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SUMMARY

Glutamate is the principal excitatory neiirotransmitter tliroughout the CNS, 

including the spinal cord. It acts on ionotropic (iGluR) and metabotropic glutamate 

receptors. Three iGluR families have been identified by the development of more-or-less 

selective agonists: N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4- 

isoxazole propionic acid (AMP A) and kainate receptors. Both AMP A (GluRl-4) and 

NMD A (N R l, NR2A-D) receptors have been detected in the spinal cord and these play a 

major role in physiological processes such as fast excitatory transmission, synaptic 

plasticity and neuronal development. In addition, they have also been implicated in 

pathological conditions including neuropathic pain and neurodegenerative disorders. 

However, very little is known about the synaptic distribution of these receptors in the 

spinal gray matter. This is because conventional immunocytochemical techniques, 

generally used to investigate the location of proteins in the CNS, fail to detect these 

subunits at synapses due to the presence o f an elaborate protein meshwork associated with 

the postsynaptic membrane, which masks synaptic receptors. Postembedding 

immunocytochemistry on freeze-substituted, Lowicryl-embedded material is a technique 

which has been used exclusively for the detection of synaptic AMP A and NMD A 

receptors. This project initially set out to use this method to examine these receptors on 

neurons o f the adult rat spinal cord, with emphasis on their involvement in the sensory 

processing o f the dorsal horn.

With antibodies against the G luRl, GluR2/3, N R l, NR2A and NR2B subunits, 

heavy labelling was observed at many asymmetrical synapses and where the plane o f 

section was perpendicular to the cleft, most of the immunogold particles were associated 

with the postsynaptic density. To examine the receptor expression pattern o f selected cell 

populations a new method was developed which involved the combination of 

postembedding electron microscopy with immunofluorescence and confocal microscopy. 

However, during the course o f this study heavy immunogold labelling o f dense-cored 

vesicles (dcvs) inside axonal boutons was observed with all NMDA antibodies. Several 

studies have found iGluRs in primary afferent terminals in the spinal gray matter and these 

are thought to function as presynaptic receptor. In order to determine whether gold 

particles found over dcvs corresponded to presynaptic receptors in transit, immunogold 

reactions were carried out on transgenic mice which lacked the NR2A subunit. 

Surprisingly, not only did the dev labelling remain in these knock-out animals, but there 

was also a significant synaptic labelling. This suggested that the postembedding



immunogold labelling observed with the NR2A antibody was non-specific. Since the 

labelling patterns were similar with other NMDA antibodies this cast doubts on the validity 

o f the postembedding method for detecting NMDA receptors.

In a search for alternative techniques for the detection of synaptic receptors, an 

antigen unmasking method, initially developed by Watanabe et ah (1998), was adopted and 

used to reveal both AMP A and NMDA reeeptors. This involved subjecting the spinal cord 

sections to limited proteolytic digestion with pepsin. Following pepsin treatment punctate 

immunostaining was observed with antibodies against various iGliiRs.

O f the four AMP A subunits examined, GluRl showed the most restricted 

distribution, with immunoreactive puncta being very frequent in lamina II, and present at 

lower density in other dorsal horn laminae. In the ventral horn puncta immunostained for 

GluRI were rarely seen. A large number o f GluR2-immunoreactive puncta were present 

throughout the grey matter, with the strongest labelling in laminae I and II. The staining 

pattern for GluR3 was similar to that for GluR4. hi both cases immunoreactive puncta 

were densely distributed throughout the ventral horn and the deeper regions o f the dorsal 

horn, with much weaker labelling in laminae 1 and II. It was confirmed that the puncta 

seen after antigen unmasking corresponded to receptors at synapses, since a great majority 

of them were apposed to various types o f glutamatergic axon and with electron microscopy 

on pepsin-treated sections the reaction product was associated with the postsynaptic aspect 

of synapses. Colocalization studies showed that GluR2 was present at virtually all AMPA- 

containing synapses in all laminae examined. Another major finding was that GluRl was 

preferentially associated with primary afferent terminals.

Functional studies were also carried out to determine whether morphologically 

detectable changes involving synaptic AMP A receptors occurred in response to peripheral 

noxious stimulation. Following intradermal capsaicin injection a rapid phosphorylation o f 

synaptic GluRl subunits at the Ser845 site was detected and this is apparently the first 

immunocytochemical demonstration of plastic changes at glutamatergic synapses in vivo.

The distribution o f NMDA receptors on pepsin treated sections was investigated 

using antibodies against N R l, NR2A and NR2B subunits. NRl-immunoreactive puncta 

were widespread in all laminae, while NR2A and NR2B showed a differential distribution. 

NR2A was expressed at highest levels in lamina III and at much lower levels elsewhere, 

with the immunostaining being weakest in lamina IIo. NR2B was present at high levels in 

laminae I-II, and gradually decreased towards the ventral horn. The synaptic expression of 

all NMDA subunits examined was weaker in the ventral horn than in the dorsal horn. A 

majority o f NMDA-immunoreactive puncta were also labelled for GluR2 suggesting that
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these represented receptors at glutamatergic synapses. In addition, the NR2A 

immunostaining completely disappeared in the NR2A knock-out mice. In the dorsal horn 

approximately half and one-third o f GluR2-immunoreactive puncta were immunoreactive 

for NRl and NR2A or NR2B, respectively. This indicates that NMDA receptors are 

selectively expressed by a subset o f neurons or selectively targeted to certain synapses.

In summary, the results of the present study indicate that antigen unmasking is 

suitable for detecting synaptic AMP A and NMDA receptors. The differential distribution 

o f certain iGluR subunits stress the need for further studies to detemiine which subunits are 

associated with particular neuronal populations in the spinal cord. In addition, the finding 

that phosphorylation o f GluRl subunits at glutamatergic synapses in vivo can be revealed 

by immunocytochemistry provides a novel approach for investigating central sensitization 

and other forms o f synaptic plasticity in specific neuronal circuits throughout the CNS.
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Chapter 1

General introduction and aims: 

Glutamate and its receptors in the spinal cord with 

emphasis on the dorsal horn



GENERAL INTRODUCTION

Glutamate is the main excitatory neurotransmitter throughout the central nervous 

system (CNS). In the past fifty years, glutamatergic systems have been extensively 

studied, but despite the huge amount o f accumulated experimental data, we still know very 

little about the role o f glutamate and glutamate receptors in the neuronal circuits o f the 

spinal cord. Spinal glutamatergic systems are involved in acute and chronic pain and 

certain neurodegenerative disorders. Therefore knowledge of glutamatergic circuits not 

only has theoretical significance, but is also of major interest for physicians, surgeons and 

pharmacologists. In addition, information on these systems could have practical 

implications for patients suffering from any of these disorders.

This chapter deals with the characteristics of glutamatergic systems in the CNS, 

with emphasis on the dorsal horn of the spinal cord. Information about synthesis, 

transport, release and uptake o f glutamate and the structure, function and distribution of 

glutamate receptors is crucial for understanding their role in sensory processing and 

locomotion. Therefore first some basic information about glutamate and it receptors is 

discussed and summarized, then a more detailed review is provided on glutamatergic 

systems and glutamate receptors in the spinal cord.

HISTORICAL OVERVIEW
In 1933, Dusser de Barrenne developed a method of applying substances directly to 

the brain or spinal cord of live animals with microelectrophoresis. His technique was 

widely used in the 1950s to study the behavioural changes and electrical responses induced 

by administration of different compounds. A large number o f substances, mainly isolated 

from brain, were tested and by the end of the decade it was well established that glutamate 

had an excitatory effect (Curtis et al, 1959) on a wide range of neurons. Interestingly, due 

to die ubiquitous nature of its effect (Curtis et ak, 1959, I960), its high concentration in 

brain extracts (Krebs et al, 1949), its general involvement in other metabolic pathways 

(Krebs, 1935) and its excitotoxicity (Olney et ak, 1970), it was not until the early 1970s 

that glutamate was accepted as a neurotransmitter. This was facilitated by the discovery of 

specific agonists and antagonists, which led to the revision of the previously widely 

accepted “non-specific action theory” o f glutamate. Subsequent pharmacological studies 

indicated that glutamate actually acts on more than one receptor. Meanwhile, these initial 

studies have attracted more and more neurobiologists to the area o f excitatory amino acid 

research, so it is not surprising that during the following 20  years a highly sophisticated



system was revealed. The cloning o f various types of glutamate receptor in the early 1990s 

led to the production o f subimit-specific antibodies and to the construction of 

polynucleotides suitable for in situ hybridization and PCR, which further facilitated the 

research into glutamatergic systems in the CNS. When functional glutamate receptors 

wei'e found in extra-neuronal tissues, the scope of research widened. Glutamate receptors 

were detected in bone, kératinocytes, pancreas, megakaryocytes, lung, heart, liver, kidney, 

stomach, intestine, thymus, taste buds and testis (Skerry and Genever, 2001).

GLUTAMATE AS A NEUROTRANSMITTER
Glutamate, as one o f the 20 main amino acids, is involved in protein synthesis, 

detoxification, energy supply and metabolism in virtually every cell. At the same time it 

has a further key role in the CNS as the most important fast acting excitatory 

neurotransmitter. Plow can such an ubiquitous molecule be used for neurotransmission 

without the signal to noise ratio being degraded? Its overall concentration in brain tissue is 

10 inM, with the vast majority being stored intracellularly, mainly in glial cells and 

glutamatergic terminals (where its concentration can be up to 45 niM). The extracellular 

glutamate concentration is very low (2-3 pM), and the several thousand-fold concentration 

gradient across the plasma membrane assumes the existence of an efficient uptake system 

as well as a barrier that prevents glutamate entering the CNS fi'om the blood vessels. The 

relative impermeability of the blood-brain barrier to glutamate and the lack of net uptake 

from the blood indicates that glutamate must be produced in the brain (Hertz et ak, 1999).

Synthesis, transport and release of glutamate in the CNS

Neurons and astrocytes are both involved in maintenance o f the glutamate pool in 

glutamatergic boutons and in the elimination o f released transmitter (Hertz et ak, 1999). 

Both cell types are capable of glutamate production by either the hydrolysis (deamination) 

of glutamine or the transamination o f a-ketoglutarate (2-oxoglutarate). The vast majority 

o f a-ketoglutarate derives from the degradation of glucose, the only nutrient in the 

tricarboxylic acid cycle that is present in the systemic circulation in high concentrations 

and can readily cross the blood-brain barrier. Via a-ketoglutarate, glutamate can also enter 

the intermediary metabolism to produce energy.

Glutamate produced in the neuronal cell body is taken up into 35-50 mn small, 

round vesicles (Iliakis, 1996) by a highly specific, Mg^^-dependent active transport system. 

The driving force is mainly the membrane potential component o f an electrochemical 

proton gradient generated by a Mg^riactivated vacuolar ATP as e (Ozkan and Ueda, 1998).



Three vesicular glutamate transporters (VGLUTs) have recently been identified and 

cloned, and this has a major importance in neurobiology research as these can be used to 

identify glutamatergic neurons in the CNS (Takamori et aL, 2000; Fremeau et ak, 2001;

Herzog et ak, 2001; Varoqui et ak, 2002; Todd et ak, 2003). A previously known, brain 

specific sodium-dependent inorganic phosphate transporter (BNPI) has been found on 

synaptic vesicle membranes and was shown to be responsible for packing glutamate into 

these vesicles by using the proton gradient generated by the vacuolar ATPase, thus BNPI 

was named VGLUT 1 (Bellocchio et ak, 1998, 2000). Following neuronal activity 

BNPI/VGLUTl is also expressed in the plasma membrane o f glutamatergic neurons 

(Bellocchio et ak, 1998), where it transports phosphate into the cytoplasm (Ni et ak, 1994).

This phosphate can then activate the phosphate-activated glutaminase, an enzyme found in 

glutamatergic neurons that is responsible for deaminizing glutamine into glutamate 

(Najlerahim et ak, 1990). Shortly after the identification o f BNPI as VGLUT I, a 

differentiation-associated sodium-dependent inorganic phosphate transporter (DNPI)

(Aihara et ak, 2000), was identified as VGLUT2 (Takamori et ak, 2001; Varoqui et ak,

2002). Based on screening of cDNA libraries, Takamori et ak (2002) described VGLUT3, 

which shares sequence homology and functional relationship with the two other VGLUTs 

(Gras et ak, 2002). VGLUTs transport 500-5000 glutamate molecules into individual 

vesicles reaching a glutamate concentration of 60-200 mM (Fonnum et ak, 1998). i

Upon reaching the axon terminal, action potentials activate Ca^'^-channels on 

plasma membranes o f neurons, and the subsequent Ca^’̂’-entry is responsible for the action 

potential-exo cyto sis coupling (Turner, 1998), Various presynaptic receptors acting 

directly or indirectly, can either facilitate or inhibit glutamate release through three major 

mechanisms; firstly influencing the kinetics o f Na^ and channels, secondly modifying 

the amount o f Ca^^ available in the terminal, and thirdly regulating the intracellular 

cascade that leads to the exocytosis o f vesicles (Nicliolls, 1998). The release o f the 

contents o f one single vesicle is enough to produce a 1 mM rise in the glutamate 

concentration within the synaptic cleft which is sufficient to activate the ionotropic 

receptors in the postsynaptic density (Clements et al, 1992).

Uptake of released glutamate from the extracellular space and its recycling

To avoid the degradation of signal to noise ratio and to prevent the necrosis of 

neurons caused by the excitotoxic effect of glutamate, the released amino acid has to be 

rapidly removed. Since no significant extracellular metabolism of glutamate occurs, this is 

accomplished by the fast uptake o f glutamate into glial cells and neurons (Balcar and



Johnston, 1972). Two major groups of proteins (together with some minor ones, for review 

see Bonanno and Raiteri, 1994) act as glutamate transporters on the plasma membranes 

(Danbolt, 2001): the high affinity sodium and potassium coupled transporters or excitatory 

amino acid transporters (EAAT 1-5) and the low affinity glutamate transporters.

