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Abstract

Coronal implosions - the convergence motion of plasmas and entrained magnetic

field in the corona due to a reduction in magnetic pressure - can help to locate

and track sites of magnetic energy release or redistribution during solar flares and

eruptions. Although this conjecture was proposed almost two decades ago, observa-

tions of such phenomena are still rare, and even our understanding of it is far from

complete. In this thesis, following an introduction to the background and techniques

used, we first generalise the implosion idea based on its spirit concerning about

the relationship between magnetic energy release and field shrinkage, which allows

us to unite and explain three different phenomena, that is, peripheral implosions,

inflows and dipolarisations, using only one single principle. Previous observations of

apparent contractions in the periphery of active regions are mainly in a face-on state,

which cannot exclude the possibilty of field inclining instead of a real contraction

as the cause. This then motivates us to study an excellent event observed near the

solar disk center, and evidence from both observations and coronal magnetic field

extrapolations is found to support the implosion idea. In a unification of three main

concepts for active region magnetic evolution implied by the observation, namely

the metastable eruption model, the implosion conjecture, and the standard “CSHKP”

flare model, the contraction of the field is explained by the removal of the erupting

filament originally underneath rather than local magnetic energy dissipation in a

flare invoked by previous authors.

However, the observation and extrapolation results in the work above are indirect

and still not adequate, as the complex structure of the solar atmosphere, and the

simplified assumption and preprocessing in the extrapolation may lead us to a wrong

conclusion. Thus in the following four carefully seleted events with the continuously

contracting loops in an almost edge-on geometry are for the first time investigated,

demonstrating the reality of contraction of field lines in the global coronal dynamics
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unambiguously. Meanwhile, two categories of implosions, flare- and eruption-driven,

are identified, which could be interpreted well in the framework of the implosion

conjecture, disproving other authors’ proposal. We also revisit one of the original

assumptions of the implosion conjecture which may fail when a heavily-mass-loaded

filament is involved, and in this case implosions can be suppressed, possibly served

as an alternative explanation for their observational rarity.

In the end, we move on to one of the generalised implosion types, i.e., the inflow,

and also study other reconnection flows associated with it. Intrinsic to the well-

accepted reconnection picture of a solar eruptive event, particularly in the standard

model for two-ribbon flares (“CSHKP” model), are an advective flow of magnetized

plasma into the reconnection region, expansion of field above the reconnection region

as a flux rope erupts, retraction of heated post-reconnection loops, and downflows

of cooling plasma along those loops. However, the evidence of these flows is still

circumstantial and rare. We report in this work on a unique set of SDO/AIA imaging

and Hinode/EIS spectroscopic observations of a flare in which all four flows are

present simultaneously. This also includes spectroscopic evidence for a plasma

upflow at the edge of the active region claimed by previous authors, which we

suggest decomposing into two components, one associated with open field at quasi-

separatrix layers, the other with large-scale expanding closed arcade field. The

reconnection inflows are symmetric, and consistent with fast reconnection, and

the post-reconnection loops show a clear cooling and deceleration as they retract.

Unlike previous events observed at the solar limb which are obscured by complex

foregrounds and thus makes the relationship between the plasma flows, the flare

ribbons, cusp field and arcades formed in the lower atmosphere difficult to interpret,

the disk location and favorable perspective of this event studied here have removed

these ambiguities giving a clear picture of the reconnection dynamics.

We end with a brief chapter summarizing the thesis and suggesting some future

work.
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Chapter 

Introduction

Part of the chapter can be found in my annual reports and the publications Wang

et al. (, , ).

. The Sun and Its Atmosphere

The Sun (Figure .) is an ordinary star with an age around five billion years on

the main sequence and located in the center of the solar system in the Galaxy. It

continuously provides energy via nuclear fusion in the core to the home of humanity,

the Earth, but also creates dramatic events of destructive effects to our life and

surrounding environment. This makes the study of the Sun a necessity. The Sun is a

huge fireball consisting of plasma where ions and electrons interact with each other

(∼ 92 % H, ∼ 8 % He, and 0.1 % heavier elements by number, such as C, N and O), in

which inward gravity and outward pressure gradient balance. It has a diameter of

∼ 695.5 Mm, a mass ∼ 1.99× 1030 kg, and a luminosity ∼ 3.86× 1033 W.

The interior of the Sun has been investigated by modelling and helioseismology

by which photospheric oscillations can be used to derive solar internal structures

and properties. It comprises three regions, the core, radiative zone and convection

zone, illustrated in Figure .. In the core energy is released through the fusion

of H to He. The generated high energy photons (gamma rays) are absorbed and

emitted repeatedly in the radiative zone until they can escape into the convection

zone where the energy transport is dominant by plasma convection. At the bottom

of the convection zone, a strong shear layer called the tachocline may exist that can

create intense magnetic flux transported upward by convection.



 : Introduction

Figure .: The Sun captured by the observatory SDO/AIA in  Å. Taken from

https://sdo.gsfc.nasa.gov/data/.

The solar atmosphere is the outer part of the Sun, and also the direct source of

radiation from the Sun as below the atmosphere photons cannot escape into space

because of the optical thickness τ � 1 . According to different physical properties,

the atmosphere is mainly divided into three layers, that is, from bottom to top,

photosphere, chromosphere, and corona (Figure .). With a thickness ∼ 0.5 Mm,

temperature ∼ 5800 K and electron density ∼ 1023 m−3, the photosphere contributes

to most of the solar radiation. The chromosphere is optically thick in strong spectral

lines, it thus absorbs radiation from the photosphere underneath, accounting for

remarkable absorption lines in observed solar spectra. It has a thickness ∼ 2.5 Mm,

temperature ∼ 104 K, and electron density decreases from the photospheric level to

1015 m−3. Above the chromosphere, through a very thin transition region (a few 

km thick), the temperature dramatically increases to the coronal level ∼ 106 K, while

the electron density decreases further by about one order of magnitude. The corona

extends upward with a thickness ∼ 7.5 Mm (the bright feature above the solar disk

in Figure .). In reality, the solar atmosphere is highly nonuniform and dynamic,

https://sdo.gsfc.nasa.gov/data/


.: Active Regions, Solar Flares and Eruptions 

Figure .: The structure of the Sun, from inner to outer, consists of a core, radiative

zone, convection zone, photosphere, chromosphere and corona. T is temperature in

K, and ρ density in kg m−3. Taken from Priest ().

making the three major layers not so easily distinguished.

. Active Regions, Solar Flares and Eruptions

A solar active region is an area where the magnetic field is significantly enhanced

(its temperature and density may also be higher than surrounding quiet regions).

Figure .(a) shows a magnetogram of the Sun, and the intense magnetic regions

are indicated by white and black areas (they separately correspond to positive and

negative polarity whose magnetic field vector points toward or in the opposite

direction to the observer), which are usually located within ± 30 degrees of the

equator and have a mean field strength ∼ 100 G and strongest fields of ∼ 2 kG.
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Figure .: The corona of the Sun imaged by the observatory SDO/AIA in  Å.

Taken from https://sdo.gsfc.nasa.gov/data/.

When the magnetic fields in these regions are strong enough to effectively prohibit

convection from surrounding quiet regions, sunspots or dark pores in white light

will appear (Figure .(b); Stix ). In soft X-ray (SXR) or extreme ultraviolet

(EUV) coronal images as in Figure .(c) and (d), they can be seen as regions with

bright arches of plasma, called loops. These coronal loops represent magnetic flux

tubes connecting opposite polarities, possibly generated in the tachocline and raised

up through the photosphere and chromosphere by magnetic buoyancy. Sometimes

filaments (viewed on the solar disk in absorption) or prominences (viewed above the

solar limb in emission) as in Figure . can also be seen in active regions, running

almost parallel to the magnetic neutral line or polarity inversion line, which separates

areas of positive and negative magnetic flux. They possess plasma a hundred times

cooler and denser than surrounding corona, and are believed to be held up by upward

tension force of twisted magnetic flux ropes, against downward gravity.

A solar flare is a sudden brightening in the solar atmosphere, which usually

https://sdo.gsfc.nasa.gov/data/


.: Active Regions, Solar Flares and Eruptions 

Figure .: (a) Magnetogram of the Sun observed by the observatory SDO/HMI.

(b) Intensity map of the Sun observed by SDO/HMI. (c)-(d) Corresponding coronal

images by the observatory SDO/AIA in  and  Å. Taken and adapted from

https://sdo.gsfc.nasa.gov/data/.

happens in solar active regions. An excellent example can be seen in Figure ..

Flares can be detected from radio up to gamma-ray energy bands. Based on the peak

soft X-ray flux measured by the Geostationary Operational Environmental Satellite

(GOES) in - Å, flares can be classified into A (−8 W m−2), B (−7 W m−2), C (−6

W m−2), M (−5 W m−2), X (−4 W m−2) classes. In spatial scales, they can just be

a compact bright spot in observation; they can also be a large-scale eruptive flare

with dramatic plasma flows or coronal mass ejections (CMEs; large scale plasmoid

ejections from the Sun into interplanetary space). As to flare evolution, we can

https://sdo.gsfc.nasa.gov/data/
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Figure .: Filaments or prominences in an active region of the Sun. (a) Located at

the limb, viewd from the side. (b) Located near the limb, viewed from the end and at

an oblique angle, respectively. (c) Located on the disk, viewed from above. (d) The

corresponding magnetogram (Dudík et al. ). Taken from Priest ().

Figure .: Coronal structures in solar flares observed by SDO/AIA in  Å. Obser-

vational times in UT are labeled above each image. Taken from Liu et al. ().

mainly divide it into impulsive and gradual phases. The impulsive phase indicates

the rapid hard X-ray (HXR) radiation period when bremsstrahlung from decelerated

non-thermal electrons is emitted; after that, the gradual phase begins with thermal

emission dominant.
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Figure .: A two-ribbon flare observed in X-ray. The - keV emission is shown

in red with contour levels %, %, % and %, and the - keV in blue with

contour levels %, % and %. The background image shows the two ribbons in

 Å. Taken from Krucker et al. ().

Flares are generally believed to be caused by a sudden release of free magnetic

energy stored in the preflare magnetic field of the solar corona in the form of electrical

currents (McClymont & Fisher ; Priest & Forbes ). Free magnetic energy

is equal to the total magnetic energy of the field with currents, minus the magnetic

energy of the potential field, which is the field having the same vertical magnetic flux

at the photospheric boundary but carrying no currents. It is built up by distortion of

coronal magnetic field, like field line shearing or twisting driven by subphotospheric

motion of plasma.

There is a wealth of models for explaining solar flares and eruptions, which can

be found at the link http://solarmuri.ssl.berkeley.edu/~hhudson/cartoons/.

We briefly introduce the standard model for two-ribbon flares (Figure .), the

CSHKP model (Carmichael ; Sturrock ; Hirayama ; Kopp & Pneuman

), which is mainly used and discussed in this thesis. The model is illustrated in

http://solarmuri.ssl.berkeley.edu/~hhudson/cartoons/
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Figure .: The standard CSHKP model of two-ribbon flares. Taken from Mann

et al. ().

Figure .. As the erupting prominence stretches the arcade field upward, the two

legs of the arcade field converge towards the central diffusion region in which the

field reconnects. The newly formed plasmoid above the diffusion region after the

reconnection erupts outward, while the cusp-shaped field below contracts downward

due to the enhanced tension at the cusp. Meanwhile, high energy non-thermal parti-

cles produced in the diffusion region or in the newly-reconnected loops can propagate

along these shrinking loops down to the chromosphere, and are then decelerated via

strong Coulomb collisions with dense plasma there to heat the plasma and produce

hard X-ray emission by bremsstrahlung. The heated chromosphere expands upward

to fill the loops and radiate in soft X-rays via thermal bremsstrahlung emission.

As to the initial prominence eruption, its triggering mechanism is still unclear so

far. Non-equilibrium and MHD instabilities have been proposed to be responsible



.: Coronal Implosions 

Figure .: The breakout model of solar flares. Taken from Karpen et al. ().

for the activation of the eruptive process. As the coronal field evolves, driven by

subphotospheric motions or perturbed by nearby events, a critical point may be

approached where the field could not be in equilibrium or stable (though it is still

in equilibrium). Then a catastrophic eruption of the field to a lower energy state

may happen. Kink or torus instabilities are commonly invoked in literature. Kink

instability (Hood & Priest ) can occur when the involved flux rope suspending

the prominence has been twisted so much that it erupts, transferring the twist to

the writhe of the axis of the flux rope. Torus instability (Kliem & Török ) is an

expansion instability (or a lateral kink instability, uniformly distributed over the flux

rope). It would happen when the overlying field constraining the flux rope decays

significantly, compared to the decrease of the hoop force (a self-repulsive force of

a current ring because of the more intense magnetic pressure at the inner edge of

the torus) of the flux rope as it expands. These non-equilibrium or instabilities

can be induced by processes like flux emergence (newly emerged magnetic field

reconnects with pre-existing field), tether-cutting reconnection (sheared arcade field

reconnects with each other), shearing or twisting of the footpoints at the photosphere,

or reconnection above the flux rope as in the breakout model (Antiochos et al. )

shown in Figure ..

. Coronal Implosions

.. The Implosion Conjecture

Solar eruptions and flares are two main manifestations of magnetic energy release

in the corona, possibly triggered by magnetic instabilities or reconnection. The

means to track the onset of the instability, the movement of free energy through the
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corona, and the location of energy transfer or conversion would significantly assist to

understand and predict the conditions leading to a flare or eruption.

The conjecture of “implosion”, first proposed by Hudson (), may help in this

effort. It reads that “during a transient, the coronal field lines must contract in such

a way as to reduce
∫
V

(B2/8π)dV ” (which is the magnetic energy within the entire

coronal volume). It is based on the following three assumptions:

• Assumption A : a flare or CME gets its energy directly from the solar corona.

• Assumption B: gravitation is of no significance.

• Assumption C: low plasma β in the corona (β = p/(B2/8π), the ratio of thermal

plasma pressure to magnetic pressure).

Assumption A is well accepted in the solar community because the low Alfvén speed

in the photosphere cannot account for short flare timescales. Assumption B can be

true for most part of the solar corona where plasma density is low, while for some

regions containing dense filament material the assumption is not valid (discussed

later in detail in Section ..). Assumption C is reasonable for a large fraction of

the solar corona but it can fail for the outer corona where magnetic field strength is

reduced significantly and for cusped loops where temperature is high besides low

magnetic field strength. For the region that satisfies all the three assumptions, as the

equation of motion for the plasma in the corona (Priest ) is

ρ
dv
dt

= −5 p+ j ×B − ρg (.)

the assumptions imply that coronal dynamics on large scale is dominated by magnetic

Lorentz force. The Lorentz force can be decomposed into two components (Priest

)

j ×B =
(B ·5)B

µ
−5(

B2

2µ
) (.)

the first term on the right hand side is magnetic tension force, and the second one

magnetic pressure force. Their components parallel to the magnetic field cancel

out with each other, only leaving the components perpendicular to the field. Also

Alfvén’s frozen flux theorem applies under the condition of magnetic Reynolds

number Rm� 1 (Rm = l0V0
η , where l0 and V0 are the typical plasma length scale and

speed, respectively, and η the magnetic diffusivity) in the corona, which means that
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Figure .: Peripheral implosion modeled as a one-loop harmonic oscillator. Taken

from Russell et al. ().

the magnetic field changes as if it moves with the plasma. Based on these, Russell

et al. () illustrated the implosion conjecture in a one-loop system in Figure ..

Before the flare or eruption in Figure .(a), the loop is static as the downward

magnetic tension force is balanced with the upward magnetic pressure force. In

Figure .(b) during a flare or eruption (we emphasise here that the eruption should

be sideways relative to the overlying loop in order not to “destroy” it), the magnetic

energy is released locally in the flare or removed from the original position via the

eruption, then because of the equivalence of magnetic energy and pressure (they

are both equal to B2

2µ ), the magnetic pressure underneath is reduced and leaves the

magnetic pressure force decreased, thus the overlying loop would contract downward

under the net force of magnetic tension force and the reduced magnetic pressure

force. With the loop shrinking in Figure .(c), its curvature becomes smaller and

reduces the tension force, thus the net force would diminish. Finally the loop would

reach a new equilibrium state with a shorter length and the forces balanced.

Hudson () also emphasised that this implosion process should be most

pronounced during the impulsive phase when the energy release rate reaches its

maximum. The implosion picture seems to conform to logic and intuition, and could

be possible in reality, but we should notice that the conjecture is based on the three

assumptions, which have not been conclusively confirmed in observation and may

be important in future discussion. Regions not meeting these assumptions may not

exhibit implosion behaviours. One particular case we will discuss in Chapter .

The understanding and study of the implosion idea is still in its infancy, and so

far we are not able to fully comprehend it. Later in Section .., we will discuss

some other branches of implosions. Right now we call the scenario illustrated in
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Figure .: The active region in which peripheral implosions are observed in the

event SOL--T: (M.). Taken from Simões et al. ().

Figure . “peripheral implosion”, as the peripheral loops implode towards the

central energy release site.

.. Observations of Peripheral Implosions

Though the implosion conjecture was proposed almost two decades ago, only a few

implosions in peripheries of ARs are observed, compared to numerous eruptions

and flares detected. From  to , Liu and other collaborators reported a series

of events showing coronal loop contractions in the extreme ultraviolet (EUV) (Liu

& Wang ; Liu et al. b; Liu & Wang ; Liu et al. a). These events

range from GOES class B to X with contraction speeds from tens to hundreds of

km/s, happening in the preflare phase, during the impulsive phase or in the gradual

phase. It seems that implosion is possible in all flare classes and during the entire

flare process. Some authors observed loop contractions accompanying erupting

filaments or bubbles (Liu & Wang ; Liu et al. a; Simões et al. ; Yan et al.

; Shen et al. ; Kushwaha et al. ). Simões et al. () in an M. flare
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Figure .: Peripheral implosion dynamics for the event SOL--T:

(M.). (a) Timeslices for the slit in Figure .. (b) Zoomed in for the interval

between the two white dashed lines in (a) during the impulsive phase. Taken from

Simões et al. ().

found that the loop contraction speed correlates well with the hard X-ray (HXR) and

microwave (MW) radiation, with faster contraction corresponding to more intense

radiation.

In some of the events above, dramatic oscillations were noticed during or after the

loop contractions (Liu & Wang ; Gosain ; Liu et al. a; Sun et al. ;

Simões et al. ). One good example is shown in Figures . and .. Russell

et al. () considered a one-loop system as a harmonic oscillator, showing that

the contracting and oscillating behaviours can be reproduced by the change in loop

equilibrium position due to magnetic energy release underneath, in agreement with

the implosion conjecture. Pascoe et al. () included a displacement term for the

changing equilibrium position from Russell et al. () for coronal seismology anal-

ysis, and only the fundamental kink mode exists associated with the loop contraction

in Simões et al. (). Liu & Wang () suggested that the interaction between the

contracting loops and surrounding ones may also make them oscillate. The model

of an isolated simple harmonic oscillator in Russell et al. () cannot properly

describe the dynamics of a continuum medium, where many magnetic strands will

interact with each other if not in phase, so a full magnetohydrodynamic (MHD)
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Figure .: A twisted flux rope anchored below an overlying arcade. Taken from

Sturrock et al. ().

Figure .: Peripheral implosions during the central flux rope eruption in the MHD

simulation of Zuccarello et al. ().

treatment may be needed for a more accurate description of the dynamics observed.

.. Peripheral Implosions in Simulations

The implosion conjecture links flare energy release with field contraction, and is

apparently at odds with many flares in which eruptions are seen. The Aly-Sturrock

hypothesis (Aly , ; Sturrock ), which states that the energy of any

simply-connected and closed force-free field is less than the energy of the corre-

sponding completely opened field with the same vertical flux at its boundary, implies

that energy must be added to erupt the field, rather than being liberated by the

process, as is required to explain the flare. One solution is the partial opening of

the field in a three-dimensional (D) configuration. Magnetohydrodynamic (MHD)

simulations utilising the D metastable eruption model (Sturrock et al. ), which

has a twisted flux rope anchored below a magnetic arcade (Figure .), have shown

that during the flux rope eruption, some unopened overlying arcade loops in the
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periphery could finally contract to a shorter length compared to their initial states

(Roussev et al. ; Aulanier et al. ; Gibson & Fan ; Fan & Gibson ;

Rachmeler et al. ). A good example can be seen in Figure .: as the central

flux rope erupts upward, some of the peripheral unopened loops on both sides

could contract towards the erupting structure, but depending on the location of the

arcade field, the field would (i) expand, incline and contract (e.g., FL  and FL ),

or (ii) incline and contract (e.g., FL ). These simulations are the manifestations of

peripheral implosions accompanying the central energy release manifested by the

flux rope eruption.

