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ABSTRACT

Nicotinic acetylcholine receptors (nACliRs) are ligand-gated ion channels that have 

been implicated in a variety of brain functions as well as pathological states. In the 

liippocampus, nACliRs appear to modulate both excitatory and inliibitory circuits. 

The numerous subunits that make up nAChRs result in a gr eat diversity of functional 

receptors, equipping them with different pharmacological and biophysical properties. 

It has recently been foimd that certain forms of epilepsy may arise from mutation in 

the genes responsible for encoding of riACliR subunits. Moreover, many reports have 

shown that high doses o f nicotine induce seizures in animals, which are blocked by 

different nACliR antagonists. However, the mechanism underling the role of nACliRs 

in patterning epileptiform activity is poorly understood. This project aims to establish 

the role that nAChRs may play in experimental models of epilepsy and to assess 

whether pharmacological agents acting at these receptors might represent a novel 

avenue for developing future anticonvulsants.

To assess the possible modulatory influence of iiACliRs on epileptifomi activity, a 

range o f nAChR ligands were applied during experimentally induced epileptifoim 

activity in hippocampal slices prepared from wistar rats (2-6 weeks). Extracellular 

recordings were obtained in the stratum pyramidale of the area CA3 (n==280). Initial 

experiments investigated the effects o f nACliR ligands on 4-aminopyridine (4AP)~ 

induced epileptiform activity, Bath application of 4AP (10-50 pM) resulted in the 

development of spontaneous epileptiform bursting activity in area CA3 (n=250 of 

280) occuiTing regularly at a frequency of 0.4 ± 0.02Hz, Subsequent co-application of 

the selective nAChR agonists dimethylphenylpiperazinium iodide (DMPP; 0.3-300 

pM, n=31 of 37), choline (0.3-10 inM, n=23 of 33) and lobeline (3-30 pM, n=8 of 

10) produced sustained and concentration-dependent increases in burst frequency 

with maximal frequency potentiation of 37 ± 5%, 27 ± 5% and 24 ± 11%,
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respectively. The increase in burst frequency induced by nAChR activation was 

accompanied by a decrease in the duration of individual bm'st events. These effects 

were reversed upon subsequent washout of nAChR agonist or upon co-application of 

selective nAChR antagonists including dihydro-beta-erytliroidine (DHBE, 10-30 pM, 

11=6 of 8), alpha-bungarotoxin (a-Bgt, 100 nM, n=8) and mecamylamine (50-200 pM, 

11=7 of 9).

To assess whether iiAChR activation has a modulatory influence over epileptifoim 

activities more generally we examined the action of DMPP on two additional 

pharmacological paradigms. Following bath application of bicuculline (20 pM) or by 

incubating slices in a low magnesium medium, spontaneous intermittent events 

occurred at a mean hequency of 0.146 ± 0.02Hz and 0.165 ± 0.02Hz, respectively. 

Subsequent co-application of DMPP (10-30 pM, n=24) produced a significant 

increase in both bicuculline and low magnesiiun-induced burst frequency with a 

mean maximal frequency potentiation of 248 ± 76% and 110 ± 37%, respectively. 

These effects were reversed upon subsequent washout of DMPP or upon co

application of DHpE (20-40 pM, n=7 o f 10). These results suggest that nAChRs may 

have a general role in regulating a range of pathological neiuonal discharges.

The work presented in the rest of the thesis was focused to establish the mechanisms 

by which nAChRs mediate their pro-epileptogenic actions. To identify possible 

excitatory circuits involved in nACliRs-induced pro-epileptogenic effects, we 

investigated the effect o f DMPP on evoked glutamatergic synaptic transmission in 

area CA3. Bath application of DMPP (30 pM) resulted in a sustained and reversible 

enhancement of glutamate afferent evoked fEPSP amplitude by 15.7 ±5.1%  (mean ± 

SEM; f =0.007, n=8 of 12) suggesting that glutamatergic tiansmission is enlianced by 

iiAChR activation in the CA3 region of the hippocampus. In a further set of 

experiments we investigated the action of DMPP on epileptiform activity when 

glutamate receptors were blocked to uncover possible contribution of glutamate 

receptors in the pro-epileptogenic action of nAChRs. In these experiments application
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of NMDA receptor blocker CGP40116 (50pM) resulted in a depression of burst 

frequency but did not affect the ability of subsequent DMPP application to potentiate 

epileptifonn burst frequency. On the other hand, application of the AMPA/Kainate 

receptor antagonist NBQX (2 pM) completely abolished epileptiform activity 

suggesting that these receptors are crucial for supporting such activity. Moreover, 

subsequent co-application of DMPP failed to reintroduce extracellular field activity. 

However, slices preincubated with a lower concentration of NBQX (0.2 pM), which 

results in a partial blockade of AMPA/Kainate receptor-mediated synaptic 

transmission, were still able to exhibit burst fi’equency potentiation upon DMPP 

application. These results suggest that NMDA receptor activation is not necessary in 

the DMPP-induced burst frequency potentiation and when these receptors are blocked 

DMPP can potentiate epileptiform activity through activation of AMPA/Kainate 

receptor-mediated circuitry.

Functional nicotinic receptor-mediated responses are most prominently observed in 

hippocampal inteineurones and thus it is likely that the pro-epileptogenic action of 

nAChRs is mediated in part tlnough GABAergic circuits. However, such an action of 

nAChRs appears to be independent of fast GABAergic transmission since it is 

resistant to the blockade of GABAa receptors. To identify possible contribution of 

the GAB An receptor in the nAChR-induced effect a set o f experiments was carried 

out in the presence of GABAb receptor antagonist CGP55845A. Slices pre-incubated 

with IpM  CGP55845A were not able to exhibit burst frequency potentiation o f 4AP- 

induced epileptiform activity upon DMPP application (-8.3 ± 7%, n = ll) . Similarly, 

in the presence of IpM  CGP55845A, slices exhibited negligible burst frequency 

potentiation of bicuculline-induced (20pM) epileptiform activity upon DMPP 

application (27.6 ± 18%, n=9), in comparison to those observed in the absence of 

CGP55845A (248 ± 76 %, n=14). These data suggests that nAChRs may regulate the 

excitability of hippocampal networks through GABAb receptor-mediated 

mechanisms.



In conclusion, this study demonsti'ates that nAChRs regulate epileptiform discharges 

generated by a number of different pharmacological manipulations. The cellular 

mechanisms generating each pattern of epileptiform activity are quite distinct 

involving complex interactions between synaptic and non-synaptic elements of 

different neuronal circuits. Since iiACliRs produce a similar phenotype of modulation 

in each epileptifomi model it is possible that iiACliRs target a common cellular 

mechanism that is prevalent in each model and which mediates the increase in buist 

frequency in these models.
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CHAPTER 1 

GENERAL INTRODUCTION

1.1 Epilepsy

Epilepsy is a very common neurological disease which affects more than 0.5% of 

the world’s population (Kaneko et ah, 2002). Epilepsy has been defined as an 

“episodic disorder o f the nervous system arising from the excessively 

synchronous and sustained discharge o f a group o f neurones”(Jackson, 1890). 

During epilepsy, brain function is interrupted by usually transient episodes of 

abnormal neuronal activity. The term epilepsy refers to recurrent and numerous 

episodes o f seizures with a sudden and unpredictable onset. Seizures are 

characterised by excessive bursts o f activity o f CNS neurones and are not 

necessarily epileptic. At the level o f the single neurone, epileptic discharges are 

associated with very rapid bursts o f action potentials, which in turn are associated 

with abrupt depolarisations o f the membrane potential (Lockard, 1980). 

Epilepsies may be caused by many factors: trauma, cerebrovascular disease, 

tumours, infection, toxic states and genetically inherited factors, e.g., Autosomal 

Dominant Nocturnal Frontal Lobe Epilepsy (ADNFLE). In about half o f the 

patients, however no specific causative factors are found (idiopathic epilepsy) and 

the underlying cellular mechanisms are not well understood (Sandercock and 

Mumford, 1996).

1.1.1 Forms of epilepsy

Epilepsies come in many forms and display a variety o f symptoms, which range 

from vacant stares in absence seizures, to loss o f consciousness accompanied by
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muscle spasm and thence jerking of the limbs which is characteristics of tonic- 

clonic seizures. Seizures are initially characterised into two groups depending on 

whether the abnormal discharge remains localised in a brain region, partial 

seizures, or whether it spreads rapidly, generalised seizures.

1.1.2 Pathophysiology

Two sets o f changes can determine the epileptogenic properties o f neuronal 

tissues: hyperexcitahility and hypersynclrrony. Abnormal neuronal excitability is 

thought to occur as a result o f disruption o f the depolarisation and repolarisation 

mechanisms o f the cell, which is teimed the "excitability o f neuronal tissue". 

Aberrant neuronal networks that develop abnormal synchronisation o f  a group of 

neurones can result in the development and propagation o f  an epileptic seizure 

which is termed the "synclii'onisation o f neuronal tissue" (Engel, 1989).

The excitability o f individual neurones is affected by:

• Cell membrane properties (selective ion permeability and ionic pumps).

• Intracellular processes (hitracellular Ca^^ changes, receptor functions, 

transmitter release and ionic channels).

• Structural features o f neuronal elements (the cerebral neocortex and the 

hippocampus are particularly prone to the generation o f epilepsy).

• Intemeuronal connections (release o f neurotransmitter into the synaptic cleft 

and the postsynaptic membrane, resulting in excitatory or inliibitory 

postsynaptic potentials).

A hyperexcitability o f neurones that results in random firing o f cells, by itself, 

may not lead to propagation o f an epileptic seizure. Indeed, patterns o f behaviour 

require a certain degree o f synclironisation o f firing in a population o f neurones 

for normal brain function. It is only when this synchronisation becomes excessive 

or uncontrolled that epileptic seizure originates.



Chapter 1

In general seizines can be generated in response to a loss o f balance between 

excitatory and inhibitory influences.

1,1.3 Diagnosis

Electroencephalogram (EEG) recording is commonly used in the investigation 

and diagnosis o f epilepsies since different forms o f epilepsy exhibit distinct EEG 

signatines. Bursts o f action potentials and synchronisation ai*e particularly 

prominent during seizures, but they can also be seen at other times, as the “inter- 

ictal EEG spike” which is often used as a diagnostic for patients likely to suffer 

epilepsy (Jefferys, 1993).

hiterictal discharges are electrical events occurring in vivo between seizures 

(Dichter and Spencer, 1969), which are not especially troublesome in patients but 

form a useful diagnostic indicator. Ictal discharges refer to the patterns o f 

electrical activity that occur during a seizure. The extent o f depolarisation and 

speed of activity is prolonged and more diverse when compared to interictal 

events thus producing a full blown seizure. Interictal bursts are approximately 

100-200ms in duration and are localised to restricted brain regions, whereas ictal 

discharges last for seconds to minutes and spread to large regions o f the brain.

Interictal-like and ictal-like discharges can also occur in vitro in the slice 

preparation (Schwartzkroin and Prince, 1978). Interictal spikes in the slice 

preparation are similar to those occurring in vivo in their spontaneous periodic 

occurrence, extracellular field potential, and intracellular bursting, which is 

coiTelated with the extracellularly recorded event (Traub and Wong, 1982).

Electrophysiological recordings fi*om hippocampal slices and computer simulation 

data have revealed that key cellular and synaptic properties in the generation o f 

interictal bursts are intrinsic burst firing and activation o f ionotropic glutamate 

receptors at recurrent synapses between pyi*amidal cells (Miles et ah, 1984; Traub 

and Wong, 1982; Wong et al., 1986). In contrast, the critical factors that
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precipitate seizures and that are involved in the maintenance o f ictal discharges 

remain to he elucidated (Lee et ah, 2002).

The background o f the spontaneous epileptiform process is a synchronised 

activity o f all neurones in which a paroxysmal depolarisation shift (PDS) develops 

(Prince, 1968). PDS is a period of spontaneous cellular depolarisation on top of 

which the cell generally displays spiking activity. PDS represents the cellular 

correlate o f inteietal spikes seen on the electroencephalogram of epileptic patients 

(Matsmuoto and Marsan, 1964) and probably represents the huge EPSP resulting 

in synchronous activation of recurrent axonal collaterals (Ayala et ah, 1973).

1.1.4 Current therapy

Many classes o f pharmacological agents are ciuTently available to control 

epilepsy. For most epilepsy patients, drug intervention is successful in preventing 

seizures almost continually. Most anti epileptic drugs (AEDs) are thought to 

operate tlirough two main mechanisms (Jefferys, 1994): (1) suppressing 

membrane excitability through ion channel blockade, with selectivity either for 

sodium (e.g. phenytoin and valproate), or calcium (e.g. ethosuximide), or by (2) 

enhancing GABA-mediated synaptic inhibition (e.g. the benzodiazepines and 

barbiturates). Also included in this second class o f drugs interacting with the 

GABAergic system there is a range o f  newer AEDs including vigabatrin (an 

inliibitor o f GABA transaminase), gabapentine (a GAB A analogue) and tiagabine 

(a GABA uptake blocker). Other new drugs such as topiramate appear to have 

multiple mechanisms o f action including Na"  ̂channel blockade, enhancing GABA 

actions, blocking AMP A receptors and inliibiting carbonic anliydrase. Moreover, 

there is a new group o f potential anticonvulsants that can reduce excitatory 

glutamatergic neurotransmission (e.g. MK-801 and phencyclidine) but are not 

used clinically partially due to adverse psychological effects associated with their 

use. Other compounds have yet unspecified or multiple actions.

Seizures are well controlled with a single anticonvulsant in most patients with 

epilepsy. However, approximately 20% of patients with primary generalised
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epilepsy and 35% o f patients with focal epilepsy have medically intractable 

seizures (Reutens and Berkovic, 1995; Spencer et al., 1981). Clearly there remains 

the need to develop new and more effective AEDs. For this, the pharmaceutic 

industry and academic labs are trying towards investigating novel targets and 

transmitter systems in order to identify new AEDs. The focus o f the current 

research was to identify the possible role o f acetylcholine receptors in 

epileptogenesis. Indeed, there is some evidence that the therapeutic action o f some 

novel and some classical AEDs, is in part due to their effects on the cholinergic 

system (Loscher et ah, 2003). Identifying new therapeutic agents focusing on 

these neurotransmitter systems may suggest novel and improved strategies in 

controlling epileptiform activities based upon pharmacological targeting o f 

defined microcircuits as opposed to generalised suppression o f excitability or 

enhanced inliibition.

1.2 Neuronal receptors and neurotransmitter systems

1.2.1 The cholinergic system

1.2.1.1 Acetylcholine

Acetylcholine (ACh) is a major neurotransmitter in the central and peripheral 

nervous systems (Reviewed by Caulfield, 1993). Acetylcholine was first 

described back in 1906 (Hunt and Taveau, 1906) and was the first substance 

shown to be a neurotransmitter (Dale, 1934; Dale, 1938; Dale et ah, 1936). 

Chemically it is composed o f choline and an acetyl group, synthesised in the axon 

terminal by the enzyme choline acetyltransferase (CliAT) where it is subsequently 

taken up into vesicles for storage and release. It is released from presynaptic 

tenninals to act on postsynaptic acetylcholine receptors generating an excitatory 

postsynaptic response that can be detected as excitatory voltage (EPSP) or current
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(EPSC) deflections. The response is tenninated when acetylcholine is broken 

down by the enzyme acetylcholinesterase (AChE) back to choline and acetate.

1.2.1.2 Muscarinic acetylcholine receptors (mAChRs)

inACliRs play key roles in regulating the activity o f many important fimctions o f 

the central and peripheral nervous system. Central niACliRs are involved in 

regulating an extraordinarily large number o f cognitive, behavioural, sensory, 

motor, and autonomic functions (Eglen et al., 1999; Felder et al., 2000). Reduced 

or increased signalling tlnough distinct mAChR subtypes has been implicated in 

the pathophysiology o f several major diseases o f the CNS, including Alzheimer's 

and Parkinson's disease, depression, schizophrenia, and epilepsy (Eglen et al., 

1999; Felder et al., 2000).

mACliRs are members o f the superfamily o f G protein-coupled receptors and act 

indirectly tlnough guanine nucleotide-binding proteins. Agonist binding triggers a 

conformational change, which leads to the activation o f specific G-proteins. The 

activated G-protein then stimulates or inhibits one o f many effector systems. The 

ultimate outcome o f agonist binding depends on the type o f G-protein activated 

and the effector system targeted. Due to this additional step o f G-protein 

activation mAChR mediate slower neurotransmission than the nicotinic ligand- 

gated ion chamiels.

The muscarinic actions o f ACh are mediated by five molecularly distinct mACliR 

subtypes (M1-M5) (Caulfield, 1993; Caulfield and Birdsall, 1998), which are 

encoded by five distinct inACliR genes (Bomier et al,, 1987; Bonner et al., 1988; 

ICubo et al., 1986). Based on their ability to activate different classes of 

heterotrimeric G proteins, the five mAChR subtypes can be subdivided into two 

major functional classes. The M2 and M 4 receptors selectively couple to G 

proteins o f the Gj family, which leads to the inhibition o f the enzyme Adenylate 

Cyclase and a decrease o f the intracellular messenger cyclic adenosine 5 ’ 

monophosphate (cAMP). The Mi, M3, and M5 receptors selectively couple to G
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proteins o f the Gq class (Caulfield, 1993; Caulfield and Birdsall, 1998) which 

activates the enzyme Phospholipase C (PLC), leads to release the intracellular 

messengers inositol triphosphate (IP3) and DAG.

mAChR proteins have differential cellular distributions within individual regions 

o f the brain. In the hippocampus M l and M3 receptors are expressed in pyramidal 

neurones and M2 and M4 receptors expressed in non-pyramidal neurones (Levey 

et al., 1995).

mACliR activation produces a variety o f responses in CNS depend on the circuit 

involved, the neurotransmitter concentration (Segal, 1991), and the location and 

the subtype o f receptor. Muscarinic stimulation causes a sustained depolarisation 

associated with an increased input resistance. These effects are attributed to a 

cholinergic-induced depression o f four potassium conductances, including the M- 

cuiTent (7m) (Halliwell and Adams, 1982; Madison et al., 1987), a fast inactivating 

current (7a ) (Nakajima et ah, 1986), a slow Ca^^-activated current (7a h p ) (Benardo 

and Prince, 1982; Madison et al., 1987), and a backgiound leak current (7l e a k ) 

(Madison et al., 1987). Voltage-dependent Câ "** channels are also modulated by 

cholinergic stimulation (Misgeld et al., 1986; Toselli et al., 1989).

1.2.1.3 Nicotinic acetylcholine receptors (nAChRs)

General

Nicotinic acetylcholine receptors are cationic channels whose opening is 

controlled hy acetylcholine and nicotinic receptor agonists. They belong to the 

large family o f  ligand-gated ion channels that also includes the GABAa, glycine, 

and 5-HT3 type receptors. Nicotinic receptors are key molecules in cholinergic 

transmission at the neuromuscular junction o f striated muscles, at the synapse in 

the autonomous peripheral ganglia, and in several brain areas (Changeux and 

Edelstein, 1998; Clementi et al., 2000; Gotti et al., 1997; Sargent, 1993). Our
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Icnowledge o f neuronal nicotinic receptors started in 1889 with the publication of 

the famous paper hy Langley and Dickinson, who first reported that nicotine 

could block neuronal transmission in the superior cervical ganglion. The concept 

o f the presence o f nicotinic receptors in central nervous system developed in 

subsequent papers published hy Langley in 1905-1906 (Langley, 1905). Until 

only a few years ago, laiowledge o f neuronal nicotinic receptors remained 

confined to the ganglia and more recently neuronal nicotinic receptors have been 

investigated systematically. Although, much is known ahout nACliRs in 

ganglionic transmission, neuromuscular jimction and peripheral autonomic system 

their real function in the brain are still unclear (Reviewed by Clementi et ah, 

2000).

Nicotinic acetylcholine receptors are distributed widely in human brain and 

ganglia and foim a family of receptors with a variety o f different subtypes, each of 

which has a specific physiology and pharmacology. Recent progress in 

neurochemical and pharmacological methods indicates that the major effect o f 

nAChRs is often slow neromodulation rather than processing o f fast synaptic 

transmission (Reviewed hy Vizi and Lendvai, 1999).

Structure o f  neuronal nicotinic receptors

The receptor and associated ion channel consists of five subunits ( a , (3,5,y and s), 

all o f which arrange a large structure inserted into the membrane and suiTOund a 

central aqueous channel (Figure 1.1-1.2). nACliRs exist as a variety o f subtypes 

due to the diversity o f genes encoding acetylcholine nicotinic receptor subunits 

(Clementi et al., 2000). Earlier binding studies have detected only two subtypes in 

the hrain: (1) a low affinity receptor labelled by a-bungarotoxine, and (2) a high 

affinity receptor labelled by nicotine or acetylcholine (Clarke et al., 1985; Marks 

et al., 1986). However, sixteen iiAChR subunit genes have so far been cloned ( a l  

to a9 , p i to P4, 0,y and s) (Le Novere and Changeux, 1995). The subunits have 

several common structural features, a large extracellular N-terminal domain, four 

putative transmembrane sequences (M l -  M4), a short C-tenninal extracellular



A B

HgN
HOOC

Uyand binding a le

I

ExtraceluiarcxxxxxxX

o o o o o o r 4
C>1opkiŝ T)ic •
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Figure 1.1. The structure of neuronal nicotinic acetylcholine receptors (nAChRs). 
Diagram adapted from Laviolette and Van der kooy 2004. A. Each nAChR is 
composed of five subunits arranged in either homomeric or heteromeric complexes of 
a or A subunit arrangements. Different subunit combinations confer unique functional 
properties to the ubiquitously distributed nAChRs throughout the brain. B. The 
schematic shows the transmembrane topology of a single nAChR subunit. The 
transmembrane domains are labelled M1-M4. The larger amino-terminal domain 
contains the acetylcholine-binding site, whereas the M2 domain determines the ionic 
selectivity of the receptor and faces the inside of the channel pore. C. nAChRs are 
located on axons, presynaptic terminals and on all postsynaptic sites (dendrites and 
soma). This widespread localization confers the receptor with a wide range of 
functions, influencing neuronal signalling at the pre- and postsynaptic levels.
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sequence, and an intracellular loop o f varying length, depending on the subunit, 

joining the third and fourth transmembrane domain which is very important for 

the regulation of receptor function (Reviewed by Clementi et ah, 2000; Laviolette 

and van der Kooy, 2004) ( Figure L I B  and 1.2 B).

Nicotinic receptors can be subdivided into tlnee sub-families according to the 

amino acid sequences o f the subunits (Figure 1.2 C): The first subfamily consists 

o f heteromeric muscle nicotinic acetylcholine receptors which have a pentameric 

subunit composition ( a l ) 2p iy l81 in the foetal form and ( a l ) 2P ls l§ l in  the mature 

form. The second one consists o f  heteromeric neuronal acetylcholine nicotinic 

receptors, which do not bind a-bungarotoxin. These neuronal nACliRs have a 

pentameric structure formed fi'om combination o f a 2 ,a 3 ,a 4 ,a 6  with either p2 or 

P4 subunits and sometimes also with a5  or p3 subunits. The last subfamily 

consists o f neuronal homoligomeric acetylcholine nicotinic receptors that are 

formed by the a7  or a 8 or a 9  subunits and bind a-bungarotoxin.

The a  subunits participate in the formation o f agonist binding sites and the p 

subunits are considered stmctural subunits (Gotti et al., 1997). In the heteromeric 

muscle and neuronal iiACliRs, the acetylcholine binding site is located in the large 

extracellular N-term inal domain, at the interface between the a  and non-a subunit 

(Clementi et al., 2000). The homoligomeric a7  or a 8 receptors have five identical 

acetylcholine binding sites per receptor molecule, one in each subunit (Changeux 

and Edelstein, 1998). As indicated earlier, a7 ,a8  and a9  are the subunits that can 

form homomeric receptors, whereas a 2 ,a 3 ,a 4  and a 6 always need to be co

expressed with p2 or p4 in order to form functional channels.

Receptor distribution

N icotinic receptors are distributed widely in human brain and ganglia and are key 

molecules in cholinergic transmission at the neuromuscular junction o f striated 

muscles, at the synapse in the autonomous peripheral ganglia and in several brain



Side view

N

©

ACh biitdmg 
siU‘

B
extracchutar

«
intracellular

Top view

Figure 1.2. Subunit organization and ligand binding loops for nicotinic receptors. 
Diagram adapted from clementi et al, 2000, original drawing by Changeux and 
Edelestein, 1998. (A) Vertical section of the putative transmembrane organisation 
of the muscle nicotinic acetylcholine receptor. The black areas indicate the 
acetylcholine binding sites and rings the charged areas that control the channel 
permeability. (B) Putative transmembrane organisation of the nicotinic 
acetylcholine receptor subunit. (0) Subunit arrangement of muscle-type receptors. 
Two agonist binding sites are indicated by the dashed circles. (D) Subunit 
arrangement of heteropentameric neuronal receptors with 2 or 3 subunit types. 
Two agonist binding sites are indicated by the dashed circles. The a in quotation 
marks indicates that, unlike other a subunits, o5 may not directly contribute to 
agonist binding. (E) Subunit arrangement of homopentameric receptors. Agonist 
binding sites are indicated by the dashed circles; all five are equivalent, but one is 
enlarged to show the contributions of loops A-F.
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areas (Sargent, 1993). In the CNS, they are mainly located in various cortical 

areas, the periacqueductal gi'ay matter, the basal ganglia, the thalamus, the 

hippocampus, the cerebellum and the retina (Reviewed by Clementi et a l ,  2000). 

Although the hippocampus contains a3 , a4 , a5 , a7 , (32, (33 and (34 subunits 

(Jones et al., 1999), tlu'ee subtypes o f nACliRs have been shown to be present on 

the most hippocampal neurones; (1) an a l  bearing nACliR that gives rise to fast- 

desensitising, a~bungarotoxin-sensitive nicotinic cuirents (named as type lA  

current), (2) an a4(32-containing nACliR that subserves slowly desensitising, 

DHBE-sensitive nicotinic currents (named as type II current), and (3) an a3p4- 

bearing iiAChR that accounts for very slowly desensitising, mecamylamine- 

sensitive nicotinic currents (named as type III current) (Albuquerque et a l ,  1997; 

Albuquerque et a l ,  1995; Alkondon and Albuquerque, 1993).

Hippocampal nAChRs are expressed on GABAergic inhibitory intemeurones 

(Alkondon et a l ,  1997; Frazier et a l , 1998a; Frazier et a l ,  1998b; Freedman et a l, 

1993; Freund and Buzsaki, 1996; Jones and Yakel, 1997; McQuiston and 

Madison, 1999b), on the excitatory glutamatergic pyramidal cells (Albuquerque et 

a l ,  1997; Alkondon et a l ,  1997; Ji et a l ,  2001) and also on the granule neurones, 

so both inhibitory and excitatory synapses are directly modulated by nAChR 

activity. Nicotinic receptors do not only exist on neuronal cell bodies and 

dendrites but are also located on axon term inals and involved in modulation o f 

multiple transmitter releases (W ilkie et a l ,  1996; Wonnacott et a l ,  1989). 

Receptors in the presynaptic localisation can function as synaptic or non-synaptic 

receptors. The tenn o f preterm inal receptors has been assigned to nonsynaptic 

receptors (Wonnacott, 1997). Postsynaptic receptors may also be localised in 

synaptic and non-synaptic areas o f the neurone. However, the postsynaptic 

responses after activation o f these receptors have to be summed at the axon 

tenninal to prompt action potential.

1 0
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Receptor functions

Although much is Imown about the role o f nAChRs in ganglionic transmission 

and control the function o f the peripheral autonomic system, their true Rinctions 

in the brain are still unclear. They are known to be involved in various complex 

cognitive functions, such as attention, learning, memory, control the locomotor 

activity, pain perception and body temperature regulation (Reviewed by Gotti et 

ah, 1997). The majority o f these effects are due to the presynaptic nicotinic 

receptors that modulate the release o f a number o f neurotransmitters (Womiacott,

1997). However, postsynaptic nicotinic receptors also play important roles in 

controlling o f ganglionic transmission and fast ACh-mediated synaptic 

transmission as reported in the hippocampus and in sensory cortex (Reviewed by 

Clementi et ah, 2000).

i

Put in the simplest terms, ACh binds iiACliRs and ion chamiel opens for several

milliseconds. Then the receptor/channel closes again to the initial state or enters

an inactivated phase that is unresponsive to ACh or other agonists (Dani, 2000).
.

The speed o f activation, the intensity o f the depolarisation, the size o f the calcium 

signal, the rate o f desensitisation and recovery and the pharmacology o f the ACh 

response w ill all depend on the nACliRs subunit composition as well as other 

local factors (Reviewed by Alkondon and Albuquerque, 2004; Dani, 2000).

Different receptor subtypes are involved in different neurone functions. For 

example, the (32 subtype is important in the control o f presynaptic GABA release
■

(Lu et ah, 1998) where as dopamine release from brain dopaminergic neurones is 

partially controlled by an a4-containing subtype (Le Novere and Changeux,

1995). It is also reported that the release o f glutamate from glutamatergic inputs to 

the ventral lateral geniculate nucleus in chick brain slices is mainly controlled by 

an a7-containing subtype (Guo et ah, 1998) while in the hippocampal CAl region 

an a3(34 subtype contributed to the modulation of glutamate release onto CAl 

stratum radiatum  intemeurones (Alkondon and Albuquerque, 2004; Alkondon et 

ah, 2003). The presence o f the a7  subunit greatly increase Ca2+ permeability 

(Seguela et ah, 1993) and thus may be important to trigger intracellular second

11

::ÿ
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messenger systems (Chiodini et al., 1999). Moreover, nicotine and also a novel 

nicotinic agonist, 2,4-dimethoxybenzylidene anabaseine (DMXB), possibly via 

the a l  subtype, can induce long-term potentiation in the hippocampus in a 

micromolar concentration range, possibly due to the high Ca^^ permeability o f the 

a l  subunit (Hunter et ah, 1994; Mann and Greenfield, 2003).

In the cerebral cortex and in the hippocampus, cholinergic afferents project in a 

diffuse manner (Mesulam et ah, 1983; Schafer et al., 1998; Woolf, 1991). 

However, in both regions, unlike the glutamatergic and GABAergic afferents, 

cholinergic fibres form direct synaptic contacts with only a minor fraction o f the 

total number o f tenninals present (Mrzljak et ah, 1995; Umbriaco et ah, 1995). 

These anatomical data are consistent with the physiological observations that a 

direct nicotinic synaptic transmission has only been demonstrated in a few brain 

regions (Alkondon et ah, 1998; Frazier et ah, 1998a; Frazier et ah, 1998b). In the 

hippocampus, fast nicotinic transmission has been found only onto GABAergic 

intemeurones (Alkondon et ah, 1997; Frazier et ah, 1998a) and not glutamatergic 

pyramidal cells (Frazier et al., 1998b; Jones and Yakel, 1997), but in developing 

visual cortex, stimulation has evoked nAChR-mediated synaptic responses in both 

pyramidal cells and intemeurones (Roerig et al., 1997). Because nicotinic 

synapses are o f low density and difficult to detect experimentally, fast nicotinic 

transmission may be present at low densities in more neuronal area than the few 

that have been reported (Dani, 2000). Where it has been reported, fast nAChR- 

mediated transmission is a minor component o f the excitatory input, which is 

overwhelm ingly glutamatergic. Therefore, direct nicotinic excitation o f a neurone 

usually dose not predominate, but it could influence the excitability o f a group o f 

neurones ow ing to the broad cholinergic projections into area (Dani, 2000).

nAChR activation is reported to produce a variety o f responses in hippocampal 

intemeurones which depend on the type and the location o f intemeurones and also 

nAChR subtypes expressed (Reviewed by Alkondon and Albuquerque, 2004). 

The majority o f intemeurones show a fast depolarisation mediated by a l  subunit 

containing receptors (Frazier et al., 1998a; McQuiston and Madison, 1999b).
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However McQuiston and Madison also reported a subset o f intemeurones that 

showed a fast depolarisation in combination with a slower response. Alkondon 

(1997) reported similar response in some intemeurones but also intemeurones 

which displayed only a slow response probably due to the activation of a4[32 

nACliR. Three different responses modulated by at least tliree distinct iiACliR 

subtypes have also been reported in a single type o f interneurone (e.g. CAl 

stratum radiatum  intemeurone) (Alkondon and Albuquerque, 2004). 

Intemeurones showing no nicotinic response at all have also been obseived 

(McQuiston and Madison, 1999b).

It is possible that the difficulty in detecting fast excitatory nicotinic synapses in 

the brain reflect the participation of neuronal nAChRs in modulation rather than 

the mediation o f synaptic transmission per se (Lapchak et al., 1989; Lena et al., 

1993; McGehee et al., 1995; McMahon et a l ,  1994). nAChRs at presynaptic sites 

can modulate synaptic transmission by regulating the extent o f transmitter release 

(see below).

nAChRs also have roles during development. The density o f nAChRs varies 

during the course o f development. In addition, short-tenn and long-term 

regulation o f nACliR number and function is likely to be important for modulating 

synaptic efficacy. These regulatory and developmental factors are particularly 

important when considering the development o f epilepsy. Alterations in nAChRs 

could exert their effects directly and immediately to alter excitability, or there 

could be indirect and /or developmental consequences o f mutations in nAChR 

genes that subsequently produce the epilepsy (Dani, 2000).

Interaction between nAChRs and other neuronal transmitters

An important function o f neuronal nicotinic acetylcholine receptors in the CNS 

appears to be their involvement in neurotransmitter release (Womiacott, 1990). 

Strong neurochem ical evidence indicates that presynaptic nAChRs are involved in 

the enhanced release o f a number of transmitters, including norepineplirine,
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dopamine, serotonin, acetylcholine, GABA and glutamate (Gray et ah, 1996; 

Lapchak et ah, 1989; Lena et ah, 1993; McGehee et ah, 1995; Vidal and 

Changeux, 1993). It is hypothesised that activation of calcium-penneable 

presynaptic nicotinic receptors enliances transmission directly by elevating 

presynaptic calcium levels (Gray et ah, 1996). According to Vizi and Lendvai 

(1999), interacellular mechanisms leading to release o f transmitters in response to 

nAChRs stimulation are initiated by axonal firing, or directly induce Na"  ̂and Ca^^ 

influx followed by a depolarisation sufficient to activate local voltage-sensitive 

Ca^^ channels, as a result transmitter o f vesicular origin will be released (Figure

1.3).

However, some other studies were unable to evoke an increase in presynaptic 

calcium levels w ith local application o f nicotinic receptor agonists suggesting an 

indirect synaptic modulation could arise from nicotinic excitation (Vogt and 

Regehr, 2001).

Moreover, some o f the nAChR agonists such as DMPP and lobeline, besides their 

effects on presynaptic nAChRs, at higher concentrations are able to inliibit the 

uptake o f NE and 5-HT into nerve term inals, thereby their transmitter releasing 

effects are extended in time and space (Vizi and Lendvai, 1999) (see Figure 1.3). 

The effect on the uptake process is not being sensitive to nAChR antagonism, but 

can be prevented by selective uptake blockers or reduced temperature.