Glutamate taken up by neurons can either be reused as a transmitter, or used in 

general cellular metabolism. However not all glutamate is taken up by neurons; in fact 

glial cells are responsible for a major proportion o f glutamate uptake. This glutamate is 

converted to glutamine with the enzyme glutamine synthetase, found within the CNS only 

in glial cells. Glutamine, unlike glutamate, can readily cross the cell membrane and after 

leaving the astrocytes it is taken up by neurons, where it is deaminated back to glutamate 

by members o f the glutaminase enzyme family. Thus glutamate is constantly released by 

neurons, taken up by glial cells and returned to neurons as glutamine, in a cycle, which is 

called the glutamate-glutamine cycle (Kvamme, 1998).

GLUTAMATE RECEPTORS
A number of different glutamate receptors have been identified and cloned. These 

are not only responsible for fast transmission o f propagating action potentials from one cell 

to another, but they also play a role in more complex cellular mechanisms such as synaptic 

plasticity and excitotoxicity. These in turn are involved in both physiological (learning, 

memory) and pathological conditions (e.g. neuropathic pain, epilepsy, amyotrophic lateral 

sclerosis). Glutamate receptors can be divided into two major groups: ionotropic receptors 

(iGluRs) which form fast acting, ligand-gated ion channels and G-protein coupled 

metabotropic receptors (niGluRs) which have complex, long-lasting intracellular actions 

through a variety of signal transduction molecules and second messengers.

Ionotropic glutamate receptors (IGluRs)
Three ionotropic glutamate receptor families have been identified by the 

development of more-or-less selective agonists: N-methyl-D-aspartate (NMDA), alpha- 

am i no-3 -hydroxy-5 -methyl-4-isoxazole propionic acid (AMPA) and kainate receptors 

(ICA). All receptors form homo- or heteromers made up o f one or more type o f subunits. 

It is widely accepted that individual subunits will only assemble with other ones from their 

own family, but in spite of the numerous pharmacological, molecular biological and 

biophysical experiments the exact composition o f native receptor complexes is not 

precisely known. Initially there were debates about whether the complexes are tetra- or 

pentamers, but recently, following the purification o f GluR2 subunits a tetrameric



stoichiometry was suggested (Safferling et al., 2001). It is clear that the subunit 

composition o f a single receptor-complex determines its electrophysiological and 

pharmacological properties. Six gene families (1 for AMPA, 2 for KA and 3 for NMDA 

receptors), with sequence homology within each family, encode the different type of 

iGluRs. Each gene (altogether at least 16 genes) is responsible for the synthesis of a single 

subunit, but post-transcriptional (alternative splicing, RNA editing) and post-translational 

(glycosylation, phosphorylation, palmitoylation) modifications further increase the number 

o f structural variants. Ionotropic glutamate receptor subunits have a generally similar 

tertiary structure; 900-1400 amino acids form a 95-163 kDa macromolecule, with three 

transmembrane domains (Mi, M 3, M4), an extracellular N- and an intracellular C-terniinal 

(Fig. 1.1). A cytoplasm-facing re-entrant membrane loop (M2) between Mi and M 3 forms 

the inner pore o f the cation channel, while the ligand-hinding domain is a clam-shell-like 

pocket formed partly by the extracellular N-terniinal domain (Si) and partly by the M 3-M4- 

loop (S2). The N-terminal region also contains biding sites for allosteric modulators (Zn^^,

1T% polyamines) and glycosylation sites, while the extracellular loop between M 3 and M4 

contains an RNA splice variant which has a role in receptor desensitization. The 

cytoplasmic C-terminal incorporates important phosphorylation sites and biding sites for 

anchoring proteins (PDZ domains). For reviews on the structure and fiinction of iGluRs 

see Ozawa et al. (1998), Bigge (1999), Dingledine et al (1999), Burnashev and Rozov |

(2000), Cull-Candy et al. (2001), Franciosi (2001), and Leiina et al. (2001).

AMPA-receptors

Currently four AMPA receptor subunits are known (G luR l-4) and these can form 

homo- or heteromers. Each subunit has at least 2 splice vai'iants (flip or flop), based on the 

presence or absence o f a 38 amino acid segment within the M 3-M4-I0 0P. In addition, 

GluR2 and GluR4 subunits have other, long (G!uR2L, GluR4) or short (GluR2S, GluR4c) 

splice variants in the C-terminal region. In the case of GluR2-4, structural variants also 

arise from mRNA editing, so altogether 30 AMPA subunit variants exist with different 

primary structures (Burnashev and Rozov, 2000). Theoretically, more than 100,000 

different AMPA complexes can be assembled from these different subunits/variants. It 

remains a question whether different subunits can freely form complexes or not. Wenthold 

et al. (1996) used immunoprécipitation studies to show that hippocampal CA l and CA2 

pyramidal neurons mainly contain heteronieric GluR2 /GluRl or GluR2/GluR3 complexes, 

but GluRl/GluR3 and homomeric GluRI complexes were also found in small amounts. It 

is now also clear that multiple AMPA receptor subtypes can coexist in the same neuron
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(Washburn et a l , 1997) and the subunit composition may influence subcellular membrane 

targeting within the same cell (Rubio and Wenthold, 1997). However, not all neurons 

express all four AMPA subunits. In mammalian CNS G luR l-3 subunits are widely 

expressed, but GluR4 is mainly restricted to cerebral cortex, hippocampus, dentate gyrus, 

olfactory bulb and spinal cord (Petralia and Wenthold, 1992). Although most studies have 

focused on neuronal expression, there is also convincing evidence that astrocytes and 

oligodendrocytes have functional AMPA receptors which are activated by the synaptically 

released transmitter. Astrocytes and oligodendrocytes mainly contain GluRl/GluR4 and 

GluRl/GluR3 subunits respectively (Verkhratsky and Steinhauser, 2000).

AMPA receptor channels are mainly responsible for rapid excitatory synaptic 

transmission. Their characteristic feature is the fast opening (1-4 ms) and closing (2-14 

ms) kinetics upon application o f agonists. Activation o f flip variants with glutamate is 4-5 

times more effective than that o f flop (Sommer et ak, 1990), while flop variants have a 2-4 

fold faster and more complete desensitization kinetics (Moshacher et ak, 1994). AMPA 

receptors are principally permeable to and Na"*’ ions, but certain regions express AMPA 

receptors with substantial Ca^’̂ -conductance. Homomeric G luRl, GluR3 or GluR4 

complexes have Ca"^-permeability, but homomeric GluR2 or heteromeric complexes of 

GluR2 with any other subunit lack Ca^'*'-conductance. Based on these electrophysiological 

findings, it is assumed that most AMPA receptor complexes within the CNS contain the 

GluR2 subunit. Further investigations led to the discovery that a single arginine (R) 

residue [which replaces a glutamine (Q) as a result of mRNA editing (Q/R editing)] in the 

M] membrane re-entrant hairpin loop of the GluR2 subunit is responsible for the 

prevention of Câ "*" (and other divalent cation) permeation (Burnashev et ak, 1992). Q/R 

editing also results in a decrease of single channel conductance. It has to be noted, that the 

activation of Ca^’̂ -inpermeable AMPA receptors may also lead to Ca^^-influx, via voltage- 

dependent Ca"^ channels. However, due to the different spatiotemporal distribution o f the 

subsequent Ca^ ''-currents, this may have different consequences from the activation of 

ligand-gated Câ "*’ channels (NMDA receptors or Ca^’'’-permeable AMPA receptors).

AMPA receptors are not static components of the postsynaptic density of 

asymmetric synapses but have the potential to enter, leave and then possibly reenter the 

synapse either in a constitutive or inducible manner. In the latter case, various events such 

as NMDA receptor activation can lead to the internalization or membrane insertion of 

AMPA receptors. AMPA complexes that contain a subunit with a long C-terminal tail 

(G luRl, GluR4, GluR2L) require activity for synaptic delivery, while receptors that 

contain subunits with only short C-terminal tails (GluR2S, GluR3, GluR4c) constitutively
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cycle into and out of the synapse. The regulated distribution and redistribution of AMP A 

receptors are thought to play a major role in synaptic plasticity (Bredt and Nicoll, 2003), 

although it is widely believed that these long-term changes in synaptic strength are 

initiated by the activation o f NMD A receptors (see below). In the hippocampus and 

cerebellum, long term depression (LTD) is correlated with AMP A internalization while 

long term potentiation (LTP) is associated with the recruitment o f AMP A receptors into 

the synaptic membrane. Due to its possible involvement in synaptic plasticity, AMP A 

receptor trafficking has been extensively studied. Stargazin, a membrane protein, has been 

found to play a crucial role in the surface expression o f AMP A subunits. Other, mainly 

PDZ scaffold proteins such as neuronal activity-regulated pentraxin (NAPR), synapse 

associated protein 97 (SAP97), glutamate receptor interacting protein 1 (GRIPl), 

GRIP2/ABP (AMPA-receptor binding protein) and protein that interacts with C kinase 

(PICK-1) stabilize the receptors in the synapse. It is likely that AMP A receptors enter the 

postsynaptic density following exocytosis to non-synaptic regions and they are 

endocytosed after drifting laterally from the postsynaptic density (Passafaro et al., 2001). 

This could be related to the fact that AMP A receptors are fairly often seen at the lateral 

edge of some (Kharazia et al., 1996, 1997; Bernard et ah, 1997; Matsubara et ah, 1996), 

but not all synapses (Sassoe-Pognetto and Otters en, 2000). It is also interesting that in the 

hippocampus (Takumi et ah, 1999; Racca et ah, 2000) and cortex (Kliarazia and Weinberg, 

1999) there is a correlation between the length of the synapse and the level o f AMP A 

receptor expression. Synapses with smaller active zones fairly often lack AMP A receptors, 

therefore they are thought to be functionally silent (Nitsser et ah, 1998; Racca et ah, 2000). 

The synaptic expansion of these silent synapses may lead to AMP A receptor recruitment 

and this could play a role in the development o f long term potentiation (Kulhnann, 1994; 

Isaac el ah, 1995; Liao et ah, 1995). There are three forms o f AMP A receptor endocytosis: 

a constitutive form, which is rapid and results in an apparent turnover of surface receptors, 

a regulated form, which is dependent on the rise in intracellular Ca '̂" as a signal and 

involves a great number of proteins (protein kinase C, calcineurin, arrestin, AP2, clathrin 

etc) and an activity independent form, which does not require (Carroll et ah, 2001).

Kainate receptors

Kainate receptors in many ways resemble AMP A receptors, thus it is not surprising 

that these two families are often described together as AMPA-KA receptors or non-NMDA 

receptors. Our knowledge on the function and distribution of kainate receptors is less 

abundant than that o f either AMP A or NMDA receptors. This is mainly due to the lack o f
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specific antibodies and the only recently solved difficulties in differentiating them from 

G luRl-4 receptors on the basis of their pharmacology. Even early radioligand binding 

studies distinguished low and high affinity kainate binding sites, which later turned out to 

represent the two subtypes o f KA receptors, GluR5-7 and K A l-2, respectively. GluR6-7 

have 2 splice variants, whereas GluR5 has 4. For GluR5 and GluR6 the number of 

dilTerent subunits is further increased by mRNA editing (one site for GluR5, three for 

GiuR6 ). To date altogether 28 kainate receptor proteins are known with different primary 

structure. GluR5-7 may form homomeric complexes, but they can also co-assemble with 

KAl or KA2, which on the other hand cannot form functional receptors on their own.

Although in situ hybridization and radioligand binding studies have demonstrated 

that KA receptors are widely expressed throughout the CNS, the expression patterns o f the 

various subunits are heterogeneous. The dorsal root ganglion (DRG) cells, the subiculum,

Ihe septal nuclei, some cortical areas and the Purkinje cells o f cerebellum contain large 

quantities o f GluR5 mRNA. GluR6 is mainly expressed in the cerebellar granule cells, in 

the CA3 region o f the hippocampus, in the dentate gyrus and in the striatum, while GluR7 

mRNA is found at highest levels in the cortex, in the striatum and in the inhibitory neurons 

of the molecular layer of the cerebellum. The expression of K A l is mostly restricted to the 

CA3 region o f the hippocampus, however lower levels can be found in other areas, such as i

dentate gyrus, amygdala and entorhinal cortex. KA2 is ubiquitous throughout the CNS.

Due to difficulties in producing selective antibodies, the available data on the 

immunohistochemical localization of kainate receptors is limited. The investigations 

which have been undertaken to date have shown KA receptor immunoreactivity both 

presynaptically in axons and also in postsynaptic membranes (Petralia et a l ,  1994a).

The electrophysiological properties of KA receptors depend greatly on their subunit 

composition. Most recordings have been performed on heterologous expression systems, 

so little is known about the native receptors. They are principally permeable to K^ and Na^ 

ions, but certain splice valiants also display Ca^^- and Cf-fluxes. Rapid desensitization 

and slow recovery is one o f the most characteristic features o f KA receptors.

NMDA receptors

As in case of the other two iGluRs, a number of different subunits have been 

identified for NMDA receptors. The most ubiquitously expressed is N R l, which exists in 

8 different splice variants (Table 1.1) based on its three regions for alternative splicing: 

amino terminal Ni-cassette, and carboxy terminal C |- and Cz-cassettes (Zukin and Bennett, |

1995). Splicing out the Cz-cassette, results in the loss of the first stop codon of the N R l
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gene, and causes the expression o f a distinct amino acid sequence, the Cz'-cassette. Two 

other gene families encode the four NR2 subunits (NR2A-D) and the two NR3 subunits 

(NR3A-B). All of these apart from NR2A have splice variants. Although Moriyosi et al. 