Sarkar et al. () recently carried out the first simulation focused on implosions,

and found that oscillations of both kink and sausage modes can exist when the loops

contract, and that loops in different plasma β regimes may exhibit different dynamic

behaviours.

.. Generalisation of the Implosion Idea

The establishment of scientific concepts is difficult, and its evolution is slow and

gradual, so is the implosion idea. First, we need to understand the spirit of the

implosion idea, that is, when an energy-releasing event happens in the corona, there

should be an implosion behaviour which makes the field more compact around the

energy release site.

Then, we argue that implosion does not necessarily only mean contraction of

field lines in the peripheral region as in Figures .(a) and (b), which are separately

driven by underlying magnetic energy transfer in the eruption and magnetic energy

dissipation in the flare. We can imagine that in principle when the energy release site

is local and high in the corona, the surrounding plasma and entrained field would

converge toward this region where magnetic pressure correspondingly reduces;

specifically, overlying loops would contract as in Figures .(a) and (b); underlying

loops, if they exist, may show expansion up toward the energy release site; and lateral

field would incline toward the region. However, in practice we need to consider

realistic magnetic topologies and processes. For example, in the standard “CSHKP”

model of two ribbon flares shown in Figure .(c), if the energy is liberated in the

central diffusion region or current sheet, the inflow toward this site can be regarded

as the lateral field inclining, but because of the magnetic tension of the newly
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reconnected field upward and downward from the diffusion region, the loops there

would instead expand outward and contract downward the solar surface, respectively.

Similar processes also happen in the break-out model (Figure .(b)), but the inflow

there is vertical (the loops below the reconnection site thus show expansion), and the

contraction of the newly reconnected field lines (called dipolarisation) is transverse

near the diffusion region. Thus, in these reconnection-related energy-releasing

events, the inflow toward the diffusion region is a type of implosion based on the

spirit described above, and is inclining of the loops, not necessarily contraction of

the field lines. We can call this kind of implosion “inflow-type implosion”. The key

difference between the inflow-type implosion and the peripheral ones is that the

imploding field in the former type will participate in reconnection in the current

sheet or diffusion region. We also need to mention that even if the magnetic energy

is released in the newly reconnected loops when they contract downward as argued

by some authors (e.g., Fletcher & Hudson ; Veronig et al. ) instead of

exactly in the diffusion region, the inflow can still be taken as a kind of implosion

because in this scenario it is just like a peripheral implosion as the newly reconnected

loops transferring magnetic energy out of the diffusion region when they contract

(Figure .(c)) would create a magnetic sink (low magnetic energy and pressure)

around the current sheet. This is shown in Figures .(e) and (f) from Zuccarello

et al. (), where the blue dotted lines indicate that magnetic pressure around the

diffusion region is significantly lower than that in the surrounding area.

Let us consider the dipolarisation of the newly reconnected loops in Figure .(d).

Could we regard this motion as an implosion? We ask this because contraction of

field lines generally indicates reduction of magnetic energy. In the original paper of

Hudson (), he argued that increasing magnetic energy in the solar corona usually

corresponds to expansion or inflation of the magnetic field (e.g., see Dahlburg et al.

 and Sturrock et al.  in simulation of twisting up footpoints of magnetic field

lines), thus the opposite process, releasing the coronal magnetic energy, may lead to

magnetic field contraction or deflation. Also the Aly-Sturrock hypothesis (Aly ,

; Sturrock ) implies that energy should be added to open the field, thus

more compact field is of lower energy state. Moreover, Ji et al. () demonstrated

that unshearing motion of the field line which makes the field more potential and

thus releases magnetic energy would lead the field to shrink. The energy released

in the shrinkage of newly reconnected field lines could heat or accelerate particles
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Figure .: Different implosion types identified. (a) Eruption-driven peripheral

implosion. (b) Flare-driven peripheral implosion. (c) Inflow-type implosion. (d)

Dipolarization-type implosion.

within via, e.g., a collapsing magnetic trap (Veronig et al. ), shocks (Longcope

et al. ), or Alfvén waves (Fletcher & Hudson ). Thus, during this kind

of contraction of field lines, the contracting field itself releases energy, which is

unlike the peripheral and inflow-type implosions where the contraction or inclining

of surrounding field lines is caused by the central energy liberation. In this case,

the region where magnetic energy liberates shrinks itself, thus we call this motion
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Figure .: In (e) and (f), the blue dashed lines show the magnetic energy/pressure

(∝ B2) distribution across the current sheet in the D MHD simulation of Zuccarello

et al. () at times t = 208 and 244 tA.

of the region “core implosion”. In principle, we can still understand it based on

the spirit of the implosion idea. Imagine that the magnetic energy is released in a

substantial volume simultaneously, rather than in a local space as discussed above.

The volume is the core for providing energy for the event, and as the energy and

corresponding magnetic pressure decrease there, surrounding plasma and entrained

field would collapse inward and compress the core region, leading to a core implosion.

However, in the specific dipolarization case, the core which occupies a volume is the

shrinking loops, and the shrinkage is mainly caused by the strong magnetic tension

force of newly reconnected field lines at the cusp, rather than reduced magnetic

pressure invoked as an argument in the original implosion paper of Hudson ()
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Figure .: The suggested united picture of the implosion idea.

(which may also play a role to make the dipolarising field more compact). In other

words, liberation of magnetic energy does not only mean reduction of magnetic

pressure in the core, but also decrease of magnetic tension of the core in some cases,

which can lead to contraction of the associated field lines if their footpoints are

line-tied at the photosphere. Finally, if we want to further generalise the concept of

implosion, dipolarisation of newly reconnected field lines can be regarded as one of

the core implosion types, where the energy-releasing field shrinks itself as a result of

gradually releasing magnetic tension. We can call it “dipolarization-type implosion”.

Figure . summarizes our unification of the different implosion types, with the

core implosion, the inflow-type implosion and the peripheral implosion happening

in a hierarchy structure. The process can/cannot have an acompanying eruption

because both eruptive or non-eruptive flares have been observed so far. The core
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Figure .: Field lines become more horizontal near the PIL after reconnection.

Bi is the initial field vector, Bf the final field vector, and δB the change of the field

vector. Taken from Hudson et al. ().

implosion is located in the center as the energy-releasing core field shrinks itself,

which can be a dipolarization type or other types yet to be discovered or identified

for specific magnetic topology and process. The inflow-type implosion and the

peripheral one both converge towards the core region because of the reduction of

magnetic pressure in the core, but the former one would convect the field into

the current sheet where reconnection occurs to generate the shrinking core field.

The scenario in Figure . can be imagined as a star formation process where the

surrounding molecular cloud collapses to form the central star. The generalization of

the implosion idea makes us unite and explain different phenomena in the dynamic

solar corona using only one principle, that is, magnetic energy release would make

magnetic field more compact. It conforms to the art of simplicity of science.

.. Implosions as a Possible Driver of Helioseismic Waves

On the basis of the implosion conjecture, Hudson et al. () further predict that

the photospheric magnetic field should become more horizontal because of field line

contraction when the coronal magnetic field restructuring disturbance transmits

to the photosphere (Emslie & Sturrock ), which would produce a downward

Lorentz force and give rise to a seismic wave. This can be a valuable application of

the implosion idea. To the first order, the force per unit area (Fisher et al. ) can

be expressed as,

δfz = (BzδBz −BxδBx −ByδBy)/4π (.)



.: Observational Instruments and Analysis Methods 

where δ means the change of that magnetic field component at the photosphere.

However, we need to point out here that the speculation of more horizontal field after

implosions is not necessarily true, which can be clearly seen in Figure .. It depends

on the specific magnetic dynamic processes. For example, the dipolarisation-type

implosion illustrated in Figure . near the PIL would generate more horizontal

field, but the peripheral implosion in Figure . which could happen far from the

PIL may make the field more vertical if the field does not contract too much. Thus

different areas at the photosphere may experience forces with different directions

and also magnitudes, leading to a complex mix of seismic waves.

A longitudinal field decrease or horizontal field enhancement near the polarity

inversion line in the photospheric magnetograms has been detected during many

events, especially eruptive flares (Sudol & Harvey ; Petrie & Sudol ; Wang &

Liu ; Gosain ; Petrie ; Sun et al. , ). The phenomenon is often

explained by the authors exploiting the prediction above. However, interestingly, the

non-eruptive X. flare in the famous active region  did not show significant

changes in its photospheric horizontal field (Sun et al. b; Jiang et al. b).

. Observational Instruments and Analysis Methods

.. Solar Dynamics Observatory

The Solar Dynamics Observatory, abbreviated SDO (Figure .), launched to a geosyn-

chronous orbit on  February , is part of the NASA’s Living With a Star (LWS)

Program (Pesnell et al. ). Its main goal is to help us understand solar activity and

its influences on space weather that impact on Earth’s life and technological systems.

It has three instruments on board, the Atmospheric Imaging Assembly (AIA; Lemen

et al. ), Extreme Ultraviolet Variability Experiment (EVE; Woods et al. ), and

Helioseismic and Magnetic Imager (HMI; Schou et al. ). Images from AIA and

magnetic field data obtained by HMI are used in this thesis.

AIA consists of four telescopes to record 4096 × 4096 images with every pixel

corresponding to 0.6′′, thus in total having a field of view 41′ ×41′. It has a two-pixel

resolution ∼ 1.5′′, and a cadence 12 s with an exposure time 0.5−3 seconds. The Sun

can be observed by AIA in ten wavebands, including seven in EUV (94, 131, 171, 193,

211, 304, and 335 Å), two in UV (1600 and 1700 Å), and one visible (4500 Å). 94 Å
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Figure .: The SDO and its onboard instruments AIA, EVE, and HMI. Taken from

Pesnell et al. ().

is contributed by the ion Fe XVIII at a characteristic temperature ∼ 6.3 MK; 131 Å

by both Fe VIII and Fe XXI at ∼ 0.4 and ∼ 10 MK separately; 171 Å by Fe IX at ∼ 0.6

MK; 193 Å by both Fe XII and Fe XXIV at ∼ 1.6 and ∼ 20 MK separately; 211 Å by Fe

XIV at ∼ 2.0 MK; 304 Å by He II at ∼ 50000 K; 335 Å by Fe XVI at ∼ 2.5 MK; 1600

Å by both C IV and continuum at ∼ 0.1 MK; both 1700 and 4500 Å by continuum

at ∼ 5000 K. The detailed temperature response functions for six EUV filters (94,

131, 171, 193, 211, and 335 Å) can be seen in Figure .. These six EUV passbands

are mainly responsible for high temperature corona observations, while 304 Å for

chromosphere, and 1600, 1700 and 4500 together for photosphere. The transition

region between chromosphere and corona can be investigated through 131, 171, 304

and 1600 Å.

HMI is designed to study photospheric oscillations and magnetic field, and can

provide Dopplergrams, continuum intensity, longitudinal and vector magnetic field

at the solar surface. The magnetic field data are employed for context or coronal
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Figure .: AIA temperature response functions for six EUV passbands. Taken

from Boerner et al. ().

field modelling in this thesis. Similar to AIA, HMI also produces 4096×4096 images,

but has 1′′ spatial resolution with 0.5′′ per pixel. For line-of-sight magnetograms,

the temporal cadence is 45 s, while the vector field is generated every 90 or 135 s

but ordinarily averaged in 12 min in order to reduce noise. The instrument observes

the Sun at six wavelengths across the Fe I 6173 Å absorption line, and records

Stokes parameters, which are then transformed to vector magnetograms through a

Milne-Eddington inversion code, the Very Fast Inversion of the Stokes Vector (VFISV;

Borrero et al. ). As the direction of the transverse component of the inverted

field cannot be determined by the Stokes parameters, an improved version of the

“Minimum Energy” method is then applied, which minimizes
∑
| 5 ·B|2 + |J |2 where J

is the total current density (Metcalf ; Metcalf et al. ; Leka et al. ).
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.. Reuven Ramaty High Energy Solar Spectroscopic Imager

The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI; Lin et al.

) is a Fourier-transform imaging telescope using modulated signals through nine

rotating collimators, each of which consists of a pair of separated grids with equally-

spaced opaque slats and transparent slits for X-rays. Launched on  February ,

it is designed to investigate particle acceleration and energy release processes in solar

flares. It observes the Sun from 3 keV to 17 MeV, with energy resolution . 1 keV at 3

keV, increasing to ∼ 5 keV at 5 MeV. The field of view is around 1°, covering the full

solar disk, with a high spatial resolution for X-ray observations, i.e., 2.3′′ from 3 keV

to 100 keV, then 7′′ to 400 keV, and 36′′ to 15 MeV. A high temporal resolution is

also achieved at 2 s. In the thesis we mainly use the count rate recorded by RHESSI

for context and its imaging capability to locate X-ray sources, though it can provide

very valuable spectroscopic information.

To reconstruct RHESSI images, various algorithms have been created, e.g., Clean

(Högbom ), Maximum Entropy Methods (Sato et al. ), Forward-Fitting

(Aschwanden et al. ; Schmahl et al. ), and Pixon (Puetter ; Metcalf

et al. ; Alexander & Metcalf ). An introduction to all of these imaging

methods can be found in Hurford et al. (). Here we only briefly describe the

Clean method which is employed in this thesis. The Clean algorithm assumes that

the image is constructed by a convolution of point sources with instrument Point

Spread Functions (PSFs). It uses the basic back-projection map as the initiation, and

iteratively finds the highest flux and subtracts the PSF normalized to a proportion of

the flux there, until a certain number of iterations is reached, or until the negative

peak is larger than the positive one. The final image is the normalized flux convolved

with a Clean PSF (which is a gaussian profile whose FWHM is called the Clean beam

width, indicating the effective resolution of the corresponding collimator), adding

the residual map subtracted as noise.

.. Solar TErrestrial RElations Observatory

Solar TErrestrial RElations Observatory (STEREO) was launched on 2006 October

25, comprised of two nearly identical spacecraft circling around the Sun near the

Earth orbit. One is traveling ahead of the Earth, called STEREO-A, and the other,

named STEREO-B, trailing behind the Earth, which together provides stereoscopic
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observations of the Sun. The instrument, Sun-Earth-Connection Coronal and Helio-

spheric Investigation (SECCHI; Howard et al. ), onboard both STEREO-A and

-B is designed to study the evolution of CMEs from the solar surface to the Earth

orbit. It consists of five telescopes, the Extreme Ultraviolet Imager (EUVI), the Inner

Coronagraph (COR), the Outer Coronagraph (COR), and two Heliospheric Imager

(HI and HI). EUVI, which is employed in this thesis for a stereoscopic view of solar

events, is responsible for observing the chromosphere and low corona out to 1.7 R�.

It is a normal incidence telescope, and records 2048× 2048 pixel images with 1.6′′

per pixel. It observes the Sun in four EUV emission lines, i.e., He II 304 Å, Fe IX 171

Å, Fe XII 195 Å, and Fe XV 284 Å, covering 0.1− 20 MK temperature response, with

variable cadences up to 2.5 min.

.. Hinode

Launched on 2006 September 22, the Hinode mission is designed to study energy

transfer from solar photosphere through chromosphere to corona, and energy release

responsible for flares and CMEs (Kosugi et al. ). It comprises three instruments,

the EUV Imaging Spectrometer (EIS; Culhane et al. ), the Solar Optical Telescope

(SOT; Suematsu et al. ; Tsuneta et al. ), and the X-Ray Telescope (XRT; Golub

et al. ). EIS, used in the thesis, has a FOV 360′′ × 512′′, with a spatial resolution

2′′ (1′′ per pixel). It can record emission lines in the wavelength ranges 170− 210 Å

and 250− 290 Å, with a spectral resolution ∼ 60 mÅ (Brown et al. ), covering

the temperature range 5 × 104 − 2 × 107 K, for upper transition region and corona

observations. Two slits (1′′ and 2′′) are employed for spectroscopy, and two slots (40′′

and 266′′) for imaging. The slits can perform in two modes, rastering/scanning, or

sit-and-stare/fixed. The rastering mode scans across a region, offset in an amount of

time (can be adjusted to less than 1 s) by a step (0.123′′ at a minimum), and taking

successive exposures (< 1 s − ∼ 10 s for each). The exposure time for monochromatic

imaging using the slots can be 3− 10 s.

.. Coronal Magnetic Field Extrapolation

The coronal magnetic field is not so readily obtained as for the photophere via Zee-

man splitting. For the corona, the higher temperature broadening spectral lines, the

weaker magnetic field narrowing the splitting, and the lower line intensity reducing
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the signal-to-noise ratio would make the line splitting difficult to distinguish. More-

over, the non-local thermodynamic equilibrium and the optically thin condition in

the corona add more difficulties in the interpretation of spectral line observations

(Guo et al. ). To study coronal magnetic field, routinely observed photospheric

magnetograms are used to extrapolate into the corona. In magnetohydrostatic con-

ditions with Lorentz force dominating plasma pressure gradient and gravity, the

plasma in the corona experience no force (force-free) with

j ×B = 0 (.)

from Equation .. Using Ampère’s Law

j = 5×B/µ (.)

we obtain

(5×B)×B = 0 (.)

or

5×B = αB (.)

where α is a scalar function of position. Then take the divergence of Equation .

and use the law that magnetic monopoles do not exist

5 ·B = 0 (.)

it follows that

(B · 5)α = 0 (.)

which implies that α is constant along magnetic field lines. Equations . and . set

a system of partial differential equations that a force-free field has to satisfy. When

α = 0, it is called a potential field, with no current. If α is constant in the entire

space, the set of equations is linear, and the field is called linear force-free field. In

the most general case that α varies in space, which is expected to conform more to

realistic coronal magnetic field, the field is referred to as nonlinear force-free field

(NLFFF) because the set of equations is nonlinear. Their analytic solutions have not

been found in general cases.

Numerical methods are then developed to construct the force-free magnetic

field in the corona, which exploit photospheric magnetogram observations as the

bottom boundary. They include the vertical integration method (Nakagawa ;
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Demoulin & Priest ; Amari et al. ), Grad-Rubin method (Grad & Rubin

; Sakurai ; Wheatland ), MHD relaxation method (Mikic & McClymont

; Roumeliotis ; Wiegelmann & Neukirch ), and optimization method

(Wheatland et al. ; Wiegelmann ; Wiegelmann et al. ; Wiegelmann &

Inhester ). The optimization method will be used in this thesis and discussed as

below. A functional L is defined as,

L =
∫
V
w(x,y,z) B2 (Ω2

a +Ω2
b) d3x (.)

with

Ωa = B−2 [(5×B)×B] (.)

Ωb = B−2 [(5 ·B) B] (.)

where w (chosen to be > 0) is a weighting function, and the integral covers the

volume of interest. If L equals to zero, the force-free and divergence-free conditions

in Equations . and . can be satisfied simultaneously. Thus numerically, to obtain

a force-free field B is equivalent to finding a minimum of L. To achieve this purpose,

take the derivative of L with respect to an iteration step t,

1
2
dL
dt

= −
∫
V

∂B
∂t
· F̃ d3x −

∫
S

∂B
∂t
· G̃ d2x (.)

where

F̃ = wF + (Ωa ×B)×5w+ (Ωb ·B)5w (.)

G̃ = wG (.)

F = 5× (Ωa ×B)−Ωa × (5×B) +5(Ωb ·B)−Ωb(5 ·B) + (Ω2
a +Ω2

b)B (.)

G = n̂ × (Ωa ×B)− n̂(Ωb ·B) (.)

where n̂ is the inward unit vector on the surface of the volume. If within the

computational box the magnetic field is chosen to change with the iteration step as,

∂B
∂t

= µF̃ (.)

with µ > 0, and B is fixed at the boundaries, it follows that dLdt < 0 from Equation ..

It indicates that L will decrease monotonically, finally its minimum and thus a

force-free field can be found.

Before implementing numerical NLFFF extrapolations, we also need to first

preprocess the vector magnetograms observed at the photosphere. The photospheric



 : Introduction

magnetic field is not necessarily force-free, because the plasma β there is close to one,

implying that apart from Lorentz force the plasma pressure takes a non-negligible

role in controlling the plasma flow. The forced photospheric field thus needs to

be driven to mimic the force-free chromospheric one. The optimization method of

Wiegelmann et al. () for preprocessing is used in this thesis. It is to minimize

the functional,

L = µ1L1 +µ2L2 +µ3L3 +µ4L4 (.)

where

L1 = (
∑
p

BxBz)
2 + (

∑
p

ByBz)
2 + (

∑
p

B2
z −B2

x −B2
y)2 (.)

L2 = (
∑
p

x(B2
z −B2

x −B2
y))2 + (

∑
p

y(B2
z −B2

x −B2
y))2 + (

∑
p

yBxBz − xByBz)2 (.)

L3 =
∑
p

(Bx −Bxobs)2 +
∑
p

(By −Byobs)2 +
∑
p

(Bz −Bzobs)2 (.)

