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Abstract
Ordinary Differential Equations are becoming more widely used throughout all branches

of science to model systems of interacting variables. Although researchers can often

postulate the structure of the ODEs, there remains a desire to better infer the parameters

of these systems. After all, it is these parameters that provide improved understanding of

the dynamics involved. Traditionally, parameter inference was done by solving the system

of ODEs and assessing fit of the estimated signal with that of the observations. However,

nonlinear ODEs often do not permit closed form solutions. Using numerical methods

to solve the equations results in prohibitive computational cost, particularly when one

adopts a Bayesian approach in sampling parameters from a posterior distribution.

The difficulties above have led to the introduction of gradient matching to the parameter

inference problem. Instead of quantifying how well the solutions of the ODEs match the

data, we quantify how well the derivatives predicted by the ODEs match the derivatives

obtained from an interpolant to the data. These methods aim to more efficiently infer the

parameters of the equations, but inherent in these procedures is an introduction of bias

to the learning problem as we no longer sample based on the exact likelihood function.

It is desirable that we obtain a method for parameter inference that is both accurate

and efficient, necessitating the involvement of the exact likelihood at some point in the

algorithm. Combined with the problems faced in ODE parameter inference, this idea

will motivate the main result of this thesis, the introduction of a multiphase scheme in

parameter inference that allows us to benefit from the efficiency of the gradient matching

likelihood function and the accuracy of the exact likelihood function. The performance

of this proposed method is assessed on four benchmark ODE systems, comparing with

some standard MCMC sampling techniques from the literature.
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Chapter 1

Introduction

1.1 Background

Consider a scenario where one is provided with some noisy data from an experiment

and wishes to fit a specific system of equations to capture the dynamics of the observed

data. For example, Figure 1.1 presents the observed lynx and hare populations obtained

from Hudson Bay over the period from 1900 to 1920 [2]. If one were able to express the

dynamics of this system mathematically, then we would be able to estimate the population

evolution beyond the timescale for which data have been provided. Moreover, assuming

this mathematical model contained some explicit parameters, we could infer the effects

of different factors on the system.

Differential equations (DEs) have long been used to express variations in different mea-

surements over time. Modelled as a function of the different variables in the system,

these expressions can formulate the rate of change of different dependent variables, x(t),

varying across some independent variable, t, as a function of the variables in the system

and some set of parameters:

dx(t)

dt
= f(x(t), θ). (1.1)

Ordinary differential equations occur when the system depends on only one set of in-

dependent variables as in eq. 1.1. Returning to the problem of fitting a model to the

Hudson Bay data, allow the prey data to be modelled by x and the predator y. In the

absence of predators, the prey population is free to thrive, growing at a rate dx = αxdt.

Interactions between the two species occur at a rate proportional to the populations of

1
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Figure 1.1: Evolution of lynx and hare populations over a period of 20 years in Hudson
bay.

each species, expressed as dx = −βxydt. Expressions for the evolution of the predator

variable are identical up to negation of the right-hand sides. The resultant ODE system,

known as the Lotka-Volterra system of equations [3] may be expressed as follows:

dx

dt
= αx− βxy

dy

dt
= −γy + δxy

At this point, I stress that the correct choice of model is not always immediately obvious.

In these scenarios, we may use critera such as Bayes factors and likelihood ratios to

select a suitable model M [4, 5]. Under a Bayesian framework, we may now proceed

with parameter inference, accounting for uncertainty in the model selection procedure

by conditioning on the posterior distribution of the model (this is briefly discussed in

Section 2.1).

Isolating the variables of interest, we may formulate the recovery of solutions of the ODEs

as a recovery of the input-output pairs of a map:

h : Θ→ Y . (1.2)

Under an assumption of injectivity, the capability to recover the signals by solving the

forward problem (given in eq. 1.2) permits recovery of the parameters of the ODEs—the

inverse problem—and vice-versa. Traditionally influenced by this mapping, the ability to
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solve the inverse problem depended on an ability to recover the signal at particular param-

eter configurations. Minimising the misfit between solutions of the ODEs at parameter

values and the noisy observations, this inference scheme relies on an ability to integrate

the ODEs. In the case of linear ODEs, analytic solutions exist, and the inference problem

can rely on standard model fitting methods. The inference problem becomes more inter-

esting when one considers non-linear systems of equations for which closed form solutions

are not permitted, such as the case of the Lotka-Volterra model where xy terms limit

the existence of closed form solutions. This property necessitates the use of numerical

procedures, making evaluation of the mapping in eq. 1.2 computationally onerous.

Recently, there has been a paradigm shift in the field of ODE parameter inference with

the reemergence of Bayesian statistical methods and, in particular, the development of

Markov chain Monte Carlo (MCMC) methods for sampling from probability distributions.

Whereas much of the inference literature used to focus on optimisation, a large bulk of

the recent work adopts an uncertainty quantification approach to the parameter learning

procedure. Problematically, when one adopts a Bayesian approach, the computational

cost is compounded by a requirement for MCMC sampling and the subsequent solving of

the ODE system at each iteration. Induced by this computational complexity has been a

shift towards more efficient metrics with which to match parameter configurations with

the observed data values, perhaps replacing the space Y from eq. 1.2 with some surrogate

space that allows us to mimic the fitting of parameters to the observations in a cheaper

environment [6–8].

1.2 Bayesian Inference

Bayesian inference is the subset of statistical inference in which all beliefs and assumptions

are quantified as probabilities. Although we accept that there is a unique, true solution

to the inverse problem of the system, we do this while acknowledging the lack of belief we

have regarding the true value of these parameters, representing this as a prior distribution

P (θ). Randomness here is thus an artefact of our own personal uncertainty as opposed to

being a property of the parameters themselves. In light of the data, one is in a position to

update their belief about the true value of the parameters, introducing this information

via a likelihood function P (x|θ). Combining the information from the prior belief and

the data, we can summarise the knowledge of the parameters in a posterior distribution
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via Bayes Theorem:

P (θ|x) =
P (x|θ)P (θ)

P (x)
=

P (x|θ)P (θ)∫
p(x|θ′)p(θ′)dθ′

. (1.3)

which is the product of the likelihood and prior, normalised by the marginal likelihood

(evidence), P (x) =
∫
p(x|θ′)p(θ′)dθ′. More detail on the different probabilities is given in

the proceeding subsections.

1.2.1 Likelihood

Reconsidering the mapping in eq. 1.2, we may consider the sampling distribution, f(y|θ)
as a function providing a measure of the probability of parameter-observation pairs. Re-

garded as a function of fixed θ it represents a probability distribution over the codomain,

Y , of the mapping. In the Bayesian context, we fix a point in Y ; thus, defining a distribu-

tion over the observation space would be nonsense. Instead, we reparametrize f(y|θ)—the

likelihood function—as a function providing the probability that the observations were

produced by a particular set of parameters. The likelihood provides a mapping from the

space of parameters Θ to the real numbers R that provides a measure of how likely it is

that, given the parameter value, we observe the observed data. Ultimately, this likelihood

function is the choice of the modeller, but in most cases, the nature and structure of the

data will strongly influence this decision. In Bayesian inference, it is often more com-

putationally convenient to consider the log-likelihood function as this avoids taking the

product of very small values which, due to numerical float precision, can make likelihood

evaluation imprecise.

1.2.2 Prior Probability Distribution

The prior probability distribution quantifies our belief about the parameters before we

have seen the data. This may be capturing information from previous experiments, or

simply quantifying constraints that we know the parameters are subjected to. Unless

adopting an empirical Bayes approach, the prior should never rely on properties of our

data. The argument here being that any structural information from the data could be

accounted for by a more astute modelling process. In the case of ODE inference, the prior

allows us to take into account any previous experiments carried out by the researcher,



Chapter 1. Introduction 5

as well as any constraints that are placed on the parameter value by their physical in-

terpretation. When no prior information is available, one may adopt an uninformative

prior which expresses vague information about the parameter in question. This is referred

to as the objective Bayesian approach as we allow the data to speak for itself without

being influenced by our preconceived beliefs. As a result, subjectivity is neglected as

the procedure is informed purely by the nature of the likelihood function (there is, of

course, the knowledge of the subset of R in which the parameters will lie). This line

of thought may be considered as a bridge point between the frequentist and Bayesian

inference approaches.

Rather fittingly, uninformative priors remain a fairly vague concept in Bayesian statis-

tics: how exactly does one represent a lack of belief about the outcome of a problem?

Laplace, motivated by the principle of insufficient reason, adopted a uniform prior to

quantify a state of ignorance about the true parameter values [10]. However, under repa-

rameterization, this becomes strictly informative (see Figure 1.2) and begins to favour

points near the boundary of the uniform prior support. Viewing from a purely logical

perspective, given no knowledge about θ, we certainly should also have no knowledge of

g(θ). Therefore, the uniform prior is not sufficiently non-informative.

Figure 1.2: ”Noninformative” uniform prior on original scale (left) and log scale
(right). There is no ambiguity on the log scale—this is an informative prior under the

log transformation.

Jeffreys [11] proposed the use of the function:

p(θ) ∝
√

det(I(θ) (1.4)

known as Jeffreys prior, as a solution to the non-informative prior search [10]. Based

on the notion of maximising the Fisher information and placing the prior density at

regions of high information, thus favouring points for which the likelihood contains high
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levels of information, we effectively dilute the effect of the prior distribution. In addition,

the Fisher information is closed under reparameterization of the inference problem (see

Section 5.4.2 of [12]). This formulation has proven highly popular and although a lack of

generality to higher dimensional parameter spaces is unappealing, Jeffreys prior provides

the motivation for our noise variance prior in the case of ODE parameter inference (see

section 2.1.2).

As previously discussed, intractability of the denominator of eq. 1.3 can make posterior

probability calculations impossible. Although the likelihood function is fixed as a by-

product of the data generating process, we have some flexibility in our prior distribution.

Furthermore, different prior densities can formulate similar assumptions on the parame-

ters in question. As such, it makes sense that, where possible, we simplify calculations

through careful choice of the prior distribution. By careful selection of our prior distri-

bution, we may form a posterior distribution belonging to the same general family of

distributions as the prior distribution. These prior distributions, referred to as conjugate

priors [13], can be used to reduce computational burden by leading to posteriors with

general distribution equal to that of the prior (with updated hyperparameters).

1.2.3 Posterior Distribution

The posterior distribution, p(θ|y), follows from the formula in eq. 1.3. This distribution

quantifies our belief about the parameters in question upon taking account of the observed

data and represents an updated form of the prior (with support equal to that of the prior

distribution). Whereas the prior merely formalises the learning problem in the correct

region of parameter space, allowing us to use information from the likelihood for the

learning process, the posterior represents our belief about the values of the parameters in

light of the information provided by the data. The conclusions drawn from the posterior

distribution are obviously affected by the nature of both the prior distribution and the

likelihood function. Adopting a more uninformative prior leads to an inference scheme

dominated by the likelihood function in an objective Bayes approach, allowing the data

to speak for itself. Stronger prior information lessens the effect of the likelihood on the

posterior distribution and can enable inference in cases where the mapping in eq. 1.2

violates the injectivity property.

The challenge is to provide some representation of our knowledge of the parameter val-

ues from this posterior distribution. Numerical integration methods allow evaluation of

the likelihood function of nonlinear ODEs, but this property does not provide sufficient
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knowledge of the distributional properties of the posterior distribution. Considering Bayes

theorem, the lack of closed form solutions of the ODEs necessitates the use of sampling

methods to provide an empirical estimate of the true posterior distribution. Elementary

sampling procedures require closed form expressions leading to a reliance on Markov chain

Monte Carlo methods that sample based on evaluation of the likelihood function.

1.3 Difficulties of Parameter Inference in ODEs

The standard ODE inference procedure assumes iid additive Gaussian noise in our ob-

servational data model, leading to a Gaussian distribution for the data and a likelihood

function that, essentially, acts as a metric measuring the fit of ODE solutions at particular

parameter settings to the observed data. Nonlinear systems of ordinary differential equa-

tions often do not possess closed solutions and so we must solve these systems numerically.

Robinson provides a background on explicit solutions of ODEs [14]. Particularly relevant

to this thesis are Runge-Kutta methods which rely on discretisation of the independent

variable domain and gradients obtained at multiple points to propagate through from an

initial value to the inferred state measurements [15]. Inference may be carried out by

evaluating solutions at each individual parameter set and comparing with our observa-

tions via some metric. The main sticking point in this process is the onerosity involved

in repeated numerical integration of the ODEs. The other downside here is the stance of

ignorance taken with regards to the numerical errors involved in the repeated numerical

solving of the ODEs, which, according to Xue et al. [16] is only justified in cases where

the maximum step size of a p-order numerical algorithm goes to zero at a rate faster than

n−1/p4 as the magnitude of the observational error dwarves that of the numerical error.

In this thesis we are dealing with artificial data and so the numerical error resulting from

this numerical integration is neglected from the uncertainty involved.

In general, there are two routes to overcoming these inefficiencies. Firstly, we may adopt

a cheaper likelihood function allowing us to take a greater number of samples in reason-

able time frames, similarly to the work done with pseudolikelihoods [17]. However, this

then reduces accuracy of our inferred parameter values. Alternatively, we can take the

approach of population MCMC and simulated annealing, and find a smoothed version of

the likelihood surface, enabling more liberated movement through the parameter space.

This time, the obstacle is inefficiency as we are dependent upon a numerically expensive

likelihood function in our sampling routine.
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One method that attempts to circumvent this numerical solution is the use of a surrogate

approach to the inference problem where we first find a smooth surrogate interpolant

representation of the observed data. Dattner et al. [18] explore systems of ODEs where

the parameters enter the systems linearly. Exploiting this linearity, the authors implement

a two-phase scheme to avoid the numerical integration. Ranciati et al. [19] present a

Bayesian smooth-and-match approach where they adopt a penalised spline framework for

smoothing the data and use ridge regression to infer the parameters of ODEs in which the

parameters enter linearly; the crux of the method being an assumption of two generative

models for the observations. Similar to the problem faced with the approach of Wang

and Barber [20], this leads to an inability to deal with partially observed systems. Like

Ranciati et al, Ramsey et al. [6] implement a collocation approach, where they adopt

a penalised smoothing approach to parameter inference by optimising a penalised log-

likelihood function that trades off fit of a spline interpolant to the ODEs with fit to the

noisy data observations. This paper was the first instance in which there was an attempt

to regularise the interpolant of the noisy data, making it consistent with the nature of

the ODEs.

Recently, surrogate methods based on gradient matching have been proposed. These

methods allow us to circumvent the numerical approximation step by finding a smooth

interpolant to the noisy data from which we may find an explicit gradient corresponding to

the signals from the ODEs. This may then be matched with a functional gradient obtained

by evaluating the functional relationship of the differential equations at these smoothed

signals providing a surrogate likelihood which represents some approximation to the exact,

complex likelihood function. These surrogate likelihoods enable more efficient inference,

but one must be wary of the estimative power of these functions with respect to the exact

likelihood function. Although present methods of implementing the gradient matching

approach assume a Bayesian setting, there are instances of frequentist approaches to the

problem.

1.4 Thesis Outline

Motivated by previously outlined parameter inference issues, the aim of this work is to

develop a novel method for carrying out parameter inference in nonlinear systems of

ODEs. The route to parameter estimation in these systems can adopt one of two ap-

proaches: point estimation versus estimating the posterior distribution, the latter usually
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by sampling or via variational inference. Chapter 2 will consider the comparison be-

tween these two approaches and outline the necessity for us to quantify our uncertainty

in the parameter values. I will introduce sampling in Bayesian inference as a method

for performing parameter inference in ODEs while giving some elementary, yet problem

dependent, sampling methods. The inapplicability of the elementary approaches will mo-

tivate a discussion of MCMC methodology, and some benchmark algorithms with which

a proposed method may be compared. In spite of these MCMC methods, Chapter 3 con-

siders the problems caused by properties of the ODEs in MCMC methods for parameter

inference through the introduction of four benchmark ODE systems that will be used to

compare the different inference methods discussed in this thesis. In an attempt to alleviate

the problems encountered with traditional MCMC inference, Chapter 4 will briefly dis-

cuss Gaussian process interpolation, before introducing the proposed multi-phase MCMC

scheme through which I hope to reduce computational complexity and improve accuracy

of the parameter inference procedure. Chapter 5 contains a thorough comparison of the

proposed scheme with some of the traditional MCMC approaches. In Chapter 6 I will

conclude by discussing the advances made with this method and the potential for further

improvement in ODE parameter inference, with particular attention paid to the potential

extensions to the multi-phase approach.



Chapter 2

Theoretical Overview

The process of parametric model fitting necessarily involves a stage of parameter infer-

ence. We may formulate the inference problem as an exploration of the likelihood which

quantifies the fit of parameter-observation pairs. In simple cases where the system is

solvable in closed form, recovery of this function is trivial, and the inference procedure

can rely on standard methods. The problem, however, is the lack of closed form solutions

in the case of complex nonlinear ODE systems and the subsequent lack of a closed form

posterior distribution for the parameters. In this case, we require more sophisticated

sampling methods which, in fact, do not tend to sample directly from the distribution of

interest at all but rather rely on the construction of correlated chains that, asymptotically,

converge to our stationary distribution of interest—the posterior distribution of the ODE

parameters. This chapter gives a general overview of the use of MCMC in parameter

inference, becoming more specific to the ODE inference problem when deemed necessary.

Starting with a discussion of the inference problem, I acknowledge the frameworks of both

Bayesian and Frequentist inference methods through the use of both point estimation and

sampling methods. Having justified the adoption of a Bayesian approach, I discuss the

components of a standard Bayesian model for parameter inference, before presenting the

more sophisticated Markov Chain Monte Carlo (MCMC) methods required for parameter

inference in complex non-linear systems.

10
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2.1 Bayesian and Frequentist Inference in ODEs

Consider a process defined by the system of equations:

dx

dt
= f(X,θ, t) (2.1)

and suppose we possess noisy measurements y corresponding to noisy realisations of latent

variables governed by this system of equations corrupted by iid additive Gaussian noise

ε.

y(t) = x(t) + ε (2.2)

Considered as a couplet, eqs. 2.1 and 2.2, along with any initial conditions, fully specify

our parameter estimation problem. That is, given noisy observations, we recover the

smoothed signal (and therefore the noise variance) and based on fit to the noisy obser-

vations, look to infer the parameters of our ODEs (in addition to the initial conditions

when these are assumed unknown). This fit to the observations is assessed with the like-

lihood function, a measure of the fit of the parameters to the data that is specified by

the assumed distribution of the additive noise.

