfoimed as above, except that an 

elongation time of 4 min was adopted. The PCR products were fractionated on a 

0.7% agarose gel, purified using the QIAGEN gel extraction kit (following the 

manufacturer’s protocol) and cloned into the PCRScript vector (Stratagene)

(following the manufacturer’s protocol).

2.10 Phenol/ chloroform extraction

The volume of the sample was adjusted minimally to 200 pi by the addition of TE 

buffer. An equal volume of phenol/ chloroform (1:1 mixture) was then added and
:

mixed thoroughly by inversion. The two phases were separated by centrifugation in 

a micro centrifuge at maximum speed for 10 min, after which the aqueous layer was 

eluted and transferred to a new eppendorf tube. An equal volume of chloroform was



3::;.;,;,

y

::

then added and the tube contents were mixed by inversion. After centrifugation at 

maximum speed for 5 min., the aqueous layer was eluted and added to 1/10 the 

original volume of 3 M sodium acetate and 2 pi of glycogen (Boehringer Manheim);

2 volumes of 99% ethanol were then added and mixed thoroughly. The tube was 

then transferred to -20°C for at least 20 min, after which the DNA was pelleted by 

centrifugation at maximum speed for 15 min. The pellet was then washed in 1 ml 

70% ethanol, air-dried, and resuspended in an appropriate volume of buffer (usually ||

TE).

1
y::
y

2.11 Sequencing

An appropriate amount o f plasmid (500 ng for sequencing from plasmids; 200 ng if 

purified PCR product was sequenced directly) was mixed in a thin-walled 

microeppendorf tube with 5 pmoles of primer and 8 pi ABI PRISM dye terminator 

“ready reaction” solution (Perkin-Elmer corporation) in a final volume of 20 pi. The 

thermal cycling was then perfonned with a hot start at 96°C for 4 min, 25 cycles at 

96°C for 10 s, 50°C for 5 s and 60°C for 4 min on a GeneAmp PCR system 2400 

(Perkin-Elmer corporation). The solution was then transferred to a 0.5 ml eppendorf 

tube, after which 2 pi of 3 M sodium acetate and 50 pi of 95% ethanol were added 

and mixed. The tube was then placed on ice for 10 min, after which the DNA was 

pelleted by centrifugation for 20 min. The supernatant fluid was then removed and 

the pellet was washed with 250 pi 70% ethanol and air-dried. Automated 

sequencing was then performed by the Molecular Biology Support Unit (MBSU) of 

the University of Glasgow.
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C h a p t e r  3

T h e  o r d e r  o f  V S G  e x p r e s s io n  in  a  c h r o n ic ,

PLEOMORPHIC, T. brucei INFECTION
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3.1 Introduction

52

Extensive investigations into antigenic variation using monomorphic trypanosomes 

have enabled us to observe, and interpret, the various VSG switching mechanisms 

these organisms have adopted to evade the immune response of their hosts. The 

reduced switch rate seen in these laboratory adapted lines has facilitated such 

studies, allowing cloned populations to remain predominantly of one VAT during 

expansion. However, it is clear that these parasites differ significantly from non­

passaged field isolates, and it is therefore important to consider the possibility that 

the selection to monomorphism is associated with alterations in the cell’s 

recombinational or transcriptional machinery. In addition, a switching rate of 1 x 

lO ’̂ -  1 X 10'^ switches/cell/generation (Lament et a l 1986) is low enough to be 

explained by background mutation and homologous recombination, which therefore 

raises questions about the significance of VSG gene activation events obsei-ved in 

monomorphic parasites.

It has been proposed (Barry, 1997a) that the marked change in switch rates between 

monomorphic and pleomorphic trypanosomes is indicative of a specific gene 

switching mechanism that might include a dedicated enzyme activity catalysing site- 

specific recombination, which is reduced in, or even absent from, monomorphic 

lines. This mechanism is likely to involve a DNA repair pathway, and has been 

shown to be delimited upstream by the 70 bp repeat region in both monomorphic 

lines (Michels et a l 1983) and nonnal, fly-transmitted lines (Delauw et a l 1987; 

Matthews et a l 1990). However, in monomorphic lines this repeat region is not 

always used, perhaps due to the absence of the specific mechanism. Indeed, the 

deletion or inversion of the 70 bp repeat region of the active BES in monomorphic 

trypanosomes had no effect on the incidence of VSG duplications into that BES 

(McCulloch ef a/. 1997).

The aim of this investigation is to examine the order of VSG appearance in a 

chronic, pleomorphic infection, and determine the activation mechanisms by which 

these VSG genes become expressed. A study of this kind would be extremely 

complicated if  using the highest switching tiypanosome lines, since the populations 

grown from a single cell will not be phenotypically pure after the expansion period 

required for molecular analysis. Therefore the ILTat 1.2 (I.L.R.A.D. -  International 

Laboratory for Research in Animal Diseases - Trypanozoon antigen type) line, which



switches at the lower end of the natural range of switch rates found in fly-transmitted 

pleomorphic trypanosomes, was utilised in these experiments (derivation and switch 

rate given in section 3.2 (Turner, 1997)), A single relapse investigation (section 

3.10, page 74) was also undertaken using the ILTat 1.61c pleomorphic line, which is 

the most highly switching clone known (at 3 x 10'^ switches/cell/generation); a PCR 

approach for analysing the rapidly switching products is outlined in section 3,9 (page 

70).

3.2 Derivation of the ILTat 1.2 pleomorphic clone

3.3 Initiation and progression of the chronic ILTat 1.2 infections

Exsanguination was performed at the initial parasitaemic peak by cardiac puncture

53
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The pleomorphic line utilised in this study was derived h'om the T, brucei EATRO 

.
795 stock (East African Tiypanosomiasis Research Organization), originally a field 

isolate from bovine blood (Uhembo, Central Nyanza Province, Kenya; 1964). After 

an unknown number of syringe passages over a period of several years (Onyango et 

al 1966; Miller and Turner, 1981), tiypanosomes expressing ILTat 1.2 were cloned, 

and a stabilate SUSB 48 (State University of New York, Stony Brook) was 

produced. The ILTat 1.2 expressor clone displays a VSG switching rate of about 1 x 

10"̂  switches/trypanosome/generation, and upon fly transmission, emerges from the 

insect with an overall rate of around 1 x 10'^ switches/cell/generation; individual 

clones within this population display a range of rates between 1 x 10'^ and 1 x 10"̂  

switches/ cell/generation (Turner and Bany, 1989; Turner, 1997). It is therefore 

evident that this ILTat 1.2 clone retains pleomorphism, despite displaying switching 

at a rate o f only one to two orders of magnitude above that of monomorphic cell 

lines. In addition, this line will not proliferate in liquid culture (whereas 

monomorphic lines do), but does grow on a semi-solid agarose plate culture 

(Vassella and Boshart, 1996), clearly differentiating to stumpy foim cells.

Trypanosomes were grown from the GUG (Glasgow University Genetics) 348 

ILTat 1.2 stabilate in a CFLP mouse that had been immunosuppressed by 

cyclophosphamide treatment (Sigma Ltd, 25 mg.kg"’ body weight) 24 h previously.
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into sodium citrate anticoagulant in Carter’s Balanced Salt Solution (CBSS), after 

which the trypanosomes were cloned into three immunosuppressed ICR mice to 

ensure the homogeneity of the ILTat 1.2 population. These mice were bled, and 

stabilates (WUMP 676-678) prepared when the parasitaemia achieved 10^‘® 

trypanosomes.mP’; a new ILTat 1.2 population was then grown from the WUMP 

677 stabilate in a new immunosuppressed ICR mouse. After harvesting at the initial 

peak, approximately 1 x 10  ̂ trypanosomes were injected intravenously into a lop- 

eared rabbit (Bantin & Kingman, Hull, UK) from which pre-infection plasma had 

been collected as a control for antibodies.

On each day of infection (from days 6-30 post infection), 1 ml of blood was taken 

from the rabbit and 0.4 ml used for the preparation of serum; the remaining 0.6 ml
'

was injected immediately, intraperitoneally, into an immunosuppressed ICR mouse.

This step enabled the trypanosome titre to be elevated from the characteristically low 

level seen in rabbits prior to cloning. These “amplifier” mice were bled when the 

parasitaemia reached above 10 '̂  ̂ trypanosomes.mP’ (Herbert and Lumsden, 1976) 

and trypanosome clones were isolated immediately by micromanipulation. The 

isolation of 10 clones was attempted from each “amplifier” population, although the 

number of clones that arose was variable, and thus 77 clones were isolated (Figure 

7); no cloning was attempted from the day 29 and 30 “amplifier” mice. All clones 

were stabilated in liquid nitrogen after the parasitaemia reached patency 

(approximately 10̂ '  ̂ trypanosomes.mf’, achieved typically 3-6 days post infection).

This approach to cloning trypanosomes and preparing specific antisera was based on 

methods developed for rapidly switching T. vivax that minimize growth period, and 

therefore the extent of antigenic variation. This also permits rapid raising of specific 

antisera by cymelarsan (5 mg.kg"’ body weight) curing of the mice in which the 

clones had been derived (Barry, 1986).

The rabbit parasitaemia was also measured daily, and over the 30 days of infection 

was typically low (Figure 8), but nevertheless yielded two visible relapse peaks, on 

days 7-9 and 11, and days 18-22. The parasite growth within the “amplifier” mice 

revealed that the rabbit was infective on days 6-11, 16-22, and 28-30, coiTesponding 

to three relapse peaks. Of the 77 clones isolated from the “amplifier” mice, 36 were 

isolated from the first relapse peak, 36 from the second, and 5 from the third.

Subsequent immune lysis investigation of the second relapse peak revealed that only
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2 VATs were represented by the 36 clones, and consequently trypanosomes grown in 

mice from the stabilates o f the day 17 and day 21 amplifier mice were treated with 

antiserum against those 2 VATs and cloned. This led to the isolation of another 6 

trypanosome clones from the day 17 sample and 8 clones from the day 21 sample, all 

of which represented 2 new VATs. The day 19 “amplifier” mouse trypanosomes 

were then treated in the same way with antibodies against the 4 VATs from the 

second peak, yielding 5 more clones, all o f the same VAT. In total, 96 trypanosome 

clones were derived form the three peaks.

8.0
S 7.0

^  6.0 ■

I  5.0 o

^  *1

*2

C C C C 
D D
E E 

F F F F

?  .  ...............
w , ! 7  s !

Î....:...
1 ; ;
! i i....

m m :
rm * : :

0 5 

’s DETECTED : /

1Ii
V A 
3

I1

I
11

15

(j C 
I
Ï
I

1 1 I 
! 1

i i l
a G G G <

25 30

K

1st RELAPSE PEAK 2nd RELAPSE PEAK

Figure 8. Parasitaemia o f  the ILTat 1.2 chronic rabbit infection over tlie 30 days o f  infection 

determined by microscopy (Herbert and Lumsden, 1976). Trypanosomes were detectable on days 7, 

8, 9, 11, and days 18, 19, 20, 21, and 22. The rabbit was infective between days 6-11 (the relapse 

peak) and days 18-22 (the 2"*̂  relapse peak). The graph also demonstrates the days on which each o f  

the 11 distinct VATs were present in the host blood. The individual VATs were determined by 

immune lysis typing o f  the 96 individual clones (see 3.4), and were given the temporary codes A-K. 

These VATs were subsequently allocated ILTat numbers: ILTat 1.25 (VAT A), ILTat 1.67 (VAT B), 

ILTat 1.68 (VAT C), ILTat 1.69 (VAT D), ILTat 1.21 (VAT E), ILTat 1.64 (VAT F), ILTat 1.23 

(VAT G), ILTat 1.70 (VAT H), ILTat 1.71 (VAT I), ILTat 1.22 (VAT J) and ILTat 1.72 (VAT K). 

*1 denotes trypanosomes visible in the rabbit blood at a low unquantifiable level (arbitrary values 

assigned). *2 indicates the days on which trypanosomes were undetectable by microscopy.
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3.4 Immune lysis dissection of the first relapse peak

The number of distinct VATs represented by the 36 trypanosome clones from the 

first relapse peak was determined by immune lysis typing. Plasma, containing 

specific antibodies, was produced from each clone mouse following the elimination 

of infection by cymelarsan treatment. Each trypanosome clone was then grown from 

stabilate until the parasitaemia reached approximately 10  ̂® cells.ml"\ and cross­

tested against all 36 antisera. The assay was performed with tiypanosomes 

suspended in guinea-pig complement to 5 x 10  ̂ cells.mf’, and incubated in 1:20 

diluted antiserum for 1 h at room temperature. Percentage lysis was then quantified 

by light microscopy, counting at least 100 parasites; every positive displayed >99% 

lysis. Each trypanosome clone was also incubated for an hour in the presence of 

guinea-pig complement alone, as a negative control, to ensure that all the lysis was 

due to the action of the antiserum.

The 1296 individual immune lysis results (summarised in Figure 9) revealed that 6 

VATs (allocated the temporary working codes A-F) were represented in the first 

relapse peak. Each antisemm displayed a distinct lysis pattern, reacting exclusively 

with trypanosome clones expressing the same antigen coat (with the exception of 

antisemm S702, which cross-reacted with a second VAT). Figure 9 also illustrates 

the change in VAT composition over the 5 days of the first relapse peak, progressing 

from the top left to the bottom right of the chart.

Identical immune lysis typing was undertaken for the second relapse peak and 

revealed a further 5 unique VATs. Figure 8 demonstrates the days on which each 

VAT was present in the rabbit infection.

I
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3.5 Further ILTat 1.2 infections, and additional immune lysis investigations

61
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To eliminate the possibility of the isolated VATs having become activated in the 

“amplifier” mouse, rather than in the rabbit, six tiypanosome clones representing 

each VAT (see Figure 10 for details) were grown from stabilate and tested in 

immune lysis against the daily plasma samples from rabbit A. Specific antibodies 

arose only afrer the corresponding VAT was detectable in the rabbit, typically 3-6 f

days later (Figure 10, Table 2). Identical analysis of the VATs from the second 

relapse peak revealed a similar trend, confirming that all 11 VATs were generated 

during the original infection, rather than during expansion in the “amplifier” mice.

In order to analyse the reproducibility of appearance of the VATs in different 

infections, the same ILTat 1.2 infecting population was grown from stabilate 

(WUMP 677) in an ICR mouse and then treated with antisera against all 11 VATs 

isolated from rabbit A, to remove existing switch products. After washing, the 

surviving tiypanosomes were injected into another two lop-eared rabbits (B and C), 

and also into a New Zealand White rabbit (D) (Bantin & Kingman, Hull, UK).

Plasma samples were harvested daily (or on alternate days for rabbit D), and tested 

in immune lysis against each of the VATs present in the initial infection (results for |

the first relapse peak are summarised in Figure 10).
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PLASMA COLLECTION (days post infection)
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Figure 10. Summary of the onset o f lytic activity in four separate rabbits against the six VATs that 

were isolated from the first relapse peak in rabbit A. Daily plasma samples were prepared from each 

of the lop-eared rabbits (A-C) over the 30 days o f infection. Plasma was sampled on alternate days 

from the New Zealand White rabbit (D) until day 21 when the infection was terminated. One clone 

was grown from stabilate for each o f the VATs : clone 601 (VAT A, WUMP 686), clone 605 (VAT 

B, WUMP 690), clone 803 (VAT C, WUMP 706), clone 804 (VAT D, WUMP 707), clone 1001 

(VAT E, WUMP 714), and clone 1101 (VAT F, WUMP 721). Trypanosomes were incubated with 

the relevant plasma in the presence o f guinea-pig complement at room temperature for 1 h in the 

bottom of a 96 well V-bottomed microtitre plate. A plus sign indicates complete lysis (>99%), while a 

minus sign denotes no lysis; partial lysis (« 10-60%) is represented by the letter p. The VATs were 

subsequently allocated ILTat numbers: ILTat 1.25 (VAT A), ILTat 1.67 (VAT B), ILTat 1.68 (VAT 

C), ILTat 1.69 (VAT D), ILTat 1.21 (VAT E), and ILTat 1.64 (VAT F).
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The immune lysis investigation revealed that VATs A, B, C, and D (later allocated 

the ILTat numbers 1.25, 1.67, 1.68, and 1.69 respectively) appeared early in 

infection, with consistent timing, in all four hosts (antibodies detected between days 

9 and 12). VAT E (ILTat 1.21) was also present in all four infections, but displayed a 

gi'eater spread in its time of emergence (activity detected between days 13 and 26). 

VAT F (ILTat 1.64), however, elicited antibodies in rabbits A (day 13) and B (day 

22), but did not appear in rabbits C and D. There was more variation in the timing of 

antibody onset for the second relapse peak (data not shown), with only VAT H 

(ILTat 1.70) appearing in every host.

It is clear from these studies that the VATs emerging early in infection have a 

higher probability of expression, and are consequently represented more frequently, 

than those appearing at a later time. As a result of this, the order o f VAT expression 

in the second relapse peak is less predictable than in the first relapse peak. Indeed, 

this variation can be seen even within the first relapse peak, where the VATs 

activated towards the end of the peak (E and F) display a more irregular expression 

pattern than the VATs presented at the very start of the infection (A to D). This 

phenomenon, in which VATs are expressed in a “semi-predictable” order of antigen 

type appearance, has been observed experimentally elsewhere (Miller and Turner, 

1981), and was originally demonstrated by Gray (1965), van Meiivenne et a l 

(1975), and Capbem et a l (1977).

3.6 Immunofluorescence typing of the VATs

Indirect immunofluorescence was performed as previously described (Van 

Meirveime et a l  1975), on acetone-fixed thin blood smears using 37 existing 

reference antisera as the primary antibody. The antisera, which were originally 

derived from either mouse or rabbit hosts, were diluted in 1 x PBS prior to use (see 

Table 1). Anti-rabbit (or anti-mouse) Ig fluorescein isothiocyanate (FITC) labelled 

conjugates, were used as the secondary antibody.

T
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The immunofluorescence study yielded 3 clear serotypes from the first relapse peak 

(Figure 11): ETat 1.7 (VAT D), ETat 1.9 (VAT E), and GUTat 7.13 (VAT F); in the 

second relapse peak VAT J was detennined as GUTat 7.1. The equivalent ILTat 

numbers are given in Table 2 (section 3.8, page 69) and the significance of these 

findings is discussed in the final chapter of this thesis.

A n t i s e r u m Di l u t i o n  * H o s t A n t i s e r u m Di l u t i o n  * H o s t

ILTat  1 . 3 2 0 0 r abbi t E T a t  1. 1 3 0 0 r a bbi t

ILTat  1 . 4 1 0 0 r abbi t E T a t  1 . 3 1 0 0 r a bbi t

ILTat  1 . 6 1 3 0 0 m o u s e E T a t  1 . 4 2 0 0 r abbi t

ILTat  1 . 6 2 1 0 0 r abbi t E T a t  1 . 5 1 0 0 r abbi t

E T a t  1 . 6 1 0 0 r abbi t

G U T a t  7 . 1 5 0 0 m o u s e E T a t  1 . 7 2 0 0 r a bbi t

G U T a t  7 . 2 5 0 0 m o u s e E T a t  1 . 9 1 0 0 rabbi t

G U T a t  7 . 3 4 0 0 r a bbi t E T a t  1 , 1 0 1 0 0 rabbi t
G U T a t  7 . 4 2 0 0 r abbi t E T a t  1 . 1 1 1 0 0 r abbi t

G U T a t  7 . 5 3 0 0 r a b b i t E T a t  1 . 1 2 1 0 0 r abbi t

G U T a t  7 . 6 4 0 0 r a b b i t E l a t  1 . 1 3 3 0 0 rabbi t
G U T a t  7 . 8 1 0 0 r a bbi t E T a t  1 . 1 4 1 0 0 r abbi t

G U T a t  7 . 9 2 0 0 r abbi t E T a t  1 . 1 5 1 0 0 r abbi t

G U I  a t  7 U' 1 0 0 r a bbi t E T a t  1 . 1 6 7 5 r abbi t

G U T a t  7 . 1 1 1 0 0 r a bbi t E T a t  1 . 1 7 1 0 0 r a bbi t

G U T a t  7 . 1 2 2 0 0 r abbi t E T a t  1 . 1 8 1 0 0 r abbi t

G U T a t  7 . 1 3 2 0 0 m o u s e E T a t  1 . 1 9 5 0 r abbi t

G U T a t  1 0 . 1 2 0 0 m o u s e E T a t  1 . 2 0 7 5 r abbi t

G U T a t  1 1 . 7 2 0 0 m o u s e E T a t  1 . 2 1 1 0 0 r a bbi t

Table 1. Working dilutions and derivations o f  the 37 reference antisera. 