Tetrodotoxin (TTX) is a neurotoxin that blocks voltage dependent Na^ chaimels, 

thereby blocking axonal conduction. It has been suggested by different authors 

(Clarke and Reuben, 1996; Sacaan et ah, 1995), that the sensitivity or resistance to 

TTX indicates the pre-, or postsynaptic localisation o f nAChRs. The TTX- 

insensitive part o f transmitter release evoked by iiACliR agonists has been taken 

as evidence of presynaptic receptor localisation (Womiacott, 1997). It is likely 

that TTX reduces that portion o f transmitter release in which Na^-influx has been 

involved. TTX-dependence o f nACliR-induced neurotransmitter release can be 

very different across brain regions, for example, nicotine-induced dopamine
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Figure 1.3. Putative intracellular mechanisms for nicotinic receptor activation- 
induced release.
Diagram adapted from Vizi and lendvai, 1999. (1) Integral ion-channel function - the 
calcium entry via presynaptic nAChR channel directly triggers exocytosis, (2) 
activation of voltage-dependent ion channels by the local depolarization (excitatory 
postsynaptic potentials) due to nAChR activation, calcium enters via VDCCs and 
induces vesicle fusion (calcium channel blocker-sensitive part of nAChR 
stimulation-evoked release), (3) reversal of membrane uptake carrier to release NE 
from the cytoplasm.
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release lias been found TTX-sensitive in the striatum but not in the cortex using in 

vivo microdialysis (Marshall et al., 1996; 1997). Moreover the hippocampal 

release o f NE evoked by iiACliR stimulation was completely inhibited by TTX 

(Sershen et al., 1997), whereas, in chick sympathetic neurones release o f NE and 

increase in [Ca^’̂ 'ji evoked by nAChR stimulation can be still elicited in the 

presence o f TTX (Dolezal et al., 1996). These results can easily be explained by 

different localisation of presynaptic nAChRs in the very varicose dopaminergic 

and noradrenergic fibres w ith a dominance o f receptor far from the actual release 

site or closer (Vizi and Lendvai, 1999).

As mentioned earlier, the release o f these transmitters can be modulated by 

different nACliR subtypes. The release o f glutamate is mainly controlled by an a l  

or aSp4 - containing subtypes (Alkondon et al., 2003; Guo et al., 1998). However, 

a study in mice, indicated that the P2 subtype is important in the control of 

presynaptic GABA release (Poth et al., 1997). It seems likely that presynaptic 

iiACliRs on raonoaminergic fibres are composed o f a3  or a4  subunits in 

combination with the P2 subunit (Vizi and Lendvai, 1999). This is supported by 

the obseiwation that nAChR agonists have no presynaptic effect on transmitter 

release in loiockout mice lacking thep2 nACliR subunit gene.

1.2.2 The GABAergic system

1.2.2.1 Gamma-aminobutyric acid (GABA)

The neutral amino acid y-aminobutyiic acid (GABA) is the main inliibitory 

neurotransmitter in vertebrates as roughly 40% o f all cerebral synapses are 

GABAergic (Reviewed by Ure and Perassolo, 2000). GABA is synthesised from 

glutamate in neurones expressing the enzyme glutamic acid decarboxylase 

(GAB). It is released horn presynaptic term inals to act on postsynaptic GABA 

receptors generating an inhibitory postsynaptic response that can be detected as 

voltage (IPSP) or current (IPSC) deflections. Teniiination o f action is due to 

uptake into neurones and surrounding glial cells by GABA transporters (GAT 1-3)
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and the breakdown o f GABA by transaminase (Reviewed by Soudijn and van 

Wijngaarden, 2000).

Early work with the neurotransmitter GABA indicated that it produced inhibitory 

hyperpolarising postsynaptic responses in neurones (Krnjevic and Schwartz, 

1967), which could be blocked by the alkaloid bicuculline (Curtis et al., 1970). 

During the 1970s Bowery and colleagues showed that GABA could inliibit 

noradrealine release in the heart (Bowery et al., 1981; Bowery and Hudson, 1979). 

However this response was not blocked by bicuculline and ultimately lead to the 

classification o f two pharmacologically distinct GABA receptors named GABAa 

and GAB As (Hill and Bowery, 1981). This novel GABAb receptor was also 

shown to be present in the brain (Bowery et al., 1980b; Bowery et al., 1987) and is 

activated by the specific agonist baclofen (Bowery et al., 1980b; Hill and Bowery, 

1981). More recently the existence o f a third type o f GABA receptor has been 

confirmed (Jolmston, 1996). Jolmston’s original work on GABA analogues 

identified a GABA receptor insensitive to bicuculline (Johnston et al., 1975). 

These analogues were later shown not to effect binding o f the GABAe agonist 

baclofen and as such a third subclass o f GABA receptor was suggested and named 

GAB Ac (Drew et al., 1984). Fast inhibitory neurotransmission is mediated by the 

GABAa receptor and the GAB Ac receptor, both o f which are ligand-gated Cl" 

channels. Slow inhibitory neurotransmission is mediated by the G protein-coupled 

GABAb receptor.

1,2.2.2 GABAa receptors

GABAa receptors are ionotropic receptors, which open channels permeable to CP 

and are blocked by picrotoxin and bicuculline. The action o f GABA on ionotropic 

receptors is both a hyperpolarisation and a reduction o f excitation, each of which 

can be considered inhibitory. GABAa receptors mediating most inhibitory 

synaptic transmission in the CNS belong to the ligand-gated ion channel 

superfamily (Schofield et al., 1987). As with all others members of this 

superfamily they have a pentameric architecture (Nayeem et ah, 1994) with the
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exact subunit composition conferring discrete functional characteristics 

(Reviewed by Sieghait, 1995; Sieghart et al., 1999). Five subunits are aiTanged 

within the plasma membrane to form a chamiel that is mainly selective for 

chloride and bicarbonate ions (Bormami et al., 1987). The first two receptors 

subunits identified (a and (3) were cloned by Schofield in 1987. Currently, 20 

GABAa receptor subunits have been identified in mammalian tissue, including six 

a , four P, tliree Y, one 5, one s, one tt, one 9, and thi'ee Psubunits (Reviewed by 

Sieghart et al., 1999). At least one a , (3 and y subunit is required to form a fully 

functional chamiel (Pritchett et al., 1989). The most common formation is two a l 

subunits in combination with two (32 subunits and a single y2 subunit which 

accounts for approximately 43% of GABAa receptors (McKernan and Whiting,

1996). A large diversity o f GABAa receptor subtypes are found within the 

hippocampus (Wisdeii et al., 1992).

1.2.2.3 GABAb receptors

GABAb receptors are metabotropic receptors and belong to the G-pi'otein coupled 

receptor superfamily (Reviewed by Bowery et al., 2002). The heterodimeric 

nature o f the GABAe receptor was not initially appreciated when this receptor was 

first cloned by Kaupmami et a i  in 1997. Subsequent studies (Marshall et al., 

1999) revealed that functionally expressed the GABAe receptor was not a single 

protein but instead existed as a heterodimer with the subunits designated 

GABAbRI and GABAbICZ, neither o f which was functional on its own (Reviewed 

by Bowery et a l ,  2002). Agonist binding occurs at the GABAbRI subunit, 

whereas no ligand binding is detectable on the R2 subunit (Kniazeff et al., 2002). 

Conversely, the R1 subunit is not able to activate effector systems, whereas the 

R2 subunit is responsible for G protein coupling (Duthey et al., 2002).

GABAb receptors are activated by agonists GABA and (-)baclofen (Bowery et al., 

1981; Bowery et al., 1980b; Hill and Bowery, 1981) and antagonised by saclofen 

as well as a range o f more recently developed selective and potent antagonists
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including CGP55845A (3-A-[l-(S)-(3,4-dichlorophenyl)ethyl] amino-2- 

hydroxypropyl-P-benzyl-pliosphinic acid) (Davies et al., 1993).

Effector mechanisms associated with neural GABAb receptors are the adenylate 

cyclase system and Câ "̂  and ion chamiels (Reviewed by Bowery et al., 2002). 

When activated, GABAb receptors open chamiels on both the pre and 

postsynaptic sides o f the synapse (Dutar and Nicoll, 1988) and increase 

conductance. In the postsynaptic cell this leads to a hyperpolarisation o f the 

membrane potential which has a slower onset and slower decay than the GABAa 

response. In the presynaptic tenninal, activation o f GABAe receptors reduces 

transmitter release by an Inliibition o f Ca^^ conductance. It depresses transmitter 

release o f virtually all transmitters investigated including glutamate and GABA. 

Therefore, effects of GABAb receptors can be complex and are not always 

inhibitory (Freund and Buzsaki, 1996). Electrophysiological data indicate that 

GABAb receptors are present at both pre- and postsynaptic sites within the 

hippocampus (Dutar and Nicoll, 1988).

1.2.3 The glutamatergic system

1.2.3.1 Glutamate

L-Glutamate is the major excitatory neurotransmitter within the adult central 

neiwous system and was the first excitatory amino acid to be so recognised (Curtis 

et al., 1959). It is one o f the quantitatively more important neurotransmitters in 

mammalian CNS (Curtis and Jolmston, 1974). Glutamate is synthesised in and 

released from the presynaptic tenninal by Ca^^ dependant exocytosis (Nicholls,

1989) and acted on specific glutamate postsynaptic receptors to elicit excitatory 

postsynaptic responses (EPSPs or EPSCs) (Curtis and Watkins, 1960; 1963). The 

postsynaptic action o f glutamate is terminated by glutamate uptake carriers 

present in the plasma membrane o f  glial cells and neurones (Rotlnnan et al., 

1987).
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Once again, the action o f glutamate is on two main types of receptors, ionotropic 

and metabotropic:

1.2.3.2 Ionotropic glutamate receptors

The ionotropic glutamate receptors consist primarily o f three types named after 

their selective agonists, hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), 

kainate and A-Methyl-D-aspartate (NMDA) receptors (Reviewed by McLennan, 

1983; Westbrook, 1994). AMP A and kainate receptors mediate fast EPSPs 

whereas NMDA receptors mediate slower-rising and slower-decaying EPSPs. 

AMP A and kainate receptors are often referred to as non-NMDA receptors but in 

fact represent different classes o f receptors with discrete functional, 

pharmacological properties and distributions. Under normal conditions 

transmission within the hippocampus is carried out by non-NMDA receptors 

(Collingridge et al., 1982; 1983).

More recent molecular biological studies o f glutamate receptors have revealed 

that each o f these tlnee subgroups is encoded by a number o f different genes, 

including G luRl-4  for AMP A receptors, GluR5-7, K A l and KA2  for kainate 

receptors and NM D ARl and NMDAR2A-D  (also known as N R l and NR2A-D) for 

NMDA receptors (Reviewed by Barnes and Henley, 1992; Hollmami and 

Heinemaim, 1994). Different subunits generated by these genes are o f a wide 

variety and exhibit varying electrophysiological and pharmacological properties, 

depending upon the combination o f subunits expressed (McCormick, 1998). All 

ionotrophic glutamate receptor subunits differ from the nicotinic acetylcholine 

receptor subunits in their transmembrane topology by having only three 

membrane spanning domains.

Activation o f excitatory amino acid receptors underlies fast glutamatergic 

excitatory postsynaptic potentials (EPSPs). The postsynaptic potentials mediated 

by AMP A and kainate receptors, like those associated with nicotinic channels, are 

caused by an increase in a mixed cation conductance (mainly Na"*̂  and K^, but
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sometimes as well) such that the reversal potential is approximately 0 mV 

(Hollmann and Heinemami, 1994). These synaptic potentials have a very short 

delay from the anival o f the action potentials at the presynaptic terminal, and a 

rapid rate o f rise. The falling phase is much slower, being determined in large part 

by the membrane properties o f the neurone.

In contrast to the fast PSPs mediated by AMPA/kainate receptors, the action of 

glutamate through NMDA receptors is more complicated. Stimulation o f NMDA 

receptors results in the activation o f a voltage-dependent current that is earned not 

only by Na^ and K"*" but also importantly by Ca^^. The voltage-dependent nature 

o f this NMDA-mediated current is due to the differential block o f the ionic 

chamiel by magnesium ions (Mg^" )̂ at more hyperpolarised membrane potentials 

(Mayer et al., 1984). High calcium penneability o f NMDA receptors is important 

in initiating intracellular processes including long-term metabolic or stmctural 

changes.

1.2.3.3 Metabotropic glutamate receptors (mGluRs)

mGluRs represent a family o f G protein-coupled receptors, which can trigger 

long-lasting intracellular processes and ‘metabolic’ changes and mediate synaptic 

plasticity (Neugebauer, 2002). Eight niGluR subtypes have been cloned to date 

and are classified into groups I (mGluRs 1 and 5), II (mGluRs 2 and 3) and III 

(mGluRs 4, 6, 7, and 8) based on their sequence homology, signal transduction 

mechanisms, and pharmacological profile (Reviewed by Anwyl, 1999; Gasparini 

et al., 2002; Schoepp et al., 1999).

A major distinction between group I mGluRs and groups II and III mGluRs is that 

group I couple through Gq/u proteins to the activation of phospholipase C (PLC), 

resulting in phosphoinositide (PI) hydrolysis, release o f calcium from intracellular 

stores, and protein kinase C (PKC) activation. In contrast, groups II and III 

mGluRs are negatively coupled to adenylyl cyclase (AC) tlmough Gi/Go proteins, 

thereby inhibiting cyclic AMP (cAMP) formation and cAMP-dependent protein
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kinase (PKA) activation (Reviewed by Anwyl, 1999; Gasparini et al., 2002; 

Schoepp et al., 1999). In general, it appears that the predominant effect o f group I 

mGluR activation is enhanced neuronal excitability and synaptic transmission 

whereas activation o f groups II and III typically produces inhibitory effects, 

although exceptions exist.

Activation o f the inGluR has a very diverse range o f electrophysiological effects. 

These include inhibition o f potassium and calcium currents, activation of 

potassium, calcium and non-specific cation currents, mediation o f slow excitatory 

postsynaptic potentials, presynaptic inliibition o f transmitter release, potentiation 

o f AMP A and NMDA receptor synaptic responses and involvement in the 

generation o f oscillatory and epileptifonn activity (Reviewed by Anwyl, 1999). 

Members o f each mGluR subgroup can presynaptic ally inhibit excitatory 

(glutamatergic) as well as inhibitory (GABAergic) synaptic transmission and 

transmitter release, which appears to be modulated by groups II and III mGluRs. 

Group I mGluRs can facilitate excitatory and inhibitory synaptic transmission. 

Importantly, inhibition o f GABA release by groups II and III inGluRs might 

actually increase neuronal excitability tlirough disinhibition whereas facilitation of 

GABAergic transmission by group I mGluRs would strengthen the inliibitory tone 

(Reviewed by Neugebauer, 2002).

Although group I mGluRs can be found presynaptically, they are localised 

primarily on the postsynaptic membrane. Group III mGluRs represent 

predominantly presynaptic receptors, whereas group II mGluRs have been 

detected both pre- and postsynaptically (Reviewed by Neugebauer, 2002).
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1.3 Neurotransmitters and epilepsy

The normal functioning o f the brain rests on maintaining a fine balance between 

excitation and inliibition. Disruption in this balance within interconnected 

neuronal networks may lead to a predisposition for the generation o f uncontrolled 

and hypersynchronous dischaiges as occurs in epilepsies.

1.3.1 GABA

Reduction o f inliibition by GABA antagonists generates epileptiform activity both 

in vivo and in vitro models raising the possibility that epilepsy can arise from a 

loss o f GABA-mediated inliibition (Ameri et al., 1997; Coloiii and Saggau, 1994; 

Gulyas-Kovacs et al., 2002; Herron et al., 1985; ICnowles et ah, 1987; Koln and 

Heinemami, 1990). Decreased concentrations o f GABA were found in tissue 

removed from epileptic patients when compared to normal concentrations 

determined from non-epileptic patients (Van Gelder et al., 1972). The use of in 

vivo micro-dialysis found lower GABA levels in the epileptic compared with the 

non- epileptic hippocampus (During and Spencer, 1993). Ininiunohistochemistry 

revealed a decreased number o f GABA-ininiunoreactive neurones in epileptic 

tissue (Ribak et al., 1986). The induction o f status epilepticus in animals results in 

a loss o f GABA binding sites in the rat forebrain (Kapur et al., 1994). However, a 

clear reduction in either GABA concentration or in the activity o f  GABAergic 

neurones is not the significant underlying cause that it was initially thought to be. 

GABAergic inliibition is not impaired in some epilepsy models such as exposure 

to low magnesium (Tancredi et al., 1990), 4-aminopyiidine (Rutecki et al., 1987) 

and high h'equency tetanic stimulation (Higashima, 1988). In the 4AP model, 

epileptiform activity occurs despite the presence o f normal or even enhanced 

synaptic inhibition (Chesnut and Swami, 1988; Rutecki et al., 1987). A preserved 

GABAergic inhibitory postsynaptic potential in sclerotic, epileptic hippocampi 

has also been reported (see Schwartzkroin, 1994 for review). Although some 

alteration in inliibitory process may cause or result from seizures, the exact nature 

and extent o f this involvement remains unclear.
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1.3.2 Glutamate

The alternative explanation o f increased excitability is enhanced activity through 

excitatory circuits, which probably involves glutamate. The role o f glutamate as a 

convulsant and excitotoxic agent is well documented (Reviewed by Ure and 

Perassolo, 2000). Glutamate is also a precursor o f the powerful inhibitor G ABA 

and thus it has been suggested that the glutamate/GAB A ratio might exert the 

most crucial influence in the generation o f paroxysmal neuronal discharges (Ure 

and Perassolo, 2000). A major contention in the theory that enlianced glutamate 

levels are responsible for seizures are the conflicting reports regarding the 

concentration of glutamate before and during seizures. In epileptic patients 

undergoing surgery, an increase in glutamate levels was detected in samples o f 

extracellular fluid extracted by microdialysis (During and Spencer, 1993; Romie- 

Engstrom et ah, 1992) although no change was apparent in seizures induced in 

animals by kainate, bicuculline, picrotoxin or electrical stimulation (Lehmami et 

ah, 1985; Obrenovitch et ah, 1996). A reduced concentration o f glutamate in 

epileptic foci (Van Gelder et ah, 1972) and in CSF from epileptic patients with 

normal values o f other aminoacids (Mutani et ah, 1974) has also been reported. 

Thus it is proposed that seizures and raised glutamate levels are not necessarily 

related.

Enhanced excitability can be attributed to other mechanisms apart from elevated 

glutamate levels. An increased density o f NMDA and kainate receptors in the 

entorhinal cortex and hippocampal CA l region (Geddes et ah, 1990; McDonald et 

ah, 1991) and an increase in AMP A  receptor density in the dentate gyrus (Hosford 

et ah, 1991) has been shown in tissue removed from epileptic patients.

Raised NMDA receptor activation may contribute to hippocampal 

hyperexcitability in some models. Kindling, the repeated stimulation o f a pathway 

at intervals until seizures are initiated, is highly dependent on NM DA receptor 

activation (Cain et ah, 1988; Mody et ah, 1988; Robinson, 1991). The main 

trigger o f long-lasting potentiation is the Ca^^ influx initiated by glutamate and 

mediated by NMDA receptors. It has also been reported an increased binding in
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the hippocampus (McDonald et ah, 1991) and dentate gyrus (Roper et ah, 1992) 

o f  ligands to NMDA receptors in the cortex removed from patients with temporal 

epilepsy, as well as an increase in NMDA receptor density (Geddes et ah, 1990; 

McDonald et ah, 1991).

Glutamate receptor agonists, NMDA, AMPA and kainate are convulsants 

producing seizures both in vivo (Chiamulera et ah, 1992; Koek and Colpaert,

1990) as well as epileptifonn activities in vitro (Fisher and Alger, 1984). 

Glutamate receptor antagonists are also good at inliibiting seizures in models 

where the involvement o f either NMDA or non-NMDA receptors is clear. For 

example, NMDA receptor antagonists totally or partially block epileptiform 

activity induced by lowering magnesium levels (Gulyas-Kovacs et ah, 2002; 

Home et ah, 1986; Mody et ah, 1987; Schneiderman and MacDonald, 1987; 

Tancredi et ah, 1990), while have no or little effect on the epileptiform discharges 

seen with other models such as GABAa receptor blockade by bicuculline and 

picrotoxin (Gulyas-Kovacs et ah, 2002; Neuman et ah, 1988; Thomson and West, 

1986). AMPA/Kainate receptor antagonist significantly affect epileptifonn 

activity in BIC model (Avoli et ah, 1993; Gulyas-Kovacs et ah, 2002; Perreault 

and Avoli, 1991; Traub et ah, 1993), while have only a minor influence in the 

generation o f epileptiform discharges in low magnesium model (Gulyas-Kovacs 

et ah, 2002). In fact, there are significant alterations in contribution o f NMDA and 

AMPA/Kainate glutamate receptors to the development and maintenance of 

epileptiform activity in the different convulsants. It has also been reported that 

4AP-induced epileptiform activity is mediated tlrrough the activation o f 

AMPA/Kainate receptors (Avoli et ah, 1993; Perreault and Avoli, 1991). 

However, the finding o f Avoli et a l, (1996) and Gulyas-Kovacs et a l, (2002) are 

contrary to this suggesting that in 4AP model, both types o f ionotropic excitatory 

amino acid receptors are overactivated and contribute to seizure initiation and 

propagation. While data related to the relevance o f each of these receptors in focal 

epileptogenesis are contradictory, there is a noticeable trend towards a strong 

activation o f both NMDA and AMPA/Kainate receptors during epileptifonn
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activity (Lee and Hablitz, 1991; Siniscalclii et al., 1997; Valenzuela and Benardo, 

1995).

Metabotropic glutamate receptors have also been shown to be critically involved 

in modulating ictal activity during seizures in animal models o f epilepsy (Dalby 

and Thomsen, 1996; Tizzano et ah, 1995). mGluR agonists have also been 

reported to induce epileptifonn discharges in vitro (Cobb et ah, 2000; Merlin et 

ah, 1995; Merlin and Wong, 1997).

1.3.3 Acetylcholine

Acetylcholine may play a role during epilepsy. An increase in ACh synthesising 

and degrading enzymes in the epileptic cortex of patients undergoing anterior 

temporal lobectomy has been reported (Kish et ah, 1988), but discussion persists 

as regards the exact significance o f such changes (Ure and Perassolo, 2000).

1.3.3.1 mAChRs and epilepsy

In spite o f  the conflicting data in the literature, there may be only a pro- 

epileptogenic action for nACliRs (see below), while muscarine receptors may play 

an excitatory or suppresor role, depending both on the circuits involved and on the 

neurotransmitter concentration (Segal, 1991). However, it has been reported that 

endogenous ACh may enhance epileptogenesis in immature hippocampus 

(Psarropoulou and Dallaire, 1998) and neocoilex (Potier and Psarropoulou, 2001; 

Potier and Psarropoulou, 2004) via activation o f muscarinic receptors.

1.3.3.2 nAChRs and epilepsy

Wliilst the exact functional significance o f different populations o f nACliRs in 

modulating hippocampal dependent physiological processes is unclear there is 

increasing evidence that nAChRs may also be involved in disease states
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(Reviewed by Jones et al., 1999). It has been claimed that neuronal nicotinic 

receptors are involved in a number o f brain diseases such as epilepsy, 

schizophrenia, dementia and Alzheimer’s disease and are currently the subject of 

intense research interest with respect to their therapeutic potential in these series 

o f  neurological and psychiatric conditions (Decker et ah, 1998; Elmslie et al., 

1997; Freedman et al., 1997; Hodgkiss and Kelly, 2001; James and Nordberg, 

1995; Lena and Changeux, 1997; Lena and Changeux, 1998; Mambio et al., 1999; 

Phillips et al., 1998; Steinlein et al., 1995). Recent studies have indicated that 

specific iiACliR subtypes are selectively responsible for certain brain diseases 

(Reviewed by d em en ti et ah, 2000). For example, the number o f receptors 

containing a 4  subunit is decreased in Alzheimer's disease (Martin-Ruiz et ah, 

1999). However, the sensory gating defect in schizophrenia seems to be 

associated with an abnormal expression o f the a 7  subunit (Leonard et ah, 1996).

The association between a particular form o f genetically transmissible epilepsy 

and mutations in genes coding for iiAClrR subunits constituted the first 

demonstration o f the contribution o f a neurotransmitter-activated receptor in 

epilepsy and the first identification o f the role o f neuronal iiACliRs in human 

brain dysfunction (Reviewed by Raggenbass and Bertrand, 2002). This epilepsy 

was termed Autosomal Dominant Nocturnal Frontal Lobe Epilepsy (ADNFLE), 

because of its autosomal dominant mode o f transmission, its occurrence during 

sleep and its frontal origin. In 1995, Phillips et al, found that ADNFLE is a 

genetic disease whose gene is located in chi'omosome 20q 13.2-q 13.3, the region 

that also contains the gene o f the a 4  nicotinic subunit (Phillips et ah, 1995). On 

the basis o f this information Steinlein et al. (1995) studied the sequence o f the a4  

gene and found a mutation that replaces serine with phenylalanine and inserts a 

leucine, this mutation is present in all affected siblings but not in normal subjects 

(Steinlein et ah, 1995). The serine-to-phenylanaline substitution mainly speeds 

desensitisation and slows its recovery, and the leucine insertion increases ACh 

affinity and alters the signal-channel conductance (Dani, 2000). The possible 

mechanism linking this form o f epilepsy is due to a decrease in a4  receptor 

function that lowers the seizure threshold (Gotti et ah, 1997). It is also
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hypothesised that decreased iiACliR function leads to decrease in G ABA release, 

with an accompanying increase in excitability (Jones et ah, 1999). Several other 

mechanisms have also been proposed to contribute to ADNFLE. For example, 

mutant nicotinic receptors may display an increased acetylcholine sensitivity with 

respect to normal receptors (Bertrand et ah, 2002; Bertrand et ah, 1998). The 

increase ACh sensitivity may produce a faster response o f the cortical or thalamic 

neurones and thereby unbalance this phase sensitive network. The thalamus and 

cortex are strongly innervated by cholinergic afferents from the pons and basal 

forebrain and ACh exert modulatory actions on thalamic and cortical neurones by 

acting via either nicotinic or muscarinic acetylcholine receptors (McCoimick, 

1992). Neuronal synchronisation could occur by a small but significant shift 

between cortical and thalamic activity. Other possibility is that ACh indirectly can 

act on presynaptic terminals by enliancing other neurotransmitter release and 

thereby causing the unbalance between excitation and inliibition (Raggenbass and 

Bertrand, 2002). Therefore, single amino acid changes produce effects that are 

potent enough presumably to disrupt proper functioning o f these receptors and, in 

certain cases, provoke the unbalance o f excitation versus inliibition that is at the 

origin o f epileptic seizures (Dani, 2000; Raggenbass and Bertrand, 2002).

Other epilepsies due to mutations in the genes encoding the a?  and (33 nAChR 

subunits have also been reported (Dumer et al., 1999; Elmslie et al., 1997; 

Neubauer et al., 1998; Phillips et al., 1998)

In addition to the genetic studies mentioned above reporting an involvement of 

nAChRs in epilepsy, some in vivo studies have also demonstrated that high does 

o f nicotine induce clonic-tonic convulsions in animals after systemic and 

intracerebral injections (Dixit et ah, 1971; Miner et ah, 1985). 

Electrophysiological studies have indicated that nicotine-induced seizures 

originate in the hippocampus (Floris et ah, 1964). Moreover, it has been indicated 

that mice with large numbers o f brain a-bungarotoxin binding sites are more 

prone to develop seizures in response to nicotine (Marks et ah, 1989). Thus, a7- 

receptor subtype may underlie nicotine-induce seizures because the a7  subunit is
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thought to be the major a-bungarotoxin binding site in the mammalian brain 

(McLane et ah, 1992). Nevertheless, the pharmacological mechanisms involved in 

the convulsive effect o f nicotine are poorly understood.

In 1999, Damaj et al, extended the pharmacological characterisation o f nicotine- 

induced seizures by examining the role o f nACliRs subtypes in mediating this 

effect after systemic and central administration o f several nicotinic agonists in 

mice (Damaj et ah, 1999). In addition, different nAChR antagonists were used in 

combination with nACliR selective agonists. According to this study, nicotine- 

induced seizures are centrally mediated and involve the activation o f a7  along 

with other nAChRs subunits. MLA, a a l-  antagonist, blocked the effects o f 

nicotine and mecamylamine, a non-competitive antagonist, blocked nicotine- 

induced bursting more potently than MLA. Although these results did not 

eliminate the involvement o f a4p2- receptors, they suggested that this receptor 

subtype dose not play a major role in nicotine- induced seizures. This study also 

suggests that nicotine entrances the release o f glutamate either directly or 

indirectly. Glutamate release in turn stimulates NMDA receptors, thus triggering 

the cascade o f events leading to nitric oxide formation and possibly seizure 

production (Damaj et ah, 1999).

Despite these links to epilepsy, infonnation regarding the role o f  nAChRs in 

patterning epileptiform activity is extremely sparse. The aim o f  this thesis, 

therefore, was to address this gap in our knowledge by investigating the effects of 

nAChR ligands on pharmacologically-induced epileptiform activity in rat 

hippocampal slices.

As all studies were carried out in the hippocampal slice, I w ill provide a brief 

account o f the hippocampal formation and its importance in epilepsy research.
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1,4 The Hippocampus

1.4.1 General

The hippocampus is a region o f the temporal lobe, which has long been loiown to 

play a crucial role in important brain functions such as learning and memory. In 

pioneering studies, memory impairment was been reported in patient having 

undergone a bilateral temporal lobectomy for the treatment o f severe epilepsy 

(Scoville and Milner, 1957) whilst more recent studies have shown similar deficits 

in patients with bilateral damage restricted to the hippocampus (Zola-Morgan et 

al., 1986). In the past two decades this brain region became a major focus o f 

neuroscience research. Interest in this stincture stems from its importance in 

normal cognitive functions as well as involvement in some major neurological 

disorders such as Alzheimer’s disease and temporal lobe epilepsy (Robbins and 

Kumar, 1987).

1.4.2 Anatomy

The hippocampus is a bilateral and banana-shaped structure found within the 

forebrain located beneath the posterior and temporal neocortex. The hippocampus 

proper is coimected to cortical regions o f the brain tlnough the perforant pathway 

and numerous subcortical regions such as raphe nucleus and medial septum, 

through the fornix. It is one o f a group o f structures within the limbic system 

typically called the hippocampus form ation  that includes the dentate gyrus, the 

hippocampus, the subiculiun and the entorhinal cortex. Division o f the 

hippocampus into the regio superior and regio inferior was based on differences 

in cell morphology and fibre projections (Cajal, 1911). However, in 1934, Lorente 

de No divided the hippocampus into four field described as cornu ammonis (CA) 

1-4 (Figure 1.4) based on the size and appearance o f the neurones (Jolmston and 

Amaral, 1998). He also noted a variety o f subtle differences in the dendritic 

organisation o f pyramidal cells in different parts o f CA3 and C A l and used these 

distinctions, in part, to further subdivide these fields into three subareas each
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(CA3a,b,c; CAla,b,c). He also used the term CA4, referred to the region occupied 

by the polymorphic layer o f the dentate gyrus. The CA l and the CA3 regions 

constitute most o f the hippocampus. In addition to differences in the size o f cells 

in CA3 and C A l, there is a clear-cut coimectional difference. The CA3 pyramidal 

cells receive a mossy fibre input from the dentate gyrus and the C A l pymmidal 

cells do not. The CA2 field has been a matter o f some controversy. It is a narrow 

zone of cells interposed between CA3 and C A l that have large cell bodies like 

CA3 but do not receive mossy fibre inneiwation like C A l. In many respects, CA2 

resembles a terminal portion o f the CA3 field. In other ways, however, CA2 is 

quiet distinct from either CA3 or CA l (Amaral and Witter, 1995). The CA2 and 

CA4 regions are less well defined which leads to these regions being generally 

ignored.

Both the dentate gyrus and the hippocampus are tlnee-layered cortices (Figure

1.4). The three fundamental layers o f the dentate gyms are the polymorphic layer 

(the hilus) containing the granule cell axons, the gmnular layer (the stratum  

granulosum) containing the granule cell bodies and the molecular layer {stratum 

moleculare) containing the granule cell dendrites. The dentate granule cell layer, 

with the local circuitry in the hilus, act as a gate controlling the sensory input to 

the hippocampus fi'om the entorhinal cortex (Jefferys, 1993).

The hippocampus also consists o f a polymorphic layer (the stratum oriens), a 

pyramidal layer (the stratum pyramidale) and a molecular layer (the stratum  

radiatum  and stratum lacunosum-moleculare). The polymoiphic layer contains 

the basal dendrites o f the pyramidal cells, the pyramidal layer consists mainly o f 

the pyi'amidal cell bodies and the molecular layer contains distal apical dendrites. 

The white coat o f the hippocampus is produced by the axons o f the pyramidal 

cells, which are grouped to fonn the alveus. As described above the pyramidal 

cell layer has been divided into four regions designated CA1-CA4 (Lorente de 

No, 1934) based on the size and appearance o f the neurones.
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Figure 1.4. The hippocampal formation.
Diagram adapted from Brown and Zador, 1990, original drawing by Raymon y Cajal, 
1911. Each region of the hippocampal formation is indicated, dentate gyrus, entorhinal 
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excitatory pathways including the Perforant path, the mossy fibers and Schaffer 
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1.4.3 Cytology

1.4.3.1 Principal neurones

The pyram idal cells are the principal cells and the most numerous classes o f 

neurones o f the hippocampus proper. The cell bodies o f the hippocampal 

pyramidal neurones are aiTanged, 3-6 cells deep, in the pyramidal cell layer. These 

neurones have elaborate dendritic trees extending perpendicularly to the cell layer 

in both directions and are thus considered to be bipolar neurones. The dendrites of 

pyramidal cells are highly spineous and such spines are known to represent 

functional micro domains o f the cell which receive discrete synaptic inputs. The 

morphology o f pyramidal cells varies gi*adually from region CA3 to region C A l, 

the cell bodies become smaller and the apical dendrites longer and more slender 

(Figure 1.5 B, Brown and Zador, 1990). The apieal dendrites are longer than the 

basal and extended from the apex o f the pyramidal cell body toward the center of 

the hippocasmpus. The basal dendrites extend form the base o f  the pyi'amidal cell 

body fanning out tlnough stratum oriens.

The principal cells o f the dentate gyrus are the granule cells. They have small, 

spherically shaped cell bodies that are arranged 4-6 cells thick in the gi'anule cell 

layer. They are the most numerous neuronal type in the hippocampal fonnation 

and their soma are densely packed within stratum granulosum. They are 

monopolar with dendrites extending into the molecular layer.

1.4.3.2 Interneurones

There are also many different morphological types o f inliibitory interneurones in 

the hippocampus and dentate gyi'us. Although the interneuron/principal cell ratio 

in the hippocampus is only 1:10-1:12 (Woodson et al., 1989), interneurones have 

a much higher structural and functional diversity than pyramidal or granule cells 

(Freund and Buzsaki, 1996). All hippocampal interneurones are thought to be 

GABAergic and inhibitory in simple terms. Their diversity is manifested in their
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A. A slice cut perpendicular to the long axis of the hippocampus shows several regions 
of the hippocampal formation and indicating the principal intrinsic connections. B. 
Diagram shows typical principal cells within each region of the hippocampus and their 
connectivity by outlining the three major synapses in the hippocampus. Fibres of the 
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synapse onto the CA1 pyramidal cells. To complete the circuit CA1 pyramidal cells 
send their axons back to the deep layers of the entorhinal cortex partially via the 
subicular complex. Note that the morphology of pyramidal cells varies gradually from 
region CA3 to region CA1, the cell bodies become smaller and the apical dendrites 
longer and more slender.
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anatomical, neurochemical, electrophysiological and phamiacological properties 

(Freund and Buzsaki, 1996).The vast majority o f intemeurones do indeed have 

locally restricted target regions, generally lack spines, and are GABAergic 

(Freund and Buzsaki, 1996). The best studied interneuron is the basket cells which 

form inhibitory contacts onto CAl pyi'amidal cells and receive excitatoiy input 

from these same CAl pyramidal cells (Buhl et al., 1995). These interneurones 

thus appear to mediate both feedforward and feedback inhibition o f pyramidal 

neurones (Brown and Zador, 1990).

The glutamatergic principal (pyramidal and gi'anule) cells along with the divers 

population o f GABAergic intemeurones as well as a poorly defined population o f 

mossy cells and cholinergic intemeurones (Frotscher et al., 1986; 2000), make up 

the hippocampal neuronal network. It is proposed that pattemed signalling o f the 

principal cells coupled with changes in synaptic strength known as plasticity at the 

glutamatergic synapses may underlie hippocampal dependent tasks including 

adaptive processes such as learning and memory. However the intemeurones o f 

the hippocampus are extremely important in that they act to govern principal cell 

properties such as action potential generation, firing patterns and membrane 

potential oscillations, while also regulating other intemeurones. Overall, it is 

suggested that they set conditions for synaptic plasticity (Paulsen and Moser, 

1998) and have role in the synchronisation and patteming o f principal cell activity 

(Cobb et al., 1995; Freund and Buzsaki, 1996).