(1991) initially reported that N R l subunits can assemble to functional homo-oligomers, 

nowadays it is widely accepted that unlike AMPA and KA receptors, NMDA subunits do 

not form homomeric complexes. N Rl subunits must be assembled with at least one NR2 

to form functional receptors (Ishii et al., 1993), while NR3 subunits probably have 

regulatory functions within the complex (Ciabarra et ah, 1995; Chatterton et al. 2002; 

Matsuda et ah, 2002). Immunoprécipitation studies of native receptors show that different 

NR2 subunits and various isoforms o f N Rl can coexist in one receptor assembly. Subunit 

composition has an effect on the physiological, biochemical and pharmacological 

properties of the receptor (see below).

Name of splice 
valiant

Ni-cassette 
(exon 5)

Ci-cassette 
(exon 21)

Cz-cassette 
(exon 22)

N R l-la  or N Rl 1 - + +
N R l- lb o rN R l 2 + +

NRl-2a or NRl 3 - - 4-

N Rl-2b or N R l 4 4- - 4-

N R l-3a or NRl 5 - +
N Rl-3b or NRl 6 + +
N R l-4a or N Rl 7 - - -
N Rl-4b or N Rl 8 + - “

Table 1.1. Terminology o f various splice variants o f the N R l subunit

NMDA N R l is found tlnoughout the CNS, with the highest concentrations in the 

pyramidal cells of CAl-3 region o f the hippocampus, the granule cells o f the dentate gyrus, 

the granule, Purkinje and Golgi cells o f the cerebellum, layer 2,3,5 of the cerebral cortex, 

sensory and motor neurons in the spinal cord and dorsal root ganglia (Brose et al., 1993, 

Petralia et ah, 1994b, 1994c). NMDA NR2 subunits are also abundantly found in the 

mammalian brain. Each has a characteristic distribution, although they overlap with each 

other. Northern blot and in situ hybridization studies revealed prominent NMDA NR2A 

expression in the cerebral cortex, hippocampus, olfactory areas, thalamic nuclei, cerebellar 

cortex and some brainstem regions. NMDA NR2B is widely expressed in telencephalic 

and thalamic regions, NMDA NR2C is largely restricted to the granular layer o f the 

cerebellum, while NMDA NR2D can be found mainly in diencephalic and lower brainstem 

areas (Ishii et ah, 1993). Immunocytoehemical studies using a polyclonal antibody 

reacting with both NMDA NR2A and NR2B subunits found similar distribution of
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immunoreacti vity to that o f NMDA N R l, but cerebellar Purkinje cells showed a less 

intense labelling (Petralia et al., 1994b). NR3A is mainly expressed during development 

and its levels decrease sharply after the second postnatal week (Ciabarra et ah, 1995; Wong 

et ah, 2002). NR3B is expressed highly in pons, midbrain, medulla, and the spinal cord, 

but has low levels in the forebvain and the cerebellum (Matsuda et ah, 2002).

NMDA receptors are responsible for the slow component o f the excitatory 

postsynaptic potential (NMDA EPSP) recorded upon activation o f the appropriate neurons. 

With their “nonlinear computational” properties they also play a major role in synaptic 

plasticity. They not only open more slowly than AMPA or KA receptors, but also have 

longer desensitization kinetics. The deactivation is fastest for NR1/NR2A complexes, 

slower for NR1/NR2B or NR1/NR2C complexes and slowest for NR1/NR2D channels. 

The ion channel formed by the NMDA receptor complex has a high conductance for Na" ,̂ 

K' and Ca"^ ions (MacDermott et ah, 1986), although the presence o f o f NR3 in NMDA 

receptors dramatically reduces the Ca^^-permeability of the complex (Perez-Otano et ah, 

2001 ; Matsuda et ah, 2002; 2003). Influx of Ca^ 'j unlike that of Na*' or K"̂ , not only has an 

effect on the membrane potential, but also acts as a second messenger and can trigger 

intracellular biochemical cascades leading to changes in the synaptic strength. Another 

distinct feature o f NMDA receptors, besides Ca^’̂ -permeability, is the voltage dependent 

blockage at resting membrane potential by physiological concentrations o f extracellular 

Mg”"* ions (Mayer et ah, 1984). A single asparagine residue in the M j domain o f the 

receptor protein seems to be mainly, but not solely responsible for both o f these properties. 

Membrane depolarization decreases the effectiveness of the Mg^"^-block on channel 

conductance, while hyperpolarisation increases it. The Mg^^-block on NMDA receptor 

complexes formed by NR1/NR2A or NR1/NR2B subunits exhibits a stronger voltage 

dependence than that on receptors composed o f NR1/NR2C or NR1/NR2D subunits. A 

third prominent characteristic o f NMDA receptors is the obligatory need for glycine as a 

co-agonist for channel opening (Larson et ah, 1988). Interestingly, when NR3A or NR3B 

co-assembles with N R l, the receptor complex forms excitatory glycine receptors that are 

unaffected by glutamate or NMDA (Chatterton et ah, 2002). D-alanine and D-serine have 

also been identified as co-agonists (Brugger et ah, 1990). Several pharmacological agents, 

some of which are used routinely in human pharmacotherapy, have been developed that 

affect NMDA receptor function (Table 1.2) by acting on one o f four possible sites: the 

glutamate/NMD A recognition site, the glycine binding site, the intra-ion-channel binding 

site and an allosteric modulatory site (Sucher et ah, 1996).
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The distribution o f NMDA receptors within glutamatergic synapses has been 

extensively studied with the postembedding immiinogold method. In the brain regions 

examined, subunits were eoncentrated at the postsynaptic membrane o f asymmetrical 

synapses (Bernard and Bo lam, 1998; Valtschanoff et ah, 1999, Racca et ah, 2000). The 

gold particles representing N Rl subunits accumulated in the centre of the active zone 

(Kharazia and Weinberg, 1997), while this was not the case for NR2 (Valtschanoff et ah, 

1999). The density o f labelling for N Rl was independent of synaptic size (Takumi et ah, 

1999; Kharazia and Weinberg, 1999), indieating that the number of NMDA receptors at a 

given synapse is proportional to the size o f the postsynaptic density. NMDA and AMPA 

receptors have been shown to colocalize in the same synapse (Kharazia et ah, 1996; He et 

ah, 1998; Racca et ah, 2000), although a number of synapses only contained functional 

NMDA receptors. The latter are thought to correspond to silent synapses (see above) as 

for these glutamate release under normal circumstances does not depolarize the 

postsynaptic membrane, due to the Mg^'^'-block o f the NMDA receptors.

The anchoring o f NMDA receptors to the PSD is the subject of extensive research. 

It involves a large number of recently identified membrane proteins including postsynaptic 

density protein 95 (PSD95, also known as synapse associated protein 90, SAP90), PSD93 

(also known as chapsynl 10), SAP 102, guanylate kinase-associated protein (GKAP), 

dynein. Shank, neuronal nitric oxide synthase (nNOS), a-actinin, tubulin, spectrin, 

neuroligin, calmodulin, CaM kinase II. Many of these have enzymatic activity (e.g. PSD- 

95 with guanylate kinase activity), while others link the receptors to the cytoskeleton (e.g. 

a-actinin). It is clear, that these proteins not only cluster the receptors to the postsynaptic 

density, but also play a role in their trafficking, function, regulation and in synaptic 

plasticity (e.g. Kennedy, 1997). PSD-95 seems to be the most important anchoring protein 

in NMDA clustering, because it can form a bridge between the receptor subunits and other 

membrane proteins. Electron microscopic immunocytochemical studies have shown that 

PSD-95 has a similar cellular and sub cellular localization to NMDA receptors 

(Valtschanoff et ah, 1999; Aoki et ah, 2001), but it has still not been proved that PSD-95 is 

present at every NMDA receptor containing synapse.

Metabotropic glutamate receptors (niGluRs)
Although mGliiRs were not investigated during the course o f this study, a brief 

overview is provided here. There are eight different subtypes of metabotropic glutamate 

receptors (m G luR l-8), of which inGluRl, niGluR4 and mGluR5 have additional splice 

variants. These are G-protein coupled receptors (GPCRs) and do not form ion channels.
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They all belong to the seven transmembrane domain containing GPCR superfamily. They 

contain 854-1 179 amino acids, and share 40% sequence homology with each other. Their 

unusually large extracellular N-terminal domain contains the glutamate binding site, while 

Ihe intracellular C-terminal domain plays a role in anchoring and signal transduction. It 

also contains phosphorylation sites for functional regulation. A mainly hydrophobic core 

region o f 250 amino acids contains the seven transmembrane domains (m l-7), which are 

interconnected by extra- and intracellular loops. The first (11) and third (13) intracellular 

loops are highly conserved, suggesting they are responsible for G-protein activation, while 

in the case of mG luRl, 12 and 14 are responsible for phospholipase C (PLC) coupling.

Based on their amino acid homology, pharmacology and second messenger system, 

inGluRs are classified into three subgroups (I-llI). Group I mGluRs (inGluRl/mGluRS) 

are activated by quisqualate and use the PLC signaling pathway. niGluR2 and niGluR3, 

which belong to group II, are activated by dicarboxycyclopropyl glycine (DCG-IV) and are 

negatively coupled to the adenylate cyclase enzyme. Group III mGluRs, which consist of 

mGluR4, 6 , 7, 8 , and activated by L-2-amino-4-phosphonobutyrate (L-AP4), and like those 

of group II, are also negatively coupled to adenylate cyclase. Glutamate binding to group I 

mGluRs leads to the activation of PLC, which catalyses the hydrolysis o f phosphatidil- 

inositof 4,5-diphosphate to inositol-1,4,5-triphosphate (IP3) and diacyl-glycerol (DAG). IP3 

opens Ca^'-channels on the endoplasmatic reticulum, while DAG activates protein kinase 

C (PKC). Activation of group II and III mGluRs leads to the inhibition o f protein kinase A 

(PICA) through decreased levels o f cAMP.

Different groups of metabotropic glutamate receptors show a distinct subcellular 

segregation. In general group I niGluRs are usually found at somatodendritic domains, at 

the peripheral parts o f postsynaptic densities (“perisynaptic location”) and they have 

excitatory effects on the neurons. They contribute to the regulation o f synaptic plasticity. 

Group 11 and III mGluRs on the other hand, are mainly located presynaptically and they 

have an inhibitory effect on the presynaptic terminal, negatively regulating the release of 

glutamate or GAB A. The following reviews discuss the characteristics of inGluRs in 

detail: Ozawa et al. (1997), Shigemoto and Mizuno, (2000), De Blasi et al. (2001).

THE FUNCTIONAL NEUROANATOMY OF THE SPINAL CORD
The spinal cord is evolutionary the most ancient part o f the CNS, and is of 

fundamental importance in receiving and processing sensory information and relaying it 

towards higher CNS regions. It plays a vital role in integrating basic motor functions, 

executing voluntary movements orchestrated by the brain and in regulating autonomic

16



body functions. In anatomical terms the spinal cord is a very complex neuronal network of 

intrasegmental and intersegmental propriospinal neurons and projection cells, which 

communicate with the periphery o f the body through afferent and efferent connections and 

with higher brain regions through ascending and descending projections. The 

morphological, neurochemical and functional complexity of these neuronal circuits in the 

spinal cord are often underestimated, even by neurobiologists dealing with higher CNS 

regions. For detailed description on spinal cord anatomy see Willis and Coggeshall (1991).

Iiistriiisic neurons and cytoarchitectural lamination

Cell bodies located in the gray matter o f the spinal cord belong to local 

interneurons, projections cells, motoneurons or efferent autonomic preganglionic neurons. 

Several anatomical terms exist to describe the exact location of these nuclear groups, but 

the most satisfactory and widely accepted terminology is based upon the cyto architectural 

lamination of the spinal cord initially described in cat by Rexed (1952, 1954, 1964), and 

subsequently adopted for other species (e.g. Mo lander et ah, 1984, 1989). The spinal gray 

matter is divided into ten layers: laminae I-Vl and VIIÎ-IX correspond to the dorsal and 

ventral horns respectively, while the intermediate gray matter is lamina VII and the area 

around the central canal (central gray matter) is lamina X. The great majority (>95%) of 

spinal cord neurons are interneurons and functionally these can be inhibitory or excitatory.

Primary after eu ts

Electrical responses evoked by external and internal mechanical, chemical and 

thermal stimuli are conveyed to the dorsal horn by primary afferent fibres. Cell bodies of 

these primary sensory neurons are located in the DRG and give rise to axons which 

bifurcate into a peripheral and a central branch. The former innervate somatic (skin, 

muscles, joints) and visceral (blood vessels, heart, lungs etc.) organs, while the latter 

terminate in the spinal cord (or brainstem) and form synapses with second-order intrinsic 

neurons or motoneurons. Peripheral nerve fibres show distinct functional, morphological 

and electrophysiological properties; therefore they can be classified in several ways. The 

most widely used classification, based on conduction velocity, fibre diameter and certain 

electrical properties, distinguishes A- (Aa, A[3, Aô, Ay), B-, and C-fibres. Primary 

aflerents can belong to the A a, Ap, A5 and C groups (e.g. Lynn and Carpenter, 1982). 

Aa/Ap-afferents are large, myelinated fibres (4-12 pm) with high conduction velocity. 