ILTat -  ILRAD Tiypanozoon antigen type 

GUTat -  Glasgow University Trypanozoon antigen type 

ETat -  Edinburgh Trypanozoon antigen type 

* reciprocal (1 in X dilution)
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TRYPANCSOKE VARIABLE ANTTGEN TYPE (VAT) |
VATA VATB VATC VATE 1i' ' m F

AntlbodM Result control* Reeu* control* Result control* Result control* Result control* Resu* control*

GUT# 7.1 - n - n - n n - n - n

GUT# 7.13 + +++ (+) +++ (+) 44 n 4 444 i, ++* 1 ' j ü # '

OUT# 7.2 - n - n - n n n n

GUT#7J - n - n - n n n n

L T #1J - n - n - n n n - n

ILT#1.4 (+) +++ (+) +++ 4 44 n 444 4 444

ET# 1.81 - n - n - n n n - n

ET# 1.62 - n n - n n n - n

GUT# 10.1 - (+) - (+) . (+) (+) (+) - (♦)

GUT# 11.7 - (+) - (+) - (+) (+) (+) - (+)

GUT#7.12 - (+) - M - (+) (+) (+) - (+)

GUT# 7 A - (+) - (+) - (+) (+) (+) - (+)

GUT#7Æ - (+) - (+) - (+) (+) (+) - M

GUT#7Æ M ++ (+) M - 4 4 44 - 4

GUT# 7.8 (+) ++ (+) (+) - 4 4 44 (+) 4

GUT# 7.9 - ++ - (+) - 4 4 - 44 - 4

GUT# 7.10 (+) ++ - (+) - 4 4 - 44 (+) 4

GUT#7.11 - ++ - (+) (+) 4 4 - 44 (+) 4

ET# 1.1 (+) +++ (+) +++ - 44 4 (+) 444 (+) 444

ET#1J (+) +++ (+) +++ (+) 44 4 M 444 M 444

ET#1A (+) +++ (+) +++ (+) 44 4 (+) 444 M 444

ET# 1.5 (+) +++ (+) +++ - 44 (+) + (+) 444 M 444

ET#1Æ (+) +4+ (+) +4-4 (+) 44 4 (+) 444 (+) 444

(+) +++ M +4+ (+) 44 (+) 444 4 4+4

■W1A (+) +++ - 4+4 - 44 (4) 44 444
1 1 4 444

ET# 1.10 + +++ (+) 444 (+) 44 (4) 44 (+) 444 4 444

ET# 1.11 + +++ (+) 44+ (+) 44 (4) 4+ 4 444 4 444

ET#1.12 + +++ - 444 - 44 (4) 44 (+) 444 (+) 444

ET# 1.13 (+) +++ (+) 444 . 444 (4) 444 4 444 (+) 444

ET# 1.14 + +++ (+) 444 (+) 4 (4) 444 4 444 (+) 444

ET#1.15 + +++ M 444 (+) 4 {*) +44 4 444 (+) 444

ET# 1.16 (+) +++ - 444 - 4 (4) 444 (+) 444 (+) 444

ET# 1.17 ++ +++ + 444 (♦) 4 4 444 4 444 4 444

ET# 1.18 (+) ++ + 444 4 4 (4) 444 4 444 (+) 44

ET# 1.19 + ++ (+) 444 (+) 4 (4) 444 4 444 4 44

ET# 1.20 (+) ++ + 444 (+) 4 (4) 444 4 444 (♦) 44

ET# 1.21 (+) ++ (+) 444 4 4 (4) 444 4 444 M 44

Figure 11. Summary o f the immunofluorescence results for the six VATs isolated from the first 

relapse peak. Indirect immunofluorescence was performed on acetone-fixed thin blood smears using 

37 existing reference antibodies (either rabbit or mouse) as the primary antibody. Trypanosomes 

were visualized with fluorescein isothiocyanate (FITC) labelled conjugates. Each reaction was given 

an arbitrary score according to the extent o f the fluorescence: - no fluorescence, (+) faint

fluorescence,  ̂ slight fluorescence, ++ clear fluorescence, +++ strong fluorescence. * Positive 

controls were performed on each slide using mouse antisera specific to the individual VATs as the 

primary antibody; (n) indicates no positive control.
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3.7 Reverse Transcription PCR (RT-PCR) amplification of the VSG  genes

Clones representing each VAT were grown from stabilate in immunosuppressed 

ICR mice until the parasitaemia approached 10 '̂  ̂ trypanosomes.ml'^ The stabilates 

used were: WUMP 686 (VAT A), WUMP 690 (VAT B), WUMP 706 (VAT C),

WUMP 707 (VAT D), WUMP 704 (VAT E), and WUMP 720 (VAT F). 

Approximately 1-5 pg mRNA was isolated directly from 100 pi blood, using 1 ml 

TRIzol (Gibco-BRL), and reverse transcribed to single strand cDNA using oligo 

[dT] primer (Gibco-BRL). The expressed VSG genes were then amplified by PCR 

using two short specific oligonucleotides as described by Carrington et a l (1991).

The first primer (tbsl: GTTT CTGT ACT AT ATT G) was a 17mer specific to the 

mRNA spliced leader, while the second primer (tbSut: GT GTT A AAAT AT AT C A) 

was a 16mer specific to a region in the downstream UTR, highly conserved in all 

VSG genes. Amplification was performed for 30 cycles of 1 min at 96° C, 1 min at 

42° C and 2 min at 70° C, in a final reaction volume of 50 pi (1 pi of the 20 pi 

reverse transcribed product was used as template).

Figure 12A demonstrates the major PCR products generated from the poly[A]^

RNAs of the six VATs isolated from the first relapse peak, which varied in size from 

approximately 1.5 to 1.8 kb. In the ILTat 1.2 and VAT B PCR reactions a second 

minor PCR product of around 0.8 kb was also seen (Figure 12B), although this band 

was much fainter and appeared only occasionally in the VAT A, C, D, E and F 

reactions.

Following fractionation on a 0.7% agarose gel, the products were cloned using the f

‘T-easy’ vector, or PCRScript Amp SK (+). Tliree clones were produced fi'om ILTat 

1.2, and VAT A-E DNA; only 1 clone was generated for VAT F. As tiypanosomes 

are variable in expression of VSGs, this approach can yield cDNA clones from 

minor VATs in the trypanosome clones. Partial sequence (400 bases from the 

amino- and carboxy- termini) was therefore obtained from each of the clones, and 

also directly fr'om the purified PCR products. The majority of the cloned products 

proved to derive from the predominant PCR product, although there were some 

discrepancies. All three VAT B clones failed to match the VAT B PCR product, and 

were found to have identity with the ILTat 1.2 clones. Consequently, three new

Î



clones were produced following RT-PCR of new mRNA isolated from trypanosomes 

grown from a different stabilate (WUMP 691); these clones matched the VAT B 

PCR sequence. The third VAT A clone also seemed to have derived from a different 

expressor, since its amino-terminus sequence did not match that of other two clones 

or of the PCR product. Interestingly, this clone did display complete homology with 

the other two clones at its carboxy-terminus, and it therefore seems possible that this 

minor expressor was activated by a recombinational event, in which part of the 

previous VSG gene remained in the expression site.

kb
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Figure 12. RT-PCR of the VSG transcripts of the six VATs isolated from the first relapse peak. Panel 

A. EtBr stained 0.7% agarose gel o f the VSG gene cDNA products generated by RT-PCR of mRNA 

from the six VATs identified in the first relapse peak. PCR products originating from VAT A to F 

(WUMP 686, 690, 706, 707, 704, and 720 respectively) poly[A]^ RNA were loaded in lanes 1-6 

respectively (10 pi o f the 50 pi reaction loaded per lane); a negative (no template) control was also 

loaded in lane 7. Panel B displays the PCR product generated from VAT B (WUMP 691), 

demonstrating the second minor PCR product, at 0.8 kb, that was often seen. Molecular markers are 

indicated to the left of each gel.

67



BLAST searching against the NCBI database revealed a typical VSG sequence 

pattern: general conservation at the downstream end of the sequence, reflecting 

peptide sequence conservation, and considerable variation at the amino-terminal 

coding end, which contains variable epitopes of the VSG. VAT A was identified 

from the database as ILTat 1.25, and VAT E as ILTat 1.21 (consistent with the ETat

1.9 immunofluorescence result; J.D. Barry, pers. comm.), with both clones perfectly 

matching the existing sequence. The ILTat 1.2 clones displayed exact homology 

with the database sequence at the carboxy-terminus; the amino-tenninus 

(approximately 500 bp) was missing from the database. Two clones derived hom 

the second relapse peak were also identified from the database: VAT G (ILTat 1.23) 

and VAT J (ILTat 1.22, consistent with the GUTat 7.1 immunofluorescence result).

Full length cDNA sequence was also deteimined from the first clone of each of the 

VATs A-F, and also from ILTat 1.2, allowing internal restriction sites to be 

deteimined (Figure 13).
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Figure 13. Physical maps o f the ILTat 1.2 and VAT A-F VSG genes (starting with the last seventeen 

nucleotides o f the spliced leader). Restriction sites were determined from the full length cDNA  

sequence o f  each VAT. Abbreviations: E, EcoRI; He, Hincl\\ Hd, 77/ndIII; K, Kpnl\ N, Not\\ Ps, Pst 

I; Pv, PvwII. * This PcoRI site was not seen in the other two VAT C clones, and probably represents 

a PCR or cloning artefact.
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3.8 Allocation of ILTat numbers to previously unidentified VATs

Immunofluorescence and DNA sequencing had identified six of the eleven VATs 

isolated from the rabbit A infection. Five of these VATs coiTesponded to previously 

allocated ILTat numbers; ILTat 1.25 (VAT A), ILTat 1.21 (VAT E), ILTat 1.64 

(VAT F), ILTat 1.23 (VAT G), and ILTat 1.22 (VAT J). The remaining six VATs 

were allocated the new ILTat numbers 1.67-1.72 according to their order of 

emergence from the rabbit infection. The ILTat numbers are summarised in Table 2, 

which also demonstrates the equivalent ETat and GUTat numbers; the Table also 

indicates the days on which each of the VATs was present in the rabbit A infection, 

and the timing of antibody onset in rabbits A-D. These VATs will now be referred 

to in the text by their ILTat codes, rather than their working letters.

VAT Time isolated 
from rabbit A

Number o f clones 
isolated

Day of antibody onset 
in rabbits

CODE ILTat ETat GUTat days A B C D

A 1.25* 6,7 10 11 12 11 12

B 1.67 6 2 9 11 12 12

C 1.68 7-10 7 12 12 12 12

D 1.69 1.7 i 7,8 4 11 11 9 12

E 1.21* 1.9 i 7,10 2 13 26 15 18

F 1.64 7.13i 8-11 11 13 22 - -

G 1.23* 16-22 35 26 - - -

H 1.70 17 1 22 12 22 14

I 1.71 17 3 23 23 27 -

J 1.22* 1.2 7.1i 17,21 8 23 - - 18

K 1.72 19 5 23 - 14 16

Table 2. Summary o f  the 11 VATs isolated from the rabbit A infection. * indicates VAT identified 

by DNA sequencing; i denotes immunofluorescence result.
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3.9 A PCR approach for analysing rapid switch products
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Although the ILTat 1.2 line retains pleomorphism, its switch rate is a few orders of 

magnitude lower than the overall rates seen in lines that have not undergone such 

extensive passaging. However, as discussed earlier, it would be impossible to 

analyse the myriad o f switch products that could be generated in a chronic infection,
-

if  initiated with one of these high switching lines. Single relapse investigations, such 

as those perfoimed by Miller and Turner (1981), would reduce the complexity of the 

study, but the antigenic variation rate of the most rapidly switching trypanosomes 

(approximately 3 x 10'^ switches/cell/generation) could complicate genomic 

Southern analysis. In order to circumvent this problem, an experimental procedure
A

was designed in which high switching products from a single relapse study could be 

scmtinized by PCR analysis (summarised in Figure 14).

This method determines whether a switch event has occurred by a duplicative or 

non-duplicative mechanism by analysing the region upstream of the VSG genes 

before and after the gene activation. Expression site sequence should be quite 

distinct from the BC sequence(s) displaying a longer run of the 70 bp repeats (as 

discussed in section 1.4, page 9), allowing the VSG gene copy number, and therefore 

the switch mechanism, to be resolved. In the case of a duplicative event both EEC

Iand BC sequence should be detectable, but during a transcriptional activation only 

the BC(s) should be apparent. It is necessary to examine at least 2.5 kb upstream of 

the VSG sequence to ensure that the area upstream of the cotransposed region and 70 

bp repeats is examined, since this is where the differences between BC and ELC will 

be obseiwed (beyond the duplication boundary). If the BC(s) contain a long array of 

70 bp repeats {e.g. ILTat 1.21; see section 5.6, page 128) then the analysis must be 

continued further upstream. This method requires the upstream fragments, 

containing the 70 bp repeats, to be cloned and therefore a recombination deficient E. 

coli strain should be utilised. The methodology for this approach is described below. |

A clonally-initiated infection with a trypanosome from a high switching line {e.g.

ILTat 1.61c) would be allowed to progress to the first relapse peak, when the mixed 

population of parasites would be re-cloned into new mice. These sub clones would 

then be harvested once the parasitaemia achieved patency, and genomic DNA and 

mRNA would be isolated. Subsequent cloning of the cDNA (produced by RT-PCR 

as in section 3.7) would allow specific amino-terminus VSG gene primers to be
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manufactured for each o f the switched products. This primer could then be used to 

amplify single strand product, upstream of the VSG gene, from both the expressor 

and initiator genomic DNA. After tailing this product with a homopolymer tail, 

double stranded DNA could then be generated by amplifying with the VSG gene 

specific primer and an oligonucleotide complementary to the tail. It should then be 

possible to deteiTuine whether the VSG has switched via a duplicative or 

transcriptional mechanism by the cloning and sequencing o f these PCR products. In 

the case of a duplicative activation, two (or more) products should be observed from f

the expressor DNA (representing the BC(s) and ELC), while only the BC(s) should 

be detectable from the initiator DNA. During a transcriptional activation, however, 

only the BC(s) will be seen from either DNA source since no ELC will be formed.

I



r
S'

t
s.. B

A

|-

I
I CL

CL
w01
i
I
I

B-

T)

i I
I i
I I

T)

"73

1 O  CO.

Il
1 1

f

I
I
i
R

I Tl

td

72



■o
"O

O'

l i II

K>
( / I

o r e

VQ

»  "2.

crq

TQ

w

I O l O I D

73



• ï | ' ;

-

3.10 Single relapse study of the high switching pleomorphic line ILTat 1.61c

A single relapse study was undertaken using the high switching line ILTat 1.61c. 

This line was also derived from the SUSB 48 stabilate, but initiated from a single 

metacyclic trypanosome produced by a tsetse fly. The cloned trypanosome was 

allowed to expand in a mouse for five days before a stabilate, GUP 2812 (Glasgow 

University Protozoology), was produced. This population was previously shown to 

be 98% homologous to ILTat 1.61 by immunofluorescence (J.D. Bany, pers. 

comm.). The switching rate of this line had also been determined (Turner, 1997), 

which, at about 3 x 10'^ switches/cell/generation, is the highest rate obseiwed in 

trypanosomes.

The GUP 2812 stabilate was injected into an immunosuppressed ICR mouse, and 

the parasites were grown until the parasitaemia achieved 10 '̂  ̂ trypanosomes.ml"^ 

blood. Ten single trypanosomes were then isolated immediately by 

micromanipulation, and injected intraperitoneally into new, immunosuppressed, ICR 

mice. The 7 resulting clones were grown for 5-7 days, when 250 pi of blood was 

isolated from each mouse by tail-bleeding into heparinised capillary tubes. Genomic 

DNA was then isolated from 200 pi whole blood, and stabilates were prepared from 

the remaining 50 pi. This genomic DNA was prepared as a control to ensure that the 

VSG switch occuiTed at the relapse, rather than during the growth phase at the initial 

peak. The infection was then meant to progress to the first relapse peak, but the ICR 

mice appeared to be very sensitive to the infection, resulting in only one of the clone 

mice surviving beyond the initial peak. On the 10̂  ̂ day of infection the remaining 

clone mouse achieved a parasitaemia of 10 '̂  ̂ trypanosomes.ml’' blood. Parasites 

were haiwested by tail-bleeding, and 10 tiypanosome clones were isolated, and 

injected intraperitoneally into new, immunosuppressed, mice. The parasitaemia had 

risen to 10^^ trypanosomes.ml'^ blood by day 11, and a further 10 clones were 

injected into new mice; stabilates were made from both days 10 and 11. These 

clones were then expanded until the parasitaemia reached approximately 10^^ 

trypanosomes.mf^ blood, when the mice were exsanguinated; stabilates were 

prepared, and genomic DNA was isolated, following the separation of the 

trypanosomes from the blood by a Percoll gradient. mRNA was also prepared fr'om 

100 pi blood, using 1 ml TRIzol.
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GUP 2812

4 days

WUMP 1046

(DAY 0)

INITIAL 
PEAK 

(DAYS 5-7)

cld7 c4d5 c5d7 c6d6 c8d6 c9d6 cl0d6

MRELAPSE 
PEAK 

(DAYS 10-11)
WUMP 1057 WUMP 1058

c5 d ll

OOOOOO
(DAYS 16-18)

sc2
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sc5 sc6 
d l6  d l6
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d l6  d l6

s e l l  sc l2  sol3 S C Î4  

d l8  d!7 d l7  dl7
scI6 sol?  
d l8  d l7

Figure 15. Derivation o f  the 11 switched clones generated from the ILTat 1.61c single relapse 

investigation. The trypanosome population was established in an ICR mouse from the GUP 2812 

stabilate. 10 clones were then isolated and injected into new mice. Stabilates were prepared from 50 

pi blood at the initial peak, and infections were continued until the first relapse peak; only clone 

mouse 5 suiwived the infection. 10 clones were sampled from mouse 5 on day 10, and a further 10 

clones were isolated on day 11. The trypanosomes were then harvested when the parasitaemia 

acliieved approximately 10  ̂® cells.m f', when stabilates were prepared. Stabilates are enclosed in 

rectangles, while clone mice are represented as circled numbers; the working clone numbers are 

indicated under tire stabilate numbers (cld 7-clon e 1, isolated day 7; sc2dl6-switched clone 2, isolated 

day 16). Tliree o f  the initial cloning attempts, and nine o f the relapse cloning attempts, were 

unsuccessful. The cloning steps are indicated by the trypanosome symbol.
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In total, 11 switched clones were isolated from the first relapse peak (Figure 15). 

Full length cDNAs were then generated from the mRNA by RT-PCR (as described 

in section 3.7, page 66). These PCR products were fractionated on a 0.7% agarose 

gel (see Figure 16) and gel purified. A single PCR product of approximately 1.7 kb 

was generated from 9 of the 11 switched clones. Two distinct products were 

amplified from the sc6dl6 template (switched clone 6, isolated day 16; Figure 16, 

lane 3), suggesting that either a switch had occurred during the expansion of the 

clone, or that more than one trypanosome had been injected into the mouse at the 

cloning step. No product was generated for sc5dl6 (Figure 16, lane 2).

10 11

3.0 kb —
2.0 kb —  
1.6 kb —
1.0 kb —

«mmy mm mtm m m

Figure 16. VSG gene cDNA generated by RT-PCR for the 11 switched clones isolated from the 

ILTat 1.61c single relapse investigation. The PCR products were run on a 0.7% agarose gel and 

stained with EtBr. Lanes 1-11: sc2dl6  (switched clone 2, isolated day 16), sc5dl6 , sc6dl6, sc9dl6, 

sc l0 d l6 , sc l2 d l7 , sc l3 d l7 , sc l4 d l7 , sc l7 d l7 , sc l ld l8 , and sc l6 d l8  (10 pi o f the 50 pi reaction was 

loaded per lane). All the products are approximately 1.7 kb, with the exception o f  sc6dl6  (lane 3), in 

which two products are visible; the PCR failed to amplify the sc5dl6 template (lane 2).

The 9 clones, from which the single PCR product had been generated, were grown 

from stabilate in immunosuppressed ICR mice, and immune lysis was performed (as 

described in section 3.4) using antisera specific to the six VATs isolated from the
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first relapse peak of the rabbit A infection. All the clones displayed >99% lysis with

ILTat 1.25 (VAT A) antisemm, and did not cross react with the other five antisera.

This homogeneity was unexpected, since the first relapse populations of these high

switching trypanosomes should consist of multiple VATs. However, although the

overall switching rate of an ILTat 1.61c population is about 3 x 10'
.switches/cell/generation, individual clones within these populations demonstrate a 

variety of rates down to 1 x lO’"̂ switches/cell/generation (Turner, 1997). It therefore 

seems probable that the clone (c5d7) from which the switched clones were derived 

was one of the variants at the lower end of this switching scale, or that it gave rise to 

more stable variants. This is consistent with the percentage homotype (>99% ILTat 

1.25) deteimined by immune lysis; if  the trypanosomes had been switching at the 

high end of the scale the homotype percentage would have fallen substantially during 

the growth of the clone population, and subsequent expansion from the stabilate.

The purified PCR product from the first switched clone, sc2dl6, was then cloned 

into the ‘T-easy’ vector. 400 bp sequence was obtained from either terminus of the 

cDNA, and this, in conjunction with H indi, and PvwII restriction mapping, 

confirmed that product was identical to ILTat 1.25 cDNA. One by-product of the 

more stable switch products of ILTat 1.61c was that the activation mechanism could 

be studied by Southern analysis (section 4.7, page 94), rather than by the PCR 

method outlined in section 3.9 (page 70).
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3.11 Summary

The chronic ILTat 1.2 infection produced a typically low level infection in the 

rabbit host, yielding three relapse populations over the 30 day period. Subsequent 

immune lysis investigation revealed that eleven distinct VATs were represented by 

the 88 clones (analysed by immune lysis) from the first and second relapse peaks. 

The number of clones isolated per VAT in the first relapse peak was varied, with no 

single antigen type predominating. However, in the second relapse peak ILTat 1.23 

was by far the major VAT, present on every day of the relapse.

Three further ILTat 1.2 infections initiated from the same stabilate, and pre-treated 

with antisera against the eleven VATs, allowed the reproducibility of the initial 

infection to be examined. Four o f the VATs (ILTats 1.25, 1.67, 1.68, 1.69) from the 

first relapse peak elicited antibodies at a similar time in all four hosts, while one 

VAT (ILTat 1.21) showed more variation in the timing of its onset, and the final 

VAT (ILTat 1.64) only appeared in two o f the four rabbits. The second relapse peak 

demonstrated much greater variation with only one of the five VATs appearing in all 

of the infections (ILTat 1.70). This pattern is consistent with the semi-predictable 

hierarchy of infection described by Miller & Turner (1981) and was originally 

demonstrated by Gray (1965), van Mehwenne et a l (1975), and Capbem et a l 

(1977).