We hope to recover the model structure based on the fit of the ODEs to the observed

data. In the most uninformed case we have three degrees of freedom in this problem: the

model, initial conditions and the model parameters where degrees of freedom refer to a

component of the model that leads to variation in the obtained signal. The latter two of

these are nested within the first and, given this dependence of our space of parameters and

initial conditions on the parametric form of the model, we cannot begin to estimate the

parameters and initial conditions before this model selection has taken place. Inference for

these parameters and initial conditions may be considered as fine tuning of our selected

model. Girolami [4] provides an overview of the model selection problem and the use

of Bayes factors for selection of our ODE structure (frequentist approaches would rely

on likelihood ratios, with the disadvantage of being unable to compare unnested ODE

models). It is often the case in nonlinear ODEs that the marginal likelihood is intractable.

In these cases, we must estimate the marginal likelihood using approximate methods [21].

A Bayesian formulation enables us to sample parameters from the conditional distribution

p(θ|y,Mi), taking account of added uncertainty in the model. In our case, we assume the

given parametric form of the equations (and for the large part, known initial conditions)

and so have at most two degrees of freedom in the inference problem. Nonetheless, it is
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important to be aware of this additional degree of uncertainty in the general inference

problem with real observed data.

2.1.1 Representing the Posterior Distribution

Parameter inference may proceed under different assumptions on the nature of the ODE

parameters. One could assume the existence of a fixed parameter value and consider the

distribution of some estimator, the MLE, of the parameter when applied over multiple

conceptualised datasets. Uncertainty in parameter estimates may be accounted for using

an approximation of the asymptotically Gaussian sampling distribution obtained using

methods such as bootstrapping. It makes sense that for successful inference, this sampling

distribution be centred on the true parameter value, providing an unbiased estimator for

the ODE parameters. However, this property alone does not provide an attractive es-

timator. If variance of the sampling distribution is high, then estimates of parameters

will tend to be more inaccurate than the unbiasedness would suggest. Thus, we wish to

provide a minimum variance unbiased estimator for the parameters. The variance can

be quantified by the curvature of the likelihood surface. With high (low) curvature at

the maximum, we expect low (high) variance in the estimator. The Fisher Information

matrix provides a quantification of this uncertainty forming the Cramér-Rao lower bound

for a lower bound on the variance of an unbiased estimator. Any unbiased estimator that

attains this lower bound on the variance provides a minimum variance unbiased estima-

tor for the ODE parameters. Under these previous assumptions, we would be adopting a

frequentist approach to parameter inference. If instead we choose to place a prior distri-

bution over the parameters, updating the parameter distribution based on the likelihood

function, we would be adopting a Bayesian approach. In ODE parameter inference, use

of the prior distribution proves beneficial as the possible domain of the parameters in

question can often be constrained based on physical interpretations. The probabilistic

assumptions associated with Bayesian inference mean that uncertainty quantification nat-

urally follows under the Bayesian line of thought and, while acknowledging the ability of

Frequentist methods to perform successful parameter inference in ODEs [6], the work of

this thesis adopts a Bayesian approach to the inference problem. Kevin Murphy provides

a useful overview of the general paradigms of Frequentist and Bayesian statistics [12].

Abiding by a Bayesian framework, we may place a prior on the parameters and take

the mode of the posterior distribution as the Maximum aposteriori (MAP) estimate of

the parameters. Merely representing a regularised version of the maximum likelihood
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estimate, this fails to fully account for the knowledge we have obtained in the posterior

distribution of the parameters. Alternatively, one can take a decision theoretic approach

by specifying a loss function and taking the estimate as the value minimising the mean

squared error—the mean of the posterior distribution [12]. However, inherent in point

estimation schemes are two assumptions that appear fairly inconsistent in our task of

estimating parameter values of ODEs. Firstly, we are assuming a level of confidence in

the ability to find the optimal parameter. This is a fairly optimistic assumption given

the possibly complex nature of the distributions stemming from ordinary differential

equations. Secondly, and a problem commonly witnessed in complex nonlinear ODEs,

we must also be assuming identifiability of the parameters in question. This corresponds

to injectivity of the mapping in eq. 1.2 and cannot be diagnosed using a single point

estimate.

Representation of uncertainty in the parameter posterior distribution relies on sampling

methods. Use of elementary methods such as the inverse-transform and accept-reject

depends on the posterior distribution being tractable, a property violated by nonlinear

ODEs. Conceptualised in the 1990s, Monte Carlo methods were able to overcome the

problem of intractable posterior distributions by sampling based on the relationship:

p(θ|y) ∝ p(y|θ)p(θ). (2.3)

However, for most interesting ODE models an extra level of intractability in the likelihood

function means that these methods become inapplicable in this context. Inference in

this case relies on more sophisticated Markov Chain Monte Carlo methods which may

be presented simply as extensions of the more elementary sampling scheme where we

sample from some proposal distribution and, through some transformation resulting from

a Markov kernel, produce a Markov chain that is invariant with respect to the desired

limiting distribution. Before discussing MCMC methodology, it is worth considering a

final, crucial, part of the inference process—the likelihood and prior distribution.

2.1.2 Likelihood and Prior

Vital to the inference procedure is careful selection of the likelihood function and prior

distribution. Although not immediately apparent from the data, the likelihood function is

fixed by the data generating process and successful inference requires be suitably selected.
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Under an assumption of Gaussian noise, we have the distribution:

y ∼ N (x, σ2I) (2.4)

where x denotes the numerical solution of the ODE and σ is assumed constant across all

time points. This provides a log-likelihood function of the form:

log p(y|x,θ) = −mn
2

ln(2π)− mn

2
ln(σ2)− 1

2σ2

m∑
j=1

n∑
i=1

(yji − xji)2 (2.5)

where m is the number of variables of the ODE and n is the number of time points. It

appears that, with real life data, this assumption of a Gaussian data generating distri-

bution may be overly simplistic. After all, the likelihood function should only portray

information immediately obtained from the data. However, in these scenarios we should

be able to estimate the first two moments and consideration of the principal of maximum

entropy [22] dictates that a Gaussian distribution minimises the unnecessary assumptions

that we place on the data through the likelihood, becoming a natural choice when a more

obvious distribution is not apparent. Notice that an assumption of Gaussian noise nat-

urally includes a measure of observational error in our likelihood function and, in cases

where the noise level is known, the log-likelihood reduces to the residual sum of squares.

In eq 2.5 I have assumed constant Gaussian noise variance across time and variables. This

is done throughout the thesis both in the noisy observation generation and in the param-

eter estimation procedures. Of course, when dealing with actual data, this assumption

could prove restrictive and with a more careful modelling of the correlation between the

different time points, we could hope for improved parameter inference in the model [4].

This would, however, require a massive increase in the dimension of the parameter space,

introducing the curse of dimensionality to the inference problem.

Selection of the prior distribution introduces subjectivity to the Bayesian process as it

allows more freedom to specify any a priori knowledge of the values of our parameters,

such as positivity constraints often adopted for ODE parameters. I adopt a Gamma

distribution as the prior over the ODE parameters. This allows the limitation of the

sampling space to R+ and grants sufficient coverage of different parameter values (as-

suming a suitable choice of prior hyperparameters). For noise variance parameters, the

inverse-gamma prior provides a conjugate prior in the case of a Gaussian likelihood. As

observed by Berger [23] (and displayed in Figure 2.1), the inverse-gamma prior provides

a proper approximation to Jeffreys prior —p(σ2) ∝ σ−2— for very small hyperparame-

ters (a common choice is Inverse-Gamma(0.001, 0.001)). Recalling the discussion of the
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uninformative property of Jeffreys prior in section 1.2.2, we may refer to the inverse-

gamma as an approximation to an uninformative distribution in the realm of conjugate

priors. Given the conjugacy, we know that for given mean µ, the conditional posterior

distribution for the noise variance parameter, σ2, will be:

σ2|µ, y ∼ Inv-Gamma

(
α +

n

2
, β +

∑
i (xi − µ)2

2

)
(2.6)

and so for a large number of observations from a noisy dataset with large σ2, the posterior

distribution becomes detached from the prior hyperparameters. In Figure 2.1, the inverse-

gamma prior is shown on the original domain and on the log transformed space. We see

that, over the untransformed space, the prior density tends to be concentrated on a

fairly small region of its support. However, when one takes a log transformation, the

distribution becomes approximately an improper uniform distribution over the entire

domain (the posterior, of course, is a proper distribution).

Figure 2.1: Top: Non-informative inverse gamma prior for the variance parameter on
the original scale and on the log scale. We see that it is approximately an improper
uniform on the log scale. Bottom: Jeffreys prior p(σ2) ∝ σ−2. Comparing with the top

left plot we observe the similarities between the two prior distributions.
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Figure 2.2: Gamma prior that we adopt for the parameters of our ODE models with
hyperparameters α = 4 and β = 0.5. The positive support makes it well suited to

parameter inference in ODEs.

2.2 Markov Chain Monte Carlo Methods

Ideally, if we wish to provide an empirical distribution for ODE parameters, we would hope

to be able to obtain independent samples from their posterior distribution. As discussed

above, for more complex distributions associated with nonlinear ODEs, this sampling

proves difficult. Adopting an MCMC sampling technique, we may take dependent samples

of a random variable where each new proposal is proposed conditional on the previous

sample:

θt ∼ q(·|θt−1) (2.7)

Under an assumption of ergodicity, the ergodic theorem for Markov chains predicates that,

despite introducing correlation to the samples from the posterior distribution, inferences

in the presence of correlation are still valid when based on Markov chains that have

converged to the stationary distribution.
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Although the asymptotic convergence properties of MCMC methods can seem rather

inaccessible compared with the large sample theory convergence properties of more ele-

mentary sampling methods, one property proves them to be far more apposite than their

more elementary counterparts. Under certain regularity conditions, MCMC converges to

the correct posterior distribution despite a lack of ability to obtain the marginal distribu-

tion in the denominator of Bayes theorem. More specifically, MCMC sampling provides

a way of sampling from intractable posterior distributions and quantifying our uncer-

tainty in the parameter values of the ODE with lower variance than standard sampling

methods. This generality comes at a cost, introducing high levels of correlation between

points, making the methods more inefficient than if we were able to sample independently

as the effective sample size becomes smaller, quantifying the level of information that our

full sample is able to provide. In an effort to overcome the inefficiency introduced by the

correlation, adaptive MCMC methods [24] have been developed which constantly change

the proposal mechanism of the sampler, improving mixing and increasing the effective

sample size of the resultant chain.

2.2.1 Metropolis-Hastings

Naturally, the question of determining some probability distribution may be posed as the

desire to construct a sample from the parameter space where the relative proportions of

samples from each subset of the domain are representative of the value of the probability

density over each subset. Intuitively, considering an iterative sampler, the way in which

one should accept points would be to determine the ratio

R(x, y) =
π(y)

π(x)
(2.8)

where y is the proposed point and x is the current point. However, we must also consider

the sampler’s action when the ratio decreases. Accepting proposals based on eq. 2.8

being greater than 1 attempts optimisation of the function in question and the chain

would converge to some optimal point estimate (global or local). Instead, we must accept

the new point with probability R(x, y), allowing the possibility to accept proposals in the

direction of decreasing likelihood and asymptotic traversal of the entire support of the

distribution (as length of the chain tends to∞). This is precisely the strategy adopted in

the Metropolis algorithm [25], which was developed in 1953 to evaluate energy integrals.
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The Metropolis algorithm samples by moving through the support of some prior distri-

bution, accepting moves where the value of the posterior probability density increases

and accepting with probability A(x, y) = min
(
R(x, y), 1

)
when the value of the probabil-

ity density decreases (we could view this as a Markovian extension of the Accept-Reject

method where a Markov property enables more efficient, representative, sampling). This

is done by assessing whether A(x, y) ≥ u for u ∼ unif(0, 1). By accepting and rejecting

in this way, we are able to construct a representative sample of the distribution based on

the relative size of the density function in each region of the support. The Metropolis

algorithm only applies when the proposal mechanism is a constant isotropic normal or

symmetric distribution. In his paper in 1970, Hastings [26] generalised the concept to in-

clude non-symmetric proposal distributions. The Metropolis-Hastings routine constructs

a Markov chain that, by use of a suitably defined Markov kernel, ensures that a sample

of random variables converges in distribution to the true target distribution.

For initialisation of the Metropolis-Hastings algorithm, we must choose some starting

value and some proposal distribution, say q. This proposal distribution is only an initial

guess of the transition kernel. In order for the sampling scheme to be successful, the

Markov chain produced must be invariant with respect to the target distribution:

π(y)dy =

∫
R
P (x, dy)π(x)dx (2.9)

where π(·) denotes the density with respect to Lebesgue measure of the invariant target

distribution and P (x, ·) is the kernel constructed by the MH sampler. Adhering to de-

tailed balance provides the simplest way of ensuring convergence to the correct stationary

distribution [27]. Given the freedom to specify the acceptance criterion, this is chosen in

order to satisfy the detailed balance condition [28]:

A(x, y) = min

(
π(y)q(y, x)

π(x)q(x, y)
, 1

)
(2.10)

and in the presence of a symmetric proposal, this reduces to a ratio of the two densities.

Billera and Diaconis [29] give a geometric interpretation of the Metropolis-Hastings al-

gorithm where they present the MH algorithm as a projection of some arbitrary Markov

chain onto the space of reversible Markov chains, characterised by the product of the

Markov chains defined by A(x, y) and q(x, y). In spirit, this paper presents the Metropolis-

Hastings algorithm as a natural (non I.I.D.) extension of elementary sampling procedures

where samples are proposed from the support of the prior distribution using some pro-

posal kernel and, through construction of a Markov kernel, the chain is projected onto
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the space of reversible Markov chains such that invariance is satisfied with respect to the

target density of interest.

Although theoretical properties always ensure ergodicity and asymptotic convergence

with respect to the predefined target distribution, different proposal distributions in

Metropolis-Hastings provide more efficient Markov chains than others. The easiest way

of monitoring efficiency of the algorithm is through consideration of the acceptance rate

of the procedure. The proposal mechanism is central to this as the acceptance rate varies

depending on the shape of the proposal distribution. For a proposal with large scale, the

algorithm experiences a decrease in acceptance rate as it begins to propose points that

are further from the current position and thus tend to attempt moves between points

with different densities. Therefore, despite the obvious improvement in mixing, conver-

gence and exploration of the parameter space deteriorate due to the lack of short proposal

moves. Although allowing an increased acceptance rate, a proposal distribution with too

small dispersion will prove to be inefficient. As proven by Gelman et al. [30], we should

target an optimal acceptance rate of around 23.4% for sufficient exploration of the target

distribution. In the hypothetical case where the covariance of the target distribution is

known, Roberts et al. posited the use of a Gaussian proposal with covariance given by

2.382Σ/d for optimal use of the MH algorithm, balancing the trade-off between optimism

and pessimism in the algorithm’s proposal moves. However, this method is highly hypo-

thetical since in most cases our target distribution, including its covariance, is unknown.

2.2.2 Delayed Rejection Adaptive Metropolis

2.2.2.1 Adaptive Metropolis

MCMC methods are used when we encounter complicated distributions from which it

is difficult to sample. Ironically, the nature of these complex distributions means it is

unlikely that the standard MH algorithm and its associated proposal distribution will be

universally applicable in these circumstances. Instead of relying on our ability to select

an appropriate proposal distribution at the beginning of the algorithm, adaptive MCMC

methods [24] implement on-line tuning of the proposal distribution that repeatedly up-

dates the proposal covariance based on an empirical covariance estimate. Essentially, AM

corrects overly optimistic or pessimistic proposal distributions based on the empirical co-

variance of the sampled points. The technique of Haario et al. [31] relies on the estimated

covariance of previously sampled points in a tuning mechanism which adapts both the
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magnitudinal and spatial properties of the proposal distribution:

cov(X0, ...Xn) =
1

n

( n∑
i=0

XiX
T
i − (n+ 1)X̄iX̄

T
i

)
(2.11)

Considering the specific case of ODE parameter inference, identifiability problems in

ODE systems are caused by a correlation between the parameters of the system (possibly

resulting from the structure of the equations). Associated with a convergence to the

target distribution will be the prevalence of a correlation between the parameter samples,

leading to rank deficiency of the resultant empirical covariance matrix. In their algorithm,

Haario et al. adopt a covariance of the form:

Ct =

C0, t 6= t0

sdcov(X0, ..., Xt−1) + sdεId else,
(2.12)

where addition of a small diagonal term to the covariance matrix helps to avoid any

degeneracy issues. Considering the optimal proposal distribution derived by Gelman et

al. [32], an attempt is made to replicate this by multiplying the proposal covariance by

a dimensional-dependent constant factor sd. Given that optimality is achieved when one

adopts the covariance matrix of the target distribution, use of the empirical covariance

will inevitably prove suboptimal but this suboptimality should decrease as the algorithm

proceeds since the proposal distribution covariance converges to the optimal proposal

distribution covariance, Ct → Σ.

Ignoring the lack of a Markovian property, the adaptive Metropolis algorithm adopts

the same acceptance criterion as the standard MH algorithm. Lacking motivation from

detailed balance, this criterion must be shown to produce an ergodic Markov chain.

Haario et al. [31] prove this assumption under some mild regularity conditions on the

support of the distribution.

2.2.2.2 Delayed Rejection

In the standard Metropolis-Hastings algorithm, computation power is wasted on discarded

proposal steps. Obviously, the rejection of these points is necessary to build a represen-

tative sample of the target distribution, but their rejection also provides information on

the proposal distribution from the current point. For ODE parameter inference, the com-

putational cost of evaluating the system of equations in order to discard a point seems
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rather imprudent. An adaptation of MCMC, known as delayed rejection (DR), allows past

rejected points to inform further sub proposals, making use of these previously wasted

steps. As in standard Metropolis-Hastings, a stage 1 proposal x → y is accepted with

probability

α1(x, y) = min

(
1,

π(y)(y, x)

π(x)q(x, y)

)
(2.13)

If this point is accepted, then the algorithm proceeds as done in Metropolis-Hastings.