They mainly belong to cutaneous low threshold mechanoreceptors which arborize in a 

band extending from the inner part o f lamina II (Hi) to lamina IV or to proprioceptive 

muscle spindle and Golgi tendon organ aflerents which terminate in laminae IV-VII and
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the ventral horn. Aô-afferents are thinly myelinated, smaller calibre fibres (1-4 pm) 

conducting with an intermediate velocity. Low-threshold mechanoreceptive AÔ-fibres 

innervate hair follicles and terminate in lamina Hi, while those responding to high intensity 

noxious stimulation fonn synapses mainly in lamina I, although a minority penetrate 

deeper into the dorsal horn and end in lamina V. Visceral aflerents are usually very thinly 

myelinated, slowly conducting fine fibres and these terminate throughout the dorsal horn. 

C-fibres are very thin (<1 pm), unmyelinated fibres with very low conduction velocity. 

These belong to somatic and visceral nociceptors, thermoreceptors, low threshold 

mechanoreceptors and together with the Aô-fibres mainly terminate in laminae I-H. 

However scattered C-fibre terminals can be found deeper in the dorsal horn. Unmyelinated 

cutaneous aflerents can be divided into two major groups based on their neurochemical 

characteristics and their sensitivity for different neurotrophins. Peptidergic C-fibres 

usually contain CGRP together with various other neuropeptides, they are sensitive to 

nerve growth factor (NGF) and express the high-affinity neurotrophin receptor, tiicA. Non- 

peptidergic C-fibres, lack neuropeptides, they are sensitive to glial cell line-derived 

neuro trophic factor (GDNF), express the receptor tyrosine kinase enzyme (RET), have 

fluoride-resistant acid phosphatase (FRAP) activity and strongly bind a lectin (IB4), 

derived from a plant, Bandeiraea simplicifolia. Peptidergic C-fibres mainly terminate in 

lamina I and the outer part of lamina II (Ho), while non-peptidergic ones arborize in the 

central part o f lamina II. The postsynaptic targets of peptidergic C-fibres include 

projection neurons in lamina I, as well as a population o f projections cells in laminae HI 

and IV with dendrites that pass dorsally to the superficial laminae.

Primary afferent teiminals in the dorsal horn generally have simple synaptic 

arrangements, although some form complex structures known as glomeruli. A synaptic 

glomerulus consists o f a central terminal formed by the primary afferent, and this is 

surrounded by several profiles. The peripheral profiles can either be axons forming axo­

axonic synapses with the primary afferent or they can be dendrites, which are postsynaptic 

to the central terminal. Some o f the dendrites belong to GABAergic neurons (Todd, 1996) 

and form reciprocal axo-dendritic/dendro-axonic synapses with the primary afferent. 

Ribeiro-da-Silva and Coimbra (1982) described two types o f synaptic glomerulus in the rat 

dorsal horn. Type I glomeruli belong to non-peptidergic C-fibres and are mainly present in 

the middle part o f lamina II (Ribeiro-da-Silva, 1994). These have scalloped terminals, 

densely packed clear vesicles o f variable size, dark axoplasm and few mitochondria. The 

central bouton typically receives a single axo-axonic synapse from a peripheral axon 

(Ribeiro-da-Silva, 2003). Central terminals of type II glomeruli belong to Aô D-hair
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afférents (Réthelyi et al., 1982) and are located slightly more ventrally, in lamina Hi and 

the outer portion of lamina III (Bernardi et al. 1995). These have loosely packed clear 

vesieles of uniform size, light axoplasm and many mitochondria. The central terminal 

often receives large numbers o f axo-axonic synapses.

Ascending projections from the spinal cord

Action potentials arriving via primary afferent fibres are usually received by spinal 

interneuronal systems which relay the information towards supraspinally projecting 

neurons after a complex processing, although direct monosynaptic connections to 

projection cells also exist. Cell bodies of projection neurons are mainly located in lamina I 

and laminae III-VI. The axons belonging to many o f these projection cells cross the 

midline, travel in the ventral or lateral funiculi o f the white matter (anterolateral system) 

and carry mechanoreceptive, nociceptive and thermal sensory information to various areas 

o f the brainstem and diencephalon. This is subsequently transmitted to the telencephalon 

where, as a result of still poorly understood integrative neuronal activity, pain, touch- 

pressure, and heat sensation is generated from the sensory information. In humans the 

main termination of the anterolateral system is the thalamus, while in rats only a small 

proportion of the fibres that originate from laminae I, III and IV arborize in this region; 

instead they mainly project to the periaqueductal gray matter, the lateral parabraehial area, 

the medullary reticular formation and the nucleus o f the solitary tract. The cerebellum is 

involved in receiving spinal ascending fibres (spinocerebellar tracts) related to 

proprioceptive input, but this information is not consciously perceived, instead it is 

concerned with the coordination o f somatic motor activity, equilibrium and the regulation 

o f muscle tone. Other ascending tracts from the rat dorsal horn include the post-synaptic 

dorsal column (PSDC) pathway and the spinocervical tract. It should be noted that the 

majority o f primary afférents responsible for vibration and kinaesthetic sense, two-point 

discrimination and tactile localization have ascending branches that travel in the posterior 

white columns and terminate in the gracile or cuneate nuclei.

Descending projections to the spinal cord

Several brain regions send descending pathways to the spinal cord, and these 

influence the activity of neurons or primary afferents in a neurochemically complex way. 

Descending systems are involved in motor function, in modulating sensory processing 

particularly in antinociception, and in autonomic regulation. They mainly originate in the 

telencephalon and brainstem, although neurons located in the diencephalon and cerebellum 

also send fibres to the spinal cord. An important projection to the spinal cord is the
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corticospinal tract, which transmits information responsible for voluntary movements. It 

terminates mainly in laminae III-VII, with scattered terminals in the superficial laminae 

and ventral horn. Several descending pathways (tectospinal, rubrospinal, vestibulospinal, 

reticulospinal, interstitiospinal, fastigiospinal), responsible for the regulation o f muscle 

lone, righting and posture reflexes, originate in the brainstem or cerebellum and terminate 

in laminae V-IX. Some of these form direct synaptic contacts with a -  or y-motoneurons, 

while others activate local interneurons. There are substantial monoaminergic projections 

fi'oin various brainstem nuclei to the spinal cord. These fibres can also contain various 

neuropeptides and are very important in antinociception, but also play a role in locomotion 

and autonomic regulation. Serotonin-containing fibres originate from several groups of 

neurons in the brainstem (B l-3, B5, B7 and B9) and terminate in all spinal laminae, but 

mainly in laminae I-IIo and the ventral horn. Similarly cell bodies o f noradrenergic axons 

that project to the spinal cord are located in cell groups of the medulla or pons (A l-2, A5- 

7) and innervate neurons throughout the dorsal and ventral horns.

This complex neuronal system uses a great variety o f neurotransmitters and 

neuromodulators to achieve its role in regulating body functions and serving as a central 

processing unit between the periphery and the brain. Although the most important and 

wide-spread excitatory transmitter is glutamate, up until very recently it was not known 

exactly what proportion and types o f spinal neurons were glutamatergic. Even less was 

known about the exact cellular, subcellular, synaptic and subsynaptic localization o f the 

glutamate receptors, although their presence and role in physiological and pathological 

conditions has been demonstrated by several studies (Fundytus, 2001).

GLUTAMATERGIC SYSTEMS IN THE SPINAL CORD 

Glutamate as a neurotransmitter in the spinal cord
Curtis and Watkins (1960) were the first to describe the excitatory effect o f 

glutamate on spinal cord neurons, and following biochemical, pharmacological, 

electrophysiological and immunocytochemical studies (e.g. Biscoe et ah, 1976; Jessell et 

ai. 1986; Wanaka et ah, 1987; De Biasi and Rustioni, 1988) it is now widely accepted that 

glutamate is the major excitatory transmitter in the spinal cord. Earlier studies 

investigating excitatory amino acid transmitters in the CNS used autoradiography to detect 

the uptake and axonal transport o f radioactive D-aspartate in neurons or 

immunocytochemistry to reveal accumulation of glutamate in axon terminals (transmitter 

pool). These studies established that glutamate is the main transmitter in all (or virtually
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al!) primary afferent terminals (De Biasi and Rustioni, 1988; Rustioni and Weinberg, 1989; 

Broman, 1993, 1994b; Todd and Spike, 1993). Glutamate is also used by most ascending 

(Broman, 1994a) and some descending projections. Glutamatergic ascending systems 

include the spinothalamic (Ericson et ah, 1995), spinocervical (Kechagias and Broman, 

1995) and spinocerebellar tracts (Ji et ah, 1991). The corticospinal (Rustioni et ah, 1982; 

Giuffrida and Rustioni, 1989) and rubrospinal tracts (Beitz and Ecklund, 1988), and at least 

some o f the tectospinal (Moony et ah, 1990), reticulospinal (Brodin et ah, 1994) and 

monoaminergic descending projections (Sorkin et ah, 1993; Fung et ah, 1994a 1994b; 

Hokfelt et ah, 2000a) are also glutamatergic.

It has been shown that a majority of spinal cord interneurons do not contain GAB A, 

are not enriched with glycine, and are thus unlikely to be inlribitory interneurons (Todd et 

ah, 1990, 1991, 1993). However, it has been difficult to prove that these cells were 

glutamatergic. Autoradiography is not optimal for colocalization studies, while glutamate 

antibodies are not suitable for deteeting cell bodies o f glutamatergic neurons (Ottersen and 

Siorm-Mathisen 1984; Yingcharoen et ah, 1989; Walberg et ah, 1990) since the metabolic 

pool of glutamate in cell bodies o f non-glutamatergic neurons is sufficiently large to give a 

significant level of immunostaining. This makes it impossible to distinguish between 

glutamatergic and non-glutamatergic cell bodies using antibodies against glutamate. With 

the postembedding immiinogold method, glutamate antisera can be used to detect the 

accumulated glutamate in excitatory terminals (De Biasi and Rustioni, 1988; Maxwell et 

ah, 1990a, 1990b; Todd et ah, 1993, 1994), however it is difficult to identify these boutons 

as belonging to axons o f loeal interneurons. Previous studies had demonstrated that some 

intrinsie neurons use glutamate as a neurotransmitter (e.g. Rustioni and Cuenod, 1982; 

Antal et al., 1991). However, until the recent discovery o f VGLUTs (see above) as 

suitable immunocytochemical markers for glutamatergic axons, the difficulties in 

identifying glutamatergic spinal interneurons had hampered our understanding o f the 

neuronal circuitry in the spinal cord.

Todd et ah (2003) were the first to carry out a detailed survey of VGLUTl and 

VGLUT2 in the spinal cord. They found that terminals o f local interneurons expressing 

markers which are usually not found in G ABA- or glycine-immunoreactive cells contained 

VGLUT2, and were thus likely to be glutamatergic. Their study also showed that 

myelinated primary afferents contained VGLUTl, but not VGLUT2, and that inhibitory 

interneurons lacked both VGLUTs. Surprisingly, although unmyelinated C-fibres are also 

glutamatergic (Broman et ah, 1993), they lacked VGLUTl and were either unstained or
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very weakly stained with a VGLUT2 antibody. Landry et al. (2003) showed that C-fibres 

also did not contain VGLUT3, suggesting that these fibres use a different VGLUT,

loiiotropic glutamate receptors in the spinal cord
AMPA receptors

inRNAs for all four subunits o f the AMPA receptor have been identified in the 

spinal cord with in situ hybridization, but the level of expression for each subunit varied 

between laminae and there are some discrepancies between the results o f different studies 

(Furuyama et ah, 1993; Henley et ah, 1993; Tdlle et ah, 1993, 1995b; Jakowec et ah, 

1995b; Shibata et ah, 1999). The expression o f GluR2 is strongest in the superficial 

laminae of the dorsal horn. Furuyama et al. (1993) found that strongly labelled cells 

formed a dense plexus in lamina II and the outer part o f lamina III, while Tdlle et ah 

( 1993) reported that GluR2 mRNA was evenly expressed throughout laminae I-III. GluR2 

expression was moderate in the deeper laminae o f the dorsal horn and in the ventral horn 

(Furuyama et ah, 1993). GluRl mRNA levels were highest in laminae I and IIo (Tdlle et 

al., 1993), moderate in laminae Ili and III and low in the ventral horn (Furuyama et ah 

1993). In contrast, the expression of GluR3 and GluR4 was high in the ventral horn, while 

in the dorsal horn only occasional cells contained moderate levels o f GluR3 mRNA and the 

expression of GluR4 was found to be extremely low (Furuyama et ah, 1993). Tdlle et ah 

(1995b) investigated the distribution o f “Flip” and “Flop” splice variants in the rat lumbar 

spinal cord and found that in the dorsal horn the predominant inRNAs were GluRl and 

GluR2 “Flip” while in the ventral horn the most abundant forms were GluR2 “Flip”, 

GluR3 “Flip” and “Flop” and GluR4 “Flop”.