Due to the sensitivity o f the ICR mice to the parasites, only 11 switched clones were 

isolated from the first relapse peak of the ILTat 1.61c infection. Although this line 

displays an overall switching rate of about 3 x 10'^ switches/cell/generation, 

individual tiypanosomes demonstrate a variety of rates down to 1 x lO'"̂  switches/ 

cell/generation (Turner, 1997). It seems probable that switched clones were 

generated fi'om a cell at the lower end of this range, since at least 9 of the 11 

expanded populations were deteimined to be >99% ILTat 1.25 by immuno lysis.
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C h a p t e r  4

G e n e t ic  a n a l y s is  o f  t h e  V SG  sw it c h in g

MECHANISMS UTILIZED BY PLEOMORPHIC 

TRYPANOSOMES
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4.1 Introduction

-I

Following the identification and characterization of the six VSG genes isolated fi*om 

the first relapse peak o f the chronic ILTat 1.2 infection, the next phase in the 

investigation was to examine the mode of activation utilised in each of the switch 

events. The aim of this study was to test whether pleomorphic tiypanosomes have a 

preference for duplicative transposition, as opposed to the predominance of “m situ’' 

switching events seen in monomorphic lines (Liu et al. 1985).

By probing a blot of digested genomic DNA with radiolabelled VSG gene specific 
.cDNA it was possible to determine the number of BCs of each gene, and establish 

whether the switch had occurred by a duplicative or non-duplicative event. In the 

case of a duplicative transposition an additional band, representing the ELC, was 

detected in the expressor genomic DNA, but was absent from non-expressor DNA.

Pulsed-field gel electrophoresis (PFGE) was also employed to determine the 

chromosomal localization of the VSG genes, using separation conditions kindly 

provided by S.E. Melville (Department of Pathology, Cambridge University). 

Previously EATRO 795 DNA had been resolved under the same conditions at 

Cambridge and the individual chromosomes distinguished by hybridization with 

cliromosome specific probes (Figure 17). Since the DNA in this investigation was 

also derived from EATRO 795, it was possible to infer the chromosomal location of 

the VSG genes by comparison with this standard.
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795 2340 927

2.1 Mb
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VII
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Figure 17. PFGE separation of chromosome-size DNA from 3 trypanosome stocks performed by S.E. 

Melville, Department of Pathology, Cambridge University. DNA from EATRO 795, EATRO 2340 

and TREU 927 (Trypanosomiasis Research Edinburgh University) was separated on a 1.2% agarose 

gel at 85V, with a ramped pulse frequency o f 1400-700s for 144h, and transferred to a nylon 

membrane by Southern blotting. The individual chromosomes were identified by hybridization with 

specific probes. Chromosomes 1 to VIII were resolved under these conditions, and their localisation 

is indicated by the colour coded boxes (representing the gel bands) to the right o f the EtBr stained gel. 

The uncoloured boxes represent intermediate and minichromosomes (M + I). Approximate 

chromosomal size is indicated to the left o f the gel picture.

4.2 Genomic analysis of the VSG genes activated during the first relapse 

peak

Clones representing each switched VAT, and ILTat 1.2, were grown from stabilate 

in immunosuppressed ICR mice, until the parasitaemia achieved approximately 10̂  * 

trypansosomes.ml"% when the parasites were collected and injected into two rats.
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The stabilates used were: WUMP 677 (ILTat 1.2), WUMP 686 (ILTat 1.25), WUMP 

690 (ILTat 1.67), WUMP 706 (ILTat 1.68), WUMP 707 (ILTat 1.69), WUMP 714 

(ILTat 1.21), and WUMP 721 (ILTat 1.64) (see Figure 9). The trypanosomes were 

harvested when the rat parasitaemias achieved approximately 10̂ '* ceUs.mP', and 

were separated from blood components on a Percoll gradient, prior to the preparation 

of genomic DNA (see Materials and Methods, sections 2.5 and 2.6.2, pages 41 and 

43).

1 pg of the genomic DNA was digested with Æ'coRI, JTmdlll, or Pstl, fifactionated 

on a 0.7% agarose gel, Southern blotted onto nylon membrane and bound by UV 

radiation. These blots were then probed with VSG-specific cDNA, which had been 

excised from the plasmid, gel purified (QIAGEN gel extraction kit), and a^^P 

radiolabelled using the ‘Prime-It IT kit (Stratagene), and washed to a final stringency 

of 0.1 X SSC, 0.1% SDS at 65°C. Full length radiolabelled cDNAs (approximately 

1.6 kb) were used as probes in every case. However, probing with ILTat 1.67 cDNA 

produced a strong cross hybridization with other VSG gene sequences, and therefore 

a 400 base amino-terminus fragment was PCR amplified from the plasmid. This 

h'agment was radio labelled, and used as a more specific probe.

4.3 ILTat 1.2 VSG gene copies in expressor and non-expressor clones

■ f
•I

The cDNA for the infecting VSG, ILTat 1.2, hybridized to four fragments in the 

HindUl digest of the 1.2 DNA (Figure 18, lane 1, and see also Figure 19, lane 1). 

This represents two genes, since there is an internal Hindlll site within the coding 

sequence (physical maps of VSG genes in section 3.7) and is consistent with the 

ILTat 1.2 hybridization pattern previously reported (Williams et a l 1980). Two 

fragments comigrated at 1.1 kb, while two larger bands were observed close together 

at 6.2-6.5 kb. A similar pattern was seen in the 1.67 genomic DNA (lane 3), which 

also displayed four hybridizing fragments, although there was variation in the sizes 

of the larger fragments, allowing these two bands to be resolved. Only two 

fragments were detected in the 1.25 and 1.68 lanes, indicating that one of the 1.2 

copies had been lost in these clones; the larger fragments also demonstrated size
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differences. This alteration in fragment length between trypanosome clones 

indicates that the 1.2 genes are telomeric, the changes probably occurring in the 

telomere tract lying immediately downstream of the VSG gene.

To ensure that none of the bands was a product of partial digestion, the filter was 

reprobed with a PCR product encompassing the coding sequence of the trypanosome 

RAD51 single copy gene (McCulloch and Barry, 1999) (Figure 26, page 93), which 

displayed a single band per track, indicating complete digestion. This control 

hybridization also demonstrated that the intense bands in the ILTat 1.2 track at 1.1 

kb and 6.2-6.5 kb were doublets, rather than differences in DNA loading (although 

more DNA was present in the 1.2 and 1.67 lanes).

EcoRJ HinàWl P st\ 
1 2 3 4  1 2 3 4  1 2 3 4

Figure 18. ILTat 1.2 VSG gene copies in 

ILTats 1.2, 1.25, 1.67 and 1.68. Genomic 

DNA from ILTat 1.2 (lane 1), ILTat 1.25 

(lane 2), ILTat 1.67 (lane 3) and ILTat 

1.68 (lane 4) was digested with £coRI, 

//indlll or Pstl, separated on a 0.7% 

agarose gel and Southern blotted. The 

filter is probed with ILTat 1.2 VSG 

cDNA, and washed to 0.1 x SSC, at 65°C. 

Molecular markers (kb) are indicated to 

the left o f the panel.

The Pstl digests were less informative than the HindlW digests as there are three 

internal sites within the coding sequence, therefore producing fragments of equal 

sizes from both telomeric copies. However, three clear hybridization products were
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detectable at 0.9 kb (from the first internal site to another upstream of the VSG gene), 

0.5 kb and 0.4 kb (two internal products). Again, the hybridization was more intense 

in the 1.2 and 1.67 lanes, confirming the double copy of the 1.2 gene in these clones. 

Very faint hybridization was also seen between 5 kb and 6 kb in all four lanes. 

These bands represent the probe binding to the last 300 bp of the VSG gene before 

the telomere, and the hybridization pattern is identical (but 1 kb smaller), to that 

observed for the telomeric fragments of the Hindlll digests.

Digestion with EcoRl produced large fragments beyond the scale of the size 

markers (>12 kb), indicating that a considerable stretch upstream of the VSG gene is 

devoid of EcoRI restriction sites. High intensity hybridization in the ILTat 1.2 and 

1.68 lanes again confirmed that two gene copies were present in these clones.

E coRl H indlll 
12 3 4 12 3 4

Figure 19. ILTat 1.2 VSG gene copies in ILTats 

1.2, 1.68, 1.21 and 1.64. Genomic DNA from 

ILTat 1.2 (lane 1), ILTat 1.68 (lane 2), ILTat 1.21 

(lane 3) and ILTat 1.64 (lane 4) was digested with 

£coRI or //mdlll, separated on a 0.7% agarose gel 

and Southern blotted. The filter was probed with 

ILTat 1.2 VSG cDNA, and washed to 0.1 x SSC, at 

65®C. The Pstl tracks were too faint for graphical 

reproduction. The minor band at about 4.2 kb in 

lane 1 of the Hindlll digest was observed in the 

other three lanes, but this region was also too faint 

to be represented graphically. Molecular markers 

(kb) are indicated to the left of the panel.
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One of the two ILTat 1.2 VSG gene copies was also lost during each of the ILTat 

1.69, 1.21 and 1.64 switches (Figure 19, lanes 2-4), and produced the same 

hybridization pattern that was observed with the 1.25 and 1.68 genomic DNA. 

Again, the two single bands were detectable at 1.1 kb and approximately 7 kb in the 

77?udIII digests, with the larger fragment varying in size between clones probably 

due to changes in telomere length. The Pstl (data not shown), and EcoRI digests 

also yielded the same sized fragments as seen in the 1.25 and 1.68 hybridizations.

It was therefore apparent that five of the six VSG switches from the first relapse 

peak involved the loss of one of the ILTat 1.2 VSG gene copies, while both copies 

remained unaltered in the remaining activation (1.67).

4.4 Activation of the IL T at 1.25,1.67 and 1,68 VSG genes

fragment observed around 9.0 kb (lane 2), which corresponds to a classical ELC of 

the gene: the product of duplicative transposition. Again, the single copy RAD51 

(Figure 26) reprobing of this filter revealed that this additional product was not due
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Probing with ILTat 1.25 VSG cDNA produced the most complicated hybridization 

pattern of all the six switched clones (Figure 20). Due to the presence of a large 

number of bands, the ^coRI and Pstl digests were difficult to inteipret, but it was 

possible to explain the Hindlll lanes. In the non-expressor lanes o f this digest (1,3, 

and 4) there were two telomeric fragments at approximately 5-6 kb and 9 kb; three 

weaker bands (and an extremely faint fourth fragment) were also detectable. These 

results suggest that this tiypanosome genome possesses two telomeric BCs of the 

ILTat 1.25 VSG gene, and also contains several highly homologous sequences 

(probably from closely related VSGs) which produce the fainter cross-reaction. 

Reprobing of the filter with an amino-terminus encoding fragment of the 1,25 cDNA 

did not change the hybridization pattern, demonstrating that the similarity between 

these cross-reacting sequences and the 1.25 VSG was occurring at the less conseiwed 

end of the gene (data not shown). This is indicative that the cross-reacting sequences 

are members o f a VSG gene family.

In the tiypanosome clone expressing the ILTat 1.25 gene, there was an extra



to partial digestion. In conclusion, it seems that there are two silent, telomeric gene 

copies of 1.25, one of which was activated by duplication into a BES. It also seems 

probable that the duplicated VSG gene was transposed to the BES previously 

occupied by the 1.2 gene, since one of 1.2 gene copies were lost during this 

activation (section 4.3, page 82).

E coR i H in dlll P st\ 
1 2 3 4  1 2 3 4  1 2 3 4

% « •  ^

Figure 20. Activation of the ILTat 1.25 

VSG gene. Genomic DNA from ILTat 1.2 

(lane 1), 1.25 (lane 2), 1.67 (lane 3) and 

1.68 (lane 4) was digested with £coRI, 

Hindlll or Pstl, separated on a 0.7% 

agarose gel and Southern blotted. This is 

the same filter as in Fig. 18, here probed 

with the 1.25 VSG cDNA, and washed to 

0.1 X SSC, at 65°C. Molecular markers 

(kb) are indicated to the left of the panel.

The initial hybridization of ILTat 1.67, using the full length cDNA as a probe, 

produced an ambiguous result, with multiple bands apparent in every lane. 

Therefore, a 400 base amino-terminus fragment was PCR amplified from the 

plasmid, radiolabelled, and used to probe the filter; this hybridization proved to be 

more specific. Although EcoRI and Pstl sites are present within the coding sequence 

of the 1.67 VSG gene, they do not fall within the region encompassed by the 400 bp 

probe, and therefore single bands were observed (Figure 21).
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E coRl HinàlW P stl
1 2 3 4  1 2 3 4  1 2 3 4

Figure 21. Activation of the ILTat 1.67 

VSG gene. Genomic DNA from ILTat 1.2 

(lane 1), 1.25 (lane 2), 1,67 (lane 3) and 

1.68 (lane 4) was digested with EcoRI, 

HindlW or Pstl, separated on a 0.7% 

agarose gel and Southern blotted. This is 

the same filter as in Figs. 18 and 20, here 

probed with the first 400 bases of the 1.67 

VSG cDNA (starting from the spliced 

leader), and washed to 0.1 x SSC, at 65°C. 

Molecular markers (kb) are indicated to 

the left o f the panel.

This activation seems to have occurred by an in situ switch involving a single copy 

gene, since no additional band was generated in the expressor lane 3. This is 

consistent with the observation (in section 4.3) that the second ILTat 1.2 gene copy 

was retained after this event. The BESs are located on telomeres, and the occupancy 

of a BES by the 1.67 gene explains the variation in fragment sizes seen in the Hindlll 

digests. This telomeric variation is not seen in the EcoBd or Pstl digests due to the 

internal restriction sites contained within the VSG coding sequence, resulting in the 

telomere being cleaved from the amino-terminus encoding VSG fragment. The 

ILTat 1.67 probe was specific to the first 400 bp of the VSG coding sequence and 

therefore only hybridized with the non-variable fragments produced by EcoRI or 

Pstl digestion.
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Initially, the probing with ILTat 1.68 cDNA appeared to produce a pattern 

consistent with an in situ switch (Figure 22). Two gene copies were apparent in 

every lane; the more intense band was large and telomeric (>12 kb). The other was 

smaller (at about 5.9 kb in the Hindlll digest) and possibly internal since the 

fragments were equal in size across all four clones (although this could also be 

explained by internal restriction sites downstream of a telomeric VSG gene). No 

additional ELC band was detected in the expressor lane (3). However, this 

activation is more complicated than it appears.

EcoRI HindlW P stl 
1 2 3 4 1 2 3 4  1 2 3 4

' A /  #

*

Figure 22. Activation of the ILTat 1.68 

VSG gene. Genomic DNA from ILTat 1.2 

(lane 1), 1.25 (lane 2), 1.67 (lane 3) and 

1.68 (lane 4) was digested with EcoRl, 

Hindlll or Pstl, separated on a 0.7% 

agarose gel and Southern blotted. This is 

the same filter as in Figs. 18, 20 and 21 

here probed with the 1.68 VSG cDNA, and 

washed to 0.1 x SSC, at 65°C. Molecular 

markers (kb) are indicated to the left of the 

panel.

Close examination of the hybridization of the larger, telomeric fragments revealed 

that, although the size variation was reproducible between the £coRI and Pstl 

digests, the Hindlll generated fragments displayed a more variable pattern. For
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4.5 Activation of the IL T at 1.69,1.21 and 1.64 VSG genes

89

example, in the Æ'coRI and Pstl digests, the ILTat 1.68 telomeric fragment was larger 

those of the 1.2, 1.25 or 1.67 clones, but in the Hindlll digest it appeared smaller 

than its counterparts. This variation, which was not reproducible between the 

digests, could not be explained by changes in telomere length alone and suggested 

that recombination was occuiiing during the activation of the 1.68 gene. Further 

evidence for a recombinational event was seen in section 4.3 (page 82), when the 

second 1.2 gene copy was lost in the 1.68 clone. Later chromosomal analysis 

demonstrated that an ELC is produced during this activation, and is accompanied by 

an undetermined, additional rearrangement event (results shown in section 4.10, 

page 96).

There was a single Pstl restriction site in the ILTat 1.68 coding sequence, but this |

did not result in any additional bands since it occurred at the start of the amino- 

terminus encoding region. An EcoBl site was also present at the very end of the 

coding sequence of the cDNA clone used to generate the probe, although this was 

probably a PCR or cloning artefact since it was not detected in the other two clones.

Telomeric variation would not have been observed if this site was present in the 

genomic DNA.

The clearest hybridization patterns were produced when probing with ILTat 1.69,

1.21 and 1.64 VSG gene specific cDNAs, with all three activations occuning by ELC 

formation (Figures 23-25).

HindJll digestion revealed that two telomeric basic copies of the ILTat 1.69 VSG 

gene were present in this trypanosome line, represented by the fragments at 4.4-5.1 

kb and 6.2-7.0 kb (Figure 23). A third band at about 3.4 kb was apparent in the 

expressor lane 2, indicating that this activation had occurred by ELC formation. The 

other two digests produced large fragments (>12 kb), although in both examples the 

smaller ELC could be detected in the 1.69 lane.

Following restriction digestion, it is more common to find that the fi-agment derived 

from the ELC is larger than the BC band. This is often due to the long 70 bp “baiTen 

region" upstream of the VSG gene; the stretch of sequence between the VSG gene in 

the BES and the telomere can also result in a larger fragment being liberated.



However, in the case of 1.69 it is possible that the telomeric fragment of the BC is 

actually longer than that of the BES, since the smallest band in the expressor lane is 

more intense than the other bands in all digests, suggesting that this represents the 

ELC.

E coRl HinàWl P stl 
1 2 3 4  1 2 3 4  1 2 3 4

Figure 23. Activation of the ILTat 1.69 

VSG gene. Genomic DNA from ILTat 1.2 

(lane 1), 1.69 (lane 2), 1.21 (lane 3) and

1.64 (lane 4) was digested with EcoRl, 

Hindlll or Pstl, separated on a 0.7% 

agarose gel and Southern blotted. This is 

the same filter as in Fig. 19, here probed 

with the 1.69 VSG cDNA, and washed to 

0.1 X SSC, at 65°C. Molecular markers 

(kb) are indicated to the left o f the panel.

A single telomeric fragment, probably representing a single copy gene, was observed 

between 5.5 and 6.3 kb in the Hindlll digests of the ILTat 1.21 VSG cDNA probing 

(Figure 24). The larger band at about 8.5 kb in the expressor lane indicated that this 

VSG had also become activated by ELC formation. The EcoBl digests produced 

large fragments (>12 kb) that could not be resolved, although the hybridization in the

1.21 lane was strong enough to indicate a doublet (compare with the RAD51 probing; 

section 4.6, Fig. 26, page 93). A Pstl restriction site in the coding sequence of 1.21 

explained the hybridization pattern seen in the tracks digested with this enzyme. The 

band at 0.7 kb was the internal fragment spanning to a site upstream of the VSG 

gene, while the larger band (varying from 3.3 to 4.0 kb between clones) was the 

telomeric fragment running downstream from the internal site.
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E coR I HindlW P stl
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Figure 24. Activation of the ILTat 1.21 

VSG gene. Genomic DNA from ILTat 1.2 

(lane 1), 1.69 (lane 2), 1.21 (lane 3) and 

1.64 (lane 4) was digested with £coRI, 

Hindlll, or Pstl, separated on a 0.7% 

agarose gel and Southern blotted. This is 

the same filter as in Figs. 19 and 23, here 

probed with the 1.21 VSG cDNA, and 

washed to 0.1 x SSC, at 65°C. Molecular 

markers (kb) are indicated to the left of the 

panel.

An additional band between approximately 4.0 and 4.7 kb was also seen in the Pstl 

digests of the four clones. This fragment was most likely a partial product generated 

by base J modification (see Introduction, section 1.9, page 25) of the Pstl site 

internal to the coding sequence, which renders the site indigestible in some DNA 

molecules. The band was 0.7 kb (the size of the internal fragment) larger than the 

major telomeric product, confirming that base J modification was a plausible 

explanation. When the filter was subsequently reprobed with a 400 base amino- 

terminus coding 1.21 fragment, both the downstream telomeric and ELC bands 

(which were previously a product of the full length cDNA probe hybridizing to the 

telomeric fragments downstream of the internal Pstl site) were no longer detectable 

(data not shown). However, the faint telomeric product was still present (along with 

the expected 0.7 kb internal fragment), indicative of a partial restriction fragment, 

stretching from the telomere to the Pstl site upstream of the VSG gene. The fact that 

no partial product was generated from the largest (6.7 kb) Pstl band demonstrates
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that this represents the ELC fragment, since base J modification does not occur at the 

active telomere.

EcoRI HindlW P stl 
1 2 3 4 1 2 3 4 1 2 3 4

Figure 25. Activation of the ILTat 1.64 

VSG gene. Genomic DNA from ILTat 1.2 

(lane 1), 1.69 (lane 2), 1.21 (lane 3) and

1.64 (lane 4) was digested with £coRI, 

HindlW or Pstl, separated on a 0.7% 

agarose gel and Southern blotted. This is 

the same filter as in Figs. 19, 23 and 24 

here probed with the 1.64 VSG cDNA, and 

washed to 0.1 x SSC, at 65°C. Molecular 

markers (kb) are indicated to the left o f the 

panel.

m

The ILTat 1.64 VSG activation also occurred by duplicative transposition (Figure 

25). In the EcoKl digests a long, single telomeric fragment was present, with an 

additional, larger ELC band in the expressor track. The single telomeric fragment 

was also seen in the HinéWl digests between approximately 6.5 and 10.5 kb; the 

duplicated copy appeared to be the same size as the BC, producing strong 

hybridization in the 1.64 track. A faint band at 1.6 kb was also detected, 

corresponding to an upstream fragment stretching from the internal site at 333 bp 

from the start o f the VSG gene coding sequence. The Pstl hybridizations were very 

faint, although the telomeric variation could just be made out at around 6-10 kb. 