Upon rejection, rather than discarding the point, we use it to inform another sub proposal,

x→ y′ (see the left of Figure 2.3) by accepting based on the criterion

α(x, y, y′) = min

(
1,
π(y′)q1(y′, y)q2(y′, y, x)[1− α1(y′, y)]

π(x)q1(x, y)q2(x, y, y′)[1− α1(x, y)]

)
, (2.14)

where q2 is the proposal distribution for y′, dependent on both x and the previously

rejected proposal, y. The acceptance criterion is derived by imposing detailed balance

at each stage of the delayed rejection; bearing in mind that, under detailed balance, the

proposal y′ → x is foreshadowed by a rejected move y′ → y. Essentially, in the case of

a two stage delayed rejection, we wish to show probabilistic equivalence of the following

diagrams:

x

y

y′ y′

y

x

Figure 2.3: Demonstrating the detailed balance condition in delayed rejection. In
both cases, a move to y is proposed and rejected (indicated by a square) before proposing

a move to an alternative position that is informed by this rejected y move.

where the thick horizontal line is the second proposal and the thin vertical line is the initial

rejection. Use of delayed rejection greatly improves the overall efficiency of MCMC, with

the overall chain still abiding by a Markovian property since dependencies do not occur

between retained points. A combination of delayed rejection with adaptive metropolis

provides the first benchmark algorithm considered for simulations in this thesis.
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2.2.2.3 DRAM—Combining Adaptive Metropolis and Delayed Rejection

Delayed Rejection Adaptive Metropolis [33] (DRAM) is an extension of the standard

Metropolis-Hastings method that attempts to improve efficiency of the Markov chain by

combining the concepts of adaptive Metropolis and delayed rejection. By adapting the

covariance of the proposal distribution throughout the procedure, the sampler is able to

learn the topologies involved and make more efficient proposals than in the standard MH

algorithm. Adaptation occurs on both a global and local scale. The former is induced by

the use of adaptive Metropolis and the latter results from the delayed rejection component

of the algorithm. The DR is often accompanied by a scaling of the proposal distribution

where the stage 1 proposal is the most optimistic, followed by shorter proposals that are

scaled to enable higher probability of acceptance. I combine the AM and DR components

as done by Haario et al. [33], proposing a first move that is based on the globally

adapted proposal distribution and then, in the case of rejection, making n scaled proposals

(proposing another stage 1 proposal move if one of these is accepted or once n sub

proposals have been made). An important point to note is the violation of the Markovian

property due to the dependence on past samples induced by the adaptive property of the

algorithm. In standard MCMC methods, this Markovian property enables satisfaction of

detailed balance, ensuring ergodicity with respect to the target distribution. Nonetheless,

Haario et al provide a proof of ergodicity [31] in the absence of reversibility, making the

assumption that the target density is bounded from above and has bounded support. For

DRAM pseudocode, see page 14 of [34]1.

2.2.3 Population Markov Chain Monte Carlo

The MCMC methods discussed thus far have been developed extensively over the last

few decades. However, these methods are not without their limitations since, despite

efforts to alleviate poor convergence through adaptivity, severe multi-modality still causes

convergence of the MCMC sampler to local optima. A solution is to consider an annealing

procedure in the MCMC. Kirkpatrick et al. [35] present a simulated annealing approach

to optimisation, making use of a temperature parameter which ’melts’ the likelihood,

smoothing over any local optima. Starting the algorithm at a high temperature, we

repeatedly decrease the temperature as the algorithm continues, ending at a value of T =

0. In the initial stages, the system moves freely towards general regions of low energy (low

values of the negative log-likelihood) which become narrower as the algorithm continues

1Our implementation of DRAM is in R using the modMCMC function from the FME R package.
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and the temperature decreases. For functions with many local optima, the annealing

schedule allows the system to move freely from its initial position without exploring false

regions of low energy before allowing more detailed exploration in the region of interest—

the global optimum. The effect of different temperatures on several MCMC samplers is

shown in Figure 2.4 where, for high temperatures, the probability of making big jumps

(transitions) cools down. In simulated annealing the effect of temperature would be

inverted (becoming consistent with the theory of thermodynamics) and large transitions

would be more likely at t = 1 and less likely at t = 0. Nonetheless, the figure still allows

us to observe the general effect of temperature on movement in the parameter domain.

Suppose we wish to sample from some multimodal distribution:

p(θ|y) ∝ L(y|θ)π(θ) (2.15)

Population MCMC [36–38] draws on the idea of simulated annealing, coupled with a

population approach in order to improve convergence of MCMC methods for likelihoods

with multiple local optima. Defining a temperature ladder t = (t1, ..., tn) from 0 to 1 with

ti+1 > ti, we wish to set up a sequence of parallel distributions:

p(θti |y) ∝ p(y|θti)tiπ(θti) (2.16)

for i ∈ 1, .., n where p(θti |y) is the ith distribution. Whereas in simulated annealing the

aim is optimisation where the temperature gradient changes in a constant direction as the

algorithm continues, population MCMC introduces the change in temperature across dif-

ferent MCMC chains by implementing multiple parallel chains at different temperatures,

with the chain at t = 1 always sampling from the correct posterior distribution. Each

of these parallel chains may be explored using a standard Metropolis-Hastings sampler,

with the sampler at temperature tn = 1 providing the samples from the target distri-

bution. Deviation from standard Metropolis-Hastings occurs with the introduction of

swap moves between the parallel chains, allowing the smoothed likelihoods at tempera-

tures approaching zero to influence the ability of the sampler to explore the multimodal

posterior distribution at t = 1 . Suppose the algorithm proposes a move from con-

figuration (θt1 , ...,θtk , ...,θtl , ...,θtn) to (θt1 , ...,θtk , ...,θtl , ...,θtn) (swap between the lth

and kth temperatures). By consideration of the joint probability distribution across all

the parallel chains; that is, we choose whether to accept or reject a new parallel chain
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configuration:

J(θtk ,θtl) =
p(θt1|y, t1)...p(θtk |y, tl)...p(θtl |y, tk)...p(θtn|y, tn)∏n

i=1 p(θti |y, ti)
(2.17)

=
p(y|θtk)tlp(y|θtl)tkpl(k)

p(y|θtk)tkp(y|θtl)tlpk(l)
(2.18)

where pk(l) is given by a discrete Laplacian distribution [38] and provides the probability

of proposing temperature l from temperature k:

pk(l) ∝ exp(β‖k − l‖) (2.19)

and p(y|θti)ti denotes the power likelihood at the ith temperature. In eq. 2.18, prior

probabilities have been suppressed as these cancel out in the numerator and denominator.

Symmetry of the discrete Laplacian distribution enables further simplification of the ac-

ceptance ratio. Accepting based on comparison of min(1, J(θtk ,θtl)) with u ∼ unif(0, 1)

allows acceptance with probability J(θtk ,θtl). In Algorithm 1, I give pseudocode for the

implementation of population MCMC used for all simulations in this thesis2.

Obviously, since we are now proposing across multiple chains and also proposing swap

moves, the number of numerical solutions required increases drastically. However, we

hope that acceleration of convergence in terms of number of iterations is so great, com-

pared with the asymptotic reliance of DRAM and Metropolis-Hastings, that the increased

computational complexity is overcome by improved efficiency in terms of total quantity

of MCMC steps required (especially when faced with multimodal likelihood functions).

My implementation of the population MCMC algorithm involves various different tuning

parameters. In all versions of population MCMC, we take a product of power posterior

densities:

p(θ|y) =
n∏
i=1

pti(θ|y) =
n∏
i=1

p(y|θ)tip(θ) (2.20)

where the prior choice of temperature scale determines the nature of the gradient from

posterior distribution to prior distribution. Taking ti ∈ (0, 1], the power posterior grad-

ually shifts towards the prior as we move down the temperature ladder, the schedule of

which can influence the convergence of the algorithm. For temperature distributions that

are highly dense at t = 0, efficiency of the algorithm improves as mixing at t = 0 is

2This is an adaptation of the code found here: https://darrenjw.wordpress.com/2013/09/29/parallel-
tempering-and-metropolis-coupled-mcmc/
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Figure 2.4: Displaying the effect of varying temperature on the exploration of the
parameter domain in population MCMC. The effect of the likelihood increases as we
move up the temperature ladder from t=0 to t=1. At the bottom of the ladder, we are

sampling from the gamma prior distribution.
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Algorithm 1 Population Markov Chain Monte Carlo

1: Assign starting positions
2: Decide temperature ladder (T temperatures), number of swap moves m and iterations,

S, at which to perform m swap moves
3: repeat
4: Propose θ∗t for t=1,...,T and accept based on standard Metropolis-Hastings crite-

rion.
5: if i mod S = 0 then
6: for j in 1:m do
7: Randomly sample temperature, tk and propose temperature tl for swap via

discrete Laplace distribution.
8: Propose swap between two chains and accept with probability J(θtk ,θtl) from

eq. 2.18.
9: end for

10: end if
11: until convergence

encouraged by fast exploration in the densely populated low temperature region of the

ladder. In this thesis, I adopt a temperature schedule of the form ti = (i/10)4, leading to

10 parallel chains with higher frequency towards the lower end of the temperature ladder.

In eq. 2.19, it was mentioned that a Laplacian distribution will be used to propose tem-

perature swap moves. This involves the choice of a parameter β that dictates the scale of

the distribution. Increasing the value of β results in an increase in the average distance of

proposal moves between the different temperatures decreasing the number of swaps that

occur, particularly at the end of the sampling phase. However, higher values of β lead to

improved mixing in the early stages of sampling. Where applicable, the choice of tuning

parameter value is inspired by the literature [38]. Otherwise, I make no claim of careful

selection of the algorithm’s conditions, but instead highlight the necessity for tuning as

one of the key criticisms of this expensive method.

2.2.4 Delayed Acceptance Metropolis-Hastings

Delayed Acceptance Metropolis-Hastings (DAMH) [17] is a novel method to MCMC sam-

pling that implements a surrogate pre-sifting phase where moves are tested using a surro-

gate likelihood function (an estimate of the expensive likelihood function) before accept-

ing moves based on an expensive likelihood function. The idea is that, by first assessing

suitability of points in surrogate space, we save computation time by filtering out pro-

posed parameter estimates that would otherwise be rejected by the exact likelihood. In

this initial filtering stage, we accept proposed points as done in the Metropolis-Hastings
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algorithm with the target given by our surrogate function and subsequent acceptance

probability given by:

α1 = min

(
1,
π̂(θ′)q(θ′, θ)

π̂(θ)q(θ, θ′)

)
(2.21)

where π̂(θ) ∝ p̂(y|θ)p(θ) is a surrogate posterior obtained from the surrogate likelihood

function p̂(y|θ). In what proceeds, let π(θ) ∝ p(y|θ)p(θ) be our expensive posterior

where p(y|θ) is the exact likelihood. Now, we quickly give a detailed-balance-inspired

justification for the form of α2(θ, θ′). We know from simple MCMC theory that for the

target distribution to be the stationary distribution of the MCMC, detailed balance must

be satisfied (as well as ergodicity). For DAMH, the detailed balance condition depends

on two different acceptance functions, one for the surrogate filter steps and one for the

expensive likelihood. I refer to these as α1 and α2 respectively:

π(θ)q(θ, θ′)α1(θ, θ′)α2(θ, θ′) = π(θ′)q(θ′, θ)α1(θ′, θ)α2(θ′, θ)

Similarly to the derivation of the acceptance criterion in Metropolis-Hastings, assume

that detailed balance is not satisfied. Suppose that the following holds:

π(θ)q(θ, θ′)α1(θ, θ′)α2(θ, θ′) ≥ π(θ′)q(θ′, θ)α1(θ′, θ)α2(θ′, θ)

In this scenario, we make more moves from θ to θ′ than the reverse and so we make

α1(θ′, θ)α2(θ′, θ) = α(θ′, θ) equal its maximum, 1. Now, we know that α1(θ, θ′) =

min(1, π̂(θ′)q(θ′,θ)
π̂(θ)q(θ,θ′)

) since this is just a standard Metropolis-Hastings step. But, α(θ′, θ) =

1 ⇒ α1(θ′, θ) = 1 and so α1(θ, θ′) ≤ 1 since α1(θ, θ′) = 1/α1(θ′, θ). Since α1(θ, θ′) =

min
(
1, π̂(θ′)q(θ′,θ)

π̂(θ)q(θ,θ′)

)
= π̂(θ′)q(θ′,θ)

π̂(θ)q(θ,θ′)
, we obtain:

π(θ)q(θ, θ′)
π̂(θ′)q(θ′, θ)

π̂(θ)q(θ, θ′)
α2(θ, θ′) = π(θ′)q(θ′, θ)

Simplification and cancellations leave us with:

α2 =
π(θ′)/π̂(θ′)

π(θ)/π̂(θ)

and since it is a probability, we take α2 = min
(
1, π(θ′)/π̂(θ′)

π(θ)/π̂(θ)

)
. In order to introduce an

adaptive mechanism to the method, I take inspiration from DRAM [33] and use the

empirical covariance from past samples in order to update the covariance in a Gaussian
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Algorithm 2 Delayed Acceptance Metropolis-Hastings

1: Assign starting position θ0 and select cheap surrogate distribution π̂(θ), an approxi-
mation of π(θ) (the exact likelihood)

2: repeat
3: Sample proposal θt from some proposal distribution q(θt|θt−1).
4: Evaluate π̂(θt) and therefore α1

5: if α1 ≤ u1 then
6: θt = θt−1

7: else
8: Determine π(θt) and evaluate α2

9: if α2 ≤ u2 then
10: θt = θt−1

11: else
12: Accept θt
13: end if
14: end if
15: until convergence

proposal distribution.

For optimal use of the DAMH algorithm, we would hope for a surrogate posterior distri-

bution that, in a topological and statistical sense, matches well with the exact posterior

distribution obtained using the numerical solution likelihood function. The former re-

quires an alignment of the ridges of the two likelihood surfaces. The latter desires a

correspondence between the tails of the resultant posterior distributions. In reality, this

is often not the case, leading to inaccuracies and inefficiencies in the sampling routine.

Firstly, consider the case of a surrogate distribution where the tails are more weighted

than the tails of the true distribution. The second acceptance criterion, α2 should be

able to filter out any steps that, despite representing the surrogate distribution, are a

poor sample from the true distribution. However, heavier tails in the surrogate mean

that a higher proportion of proposals will pass through the initial filter stage and so the

gain in computational efficiency becomes less significant as the tails widen. The second

inconsistency results when we have short tails in the surrogate distribution relative to the

true distribution (or indeed a realignment as shown in Figure 4.3). Although remaining

accurate, the method fails to give a sufficient representation of our uncertainty in the

parameter value.
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2.2.5 MCMC Prerequisites

2.2.5.1 Convergence Diagnostics

Adoption of MCMC methods for parameter inference necessitates the use of convergence

diagnostics. The concept of convergence in MCMC refers to convergence to the target

distribution of the distribution from which the samples are obtained. Ideally, we would

determine a length of Markov chain that guarantees this property. As observed by Cowles

and Carlin [39], this approach is rarely feasible, leaving a choice between two different

approaches. A more theoretical approach would consider convergence properties of the

sampling mechanism. More pragmatically, we can perform some form of output anal-

ysis [40] which relies on a measure of similarity between the empirical distributions of

multiple parallel chains, all initiated from different starting points. This method is best

implemented with an overly disperse starting distribution and in cases where knowledge

of the posterior distribution is insufficient to allow this property, quasirandom sequences

[41] can offer a space filling sequence which provides good coverage of the parameter

domain3.

Introduced by Gelman and Rubin [42], the potential scale reduction factor (PSRF) is a

common tool for assessing lack of convergence in MCMC samples. Suppose we possess

multiple parallel chains initiated from some disperse initial distribution. Assuming con-

vergence to the stationary distribution, variance within each of these chains should equal

the variance between the chains, estimators for which are given in eq. 2.22:

B =
n

m− 1

m∑
j=1

(
θ̄·j − θ̄··

)2
W =

1

m(n− 1)

m∑
j=1

n∑
i=1

(
θij − θ̄·j

)2
(2.22)

where θij is the ith sample from the jth chain. If these variances are significantly different,

we can assume that convergence has not occurred (PSRF only diagnoses non-convergence,

there does not exist a method of diagnosing definite convergence of Markov chains).

Eq. 2.23 provides a biased estimate of the variance in the posterior distribution:

σ̂2 =
n− 1

n
W +

1

n
B (2.23)

which tends to overestimate the posterior variance var(θ|y). Contrastingly, W should

underestimate the variance in our posterior distribution due to correlation between sam-

ples and the fact that, in a finite number of steps, the sampler is not able to traverse the

3In particular, I adopt a sobol sequence using the R package randtoolbox
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entire support of the distribution. Therefore, if we consider the square root of the ratio

of σ̂2 and W:

R̂ =

√
σ̂2

W
(2.24)

then we can expect that, in the case of convergence of the Markov chain, R̂ would be close

to or equal to 1. Otherwise, we can conclude longer chains would either increase W or

decrease B as the chains continue to better explore the posterior space. Importantly, the

theory of the Gelman Rubin statistic does not necessitate a Markovian property be preva-

lent in the chains, meaning that this diagnostic may be applied to all methods considered

in this thesis. There are countless other numerical MCMC convergence diagnostics that

could be used to assess convergence of samples but, similar to PSRF, these all diag-

nose lack of convergence instead of convergence and PSRF represents a more established

method among the different possibilities [13]

2.2.5.2 Sampling on Bounded Support

In ODE parameter inference, we often have to place some constraint on the value of the

parameters. For the positivity constraint often placed on parameter in dynamical systems,

we have to determine the most effective way of adopting this constraint in our samples.

Immediately, one would consider a proposal that rejects any points proposed outwith our

constrained space. However, this can introduce bias to the sampling procedure as the

sampler can only move in one direction at the extreme boundaries of the constrained

space, giving false evidence of local optima in the likelihood space. More effectively, one

can fit a constrained prior distribution in the original domain and then transform the

random variables (and therefore the prior distribution) to an unconstrained space for

MCMC sampling. Thus, we can sample on an unbounded space while still satisfying the

relevant constraints. As an example, consider the sampling of ODE parameters subjected

to a positivity constraint. Applying a Gamma prior in the untransformed space before

sampling in the log transformed parameter domain ensures unconstrained sampling while

still being subjected to this constraint. This transformation must be accompanied by a

suitable transformation of the prior distribution. For transformation g(·), the Metropolis

acceptance criterion in this case would be, for moving from point θ̃t−1 = g(θt−1) to
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θ̃t = g(θt)

A(θt−1, θt) =
π̃(θ̃t)p(y|θt)

π̃(θ̃t−1)p(y|θt−1)
(2.25)

where π̃(·) denotes the Jacobian transformation of the original prior distribution:

π̃(θ̃t) = π(g−1(θ̃))

∣∣∣∣dg−1(θ̃)

dθ

∣∣∣∣ (2.26)

This second suggestion is the choice I adopt for the work in this thesis as I use gamma

or inverse-gamma priors and sample the parameters on the log domain.