L4 =
∑
p

(4Bx)2 + (4By)2 + (4Bz)2 (.)

µn are weighting functions, which are chosen to be µ1 = µ2 = 1, µ3 = 0.001, and

µ4 = 0.01 for HMI data (Wiegelmann et al. ). p indicates grid nodes at the

bottom boundary. L1 represents the force-balance conditon, L2 the torque-free

condition, L3 the agreement between the processed data and the observational one,

and L4 the smoothness. The iteration is conducted by the Newton scheme,

(Bx)q← (Bx)q −µ
dL

d(Bx)q
(.)

(By)q← (By)q −µ
dL

d(By)q
(.)

(Bz)q← (Bz)q −µ
dL

d(Bz)q
(.)

with µ > 0, which can realize the monotonic decrease in L and achieve its minimum.

The preprocessing and extrapolation codes for the optimization method are written

and distributed by Dr. Wiegelmann.

The NLFFF extrapolation is particularly suited for investigating magnetic field

of active regions in the low corona with strong currents. In Chapter , we also use

the potential-field source-surface (PFSS) model (Schatten et al. ; Altschuler &

Newkirk ) to reconstruct the more potential-like coronal field in large (or global)



.: Observational Instruments and Analysis Methods 

scale. It assumes a spherical “source surface” located at 2.5 R� with field there in

the radial direction driven by solar wind propagating ourward. By definition the

potential field has no current, then it follows that from Equation .,

5×B = 0 . (.)

Thus the magnetic field can be represented by a scalar potential,

B = −5φ . (.)

Substitute it into the divergence-free Equation ., we get the Laplace equation,

52φ = 0 . (.)

The solution to the Laplace equation can be expanded into spherical harmonics,

φ(r,θ,ϕ) = R�
N∑
l=0

l∑
m=0

fl(r)P
m
l (θ)(gml cosmϕ + hml sinmϕ) (.)

where

fl(r) =
(rw/r)l+1 − (r/rw)l

(rw/R�)l+1 − (R�/rw)l
(.)

Pml the Legendre polynomials, and rw = 2.5R�. The function then satisfies the radial-

field constraint at the upper boundary. gml and hml can be determined by numerical

fitting up to a specified order N to comply with the photospheric magnetogram at

the bottom boundary,

− l · 5φ = Bl(θ,ϕ) (.)

where l is the unit vector in the line-of-sight direction. The description of the

software package for the PFSS model can be found at the link http://www.lmsal.

com/~derosa/pfsspack/.

.. Differential Emission Measure

Differential emission measure (DEM) is a description of plasma distribution over

temperature. For a column of plasma of a unit base area, it is defined as ξ(T ) = n2
e
dz
dT

,

where ne is the electron density at temperature T, and z the column length for the

plasma at this temperature. The definition of DEM can be derived as follows (As-

chwanden ). The emission coefficient for an atomic spectral line of wavelength

http://www.lmsal.com/~derosa/pfsspack/
http://www.lmsal.com/~derosa/pfsspack/
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λij (corresponding frequency νij) produced via a jump of an electron from a higher

energy level j to a lower one i is,

εji =
hνij
4π

Nj(X
+m)Aji (erg s−1 cm−3 ster−1) (.)

where Nj(X+m) is the number density of the ion X+m at the higher energy level j,

and Aji the Einstein coefficient for spontaneous emission, reflecting the transition

probability. For an optically thin plasma, i.e., ignoring light absorption and scattering,

the intensity of this spectral line over a distance is

I(λij) =
∫
εji dz

=
hνij
4π

∫
Nj(X

+m)Aji dz (erg s−1 cm−2 ster−1)
(.)

where the integration is along the line-of-sight. Nj(X+m) can be written as a series of

hierarchy ratios

Nj(X
+m) =

Nj(X+m)

N (X+m)
N (X+m)
N (X)

N (X)
N (H)

N (H)
ne

ne (.)

where the first term is the excitation ratio, the second one the ionization ratio, the

third one the elemental abundance relative to hydrogen, and the last one the ratio of

hydrogen to electron densities. We define a contribution function as

G(T ,λij) =
hνij
4π

Aji
ne

Nj(X+m)

N (X+m)
N (X+m)
N (X)

N (X)
N (H)

N (H)
ne

(.)

which is determined by atomic physics and can be calculated using the CHIANTI

atomic database (Dere et al. ; Landi et al. ). It is strongly peaked in

temperature, but only has little dependence on electron density. And in the solar

corona, N (H) : ne ≈ 0.83 for completely ionized H and He with abundances 10 : 1,

andN (X) :N (H) is assumed as the coronal abundance. Then substitute Equation .

into Equation . and utilize the definition of the contribution function, it follows

that

I(λij) =
∫
G(T ,λij)n

2
e dz (.)

Then define a DEM equation (a more general form can be found in Craig & Brown

()),

ξ(T ) = n2
e
dz
dT

(cm−5 K−1) (.)
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The intensity Equation . can be transformed into being integrated over tempera-

ture T ,

I(λij) =
∫ ∞

0
G(T ,λij)ξ(T ) dT (.)

and also the total emission measure (EM) can be obtained,

EM =
∫ ∞

0
ξ(T ) dT (.)

or

EM =
∫
n2
e dz (.)

Sometimes, to measure the EM over a finite temperature interval 4T , the concept of

emission measure distribution (EMD; Del Zanna et al. ) is also exploited,

EM(T ) =
∫ T+4T /2

T−4T /2
ξ(T ) dT (.)

The DEM is an effective way to have knowledge about the plasma distribution

in the emitting source, which can be compared with theoretical models of plasma

heating or acceleration. In practice, to derive the DEM we also need to consider the

influence of instruments on observables (Boerner et al. ). The pixel value of the

detector at the position x after removing the flat field is

g(x) =
∫ ∞

0
R(λ)I(λ,x)dλ (.)

where R(λ) is the instrumental response funtion. Then substitute Equation . into

Equation . and exchange the integration order, to get

g(x) =
∫ ∞

0
K(T )ξ(T ,x)dT (.)

where ξ(T ,x) is the DEM along the line-of-sight with the position x as its base, and

K(T ) =
∫ ∞

0
G(λ,T )R(λ)dλ (.)

is called the kernel function or temperature response function, synthesizing both

atomic physics and instrumental response. The AIA temperature response functions

for different wavebands can be found in Figure ..

Given observables gi (also their error δgi) for the ith filter (i = 1, ...,N ) and corre-

sponding temperature responses Ki,j , we need to solve the following inverse problem

to obtain the DEM information ξ(Tj) of the emitting source (Hannah & Kontar ),

gi = Ki,jξ(Tj) + δgi . (.)
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It is equivalent to address the least square problem,

‖Kξ(T )− g
δg

‖2 = min . (.)

However, without any constraint, the least square problem is ill-posed as the errors

in the observables and temperature response functions will be significantly amplified

in the inversion process. Hannah & Kontar () apply linear constraints ‖L(ξ(T )−
ξ0(T ))‖2 ≤ const. to the problem and can get a solution with errors both in DEM and

temperatures provided. The problem is then transformed into,

‖K̃ξ(T )− g̃‖2 +λ‖L(ξ(T )− ξ0(T ))‖2 = min (.)

with a regularization parameter λ utilized, K̃ = (δg)−1K, g̃ = (δg)−1g, L the constraint

matrix, and ξ0(T ) the “guess” solution. λ is related to the χ2 of the fit, and can be

controlled as desired. The simplest form of L, which is also commonly used, is the

unit matrix I , called zeroth-order constraint. And ξ0(T ) can be chosen to be zero in

the initial iteration step and changed to the first run result ξ(T ) in the second run,

or chosen to be the minimum of the EM loci curves ≈ gi/Ki (which are the emission

measures for isothermal plasma) for high resolution spectroscopic observations,

which reflects the maximum amount of plasma that can be obtained at a particular

temperature. The solution to the minimization problem in Equation . is solved

via the method of Generalized Singular Value Decomposition (GSVD; Hansen ).

The rigorous technical detail can be refered to in Hannah & Kontar ().



Chapter 

Peripheral Arcade Implosion Caused

by a Central Filament Eruption

This work can be found in the publication Wang et al. ().

. Introduction to the Chapter

Before this study, previous observations of peripheral implosions (Liu & Wang ;

Gosain ; Liu et al. a; Sun et al. ; Simões et al. ; Yan et al. ;

Shen et al. ; Kushwaha et al. ) are doubted in the solar community and

even by this author. These observations mainly show loops in the periphery of ARs

contracting in a face-on state. Inclining of these face-on loops can lead to an illusion

where we think it is contraction. Especially, these events all possess violent eruptions

in the centre of ARs, which can easily push surrounding loops to incline. Some

authors argue that these apparently contracting loops do not restore to their original

positions, thus the motion could not be caused by the erupting structures, because

if it was, the loops should come back when the eruption finishes. However, what is

meant by “eruption finishes”? If the erupting flux rope does not reconnect and just

stretches outward and inflates, or it reconnects with nearby structures and obtains

more energy from this process, then the legs of the flux rope can hold the peripheral

loops at their positions without restoration in place. Thus the argument used by

previous authors is not adequate. In addition, they usually thought that the apparent

contraction of these loops results from the magnetic energy dissipated in the flare,

which was not properly demonstrated either.



 : Peripheral Arcade Implosion Caused by a Central Filament Eruption

In the work of this chapter, we report on the analysis of a well-observed pe-

ripheral implosion in the form of an arcade contraction associated with a filament

eruption, during the C. flare SOL--T:. As will be shown, the reality

of contraction of the loops is supported by three pieces of evidence from both obser-

vations and nonlinear force-free field extrapolations. A sequence of events including

magnetic flux-rope instability and distortion, followed by filament eruption and

arcade implosion, lead us to conclude that the implosion arises from the transfer of

magnetic energy from beneath the arcade as part of the global magnetic instability,

rather than due to local magnetic energy dissipation in the flare. This event shows

that, in addition to resulting in expansion or eruption of overlying field, flux-rope

instability can also simultaneously implode unopened field due to magnetic energy

transfer. It demonstrates the “partial opening of the field” scenario, which is one of

the ways in D to produce a magnetic eruption without violating the Aly-Sturrock

hypothesis. In the framework of this observation we also propose a unification of

three main concepts for active region magnetic evolution, namely the metastable

eruption model, the implosion conjecture, and the standard “CSHKP” flare model.

In Section ., the observations of the entire event are described. In Section .,

magnetic field extrapolations are exploited to reveal the implosion and possible

reconnection between the filament and other AR field in the form of an extended

“arm-like” structure. Discussion including possible scenarios for the evolution is

presented in Section . and conclusions in ..

. Observations

.. Overview of the Event

On  June , AR  (NW) was located near the solar disk center (Fig-

ure .). We focus our analysis around the period of the flare SOLT:,

GOES class C.. It was observed by the Reuven Ramaty High Energy Solar Spectro-

scopic Imager (RHESSI, Lin et al. a) and by the Solar Dynamics Observatory

(SDO, Pesnell et al. ) instruments: Atmospheric Imaging Assembly (AIA, Lemen

et al. ) and Helioseismic and Magnetic Imager (HMI, Scherrer et al. ;

Schou et al. ; Hoeksema et al. ). The AIA images have been processed

using standard software (Boerner et al. ), and also rotated to : UT via the
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drot_map.pro procedure, in order to compensate for the solar differential rotation.

RHESSI images were reconstructed using the CLEAN algorithm (Hurford et al. ),

with detectors  to  and the clean_beam_width set to . (Schmahl et al. ;

Simões & Kontar ). No CMEs associated with the event were reported, while a

type III radio burst was detected (for a review of type III radio bursts, see Sinclair

Reid & Ratcliffe ), as well as an EUV wave, which will be briefly presented in

Section .... We note that earlier on the same day a C. flare was produced in

this AR and studied by Zheng et al. ().

As the AR evolves, different features are identified, and we select two images in

Figure . to illustrate. As can be seen, a bright arcade overlies a sheared filament

in the core region, and in the south, there is a curved frontal structure. These three

features are visible clearly before the flare-associated evolution of the AR. Flare I,

Flare II and low-lying loops in Figure . appear during the following flare evolution,

which will be discussed in the sections below. In the northeast, there is a large

J-shaped arcade and some complex features underlying, but they are not involved in

the activity in an apparent way, and thus will not be studied.

The main C. flare was preceded by a microflare B. (for a review of microflares

see Hannah et al. ), also associated with this AR, as evidenced by the AIA  Å

ribbons and HXR emission imaged by RHESSI at - keV, as shown in Figure .(a).

Hereafter, we call this B. microflare Flare I, and the subsequent C. flare in

Figure .(b) Flare II.

From ∼ : UT to : UT, the above features produce a rich sequence of phe-

nomena. Figure . illustrates the dynamical evolution of the filament in  Å. The

filament positions obtained from Figure . are then overlaid on the contemporary

 Å images in Figure ., which allows us to simultaneously track the evolution

of the filament and the overlying arcade. Here we use the informative Figure . to

briefly summarise the main phenomena and their evolution, which are also listed in

Table .. More detailed information about the evolution will be described in the

following subsections. Firstly, in Figure .(a), the filament located near the site of

Flare I is disrupted at the time when Flare I peaks (∼ :: UT). It then brightens

and starts to distort, and a bump or bend in the filament moves from west to east

(Figure .(b) to (d)). This appears to push the overlying arcade upward and aside.

When most of the bump suddenly escapes from beneath the overlying arcade (∼

http://secchirh.obspm.fr/survey.php?hour=&dayofyear=&survey_type=

http://secchirh.obspm.fr/survey.php?hour=0600&dayofyear=20130619&survey_type=4


 : Peripheral Arcade Implosion Caused by a Central Filament Eruption

: UT, Figure .(e)), the filament’s eastern part erupts and the overlying arcade

starts to contract. Almost at the same time, Flare II happens. From Figure .(f)

to (h), the inner loops of the overlying arcade continue contracting until when the

GOES - Å derivative reaches its peak (∼ :: UT; GOES lightcurves can be

derived later in Figure .(e)). Finally, the entire overlying arcade disappears in AIA

 Å (Figure .(i)). Figure . combines different wave bands (, ,  and

 Å) to illustrate the main events happening during the impulsive phase of Flare II

for readers’ convenience.
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Figure .: Full Sun image shows the AR  on  June  in AIA  Å. The

white square region is the field of view (FOV) used in Figure ..
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Figure .: Main features and processes identified in the  and  Å passbands.

(a)  Å. The magenta contours for the - keV RHESSI HXR emission are inte-

grated from :: UT to :: UT. (b)  Å. The magenta contours for the

- keV RHESSI HXR emission are integrated from :: UT to :: UT.

Cut  is used to make the timeslices for the filament’s eastern part in Figure .(a)

(the filament’s eastern and western parts are denoted in Figure .(a) with the same

FOV); cut  for the filament’s western part and the overlying arcade in Figure .(b);

cut  for the low-lying loop top and the frontal structure in Figure .(c). The arrow-

head of cut  is beyond the image edge. The cyan rectangular region is used to make

AIA lightcurves in Figure .(f).
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Figure .: Dynamical evolution of the filament in  Å. (a) Denotes the position

of the filament. The two cyan circles indicate the rough locations of the footpoints

of the filament. The blue square region is the FOV used in (b) and (c). (b) Zoom in

to show Flare I and its produced small bursty disturbance. (c) Zoom in to show the

brightening filament’s western part and still dark eastern part around the peak of

Flare I. The blue contours are in  Å at ∼ :: UT. The magenta contours are

the same as in Figure .(a). (d)-(i) Running difference images show the subsequent

distortion and eruption of the filament. The yellow dashed line represent the shape

and position of the filament in each image, which are determined by examining the

multi-scale Gaussian normalisation (MGN; Morgan & Druckmüller ) processed

running difference image in  Å. The filament after (i) cannot be seen in the

images, but still can be tracked on the animation of the running difference. The

blue arrow in (i) indicates the erupting direction of the filament’s eastern part, and

its head points to the rough location of the filament top when it disappears. It

should be noted that (b) and (c) have been processed using the MGN procedure;

the (d)-(i) running difference images are created after being processed using the

MGN procedure. An animation is available in Wang et al. () at the link http:

//iopscience.iop.org/article/./-////meta.

http://iopscience.iop.org/article/10.3847/1538-4357/833/2/221/meta
http://iopscience.iop.org/article/10.3847/1538-4357/833/2/221/meta
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In Figure .(b), we select three cuts to make timeslices for demonstrating the

dynamical evolution of the filament’s eastern part (cut ), the overlying arcade and

the filament’s western part (cut ), and the frontal structure and the low-lying loops

(cut ). The obtained timeslices, along with RHESSI HXR, GOES soft X-ray (SXR)

and AIA lightcurves are collected in Figure .. In the subsections below, combined

with the information in Figure ., we describe the processes in detail in order to

give readers a more complete picture of the event.

.. Flare I and Filament Eruption

After analysing RHESSI images, we note that the gradual increase at - keV and

- keV from : UT to about : UT in Figure .(d) is contributed by a limb

event (no HXR source can be detected). Only the small bump around :: UT

(indicated by “A” in Figure .(d)) is the Flare I considered here, most prominent at

RHESSI - keV and AIA lightcurves in Figure .(d) and (f), respectively. Its two

ribbons in AIA  Å and RHESSI HXR contours can be clearly seen in Figure .(a)

and Figure .(c), just encircled by the nearby filament.

Figure . presents the activities in  Å. At ∼ : UT, the filament has a

sheared appearance, with its bump pointing to the west (Figure .(a)). Then Flare I

occurs, and at ∼ ::UT, it seems to produce a small bursty disturbance, pointing

to the filament’s western part (Figure .(b)). Around  min later, at :: UT

when Flare I peaks (revealed by the RHESSI - keV lightcurve and indicated

by “A” in Figure .(d)), the filament’s western part suddenly brightens, with some

plasma flowing to its northern footpoint (seen in the  Å animation in Figure .),

though the eastern part is still dark (Figure .(c)). Subsequently, the filament

becomes distorted, with its bump propagating from west to east, though there is

still part of the filament remaining relatively stable (Figure .(d)-(f)). The dark

trajectory and the bright path denoted by “filament eastern part” and “filament

western part” in Figure .(a) and (b) just show the filament’s eastern and western

parts sweeping across cut  and  of Figure .(b) during the distortion, respectively

(an exponential line is overlaid in Figure .(a) to approximate the trajectory). When

the bump propagates close to the filament’s eastern end, the western part contracts,

which appears squeezed and highly energised, and the entire filament expands more

outward (Figure .(g)). Then in Figure .(h) the eastern part erupts dramatically
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and nonradially, as a cool, extending feature at ∼ : UT (see the  Å animation

in Figure .), and almost simultaneously, Flare II happens (indicated by “B” in

Figure .(d)). Such an eruption can be categorised as a whipping-like asymmetric

filament eruption (Liu et al. a; Joshi et al. ). Because during the eruption

the filament is too weak and vague, even in the running difference images, and Flare

II produces strong flashes, we are not able to select a cut to describe the following

movement of the filament after ∼ :UT. Thus the trajectory in Figure .(a) for cut

mainly demonstrates the kinematics of the filament’s eastern part in the previous

distortion phase before ∼ : UT, but the  Å animation in Figure . (and also

its running difference version) can be taken as a reference for the following eruption

of the filament’s eastern part because of its moving nature. The bright path denoted

by “filament western part” in Figure .(b) shows that the filament’s western part

expands again after ∼ : UT when the filament’s eastern part erupts. The entire

filament in Figure .(h) seems relaxed from the squeezed state in Figure .(g),

like an elastic tube which can be stretched. The arrow in Figure .(i) denotes the

erupting direction of the filament’s eastern part, and its head indicates the rough

location of the filament top when it disappears.

... Other Structures Associated with the Filament Eruption

An interesting development is that an eastern arm-like structure also brightens and

expands outwards with the filament (see Figure .(d) and Figure .), which can

only be clearly seen in  Å. We again overlay the positions of the contemporary

filament obtained from the  Å running difference images like in Figure . onto

the  Å images in Figure .(d) and Figure .. The final projected positions of

the expanding portion of this arm-like structure and of the filament’s erupting

top seem near to each other before they disappear, around the southeastern corner

of Figure .(i) (the arrow in Figure .(d) and Figure .(h) denote the erupting

direction of the filament’s eastern part, and its head indicates the rough location

of the filament top when it disappears, like in Figure .(i)). This might make a

reconnection between the arm-like structure and the filament possible, which will

be discussed in Section ...
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Figure .: Dynamical evolution of the overlying arcade in  Å. The contemporary

position of the filament obtained via the  Å running difference image as in

Figure . is overlaid in each image, if possible. The filament after (f) is too weak

to be located, but still can be seen in the  Å animation in Figure . because

it is moving. An animation is available in Wang et al. () at the link http:

//iopscience.iop.org/article/./-////meta.

http://iopscience.iop.org/article/10.3847/1538-4357/833/2/221/meta
http://iopscience.iop.org/article/10.3847/1538-4357/833/2/221/meta
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Figure .: Different wave bands show the main events simultaneously during the

impulsive phase of Flare II. (a) Arcade contraction in  Å, same as Figure .(f).