Another two (or three if there was a Pstl site upstream of the VSG gene) bands 

should have been observed in these tracks, although the exposure time was probably 

too short for these to be seen by autoradiography.
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4.6 RAD51 control hybridizations

By probing the filters with a known single copy gene it was possible to determine 

whether the enzyme digestions had been complete. A PCR product encompassing 

the coding sequence of the trypanosome RAD51 gene (a homologue of the bacterial 

RecA gene) was generated, radiolabelled, and used to reprobe the filters used for the 

study of the VSG activations. Single products were observed in all cases at 

approximately 9.0 kb in the EcoRl and HindlW digests, and 2.4 kb in the Pstl lanes, 

demonstrating that digestion was complete. The signal intensity of this control 

hybridization also revealed the relative amounts of genomic DNA that had been 

loaded in each lane. This enabled an accurate interpretation of the various 

hybridization effects observed during the VSG probings, such as the doublets 

observed in the ILTat 1.2 hybridizations (Figures 18 & 19).

A E coR l H in d lll P stl 
1 2 3 4 1 2 3 4 1 2 3 4

B E coR l H in d lll P stl 
1 2 3 4 1 2 3 4 1 2 3 4

- -r.-'.T -

Figure 26. RAD5I single copy gene control probing. Genomic DNA was digested with EcoRI, 

Hindlll, or Pstl, separated on a 0.7% agarose gel and Southern blotted, and probed with a PCR 

product encompassing the coding sequence of the trypanosome RAD51 gene. Panel A: ILTat 1.2 

(lane 1), 1.25 (lane 2), 1.67 (lane 3) and 1.68 (lane 4). This is the same filter as in Figs. 18 and 20-22. 

Panel B: ILTat 1.2 (lane 1), 1.69 (lane 2), 1.21 (lane 3) and 1.64 (lane 4). This is the same filter as in 

Figs. 19 and 23-25. The filters were washed to 0.1 x SSC, at 65®C. Molecular markers (kb) are 

indicated to the left of each panel.
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4.7 Activation of the ILTat 1.25 VSG gene from the 1.61c high switching 

single relapse investigation

The activation mechanism of the ILTat 1.25 clone isolated from the ILTat 1.61c 

rapidly switching single relapse experiment was also determined by Southern 

analysis. Genomic DNA was prepared from trypanosomes (as in section 4.2, page 

81) for ILTat 1.61c (GUP 2812) and the ILTat 1.25 expressor c2dl6 (WUMP 1060). 

Afterwards, 1 pg of this DNA was digested with ///«dlll, BamHl, or £coRI, and 

fractionated on a 0.7 % agarose gel. Following Southern blotting, the filter was 

probed with VSG-specific DNA, excised from the c2dl6 plasmid.

H in dlll BamHl 
1 2  1 2

kb

8.0  —

7.0 —
6.0 —

5.0 —

4.0 —

3.0 —

2.0

1.6

E coR l 
1 2

Figure 27. Activation of the ILTat

1.25 VSG gene from the ILTat 

1.61c high switching experiment. 

Genomic DNA from ILTat 1.61c 

(lane 1) and 1.25 (lane 2) was 

digested with Hindlll, BamHl or 

EcoRl, separated on a 0.7% 

agarose gel and Southern blotted. 

The filter was probed with the 1.25 

VSG cDNA (excised from the 

c2dl6 plasmid) , and washed to 0.1 

X SSC, at 65°C. An additional 

cross-reacting band at 2.1 kb was 

too faint for graphical reproduction. 

Molecular markers (kb) are 

indicated to the left of the panel.

The hybridization revealed that, in this study, the ILTat 1.25 VSG gene had become 

activated by ELC formation, duplicated from a single telomeric donor. In the 

Hindlll digests the BC and ELC can be seen between approximately 4.6 and 8.0 kb. 

The BamHl and EcoRl digests were less informative, producing large fragments 

(>12 kb).
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4.8 Pulsed Field Gel electrophoresis (PFGE) analysis of the VSG genes 

activated during the first relapse peak

PFGE was utilised to determine the chromosomal location of the VSG gene BCs 

and ELCs. Trypanosomes were grown from stabilate (as in sections 4.2 and 4.7, 

pages 81 and 94) and separated from blood on a Percoll gradient. Genomic plugs 

were then prepared by immobilizing the live cells in 0.7% low melting point agarose 

(5x10^ trypanosomes per 100 pi plug). Gels were run on the CHEF-DR III system 

using half a genomic plug per lane; 3 PFG conditions were utilised during this 

investigation. The 6-day general separations were run on a 1.2% agarose gel at 15°C 

in 0.089 M Tris-borate, 0.1 mM EDTA (85V, 1400-700s pulse time, 144 h). The 1.8 

Mb chromosomal cluster was expanded under the same conditions, except that a 

fixed pulse time of 600s was used. The minichromosomal separations were run on a 

1.0% agarose gel at 14°C in 0.045 M Tris-borate, 0.5 mM EDTA (200V, 20s pulse 

time, 16h).

The resultant gels were Southern blotted onto nylon membrane and bound by UV 

radiation. These blots were then probed with the a-^^P radiolabelled FS'G-specific 

cDNAs (as in section 4.2, page 81) and washed to a final stringency of 0.1 x SSC, 

0.1% SDSat65°C.

4.9 Chromosomal location of the ILTat 1.2 VSG genes

Probing the 6-day general separation with ILTat 1.2 VSG cDNA revealed two clear 

bands in the expressor lane (Figure 28). Hybidization also occurred at the slot due to 

a large proportion of these two chromosomes remaining entrapped within the plug 

during separation. The first 1.2 copy was detected on the 2.1 Mb cluster 

(representing 3 comigrating chromosomes -  see section 4.1, page 80), while the 

second occurred on the 1.8 Mb gi'oup (consisting of 5 cliromosomes). The 1.8 Mb 

copy was retained in the 1.67 clone, but lost during the activation of clones 1.25,

1.68, 1.69, 1.21 and 1.64. It can therefore be deduced that the 1.8 Mb copy is 

located at the BES, remaining unchanged during the transcriptional switch seen in 

1.67, but replaced by the new ELC in the five duplicative events.
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Two ILTat 1.2 gene copies were also detected at identical locations in the 1.61c 

clone; both these copies were retained during the 1.25 duplicative activation event 

(produced from the single relapse study). This suggests that the 1.61c line is 

utilising a BES separate from the one occupied by the 1.2 VSG gene (on the 1.8 Mb 

chromosome).

B D

Figure 28. Chromosomal location of the ILTat 1.2 VSG genes. Chromosome-size DNA of ILTat 

1.61c (lane 1), 1.25 (from c2dl6, lane 2), 1.2 (lane 3), 1.25 (lane 4), 1.67 (lane 5), 1.68 (lane 6), 1.69 

(lane 7), 1.21 (lane 8) and 1.64 (lane 9) was separated on a 1.2% agarose gel at 85V, with a ramped 

pulse frequency of 1400-700s for 144h. The gels (panels A and C) were then Southern blotted, and 

the resultant filter was probed with ILTat 1.2 VSG cDNA (panels B and D). The filter was washed to 

0.1 X SSC, at 65°C. Approximate chromosomal size is indicated (Mb) to the left o f panels A and C.

4.10 PFGE analysis of the ILTat 1.25, 1.67 and 1.68 VSG genes

The most ambiguous PFG results were produced when the filter was reprobed with 

ILTat 1.25 cDNA, because the cross-reacting bands seen in the previous genomic 

blots complicated the pattern. An ELC was observed on the 1.8 Mb cluster in the 

two expressor lanes (2 and 4). Unfortunately there was more DNA present in the
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genomic plugs of both these clones, but the difference in intensity between the 

expressor and non-expressor tracks was more marked here than in any of the other 

probings (see Figures 28, 30 and 31); this confirms that these bands were real, rather 

than differences in loading intensity. A minichromosomal fragment at 0.1 Mb was 

also seen in every lane, and this accounts for one of the telomeric BCs seen in Figure 

20 .

M b

2.1

0.1

Figure 29. ILTat 1.25 VSG cDNA probing of PFGE separated chromosome size DNA. DNA from 

ILTat 1.61c (lane 1), 1.25 (from c2dl6, lane 2), 1.2 (lane 3), 1.25 (lane 4), 1.67 (lane 5) and 1.68 (lane 

6) was separated on a 1.2% agarose gel at 85 V, with a ramped pulse frequency of 1400-700s for 144h. 

The gel (panel A) was then Southern blotted, and the resultant filter was probed with ILTat 1.25 VSG 

cDNA (panel B). The filter was washed to 0.1 x SSC, at 65°C. Panel C displays a longer exposure of 

the same blot. This is the same filter as in Fig. 28 panel B. Approximate chromosomal size is 

indicated (Mb) to the left of panel A.

The previous genomic digests had revealed that the ILTat 1.25 clone activated from 

the 1.2 rabbit infection possessed two ILTat 1.25 gene copies, while only 1 copy was 

observed in the clone activated from the 1.61 c single relapse mouse study. It could 

therefore be determined that the three fainter PFGE bands, apparent between the slot 

and the minichromosomes, were the cross-reactions seen in Figures 20 and 27. The
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second 1.25 VSG gene copy in the ILTat 1.2 derived clones must therefore reside on 

a large chromosome that has remained in the slot under these PFGE conditions. The 

slot also hybridized in clone 1.61c because much of the cross-reacting DNA 

remained in the plug during separation. DNA transfer from the slot is not 

quantitative, and it appears that signal strength of hybridization to the chromosomes 

that remain within the slot under this separation is weaker than the signal produced 

by the partially trapped DNA (see Figure 32, panels C and D). This phenomenon 

could explain why the slot hybridization of the ILTat 1.2 derived samples is no 

stronger than in the ILTat 1.61 derived clones.

It appeared that the ILTat 1.25 ELC (produced in the rabbit infection) replaced the 

1.2 expressed copy that was previously residing in the active BES (Figure 28). 

However, in the 1.25 activation derived from the single relapse mouse experiment 

(from 1.61c) this 1.2 copy remained unaltered (Figure 28), demonstrating that this 

ELC must have been expressed from another BES, also present in the 1.8 Mb cluster.

A B
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Figure 30. ILTat 1.67 VSG cDNA probing of PFGE separated chromosome size DNA. DNA from 

ILTat 1.61c (lane 1), 1.25 (from c2dl6, lane 2), 1.2 (lane 3), 1.25 (lane 4), 1.67 (lane 5) and 1.68 (lane 

6) was separated on a 1.2% agarose gel at 85 V, with a ramped pulse frequency of 1400-700s for 144h. 

The gel (panel A) was then Southern blotted, and the resultant filter was probed with the 400 base 

amino-terminus ILTat 1.67 specific VSG cDNA (panel B). The filter was washed to 0.1 x SSC, at 

65°C. This is the same filter as in Figs. 28 (panel B) and 29 (panels B and C). Approximate 

chromosomal size is indicated (Mb) to the left of panel A.
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Reprobing the filter with the 400 base amino-terminus probe of ILTat 1.67 

produced a single band in every lane (Figure 30), indicating that no genetic 

rearrangements had occurred during the activation of this gene. It also appeared that, 

like the ILTat 1.2 BES, the 1.67 BES activated in this in situ switch was localised on 

the same 1.8 Mb chromosomal cluster.

The unusual hybridization pattern observed from the genomic digest of ILTat 1.68 

DNA (Figure 22) was elucidated from the PFGE results (Figure 31). The probing 

revealed that one of the 1.68 VSG gene BCs was minichromosomal, while the second 

copy probably resided on a larger, slot chromosome. Hybridization was also 

observed at 1.8 Mb in the expressor track, but the minichromosomal basic copy was 

lost during this activation. It therefore seems plausible that this gene was copied 

from the minichromosome and transposed to the BES, replacing the 1.2 copy (as 

seen in Figure 18), but the minichromosomal copy was then lost by another 

rearrangement event. An alternative explanation is that the activation occurred by 

reciprocal telomere recombination between the ILTat 1.68 minichromosome and the 

BES occupied by the 1.2 VSG, with the subsequent loss of the 1.2 copy (present on 

the minichromosome after the switch).

Mb
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Figure 31. ILTat 1.68 VSG cDNA probing 

of PFGE separated chromosome size 

DNA. DNA from ILTat 1.61c (lane 1),

1.25 (from c2dl6, lane 2), 1.2 (lane 3),

1.25 (lane 4), 1.67 (lane 5) and 1.68 (lane 

6) was separated on a 1.2% agarose gel at 

85 V, with a ramped pulse frequency of 

1400-700s for 144h. The gel (panel A) was 

then Southern blotted and the resultant 

filter was probed with ILTat 1.68 VSG 

cDNA (panel B). The filter was washed to 

0.1 X SSC, at 65°C. This is the same filter 

as in Figs. 28 (panel B), 29 (panels B and 

C) and 30 (panel B). Approximate 

chromosomal size is indicated (Mb) to the 

left o f panel A.
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4.11 PFGE analysis of ILTat 1.69,1.21 and 1.64 VSG genes

PFGE analysis confirmed that the ILTat 1.69, 1.21 and 1.64 VSG genes had become 

activated by duplicative transposition (Figure 32). In each case an ELC was seen in 

the expressor lane at the 1.8 Mb cluster (Figure 32, panels C, D and E), and this was 

accompanied by the loss of the 1.8 Mb copy of the 1.2 gene (Figure 32, panel B).

Panel D displays the filter probed with ILTat 1.21 VSG cDNA, which revealed the 

single, minichromosomal BC. There is no slot hybridization in the non-expressor 

lanes of this panel because the minichromosomal DNA is small enough to migrate 

unhindered from the plug. However, slot hybridization does occur in the expressor 

lane due to the partial entrapment o f the 1.8 Mb chromosome containing the active 

BES.

A B C D E
1 2 3 4  1 2 3 4  1 2 3 4  1 2 3 4  1 2 3 4
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ILTat 1.2 ILTat 1.69 ILTat 1.21 ILTat 1.64

Figure 32. Transposition of the duplicated ILTat 1.69, 1.21, and 1.64 VSGs. Chromosome-size 

DNA from ILTat 1.2 (lane 1), 1.69 (lane 2), 1.21 (lane 3) and 1.64 (lane 4) was separated on a 1.2% 

agarose gel at 85V, with a ramped pulse frequency of 1400-700s for 144h. The gel (panel A) was 

then Southern blotted, and the resultant filter was initially probed with ILTat 1.2 VSG cDNA (panel 

B). The remaining three panels display the same filter probed sequentially with ILTat 1.69 (panel C), 

1.21 (panel D) and 1.64 (panel E). The filters were washed to 0.1 x SSC, at 65°C. Approximate 

chromosomal size is indicated (Mb) to the left of panel A.

100



A minichromosomal copy was also detected when probing with ILTat 1.69 VSG 

cDNA (panel C), but slot hybridization was also observed in the non-expressor 

lanes, indicating that a second BC must reside on a large unresolved chromosome; 

this is consistent with the two copies seen in section 4.5 (page 89).

The ILTat 1.64 hybridization (panel E) revealed another single copy gene (seen in 

section 4.5, page 89) with the BC apparent on the 2.1 Mb chromosomal cluster; 

partial entrapment explains the slot hybridization also observed in this probing.

4.12 Resolution of the 1.8 Mb cluster

It was possible to separate the five 1.8 Mb comigrating chromosomes by fixing the 

pulse time of the general run at 600s (previously ramped at 1400-700s) (Figure 33).

Figure 33. 600s PFGE resolution of the 1.8 Mb comigrating chromosomes, probed with ILTat 1.2 

cDNA. Chromosome-size DNA from ILTat 1.61c (lane 1), 1.25 (from c2dl6, lane 2), 1.2 (lane 3), 

1.25 (lane 4), 1.67 (lane 5), 1.68 (lane 6), 1.69 (lane 7), 1.21 (lane 8) and 1.64 (lane 9) was separated 

on a 1.2% agarose gel at 85V, with a fixed pulse frequency of 600s for 144h. The gels (panels A and 

C) were then Southern blotted, and the resultant filters were probed with ILTat 1.2 VSG cDNA 

(panels B and D). The filters were washed to 0.1 x SSC, at 65°C. Approximate chromosomal size is 

indicated to the left o f panels A and D (cz-compression zone).
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The two ILTat 1.2 gene copies were detected when the 600s separated filter was 

probed with 1.2 VSG cDNA. The 2.1 Mb chromosome was localised to the smaller 

band of the compression zone, while the BES was apparent on the largest of the 1.8 

Mb chromosomes.
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Figure 34. 600s PFGE resolution of the 1.8 Mb comigrating chromosomes, probed with ILTat 1.2 or 

1.69 cDNA. Chromosome-size DNA from ILTat 1.2 (lane 1), 1.69 (lane 2), 1.21 (lane 3) and 1.64 

(lane 4) was separated on a 1.2% agarose gel at 85V, with a fixed pulse frequency of 600s for 144h. 

The gel (panel A) was then Southern blotted, and the resultant filter was probed sequentially with 1.2 

and 1.69 VSG cDNA (panels B and C respectively). Panels A and B are identical to panels C and D, 

respectively, in Fig. 33. The filters were washed to 0.1 x SSC, at 65°C. Approximate chromosomal 

size is indicated to the left o f panel A (cz-compression zone).

Reprobing of the filter produced unconvincing results because the harsh stripping 

procedure (required for PFGE blots) removed too much of the non-compression zone 

DNA. However, in the 1.69 reprobing the ELC was observed on the largest 1.8 Mb 

chromosome (Figure 34). This confirms that this duplicated copy was transposed to 

the same BES that was formerly occupied by the 1.2 gene. Hybridization was also 

seen on both bands in the compression zone, and this is probably due to the large 

chromosome, previously seen in the slot of the general separation. The 

minichromosomes migrated to the bottom of the gel in the 600s separation, and were 

not transferred to the filter during the Southern blot.
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4.13 Resolution of the minichromosomal BCs

The 16h PFGE separation resolved the intermediate and minichromosomes (Figure 

35). Several different size classes of minichromosome were present between 

approximately 35 and 100 kb, and hybridization was observed at about 100 kb 

(ILTat 1.25), 90 kb (1.68 and 1.69), and 55 kb (1.21); again the 1.68 

minichromosomal copy was absent from the expressor track. Probing with the other 

VSG cDNAs produced only compression zone hybridization (data not shown). The 

apparent signals seen in panel F slots occurred because the wells of these blots were 

marked with pencil.

Figure 35.

PFGE resolution of the 

minichromosomes. 

Chromosome-size DNA 

from ILTat 1.2 (lane 1),

1.25 (from c2dl6, lane 2),

1.25 (lane 3), 1.67 (lane 

4), 1.68 (lane 5), 1.69 

(lane 6), 1.21 (lane 7) and

1.64 (lane 8) was 

separated on a 1.0 % 

agarose gel at 200V, with 

a pulse frequency of 20s 

for 16 hours. The gels 

(panels A and D) were 

then Southern blotted, and 

the resultant filters were 

probed with 1.25 (panel 

B), 1.68 (panel C), 1.69 

(panel E) and 1.21 (panel 

F) VSG cDNA. The filters 

were washed to 0.1 x SSC, 

at 65°C. Molecular 

markers (kb) are indicated 

to the left o f panels A and 

D.
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4.14 Summary

The genetic analysis of the six VATs seen in the first relapse peak has revealed that
■

four became activated by duplicative transposition (ILTats 1.25, 1.69, 1.21 and 

1.64), with a fifth possibly using this mechanism in conjunction with another event 

(1.68). ILTat 1.67 was the only VSG gene to be expressed following an in situ 

switch. Similar analysis of the second relapse peak demonstrated that all five VSG 

genes were activated by ELC fonnation (data not shown). Telomeric VSGs were the 

predominant source of ELCs, with fifteen of the eighteen silent genes observed in the 

first and second relapse peaks localised at the chromosome ends. All the gene study 

data are summarized in Table 3 (page 105).

Minichromosomal BCs apparently were donors in four of the six first relapse peak 

VATs (1.25, 1.68, 1.69, and 1.21), while the BCs of the other two VATs were single 

copy and either metacyclic (1.64), or located at a BES (1.67). Two of the VATs 

from the second relapse peak also possessed minichromosomal copies (1.23 and 

1.72). The 1.21 ELC was duplicated from its single BC localised on a 35 kb 

minichromosome. It also seems likely that the 1.25 ELC was copied from its 

minichi’omosomal BC, because the independent 1.25 activation, observed in the 

single relapse mouse study (from 1.61c), used the single BC present on a 100 kb 

minichi'omosome. The activation of the 1.68 VSG gene also possibly involved the 

minichromosomal copy, since the whole 90 kb chromosome disappeared during the 

event. It is therefore evident that the minicliromosomal VSG genes play an important 

role in antigenic variation at this early stage of infection.

In eveiy duplicative activation detected in the first relapse peak, the ELC was 

accompanied by the loss of the 1.8 Mb ILTat 1.2 VSG copy, indicating that the same 

BES was utilised in each case. The 600s PFGE separation established that this BES 

was present on the largest of the five comigrating 1.8 Mb chi'omosomes.

Î
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Table 3. VSG loci and activation events.