1.4.4 Hippocampal connectivity

The major input into the hippocampus is from the entorhinal cortex in the fomi o f 

the perforent path. The perforant path originates in the superficial layers o f medial 

and lateral entorhinal cortex and teiminate in either the hippocampus or dentate 

gyi'us (Lorente de No, 1934; Raisman et al., 1966). The perforent path input to the 

dentate gi'anule cells is particularly strong. The dentate gyrus in turn sends a 

projection, the mossy fibre projection, which selectively imiei-vates CA3 

pyi'amidal cells o f proximal dendritic sites. This selective input fomis the lamina

32



Chapter 1

stratum lucidum. The CA3 pyi'amidal cells in turn give rise to highly 

collateralised axons that distribute fibres both within the hippocampus as well as 

sending fibres to contralateral hippocampus and also to subcortical regions such 

as the lateral septal nucleus. The projections within hippocampus from CA3 

pyramidal cells to the CAl field are among the most intensively studied pathways 

in the brain and are known as the Schaffer collaterals. Within the CA3 region, 

CA3 pyramidal cells give rise to a high degi'ee o f recurrent (feedback) collaterals, 

which form what is referred to as the associational pathway. It is this high degree 

o f recurrent excitatory comiectivity that is suggested to be the basis for the 

hippocampus to be a particularly seizure prone brain structure (see below). Unlike 

the CA3 field, pyi'amidal cells in CA l do not appear to give rise to a major set o f 

collaterals that distribute within CA l (Amaral et al., 1991; Tamamaki et al.,

1987). The CA l field rather gives rise to a projection to the entorhinal cortex, by 

way of the adjacent subiculum (Amaral et al., 1991). A small number o f CAl 

neurones may project to the contralateral CA l (van Groen and Wyss, 1990). As 

the CA l axons extend in the alveus or in stratum oriens towards the subiculum, 

occasional collaterals arise and terminate on the dendrites o f other CA l cells 

(Deuchars and Thomson, 1996), but the massive associational network which is 

so apparent in CA3 is largely missing in C A l.

The functional organisation o f the hippocampus has traditionally been described 

in teiins o f the trisynaptic circuit (Andersen et al., 1966, Figure 1.5 B). This older 

view is still useful for introducing the hippocampus. The fibres o f the perforant 

pathway arise from entorhinal cortex form excitatory synapses onto the dendritic 

spines o f the granule cells. The gi'anule cells o f the dentate gyi'us send their mossy 

fibre axons to the CA3 region. The pyramidal neurones o f the CA3 region send 

their Schaffer collateral axons to the CA l region. To complete the circuit CA l 

pyi'amidal cells send their axons back to the entorhinal cortex via the subicular 

complex. These tliree synapses define the trisynaptic circuit, which is a purely 

feed forward network (Brown and Zador, 1990). The circuit described includes a 

simple sequence of excitatory comiections fiom one region to the next, fomiing a 

closed loop that enables unidirectional flow o f information. More over, each
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region, with the exception o f the dentate gyrus, projects not only to the next 

region in the sequence but also to one or two after it (Brown and Zador, 1990). 

Thus, multiple closed excitatory loops appear to make up the normal hippocampal 

circuitry.

1.4.5 Local interactions

In addition to synaptic comiections among regions o f the hippocampus formation, 

there are also relatively complex synaptic interactions within each region. These 

local circuits consist o f principal neurones and a diverse an*ay o f  GABAei'gic 

intemeurones (Freund and Buzsaki, 1996).

Recurrent axon collaterals o f CA3 pyi'amidal cells make extensive excitatory 

synapses on the dendrites o f neighbouring pyramidal cells (Li et al., 1994) so that 

when one pyramidal cell fires, its neighbours are powerfully excited (MacVicar 

and Dudec, 1982; Miles and Wong, 1983). This facilitates the rapid 

synchronisation o f action-potential firing in CA3 neurones that underlies the 

normal electroencephalogi'aphic pattern known as hippocampal shaip wave 

activity (Buzsaki, 1986) and periodic in vitro burst discharges (Traub, 1991). This 

synchrony is important for activity-dependent modification o f synaptic strength 

(Buzsaki, 1986), but the positive feedback from recurrent collaterals that underlies 

the synclu'onisation should produce continuous discharging o f all CA3 neurones, 

such as may occur during human temporal lobe seizures (Jefferys, 1993). But why 

does this not happen under normal conditions and what process terminates burst 

activity?

The primary mechanism terminating CA3 bursts are inliibitory conductances. As 

indicated earlier, the pyramidal neurones of the CA3 region also receive powerful 

synaptic inhibition. There is both feedback and feedfom ard synaptic inliibition o f 

the pyi'amidal neurones in the CA3 region (Brown and Zador, 1990).
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Moreover, calcium influx during the burst triggers a potassium current that results 

in an afterhyperpolarisation that can terminate bursts o f  action potentials initiated 

by a depolarising current injection (Wong, 1981). Thus the afterhyperpolarisation, 

in conjunction with inhibitory postsynaptic conductances, is a logical mechanism 

for burst termination (Traub, 1991). Some evidence, however, raise the possibility 

that inliibitory conductances are not the primary mechanism terminating CA3 

bursts. According to Staley et al (1998), population-burst duration is limited by 

depletion o f the releasable glutamate pool at these recurrent synapses and 

postsynaptic inhibitory conductances fLirther limit burst duration but are not 

necessary for burst termination. The interval between bursts in vitro depends on 

the rate o f replenishment o f releasable glutamate vesicles and the probability of 

release o f those vesicles at recurrent synapses. Therefore presynaptic factors 

controlling glutamate release at recurrent synapses regulate the probability and 

duration of synclrronous discharges of the CA3 network (Staley et al., 1998).

L4.6 Input and output pathways

The major inputs to the hippocampus and dentate gyrus arise from the entorhinal 

cortex, the contralateral hippocampus, and the septal region. There are also 

important but less numerous projections from several other regions including the 

brain stem, hypothalamus, thalamus and amygdala (Brown and Zador, 1990).

The entorhinal cortex, a transitional area between the cortex and hippocampus, 

provides a major sensory input to the hippocampus, dentate gyrus and subiculum 

via the fibres o f the alvear and perforant pathways. The fibres o f the perforant 

pathway arise from stellate and pyramidal cells in layers 2 and 3 o f the medial 

(non-olfactory) and lateral (olfactory) entorhinal cortex (Steward, 1976). They 

pass tlu'ough the subicular complex and form excitatory synapses onto the 

dendritic spines o f the granule cells. The entorhinal cortex also receives inputs 

from many other regions o f the brain including the association cortices, several 

thalamic nuclei, the claustrum, and the amygdala.
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The medial septum and diagonal band o f Broca provide one o f the major 

subcortical inputs to the hippocampus. Five cell types have been distinguished in 

these nuclei (Jakab and Leranth, 1995), however the two major types are 

cholinergic and GABAergic in nature. These neurones have large cell bodies and 

project via the fimbria-fornix to tenninate in all levels o f the hippocampus. This 

projection was first suggested in 1910 (Henick, 1910) and is now firmly 

established.

The medial septum provides a major cholinergic and GABAergic input to the 

hippocampus. The cholinergic afferents o f the septo-hippocampal input are thin 

beaded fibres (Heimiich and Frotscher, 1993) making up 2/3 o f all projections. 

These projections contact both intemeurones and principal cells (pyramidal and 

dentate granule cells) synapsing on dendritic shafts, spines and cell bodies 

(Heimrich and Frotscher, 1993). The GABAergic afferents are thick in diameter 

with large varicose swellings and make up only 1/3 o f all projections. These 

GABAergic afferents contact only intemeurones (Freund and Antal, 1988).

The cholinergic nature o f  the septo-hippocampal projection was first 

demonstrated in 1967 (Lewis and Shute, 1967) and almost a decade later septal 

stimulation was shown to cause a direct increase in acetylcholine released within 

the hippocampus (Dudar, 1977; Smith, 1974). The cholinergic component o f the 

septo-hippocampal input has received considerable attention due to its prominent 

role in cognitive functions, if  the input is destroyed hippocampal dependant 

teaming is severely impaired (Dutar et al., 1995; Hasselmo, 1999). The 

cholinergic input is involved in generation and patteming of theta activity (Cobb 

et al., 1999) tlirough the action o f acetylcholine at principal cells and 

intemeurones. The septal afferents are not the only source o f acetylcholine as 

local cholinergic neurones also exist (Frotscher et al., 1986; 2000).

The hippocampus also has several output pathways and targets. One major output 

proceeds via the fimbria, which is a sheet composed o f the axons o f pyramidal 

cells and cells in the subiculum. These axons then gather to form the fornix, which
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crosses the midline o f the brain. The other major outputs are to the subiculum and 

to the deep layers o f the entorhinal cortex. Thus the hippocampus projects to 

many o f the same regions that provide its input (Brown and Zador, 1990).

1.4.7 Neurotransmission in the hippocampus

1.4.7.1 Gamma-amino butyric acid (GABA)

G ABA is considered the main inliibitory transmitter in the hippocampus (Roberts 

et ah, 1976), which can be released by inliibitory intemeurones onto the soma, 

dendritic regions and axons o f pyramidal and granule neurones (Buhl et ah, 1994; 

Freund and Buzsaki, 1996). Although glycine is a prominent inhibitory 

neurotransmitter in the spinal cord and in some brain regions, it plays little role as 

a classical neurotransmitter in the hippocampus.

It was once believed that inliibitory synapses were primarily on the cell bodies o f 

pyramidal neurones (Andersen et ah, 1964). There is now much evidence that 

GABAergic synapses occur both on the cell bodies as well as tluoughout the 

neurone.

1.4.7.2 Glutamate

Glutamate is the most important excitatory neurotransmitter in the hippocampus 

(Roberts et ah, 1981). Various combinations o f AMPA, kainate and NMDA 

receptors are present at all o f the excitatory pathways o f hippocampus although 

there may be variations at individual synapses (Johnston and Amaral, 1998). For 

example there are fewer NM DA receptors at mossy fibre synapses (Monaghan et 

ah, 1983). Also it has been proposed that some Schaffer collateral synapses 

contain only NMDA receptors (Isaac et al., 1995; Liao et ah, 1995). The 

metabotropic glutamate receptors are also present at glutamatergic synapses, both 

at the pre- and postsynaptic side o f synapse. They coexist in different
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combinations with ionotropic receptors postsynaptically and modulate transmitter 

release presynaptically (Schoepp and Conn, 1993).

1.4.7.3 Acetylcholine

Acetylcholine (ACh) is widely distributed in the hippocampus, where it exerts a 

number o f neuromodulatory effects. The hippocampus exhibits a particularly high 

level o f nACliR expression on both principal cells and GABAergic intemeurones 

where they are located at presynaptic, postsynaptic and extra-synaptic sites 

(Fabian-Fine et al., 2001). As such, nAChRs are ideally placed to regulate 

neuronal excitability within hippocampal circuits. In this respect, nAChRs 

classically mediate fast acetylcholine-mediated neurotransmission in the 

hippocampus (Alkondon et al., 1998; Frazier et al., 1998a; 1998b; Jones and 

Yakel, 1997; McQuiston and Madison, 1999b). In addition, there is now mounting 

evidence for both excitatory and inliibitory modulatory effects o f nAChR 

activation. Thus, neurochemical evidence indicates that activation o f presynaptic 

nAChRs enhances the release o f neurotransmitters such as acetylcholine, GABA 

and glutamate (Gray et a l ,  1996; Vogt and Regeln, 2001; Wonnacott et a l ,  1989). 

Therefore, both excitatory and inhibitory synapses can be modulated by nAChR 

activation.

In the hippocampus, fast nACliR-mediated transmission has been identified only 

onto GABAergic intemeurones. iiAChR activation produces a variety o f 

responses in intemeurones. The majority o f intemeurones show a fast 

depolarisation mediated by a7subunit containing receptors (Frazier et a l , 1998a; 

1998b; McQuiston and Madison, 1999b). However, McQuiston and Madison 

(1999) also reported a subset o f intemeurones that showed a fast depolarisation in 

combination with a slower response and Alkondon (1997) reported seeing similar 

response in some intemeurones but also intemeurones which displayed only a 

slow response probably due to the activation o f a4|32 nAChR. Intemeurones 

showing no nicotinic response at all have also been observed (McQuiston and 

Madison, 1999b).
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Functional nACliRs are also present on pyi'amidal cells (Albuquerque et al., 1997; 

Alkondon et al., 1997; Ji et al., 2001) yet the production o f postsynaptic responses 

in these cells is the subject o f an ongoing dispute. Alkondon (1997) reported that 

pyramidal cells responded to application o f nicotinic agonist with a slow 

depolarisation, however studies by Frazier (1998b) and McQuiston and Madison 

(1999b) generally disagree with these findings reporting no response in the 

majority o f pyramidal cells. In another study, properly timed nicotinic activity at 

pyi'amidal neurones increased the induction o f long-term potentiation via 

presynaptic and postsynaptic pathways but nAChRs activation evoked currents in 

these cells were smaller than in intemeurones (Ji et al., 2001).

niACliRs have been described at both pre and post synaptic sites in the 

hippocampus (Williams and Johnston, 1993). Their presynaptic effects are to 

decrease glutamate and GABA release and thus could be considered inliibitory or 

excitatory. Their postsynaptic effects are to decrease potassium conductances, the 

M current, Im (Halliwell and Adams, 1982) and the calcium activated current, Iahp 

(Storm, 1990) , which in tum  produces a depolarisation o f the postsynaptic 

neurone, making it more likely to fire an action potential (Halliwell and Adams, 

1982). This action is decidedly excitatory because not only is the neurone 

depolarised by the action o f ACh on muscarinic receptors but the decrease in the 

potassium conductance increase the input resistance, making other concomitant 

excitatory inputs more likely to fire the neurone (Jolmston and Amaral, 1998). By 

Recording directly from intemeurones, using the whole cell patch clamp 

teclmique, McQuiston and Madison (1999) have recently shown that inAClfR 

activation produces a variety o f responses in intemeurones including 

depolarisation, hyperpolarisation, a biphasic response or no response but failed to 

find a relationship between interneurone subtype and the nature o f the 

pharmacologically induced cholinergic responses (McQuiston and Madison, 

1999a). Moreover, such changes are not reported to be associated by a change in 

input resistance in intemeurones. Similar findings have recently been reported in
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intemeurones in response to physiological stimulation o f cholinergic afferents 

(Ferrigan et al., 2003).

1.4.8 hippocampal slices

Since it was shown that slices o f brain tissue could be maintained in vitro, slices 

have been extensively used as in vitro models o f CNS activity (Yamamoto and 

Mcllwain, 1966). In vitro brain slices also have considerable value in 

pharmacological experiments whereby the physiological actions o f 

neurotransmitters and drugs can be easily investigated. Several aspects o f the slice 

preparation facilitate this type o f analysis. Many classical pharmacological 

techniques (e.g., dose-response curves, tests for competitive and non-competitive 

antagonisms) can be used to examine dnig responses because dnigs can be applied 

and tested in a relatively quantitative manner (Dunwiddie et al., 1983).

Transverse hippocampal slice has been so useful in evaluating synaptic and circuit 

properties because trisynaptic circuitry is organised approximately in a plain that 

is perpendicular to the long axis o f the hippocampus (Andersen, 1971). This is 

why organisation o f the hippocampus is sometimes teimed “Lamellar” . This 

parallel lamellar organisation favours the use o f the hippocampus as a slice 

preparation since each slice containing all the functional areas and can act as a 

single unit. However, the actual synaptic organisation is not exclusively lamellar. 

There are, in fact, significant longitudinal connections that are not preseiwed 

within thin transverse brain slices (Amaral, 1987).

According to Jefferys (1994), in hippocampal slices seizure-like activity can be 

induced with ease by a variety o f epileptogenic agents, and stable potentials can 

be recorded over several hours. Moreover, drugs can be used without the 

restriction o f the Blood Brain Barrier and systemic metabolism. However, for 

studies o f seizure-like activities, which involve larger areas o f the brain, absence 

o f the rest o f the brain can be a real problem and influence these studies (Jefferys, 

1994).
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1.4.9 The hippocampus and epilepsy

Despite practically every part o f the brain being able to generate an epileptic 

seizure, not all parts o f brain are equally susceptible to epileptic activity. In 

general it is the cortex which is most directly implicated, either the neocortex, or 

older regions such as the hippocampus, entorhinal cortex and piriform cortex. 

Moreover, the interaction o f the cerebral cortex and the thalamus, in conjunction 

with intrathalamic communication, can generate spike waves similar to those 

occuiTing during human absence seizure discharges. Therefore, the stmcture 

affected determines the kinds o f symptoms, the time course and to some extent the 

cellular substrate for the epileptic activity (Jefferys, 1993).

The hippocampus is a major site o f seizure generation (Schwartzki'oin, 1994) and 

it has the lowest seizure thi'eshold o f any brain region (Green 1964). Clinical foci 

here often present a major challenge to current drug therapies and can result in 

cognitive impairments. Indeed, epilepsies with a hippocampal foci constitute a 

significant part o f the caseload in surgery for epilepsy (Laidlaw et al., 1993).

In the hippocampus, the CA3 region normally initiates epileptic discharges 

resembling brief “interictal” electroencephalogram spikes (Jefferys, 1993; Traub, 

1991). CA3 susceptibility results from relatively powerful connections between its 

pyramidal cells (MacVicar and Dudec, 1982; Miles and Wong, 1983), with 

unitary excitatory postsynaptic potentials (EPSP) up to approximately Imv 

between 1% and 2% o f pairs o f neurones (Jefferys, 1994).

The cells o f the CA3 region can produce paroxysms, which transmit to the CAl 

region in a number o f models in dependent o f the dentate gyrus (Schwartzki'oin 

and Prince, 1978). For this reason, the CA3 region has been named the “epileptic 

pacemaker” for the hippocampus (Lothman and Collins, 1990). Ionic movement 

tlirough numerous voltage and ligand gated channels can determine the basal level 

o f cell excitability. Transmission between CA3 neurones can be also amplified by 

“intrinsic burst” driven by dendritic voltage-dependent calcium currents (Wong 

and Prince, 1978). Even under normal conditions CA3 cells can produce
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spontaneously bursting activity which resembles paroxysmal depolarisation shifts 

(PDS) (Wong and Prince, 1978). As indicated earlier, connections between CA3 

cells are numerous and excitatory, thus excitation in one cell can be 

communicated to the next and so forth. Normally synaptic inhibition contains the 

spread o f  excitation tlnough the CA3 network, but when this is blocked, or 

excitation or excitability is enhanced, activity in one or more neurones causes a 

chain reaction which recruits all the neurones within five to six synaptic relays, or 

a few 10s o f milliseconds (Jefferys, 1993; Traub, 1991). Recurrent discharges 

generated by CA3 cells spread to CA l where ictal events can be generated. 

Pyi'amidal CA3 cells may act as interictal spikes pacemakers, because o f very 

high calcium conductance and a profuse disposition o f recun-ent axonal 

collaterals, predisposing to PDS (Ure and Perassolo, 2000). Conversely, CAl 

region is able to maintain seizures by itself, without previous interictal spikes 

(Lothman and Collins, 1990).

Wlien ictal activity encompasses the dentate gyi'us, it will increase in C A l, 

subiculum and entorhinal cortex, which can initiate the discharges via the 

perforant pathways making epilepsy difficult to arrest (Heinemann et al., 1994). 

Moreover, other features o f the hippocampus, electronic synapses, feedback loops 

and ephaptic coupling are important in epilepsy and can reinforce the 

synchi'onisation o f activity (Reviewed by Jefferys, 1995). The anatomical 

arrangement o f neurones into regular sheets provides an ideal substrate for the 

action o f electric fields on membrane potentials. This complex organisation with 

so much potential for abenant excitation makes the hippocampus so prone to 

epileptic tendencies.

1.5 In vitro epileptiform models

1.5.1 General

In vitro models o f epileptiform activity have been used extensively over the last 

few decades to investigate the genesis o f epilepsy-like behaviours within
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hippocampal and neocortical circuits. These models generally involve slices of 

brain tissue, for example hippocampus (M om s et al., 1996; Voslcuyl and Albus, 

1985; Watts and Jefferys, 1993), neocortex (Mattia et al., 1993) and amygdala 

(Arvanov et al., 1995).These preparations can be manipulated by either changing 

the medium used for perfusion or by the direct application o f compounds to the 

slice. Epileptiform activity is generated by the raising the basal level o f  excitation 

or by altering the ion content o f the perfusing medium. Epileptifonn activity can 

take the form o f spontaneous bursts o f population spikes or as multiple waveforms 

in response to afferent stimulation. As mentioned earlier, epileptifonn activity in 

vitro consisting o f short periods o f defined activity is referred to as inter-ictal due 

to the resemblance to this activity in vivo. Similarly periods o f intense activity 

lasting seconds to minutes is denoted ictal-like activity. Although caution must be 

exercised when making direct comparisons between situations in vitro and in vivo, 

in vitro models have been beneficial in understanding the fundamental 

mechanisms which may underlie the generation o f human epilepsy (Jefferys, 

1993).

Indeed, in vivo models have been used in screening potential anticonvulsant 

activity o f many AEDs. Many coimnonly used AEDs have been shown to be 

efficacious in suppressing epileptiform activity in brain slices (Dost and 

Rundfeldt, 2000; Kapetanovic et al., 1995; Sagratella, 1998; Sclnieiderman and 

Schwartzkroin, 1982). Such slice models, whilst reductionism in nature, do 

therefore represent a good predictive indicator o f whether a particular compound 

or receptor type are likely to be o f significance in human epilepsy states.

Moreover, with specific regard to the septo-hippocampal cholinergic system, the 

morphological and physiological literatures suggest that the human and rodent 

innervation and cholinergic receptor expression are very similar (Reviewed by 

Gotti et al., 1997). However, the precise nicotinic receptor distribution in human 

is still not clear and further studies are needed to complete our understanding of 

receptor (and particularly receptor subtype) distribution. Knowledge o f receptor 

subtype distribution is important in order to allow the correct con*elations to be
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made between receptor subtypes and brain functions or pathologies, which would 

thus assist in the search for the subtype-specific therapeutic agents.

1.5.2 4-aminopyridine- induced epileptiform activity

As a specific blocker o f current (Hermaim and Gorman, 1981), 4- 

aminopyi’idine (4AP) has been widely used as a pharmacological agent in diverse 

studies o f channels (Klee et al., 1995; Storm, 1988; Ulbricht and Wagner, 

1976), mechanisms o f epileptogenesis (Chesnut and Swami, 1988; Galvan et al., 

1982; Rutecki et ah, 1987; Voskuyl and Albus, 1985) and synaptic plasticity 

(Andreasen and Lambert, 1999; Buckle and Haas, 1982; Lee et al., 1986). 4AP 

can induce epileptiform activity in vitro (Avoli et al., 1996; Chesnut and Swann, 

1988; Galvan et al,, 1982; Traub et al., 1995; Watts and Jefferys, 1993) and in 

vivo (Morales-Villagran et al., 1996; Szente and Baranyi, 1987; Szente and 

Pongracz, 1979) as well as producing clinical seizure in man (Spyker et al., 1980; 

Thesleff, 1980). Relevant biophysical actions o f 4AP include the following: (1) 

Blockade o f transient currents in postsynaptic soma-dendritic membrane, 

including the fast A current and the slower “delay” (D) current. The A current is a 

rapidly activating and deactivating cuiTent and involved in controlling excitability 

via a role in spike repolarisation (Voskuyl and Albus, 1985). Epileptogenic 

concentrations o f 4AP (<75 pM) probably do not block the A current (Storm, 

1988; Traub et al., 1995). The D current has a rapid activation but a slow 

inactivation, which introduces a long delay in firing induced by just tlrreshold 

depolarisations (Storm, 1988). The D current is more sensitive to 4AP with 

complete blockage occurring between 30-40 pM (Storm, 1988). (2) An increase in 

the excitability o f axons and presynaptic terminals (Buckle and Haas, 1982; 

Kocsis et al., 1983), probably also caused by current blockade which prolongs 

the action potential in the nerve tenninals, allowing a greater calcium influx and 

thus a larger transmitter release (Molgo et al., 1977). (3) A direct effect on

voltage dependent calcium channels could also be an effect o f  4AP (Lundh and 

Thesleff, 1977; Rogawski and Barker, 1983).
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Three types o f spontaneous, synchronous activity were recorded in the presence of 

4AP. The most prevalent is the generation o f frequently occurring bursts o f short 

duration which are reminiscent of inter-ictal activity seen in vivo (Avoli et al., 

1993; M attia et al., 1994; Morris et al., 1996; Voskuyl and Albus, 1985; Watts 

and Jefferys, 1993). Less frequent negative potentials which have been proposed 

to be GABAergic have been found in some instances (Voskuyl and Albus, 1985; 

M attia et al., 1994; Michelson and Wong, 1994; Morris et al., 1996; Perreault and 

Avoli, 1991; 1992; Avoli et a l ,  1993;). Prolonged seizure-like bursts, ictal 

activity, lasting up to tens o f seconds can also occur (Avoli et a l ,  1993; 1996; 

Gean, 1990; M attia et a l ,  1993; Watts and Jefferys, 1993).

The involvement o f glutamatergic transmission in 4AP-induced epileptifonn 

activity has been investigated using selective NMDA and non-NMDA receptor 

antagonists. There are some reports showing that interictal and ictal-like activity 

induced by 4AP are suppressed by non-NM D A  receptor antagonist 6-cyano-7- 

nitroquinoxaline-2,3-dione (CNQX) and 6,7-dinitroquinoxaline-2,3(lH,4H)-dione 

(DNQX) (Avoli et a l ,  1996; Avoli et a l ,  1993; Gean, 1990; Perreault and Avoli, 

1991). NMDA receptor antagonists generally have no or very little effect on 4AP- 

induced bursts (Avoli et a l ,  1993; Gean, 1990; Perreault and Avoli, 1992). 

However, exceptions have been reported. Avoli et al (1996) showed that ictal-like 

events in the entorhinal cortex were abolished by an NMDA receptor antagonist 

3-(±-2-carboxypiperazine-4-yl)-propyl-l-phosphonic acid (CPP) (Avoli et a l ,  

1996). This data was further supported by Gulyas-Kovacs et al (2002), who 

showed that another NMDA receptor antagonist D,L-2-amino-5-phosphonovaleric 

acid (APV) significantly decreased frequency of 4AP-induced epileptiform 

activity (Gulyas-Kovacs et a l ,  2002). Inter-species differences, the cortical area 

from which the slice originated and different experimental conditions may 

account for such differences. For example, 4AP-induced ictal-like bursts in rat 

neocortex were inhibited by non-NMDA receptor antagonist and not affected by a 

NMDA receptor antagonist, whereas the opposite finding was observed with 

slices o f guinea-pig origin (Mattia et a l ,  1993).
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The disappearance o f 4AP bursts in low or zero calcium media also suggests a 

dependence on synaptic activity for generation (Gean, 1990; Voslcuyl and Albus, 

1985).

One o f the unusual features o f 4AP-induced epileptiform activity is that both 

excitatory and inhibitory synaptic transmission is enhanced (Perreault and Avoli, 

1991; Rutecki et al., 1987; Tapia and Sitges, 1982). Unlike other convulsant drugs 

that act primarily by diminishing the efficiency o f GABA-mediated inhibition, the 

evidence available indicates that 4AP-induced epileptiform activity occur despite 

the presence o f normal or even enhanced synaptic inhibition (Chesnut and Swann, 

1988; Rutecki et ah, 1987).

1.5.3 Epileptiform activity induced by GAB A receptor
antagonists

In respect to the action o f these compounds epileptiform activity results primarily 

from reduced G ABA mediated inhibition. Reducing the amplitude o f GABAa- 

mediated IPSPs by 20% is sufficient for synchronous discharges in neocortex 

(Chagnac-Amitai and Connors, 1989). However, the hippocampus is more 

resistance, requiring a nearly complete block o f evoked inliibitory potentials for 

synchronous bursts (Schneideiman et ah, 1992). While much o f the early work 

studied the topical application o f these compounds to the neocortex, hippocampus 

and other structure in vivo, most o f current understanding o f the cellular 

mechanisms o f their actions derives from work on brain slices (Jefferys, 1994). 

Several in vitro models have produced epileptiform activity by using various 

G ABA receptor antagonists, for example picrotoxin (Knowles et ah, 1987; Kohr 

and Heinemann, 1990) and bicuculline (Colom and Saggau, 1994; Gulyas-Kovacs 

et ah, 2002; Herron et ah, 1985). The activity found with these disinhibitory 

models is reminiscent o f the iiiterictal spike o f the epileptic EEG (Jefferys, 1994).

The synchi'onisation o f  neuronal discharges in disinhibited hippocampal slices 

using GAB A receptor antagonists has been studied in some detail. These studies
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revealed that hippocampal neurones are required tlu'ough a network o f recuiTent 

excitatory synaptic connections between CA3 pyiamidal cells (Miles and Wong, 

1987; Traub and Wong, 1982). Recurrent GAB A mediated inhibition normally 

exerts a tight control over the spread o f activity via polysynaptic recurrent 

excitatory pathways between CA3 cells (Miles and Wong, 1987). Disinhibition of 

hippocampal slices by picrotoxin or bicuculline revealed a polysynaptic 

comiection between cells, which previously were not connected. Bicuculline 

decreases the amplitude o f inhibitory postsynaptic potentials and impairs 

inliibition, therefore facilitate propagation o f excitatory signals tluough 

multisynaptic pathways (Gutnick et a l ,  1982; Miles and Wong, 1987).

Development o f synchronised PDSs contribute to burst generation in the 

spontaneous epileptiform process (Prince, 1968). In bicuculline-containing 

solutions a regenerative Ca spike is suggested to initiate depolarisation and 

contribute to the PDS formation (de Curtis et al., 1999). The cellular mechanisms 

involved in the generation o f spontaneous epileptiform potentials in bicuculline 

model are investigated in the pirifom cortex o f the in vitro isolated guinea-pig 

brain (de Curtis et al., 1999). In this study, a large plateau potential similar to that 

obseiwed in neocoitical pyi'amidal neurones bathed in tetrodotoxin and 

tetraethylammonium (Friedman and Gutnick, 1989) is activated at high threshold 

during the spontaneous interictal spike when the sodium conductance is blocked 

in the presence o f a calcium chelator. Such a plateau potential was reversibly 

abolished by a selective blocker o f the calcium conductances and by membrane 

potential hyperpolarisation. The exact tlireshold o f activation o f this calcium 

potential could not be deteimined.

1.5.4 Low magnesium-induced epileptiform activity

Reduced levels o f magnesium have been associated with symptoms o f clinical 

epilepsy (Durlach, 1967). Slice preparations of various central nervous system 

tissues generate epileptiform activity when perfused with a medium devoid o f 

added magnesium: hippocampus (Mody et ah, 1987; Schneiderman and
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MacDonald, 1987; Wliittington et al., 1995), entorhinal cortex (Jones, 1989), 

neocortex (Horne et al., 1986) and amygdala (Gean and Shinniclc-Gallagher,

1988).

At normal physiological concentrations magnesium exerts a voltage-dependent 

block on NMDA receptors by binding to a site which is thought to be located 

within the ion channel (Ascher and Nowak, 1988; Mayer et al., 1984; Nowak et 

al., 1984). Relief o f this block can ensue during periods o f depolarisation, 

allowing the movement o f Na^, K"*' and Ca^^ through the receptor channel. The 

activation o f NMDA receptors following removal o f magnesium from the bathing 

medium is considered to he the principal mechanism involved in the generation of 

epileptiform activity in low magnesium model. Evidence comes from the total or 

partial reduction o f epileptiform activity in the presence o f selective NMDA 

receptor antagonists (Home et al., 1986; Mody et al., 1987; Sclmeiderman and 

MacDonald, 1987; Tancredi et al., 1990).

In general the epileptiform activity instigated by low magnesium medium is inter- 

ictal-like and characterised by burst o f milliseconds (Mody et al., 1987; Tancredi 

et al., 1990; Whittington et al., 1995). Ictal events with conesponding tonic and 

clonic periods o f activity has also been recorded in hippocampal slices using a 

low magnesium medium (Anderson et al., 1986).

GABAergic inhibition is still evident during low magnesium epileptiform activity 

due to the maintained ability to evoke inliibitoiy postsynaptic potentials (IPSPs) 

(Tancredi et al., 1990) and thus may act to limit the extent o f firing. In other 

studies inliibition has been found to be reduced in comparison to normal 

circumstances (el-Beheiry and Puil, 1990; Jefferys, 1994).

1.5.5 Elevated potassium-induced epileptiform activity

The extracellular concentration o f potassium rises during seizures induced in vivo 

in cats (Fisher et al., 1976; Moody et al., 1974) and in vitro hippocampal slices
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(Yaari et al., 1986). Basal extracellular potassium levels are approximately 3 mM. 

Raising the concentration o f potassium in the medium bathing slices to 5-10 mm 

results in the generation o f epileptiform activity in vitro (McBain, 1994; Traub 

and Dingledine, 1990; Traynelis and Dingledine, 1988).

Inter-ictal activity in the CA3 region o f hippocampus occur when slices are bathed 

in a high potassium medium (Kom et al., 1987; Rutecki et al., 1985; Traynelis and 

Dingledine, 1988). This activity propagates to the CA l where intense ictal like 

activity results (Traynelis and Dingledine, 1988). The transition from inter-ictal to 

ictal-like activity has been suggested to revolve around an increase in potassium 

concentration (Dichter et al., 1972).

Increased extracellular potassium reduces potassium efflux as a result o f a 

modified concentration gradient (Dietzel et ah, 1980) which increase neuronal 

excitability and increases incidence o f spontaneous EPSPs (Jefferys, 1993). 

Increased potassium levels, paralleled with a decreased potassium driving force, 

cause a decrease in the amplitude o f a potassium mediated after hyperpolarising 

potential (AHP) and a decrease in the amplitude of GABAergic IPSPs (Kom et 

ah, 1987; McBain, 1994). Inhibition is depressed in this model because the 

reversal potential for Cl" shifts towards the resting potential but it is not abolished 

(Jefferys, 1993).

1.5.6 Low calcium-induced epileptiform activity

Reducing extracellular calcium [Ca^^]o is a method o f inducing epileptifoiin 

activity in rat hippocampal brain slices that effectively blocks all chemical 

synaptic transmission (Haas and Jefferys, 1984; Jefferys and Haas, 1982; Taylor 

and Dudek, 1982). This model o f  synclrronisation was reported by several 

laboratories within a few weeks o f each other (Haas and Jefferys, 1984; Jefferys 

and Haas, 1982; Taylor and Dudek, 1982). Hippocampal slices bathed in solutions 

containing level o f [Ca '̂^jo low enough (0-0.2 mM) to block synaptic transmission, 

after a delay o f tens o f minutes, started to generate synchronous discharges. These
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discharges differed from those seen with more commonly used convulsant 

treatments in originating most easily fr'om the CA l region. They also differed in 

their appearance which is more prolonged lasting up to tens o f seconds (Jefferys,

1993),

Two non-synaptic mechanisms were at work in the low [Ca^^Jo field bursts. Fast 

synchronisation which is mediated by electric field effects and slower 

synchronisation is mediated tlirough fluctuations in [K^] (Dudek et ah, 1986; Haas 

and Jefferys, 1984; Konnerth et al., 1984). The electric field effects are caused by 

the extracellular currents generated by the activity o f one gi'oup o f neurones 

depolarising the membranes o f their neighbours enough to change their 

excitability. This phenomenon has also been termed ephaptic interaction. As with 

the low magnesium model a reduction in the concentration o f divalent cations 

reduces membrane charge screening and produces high extracellular cuirent 

densities and thus facilitates membrane depolarisation (Frankenhaeuser and 

Hodgkin, 1957; McLaughlin et ah, 1971). The slower form o f non-synaptic 

synchronisation is due to fluctuations in extracellular ions, specially increased 

[K"̂ ], result fi'om neuronal activity, and tend to depolarise neighbouring neurones 

and glia (Komierth et ah, 1984). A reduction in calcium dependent potassium 

currents which are responsible for after-hyperpolarisation also contribute to low 

calcium epileptogenesis (Jefferys and Haas, 1982).