(b) EUV wave showed by  Å running difference. The blue square region is the

FOV of the other three. (c) Filament eruption showed by  Å MGN running

difference, same as Figure .(i). (d) Arm-like structure expansion in  Å, same

as Figure .(h). The contemporary position of the filament obtained via the 

Å running difference image as in Figure . is overlaid in each image. The arrow

located around (-, ) in (a), (c) and (d) indicates the erupting direction of the

filament’s eastern part, and its head points to the rough location of the filament

top when it disappears. An animation is available in Wang et al. () at the link

http://iopscience.iop.org/article/./-////meta.

http://iopscience.iop.org/article/10.3847/1538-4357/833/2/221/meta
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Figure .: Evolution of the flare. The cuts for the timeslices in (a)-(c) are shown in

Figure .(b). Different wavebands are used for cut ,  and , because some features

studied can only be clearly seen in specific wavebands. The letters A, B and C above

the figures are used to denote the main event timings in Table .. (a) The timeslices

in  Å for cut  only show the distortion phase of the filament’s dark eastern part.

Its following dramatic eruption after : UT, unfortunately, cannot be tracked,

because it is too weak (see the text in Section .. for detailed explanation), but

it still can be seen in the  Å animation in Figure . because it is moving. (b)

The timeslices in  Å for cut  show the expansion and contraction of both the

overlying arcade and the filament’s western part. (c) The timeslices in  Å for cut

 show the expansion of both the frontal structure and the top of the low-lying loops.

(d) RHESSI lightcurves in different wave bands. Note that the gradual increases at -

keV and - keV from :UT until the small bump around Flare I are contributed

by a limb event rather than this AR considered here. (e) GOES lightcurves. The

GOES - Å derivative has been normalised to fit the panel. (f) Normalised AIA

lightcurves within the cyan rectangular region of Figure .(b).
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Figure .: Evolution of the arm-like structure in  Å. The contemporary position

of the filament obtained via the  Å running difference image as in Figure . is

overlaid in each image, if possible. The yellow arrow in (h) indicates the erupting

direction of the filament’s eastern part, and its head points to the rough location of

the filament top when it disappears, as in Figure .(i). An animation of the  Å

evolution can be found in Wang et al. () at the link http://iopscience.iop.

org/article/./-////meta.

In Figure .(a), far to the south of the filament, there is a frontal structure, most

prominent in  and  Å. It exists even before the two flares, and could be a stable

cavity edge as described in Hudson et al. (). This global structure is similar to

http://iopscience.iop.org/article/10.3847/1538-4357/833/2/221/meta
http://iopscience.iop.org/article/10.3847/1538-4357/833/2/221/meta
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that of a CME with a filament at the bottom, a cavity in the middle and a frontal loop

at the top. From the timeslices in Figure .(c) for cut  of Figure .(b), it can be seen

that the frontal structure also starts expanding exponentially at ∼ :: UT when

Flare I peaks. At ∼ :: UT, it begins to diffuse with a leading edge ∼ 593 km/s

and a trailing edge ∼ 112 km/s. And behind the trailing edge, a coronal dimming

appears. This may be consistent with the hybrid EUV wave model, with a fast-mode

wave component ahead of a CME-driven compression front (see Liu & Ofman ,

and references therein). In addition, in the  Å running difference animation in

Figure ., we also note that there are quasi-periodic wave trains accompanying the

EUV wave (see Liu & Ofman , and references therein). Here we just point out that

an EUV wave with quasi-periodic wave trains exists in this event, which is associated

with the expanding frontal structure, and also suggest that it should be added in the

list at the link http://www.lmsal.com/nitta/movies/AIA_Waves/oindex.html for

future study. No further discussion will be presented because it is beyond the scope

of this thesis.

Table .: The main evolution in SOL--.

Time Events

Flare I peaks;

∼ :: (A) filament’s western part brightens and starts to distort;

overlying arcade starts to expand.

filament’s eastern part erupts;

∼ :: (B) Flare II starts;

overlying arcade starts to contract.

∼ :: (C) inner loops of the overlying arcade contract to a relatively stable position;

GOES - Å derivative reaches its peak

Note that the letters A-C are used in Figure . to indicate the event timings.

.. Overlying Arcade Expansion & Contraction

Figure . illustrates the dynamical evolution of the overlying arcade, overlaid by

the contemporary positions of the filament. The timeslices in Figure .(b) for cut

 of Figure .(b) show that the overlying arcade has a small increase in height

from : UT to ∼ :: UT. Then at ∼ :: UT when Flare I peaks and

the filament starts to distort, it accelerates to expand at a nearly uniform apparent

http://www.lmsal.com/nitta/movies/AIA_Waves/oindex.html
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speed of ∼ 28 km/s (Figure .(a) to (d)). In the  Å animation in Figure ., it

also seems to be pushed aside and incline towards the solar disk during the end of

this expansion phase (see also Figure .(d)). The low-lying loops (Figure .(a) and

Figure .(b)) overlying the filament’s eastern part appear and also start to expand

(revealed by the timeslices in Figure .(c) for cut  of Figure .(b)). At ∼ ::
UT when the filament’s eastern part erupts and Flare II occurs, the overlying arcade

motion turns to a rapid contraction at a nearly constant apparent speed of ∼ 83

km/s (Figure .(e)). Figure .(e) to (h) show that a moderate inclination of the

arcade seems to accompany the rapid contraction (also see the  Å animation in

Figure . after ∼ : UT). Shown in Figure .(b), the inner loops of the arcade

contract rapidly by about a half with respect to the starting position of cut  until ∼
:: UT (the starting position of cut  is around the middle of the two footpoints

of the contracting arcade, as can be seen in Figure .(b)), which also can be seen

by comparing Figure .(e) with (h). As the rapid contraction of the inner loops

stops, the derivative of GOES - Å flux peaks (indicated by “C” in Figure .(e)).

Thus the rapid contraction may only happen during the rise stage of the impulsive

phase (Neupert effect; Neupert ). The projected net contraction of the arcade

indicated by the blue arrow (which connects the beginning of the rapid expansion to

the ending of the rapid contraction) in Figure .(b) is ∼ . arcsecs. At the end, the

entire overlying arcade disappears (Figure .(i)).

. Magnetic Field Extrapolation

We employ a NLFFF model approach (Section ..) in order to explore the coronal

magnetic field configuration before and after the C. flare. The field extrapolation

was conducted by Julia Thalmann in Institute of Physics, University of Graz. Photo-

spheric vector magnetograms obtained by SDO/HMI between : UT and :

UT (excluding the one at : UT when the violent C. flare happens, because the

quasi-equilibrium state required for NLFFF extrapolation will not be satisfied), with

a minute cadence (the vector data is also averaged in a -minute period) and a

∼ 1.0 arcsec spatial resolution, are used as input to our modeling. The extension of

our model volume is ≈ 331 × 258 × 129 arcsec, i.e., ≈ 244 × 190 × 95 Mm, centered

around solar (x,y) = (−28.2,137.9) arcsec. This proximity of the considered area to

the disk center allows us to neglect eventual projection (foreshortening) effects. The
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vertical magnetic flux within the area is balanced to within ≈ 10%.

Using standard IDL mapping software, we de-rotate the measured magnetic field

vector maps to the flare peak time and project the data to a local coordinate system

(following Gary & Hagyard ). The observed non-force-free photospheric data is

driven to a more force-free consistent field configuration, following Wiegelmann et al.

(), which is then supplied to the NLFFF modeling scheme as a lower boundary

condition (for details of the method see Wiegelmann & Inhester ; Wiegelmann

et al. ; and Section .. of DeRosa et al. ).

In order to quantify the goodness of the obtained NLFFF model solutions we

use some of the metrics introduced in Wheatland et al. (). First, we test the

success of recovering a force-free solution using the current-weighted average of the

sine of the angle between the model magnetic field and the electric current density,

where we find σj on the order of 10−1 (note that for a perfectly force-free solution

one would find σj = 0). Second, we calculate a measure for the solenoidality of the

model solution, in the form of the volume-averaged fractional flux, and find 〈|fi |〉 on

the order of 10−4 (for a perfectly solenoidal solution one would find 〈|fi |〉 = 0). That

indicates that our NLFFF models are force-free and solenoidal to a necessary degree

in order to validly approximate the pre- and post-flare coronal magnetic field.

.. Overlying Arcade Contraction

In order to picture the flare-associated magnetic field evolution, we trace model

magnetic field lines from certain locations at the NLFFF model lower boundary.

Since the photospheric field (used as input to the modelling) is evolving in time, the

same coordinates at different times may correspond to physically different structures.

Therefore, we use a group of field lines occupying a large region, and study their

statistics, which can diminish the above influence. We choose the area P ( × 
arcsecs, comparable to the overlying arcade footpoint area in the positive polarity

region in AIA  Å; see Figure .) as the leading footpoint region, that is the

footpoint region from which the extrapolated field lines are calculated (Wiegelmann

et al. ). The area N defines the region where the arcade connects at the

negative magnetic polarity. We take all the calculated field lines from P to N

as the overlying arcade at different times. By visually comparing the arcades of

considered model field lines between : UT and : UT in Figure ., it appears



 : Peripheral Arcade Implosion Caused by a Central Filament Eruption

that the number of longer (red or yellow) field lines decreases and that of shorter

(blue) ones increases (the total numbers of the field lines at these two times are

comparable, thus the comparison is valid). This is more obvious from the normalised

histograms of lengths of field lines in Figure .(a), with the fraction of longer field

lines decreasing and that of shorter ones increasing after the flare. Globally, the

histogram is shifted to shorter length. In addition, in Figure .(b), we construct

normalised histograms of the field strengths at all pixels along all of the individual

field lines in the reconstructed overlying arcade. They show that with the contraction,

the magnetic field strength of the arcade is globally enhanced after the flare.

From AIA  Å images it is not possible to detect the lower and shorter field

lines in Figure .(b) and (e). Thus in order to compare the extrapolations with AIA

observations, we choose the field lines with lengths larger than average, and calculate

the average projected distances of the midpoints of the field lines to the midpoints of

the lines connecting their conjugate footpoints at both : UT and : UT. Their

difference reflects the average projected contraction distance. The obtained value is

∼ 4.7 arcsecs, which is in good agreement with the net projected contraction ∼ .
arcsecs observed in AIA  Å (the blue arrow in Figure .(b)).

The evolution of lengths (and strengths) of the model field lines in the recon-

structed arcade from : UT to : UT are further explored. We use the same

“timeslices” technique as in the time-distance diagrams in Figure ., but here in Fig-

ure . each timeslice represents a colour-coded normalised cumulative histogram.

The black gap at : UT is when Flare II and arcade contraction happen, thus the

extrapolation data is not used. The idea of this figure is to show how the distribution

of lengths (and strengths) evolves in time. The black regions at the top and bottom

mean that there are no field lines of those lengths there, and the field lines exist in

those blue, green and red regions. As we can see, before the flare most of the field

lines have lengths between ∼ -Mm, and after the flare this range shifts down to

∼ -Mm. In addition, before the flare the general trend of the field line lengths

is increasing (though a relatively strong activity at ∼ : UT, compared to slow

evolution in the rest time from : UT to : UT, may affect the reliability of

the extrapolations at : UT and : UT), whereas after the flare it turns to

decreasing. The evolution of the field strength of the model arcade in Figure .(b)

shows an opposite trend.
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Figure .: Overlying arcade contraction found in the extrapolation. (a) Longitudi-

nal magnetogram overlaid on AIA  Å image at around : UT (before flare)

for comparison with extrapolation. (b) The overlying arcade in extrapolation at

around : UT. P and N are the areas used to select the field lines. The FOV is

approximately the same as in (a).  pixel ≈ . arcsecs. (c) D view of the overlying

arcade at : UT. (d)-(f) Same as (a)-(c), but at : UT (after flare).
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Figure .: Lengths and magnetic field strengths of the extrapolated overlying

arcade field lines shown in Figure . between before and after flare. (a) Normalised

histograms of the lengths of the arcade field lines. (b) Normalised histograms of the

magnetic field strengths of all pixels of the extrapolated arcade.
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Figure .: Evolutions of the lengths and magnetic field strengths of the extrap-

olated arcade field lines from : UT to : UT. (a) Color coded timeslices of

normalised cumulative histograms of the lengths of the arcade field lines. The black

gap at : UT is when Flare II happens, whose extrapolation data is not used. The

timeslices at : UT and : UT are less reliable (see the text in Section .. for

the explanation). (b) Color coded timeslices of normalised cumulative histograms of

the magnetic field strengths of all pixels of the extrapolated arcade field lines.

.. Flux Rope and Connectivity Changes

As the overlying arcade and the filament western part share the same expansion and

contraction speeds, which can be seen in Figure .(b), the overlying arcade dynamics
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may be controlled by the filament underneath, or more correctly by its magnetic

flux rope. The filament also seems to be the driver of the subsequent flare evolution.

Thus it is important to study the change of the filament. As the extrapolation only

applies to quasi-equilibrium evolution, we then infer its behaviour from the initial

and final extrapolated states.

At : UT, before the flare, we find the possible flux rope involved in the

activity (blue clustered field lines in Figure .(b)) in an area P of positive polarity

and strong vertical currents, seen in Figure .(a). The rope is very sheared and

connected to an area N which is just south of the overlying arcade footpoints in the

northern negative polarity region. In orientation and size it is very similar to, and

could be, the filament seen in AIA  Å (Figure .(a)). At : UT, after the flare,

we use the same flux rope footpoints in Figure .(b) at : UT as the leading

footpoints to calculate the new field line connectivities. Figure .(e) shows that

the field lines from P are now connected to a closer negative polarity area N while

those from N now connect to the far eastern positive polarity region P. These two

new magnetic systems both become less sheared compared to the original flux rope

in Figure . (b). The vertical current densities in P and Nmeanwhile decrease

whereas that in N increases.

To further investigate the change in connectivity, we use the footpoints obtained

above in P and N as leading footpoints, and calculate their connection states before

the flare at : UT. The result in Figure .(b) - not including the blue clustered

flux rope field lines - shows that P and N are mostly connected by the yellow field

lines before the flare, whose profile in the south is very similar to the shape of the

expanding arm-like structure seen in AIA  Å in Figure .. Hereafter we call these

yellow field lines arm-like field lines. As exhibited in Figure .(d) and Figure .,

the arm-like structure in  Å and the erupting filament in  Å accompany each

other during the eruption, and they both disappear off the edge of Figure .(i). Thus

it may be possible that they reconnect and exchange footpoints during the eruption,

leading to a change in the field configuration from that in Figure .(b) to that in

Figure .(e).
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Figure .: Possible flux rope reconnection scenario. (a) Photospheric vertical

current density diagram in the magenta square region in (b) at : UT (before

flare). (b) Connectivities at : UT (before flare). The FOV is approximately the

same as in Figure ..  pixel ≈ . arcsecs. (c) D view of the connectivities in (b).

(d)-(f) Same as (a)-(c), but at : UT (after flare). The overlying arcade is added in

(c) and (f) appearing on the right to show its relative position and the accompanying

implosion.



 : Peripheral Arcade Implosion Caused by a Central Filament Eruption

Figure .: Connectivity states between the four regions, PL, NL, P, NL, before

and after the flares. (a) Photospheric vertical current density diagram in the magenta

square region in (b) at : UT (before flare). The solid larger boxes are chosen to

reduce the influence of possible photospheric magnetic field evolution. The dashed

smaller boxes are the original ones in Figure .. (b) Connectivities from PL to

NL and NL at : UT (before flare). (c) Connectivities from P to NL and NL

at : UT (before flare). The arm-like field lines are cyan now because the color

table scale is changed. (d)-(f) Same as (a)-(c), but at : UT (after flare). As the

connectivities from P to NL in (f) are obscured, we plot them in the inset at the

corner of (f), same as in (c).



.: Magnetic Field Extrapolation 

In the above analysis, we have only used some specific footpoints in areas P,

N, P and N for field line calculation. However, as stated in Section .., the

footpoint identity may change due to photospheric field evolution. Thus in order to

make the result more robust, we choose larger areas PL, NL and NL (the solid

rectangular regions in Figure .(a) and (d) which are chosen to accommodate

similar structures in the photospheric vertical current density diagrams at : UT

and : UT). We then study the connections between these three regions and P,

calculating all the field lines from PL to NL, PL to NL, P to NL, and P to

NL. Comparing Figure .(b) with Figure .(e) shows that after the flare, the

number of connections between PL and NL decreases, but increases between

PL and NL. Most of the disappearing connections are the flux rope field lines. In

Figure .(c) and (d), a similar situation happens with the area P. The arm-like

field lines from P to NL disappear after the flare while the connectivities between

P and NL are considerably enhanced. These connectivity changes could be realised

by the above proposed possible reconnection between the flux rope and the arm-like

field lines. We quantify these changes using the method in Wiegelmann et al. ()

to calculate the connected magnetic flux between these four regions at both times.

In this method, the flux linking two sources is calculated as the mean of the values

obtained taking each source in turn as the leading footpoint region, with the error

given by the half of the difference of these values. Before the flare at : UT the

magnetic flux between PL and NL is 585.3 ± 26.3 GWb, while after the flare at

: UT it reduces to 192.8±58.0 GWb. The flux between P and NL also declines,

from 336.5±16.9 GWb before the flare to 302.2±13.7 GWb after the flare (the reason

for this small decrease ∼ 10% might be that the arm-like field may only account

for a small part of the entire connectivities between P and NL, as can be seen by

comparing the two insets in Figure .(c) and (f), which could result in a relatively

small percentage of the total magnetic flux between the two regions). However,

the flux between PL and NL, and between P and NL, are both enhanced after

the flares, from 301.0± 46.2 GWb to 787.7± 97.5 GWb, and from 251.6± 55.7 GWb

to 462.8± 66.2 GWb, respectively. These flux changes reflect that the connectivity

The number of field lines is generally believed to be a non-physical quantity in a continuous

magnetic field. However, as here the measured magnetogram is discrete and only one field line is

plotted in one pixel of an area ≈ 0.5 × 0.5 arcsec, the number of field lines in this situation in fact

reflects the bottom boundary area that contributes to the connection between the two regions.
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between PL and NL and that between P and NL are both reduced after the flare,

whereas the connectivity between PL and NL and the one between P and NL

both increase. This could be resulted from the above proposed reconnection between

the flux rope and the arm-like structure. This more robust argument increases the

likelihood of this scenario.

. Discussion

.. Evidence for the Implosion

The observed overlying arcade motion shown between “B” and “C” in Figure .(b)

is a contraction without obvious oscillations, consistent with a theoretical implosion

evolution in which the reduction of magnetic pressure underneath the arcade is

slow compared to the arcade loop oscillation period (see Figure (b) of Russell et al.

()). The evidence that this apparent contraction is a real implosion comes from

three aspects.

(i) In Figure .(b), the cyan dotted line between “B” and “C” shows that the

arcade apparently contracts by about a half of its original projected height

during this period (which can also be seen by comparing Figure .(e) with

(h)). An apparent contraction could also be due to a change in loop inclination

from a face-on state. However, in this event, if the change were caused only

by inclination of the arcade towards the solar disk, the arcade plane would

need to incline by about 60◦ towards the solar disk in order to satisfy the

observed contraction. As the event is close to the disk centre (see Figure .),

this is quite an unlikely situation (unless the arcade loops can submerge into

the photosphere). Thus, inclination only could not account for the observed

apparent contraction of the overlying arcade.

(ii) The two downwards-moving features between “B” and “C” in Figure .(b) are

nearly parallel to each other during ∼ 4 mins. The simplest explanation is that

during this period, as the overlying arcade moves as a whole, its individual

loops mostly contract with similar speeds and no dramatic change in inclination

The impression of oscillations in the  Å animation in Figure .might be caused by the gradual

brightening of outer contracting loops, which may generate an illusion of the loops bouncing back.
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(too much change in inclination would cause the two downwards-moving

features to converge or diverge). The movement of the arcade in the  Å

animation in Figure . after : UT (“B” in Figure .(b)), which appears to

be a moderate inclination superimposed on a major contraction, supports this

explanation. Consecutive brightening of the arcade loops at constant projected

distance within  mins could also give the appearance of the two parallel

downwards-moving features, but this would be an unlikely coincidence.