Relapse
peak

VSG Activation
mechanism

Silent gene Activated gene

Number Minichromosomal 
& location‘s genes

BES^^
size

Fate of 
1.2 VSG

First 1.25" duplication 1 telo 1 1.8 Mb retained
1.25 duplication 2 telo 1 1.8 Mb lost
1.67 “m situ’' 1 telo 0 1.8 Mb retained
1.68 1 telo, 1 int 1 1.8 Mb lost
1.69 duplication 2 telo 1 1.8 Mb lost
1.21 duplication 1 telo 1 1.8 Mb lost
1.64 duplication 1 telo 0 1.8 Mb lost

Second 1.23 duplication 2 telo 1 ND ND
1.70 duplication 2 telo 0 ND ND
1.71 duplication 1 int 0 ND ND
1.22 duplication 1 telo 0 ND ND
1.72 duplication 1 telo, 1 int 1 ND ND

a Switch event derived from the ILTat 1.61c single relapse mouse experiment 

b Activation appeared to involve duplication and another event 

c telo -  telomeric; int -  apparently clnromosome-intemal

d  Five chromosomes comigrate at 1.8 Mb (Figure 17). It has been inferred from tlie pattern of 1.2 

VSG loss that all the duplicative activations in the first relapse peak of the clironic rabbit infection 

converted the same BES. The 1.25 switch event produced from the 1.61c start clone (single relapse 

mouse study) utilised a separate BES on the 1.8 Mb cluster, while the 1.67 VSG (activated by an “/« 

situ” switch occupied a third independent site also detected at 1.8 Mb

ND not determined
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5.1 Introduction

The next phase of the investigation was to characterize the upstream flank of the 

VSG BCs that were activated by a recombinational event during the first relapse 

peak, and subsequently to detemiine the extent of the duplication involved in the 

fonnation of the ELC. In order to examine this upstream duplication boundary, it 

was necessary to isolate BC genomic clones of the relevant VSG genes. An ILTat

1.2 library {SaulA. partial digests in X-GEM-12) had been manufactured previously 

by Nils Burman, and this was screened with the radiolabelled VSG cDNAs of ILTats 

1.25, 1.68, 1.69, 1.21 and 1.64 (the five VATs activated in the first relapse peak by 

duplicative means). Although clones were isolated from four of these VATs, no 

clones could be derived for ILTat 1.21, which was a single copy minichromosomal 

gene. It therefore seemed possible that minichromosomal sequences were not 

represented in this library, in which case the ILTat 1.25, 1.68 and 1.69 clones would 

contain the non-minichromosomal BCs. Most telomeric sequences tend to be under­

represented in libraries, while minichromosomal sequence, which consists almost 

entirely of either telomere or repeat sequence (Weiden et al. 1991), appears to be 

almost unclonable when manufacturing a standard size selected libraiy (10-20 kb 

insert) {e.g. only 4 out of 18000 clones were found to contain minichromosomal 

repetitive sequence in the TREU927 BAC library at Cambridge University - S.

Melville, pers. comm.).

An alternative approach was required for isolating clones of the minichromosomal 

genes, which seemed to be the preferred donors for duplicative transposition during 

the first relapse peak. This chapter describes the strategy that was employed for the 

isolation and characterization of these minichromosomal genomic clones. By 

preparing double restriction digests of genomic DNA, using one enzyme with a site 

internal in the VSG gene {e.g. Saïï) and a series of enzymes that possess 6-bp 

recognition sequences (and would not digest within the VSG coding sequence), it 

was possible to identify telomeric fragments using Southern analysis. In most of the 

digests, the minichromosomal fragment appeared as a consistently sized band, 

occurring above the range of the molecular markers (>12kb), and was 

distinguishable from the other large telomeric chromosomes. However, in some of 

the digests this minichromosomal fi*agment disappeared, indicating that the second

\s:
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enzyme was cutting upstream of the VSG gene. It was important that the region 

upstream of the VSG gene extended at least 1.5-2.0 kb, to ensure that the fragment 

was large enough to encompass both the co-transposed region and the putative 70 bp 

repeats. However, it was necessaiy to limit the fragment size to minimise the 

amount of the minichromosomal repetitive sequence contained further upstream, in 

order to facilitate the subsequent cloning step.

Having identified an appropriate combination of restriction enzymes, it was 

possible to produce a minichromosomal library. Minichromosomal DNA was 

separated by PFGE, purified and digested with the two enzymes. This digested 

DNA was cloned into pBluescript to produce the libraiy, which was then screened 

for the relevant VSG gene.

As each VSG requires a separate library based on its unique combination of enzyme 

sites, there was time for only two VATs to be studied using this approach. ILTat

1.21 was chosen because it possessed only one BC, which was minichromosomal. 

This VAT was only represented by 2 of the 36 trypanosome clones isolated from the 

first relapse peak, although it appears to play an important role in early infection, 

becoming activated in all four rabbit infections. ILTat 1.21 was also the predominant 

VAT seen in the single relapse studies of Miller and Turner, with 32 ILTat 1.21 

activations occurring in 41 single relapse experiments in rats (Miller and Turner,

1981). ILTat 1.25, which was represented by 10 of the 36 clones from the first 

relapse peak of the ILTat 1.2 study, was investigated because it became activated at 

the start of infection in all four rabbit hosts, and was therefore a dominant early 

VAT. ILTat 1.25 also appeared to be a major VAT in the Miller and Turner study, 

occurring in 27 of 41 single relapses (Miller and Turner, 1981). Although there were 

2 BCs of this VSG gene in the ILTat 1.2 line, it became activated from the single, 

minichromosomal, BC in the ILTat 1.61c study, and was therefore likely to have 

been duplicated fi'om the same locus during the activation occurring in the ILTat 1.2 

rabbit infection.

5.2 Identification of restriction sites suitable for minichromosomal library 

manufacture

It was first necessary to identify a restriction site within the VSG gene that could be 

utilised to liberate the BC upstream fr'agment. By using an enzyme that cut
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approximately 0.5 to 1.0 kb downstream from the 5’ end of the VSG coding 

sequence, it was possible to remove the 3’ end and associated telomere from the BC 

fragment, whilst leaving a VSG specific tag attached which could be utilised in the 

screening of the subsequent libraiy. Sali was found to be a convenient enzyme for 

use with both ILTat 1.21 and 1.25 DNA, while Agel also proved useful when 

working with the 1.21 DNA. Both these enzymes have a 6-bp recognition sequence 

and their restriction sites in ILTat 1.21 and 1.25 cDNA are indicated in the physical
 .

maps below (Figure 36).
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Figure 36. Physical maps of the ILTat 1.21 and 1.25 VSG full-length cDNAs (starting with the last 

seventeen nucleotides of the spliced leader -  see Section 3.7, page 68). Restriction sites were 

determined from the full-length cDNA sequence o f the VATs. Abbreviations: A, Agel\ S, SaR.

I

ILTat 1.2 genomic DNA was digested with Sail (or Agel) and also double digested 

with Sail (or Agel) plus a series of other enzymes that possess a 6-base recognition 

sequence (which did not cut within the VSG coding sequence). These digests were 

size fractionated on a 0.7% agarose gel and transferred to nylon membranes by 

Southern blotting. The filters where then probed with either ILTat 1.21 or 1.25 a-^^P 

radiolabelled specific cDNA. For ILTat 1.21, the probe was made from a 400 bp 

product (miming downstream from the spliced leader) which had been PCR 

amplified from the cDNA clone, and was therefore specific to restriction fragments 

upstream of the Agel or SaW sites. The ILTat 1.25 probe was produced from a 1 kb 

DNA region (again amplified from a cDNA clone, and mrming downstream from the 

start of the gene) which encompassed both the Sail sites present in the cDNA. This 

probe therefore hybridized to the 0.5 kb internal Sail fragment as well as the 

fr'agment upstream of the VSG beyond the first SaK restriction site.



The ILTat 1.21 hybridizations revealed that very few 6-bp restriction sites are 

located upstream of this VSG gene; this result was consistent with a previous 

investigation of the ILTat 1.4 minichromosomal upstream domain (Williams et al.

1982). The hybridization typically produced a large, constantly sized, single band 

(see Figure 37) indicating that there was no restriction site upstream of the VSG for a 

considerable distance (and possibly no site at all) along the entire chromosome. In 

the ILTat 1.21 hybridization presented in section 4.5 (Figure 24) a smaller band was 

present in the Hindlll and Pstl digests, revealing that sites for these enzymes did lie 

upstream of the VSG gene. However, these fragments (which include the full length 

of the VSG and its associated telomere) appeared to be too small for the cloning 

purposes, and the upstream sites were later shown to lie within the cotransposed 

region immediately upstream of the gene.
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Figure 37. Autoradiograph

demonstrating the sparsity of 

restriction sites upstream of the VSG 

gene in the ILTat 1.21 

minichromosomal BC. ILTat 1.2 

genomic DNA was digested with 

Agel (lane 1 ) or double digested with 

Agel/ Kpnl (lane 2), Agel/ Ncol (lane 

3), Agel/ Spel (lane 4), Agel/ Xhol 

(lane 5) and Agel/ Xmal (lane 6) and 

fractionated on a 0.7% agarose gel. 

The DNA was then transferred to a 

nylon membrane by Southern 

blotting and probed with a short 

stretch of ILTat 1.21 cDNA running 

400 bases downstream from the 

spliced leader. The filter was washed 

to 0.1 X SSC, at 65°C. Molecular 

markers are indicated to the left of 

the panel.

When the ILTat 1.2 genomic DNA was double digested with Sail! Nsil, the ILTat

1.21 amino-terminus probe hybridized to a 2.8 kb fragment, indicating that an Nsil
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site exists 1.8 kb upstream of this BC (Figure 38, panel A). This was the largest 

upstream fragment that could be found for the ILTat 1.21 BC, and it seemed 

plausible that this would span both the cotransposed and baiTen regions. Partial 

products were also seen at approximately 6 kb and 3.9 kb, due to incomplete 

digestion at the internal Sail sites; the 6 kb band was also seen when the DNA was 

digested with Nsil alone (data not shown). A later investigation demonstrated that 

these partial products probably were due to base J modification of the Sail sites 

(section 5.5, page 121).

The ILTat 1.25 hybridizations produced a more complicated pattern; Figure 38, 

panel B (which is a duplicate of panel A) shows a filter probed with the 1.25 cDNA. 

This hybridization was harder to inteipret because there are two 1.25 BCs, as well as 

additional cross-reacting bands (seen in section 4.4, page 85), and also partial 

products probably due to the base J modification of the Sail sites. The 8-bp 

recognising Notl enzyme (lane 3) produced the simplest result, with a large band 

visible above the scale o f the size markers (probably the minichromosomal copy) 

and a second band at about 9-10 kb representing the second BC; other fainter cross­

reacting bands were apparent between these two bands.

Nsil restriction sites were observed upstream of the VSG gene in both the ILTat

1.25 BCs, probably producing the small fragments visible at 1,3 kb and 1.8 kb; the 

three fainter products possibly represented the cross-reacting bands. However, these 

fragments only extended 0.8 kb and 1.3 kb upstream of the respective VSG genes, 

implying that these restriction sites were located within the cotransposed region, and 

were therefore too short to be utilised for the determination of the duplication 

boundary.

Digestion with Sail/ Bglll produced a 4.0 kb ILTat 1.25 fi-agment (Figure 38, panel 

B, lane 4), although it was impossible to determine the BC fr'om which it was 

derived. It appeared that partial digestion had occuned in this digest due to the 

persistence of the two dominant bands (representing the intact BCs) that had been 

observed previously in the Notl digest (it was not determined if  this was due to base 

J modification). The 4.0 kb fi'agment was also observed when ILTat 1.61c genomic 

DNA (which possesses a single minichromosomal BC of the ILTat 1.25 VSG) was 

digested with the same enzyme combination (data not shown); this suggested that the 

band was probably the duplicative donor in the 1.2 DNA. This Sail/ Bglll fragment, 

which extends 3.5 kb upstream of the VSG gene, represents an ideal size, and should
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encompass both the cotransposed and 70 bp repeat regions, while remaining a 

suitable length for cloning.

Very faint hybridization can also be seen at about 0.5 kb which is due to the 1 kb 

probe binding to the 0,5 kb Sail internal fragment (see Figure 36). This band should 

have been of a similar intensity as the other main bands in each lane, and the 

weakness of the signal was probably due to the partial SaE digestion.
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Figure 38. Location o f the N sil sites upstream o f the VSG gene in the ILTat 1.21 and 1.25 BCs. 

ILTat 1.2 genomic DNA was double digested with SaW S a d  (lane 1), Sail/ S a d i  (lane 2), Sail/ Notl 

(8 bp recognition sequence, lane 3), Sail/ BgUl (lane 4), SaW N sil (lane 5) and Sail/ Kpnl (lane 6), 

size fractionated on a 0.7% agarose gel and tmnsferred to a nylon membrane by Southern blotting. 

The series o f  digests was loaded twice on the same gel allowing two identical filters to be produced, 

which are shown in panels A and B. Panel A  is probed with the 400 base ILTat 1.21 cDNA hagment, 

while panel B is probed with the 1 kb ILTat 1.25 cDNA fragment (both probes start at the spliced 

leader). The filters were washed to 0.1 x SSC, at 65°C. Molecular markers are indicated to the left 

o f each panel.
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5.3 Construction of the minichromosomal libraries

Following the identification of restriction enzymes suitable for the library 

manufacture, it was necessary to prepare purified minichromosomal DNA. PFGE 

was used to separate the chromosome sized DNA from ILTat 1.25, 1.67, 1.69 and 

1.64 genomic plugs. The separation was performed a 1.2% low-melting point 

agarose gel at 15°C in 0.089 M Tris-borate, 0.1 mM EDTA (85 V, 1400-600s pulse 

time, 120 h) using all fourteen of the gel wells (one-half o f a genomic plug per lane); 

the PFGE conditions were modified from the “general” run described in section 4.8 

(page 95). The gel was run for 120 h rather than 144 h to ensure that the 

minichromosomes, which migrate close to the edge of the gel under the “general” 

conditions, remained within the gel when it was composed of low-melting point 

agarose. This shorter run time resulted in a more compressed fractionation, but the 

minichromosomes were still well separated from the other DNA (Figure 39).

9 10 11 12 13 14

Figure 39. 120 h PFGE separation of the minichromosomes on a 1.2% LMP agarose gel stained with 

EtBr. Chromosome-size DNA from ILTat 1.25 (lanes 1 and 2), 1.69 (lanes 3-6), 1.64 (lanes 7 to 10) 

and 1.67 (lanes 11-14) was separated at 85 V, with a ramped pulse frequency of 1400-700 s for 120 h. 

Approximate chromosomal size is indicated to the left of the panel.
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The minichromosomes were excised from the gel and dialysed overnight in 1 x T.E. 

at 4°C and then for 3 h at room temperature in 1 x T.E. at pH 6.5. The agarose was 

then removed with the enzyme agarase following the supplier’s protocol, and the 

resultant DNA was cleaned by phenol/ chlorofomi extraction and ethanol 

precipitation.

It has been estimated that a single tiypanosome nucleus contains 0.097 pg of DNA 

(Borst et a l 1982), and therefore each genomic plug, which holds 5 x 10 

trypanosomes, should contain 4.85 pg of DNA. Since the minichromosomes 

represent about 10 % of the genome (Van der Ploeg et a l, 1984b), 0.485 pg of 

minichromosomal DNA should be produced per genomic plug, resulting in a total of 

3.395 pg from the fourteen one-half plugs. However, the experimental yield, at 0.9 

pg DNA (determined by UV spectrophotometry), was significantly lower than this 

theoretical maximum. This diminished yield meant it was not possible to construct a 

partial or size-selected library, and the DNA was therefore divided into two aliquots 

and then digested to completion with either Sail! Nsil or SaE! BgEl. The DNA was 

then ligated directly into pBluescript KS (+/-), which had previously been digested 

with SaE! Pstl or SaE! BamlEl {Pstl and BamlEl produce the same 4 base restriction 

overhang as Nsil and BgEl respectively). The ligated products were then used to 

transform supercompetent XL 1-BLUE MRP’ E. coli cells. The colonies were 

dissolved in L-broth + ampicillin to produce a liquid libraiy (details in Materials and 

Methods, section 2.9.2, page 48).

5,4 Screening the minichromosomal libraries

A PCR approach was adopted for screening the libraries using a method adapted 

from a protocol originally used to amplify unknown regions of DNA upstream from 

a characterized gene (Luo and Celia, 1994). In both libraries the ILTat 1.21 and 1.25 

fragments were orientated with the VSG sequence pointing towards the T3 promoter 

of the plasmid (inserted at the SaE restriction site) and the upstream flank facing the 

T7 promoter (inserted at the Pstl or BgEl restriction sites). It was therefore possible
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to screen for the relevant gene fragment using the T7 promoter and an opposing 

specific primer internal to the VSG sequence.

Internal ILTat 1.21 VSG specific primers were designed to be used in conjunction 

with the T7 primer to amplify the 1.21 upstream fragment from the SaE/ NsE 

prepared library. These VSG primers were 20 nucleotides in length, and reverse and 

complementary to the ILTat 1.21 cDNA sequence between 180-200 bp (E200), or 

870-890 bp (E890) (see Materials and Methods, section 2.9.3, page 49). Ipl of the 

liquid library (titred at 4.85 x 10  ̂colony forming units.pf’) was used as the template 

in the PCR reaction.

kb

12.0

Figure 40. PCR detection of the ILTat 1.21 upstream region from the Sail/ Nsil minichromosomal 

library. The fragments were amplified from the Sail/ Nsil liquid library stock using the plasmid T7 

promoter primer and an opposing VSG specific primer, either E200 or E890 (reverse and 

complementary to the ILTat 1.21 cDNA sequence between 180-200 bp or 870-890 bp respectively). 

The amplification was performed with a hot start for 5 min at 96°C, 30 cycles of 1 min at 96°C, 1 min 

at 55°C and 3 min at 70°C, and a final extension at 70°C for 10 min. The PCR products were then 

run on a 0.7% EtBr-stained agarose gel. The primers used in each reaction were: lane 1, T7+E200; 

lane 2, T7+E890; lane 3, E200 only; lane 4, E890 only. Molecular markers are indicated to the left of 

the panel.
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In section 5.2 (page 108) it was shown that the Nsil site existed 1800 bp upstream 

of the ILTat 1.21 VSG gene. Therefore, the expected PCR product size using the 

E200 and E890 primers was 2080 bp and 2770 bp respectively (80 bp of this product 

was plasmid sequence from the T7 promoter to the Pstl restriction site). Products 

approximating these sizes were seen when the PCR reaction was run on a 0.7% 

EtBr-stained agarose gel (Figure 40, lane 1 and 2 respectively); two other minor 

products were also produced when the E200 primer was used. Additionally, single 

primer controls were performed using only E200 or E890 (without the T7 primer) 

and these proved negative (Figure 40, lanes 3 and 4); a negative result was also 

produced from a T7 single primer control (data not shown).

The ILTat 1.25 upstream fragment (with an Nsil site 800 bp upstream of the VSG 

gene) was also amplified from the Sail/ Nsil library in the same way, using ILTat

1.25 specific primers. When used in conjunction with the T7 primer, the two VSG 

specific oligonucleotides, A180 and A550 (reverse and complementaiy to the ILTat

1.25 cDNA sequence between 160-180 bp and 530-550 bp respectively; see section 

2.9.3, page 49), produced PCR fragments of the expected sizes at 1025 bp and 1415

bp (65 bp of this was vector sequence) (Figure 41, lanes 1 and 2). Again, no 

products were generated in the single primer control reactions.
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Figure 41. PCR detection of the ILTat 1.25 upstream region from the Sail/ Nsil minichromosomal 

library. The fragments were amplified from the Sail/ Nsil liquid library stock using the plasmid T7 

promoter primer and an opposing VSG specific primer, either A 180 or A550 (reverse and 

complementary to the ILTat 1.25 cDNA sequence between 160-180 bp or 530-550 bp respectively). 

The amplification was performed with a hot start for 5 min at 96°C, 30 cycles of 1 min at 96°C, 1 min 

at 55°C and 3 min at 70°C, and a final extension at 70°C for 10 min. The PCR products were then 

run on a 0.7% EtBr-stained agarose gel. The primers used in each reaction were; lane 1, T7+A180; 

lane 2, T7+A550; lane 3, A 180 only; lane 4, A550 only. Molecular markers are indicated to the left 

of the panel.

Although the products appeared to be the correct size it was still possible that the 

bands were PCR artefacts. A half-nested PCR reaction was utilised to examine the 

fragments in more detail. The T7+E200 and T7+A180 PCR reactions were repeated 

but using the 2770 bp ILTat 1.21 and 1415 bp 1.25 PCR products as the templates 

instead of the library cells. This half-nested reaction produced the expected band 

sizes at 2080 bp (for 1.21) and 1025 bp (for 1.25) (Figure 42), suggesting that these 

fragments represented the correct VSG associated sequence.
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Figure 42. Half-nested PCR reactions of the ILTat 1.25 and 1.21 minichromosomal PCR products. 

Panel A. The ILTat 1.25 1415 bp (lane 1) and ILTat 1.21 2770 bp (lane 2) products were amplified 

from the liquid library stock using the T7 promoter primer and the VSG primers A550 and E890 

respectively. The amplification was performed with a hot start for 5 min at 96°C, 30 cycles of 1 min 

at 96°C, 1 min at 55°C and 3 min at 70°C, and a final extension at 70°C for 10 min. The PCR 

products were then mn on a 0.7% EtBr-stained agarose gel. Panel B. These two products were then 

used as the template for the half-nested PCR using the same T7 primer and the nested VSG primer 

(A 180 for ILTat 1.25 and E200 for ILTat 1.21); the PCR conditions were identical to the first round 

of amplification. The products were then run on a 0.7% EtBr-stained agarose gel: lanes 3 and 4, 

ILTat 1.25 product; lanes 5 and 6, ILTat 1.21 product. Molecular markers are indicated to the left of 

each panel.

The SaE/ NsE library was also screened for ILTat 1.68 and 1.69 sequences using 

the same PCR approach. The SaEJ NsE fragments of these VSG genes (and their 

upstream flanks) had not been examined previously by restriction mapping, and it 

was therefore impossible to determine the orientation in which the fragments would 

insert into the vector. As a result o f this, the PCR was performed using both the T7 

and T3 pBluescript promoter primers; again two internal primers (20 nucleotides in 

length) were designed for each VSG (C l90 and C390 for ILTat 1.68; D210 and D370 

for ILTat 1.69; see section 2.9.3, page 49). PCR products were generated when the
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T3 primer was used, suggesting that the Nsil site occurred within (or downstream of) 

the VSG gene while the SaE site existed in the upstream sequence. This result was 

consistent with the ILTat 1.69 full-length cDNA sequence (sequenced after this 

experiment), which possessed a single Nsil restriction site (and no SaE site) within 

the coding sequence; the 1.68 cDNA did not contain either of these two restriction 

sites. The T3+D210 (ILTat 1.69) reaction produced a band at approximately 1000 

bp, while a product of about 1200 bp was generated from the T3+D370 amplification 

(Figure 43).