The essential condition for this kind o f synclrronisation is that the neurones need 

to be close to threshold. Experimentally this is achieved by the low [Ca^^]o, low 

to normal [Mg '̂^Jo and moderately high [K’̂ 'jo (Jefferys, 1993). These conditions 

can arise during seizures (Heinemamr et ah, 1986), so that non synaptic 

synchronisation may well have a role in development o f seizure rather than the 

generation of seizure (Jefferys, 1993). One factor in susceptibility o f the CA l to 

this kind o f synchronisation is the tight packing o f the pyramidal cell bodies in 

stratum pyramidale', the restricted extracellular space reinforces both the electric 

and ionic mechanisms (Jefferys, 1993).
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1.5.7 Other models

Much o f the early experimental works used intact laboratory animals, either under 

anaesthesia or freely moving, for studies o f the epilepsy as a disorder o f whole 

brain. These preparations in vivo have largely replaced by preparation in vitro, 

such as the brain slice, for studies at the level o f the single cell or o f small 

population o f cells and local circuits. However, studies in vivo still have important 

roles for placing more reductionist studies into context. Even the most distinct 

focal epileptic discharge tends to propagate to other parts o f the brain, and indeed 

may have profound effects on the body as a whole tlrrough the motor, autonomic 

and endocrine systems. In vivo methods also are crucial for screening new 

anticonvulsants and studying their toxicity and phannacokinetics. They are also 

essential for studying seizure propagation and generation, the behavioural 

correlates o f seizures, the long term structural and functional consequences of 

repeated seizures (Jefferys, 1993).

Kindling is a special clu’onic model o f experimental epilepsies which differs from 

many o f the other chronic models in that it does not necessarily involve 

convulsant drugs (Jefferys, 1993). Its essential feature is the repeated presentation 

o f subconvulsive stimulus that involves activity-dependent changes in neuronal 

structure and flmction (Mody, 1993). The phenomenon o f kindling in epilepsy 

was first discovered by accident by researcher Graham Goddard in 1967. Goddard 

was studying the learning process in rats, and part o f his studies included 

electrical stimulation o f the rats' brains at a very low intensity, too low to cause 

any type o f convulsing. Wliat he found was that after a couple o f weeks o f this 

treatment, the rats did experience convulsions when the stimulation was applied 

(Goddard et al., 1969). Goddard and others later demonstrated that it was possible 

to induce kindling using a chemical (Bell et ah, 1992; Goddard and Douglas, 

1975) such as pentylenetetrazol, either injected through an implanted electrode, or 

given systemically. The definitive feature o f kindling is that the electrical and 

behavioural response to these stimuli progressively increases, so that a constant 

stimulus which initially can be minimal and clearly non-convulsive response
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reduces seizure tlu'esliold and eventually triggers generalised motor seizures 

(Jefferys, 1993),

Activation o f muscarinic cholinergic receptors produces oscillations in the 

hippocampal slice that resemble the theta rhythm, but also may produce abnormal 

synchronous activity that is more characteristic o f  epileptifoiin activity. 

Pilocarpine, a muscarinic agonist, can produce status epilepticus in vivo 

(Cavalheiroet a l , 1991, 1996; Turski et ah, 1983, 1984; Liu et al., 1994) as well 

as inducing epileptiform activity in vitro (Nagao et al., 1996; Rasmussen et al., 

1996; Rutecki and Yang, 1998). When applied to rat hippocampal slices, 

pilocarpine (10 pM) produced brief interictal-like activity, as well as more 

prolonged ictal-like activity, which was comparable to epileptiform activity 

induced by 4AP. However, the interictal activity observed in pilocarpine-treated 

slices displayed a lower rate o f occurrence and a longer duration than in 4AP- 

bathed slices (Nagao et ah, 1996). All types o f synelironous epileptifomi activity 

induced by pilocaipine disappear during application o f the non-NMDA receptor 

antagonist (Nagao et ah, 1996). However, NMDA receptor antagonists can only 

reduce epileptiform discharge duration (Nagao and Avoli, 1994). G ABA mediated 

inliibition is decreased in pilocarpine model (Houser and Escaplez, 1996). 

Moreover, a recent study has revealed that intrinsic bursting in C A l pyramidal 

cells is upregulated in the piloearpine model (Sanabria et ah, 2001).

Numerous other compounds, in addition to the ones already mentioned, have been 

used both in vivo and in vitro to generate epileptiform activity:

• Kainic acid (Stringer and Sowell, 1994; Westbrook and Lothman, 1983)

• Penicillin (Dichter and Spencer, 1969; Lathers et ah, 1993; Wong and Prince, 

1979)

• Pentylenetetrazol (Mirski et ah, 1994; Stringer, 1994; Stringer and Sowell,

1994)

• Tetanus toxin (Wlrittington and Jefferys, 1994)
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Trains o f electrical stimuli (Anderson et al., 1987; Staslieff et al., 1985)

Clearly there are multiple experimental approaches that could be used to 

investigate the role o f nACliRs in epilepsy states including human and whole 

animal studies (Damaj et a l ,  1999; Dixit et al., 1971; Miner et al., 1985) as well 

as in vitro imaging (calcium or voltage sensitive dyes) (Gray et al., 1996; 

McGehee et al., 1995; Vogt and Regelrr, 2001) and biochemical (transmitter 

release assays) (Gray et al., 1996; Marshall et al., 1997; Sershen et al., 1997; 

Vidal and Changeux, 1993) approaches. However, I have chosen to adopt 

(induced in vitro slice epileptiform activities monitored by electrophysiological 

means) was based upon the ease o f pharmacological and electrophysiological 

intervention and thus the ability to investigate underlying synaptic and cellular 

mechanisms for an electrophysiological perspective.

1.6 Aims

This project aims to establish the role that nicotinic acetylcholine receptors may 

play in experimental models of epilepsy and to assess whether pharmacological 

agents acting at these receptors might represent a novel avenue for developing 

future anticonvulsants. Specific questions to be addressed include:

1. Investigation into the effects o f iiAChR activation on various experimental 

models o f epilepsies.

2. Identification the subtypes o f nACliRs in modulating epileptiform 

activities.

3. Establish tlirough which circuits iiACliR-mediated effects might be 

occurring.
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MATERIAL AND METHODS

2.1 Slice Preparation

All experiments carried out during the course o f this project were approved by the 

Ethical Review Process Applications panel o f the University o f Glasgow and were 

performed in accordance with the UK Animals (Scientific procedures) Act 1986.

Male wistar rats (2-6 weeks) were bred and housed in gi'oup cages under 

controlled environmental conditions (temperature 19-23°C and 121rr light/dark 

cycles).

All efforts were made to minimise the number o f animals used and their suffering. 

2-3 weeks old wistar rats were cervically dislocated and decapitated in compliance 

with Home Office guidelines on the operation o f the Animals (Scientific 

Procedures) Act 1986. Older rats (4-6 weeks) were terminally anaesthetised with 

an intraperitoneal injection o f Pentobarbitone Sodium (lOOOmg/kg) and then 

decapitated, following unconsciousness and lack o f paw pitch pain reflexes.

An incision was made along the midline o f the head using a scalpel and the skin 

separated to reveal the skull. Using sharp dissecting scissors the skull was cut 

down the midline from back to front and the bone folded to each side to expose 

the brain. The brain, separated from the spinal cord, was carefully removed with a 

small spatula and placed in a beaker o f chilled (0-3°C), oxygenated (95% oxygen- 

5% carbon dioxide) artificial cerebrospinal fluid (ACSF). The standard perfusion 

medium (ACSF) comprised (mM): NaCl, 124; KCl, 3; NaHCOg, 26; NaH2P0q,
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1.25; CaCl2, 2; MgSOq, 1; D-glucose, 10. 5% CO2 was included to maintain a 

correct PH o f 7.4.

Horizontal orientation was chosen for slice preparation (Figure 2.1). The brain 

minus the cerebellum was subsequently hemisected and top surface o f brain was 

glued to the stage o f a vibrating blade microtome (Leica VTIOOO, Milton Keynes, 

U.K.). 400 pm thick transverse horizontal slices were cut using a vibrating 

microtome (Leica VTIOOO, Milton Keynes, U.K.). Tlu'oughout the slicing 

procedure the brain and slices were held in a chamber containing chilled (-2-4°C) 

ACSF. Using a large bore suction pipette, the slices were then transferred to a 

cold petri dish containing chilled ACSF where the hippocampal region o f each 

slice was dissected free from surrounding brain tissue. Hippocampal slices were 

maintained in an interface incubation chamber with an oxygen-emiched 

atmosphere at room temperature (controlled at 26 ± 2°C). Following an incubation 

period o f Ihour the slices were individually transferred to the recording chamber 

using a large bore suction pipette. Spare slices were stored in the interface 

incubation chamber where remained viable for up to 12 hours.

For path clamp recordings hippocampal slices were made from male and female 

Wistar rats (PI 6-28). Animals were terminally anaesthetised with an 

intraperitoneal injection o f Pentobarbitone Sodium (lOOOmg/kg). Following 

unconsciousness and lack o f paw pitch pain reflexes, the abdomen and rib cage 

were opened and a tianscardial perfusion was performed. A hypodermic needle 

(19G 1 Vz) was inserted and fixed into the left ventricle and an incision made in 

the right atrium, the heart was then perfused with 20-60ml o f chilled high sucrose 

ACSF (composition mM: NaCl, 87, KCl, 2.5, NaHCO], 25, NaH2P04, 1.25, 

M gS04, 7, CaCfr, 0.5, glucose, 11, sucrose, 75) in accordance with U.K. home 

office guidelines. Removal o f the brain and preparation o f 250pm slices followed 

an identical procedure to that stated above but in the presence o f a high sucrose 

ACSF solution. Slices were transfeiTed to a submerged holding chamber, heated 

to 37°C for 1 hour and the higli sucrose ACSF was gradually (10% every 15mins) 

changed to normal ACSF over a period of two hours. Slices were stored in the
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400 sections Base of brain

Glued surface

Figure 2.1. Process and orientation for slice preparation.
A. Diagram illustrating the direction of slicing. For preparation of slices in a horizontal 
orientation the cerebellum was firstly separated and the brain then hemisected along 
the midline (1). The top part of brain was separated (2) and the brain was then 
inverted and the top surface of brain glued to the stage of a vibrating blade microtome 
(3). Slices were subsequently cut from the bottom surface of the brain at a thickness 
of 400pM. Dotted lines indicate the incisions made and the exposed surface of the 
brain. All procedures were carried out at 2-4°C to reduce metabolic decay and to firm 
the brain for care of sectioning. B. Picture of a trimmed hippocampal slice showing 
several fields of the hippocampal formation and the intrinsic connections.
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submerged style holding chamber at room temperature (19-24°C) until needed. 

They were then individually transferred to a submerged recording chamber using 

a large bore suction pipette as needed.

2.2 Electrophysiology

2.2.1 Recording set-up

The recording chamber, microscope (Olympus, IMT-2, Japan) and manipulators 

(Narishige, MC35, Japan) were mounted on a pressure sensitive anti-vibration 

table (Intracel, UK, Figure 2.2). All other electrical equipment including signal 

processor (model 440, Brownlee Precision), analogue-to-digital converter 

(Digidata 1320 series, Axon instruments), humbug noise subtraction device 

(Quest Scientific) and PC were secured in a racks alongside the Axoclamp 2B 

current and voltage clamp amplifier (Figure 2.2). A schematic o f the experimental 

apparatus is illustrated in Figure 2.3.

An interface type chamber (Figure 2.4) was chosen for extracellular and 

intracellular recordings. This consisted o f a 35 mm diameter plastic chamber in 

which the slices were placed on a small 1 cm square pieces o f lens tissue at the 

interface o f a wanned ACSF and an oxygen-enriched, humidified atmosphere.

The ACSF was heated to approximately 32-34 ®C and bubbled with 95% 0%, 5% 

CO2 to provide a humid oxygen enriched atmosphere. Oxygenated ACSF was 

pumped, by means o f a peristaltic pump (Gilson, France), through the central

chamber providing a constant flow rate o f 1-2 ml.min"^.

Recordings electrodes for extracellular and intracellular experiments were pulled 

from standard-wall (1.2mm internal-/0.69mm external-diameter) borosilicate glass 

capillaries on a Brown and Flaming-type horizontal electrode puller model P-87
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Figure 2.2. Photograph showing the Recording apparatus.
Photographic image illustrating manipulators and microscope secured on 
antivibration table, with all other equipment secured in racks alongside. 
Recording chamber is mounted under microscope. Micromanipulators are used 
to position recording electrodes. PC drives experiments and captures data.
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Figure 2.3, Schematic of the experimental apparatus.
Flow chart illustrates the apparatus used for electrophysiological recordings. Heated 
oxygenated ACSF is pumped through the central chamber providing a constant flow 
rate. As indicated, the system can be operated in a closed loop so that small 
volumes of drug containing medium can be recirculated if necessary. Hippocampal 
slices are placed in recording chamber at an ACSF/ humidified oxygen (95% Og, 5% 
COg) interface and extracellular recordings then made from hippocampal slices 
using glass microelectrodes. Such field potentials are amplified by an Axoclamp 28 
amplifier and a Brownlee 440 signal processor. Extraneous 50Hz line frequency 
noise was subtracted from traces where necessary using a humbug device. Data is 
digitised (Digidata 1342) and captured as a continuous data stream on PC for further 
off-line analysis.
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Figure 2.4. Interface recording chamber.
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heated ACSF is pumped through the chamber. Two hippocampal slices are transferred 
to recording chamber and extracellular recordings then obtained from stratum  
pyramidale of area CA3 using glass microelectrodes. Experiments can thus be run in 
tandem to increase throughout.
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(Sutter Instmments, USA). Electrode resistance and filling solutions varied 

according to the type o f experiment perfoimed. Recording electrodes for 

extracellular recordings had blunt tips and were filled with standard ACSF to a 

d.c. resistance o f around 1-5MQ. Electrodes for intracellular recordings were 

filled with 1.5M potassium methyl sulphate and had a d.c. resistance in the range 

of80-150M Q.

Filled recording electrodes were mounted into electrode holders where their filling 

solution came into contact with silver chloride coated silver wire. The electrode 

holder was then inserted into a unity gain head stage (current gain 0.1: Axon 

instruments) and comiected to the axoclamp 2B amplifier. In many experiments, 

two headstages were employed so that it was possible to run experiments on 2 

hippocampal slices in parallel (thus increasing the yield of data collection) or to 

enable simultaneous intra and extracellular recording from an individual slice. A 

silver chloride bath reference electrode submerged in the recording chamber was 

also connected to the headstage.

Bipolar stimulation electrodes were constmcted from two lengths o f 0.05mm 

diameter Nickel 80% /clnomium 20% wire (Advent Research Materials Ltd., 

England) twisted together and cut at the end to produce a focal stimulation. 

Stimuli were produced by constant cuiTent isolated stimulator boxes (Digitimer 

Ltd., England), which in turn were triggered by a Master 8 pulse generator 

(A.M.P.L, Israel).

All stimulating and recording electrodes were mounted on micromanipulators 

(Narishige MC35, Japan) to allow course and fine movement in all {x,y and z) 

directional planes.
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2.2.2 Recording Technique 

2.2.2.1 Extracellular field recordings

These experiments were perfonned in an interface recording chamber. Standard 

ACSF was used as the electrode filling solution to achieve a final d.c. resistance 

between l-SM H.

Spontaneous epileptiform activity recordings:

In order to measure synchronous neuronal discharges that characterise 

epileptiform activities, the majority o f recordings were earned out using the 

extracellular configuration (Figure 2.5). Following an equilibration period o f 1 

hour, two slices were transfeiTed to the recording chamber where the slices were 

allowed to a further equilibration period o f at least 15 minutes before recording 

commenced. Simultaneous extracellular recordings were then made from area 

CA3 of each hippocampal slice.

The recording electrodes were placed on the surface o f each hippocampal slice, 

close to stratum pyramidale within area CA3 (usually CA3c), A  microscope slide 

was subsequently placed over the recording chamber to maintain a high hiunidity. 

Synelironous activity within the slice was manifested extracellularly as field 

potentials (positive and negative deflections) capable o f being detected by 

electrodes in contact with the external space (Figure 2.5). Such field potentials 

were first amplified 10 times by an Axoclamp 2B amplifier operated in bridge 

mode, then a further 200 times by a Brownlee 440 signal processor. The DC 

recordings were then filtered (5 to lOOOHz band pass) and extraneous 50Hz line 

fi*equency noise was subtracted using a Humbug device (Quest Scientific, 

Canada). The processed signal was fed tlirough a Digidata 1320A analogue-to- 

digital converter operating at 0.5-2 IcHz, and thence to a PC for capture on hard

disk using pClampS.O software (Axon hist.. Union City, CA, USA).
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Individual epileptiform bursting event

Figure 2.5. Examples of extracellular field potentials recordings.
PC screen image showing simultaneous recording from two channels, each 
representing activity in different hippocampal slice. Note that both traces show 
intermittent bursting responses which are recorded in chart recorder mode for 
subsequent off-line analysis.



Chapter 2

Tliree different convulsant models were used in this study: 4-aminopyridine 

(4AP), bicuculline and low magnesium ACSF. Spontaneous synchronous 

epileptifonn activity was induced via the addition o f 4AP (10-50 pM) or 

bicuculline (20 pM) to the perfusion medium, and the burst frequency then 

allowed to stabilise (~ 60 minutes). In the bicuculline experiments, the level o f 

KCl in the standard medium was raised from 3 to 5mM in accordance with 

previously described methods (Ives and Jefferys, 1990). In the low Mg^^ 

experiments, M gS04 was simply omitted from the perfusing ACSF medium 

(Gulyas-Kovacs et al., 2002),

Evoked responses recordings:

Extracellular recordings were carried out in both the CA3 and C A l region o f the 

hippocampus. The 1-5MO recording electrodes were placed on the surface o f the 

slice in the stratum radiatum  o f the CA3 and CA l regions. Stimuli were delivered 

o f 20 second inteiwals via the bipolar stimulation electrode positioned within the 

hilus or Schaffer collaterals pathways and resulting field EPSPs were recorded. 

The stimulus comprised o f a square wave pulses of 20ps duration and 0-30mA 

constant current amplitude. The stimulus intensity was adjusted to evoke a 

response o f half o f maximum response value for each experiment (range 1.2-2.5 

mA).

Z.2.2.2 Intracellular current clamp recordings

In a minority o f slices intracellular recordings were performed simultaneously 

with extracellular recordings. For intracellular recording, electrodes were filled 

with 1.5M potassium methylsulphate (filtered using 0.2pm syringe filter) to 

achieve a final d.c. resistance between 50 -  180MQ. Electrodes were pulled to 

provide a fire tip to pennit entry into pyramidal nem'ones with minimal injury 

discharge.
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Intracellular recordings were made from cells in stratum pyramidale close to the 

extracellular recording electrode. Putative pyramidal cells within area CA3 of the 

hippocampus were identified and differentiated from fast spiking interneurones 

based upon their characteristic properties including a pronounced spike frequency 

adaptation and relative lack o f very fast afterhypeipolarisations (Buhl et al.,1994).

Impalement o f pyramidal neurones was achieved by advancing the recording 

electrode tlri'ough the stratum pyramidale using a Narishige (MC35, Japan) water 

hydraulic drive in two axes. Negative current pulses (0.1 nA) were applied through 

the recording electrode so that any increase in voltage deflection gave an 

indication that the electrode tip was approaching a cell membrane. Subsequent 

application o f an oscillatory cuiTent “buzz” was then used to facilitate penetration 

o f the electrode tip. Following successful impalement spontaneous epileptiform 

activity at the single cell level was monitored under current clamp bridge mode. 

Signals for intracellular recordings were typically amplified x 100 and DC 

recordings low pass filtered (Brownlee 440, 8-pole bessel) at 2KHz and sampled 

at 5-10 KHz for subsequent off-line analysis.

2.2.2.3. Patch clamp whole-cell recordings

Patch clamp experiments were performed with the assistance o f  Leamie Ferrigan. 

Slices were transfeiTed fi*om the holding chamber to a submerged recording 

chamber mounted on the stage o f an Olympus BX50WI upright microscope. 

Electrodes were back filled with a intra-pipette solution, composition (mM): 

KmeS04, 122.5, KCl, 17.5, NaCl, 9, M gCb, 1, EGTA, 0.2, GTP, 0.3, ATP, 3 and

0.5% Neurobiotin or CsCl, 135, M gCb, 2, HEPES, 10 and 0.5% Neurobiotin. 

(Filtered using 0.2pm syringe filter) to achieve a final DC resistance between 6- 

lOMO. Wliole-cell voltage clamp recordings were obtained from CAl
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interneurones under visual control using infrared differential interference contrast 

(DIC) optics and the blow and seal patch-clamp teclmique.

Healthy target cells were chosen on a shiny, smooth appearance o f the cell 

smface. Slight positive pressure was applied to the pipette interior while 

advancing through the slice towards the chosen target cell so that the pipette 

solution streamed outwards maintaining a clean electrode tip and cleaning the 

surface o f  the target cell. The electrode tip was slowly manoeuvred to the cell 

surface while recording cun'ent steps applied tluough the electrode. Once the 

electrode tip touches the cell membrane the positive pressure was immediately 

released to form a low resistance seal, characterised by a reduced cun’ent trace. At 

this point slight negative pressure was applied to increase the seal resistance until 

a high resistance gigaohm seal was achieved. Subsequent hyperpolarisation o f the 

electrode to -70m V  and application o f short suction pulses ruptured the 

membrane patch to achieve the whole cell patch-clamp formation. Voltage clamp 

configuration was chosen for the duration of the experiment and spontaneous 

inliibitory postsynaptic currents (IPSC) were recorded from C A l intemeurones 

within stratum radiatum  and stratum oriens.

2.3 Data Display and Storage

All digitised data captured directly onto DAT tape (DTR-1404; Biologic 

Scientific Instalments, Claix, France) and/or onto a PC hard disk using pClamp8.0 

software (Axon Instruments, CA., U.S.A.) for further analysis.

2.4 Data Analysis

All analysis was carried out off-line using pClampS (Axon Instruments), Origin 6 

(Microcal, MA. U.S.A.) and Mini Analysis version 5.6.28 (Synaposoft Inc. GA,
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USA) software packages. Instantaneous frequency was calculated at a given time 

point as the inverse of the preceding inter-event inteiwal. The data were then 

represented in the scatter plots in which time point o f a given experiment was 

plotted against the inverse of the preceding inter-event inteiwal (‘frequency’). In 

order to not bias any change, which occurred within clusters individual events 

were considered independently. As the basal frequency o f bursting imder control 

conditions varied considerably from slice to slice (Figure 2.5), all data within a 

given experiment were normalised to the mean activity recorded in the presence 

o f each convulsant alone (i.e., mean burst frequency induced by 4AP, BIC or low 

magnesium) to enable comparison and pooling o f data between individual 

experiments (control; 100%). For example when calculating mean values for the 

frequency o f bursting, the average number o f spikes over a 10 minutes period 

before (-10 to 0 mins o f pre-drug control period), dining (10 to 20 mins post-drug 

application) and following wash out o f drugs (20-30 mins following 

commencement o f washout) was measured and nomialised to mean control 

values. Thus all data were expressed as a percentage change from the pre-drug 

control value and presented as means ± standard error o f the mean (S.E.M.). 

Statistical significance determined using Wilcoxon matched pairs test, paired 

Students /-tests, analysis o f variants (ANOVAs) and subsequent post hoc tests 

(Student-Newman-keuls and tukeys) were performed using Graph Pad InStat 

version 3.05 for windows (GraphPad Software, San Diego California, USA). 

Probability values o f less than 0.05 being taken as indicating statistical 

significance, n values refer to the number o f times a particular experiment was 

repeated.

2.5 Drugs and Chemicals

4-aminopyiidine (4AP), choline, dimethylphenyl-piperanzinium (DMPP), N- 

methylcarbamylcholine (MCC), (±) epibatidine, cytosine, atropine, dihydro-(3- 

erythroidine (DH(3E), a-bungarotoxin (a-Bgt), methyllycaconitine (MLA) and
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mecamylamine, all purchased from Sigma-Aldrich Company Ltd (Poole, 

England); Bicuculline, baclofen and 6-nitro-7sulphamoylbenzo[/]quinoxaline~

2.3-dione (NBQX) purchased from Research Biochemicals International (Natick, 

MA, USA.); and Nicotine pmchased from BDH chemicals Ltd (Poole, England.). 

Lobeline and (S)-a-methyL4-carboxyphenyglycme (MCPG) were purchased from 

Tocris Cookson (Bristol, U.K.).

D-(E^-2-Amino-4-methyl-5-phosphono-3-pentanoic acid (CGP 40116), [l-(6)-

3.4-dichlorophenyl)ethyl]amino-2-(6)-hydroxypropyLp-benzyl-phosphoic acid 

(CGP 55 845A) were gifts from Dr Kumlesh Dev, Novartis Phannaceuticals, 

Basel, Switzerland.

All drugs were dissolved in deionised water and stored as frozen 1ml aliquots of 

stock solutions 100 to 1000 times the final concentration. Drug application (final 

dilution) was via perfusion medium for a period not less than 15 minutes.
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CHAPTER 3 

REGULATION OF 4-AM INOPYRIDINE- 
INDUCED EPILEPTIFORM  ACTIVITY BY  

nAChR ACTIVATION

3,1 Introduction

The 4-Aminopyridine (4AP) model of epileptiform activity was initially chosen for 

this study since it gives rise to rather stereotyped and reliable responses that are stable 

over prolonged periods. We also become interested in 4AP as our main experimental 

model of focal epilepsy for since its action as a convulsant is well described. First, 

4AP can induce epileptiform activity in vivo (Morales-Villagran et al., 1996; Szente 

and Baranyi, 1987; Szente and Pongracz, 1979) and in vitro (Avoli et al., 1996; 

Chesnut and Swann, 1988; Galvan et al., 1982; Traub et al., 1995; Watts and Jefferys, 

1993) when injected or applied in low concenti'ations. 4AP is also reported to produce 

clinical seizures in man (Spyker et al., 1980; Thesleff, 1980). Second, unlike other 

convulsant drugs that act primarily by diminishing the efficiency of GABA-mediated 

inhibition (Avoli et al., 1988), the evidence available indicates that 4AP-induced 

epileptiform discharges occur despite the presence of normal and even enhanced 

synaptic inhibition (Chesnut and Swami, 1988; Rutecki et al., 1987). 4AP may 

therefore provide a suitable model to investigate the pathophysiological mechanisms 

involved in the generation of epileptiform activity in conditions where synaptic 

inliibition is preserved. Third, 4AP is known primarily as a blocker of currents, the 

fast A cruTent and the slower D cunent (for review see Rudy 1988), although other 

evidence suggests it might affect Câ "*" currents as well (Rogawski and Barker, 1983; 

Segal and Barker, 1986). In the somato-dendrite region, these effects of 4AP on
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intrinsic conductance depolarise the cell so membrane potential is become closer to 

action potential threshold and reduce the latency o f action potential generation (Rudy, 

1988), whereas at presynaptic teiininals, the result is a facilitation o f neurotransmitter 

release (Thesleff, 1980) that can enhance both excitatory and inhibitory synaptic 

transmission (Kita et a l, 1985; PeiTeault and Avoli, 1991; Rutecki et al., 1987; 

Thesleff, 1980)).

Three types of burst characteristics have been documented to result from the use of 

4AP, The most prevalent is the generation of frequently occuning bursts of short 

duration, namely interictal activity (Watts and Jefferys, 1993; Mattia et al., 1994; 

Avoli et al., 1996; Morris et al., 1996). Less frequent negative potentials, which have 

been proposed to be GABAergic have been found in some instances (Michelson and 

Wong, 1991; Perreault and Avoli, 1991,1992; Mattia et ah, 1994). Prolonged seizure

like binsts, ictal activity, can also occur (Gean et al., 1990; Mattia et al., 1993: Watts 

and Jefferys, 1993; Avoli et al., 1996; Morris et al., 1996).

The specific aims of this initial result chapter were to:

1. Identify whether riAChR ligands modulate 4AP-induced epileptiform bursting.

2. Identify the subtypes of rrAChRs involved in modulating epileptifonn activity.

3. Identify the site of generation of epileptiform activity produced by 4AP.

3.2 Characteristics of 4AP-induced epileptiform activity

Extracellular recordings were obtained from the cell body layer o f area CA3 in 

hippocampal slices prepared from 2-6 week old Wistar rats (n=280). Recordings 

under control (ding free) conditions revealed the absence o f any detectable 

spontaneous extracellular field events in all slices tested (n=280). Subsequent 

application of the potassium channel blocker and convulsant 4-aminopyridine (10-50
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pM) resulted in the gi'adual appearance of intermittent large amplitude (0.5~4mV 

peak-to-peak; mean=1.78 ± 0.2mV) rhythmical field potentials (Figme 3.1 A and 

Figure 3.2 A) that eventually settled into a regular frequency of occunence that 

persisted for long periods in the majority of slices tested (n=250 of 280). Tliis 

intermittent bursts activity was reminiscent of inter-ictal activity seen in vivo and was 

similar to those reported previously (Voskuyl and Albus, 1985).

Individual interictal-like (hereafter referred to as interictal) events comprised of (1) an 

initial negative potential followed by (2) a slow positive potential and then (3) a slow 

negative potential and lasted in the range of 200-400ms (mean burst dm’ation=257.2 ± 

15.2ms; Figure 3.1 Bi). On top of this characteristic triphasic waveform however was 

a higher frequency oscillatory component (Figure 3.1 Bii) with voltage fluctuation in 

the range of 82 to 175Hz (mean 129 + 9Hz). Simultaneous intracellular recording 

from CA3 pyramidal cells close to the extracellular recording electrode revealed the 

intracellular con elate of individual spontaneous field events to comprise of a burst of 

action potentials on top of a slower depolarising waveform (Figure 3.1 A-B, n=6). 

Closer scrutiny of such traces showed an association between the timing of action 

potentials within individual bursts and the higher frequency oscillatory activity nested 

within each individual field event (see stippled lines in Figure 3.1 Bii). As the 4AP 

washed into the bath, the instantaneous burst frequency increased to eventually 

become very stable and unifoim over long periods (Figure 3.2 A). At a concentration 

of 20pM 4AP, individual epileptiform bursts occurred every 2.6 ± 0.1s (n=26, range 

= 1.5-3.3s), a mean instantaneous frequency of 0.4 ± 0.02Hz.

Upon washout of 4AP the spontaneous field potentials steadily decreased in 

frequency although complete abolition of spontaneous events was never achieved 

even after prolonged (up to 200 minutes) washout (n=5, Figme 3.2 B).

66



A
1C

EC

20^M 4AP

EC

EC

Figure 3.1. 4-aminopyridine-induced epileptiform bursting activity in area CA3 of 
the rat hippocampal slice.
A. Intracellular (1C) recording from a putative CAS pyramidal cell and 
simultaneous extracellular (EC) field potential recording upon bath application of 
the convulsant compound 4AP (20pM) as indicated by the solid bar. Note that 
under control conditions the CAS pyramidal cell and extracellular field response 
displays little or no spontaneous activity.Following 4AP application both traces 
become dominated by an intermittent and coherent bursting response. Bi. 
Expanded traces from the same slice showing individual bursting responses both 
at the level of the single cell and the population response. For the extracellular 
trace, arrows indicate the characteristic (1) fast negative potential followed by a 
(2) slow positive potential and (3) slow negative potential. Bii Further expansion of 
an individual burst event reveals coherent high frequency oscillatory activity within 
each burst as indicated by the stippled lines. Scales vertical 1C = 25mV, 1C = 
1mV; horizontal A, 1min, Bi, 1s, Bii, 20ms.
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Figure 3.2. 4AP-induced epileptiform discharges remain stable over prolonged 
periods.
A. Scatter plot showing the burst frequency for the duration of a typical experiment. 
Note burst frequency increases as 4AP washes into the bath before settling into a 
very regular and stereotyped pattern which persists for hours. B. Another experiment 
in which subsequent washout of 4AP results in a significant reduction in burst 
frequency but complete abolition is never achieved even after sustained washout.
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Interictal activity described above was observed in the oveiwlrelming majority of 

recordings from hippocampal slices. Less frequent prolonged ictal-like (hereafter 

referred to as ictal) discharges lasting up to tens of seconds were also observed in 

small minority of experiments (n=5 of 250, Figure 3.3). In the age gi'oup analysed, 

the occurrence of ictal discharges was inversely related to the age o f animal. For 

instance, all ictal activity was recorded using animals as young as 2-3 weeks old, 

which was consistent with previously reported studies (Avoli et al., 1993; Fueta and 

Avoli 1992). In line with this finding, experiments perfonued imder similar 

experimental conditions in hippocampal slices from older rats (4-5 weeks old) have 

indicated that 4AP is only capable o f inducing interictal discharges (Avoli et al., 

1993; Fueta and Avoli 1992).

3.3 Effect of nAChRs agonists on 4AP-induced 
epileptiform activity

Application of the nAChR agonists nicotine (30pM), 1,1 -dimethyl-4-phenyl- 

piperazinium iodide (DMPP, 30pM) and choline (0.3-lmM) to naïve slices in the 

absence of 4AP did not produce any detectable extracellular field activity in any 

slices tested (n=6; data not shown). As nACliR activation did not induce any 

spontaneous network activity, we then went on to assess whether nAChR activation 

modulates pre-expressed synclu'onised bursting activity.

Once stable 4AP-induced epileptifomi activity was established a range of nAChR 

agonists were co-applied in order to examine the effect that nAChR activation had 

upon this form of synclrronised bursting. As the basal frequency o f 4AP-induced 

bursting under conhol conditions varied considerably from slice to slice, all data 

within a given experiment were normalised to the mean activity recorded in the 

presence of 4AP alone to enable comparison and pooling of data between individual 

experiments (control; 100%).
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Chapter 3

3.3.1 Effect on burst frequency

In a first set of experiments co-application of the selective nAChR agonist DMPP 

(0.3 to 300 pM) produced a sustained and concenhation-dependent increase in the 

frequency of 4AP- induced epileptifoim bursting activity (Figures 3.4 A; P<0.05). 

This robust response was observed in 31 of 37 slices tested and was reversible upon 

agonist washout (Figure 3.4 A). The concentration response relationship for DMPP 

induced enhancement of burst frequency was unusual in that it was bell shaped 

(Stauderman et al., 1998) with a mean maximal frequency potentiation of 37 ± 5% at 

30 pM and an EC50 calculated fi'om the rising phase of this concentration response 

relationship of 3.5 pM (Figure 3.6 A). At concentrations beyond 30 pM  DMPP still 

potentiated burst frequency but to a level that was significantly reduced to that 

induced by 30 pM DMPP.

In a separate series of experiments application of the weak nAChR agonist choline 

(0.3-1.0 mM) also produced no effect in naïve slices (n=6) but induced a modest 

increase in the frequency of 4 AP-induced epileptiform bursting (Figures 3.4 B and 

3.6 A; E C 5 0  150 pM). The magnitude of this effect was more variable than that seen 

with DMPP and was observed in 23/33 slices tested. Nevertheless the effect of 

choline was similar to that induced by DMPP as it was reversible upon washout of 

agonist and produced a maximal frequency enliancement of 27 ± 5%.