Chapter 3

Complications in Parameter

Inference for Ordinary Differential

Equations

Performance of parameter inference procedures depends on the behaviour of the methods

in ODE solution space. Solutions of nonlinear ODEs rely on computationally onerous nu-

merical integration procedures, making the classic Gaussian observational log-likelihood

expensive to evaluate. Nonetheless, in the case of well-behaved solutions and sufficiently

smooth likelihood functions, MCMC procedures can converge in realistic timeframes es-

pecially in the case of simple toy problems. Computational complexity becomes more

problematic when one considers more complex systems where properties of the signals

directly influence our ability to implement the expensive likelihood function and achieve

accurate parameter inference. This chapter will present the benchmark ODE systems

that will be used to compare different parameter inference methods, specifying the pa-

rameter configurations implemented in each case. The presentation of these models will

unravel some of the complications introduced by different ODE properties to the parame-

ter learning problem. These complications are by no means specific to the nonlinear ODE

parameter inference problem, but their combination with high computational cost of nu-

merical integrations makes them even more troublesome in this scenario. Essentially, this

chapter provides a dichotomy of ODE complications that inspire the use of more efficient

parameter inference techniques considered in Chapter 4.

32
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3.1 Lotka-Volterra

The Lotka-Volterra system of equations [3] was seen in the introductory section. Restated

here, the resultant signals from this system of ODEs are given in Figure 3.1.

dx

dt
= αx− βxy (3.1)

dy

dt
= −γy + δxy (3.2)

The signals in Figure 3.1 were obtained with parameter values α = 0 .76 , β = 0 .5 ,

Figure 3.1: Evolution of prey (solid) and predator (dashed) populations produced
from the Lotka-Volterra system.

γ = 0 .4 and δ = 0 .3 . These will be maintained throughout the work of this thesis and

provide sufficient periodicity to allow exploration of the effect this property has on the

parameter learning process.
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3.1.1 Periodicity

Consider the phase planes shown in Figure 3.2 corresponding to the signals produced

by the Lotka-Volterra equations. Both plots appear identical and indeed, both have

been produced by simulation of the Lotka-Volterra equations with the same parameter

configurations and initial conditions. The difference, however, is the period of integration.

The left plot corresponds to the signal over a timeframe between 0 and 100, the right

provides the signals approximated between times 0 and 15. Similarity of the two plots

results from the overlapping of the different periods of data when considered in phase

space. Given the deterministic nature of the system, multiple periods of data provide

no better indication of the level of fit to the observed data than the single period data

case. Obviously, there is an improvement in resolution of the likelihood function with

a greater number of data points leading to greater discrepancy between levels of the

likelihood surface; but these periods of data also act to hinder the inference process as

they introduce a possibility of signal aliasing to an inference problem that has already

been made more computationally onerous.

Figure 3.2: Left: phase space of the Lotka-Volterra model over time 0 to 100. Multiple
periods of data overlap, showing the lack of information that is provided by this larger
dataset. Right: phase plane for only one period of data. The level of information
provided is identical. This plot presents a problem with inference in deterministic
ODEs as added periods of data provide no more information about the fit of the model

since we see that successive periods overlap one another on the state space plot

If one wishes to adopt an MCMC approach to parameter inference, then performance

of the method depends heavily on the nature of the likelihood surface. In particular,

we must be able to explore the entire parameter domain and we would hope that any

attraction into local optima corresponds to an accurate fitting to the observed values.
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Figure 3.3: The effect of periodicity on the Lotka-Volterra log-likelihood surface.
Multimodality is introduced as a result of signal aliasing. These local optima make the

inference problem more intractable.

With multiple modes, the chain can be attracted into local optima where the fit of

the signal to observations is not actually accurate. Increasing the time required for

convergence, the periodicity makes a difficult problem more intractable. The negative

log-likelihood surface for multiple periods of data from the Lotka-Volterra ODEs is given

on the left of Figure 3.3. Comparing with the one period data case (right of Figure 3.3),

increased multimodality alludes to the effect that periodicity can have on the likelihood

function of the system. More careful investigation of the nature of these modes is displayed

in Figure 3.5 where the signal at a local optimum is plotted with the signal at the true

parameter value for both the multi-period and single-period data cases. In the case of

the multi-period example, the matching at alternate peaks of the signal leads to strong

correspondence in the phase space of the two signals, manifesting itself with a decrease

in the value of the likelihood function. The decrease in timeframe of the single period

negates the possibility of signal aliasing and so no local optima appear on the likelihood

surface on the right of Figure 3.3. To consider the effect this has on the performance

of MCMC, Figure 3.6 shows MCMC chains obtained using DRAM in both of the two

datasets. In the multi-period scenario, attraction into the local optima induces a failure

to sample from the correct posterior distribution, unlike in the single period case where

the chains move freely towards the correct distribution.

Attempts to alleviate this multimodality problem likely rest on our ability to manipulate

the posterior distribution. One possibility is to formulate a likelihood function that

requires less computational expense, allowing an increase in the number of permissible

MCMC steps and a greater opportunity for MCMC chains to evade the various local

optima. At this stage, however, it remains to be seen how this could be done without

introducing bias to the parameter samples. Alternatively, we could take inspiration from
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Figure 3.4: Simulated signal of the Lotka-Volterra model for time 0 to 100 (left) and
only one period of data (right). The plot on the left displays the periodicity present in
the system while the plot on the right displayed the lack of fit when considered over

only one period.

Figure 3.5: Presenting the phase plane of a local optimum from the Lotka-Volterra
likelihood surface with multiple periods (left) and one single period (right). The level

of fit to the solution can be assessed by the level of overlap of the two signals.

simulated annealing (Section 2.2.3) which optimises functions by smoothing the likelihood

surface, smoothing over local optima. Optimisation, however, is not the aim of our

inference since this provides little guarantee of the validity of the samples when one

considers the problems of local optima and identifiability. Rather than optimization, we

hope to sample from the posterior distribution of the ODE parameters which at this point

has only been considered in a population approach where the vast computational expense

is precisely that which we wish to avoid.
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Figure 3.6: Left: MCMC with the single period likelihood function. The chains
manage to converge to the global optimum of the likelihood function as a result of the
reduction in local optima. Right: MCMC with the multi-period likelihood function.
The presence of local optima causes a deterioration in the effectiveness of DRAM as

the chains converge to these local optima.

3.1.2 Stiffness

For systems of nonlinear ODEs, we often rely on numerical integration techniques to

approximate the signals involved. These adopt a discretisation of the time domain, prop-

agating through from the initial conditions to the signal approximation. For instance,

the Runge-Kutta methods [15] use a combination of midpoint and trapezoidal rules to

build up an approximation of the underlying signal. For well-behaved solutions, this

procedure already requires substantial computational cost, particularly emphasised when

one adopts an MCMC approach based on the expensive log-likelihood function. If we

measure the time required to obtain the samples from the posterior distribution of the

parameters in the Lotka-Volterra model as displayed in Figure 3.6, we experience a vast

difference in the computational efficiency for chains exploring different regions of the pa-

rameter space. The largest of these times is 300% of the smallest run time, suggesting

that a parameter-dependent problem exists in construction of estimated ODE solutions.

Consider a space of solutions of the ODEs for a fixed set of initial conditions. By using

numerical integration, we effectively move through this space, moving closer to the full

solution of the ODEs with each numerical integration step that is performed. A problem

occurs, however, when this full, correct, solution of the system is slow varying and lies

close to a fast-varying solution. The ability to reject the fast-varying solution in favour

of the slow one relies on a smaller step size and inefficient approximation of the slow-

varying solution. By taking a larger step size, we would be removing solutions from the

solution space of the ODEs, introducing a bias to the inference problem. This problem

with fast-slow solution proximity—referred to as stiffness—is especially problematic in
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ODEs with periodic solutions since there can be a natural correspondence between stiff

solutions and local optima of the likelihood surface. An ad hoc solution to this problem

can be to limit the maximum number of steps in the numerical solver since we know

that these stiff solutions will not provide a sufficient solution to the ODE. However, this

introduces a bias to the problem similar to the case where we adopt a larger step size.

Taking a more systematic approach, we could use implicit Runge-Kutta methods in which

the estimate of the signal at each point depends on evaluation of the ODE function at

that point. The implicit nature of the equations now relies on solving a set of normal

equations at each step and deals with rapidly deteriorating solutions associated with

stiffness more efficiently than the explicit methods. However, the problem in our case is

that we are numerically solving over the entire region of the parameter space that contains

regions with stiff solutions and regions with non-stiff solutions. These implicit methods,

with their necessary matrix inversions, are less efficient in the case of non-stiff ODEs

and so if one is seeking more efficient methods of inference, it does not seem feasible to

implement these universally. Rather, we seek methods that can bypass these stiff ODE

configurations, relying on numerical solutions of the ODEs in regions of highest posterior

probability density.

3.2 Signal Transduction Cascade and Parameter Non-

identifiability

This system, outlined by Vyshemirsky and Girolami [21], models the protein signalling

transduction cascade with input enzymatic protein S. This binds to protein R, forming

protein complex RS, inducing phosphorylation of protein R into Rpp from which state

the protein may be deactivated. Additionally, the system below also describes the degra-

dation of the input S into Sd. Here, variables inside [] correspond to concentrations of

different species and the rest of the components are parameters controlling the rate of
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transformation of the different variables of the system.

d[S]

dt
= −k1[S]− k2[S][R] + k3[RS]

d[Sd]

dt
= k1[S]

d[R]

dt
= −k2[S][R] + k3[RS] +

V [Rpp]

Km + [Rpp]
(3.3)

d[RS]

dt
= k2[S][R]− k3[RS]− k4[RS]

d[Rpp]

dt
= k4[RS]− V [Rpp]

Km + [Rpp]

Figure 3.7 shows the signals produced by simulation of this system of equations. The pa-

rameter configuration used takes inspiration from the literature [7], setting the parameters

as follows: k1 = 0.07, k2 = 0.6, k3 = 0.05, k4 = 0.3, V = 0.017 and Km = 0.3.

Figure 3.7: Evolution of the different dependent variables produced from the signal
transduction cascade system.

Recall the mapping introduced in eq. 1.2:

h : Θ→ Y . (3.4)
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Injectivity is crucial to the parameter inference problem, allowing the ODEs to exhibit

a property of parameter identifiability. Depending on the structure of the ODE system,

this identifiability assumption may be violated and indeed, this is the case with the STC

system of equations. Consider the ratio V [Rpp]/(Km + [Rpp]), present in eq. 3.3, if V

is increased, then Km may be increased (by greater magnitude) to counteract the mul-

tiplicative change induced by the changing of parameter V . This property is termed

structural non-identifiability [43] and relates to the structure of our ODEs as the func-

tional relationship dampens the observed effect that the different parameters have on the

resultant signal. Immediately, one would consider solving the problem by fixing param-

eter Km. However, this does not resolve the issue completely. Although we have been

able to negate the identifiability issues induced by the structure of our ODEs, a subtler

violation of the identifiability property persists.

Figure 3.8: Contour plot showing the effect of structural non-identifiability in the
signal transduction cascade system. The functional relationship between parameters
Km and V results in an obvious valley along the functional relationship in parameter

space.

Consider the plots on the left of Figure 3.10 where the red line in the bottom plot cor-

responds to an MCMC chain attempting to sample from the posterior distribution of

the STC parameters when Km is held fixed. A lack of variation in the likelihood func-

tion results in an MCMC chain that can move freely through a valley in the posterior
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parameter space, estimating large levels of uncertainty in the posterior parameter distri-

bution. The cause of this likelihood profiling becomes clear if one considers the signals

from this system plotted in Figure 3.7. The system has entered equilibrium, meaning

that, over the entire duration of the evolution, only a small portion of the observed data

is varying and contributing any information to the model fitting problem. Given that

no changes can be made to the experimental setup, a solution is to consider inference

using only the data obtained prior to equilibrium as shown in Figure 3.9. The MCMC

trajectories are plotted on the right of Figure 3.10 where, rather interestingly, a reduction

in number of observations leads to improved resolution in the likelihood surface. When

adopting a Bayesian approach, one can also alleviate this identifiability problem by use

of a sufficiently informative prior—a solution that does not generalise to the structural

case.

Figure 3.9: Signal transduction cascade data prior to reaching equilibrium. The
data vary throughout the timeframe considered, providing information on the fit of the

signal.

The discussion of identifiability highlights a key advantage of a sampling approach to

parameter inference. If one cannot assume identifiability of the model parameters, then

conclusions built on the premise of a best fitting parameter set will always be open to

skepticism. If we instead construct a well-defined sampling routine then the analysis
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Figure 3.10: Top row: Likelihood surface over the k2-k3 plane in parameter space. On
the left is the negative log-likelihood surface from 100 observations between 0 and 100,
on the right is the negative log-likelihood surface from 20 equally spaced observations
between 0 and 10. Bottom row: DRAM samples from the posterior distribution of the
different datasets superimposed on the corresponding negative log-likelihood surface.

of uncertainty in the parameter space and function space can allow the diagnosis of

identifiability issues in the model parameters—a property that must be accounted for in

any model fitting process, especially if one wishes for reliable predictions from their fitted

model.

3.3 FitzHugh-Nagumo

The FitzHugh-Nagumo equations [44, 45] model the movement of signal along excited

cells via a 2-variable simplification of the more complex Hodgkin-Huxley model, enabling

phase plane analysis of the system. Conceptualised to model nerve membrane excitation

behaviour, Variable V denotes the voltage of the signal which accounts for self-excitation

of the membrane and R a recovery variable that acts as a negative feedback mechanism.

This system can be used to model signals in excitable media, providing a mathematical

description of cardiac dynamics [46] and neurodegenerative diseases [47]. Nonlinearity is
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introduced to the system through the equation for V̇ :

dV

dt
= γ

(
V − V 3

3
+R

)
dR

dt
= −V − α + βR

γ

I take inspiration from the work of Ramsey et al. [6] and assume parameter values

α = β = 0 .2 , γ = 3 and noise variance equal to 0.25 (this variance is the larger of the

two observation noise variances adopted by Campbell and Steele [36]). Following the

same example, initial values were set to (V=-1, R=1). The signals plotted in Figure 3.11

present a periodic solution where the oscillations are not symmetric.

Figure 3.11: Evolution of Recovery (solid) and Voltage (dashed) variables produced
from the FitzHugh-Nagumo system.

3.4 Goodwin Oscillator

The Goodwin Oscillator (also referred to as Circadian Oscillator and I interchange the two

throughout this thesis), first introduced by Goodwin [48], models the concentration of an
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enzymatic protein and messenger ribonucleic acid (mRNA) of some species. Production

of mRNA p1 is met by a binding of mRNA with ribosomes, forming a enzymatic protein

p2 which feedback, inhibiting mRNA transcription.

dp1

dt
=

k1

36 + k2p2

− k3

dp2

dt
= k4p1 − k5

Constant decay terms in the ODEs are biologically inconsistent since we may now have

negative protein concentration values. However, this encourages periodicity in the signals

of the species; a trait that is more difficult to induce under the system configuration

provided by Woller et al. [49] (we may show this improved periodicity by consideration

of the eigendecomposition of the Jacobian matrix of the ODE system). Similar to the

case of the FitzHugh-Nagumo, nonlinearity is induced by one of the equations where the

protein variable, p2, appears in the denominator. Following the work of Girolami et al

[50], I adopt parameter values k1 = 72, k2 = 1, k3 = 2, k4 = 1 and k5 = 1 and the signals

produced (Figure 3.12) exhibit periodicity which leads to multimodality in the likelihood

function (this was the likelihood surface shown in Figure 2.4).

Figure 3.12: Evolution of p1 (solid) and p2 (dashed) concentrations produced from
the Goodwin Oscillator system.
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Fixed Interpolant Gradient

Matching

Having discussed the problems that ODE parameter inference presents to the MCMC in-

ference paradigm, it now seems justified to propose a new method for parameter inference

that incorporates various techniques from the literature. If one wishes to provide a com-

putationally efficient method, then it seems inevitable that we must consider a proxy for

the exact likelihood function—also termed a surrogate likelihood function. The posterior

produced in this scenario is termed a surrogate posterior distribution and represents a

cheap estimate to the numerical integration likelihood function that has been considered

up until this point. The paradigm of gradient matching will be discussed in this chapter

as a method of providing this cheap surrogate function. I will first outline some relevant

Gaussian Process (GP) theory before considering some of the gradient matching litera-

ture in greater detail. The drawbacks of these schemes provide motivation for a novel

implementation of the gradient matching paradigm where I neglect the need for com-

putationally inefficient surrogate sampling, instead assuming a fixed interpolant for the

noisy observations. This will involve consideration of two alternative distance metrics,

one involving a simple Euclidean norm and one in which the distance measure resembles

the Mahalanobis distance as obtained by Calderhead et al. [1]. This gradient match-

ing surrogate likelihood will allow the implementation of a multi-phase scheme where

a cheap burn-in phase drives the sampler towards an initialisation in the region of the

global optimum, reducing the number of exact likelihood evaluations required to achieve

stationarity in a post burn-in phase. As well as considering the setup with standard

DRAM sampling, I will also consider the use of delayed acceptance Metropolis-Hastings

45
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as a sampling mechanism in a two-phase scheme where the less expensive filter step is

provided by fixed interpolant gradient matching.

4.1 Gaussian Process Smoothing

Consider the standard nonlinear regression problem where, given some noisy observations,

y(t) = x(t) + ε(t), (4.1)

we wish to uncover the underlying latent state x(t) while making the assumption that the

data distribution can be considered as p(y|x(t), σ2I) = N (y|x(t), σ2). Taking a paramet-

ric approach to the problem, we could assume x(t,θ) is a function of some parameter set

and attempt to infer these parameters using standard Bayesian methods. This, however,

seems unnecessarily restrictive as it requires us to specify a standard form for the function

x that, being latent, can be difficult to categorize.