Figure 43. PCR amplification of the potential ILTat 1.68 and 1.69 minichromosomal products from 

the SaW Nsil library. The fragments were amplified from the SaW Nsil liquid library stock using the 

plasmid T3 promoter primer and an opposing VSG specific primer, either C l90 or C390 (ILTat 1.68, 

lanes 1 and 2 respectively), or D210 or D370 (ILTat 1.69, lanes 3 and 4 respectively). The 

amplification was performed with a hot start for 5 min at 96°C, 30 cycles of 1 min at 96°C, 1 min at 

55°C and 3 min at 70°C, and a final extension at 70°C for 10 min. The PCR products were then run 

on a 0.7% EtBr-stained agarose gel. A T3 single primer control was run in lane 5. Molecular markers 

are indicated to the left of the panel.
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The 160 bp size difference between these two products was as expected, indicating 

that these bands probably represented the correct VSG upstream fragment. One of 

the ILTat 1.68 amplifications (T3+C390) produced a band at 1900 bp, but the 

T3+C190 reaction yielded no product (Figure 43). It is possible that the C l90 

primer was incompatible with the T3 primer resulting in the reaction failing. 

However, it is more likely that the 1900 bp band was an artefact, and the ILTat 1.68 

upstream fragment was not represented in this library. Even if the ILTat 1.68 and 

1.69 products represented the correct sequence they were probably too short to be 

used for the genomic analysis, with the hypothetical SaE restriction sites lying 

approximately 800 bp (ILTat 1.69) and 1500 bp (ILTat 1.68) upstream of the VSG 

gene.

The average insert size of the SaEJ NsE minichromosomal library was examined in 

10 random clones. These clones were taken from a library plate and grown as an 

overnight culture in L-broth + ampicillin, after which the plasmids were retrieved 

using the QIAGEN Mini kit. The insert size was then determined by PCR 

amplification using the T3 and T7 promoter primers (Figure 44). This revealed that 

the average insert size was about 1.0 to 1.5 kb. It is clear that the ILTat 1.21 SaE/ 

NsE fragment, at 2.8 kb, must be one of the largest inserts in this library.
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Figure 44. Determination of the average insert size of the SaW Nsil minichromosomal library. Ten 

random clones were taken from a library plate and grown overnight in L-broth + ampicillin. The 

plasmids were then retrieved using the QIAgen miniprep kit. The insert size was examined by PCR 

amplification of the fragment using the T3 and T7 promoter primers. The amplification was 

performed using Long-Taq (Stratagene) with a hot start for 5 min at 96®C, 30 cycles of 1 min at 96®C, 

1 min at 55°C and 10 min at 70®C, and a final extension at 70°C for 10 min. The PCR products were 

then run on a 0.7% EtBr-stained agarose gel. Molecular markers are indicated to the left of the panel.
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PCR amplification was also utilised to screen the SaW BgUl digested 

minichromosomal libraiy. However, the A180 and A550 primers failed to produce 

fragments of the expected size, suggesting that the 4.0 kb ILTat 1.25 fragment was 

not represented in the library. It is possible that smaller restriction fragments were 

preferentially cloned during the library manufacture, resulting in the exclusion of this 

comparatively large product. Alternatively, the fragment could be inherently 

unclonable due to some part of the sequence; for example a long run of 70 bp or 177 

bp repeats. A SaW BgEl digested 3.5 to 4.5 kb size selected pBluescript libraiy was 

also prepared from ILTat 1.2 genomic DNA, but screening (using conventional 

hybridization techniques) failed to identify the ILTat 1.25 4.0 kb fragment. Inverse 

PCR was also attempted on this size selected DNA, as well as with the SaW BgEl 

cut minichi'omosomal DNA, but again no ILTat 1.25 specific products were found.

5.5 Characterization of the ILTat 1.21 and 1.25 upstream flanks

Pfu polymerase was used to amplify the 1025 bp ILTat 1.25 product ensuring 

maximum copying fidelity. However, a commercial mix of Taq and Pfu d

polymerases (Long-7h^, Stratagene) was required to generate the 2080 bp ILTat

1.21 product, which would not amplify with the Pfu polymerase alone. These PCR 

products were then ligated into the PCRScript Amp SK(+) plasmid, and three clones 

were isolated from each product and sequenced.

Physical maps of the ILTat 1.21 and 1.25 minichromosomal clones are presented in #
_

Figure 45. BLAST analysis of these sequences revealed 98-100% identity with the

ILTat 1.21 and 1.25 VSG cDNA database sequences over the expected region (200

bp or 180 bp respectively). The VSG homology began immediately after the spliced

leader sequence (ending GTTTCTGTACTATATTG) in the cDNA sequences and

ended exactly at the other end of the clones, confirming that the correct fragments

had been isolated from the minichromosomal library. The BLAST search did not

reveal any further trypanosome sequence homology in the 800 bp upstream of the

ILTat 1.25 VSG sequence. However, additional identities were discovered in the ■

ILTat 1.21 upstream region.

Homology with 70 bp repeat sequence was identified over the first 250 bp at the 

upstream end of the ILTat 1.21 clone, producing multiple hits against the NCBI

: 
■



database. Figure 46 displays the first 300 bp of sequence upstream from the Nsil 

site, and demonstrates that three and a third of the repeats were encompassed within 

the clone. An alignment of each of these repeats against the 70 bp consensus 

sequence (Aline et al. 1985); (Shah et a l  1987) is also included in the Figure. It is 

apparent that the Nsil site occiured within the 70 bp repeats, which is quite unusual, 

since these repeats are renowned for the absence of restriction sites, and 

consequently the 70 bp an*ay is often referred to as a “ban*en” region. The only other 

6 bp restriction enzyme recognition sequence that occuiTed within the cloned repeats 

was Sspl, which appeared to be highly conseiwed in the 70 bp sequence.
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The BLAST search also revealed that the ILTat 1.21 sequence displayed an 88% 

identity with ESAG3 between 811 and 1164 bp. Subsequent CLUSTAL W analysis 

between the ILTat 1.21 cotransposed and ESAG3 (taken from Alexandre et a l, 1988) 

demonstrated that the region between 707 and 1918 bp was homologous to the entire 

ESAG3 gene (Figure 47), displaying 79% and 49% identity at 707-1237 bp and 

1238-1770 bp respectively. Although this is an ES AG 3 pseudo gene, two ORFs were 

identified within this ESAG3 homologous sequence by the Vector-NTI analysis 

program, and occurred at 707-1219 and 1263-1818 bp (Figure 48). Both ORFs are 

in the same reading frame as (and coiTcspond to segments of) the published ESAG3 

ORF.

AnTat 1.1 companion sequence (Pays et a l  1983d) homology was also discovered 

by the BLAST search, revealing a 91% identity between 1365 and 1398 bp. A 

CLUSTAL W analysis revealed that the ILTat 1.21 clone was 64% homologous to 

the first 439 bp of the companion sequence between 1221 and 1660 bp (the position 

relative to the ESAG3 homology is displayed in Figure 48), This part of the 

companion sequence had been shown previously to be 80% homologous to part of 

the ES AG 3 gene (Alexandre et a l  1988).
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ORFl 0RF2

----------------------------- 1 I-------------------------

AnTat 1.1 companion sequence homology

ESAG3 homology (corresponds to 707-1918 bp in the full clone)

I I I I I I I I I 1 I I I I
700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 19001950 bp

Figure 48. Position of the two ORFs within the ESAG3 homologous ILTat 1.21 sequence. The 

ORFs were determined using the Vector-NTI analysis program. ORFl and 0RF2 extend from 707- 

1219 and 1263-1808 bp respectively, and are in the same frame as the published ES AG 3 sequence. 

The 439 bp region displaying 64% homology to the AnTat 1.1 companion sequence is also indicated. 

The homology begins at the start codon of the ESAG3 ORF and continues for the majority of this 

ORF, with the ILTat 1.21 sequence appearing to be slightly longer than the ESAG3 ORF (see Figure 

49).

The presence of the ESAG3 homologous sequence downstream of the 70 bp repeats 

suggests that minichromosomal telomeric sequences result from recombinational 

events with other telomeric regions within the genome. It also seems likely that the 

cotransposed sequence, which is largely comprised of the ESAG3 sequence, is not 

utilised as a recognition sequence with the corresponding region of a BES for the 

ILTat 1.21 duplication event.

5.6 Identification of the ILTat 1.21 upstream duplication boundary

A Southern analysis was employed to determine whether the upstream boundary of 

duplication was encompassed within the ILTat 1.21 Nsil/ Sail BC fragment. ILTat

1.2 and 1.21 genomic DNAs were digested with Nsil and Hindlll, and double 

digested with Sail/ Nsil and Sail/ Hindlll, separated on a 0.7% agarose gel and 

transferred to nylon membrane by Southern blotting. The filter was then probed with 

the a-^^P radiolabelled ILTat 1.21 400 bp fragment, homologous to the amino- 

terminus encoding region of the VSG gene. The hybridization revealed an ELC,
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distinct from the BC, in the expressor lanes of the 7V̂ /I and Hindlll single digests 

(Figure 49, panel A, lanes 2 and 4). However, in the Saïl! Nsil and SaW Hindlll 

double digests the ELC and BC fragments were equal in size (Figure 49, panel A, 

lanes 5-8), indicating that the duplication boundary must lie upstream of the Nsil 

site. The ELC and BC fragments obsei'ved in the single digests were distinct, due to 

differences in telomere tract length between the two cliromosomal loci.

Two fainter products were also detected in the SaW Nsil and SaW  TTmdlll double 

digests (Figure 49, panel A, lanes 5-8), probably due to the incomplete digestion of 

the two Sail sites (within the VSG). Subsequent reprobing of the filter with the PCR 

product encompassing the RAD51 single copy gene revealed that all the digests had 

proceeded to completion (Figure 49, panel B; an Nsil site is present at 705 bp in the 

995 bp RAD51 fragment resulting in two hybridization products in these digests, 

lanes 1-2 and 5-6). This suggested that the partial digestions were due to base J 

modification of the Sail sites. The RAD51 probing also demonstrated that slightly 

more of the ILTat 1.2 DNA had been loaded per lane when compared with the 1.21 

DNA. This confirmed that the increased hybridization intensity seen in the 

expressor lanes of the SaW Nsil and SaW Hindlll double digests during the ILTat

1.21 probing was due to the combination of both the BC and ELC signals (Figure 49, 

panel A, lanes 6 and 8).
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Figure 49. Southern analysis o f the ILTat 1.21 minichromosomal clone. Panel A. ILTat 1.2 or 1.21 

genomic DNA was digested with Nsil or ///ndlll, and double digested with Sail/ Nsil or Sail/ Hindlll, 

size fractionated on a 0.7% agarose gel, and transferred to a nylon membrane by Southern blotting. 

The filter was then probed with the a-^^P radiolabelled ILTat 1.21 400 bp fragment, homologous to 

the amino-terminus encoding region of the VSG. Panel B displays the same filter stripped and 

reprobed with a PCR product encompassing the coding sequence of the trypanosome RAD51 single 

copy gene. The digests were loaded in the following order: Nsil, lanes 1 and 2; Hindlll, lanes 3 and 

4; Sail/ Nsil, lanes 5 and 6; Sail/ Hindlll lanes 7 and 8. The underlined lanes indicate the digests that 

involved the ILTat 1.21 expressor DNA. The filters were washed to 0.1 x SSC at 65°C. Molecular 

markers are indicated to the left o f each panel.
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The double digests were repeated using Agel (rather than Sail), and subsequent 

Southern analysis revealed that the minor bands seen in Figure 49 A were not present 

in these new digests (Figure 50). This confirmed that the partial fragments must have 

resulted from the base J modification of the Sa/I sites. The signal strength in the 

expressor lanes of Figure 50 should have been more intense than the non-expressor 

lanes due to the presence of the additional comigrating ELC fragment. However, 

examination of the EtBr-stained gel of the blot revealed that approximately twice the 

amount of ILTat 1.2 DNA was loaded when compared with the ILTat 1.21 DNA 

(data not shown), and this accounts for the discrepancy from the predicted 

hybridization intensity.
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Figure 50. Agel/ Nsil and Agel/ Hindlll double digests of 

ILTat 1.2 and 1.21 genomic DNA. Digested DNA was size 

fractionated on a 0.7% agarose gel, and transferred to a 

nylon membrane by Southern blotting. The filter was then 

probed with the a-^^P radiolabelled ILTat 1.21 400 bp 

fragment, homologous to the amino-terminus of the VSG. 

The digests were loaded in the following order: Agel/ Nsil, 

lanes 1 and 2; Agel/ Hindlll, lanes 3 and 4. The underlined 

lanes indicate the digests that involved the ILTat 1.21 

expressor DNA. The filters were washed to 0.1 x SSC at 

65 °C. Molecular markers are indicated to the left of the 

panel.
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Although the duplication boundary occuned beyond the Nsil site that demarcated 

the ILTat 1.21 BC clone, the cotransposed and associated 70 bp repeat sequences 

proved to be essential for the further analysis of the upstream minichromosomal VSG 

flanlc. An experimental approach was adopted using this cloned sequence to 

ascertain the length of the 70 bp repeat array. Genomic DNA from both expressor 

(ILTat 1.21) and non-expressor (ILTat 1.2) clones was double digested with Hindlll 

and a series of h'equently cleaving enzymes (4 bp recognition sequence), size 

fractionated on a 0.7% agarose gel, and transferred to nylon membrane by Southern 

blotting. The filter was then probed with an radiolabelled cotransposed

fragment, which was excised from the ILTat 1.21 miniclnomosomal clone using 

Hindlll/ Fold, and was homologous to the region 286-472 bp downstream of the Nsil 

site and the 70 bp repeats (Figure 45). This fragment probably displayed unique 

homology with the ILTat 1.21 upstream fragment, since it did not contain any of the 

ESAG3 homologous sequence. It was hoped that some of these 4 bp restriction sites, 

which occur in random DNA at approximately every 256 bp, would cut only after 

the banen region, and therefore could be utilised to liberate the entire 70 bp repeat 

array.

It was necessary to select restriction enzymes that would not cut within the three 

and a half 70 bp repeats encompassed by the genomic clone, or within the 

cotransposed region between the repeats and the Hindlll site. It seemed plausible 

that the entire 70 bp array could be devoid of some of these restriction sites, since 

they were not represented within the first few repeats. However, it was important to 

examine several restriction enzymes because the 70 bp repeats are not completely 

conserved (Shah et al. 1987), and this degeneracy often results in the formation of 

new restriction sites.

Five frequently cleaving enzymes were selected by the criteria described above, and 

four of these, Rsal, Haelll, Mbol and Sau3>Al, were used in combination with 

M ndlll to digest the ILTat 1.2 and 1.21 genomic DNA. A single digest was also 

prepared using Alul, which possessed a restriction site immediately downstream of 

the Hindlll site. In addition, Hindlll and Hindlll! Ddel (a 5 bp recognising enzyme) 

digests were used in the analysis. The results of this study are displayed in Figure 

51.
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Figure 51. Restriction analysis o f the ILTat 1.21 barren region. ILTat 1.2 and 1.21 genomic DNAs 

were digested with Alul or Hindlll, or double digested with Hindlll/ Ddel, Rsal, Haelll, Mbol or 

5aw3Al, size fractionated on a 0.7% agarose gel, and transferred to a nylon membrane by Southern 

blotting. The filter was then probed with an a-^^P radiolabelled cotransposed fragment, which was 

excised from the ILTat 1.21 genomic clone using HindlU/ Fokl , and is homologous to the region 

286-472 bp downstream of the Nsil site (before the 70 bp repeats. Figure 45). The digests were 

loaded in the following order; Alul (lanes 1 and 2), //indlll (lanes 3 and 4), Hindlll/ Ddel (lanes 5 and 

6), Hindlll/ Rsal (lanes 7 and 8), Hindlll/ Haelll (lanes 9 and 10), Hindlll/ Mbol (lanes 11 and 12) 

and ///«dill/ 5"an3Al (lanes 13 and 14). The underlined lanes represent the digests that involved the 

ILTat 1.21 expressor DNA. Panel A. EtBr stained gel of the digests. Panel B autoradiograph of the 

subsequent hybridization. The filter was washed to 0.1 x SSC at 65C. Molecular markers are 

indicated to the left of each panel.
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A clear autoradiograph could not be produced from this restriction analysis (Figure 

51) despite preparing another two repeat filters. It appeared that degradation was 

occurring in the DNA stocks, especially in the ILTat 1.21 DNA, and this problem 

was compounded by an extremely weak hybridization signal, possibly resulting from 

the short length of the Fokl! Hindlll probe (only 182 bases long). Although no 

significant conclusions can be drawn fi'om this preliminaiy result due to the poor 

quality of the hybridization, it was possible to construct a hypothetical inteipretation 

fi'om these data.

In the Alul digest (lanes 1 and 2) a band representing the BC fragments was 

obseiwed at 3.5 kb in both the ILTat 1.2 and 1.21 genomic DNA; a large additional 

band (>12 kb), representing the ELC fragment, was also detected in the expressor 

lane. This suggested that an Alul site existed 3.5 kb upstream of the cotransposed 

Hindlll site (and therefore approximately 5.0 kb from the start of the VSG gene), and 

since different sized restriction fragments were produced from the BC and ELC, it 

appeared to reside beyond the duplication boundary.

The Hindlll digest a yielded a large fragment in the ILTat 1.2 DNA (lane 3), 

representing the BC, but it was harder to interpret the 1.21 digestion (lane 4). It was 

expected that this digest would generate two distinct fi'agments, derived from the BC 

and ELC. One of the fragments was obvious, but the second (larger) band was veiy 

faint and only just distinguishable above the background smear. It is possible that 

this fi'agment was partially degraded, resulting in the weaker signal (larger products 

are more vulnerable to the effects of degradation). Overall, the ILTat 1.21 DNA 

appeared more degraded than the 1.2 DNA, and this could explain why the large 1.2 

Hindlll product appeared unaffected in this way.

An unexpected result was obtained for the Hindlll/ Haelll double digest (lanes 9 

and 10). The hybridization pattern was identical to the Hindlll single digest (lanes 3 

and 4), indicating that no Haelll sites exist along the entire chromosomal region 

upstream of the cotransposed Tfmdlll site. The EtBr gel demonstrates that the Haelll 

digestion was successful, with the majority of the DNA becoming reduced in size 

when compared with the Hindlll digest. This result suggested that 177 bp 

minichromosomal repeats, which do not possess Haelll sites (Weiden et al. 1991), 

must lie extremely close to (or immediately upstream of) the 70 bp repeats.

No clear ELC was observed in the ILTat 1.21 DNA of the Hindlll/ Ddel, Hindlll/ 

Rsal digests, but single bands were detected at 1.4 and 1.3 kb respectively in both
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1.2 and 1.21 DNA (lanes 5-6 and 7-8). This indicated that both of these restriction 

sites, which occun-ed within the 70 bp repeat array, were encompassed by the 

duplicated copy.

It is possible that the Alul site upstream of the ILTat 1,21 VSG gene lies beyond the 

70 bp repeats, since it exists outside the duplication boundary. The apparently close 

proximity of the 177 and 70 bp repeats suggests that this Alul site occurs in the first 

of the 177 bp repeats, which have been shown to possess a highly conserved Alul 

site (Sloof et a l  1983). If  these assumptions are correct, then the 70 bp array 

stretches from 2-5 kb upstream of the VSG gene, and the upstream duplication 

boundary lies within the last 2 kb of these repeats (the first kb was demonstrated to 

be contained within the boundary by the Hindlll! Ddel digest).

Although this inteipretation of the autoradiograph appears logical, and is consistent 

with previous findings, it is clear that there are too many anomalies for an accurate 

conclusion to be drawn at this stage. There are three spurious results in addition to 

the dubious band seen in the Hindlll and HindllU HaelJl digests. The first of these

a

was the faint, diffuse, hybridization seen near the top of the lane in the ILTat 1.2 

HindllV Rsal digest, which appeared reproducibly in the two further repeat filters. 

Secondly, the faint “band” which was observed at about 400 bp in the Hindlll! 

Sau3Al 1.21 digest appeared again as an abnormally strong “signal” (possibly 

background) in one repeat filter, and was absent fi'om the second repeat filter. 

Finally, no convincing signal was produced from the Hindlll! Mbol digests in any of 

the filters.

In order to confirm the hypothetical duplication boundary, this experiment will be 

repeated using new genomic DNA to overcome the degradation problems, and will

Utilise an alternative method for manufacturing the probe (such as gamma- 

radiolabelling) to attempt to enhance the hybridization specificity.
S'
.s

,ï3'
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6.1 Antigenic variation

African trypanosomes can sui-vive prolonged periods within the hostile 

environment of the mammalian bloodstream by constantly changing the protective 

VSG coat expressed on their membrane surface, in a process commonly referred to 

as antigenic variation. This enables small, antigenic ally novel sub-populations of the 

parasite to escape immune-destruction and proliferate during the refractory period in 

which the host immune system must recognise and respond to the new VSGs. The 

population dynamics of the infection are obviously greatly influenced by the host 

immune system, and the majority of the trypanosomes are killed at the end of each 

parasitaemic wave (Barry and Turner, 1991). However, the immune response itself 

appears not to influence the timing of antigenic variation (Myler et a l 1985), but 

fashions the infection by eliminating the trypanosomes that have not switched, or 

have changed to an ineffective or previously encountered VSG coat.

Approximately 1000 VSG genes are available in the parasite’s repertoire (Van der 

Ploeg et a l 1982), and this vast capacity for variance enables the infection to persist 

for extensive periods in the mammalian host. However, as discussed earlier 

(Introduction, section 1.2, page 8), prolonged infections in cattle can eventually lead 

to the eradication of the infection (Nantulya et a l 1984; Barry, 1986), but it is 

thought only after the host has acquired immunity to the entire spectrum of VSG 

genes. The genetic cost of antigenic variation is immense, with approximately 10% 

of the trypanosome genetic repertoire dedicated to the VSGs, but the resultant 

evasion strategy proves to be one of the most effective mechanisms employed by 

parasites to elude immune-destruction.