In further experiments, application of the selective and potent iiAChR agonist 

lobeline produced a modest yet significant (P<0.05) increase (24 ± 11%) in burst 

frequency at 10-30pM in 8 out of 10 slices tested (Figme 3.5 A). However, further 

increasing the concentration of lobeline produced a reduction in bm st frequency 

below levels observed in 4AP alone which presmriably reflects the non-selective
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Figure 3.4. Effect of nAChR agonists on 4AP-induced epileptiform bursting in are CA3 
of the hippocampus.
A. Scatter plot showing instantaneous burst frequency in response to continuous 
application of 10pM 4AP for the duration of a representative experiment. Co
application of the selective nAChR agonist DMPP (SOpM) as indicated by the 
horizontal bar results in an increase in burst frequency. Inserted voltage traces show 
rhythmical bursting in the extracellular field potentials before, during and after DMPP 
application at times indicated by arrows. B. Similar scatter plot in which the selective 
nAChR agonist choline results in a similar dose-dependent and reversible increase in 
burst frequency. Scales A, 2mV, 10s; B ImV, 2s.
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A. Scatter plot showing frequency of 4AP-induced epileptiform discharges in another 
hippocampal slice. Sections of voltage trace corresponding to timepoints as indicated 
by arrows are shown at bottom of graph. Co-application of 30 pM lobeline ( horizontal 
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frequency in response to lobeline application is accompanied by the appearance of 
burst doublets (indicated by *). Curved arrows indicate expanded sections of trace 
illustrating individual field potential events. Subsequent washout of lobeline resulted in 
the abolition of doublet events and a reduction in burst frequency to baseline levels. B. 
Similar scatter plot showing an increase in 4AP-induced burst frequency following 
application of lobeline (10 and 30 pM, horizontal bars). Further increase in lobeline 
concentration (>10 '̂  M) results in a reduction in burst frequency to levels below control 
values reflecting a non-selective blockade of calcium channels (Santha, 2000). Note 
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calcium channel blocldng activity of this compound (Santha et ah, 2000) (Figure 3.5 

B and 3.6 A).

In contrast to a constant increase in burst fi'equency induced by DMPP, choline and 

lobeline, application of the agonist nicotine (10-100 pM) produced only a transient 

increase in burst frequency in 7/10 slices tested (Figui'e 3.6 B) and a sustained 

increase in the other tlnee slices examined.

Two other nAChRs agonists (±) epibatidine (O.Ol-lOpM, n=10) and cytisine (0.1- 

30pM, 11=10) were examined but found to produce no consistent or significant change 

in 4AP-induced bui'st frequency at the range of concentrations tested (Figure 3.7).

Figure 3.8 shows summary of nAChR agonists-induced maximal bui'st frequency 

potentiation. A comparison of the effects of various nAChR agonists on 4AP-induced 

burst frequency exposed that whilst DMPP, choline, lobeline and nicotine could 

potentiate 4AP-induced bursting activity significantly, two other selective nAChR 

agonists, epibatidine and cytisine were either poor or ineffective at increasing 

epileptiform burst frequency.

In addition to fast signalling, acetylcholine is laiown to mediate a slower modulatory 

function tlnough both nicotinic and metabotiopic (muscarinic) subtypes of 

acetylcholine receptor (Benardo and Prince, 1982; Cole and Nicoll, 1983; Fraser and 

Macvicar, 1996; Wonnacott, 1997). hi order to rule out any contribution of 

muscarinic type acetylcholine receptors in the effects described above, further 

experiments were carried out in the presence of mACliR antagonist atropine at a 

concentration (lOpM) that is known to completely suppress synaptically and 

pharmacologically evoked mACliR mediated responses in the hippocampal neurones 

(Cobb et ah, 1999; Morton and Davies, 1997). Under these conditions DMPP 

produced a potentiation of epileptiform burst frequency that was comparable to that
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Chapter 3

in the absence of atropine (n=3; Figure 3.9) suggesting a lack o f mAChR involvement 

in this effect.

In further experiments, application of N-methylcarbamylcholine (MCC), a n-methyl 

derivative of carbachol that confers enlianced selectivity for nACliRs over muscarinic 

receptors produced a significant enhancement of 4AP-induced burst frequency when 

applied at a concentration of 10-30pM (n=3 o f 3). However, subsequent experiments 

(see section 3.5) showed this effect to be principally due to its actions at muscarinic 

acetylcholine receptors (mAChRs).

DMPP generated the most dramatic alterations in the parameters of the epileptifoim 

discharges, compared to those induced by the other nAChR agonists. For this reason 

we focused our attention to the effect of DMPP with respect to further and more 

detailed analysis of the various characteristics of 4AP-induced epileptiform activity 

(see below).

3.3.2 Effect on burst duration

In addition to its action on buist frequency, DMPP produced a significant reduction in 

the duration of individual burst events but without causing any overt change in the 

overall waveform (Figure 3.10 A; n=31). The duration o f events decreased as 

frequency increased and both effects were reversible upon agonist washout (Figure 

3.10 B). Detailed analysis revealed a strong correlation between this reduction in 

burst diu'ation and the increase in burst frequency. Figure 3.10 C shows results from a 

representative experiment in which the bui’st frequency could be plotted against the 

burst duration and the data fitted by linear regression (r2=0.653, P<0.0001).

As in the case of DMPP, choline co-application resulted in an increased burst 

frequency that was accompanied by a reduction in the duration of individual burst 

events (data not shown).
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individual burst events.
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(r2=0.653, P<0.0001). D. In a minority of slices (see text), burst frequency increases and 
displays secondary bursts or afterdischarges. Scatterplot indicates 4AP-induced 
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corresponding to timepoints as indicated by arrows are shown at bottom of graph. Note 
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indicates expanded section of trace illustrating an individual doublet event. Subsequent 
co-application of the nAChR antagonist a-bungarotoxin (lOOnM, horizontal bar) results in 
the abolition of doublet events and a reduction in burst frequency to baseline levels. 
Scales A, 1mV, 50ms; D 2mV, 5s; 2mV, 0.5s for expanded inset.
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3.3.3 Effect on burst waveform

So far we have shown the action of a range of iiACliR agonists including DMPP, 

choline and lobeline all of which produce a concentration dependent increase in brust 

frequency and decrease in bm*st duration without causing any overt change in the 

wavefoixn of individual bursts. In the majority of slices tested, co-application of 

DMPP produced a unifomi increase in bui'st frequency (Figures 3.4 A, 3.10 B). 

However, in a minority of slices (n=6 o f 31) besides a general increase in burst 

frequency, application of DMPP resulted in the appearance of secondary or tertiary 

bursts resulting in doublets and triplets (Figure 3.10 D, indicated by * in sections of 

voltage trace at bottom of graph). This effect was reversible upon washout or upon 

application of the nAChR antagonist (Figure 3.10 D). Similarly, in 2 out of 8 slices 

tested, lobeline application resulted in doublet and triplets bursts which were 

reversible upon washout of lobeline (see Figure 3.5 A). However, the emergence of 

event clusters was not observed following application of choline and nicotine (data 

not shown).

3.3.4 Effect on burst amplitude

The amplitude of epileptifomi bursting is theory provides information regarding the 

number of neurones firing together with the precise degree of synchrony. However, 

our recordings revealed considerable variation between as well as within individual 

experiment. This variation was likely due to factors such as mechanical instability 

and for this reason further analysis was restricted to burst frequency and pattern rather 

than overall amplitude.
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3.4 Effect of nAChRs antagonists on 4AP-induced 
epileptiform activity

In the presence of 4AP alone (i.e., no nAChR agonist present), subsequent application 

of mecamylamdne (200|_iM, n=10) produced no significant change in burst frequency 

(data not shown) whilst dihydro-(3-erytlu'oidine (DH(3E, 20pM, Figure 3.11) and a - 

bungarotoxin (a-Bgt, lOOnM, data not shown) produced a modest decrease in burst 

frequency in 1 of 4 slices tested for each antagonist suggesting that there was little or 

no basal activation of nAChRs under control conditions in the majority of slices 

tested.

3.5 Effect of nAChRs antagonists on nAChR-induced 
burst frequency potentiation

The findings described above using a variety of nAChR agonists suggest that nACliR 

activation is a key diiver for frequency potentiation of 4AP-induced epileptifomi 

activity. To confirm this hypothesis a series of subsequent experiments were 

performed to establish whether a range o f selective iiACliR antagonists could reverse 

the burst frequency potentiation brought about by DMPP and choline. A series of 

experiments were therefore carried out using a range of selective iiACliR antagonists 

including DH(3E, a-Bgt, methyllycaconitine (MLA) as well as the iiACliR non

competitive channel blocker mecamylamine. Low concenti'ations of DH(3E (IpM ), 

which are ineffective in antagonising a7 nACliR-mediated currents (Mann and 

Greenfield, 2003), were found to have no significant effect on the DMPP-induced 

potentiation of epileptiform bursting. However, the effect of DMPP was completely 

blocked by the 10-30 fold higher concentrations of DH(3E (10-30 pM; n=6 of 8; 

Figure 3.12 A). At a concentration of 20 pM, such co-application of DH(3E caused a
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significant reduction in bui'st frequency by 55 ± 14.6% (P<0.01). In further 

experiments, DMPP-induced (30 pM) biust frequency potentiation was significantly 

reduced upon co-application of mecamylamine (50-200 pM; n=3 of 4; Figme 3.12 

B), a-Bgt (lOOnM; n=4; Figure 3.13) and MLA (100 nM, n=5) with the tluee 

antagonists producing a reduction in bm*st frequency by 47 ± 14.8%, 86 ± 14% and 

47 + 15.7 respectively (all P<0.05).

Likewise, very similar reversals o f choline-induced (1 mM) burst potentiation were 

achieved using mecamylamine (200 pM, n=5) and a-Bgt (100 nM, n=4); these 

antagonists reducing the potentiation of burst frequency by 67 ± 19% and 65,3 ± 22% 

respectively (both P<0.05). Co-application of MLA (5pM; n=5) also caused a 

significant reduction in burst frequency by 57.07+9.3%. Figure 3.14 shows frequency 

plots from a representative experiment showing that co-application o f MLA and 

mecamylamine results in a reduction of burst frequency to near pre-choline levels.

The pooled results for all antagonist studies are summarised in histogiam format as 

shown in figure 3.15 A-D for DMPP-induced bm’st frequency potentiation and figure 

3.15 E-G for choline-induced burst frequency potentiation.

To expend on these experiments and mle out any contribution of muscarinic 

acetylcholine receptor activation contributes to the burst frequency potentiation, we 

examined the effect of afropine, a mAChRs antagonist, on DMPP-induced burst 

frequency potentiation. In the first set o f experiments slices preincubated with lOpM 

atropine, were still able to exhibit burst frequency potentiation upon DMPP 

application (n=3; Figure 3.10). In other experiments, afropine (lOpM) was co-applied 

following DMPP-induced potentiation but did not reverse or otherwise alter DMPP- 

induced potentiation (n=3; Figme 3.16 A). Together, these experiments suggest that 

mAChRs were not involved in the obseived burst frequency facilitation.
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antagonists dihydro-(3-erythroidine (A; 20pM), mecamylamine (S; 200pM), a-bungarotoxin (C; 
1G0nM) and methyllycaconitine (D; lOOnM). Note that all antagonists produce a significant 
reduction in DMPP-induced burst potentiation. E-G. Similar histograms quantifying the effects 
of the selective nAChR antagonists a-bungarotoxin (E; lOOnM), mecamylamine (F; 200pM), 
and methyllycaconitine (G; 5pM) on choline-induced (ImM) burst potentiation. Note that all 
three antagonists produce a significant reduction in choline-induced burst potentiation. 
Horizontal bars indicate P values between respective columns as determined using ANOVA.
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The only exception of this finding was in the case of MCC. As mentioned in page 68, 

application of 10-30 pM MCC produced a significant increase on 4AP-induced burst 

frequency. However, when lOpM atropine was co-applied following MCC-induced 

potentiation, a resultant reduction in burst frequency to baseline level was observed 

(n=3, Figure 3.16 B). Preincubation with lOpM atropine (n=3; data not shown) also 

prevented the MCC-induced burst frequency potentiation. Together, these data 

suggest activation of niACliRs to underlie the observed bui'st frequency potentiation.

3.6 Assess the site of generation of 4AP-induced 
epileptiform activity in the hippocampus

In our studies we predominantly focused our investigations and recordings within 

area CA3 of the hippocampus which is known to be the primary generator of 

epileptiform responses in the hippocampal slices (Lotlnnan et al, 1981). Previous 

studies have shown that all areas of the hippocampus partake in the syncln*onous 

discharged evoked by 4AP (Colom and Saggau, 1994; Perreault and Avoli, 1992). 

However, a question we wished to addiess was to assess whether iiAChRs can 

modulate the spread o f activity from one area to another. Simultaneous extracellular 

field recordings were therefore carried out from the cell body layer of area CA3 and 

at the same time, area CAl of the liippocampal slice. Concurrent extracellular 

recording revealed that spontaneous epileptiform activity induced by 4AP was 

synchronous both within the CA3 and CAl regions (Figure 3.17 A, n=4). Subsequent 

bath application of 30 juM DMPP thus resulted in an identical increase in 4AP- 

induced burst frequency in both CA3 and CAl regions (Figiue 3.17 A ,li-2i). As CA3 

and CAl subfields are mono-synaptically connected via the Schaffer-collateral 

pathway the question arises: Can synclrronous epileptiform discharges in CAl area be 

maintained in the absence of this connection? After transection o f the Schaffer- 

collateral afferents (Figure 3.17 B), extracellular field potential activity was abolished 

in the CAl subfield but preserved in the CA3 in the majority of slices tested (n=12 of
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Figure 3.16. Effect o f selective m AChR antagonist atropine on D M P P  and M C C - 
induced potentiation o f epileptiform bursting in area CA3 o f the hippocampus.
A. Scatter plot showing instantaneous burst frequency in response to continuous 
application of 10 pM 4AP (horizontal bar) for the duration of a representative 
experiment. Co-application of 30 pM DMPP as indicated by the horizontal bar 
results in an increase in burst frequency. Subsequent application of 10 pM 
atropine does not affect DMPP-induced burst frequency potentiation suggesting 
that this effect is due to activation of nAChRs. 6. Similar scatter plot in which the 
potentiating effect of MCC, a n-methyl derivative of carbachol is reversed upon 
co-application of 10 pM atropine suggesting that mAChRs were involved in 
MCC-induced burst frequency potentiation.
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Figure 3.17. Activation of nAChRs can modulate 4AP-induced epileptiform activity in 
both CA3 and CA1 regions.
A. Simultaneous extracellular recording from the CA1 (site 1) and CAS (site 2) subfields 
of a hippocampus slice perfused with 20 pM 4AP showing coherent epileptiform activity 
at both recording sites. Scatter plots showing the effect of application of 30 pM DMPP on 
4AP induced bursting activity in CA1 (1i) and CA3 (2i). Note the frequency of 4AP- 
induced epileptiform activity and also DMPP-induced potentiation are exactly same at 
both recording sites. B. Transection of the Schaffer-collaterals connections results in a 
non synchronous and independent epileptiform activity in CA1 (1) and CA3 (2) subfields 
(in a minority of slices, n= 3 of 15) suggesting that both areas have the capacity to 
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remains independent.



Chapter 3

15, data not shown). However, in 3 out of 15 slices, a non synclnonous and less 

frequent epileptiform activity was also recorded on CAl (Figure 3.17 B, a mean 

instantaneous frequency of 0.6 ± 0.2Hz in CAl compared to 0.86 + 0.3Hz in CA3, 

n=3). This result suggests that epileptifomi activity generated in CA3 and propagated 

to area CAl is the predominant from of network activity. On the other hand, 

extracellular activity recorded in CAl region in the absence of a functional Schaffer- 

collateral input suggests that the CAl field can generate epileptifomi activity in 

dependent of the CA3 and under these circumstances, bursting activity recorded in 

CAl and CA3 are independent. Subsequent application of 30 pM DMPP also resulted 

in an asynchronous increase in 4AP-induced burst frequency on CA3 and CAl 

regions (Figure 3.17 B,li-2i; n=3) suggesting that nAChR-induced modulation of 

epileptiform activity is not unique action with area CA3.

3.7 Discussion

3.7.1 4AP“induced epileptiform activity

The majority of the results described in this chapter were carried out in rat 

hippocampal slices using the extiacellular recording configuration to monitor network 

activity. Extracellular recording from the in vitro hippocampal slice preparation is an 

ideal method with which to study epileptiform discharges (Jefferys, 1993) in that it 

allows synchronous activity of populations of neurones to be detected. A limited 

number of intracellular recordings were also carried out to confirm that the patterns of 

activity studied at the extracellular (network) level reflected the activity of neurones 

at the single cell level. Although such cellular recording studies can reveal important 

mechanistic information regarding the excitability and biophysical properties of 

individual neurones, they do not truly reflect the pathophysiological aspects of the 

disease, with regard to excessively co-ordinated firing of groups of nerve cells. This, 

together with the robust responses and ability to maintain stable recording over long
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periods was the justification for utilising the extracellular recording configur ation for 

the majority of experiments described. Similarly, the 4AP model of epileptifomi 

activity was initially chosen for its rather stereotyped nature and ability to give 

reliable responses that are stable over prolonged periods. The characteristics of 4AP- 

induced spontaneous bursting activity have been described both in hippocampus 

(Avoli et al., 1993; Buckle and Haas, 1982; Ives and Jefferys, 1990; Perreault and 

Avoli, 1989; Perreault and Avoli, 1991; Perreault and Avoli, 1992; Rutecki et al., 

1987; Segal, 1987; Traub et al., 1995; Voskuyl and Albus, 1985) as well as other 

cortical areas (Baikal et al., 1995; Hoffman and Prince, 1995; Mattia et al., 1993). 

Three types of burst characteristics have been documented to result from the use o f 

4AP (see section 3.1). In our experiments, negative potentials were never detected 

and long lasting ictal-activity was only recorded in small minority o f slices (2%). The 

typical activity was a series o f interictal epileptiform discharges, which was seen in 

%98 of all slices tested.

Experimental conditions, such as the cortical area from which the slice originated, 

species and age of animal used for slice preparations, ionic concentrations, 

temperature and the exact recording site within the slice all considerably affect the 

characteristics o f spontaneous activity. For example, the neocoitex of guinea-pig has 

a higher propensity to generate 4AP-induced spontaneous epileptiform activity than 

that of rat (Mattia et ah, 1993). Moreover, slices from the somatosensory cortex of 

adult rats proved to be less prone to epileptic seizures than hippocampal or entorhinal 

cortex slices or cortical slices prepared from young animals (Coiu'tney and Prince, 

1977; Wong and Yamada, 2001). Therefore, we have tried to caiTy out all of 

experiments in the same experimental set-up, using same type o f preparation and 

under similar experimental conditions.

The spontaneous extracellular field events described here comprised of a brief initial 

period o f negativity followed by a slower positive and then negative potential which 

is in agreement with original descriptions (Vosloiyl and Albus, 1985). However,

76



Chapter 3

within individual biu'st events there existed higher frequency oscillatory components 

in the range of 82 to 175Hz that resembled hippocampal sharp waves described in 

vivo (Buzsaki, 1986) and which have also been described in vitro under conditions of 

elevated extracellular potassium concentrations (Staley et a l , 1998). Extracellular 

field recordings are ideally suited to the study of epileptiform activity and other 

network responses that are characterised by synclnonous activity within neuronal 

ensembles (Jefferys, 1993). That the fast extracellular potentials were associated with 

neuronal discharges at the level o f single cells as shown in figui'e 3.1 A confirms that 

the 4AP-induced field events recorded did indeed represent the coherent activity of 

populations of neurones within the hippocampus. Furthermore, these data also 

highlight the precision o f firing within individual burst events whereby coherent 

action potential discharge appears to be regulated on a millisecond time scale 

(Mainen and Sejnowski, 1995). The precise mechanisms underlying 4AP-induced 

bursting is not fully characterised but appears to involve multiple synaptic and non- 

synaptic elements that together contribute to the overall activity (Traub et al., 2001; 

Traub et al., 1995). An important element of this is likely to be the role of direct 

electrical coupling tluough gap junctions. Indeed, recent studies have shown 4AP- 

induced epileptiform activity to be sensitive to both gap junction blockers as well as 

comiexin 36 gene knockout (Maier et al., 2002; Ross et al., 2000; Traub et al., 2001). 

Wliilst activation of iiAChRs resulted in an increase in burst Eequency, it is apparent 

that the mechanisms responsible for the precise firing of action potentials and fast 

activity within individual bursting events are not compromised upon nACliR 

activation.

The observation that transection of the Schaffer-collateral connections results in 

epileptiform activity being restricted to the CA3 region in the majority of slices tested 

confirms the role o f the CA3 region as being the primary generator o f 4AP-induced 

epileptiform bursting (Jefferys, 1993) and thus points to CA3 pyramidal cell recuiTent 

connections as having a critical roll in generation of this activity as has been 

suggested previously (Clnistian and Dudek, 1988; Mac Vicar and Dudek, 1980). On
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the other hand, the ability o f a minority of isolated CAl ‘mini slices’ to generate 

4AP-induced epileptiform bursting reveals the inhinsically ability o f CA l circuits in 

generating epileptiform activity. It is likely that this ability is normally masked by the 

dominant action of the CA3 circuits which are normally propagated via the Schaffer- 

collateral pathway.

3.7.2 Regulation of burst frequency by nAChR activation

The main finding of this study so far is the demonstration that activation o f nAChRs 

using a range o f selective nAChR agonists results in a modest enhancement of 4AP- 

induced binsting activity in the hippocampus. The pro-epileptogenic action of 

iiACliR agonists was rather subtle however. Indeed, when applied to naïve 

hippocampal slices on their own, the nAChR ligands tested did not produce any 

detectable spontaneous extracellular field activity suggesting that they do not produce 

epileptiform activity per se but rather have a modulatory action over pre-expressed 

synclnonised buisting activity.

Irrespective of their differing pharmacological profiles at recombinant nAChRs, most 

agonists tested produced a concenhation dependent increase in burst frequency in the 

presence of 4AP. Analysis of their potencies for facilitating epileptiform activity 

revealed that they were consistent with their potencies in functional studies that 

directly assess nAChR activity (Alkondon et al., 2000; 1997; Chavez-Noriega et al., 

2000; Guo and Chiappinelli, 2002; Stauderman et al., 1998). The maximum 

enliancement induced by lobeline, choline, DMPP and nicotine was relatively agonist 

independent amounting to a 25-35% potentiation in each case. Baning nicotine which 

sometimes produced a transient increase in burst frequency, each agonist induced a 

potentiation that persisted for the period of agonist application, hrterestingly, most 

agonists when applied at high concentrations produced lower levels o f potentiation, 

or even inliibition, thereby generating bell shaped concentration response
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relationships; a finding that mirrors the profile of activity of these nAChR agonists in 

expression systems (Chavez-Noriega et ah, 2000; Staudennan et al., 1998). The 

explanation for this shared yet unusual profile of activity is unclear. Aside from the 

relative affinity of different agonists for the various nACliR subtypes (Gotti et al., 

1997) which will contribute to the differences in potency and duration of effect of 

each agonist tested it is likely that (a) the degi'ee or state of receptor desensitisation 

(Fenster et al., 1999), (b) degree o f channel block (Marshall et al., 1991; Staudennan 

et al., 1998) and (c) non specific activity (e.g. in the case of lobeline block of voltage 

gated calcium channels (Santha et al., 2000) contribute to shaping the concentiation 

response curve. This latter effect may explain the finding that lobeline produced a 

reduction in buist frequency to levels below control conditions. Another possibility is 

that there exists a significant degree of tonic activation of nACliRs in some slices 

causing a basal nAChR-mediated elevation in epileptiform buisting. This is perhaps 

not surprising given that 4AP is likely to enliance release of neurotransmitters horn 

all terminals within the hippocampus (Rutecki et al., 1987) including cholinergic 

terminals. The subcortical cholinergic innervation to the hippocampus is very dense 

and it is possible that there is a constant release of ACh from the degenerating 

cholinergic terminal field. Moreover, there is also reported to be a sparse population 

of cholinergic intemeurones within the liippocampus (Frotscher et al., 1986; 

Frotscher et al., 2000) which may contribute to tonic nAChR activation (Cobb et al., 

1999). nAChRs are known to exhibit significant receptor desensitisation in the 

presence of high agonist levels. One explanation therefore is that high concentrations 

of nAChR agonists may cause oveiwhelming desensitisation of the hippocampal 

nACliR population and thus reduce the tonic activation of the receptor population 

within the slice. We think this is unlikely however, as application of iiACliR 

antagonists in the absence of nAChR agonist failed to produce any detectable change 

in burst frequency in the majority of slices tested. That said, the lack of effect of 

nACliR antagonists alone on epileptiform activity in isolated hippocampal slices 

suggests little or no tonic activation of nAChRs controlling epileptiform activity. 

However, it should be noted that in such an isolated in vitro system the major
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cholinergic afferents are severed. Pertinent to this point, additional nACliR-mediated 

mechanisms to those present in hippocampal slices must operate in vivo to explain 

why nAChR agonists induce epilepsy in their own right in whole animal experiments 

(Damaj et al., 1999; Miner et al., 1985).

Irrespective of which mechanism(s) is/are operating the finding that choline 

potentiates epileptiform activity raises the possibility that this chemical entity may 

provide a physiologically relevant contribution to the patterning of epileptic activity 

in vivo since this natural breakdown product of acetylcholine achieves plasma 

concentrations close to the levels that we have used to potentiate epileptiform activity 

in vitro (Klein et al., 1992).

A striking feature of the nAChR-induced enliancement of bui'st frequency described 

here was that the effect was prolonged, generally lasting for the duration of agonist 

application. An exception to this finding was the effects produced by nicotine that 

commonly resulted in only a transient increase in burst frequency. The reason for 

such differences is unclear but may reflect differences in the degi'ee or state of 

desensitisation or relative affinity for different iiACliR subtypes (Gotti et al., 1997). 

Whilst nAChRs are classically considered to be for fast signalling and rapidly 

desensitise, recent reports in the autonomic nervous system suggest that nAChR 

agonists including nicotine can produce calcium spiking in presynaptic neiwe 

temiinals (Brains et al., 2001) which are sustained over prolonged periods of agonist 

application similar to those used in this study. This supports the proposal nACliRs 

have a dual role in both mediating fast synaptic excitation in certain hippocampal 

circuits (Frazier et al., 1998b; Hefft et al., 1999) whilst mediating a slower 

nem'omodulatory action (McGehee and Role, 1996; Role and Berg, 1996; Wonnacott, 

1997), in particular the modulation of neurotransmitter release (Albuquerque et al., 

1997; Gray et al., 1996; Ji and Dani, 2000) and synaptic plasticity (Ji et ah, 2001). 

Furthermore, it is possible that nAChR activation produces a transient activation of

80



Chapter 3

the receptor, which in tmii ti'iggers a more prolonged action perhaps involving 

calcium-mediated signalling pathways.

A consistent finding in these experiments was the shortening of burst dmation as the 

frequency o f bursts increased. Such a relationship between bui'st duration and 

frequency has been studied in detail by Staley and colleagues (Bains et al., 1999; 

Staley et al., 1998) who concluded that both parameters relate to the presynaptic 

release of glutamate from recurrent circuits. The action of nicotinic acetylcholine 

receptors with regard to the modulation of glutamatergic recurrent collaterals is 

addi'essed specifically in chapter 5,

3.7.3 Pharmacology of nAChR-induced effect

The cholinergic afferents of the septohippocampal pathway is effective in generating 

limbic seizures (Fraser and Macvicar, 1996) and, thus, injection of cholinergic agents 

is used as a model for temporal lobe epilepsy (Lothman et al., 1991). Indeed, 

hippocampal sclerosis after infusion of cholinergic agonists accurately mimics 

numerous pathological indices of hiunan status epilepticus (Wasterlain et al., 1993). 

In the hippocampal slice preparation, these same analogs generate prolonged 

depolarisations (Bianchi and Wong, 1994) and result in a cholinergic-dependent slow 

afterdepolarisation and long-lasting plateau potential which has properties 

reminiscent of ictal depolarisations obseiwed during cholinergic-induced seizures 

(Fraser and Macvicar, 1996). These actions have been attributed to the activation of 

muscarinic receptors as they are blocked by the selective muscarinic receptor 

antagonist atropine (Bianchi and Wong, 1994; Fraser and Macvicar, 1996). 

Activation of muscarinic receptors during blockade of GABA(A)-mediated inliibition 

also induces synclrronous epileptiform activity in immature rat hippocampus 

(Psarropoulou and Dallaire, 1998) and neocortex (Sutor and Hablitz, 1989).
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In addition to the role of muscarinic acetylcholine receptor in modulating 

epileptiform activity, many reports indicate that nicotinic acetylcholine receptors also 

regulate neuronal excitability within the CNS (Jones et al., 1999) and may be relevant 

to several forms of idiopathic epilepsy (Steinlein, 2001). It has recently been found 

that certain forms of epilepsy may arise from mutations in the genes responsible for 

encoding of nicotinic acetylcholine receptor subimits (Steinlein et ah, 1997; Steinlein 

et al., 1995). Many reports have also shown that high doses o f nicotine induces 

seizures in animals, an effect shown to be blocked by a variety of iiACliR antagonists 

(Damaj et al., 1999). Therefore, it seems that both nicotinic and muscarinic subtypes 

of acetylcholine receptors are likely to modulate epileptiform activity. However, the 

relative contribution of nAChR versus mAChR action in regulating epileptiform 

activity remains unclear. In our experiments we used very selective nAChR ligands to 

minimise any probable contribution of mAChRs. Moreover in order to confirm that 

the observed burst frequency potentiation is tlirough activation of nAChRs and not 

mAChRs, a series of experiments carried out in the presence o f atropine. Such 

application of atropine did not affeet the ability of DMPP to potentiate epileptiform 

burst frequency suggesting that mAChRs were not involved in the obsei^ved burst 

frequency facilitation. Conversely, the effect of DMPP was significantly blocked by 

co-application of iiACliR selective antagonists confirming the involvement of 

riACliRs in DMPP-induced burst frequency facilitation. Only in these experiments 

where the burst frequency potentiation was induced by MCC, was the obserwed burst 

frequency potentiation reversed following co-application of atropine. This result 

indicates that the response to MCC at the concentration tested (10-30 pM) was 

principally due to its actions at mACliRs. In conclusion these results support a dual 

influence of muscarinic and nicotinic acetylcholine receptors on epileptiform activity.

Wliilst the overall pictme that activation of nAChRs can potentiate 4AP-induced 

epileptiform activity in the hippocampus is evident, the precise pharmacology of such 

effects were rather complex and difficult to interpret fully. The agonists DMPP, 

lobeline, choline and nicotine are recognised to be selective nAChRs ligands. Our
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results agree with functional studies which show DMPP to have potent agonist 

actions with EC50 values in the inicromolar range (Chavez-Noriega et al., 2000; 

Stauderman et al., 1998). Choline is a weaker agonist yet is nevertheless reported to 

be an agonist at a l  subunit containing nAChRs (Albuquerque et al., 1997; Alkondon 

et al., 2000). Moreover, a recent report suggest that choline may also activate a novel 

form of nAChR that is distinct from the classical a l  subunit containing nAChR (Guo 

and Chiappinelli, 2002). Again the potency o f choline in potentiating 4AP-induced 

epileptiform responses agrees with published data looking directly at nAChRs 

(Alkondon et al., 1997; 2000; Guo and Chiappinelli, 2002). Indeed, the finding that 

choline produced a pro-epileptogenic actions may be significant since, as the natural 

breakdown product of acetylcholine synthesis, choline may achieve high plasma 

concentrations approaching those levels used in this study (Klein et al., 1992). 

Further studies are required however, to establish whether as an endogenous activator 

of certain nAChRs, choline may serve pathological roles in vivo.

The concept that the effects of the agonists used in this study are due to activation of 

nACliRs is supported by the obseiwations that agonist induced frequency potentiation 

is inhibited by selective iiACliR antagonists, hi general terms, all antagonists tested 

including the non-selective and non-competitive antagonist mecamylamine (Chavez- 

Noriega et al., 1997) as well as the a4p2 subimit preferring antagonist DHpE 

(Alkondon and Albuquerque, 1993; Chavez-Noriega et al., 1997) and the a l  subunit 

preferring nAChR antagonists a-Bgt and MLA (Alkondon et al., 1992) produced a 

reversal of the burst frequency potentiation induced by DMPP or choline. DMPP, 

wliich is known to have affinity for a number of subtypes o f nAChR, is 

predominantly mediating its effects through non-a7 subunit-containing receptors 

whilst the choline response is primarily mediated through a l  subimit containing 

receptors and displays specificity for this receptor subimit (Albuquerque et al., 1997; 

Alkondon et al., 2000). The fact that the effects of both agonist were inliibited by the 

a l  iiAChR-specific antagonist a-Bgt (100 nM), but not by Dh(3E (1 pM) at
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concentrations known to be selective for non-a7 nACliRs perhaps points to these 

possibility that a7  subunit containing receptors are contributing to the frequency 

potentiation induced by both DMPP and choline and that the differences may simply 

reflect the competitive interaction between the ligands. However, in this study it was 

not possible to define with any certainty the precise subtypes of nACliRs involved in 

frequency potentiation. Firstly, the pharmacopea of very selective subtype specific 

nAChRs is as yet rather limited. Few agonists have sufficient nAChR subtype 

selectivity for the exclusive activation of a particular subtype. Thus, with such a 

divers range of subimits, which can give rise to a large niunber o f receptor subtypes, 

determining which nicotinic receptor type is mediating this effect is difficult. 

Secondly, high concentrations of pharmacological agents were used in this study to 

overcome tissue penetration problems associated with brain slices maintained in the 

interface configuration. Most of the dings lose selectivity or can show some 

nonspecific effects at high concentrations: DH(3E is selective for a4|32 receptors at 

10'^ to lO'*̂  M. At concentrations as high as 10'^ M, it begins to lose selectivity and 

will block a fraction (30-50%) of a7~mediated response at equilibrium (Alkondon 

and Albuquerque, 1993; Chavez-Noriega et ah, 1997). a-Bgt appears to be specific 

for a l  receptors in the hippocampus, while MLA is selective for a l  receptors at low 

nM concentrations, but will begin to block a4(32 receptors at higher concentrations 

(Alkondon et al., 1992; Alkondon and Albuquerque, 1993). Finally, there was 

considerable inlierent variability in the precise features o f epileptiform activity 

between slices even using the same epileptiform model (Jefferys, 1994). 

Nevertheless, taken together, the antagonist data suggest that a l  subunit containing 

receptors are at least in part involved in the regulation of epileptiform busting. 

Clearly fiuther detailed pharmacological studies using submerged slices and more 

selective agents are required to deteimine the important question relating to the 

relative contribution of different subtypes of nAChR in regulating epileptifoim 

activities. It is interesting to note, however, that recent studies point to specific 

nAChR subimits being important in certain forms of epilepsy (Elmslie et al., 1997).

84



Chapter 3

Thus, autosomal-dominant nocturnal frontal lobe epilepsy (ADNFLE), wliich is a 

form of idiopathic epilepsy, has linkages to genetic mutations encoding a loss of 

function of the a4 nACliR subunit (Steinlein et a l , 1997; Steinlein, 2000; Steinlein et 

a l, 1995) which causes a reduction in seizure threshold (Gotti et a l, 1997) and other 

epilepsies to mutations in the genes encoding the a l  and P3 nAChR subunits (Durner 

et a l ,  1999; Elmslie et a l, 1997; Neubauer et a l ,  1998; Phillips et a l , 1998); these 

data supporting our own concept that multiple iiACliR subunits are involved in the 

patterning of epileptiform activity.
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C H A PTER  4 

R EG U LA TIO N  OF BICU C U LLIN E AND LO W  
M A G N ESIU M -IN DU C ED  EPILEPTIFO R M  

A C TIV ITY  BY  nA C hR  A C TIV A TIO N

4.1 Introduction

Epileptifomi activity has been reported to be induced following incubation by 

various GAB A receptor antagonists including picrotoxin (Knowles et a l ,  1987; 

Kohr and Heinemami, 1990) and bicuculline (Colom and Saggau, 1994; Gulyas- 

Kovacs et al., 2002; HeiTon et al., 1985). With respect to the phaimacological 

action of these compounds epileptifomi activity results primarily from reduced 

GABAa receptor mediated inliibition. In addition to receptor antagonists, various 

brain slice preparations generate epileptiform activity when perfused with a 

medium devoid o f added magnesium (Gulyas-Kovacs et al., 2002; Horne et al., 

1986; Jones, 1989; Mody et a l ,  1987; Wliittington et a l ,  1995). The mechanism 

by which this occurs relates to the ability o f the decreased [Mg '̂^Jo to remove the 

voltage-dependent Mg "̂  ̂ block from the NMDA-activated channels, thus the 

excitatory glutamatergic transmission is enormously enhanced (Mody et a l ,  1987; 

Traub et a l ,  1994).