A Gaussian process defines a distribution over the space of functions from continuous

input space T to the uncountably infinite set of real numbers,

x : T → R. (4.2)

Placing a Gaussian process prior on the codomain of x:

x(t) ∼ GP(m(t),K(t, t′)) (4.3)

m(t) = E[x(t)] (4.4)

K(t, t) = E[(x(t)−m(t))(x(t)−m(t))], (4.5)

defines it as a stochastic process such that any finite subset (x(t1), ...,x(tn)) is multivariate

Gaussian distributed. The kernel function, K(·, ·) provides much of the explanation of

the relationship induced by the GP and is itself governed by a set of hyperparameters,

γ. Often, the Gaussian process is assumed to be of mean zero, providing the following

distribution where explicit representation of γ presents the latent variable, x, as being

parametrised by these hyperparameters:

p(x|γ) = N (x|0,K) (4.6)
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By placing a distribution over the latent variable, we sanction the marginalisation over x

to produce a marginal likelihood:

p(y|γ, σ2) =

∫
p(y,x|γ, σ2)dx =

∫
p(y|x, σ2I)p(x|γ)dx, (4.7)

where p(x|γ) = N (0,K) is specified by the GP prior and the Gaussian assumption on

the observations permits a closed form for the marginal likelihood. This marginalisation

over the latent variable produces a marginal likelihood function parametrised by the

GP hyperparameters, enabling hyperparameter estimation through a type II maximum

likelihood approach where the marginal likelihood function, given in eq. 4.8, contains a

natural trade-off between model fit and model complexity [51], preventing overfitting or

underfitting of the smoothed signal.

log p(y|T ,γ) = −1

2
(y −m)T (K + σ2I)−1(y −m)︸ ︷︷ ︸

Model fit

− 1

2
log |K + σ2I|︸ ︷︷ ︸

Model complexity

−n
2

log(2π) (4.8)

4.1.1 Gaussian Process Posterior Distribution

In standard Bayesian regression, we obtain a posterior distribution over the parameters

proportional to the product of the likelihood and the prior distribution. With a Gaussian

process, we treat the function itself as a parameter of the model, seeking a posterior

distribution over the latent variable of the form:

p(x|y,φ, σ) ∝ p(y|x, σ)p(x|φ) (4.9)

= N (y|x, σ2I)N (x|0,K) (4.10)

where the ijth entry of K is given by the kernel function evaluated at the ith and jth

timepoints. The Gaussianity of the likelihood and prior permit a closed form posterior

distribution obtained using the Gaussian identity from the appendix:

N (y|x, σ2I)N (x|0,K) ∝ N (x|m,Σ) (4.11)

where

m = Σ(K−10 + σ−2y) Σ = (K−1 + σ−2I)−1 (4.12)
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from which we may make use of the Woodbury matrix identity (see Appendix) to perform

the inversion in the expression for Σ:

Σ = (K−1 + σ−2I)−1 WMI
= σ2I− σ2I(K + σ2I)−1σ2I

= σ2I((K + σ2I)−1(K + σ2I)− σ2I(K + σ2I)−1)

= σ2K(K + σ2I)−1

Therefore, the posterior distribution for the latent variable x(t), conditional on the ob-

served data, is given by:

p(x|y,φ, T ) ∼ N
(
K(K + σ2I)−1y, σ2K(K + σ2I)−1

)
(4.13)

This posterior distribution is inherently infinitely dimensional since its dimension is only

limited by the finiteness of the GP prior. Therefore, we see that a GP prior leads to a

GP posterior distribution. The posterior mean expression is a linear transformation of

the observed values (a linear smoother), averaging over the noise in the data to smooth

the observed values.

4.1.2 Choice of Kernel Functions for ODE Signals

For the data interpolant to be applicable in the gradient matching setting, we require that

the smoothed signal be differentiable. Since GPs are closed under linear transformation

and the derivative may be thought of as a linear transformation (with transformation

matrix given by the Jacobian), assuming the derivative of the GP interpolant exists (which

does not always hold—see Brownian motion), the gradient of a GP is itself a Gaussian

process. Indeed, choice of kernel function for a Gaussian process can be influenced by

a desired order of differentiability and this is essential if one wishes to adopt a gradient

matching paradigm in parameter inference.

The simplest class of kernel functions is the stationary kernels, expressed as a function of

the radius between two points. A typical example is the infinitely differentiable squared

exponential kernel:

kSE(r) = exp(− r
2

2l2
) (4.14)
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where l is the length-scale and r = ||x − x′|| is the distance between two points. For

high values of l, the kernel allows increased influence by distant points, smoothing the

resultant posterior sample. One problem with the squared exponential kernel is the high

level of smoothing in the resulting estimated signal. For more complicated signals we

may consider the Matern class kernel function:

k(r) =
21−η

Γ(η)

(√
2ηr

l

)η
Kη

(√
2ηr

l

)
(4.15)

which tends to the squared exponential kernel in the limit as η →∞. Often we choose to

take η = z+0.5 for z ∈ Z+ since the kernel then reduces to the product of an exponential

and an order z polynomial as shown below for z=2:

k5/2(r) =
(

1 +

√
5r

l
+

5r2

3l2

)
exp

(
−
√

5r

l

)
(4.16)

We may then observe that the Matern class kernel is z − 1 order differentiable and the

desired level of smoothness of the function provides motivation for the selection of the

hyperparameter η. For η = 1
2

we obtain the non-differentiable kernel of the Ornstein-

Uhlenbeck process used for defining the velocity of a particle under Brownian motion

[51].

Consider the Lotka-Volterra data as shown in Figure 3.1. Periodicity in the data is

difficult to model accurately using either of the covariance functions previously considered.

Since valid covariance functions remain valid under smooth transformation of the input

variables, we can transform the input variables into some alternative space in which the

periodicity in the signal is automatically accounted for. Under a smooth mapping of the

inputs:

u : x→
(

cos
(

2π
x

p

)
, sin

(
2π
x

p

))
. (4.17)

kSE(x, x′) becomes a valid kernel function for periodic signals [52]:

kSE(u(x),u(x′)) = kper(x, x
′) = σ2 exp

(
− 2

sin2
(
π x−x

′

p

)
l2

)
(4.18)

where l is the length-scale dictating the roughness (smoothness) of the interpolant. With

highly noisy periodic data, smoothing becomes difficult as we are faced with a trade-off in

the lengthscale between underaccounting of the amplitude and smoothness of the signal.
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Figure 4.1: Comparing the interpolant produced by the squared exponential kernel
(red) and the neural network kernel (black).

The signal transduction cascade is a slightly more interesting proposition due to the

nonstationary signal produced by the ODEs. The kernel functions discussed so far have

all been translation invariant, making them incompatible with this example. Adoption

of a Neural Network Kernel [53] enables varying lengthscales for nonstationary signals.

In Figure 4.1, we observe the interpolant obtained for the Sd variable using the neural

network kernel and the squared exponential kernel. The nonstationarity of the Neural

Network kernel leads to constant values at large positive or negative input values.

4.2 Gradient Matching Literature

4.2.1 Gradient Matching—A Frequentist Approach

Although this thesis will adopt a Bayesian approach to parameter inference, it is vital

that we acknowledge the work done in gradient matching under the frequentist paradigm.

Swartz and Bremermann realised the ability to bypass the numerical integration step of

ODE parameter inference by instead adopting a difference metric that is applied directly

in the gradient space [54]. In some sense, their method is very similar to the multi-phase

method proposed in this thesis as they also acknowledge the fact that any surrogate

metric may only be used as an approximation to the true function. They adopt a gradient
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matching measurement function to achieve an initial estimate of the parameter value:

F (θ, X̂,
˙̂
X) =

∑
i

∑
j

w2
ij(

˙̂xij − f(yj, θ))
2, (4.19)

where wij is some weight coefficient and
˙̂
X is a matrix with entries ˙̂xij denoting the

value of the gradient of a smooth interpolant of variable i at time j obtained by fitting

polynomials to segments of the data and yj denotes the vector of species measurements at

time j. The authors then exploit linear dependence of the variables on the parameters to

find the partial derivative with respect to the parameters, which can be set equal to zero

to obtain initial parameter estimates. Beginning from the estimates obtained using the

criterion in eq. 4.19, Swartz and Bremermann then propose using a global optimisation

technique to iteratively optimise the following function:

F (θ, x) =
∑
i

∑
j

w2
ij(yij − xij)2 (4.20)

where yij is the measurement of variable i at time j and xij is the numerical solution of

the ODE system for species i at time j. Varah takes a step closer to the current gradient

matching paradigm by fitting a cubic spline to the noisy observations (cubic splines may

be thought of as Gaussian Processes for particular kernel functions) and minimising the

deviation of the gradient of the smoothed signal from the functional gradient obtained

by substituting the smoothed interpolant into the ODEs [55].

Clearly, these two approaches to ODE parameter inference provide a frequentist utilisation

of gradient matching. Whereas the authors chose to minimise the deviations between

the two gradients, we choose to sample from the posterior whilst adopting this metric

as our objective function. The problem with simple minimisation of the least squares

function is the possibility of local optima in the functional space, and the difficulty in

diagnosing a lack of convergence to the true global optimum. Whereas when one adopts

a Bayesian approach, we are able to track convergence of the sampler to the stationary

distribution induced by the gradient matching metric. Additionally, uncertainties are

naturally accounted for by our posterior distribution derived from the gradient matching

likelihood function.
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4.2.2 Gradient Matching—A Bayesian Approach

In the recent literature a Bayesian approach to gradient matching has been introduced

that attempts to bypass the need to solve the system of ODEs [1, 7, 56]. Similar to the

above, the idea is to find a smoothed form of the observed signal and match the gradient

obtained from this smoothed curve with that obtained from the ODEs. However, this

time we obtain a distribution of sampled values from the surrogate space instead of point

parameter estimates. In this reformulation of the parameter inference problem, we are

no longer concerned with the sub manifold of solutions of the ODE [6], eradicating the

need for constraints as we profile over the initial conditions [7].

4.2.2.1 Calderhead et al.

On a fundamental level, gradient matching is based on the notion of having two different

distributions (experts) which formulate different dependencies of the gradient—a struc-

tural dependency through eq. 2.1 and a more implicit dependency resulting from the

Gaussian Process (GP) interpolant (if unsure of the notion of Gaussian processes then

please refer to Section 4.1) [1]. Consider the joint distribution of the GP interpolant and

its gradient where p(x|φ) = N (x|0,K) and p(ẋ|φ) = N (ẋ|0,K′′). The joint distribution

will have mean vector 0 and in the equation below I outline the components of the covari-

ance matrix. Consider an arbitrary GP kernel k(ti, tj) such that cov(x(ti), x(tj)) = k(ti, tj)

where k is assumed differentiable. We may obtain derivatives of this function as follows:

cov(ẋ(ti), x(tj)) =
∂k(ti, tj)

∂ti
= k′(ti, tj) (4.21)

cov(x(ti), ẋ(tj)) =
∂k(ti, tj)

∂tj
= ′k(ti, tj) (4.22)

cov(ẋ(ti), ẋ(tj)) =
∂2k(ti, tj)

∂tj∂ti
= k′′(ti, tj) (4.23)

which leads to a joint distribution:[
ẋ

x

]
∼ N

([
0

0

]
,

[
K′′ K′

′K K

])
(4.24)

where elements of the different submatrices are given by evaluation of the kernel deriva-

tives from eqs. 4.21-4.23. We obtain, via an algebraic derivation (see page 87 of Bishop,

2006), a conditional distribution for the GP gradient that is dependent on a sampled
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interpolant and sampled hyperparameters:

p(ẋn|xn,φn,σ) = N (K′nK
−1
n xn,K

′′
n −K′nK

−1
n
′Kn) (4.25)

where xn corresponds to the GP interpolant for the nth state of the ODE and the ma-

trices K′′n,Kn,
′K−1

n and ′Kn correspond to the matrices of the respective functions (or

derivative) evaluated with hyperparameters obtained by fitting the GP interpolant. From

this point, let Cn = K′′n −K′nK
−1
n
′Kn and mn = K′nK

−1
n xn.

In order to formalisea joint posterior distribution, dependent on both the GP hyperpa-

rameters and the ODE parameters, we must introduce a probabilistic dependence between

the gradient from the GP and the gradient from the ODE. Assuming a Gaussian distri-

bution, ẋGP ∼ N (f(x,θ), γI) (where the dotted line in Figure 4.2 indicates that this

is a non-generative model) we are able to find a correspondence between the ODE and

GP dependencies. Considering the distribution p(θ, γ, Ẋ|X,φ) where γ represents the

y

σ

ẋGP

x

φ

ẋODE

γθ

Figure 4.2: Graphical model representation of the method introduced by Calderhead
et al. [1] where ẋODE corresponds to the gradient obtained using the ODE system and

ẋGP is the gradient obtained by differentiation of the GP interpolant.

mismatch between our two gradients (given that x is an estimate of the true signal, it

would be naive to assume this relationship is exact), marginalisation over ẋ becomes

analytically tractable when one considers a product of experts (POE) approach:

p(Ẋ,X,φ|θ, γ) ∝
∏
i

p(ẋi|mi,Ci)p(ẋi|fi(X,θ), γiI), (4.26)
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giving an objective function for the surrogate likelihood sampler that is dependent on

sampled interpolants and hyperparameters. The motivation for this marginalisation has

been questioned by Wang and Barber [20] and indeed, it appears that the marginalisation

will encourage the distribution of the ODE gradient to be forced towards the limiting

delta distribution on the mean of some t-distribution resulting from the various Gaussian

interpolant samples. Irrespective of this, we may use the Woodbury matrix identity and

some Gaussian distribution identities (see Appendix) to obtain:

p(θ, γ|X,φ, σ) ∝ π(θ)π(γ)∏
i F (γi)

exp
{
− 1

2

∑
i

(fi −mi)
T (Ki + Iγi)

−1(fi −mi)
}

(4.27)

where fi is evaluation of the ith equation of the ODEs F (γi) = |2π(Ci + γiI)| and

π(θ) and π(γ) denote the prior distributions over the parameters and the mismatch pa-

rameter of the gradients. By using this surrogate likelihood (a cheap approximation to

the expensive likelihood function), we may adopt a far cheaper sampling routine com-

pared with the traditional numerical integration approach that still obtains parameter

estimates with the fit of the latent variable to the ODE as the fitting criterion. Since we

are assuming random interpolants and hyperparameters, these must also be sampled at

each stage of the algorithm. Due to the high dimensionality of the problem, as well as the

dependence between the different variables, Calderhead et al propose a Gibbs sampling

routine:

φ, σ ∼ p(φ, σ|Y) (4.28)

X ∼ p(X|Y, σ,φ) (4.29)

θ, γ ∼ p(θ, γ|X,φ, σ) (4.30)

where they sample parameters θ and γ via a Metropolis-Hastings sampler based on the

surrogate objective function. Therein lies the main problem with gradient matching as

a cheaper alternative to sampling using the expensive likelihood: we are not sampling

from the correct posterior distribution. Although the surrogate approximates the true

likelihood, it does not account for the correct level of uncertainty in our final parameter

estimates. On top of this, the marginalisation may lead to stability issues due to the

reduction of the diagonal correction in F (γi) and so the method can become heavily

dependent on the use of an informative prior to restrict the magnitude of this γ parameter.

We do, of course, prioritise robustness with respect to varying prior distributions and so

this situation is not desirable. There have been various attempts to alleviate the faults

of this method, one of which was introduced by Dondelinger et al. [7].
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4.2.2.2 Dondelinger et al.

Similarly to [1], Dondelinger et al [7] force an amalgamation of the two ẋ distributions

via a POE approach. However, via a slightly different consideration of the inference

procedure, they introduce a feedback mechanism from the ODEs to the GP interpolants,

essentially making the interpolant maximally consistent with the ODEs and encouraging

matching of the two gradient distributions as opposed to a delta spike at the mean.

Considering the joint distribution

p(Ẋ,X,θ,φ, γ) = p(θ)p(φ)p(γ)
∏
i

p(ẋi|X,θ,φ, γ)p(xi|φi) (4.31)

Marginalisation over ẋ becomes analytically tractable via a POE approach allowing us

to introduce the distributional contribution of the GP and the ODE. As before, the basis

of the learning problem is consideration of the integral∫
N (ẋ|m,A)N (ẋ|f(X,θ), γI)dẋ (4.32)

Where, in this scenario, the motivation is more theoretically consistent since instead of en-

couraging a matching of first moments, it encourages a matching of distributions. This is

owed to the dependence of the distribution of X on the parameters of the ODE. Marginal-

isation over Ẋ now encourages movement of both distributions towards the other, where

fit to the noisy observations discourages movement towards matching delta distributions.

By accepting movements in an MCMC procedure based on the acceptance criterion:

α = min

(
1,
π(Y,X′,θ′,φ′, γ′, σ′)

π(Y,X,θ,φ, γ, σ)

)
(4.33)

which is a standard Metropolis-Hastings acceptance criterion (see Chapter 2.2.1), the

authors ensure that acceptance of interpolant X is dependent on the parameters from

the ODEs. Therefore, implicitly, ODE parameters inform our selection of the data in-

terpolant, whereas Calderhead et al only introduce a dependency of the parameters on

the interpolant, not the converse. Nonetheless, the problem still stands that the distri-

butional dependencies on the GP interpolant necessitate resampling from the Gaussian

process posterior at each iteration of the MCMC which requires O(n3) computations.
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4.3 Accelerating True Likelihood MCMC with Fixed

Interpolant Gradient Matching

Considering the gradient matching procedures from the literature [1, 7], the presence of

random GP hyperparameters necessitates the use of a Gibbs sampling routine to sample

from the posterior distribution. If we are willing to accept a decrease in the quantification

of uncertainty, fixing the kernel hyperparameters at a maximum likelihood estimate allows

the adoption of a fixed estimate for the interpolant of the data, taken to be the mean of

the Gaussian process posterior distribution at a single time point.

x̂(τ) = k(τ, T )(k(T , T ) + σ2I)−1y (4.34)

Equalling a linear combination of the observed values, this expression acts as a linear

smoother (see Hastie and Tibshirani [57]), smoothing over the noise in the observed

values. I assume the derivative of the interpolant x̃ to be determined by the ODEs

subject to a Gaussian-distributed mismatch error with variance γ2:

dx̃

dt
∼ N (f(x̃,θ, t), γ2) (4.35)

In order to provide a fixed interpolant for the data, this distribution can then be repre-

sented by its conditional mean:

˙̂x =
dx̂

dt
= k′(t, T )(K + σ2I)−1y (4.36)

where k′(t, T ) is given by eq. 4.21. A cheaper (computational efficiency wise) alternative

to the standard gradient matching methods allows a cheap approximation of the numerical

integration likelihood function. The paradigm of fixed interpolants results in a deviation

from the formalism of Calderhead et al [1] who treat the GP and ODE gradients as random

variables and relate the dependent parameters by a POE approach (see Section 4.2.2.1).