Several other pathogenic micro-organisms also utilize antigenic variation to evade 

the host immune system (Deitsch et a l  1997). Interestingly, the spirochete Borrelia 

has evolved a system that is remarkably similar to that of the African trypanosomes 

(Barbour, 1990; Borst, 1991b; Donelson, 1995). B. hermsii, the causative agent of 

relapsing fever in western United States and Canada, is the most comprehensively 

studied of the Borrelia species, and the mechanism of antigenic variation has been 

characterized extensively (Barbour, 1993). The majority of the cell’s genes reside on 

a 1 Mb linear DNA molecule, but the genome also includes circular plasmid-like 

DNAs, and several linear DNA molecules of 10-200 kb, known as the linear 

plasmids or ininiclrromosomes (Barbour, 1993). An outer membrane protein, termed
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the variable major protein (vmp), appears to be the immunodominant antigen 

involved in the variation, and genes responsible for these proteins seem to occupy 

linear- plasmids between the size of 28 and 32 kb (Plasterk et al. 1985; Kitten and 

Barbour, 1990). The majority of these vmp genes exist as silent copies on the 

“storage plasmids” (Barbour, 1993), while one vmp located near the telomere of a 

different plasmid (the “expression plasmid”) is expressed in each organism (Kitten 

and Barbour, 1990). A single cloned organism can give rise to at least 40 

antigenically distinct serotypes (Plasterk et al. 1985), the majority of which appear 

to arise following the duplicative transposition of a silent vmp gene into the 

expression plasmid, substituting the original vmp (Plasterk et al. 1985; Kitten and 

Barbour, 1990).

It was suspected for a number of years that B. burgdorferi, the organism 

responsible for Lyme disease, would possess a similar system for antigenic variation, 

as the infection displays many characteristics of relapsing fever. However, this 

hypothesis was confirmed only recently, following the discovery o f a genetic locus

called the vm/?-like sequence (v/^) that closely resembles the vmp sequence of B. 

hermsii (Zhang et al. 1997). This locus was identified on a 28 kb linear plasmid,

which incorporates a vis expression site and 15 additional silent vis cassettes.

Both borreliae and trypanosomes rely on an invertebrate vector to transfer the 

infection between mammalian hosts. Antigenic variation enables the parasites to 

remain in the mammalian bloodstream for prolonged periods, and this increases the 

probability that they will be transferred to a new host by the vector. The similarity 

between the borrelia and trypanosome systems is a clear example of convergent 

evolution, where two distinct extracellular parasites have independently evolved 

analogous mechanisms for increasing their viability in the mammalian host.

The malaria parasite also utilizes antigenic variation to prevent immune-destmction 
.

within the mammalian bloodstream, but employs a strategy different (at both the 

phenotypic and genetic levels) from the one observed in the African trypanosomes ( 

Borst et al. 1995; Deitsch et al. 1997). In Plasmodium falciparum, the variant 

antigens occur on the surface of the host ei-ythrocyte, during an intracellular- stage of 

the life cycle when the parasite undergoes proliferation. These surface antigens, one 

group of which are collectively known as PfEMPl {Plasmodium falciparum-mÏQoiQà 

erythi'ocyte membrane protein 1) (Magowan et al. 1988), appear to have evolved to 

allow the infected host cells to bind to the vascular endothelium, resulting in their
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retention at the vascular beds. This process prevents the cells from passing through

the spleen, which under normal circumstances would recognise the damaged

eiythi'ocytes and remove them from the circulation. However, the proteins

themselves elicit an antibody response by the humoral immune system, and this has

necessitated the development of an immune-evasion strategy.

PfEMP-1 is encoded by the var gene family (Su et a l 1995), which have been

detected in both chromosome internal and subtelomeric domains (Su et a l 1995;

Fischer et a l  1997). In early ring stage parasites, it appears that different var gene

transcripts are detectable at the same time from several cliromosomes in an i
.individual cell (Chen et a l 1998; Scherf et a l 1998). However, a recent Northern

analysis by Taylor et a l  (unpublished work reviewed in Newbold, 1999) discovered

only one full length mRNA at this stage, although multiple transcripts could be

detected at the 5’ end of different var genes by RT-PCR. This result indicates that
.

many var promoters are active in a single cell, but some regulatoiy mechanism (such 

as transcription attenuation, or selective degradation) ensures that only one mature 

transcript is formed. In support of this view, it has been found that only one PfEMP- 

1 type is detectable at the erythi'ocyte surface in trophozoite-infected cells (Chen et 

a l 1998). It seems that var gene expression does not occur from a unique 

expression site, since expressed var genes were mapped to several different 

chromosomal loci (Su et a l 1995; Fischer et a l 1997). Subsequent analysis has 

suggested that var switching and expression occurs in situ, controlled at the 

transcriptional level by an undetermined mechanism (Scherf et a l 1998).

Recently, it has been suggested that that other surface molecules, known as rifms,
y

are also a major source of antigenic variation (Kyes et a l 1999; Wahlgren and 

Bejarano, 1999). These polypeptides are encoded by the r if  (repetitive interspersed 

family) gene family, and appear to reside in sub-telomeric loci. It is estimated that 

200 r if  genes are represented in the genome, making it the largest gene family in P,
'V

falciparum, and potentially enabling the parasite to express a vast an*ay of surface

antigens on the erythrocyte membrane.

In addition to the African tiypanosomes, and certain species of Borrelia and

Plasmodia, there are several other pathogens which take advantage of phenotypic

variation to prolong their suiwival in the host (Deitsch et a l 1997). These include 
.Neisseria, which can vaiy the piling expressed on its cell surface (Meyer et a l  1990;

Seifert, 1996), and Giardia, which is able to change its variable surface proteins
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(Nash, 1997). All of these systems are complex and require significant investment at 

both the genetic and phenotypic levels, but they are nevertheless essential for 

prolonged survival of the organisms.

Intricate immune-evasion mechanisms have developed as a direct result of the 

evolutionaiy conflict between parasite and host. The more effective the parasite’s 

strategy, the more natural selection will favour the host which can evolve a 

coiTespending defence. In turn, the development of a new host response will result 

in the natural selection of parasites that have acquired a novel evasion mechanism. 

This phenomenon is the basis of the Red Queen theory (Van Valen, 1973), a 

hypothesis used by evolutionary biologists to explain parasite-host, predator-prey, 

and competitor-competitor interaction. The theory simply states that two competing 

organisms are constantly developing new ways to improve their chance of 

monopolising a shared resource. This results in an evolutionary advantage 

constantly switching from one organism to the other, since the acquisition of a 

selective benefit in one competitor necessitates a change in the less fit individual. In 

this way, parasite and host co-evolution has led to development and refinement of 

the formidable mammalian immune system, and the highly effective immune- 

evasion mechanism, antigenic variation.

6.2 Pleomorphism and monomorphism: significant differences between 

trypanosome lines resulting from laboratory attenuation

.1

Repeated syringe passaging in the laboratory has resulted in many tiypanosome 

lines manifesting significant modifications in their population dynamics and life 

cycle when compared with non-passaged field isolates. These laboratory attenuated, 

or monomorphic, lines no longer differentiate to the stumpy bloodstream form and 

under normal circumstances camiot be transmitted by tsetse fly bite. In addition to 

these moiphological changes, there is also a massive drop in the rate o f antigenic 

variation, which, at 1 x 10'*̂  -  1 x 10'^ switches/cell/generation (Lament et a l 1986), 

is up to five orders of magnitude lower than in the non-attenuated, pleomorphic lines 

(Turner, 1997). Borrelia also appears to become attenuated in the laboratoiy, 

displaying a loss of virulence as a result of in vitro passaging (Koomey, 1997; Zhang
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and Williams, 1997); coincident with this attenuation is the loss of plasmids in Lyme 

disease (Xu et al. 1996), although it is not cleai* if this is the basis for the phenotypic 

changes.

The reduced switch rate associated with monomoiphism has facilitated study of

trypanosome antigenic variation by enabling cloned populations to remain

predominantly of one VAT during expansion, and this has led to a comprehensive

understanding of various genetic processes involved in VSG switching. However,
.the diminished rate of antigenic variation is low enough to be explained by 

background mutation and general mitotic homologous recombination, and this raises 

questions about the significance o f the VSG gene activation events observed in 

monomorphic lines.

As discussed earlier, natural selection favours trypanosomes that evolve the most

effective strategies for antigenic variation, and the success of these schemes is

influenced by the rate and mode of VSG gene switching. It is therefore important to

consider the possibility that the artificial selection to monomorphism is associated

with changes in the cell’s recombinational or transcriptional machineiy. It has been

proposed (Barry, 1997a) that the marked alteration in switch rates between

monomorphic and pleomoiphic tiypanosomes is indicative of a specific gene

switching mechanism, that might include a dedicated enzyme activity catalysing

specific recombination, which is reduced in, or even absent from, monomorphic 
.

lines. This model suggests that duplicative transposition is initiated by a DNA
.double-strand break (DSB) in the BBS 70 bp repeats (for further details see section 

6.5, page 146). Under these circumstances, the monomorphic trypanosomes would 

have to rely on alternative minor switching mechanisms, or possibly background 

recombination, to sustain VSG changes.

DSB repair in vertebrates and yeast is known to be undertaken by more than one 

pathway (Van Dyck et al. 1999). Vertebrate DSBs are repaired primarily by Ku-
,

dependent non-homologous end-joining (Kanaar et al. 1998), but Rad52-dependent 

homologous recombination also appears to play an important role in this process 

(Liang et a l 1998; Takata et a l 1998). RAD52'^' knockouts in mouse (Rijkers et a l

1998) and chicken (Yamaguchi-Iwai et a l 1998) cells produce an overall reduction 

in homologous recombination, but do not affect the cells’ sensitivity to X-ray 

radiation. This indicates that the rate of DSB repair is unaffected by these mutations, 

demonstrating that the repair mechanism can occur entirely by the Ku-directed non-
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homologous end-joining route in the absence of Rad52. However, in yeast cells, 

where the Ku-mediated process represents only a minor pathway for DSB repair 

(Critchlow and Jackson, 1998), RAD52 mutants display an extreme sensitivity to 

ionizing radiation and exhibit severe recombinational defects (Game, 1993). In a 

similar manner, the reduced switching rate of the monomorphic tiypanosomes could 

be indicative of the parasite utilising less significant modes of antigenic variation 

following the loss, or reduction, o f the predominant gene switching mechanism.

The ILTat 1.2 study, presented in this thesis, was undertaken to elucidate the 

relative importance of the various VSG switching mechanisms during the early 

stages of a chronic, pleomorphic rabbit infection. A study of this kind would be 

impractical using the trypanosome lines with an overall switch rate of 1 x 10'^ 

switches/cell/generation, since there is a considerable risk of the clones 

disintegrating phenotypically during their analysis. This problem was overcome by 

using the ILTat 1.2 line, which switches at the lower rate o f 1 x 10'^ switches/ 

cell/generation. The reduction in switch rate probably occurred during the 

um-ecorded period of syringe passaging (Onyango et al. 1966; Miller and Turner, 

1981) before the SUSB 48 stabilate was prepared. However, it is clear that the 

parasites have not become monomorphic during this period, since they still yield the 

stumpy bloodstream form and remain fly transmissible, emerging from the insect 

with a typical pleomorphic overall switch rate of 1 x 10"̂  switches/cell/generation 

(Turner, 1997). In addition, this line will not proliferate in liquid culture (whereas 

monomorphic lines do), but does grow on a semi-solid agarose plate culture 

(Vassella and Boshart, 1996), clearly differentiating to stumpy fomi cells. It is also 

worth remembering that individual clones within a pleomoiphic infection display a 

range of rates between approximately 1 x 10'^ and 1 x 10'^ switches/ cell/generation 

(Turner and BaiTy, 1989; Turner, 1997). Therefore, it appears that the ILTat 1.2 

clone, which switches 1-2 orders of magnitude faster than monomorphic lines, falls 

within this natural range of pleomorphic switch rates.

In addition to the ILTat 1.2 clironic infection, a single relapse investigation using 

the ILTat 1.61c pleomorphic line is presented in this thesis. ILTat 1.61c, which is 

derived fr om a single metacyclic cell, displays the highest recorded VSG switch rate 

at about 3 x 10'^ switches/cell/generation, and a PCR approach for analysing these 

rapid switch products is proposed in section 3.9 (page 70).
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6.3 The hierarchical order of VSG gene expression in chronic infections

It is now widely accepted that the hierarchical expression of VATs during antigenic 

variation enables the parasite to make efficient use of its VSG repertoire, and 

therefore maximize the infection period. As previously discussed, the probability of 

an infection being transmitted by tsetse fly to a new mammal is directly dependent 

on the time that the parasite can survive in the original host and the level of 

parasitaemia. This strong selective pressure has resulted in the refinement of the 

VSG expression hierarchy. The “semi-predictable” order o f antigen type appearance 

(Gray, 1965; Capbem et al, 1977; Miller and Turner, 1981; Timmers et al. 1987) 

appears to result fr om a range in the activation fr equencies of the various VSGs, and 

it may now be possible to propose the relative contributions of different switching 

mechanisms to this phenomenon. The VSG genes with the highest probability of 

activation are those residing at telomeres, and in the ILTat 1.2 pleomorphic study 

presented in this thesis, the genes appear to be activated predominantly by 

duplication, whereas in monomorphic lines they are mainly transcribed following in 

situ switches (Liu et al. 1985). Presumably the duplication of chromosome internal 

genes becomes apparent as the infection progresses, since these genes represent the 

bulk of the VSG repertoire. It is likely that, in a chi'onic pleomorphic infection, the 

telomeric genes are constantly being duplicated at a high rate, and this will inevitably 

lead to re-expression of some VSGs that have previously been encountered by the 

host. Obviously, all switches to such genes will be lethal, and eventually the less 

frequently activated chromosome internal gene products will emerge, as the host 

acquires immunity against the reservoir of telomeric VSGs. As the infection reaches 

the final stages, when the host has exhausted the parasite’s gene repertoire, the 

mosaic genes resulting from segmental gene conversion ultimately appear (Thon et 

al. 1989). These gene products must occur very infrequently, and tend to arise in 

the terminal phase of infection (Barbet and Kamper, 1993); (Thon et al. 1989).

To date, the most comprehensive analysis of hierarchical expression was performed 

by Capbem et al. (1977) who studied 101 different VATs in T. equiperdum 

infections of rabbits, and discovered that the VATs formed three hierarchical groups, 

rather than a specific series. The early (“précoce”) group consisted of VATs that 

could be predicted to appear within the first tlrree weeks of the rabbit infection, the
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middle (“sem i-tardif’) group followed thereafter, while the late (“tardif’) group 

involved the VATs that occun*ed after the first month of infection. It is possible that 

the first two groups represent VSGs duplicated fi'om the telomeric and chi’omosome 

internal sites respectively, while the late group has been demonstrated to include 

infrequently activated genes (Thon et a l 1989).

6.4 VAT appearance in the chronic ILTat 1.2 infections

The clironic ILTat 1.2 infections were terminated after 30 days in the lop-eared 

rabbits and after 21 days in the New Zealand White rabbit and during this time the 

trypanosomes achieved first and second relapse waves of parasitaemia. It is 

therefore evident that the eleven VATs observed in these infections are 

representative of the early switch products, generated at the start of a VSG hierarchy. 

As mentioned earlier, duplicative ti'ansposition appeared to be the major method for 

gene activation during the first and second relapse peaks, and telomeric VSGs were 

the predominant source of ELCs, with fourteen of the seventeen silent genes 

localised at the chromosome ends (Table 3, section 4.14, page 105).

Although these ILTat 1.2 infections are only representative of the first (“précoce”) 

group of the antigenic hierarchy, it appears that there is also a degree of order even 

within this period. For example, the number of clones isolated per VAT in the first 

relapse peak was varied, with no single antigen type predominating, but in the 

second relapse peak ILTat 1.23 was by far the major VAT, present on every day of 

the relapse. In addition, four of the VATs observed in the first relapse peak (ILTats 

1.25, 1.67, 1.68 and 1.69) elicited antibodies at a similai* time in all four hosts, while 

one VAT (ILTat 1.21) showed more variation in the timing of its appearance, and the 

final VAT (ILTat 1.64) only emerged in two of the four rabbits. A much greater 

variation was seen in the second relapse peak, however, with only one of the five 

VATs appearing in all of the infections (ILTat 1.70). One of the minor VATs 

identified from this peak (ILTat 1.71) appeared to be duplicated from a ciiromosome 

internal BC, and it is logical to assume that this could be one of the most frequently 

activated VSGs from the internal arrays.

It seems likely that the sub-hierarchical variation observed in the early group will 

also occur within the middle and late groups. The probability of VAT appearance
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will depend on several factors that could include the chromosomal location of the 

VSG, the gene orientation relative to the ciiromosome (Van der W erf et al. 1990) 

and the homology of the flanking sequences between the BC and the BES. It is 

apparent that other variables also influence, and complicate, the hierarchy and sub­

hierarchy; for example, it has been observed that some VATs have a much greater 

probability of appearance after an intermediate VSG gene has been expressed (Miller 

and Turner, 1981).

Several of the VATs seen in the rabbit infections had been observed previously in 

other studies. Miller and Turner (1981) demonstrated that ILTats 1.21, 1.22, 1.23 

and 1.25 appeared as primary switch products in a single relapse analysis of seven 

different VATs. This study revealed that ILTat 1.21 (underlining indicates those 

VATs identified in the ILTat 1.2 infection presented in this thesis) was the most 

frequently activated VAT (arising in 32 of 41 first relapses in rats), followed by 1.4 

(33 of 47), L25 (27 of 41), 1.26 (14 of 35), 1.24 (15 of 41), L22 (6 of 41) and 1.23 

(2 of 36). These results enlarge the dataset produced from the ILTat 1.2 rabbit 

infection, since the Miller and Turner study was initiated using trypanosomes also 

derived from EATRO 795, and closely related to the SUSB 48 stabilate. It is 

therefore evident that the VATs isolated fi'om the ILTat 1.2 rabbit infection represent 

some of the most frequently activated VSGs.

Fly transmission of EATRO 795 into goats had also identified ILTat 1.21 and 1.69 

switched products in the early stages of every infection (Barry and Emeiy, 1984). In 

addition, the ILTat 1.69 (ETat 1.7), 1.21 (ETat 1.9) and 1.22 (GUTat 7.1, ETat 1.2) 

VATs have been detected in related trypanosome stocks (field isolates), and their 

activation is typically obseiwed early in infection (McNeillage et al. 1969; Bairy et 

al. 1985). Two VATs, ILTats 1.22 and 1.64 (GUTat 7.13), have also been observed 

in the metacyclic population of the tsetse fly (Barry et al. 1983, Comelissen et al. 

1985b).

6.5 Mode of VSG gene activation in the ILTat 1.2 and 1.61c pleomorphic 

infectious: the predominance of duplicative transposition
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Duplicative transposition dominated in the ILTat 1.2 study, with nine, and possibly 

ten, of the eleven switching events occurring by this mode of activation. At least 

eight, and probably ten, of the donor genes resided at telomeric loci, while only one 

of the duplications (ILTat 1.71) definitely involved an internal BC (Table 3, section 

4.14, page 105). In contrast, there was only one example of an “in situ” activation 

(ILTat 1.67). The single analysable product generated from the ILTat 1.61c single 

relapse investigation was also activated by the duplication of a telomeric BC. These 

results are remarkably different from observations in monomorphic trypanosomes, 

where single relapse analysis has shown that about two-thirds of switch events occur 

by the in situ mechanism, and about one-third occur by duplicative transposition (Liu 

et al. 1985). Duplicative events appear to dominate only later in these 

monomorphic infections (Lee and Van der Ploeg, 1987; Michels et a l 1983; 

Timmers et a l 1987).

The dramatic difference in the mode of VSG switching between monomorphic and 

pleomorphic lines is indicative o f a dedicated switch mechanism in the pleomorphic 

lines that is reduced in, or absent from, the monomorphic lines. This hypothesis for 

gene conversion, proposed by Barry (1997a), which was based on preliminary 

observations on fly-transmitted trypanosomes, is consistent with the data presented 

in this thesis. This model suggests that the duplicative transposition is initiated by a 

DSB in the BES 70 bp repeats, and is similar in principle to the mating type switch 

obseiwed in Saccharomyces cerevisiae (Haber, 1998), which also begins with a 

specific DSB in the recipient locus. In the mating type switch a specific homing 

endonuclease (HO) mediates the DSB, and a corresponding enzyme activity specific 

to the trypanosome 70 bp repeats has been hypothesised several times (Pays, 1985); 

(Pays et a l 1994; Barry, 1997a). HO endonuclease cannot cleave its recognition 

sequence at either of the available mating type donor loci, HML or HMR, as these 

sites appear to be occluded by nucleosomes in silent DNA (Haber, 1998). Similarly, 

it is possible that the non~BES 70 bp repeats could be subject to cliromatin 

repression, preventing the specific enzyme from cutting at random in the genome. 

Possible support for this hypothesis is provided by the observation that 

transcriptional activity was repressed in BES, or ribosomal promoters that were 

introduced into a VSG gene chromosome internal loci (Horn and Cross, 1997) (see 

section 6.6 (page 149) for more details of this experiment).
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It is proposed that formation of the DSB would then be followed by a repair- 

mediated conversion from a silent VSG gene, using a strand invasion process similar 

to that seen in the mating type switch, and would terminate at the short homology 

blocks at the downstream end of the gene. A low level of point mutations detected 

in newly generated ELCs (Kamper and Barbet, 1992; Graham and Barry, 1996) 

could be indicative of a DNA repair enzyme operating during ELC formation. 