(iii) Coronal magnetic field extrapolation provides us with further evidence. As

illustrated in Figures . and ., the lengths of the overlying arcade field lines

are globally shifted to shorter values after the flare. The calculated average

projected contraction of the higher and longer field lines of the extrapolated

arcade is ∼ 4.7 arcsecs, which is in good agreement with the apparent net

contraction ∼ 4.5 arcsecs seen in AIA  Å (indicated by the blue arrow in

Figure .(b)). In addition, Figure . shows that before the flare the arcade

field line lengths are tending to lengthen, whereas after the flare the trend is

decreasing and the global arcade field lengths decrease substantially without

restoration for a long time. More compact field after flares has also been found

in Sun et al. () and Thalmann et al. ().

Even though reported magnetic field implosions are still rare, implosions could in

fact happen frequently. Sometimes it may be their relatively small displacements

in small flares, compared to nearly simultaneous violent eruptions or CMEs, that

make them hard to recognise. As in our event, if it were not for the first expansion

phase that inflates the overlying arcade, the final apparent net contraction ∼ 4.5

arcsecs would be relatively difficult to discover. However, as the released flare

energy increases, implosion could be more noticeable, as in the M. flare where a

displacement of ∼ 25 arcsecs has been seen (Simões et al. ) and the X. flare

∼ 40 arcsecs (Gosain ; Liu et al. a; Sun et al. ). Moreover, Figure .

implies that the maximum contraction speed may also correlate with the released

energy level.
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Figure .: Correlation between the detected maximum projected contraction speed

and the SXR flux for  disk AR flares, an updated version of Liu et al. (a). The

magenta line represents the linear regression. The correlation coefficient is . with

a % confidence level.
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Figure .: Cartoons show our understanding of the flare evolution. The large bold

“+” and “-” signs in each image represent positive and negative polarity regions,

respectively. (a) Flare I disturbs the filament’s western part. (b) Filament distortion

phase (with the overlying arcade expansion). (c) Filament eruption phase (with Flare

II and the overlying arcade implosion). (d) Further eruption of the filament (with

Flare II, the overlying arcade implosion, and the possible reconnection between the

filament and the arm-like structure). The green rectangular region in (d) represents

that there is still a current sheet reconnection beneath the erupting filament, like in

(c), which is used to make the image easier to see.



 : Peripheral Arcade Implosion Caused by a Central Filament Eruption

.. Possible Scenario for the Overall Evolution

Table . shows that the observed evolution consists of four main processes: Flare I,

the filament distortion and eruption, Flare II, and the overlying arcade expansion

and contraction. As described in Section ., they exhibit intimate relationships

both in time and space. After synthesising the observations and extrapolation

results in Section . and ., in Figure . we illustrate our understanding of

the event evolution, mainly in the framework of the metastable eruption model

(Sturrock et al. ), the implosion conjecture (Hudson ), and the standard

“CSHKP” model of two-ribbon flares (Carmichael ; Sturrock ; Hirayama

; Kopp & Pneuman ). Possibly due to the perturbation produced by Flare

I, the initially metastable filament brightens and becomes unstable (Figure .(a)).

The overlying arcade restricts the filament from erupting, so it has to distort, with

a bump propagating from west to east (Figure .(b)) representing transport of

free magnetic energy from an environment with a stronger surrounding field, to a

weaker one. When the bump (free energy) propagates through the arcade plane, the

arcade expands as a consequence (Figure .(b)). As the bump propagates further

to the east, the filament’s eastern part suddenly erupts nonradially, possibly due to

an ideal MHD instability (Figure .(c)). This simultaneously causes the overlying

arcade to contract according to the implosion conjecture, and Flare II to happen

through reconnection (Figure .(c)). As the filament continues to erupt, the arcade

contracts further (Figure .(d)). In the following, we will explain the scenario in

more detail.

... Scenario for Flare I, the Filament Distortion and Eruption, and Flare II

A twisted flux rope anchored below a magnetic arcade can stay in a metastable

state, but following a large disturbance, e.g., produced by a nearby flare, could

become unstable and rupture through the arcade, leading the system to a lower

energy state (Sturrock et al. ). At the beginning of our event the magnetic

system may be in a metastable state which is then disrupted, possibly by Flare I

at the filament’s western part (Figure .(a) shown in Figure .(b) and (c)). The

disturbed and brightened western part of the filament is restrained against erupting

outwards by the overlying arcade field. The filament instead distorts and a bump

or bend in the field, which we associate with free energy, propagates from west to
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east (Figure .(b)) where the field is weaker as shown by extrapolations. As the

free magnetic energy is transported through the arcade plane, the arcade is pushed

upwards due to the enhanced underlying magnetic pressure. This could account for

the synchronism of the start of expansion of the filament’s eastern and western parts,

and the overlying arcade at ∼ :: UT, revealed by the timeslices in Figure .(a)

and (b). As the bump propagates further, close to the filament’s eastern footpoint,

and sweeps across cut  and  of Figure .(b) we expect that the filament’s western

part would contract while the eastern part expands, corresponding to their observed

dynamics in Figure .(a) and (b) between ∼ : UT and : UT . The arcade

would meanwhile be pushed aside by the filament’s western part, and incline more

towards the solar disk. At the end of this distortion, the filament’s western part also

appears compressed (Figure .(d)), possibly caused by the strong downward tension

of the overlying arcade field in the west and the weaker confinement of the low-lying

loops on the growing filament’s bump in the east during the persistent distortion.

The dramatic acceleration and eruption of the filament’s eastern part (Figure .(c),

corresponding to the observation at ∼ : UT in Figure .(e)) may be due to the

torus instability (Kliem & Török ) because of the weaker magnetic field in the ex-

panding eastern low-lying loops, or the kink instability (Sakurai ; Rust & Kumar

) due to squeezing of the filament, or both. The surrounding field could then be

highly stretched to form a current sheet beneath the erupting filament producing

Flare II, as in the standard “CSHKP” model of two-ribbon flares.

... Scenario for the Overlying Arcade Contraction

When the filament erupts at ∼ : UT, the overlying arcade contraction also starts

immediately, shown in Figure .(e) to (i). As demonstrated in Section .., it is

very likely to be a real implosion, due to reduced magnetic energy underneath the

arcade. Russell et al. () theoretically demonstrate three implosion types, with

two having oscillations and the third not. In our event, as shown in Figure .(b), no

obvious oscillations have been detected, so it belongs to the “gradual energy release”

Only the filament’s western part tracked by cut  has a contraction between ∼ : UT and :

UT, while part of the bump still supports the overlying arcade during this time. This can explain

the delay of the start of contraction of the overlying arcade at ∼ : UT instead of ∼ : UT, i.e.,

the asynchronism of the start of contraction of the overlying arcade and the filament western part in

Figure .(b).
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situation (see Figure (b) of Russell et al. ) in which the underlying magnetic

energy is released slowly compared to the loop’s oscillation period. After carefully

inspecting Figure .(d) to (f) and the  Å animation in Figure . between ∼ :
UT to : UT, we propose two reasons why the energy release is gradual. Both

reflect magnetic energy transfer out of the arcade plane.

(i) The filament erupting outwards from beneath the arcade would enhance the

magnetic field to the east of the arcade, which creates a larger magnetic pressure

that pushes the arcade to incline towards the solar disk. The relative positions

of the filament and the arcade would change, and the interface between the

filament’s western end and the arcade’s southern leg would gradually slip from

in the arcade plane to above it (see Figure .(b) to (d)), which means that the

component of the magnetic pressure exerted by the filament’s western leg in

the loop plane would be gradually reduced.

(ii) As the filament stretches outwards, its magnetic energy is transformed into

kinetic and gravitational energy of the erupting plasma (Schmieder et al. ).

The magnetic energy per unit length would then decrease, manifested by

reduced magnetic twist per unit length (see equation . of Sturrock et al.

). This can further reduce the component of the magnetic pressure parallel

to the loop plane provided by the filament’s western leg.

The timescale for these two effects could be such that the overlying loops do

not oscillate. The final net contraction seen in both observation (Figure .(b)) and

extrapolation (Figure . and .) means that finally the field underneath the arcade

has a lower magnetic energy density/pressure.

The rapid contraction of the inner arcade loops occurs only during the rise of

Flare II’s impulsive phase (between “B” and “C” in Figure .), as seen in other two

events reported by Simões et al. () (see its Figure ), and by Gosain () and

Sun et al. (). This also indicates that the contraction is indeed not directly caused

by the flare energy release/conversion, otherwise we would expect a comparable

contraction in the declining part of the impulsive phase when the energy dissipated,

as the energy content of non-thermal particles producing the HXR flux is comparable.

However, the contraction is still related to the flare in that the impulsive phase is

associated with the filament eruption out of the AR core.
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... Scenario for the Possible Filament Reconnection

As illustrated in Figure .(d) and Figure ., there is also an arm-like structure

accompanying the filament eruption. The extrapolation results in Section .. show

that they could reconnect with each other and exchange their footpoints during the

eruption process, to form a less sheared configuration (compare Figure .(b) with

(e)). The cartoon of Figure .(d) illustrates this possible filament reconnection

scenario (the exact reconnection location is uncertain). This could contribute to

Flare II to some extent in the late erupting phase, but since the filament in the late

erupting phase in  Å is too weak to track, it cannot be confirmed by the present

observations. However, the reconnection of an erupting filament to a far distant area

has been observed in  Å in another event by Filippov () (especially see their

movie , similar to our event). Li et al. () have also recently reported an erupting

filament reconnecting with a nearby coronal structure.

. Conclusions

AIA observations and NLFFF extrapolations point to the well-observed contraction

of the overlying arcade during the filament eruption in flare SOLT:

being a real implosion rather than an inclination effect. We interpret the implosion

as due to magnetic energy transfer out of the arcade plane in the filament eruption

process rather than due to local magnetic energy dissipation in the flare. The final

net contraction of the arcade reflects the permanent change of magnetic pressure

underneath the arcade. This event implies that filament movement or eruption can

make overlying field expand or erupt as observed in many events, but also is able

to simultaneously implode peripheral or unopened overlying field due to reduced

magnetic pressure underneath. This event appears to demonstrate one of the ways

in D to open the overlying field without violating the Aly-Sturrock hypothesis, that

is, “partial opening of the field”, which allows the field to open in one part of the

region and to implode in another.

The event is interesting in terms of the diversity of processes involved and their

close relationships in space and time. The proposed scenario for its evolution has

two main implications: () the uneven confinement of a filament by overlying field

can force energy transfer through the region, with filament distortion preceding a
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dramatic and probably asymmetric eruption through a “weak spot”. To identify such

locations, measures of the field confinement such as the decay index (e.g., Liu )

need to be examined from point to point in the AR. () an implosion of peripheral

field can happen simultaneously with an eruption, helping us track the magnetic

energy transfer through a flaring region. MHD simulations, as in Amari et al. (),

might profitably be used to explore the field evolution, and probe the validity of

these statements.

We have emphasised the overall magnetic evolution associated with the eruption

and implosion, and have not explored other aspects, such as why the filament

instability happens in the first place, or why the overlying arcade disappears in

AIA wavebands after its implosion. Our main conclusion is that, in this event, we

can successfully unify aspects of three main ways to understand coronal magnetic

instabilities, namely the metastable eruption model, the implosion conjecture, and

the standard “CSHKP” flare model, with the transfer of magnetic energy within the

AR being central to the process.



Chapter 

Unambiguous Evidence of Coronal

Implosions

This work can be found in the publication Wang et al. ().

. Introduction to the Chapter

Remarkable coronal loop contractions in extreme ultraviolet at the periphery of

active regions, with speeds of tens to hundreds of km/s, were reported in Chapter 

and in a few other events ranging from Geostationary Operational Environmental

Satellite (GOES) class B to X (Liu & Wang , ; Gosain ; Liu et al. a;

Sun et al. ; Simões et al. ; Yan et al. ; Kushwaha et al. ). As these

peripheral loop contractions were always observed face-on and accompanied by

eruptions from central magnetic structures (like a filament or an arcade eruption),

the possibility could not be ruled out that apparent contraction is a projection

effect due to inclination of the loop plane pushed by the erupting structure, rather

than a real contraction (from our survey experience, loop inclining is indeed more

commonly observed when the loops are viewed with an edge-on state at the solar

limb, and even some of them do not have a restoration back to their original locations).

As far as we know, only Petrie () reported edge-on loop contractions in two active

regions from the perspective of Solar TErrestrial RElations Observatory (STEREO)

in  Å, but due to the short interval of the process and the long cadence (∼ 5

min), the dynamics was not persistently revealed and not clear enough to be well

studied. The argument that the contracting loops do not restore to their original
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positions after the eruptions (Liu et al. a; Gosain ), and evidence from

NLFFF extrapolations in the work of Chapter  has been used to try to substantiate

the reality of the contracting motion, but the doubt that it could be a projection effect

can still not be completely excluded, and the ambiguity remains.

For the mechanism of apparent contraction of loops in the periphery of ARs,

Zuccarello et al. () and Dudík et al. () proposed an alternative explanation

in their simulation, using the analogy of vortices in the hydrodynamic situation

(further discussed in Section ..), which is against the implosion idea of Hudson

().

In this work, to prove the reality of loop contractions in the global coronal

dynamics, we present four events with the continuously contracting loops in an

almost edge-on geometry from the perspective of SDO/AIA, which are free from

the ambiguity caused by the projection effects, also supplemented by contemporary

observations from STEREO for examination. In the wider context of observations,

simulations and theories, we argue that the implosion conjecture of Hudson ()

is valid in interpreting these events. Furthermore, distinct properties of the events

allow us to identify two physical categories of implosion. One type demonstrates

a rapid contraction at the beginning of the flare impulsive phase, as magnetic free

energy is removed rapidly by a filament eruption. The other type, which has no

visible eruption, shows a continuous loop shrinkage during the entire flare impulsive

phase which we suggest shows the ongoing conversion of magnetic free energy

in a coronal volume. Corresponding scenarios are described, which can provide

reasonable explanations for the observations. We also point out that implosions may

be suppressed in cases when a heavily-mass-loaded filament is involved, possibly

served as an alternative account for their observational rarity.

We will present direct evidence of continuous implosion phenomena, with the

observations shown in Section .. Based on the main observational properties,

Section . will demonstrate the validity of the implosion conjecture, and catego-

rize the observed implosions into two types, with corresponding models proposed.

Conclusions are summarized in Section ..
The four events are selected after a survey of around tens of thousands of solar events by

randomly examining animations using the tool ISolSearch at the website http://sdowww.lmsal.com/

suntoday_v/. Thus this is not a complete survey. We select the four events because they have more

significant loop contractions and more favorable perspectives than the others, which are adequate for

the purpose of this work.

http://sdowww.lmsal.com/suntoday_v2/
http://sdowww.lmsal.com/suntoday_v2/
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. Observations and Analyses

We select four events, SOL--T: (C.), SOL--T: (C.),

SOL--T: (B.), and SOL--T: (B.), for analysis, which

are located in active regions NOAA  (SW),  (NW), 

(NE), and  (NE). Hereafter, for convenience, the four events are

labelled as Event I, II, III, and IV, respectively. They are all observed by both Solar

Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) and STEREO A.

The contracting arcades in these four events all have an almost edge-on geometry

from the perspective of AIA, so the contributions to the loop dynamics from contrac-

tion and inclination can be clearly disentangled. The contracting loops observed by

STEREO A in  Å are very likely the same as that viewed from AIA in  Å (for

Event IV the contracting structures in  Å are similar to that in  Å), because

these two wave bands share similar observing temperature ∼ 1.5×106 K. AIA images

and photospheric magnetograms from Helioseismic and Magnetic Imager (HMI)

for Event I have been processed by the standard software (Boerner et al. ), and

supplementary images from STEREO A via secchi_prep.pro (Howard et al. ).

.. Event I: SOL--T:

Event I is shown in Figure . and the accompanying animation, with both AIA and

STEREO A observations. AIA observes the contracting arcade (hereafter we call it

arcade I) from the side with a nearly horizontal geometry (Figure .(a) and (b)),

while STEREO A looks at it from the top with the loop plane having ∼ 45° with

respect to the line of sight (Figure .(e)). A filament is located low in the corona

(Figure .(c)). As it is destabilised and erupts outward (Figure .(f)), another arcade

structure (hereafter arcade II) passes from beneath arcade I and erupts (Figure .(b)).

Meanwhile, arcade I contracts towards the space left by the erupting filament and

arcade II. The motion of contraction is unambiguous, which is evidenced by the

accompanied animation. Oscillation follows and finally most of the loops of arcade I

disappear.
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Figure .: Images for Event I: SOL--T:. (a)-(c) observed from the

perspective of AIA.  Å is red, and  Å cyan in (a) (hereafter for composite

images, cyan always represents a low temperature band, like  or  Å, and

the hot  Å is always set to red). (d) relative positions of SDO and STEREO. The

magenta cross shows the longitudinal position of the event. (e)-(f) observed from the

perspective of STEREO A. The dashed line in (e) illustrates the location and shape

of the contracting arcade. Cuts - are used for the timeslices in Figure .. The

arrowhead of cut  is beyond the image edge. An animation of this figure is available

in Wang et al. () at the link http://iopscience.iop.org/article/./

-/aabce/meta.

http://iopscience.iop.org/article/10.3847/1538-4357/aabc0e/meta
http://iopscience.iop.org/article/10.3847/1538-4357/aabc0e/meta
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Figure .: Evolution of Event I. (a)-(d) Timeslices for dynamic features in Event

I. The sampling time of STEREO A  Å in (d) starts from the beginning of each

timeslice, with an exposure duration ∼ 8 s, and the long-dashed line shows the rough

contraction trend but means an uncertain contraction speed because of the long

sampling cadence ∼ 5 min and few sampling points. (e)-(f) GOES and RHESSI light

curves, respectively. The two vertical dashed lines across the figure shows the time

interval of the arcade contraction.

Figure .(a)-(d) show the timeslices created along the cuts - chosen in Fig-

ure ., respectively, presenting the detailed dynamics of the corresponding features
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along the cuts. The major contraction of arcade I (in the interval between the two

dashed lines) starts as the filament and arcade II erupt, though they already have

similar but weaker behaviours before this time interval. This major contraction

interval also corresponds to the rise of the impulsive phase, which is illustrated by

the GOES - Å derivative in Figure .(e) and the light curve of RHESSI - keV

in Figure .(f). After the major contraction, the loops of arcade I oscillate and most

of them disappear (Figure .(a)), though the filament and arcade II still continue to

move outward rapidly(Figure .(b) and (c)). We note that the contraction speed of

arcade I is always much smaller than the eruption speeds of arcade II and also the

filament. The filament eruption speed is underestimated in Figure . because of

projection, and can be more accurately estimated to be ∼ 150 km s−1, by considering

the time interval between :: UT (the start time of the filament eruption from

Figure .(c)) and :: UT (Figure .(f)), and the travel distance ∼ 100 arcsecs

in Figure .(f). The final contraction distance of arcade I is also much smaller than

the final eruption distances of the filament and arcade II.

.. Event II: SOL--T:

Figures . and . are constructed similarly to Figures . and ., respectively.

Event II is located on the limb with a more favourable perspective, making the

contraction of the arcade clearer. Seen from the accompanying animation, first the

filament lies close to the solar surface, with the arcade overlying its northern end.

Then they expand upward simultaneously up to around : UT (Figure .(a)). As

the filament starts to writhe along with its southwestward eruption (Figure .(b)),

the arcade begins to contract and the northern end of the filament seems to be

pushed downward to the solar surface. In the end the arcade oscillates and gradually

disappears.

Similar to Event I, the major arcade contraction coincides with the beginning

of the filament eruption and the rise stage of the impulsive phase, and the arcade

contracts more slowly and over a much smaller distance than the filament erupts

(Figure .). Event II differs from Event I in that before the major contraction, the

arcade in Event II shows slow expansion rather than slow contraction as in Event I.
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Figure .: Images for Event II SOL--T:. (a)-(c) observed from the

perspective of AIA.  Å is red, and  Å cyan in (a). (d) relative positions

of SDO and STEREO. The magenta cross shows the longitudinal position of the

event. (e)-(f) observed from the perspective of STEREO A. Cuts - are used for

the timeslices in Figure .. The arrowhead of cut  is beyond the image edge.