The proposed gradient matching scheme fixes the GP hyperparameters and interpolant

based on maximum likelihood point estimates. This is computationally cheaper than

sampling from the posterior, as in [1, 7], and avoids the issue discussed by Wang and

Barber [20] since my distributional derivation no longer depends on a marginalisation

over the gradient of the interpolant. The resultant objective function for the MCMC is
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obtained as the negative log-likelihood of a standard multivariate Gaussian:

−logp̂( ˙̂x|θ) = n logγ2 +
1

2γ2

∣∣∣∣∣∣∣∣dx̂(t)

dt
− f(x̂(t),θ)

∣∣∣∣∣∣∣∣2 + C (4.37)

where ˙̂x corresponds to the gradient of the interpolant as in eq. 4.36 and || · || corresponds

to the Euclidean norm. With the introduction of a prior distribution over the parameters,

θ and mismatch term, γ, will form the posterior distribution of a Metropolis-Hastings

sampler, p(θ, γ|X̂, ˙̂
X). For the purposes of this work, the mismatch parameter γ was

assumed constant over time and across different states. However, the likelihood function

is easily adjusted in order to account for varying γ across these variables.

Considering the fixed interpolant gradient matching likelihood surface as shown for Lotka-

Volterra in Figure 4.3—a system for which periodicity leads to the multimodal exact

likelihood surface on the right of Figure 4.3—we observe the smoother likelihood surface

associated with the surrogate likelihood function. Implementation of a Gaussian process

(GP) procedure acts to constrain the space in which the signals may reside, limiting the

problems introduced by aliasing of periodic signals to the inference problem. Therefore,

efficiency gain is twofold since the surrogate likelihood function is less computationally

expensive. Equally important in Figure 4.3 is the demonstration of the realignment of the

likelihood that is introduced when using the surrogate likelihood function. This suggests

that, rather than treating the gradient matching method as a replacement for the brute

force numerical integration approach, we could use gradient matching to provide a better

initialisation for the expensive MCMC sampler, leading to a reduction in the number of

required numerical integrations of the ODEs. As such, the gradient matching likelihood

function is only used in an MCMC burn-in phase to provide a more informative initial

distribution for the expensive MCMC sampler, without introducing increased bias to the

final parameter samples.

Consideration of the mismatch between the distributions leads to the proposal of a mul-

tiphase parameter inference scheme with a burn-in phase that implements a surrogate

likelihood function. Introduction of a corrective phase allows the algorithm to correct for

bias that is introduced by the burn-in phase, limiting the inaccuracy in the final posterior

samples. These phases are now outlined, implementing a PSRF ladder in the algorithm

with the target PSRF decreasing as the algorithm progresses. This allows a sufficient

number of samples to be obtained at each phase, enabling a representative sample from

the distribution.
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Figure 4.3: Considering the surrogate likelihood surface and the likelihood surface
of the expensive true likelihood, we notice a realignment that introduces bias to the

MCMC sampling procedure.

Surrogate burn-in phase

Begin with a surrogate burn-in phase initiated from some initial point in parameter space.

This phase is continued until some target PSRF value is achieved or until some maximum

number of MCMC steps have been performed. The numerical efficiency and smoothness

of likelihood of the gradient matching approach enables fast convergence to a region close

to the true stationary distribution. Effectively, we estimate the mean of the true posterior

distribution in our burn-in phase, preventing the MCMC sampler from taking the ”easier

route” and just sampling high levels of noise variance such that there is extra flexibility

in the fit of the signal to the observations. Although the surrogate burn-in is efficient

and reduces variance in the MCMC, the approximation of the true likelihood introduces

bias to the sampling scheme as displayed in Figure 4.3 and so we must correct for the

introduced bias in a corrective phase of the algorithm.

Corrective phase

Beginning from the last point sampled in surrogate space, fix the parameters and sample

the noise variance parameter for 200 steps, initiated at some estimate obtained during the

smoothing process. This allows the ODE parameter samples to become consistent with

the noise variance estimate from the GP. Beginning from the 200th parameter sample

from this precorrective phase and the GP gaussian noise estimate, sample using the

exact likelihood until a target PSRF value PSRF2 is achieved or a preselected number

of corrective steps Ncorr, have been performed. The effect of this phase is presented in

Figure 4.4, where observe the correction for the bias introduced in the samples obtained

during the surrogate burn-in phase.
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Sampling phase

The MCMC steps performed until now have only been used to drive us towards the correct

stationary distribution. We may now initiate a sampling phase at the last sampled point

from the corrective phase. The sampling phase is continued until a target PSRF value,

PSRF3 is reached or some number of steps, Nsamp have been completed. The samples

collected here will represent our samples from the posterior distribution for the parameters

of the ODEs.

Ergodicity of this algorithm rests solely on ergodicity of the sampling phase since this is

the only stage at which samples are retained Therefore, ergodicity is dependent on the

choice of sampling MCMC method at this stage of the algorithm. Adopting the DRAM

sampling method, I refer the reader to the literature [33] for a proof of ergodicity of

the algorithm. In Algorithm 3, I outline pseudocode for the three-phase scheme while

adopting the following nomenclature where A ∧B = min(A,B):

A1(θ, γ;θ′, γ′) = 1 ∧ p̂(
˙̂x|θ′, γ′)π(θ′)π(γ′)q̂(θ, γ|θ′, γ′)
p̂( ˙̂x|θ, γ)π(θ)π(γ)q̂(θ′, γ′|θ, γ)

(4.38)

A2(θ, σ;θ′, σ′) = 1 ∧ p(y|θ
′, σ′)π(θ′)π(σ2′)q(θ, σ|θ′, σ′)

p(y|θ, σ)π(θ)π(σ2)q(θ′, σ′|θ, σ)
(4.39)

where p, p̂ are the exact and surrogate likelihoods, π is a prior and q, q̂ are Gaussian

proposal distributions with adaptive covariance.

4.4 Variations of the Multiphase Sampling Scheme

We have seen that various problems are posed by the problem of parameter inference in

ODEs. As such, it would be naive the implement one variant of the multi-phase scheme

and assume this is a best use of the methods outlined so far. For this reason, some

variations of this multi-phase approach have been implemented for simulations in the

thesis. In some cases, these aim to improve the standard multiphase approach. In others,

the variations on implementation allow an attempt at improving the overall scheme.
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Figure 4.4: Considering the justification for a corrective phase in the proposed scheme.
The top row shows the corrective phase on a global and zoomed scale allowing us to
see the correction in distribution introduced by the corrective phase. The bottom row
gives the sampling phase where, after the corrective phase, we can sample from the

correct stationary distribution.

4.4.1 Multi-Phase Approach with a Selection of Interpolant

In some situations, particularly when observations have high levels of noise, the ML hy-

perparameters may not provide a GP posterior mean that gives a suitable approximation

to the underlying signal. In these cases, I make use of a pool of interpolants from which

one can sample to determine a surrogate landscape in a pooled surrogate burn-in phase.

The idea is to find multiple interpolants at different lengthscale values in the GP. Then,

we may find samples in each of the different surrogate landscapes and, after some burn-in

period, take the mean of the sampled values to give a representation of the mode of the

surrogate space. Evaluating the true likelihood at each of these point estimates provides

an idea of the level of similarity between the two distributions. This stage can be par-

allelised, leading to a fairly insignificant computational cost. We then perform a finite

state MCMC over the means, choosing between the interpolant pairs based on the true

likelihood value. Alternatively, we could just choose the new interpolant based on that

which gives the lowest exact likelihood value.
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Algorithm 3 Multi-phase MCMC Sampling

1: Assign initial parameters θ0 and select cheap surrogate likelihood function p̂( ˙̂x|θ, γ),
an approximation of p(y|θ, σ) (our computationally expensive likelihood function).

2: repeat
3: Sample θt and γt from q̂(θt, γt|θt−1, γt−1).
4: Accept proposed point based on A1(θ, γ;θ′, γ′)
5: until PSRF1 or Nsurr reached
6: repeat
7: Beginning from the last point sampled in surrogate space, keep σ2 fixed at some

estimate and sample θt from q(θt|θt−1).
8: Accept proposed point based on A2(θ, σ;θ′, σ)
9: until Until Npre reached

10: repeat
11: Beginning from the last point sampled in the pre-corrective phase, sample θt and

σt from q(θt, σt|θt−1, σt−1).
12: Accept proposed point based on A2(θ, σ;θ′, σ′)
13: until PSRF2 or Ncorr reached
14: repeat
15: Beginning from the last point sampled in corrective phase, sample θt and σt from

some proposal distribution q(θt, σt|θt−1, σt−1) (this will differ from those of the
previous two phases).

16: Accept proposed point based on A2(θ, σ;θ′, σ′)
17: until PSRF3 or Nsamp reached

4.4.2 Multi-Phase Approach with Alternative Norm

Taking inspiration from the literature [1], I propose the use of an alternative likelihood

in which the distance metric is similar to the Mahalanobis distance measure. This leads

to a posterior distribution of the form:

p(θ|X̂) ∝ π(θ)π(γ)∏
nF(γn)

exp

{
− 1

2

∑
n

((dx̂n
dt
− fn(X̂,θ)

)T
(An + γI)−1

(dx̂n
dt
− fn(X̂,θ

))}
(4.40)

where x̂ is the smooth interpolant; π(θ) and π(γ) correspond to prior distributions over

the parameters of the ODE and the mismatch parameter; An = K′′n −K′nK
−1
n
′Kn where

K′′n,K
′
n and ′Kn are as defined in eqs.4.21-4.23 and F(γn) =

√
|2π(An + γI)|. Contrast-

ing with the method outlined in Section 4.2.2.1, we no longer have a sampled hyperparam-

eter and so all K and A matrices are constant. One would anticipate a realignment of the

posterior distribution caused by this change in distance measure. However, it remains to

be seen whether this will allow improved matching with the exact posterior distribution.



Chapter 4. Fixed Interpolant Gradient Matching 62

In additional, there will of course be a computational cost involved in the inversion of

large matrices at each stage of the algorithm.

4.4.3 Delayed Acceptance Metropolis-Hastings

In Section 2.2.4, I outlined the method of Sherlock et al. [17]. For one of the comparisons

presented in this thesis, this algorithm will be used for sampling in a two-phase scheme

where there is a burn in phase in surrogate space that drives the sampler towards the

true stationary distribution. This time, there is no need for a corrective phase as this

would then negate the effect of the filter step in the DAMH method. Therefore, the

algorithm begins to sample using Delayed Acceptance Metropolis-Hastings following the

surrogate burn-in where the cheap distribution for the initial proposal is given by the

gradient matching function from eq. 4.37.

For optimal use of the DAMH algorithm, we would hope for a surrogate distribution,

p̂(θ) that, in a topological sense, matches well with the true distribution. This does not

only require matching of the minima, but also a fairly strong correspondence between

the tails of the two distributions. In reality, this is often not the case, and so we now

consider the problems encountered in two contrasting scenarios. Firstly, consider the

case of a surrogate distribution where the tails are more weighted than the tails of the

true distribution. The second acceptance criterion, α2 should be able to filter out any

steps that, despite representing the surrogate distribution, are a poor sample from the

true distribution. However, heavier tails in the surrogate mean that a higher proportion

of proposals will pass through our initial filter stage and so the gain in computational

efficiency becomes less significant as the tails widen. The second inconsistency results

when we have short tails in the surrogate distribution relative to the true distribution

(or indeed a realignment as shown in Figure 4.3) the method becomes inefficient as the

sampled points give an underrepresentation of the uncertainty in the parameter value.
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Empirical Method Comparison

When comparing different parameter inference schemes in ODEs, it is important that

we consider the performance of the inference scheme in both parameter space and func-

tion space. As well as providing a diagnostic of non-identifiability, good performance

in parameter space may not correspond to successful inference in function space since

points lying close in parameter space may lie far apart in function space. Function space

performance is assessed using functional RMS:

RMSfunc =

√√√√ 1

n

n∑
i=1

‖x− x̂i‖2 (5.1)

where x is the signal at the true parameter values and x̂i is an estimate of the signal at the

ith parameter sample from the posterior distribution. For parameter space comparison,

bias in the samples is obtained by subtracting the true parameter values from the posterior

samples.

Assuming no bound on the computation time, the best method amongst those considered

in this thesis for parameter inference in ODEs will inevitably be one of population MCMC

or DRAM with the exact likelihood function, since these account for the true likelihood

at all points of their sampling instead of just in the post burn in portion of the algorithm.

However, one would expect that these methods will be far more computationally expensive

than the method proposed in this thesis. As a result, we must consider the performance

of different algorithms in terms of accuracy relative to the computational cost associated

with their use where computational complexity can be assessed using the number of

numerical integrations of the ODEs since the surrogate likelihood evaluations involve

minimal computational burden.

63
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In addition to a comparison with the standard methods, I also consider the comparison of

the various implementations of the surrogate likelihood, allowing consideration of the op-

timal implementation of the fixed interpolant in the MCMC procedure. The methods to

be compared are as described in Chapter 2. Namely, the proposed multi-phase approach

with DRAM sampling (propDRAM) using the standard Euclidean norm, proposed multi-

phase approach with DAMH sampling (propDAMH), population MCMC using the exact

likelihood (popMCMC) and DRAM with the exact likelihood. The different abbrevia-

tions used, as well as their descriptions, are found in Table 5.1. This can be referred to

for the nomenclature adopted in the final two chapters. Comparison studies are carried

Table 5.1: Abbreviations used throughout this results section.

Abbreviation Description

PropDRAM Three-phase proposed scheme with DRAM sampling using the expen-
sive, exact, likelihood function.

PopMCMC Population Markov Chain Monte Carlo with expensive likelihood func-
tion.

DRAM Delayed Rejection Adaptive Metropolis with expensive likelihood func-
tion.

PropDAMH Two-phase scheme with surrogate burn-in phase followed by Delayed
Acceptance Metropolis Hastings sampling phase.

out for fixed parameters sets in each ODE example outlined in Chapter 3 where I demon-

strated that these parameter configurations provided sufficient coverage of the difficulties

encountered in parameter inference for nonlinear ODEs.

5.1 Sampling from Multiple Posteriors from Multi-

ple Datasets

I wish to assess the performance of the method through a simulation study, providing

confidence in good performance in the presence of real observed data. Given the depen-

dence of the method on the ability to find a smooth interpolant for the data, I consider

the performance of the method on ten different datasets each generated from the four

Differential Equation models outlined in Chapter 3. This method of sampling param-

eter values and representation of results appears to be a hybrid of the Frequentist and

Bayesian approaches and as such this requires more explanation.

The Bayesian approach is to condition inference on the data that have been measured

or observed and to get the posterior distribution. However, since data can be generated
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synthetically, we can easily get a whole ensemble of data. This seems to lend itself

to a frequentist paradigm: choose an estimator, say the conditional mean, and then

obtain the distribution of the estimates over all the synthetic data sets. While this is

methodologically consistent (within the frequentist paradigm), it requires the mapping

of a posterior distribution to a classical point estimate, which incurs an inevitable loss of

information (as discussed in Section 2.1.1).

The approach proposed in this thesis uses a combination of both paradigms: For each

data set, I infer the Bayesian posterior distribution, and then combine all posterior dis-

tributions over all data sets thus obtained into a super distribution. For instance, when

carrying out Bayesian inference with MCMC, the super distribution is the union of all

individual MCMC samples. Intuitively this approach avoids the information loss inherent

in the frequentist textbook paradigm.

Consider a data set obtained by numerically solving the differential equations, D0, cor-

rupted with additive noise: D = D0 + ε. In the limit of averaging over an infinite number

of such data sets we get:

1

M

M∑
i=1

p(θ|Di)→
∫
p(θ|D)p(D)dD

=

∫
p(θ|D0 + ε)p(ε)dε Since D0 is deterministic.

=

∫
p(θ, ε|D0)dε

= p(θ|D0)

So the combination of all data sets has removed the influence of the noise (conditioning

on D0 rather than D). In that way, the bias has been reduced and the results are more

representative (rather than merely reflecting potential idiosyncrasies of one particular

data set). Note, though, that as a consequence of the integration the variance might have

increased.

For clarification, consider the example in which we observe a noise corrupted version of

a quantity of interest:

D = θ + ε
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where ε is iid noise drawn from N (0, σ2). Given the data D and assuming a uniform prior

on θ, the posterior distribution is given by

p(θ|D) = N (θ|D, σ2).

Now, assume that we have a large ensemble of data subject to the same noise corrup-

tion: D ∼ N (θ0, σ
2). By the law of large numbers, averaging the posterior distribution

converges to: ∫
p(θ|D)p(D)dD =

∫
N (θ|D, σ2)N (D|θ0, σ

2)dD

Where θ0 is the true parameter and θ is the inferred parameter. The integral above

has solution N (θ|θ0, 2σ
2). To emphasise what this example shows, standard Bayesian

inference on one data set, D, gives the posterior distribution N(θ|D, σ2). The approach

in this thesis, based on averaging the posterior distributions over all data sets, gives

the posterior distribution N(θ|θ0, 2σ
2). This shows that the bias has been reduced (the

distribution is now conditional on the true parameter θ0, not the noisy observation D),

whereas the uncertainty has increased (the variance is twice as large as before).