Immunocytochemical studies at light and electron microscopic levels have also 

been carried out with antibodies against AMPA subunits (Tachibana et ah, 1994; Jakowec 

et ah, 1995a; Popratiloff et ah, 1996, 1998a; Morrison et ah, 1998; Spike et ah, 1998) and 

the results o f these studies were broadly similar to those obtained with in situ 

hybridization. However there is some controversy regarding the pattern of GluRl and 

GhiR2 expression by motoneurons (see below). Light microscopie immunocytochemistry 

with the various antibodies showed labelling of cell bodies and proximal dendrites, which 

is likely to represent subunits in transit. AMPA subunits located at asymmetrical synapses 

could not be revealed generally, as these sites appear to become inaccessible to antibodies 

during chemical fixation (see below). Another problem with these studies was that due to 

the lack o f specific antibodies, the GluR2 and GluR3 subunits could not always be 

distinguished. This is beeause most antibodies directed against GluR2 cross-react with
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GluR3 due to the considerable sequence homology between the C-terminals of these two 

subunits. Using antibodies against GluRl and GluR2/3, Popratiloff et al. (1996) showed 

that GluR2/3 staining was substantial in the superficial dorsal horn, being strongest in 

lamina Hi, while G luRl was concentrated in laminae I and IIo. GluR2 or GluR2/3 

immunostaining has been found in neurons in other parts of the gray matter including 

lamina IX, while there is general agreement that adult motoneurons do not express GluRl 

(.lakowec et al., 1995a; Popratiloff et al., 1996; Morrison et al., 1998; Engelman et ah,

1999). However there have also been reports that motoneurons have GluRl (Pellegrini- 

Giampietro et ah, 1994; Virgo et ah, 1996; Temkin et ah, 1997; Williams et ah, 1997; Bar- 

Peled et ah, 1999; Shibata et ah, 1999) or lack GluR2 subunits (Williams et ah, 1997; Bar- 

Peied et ah, 1999; Del Cano et ah, 1999; Shaw et al., 1999). GluR4-immunoreactive cells 

were present in all laminae except I-II.

Although synaptic iGliiRs are masked following fixation, using postembedding 

immunocytochemistry Popratiloff et ah (1996, 1998a) showed clustering o f gold particles, 

repi'esenting GluRl and GluR2/3 subunits, over the postsynaptic density, postsynaptic 

membrane and cleft o f certain asymmetrical synapses in the dorsal horn. Presynaptic 

profiles could be identified as being of both primary afferent and interneuronal origin. 

Synapses formed by both types o f synaptic glomeruli were labelled, but to a different 

extent. Synapses formed by type I glomeruli were predominantly GluRl-positive, while 

those formed by type II glomeruli were more often GluR2/3-imniunoreactive. As 

expected, labelling was not observed over symmetrical synapses, which are likely to have 

been predominantly inlribitory. Morrison et ah (1998) and Ragnarson et ah (2003) used 

the postembedding method to examine AMPA receptors in the ventral horn. Morrison et 

ah found that the percentage of GhiR2 -labelled synapses and the number of gold particles 

at individual synapses did not differ between dorsal and ventral horn. Ragnarson et ah 

provided evidence that synapses on motoneurons possessed GluR2/3 and GluR4 subunits, 

but not G luRl, suggesting that chemical transmission at la synapses is mediated through 

GluR2/3 and GluR4 receptors.

The high level o f GiuR2 expression in the dorsal horn suggests that many of the 

AMPA receptor complexes in this region are impermeable to Câ "'’. However, using Ca^^- 

sensitive indicator dyes, Reichling and MacDermott (1993) demonstrated that a small 

population o f neurons in laminae I and IIo express significant levels o f Ca^^-permeable 

AMPA receptors. Ion permeability studies (Goldstein et ah, 1995; Nagy et ah, 1994; 

Engelman et ah, 1997, 1999) and pharmacology (Gu et ah, 1996) were also used to 

demonstrate the presence o f these receptors in the dorsal horn. Many dorsal horn neurons
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co-express Ca^’‘-permeable and impermeable AMPA receptors (Goldstein et al., 1995, Gii 

et al., 1996, Vandenberglie et al., 2001). G luRl- and GluR2-expressing dorsal horn 

neurons were neurochemically characterized by Spike et al. (1998). Using preembedding 

and postembedding immunocytochemistry they showed that 52% of G luR l- 

immunoreactive neurons were GABA-immunoreactive, 26% were GABA- and glycine- 

immunoreactive and 22% did not contain either of these inhibitory transmitters. On the 

other hand 96% of the neurons immunostained for GluR2/3 were not GABA- or glycine- 

immunoreactive. Five markers were used to characterize the G luRl- and GluR2- 

immunoreactive neurons further. Neurotensin (NT) and somatostatin (SOM) are mainly 

associated with excitatory interneurons, while parvalbumin (PA), nitric oxide synthase 

(NOS) and choline acetyltransferase (ChAT) are generally found in inhibitory neurons. 

Double-immunofluorescence and confocal microscopy showed that virtually all NT- and 

SOM-immunoreactive cells were GluR2/3-immunoreactive, but were not stained for 

G luRl, whereas parvalbumin was always colocalized with GluRl but usually not with 

GluR2/3. Approximately half of the NOS-expressing cells were labelled with either the 

GluRl or the GluR2/3 antibody, and all o f the ChAT-immunoreactive cells tested were 

immunoreactive for GluRl and GluR2/3. Based on these results the authors concluded that 

GluRl subunits are mainly associated with inhibitory neurons and GluR2 with excitatory 

ones. The presence o f G luRl, but not GluR2 in cell bodies of parvalbumin- 

immunoreactive neurons makes it likely that at least some o f these inhibitory neurons 

express Ca^ ' -permeable AMPA receptors. This is consistent with the results from cortical 

structures, where Ca^’̂ '-permeable AMPA receptors were restricted to subpopulations of 

GABAergic interneurons (Kliarazia et al., 1996; Racca et ah, 1996). In addition, Stanfa et 

al. (2000), reported facilitation o f C-fibre evoked responses in dorsal horn neurons, by loro 

spider toxin, a selective antagonist of Ca^'"-permeable AMPA receptors. They eonchided 

that functional Ca^^-permeable AMPA receptors within the spinal cord were present 

pi'edominantly within inhibitory pathways. Kainate-indueed cobalt loading studies on 

eullured spinal neurons showed that 59% of GABAergic inhibitory neurones expressed 

Ca”’'"-permeable AMPA receptors (Albuquerque et ah, 1999). These authors also found 

these receptors on 77% of NKl-receptor-immunoreactive (presumably excitatory) neurons. 

Engelman et ah (1999) also reported that a proportion of lamina I NK l-receptor expressing 

cells possess AMPA complexes with Ca^'^-permeability. The role o f Ca^''"-permeable 

AMPA receptors in the dorsal horn is poorly understood. These receptors have also been 

identified on motoneurons in the ventral horn (Carreido et ah 1996, 2000; Vandenberglie et 

ah, 2000a, 2000b, 2001; van Damme et ah, 2002; Kawahara et ah, 2003), where they have
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been implicated in excitotoxicity and nenrodegeneration in amyotrophic lateral sclerosis 

(for review see Strong and Rosenfeldt, 2003).

Although most AMPA receptors are likely to be located at glutamatergic synapses, 

there is evidence that they are also expressed by primary afferents. Both mRNA for 

AMPA receptors and the proteins themselves were detected in dorsal root ganglion 

neurons (Huettner, 1990; Partin et ah, 1993; Sato et ah, 1993; Tachibana et ah, 1994; 

Chambille and Rampin, 2002; Lu et ah, 2002). Using immunocytochemistry at the light 

and electron microscopic level. Lu et ah (2002) found AMPA receptors in central terminals 

o f primary afferents in the dorsal horn following weak fixation. These are though to 

represent presynaptic receptors. With immunofluorescence, axonal labelling corresponding 

to GluR4 or GluR2/4 was mainly found in laminae I and II and was colocalised with IB4- 

binding (representing non-peptidergic C-fibres). Axonal labelling for GluR2/3 subunits 

was mainly present in laminae III and IV and appeared to be present in myelinated fibres, 

which were labelled by transganglionically transported cholera toxin b subunit (CTb). 

GhiR2/3 was also present in terminals o f inhibitory interneurons. Immunostaining for 

GluRl or GluR2 was very rarely detected in axon terminals or in DRG neurons, suggesting 

that the GluR2/3 and GluR2/4 antibody labelled presynaptic GluR3 and GluR4 subunits. 

Lee et ah (2002) demonstrated that activation o f presynaptic AMPA receptors caused 

inhibition of glutamate release from the primary afferent terminals, possibly via primary 

afferent depolarization (PAD). These findings challenge the traditional view that GABA 

acting on G A B A a  receptors exclusively mediates PAD.

Functionally, AMPA receptors in the dorsal horn have mainly been implicated in 

acute pain (Nishiyama et ah, 1998; Kontinen 2002; Voitenko et al., 2004), although it has 

also been suggested, that they play a role in central sensitization (Sang et ah, 1998; Stanfa 

and Dickenson, 1999) and in chronic pain o f both neuropathic and inflammatory origin 

(ChapIan et ah, 1997; Garry et ah, 2003). For a more detailed discussion on the role o f 

AMPA receptors in central sensitization see Chapter 5.

Kainate receptors

Our knowledge about kainate receptors in the spinal cord is very limited, mainly 

due to the lack o f reliable, subunit-specific antibodies. However, it is generally accepted 

that kainate receptor subunits are not abundant in the cord. In situ hybridization studies 

detected a relatively high level of KA2 subunit and moderate levels o f GluR5 (mainly in 

lamina 1) and o f GluR7 (in laminae I-II), while GluR6 subunits were not detected (Tolle et 

ah, 1993). Dai et ah (2002) used single cell RT-PCR on cultured rat spinal cord neurons
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and found high levels o f GluR7 and KA2, moderate levels o f GluR5 and low levels of 

GluR6 and K A l. Adult motoneurons in the ventral horn are thought not to express kainate 

receptors (Stegenga and Kalb, 2001).

There is evidence to suggest that kainate receptors in the spinal cord are mostly 

found presynaptically on primary afferent terminals. Agrawal and Evans (1986) reported 

that kainate depolarized those dorsal root ganglion cells which gave rise to C-fibres, and 

this was confirmed by Heuttner (1990). Using immunocytochemistry, Petralia et al. 

(1994a) detected GluR6/7 and KA2 in dorsal root ganglion cells, while other studies have 

found GluR5 mRNA and protein in primary afferent terminals or DRG cells (Partin et al., 

1993; Sato et ah, 1993; W oolf and Costigan, 1999). Hwang et ah (2001) carried out a 

detailed survey of GluR5/6/7 receptors in the superficial laminae o f the dorsal horn and 

found that following weak fixation approximately two-thirds o f GluR5/6/7 puncta were in 

axon terminals. They also reported that 20% and 40% of these puncta colocalised with 

IB4-binding or with transganglionically transported CTb, respectively. This suggests that 

despite the evidence from physiological studies (Agrawal and Evans, 1986; Heuttner et ah, 

1990) presynaptic kainate reeeptors are not limited to one functional class o f primary 

afferent. A study which combined electrophysiology and pharmacology provided strong 

evidence that presynaptie kainate receptors can reduce glutamate release from the 

terminals of fine diameter primary afferents, and thus modulate one o f the most important 

steps of nociceptive information processing (Kerclmer et ah, 2001b). Lee et ah (2002) 

concluded that this inhibition is probably also caused by PAD. Behavioural studies are 

consistent with these findings, showing that a GluR5 agonist (ATPA) has antinociceptive 

effects in acute pain and hyperalgesic states (Procter et ah, 1998; Mascias et ah, 2002).

Some of the kainate receptors expressed in the spinal cord are thought to be 

present on axon terminals of inhibitory interneurons where they are activated by the 

spillover of glutamate from primary afferent terminals and facilitate GABA or glycine 

release from these inhibitory terminals (Kerchner et ah, 2001a). Presynaptic kainate 

receptors on inhibitory terminals can be either sensitive or insensitive to ATPA, suggesting 

that some contain GluR5 subunits, while other lack them.

It is also clear that KA receptors are not restricted to presynaptic sites. Li et ah 

(1999b) showed that high-intensity stimulation o f primary afferent fibers evokes fast, ICA 

receptor-mediated EPSPs in the superficial dorsal. Activation o f postsynaptic kainate 

receptors could enhance the transmission o f nociceptive signals, and in addition could play 

a role in synaptic plasticity (Ruscheweyh and Sandkiihler, 2002). These postsynaptic KA 

receptors are ATPA-insensitive, thus not likely to contain significant levels o f GluR5.
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Despite these findings, our knowledge about the role o f KA receptors in spinal 

sensory transmission cannot be complete without the development of selective and 

sensitive antibodies and subsequent immunohistochemical examination.

NMDA receptors

NMDA N R l, NR2 and NR3 subunits have all been detected in the spinal cord. As 

in the case of the other two iGluRs, these show a differential expression pattern throughout 

the gray matter, which is further complicated by the presence o f different splice variants. 

Very few studies have used immunocytochemistry to investigate the distribution o f NMDA 

receptors in the spinal cord (and even these have mainly focused on the N R l subunit) and 

therefore most of our knowledge comes form in situ hybridization experiments.