An animation of this figure is available in Wang et al. () at the link http:

//iopscience.iop.org/article/./-/aabce/meta.

http://iopscience.iop.org/article/10.3847/1538-4357/aabc0e/meta
http://iopscience.iop.org/article/10.3847/1538-4357/aabc0e/meta
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Figure .: Evolution of Event II. (a)-(c) Timeslices for dynamic features in Event

II. The sampling time of STEREO A  Å in (C) starts from the beginning of each

timeslice, with an exposure duration ∼ 8 s, and the long-dashed line shows the rough

contraction trend but means an uncertain contraction speed because of the long

sampling cadence ∼ 5 min and few sampling points. (d)-(e) GOES and RHESSI light

curves, respectively. The two vertical dashed lines across the figure shows the time

interval of the arcade contraction.
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.. Event III: SOL--T:

AIA and STEREO A observe the contracting arcade in Event III from opposite sides

(Figure .(a), (b) and (e)). The arcade contracts as a flare underneath happens

(Figure .(b)). Strangely, neither AIA nor STEREO observations, which together

have a wide temperature coverage (including cool  Å, warm  ,  and  Å,

and hot  Å) show any signature of violent arcade or filament eruptions as seen

in Event I and II. There is only another arcade in the south expanding outward to a

small extent (Figure .(b)). The arcade in the north fades into the flaring region at

the end with no obvious oscillation detected.
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Figure .: Images for Event III SOL--T: B.. (a)-(c) observed from

the perspective of AIA.  Å is red, and  Å cyan in (b). (d) relative positions of

SDO and STEREO. The magenta cross shows the longitudinal position of the event.

(e)-(f) observed from the perspective of STEREO A. Cuts - are used for the times-

lices in Figure .. An animation of this figure is available in Wang et al. () at the

link http://iopscience.iop.org/article/./-/aabce/meta.

http://iopscience.iop.org/article/10.3847/1538-4357/aabc0e/meta
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Figure .: Evolution of Event III. (a)-(c) Timeslices for dynamic features in event

III. The sampling time of STEREO A  Å in (C) starts from the beginning of each

timeslice, with an exposure duration ∼ 8 s. (d) GOES light curves. The two vertical

dashed lines across the figure shows the time interval of the arcade contraction.
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Figure .(a) shows that the speed of the long-duration arcade contraction is only

a few km s−1, which is slow but real, rather than caused by solar rotation, because

there are surrounding static loops as a reference (see the accompanying animation).

And interestingly, an abrupt acceleration in the contraction occurs at around :

UT, which coincides with a sudden increase or a spike in GOES - Å light curve

(Figure .(d)). It seems that the contraction of the arcade is quite sensitive to the

flare. Though the Neupert effect is not notable here, the contraction process has

already continued past the peak of the GOES - Å flux, which means that the arcade

contraction spans the entire impulsive phase. This is unlike the situations in Events

I and II where the contraction is localized in time to the rise of the impulsive phase.

The expansion speed of the arcade in the south is also very small (Figure .(b)),

comparable to the contraction speed of the arcade in the north, but it only persists

for about half of the contraction interval, which results in an expansion distance of

around half of the contraction distance.

.. Event IV: SOL--T:

In Event IV, AIA observes two contracting arcade systems with an edge-on geometry

(Figure .(a) and accompanied animation). Unlike the situation in Zuccarello et al.

() where the two peripheral arcades first diverge from each other and then

contract, these arcades here directly converge towards each other and contract at

the same time (Figure .(b)). As they do so, it seems that two flare regions from

two sides approach to the convergence location, which may imply that magnetic

energy is released gradually towards the central core region. From STEREO A, we

also detect the arcade contraction, with a face-on geometry (Figure .(e)). The final

disappearance of the contracting arcades is also found here without notable oscilla-

tion. Similar to Event III, there are no violent arcade or filament eruptions observed

by the two instruments, but only a minor arcade expansion in AIA (Figure .(b)).

From the animation, it appears that this small expansion might be associated with a

very weak invisible flux rope erupting outward, or it could also be field line opening

due to magnetic reconnection.
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Figure .: Images for Event IV SOL--T: B.. (a)-(c) observed from

the perspective of AIA.  Å is red, and  Å cyan in (a) and (b). (d) relative

positions of SDO and STEREO. The magenta cross shows the longitudinal posi-

tion of the event. (e)-(f) observed from the perspective of STEREO A. Cuts -

are used for the timeslices in Figure .. An animation of this figure is available

in Wang et al. () at the link http://iopscience.iop.org/article/./

-/aabce/meta.

http://iopscience.iop.org/article/10.3847/1538-4357/aabc0e/meta
http://iopscience.iop.org/article/10.3847/1538-4357/aabc0e/meta
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Figure .: Evolution of Event IV. (a)-(c) Timeslices for dynamic features in event
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timeslice, with an exposure duration ∼ 8 s. (d)-(e) GOES and RHESSI light curves,

respectively. The two vertical dashed lines across the figure shows the time interval

of the arcade contraction.
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Different from Events I and II, the arcade contraction speed in this event is much

larger than the expansion speed (Figure .(a) and (b)). More similarities are found

between Events III and IV. The contraction distance is much larger than the expansion

distance, and it also happens during the entire impulsive phase (Figure .(d) and

(e)).

. Discussion

.. Observational Characteristics

The apparent contracting loops observed from the perspective of SDO/AIA for these

four events are in an almost edge-on state, and we believe that the main contributing

factor for the motion is real contraction of loops. It seems unlikely that they could

not be tall and narrow loops seen face-on, otherwise the pointed cusp would drag

the loop to contract under magnetic tension force even before the event happens,

which is not the case in observations. And due to the edge-on property, we can easily

exclude the possibility of significant loop inclining perpendicular to its plane, though

minor changes in inclination can be observed (especially in Events I and II). Then as

large-scale peripheral loops usually have a dipole geometry and could not incline

in the loops’ plane (even though in some cases they could incline to some extent

due to the impact of nearby erupting structures, they would restore to their original

positions after the eruption completes, which is not observed here, especially in

non-eruptive Events III and IV), the loop inclining in its plane can also be excluded.

The last option left to explain the apparent contraction seems to be a real and major

contraction of the loops.

Table . summarises the relevant information about the four selected events

on the large scale. We concentrate on their eruptiveness, dynamic timing, distance

and speed, which can separately reflect the onset, duration, total amount and rate of

associated energy change. Both Events I and II exhibit violent filament (or arcade)

eruptions in close proximity to the contracting arcades (Figures .(b) and .(a)),

whereas there are only small expansions of arcades (or at most signatures of very

weak, invisible flux rope eruptions) during the arcade contractions for Event III and

IV (Figures .(b) and .(b)). The arcades in Event I and II mainly contract at the

rise stage of the impulsive phase. By contrast, the arcade contractions respond to
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their entire impulsive phases in Events III and IV.

Table .: Focused large-scale properties of the uour selected events.

SOL--

T:

SOL--

T:

SOL--

T:

SOL--

T:

Event I Event II Event III Event IV

Eruptiveness
possess visible, significant fila-

ment (or arcade) eruptions

only have small and weak arcade

expansions; no obvious filament

(or arcade) eruptions

Timing
mainly contract during the rise

stage of the impulsive phase

contract during the entire impul-

sive phase

Distance

arcade contraction distance

(Event I: ∼ 10 arcsec; Event II:

∼ 20 arcsec) is much smaller

than filament (or arcade) erup-

tion distance (Event I: > 70

arcsec; Event II: ∼ 200 arcsec)

arcade contraction distance

(Event III: ∼ 40 arcsec; Event

IV: ∼ 45 arcsec) is much larger

than arcade expansion distance

(Event III: ∼ 15 arcsec; Event IV:

∼ 15 arcsec)

Speed

arcade contraction speed (Event

I: ∼ 45 km s−1; Event II: ∼
100 km s−1) is much smaller than

filament (or arcade) eruption

speed (Event I: ∼ 221 km s−1;

Event II: ∼ 246 km s−1)

arcade contraction speed (Event

III: ∼ 5 km s−1; Event IV: ∼
49 km s−1) is comparable to, or

much larger than arcade expan-

sion speed (Event III: ∼ 4 km s−1;

Event IV: ∼ 8 km s−1)

Possible Origin eruption-driven implosions flare-driven implosions

Note that for Events III and IV, the expanding structures could incline toward or away from SDO,

resulting in underestimations of their travelling distances and speeds, but from the accompanied

animations and geometry, it seems that they do not incline too much. If we assume the inclination

angle to be a characteristic value ∼ 45°, the conclusions here still hold, not to mention that the

contracting structures could not be in the sky plane as well.

In terms of dynamic timing, distance and speed, Events I and II show the typical

characteristics of eruptive flares, with eruption processes prominent in the large-

scale dynamics, though the vast majority of eruptive flares are not accompanied

by observed arcade contractions like those reported here. Events III and IV seem

to have the opposite trend as the arcade contraction process dominates over the

expansion/eruption on the large scale. This new type of coronal evolution may

present a great challenge to eruptive flare models, like the “CSHKP” standard
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model (Carmichael ; Sturrock ; Hirayama ; Kopp & Pneuman ) or

breakout model (Antiochos et al. ; Aulanier et al. ).

.. Underlying Physics

What is the physics behind these arcade contraction phenomena? And what causes

them to show the two different categories above in Table .? The implosion con-

jecture proposed by Hudson () provides a possible explanation. In his original

paper, it was realised that both eruptions and flares as two main approaches to

release magnetic energy stored in the corona could cause implosions. As eruptions

and flares may involve different evolutionary time scales and large-scale dynamics,

naturally we would expect to detect two kinds of implosion processes separately

associated with them, characterised by different properties. This analysis raises a

likely interpretation of the two kinds of arcade contraction behaviours observed, i.e.,

eruption-driven implosions and flare-driven implosions.

The distinctions between these events in Table . seem to match this expectation.

Violent filament (or arcade) eruptions are seen in Events I and II, dynamically

related with the arcade contractions, which may indicate them as eruption-driven

implosions. On the contrary, with no such noticeable large-scale eruptions and only

flares detected, Events III and IV may represent flare-driven implosions. Supporting

evidence comes from the time range during which the contraction happens. In

Events III and IV, the arcades contract during the entire impulsive phase, which is

expected from the flare-driven scenario, because the flares continually release coronal

magnetic energy and reduce the corresponding pressure. However, in Events I and II

the major contractions only occur before the peak (or during the rise stage) of the

impulsive phase, even though the flares still continue to liberate significant energy

in the rest of the impulsive phase. This thus reflects there could be a different source

responsible for the contraction. This could be the associated filament (or arcade)

eruptions, as the escape time from the innermost core regions could be shorter than

the flare duration. Since in a few well-observed events (Sun et al. ; Simões

et al. ; Wang et al. , and Events I and II here) we notice that the inner

loops, closer to the core region, stop contracting almost at the peak of the impulsive

phase, we suggest that it is around this time that the filament escapes from the

innermost core region. In the spirit of this argument, the much slower contraction
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after the major contraction of Event II (Figure .(c)) might be interpreted as caused

by the ongoing flare just underneath the contracting arcade (see Figure . and

accompanying animation). The dominance in distance and speed of the eruptions

in Events I and II is in accordance with the expectation of the arcade contractions

being merely an auxiliary in the global dynamics, whereas the contractions are much

more prominent on the large scale than the expansions/eruptions in Events III and

IV, supporting a different triggering source, which could be the flares. Especially,

the coincidence of the abrupt acceleration of the contraction and the spike in GOES

- Å flux at ∼ : UT in Event III (Figure .) implies a close connection between

these two phenomena.

.. Models

Figure . illustrates our understanding of these four events exploiting the implosion

conjecture. Figure .(a)-(b) and Figure .(c)-(d) describe the field evolution of

Events I and II, respectively. As argued above, Events I and II are of eruption-type,

thus possessing similar essential dynamic characteristics, i.e., when the underlying

filament erupts outward, the peripheral overlying arcade contracts. This scenario

is also used to interpret the event in Wang et al. (). The basic idea is that fila-

ment (or arcade) field redistribution, and/or conversion of its energy to kinetic and

gravitational energy, can locally reduce magnetic energy and pressure in its original

position, resulting in forces in the periphery being unbalanced and the associated

loops contracting. Another interesting explanation by Zuccarello et al. () and

Dudík et al. () is that the eruption and contraction in this MHD situation are an

analog of a fast flow creating vortices in its surroundings in hydrodynamics. How-

ever, due to the preferable perspectives here, we see that, in Event I (Figure . and

accompanying animation) arcade I just adjacent to arcade II contracts directly when

arcade II erupts, without the significant initial expansion and inclination phases that

are expected in the vortex-flow scenario (Dudík et al. ). And in Event II the

arcade only shows an arc-like flow rather than a complete vortex trajectory in the

hydrodynamic situation, which is also illustrated in Figure .(d). In theory, the vis-

cous term in the invoked momentum equation (Zuccarello et al. ; Aulanier et al.

) of the simulation performed by Zuccarello et al. () and Dudík et al. ()

is much smaller than the Lorentz force in a low β coronal MHD environment. Thus,
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the viscosity, which is responsible for vortex generation in the hydrodynamic case,

would not be able to create the large-scale organised rapid contraction behaviours,

though it might produce small-scale vortices around the erupting structure. The

large-scale dynamics is controlled by the dominant Lorentz force. Zuccarello et al.

() argued that it is the enhanced magnetic tension, one component of the Lorentz

force, caused by compressional Alfvén waves originating from the erupting field,

that generates the contraction flow, but according to this argument, the contracting

loops are expected to restore to their original locations after the filament (or arcade)

erupts completely because of the nature of waves, which does not agree with the

reported observations in which the loops remain at lower altitudes. Similarly, if

the contracting motion was only caused by enhanced magnetic pressure (the other

component of the Lorentz force) above the loops due to the erupting structure, we

would also expect their restoration when the eruption terminates, not conforming to

the observations either.

The final idea then resorts to reduced magnetic pressure underneath, which is just

the core idea of the implosion conjecture. In fact, the arc-like flow in Figure .(d) can

be easily explained in this framework. As the filament erupts outward, the magnetic

pressure is enhanced at higher altitude and reduced at lower altitude, which would

naturally induce an arc-like flow of peripheral unopened arcade field around the

central erupting structure because of pressure difference compared to the previous

equilibrium state. Depending on the detailed topology and eruption process, the

arc-like flow may not be so obvious in some cases, like Event I here; and the loops

located at lower altitudes where they are not severely impacted by the high-pressure

erupting structure could also contract directly, e.g., the event in Simões et al. ().

The perturbation in the pressure should propagate outward with a limited speed, as

observed by Simões et al. () in a face-on geometry. This could be the fast-mode

speed (∼ Alfv́en speed vA if plasma β� 1 as in the corona).

Particularly, there is strong observational evidence that Events III and IV do not

show violent eruptions and vortex-like or even arc-like flows. The arcade in Event III

contracts directly, and the two arcades of Event IV even converge towards each other

and simultaneously contract downward. The contractions are significantly different

from peripheral vortices created by a central fast flow in hydrodynamics, and thus

cannot be explained by the analogy. Instead, the implosion conjecture (Hudson )

is able to account for these two events, in terms of flare-driven implosions, without
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the need for eruptions. This has already been supported by the distinct properties

of Events III and IV in Table ., as argued above. Because of a mix of difficulties

from limb location, structure overlapping in an edge-on geometry, and low contrast,

the D field topologies of Events III and IV are not readily reconstructed. However,

we propose a general model for them to interpret the major contractions and minor

expansions observed, based on the implosion conjecture. Figure .(e)-(f) illustrate

the basic idea. The “black box” underlying the two arcade systems represents the

core region where a flare occurs. During the flare the total magnetic energy and

pressure are reduced within the entire “black box”. However, there could exist a

situation where the field energy underneath arcade III decreases and that underneath

arcade IV increases, but the increase under arcade IV is smaller than the decrease

under arcade III. Then we would expect to see that the contraction of arcade III is

larger in extent and faster in speed than the expansion of arcade IV, which would

then be in agreement with the properties of Events III and IV in Table .. However,

the detailed field reconnection process, corresponding topology change and energy

transport and dissipation in the “black box” are unclear . The magnetic energy

enhancement underneath arcade IV might be due to more closed field formed or field

opening there through reconnection between the two domains under the two arcade

systems. Such a model of flare-driven implosions is attractive and can reproduce the

observations in a general way, but another possibility, which cannot be completely

excluded, is that a small and invisible flux tube may continuously transport from

under arcade III toward arcade IV, in the spirit of eruption-type implosions but a

very weak one.

.. Unsuccessful Implosion

It is worth noting that well-observed implosions, either face-on or edge-on remain

rather rare, whereas the implosion conjecture implies that they should be present in

all solar energy-releasing events, including eruptions and flares. This is probably

because of unfavourable viewing, complexity of active region field and involved

reconnection processes (Liu & Wang ), or relatively small expected movements

in readily observed peripheral loops when relatively small fraction of active region

energy is released in the core region in a flare.
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Figure .: Cartoons show our understanding of the implosion events. (a)-(b) for

Event I. (c)-(d) for Event II. (e)-(f) for Events III and IV. The thin arrows in each image

indicate the directions of the implosion and expansion motions of the arcades. And

the green dashed line represents the polarity inversion line.
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However, in this context we would like to revisit one of the original assumptions

for the implosion conjecture in Hudson () (described in Section ..), i.e., that

gravity takes no significant role in the coronal dynamics. This might not always be

the case, especially when a filament is involved, and this could lead to unsuccessful

implosions. Take the illustrations Figure .(c)-(d) for example in a general way

(rather than considering the specific Event II). Suppose, as a thought experiment, that

before the eruption in Figure .(c), the filament is mass loaded, with the downward

gravitational force contributing a non-negligible amount to the force balance against

the upward Lorentz force. Now imagine what would happen if much of the material

along the filament drained down to the photosphere. As the local plasma density and

thus gravitational pull are reduced, the filament field would inflate, simultaneously

pushing the overlying arcade outward, which is the opposite of implosions. Similarly,

during the eruption in Figure .(d), such a process would occur if mass along

the filament field could drain down (see relevant studies, e.g., Bi et al. ; Fan

; Jenkins et al. , pointing out that substantial filament material that drains

down may influence the dynamics) and also spread into a larger volume. Moreover,

as the filament field becomes more vertical, the draining could increase, further

inflating surrounding field. Thus the overlying arcade would expand if the magnetic

energy change associated with the filament is not considered. However, in fact,

the filament field becomes “weaker” locally, distributing into a larger volume and

transferring its energy into plasma kinetic and gravitational energy. As argued by

Hudson () and Russell et al. (), to achieve a new equilibrium, the overlying

arcade would implode toward the magnetic-pressure-reduced filament. At the end,

in this scenario we would have two competing mechanisms controlling the dynamics:

gravity reduction making the field expand and magnetic pressure reduction making

the field implode. In some cases, the magnetic pressure reduction is dominant so we

see implosions, like Events I and II here, while the gravity reduction may overtake

in other situations, which might be one of the reasons for rarity of well-observed

implosions.

. Conclusions

With the four selected events having the up-to-now most clearly observed contin-

uously contracting loops in an edge-on geometry from the viewpoint of SDO/AIA,
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supplemented by observations from STEREO, for the first time we demonstrate the

existence of real contractions of loops in the global coronal dynamics unambiguously.

The implosion conjecture proposed by Hudson () in the interpretation of these

events is found to be effective, in comparison with alternative theories for which

disagreements currently exist between observations and simulations or other pre-

dictions. Meanwhile, the discussion also leads us to find two implosion categories

that can be associated either with solar eruptions or with flares, and the models

put forward according to the conjecture can reasonably explain their distinct ob-

servational characteristics. However, it is also pointed out that in some cases the

implosion scenario may not be valid as one of the original assumptions about the

role of gravitation in the dynamics may fail.



Chapter 

Study of an Inflow-type Implosion

and Associated Reconnection Flows

This work can be found in the publication Wang et al. (). EIS data is processed

by Natasha Jeffrey. The alignment between images of AIA and EIS and the analyses

of EIS results are conducted by the author.

. Introduction to the Chapter

As demonstrated in Section .., inflow can be regarded as a type of implosion,

which reflects the magnetic energy release in or transfer out of the diffusion region.

In this chapter, we will study an inflow event and associated reconnection flows with

excellent observations from SDO/AIA and Hinode/EIS.

The “CSHKP” model is the standard D framework for two-ribbon flares (Carmichael

; Sturrock ; Hirayama ; Kopp & Pneuman ), and predicts several

different flows in the flare corona. There is an inflow of plasma and magnetic field

towards a diffusion region where reconnection occurs, and an outflow from this

region of newly-reconnected field retracting due to magnetic tension. Both flows are

(roughly) perpendicular to the magnetic field direction. There is cooling, condensing

material flowing along post-reconnection loops down towards the solar surface. The

flare or eruption may influence the ubiquitous upflows at the edge of the active

region (AR). In this work, we show that a plasma upflow parallel to the inflow field

could also happen as the field erupts.