To summarise, the procedure shows the representative performance of the estimator with-

out being misled by any potential idiosyncrasies of one particular dataset (conditioning

on θ0 rather than D) while capturing the uncertainty inherent in the data generation

(increased variance). In textbook Bayesian inference, we would combine all data sets to

obtain the posterior p(θ|D1, , DM), with reduced bias and reduced variance. However, the

aim of the procedure is not to improve the estimator. The data come from a synthetic

benchmark study with known ground truth; so, we know the parameters already and

there is no need for estimation. The objective of this study is to quantify the typical

inference accuracy and uncertainty of the estimator applied to a data set of size |D|.
For that reason, the data sets are not combined in the textbook Bayesian sense, but the

posterior distributions are combined, as described above.

5.2 Comparison with Standard Methods

Table 5.2 below gives a summary of the convergence of each of the four methods across

the four different ODE systems. Considering all four methods, only the three-phase pro-

posed scheme is able to converge in all four cases. As is shown in the proceeding sections,
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lack of convergence does not necessarily correspond to poor estimative properties. Par-

ticularly in the population MCMC case, this may be a result of the default settings of

the algorithm being suboptimal and could potentially be improved in extensive further

explorative simulations (which were beyond the remit and time frame of my project).

The remainder of this section presents more detailed comparisons of parameter inference

Table 5.2: Indicating whether or not the four methods were able to achieve a PSRF
value of 1.01 in the four benchmark ODE systems.

ODE System LV FHN GO STC

PropDRAM X X X X
PopMCMC X X X X

DRAM X X X X
PropDAMH X X X X

method performance for each of the four benchmark ODE systems.

5.2.1 Lotka-Volterra

For the purpose of this study, parameter values were chosen to allow sufficient periodicity

in the resultant ODE signals. Setting α = 0 .76 , β = 0 .5 , γ = 0 .4 and δ = 0 .3 produced

signals as shown in Figure 3.1 where observations are simulated at regular one unit

intervals between 0 and 100. This parameter configuration will be used for all comparisons

in the Lotka-Volterra system. In addition, for the noisy observations, I add Gaussian noise

with noise variance selected to provide an average signal-to-noise ratio (SNR) equal to

10. We have seen previously, for two dimensions, (Figure 3.6) the difficulties that are

present in the inference procedure for this system. Considering Figure 5.1, the inability

of the exact DRAM approach to obtain accurate ODE parameter estimates is evidenced

by the high levels of bias in the parameter samples. Meanwhile, the proposed method

with DRAM sampling and population MCMC are able to accurately infer the parameter

values. Given that my aim is to compare the performance of the proposed scheme against

the other methods, the difference in absolute bias between the proposed method and the

other three approaches is plotted in Figure 5.2. This time, y-axis is constrained to prevent

the dominating effect of the DRAM samples, enabling better comparison of performance

against population MCMC and the two-phase approach with DAMH sampling. Despite

the lack of convergence of population MCMC and DAMH (indicated in Table 5.2), the

performance in parameter space is similar to that of the three-phase scheme.
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Considering performance in function space in Figure 5.3, I provide only the difference

in function space performance between the methods. It appears that the performance

in function space of the the proposed scheme is similar to that of population MCMC

and vulnerability of DRAM to local optima is indicated by large functional RMS values

(compared with those of the three-phase scheme). An interesting observation is the exis-

tence of outlying values in function space obtained using the DAMH method. These were

less apparent in the parameter space and suggest convergence to a local optimum close

to the global optimum, providing an example where good parameter space performance

does not lead to good performance in function space. Computational complexity in-

volved in the four methods can be compared using the number of numerical integrations

of the ODEs since the surrogate likelihood evaluations involve minimal computational

burden. In Figure 5.4, we consider the difference in number of numerical integrations of

the three benchmark methods compared with my proposed scheme. As expected, popula-

tion MCMC and DRAM require a far greater number of evaluations of the ODE system.

The number of numerical integrations required in the DAMH method is similar to that

of the proposed scheme due to the lack of convergence when using the DAMH scheme.

Figure 5.1: Bias from posterior samples using each of the four alternative methods
for inference in the Lotka-Volterra model. A=propDRAM, B=popMCMC, C=DRAM

and D=propDAMH. The dashed line corresponds to a bias equal to zero.
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Figure 5.2: Difference in absolute bias using the three-phase proposed scheme com-
pared with the three other methods for obtaining samples from the Lotka-Volterra
model. Values above the dashed line at zero correspond to higher level of bias in the

three-phase proposed method.

Figure 5.3: Difference in function space performance for each of the methods in the
Lotka-Volterra model. This corresponds to determining the functional RMS for each
of the posterior samples and then taking the difference between these values for the

proposed scheme compared with the other three methods.
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Figure 5.4: Difference in number of numerical integrations performed in the three-
phase proposed method compared with the three other methods for inference in the
Lotka-Volterra system. The proposed scheme requires the lowest number of integration

steps in order to achieve the target PSRF value.

5.2.2 Goodwin Oscillator

Following the work of Girolami et al [50], I adopt parameter values k1 = 72, k2 = 1, k3 =

2, k4 = 1 and k5 = 1. Measurements are simulated at 0.5-time intervals over the range

from 0 to 60 with added Gaussian noise with variance equal to 0.5. Performance of the

different methods for the Goodwin Oscillator ODEs can be considered in a similar man-

ner to the Lotka-Volterra equations. This system proves to be less challenging than the

Lotka-Volterra case. However, periodicity in the data still presents some multimodality

in the likelihood surface (see Figure 5.5), leading to a reputation as a challenging learning

problem. Considering the performance in parameter space via the bias in the posterior

samples in Figure 5.6, we notice similar performance of population MCMC and DRAM

to that observed in the Lotka-Volterra model as population MCMC converges to the sta-

tionary distribution and obtains accurate parameter samples. Meanwhile, DRAM fails

to evade the local optima leading to a lack of convergence and some outlying parame-

ter samples. Performance of the DAMH method is similar in this case to the proposed

method, owing to the improved alignment of the surrogate likelihood and the true like-

lihood. However, Figure 5.9 shows that the number of numerical solutions required in

the DAMH algorithm tends to be greater than that required to obtain convergence in
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Figure 5.5: Negative log likelihood surface of the Goodwin Oscillator over parameters
k3 and k4. We notice the multimodality of the surface which leads to a challenging

learning problem. The red point is the true parameter value.

the three-phase scheme. In this case, this is a result of the heavier tails in the surrogate

distribution which lead to a lack of discrimination against poorer fitting parameter config-

urations. Therefore, the implementation of the DAMH algorithm moves closer to that of

the proposed method with DRAM sampling, even for the few datasets where convergence

was achieved before the maximum number of steps had been performed.

5.2.3 FitzHugh-Nagumo

I take inspiration from the work of Ramsey et al. [6] and assume parameter values

α = β = 0 .2 , γ = 3 and noise variance equal to 0.25 (this variance is the larger of the

two observation noise variances adopted by Campbell and Steele [36]). Initial values were

set to (V=-1, R=1) and observations were simulated at intervals of length 0.2 between

0 and 20. Through consideration of two-dimensional contour plots (the α− β likelihood

space is in Figure 5.10 and α−γ is in Figure 6.3), we can confirm that local optima are not

as prevalent on the likelihood surface as in the previous two cases, but as before, DRAM

is unsuccessful in converging to the stationary distribution as presented by some outlying

values in the posterior bias plots in Figure 5.11. The boxplots in Figure 5.12 present the

similarities between the results of population MCMC and the proposed scheme. DRAM
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Figure 5.6: Bias in posterior sample for the four different methods in the Good-
win Oscillator model. A=propDRAM, B=popMCMC, C=DRAM and D=propDAMH.
The proposed scheme, population MCMC and DAMH with surrogate burn-in perform

similarly. DRAM is poor due to local optima and lack of mixing.

Figure 5.7: Difference in absolute bias between the three-phase proposed scheme and
the other methods for the Goodwin Oscillator. This shows the similar performance of
DAMH with surrogate burn-in and population MCMC compared with the proposed

method which vastly outperforms exact likelihood DRAM sampling.
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Figure 5.8: Difference in functional RMS of the posterior samples from the Goodwin
Oscillator using the three methods compared with the proposed scheme. The perfor-
mance of the proposed method is similar to that of population MCMC and DAMH with

surrogate burn-in. DRAM, however, gets trapped in local optima.

Figure 5.9: Difference in number of numerical integration steps required in the pro-
posed scheme and the three alternative approaches.

is again the worst performing sampler. Despite being unable to converge, DAMH sam-

pling with a surrogate burn-in phase performs similarly to the three-phase approach.
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Again, consideration of the number of numerical integrations performed shows us that

the DAMH sampler requires similar computational complexity to the three-phase scheme

thus defeating its purpose as a more efficient sampling routine. Population MCMC and

DRAM both require a far greater number of computational integration steps than the

proposed method.

Figure 5.10: Negative log likelihood for the FitzHugh-Nagumo system with γ fixed.
We notice that the likelihood surface is less multimodal than in previous examples.

5.2.4 Signal Transduction Cascade

The parameter configuration used takes inspiration from the literature [7], setting the

parameters as follows: k1 = 0.07, k2 = 0.6, k3 = 0.05, k4 = 0.3, V = 0.017 and Km = 0.3.

For compliance with parameter identifiability, the parameter Km is assumed known and

so this parameter is fixed at its true value leaving a parameter space of dimension 6. A

total of 20 equally spaced measurements were simulated between times 0 and 10. By

consideration of two-dimensional likelihood surfaces (one of which was shown on the

right of Figure 3.10), we observe that this model appears to have the least multimodal

likelihood surface. Given this topological observation, one would postulate there being

less of an advantage in adopting a parallel scheme, such as population MCMC, for this

particular example. Indeed, there are other problems encountered with this system that

further weaken the use of population MCMC.
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Figure 5.11: Boxplot giving bias in posterior samples for the four methods performing
inference in the FitzHugh-Nagumo model. A=propDRAM, B=popMCMC, C=DRAM
and D=propDAMH. Again we observe a tendency for DRAM to become trapped in

local optima.

Figure 5.12: Difference in absolute bias of posterior samples obtained using the pro-
posed scheme and the three other methods for the FitzHugh-Nagumo system. We
observe similar performance of the proposed scheme, population MCMC and DAMH

but DRAM struggles due to lack of convergence.
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Figure 5.13: Difference between function space performance of the proposed scheme
and the benchmark sampling methods in the FitzHugh-Nagumo model. The proposed
method performs similarly to population MCMC and outperforms the other two meth-

ods.

Figure 5.14: Difference between the number of numerical integrations required in
the proposed scheme and the three comparison methods. We see that the three-phase
proposed method requires the smallest number of computationally expensive numerical

integration steps.
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The boxplots in Figure 5.15 appear to display some identifiability issues with the k2− k3

parameters and the plot on the left of Figure 5.19 indeed confirms some weak identifia-

bility. Considering the bias displayed in Figure 5.19, it appears that performance of the

proposed method and population MCMC are similar in terms of accuracy. However, we

observe in Figure 5.18 that, for the proposed method, these similar levels of accuracy

are achieved in a far smaller number of numerical integration steps. On this occasion, I

choose to give both functional RMS and difference in functional RMS boxplots in Fig-

ure 5.17, allowing us to investigate the existence of identifiability issues in the inference

problem. Indeed, when one considers the plot on the left of Figure 5.19, the suspicion

is matched by an apparent relationship between the two parameters in question which

can be confirmed by fitting a linear regression model to the samples of these parameters.

Resultantly, it is important to assess the ability of the methods to infer the ratio of the

parameters, k3/k2 and this is shown in the boxplot of Figure 5.19. The inference appears

to have been more successful this time, and there is an obvious improvement in inference

when we adopt an adaptive scheme as opposed to population MCMC.

Figure 5.15: The bias in the posterior samples for each of the four methods perform-
ing parameter inference for the Signal Transduction Cascade where A=propDRAM,
B=popMCMC, C=DRAM and D=propDAMH. It seems that the proposed method
performs similarly to the others for parameter inference in this model but it looks like

an identifiability issue may exist between parameters k2 and k3.
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Figure 5.16: Difference between the absolute posterior sample bias for the three-phase
method compared with the other 3 schemes sampling from the posterior parameter
distribution of the signal transduction cascade. In this case, the proposed scheme

seems to be more accurate than the other three methods.

Figure 5.17: Left: Functional RMS corresponding to parameter samples obtained
from posterior parameter space of the signal transduction cascade using each method.
Despite seemingly poor performance in parameter space, all methods appear to perform
well in function space (suggesting some sort of identifiability issue). Right: Difference
in functional RMS value between three-phase proposed scheme and the other methods

we have considered.

5.3 Other Comparisons

5.3.1 Unknown Initial Conditions

The assumption of unknown initial conditions increases the dimension of the parameter

space as these are effectively treated as extra free parameters in the inference problem.
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Figure 5.18: Left: Number of numerical integration steps attempted by the four dif-
ferent methods for parameter inference in the STC model. The three-phase method
requires the lowest number of steps of the three considered approaches. Right: Differ-
ence between number of numerical integrations carried out in the three-phase scheme,
DRAM and the two-phase scheme with DAMH sampling. Values greater than zero
show that less numerical integrations have been attempted in the three-phase scheme.

Figure 5.19: Left: Presenting the weak identifiability problem that exists between
parameters k2 and k3 by plotting posterior samples of these parameters against one
another. Right: Posterior bias of samples where we instead attempt to infer the ratio
k3/k2. The inference appears more successful and we observe the improvement of
adaptive algorithms, DRAM and the three-phase proposed method, over population

MCMC.

These present a new challenge since in order to infer the parameters one must first infer the

initial conditions which introduce added local optima to the likelihood surface. One would

anticipate these initial conditions having more of an effect on the standard procedures

than my proposed scheme since these are smoothed over in the initial burn in phase

where the sampler is driven towards the correct stationary distribution, allowing us to

better infer the initial conditions of the ODEs. Due to time restrictions, I chose to only

assess the performance of the algorithms with unknown initial conditions for the Goodwin

Oscillator model (of the models considered with multimodal likelihood surfaces, this had
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the smallest difference in performance of the three different algorithms), but I would

anticipate similar effects on the different inference schemes for the alternative models

too. I will consider two priors with different levels of dispersion. The less informative

given by a unif(−50, 50) distribution and the more informative a unif(−20, 20). In both

cases, I assume no knowledge of the initial conditions and so I sample the starting value

from the prior distribution.

Figure 5.20 presents the bias in the posterior samples when adopting the more informative

uniform prior. As expected, there appears to be more of an influence on the traditional

DRAM approach. However, it appears to fairly accurately estimate the parameters in the

ODE despite its lack of ability to consistently infer the correct initial conditions. This

suggests the existence of system initialisations that provide a signal with reasonable fit

to the true signal at similar parameter values. Or, expressed differently, the system is

robust to changes in initial conditions. Interestingly, it appears that the DAMH method

underestimates the observational noise variance by an order greater than 10.

Figure 5.21 allows consideration of the performance of the four algorithms with a more

uninformative uniform prior. Here we notice a fairly large difference in the performance

of DRAM as it becomes trapped in an even larger number of local optima due to the

increased range of support of the initial conditions. The effect this has on the three-phase

proposed scheme and population MCMC is fairly minimal. The performance of DAMH

is similar to before, where again the sampler seems to underestimate the observational

noise variance. Given the recurrence of this mis-estimation, it will be worth discussing in

the following chapter.

5.3.2 Alternative Distance Metric

As discussed in section 4.4.2, it is worth considering performance of the multiphase ap-

proach with an alternative distance measure that is motivated by the literature [1]. Per-

formance will be compared in both the surrogate phase and sample phase. Results are

given for the Goodwin Oscillator where, although we observe good accuracy, there is a

lack of convergence due to the low acceptance rate observed in the surrogate burn-in

phase. Viewing the plot on the left of Figure 5.22, we observe slight deterioration in

accuracy of measurement of the noise variance parameter, but there seems to be little

difference in accuracy of inference for the parameters of the ODE. In Figure 5.23, I con-

sider the bias in the surrogate samples with and without the alternative distance metric.

There is little difference in the parameter inference accuracy but, as previously discussed,
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Figure 5.20: Sample bias for each of the four sampling methods in the Goodwin
Oscillator with a more informative uniform prior on the unknown initial conditions.
A, B, C and D have the same meaning as in Figure 5.15. The increased dimension in
parameter space appears to be less problematic in the case of the proposed scheme and

population MCMC.

Figure 5.21: Sample bias for each of the four sampling methods in the Goodwin
Oscillator with a more uninformative prior on the unknown initial conditions. A, B, C
and D have the same meaning as in Figure 5.15. The increased dimension in parameter
space appears to be less problematic in the case of the proposed scheme and population

MCMC.
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there is a tendency for the mismatch parameter to become as small as computationally

possible (given in the informative prior) in the case of the alternative distance metric.

Figure 5.22: Left: Bias of samples using the three-phase approach with the alternative
metric from [1] (Metric) and using the standard Euclidean norm (standard). Right:
Comparing the bias in the posterior samples of both methods by taking the difference
of absolute bias. Values lower than zero indicate more accurate inference using the

standard method.

Figure 5.23: Surrogate samples in the burn-in phase where I adopt the surrogate
likelihood with the alternative distance metric and without the alternative distance
metric. Notice the tendency for the mismatch to become as small as possible in the

case of the alternative distance metric.
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Discussion and Conclusion

6.1 Discussion

6.1.1 Multi-Phase Approach versus Traditional Methods

Traditionally, parameter inference in nonlinear ODEs relies on an ability to numerically

solve the system of equations in order to sample from the posterior distribution of the

parameters. However, as discussed in this thesis, there are various properties of the re-

sultant likelihood that make this function flawed as an objective function in our MCMC

schemes. Considering the argument of Korattikara et al [58], the multiphase approach is

optimal (amongst the considered algorithms) in minimising the error of the MCMC sam-

ples (error here refers to bias and variance of the MCMC samples). Whereas limitations

of approximation lead to increased bias in the posterior samples of gradient matching

methods, the multiphase approach presented here negates this bias by in fact sampling

using the exact likelihood function. The standard numerical integration approaches are

limited by time constraints (population MCMC) and multimodality (DRAM) and so in-

creased variance of our samples is introduced by an inability to take a sufficient number of

samples from the posterior distribution. However, the gradient matching burn-in drives

us towards the true distribution with no expense of increased bias or variance.