To assess whether the nACliR induced facilitation of epileptiform bursting was 

unique to 4AP-induced activity or whether iiAChR activation had a more general 

modulatory influence over other forms o f epileptiform activity, we examined the 

effect o f the iiAChR agonist DMPP on two additional pharmacological 

paradigms, bicuculline (reduced inhibition) and low magnesium (enlianced 

excitation) models.
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4.2 Bicuculline (BlC)-induced epileptiform model

4.2.1 Characteristics of BIC-induced epileptiform activity

Extracellular recordings were made from the CA3 pyramidal cell layer o f rat 

hippocampal slices, which were disinliibited by bath application o f the GABAa 

receptor antagonist bicuculline (30 pM). This resulted in a constant, gradual 

appearance o f spontaneous field potentials 125 + 40 minutes after bath application 

o f bicuculline (30 pM, n= 4). BIC-induced epileptiform discharges occurred every 

5 to 20 s with a mean frequency o f 0.13 ± 0.04Hz and a mean dmation o f 392 ± 

39ms. An elevated level o f ions in the ACSF to 5mM was used in subsequent 

bicuculline experiments in order to decrease the latency o f appearance of 

bicuculline-induced epileptiform discharge. Increasing [K"̂ ]o from 3 to 5mM 

resulted in an earlier appearance o f epileptiform discharges (mean latency=20.8 + 

5.5 minutes after application o f 20 pM  bicuculline) and brought the bursts slightly 

closer to the duration and frequency observed in the 4AP induced bursting model 

(mean burst duration=366.6 ± 64ms, mean burst frequency=0.146 ± 0.02Hz, 

n=30)(Ives and Jefferys, 1990).

The overall shape o f an individual epileptifoim discharge induced by bicuculline 

was different from those observed in the presence o f 4AP. They usually observed 

in three types: (1) single, short inter-ictal bursts (Figure 4.1, asterisks in Ai); (2) 

double bursts (Figure 4.1, double asterisks in Ai) and (3) long polyspike bursts 

(Figure 4.1, triple asterisks in Bi). The short inter-ictal like bursts (mean burst 

duration=258 ± 8ms) comprised o f an initial short negative potential (<10ms) 

followed by a biphasic potential, similar to those recorded in 4AP model (Figure

4.1 A, asterisks). A similar high frequency component was also evident 

throughout the event (Figure 4.1 Aii, arrows). Double bursts consisted o f two 

single bursts each o f which had a triphasic waveform (mean burst duration=360 ± 

10ms; Figure 4.1 A, double asterisks). The long polyspike bursts consisted o f a 

primary burst, resembling an inter-ictal burst, followed by a train o f repetitive 

short bursts lasting up to 600 ms (mean burst duration=482.7 ± 32ms; Figure 4.1
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Figure 4.1. Bicuculline-induced epileptiform bursting activity in area CA3 of the rat 
hippocampal slice.
Ai. Extracellular field potential recording from the CA3 stratum pyramidale indicate 
two types of BIC-induced bursting activity: single short bursts (asterisks) and 
double longer bursts (double asterisks). A/7. Expanded traces showing individual 
single (right) and double (left) bursting responses at the level of the population 
response. Bi. Third type of BIC-induced epileptiform bursting indicated by triple 
asterisks. Bii. Expanded trace showing individual long polyspike bursts consisting 
of a primary burst, followed by a train of short individual discharges. Scales 
vertical Ai,Bi: ImV; horizontal Ai.Bi: 10s; Aii,Bii: 200ms.
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B, triple asterisks). However, it is noticeable that the Irigh frequency component is 

mainly restricted to the initial event in the train. Single and double bursts were 

obseiwed in most slices and polyspike bursts were present in 7 out o f 30 slices.

Scatter plot in figure 4.2 shows a representative experiment in which the slices 

were incubated in a raised [K ‘*']o to 5mM medium prior to disinlribition by 

application o f 20 pM bicuculline. This resulted in a regular synclironised 

extracellular discharge, which persisted for the duration o f experiment (>2hours).

4.2.2 Effect of nAChR agonist on BIC-induced epileptiform 
activity

Once stable BIC-induced epileptiform discharge was established, the nACliR 

selective agonist DMPP was co-applied in order to examine the effect o f nicotinic 

receptor activation upon this fonn o f  synclnonised bursting. In 14 o f 14 slices 

tested, subsequent co-application o f DMPP (10-30 pM) produced a significant 

increase in burst frequency (Figure 4.3; mean maximal frequency 

potentiation-248 ± 76% of pre-DMPP baseline frequency) that was reversible 

upon washout o f DMPP (n=6. Figure 4.3). In further experiments, co-application 

o f the nACliR antagonists mecamylamine (50-200 pM, n -3 ; Figure 4.4 A) and 

DHpE (20-40 pM; n=4 o f 5; Figure 4.4 B) were also found to reverse the DMPP- 

induced burst frequency potentiation.

As in 4AP model, application o f DMPP resulted in a significant reduction in the 

duration o f individual BIC-induced burst events from 366.6 ± 64ms (mean o f pre- 

DMPP baseline duration) to 280 ± 25ms after DMPP application.
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Figure 4.2. Bicuculline-induced epileptiform discharges remain stable over 
prolonged recording periods.
Scatter plot showing a representative experiment in which disinhibition of the slice 
following application of the GABA^ receptor antagonist bicuculline (20 pM) at time 
point 0 produced a regular synchronised extracellular discharge. Note that 
bicuculline-induced burst frequency remained stable over the extended period of 
experiment.
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Figure 4.3. nAChR activation potentiates BIC-induced epileptiform activity in vitro. 
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application of 20pM bicuculline for the duration of a representative experiment. Co
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horizontal bar results in an increase in burst frequency. This was partially reversible 
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Figure 4.4. Effect o f selective nAChR antagonists on DM PP-induced potentiation of 
BIC-induced epileptiform bursting in area CA3 of the hippocampus.
A. Scatter plot showing instantaneous burst frequency in response to continuous 
application of 20 pM bicuculline (horizontal bar) for the duration of a representative 
experiment. Co-application of the selective nAChR agonist DMPP (10-30 pM) as 
indicated by the horizontal bar results in an increase in burst frequency. This is 
reversed upon subsequent co-appilcation of non-competitive antagonist and nAChR 
channel blocker mecamylamine (200pM). B. Similar scatter plot in which the 
potentiating effect of 10 pM DMPP is reversed upon co-application of the selective 
nAChR antagonist Dihydro-(3-erythroidine (30pM). Insets represent spontaneous 
field potentials before, during and after nAChR activation. Scales vertical:I mv, 
horizontal: 10 s
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4.3 Low magnesium-induced epileptiform model

4.3.1 Characteristics of low magnesium-induced epileptiform 
activity

Extracellular recordings were made from the CA3 pyiamidal cell layer o f rat 

hippocampal slices incubated in ACSF in which ions had been omitted

(n=21). Spontaneous field potentials typically appeared 5-30 minutes following 

switch over to low magnesium ACSF, with an average latency of 19.8 ± 4  min, 

similar to that reported previously (Hsu et ah, 2000).

Three different types o f spontaneous synchronous activity were recorded in the 

CA3 stratum pyramidale o f slices exposure to low magnesium ACSF. Brief, 

single inter-ictal-like discharges (mean diiration=204.6 ± 18.9ms; mean, frequency 

= 0.2 ± 0.03FIz; Figure 4.5 A, asterisks) and double bursts (mean duration=383 ± 

6ms; mean, frequency = 0.16 ± 0.03Hz; Figure 5 A, double asterisks) were present 

in all slices tested (n-21). In addition, more prolonged ictal-like discharges (mean 

duration=3640 ± 900ms; mean frequency=0,04 ± 0.01 Hz) were seen in 4 out o f 21 

slices (Figure 4.5 B).

4.3.2 Effect of nAChR agonist on low magnesium-induced 
epileptiform activity

To assess the effect o f nACliR activation on ongoing low magnesium-induced 

epileptiform discharges, the selective iiACliR agonist DMPP was bath applied to 

slices displayed stable epileptiform burst activity. Subsequent co-application of 

DMPP (30 pM; n=10 o f 10 slices) resulted in a significant {P<0.03) increase in 

event frequency (mean maximal frequency potentiation=l 10 ± 37% o f pre-DMPP 

baseline frequency). DMPP also increased the frequency o f pre-existing ictal-like 

discharges (n=4 o f 4 slices). Increase in burst frequency was associated with 

decrease in the duration o f both inter-ictal-like and ictal-like discharges. For
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Figure 4.5. Low magnesium-induced epileptiform bursting activity in area CA3 of 
the rat hippocampal slice.
Ai. Representative examples of brief spontaneous synchronous events recorded 
in the CA3 stratum pyramidal of slices incubated in low magnesium ACSF: Brief, 
single discharges (asterisks) and double bursts (double asterisks) . Aii. Expanded 
traces showing individual single (right) and double (left) bursting responses at the 
level of the population response. Bi. In a minority of slices, low magnesium 
medium resulted in the appearance of more prolonged ictal-like epileptiform 
discharges. Bii. Expanded trace showing individual long polyspike bursts 
consisting of a train of short individual discharges lasting up to several seconds. 
Scales vertical Ai,Bi: 1mV; horizontal Ai,Bi: 10s; Aii:200 ms; Bii: 1s.
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example, there was a reduction in the duration o f ictal-like bursts hom  3640 ± 900 

ms (mean o f pre-DMPP baseline duration) to 1100 + 126.5ms after DMPP 

application. Furthermore, in 4 o f 10 such slices tested, DMPP resulted in the 

appearance o f many more secondary bursts or afterdischarges which had been 

infrequent or absent prior to nACliR agonist application (Figure 4.6 A).

DMPP-induced effects were reversible upon washout o f the agonist (Figure 4.6 A; 

11=3) or upon co-application o f the nACliR antagonists dihydro-p-erytliroidine 

(20-40 pM; n=3 o f 5; Figiue 4.6 B) and MLA (5 pM; n=2 o f 2; data not shown).

4.4 Comparison of spontaneous epileptiform activity in 
three in vitro epilepsy models

Spontaneous, recurring, inter-ictal-like epileptifoim bursting developed in all 

thiee convulsant solutions. However, the exact characteristics o f epileptiform 

activity were different. Comparing the three models, differences were detected in 

the time o f appearance o f the first spontaneous epileptiform discharge and in the 

fi'equency o f epileptiform discharges after a 30-45-min stabilisation period. The 

duration o f the individual spontaneous epileptiform bursting events was also 

different. The longest duration o f discharges was obseiwed in low magnesium, 

whilst the highest frequency o f spontaneous events was detected in 4AP (Table 

4.1). Slices exposed to 20 pM  4AP generated spontaneous epileptiform bursts, 

which lasted about 200-400ms and recurred regularly at a rate which varied 

between slices but which were in the range o f 18-40 events per minute. Slices 

exposed to 20 pM  BIG and low magnesium medium generated longer, less 

frequent bursts, lasting about 400ms and recurring iiTcgularly at about 10 events 

per minute. The shape o f spontaneous epileptiform discharges was rather 

complex. The overall waveform o f an epileptifoim discharge developed in 4AP 

was different fi'om those observed in the other two convulsants, hi 4AP model, a 

single triphasic waveform was observed in the majority o f  slices tested, whilst in 

BIG and low magnesium models double or poly spike bursts were common.
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Figure 4.6. Effect of selective nAChR-antagonists on DM PP-induced potentiation 
of low magnesium-induced epileptiform bursting in area CA3 o f the hippocampus. 
A. Scatter plot showing frequency of epileptiform events in another hippocampal 
slice in which NMDA-mediated excitation was enhanced by removal of Mg'"”" ions 
from the perfusing medium. Sections of voltage trace corresponding to the 
timepoints indicated by the arrows are shown at the bottom of the graph. Note that 
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afterdischarges (indicated by *). Curved arrows point to expanded sections of 
trace illustrating individual field potential events. Subsequent washout of DMPP 
resulted in a reduction in burst frequency to baseline levels. Shaded horizontal 
bars indicate the period over which an individual agent was applied to the bath. B. 
Similar scatter plot in which the potentiating effect of 30 pM DMPP is reversed 
upon co-application of the selective nAOhR antagonist Dihydro-(3-erythroidine 
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Indeed ictal-like activity recorded more generally in low magnesium model and 

observed in 4 out o f 21 slices tested.

Table 4.1 Characteristic parameters o f  seizure discharges developing in solutions containing 

different convulsants.

Latency (min) Frequency (Hz) Duration (ms)

4AP(n=26) 17 ±2.6
#  _ a

0.4 ±0.02
.................

257 ±15.2

BIC (n=30) 20.8 ± 5.5 0.146 ±0.02 366.6 ± 64

Low magnesium 

'  (n=2iy
19.8 ± 4 0.165 ± 0.024 711.62 ±295

A comparison o f the effects o f DMPP upon the three models o f epileptiform 

bursting revealed that whilst nAChR activation potentiated burst frequency in 

every model, there were quite marked differences in the magnitude o f potentiation 

induced in each model. Application o f DMPP (10-30 pM) resulted in a burst 

frequency potentiation in 4AP, BIC and low magnesium-induced activity with a 

mean maximal frequency potentiation o f 37 ± 5%, 248 ± 76% and 110 ± 37% for 

three treatments, respectively (P<0.01). Clearly, application o f DMPP produced a 

significant increase in all three models. However, comparing across models, 

qualitative and quantitative differences emerged: potentiation was most 

pronounced in the bicuculline model with lesser potentiation in the low 

magnesium model and lowest potentiation in the 4AP model. These data are 

summarised in histogram format in figure 4.7. The same data normalised to 

control (pre-DMPP) frequency show a significant increase in all cases (Figure 4.7 

B, P<0.01) but with a greater frequency facilitation in bicuculline and low 

magnesium paradigms.
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4.5 Discussion

Characteristics o f the spontaneous epileptifonn activity developed in different 

convulsants depend on the underlying mechanisms o f neuronal synchronisation. 

4AP, as a blocker o f different chamiels (Storm, 1987; Storm, 1988), results in 

the direct depolarisation o f pyramidal cells whilst also directly facilitating 

synaptic glutamate release (Perreault and Avoli, 1991; Traub et al., 1995). BIC, as 

a GABAa receptor antagonist, decreases the amplitude o f irrhibitory postsynaptic 

potentials, therefore facilitates propagation o f excitatory sigrrals tlrrough 

multisynaptic pathways (Gutnick et al., 1982; Miles and Wong, 1987). 

Bicuculline will also suppress the basal inhibition due to tonic release o f GAB A 

that is reported to occur in the hippocampal formation (Soltesz and Mody, 1994). 

hr low magnesium, voltage-dependent blockade o f #-methyl-D-aspartate 

(NMDA) receptors is reduced, thus allowing excitatory glutanratergic 

transmissiorr to be enormously entranced (Mody et al., 1987; Traub et al., 1994).

Different types o f in vitro slice models have been introduced to analyse the 

development, maintenance and pharmacology o f  epileptiform activity evoked by 

the application o f these different convulsants (Gulyas-Kovacs et al., 2002; 

Gutnick et al., 1982; Home et al., 1986; Jefferys, 1994; Jones, 1989; Mody et al., 

1987; Traub et al., 1994). The characteristics o f resultant epileptiform activity 

have varied between studies. This is likely due to differences in the brain region 

from which the slice originated, in the method o f drug application, or in the 

conditions of the recording epileptiform activity. For this reason, we carried out a 

series o f experiments to compare the characteristics o f spontaneous epileptiform 

activity induced by tluee different convulsant solutions and the effect o f nAChR 

activation on these tluee convulsant models in the same type o f  preparation and 

under similar experimental conditions. However, characteristic features and 

pharmacological sensitivity o f  the discharges differed among the thr'ee models 

despite the fact that recordings were always carried out in the same place: in the 

cell body layer o f area CA3 in hippocampal slices prepared from juvenile Wistar 

rats. The shortest latency o f the first spontaneous epileptiform discharge and the
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highest frequency were detected with 4AP. The longest duration o f epileptiform 

discharges and bursts with duration approximating seizures were obseiwed with 

low magnesium (Jefferys, 1994; Swartzwelder et al., 1987). In deed these results 

agi'ee well with a recent comparative report, studying the characteristic o f seizures 

developed in somatosensory cortical slices in these tluee models (Gulyas-Kovacs 

et al., 2002).

Inter-ictal discharges are characterised by two major abnormal properties: each 

involved neurone exhibits a transient large amplitude depolarisation (the 

"depolarisation shift") associated with repetitive spike generation, and this 

excitation arises with virtual syncluony in the majority o f cells in a local 

population (Prince, 1968; Prince and Connors, 1986). The duration and amplitude 

o f the paroxysmal depolarisation shift (PDS) depend on the actual membrane 

characteristics and on network properties. These characteristics may vary in 

different convulsant solutions. In BIC the syncluonisation is mainly due to the 

altered network properties, namely inhibition is reduced in the local circuits. In 4- 

AP, and especially in low magnesium, changes in the membrane characteristics of 

neurones play a crucial role in the increased excitability. Thus, the characteristics 

o f epileptifonn discharges induced by each o f these convulsants vary because of 

the different basic processes underlying epileptiform activity in each of them. 

Synchronised PDS activity o f all neurones fonning an active network determines 

the shape, duration and amplitude o f the epileptifonn discharges, which are 

detected extracellularly as field potentials (Gulyas-Kovacs et al., 2002).

The activation o f NMDA receptors is accounted in some studies (Siniscalchi et 

al., 1997; Valenzuela and Benardo, 1995) to be the most important factor in the 

development o f epileptic activity. Moreover, these receptors play a crucial role in 

the initiation and maintenance o f  epileptiform activity (Jefferys, 1994), especially 

in low magnesium (Gulyas-Kovacs et a l ,  2002). In low magnesium the 

excitability o f these receptors increases extremely, which contributes to the 

development o f long PDSs generating bursts or series o f spikes. Both in BIC- and 

in 4AP-containing solutions, PDSs develop, which contribute to burst generation.
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In BIC, however, a regenerative calcium-mediated spike was suggested to initiate 

the depolarisation (de Curtis et al., 1999). It is also reported that, in disinliibited 

hippocampal slices non-NMDA type receptors have the primary role in the 

initiation o f epileptiform activity (Traub et al., 1993) and NM DA type receptors 

are important in the maintenance o f epileptiform activity beyond the first 100-200 

ms (Jefferys, 1994). While in 4AP enonnous excitatory synaptic potentials 

tlnough both types o f ionotropic excitatory amino acid receptors were recorded as 

contributors to the PDS formation (PeiTeaiilt and Avoli, 1991). This difference 

may be an important factor in the alteration o f the shape o f inter-ictal discharges 

(Gulyas-Kovacs et al., 2002).

The waveform o f the discharges also depends on the relative location o f the 

recording site and the burst initiation site. In different convulsants, seizure 

initiation may occur in different places, hi many cases, including bicuculline and 

4AP, the CA3 subfield is the site o f initiation o f epileptiform discharges (Jefferys, 

1993). Wliere as, the prolonged ictal-like discharges in low magnesium and liigh 

[K^]o start in C A l, not CA3, thus leading to the proposal that C A l contains a 

separate neuronal aggi'egate necessary for seizures (Jefferys, 1993; Jefferys, 1994; 

Jensen and Yaari, 1988).

In previous chapter I have shown that nACliRs regulate epileptiform bursting 

induced by 4AP in rat hippocampal slices. The objective o f the experiments 

described in this chapter was to assess whether nAChR activation has a general 

excitatory influence over patterned neuronal activity within cortical circuits, we 

examined the effect o f the iiACliR agonist DMPP on two additional epileptifonn 

models: BIC and low magnesium models. Our results showed that nAChR 

activation again potentiates epileptifonn activity in both two models. Application 

o f DMPP resulted in an entranced burst frequency, which was reversed upon 

washout or co-application o f the selective nAChR antagonists. Moreover, DMPP 

made polyspike bursts or afterdischarges appear when absent in control in all 

three models or increased the frequency o f pre-existing ictal-like discharges in 

low magnesium model. In all cases increase in burst frequency was associated
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with decrease in burst dmation and in the case o f low magnesium decrease in 

duration o f ictal-like bursting. The finding that nACliR activation also potentiates 

epileptifonn bursting resulting from inliibition o f GABAa receptors by application 

o f BIC and reduction o f Mg^"  ̂ ions from the perfusion medium and concomitant 

elevation in NMDA receptor-mediated excitation (Traub et a l ,  1994) suggests 

that nAChRs affect a cellular mechanism that is common to all tlnee epilepsy 

models investigated. In this respect, a potentially important locus o f action is 

likely to be the recurrent glutamatergic synapses in area CA3 since these recurrent 

comiections are believed to be critical in the generation and regulation o f bursting 

activity within the CA3 network (Bains et a l ,  1999; Staley et a l ,  1998; Traub,

1991). Supporting this idea are recent studies that have demonstrated 

acetylcholine to modulate these synapses directly (Vogt and Regelm, 2001). Thus, 

it is plausible that frequency potentiation described here reflects the activation of 

presynaptic nACliRs that facilitate glutamate release which, in turn, forces the 

network into a higher frequency bursting mode. Consistent with this hypothesis as 

the frequency o f bursting increased so the duration o f bursts decreased; a 

relationship that has been studied in detail by Staley and colleagues during other 

experimental manipulations that increase burst frequency (Bains et a l ,  1999; 

Staley et a l ,  1998) and who concluded that both parameters relate to the 

presynaptic release of glutamate fr'om recurrent circuits. An important obsei*vation 

in this study was that iiACliR activation appeared to produce a greater 

enliancement o f epileptiform burst frequency in the bicuculline and low 

magnesium experiments than in the 4AP studies (Figure 4.7). 4AF is known to 

enhance the release o f all transmitters in the hippocampus including glutamate 

(Rutecki et a l ,  1987). Should iiACliRs be acting tlrrough presynaptic facilitation 

o f glutamatergic recurrent collateral comiections then it is likely that in the 4AP 

model these synapses would already be potentiated partially by 4AP itself since 

this agent gi'eatly promotes glutamate release (Rutecki et a l ,  1987). Such an 

explanation would account for the relative greater effectiveness o f nACliR 

agonists in the bicuculline and low magnesium models. A  second potential site for 

the involvement o f iiACliRs is in modulating GABAergic circuits. Indeed 

GABAergic hippocampal intemeurones are laiown to express nAChRs (Freedman
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et al., 1993; Freund and Buzsaki, 1996) and pharmacological studies have shown 

that either pharmacological or synaptic stimulation o f these receptors produce an 

postsynaptic depolarisation or inward cmi'ent (Frazier et al., 1998b; Jones and 

Yakel, 1997). Clearly however, further studies are required to establish the precise 

mechanisms by which nACliR activation promotes epileptiform bursting and 

other pathological network states (see next chapters).
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C H A PTER  5 

IN V ESTIG A TIO N  OF THE C O N TR IBU TIO N  OF  
G LU TA M A TE CIRC UITS IN nAC hR -IN D U C ED  

BU RST FR EQ U EN C Y  PO TEN TIA TIO N

5.1 Introduction

The numerous subunits that make up nAChRs result in a great diversity o f 

functional receptors, equipping them with different pharmacological and 

biophysical properties, depending on iiACliR subtypes and their location. Located 

at both pre- post and extra-synaptic sites, nAChRs are ideally placed to regulate 

neuronal excitability in the CNS (Jones et ah, 1999). In the hippocampus, 

nACliRs, including the calcium permeable a7-type, are present on surface of both 

GABAergic inhibitory interneurones (Alkondon et ah, 1997; Frazier et ah, 1998a; 

Frazier et ah, 1998b; Freedman et ah, 1993; Freund and Buzsaki, 1996; Jones and 

Yakel, 1997; McQuiston and Madison, 1999b) and the excitatory glutamatergic 

pyiamidal cells (Albuquerque et ah, 1997; Alkondon et ah, 1997; Ji et ah, 2001), 

modulating both inhibitory and excitatory circuits. Thus, it is likely that the pro- 

epileptogenic action o f nACliR activation described in previous chapters is 

mediated tlmough glutamatergic circuits, GABAergic circuits or both.

In 1997 Alkondon reported that pyi'amidal cells responded to application of 

nicotinic agonist with a slow depolarisation. However, McQuiston and Madison 

(1999) reported that only 2 out o f 15 pyramidal cells responded to ACh 

application with a slow depolarisation and inward currents and that such 

responses were very small and only just at the level o f detection. A postsynaptic 

nicotinic response from pyramidal cells has been the subject o f an ongoing dispute 

with most previous studies reporting that pharmacological activation o f nAChRs
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do not produce any foiTn o f membrane potential response in these cells (Frazier et 

ah, 1998b; Jones and Yakel, 1997). Although pyramidal cells do express nicotinic 

receptors their role is thought to be presynaptic, important in the modulation of 

neurotransmitter release (Albuquerque et ah, 1997; Gray et ah, 1996; Ji and Dani, 

2000). It is hypothesised that activation o f presynaptic nicotinic receptors 

enhances transmission directly by elevating presynaptic calcium levels (Gray et 

ah, 1996). However, som e other studies were unable to evoke an increase in 

presynaptic calcium levels with local application o f nicotinic receptor agonists 

suggesting an indirect synaptic modulation could arise from nicotinic excitation 

(Vogt and Regehr, 2001).

Many reports have shown that high doses o f  nicotine acting at the neuronal 

nAChRs can induce seizures in animals (Damaj et ah, 1999; M iner and Collins, 

1989; Miner et ah, 1985). This effect has been studied in detail by Damaj and 

colleagues (1999) who concluded that nicotine by acting at the presynaptic 

nAChRs, enhance the release o f glutamate, which in turn stimulates NMDA 

receptors leading to nitric oxide fomiation and possibly seizure production. 

However, such studies were all carried out in vivo in which there is limited scope 

for direct investigation o f detailed synaptic and cellular mechanisms.

The work presented in this chapter was undertaken in hippocampal slice 

preparations to establish the mechanism by which nAChRs mediate their pro- 

epileptogenic actions and to investigate the probable contribution o f glutamate 

circuits in nAClfR-induced burst frequency potentiation. The specific aims o f this 

chapter were:

1. To investigate the action o f nAChRs on basal glutamatergic transmission

2. To investigate the effect o f nACliR activation on epileptiform bursting activity 

in the presence o f glutamate receptor antagonists.
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5.2 Investigation of the action of nAChRs on basal 
glutamatergic transmission

5.2.1 Effect of nAChR activation on evoked glutamatergic 
synaptic transmission on area CA3

111 this set o f experiments, field excitatory postsynaptic potentials (fEPSPs) were 

recorded in the CA3 region o f the hippocampal slices, placing recording electrode 

in the stratum radiatum  o f the CA3 region and stimulatory electrode within the 

hilus. Typically, fEPSPs evoked by local electrical stimulation consisted o f a 

compound glutamatergic EPSP mediating by the activation o f AMPA/Kainate and 

NMDA receptors. Figure 5.1 A shows a representative example o f a fEPSP 

recorded from the CA3 region on which specific glutamatergic antagonists were 

tested. Bath application o f the AMPA/Kainate receptor antagonist, NBQX (2 pM) 

decreased the amplitude o f the EPSP (Figure 5.1 A2) and the further addition of 

the NMDA receptor antagonist CGP40116 (50 pM) completely abolished the 

EPSP (Figure 5.1 A3), demonstrating the mixed NMDA and AMPA/Kainate- 

mediated nature o f the evoked synaptic response.

Initial experiments were to investigate the stability o f evoked fEPSPs in area 

CA3. hr order to ensure that the amplitude of the evoked EPSPs on area CA3 

remains stable over the period o f experiments, control fEPSPs were recorded in 

the absence o f DMPP. As illustrated in figure 5,1C, electrical stimulation o f 

afferent fibres within the hilar region resulted in the occurrence o f a stable EPSP 

in area CA3, which was sustained and stable for the extended duration o f the 

experiments (up to 60 minutes, n=4, Figure 5.1 C control).

To investigate the effect o f DMPP on evoked glutamatergic synaptic transmission 

in area CA3, 30 pM DMPP was applied following a stable EPSP baseline. The 

slices were stimulated once every 20 seconds for a period o f 20-30 minutes 

before, during and after superfusion with DMPP. Bath application o f DMPP (30 

pM) resulted in a sustained and reversible enliancement o f glutamate afferent
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Chapter 5

evoked fEPSP amplitude by 15.7 ± 5.1% (mean ± SEM; P=0.007, One-way 

ANOVA) in the CA3 region o f the hippocampus (Figure 5.1 B-D, n=8 o f 12). 

These data suggest that glutamatergic transmission is enlianced by nACliR 

activation in the CA3 region of the hippocampus.

The Effect o f iiACliR activation on the amplitude o f fEPSPs recorded in area CA3 

was assessed at varying stimulus intensities. The result o f DMPP action on such 

stimulus-responses is given in figure 5.1 E. Paired t tests were performed on raw 

data at each point, revealing that fEPSP amplitudes were significantly increased 

from baseline following DMPP application across entire range o f  stimulus 

intensities {P<0.05),

5.2,2 Effect of nAChR activation on evoked glutamatergic 
synaptic transmission on area CAl

Addition experiments were carried out in area C A l. Field EPSPs were recorded in 

the CA l region o f the hippocampus by placing recording electrodes within the 

stratum radiatum  towards the middle o f the CA l region and subsequently 

stimulating the Schaffer collaterals with stimulation electrode placed within the 

stratum radiatum  close to the CA3/CA1 border. 30 pM DMPP was applied to the 

bath once a stable EPSP baseline amplitude was achieved. In contrast to findings 

in area CA3, no significant change (-5.25 ± 8.3%, mean ± SEM; P=0.4, One-way 

ANOVA) was observed on field EPSCs recorded in the CA l region (Figure 5.1 

C-D, n=4) upon application o f DMPP suggesting that application o f the nicotinic 

agonist does not alter glutamate transmission at this synaptic comiection.

5.3 Effect of glutamate receptor antagonists on 4AP and 
bicuculline-induced bursting activity

Results obtained from several models o f epileptifonn activity, both in vivo and in 

vitro, have emphasised the important role played by NM DA receptors in the

1 0 0



Chapter 5

generation o f epileptifonn discharges. To test the involvement o f NMDA 

receptors in the 4AP and bicuculline models, we analysed the effects o f a 

competitive NMDA receptor antagonist, D-(E)-2-amino-4-methyl-5-phosphono- 

3-pentenoic acid (CGP40116, 50 pM), on spontaneous epileptifonn activity 

induced by either 4AP or by bicuculline. The involvement o f other fast excitatory 

amino acid receptors was also assessed by use o f 2,3-dioxo-6-nitro-l,2,3,4- 

tetrahydrobenzo(f)quinoxaline-7-sulfonamide (NBQX, 2 pM) which is an 

antagonist o f AMPA/kainate (non-NMDA) receptors. In the first set of 

experiments, 50 pM CGP40116 and 2 pM NBQX were co-applied to slices 

displaying stable epileptiform burst activity to assess the general contribution of 

glutamate receptors on ongoing 4AP and BIC-induced epileptiform discharges. 

This combined application o f NMDA and AMPA/Kainate receptors antagonists 

resulted in a gi'adual reduction and eventually complete abolition o f 4AP-induced 

interictal activity 14.6 ± 6 minutes after bath application o f antagonists in all 

slices tested (nM ). However, this effect was not reversed after (up to 40 minutes) 

washout (n=2, Figure 5.2 A). A combined application o f CGP40116 and NBQX 

also completely blocked BIC-induced epileptiform activity (n=2, data not shown).

To examine whether NMDA and AMPA/Kainate receptors exerted deferential 

effects on 4AP and BIC-induced epileptiform activity, we tested the individual 

effect o f either CGP40116 or NBQX on 4AP and BIC-induced epileptiform 

activities.

For 4AP induced activity, epileptifonn discharges persisted following the 

application o f NMDA receptor antagonist, CGP40116 (50 pM), but their 

frequency significantly decreased from 0.52 ± 0.11 to 0.24 ± 0.03Hz (n=4, 

P=0.02, paired Student’s t-tests performed on raw data, Figure 5.2 B).

In a second set o f experiments, the involvement o f AMPA/Kainate receptors alone 

on 4AP-induced epileptiform activity was also assessed using the selective 

AMPA/Kainate receptors antagonist, NBQX. Wlien 2 pM NBQX was added to

1 0 1
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Chapter 5

the bathing medium, 4AP-induced epileptiform discharges gi'adually reduced in 

Irequency and ultimately abolished completely (n=6, Figure 5.2 C).

In a mamier similar to that for 4AP-induced response, co-application o f 50 pM 

CGP40116 also produced a significant decrease in the frequency o f BIC-induced 

epileptiform activity from 0.14 ± 0.01 to 0.06 ± O.OlHz (n=4 o f 6, P=^0.01, paired- 

/-tests performed on raw data, Figure 5.3 A) but a complete abolishment o f 

epileptiform activity was also obseiwed in 2 out o f 6 experiments. On the contrary, 

application o f NBQX (2 pM) produced a complete blockage o f BIC-induced 

epileptiform bursting in all slices tested (n=4. Figure 5.3 B), an effect that was 

similar to those observed in 4AP model.

The effects o f these antagonists on burst frequency are summarised gi'aphically in 

figure 5.2 D for 4AP and figure 5.3 C for BIC-induced epileptiform activity.

5.4 Experiments to investigate the contribution of 
ionotropic glutamate receptors in uAChR-induced 
burst frequency potentiation

5.4.1 Effect of nAChR activation on 4AP and BIC-induced 
bursting activity in the presence of NMDA receptor 
antagonist

The previous experiments addressed the action o f nAChRs on basal glutamatergic 

transmission. We next turned our attention to the action o f iiACliR activation on 

ongoing epileptiform bursts activity within dynamically active glutamatergic 

circuits. In order to investigate any possible contribution o f NMDA receptors in 

DMPP-induced burst frequency potentiation, a series o f experiments were carried 

out using the NMDA receptor antagonist CGP40116. Once stable 4AP or BIC- 

induced epileptiform activity were established, 50 pM CGP40116 was co-applied 

in order to inliibit any NMDA receptor mediated component to the bursting 

activity as above. As stated, such application o f CGP40116 significantly

1 0 2
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Chapter 5

decreased the frequency o f 4AP and BIC-induced bursting activity. After the 

stabilisation o f  the reduced frequency spontaneous epileptiform activity in the 

presence o f CGP40116, 30 pM  DMPP was subsequently co-applied to investigate 

the effect o f nACliR activation on ongoing 4AP and BIC-induced epileptifonn 

activity. In such experiments, it was found that the presence o f CGP40116 did not 

compromise the ability o f DMPP to potentiate epileptiform burst h 'equency in the 

both 4AP (n=4. Figure 5.4 A) and BIC models (n=4, Figure 5.4 B). Indeed, under 

such conditions, application o f 30 pM  DMPP produced a reversible increase o f 

burst frequency by 54.5 ± 18.98% and 277 ± 34.7% for 4AP and BIC-induced 

epileptiform responses, respectively (Figure 5.4 C).

5.4.2 Effect of nAChR activation on 4AP and BIC-induced 
bursting activity in the presence of AMPA/Kainate receptor 
antagonist

In contrast to a partial block o f epileptiform activity induced by 50 pM 

CGP40116, application o f the AMPA/Kainate receptor antagonist NBQX (2 pM) 

completely abolished epileptifonn activity induced by 4AP and BIC in all slices 

tested (n=9). We next investigated whether the pro-epileptogenic actions of 

nAChR activation could reverse the NBQX mediated suppression o f 4AP and 

BIC-induced epileptifonn activity.