Evidence for reconnection inflows has been reported in a handful of flares, mainly
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at the solar limb. Yokoyama et al. () reported the first clear extreme ultraviolet

(EUV) inflow following an eruption, with a bright cusp – another ingredient in

the “CSHKP” model – seen underneath in soft X-rays (SXR). Narukage & Shibata

() found a further  limb inflow events in nearly  years of Extreme-ultraviolet

Imaging Telescope (EIT) observations. A bright, elongated structure in the inflow

convergence region was claimed by Lin et al. () to be a current sheet, and the

features flowing up along it to be reconnection outflows. A few more inflows have

been reported using observations from the Atmospheric Imaging Assembly (AIA;

Lemen et al. ) onboard the Solar Dynamics Observatory (SDO; Pesnell et al.

). Savage et al. () studied an inflow with speed up to ∼ 300 km s−1 in an

impulsive flare, while other reports, usually of long duration events (LDEs) have

speeds below ∼ 100 km s−1. Sun et al. (a) reported groups of inflowing “threads”

with plasma heating where they make contact, but without a clear hot cusp. In 

different flares, Su et al. (), Yang et al. (), and Zhu et al. () observed a

reconnection inflow with two sets of closed loops approaching each other - a different

geometry from the standard model.

Reconnection outflows – the retraction of post-reconnection magnetic loops –

have occasionally been reported in SXR limb flares (Forbes & Acton ; Reeves

et al. ), but EUV is better at picking out retracting structures. Liu et al. ()

detected many individual retracting loops in AIA  Å observations of a limb flare,

with speeds from tens to hundreds of km s−1. Imada et al. () combined AIA and

EIS spectroscopic observations to infer that the hot reconnected loops ∼ 30 MK could

shrink above 500 km s−1. Supra-arcade downflows, the dark voids in EUV and SXR

observations appearing high in the corona and traveling down at tens to hundreds

of km s−1, are interpreted as the cross-sections of underdense, retracting post-

reconnection loops, or the ‘wakes’ left as they descend (e.g., McKenzie & Hudson

). Plasma draining in flare loops as reconnection downflows has also been

observed (e.g., Savage et al. ). The EUV Imaging Spectrometer (EIS; Culhane

et al. ) on Hinode shows that the draining speed along AR loops at quiescent

stage (when there is no flare or eruption) is around tens of km s−1 (Del Zanna ;

Syntelis et al. ).

The inflow Alfvén Mach number defining the reconnection rate for these events

is estimated at ∼ 10−1 − 10−3 in the fast reconnection regime (the slow Sweet-Parker

rate is ∼ 10−4 − 10−6 for typical coronal conditions; Aschwanden ). But a good
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estimate of the reconnection rate requires knowledge of the coronal magnetic field

strength, which is difficult to obtain in the limb events stated above. Their position

also makes the relationship between the cusp, loops and footpoints hard to ascertain

as the footpoints are usually obscured by the solar limb or complex foreground

structures.

We report here on a long-lasting reconnection event near the disk center, focusing

on its flow processes and magnetic reconnection rate. Li et al. () studied this

event using SDO/AIA, demonstrating the relationship between the erupting flux

rope and magnetic reconnection, and the transition from D to D reconnection. The

event’s location and quasi-D geometry in the late phase permit a good estimate of

the coronal Alfvén speed and reconnection rate. It exhibits the norms of the standard

“CSHKP” model, with a well-formed cusp underneath inflow threads which can

be mapped well to their lower-atmosphere counterparts. The field below the cusp

contracts and cools (though the brightest portion rises). We also find spectroscopic

evidence for a new kind of plasma upflows associated with the expanding but closed

inflow field, distinct from the common plasma upflows at the AR boundary that have

been reported by previous authors.

. Observations and Analyses

.. Instruments and Data Reduction

SOL--T: was a Geostationary Operational Environmental Satellite

(GOES) class C. flare in AR NOAA  (NW). We study it from ∼ : UT

to ∼ : UT. The SDO/AIA and Helioseismic and Magnetic Imager (HMI; Schou

et al. ) provide EUV images and photospheric magnetograms, respectively,

which have been processed using standard software (Boerner et al. ) and rotated

to : UT. The EIS on Hinode observes the AR in a slow raster from :: UT

to :: UT with a " slit moving around every minute from solar west to east

over a field-of-view ."×.". Line-of-sight velocities are obtained from Fe XII

and Fe XIII lines, which are intense and also visible outside the active region, for

estimating a reliable rest wavelength. Standard EIS data reduction procedures were

used, and the spectral lines were fitted with single Gaussians. The rest wavelength

was extracted from a quiet Sun region X∼ (−24′′,85′′) and Y∼ (157′′,207′′) (excluding
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missing values along a vertical data gap at X∼ 13′′) free of AR emission. The upper-

limit uncertainty is ∼ 5 km s−1 for both Fe XII . Å and Fe XIII . Å, and

Fe XVI . Å has an upper-limit uncertainty ∼ 9 km s−1. The alignment between

AIA and EIS is conducted by eye, and also takes Fe IX . Å into account (but

Fe IX intensity is too low for reliable Doppler velocity diagnostics). Fe IX is aligned

with  Å, Fe XII with  Å, Fe XIII with  Å, and Fe XVI with  Å, as their

characteristic temperatures are comparable separately. The accuracy of the alignment

is ∼ 1− 2 arcsecs.

.. Evolution of the Flare

Figure . shows the overall evolution of the flare. Before the flare (Figure .(a))

a large arcade of loops in  Å envelopes a dark void underneath, possibly a flux

rope (Li et al. ). Between the arcade footpoints a filament can vaguely be seen

(Figure .(b) and (e) show the filament more clearly). In Figure .(b), the two ends

of the filament suddenly brighten (microflare), accompanied by a small ejection to

the north. This may show the destabilization of the hosted flux rope, leading to the

subsequent arcade eruption in Figure .(c). As the arcade erupts, its legs converge,

forming a dark cusp underneath in  Å, shown in Figure .(d). The flare ensues

with a bright cusp in  Å (red) inside the dark cusp in  Å. Then two ribbons

sweep across the footpoints of the bright cusp and separate away from the filament,

seen in  Å in Figure .(e). Figure .(f) shows the post-flare state with flaring

loops appearing in  Å. The main evolution from Figure .(a), (c), (d) and (f)

reveals that the correspondence between the pre-flare arcade, the erupting arcade,

the bright cusp and the flaring loops is well established in terms of their footpoint

locations, indicated by the two magenta circles. Figures .(a)-(c) show the timeslices

corresponding to cuts - in Figure ., respectively. A lightcurve in  Å for the

microflare in Figure .(b) is added in Figure .(c), and the GOES SXR lightcurves in

Figure .(d). The vertical dotted line “A” indicates the timing of the microflare and

the arcade eruption, and the line “B” the timing of the inflow and the flare. Different

flows are discussed in the following paragraphs.
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Figure .: Evolution of the flare. (a), (c), (d) and (f) show the main evolution

sequence in composite AIA  Å and  Å images. (b) The microflare and small

ejection in the  Å difference image just before the arcade eruption. The HMI

magnetogram contours at ±125 G are overlaid. The blue rectangle is used for the

lightcurve in Figure .(c). (e) The ribbon separation in  Å. The magenta circles in

each image show the relevant footpoint locations. Cuts - are used for timeslices in

Figures .(a)-(c), respectively. The two cyan boxes in (c) and (d) are for DEM analysis

in Section ... An animation of this figure is available in Wang et al. () at the

link http://iopscience.iop.org/article/./-/aa/meta.

http://iopscience.iop.org/article/10.3847/2041-8213/aa8904/meta
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Figure .: Detailed dynamics of the Event. (a) Timeslice of Cut  for the evolution

of the inflow threads. The two cyan boxes at : UT and also : UT show the

positions used for DEM analysis in Section .., as in Figures .(c) and (d). The

speeds given are for the final times of the fit curves. (b) Timeslice of cut  combines

 Å and  Å on a linear intensity scale, showing the evolution of the bright cusp.

Its corresponding image on a logarithmic intensity scale in  Å is plotted in (d).

The yellow dashed fit curve is the same as the red one in (d), and the black dashed fit

curve is the same as the red one in (d) but moved downwards to match the brightest

portion. (c) Timeslice of cut  for the evolution of the ribbons. The lightcurve in 

Å of the microflare indicated in Figure .(b) is overlaid. (d) GOES SXR lightcurves

overlaid on the timeslice image of cut  in  Å on a logarithmic intensity scale for

reference. The dotted line “A” denotes the timings of the arcade eruption and the

microflare, and “B” the timings of the inflow and the C. flare.
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.. Flows in the Flare

Reconnection Inflows Figure .(a) shows the evolution along cut  through the

flare cusp region. Before the flare the threads forming the arcade legs separate as

the flux rope erupts. The threads then accelerate towards the (presumed) central

diffusion region, approaching with projected speeds of tens of km s−1, similar on

either side. These are fitted with exponential equations by picking a few points

along specific inflow features and extrapolated to the diffusion regions indicated

by the cyan boxes. The speeds at the final times of the fit curves are larger than

that in Li et al. (), because we choose a cut with higher altitude than theirs,

closer to the reconnection site at : UT in Figure .(d), in order to account

for the progressively higher up reconnection site. Accelerated inflows were also

found by Sun et al. (a) and Zhu et al. (). After the GOES peak, the western

leg gradually fades, while the flow of the outer threads of the eastern leg starts

to decelerate towards the central region, reducing to a few km s−1 and lasting for

around one hour. Figure .(c) shows the corresponding ribbon separation, also with

similar speed on each side.

Reconnection Outflows The post-reconnection outflow is manifested as contrac-

tion of the loops underneath the cusp, visible as bright and dark striations in the

stackplot (Figure .(b)) of superposed  Å and  Å slices, on a linear intensity

scale, along cut  vertically down through the cusp loops (also can be seen in the

reference image of Figure .(d) on a logarithmic intensity scale in  Å). The yellow

dashed line in Figure .(b) shows the looptop in the cusp declining in altitude with

time, illustrating the contraction of the cusp loops. The contraction decelerates with

time, while the loops also cool down from  Å (∼MK) to  Å (∼.MK). This is

not well observed in the past to our knowledge. Meanwhile the brightest portion of

the cusp rises, as expected if the reconnection site progressively moves upwards. We

note the qualitative similarity between the observed trajectories of the contracting

loops and those calculated by Lin () for a D reconnecting current sheet model.

Plasma downflows Figures .(a) and (c) show the Fe XVI and Fe XIII intensity

maps from EIS, and Figures .(b) and (d) the corresponding line-of-sight velocity

maps. For comparison, Figures .(e) and (f) are synthesized AIA “raster” images

which simulate the EIS slit scanning mode, produced by combining narrow slices
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of AIA images at the EIS slit locations and times. Looptops and loop legs of the

flare arcades (Figure .(b) or (d)) have redshifts of ∼ 13 km s−1 indicating plasma

draining, or loop contraction. We consider plasma draining to be the more likely

explanation as the line-of-sight speed is much larger than the projected contraction

speed ∼ 1 km s−1 obtained from the hotter  Å observations at that time (Fig-

ure .(b)). An interpretation in terms of contraction is thus difficult to reconcile

with the observed arcade geometry.
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Figure .: Comparison of EIS and AIA observations of the Event. (a)-(b) Fe XVI

. Å intensity and Doppler velocity maps. (c)-(d) Fe XIII . Å intensity and

Doppler velocity maps ((Fe XII . Å intensity and Doppler velocity maps are

not shown here as they are similar to the ones of Fe XIII)). The sampling times of the

EIS slit are added above (a) and (c). (e)-(f) synthesized AIA images simulating the

EIS slit scanning mode for comparison.  Å is red,  Å green, and  Å blue in

(e). To align with EIS observations, they have not been rotated like in Figure .. The

dashed line at the bottom left corner encloses the extended blueshift area in (d). The

magenta dotted line is for the longitudinal velocity profiles in Figure ..

Plasma Upflows We also have evidence of plasma upflows at the edge of the AR.

The strong blueshift ∼ 25 km s−1 at the eastern footpoint of the cusp (at (X,Y) ∼
(25′′,400′′) in Figures .(b) and (d)) could indicate chromospheric evaporation onto

the reconnected cusp field (Figures .(a) and (e)). Just to its east is an extended



.: Observations and Analyses 

blueshift area (enclosed by the yellow dashed line at the bottom left corner in

Figure .(d)). This area can be divided into three parts, the strongest blueshift

feature indicated by the magenta dotted line, the “E” region to the east, and the “W”

region to the west. The “W” region possesses stronger blueshift than the “E” region.

Note that the strongest blueshift feature in this area is well aligned with the gap

with weak emission in the composite AIA image in Figure .(e), which boosts our

confidence in the accuracy of the alignment between EIS and AIA.
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Figure .: Longitudinal velocity profiles for Fe XII and Fe XIII along the dotted line

in Figure .. The origin of the X axis represents the bottom of the dotted line. The

dashed line is the linear fit for each profile. “b” represents the slope of the fit and its

1− σ uncertainty. The uncertainty for the rest wavelength estimation is ∼ 5 km s−1

for both lines, which would shift the entire profiles up or down.

By comparing Figure .(d) with (e), it can be seen that the field corresponding to

this extended blueshift area has not yet been reconnected in the main flare related to

the bright cusp, so the blueshifts cannot be explained by the evaporation from the
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main flare. Nor can they be attributed to evaporation in the background, as the 

Å ribbon in Figure .(f) has not reached this area. For the strongest blueshift feature

indicated by the magenta line, which is just to the east of the edge of the inflow

threads, we can also exclude it being due to changing field inclination. If the line-of-

sight velocity profiles along the dotted line, shown in Figure ., were completely

due to the inflow threads inclining towards us, we would expect a blueshift around

zero at the footpoints and increasing with altitude. The observation in Figure .

contradicts this. Figure . also excludes a loop siphon flow, in which the flows

accelerate towards higher altitudes (Aschwanden ). An easy way to interpret

the blueshift along the dotted line is to invoke a plasma upflow along a field which

inclines towards us. The same argument also applies to the “W” region. For the

“E” region, it is difficult to argue as the velocity values are comparable to the rest

wavelength uncertainty.
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Figure .: DEMs at : UT and : UT for the cyan eastern and western boxes

in Figures .(c) and (d), respectively.

.. Electron Density Estimate

DEM (Section ..) analysis can be used to estimate the electron density ne (Hannah

& Kontar ). The DEM is defined as ξ(T ) = n2
edl/dT (Craig & Brown ), and
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integrating over T results in the emission measure along the line-of-sight EM =∫
ξ(t)dT =

∫
n2
edl.

We calculate the emission measure during (EMf l at : UT) and before (EMpre

at : UT) in the inflow, using the regularization method of Hannah & Kontar

() to recover ξ(T ) from the mean intensity in each of the  AIA wave bands (,

, , , ,  Å) with single exposures for both the eastern and western

inflow regions (the two cyan boxes in Figure .(c) and (d)). The mean intensity is

used in order to smooth out the fluctuations pixel by pixel. The temperature range

used as input is 105.5-106.6 K, because the inflow threads can hardly be seen in high

temperature wavebands like  and  Å. The DEM results are shown in Figure ..

It can be seen that the DEM enhancements mainly happen between 105.8 K and 106.3

K. This is consistent with AIA observations, as the inflow threads can be most clearly

seen in AIA  Å which is more sensitive to this temperature range compared to

other filters. The DEMs can then be transformed to the EMs using the IDL integral

procedure int_tabulated.pro. However, the resulting EM also contains a contribution

from the background and foreground corona besides the inflow region. We then

exploit the technique of the difference of EMs to estimate the density of the inflow

threads, which is demonstrated as follows. In Figure .(c), before the inflow the EM

is,

EMpre ≈ (ninf low_pre
e )2 hinf low + (nother_pree )2 hother (.)

where the superscript “inflow_pre” indicates that the quantity is taken from the

inflow volume in the pre-inflow state, and “other_pre” the background and fore-

ground corona without the inflow region before the inflow. During the inflow in

Figure .(d), the EM is,

EMf l ≈ (ninf low_f l
e )2 hinf low + (nother_f le )2 hother (.)

where the meanings of the superscripts are similar to the above but during the inflow.

If we assume that: (i) the background and foreground density outside the inflow

threads does not change much during the event, that is nother_f le ≈ nother_pree ; and (ii)

the density within the inflow region during the inflow (Figure .(d)) is much larger

than before the inflow (Figure .(c)), that is ninf low_f l
e � n

inf low_pre
e , it then follows

that,

EMf l −EMpre ≈ (ninf low_f l
e )2 hinf low (.)
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and finally, the density of the inflow threads can be obtained as,

n
inf low_f l
e ≈

√
(EMf l −EMpre)/hinf low (.)

or

ne =
√

EMin/L, (.)

if we use ne for ninf low_f l
e , EMin to represent EMf l −EMpre, and L being hinf low, for

simplicity.
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Figure .: EIS density diagnostic results using spectral line ratios, Fe XII

./. Å and Fe XIII ./. Å, respectively. The two yellow boxes in each

image correspond to the two cyan boxes in Figure .(c) or (d). The black contours

are for Fe IX at  % and  % levels, and the red ones for Fe XVI at  %,  % and

% levels.

As ne ∝ L−0.5 in Equation (.), the estimated density is not very sensitive to

the choice of the thickness L. Thus we choose the diameter of the magenta circle
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(estimated footpoint region of the inflow thread) in Figure . as an approximation

of the thickness of the inflow threads, L = 15 arcsecs ≈ 1.1 × 109 cm. We then

find ne ≈ 2.1 × 108 cm−3 and ≈ 2.0 × 108 cm−3 for the eastern and western regions,

respectively (Table .).

We briefly comment on the assumptions (i) and (ii) above for estimating the

electron density of the inflow thread. Assumption (i) seems reasonable as no obvious

events (except the inflow) happen during this period along the chosen boxes’ line of

sight. Assumption (ii) could be true, as firstly in the pre-inflow stage the two boxes

are located within the dark void region (Figure .(c)), which means lack of emitting

plasma, and secondly the void expansion may further evacuate the plasma there.

And the obtained results above are well consistent with EIS density diagnostics

in Figure . using spectral line ratios, Fe XII ./. Å formed at 106.2 K

(≈ 3.2× 108 cm−3 for the eastern box and ≈ 2.8× 108 cm−3 for the western one) and

Fe XIII ./. Å at 106.3 K (≈ 1.7×108 cm−3 for the eastern box and ≈ 2.0×108

cm−3 for the western one). The densities derived from EIS being slightly different

from the results from the DEM technique is probably because the inflow regions

at the EIS sampling time (already after : UT as can be seen in Figure .) has

moved upwards, or because of the choice of the thickness of the inflow threads in the

DEM analysis.

.. Magnetic Reconnection Rate

The magnetic reconnection rate can be represented by the inflow Alfvén Mach

number

MA = Vin/VA (.)

where Vin is the inflow speed and VA the local Alfvén speed. Vin can be estimated

using

Vin = Vpatt −Vxp tanθ (.)

as in Yokoyama et al. (), where Vpatt is the apparent inflow speed obtained from

the pattern of inflowing threads, Vxp the rising speed of the reconnection X-point,

and θ the angle between the inflow threads and the rising direction of the X-point.

This equation accounts for the rising motion of the reconnection site. The Alfvén

speed VA is

VA =
Bin√
4πρ

≈ Bin√
4πµmHne

(.)
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in Gauss units, where Bin is the magnetic field strength in the inflow region, ρ the

mass density, µ the mean atomic weight (∼ 1.27 for coronal abundances; Aschwanden

), mH the hydrogen mass, and ne the electron number density. To obtain Bin,

conservation of magnetic flux can be exploited (e.g. Isobe et al. ),

BinVin = BfootVfoot (.)

where Bfoot is the vertical magnetic strength at the photosphere and Vfoot the sep-

aration speed of flaring ribbons. As this AR is close to the solar disk center, HMI

longitudinal magnetograms can be used as a good approximation of the vertical

field. By combining Equations (.), (.), (.) and (.), the final equation for the

reconnection rate is

MA =
(Vpatt −Vxp tanθ)2

BfootVfoot

√
4πµmHne (.)

where the electron number density can be estimated as in Section .., and other

quantities are obtained as described in the notes to Table .. Note that these

estimates are made at ∼ : UT, just before the GOES - Å flux peaks. The

resulting reconnection rates are . for both the eastern and western inflows.

. Discussion and Conclusions

We have reported the first comprehensive observations of reconnection flows on the

solar disk. The inflows show threads or strands of plasma accelerating and later

decelerating towards a presumed reconnection site, below which a well-defined

hot cusp forms, anchored at the threads’ endpoints. Individual cusp loops shrink

and cool as the brightest portion of the cusp ascends. The magnetic reconnection

rates around the GOES flux peak are . for both the eastern and western inflows,

consistent with fast reconnection (described in Section .), and in the range of

previous studies (Yokoyama et al. ; Lin et al. ; Narukage & Shibata ;

Bemporad et al. ; Savage et al. ; Su et al. ; Sun et al. a; Zhu

et al. ). And the reconnection is quite symmetric in this case. According to

Equation ., if Vxp and θ are good observational estimates, the reconnection rate

estimated is most sensitive to Vpatt, only the transverse component of the real inflow

velocity. For a rough estimation of the lower limit of the reconnection rate, we double

Bf oot, Vf oot and reduce ne by a factor , giving reconnection rates of around .
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for both the eastern and western inflows, which are still in the fast reconnection

regime.