Presumably, the putative invading strand from the BES barren region would 

represent a diverse set of the repeats (which display degeneracy across their 

sequence (Aline et al. 1985)) enabling a high degree of 70 bp homology to be 

associated with the relatively few repeats upstream of a particular BC gene. This 

aspect of the model could explain why such a vast array of 70 bp repeats are 

contained within the BESs.

An alternative model for duplicative transposition has been suggested by Borst et 

al. (1996), and invokes non-specific DNA strand breaks as initiating the process in 

the 5’ flank of the VSG gene. Again, this model proposes a repair-mediated 

conversion from a silent VSG gene, using a strand invasion process similar to that 

seen in the mating type switch. This theory is consistent with the observed 

imprecision in the upstream limit o f VSG duplication events in monomoiphic 

trypanosomes, which only locate precisely to the 70 bp repeats in about half of the 

reported cases (Campbell e? cz/, 1984; de Lange a/. 1985; Florent e? a/. 1987; Lee 

and Van der Ploeg, 1987). The other events appear to result from fortuitous 

similarity between the donor VSG and recipient BES (Donelson et al. 1983; Lee and 

Van der Ploeg, 1987; Michiels et al. 1983; Pays et al. 1983c). It has also been 

demonstrated that the removal or reversal of the 70 bp region of a BES in 

monomorphic tiypanosomes had no effect on the incidence of VSG duplications into 

that BES (McCulloch et a l  1997). Although the Borst model provides some 

explanation for the lack of specificity at the upstream limit of conversion apparent in 

monomorphic trypanosomes, it does not explain the reduced overall switch rate, and 

the low relative frequency of duplicative transposition seen in these lines.

In the relatively few studies performed on pleomorphic lines, the upstream limit of 

duplicative events consistently maps to the 70 bp region (Matthews et al. 1990; 

Shah et al. 1987), and the preliminary results presented in this thesis also appear to 

demonstrate the involvement of these repeats (section 5.6, page 128). Telomeric 

VSGs lacking 70 bp repeats are activated in the bloodstream with great infrequency
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during pleomorphic infections, as such VATs require extensive positive and negative 

selection (Lu et a l 1993). In these cases, either fortuitous sequence similarities 

appear to be used for duplication into a BES, or activation occurs in situ, using 

unusual promoters (Donelson et a l 1998). However, it has been demonstrated that 

genes with just one intact 70 bp repeat can be activated efficiently, and the upstream 

limit of duplication maps to the repeats (Matthews et a l 1990; Shah et a l 1987). 

The contrast in the mode of gene activation and switching rate observed between 

monomorphic and pleomorphic trypanosomes is indicative of a dedicated switch 

mechanism that is reduced or absent in monomorphic lines. It appears that 

pleomorphic trypanosomes are programmed to duplicate VSGs, using the 70 bp 

repeats to initiate the process, and this mechanism is repressed or lost in the 

monomorphic lines.

The control of antigenic variation remains a completely unresolved area of 

trypanosome biology, since no switch intermediates or regulatory genes have been 

discovered thus far. It is conceivable that VSG duplication could occur by a repair- 

mediated conversion from the silent VSG gene using a strand invasion process 

similar to that seen in the mating type switch, as hypothesized in the Barry and Borst 

models. However, several other modes of general recombination have been 

conseiwed throughout eukaryotic evolution (Paques and Haber, 1999; Haber, 1999a), 

and it is possible that the process could occur by any of these mechanisms. The 

trypanosome might even utilize a unique system that has not yet been described, and 

this could possibly involve more than one pathway, as in DSB repair in vertebrates. 

However, it does seem likely that the switching process involves homologous 

recombination, since the dismption of RAD51, the trypanosome homologue o f the 

bacterial RecA gene, leads to a substantial decrease apparently in all types of 

switching (McCulloch and Bany, 1999). This work was performed using a 

monomorphic line which, as previously discussed, displays a marked reduction in 

the overall rate of VSG gene switching and a decreased proportion of duplicative 

activations relative to non-duplicative events. It would therefore be extremely 

interesting and informative to examine the outcome of a similar loiockout 

experiment in a pleomorphic line.

It is perhaps more than coincidence that monomorphic trypanosomes exhibit both a 

marked reduction in switch rate and a significant alteration in the life cycle, being 

unable to perform the pleomorphic cell’s differentiation from dividing long slender
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6.6 Telomeric VSG genes are activated most frequently, and predominate in 

the early stages of infection

149

cells to non-dividing short stumpy cells. It seems plausible that the individual 

mechanisms underlying these two distinct phenotypes could be regulated by a single 

process (or gene) that is lost (or repressed) during the selection to monomorphism. 

This hypothesis implies a close genetic association between the trypanosome’s cell- 

cycling and recombinational processes.

Prior to this investigation, other authors have demonstrated the preferential use of 

telomeric donors in early duplicative events (Liu et a l  1985; Myler et a l 1984; 

Pays et a l 1983a; Young et a l  1983), although most of these studies were 

performed using monomorphic lines and followed a series of switches, rather than 

single relapses. This favoured use of telomeres could result from the fact that 

telomeric VSG loci, which encompass long stretches of both the 70 bp and (sub)- 

telomeric hexanucleotide repeats, share more sequence homology with each other 

than with the internal VSG loci. Additionally, the probability of telomeric VSG gene 

expression could perhaps be enhanced by a general interactivity of ciiromosome 

ends. It has been reported previously that telomeric interactions appear to aid their 

recombination with active BESs. For example, some VSG genes that are usually 

expressed infrequently (or emerge late in an infection) can become activated early if 

they are translocated into a telomeric enviromnent showing more homology with the 

expression site (Laurent et a l 1984). A similar effect has been shown to occur 

during the expression of the AnTat 1.1 (Antweip Trypanozoon antigen type 1.1) 

VSG gene, which is telomeric but present in the reverse orientation with respect to 

the chromosome end. This gene is normally expressed late in infection, but becomes 

predominantly activated when it occurs on a telomere in the same orientation as the 

chr omosome end (Van der Werf et a l 1990). In addition, it has been shown in yeast 

that placing a Y ’ element (a highly conserved sub-telomeric element found repeated 

in 0-4 tandem copies adjacent to the telomere repeats) at an internal locus results in 

at least a 10-fold reduction in ectopic interactions with the telomeric Y ’s (Louis, 

1995). This led to the suggestion that the telomere regions could perhaps be 

sequestered from the rest of the genome during recombination.



Minichi'omosomal VSG genes appeared to play an important role in antigenic 

variation during the early stage of the ILTat 1.2 infection presented in this thesis, and 

there did appear to be hierarchical use within this subset. In the first relapse peak, 

four of the six VATs possessed minicliromosomal copies (ILTats 1.25, 1.68, 1.69 

and 1.21) and appeared at similar times in all fom* rabbit infections, and in the 1.61c 

high-switching investigation, the 1.25 VSG gene was duplicated from a single 

minichromosomal BC. Two of the VATs from the second relapse peak, ILTats 1.23 

(the dominant VAT in this peak) and 1.72, also displayed minicliromosomal VSG 

gene copies, but they appeared to be activated less frequently than the VATs 

obseiwed in the first relapse peak. In a previous study, the ILTat 1.3 

minichromosomal VSG gene has been shown to possess a long array of 70 bp repeats 

(Shah et al. 1987). The preliminary investigation of the 1.21 minichromosomal 

upstream flank presented in this thesis is also suggestive of a long 70 bp array of 

approximately 3.5 kb (section 5.6, page 128). These extensive 70 bp arrays could 

increase the probability of strong homology arising between the donor and BES, and 

this could explain the preferential use o f minichromosomal donors, if the ILTat 1.3 

and 1.21 VSGs are representative of the minichromosomal repertoire. However, the 

prominence of minichromosomal telomeres as donors could simply be due to their 

relative abundance in the genome (Van der Ploeg et al. 1985; Weiden et al. 1991), 

rather than any inlierent featur e.

It has been obseiwed that, during cell division in procyclic trypanosomes, the 

minichromosomes appear to utilize a partitioning mechanism different from that of 

larger chromosomes (Ersfeld and Gull, 1997). This results in the two chromosome 

classes localizing to distinctly different regions of the nucleus during the various 

phases of the cell cycle (Chung et al. 1990; Ersfeld and Gull, 1997). The 

partitioning of the chromosomes has not been as comprehensively analysed in 

bloodstream form trypanosomes, but it appears that the distribution of both the 

minichi'omosomes and the larger chromosomes is more random and dispersed than 

in procyclic cells (Chung et al. 1990). Perhaps this more heterogeneous 

chromosome organization increases the amount of interaction between the two size 

classes of chromosome, which possibly have less opportunity for recombination in 

procyclic trypanosomes due to their differential compartmentalisation throughout the 

cell cycle.
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The absence of minichromosomes in trypanosomatid flagellates unable to undergo 

antigenic variation, like Crithidia (Van der Ploeg et al. 1984b) and Leishmania, has 

led to the suggestion that minichromosomes have evolved to expand the telomeric 

VSG gene repertoire (Borst et al. 1993). In T. vivax, which has few, if  any, 

minichromosomes (Dickin and Gibson, 1989; Van der Ploeg et al. 1985), antigenic 

variation does occur, but the hierarchical order of VSG expression appears to follow 

a more continuous spectrum than the complicated pattern seen in T. brucei (Bany, 

1986). It is possible that this comparatively simple hierarchy is due to the smaller 

pool of telomeric VSG genes available in the T. vivax repertoire.

Telomeric genes appear to play an important role in antigenic variation of several 

protozoon parasites and other pathogens. The VSG genes of T. brucei, the var and r if 

genes of Plasmodium falciparum, the VSP genes of Giardia lamblia and the vmp 

genes of Borrelia hermsii can all be found at telomeric loci. This has led to the 

suggestion that telomeric interactions, and the associated genetic flexibility, are an 

essential feature of antigenic variation in many protozoans (reviewed in Lanzer et 

a l, 1995).

In other organisms, telomeric interactions are now being seen as having important 

functions, and the growing amount of interest and research in this field is beginning 

to elucidate the various proteins associated with telomeric function. An important 

example is the involvement of the Ku and Sir (silent information repressor) proteins 

in telomere organization, and regulation of this has been studied in some detail 

(Shore, 1998; Haber, 1999b). It had previously been observed that, in the absence of 

Ku, mammalian cells were unable to repair double-strand breaks or perform 

recombination of the immunoglobulin V(D)J region (Jeggo et a l 1995), and it has 

since been discovered that Ku protein plays an important role in non-homologous 

end-joining (NHEJ) in both vertebrates and yeast (Kanaar et a l 1998; Critchlow and 

Jackson, 1998), and in telomere length regulation and silencing in yeast (Boulton 

and Jackson, 1998). Sir proteins are also known to be involved in silencing at 

telomeres and at HM  mating type loci in yeast (Laurenson and Rine, 1992), and 

recent studies have revealed that there appears to be a close association between Ku 

and Sir proteins (Tsukamoto et a l 1997). The Ku and Sir proteins normally reside 

at the telomeric and subtelomeric regions (Martin et a l 1999), but delocalize when a 

DSB is introduced, and subsequently associate with the damaged region. Following 

the redistribution of Ku and Sir proteins, the genes near telomeres that were
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previously epigenetically silenced become more strongly transcribed (Martin et a l

1999). It has also been demonstrated that telomere silencing and the subnuclear 

organization of telomeres appear to be closely associated. Laroche et a l (1998) have 

shown, to some extent, that the mutation of yeast Ku genes result in the loss of 

telomeric silencing, and an alteration in the localization of the telomeric DNA, which 

normally clusters around the nuclear periphery at several loci in wild-type cells. In 

addition, it has been observed that telomere-silencing mutations in fission yeast 

affect the pattern o f chromosome alignment and migration during meiosis, and 

meiotic recombination appears to be severely reduced (Cooper et a l 1998; Nimmo 

et a l 1998).

Transcriptional repression in yeast appears to be associated with specialized 

chi'omatin structure at the affected region. In Drosophila, telomeric silencing is also 

linked to local chromatin structure, which seems to be dependent on nuclear 

organization (Ciyderman et a l 1999). It is known that transcriptional silencing in 

mammals and Drosophila can be delimited by specialized boundary elements, and 

negated by insulating elements (Gerasimova and Corces, 1996), and recent studies 

are beginning to suggest that analogous elements also exist on yeast telomeres 

(Fourel et a l 1999; Pryde and Louis, 1999).

Horn and Cross (1997) have demonstrated that T. brucei also displays position- 

dependent transcriptional silencing. This investigation revealed that inserting 

reporter genes (under the control of either an rRNA or VSG BES promoter) into a 

silent BES in bloodstream foim trypanosomes resulted in the silencing of the 

reporter, and this effect was more pronounced closer to the telomere. The promoter 

repression was also seen when the constmcts were introduced at a non-telomeric 

VSG locus in bloodstream form cells. However, in procyclic trypanosomes all the 

inserted rRNA promoters displayed transcriptional activity, while the BES promoters 

remained repressed. These results are indicative of a positional effect, related to 

VSG proximity or some feature of the BES, which prevents transcription from 

promoters introduced into bloodstream form cells. It is thought that the rRNA 

promoter-specific derepression in procyclic cells could be attributed to sequences 

that occur within rRNA promoters, but are absent from VSG BES promoters.

Telomeric interaction and transcriptional silencing are known to be important in 

trypanosome antigenic variation, although the mechanisms controlling these 

processes have yet to be deteimined. In other organisms, there is growing evidence
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that chi'omosomal interaction and transcriptional control are closely associated 

(Henikoff, 1997), and it is possible that similar systems exist in T. brucei. It is 

tempting to speculate that Ku and Sir proteins could be involved in tiypanosome 

telomeric regulation, but this theory can only be confinned by forthcoming research.

0
,0

6.7 The occurrence of a dominant BES
I

In every duplicative activation detected in the first relapse peak of the ILTat 1.2 

infection presented in this thesis, the ELC was accompanied by the loss of the 1.8 

Mb ILTat 1.2 VSG fragment, indicating that the same BES was utilised in each case.

The 600s PFGE separation established that this BES was present on the largest of the 

five comigrating 1.8 Mb cliromosomes. However, this study only examined the 

switches resulted in a phenotypic change, and there could also have been duplicative 

transpositions into silent BESs, as previously demonstrated (Myler et al. 1988a).

The preferential utilization of a dominant BES has also been observed in 

monomorphic studies (Liu et al. 1985).

It is possible that the repeated use of the active BES may be because the 

transcriptionally active state makes it a more accessible target for recombinational 

events. Actively transcribed telomeres have been shown to grow slightly faster than 

inactive telomeres (Pays et a l 1983b; Myler et a l 1988b), and this is perhaps 

indicative of differences in chi'omatin structure between the active and inactive sites.

In support of this theory, it has been observed that only the active BES is highly 

sensitive to DNAasel (Pays et al. 1983b) and single-strand specific endonucleases 

(Greaves and Borst, 1987). Additionally, transcriptional silencing around 

subtelomeric VSG genes is associated with the presence of p-D-glucosyl- 

hydroxymethyiuracil (base J), which is reversibly lost during transcriptional 

reactivation of a BES (Bernards et a l 1984; van Leeuwen et al. 1997) (see section 

1.9, page 25 for further details). It is unclear, however, whether changes associated 

with this modification are the cause or consequence of transcriptional silencing. The 

extent of the modification appears to vary with the length of the telomeric repeat

:r
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sequence and the proximity of the telomere end (Bernards et al. 1984; van Leeuwen 

et al. 1996; van Leeuwen et al. 1997).

Base J modification renders various restriction enzyme sites indigestible in some 

DNA molecules, and this can result in partial products being observed in genomic 

digests. Indirect evidence for base J modification of the minichromosomal telomere 

containing the silent ILTat 1.21 VSG BC was provided by the Pstl and Sail digests 

presented in this thesis (section 4.5, page 91; section 5.2, page 112). Both these 

restriction sites contain a thymidine that could be used as a substrate for base J 

modification. Partial products were generated from the ILTat 1.21 minichi'omosome 

(demonstrated by the ILTat 1.21 cDNA probing) when 1.2 DNA was digested with 

these two enzymes. It was apparent that the partial digestion resulted from modified 

DNA, rather than an incomplete enzyme reaction, since no partial products were 

detected when the same filters were hybridized with the RAD51 control probe. Base 

J modification has also been observed in the 177 bp repeats that make up the central 

part of the ininiclrromosomes (van Leeuwen et a l 1997).

6.8 The ILTat 1.21 minichromosomal VSG upstream flank

The ILTat 1.21 minichi'omosomal clone characterized in this thesis encompassed 

the entire cotransposed region and included three and a third copies of the 70 bp 

repeats at its upstream end. BLAST and CLUSTAL W analysis revealed that the 

1700 bp cotransposed region contained a 1200 bp ESAG3 full length pseudogene.

The presence o f this ESAG3 homologous sequence downstream of the 70 bp repeats 

suggests that minichromosomal telomeric sequences result from recombinational 

events with other telomeric regions within the genome. It also seems likely that the 

cotransposed region is not utilized as a recognition sequence with the con'espending 

region of a BES for the ILTat 1.21 duplication event, since such a large proportion of 

this BC domain is comprised of the ESAG3 sequence. The stnicture of the ILTat

1.21 cotransposed region implies that this domain is merely “stuffer” sequence, and 

does not perfonn any dedicated function in the BES. This theoiy contrasts with the 

view of Davies et a l (1997), who observed an increased rate in BES switching 

following the deletion of the cotransposed region in the active BES, and 

hypothesised that this domain could play an important role in BES regulation.
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6.9 Future work

s

The preliminary investigation of the ILTat 1.21 upstream duplication boundary 

suggests that the 70 bp repeats extend for approximately 3.5 kb, and the duplication 

boundary lies somewhere beyond the first 1 kb, upstream of the VSG (section 5.6, 

pages 128-135). It also seems that the 70 bp and 177 bp minichromosomal repeat 

elements are aiTanged at close proximity, with no (or very little) non-repetitive 

sequence between them, since the entire minichromosome appeared to be unaffected 

by the frequently cleaving restriction enzyme, Haelll. The 3.5 kb array of the 70 bp 

repeats observed in the ILTat 1.21 minichromosome is similar to the stretch of 

repeats detected in ILTat 1.3 (Shah et a l 1987). It is possible that this long an*ay of 

70 bp repeats could be an inherent feature of the minichromosomes, but this can only 

be confirmed by the characterization of more minichromosomal VSG 5’ flanks.

In order to confirm the hypothetical ILTat 1.2 upstream duplication boundary, it 

will be necessary to repeat the last analysis presented in this thesis (section 5.6, page 

128) using newly prepared, minimally sheared, genomic DNA to overcome the 

degradation problems. An alternative method for manufacturing the probe (such as 

gamma-radiolabelling) could also be adopted to attempt to enhance the hybridization 

specificity. If the repeat hybridization is consistent with the previous results, then 

the following approach could be utilized to construct a full length clone of the ILTat

1.21 upstream flank (summarized in Figure 52).

It would first be necessary to clone the 3.5 kb Alul upstream fragment (Chapter 5.6, 

page 133), and this could be achieved by constmcting an AluV H inélll size-selected 

minichromosomal library in pBluescript. Digesting the DNA initially with Hindlll, 

and then with Alul would produce a Hindlll specific overhang at the 3’ end of the 

fi'agment, which would facilitate later cloning procedures. The minichromosomal 

DNA would be isolated by PFGE, although a substantial amount of material would 

be required for the size-selection step, which would remove the smaller restriction 

products generated by the frequently cleaving Alul enzyme. Following cloning, this 

fragment would then be sequenced to characterize the full extent of the 5’ flanlc.

The next phase of this procedure would be to create a full length clone of the ILTat

1.21 minichr omosomal flank encompassing the whole VSG gene and the entire 70 bp
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array. The full VSG sequence would be introduced into the original 1.21 

minichromosomal VSG clone, using the 1.21 cDNA clone sequence. By using 

unfavourable digestion conditions, it should be possible to produce a H ind i partial 

digest of the cDNA clone. When used in conjunction with a second enzyme that cuts 

within the plasmid poly linker, this digest should liberate the 1473 bp fragment 

extending from the first H ind i site to the end of the cDNA clone. This fiagment 

would then be introduced into the H ind i site in the 5’ terminal VSG sequence of the

1.21 minichromosomal clone. Once this stage is completed it would be possible to 

ligate this whole fragment to the other, contiguous, upstream fragment (isolated from 

the HindllV Alul size-selected library) using the Hindlll site present in both clones. 

The individual steps required to produce this ILTat 1.21 full-length 

minichromosomal clone are indicated in Figure 52.

Finally, it would be possible to manipulate this construct, which would 

subsequently be integrated into ILTat 1.2 trypanosome genomic DNA via 

homologous recombination. A series of 177 bp minichromosomal repeats 

(approximately 500 bp in length) would be introduced at the upstream end of the 

construct to provide homology at this end. It would also be necessary to introduce a 

promoter and selectable marker gene, such as hygromycin resistance gene, within 

this flank to allow the transformed cells to be selected. The promoter would have to 

be inserted in the reverse orientation to the VSG gene to prevent any artifactual 

transcription of the VSG occurring. Five potential constructs are illustrated in Figure 

53: (1) unaltered 70 bp repeats; (2) deleted 70 bp repeats; (3) reversed full array of 

70 bp repeats; (4) full anny replaced with 1-2 70 bp repeats, in foi*ward orientation; 

(5) full array replaced with 1-2 70 bp repeats, in reverse orientation. The 

transformed trypanosomes would then be used in single relapse investigations to 

discover whether the 70 bp repeat manipulations affect the activation frequency of 

the ILTat 1.21 VSG gene. Unmodified ILTat 1.2 trypanosomes would be used as the 

control. Construct (1) (in which the 70 bp repeats remain unaltered) should 

demonstrate that any changes in the ILTat 1.21 activation frequency were due to the 

manipulation of the flanks, rather than unpredicted changes resulting from the 

introduction of the construct itself.
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