Moderate to high levels o f N R l subunit inRNAs have been found throughout the 

spinal cord gray matter with in situ hybridization (Furuyama et ah, 1993; Tolle et ah, 

1993; Luque et ah, 1994; Shibata et ah, 1999). Furuyama et ah (1993) and Kus et ah 

( 1995) reported that the expression o f N Rl was much higher in the ventral horn than in the 

dorsal horn. Tdlle et ah (1995a) examined the distribution o f different NMDA N Rl splice 

variant mRNAs in the rat lumbar spinal cord. NMDA N Rl-a, N R l-1, N R l-2  and N R l-4 

mRNAs were evenly distributed throughout all laminae of the dorsal horn. NMDA N R l-b 

mRNA was preferentially detected in laminae Ili and lamina III. NMDA N R l-3 was only 

found at very low levels and was restricted to laminae I and II. Serial sections o f single 

neurons were also examined, and it was reported that one neuron could express multiple 

splice variants of N R l. Luque et ah (1994) concluded that most neurons in the dorsal horn 

expressed the N RL3b isoform. Prybylowski et ah (2001) used cassette-specific antibodies 

on Western blots to examine the spinal expression o f these splice variants and found that 

25-35% of the N R l subunits contained the Ni-casette, 5% the C|-, <20% the Cz-, and 

>80% the Cz'-cassette (Table 1.1). They therefore concluded that the dominant form o f the 

NRl subunit in adult rat spinal cord were N R l-4a and NRl-4b. Using a polyclonal 

affinity-purified rabbit antibody directed against the Cz-cassette o f N R l (specific for N R l-

I and N R l-2 splice variants), Popratiloff et at. (1998a) found N Rl labelling in laminae I- 

III o f the dorsal horn. Neuropil staining was the densest in laminae I and IIo and got 

progressively weaker through lamina Hi and lamina III. The prominent staining in lamina

II was probably due to the high density of neurons in this lamina. At the electron 

microscopic level with postembedding immunocytochemistry, gold particles were 

associated with asymmetrical synapses and they were centered on the PSDs. Profiles 

associated with primary afferents and with neurons of unknown origin were labelled.
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Primary afferent terminals in both types o f synaptic glomeruli and fibres with dome-shaped 

terminals (many of which are o f primary afferent origin) all made synapses with NMDA 

NRl receptor expressing spinal neurons. In an electron microscopic investigation using 

preembedding immunocytochemistry, Aicher et al. (1997) reported that N R l subunits were 

postsynaptic to SP-containing axon terminals in the superficial dorsal horn.

There were controversial reports about which NR2 subunits are expressed in the 

gray matter. Tolle et al. (1993) originally only described NR2D mRNA in the lumbar 

spinal cord, but eventually all NR2 splice variant mRNAs were detected (Luque et ah,

1994; Watanabe et ah, 1994a; Boyce et ah, 1999; Shibata et ah, 1999). NR2A mRNA was 

found in all laminae except lamina II, while NR2B was more or less restricted to the 

lamina 11. Motoneurons are thought to express mRNA for NR2A and NR2D, although 

contradicting with this, Shibata et ah (1999) found NR2B mRNA in somatomotor neurons. 

NR2C is expressed in very low levels in small cells, presumably glial cells, scattered 

around the gray and white matter (Watanabe et ah, 1994b; Shibata et ah, 1999).

NR3A mRNA is present throughout the dorsal horn, but higher levels were found 

in laminae ll-III than in lamina I (Ciabarra et ah, 1995; Wong et ah, 2002). Motoneurons 

in neonatal rats also express NR3A (Abdrachmanova et ah, 2000). In contrast, NR3B 

shows a restricted distribution in the spinal cord. It is present at high levels in somatic 

motoneurons, much lower levels in visceromotor neurons and appears to be absent from 

the dorsal horn (Nishi et ah, 2001; Chatterton et ah, 2002; Matsuda et ah, 2002).

As with AMPA and kainate receptors, it has been suggested that NMDA subunits 

play a role in the regulation of presynaptic transmitter release in the dorsal horn o f spinal 

cord. Shigemoto et ah (1992) and Watanabe et ah (1994b) were the first to describe 

NMDA NRl mRNA in rat dorsal root ganglia. Shortly after this Liu et ah (1994) used an 

affinity purified antibody against a C-terminal peptide of N Rl to detect the protein itself in 

DRG and primary afferent terminals with Western blot and immunocytochemistry, 

respectively. It was also reported that the activation of presynaptic NDMA receptors on 

nociceptive primary afferents facilitated and prolonged glutamate and SP release from 

these fibres (Liu and Basbaum, 1997; Malcangio et ah, 1998). However, this view has 

recently been challenged by Bardoni et ah (2004), who proposed that presynaptic NMDA 

receptors actually play a role in the inhibition of glutamate release from terminals.

Several pharmacological, electrophysiological and behavioural studies suggest that 

NMDA receptors play a major role in acute pain (Raigorodsky et ah, 1990; Sakurada et ah, 

1998). As can be expected from their physiological properties NMDA receptors are not 

only involved in the “simple” transduetion o f nociceptive information, but are also
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responsible for long term changes in the excitability of spinal cord neurons that are thought 

to underlie chronic pain states (Dubner and Ruda, 1992; King et ah, 1993; Kolhekar et ah, 

1993; Neugebauer et ah, 1994; Baranaiiskas and Nistri, 1998). Following stimulation of 

C-fibres, many dorsal horn neurons become increasingly sensitive to various forms of 

stimulation, a phenomenon termed central sensitisation (Woolf, 1996; Li et ah, 1999; 

Willis, 2002; Ji et ah, 2003). The magnitude o f this hyperexcitability is related to the 

activity of C-fibres. Following extensive and prolonged noxious stimulus such as 

peripheral inflammation, nerve injury, eapsaicin or formalin injection, central sensitisation 

is very prominent and may result in an altered form o f sensation, referred to as 

hyperalgesia or allodynia. Allodynia is defined as pain resulting from normally innocuous 

stimuli (e.g. touching an inflamed skin region or movement of the arthritic joint), while 

hyperalgesia is the increased sensation of pain following a noxious stimulus (“pain of 

being slapped on a sunburnt back”). NMDA receptor antagonists reduce acute pain 

(Meller et ah, 1992), but they also effectively inhibit the central sensitisation, LTP or c-fos 

expression o f dorsal horn neurons following nerve-injury, electric stimulation or 

chemically induced inflammation (Ren et ah, 1992a; Mao et ah, 1992; Chapmann et ah,

1992a; Neugebauer et ah, 1993; M a and Woolf, 1995; Liu and Sandkuhler, 1995; Huang et 

ah, 1999a, 1999b). In addition NMDA receptor antagonists reduce hyperalgesia and 

allodynia in experimental animals (Ren et ah, 1992a, 1992b, 1993; Yamamoto and Yaksh, 

1992a, 1992b; Eisenberg et ah, 1995; Spraggins et ah, 2001) and also provide means of 

controlling neuropathic pain in humans (Eide et ah, 1994; Eisenberg et ah, 1994; Bennett, 

2000; McCartney et ah, 2004). Knock down o f spinal NMDA N R l receptors with anti­

sense oligonucleotides or with the injection o f adeno-associated virus expressing Cre 

recombinase into floxed N Rl mice, also reduces NMDA- and formalin-evoked behaviours 

and prevents the development of central sensitization in dorsal horn neurons (Garry et ah, 

2000; Yukhananov et ah, 2002; South et ah, 2003). Taniguehi et ah (1997) found that 

selective NR2B receptor antagonists have a marked analgesic effect in carrageenan- 

induced hyperalgesia, without the behavioral side-effects of other, non-selective NMDA 

receptor antagonists. These results are consistent with the fact that NR2B subunits are 

preferentially expressed in lamina II, an area of the dorsal horn where C-fibres terminate 

(Boyce et ah, 1999). These findings were later confirmed by other studies, further 

emphasizing the importance o f NR2B subunits in pain (Chazot et ah, 2004; Kovacs et ah, 

2004; McCauley et ah, 2004). The generation of central sensitisation not only depends on 

NMDA receptors, but mGluR, AMPA, GABA, NK-1 receptors, neuropeptides and a 

number of second messengers have also been implicated (Dougherty et al., 1991a, 1991b;
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Willis, 2002). It is generally accepted that central sensitisation involves either the 

phosphorylation o f NMDA receptor proteins by PKC and PKA or the long term 

depolarization o f the cell membrane (e.g. by N K l receptor activation) leading to reduction 

o f the Mg^’'’-blockade on the NMDA receptor, which then remains increasingly sensitive to 

glutamate (1992; Baranauskas and Nistri 1997; Bennett 2000; Herrero et ah, 2000; Zou et 

ah, 2000, 2002; Begon et ah, 2001; Yahspal et ah, 2001; Willis, 2002).

Interestingly, there is emerging evidence, that NMDA receptors may also be 

involved in the inhibition of nociceptive signals. Inoue et ah (2000) found that SP-induced 

nociception was enhanced in NMDA NR2A knock-out mice, and suggested that this 

subunit may play an inhibitory role in the “downstream mechanisms” of SP-containing 

nociceptive primary afferents, possibly through activation o f unidentified inlribitory 

neurons. Zou et ah (2001) provided the first evidence that inhibitory interneurons are 

activated by NMDA receptors, by showing that in rats an NMDA receptor antagonist 

attenuated c-fos expression in GABAergic neurons in the dorsal horn following 

intradermal injection o f capsaicin. Alunadi et ah (2003) have recently shown that during 

high levels o f presynaptic activity, glycine released from inhibitory interneurons escapes 

the synaptic cleft and reaches nearby NMDA receptors by spillover. As glyeine is required 

for full activation o f NMDA receptors, they suggested that this spillover may contribute to 

the develo]nnent of inflammatory hyperalgesia, and thus the excitation of inhibitory 

neurons can paradoxically lead to enhanced nociception.

NMDA receptors also play a role in spinal cord development and ventral horn 

physiology and pathology. Several authors have demonstrated a spatiotemporal change in 

NMDA receptor expression pattern in mouse and rat spinal cord during development (Hori 

et ah, 1994; Watanabe et ah, 1994b; Dunah et ah, 1996), while Kalb (1994) showed that 

blocking NMDA receptors inhibited motoneuron cell body growth and dendritic 

branching. NMIDA binding sites and mRNA for the N Rl and NR2A subunits were 

markedly decreased in human patients suffering from amyotrophic lateral sclerosis (Virgo 

et ah, 1995; Samarasinghe et al, 1996). Nerve injuries, such as ventral root avulsion or 

postnatally performed sciatic nerve section, which lead to motoneuron death had similar 

effects on NMDA subunits in rats (Piehl et ah, 1995). It is not clear whether this reduction 

plays a role in the pathogenesis o f the cell death or it is due to the loss of motoneurons. 

NMDA-mediated acute excitotoxicity has also been described in the spinal cord and 

neuronal loss is thought to be initiated through mitochondrial Ca^^-overload and the 

generation o f free oxygen radicals caused by the activation of NMDA receptors 

(Urushitani et ah, 2001).
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AIMS OF THE STUDY

Despite extensive research, very little is known about the synaptic distribution of 

iGluRs in the spinal cord and their involvement in particular neuronal circuits. The aim of 

the investigations presented in this thesis was to examine the expression of AMPA 

(G luR l-4) and NMDA (N R l, NR2A, NR2B) receptor subunits at glutamatergic synapses 

in the gray matter o f rat lumbar spinal cord using immunocytochemistry at the light and 

electron microscopic level.

Investigation 1
Aims: (1) to investigate whether somatostatin- and enkephalin-containing interneurons in 

the dorsal horn are glutamatergic and (2) form synapses that contain AMPA 

receptors.

Somatostatin and enkephalin are among the most important sensory neuropeptides in the 

dorsal horn. However, it is still not known whether intrinsic neurons, immunoreactive for 

these peptides, also use a classical amino-acid transmitter. There is evidence to suggest 

that that somatostatin-containing interneurons and the majority o f enkephalin-containing 

axon terminals are glutamatergic (Todd et al. 2003). Two different approaches were used 

to test these hypotheses: ( 1) triple-labelling immuno-fluorescence and confocal microscopy 

was carried out to examine whether somatostatin-immunoreactive axon terminals 

belonging to interneurons express VGLUTl or VGLUT2; (2) post-embedding 

immunogold labelling was used on freeze-substituted, Lowicryl-embedded material to 

reveal GluRl and GluR2/3 subunits of the AMPA receptors at synapses formed by 

somatostatin- or enkephalin-immunoreaetive axons.

Investigation 2

Aims: (1) to investigate the receptor expression pattern of synapses formed by SP- and 

CGRP-containing nociceptive primary afferent terminals on to large, NICl- 

i mmunoreacti ve projection neurons and (2 ) to describe the synaptic distribution of 

NMDA receptors in the dorsal horn.

NKl-immunoreactive projection neurons in lamina III/IV, with dendrites projecting 

dorsally to the superficial laminae, receive strong synaptic input from nociceptive primary 

afferents. These cells are very important in the processing o f nociceptive information 

(Todd 2002). To allow the identification and examination of these neurons, a novel 

method was developed for combining post-embedding electron microscopy with
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immunofluorescence and confocal microscopy. Two representative NKl-inmiunoreactive 

cells were selected with the confocal microscope and following freeze-substitution serial 

ultra-thin sections were cut through the dendritic tree of these neurons and reacted with 

antibodies against SP, CGRP and various iGluR subunits. The postembedding 

immunogold technique was also used to reveal NMDA receptors at synapses in the dorsal 

horn.

Investigation 3
Aims: (1) to investigate the laminar distribution of G luR l-4 subunits o f the AMPA 

receptor at glutamatergic synapses in the spinal cord, (2 ) to study the colocalization 

o f various AMPA subunits, (3) to examine the relationship of GluRl and GliiR2 to 

different types of glutamatergic axon, and (4) to determine whether 

morphologically detectable changes involving synaptic AMPA receptors occur in 

response to a peripheral noxious stimulus.

To reveal AMPA receptors at synapses the antigen unmasking technique involving limited 

proteolytic digestion with pepsin was used. To examine the colocalization o f various 

AMPA subunits and their relationship to different types o f glutamatergic axon, triple­

labelling immunofluorescence was carried out. Boutons belonging to peptidergic and non- 

peptidergic C-fibres were identified by CGRP-immunoreactivity and IB4-binding, 

respectively. Myelinated primary afferents were revealed by V G LUTl, while VGLUT2 

was used as a marker for terminals o f exeitatory interneurons. Electron microscopy was 

used to confirm that the punctate receptor labelling seen after antigen unmasking 

represented synaptic receptors. To investigate functional changes involving synaptic 

AMPA receptors, the phosphorylation of GluRl was examined following the noxious 

chemical stimulation of the hindpaw with capsaicin.