In the first set o f  experiments in which 2 pM  NBQX abolished 4AP-induced 

epileptiform responses, subsequent co-application o f 30 pM  DMPP failed to result 

in the reappearance o f interictal discharges or produce any other fonn o f 

detectable extracellular field activity, in any slices tested (n=6, Figure 5.5 A). 

Similarly, 30 pM  DMPP was unable to reverse 2 pM  NBQX abolition o f BIC- 

induced bursts activity (n=3, Figure 5.5 B).

To investigate further the contribution o f AMPA/Kainate receptors during DMPP- 

induced burst frequency facilitation, we performed experiments using a lower 

concentration o f NBQX (0.2 pM). This concentration o f NBQX produces a partial
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Figure 5.4. Effect o f nAChR activation on epileptiform activity in the presence of 
NMDA receptor antagonist.
Scatter plot showing the effect of DMPP on 4AP (A) and BIC (B) -induced burst 
frequency in the presence of NMDA receptor antagonist, CGP40116. As can be seen, 
application of CGP 40116 did not affect the ability of DMPP to potentiate epileptiform 
burst frequency in the both 4AP and BIC models. C. Summary of the effects of 
application of DMPP on 4AP (n=4) and BIC (n=4)-induced burst frequency, when 
NMDA receptors are blocked. Horizontal bars indicate P  values between respective 
columns as determined using ANOVA performed on raw data.
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Chapter 5

block o f AMPA/Kainate receptor mediated synaptic responses (Randle et al.,

1992). Application o f 0.2 pM NBQX resulted in a marked reduction in the 

frequency o f 4AP-induced epileptiform activity (by 72.5 ±2 .5% , n=4, Figure 5.5 

C-D) but not a complete abolition o f epileptiform activity. Under such conditions, 

slices preincubated with 0.2 pM  NBQX, displayed a pronounced burst Requency 

potentiation upon DMPP (30 pM) application (96.42 ± 10.5%, n=4, Figure 5.5 C- 

D). These results suggest an involvement of AMPA/Kainate receptors in DMPP- 

induced burst h 'equency potentiation.

5.5 Experiments to investigate the contribution of 
metabotropic glutamate receptors (mGIuRs) in 
nAChR-induced burst frequency potentiation

Metabotropic glutamate receptors (niGluRs) have been shown to be critically 

involved in modulating ictal activity during seizures in animal models o f epilepsy 

(Dalby and Thomsen, 1996; Tizzano et ah, 1995). Group I mGluRs sustain or 

promote seizures (Camon et al., 1998; Chapman et al., 2000; Chapman et al,, 

1999), whereas group II, and group III mGluRs are reported to suppress seizures 

via presynaptic inhibition o f glutamate release (Attwell et ah, 1998). Moreover, 

investigation o f the concentration-dependence revealed that sustained low 

concentration o f niGluRs agonist elicited only facilitatory actions, whereas higher 

concentrations were suppressive (Burke and Hablitz, 1995). These obseiwations 

suggest the activation of different mGluR subtypes, which may be localised 

differentially at pre-and postsynaptic sites. Moreover, different neuronal 

populations, possible expressing different inGluR subtypes or coupling 

mechanisms, may play integral roles in the induction and generation o f 

epileptiform activities (Burke and Hablitz, 1995). These finding also indicate that 

a specific mGluR subtype(s) may modulate both excitatory and inliibitory 

synaptic transmission via a presynaptic reduction o f transmitter release (Burke 

and Hablitz, 1994).
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5.5.1 Effect of nAChR activation on BIC-induced bursting 
activity in the presence of mGIuR antagonist

Based on data supporting a critical role o f gi’oup I niGluRs in promoting seizures 

(Camon et al., 1998; Chapman et al., 2000; Chapman et al., 1999) and 

epileptiform activities in vitro (Cobb et ah, 2000; Merlin et ah, 1995; Burke and 

Hablitz, 1995), a series o f experiments were carried out in the presence o f mGluR 

antagonist to investigate the probable contribution o f mGluRs in DMPP-induced 

burst frequency potentiation.

Once stable BIC-induced bursting activity was established, a non-selective 

group I/II niGluR antagonist (S)-a-methyl-4-carboxyphenyglycine (MCPG, 500 

qM) was applied in order to block any contribution o f mGluR mediated 

responses. Subsequent co-application o f 500 qM MCPG did not produce any 

significant change in BIC-induced epileptifonn burst frequency, suggesting that 

activation o f such receptor was not a critical factor in the generation o f BIC- 

induced bursting activity (n=4, P>0.05, Figure 5.6). Moreover, pretreatment of 

slices with MCPG did not affect DMPP-induced burst frequency potentiation 

when DMPP (30 qM) was subsequently applied (n=4, Figure 5.6). This result 

suggests that mGluRs are not a critical factor in the modulation of BIC-induced 

epileptifonn activity by the activation of nAChRs.
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Figure 5.6. Effect o f nAChR activation on epileptiform activity in the presence  
of metabotropic glutamate receptor antagonist.
A. Scatter plot showing the effect of DMPP on BIC-induced burst frequency in 
the presence of the broad spectrum mGLuR antagonist, MCPG. Co-application 
of 500 |iM MCPG did not produce any significant change in BIC-induced 
epileptiform activity. Subsequent co-application of DMPP produced a significant 
increase in BIC-induced burst frequency. B. Summary of the effects of 
application of DMPP on BIC-induced burst frequency in the presence of MCPG 
(n=4). Horizontal bars indicate P  values between respective columns as 
determined using ANOVA.
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5.6 Discussion

5.6.1 Effect of DMPP on basal glutamate transmission

The aim o f this phase of study was to attempt to assess the precise synaptic 

mechanisms and identify possible excitatory circuit by which activation of 

nAChRs produce their pro-epileptogenic effects. In experiments devised to 

investigate the action o f nAClrRs on basal glutamatergic transmission, application 

o f selective nACliRs agonist DMPP resulted in a sustained and reversible 

enliancement o f glutamate afferent evoked field EPSP amplitude in the CA3 

region o f the hippocampus. Previous published results and aspects o f the present 

data indicate that nAChRs may enhance glutamate release from presynaptic 

terminals. In 1995 McGehee et a l  showed that nicotine enlianced glutamate 

transmission in the habenula nucleus o f chick (McGehee et al., 1995). This 

finding is further supported by the observation reported by Gray et a l  (1996) and 

Radcliffe and Dani (1998), who showed that nicotine increased the fi’cqueiicy o f 

mini EPSPs in the CA3 region o f the hippocampus and hippocampal cell cultures, 

respectively (Gray et ah, 1996; Radcliffe and Dani, 1998). Activation o f iiACliRs 

may increase the probability o f glutamate release either tlirough direct Ca^^ entry 

tluough the channel itself or indirectly tlirough recruitment o f  voltage-dependent 

calcium chamiels (VDCC) by the local depolarisation. According to Staley et al. 

(1998), increased probability o f release results in a decrease in inter burst inteiwal. 

This increased burst frequency is associated with a reduction in burst length 

(Staley et ah, 1998). If  DMPP acts to open presynaptic iiACliR channels, which 

are permeable to Ca^^ (Seguela et a l ,  1993), resultant changes in calcium 

dynamics within the presynaptic terminal may thus result in presynaptic 

modulation o f action potential-dependent release. Experiments using the paired- 

pulse paradigm, which provide indirect evidence o f likely presynaptic actions, 

may be useful to address this point. An increase in the paired-pulse facilitation by 

DMPP would support a hypothesis that its faeilitatory action occurs through 

activation of pre synaptic nACliRs.
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A complementary calcium imaging approach has also been adopted to investigate 

presynaptic action of iiACliRs on calcium transients in glutamatergic terminals. 

However, such studies are contentious with some groups claiming activation of 

iiACliRs enliances glutamatergic transmission directly by elevating terminal 

calcium levels (Gray et ah, 1996). However, other authors have shown no such 

actions and suggest nAChRs to effect excitability tlrrough other cells types and 

transmitters notably G ABA (Vogt and Regehr, 2001). As our evoked EPSP 

experiments were not carried out in the presence o f GAB A receptor antagonists, it 

is not possible to conclude whether nAChRs modulation is via a direct action on 

glutamatergic transmission or via a more indirect mechanism, possibly through 

regulation of GABAergic circuits. However, such an action o f iiACliRs appears to 

be independent o f fast GABAergic transmission, as detailed in chapter 4 o f this 

thesis, at least with respect to the pro-epileptogenic action. An important finding 

in this respect was that nAChR activation also resulted in a facilitation of 

epileptiform burst discharge in the bicuculline model (see chapter 4) in which 

GABAa receptors are blocked by high concentrations of the antagonist. However, 

an action on GABAergic circuits utilising GABAb receptors can not be excluded 

since these have recently been shown to exhibit pro-epileptogenic actions (Motalli 

et al., 1999) (see Chapter 6).

In our experiments increasing the stimulus intensity also increased the amplitude 

o f the evoked EPSP. This presumably reflects the fact that an increase in 

stimulation intensity would ultimately recruit more fibres and subsequently 

increases the amount o f synaptically released glutamate. Data showing modest but 

significant increase in the amplitude o f evoked EPSPs in the presence o f DMPP 

compared with the control is consistent with a general enhancement o f glutamate 

release across a population o f glutamatergic terminals although it is not possible 

to exclude the possibility o f other less direct effect tluougli other systems. Such a 

finding has been described by Mann and Greenfield (2003) who showed that the 

inhibition o f NMD A receptors revealed a long-lasting excitatory effect o f nicotine 

on hippocampal activity which appeared to be mediated via GABAergic 

intemeurones (Mann and Greenfield, 2003).
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In results indicated in this chapter no significant enliancement o f EPSP amplitude 

was seen following DMPP application in the CA l region. Application o f DMPP 

enlranced glutamate afferent evoked field EPSP amplitude in the CA3 region of 

the hippocampus but no such effect within area C A l. This observation is 

consistent with studies reporting that activation o f iiACliR enhances glutamate 

release from CA3 pyiamidal cells (Gray et ah, 1996) but not from C A l neurones 

(Alkondon et ah, 1997; Frazier et ah, 1998b; Jones and Yakel, 1997; McQuiston 

and Madison, 1999b). Work performed by Alkondon et al (1997) showed that 

CNQX, a competitive glutamate receptor antagonist that inhibits fast 

glutamatergic transmission mediated by AMPA/Kainate receptors, failed in 

blocking nACliR-elicited PSCs in CA l pyramidal cells, which indicated that 

nAChR activation is not linked to the release o f glutamate in C A l neurones. This 

finding is further supported by Jones et al (1997) and Frazier et al (1998) who 

showed pyramidal cells in the area CA l to be completely unresponsive to 

nicotinic receptor activation. McQuiston and Madison (1999) also reported that 

only 2 out 15 pyramidal cells in area CA l responded to ACh application and that 

such responses were barely detectable and significantly smaller than equivalent 

nACliR mediated responses recorded in hippocampal interneurones.

The conclusion drawn from these data suggests that nAChR activation regulates 

(potentiates) glutamatergic transmission at a subset o f synapses. The apparent 

selective modulation o f glutamatergic transmission by nAChRs mirrors the 

finding that inAChRs are reported to differentially suppress different excitatory 

pathways within the hippocampus (Hasselmo and Schnell, 1994). Such an action 

o f nACliRs would be consistent with previous modelling studies which predicted 

that the susceptibility o f  the hippocampus to generate epileptifonn activity is 

proportional to the strength of glutamatergic comiectivity in recurrent collateral 

synapses in CA3 region (Bains et ah, 1999; Staley et ah, 1998) . The tenninating 

o f CA3 bursts depends on depletion o f the releasable glutamate pool at these 

recurrent synapses, therefore presynaptic factors controlling glutamate release at 

recurrent synapses regulate the probability and duration o f synchronous 

discharges o f the CA3 network (Staley et ah, 1998). According to Vogt and
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Regelii' (2001) acetylcholine directly modulate these synapses (Vogt and Regelrr, 

2001), Thus, it is possible that frequency potentiation mediated by nAChRs 

reflects the activation o f presynaptic nAChRs that facilitate glutamate release 

which, in turn, forces the network into a higher frequency hursting models.

5.6.2 Involvement of glutamate receptors in epileptiform activity

Many factors have heen identified as being critical for the generation of 

epileptiform activity and one of them is activation o f excitatory amino acid 

receptors: NMDA and AMPA/Kainate receptors. The relevance o f each o f these 

receptors in focal epileptogenesis, however, remains very controversial because 

their relative contribution varies gi*eatly depending on the model being studied. 

For instance, although NMDA receptors have been shown to be involved in the 

production of epileptiform activity in some experimental models o f epilepsy 

(Meldrum, 1987; Thomson and West, 1986) such as low magnesium model 

(Home et ah, 1986; Mody et ah, 1987; Sclmeiderman and MacDonald, 1987; 

Tancredi et ah, 1990), NMDA antagonists have little or no effect on the 

epileptiform discharges seen with other models such as bicuculline and picrotoxin 

models (Neuman et ah, 1988; Thomson and West, 1986) suggesting that NMDA 

receptors are not necessary for generation o f epileptifonn activity. Similarly, the 

importance o f AMPA/Kainate in epileptogenesis remains unclear. On the one 

hand, there are some reports indicating that non-NM DA receptors are involved in 

the generation o f the bursts induced by the convulsants 4AP (Avoli et ah, 1993; 

Perreault and Avoli, 1991) and bicuculline (Gulyas-Kovacs et ah, 2002; Traub et 

ah, 1993). On the other hand, it has been shown that AMPA/Kainate receptors 

have a minor role in the generation o f epileptiform dischaiges in low magnesium 

model (Gulyas-Kovacs et ah, 2002). Finally some studies have provided direct 

evidence that abnormal excitatory synaptic transmission in the epileptogenic 

neocortex is primarily mediated by both NMDA and AMPA/Kainate receptors 

(Lee and Flablitz, 1991; Siniscalchi et ah, 1997; Valenzuela and Benardo, 1995). 

According to these studies there are two distinct phases in the development of 

epileptic activity, namely induction and maintenance, mediated by either NMDA
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or non-NMDA receptors depending on the model being investigated. For 

example, during exposure to magnesium-free solution, NM DA receptor 

antagonists prevent the development o f the induced epileptiform activity, while 

the non-NMDA receptor antagonist abolished the epileptiform discharge that 

persisted after slices were returned to control solution containing magnesium. 

This data suggests that in this model the enliancement o f NMDA receptor 

activation is responsible for the initiation o f spontaneous discharges and that non- 

NMDA receptors perform a more minor role in the initiation, but contribute to the 

maintenance o f epileptiform discharges (Gulyas-Kovacs et ah, 2002; Valenzuela 

and Benardo, 1995). It has also been shown that, in 4AP model, both types of 

ionotropic excitatory amino acid receptors are overactivated and contribute to 

seizure initiation and propagation (Gulyas-Kovacs et ah, 2002; Siniscalchi et ah, 

1997). This finding was further supported by studies investigating the role of 

excitatory amino acid receptors in generation o f picrotoxin-induced epileptiform 

activity in rat neocortex (Lee and Hablitz, 1991) and in recurrent collaterals of 

guinea pig hippocampal slice (Miles et ah, 1984) that showed a reversible 

blockade o f spontaneous synclu'onised bursts by the application o f several 

excitatory amino acid antagonists.

The involvement o f glutamate receptors in the epileptiform activity was studied in 

this chapter by the experiments utilising NMDA and AMPA/Kainate receptor 

antagonists. As detailed above, the majority o f previous electrophysiological 

studies have found that both NMDA and AMPA/Kainate receptors are strongly 

activated during epileptiform activity (Lee and Hablitz, 1991; Siniscalchi et ah, 

1997; Valenzuela and Benardo, 1995). According to these studies, we found that 

4AP and BIC-induced interictal-like epileptifoim activity are completely blocked 

by NBQX and their frequency significantly reduced by CGP40116. Our findings 

are different from the data obtained by Avoli and colleagues, who have showed 

that both interictal- and ictal-like epileptiform discharges induced by 4AP are not 

affected by NMDA receptor antagonists and who have concluded that 4AP- 

induced epileptiform activity are mediated tlu'ough the activation of 

AMPA/Kainate receptors (Avoli et ah, 1993; PeiTeault and Avoli, 1991).
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However, our results are in agi'eement with those o f Gulyas-Kovacs and 

colleagues (2002), who have shown that NMDA receptor antagonist significantly 

decrease frequency o f  4AP and BIC-induced epileptiform bursting with a similar 

degi'ee o f frequency depression. These authors have also reported that 

AMPA/Kainate receptor antagonist completely abolished BIC-induced 

spontaneous activity and significantly decreased the frequency o f epileptiform 

activity in 4AP model. This finding is again in agieement with our results with the 

only difference being that a complete abolition o f 4AP-induced epileptiform 

activity was observed in our experiments following application o f an 

AMPA/Kainate receptor antagonist. In fact, these authors concluded that there are 

significant alterations in contribution o f NM DA and AMPA/Kainate glutamate 

receptors to the development and maintenance of epileptiform activity in the 

different convulsants. However, our results suggest that the relative contributions 

o f NMDA and AMPA/kainate receptors are similar for the 4AP and BIC-induced 

epileptiform activities described here despite the epileptogenic stimulants acting 

through distinctly different mechanisms.

Thus, the main conclusion from the work described in this section o f the thesis is 

that, at least in these two models, the epileptic activity requires the activation of 

both NMDA and AMPA/Kainate glutamate receptors. However, relative 

contribution o f the respective subtypes o f glutamate receptor in mediating aspects 

of epileptogenesis is difficult to assess unequivocally.

In vivo data fr'om animal models o f  epilepsy have shown modulatory roles o f 

inGluRs on ictal activity during seizures (Dalby and Thomsen, 1996; Tizzano et 

al., 1995). Studies on in vitro hrain slices have also suggested that activation of 

group I inGluRs plays a critical role in the maintenance o f the prolonged 

synchronised discharges (Holmes et al., 1996; Lee et al., 2002; Merlin and Wong, 

1997) and in the transition o f interictal bursting into ictal activity (Merlin and 

Wong, 1997). It has been shown in these studies that inGluR antagonists have 

suppressive effects o f prolonged epileptiform activity, suggesting activation o f 

inGluRs during prolonged epileptiform discharges. However, in our experiments

111



Chapter 5

application of MCPG, a non-selective group I/II mGluR antagonist, failed to 

produce any significant change in BIC-induced epileptiform bursting activity, 

which was consistent with previously reported studies (Merlin and Wong, 1997; 

Lee et al, 2002). As only short interictal-like activity was recorded in our 

experiments, it is likely that this negative finding is attributable to lack of 

prolonged or ictal like activity in our recordings. This result suggests that group I 

mGluRs probably does not play a significant role during short interictal activity.

5.6.3 Contribution of glutamate receptors in DMPP-induced 
burst frequency potentiation

The aims o f this set o f experiments were to investigate the effect o f DMPP on 

epileptiform activity when glutamate receptors were blocked to uncover possible 

contribution o f glutamate receptors in the pro-epileptogenic action o f nAChP.s.

In this set o f experiments application o f NMDA receptor blocker CGP40116 

(resulting in a depression o f  burst frequency) did not affect the ability o f 

subsequent DMPP application to potentiate epileptifonn burst frequency. On the 

other hand, application o f the AMPA/Kainate receptor antagonist NBQX (2 pM) 

completely abolished epileptifonn activity suggesting that these receptors are 

crucial for supporting such activity. Moreover, subsequent co-application o f 

DMPP failed to make any change in extracellular field activity after block with a 

high concentration o f NBQX. However, slices preincubated with a lower 

concentration o f NBQX (0.2 pM), which results in a partial blockade o f non- 

NMDA receptor-mediated synaptic transmission, were still able to exhibit burst 

frequency potentiation upon DMPP application. These results suggest that NMDA 

receptors are not necessary in the DMPP-induced burst frequency potentiation and 

when these receptors are blocked DMPP can potentiate epileptiform activity 

tlrrough activation o f AMPA/Kainate receptors. Furthermore, in agreement with 

earlier chapters, activation o f nAChRs may facilitate ongoing epileptiform activity 

but does not result in the generation o f spontaneous activity in otheiivise quiescent 

circuits.
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In further studies, application o f mGluRs antagonist MCPG again did not affect 

the ability o f DMPP to potentiate epileptiform burst frequency suggesting that the 

response to DMPP was not due the recruitment o f niGluRs.

The main conclusion o f these results is:

iiAChR-mediated burst frequency potentiation is obseiwed during condition of 

NMDA receptor block suggesting that under this condition the proepileptogenic 

action o f nAChRs is therefore mediated via enhanced activation o f AMPA/kainate 

receptors. Thus it seems that NMDA receptors aie not essential for the 

proepileptogenic action of nAChRs. However, it is possible that under normal 

condition part o f nAChRs proepileptogenic action is due to an additional 

component in which NMDA receptor mediated transmission facilitated. Together 

these data suggest a presynaptic action o f nAChRs and increase glutamate release.
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CHAPTER 6 

INVESTIGATION OF THE CONTRIBUTION OF 
GABA CIRCUITS IN nAChR-INDUCED BURST 

FREQUENCY POTENTIATION

6.1 Introduction

Much o f the action o f acetylcholine within the hippocampus is thought to be 

mediated tlu'ough action on the GABAergic system (Gulyas et al., 1999). The 

main cholinergic input to the hippocampus is tlirough septohippocampal pathway, 

which originates from the medial septal nucleus and the nucleus o f the diagonal 

band o f Broca (Reviewed by Dutar et al., 1995) and contacts both intemeurones 

and principal cells o f hippocampus (Heimrich and Frotscher, 1993; Leranth and 

Frotscher, 1989). ACh may increase or decrease the activity o f  intemeurones via 

muscarinic receptors and excite intemeurones tlirough nicotinic receptors located 

in the soma-dendritic membrane. ACh may also modulate GABA release through 

presynaptic muscarinic and nicotinic receptors located on axon tenninals. 

Muscarinic acetylcholine receptor (niACliR) activation increases the frequency o f 

spontaneous IPSCs converging on to pyramidal cells, which is likely the result o f 

a direct postsynaptic excitation o f certain intemeurones (Behiends and ten 

Bruggencate, 1993; Pitler and Alger, 1992). On the other hand, mAChR activation 

decreases the frequency o f miniature IPSCs, which is a result o f a presynaptic 

reduction o f GABA release (Behrends and ten Bruggencate, 1993; Pitler and 

Alger, 1992).

The anatomical results, taken together with the electrophysiological data have 

shown that functional nicotinic receptors are also present on hippocampal 

intemeurones (Alkondon et al., 1998; Frazier et a l ,  1998a; Frazier et a l ,  1998b; 

Jones and Yakel, 1997; McQuiston and Madison, 1999b). It has been reported that
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either fast local application o f ACh or electrical stimulation o f cholinergic 

afferents depolarises intemeurones in the C A l sub field and the dentate gyrus and 

induces rapid firing (Frazier et ah, 1998a; Frazier et al., 1998b; Jones and Yakel, 

1997). Voltage-clamp recordings demonstrated that ACh produces a fast, rapidly 

desensitising inward current that is blocked by a-bungarotoxin, indicating that the 

fast excitation is mediated by a Câ "̂  penneable variant o f the iiACliR containing 

the a l  subunit (Frazier et a l ,  1998a; Frazier et a l , 1998b; Jones and Yakel, 1997). 

hr contrast, pharmacological application o f nicotinic agonists have been reported 

not to change the firing or the membrane potential o f the majority o f hippocampal 

principal cells (Alkondon et al., 1997; Frazier et al., 1998b; McQuiston and 

Madison, 1999b).

Located at both pre, post and extra-synaptic sites o f intemeurones, nAChRs are 

ideally placed to modulate inliibitory circuits in the hippocampus. ACh increases 

the activity o f intemeurones via nicotinic receptors located in the soma-dendritic 

membrane of intemeurones and increases GABA release tlnough presynaptic 

nicotinic receptors located on axon terminals (Alkondon et al., 1997). Thus, it is 

likely that the pro-epileptogenic action o f  nAChR activation described in previous 

chapters is mediated in part through GABAergic circuits. However, such an 

action o f nACliRs appears to be independent o f  fast GABAergic transmission 

since the pro-epileptogenic actions o f nACloR activation is resistant to the 

blockade o f GABAa receptors, as detailed in chapter 4 o f this thesis. Thus, 

iiAChR modulation o f  GABAergic events is unlikely to be important in the pro

epileptogenic action o f nicotinic receptor activation, although it is possible that an 

interaction between iiACliRs and GABAb receptor activation may play a role.

GABAb receptor-mediated mechanisms are involved in the generation o f focal 

seizures and in epileptogenesis (McLean et al., 1996; Scanziani et al., 1994; 

Veliskova et a l , 1996). Baclofen is a GABAb receptor agonist which has been 

shown to activate both pre- and post-synaptic GABAb receptors (Bowery et a l ,  

1980a; Newberry and Nicoll, 1985) and to inliibit many foiins o f synaptic
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transmission (Ault and Nadler, 1982) including glutamatergic (Lanthorn and 

Cotman, 1981; Thompson and Gahwiler, 1992), GABAergic (Lambert and 

Wilson, 1993; Thompson and Gahwiler, 1992) and cholinergic transmission 

(Morton et ah, 2001). However, baclofen may possess a surprising proconvulsant 

effect as documented in clinical practice (Kofler et ah, 1994; Rush and Gibberd, 

1990) and in certain models o f epileptiform discharge (Motalli et ah, 1999; Mott 

et ah, 1989; Watts and Jefferys, 1993). It has also been proposed that the 

proconvulsant effect o f baclofen is caused by a presynaptic, GAB As-mediated 

inliibition o f GABA release from inhibitory intemeurones leading to disinhihition 

(Mott et ah, 1989; Watts and Jefferys, 1993). Such an action has also been 

documented with the epileptifonn discharges induced by bath application o f 4AP 

to hippocampal slices (Motalli et ah, 1999; Watts and Jefferys, 1993), leading to 

hypothesise that GABAb receptor antagonists could exert anticonvulsant actions 

in this in vitro model o f epileptifonn discharge. Previous studies have indeed 

shown that the GABAb receptor antagonist CGP35348 has anticonvulsant actions 

in rodent models o f absence seizures (Bowery and Erma, 2000; Liu et ah, 1992). 

However, an opposite finding has been reported by Motalli et a l  2002, who found 

that the effect o f CGP35348 on 4AP-mduced epileptifonn activity to not be 

anticonvulsant and to some extent is similar to what was reported in this model 

during GABAb receptor activation (Motalli et ah, 2002). Given the conflicting 

results outlined above, the aim o f the experiments described in this chapter was to 

readdress the possible contribution o f GABAb receptors during epileptifonn 

activity and to investigate the involvement o f  GABAb receptors in nACliR- 

induced burst frequency potentiation. A  second aim was to further investigate the 

effect o f the nAChR agonist, DMPP on GABA release from hippocampal 

neurones with a view to uncover possible mechanisms responsible for the pro

epileptogenic action o f DMPP.
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6.2 Investigation of the role of GABAb receptors in 
nACIiR-induced burst frequency potentiation

6.2.1 Effect of nAChR activation on 4AP-induced epileptiform 
activity in the presence of GABAb receptor antagonist

In order to investigate the possible involvement o f GABAb receptors in nACliRs- 

induced effect, a series of experiments were canied out using the selective 

GABAb receptor antagonist CGP55845A. Once stable 10 pM 4AP-induced 

bursting was established, 1 pM CGP55845A was co-applied in order to block 

phannacologically any involvement o f GABAb receptor mediated responses 

during epileptiform bursting. Such application o f CGP55845A did not 

significantly change the fi'equency o f 4AP-iiiduced bursting activity (mean 

frequency = 97.8 ± 4% o f control 4AP fi'equency; P>0.05; n = l l ;  Figure 6.1 A-B). 

After the stabilisation o f the 4AP-induced spontaneous epileptifonn activity in the 

presence o f CGP55845A, 30 pM  DMPP was co-applied to the convulsant 

containing solution to test the effect o f nAChR activation on ongoing 4AP- 

induced epileptiform activity when GABAb receptors are blocked. Wliereas slices 

in the absence of CGP55845A would exhibit robust burst frequency potentiation 

(see chapter 3), slices pre-incubated with CGP55845A (1 pM) failed to exhibit 

burst fi'equency potentiation upon DMPP application in 11 o f  11 slices tested. 

Scatter plot in figure 6.1 A shows a representative experiment in which the slices 

are pre-incub ated with GABAb receptor antagonist CGP55845A prior to 

application o f  DMPP. Such application of CGP55845A was found to prevent the 

ability o f subsequent DMPP application to potentiate burst frequency o f 4AP- 

induced epileptiform activity. In the presence o f CGP55845A, application o f 

DMPP resulted in no significant enhancement o f burst frequency compared to 

pre-DMPP levels (91.7 ± 7% o f pre-DMPP control; P> 0.05; n ^ d l; Figure 6.1 A- 

B). Overall, these data suggest that GABAb receptors may play a role in nACloRs- 

induced frequency potentiation o f 4AP-induced bursting.

117



A
N

s3cr
2?LL

3
CO
w
30 0) c
1

c

1.2 n 

1 -  

0.8 

0.6 -  

0 . 4  - 

0.2 -

10 |iM 4AP

!
• :

30 mM DMPP

; ; . 1 I J M Î C G P 5 5 8 4 5 A

! I . ' '

20 4 0 6 0  8 0  

T im e ( m i n )

100 120 1 4 0

B

3

CO

Ê
o

1 7 5

1 5 0

1 2 5

100

7 5

5 0

2 5

P>0.05 P>0.05

□  c o n t r o l

■  +  C G P 5 5 8 4 5 A

□  +  C G P 5 5 8 4 5 A + D M P P

4 A P

Figure 6.1. Effect of nAChR activation on 4AP-induced epileptiform activity in the 
presence of selective GABAq receptor antagonist.
A . S c a t t e r  p lo t  s h o w i n g  t h e  e f f e c t  o f  D M P P  o n  4 A P - i n d u c e d  b u r s t  f r e q u e n c y  in  t h e  

p r e s e n c e  o f  G A B A g  r e c e p t o r  a n t a g o n i s t ,  C G P 5 5 8 4 5 A .  C o - a p p l i c a t i o n  o f  1 ^iM 
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b u r s t  f r e q u e n c y .  S u b s e q u e n t  c o - a p p l i c a t i o n  o f  3 0  p M  D M P P  a g a i n  p r o d u c e d  n o  

s i g n i f i c a n t  c h a n g e  in  4 A P - i n d u c e d  b u r s t  f r e q u e n c y  in  t h e  p r e s e n c e  o f  C G P 5 5 8 4 5 A  

{P=0.45, O n e - W a y  A N O V A ) .  B .  S u m m a r y  o f  t h e  e f f e c t s  o f  a p p l i c a t i o n  o f  D M P P  o n  

4 A P - i n d u c e d  b u r s t  f r e q u e n c y  in  t h e  p r e s e n c e  o f  C G P 5 5 8 4 5 A  ( n = 1 1 ) .  T h i s  G A B A g  

r e c e p t o r  a n t a g o n i s t  p r e v e n t s  t h e  a b i l i t y  o f  D M P P  t o  p o t e n t i a t e  4 A P - i n d u c e d  

e p i l e p t i f o r m  b u r s t  f r e q u e n c y .  H o r iz o n t a l  b a r s  i n d i c a t e  P v a l u e s  b e t w e e n  r e s p e c t i v e  

c o l u m n s  a s  d e t e r m i n e d  u s i n g  A N O V A .
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6.2.2 Effect of nAChR activation on BIC-induced epileptiform 
activity in the presence of GABAb receptor antagonist

To assess the effect o f GABAb receptor antagonism on ongoing BIC-induced 

epileptiform discharges and their modulation by nACliRs-induced effect, the 

selective GABAb receptor antagonist CGP55845A was bath applied to slices 

displayed stable bicuculline-induced epileptiform burst activity. Subsequent co

application o f CGP55845A ( l o r  3 pM in 6 and 3 experiments, respectively) to 

hippocampal slices generating interictal discharges under control conditions (BIC- 

containing medium) produced no significant change in burst frequency (mean 

maximal frequency = 106.8 ± 5% of control BIG frequency, P>0.05, Figure 6.2 

A-B). The effects induced by these two concentrations o f CGP55845A were not 

different and therefore the data were pooled together for further analysis.

Once stable epileptiform activity was established, 30 pM DMPP was co-applied 

in order to investigate the effect o f iiACliRs activation on ongoing BIC-induced 

epileptiform discharges in the presence o f CGP55845A. As detailed in chapter 4 

o f this thesis, BIC-induced epileptiform activity showed a profound frequency 

potentiation by subsequent co-application o f the selective nAChR agonist DMPP 

(248 ± 76% of baseline; n=14). In contrast, slices pre-incubated with the GABAb 

receptor antagonist CGP55845A (1-3 pM) exhibited negligible burst frequency 

potentiation upon DMPP application (27.6 ± 17.76% o f baseline; B>0.05; n=9; 

Figure 6.2 A-C). Although under this condition, there was no change in the 

frequency o f BIC-induced epileptiform bursting during DMPP application in the 

majority of slices tested (n=6 out o f 9 experiments. Figure 6.2 A), a small increase 

was observed in the other 3 experiments (Figure 6.2 B). However, these changes 

did not achieve statistical significance (One-way ANOVA, P=0.18, Figure 6.2 C).
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Figure 6.2. Effect of nAChR activation on BIC-induced epileptiform activity in the 
presence of GABAq receptor antagonist.
A . S c a t t e r  p lo t  s h o w i n g  t h e  e f f e c t  o f  D M P P  o n  B I C - i n d u c e d  b u r s t  f r e q u e n c y  in  t h e  

p r e s e n c e  o f  G A B A g  r e c e p t o r  a n t a g o n i s t ,  C G P 5 5 8 4 5 A .  C o - a p p l i c a t i o n  o f  1 |iM  

C G P 5 5 8 4 5 A  d id  n o t  p r o d u c e  a n y  s i g n i f i c a n t  c h a n g e  in B I C - i n d u c e d  e p i l e p t i f o r m  b u r s t  

f r e q u e n c y .  In t h e  m a j o r i t y  o f  t h e  s l i c e s ,  s u b s e q u e n t  c o - a p p l i c a t i o n  o f  D M P P  a g a i n  d id  

n o t  p r o d u c e  a n y  c h a n g e  in  B I C - i n d u c e d  e p i l e p t i f o r m  a c t iv i t y  ( n = 6  o f  9 ) .  B .  In a  m in o r i t y  

o f  s l i c e s  ( n = 3  o f  9 )  s u b s e q u e n t  c o - a p p l i c a t i o n  o f  D M P P  p r o d u c e d  a  m o d e s t  b u r s t  

f r e q u e n c y  p o t e n t i a t i o n  o f  B I C - i n d u c e d  e p i l e p t i f o r m  a c t iv i t y  b u t  w h i c h  o v e r a l l  d id  n o t  

r e a c h  s t a t i s t i c a l  s i g n i f i c a n c e  {P=0.18, O n e - W a y  A N O V A ) .  C .  S u m m a r y  o f  t h e  e f f e c t s  

o f  a p p l i c a t i o n  o f  D M P P  o n  B I C - i n d u c e d  b u r s t  f r e q u e n c y  in  t h e  p r e s e n c e  o f  

C G P 5 5 8 4 5 A  a c r o s s  a ll s l i c e s  t e s t e d  ( n = 9 ) .  H o r iz o n t a l  b a r s  i n d i c a t e  P v a l u e s  b e t w e e n  

r e s p e c t i v e  c o l u m n s  a s  d e t e r m i n e d  u s i n g  A N O V A .
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6.2.3 Effect of GABAb receptor activation on 4AP-induced 
epileptiform activity

Application o f the GABAb receptor agonist baclofen (0.1-30pM) resulted in a 

concentration dependent reduction and eventual complete blockade o f 4AP- 

induced interictal activity (n=15, Figures 6.3 and 6.4). The effects induced by 

increasing concentration o f baclofen were analysed in 8 slices. With O.l-lOpM 

baclofen, a decrease in the rate o f occurrence o f interictal discharges occurred in 5 

o f 8 slices, whereas abolisliment was seen in the remaining 3 experiments. In 

slices in which interictal activity was not fully abolished by lOpM baclofen, 

frirther increasing the concentration to 30pM  caused a complete abolisliment (n=5 

o f 5). Complete blockade o f interictal discharges was also induced by application 

o f a single concentration o f baclofen (30 pM, n=7, Figure 6.4 A).