The proposed method is limited by a reliance on being able to find a good interpolant to

the data. This is particularly problematic in the case of Lotka-Volterra for reasons that

were discussed in Section 4.1.2 as choice of lengthscale hyperparameter is influenced by a

trade off between accounting for the amplitude of the signal and providing a sufficiently

83
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smooth representation at the peaks and troughs. Unfortunately, the fixed interpolant had

a tendency to overfit the noisy observations in order to fully account for the amplitude of

the signal. Resultantly, we had to take the ad hoc approach of sampling multiple inter-

polants and selecting the choice of interpolant based on the average true likelihood value

of samples from the surrogate space. This has proven to work well for the case of Lotka-

Volterra as we observe in Table 6.1 where we indicate convergence in the corrective phase

with the initial ML interpolant in the first row (60% convergence) and the convergence

after selection of interpolant in row 2 (100% convergence). It is important to note that

this method may be less successful in models where we have a greater number of variables

in the system. For instance, in the signal transduction cascade equations, 10 interpolants

for each variable would require 105 different interpolant evaluations which may not be

feasible (although, on a computing cluster, this would be equivalent to 1000 evaluations

if we have 100 parallel processes). It would be more appealing and generalisable to find

a method of sampling the interpolants at each step in the MCMC at acceptable com-

putational cost, but it remains to be seen how we would choose to pick one surrogate

space over another given that our choice is not necessarily motivated by minimisation

of a surrogate likelihood but instead by alignment of the surrogate likelihood with the

true likelihood. In other words, we wish to have good alignment of the minimum values.

Consideration of this argument and the unimodality of the gradient matching likelihood

surface, it makes sense that we select based on the mean of our samples from the surro-

gate space rather than wasting computational resources on estimating the true likelihood

of all samples from each interpolant pair. Finally, the major problem with the method

proposed here is the requirement of initial conditions. Without these, we are not able

to assess the true likelihood for each individual surrogate space. Table 6.1 gives the ef-

fect of this added interpolant choosing phase on the ability to achieve the target PSRF

value of 1.05. In Figure 5.1, we observed the tendency for DRAM to fail to converge

when sampling parameter values for the Lotka-Volterra showing the vulnerability of the

DRAM algorithm to the local optima that the surrogate burn-in allows us to avoid. This

multimodality influenced the inclusion of population MCMC in the comparison where

despite consistent accuracy across different models, the substantial computational cost

makes this method less applicable in more complex differential equation systems.

Comparing performance of the different algorithms across the four models, we have ob-

served the consistent good performance of the proposed scheme compared with the other

methods. A summary of the accuracy and computational efficiency is provided by the

plots in Figure 6.2, RMS in parameter space is plotted against the average number of

numerical integrations performed. It was mentioned previously that the aim with ODE
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Table 6.1: Indicating convergence in the corrective phase of the three phase proposed
scheme on the Lotka-Volterra model. The first row corresponds to convergence after
surrogate burn-in in the Maximum Likelihood surrogate space. The second row cor-
responds to convergence once we have performed a surrogate burn-in in the surrogate

phase chosen by assessing the true likelihood value of the surrogate space.

Dataset 1 2 3 4 5 6 7 8 9 10
Achieve PSRF=1.05 X X X X X X X X X X

Achieve PSRF 1.05 after interpolant selection X X X X X X X X X X

parameter inference is to accurately and efficiently infer the parameters of the systems,

the simulations performed show the similar accuracy of the population MCMC and the

proposed three phase scheme with a vast improvement in computational efficiency when

we consider the multi-phase scheme. Additionally, use of population MCMC makes it dif-

ficult to include an adaptive component in the sampler and so it becomes more difficult to

achieve convergence, especially in cases like the Signal Transduction Cascade where the

optimum of the likelihood is very wide. This is even more of an issue in the signal trans-

duction cascade, for which Figure 5.19 shows the definite improvement of the proposed

scheme compared with population MCMC. The FitzHugh-Nagumo model proved to be a

relatively easy learning task with our system configuration and level of noise, mainly due

to a lack of local optima on the likelihood surface and the subsequent ease of convergence

to the stationary distribution. Considering the notoriously difficult problem of parameter

inference for the Goodwin Oscillator model (likelihood surface shown in Figure 5.5) is

known to be a notoriously difficult learning problem due to the large number of local

optima present on the surface of the likelihood. However, this proved to not be much of a

challenge for the proposed scheme and population MCMC. Considering the performance

in function space, we give a summary by way of a plot of functional RMS versus the

number of numerical integrations required.

Considering the indication of convergence from Table 5.2 in tandem with the accuracy

of the methods, it is interesting to observe the high level of accuracy of methods such

as population MCMC and DAMH with surrogate burn-in despite the occasional inabil-

ity to converge to the stationary distribution. In the case of population MCMC, this

is best witnessed by performance for the Lotka-Volterra model where we saw lack of

convergence (Table 5.2 and Figure 5.1). This may be due to the default settings of the

algorithm parameters (as mentioned previously, requirement of extensive tuning is one

of the drawbacks of the algorithm). This property of DAMH is best witnessed in the

FitzHugh-Nagumo model by considering Table 5.2 and Figure 5.11. In Figure 6.3, I

present the problem faced using DAMH for inference in the FitzHugh-Nagumo model. A
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Figure 6.1: Plots of RMS value versus numerical integrations for each of the methods
across each of the different ODE models. Good performance would be signified by a
method appearing in the bottom left corner of a plot (with the exception of the STC
model). The three-phase proposed scheme is the only method that appears in the

bottom left hand corner of each plot.

very low acceptance rate is induced by the lack of similarity between the two likelihood

surfaces (comparing the surrogate likelihood surface on the bottom of Figure 6.3 and the

true likelihood surface on the top), forcing the sampler to take small steps in parameter

space instead of taking the more direct route that is shown by the corrective phase of the

three phase proposed scheme in the contour plot on the right of Figure 6.3. Contemplating

the direct implementation of the DAMH method (without surrogate burn-in), it appears

unlikely that, assuming a multimodal likelihood surface, the DAMH method would con-

verge to the true stationary distribution in any reasonable amount of time. DAMH is

used to reduce computation time by reducing numerical complexity of the MCMC steps,

not by smoothing the surface. Ultimately, movement between points is still dependent

on evaluation of the exact likelihood function and so local optima still pose a problem.
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Figure 6.2: Plots of Functional RMS value versus numerical integrations for each of
the methods across each of the different ODE models. Good performance would be
signified by a method appearing in the bottom left corner of a plot (with the exception
of the STC model). The three-phase proposed scheme is the only method that appears

in the bottom left hand corner of each plot.

6.1.2 Further Discussion of Comparisons

Considering our choice of setup in the case of unknown initial conditions, it made sense

to adopt a priori ignorance with regards to the initial conditions, allowing us to assess

the methods in the most pessimistic scenario having already been assessed in the more

optimistic case. In reality, we would often have a fairly good idea of the initial conditions

and this level of knowledge may often be paired with a noisy observation that may be

used as our starting point for the MCMC. The ignorance is portrayed by two different

prior distributions with different levels of vagueness. In the case of the more informative

prior, inference proved more successful than expected for the traditional DRAM sampling

method. In Figure 5.20 we observed the bias in the posterior samples using each of

the four methods, giving evidence of the ability of the three-phase proposed scheme to

correctly infer the initial conditions and ODE parameters as a result of the surrogate burn-

in. We of course had to have a short pre-corrective phase where the ODE parameters

were fixed at the surrogate sample and the initial conditions were inferred using the
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Figure 6.3: Top: Presenting the problem encountered in the DAMH algorithm with
surrogate likelihood given by the gradient matching function for the FitzHugh-Nagumo
model. This is caused by the lack of similarity between the expensive likelihood and the
surrogate likelihood (as displayed by the surrogate likelihood plot in the bottom row)
which, on the left, causes very slow movement to the optimum and lack of convergence
whereas on the right, using the proposed scheme, we obtain improved convergence of

the MCMC sampler.

true likelihood function. Without this short phase, there would be minimal benefit to a

surrogate burn-in phase in this case. Figure 5.21 presents the results where we adopt the

more uninformative prior for the initial conditions. Positively, the results are fairly similar

to the more informative case, showing some level of robustness to the prior distribution.

It was previously observed that in both Figure 5.21 and Figure 5.20 there is definite

evidence of an underestimation of the noise variance from the observations which would

suggest some overfitting in the inference procedure.

The use of the alternative metric proved to be successful in terms of accuracy. However,

due to the difficulty in constraining the mismatch parameter to values that were able to

prevent singularities or computationally negative determinants in the matrices involved.

We also have too much of a dependence on the nature of the prior distribution which,

of course, is not desirable in the case of MCMC sampling. Although this method was

shown to be equally accurate in the case of the Goodwin Oscillator, this equal accuracy is
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matched by an increase in computational complexity due to the requirement for inversion

of matrices at each stage of the algorithm.

In the simulations used for this thesis, an upper bound was placed on the number of

MCMC steps that were attempted by each of the different samplers. This then means

that some methods are allocated extra computational overhead per MCMC step than

others. If these simulations were to be repeated, it would make sense to adapt the

stopping rule for the different algorithms. Instead of capping the number of MCMC steps

attempted, the number of numerical integrations of the ODEs could be capped to assess

performance of the algorithms when requiring equal levels of computational resources.

6.2 Assessing Robustness of Inference Methods

ODEs are very useful in the modelling of real world data. Supplied with noisy observations

(often including noisy initial values) that stem from some unknown generative model, we

must attempt to fit an idealistic model that does not necessarily represent a perfect fit

to the underlying latent signal due to the assumptions that it relies on. In the absence of

a ground truth, we cannot quantify inference performance based on a distance measure

in parameter space but instead must rely on a measure of performance in function space

as a (potentially suboptimal) proxy. Nonetheless, if one implements multiple parallel

MCMC samplers then we would hope to be able to diagnose (lack of) convergence to the

correct posterior distribution. In this section, I consider two different non-ideal model

fitting paradigms, assessing performance of the proposed multiphase parameter method

compared with population MCMC.

Consider the Hudson Bay dataset from the introductory section. Providing data on lynx

and hare populations over a period of 20 years, the suitable model to fit is the Lotka-

Volterra ODE system, outlined in Section 3.1. Using the multiphase proposed scheme, the

resultant MCMC chains are able to converge within the allocated timeframe. Population

MCMC failed to converge in this case, tending to sample unrealistically high noise variance

parameters, flattening all parallel likelihood surfaces. Given the small number of data

points, the sampler then has freedom to sample independently of the fit of the signal.

Taking samples from the MCMC obtained posterior distribution provides the distribution

of signals portrayed by the grey region in Figure 6.4. The multiphase scheme is able to

outperform population MCMC due to the tendency for popMCMC to sample a large noise

variance, flattening the likelihood surface across the different temperatures and providing
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liberated movement of the MCMC sampler. The improved performance of the proposed

scheme is emphasised on the right of Figure 6.7.

Figure 6.4: Displaying the distribution of signals from MCMC samples. The grey
region is obtained using the signals evaluated at each of the different posterior parameter
samples. The top row uses samples from the multiphase proposed scheme and the

bottom results from the implementation of population MCMC.

Often in real life scenarios, we have data that do not perfectly fit the model that we are

attempting to fit. Emulation of this situation by introduction of a mismatch between

the model used for data generation and the model used for inference enables further

assessment of the robustness of inference methods. The between-prey competition Lotka-

Volterra ODE system is given in eq. 6.2 where the between prey competition parameter

causes a constant decrease in the population over time and a change in the period of the

data signal (Figure 6.5):

dx

dt
= αx− βxy + εx2 (6.1)

dy

dt
= −γy + δxy. (6.2)

I use parameter configuration α = 0.76, β = 0.5, ε = 0.01, γ = 0.4 and δ = 0.3, obtaining

observations over timeframe between 0 and 50 with added Gaussian noise with variance
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Figure 6.5: Prey signals produced using the LV model with between prey competition
(M2) and the standard Lotka-Volterra model (M1). The addition of a prey competition
term introduces constant decay to the prey signal and a gradual change in the period

of the signal.

0.5. Figure 6.6 presents samples from the functional posterior distribution of the ODEs,

obtained by evaluation of the ODEs at samples from the posterior distribution of the

parameters. This time, both methods (PropDRAM and popMCMC) show good perfor-

mance in function space as emphasised by functional RMS measurements given on the

left of Figure 6.7.

6.2.1 Comments on Proposed Scheme

The multiphase approach has proven successful in estimating parameter for ODEs, but

there are some implementation properties that require mentioning. Firstly, it is important

to obtain an estimate of the observation noise while obtaining the smoothed interpolant.

This must be selected as the starting point of the noise variance parameter in the correc-

tive phase. Otherwise, the tendency is for the sampler to make the noise variance as high

as possible, allowing flexibility in the sampling of the ODE parameters undoing all the

work that has been done in the surrogate distribution to drive the sampler towards the
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Figure 6.6: Posterior samples in function space for the incorrect generative model
example. The top row gives the samples obtained using the proposed multi phase

scheme and the bottom samples gives those corresponding to population MCMC.

correct stationary distribution. On a similar note, it can be beneficial to include a short

pre-corrective phase (as outlined in Section 4.3) between the surrogate burn-in and the

corrective phase where we fix the ODE parameters at the final point samples using the

surrogate likelihood and allow the MCMC scheme to sample from the marginal distri-

bution of the noise variance parameter. This allows correction for any inaccuracy in the

estimated noise variance parameter which, when poorly evaluated, can lead to stability

problems in the MCMC scheme.

6.2.2 Possible Extensions of the Method

It appears that multiphase sampling with gradient matching could open new avenues in

the field of ODE parameter inference. The work presented has been useful in showing

the ability of multiphase schemes to ameliorate convergence to the desired stationary

distribution by allowing us to ignore the level of bias induced by sampling from cheap,

alternative likelihoods. Provided that there is sufficient similarity between the surrogate

and true likelihoods, we can greatly reduce the number of numerically expensive samples
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Figure 6.7: Comparing the functional RMS values across different samples obtained
using both the proposed method and population MCMC for the incorrect model exam-
ple (left) and the real data example (right). The proposed scheme achieves accurate
inference in both cases whereas population MCMC struggles in the real data example.

required for convergence. There are, of course, limitations of the algorithm as presented

by the necessity of a slight, situational based solution to the Lotka-Volterra inference

problem—a solution that would not be applicable in cases involving noisy initial condi-

tions. This difficulty of obtaining sufficient interpolants was specific to the case of periodic

data where it becomes difficult to find suitable lengthscale hyperparameter values for the

kernel function. In some sense, the fact that the method is reliant on finding better in-

terpolants for the data is a more optimistic problem to have, given the universal use of

smoothing methods across the different areas of statistics.

The most immediate extension would be to find better methods of smoothing the noisy

observations. Recently, the idea of warped GPs has been considered in the literature,

where we alter the time domain in order to make the observations more consistent with

the Gaussian Process kernel [59] (this idea was touched on when outlining the Periodic

kernel in Section 4.1.2). Another solution from the literature could be obtained through

the use of a mixture of Gaussian processes [60] where different lengthscale parameters

may be assumed at different regions of input space, allowing incorporation of the varying

properties of the data in our smoothed curve. This may allow us to incorporate the

smoothness required at peaks in the Lotka-Volterra signal, along with the inclusion of

the amplitude of the signal. Taking a completely different approach to the problem, one

could instead choose to adopt a partially observed system in the surrogate burn-in phase,

choosing to match observations and numerical solutions at a carefully selected sample

of time points. However, this may not generalise well outwith the realm of simple toy

problems.
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Considering improvement of the corrective and sampling phases, it is possible that the im-

plementation of more sophisticated, state-of-the-art, proposal mechanisms such as Hamil-

tonian Monte Carlo which implements Hamiltonian dynamics in order to make better

informed proposals (see chapter 5 of [61]) or Langevin diffusion processes [62] in the cor-

rective and sampling phases of our multiphase scheme. These do of course come with the

added necessity to carefully tune the algorithm in addition to the extra computation cost

will increase as a result of the complex nature of these algorithms. It is worth emphasising

that the obtainment of better interpolants would likely lead to the bigger improvement

in parameter learning performance.

It would be interesting to assess the performance of the proposed scheme in the realm of

partial differential equations, where numerical integration techniques require even more

computational resources than the systems in this thesis, making the traditional MCMC

inference schemes even less applicable than in the ordinary differential equation case.

6.3 Conclusion

Parameter inference in nonlinear ordinary differential equations is a very onerous process.

Our inability to find closed form solutions of these systems necessitates computationally

inefficient sampling from posterior distributions when one wishes to adopt the most im-

mediate likelihood resulting from consideration of the data generating distribution. There

do exist alternative representations of the data that one can use to coax more implicit

measures of similarity from the data and systems in question, as outlined in Section 4.2.

These of course come at a cost of accuracy and so we arrive at a crossroads in the search

for efficient, accurate parameter inference methods. Do we abandon the wish for compu-

tational efficiency and instead take the obstinate approach of accurate, time consuming

parameter inference with the numerical integration likelihood or do we take the more

quantitatively inclined route and adopt cheap likelihood functions with bias introduced

to the parameter samples? The multiphase approach in this thesis successfully combines

the two. By taking a cheap proxy for the likelihood to sample our discarded burn-in steps,

we introduce vastly improved efficiency to the learning problem by introducing bias and

efficiency in the portion of the chain where the former can be deemed fairly irrelevant and

the latter can prove to be at its more troublesome (owing to stiffness and local optima).

This efficient sampling enables more representative computationally expensive sampling

steps, for which bias becomes a prime concern. The method has been shown to per-

form equally to population MCMC on four benchmark ODE systems while being able
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to outperform the computationally expensive DRAM method. Despite the equality in

accuracy, population MCMC is prone to the problems caused by the nature of the ODE

likelihood function where stiffness and computational efficiency mean that large samples

require immense computation time. Resultantly, for the models considered in this thesis,

method comparisons show the improvements obtained—in terms of both accuracy and

computational efficiency—when one adopts a multiphase sampling routine with gradient

matching burn-in for ODE parameter inference.



Appendix A

Statistical and Mathematical

Identities

A.1 Gaussian Identities

Let x and y be multivariate Normal random variables such that the mean of y depends

linearly on random variable x, then the product of these two densities is proportional to

a multivariate Gaussian density:

N (x|a,A)N (y|Cx,B) ∝ N (x|µ,Σ)

where

µ = Σ(A−1a + CTB−1y) and Σ = (A−1 + CTB−1C)−1

A.2 Matrix Identities

Woodbury matrix identity:

(A+ UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1 (A.1)
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