Investigation 4
Aims: (1) to investigate the laminar distribution of N R l, NR2A and NR2B subunits of the 

NMDA receptor at glutamatergic synapses in the spinal cord, (2 ) to study the 

colocalization of N Rl with NR2A or NR2B and (3) to examine the relationship of 

these subunits to GluR2.

Antigen unmasking with pepsin was used to reveal NMDA subunits at synaptic 

sites. To examine colocalization o f N R l, NR2A and NR2B with GluR2, or N R l with 

NR2A or NR2B dual-labelling immunofluorescence was carried out.
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Chapter 2

Detection of synaptic receptors with the postembedding immunogold 

method and optimization of the technique



A variety of morphological methods have been used during the course o f this study. 

These include immunofluorescence, signal amplification techniques, conventional 

preembedding electron microscopic immunocytochemistry, postembedding immunogold 

labelling following freeze-substitution, antigen retrieval, antigen unmasking techniques, 

combined confocal and electron microscopy, serial sectioning and 3D reconstruction. 

Some o f these methods are widely used in neurobiology research, while others, such as 

postembedding immunogold labelling are more specialised and used only in a limited 

number of laboratories. This chapter focuses on the theoretical background and 

optimization of this specialised method. The remaining techniques are described in the 

appropriate chapters, while the composition of buffers and other solutions used during the 

experiments is provided in the Appendix.

DETECTION OF SYNAPTIC GLUTAMATE RECEPTORS WITH 

THE POSTEMBEDDING METHOD
The proper understanding o f neuronal circuits can only be accomplished with the 

use o f accurate and sensitive morphological methods. Immunocytochemistry has been 

used for a long time to study the localization o f proteins in the CNS, including that o f 

iGluRs. However, the detection o f receptors at asymmetrical, glutamatergic synapses has 

been hampered by the fact that antibodies cannot penetrate into the elaborate protein 

meshworks o f the synaptic cleft and post-synaptic density, especially when the proteins are 

extensively cross-linked as a result o f chemical fixation (e.g. Baude et al., 1995). The 

main approach used to overcome this problem with antibody penetration is postembedding 

immunocytochemistry. With this teclmique antibodies only react with antigens protruding 

from the cut surface o f resin embedded ultrathin sections, therefore there is no need for 

antibody penetration. However, tissue prepared according to conventional EM processing 

methods is still not suitable for the postembedding immunogold detection of synaptic 

proteins. This is due to severe unwanted changes in the native state o f the tissue, caused 

by chemicals used during conventional processing (Kellenberger et ah, 1992).

Theoretical background

To examine biological material with transmission electron microscopy two main 

goals have to be achieved; the first is to preserve the tissue in as near to its native state as 

possible. This is generally accomplished by chemical fixation with cross-linking agents 

such as formaldehyde (1-4%) and glutaraldehyde (0.05-4%) for the preservation o f 

proteins, and osmium tetroxide for the retention o f lipids. The second goal is to make the
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tissue hard enough to allow sections, approximately 60-70 nm thick, to be cut with a 

diamond knife. This is achieved by embedding the tissue in artificial resins which are then 

polymerised, most commonly by heating. For conventional embedding, generally epoxy­

resins are used. Since most EM-resins are hydrophobic, a dehydration step has to be 

incorporated between fixation and embedding to remove water from the specimen. This 

involves treating the sections with graded concentrations of ethanol or acetone.

Cross-linking during chemical fixation (especially with high concentration of 

glutaraldehyde) not only reduces the penetration o f antibodies, but also ehanges the 

conformation o f proteins, which can result in loss of antigenicity. Osmium also 

dramatically reduces the antigenicity (Phend et a l , 1995). Although decreasing the 

concentration o f these fixatives might have a beneficial effect on antigenicity, it is likely to 

result in poor structural preservation. Dehydration with ethanol or acetone at room 

temperature and polymerisation o f the resin with heat also denature proteins (Iwasa and 

ICondo 1999). A characteristic feature o f epoxy-resins is that they react with the side 

chains of tissue proteins, thus incorporating the specimen into the three dimensional 

structure o f the plastic. As a result, this makes it more difficult for primary antibodies to 

bind to the epitopes they were raised against.

These effects result in a major loss of antigenicity and make conventional 

postembedding immunocytochemistry unsuitable for the detection of synaptic iGliiRs. 

freeze substitution is a powerful method, which results in excellent ultrastructural 

preservation and maintains good antigenicity (Baiide et a l, 1995; Bernard et al, 1997, 

Matsubara et a l, 1996; 1997; Clarke and Bolam, 1998; Nagelhus et a l , 1998; Nüsser et a l, 

1998; Takumi et a l , 1999; Racca et a l , 2000; Sassoe-Pognetto and Ottersen, 2000). 

h reeze-substitution with low-temperature embedding has been developed gradually during 

the past 50 years. The combination of these methods can overcome many o f the problems 

associated with conventional EM techniques (Shiurba, 2001).

Tissue processing for freeze-substitution resembles the conventional processing 

described above, in that it also consists o f fixation (cryoimmobilization), dehydration 

(substitution, cryosubstitution) and embedding (Parthasarathy, 1995; Kellenberger, 1991; 

ICiss and McDonald, 1993). Freezing is achieved by the ultra-rapid cooling (lO'^^C/sec) of 

cryoproteeted tissue that has been fixed with 4% formaldehyde and a very low 

concentration of glutaraldehyde (0.1%), to a temperature below -80°C. Rapid cooling 

immobilizes the cellular water in a nonerystalline (vitrified) state in milliseconds. As the 

structure o f vitrified water is analogous to that o f liquid water, cellular components become 

immobilized in a state similar to their native form. Although several procedures have been
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developed to achieve rapid cooling, the most straight-forward is immersion freezing. This 

involves plunging the specimen into a liquid cryo gen at -180°C.

Cryotechniques are not only used for the freezing, but also during dehydration and 

embedding o f the sections. The most effective method for low-temperature dehydration is 

Freeze-substitution, when ice is dissolved by an organic solvent at -90°C. At such low 

temperatures, organic solvents and lipids in the tissue behave differently than at room 

temperature. Under these conditions, lipids are not extracted by the organic solvents and 

therefore the use o f osmium for preserving membranes can be avoided. In addition, far less 

protein dénaturation and précipitation occurs during freeze-substitution than during 

conventional dehydration (Bohrmann and Kellenberger, 2001). Usually anhydrous acetone 

or methanol is used with or without a mild secondary fixative such as uranyl acetate, tannic 

acid or potassium permanganate. These compounds are added to the substitution medium 

to achieve a better preservation o f lipids. For low-temperature embedding acrylate-, or 

acrylate-methacrylate-resins (e.g. Lowicryl HM20, HM23) are used, as they do not react 

with the side-ehains o f tissue proteins and also they can be polymerised by UV light 

instead o f heat, at temperatures as low as -45°C.

In summary, immersion freezing followed by freeze-substitution, low-temperature 

resin-embedding and UV polymerisation result in excellent preservation o f ultrastructure 

and antigenicity. Therefore, this technique has been used in previous studies to examine 

the exact cellular, subcellular, synaptic and subsynaptic distribution of iGluRs (e.g. 

Matsubara et ah, 1996, 1999; Landsend et ah, 1997, Sassoe-Pognetto et ah, 2000, 2003).

Optimization of the freeze-substitution protocol

All animal experiments carried out during the course o f this project were approved 

by the Ethical Review Process Applications Panel o f the University o f Glasgow, and were 

performed in accordance with the UK. Animals (Scientific Procedures) Act 1986. Every 

measure was taken to minimize the distress, pain or suffering caused to the animals.

To obtain spinal cord tissue, generally adult male Wistar rats were used (200-350 

g; Harlan, Loughborough, UK; exceptions are described in the appropriate chapters). 

Animals were deeply anaesthetized with an intraperitoneal injection of pentobarbitone 

(1000 mg/kg) and the thoracic cavity was opened through an anterior incision. A needle 

was inserted into the left ventricle, meanwhile a small incision was made in the right 

atrium to allow the blood and excess fixative to leave the blood vessels. Animals were 

first perfused for 5 seconds with mammalian Ringer’s solution containing 0.05% lidocaine 

hydrochloride. Chemical fixation was achieved by perfusing with one of the following
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fixatives: (1) 4% formaldehyde in 0.1 M phosphate buffer, pH 7.4, (2) 4% formaldehyde 

and 0.1% glutaraldehyde in 0.1 M phosphate buffer, pH 7.4 or (3) 4% formaldehyde in 0.2 

M aeetate buffer, pH 6.0, followed by formaldehyde in 0.2 M sodium carbonate buffer, pH 

10.5 (pH shift protocol). The pH shift protocol was tested as it was previously found to 

enhance the sensitivity o f immunogold labelling for aquaporin-4 water channels (Nagelhus 

et ah, 1998). There was no significant difference in the quality o f iGluR immuno 1 abelling 

of tissue processed with the different fixation protocols. Therefore 4% formaldehyde / 

0.1 % glutaraldehyde was used for the subsequent studies, as this provided the best 

ultrastructural preservation.

After the transeardiac perfusion an incision was made on the back o f the animals, 

muscles surrounding the dorsal surface of the vertebral column were removed and 

laminectomy was carried out to expose the spinal cord. The dura mater was carefully 

opened. Based on the position o f the dorsal roots in relation to the 13̂ ’̂ rib and the lumbar 

vertebrae Li-Lf,, lumbar spinal cord segments were identified, cut into blocks and removed.

For freeze-substitution, tissue was postfixed for 4 h in the same fixative and cut 

into 300-500 pm transverse sections with a Vibratome. Although there are reports that 

satisfactory freezing is limited to a few micrometers from the surface (Bennett, 1997), 

other studies have showed that thick sections can be successfully frozen throughout their 

entire depth. These 300-500 pm sections are relatively easy to handle during processing

and are much less fragile than thinner sections. The spinal cord slices were stored

overnight in 4% glucose in phosphate buffer (PB) and cryoproteeted in increasing 

concentrations o f glycerol (10%, 20% and 30% in PB for at least 30 min each).

Cryoprotection is crucial to minimize crystalline ice formation, which would cause

disruption to the tissue and seriously compromise the ultrastrueture.

Following cryoprotection sections were placed on the head o f a metal specimen pin 

(diameter 3.5 mm) and the excess buffer was removed with a filter paper. The tissue was 

then rapidly immersed in liquid propane cooled by liquid nitrogen at -196°C  using a Leica 

EM Cryopreparation Chamber (CPC). The temperature o f the propane was kept below 

-170°C  during freezing. Liquid propane was used as a eryogen as it has a higher heat 

capacity than that o f liquid nitrogen and therefore provides faster cooling. In addition, 

because the boiling point o f liquid nitrogen is much lower (-196°C) than that o f liquid 

propane (-42°C), it would vigorously start to boil when the tissue is immersed and the 

bubbles formed around the tissue would make the cooling less effective.

Frozen sections were removed from the pin and transferred to a Leica EM 

Automatic Freeze Substitution (AFS) apparatus, where freeze-substitution was carried out
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by a modification of the method o f van Lookeren Campagne et al. (1991). Sections were 

immersed in 0.5-1.5% uranyl acetate in anhydrous methanol for 24 h at -90°C . Methanol 

was chosen as substitution medium because it can substitute specimens in the presence of 

substantia] amounts o f water and also the substitution time is much shorter than for 

acetone. To avoid secondary ice crystal formation, the temperature was gradually (4°C/h) 

raised to -45°C . Sections were then rinsed three times with anhydrous methanol and 

infiltrated with graded concentrations of Lowicryl HM20 (methanol:resin 1:3, 1:1, 3:1, for 

1 h each, followed by several rinses in pure resin over a 24 h period). The free radical 

polymerization of Lowicryl is strongly inhibited by the presence o f oxygen (Acetarin et ah, 

1986). To displace any dissolved oxygen, dry nitrogen gas was bubbled through the resin 

on a fume bench. Lowicryl HM20 is a very volatile liquid, with irritant vapors. To 

minimize chemical contact, the pre-mixed Monostep Lowicryl was used in some 

experiments, rather than the Lowicryl kit, where the resin has to be made up from three 

components. Following infiltration, sections were carefully transferred to moulds for flat 

embedding. All items that were to be used in the embedding procedure were dried in an 

oven at 60°C before being used. Although flat embedding proved to be technically more 

difficult than embedding in closed capsules, this approach was chosen as it allows the 

Iransillumination of the blocks and the subsequent identification o f particular regions of 

interest in selected spinal cord laminae. In initial experiments a common problem was the 

failure o f the resin to polymerise after UV irradiation. This was probably caused by 

oxygen entering the AFS chamber and dissolving in the resin during manipulations. To 

avoid this, the nitrogen evaporator control was turned to its maximum and the flat 

embedding moulds and the plastic caps covering them were filled with liquid nitrogen 

before being inserted into the chamber. Care was taken during these manipulations to 

avoid any sudden temperature change inside the chamber. Following flat-embedding, 

moulds were covered with plastic caps and the resin was cured with 360 nm ultraviolet 

irradiation (48 h at -45°C , 9 h at -45-0°C and 24 h at 0°C).

The 300-500 qm thick resin-embedded transverse spinal cord sections were 

trimmed and ultrathin sections (generally in the sagittal plane) were cut with a diamond 

knife. This approach resulted in a 300-500 pm wide strip of tissue, which included all 

dorsal horn laminae and the ventral horn.

Optimization of the postembeddiiig protocol

During preliminary experiments several postembedding protocols were tested. 

There were four critical steps or conditions, which clearly increased the sensitivity o f
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immunogold labelling; (1) etching with a saturated solution of sodium hydroxide in ethanol 

to remove the resin from the section surface, (2 ) using a low concentration o f NaCl (0,3%) 

in the buffers, (3) prolonging incubation in primary antibody (>12 hours) at room 

temperature, and (4) the use of small (10 nm) gold particles coupled to the Fab-fragments o f 

the secondary antibody (Matsubara et ah, 1996).