Table .: Magnetic reconnection parameters.

Region Vpatt
a Vxp

b θc Vin
d Vf oot

e Bf oot
f Bin

g EMin
h Li ne

j VA
k MA

l

(km s−1) (km s−1) degree (km s−1) (km s−1) (G) (G) (1025 cm−5) arcsec (108 cm−3) (km s−1)

Eastern        .  .  .

Western      -  .  .  .

a obtained from Figure .(a).
b estimated from the rising speed of the bright cusp in  Å in Figure .(b) and (d).
c estimated at half the angle of the dark cusp in  Å in Figure .(d).
d via Equation (.).
e from Figure .(c).
f approximated as the mean of the HMI longitudinal magnetic strength above a noise level ∼ 

G (Liu et al. b) for the magenta circles in Figure ..
g via Equation (.) and transformed to absolutes.
h through the method in Section ...
i approximated as the diameter of the magenta circle in Figure ..
j via Equation (.).
k through Equation (.).
l via Equation (.) or (.).

There is no emission from the presumed reconnection site; it may be too short or

thin, or at the wrong temperature to be detected by the instruments used. We note

that the upper part of the dark cusp highlighted in Figure .(d) is dark in all AIA

wavelengths, implying that it has a very low density, or temperature above the ∼ 10

MK at which the AIA  Å filter peaks and where the cusp is clearest.

As argued in Section .., possibilities like evaporation from the main flare,

field inclining and a siphon flow, could not be the reasons for the blueshifts along

the dotted line and in the “W” region in Figure .(d). Plasma upflows along field

which inclines towards us could be an explanation for these blueshifts. Blueshift

features are found to be ubiquitous at the edge of ARs from EIS observations even in

non-flaring regions, persisting from hours to days in areas of weak emission and low

density, and possessing velocities around tens of km s−1, faster in hotter lines (e.g.,

Sakao et al. ; Del Zanna ; Doschek et al. ; Harra et al. ; Baker et al.

; Démoulin et al. ; Brooks et al. ). They are interpreted as upflows by

some authors and considered to be a possible source of the slow solar wind in the
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heliosphere, but the real origin of these blueshift features is still controversial (Abbo

et al. , and references therein).
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Figure .: Model field at : UT just before the arcade eruption and the flare,

derived from the PFSS package of Solarsoft, showing a narrow open-field corridor

between the two closed-field domains. The open-field corridor extends northwards

to a coronal hole. The blue dashed box shows the same region as the bottom left

corner enclosed by the dashed line in Figure .. To compare with Figure ., this

figure has not been rotated like in Figure ..

We here propose a distinction between two upflow components associated with

the blueshift features observed in this event. The strongest blueshift in Figure .(d)

is well aligned with the gap with weak AIA emission in Figure .(e) which may imply

open field short of emitting plasma, while the “W” region evidently corresponds to

the large-scale closed loops which are the inflow threads or the legs of the arcade

loops erupting outwards in Figure .(e). The potential-field source-surface (PFSS)
The upper part of the inflow threads could be contaminated by the background arcades which
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model just before the flare in Figure . provides supportive evidence. It reflects

well the pre-eruption structure seen in Figure .(a), and shows that the extended

blueshift area in Figure .(d) consists of a mix of open and closed fields. Two closed-

field domains are separated by a very narrow open-field corridor, which matches the

structure in the extended blueshift area in Figure .(d) with the strongest blueshift

feature indicated by the dotted line separating the “E” and “W” regions apart. Thus

it seems that plasma upflows occur along both open field and large-scale closed loops.

And the flow along open field could have a higher upward velocity, and a different

cause. The argument above helps solve a long-standing problem that whether the

blueshift-related upflows at the AR boundary are associated with open or large-scale

closed field (Sakao et al. ; Harra et al. ; Baker et al. ; Del Zanna et al.

; Boutry et al. ; Brooks et al. ; Edwards et al. ).

As the blueshift levels of the feature indicated by the dotted line in Figure .(d)

and the “W” region are quite different, different mechanisms may be responsible

for the associated upflows. For the upflow in the “W” region, expansion of related

large-scale closed loops (Harra et al. ) could be an explanation. When the flux

tube of the arcade expands outwards, the plasma within would expand outward

and dilute (Reeves et al. , see the third row of its Figure ), which results in

depressurization. We suggest here that the expansion may not be adiabatic, as the

depressurization could induce a plasma upflow from the coronal base along the legs

of the expanding arcade. A vivid analogy of this depressurization process is the

water in a tube being pumped out by rapidly pulling a plunger, or the air being

pumped in as the volume of the lung is increased. Both the plasma expansion itself

because of the field inflation and the induced upflow due to depressurization could

contribute to the blueshift observed along the expanding closed field. As the inflating

field is the inflow threads here, the upflow from the bottom of the corona may serve

as a way to increase the plasma density advected into the reconnection region or

other acceleration regions (e.g., the slow-mode shock), which could help relax the

“electron number problem” (Brown & Melrose ; Fletcher & Hudson ) to

some extent. A rough estimate of the upward electron flux is ∼ 1019 m−2 s−1, which

can be obtained by using the upflow speed ∼ 7 km s−1 (inferred later) and coronal

density ∼ 109 cm−3 (if the upflow can be induced deeper in the atmosphere, the

density could be higher). Fermi Gamma-ray Burst Monitor (GBM; Meegan et al. )

have draining plasma.
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observations barely show any hard X-ray emission from this flare (unfortunately also

no observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager

for this event), implying a very weak requirement for the electron flux. For a major

flare, the eruption and arcade expansion could be more violent, possibly with a faster

upflow and increased electron supply.

For the upflow along the open-field, Antiochos et al. () shows that a narrow

open-field corridor maps to separatrices and QSLs in the heliosphere where the

magnetic connectivities change dramatically, and they are the natural region for

interchange reconnection between open and closed field to take place (Fisk et al.

; Fisk ). Thus the open field here in Figure . could reconnect with the

two closed domains nearby, transporting plasma from the closed to the open field.

Comparing Figure .(a) with (f), it can be seen that the intensity of the eastern

closed domain has a significant decrease during the evolution while the large-scale

loops nearby to the west become more intense, which could mean that an interaction

happens between the eastern closed domain and the narrow open field corridor. The

main flare or the arcade eruption observed in the western domain may facilitate or

impede the dynamics.

A characteristic inclination angle of the open field in Figure . towards us can

be obtained from the PFSS model to be ∼ 45°. Figure .(d) (and also Figure .(b))

provides the characteristic values of the longitudinal velocities of the blueshift feature

indicated by the dotted line, the “W” region, the evaporation feature, and the plasma

draining, to be ∼ 10 km s−1, ∼ 5 km s−1, ∼ 25 km s−1, and ∼ 13 km s−1, separately. If

we assume that all the fields related to the above features incline towards us with

roughly the same angle ∼ 45° as the open field does, the total speeds of the associated

plasma flows travelling along these fields can be estimated to be ∼ 14 km s−1, ∼
7 km s−1, ∼ 35 km s−1, and ∼ 18 km s−1, respectively. They are all subsonic as the

sound speed for a plasma with a temperature Te ∼ 2.0 MK or ∼ 2.5 MK (for Fe XIII

∼ 106.3 K and Fe XVI ∼ 106.4 K, respectively) is cs = 147
√
Te/1 MK ∼ 208 km s−1 or

∼ 232 km s−1 (Aschwanden ). The upflow speeds from a few to tens of km s−1 at

the edge of the AR are consistent with previous EIS observations (Del Zanna ).

The evaporation speed ∼ 35 km s−1 is similar to the results obtained by Milligan

& Dennis () also for a C class flare at this temperature range. The plasma

draining speed ∼ 18 km s−1 is also comparable to previous results derived from EIS

spectroscopy (Del Zanna ; Syntelis et al. ) though they measured at the
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quiet stage of the AR evolution. The plasma draining at these spectral lines may

reflect the warm counterpart of the cold coronal rain (e.g., Schrijver ; Kamio

et al. ; Vashalomidze et al. ) observed later in  Å.

In addition, if we take the field inclination into account when calculating the

reconnection rate, this will slightly change the values of Vxp and θ in Table ., but

the final reconnection rate around the GOES flux peak will still be rounded to .

for both the inflow regions and in agreement with fast reconnection.

Together with Li et al. (), this work reveals the D and D aspects of this

event. The wealth of diagnostic information on the flows and plasma properties

around the reconnection region and at the periphery of the AR can be further used

to explore the energetics of the reconnection process and the detailed dynamics

of flow evolution, while the availability of HMI vector magnetograms means that

the magnetic evolution and plasma flows can be investigated in more detail using

magnetic field extrapolations and MHD simulations.



Chapter 

Conclusions

. Thesis Summary

This thesis is focused on the implosion phenomenon in solar eruptions and flares,

which is predicted by Hudson (), on the basis of the equivalence of magnetic

energy and pressure, and the dominance of Lorentz force in the corona. Before our

work, though the spirit of the implosion idea by which the magnetic field becomes

more compact after energy release is insightful and attractive, what implosions

exactly correspond to in observations was not well demonstrated in the original paper

of Hudson (). This led subsequent authors to use the concept ambiguously, and

produced confusion. To address this problem, in Section .., we incorporate three

different phenomena, that is, contraction of peripheral arcade loops, reconnection

inflow, and dipolarisation of newly reconnected field lines, into the implosion idea.

They are separately called “peripheral implosion”, “inflow-type implosion” and

“dipolarisation-type implosion”. The dipolarisation-type implosion is different from

the former two types in that it is caused by enhanced magnetic tension rather than

reduced magnetic pressure, and the energy-releasing core shrinks itself. According to

this generalization and categorization, future study and understanding of implosions

can be clearer and more specific.

Before the research of Chapter , observations usually showed contraction of

loops in a face-on state on the solar disk. This motion was suspected to be a projection

effect as the loops are pushed downward the solar surface by an associated erupting

magnetic structure, rather than a real contraction. In Chapter , by employing an

excellent observation of a flare near the disk center, we find two pieces of evidence
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from observations (loops contracting by a half; and two parallel contracting features),

and a third piece of evidence from NLFFF extrapolations by comparing the states

before and after the flare, which together support the reality of the contracting

motion of the peripheral arcade loops. It is also found that this arcade implosion

is more likely to be caused by the reduction of the underlying filament field in the

erupting process instead of local energy dissipation in the flare invoked by previous

authors. This is because the contraction of the inner arcade loops only happens

before the peak of the impulsive phase. A sequence of events, i.e., the microflare, the

distortion and eruption of the disturbed filament, the peripheral arcade implosion,

and the main flare, prompts us to unite three scenarios for active region magnetic

evolution, namely the metastable eruption model, the implosion conjecture, and the

standard“CSHKP” flare model.

Though the arguments in Chapter  are novel, they are still indirect and it is not

conclusive that the apparent contraction of loops observed face-on must correspond

to implosion. In Chapter , after surveying tens of thousands of solar events, we

selected four with the continuously contracting loops in an almost edge-on state, and

in terms of geometry and dynamics, demonstrate the reality of implosion phenomena

in the global coronal evolution unambiguously for the first time. Together with

previous simulations and associated theories, the observations of these four events

allow us to exclude the explanation proposed by Zuccarello et al. () using the

analog of a vortex flow generated by a central fast flow in hydrodynamic situations.

Instead, the implosion conjecture is still adequate for interpreting these events,

and based on this, we propose different models for the two types of implosions. We

categorize them into these models according to their distinct observational properties

in terms of eruptiveness, dynamic timing, distance and speed. The first type is similar

to the event in Chapter  and is suggested to be eruption-driven implosions, with

the rapid contraction of peripheral loops during the rise stage of the impulsive phase

when the filament erupts and is removed from the core region. The second type is new

and found to be more likely related to the flare, thus called flare-driven implosions

where loop contracts through the entire impulsive phase, reflecting the continuous

magnetic energy conversion in the flare underneath the shrinking loops. Finally, we

also argue that eruption-driven peripheral implosions may not always occur and

could be suppressed when the originally underlying filament is heavily mass-loaded,

because its non-negligible gravity may play an important role in the global dynamic
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evolution, which would make one of the assumptions for the implosion conjecture in

Hudson () fail. This proposal may serve as an alternative explanation for the

rarity of observed implosion behaviours in solar eruption events.

In Section .., we argue that inflow is a special type of implosion. Then in

Chapter , we study one excellent example of this kind and associated reconnection

flows. The favorable location and perspective allow this first comprehensive obser-

vation of reconnection flows in a flare on the solar disk, which include the inflows

from both sides toward the presumed central diffusion region; beneath it retracting

loops as the outflows; cooling plasma settling as the downflows and also the chromo-

spheric evaporation along these loops. We propose that the extended blueshift area

just adjacent to the intense evaporation feature can be associated with two types of

upflows, one along a narrow open field corridor and the other along the expanding

closed arcade field. We argue that the expansion and induced depressurization of

the arcade field can generate an upflow from the coronal base. And the open field

corridor, which may correspond to separatrices or QSLs in the heliosphere, could

create a different upflow via magnetic reconnection with nearby closed field. Making

a distinction between the two upflow components helps solve the long-standing

problem of whether the blueshift-related upflows at the AR boundary propagate

along open or large-scale closed field, and the upflow along the expanding closed

field which is also the inflow field may help alleviate the “electron number prob-

lem” to some extent, as it can provide more particles to the reconnection region or

other acceleration regions. Moreover, the reconnection rates for the inflows at both

sides in this long-duration event are estimated to be in the fast reconnection regime,

compared to the slow Sweet-Parker rate.

. Future Work

Though the implosion conjecture was proposed almost two decades ago, observations

of such field imploding motion are still rare, compared to numerous eruptions and

flares detected, and the understanding of this phenomenon is also far from complete.

The aim of my future work is to study the physical mechanisms of implosions

and intimately related phenomena like disappearance and oscillations of coronal

loops (Figure .). The open issues that have been identified in our previous study

are described as below, which I propose to investigate in the future using advanced
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magnetohydrodynamic simulations successfully developed and applied by Jiang et al.

(a,c), combined with high spatial and temporal resolution extreme ultraviolet

(EUV) imaging from Solar Dynamics Observatory/Atmospheric Imaging Assembly

(SDO/AIA). The answers to these questions will help us understand coronal dynamics

and solar physics in more depth.
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Figure .: (a) Image for the event SOL--T:. Cut  is for measuring the

evolution of the contracting loops. (b) Timeslices for cut , showing the contraction,

oscillation and disappearance of the contracting loops.

I. Does the line-tied magnetic field really contract? Previous authors often

report apparent peripheral coronal loop contractions in a face-on geometry

on the solar disk, accompanied by central filament or arcade eruptions, but

these events are plagued by projection effects so that loop contraction could

be either true implosion or just a change in loop inclination. In Chapter , we

have proven the reality of the contraction nature indirectly from nonlinear

force-free field (NLFFF) extrapolations and arguments from observations in

one favourable case near the disk center, and Chapter  has shown the loop

contractions unambiguously with the loop in an edge-on state. However, there

are still some cases where the loops on the disk exhibit very strange kinetic

motion in terms of their locations and geometry. A more severe situation is that

according to the implosion conjecture, every event involving energy release

should have field imploding signatures; and the observation in Simões et al.
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() even shows a general trend that the more distant the peripheral loop

from the energy releasing core is, the more dramatically in distance and speed

it implodes; however, for some major flares without eruptions on the disk, we

usually do not observe the arcade overlying the flaring core or any associated

implosion signatures, thus the questions that could be addressed using MHD

simulations are: does the invisible overlying arcade in these events actually

implode, and what is its dynamic characteristic? Even if NLFFF extrapolations

may help provide a hint at these problems, the detailed dynamics still cannot

be explored by this method as it only applies to pre- and post-flare equilibrium

states. An MHD simulation, able to capture the coronal evolution, may help

us to further understand loop dynamics and their relationship to the coronal

magnetic energy.

II. What is the physical mechanism causing loop contractions? Though Hudson

() predicted loop contraction in solar eruptions and flares on the basis of

reduction of magnetic pressure, Zuccarello et al. () proposed an alterna-

tive explanation using an analog of vortices created by a central fast flow in

hydrodynamics. They argued that the loop contraction is induced by enhanced

tension caused by compressional Alfvén waves originating from the erupting

field. In Chapter  we have presented EUV imaging observations that cannot

be explained by the scenario of Zuccarello et al. (). However, what we

lack now is further and more robust evidence from exact physical quantities

of the evolving magnetic field, which unfortunately cannot be obtained by

either observations or NLFFF extrapolations up to now. And also these two

approaches are not enough to reveal the detailed magnetic reconnection process

and corresponding energy transport concealed in the invisible magnetic field,

thus are unable to prove the model for the new type of implosions which is

suggested to be related to flares without eruptions in Chapter .

III. Why do the contracting loops disappear and where are they going? Very

interestingly, the imploding loops in most of the reported events disappear

at the observing wavelength at the end (e.g., Figure .). So far we have not

understood the underlying physics of this phenomenon. What we can imagine

is plasma cooling, heating, or depletion (draining down to the chromosphere

or diffusion into the flaring region). In one particular case, we found possible
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evidence of heating, which might be caused by the betatron mechanism in a

collapsing magnetic trap. According to this argument, we would expect that

some of the invisible overlying arcade before the flare in some events could be

heated to emit at the present observing passband during its implosion. However,

up to now we have not noticed such phenomena. Thus, the physical mechanism

behind the disappearance of these imploding loops is still mysterious. And

because of the disappearance, we cannot track their subsequent evolution in

observation. Thus another question to address using MHD simulations is:

will they stay at the positions when they disappear, or implode further, or

even inflate instead? Especially, what would happen around the interface

between the imploding loops and the flaring core? And would the imploding

loops provide extra plasma to the flaring region to be heated, or provide extra

magnetic field to diffuse into the flaring core to be dissipated? We ask this

because in some cases in Chapters  and , we noted a second major peak in

GOES soft X-ray flux just after the contracting loops disappear.

IV. What is the mechanism driving loop oscillations and will the oscillation af-

fect the flaring core? In some of the cases when a filament eruption is involved,

we observed peripheral loops oscillating during or after their contraction (e.g.,

Figure ., and Sun et al. ; Simões et al. ). Russell et al. () pro-

posed a model that considers a one-loop system as a simple harmonic oscillator,

showing that the contracting and oscillating behaviours can be reproduced

in a general way by the change in loop equilibrium position due to magnetic

energy release underneath. However, inspired by the simulation of Zuccarello

et al. () and combining it with the idea of our work in Chapter , we

notice that around the interface between the expanding and contracting fields

in the periphery, there may exist a vortex center that could also generate loop

oscillations. And Liu & Wang () suggested that the interaction between

the contracting loop and surrounding ones (one of the reasons we speculate is

due to magnetic pressure gradient) may also make them oscillate (MHD waves).

Thus, the character of the real physics behind this phenomenon and whether

they can act together to produce the observations are still unknown. A further

question is: will this field oscillation propagate into the flaring core region and

modulate the physical conditions for reconnection there as proposed by Simões

et al. (, ), which serves as an alternative way to explain flare SXR and
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radio pulsations?

To solve these problems where observations by present instruments and NLFFF

extrapolations for pre- and post-flare stages are on their own not adequate, the

state-of-the-art data-driven magnetohydrodynamic simulation method “D MHD

AR evolution (DARE) model” developed by Jiang et al. (a,c) provides us with

an unprecedented approach, especially in combination with the newly released

high-cadence (up to s vs previous min) photospheric magnetograms (Sun et al.

). We propose to use the advanced method to study the event in Chapter ,

an event with strange geometry and motion with respect to its location in our

archive, and a major flare on the disk without an eruption, which would reveal

the detailed magnetohydrodynamic evolution information, e.g., changes in magnetic

field quantities like magnetic pressure and tension, magnetic field redistribution

and reconfiguration, corresponding magnetic field disturbance propagation and

energy transport, and variation in plasma velocity field, thus able to help resolve

Problems I, II and III. The simulations of the events in Sun et al. () and Simões

et al. (), and the first event in Chapter  would be excellent opportunities for

validation of the method in reproducing realistic oscillations in the corona, and may

give us helpful insights into Problem IV. We expect that the investigations using

the advanced simulation method on this topic in the future can provide deeper and

more comprehensive understanding on solar coronal dynamics. The ideal set of

instruments with higher sensitivity across a wider temperature range than present,

covering the full Sun with D stereoscopic view, is also wished for in future solar

missions.
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