The suppressant actions o f baclofen upon epileptifonn bursting were fully 

reversible upon washout (n=3. Figure 6.3 A) or co-application o f GABAb receptor 

antagonist CGP55845A (IpM , n=3, Figure 6.3 B). We also analysed the 

concentration-response relationship o f the changes induced by baclofen with 

respect to the frequency o f 4AP-induced epileptiform activity (Figure 6.3 C). Data 

obtained in 7 slices in which increasing doses o f baclofen (0.1-30pM) were 

sequentially applied indicated an IC50 = 4.7pM, comparable with IC50 value o f 

other studies (Avoli et al., 2004; Braun et al., 2004).

Finally, in a minority o f slices tested 30 pM baclofen application resulted in 

abolishment o f interictal activity and the appearance o f  spontaneous ictal activity 

which was absent in control periods (n=2 o f 17, Figure 6.5 B).

6.2.4 Effect of nAChR activation on baclofen-induced 
suppression of epileptiform activity

In order to assess whether iiACliR activation could modulate baclofen-induced 

suppression o f  epileptiform activity, a series o f experiments were carried out in 

which DMPP was co-applied following a stable period o f baclofen application.
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Figure 6.3. Effect of GABAg receptor agonist baclofen on 4AP-induced epileptiform activity 
in area CA3 of tfie hippocampus.
A . S c a t t e r  p lo t  s h o w i n g  e f f e c t  o f  b a c l o f e n  o n  f r e q u e n c y  o f  in t e r i c t a l - l ik e  e v e n t s  i n d u c e d  b y  

4 A P  in  t h e  r a t  h i p p o c a m p a l  s l i c e .  A p p l i c a t io n  o f  b a c l o f e n  ( 1 - 3 0  p M ) r e s u l t e d  in  a  

c o n c e n t r a t i o n - d e p e n d e n t  d e c r e a s e  a n d  e v e n t u a l  c o m p l e t e  a b o l i t i o n  o f  t h e  4 A P - i n d u c e d  

in t e r i c t a l - l ik e  a c t iv i t y .  S h a d e d  h o r iz o n t a l  b a r s  i n d i c a t e  t h e  p e r i o d  o v e r  w h i c h  a n  in d iv id u a l  

c o n c e n t r a t i o n  w a s  a p p l i e d  t o  t h e  b a t h .  B. S im i la r  s c a t t e r  p lo t  in  w h i c h  t h e  e f f e c t  o f  3 0  p M  

b a c l o f e n  i s  r e v e r s e d  u p o n  c o - a p p l i c a t i o n  o f  t h e  GABAg r e c e p t o r  a n t a g o n i s t ,  C G P 5 5 8 4 5 A  

(1  p M ) .  C .  C o n c e n t r a t i o n - r e s p o n s e  c u r v e  f o r  t h e  d e c r e a s e  in  t h e  f r e q u e n c y  o f  4 A P - i n d u c e d  

in t e r ic t a l  a c t iv i t y ,  i n d u c e d  b y  d i f f e r e n t  c o n c e n t r a t i o n s  o f  b a c l o f e n  in  7  e x p e r i m e n t s .  T h i s  

d o s e - r e s p o n s e  c u r v e  r e v e a l s  a n  IC gg o f  4 . 7  p M .
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When the nAChR agonist DMPP (30 ]LiM) was applied to slices treated with 4AP 

+ baclofen, interictal activity reappeared upon DMPP application (n=10, Figure 

6.4 A-B). Although baclofen-induced suppression o f 4AP-induced epileptifonn 

activity was reversed upon application o f DMPP, the degree o f reversal varied 

between experiments. In 7 out o f 10 experiments, application o f 30 pM DMPP 

partially recovered the epileptiform bursting activity but the fi'equency recovery 

did not achieve pre-baclofen levels (39.3 ± 5% of control, Figure 6.4 A-B). In the 

remaining 3 slices application of DMPP resulted in a complete reverse o f baclofen 

effects to pre-baclofen fi'equency levels (95 ± 4.5% of control, Figure 6.5 A).

As it is mentioned above, baclofen application elicited ictal-like discharges 

(which were absent in control) in 2 out o f 17 experiments. In all these cases, 

subsequent application of 30 pM DMPP resulted in the subsequent reappearance 

o f interictal activity whereas the rate o f occurrence o f  the ictal-like events 

decreased (fiom 0.17 ± 0.02Hz during 30 pM baclofen to 0.08 ± 0.02Hz after 

adding DMPP, n=2; Figure 6.5 B). DMPP also reduced the duration o f the ictal- 

like discharges that occuned less fi'equently than with baclofen only (from 634.8 ± 

26 ms during 25 pM baclofen to 321 ± 19ms after adding DMPP, n=2).

6.3 Effect of DMPP on spontaneous IPSCs recorded in 
hippocampal intemeurones

To further investigate the effect o f nAChR activation on GABA transmission in 

the hippocampus and the possible involvement o f GABA receptors in iiAChR- 

induced burst frequency potentiation, we used whole cell path clamp 

configuration to record spontaneous IPSC events in hippocampal intemeurones 

and investigate the action o f subsequent nACliR activation.

Intemeurones with cell bodies located within stratum radiatum  were recorded in 

the whole cell formation under voltage clamp configuration and in the presence of 

the glutamate antagonists 4 pM NBQX and 50 pM CGP40116. Spontaneous

1 2 0



A

B

1 0 0 0 0 0  m s

N
X  1

I  0.8
O '
2?
 ̂ 0.6 

3
CO
(/) 0 .430 (U
ro 0.2

1s  o

2 0  m M  4 A P

3 0  |j M  b a c l o f e n

3 0  ijM  D M P P

1 |j M C G P 5 5 8 4 5 A

3 0 6 0 9 0
T i m e  ( m i n s )

120 1 5 0

Figure 6.4, Reverse of baclofen-induced effects on epileptiform activity by DMPP.

A . R a s t e r  p lo t  s h o w i n g  a  r e p r e s e n t a t i v e  e x p e r i m e n t  in  w h i c h  in t e r ic t a l  b u r s t in g  a c t iv i t y  

i n d u c e d  b y  4 A P  i s  c o m p l e t e l y  a b o l i s h e d  f o l l o w i n g  a p p l i c a t i o n  o f  b a c l o f e n  ( 3 0  p M , a r r o w  1 

o n w a r d s ) .  S u b s e q u e n t  c o - a p p l i c a t i o n  o f  D M P P  ( 3 0  p M , a r r o w  2 )  a n d  C G P 5 5 8 4 5 A  (1  

p M , a r r o w  3 )  r e c o v e r e d  a n d  t h e n  p o t e n t i a t e d  in t e r ic t a l  a c t iv i t y ,  r e s p e c t i v e l y .  B .  S c a t t e r  

p lo t  p r e s e n t a t i o n  o f  s a m e  e x p e r i m e n t  s h o w i n g  a p p l i c a t i o n  o f  a  s i n g l e  c o n c e n t r a t i o n  o f  

b a c l o f e n  ( 3 0  p M )  a b o l i s h e s  4 A P - i n d u c e d  in t e r ic t a l  a c t iv i t y  w h i c h  is  p a r t ia l ly  r e v e r s i b l e  

u p o n  c o - a p p l i c a t i o n  o f  D M P P  ( 3 0  p M , n = 7 ) .  F u r t h e r  r e v e r s e  o f  b a c l o f e n - i n d u c e d  e f f e c t s  

a c h i e v e d  f o l l o w i n g  c o - a p p l i c a t i o n  o f  C G P 5 5 8 4 5 A  t o  m e d i u m  c o n t a i n i n g  4 A P ,  b a c l o f e n  

a n d  D M P P .
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F i g u r e  6 . 5 .  Effect of DMPP on baclofen-induced effect on epileptiform activity.
A . S c a t t e r  p lo t  s h o w i n g  a n o t h e r  e x p e r i m e n t  in  w h i c h  in t e r ic t a l  b u r s t in g  a c t iv i t y  i n d u c e d  b y  

4 A P  i s  c o m p l e t e l y  a b o l i s h e d  f o l l o w i n g  a p p l i c a t i o n  o f  a  s i n g l e  c o n c e n t r a t i o n  o f  b a c l o f e n  

( 3 0  p M ) .  S u b s e q u e n t  c o - a p p l i c a t i o n  o f  D M P P  ( 3 0  p M )  a n d  C G P 5 5 8 4 5 A  (1  p M )  

r e c o v e r e d  a n d  t h e n  p o t e n t i a t e d  in t e r ic t a l  a c t iv i t y ,  r e s p e c t i v e l y .  B . In a  m in o r i t y  o f  

e x p e r i m e n t s  b a c l o f e n  a b o l i s h e d  in t e r ic t a l  e v e n t s ,  w h i l e  p r o m o t i n g  t h e  o c c u r r e n c e  o f  m o r e  

p r o l o n g e d  ic t a l - l ik e  a f t e r d i s c h a r g e s  ( n = 2  o f  1 7 ) .  In t h e s e  c a s e s ,  D M P P  a p p l i c a t i o n  

r e s u l t e d  in  t h e  r e a p p e a r a n c e  o f  in t e r ic t a l  a c t iv i t y  a n d  a  s h o r t e n i n g  in  t h e  d u r a t io n  a n d  t h e  

r a t e  o f  o c c u r r e n c e  o f  t h e  ic ta l  e v e n t s .  R ig h t  c o l u m n  p o i n t s  t o  e x p a n d e d  s e c t i o n s  o f  e a c h  

t r a c e  i l lu s t r a t in g  in d iv id u a l  f i e ld  p o t e n t i a l  e v e n t s .
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IPSCs (sIPSC) were recorded as transient inward currents with fast kinetics and a 

mean peak amplitude o f 20.42 ± 2.47pA (n=6). Perfusion o f the hippocampal 

slices with NBQX and CGP40116 blocked fast AMPA/kainate and NMDA 

receptors respectively and ensured the spontaneous PSCs recorded were 

GABAergic in nature (IPSCs). Bath application o f 30pM DMPP resulted in a 

significant increase in frequency o f sIPSC from 7.489 ± 1.93Hz to 13.5 ± 2.8Hz 

(n=6; P=0.0403; Figure 6.6). h i contrast, the amplitude o f sIPSPs was unaffected 

by DMPP application (from 20.4 2 ± 2.47pA to 23.41 ± 3.04pA, n=6, F=0.0836).

As well as the increase in IPSCs frequency, DMPP also elicited a pronounced and 

sustained inward current in 3 o f 6 intemeurones recorded (Figure 6.6 A). This 

slow nicotinic current was associated with action potential discharges as indicated 

by large and uncontrolled cunent transients (Figure 6.6 A).

6.4 Discussion

The main finding o f this chapter was the demonstration that preincubation o f 

slices with a GABAb receptor antagonist can prevent the ability o f the nAChR 

agonist DMPP to induce epileptiform burst frequency potentiation. This is 

consistent with the proposal that nAChRs might affect epileptiform activity 

through modulating GABAergic circuits. GABAergic intemeurones in the 

hippocampus are Imown to exhibit functional iiACliR-mediated responses 

(Alkondon et al., 1998; Frazier et al., 1998b; Jones and Yakel, 1997; McQuiston 

and Madison, 1999b). nACliRs are thus ideally placed to regulate neuronal 

excitability within hippocampal circuits. Strong neurochemical evidence indicates 

that presynaptic nAChRs are involved in the enhanced release o f a number of 

transmitters, including GABA (Alkondon et al., 1997; McMahon et al., 1994; 

Womiacott et al., 1989). Comparable to those reported by these authors, our group 

have found that iiACliR selective agonist DMPP increases the fi'equency o f 

spontaneous IPSPs recorded in the hippocampal CA l intemeurones (L.Ferrigan; 

personal communication). This result indicates that iiACliR agonists can
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F i g u r e  6 . 6 .  Effect of DMPP on spontaneous IPSCs (sIPSCs) in CA1 intemeurones 
A. R e p r e s e n t a t i v e  c u r r e n t  t r a c e  a n d  r a s t e r  p l o t s  i l lu s t r a t in g  s I P S C s  r e c o r d e d  f r o m  a  C A l  

i n t e r n e u r o n e .  N o t e  t h e  in w a r d  c u r r e n t  a n d  i n c r e a s e  in  s I P S C  f r e q u e n c y  in  r e s p o n s e  t o  D M P P  

a p p l i c a t i o n .  S u b s e q u e n t  c o - a p p l i c a t i o n  o f  t h e  s e l e c t i v e  G A B A ^  r e c e p t o r  a n t a g o n i s t  c o m p l e t e l y  

b l o c k s  s p o n t a n e o u s  in w a r d  c u r r e n t s  c o n f i r m i n g  t h e  G A B A e r g i c  n a t u r e  o f  t h e  e v e n t s .  B .  

R e p r e s e n t a t i v e  c u m u l a t i v e  p r o b a b i l i t y  p l o t s  s h o w i n g  (i)  s I P S C  i n t e r - e v e n t  in t e r v a l  a n d  (ii)  

s I P S C  a m p l i t u d e  b e f o r e  a n d  f o l l o w i n g  D M P P  a p p l i c a t i o n .  0 .  S u m m a r y  h i s t o g r a m s  s h o w i n g  

t h e  e f f e c t  o f  D M P P  o n  m e a n  s I P S C  f r e q u e n c y  a n d  a m p l i t u d e  ( n = 6 ) .  A  o n e - w a y  a n a l y s i s  o f  

v a r i a n t s  a n d  T u k e y s  p o s t  t e s t  p e r f o r m e d  o n  t h e  r a w  d a t a  i n d i c a t e d  a  s i g n i f i c a n t  i n c r e a s e  in  

s I P S C  f r e q u e n c y  ( P = 0 . 0 4 0 3 )  a n d  n o  c h a n g e  in  I P S C  a m p l i t u d e  ( P = 0 . 0 8 3 6 ) .
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depolarise CA l intemeurones and increase GABA release within the CA l region 

o f the hippocampus. Wliilst iiACliRs in the CNS are traditionally considered to 

exert a modulatory influence (Role and Berg, 1996; Womiacott, 1997), recent 

studies have demonstrated nACliRs to also mediate fast acetylcholine-mediated 

neurotransmission in hippocampus and neocortex (Alkondon et al., 1998; Frazier 

et al., 1998b; Jones and Yakel, 1997; McQuiston and Madison, 1999b). Given 

these evidences, it is likely that the pro-epileptogenic action o f nAChRs is 

mediated in part through GABAergic circuits. However, such an action o f 

nAChRs appears to be independent o f  fast GABAergic transmission. An 

important finding in this respect was that nACliR activation also resulted in a 

facilitation o f epileptifonn burst discharge in the bicuculline model (see chapter 4) 

in which GABAa receptors are blocked by high concentrations o f the specific 

GABAa receptor antagonist. This contrasts with a previous report that cholinergic 

modulation o f bicuculline-induced epileptiform activity is exclusively mediated 

through mACliRs (Sutor and Hablitz, 1989). However, this study was earned out 

in neonatal tissue and developmental differences may therefore account for such 

discrepancies. We believe that this is unlikely however, and indeed have shown 

that nACliRs potentiate bicuculline-induced epileptifonn bursts in both neonatal 

and juvenile rats (2-5 weeks old). Furthermore, nACh receptors show complex 

developmental expression profiles but important subunits such as the a7 subunit 

are generally expressed in hippocampus tliroughout postnatal development and 

into adulthood (Adams et al., 2002). The present results suggest that the primary 

means by which iiACliR activation are facilitating epileptifonn activity is tlnough 

mechanisms other than affecting fast GABAergic transmission. Indeed, this 

agrees well with a recent report showing the ability o f nicotine to potentiate 

paroxysmal depolarising shifts following GABA withdrawal syndrome (Silva- 

Barrat et al., 2001).

Previous in vitro works have shown that antagonising GABAb receptor is not 

sufficient per se to cause epileptiform synchronisation (McCormick, 1989; Sutor 

and Luhmann, 1998), but it can potentiate epileptiform responses induced by 

GABAa receptor antagonists (Karlsson et ah, 1992; McCoimick, 1989; Scanziani

1 2 2



Chapter 6

et al., 1994; Sutor and Lulnnann, 1998). These data suggested that weakening or 

abolishing GABAa receptor-mediated inliibition should be a sine qua non 

condition for expressing the proepileptogenic effects o f GABAb receptor. On the 

other hand, Motalli et al, 2002, have demonstrated that similar effects can be 

obtained by blocking GABAb receptors in the 4AP model in which GABAa 

receptor inliibition is potentiated as the result o f an increased release o f GABA 

hom  interneurone terminals (Perreault and Avoli, 1991; Perreault and Avoli, 

1992; Rutecki et al., 1987). Overall, these data suggest that the capacity o f 

GABAb receptor-mediated mechanisms to modulate epileptifonn synchronisation 

in cortical networks maintained in vitro does not depend on GABAa receptor 

antagonism but rather on the ability o f ambient GABA to activate type B 

receptors. This condition can be achieved by increasing neuronal excitability, and 

thus GABA release, either by blocking the GABAa receptor function (Karlsson et 

al., 1992; McCormick, 1989; Scanziani et a l , 1994; Sutor and Luhmann, 1998) or 

by applying dmgs capable o f augmenting transmitter release (e.g., 4AP) (Motalli 

et a l ,  2002). It has been hypothesised that the facilitation o f ictal activity by 

GABAb receptor antagonist is mainly caused by the blockade o f presynaptic 

GABAb receptor, leading to an increase in GABA release and subsequent larger 

[K'^jo elevations (Motalli et a l , 2002). However, in our experiments, application of 

a specific GABAb receptor antagonist, CGP55845A produced a very modest burst 

frequency potentiation in the BIC model and also did not change frequency o f 

epileptiform activity in 4AP model. It is reported that 5-10 fold higher 

concentration o f GABAb receptor antagonists are required to block presynaptic as 

opposed to postsynaptic receptors when these are activated by synaptically release 

GABA (Pozza et a l , 1999). It is likely therefore that this negative finding is 

attributable to the concentration of CGP55845A (1 pM) added to perfusing 

medium in our experiments being not high enough to substantially block 

presynaptic GABAb receptors.

Moreover, it has been reported that GABAb receptors exist as subtypes having 

distinct neuronal locations, functions and pharmacological properties (For review 

see Bonanno and Raiteri, 1993; Mott and Lewis, 1994). Thus, the different
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GABAb receptor antagonists may reflect different competitive interaction 

between different receptor subtypes and exhibit different pharmacology at pre and 

post-synaptic GABAb receptors (Pozza et a l ,  1999). Indeed, different subtypes o f 

GABAb receptors have been found at pre-and postsynaptic sites within the rat 

dorsolateral septal nucleus (Yamada et al., 1999). If  this distinct phamiacology 

and GABAb receptor distribution also extends to other CNS structures, such 

differences may therefore account for the findings described here.

As detailed in chapters 3 and 4 o f this thesis, the frequency o f 4AP and BIC- 

induced epileptiform activity were potentiated by subsequent co-application o f the 

selective nAChR agonist DMPP. In 4AP model, application o f DMPP (10-30 pM) 

resulted in a mean burst frequency potentiation o f 37 ± 5%. In contrast, slices pre- 

incubated with the GABAb receptor antagonist CGP55845A (IpM ) were not able 

to exhibit burst frequency potentiation upon DMPP application. Similarly, in the 

presence o f IpM  CGP55845A, slices exhibited negligible burst fi-equency 

potentiation o f bicuculline-induced (20pM) epileptifonn activity upon DMPP 

application (27.6 ± 18%), in comparison to those observed in the absence o f 

CGP55845A (248 ± 76 %). A comparison o f the effects o f DMPP upon these two 

models o f epileptiform bursting in the absence and presence o f GABAb receptor 

antagonist is summarised in histogram format in figure 6.7. As illustrated in figure 

6.7 C, the maximal burst frequency potentiation to DMPP application in 4AP and 

BIC models in the absence o f CGP55845A is 45 and 220% higher in comparison 

to those in the presence o f this antagonist.

These data suggest that GABAb receptor activation is necessary or at least an 

important element in the nAChR-induced burst frequency potentiation effect and 

nAChRs may regulate the excitability o f hippocampal networks through GABAb 

receptor-mediated mechanisms.

Overall the data presented in this ehapter are robust and reproducible. However, 

the data at the same time appears paradoxical and defy any simple mechanistic 

explanation. One possible explanation for this result is that increased nACliR
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function leads to an increase in GAB A release from GABAergic interneurones.

This leads to a subsequent recruitment o f  GABAg receptors, which in turn can

modulate neuronal excitability via several mechanisms including:

• Activation of GABAg receptors induces an increase in conductance 

(Gahwiler and Brown, 1985; Newberry and Nicoll, 1984; 1985) which 

modulates seizure activity in both in vivo and in vitro preparations (Traynelis 

and Dingledine, 1988; Zuckermann and Glaser, 1968). Hence the 

proconvulsant action o f GABAg receptors activation may have resulted from 

changes in [K'^jo homeostasis. Indeed, GABA-mediated [K"̂ ]o elevations have 

been shown to initiate ictal discharges in the 4-AP model (Avoli et al., 1996). 

However, [K"̂ ]o recordings reported by Motalli et al (1999) indicated that the 

proconvulsant action o f  GABAg receptors is not accompanied by any 

measurable change in either [K’̂ jo baseline or [K' Ĵo transient elevations 

(Motalli et ah, 1999).

• Activation o f GABAg receptors induces presynaptic inhibition o f G ABA 

release in turn leading to a depression o f IPSPs and subsequent increases in 

network excitability [e.g., GABAg mediated inhibition o f GABA release from 

inhibitory interneurones leading to a disinhibition (Mott et al., 1989; Watts 

and Jefferys, 1993)].

• Another possibility is that increased GABA release by nAChRs activates 

postsynaptic GABAg receptors. Activation o f postsynaptic GABAg receptors 

can induce a membrane hyperpolarisation o f inhibitory intemeurones again 

leading to disinlribition o f pyramidal cells and increase in excitability.

However, such a disinhibitory action must be associated with the ability of 

excitatory terminals to release transmitter, this being essential for 

proconvulsant activity. An important mechanism underlying the proconvulsant 

action o f GABAg receptors has been suggested to be related to activity-
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dependent changes in CA3 area network excitability that occur during GABAg 

receptor activation (Motalli et a l ,  1999). It is possible that an accumulation of 

glutamate-containing vesicles docking at presynaptic terminals results hom  

the block o f interictal activity and asyncln'onous excitatory synaptic potentials 

caused by GABAg receptors activation (Motalli et a l ,  1999). This should lead 

to an increased availability o f excitatory transmitter. Presynaptic factors 

controlling glutamate release have been proposed to regulate the probability 

and duration o f synchi'onous discharges generated by the CA3 network (Staley 

et a l ,  1998).

Application o f the GABAg receptor agonist baclofen decreased and eventually 

blocked the 4AP-induced interictal activity in all experiments. In our study most 

baclofen effects were antagonised by CGP55845A, thus indicating that they were 

mainly caused by the activation o f GABAg receptors, h i particular, we propose 

that baclofen abolishes 4AP-induced interictal activity by decreasing the release o f 

transmitter from excitatory and inliibitory terminals. This may be caused by 

activation o f presynaptic GABAg receptors iidiibiting both GABA and excitatory 

transmitter release (Lambert and Wilson, 1993; Lanthom and Cotman, 1981) and 

by a postsynaptic GABAg-mediated hyperpolarisation that decreases excitability 

o f principal cells (Newbeny and Nicoll, 1984; 1985) and intemeurones (Mis geld 

et a l ,  1989; Williams and Lac aille, 1992). Reappearance o f interictal activity by 

DMPP following application to medium containing 4AP and baclofen, could be as 

a result o f effect o f iiAChR activation in enhancing neurotransmitter release from 

presynaptic terminals (Gray et a l ,  1996; Role and Berg, 1996; Woimacott et a l, 

1989). However, this effect o f DMPP can not completely overcome the inhibition 

o f transmitter release exerted by baclofen since the effect o f baclofen was only 

partially reversible upon application o f DMPP in most experiments. Subsequent 

application o f CGP55845A blocked baclofen-induced inhibition o f 

neurotransmitter release and produced additional enliancement o f neurotransmitter 

release.
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111 simimary, whilst we have found robust evidence that GABAg receptor 

activation is an important element in the iiACliR-mediated burst frequency 

potentiation effect, the precise mechanistic detail is unclear and requires further 

investigation.

127



CHAPTER 7

GENERAL DISCUSSION



Chapter 7

CHAPTER 7 

GENERAL DISCUSSION

The major outcome o f this study was the demonstration that activation o f nACliRs 

has pro-epileptogenic actions within hippocampal circuits. This was obseiwed 

across a range o f different forms o f pharmacologically-induced epileptiform 

activities including 4AP, bicuculline and low magnesium models suggesting that 

nACliRs may have a general action in exacerbating epilepsy-like discharges. The 

mechanisms by which this exacerbation o f epileptiform activity occurs does not 

significantly compromise the mechanisms responsible for the precise firing o f 

action potentials and fast activity within individual bursting events as represented 

by the relatively small effect o f iiACliR agonists on high frequency aspects of 

burst waveform recorded in the presence o f 4AP. Our findings o f this study 

suggest that activation o f nACliRs potentiates pre-established epileptiform 

bursting activity in the hippocampus without demonstrating any overt 

epileptogenic activity p er se. This has to be viewed with caution since it is likely 

that the actions o f iiACliR activation may be more pronounced in the intact 

hippocampal structure in vivo. Wliilst the hippocampal slice retains many of the 

transverse pathways including the trisynaptic circuit, longitudinal pathways are 

lost and recurrent connections reduced. The exact subtypes o f  iiACliRs mediating 

the pro-epileptogenic actions can not be fully established in this study. It was our 

experience that relatively high concentrations o f nACliR ligands were necessary 

to obtain reliable effects within the interface-type recording chamber. 

Nevertheless, it is apparent that at least a7 and probably a4p2 subunit containing 

receptors are involved.

It has been shown that pharmacological activation o f nAChRs can potently 

modulate the induction o f synaptic plasticity including hippocampal long-term
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potentiation (Ji et a l ,  2001; Maim and Greenfield, 2003). Indeed several aspects 

o f the data presented in this thesis support potential plasticity that may occur at 

synapses in the network as a result of the activation o f nAChRs. For example, the 

inability o f iiAChR antagonists to fully reverse the effects o f DMPP (Figure 3.15) 

and the lack of hill reversibility of DMPP effects upon wash out (Figure 4.3) 

support the possibility that plasticity events may be an important factor in the 

action o f iiACliRs in epileptogenesis. Depending on the distributions o f various 

nAChR subtypes and the timing o f nAChR activity, cellular and synaptic events 

can be modified in many different ways (Ji et ah, 2001). Presynaptic nAChRs can 

increase the probability o f neurotransmitter release this increasing the fidelity o f 

synaptic transmission at any given excitatory synapse. Postsynaptic iiAClxRs can 

further increase the depolarization and calcium signal associated with successful 

transmission, helping to initiate intracellular cascades. On the other hand, 

nAChRs can have a potent impact upon the activity of interneurone populations 

which themselves are important regulators o f network excitability and synaptic 

plasticity (Davies et ah, 1991).

That said, the question still remains as to the precise mechanistic detail by which 

iiACliRs enliance epileptifomi activity? It is not possible from this study to 

identify the precise means by which nAChRs facilitate epileptiform activity 

although it is likely that a number o f factors may contribute to their pro- 

epileptogenic actions. An important locus o f action is likely to be that o f the 

calcium-dependent signalling pathways. Classically iiACliRs are considered to 

participate in fast signalling (Frazier et ah, 1998a; Hefft et ah, 1999). However, 

recent reports in the autonomic neiwous system suggest that iiACliR agonists, 

including nicotine, can produce sustained calcium spiking in presynaptic nerve 

tenninals (Brain et ah, 2001) during prolonged periods o f agonist application. It is 

possible that this type o f neuromodulatory effect at recurrent glutamatergic 

terminals may be responsible for generating the potentiation o f epileptiform 

activity reported here. Relevant to the hippocampus there is a precedent for 

nAChRs exhibiting a slow neuromodulatory action (McGehee and Role, 1996; 

Role and Berg, 1996; Wonnacott, 1997) with the strongest evidence for
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modulation of neurotransmitter release (Albuquerque et al., 1997; Gray et al., 

1996; Ji and Dani, 2000) and/or regulation o f  synaptic plasticity (Ji et al., 2001). 

In both cases transient activation o f nAChRs can potentially trigger either a 

transient or persistent effect that, by analogy to the autonomic nervous system, 

could possibly involve calcium-mediated pathways within neiwe terminals.

The data presented in this thesis provide some additional insight into the potential 

mechanisms underlying nAClrR-induced frequency facilitation. Although the 

mechanisms underlying the pro-epileptogenic action of iiACliRs are complex and 

not simply due to activation o f nACliRs, clearly involve the modulation o f both 

GABAergic and glutamatergic circuits (see Figure 7.1). In experiments devised to 

investigate the action o f iiACliRs on basal glutamatergic transmission, application 

o f DMPP resulted in a sustained yet reversible enhancement o f glutamate afferent 

evoked field EPSP amplitude in the CA3 region o f the hippocampus suggesting 

that nACliRs enliance glutamate release from presynaptic terminals. Whilst we 

can not rule out a possible postsynaptic sensitisation-type action on glutamatergic 

transmission we feel that this is unlikely. Instead, we hypothesise that activation 

o f nACliRs by DMPP enliances glutamate release, which in turn can strengthen 

recurrent excitatory connections in area CA3 and thus facilitate polysynaptic 

reverberations tliroughout the network. The strength o f such recurrent connections 

have been proposed to be critical in the generation and regulation o f  bursting 

activity within the CA3 network (Bains et ah, 1999; Staley et al., 1998; Traub, 

1991) and recent studies have shown acetylcholine to modulate these synapses 

directly (Vogt and Regeln*, 2001). The experiments using glutamate receptor 

antagonists (Chapter 5) further confirm the involvement o f glutamate receptors in 

pro-epileptogenic effect o f nAChRs. In agreement with previous studies, our 

results have shown that nAChRs unlikely to have a direct postsynaptic effect in 

principal cells.

On the other hand, in experiments devised to investigate whether iiAChRs 

regulate GABAergic cells and circuits, application o f DMPP revealed an inward 

cuiTent and increased the frequency o f spontaneous IPSCs in a subpopulation o f
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C A l intemeurones suggesting that nACliR agonist can directly depolarise CA l 

intemeurones and increase GABA release within the C A l region of the 

hippocampus.

Together, these results suggest that activation of nACliRs may produce pro- 

epileptogenic actions tlirough regulating both glutamatergic and GABAergic 

circuits, resulting in both direct excitatory and modulation o f GABAergic 

(probably via GAB As receptors) inliibition respectively. This is consistent with 

studies suggesting the involvement o f either glutamatergic or GABAergic 

transmission in the mechanisms underlying nicotine-induced seizures in vivo 

(Damaj et al., 1999). However, despite the functional expression o f iiACliRs on 

hippocampal GABAergic intemeurones (Alkondon et ah, 1997; Frazier et ah, 

1998a; Frazier et ah, 1998b; Jones and Yakel, 1997; McQuiston and Madison, 

1999b) it is unlikely that nAChRs are significantly affecting GABAergic circuits 

to promote epileptiform activity since h'equency facilitation is obseiwed in the 

presence o f the GABAa receptor blocker bicuculline. Indeed, a somewhat 

surprising finding was that nAChR-mediated burst frequency potentiation was 

particularly pronounced in the bicuculline model. However, an action on GABAg 

receptor mediated synaptic inputs camiot be excluded since GABAg receptor- 

mediated mechanisms are involved in the generation o f focal seizures and in 

epileptogenesis (McLean et ah, 1996; Scanziani et ah, 1994; Veliskova et ah, 

1996) and also in facilitating epileptiform activity (Motalli et ah, 1999; 2002). hi 

experiments to identify possible contribution o f the GABAg receptors in the 

iiACliR-induced effect, application o f GABAg receptor antagonist prevented 

DMPP-induced burst fi-equency potentiation o f 4AP and bicuculline-induced 

epileptifomi activity suggesting that iiAChRs may regulate the excitability o f 

hippocampal networks tlirough GABAg receptor-mediated mechanisms. This has 

important consequences for investigating network dynamics in that suggests the 

basal neuromodulatory tone o f transmitters and their interacting may be a 

significant consideration.
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Wliilst we hypothesise that activation o f nicotinic acetylcholine receptors has pro- 

epileptogenic actions within hippocampal circuits through regulating either 

glutamatergic, GABAergic or both circuits further effort is required to establish 

(a) how different iiACliR subtypes impact on this cellular process and (b) the 

precise nature o f their interaction. Furthermore, it is also necessary to establish 

whether iiACliR activation may indirectly modulate epileptiform activity thiough 

other transmitter systems. The hippocampus is reach in a variety o f 

neurotransmitters (Reviewed by Vizi, 1998) and ACh is known to modulate the 

release o f many o f these.

A key requirement is to establish whether discrete subtypes o f iiACliRs are 

implicated in epileptogenesis. The limited pharmacopea has hampered progi'ess in 

this area to date. However, introducing novel significantly more selective ligands 

would be useful to address this issue.

The hypothesis that choline as a selective agonist at certain nAChRs has a role in 

modulating epileptiform activity is significant. Despite acetylcholine being broken 

down and inactivated by acetylcholinesterase rapidly, it is possible that the 

sustained presence o f choline may have a longer lasting neuromodulatory 

influence. An interesting study would be to examine plasma choline levels across 

a large bank o f epilepsy patient volunteers to assess the possible potential 

contribution o f brain choline levels to epileptogenesis.

Another avenue in attempting to elucidate the mechanisms underlying pro- 

epileptogenic actions o f nAChR activation would be to take a calcium imaging 

approach. Recent studies using confocal imaging have shown nACliRs to be an 

important regulator o f spontaneous neurotransmitter release in the peripheral 

nervous system (Brain et al., 2001). Similar studies using a cell imaging approach 

whereby discrete cells and circuits are labelled with a fluorescent calcium 

indicator could be useful to assess the action o f the cholinergic system on cellular 

processes and importantly, calcium transients within nerve terminals at discrete 

circuits.
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Studies are on going with respect to identifying the precise inhibitory circuits 

under modulation by nAChR activation. These findings may reveal potentially 

more selective pharmacological means by which to regulate specific GABAergic 

circuits and this avoid the side effects associated with cun'ent anticonvulsant 

drugs which potentiate the entire GABAergic system without discrimination.

Despite these unresolved questions, the observation that brain nAChRs regulate 

synchronised neuronal activity suggests that nAChRs may represent a potential 

target in developing novel treatments for the control o f epilepsy. Since many 

epilepsies are resistant to current drug therapies which influence neuronal activity 

by affecting ion chamiels responsible for cell excitability or acting to potent 

GABAergic synaptic transmission, there is a push to identify new therapeutic 

agents based upon novel mechanisms o f action. As a result, nACliRs are currently 

the subject o f intense research interest with respect to their therapeutic potential in 

a series of neui'ological and psychiatric conditions including epilepsy. It has been 

reported in animal seizure models that preferential nicotinic acetylcholine receptor 

antagonists are potent anticonvulsants in the maximal electroshock seizure test 

(Loscher et al., 2003) and against nicotine-induced seizures (Damaj et al., 1999). 

The anticonvulsant potency in the maximal electro shock seizure test was 

decreased by injection o f a subconvulsant dose o f nicotine, suggesting the 

contribution o f nACliR mechanisms (Loscher et al., 2003). In conclusion, it may 

be suggested that nicotinic acetylcholine receptor antagonism might be a valuable 

future therapeutic approach to treat epileptic seizures. The work in this thesis has 

gone some way to providing a basis upon which future studies to this aim can be 

based.
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