Etching was carried out for 2-3 seconds prior to postembedding incubation and was 

followed by several rinses in ultra-pure water. Increasing the time for etching above 3 

seconds significantly deteriorated the ultrastructural preservation o f the tissue. Another 

drawback o f etching was that it caused “wrinkling” of sections and the resulting folds 

made serial reconstruction very difficult. This “wrinkling” could be reduced if  sections 

were not processed immediately after cutting, but were allowed to dry for several days. 

Other methods tested for removing the resin from the sections, such as Fl202 -treatment or 

incubation in sodium metaperiodate, did not prove to be as effective as etching with 

sodium ethanolate.

Decreasing the NaCl concentration from 0.9% to 0.3% dramatically increased the 

sensitivity of the postembedding method, although it also increased background 

immunolabelling. Using 0.9% NaCl, only occasional synapses were labelled and these 

contained few gold particles. With 0.3% NaCl both the number o f immunoreactive 

synapses and the number of gold particles/synapse increased. Immunoreactive synapses 

contained up to 30 gold particles.

The Fc-fragment o f antibodies can bind non-specifically to tissue proteins (Arli et 

ah, 1975; Costa et ah, 1984). The use o f secondary antibodies consisting only o f Fab- 

fragments at least partly avoids this problem. Removing the Fc-portion also reduces the 

size of the molecule and allows it to gain better access to antigens (Flainfeld and Powell,

2000). Small gold particles have a similar advantage. In addition, small particles do not 

obscure adjacent antigens and diffuse better to epitopes, thus providing a more sensitive 

labelling. Although antibodies conjugated to very small gold particles (1-5 nm) are 

available, these are difficult to visualize without silver intensification, and were therefore 

not used in this study. Some other aspects of post-embedding immunogold protocols are 

further described in the appropriate chapters.
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Chapter 3

Evidence that somatostatin- and the majority of enkephalin-containing 

neurons in dorsal horn of rat spinal cord are gliitamatergic 

and form synapses that contain AMP A receptors



INTRODUCTION
A number of neuropeptides have been detected in the dorsal horn o f spinal cord 

(Todd and Spike, 1993) and these play a particularly important role in the spinal 

processing of sensory information. The release of some lead to the induction o f pain, 

while others have been implicated in the development o f analgesia. Somatostatin and 

enkephalin belong to this latter group, and although several hypotheses emerged, the exact 

mechanism o f their action remains unknown.

Somatostatin was among the first neuropeptides to be discovered in the 

hypothalamus and it was later revealed that it has a widespread distribution in other brain 

regions as well (Fitzpatrick-McElligott et al., 1988, Kiyama and Emson, 1990). In the rat 

spinal cord it was first described by Hokfelt et al. (1975), and nowadays it is considered as 

one o f the most important sensory neuropeptides. There is a line o f evidence suggesting its 

role in nociception. The release of somatostatin hyperpolarizes the cell membrane, directly 

inhibiting substantia gelatinosa neurons in the adult rat (Murase et ah, 1982; .Tiang et ah, 

2003). Intrathecal administration of somatostatin or its agonists increases pain threshold, 

prevents c-fos expression (Ruan et al., 1997), inhibits both the first and second phases of 

the formalin response (Chapman and Dickenson, 1992b) and causes analgesia both in 

patients (Penn et al., 1992) and experimental animals (Mollenholt et al., 1988). Finally, 

somatostatin and its receptors are found in spinal regions thought to be associated with 

nociceptive processing (Todd and Spike, 1993; Todd et ah, 1998; Song et ah, 2002). 

Similarly, the role of enkephalin in analgesia is also well established. Enkephalin, as a 

member o f the opioid peptide family, is an endogenous ligand o f the “morphine receptor” 

(Hughes et ah, 1975a, 1975b) and it has been shown to inhibit primary afferent terminals 

(Pomeranz and Gurevich, 1979) and dorsal horn neurons by causing presynaptic 

depolarization (Budai et ah, 1998) or postsynaptic hyperpolarization (Murase et ah, 1982), 

respectively. In addition, systemic, intrathecal (Tung and Yaksh, 1982) or epidural (Marsh 

el al., 1999a; 1999b) administration o f enkephalin or other opioid agonists or the 

stimulation o f periventricular brain areas (Akil, 1978), such as the periaqueductal gray 

matter and the nucleus raphe magnus, which give rise to descending projections that 

activate enkephalin containing spinal interneurons (Glazer and Basbaum, 1984; Miller and 

Sal vat i erra, 1998) produce analgesia. Intravenous administration o f opioids prevents c-fos 

expression following noxious heat stimulation (Abbadie et ah, 1994). Finally, as in the 

case o f somatostatin, enkephalin and its receptors are also found at areas involved in 

nociceptive processing (Hokfelt et ah, 1977; Arvidsson et al., 1995a; Zhang et ah, 1998).
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Somatostatin is present mainly in axons which form a dense plexus in the 

superfieial laminae (I and II) of the dorsal horn and it is virtually missing from fibres in the 

deejDer layers. Somatostatin-eontaining axons are thought to be derived from two sources; 

primary afferents and local interneurons. Axons belonging to each of these populations ean 

be distinguished, as the primary afferents also contain calcitonin gene-related peptide 

(CGRP), whereas the axons belonging to interneurons do not (Ju et a l , 1987; Ribeiro-da- 

Silva, 1995; Sakamoto et al., 1999). Cells expressing inRNA for somatostatin were found 

in the dorsal horn with in situ hybridization (Kiyama and Emson, 1990), and with 

i mmunocy tochemistry a number o f somato st at i n-i mmunoreacti ve eell bodies were detected 

in laminae I and II. These neurons are thought to generate loeal axonal arbors and give rise 

lo the non-primary, somatostatin-containing axons in this region. The distribution of 

enkephalin is similar to that o f somatostatin (Todd and Spike, 1993). It is also present in 

axon terminals throughout laminae I and II, with niueh lower levels in the deeper layers. 

These boutons are almost exclusively derived from local interneurons; however a few 

clearly belong to primary afferents (Garry et a l ,  1989; Zhang et a l ,  1993) or descending 

fibers (Hokfelt et a l ,  1979). With in situ hybridization (Ruda, 1982; Harlan et a l ,  1987) 

or sensitive immunohistochemieal methods (Todd et a l, 1992a, 1992b) enkephalin 

immunoreactive eell bodies are visible mainly in laminae I-III.

Although it is widely accepted that all primary afferent terminals, including those 

that contain somatostatin and enkephalin, use glutamate as their principal neurotransmitter 

(Rustioni and Weinberg, 1989; Willis and Coggeshall, 1991; Todd and Spike, 1993; 

Broman, 1993, 1994b), it is still controversial whether somatostatin- and enkephalin- 

containing intrinsic neurons also utilize a classical amino-acid transmitter besides the 

neuropeptide, and if so, which one. Proudlock et al. (1993) found that somatostatin- 

eontaining cells are not GABA-immunoreactive, while in a recent study, Todd et al. (2003) 

showed that 85% of enkephalin-immunoreactive axon terminals expressed VGLUT2, a 

marker for gliitamatergic spinal interneurons (see Chapter 1). These findings raise the 

possibility that somatostatin-eontaining interneurons and the majority o f enkephalin- 

containing axon terminals are gliitamatergic. To test these hypotheses, two different 

approaches were used: ( 1) triple-labelling immunofluorescence and confocal microscopy 

was carried out with antibodies against somatostatin, CGRP and the two VGLUTs; (2) 

postembedding immunogold labelling was used on freeze-substituted, Lowicryl-embedded 

material to reveal GliiRl and GluR2/3 subunits of the AMP A receptors at synapses formed 

by somatostatin- or enkephalin-immunoreactive axons.
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MATERIALS AND METHODS 

Animals

Seven adult male Wistar rats (190-300 g; Harlan, Loughborough, UK) were deeply 

anaesthetized with pentobarbitone (300 mg i.p.) and perfused through the left ventricle 

with a fixative eonsisting of 4% freshly de-polymerized formaldehyde (4 rats, for confocal 

microscopy) or 4% formaldehyde/0.1% glutaraldehyde (3 rats, for electron microscopy). 

Lumbar spinal cord segments were removed and stored in the same fixative for 4-24 hours, 

before being processed for light or electron microscopy.

Immiinoniioresceiice staining for light microscopy

Lj-Lj segments were postfixed for 24 hours and cut into 60 qm transverse sections 

with a Vibratome. Prior to immuno cytochemistry sections were treated with 50% ethanol 

in distilled water to enhance antibody penetration (Llewellyn-Smith and Minson, 1992). 

Sections were ineubated for three days in a mixture of rabbit anti-somatostatin (Peninsula 

Laboratories, Belmont, CA, USA, 1:1000), sheep anti-CGRP (Affinity Research Products 

Ltd., Exeter, UK, 1:5000) and guinea pig anti-VGLUT 1 (Chemicon International, Harlow, 

UK, 1:20000) or VGLUT2 (Chemicon, 1:5000) antibodies in phosphate-buffered saline 

(PBS) with 0.3% Triton X-100 added as a detergent to increase penetration. To reveal the 

distribution o f enkephalin, sections were ineubated in a rabbit anti-enkephalin (Peninsula, 

1:1000) antibody for 24 hours. After thorough rinsing, sections were incubated overnight 

in a cocktail o f species-specific secondary antibodies (Jackson Immunoresearch, all raised 

in donkey, 1:100) eonjugated to fluorescein isothiocyanate (for somatostatin), Rhodamine 

Red-X (for VGLUTl, VGLUT2 or enkephalin) or eyanine 5-18 (Cy5; for CGRP) in PBST. 

Sections were then rinsed in PBS, mounted in a glycerol-based anti fade medium 

(Vectashield, Vector Laboratories) and stored at -20°C prior to scanning and analysis.

Postembedding immimocytochemistry for electron microscopy

Mid-lumbar spinal cord segments from rats fixed with 4% formaledhyde/0.1% 

glutaraldehyde were postfixed for 4 h in the same fixative and freeze-substituted as 

described in Chapter 2. From the blocks serial ultrathin sections were cut with a diamond 

knife and colleeted on single-slot Fornivar-coaled nickel grids. The sections were reacted 

using a postembedding immunogold method to reveal various neuropeptides or the GluRl 

and G1liR2/3 subunits o f the AMP A receptor. These two GluR antibodies were ehosen as 

GluRl and GhiR2 are the principal AMP A subunits expressed by neurons in laminae I and 

11 (see Chapter 5). For somatostatin eontaining interneuronal and primary afferent
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terminals three serial sections from each animal were reacted as follows; the first grid was 

incubated in sheep antibody against CGRP (Affiniti, 1:20,000), the second one in rabbit 

antibody against somatostatin (Peninsula, 1:5,000) and the third in a coektail o f rabbit 

antibodies against G luRl (Chemicon, 1:50) and GluR2/3 (Chemicon, 1:80). For 

enkephalin containing boutons two serial seetions were incubated from each animal: the 

first one with an antibody against enkephalin (Peninsula, 1:10,000), the seeond one in the 

cocktail of GluRl and GluR2/3 antibodies (as described above).

Seetions that were to be incubated in GluRl and GluR2/3 antibodies were initially 

etched for approximately 3 s in a saturated solution of sodium hydroxide in ethanol to 

remove the resin from the section surface, while those used to reveal neuropeptides were 

not etched. Post-embedding immunogold labelling was carried out by incubating sections 

in the following solutions at 20°C: (1) Tris-buffered saline (0.3% NaCl) containing 0.1% 

Triton X-100 (TEST) with 50mM glycine (10 rain); (2) TEST with 2% human serum 

albumin (HSA) 10 min; (3) primary antibody diluted in TEST with 2% HSA (overnight);

(4) TEST (2x10 min); (5) TEST with 2% HSA (10 min); and (6 ), goat anti-rabbit Fab- 

fragment coupled to 10 nm gold particles (British BioCell International, Cardiff, UK) 

diluted 1:20 in TEST with 2% HSA. Grids were rinsed in ultra pure water and eontrasted 

with aqueous uranyl acetate (10 min) and lead acetate (2 min). Sections reacted with the 

sheep CGRP antibody were incubated in unlabelled rabbit anti-sheep IgG (Vector 

Laboratories, Peterborough, UK, 1:200) for 2 h before immunogold labelling.

Analysis of immiiiiotluoresceiice

To examine the colocalization o f VGLUTl or VGLUT2 with somatostatin in 

primary and non-primary axons (distinguished by the presence or absence o f  CGRP 

labelling), two triple-labelled sections from each animal were scanned with a BioRad 

confocal laser scanning microscope (MRC1024) using a 6 Ox oil immersion lens. Twelve 

optical sections were collected from an approximately 140 qm wide strip covering laminae 

1-111 of the dorsal horn with a z-separation of 0.5 qm. It was found that neither 

somatostatin, nor CGRP ever colocalized with VGLUTl and that the expression of 

VGLUT2 in CGRP-containing fibres was so low, that it was very difficult to distinguish 

immunoreactive and immunonegative boutons (see below). These were therefore not 

quantitatively analysed. The colocalization o f VGLUT2 with somatostatin in CGRP- 

lacking (interneuronal) axon terminals was quantitatively analysed using Neurolucida for 

Confocal image analysis software (MicroBrightField Inc., Colchester, VT, USA). From 

each animal 100 boutons (50 from each section scanned) that were immunoreactive for
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somatostatin (green), but lacked CGRP (blue) were selected. Following the selection of 

the axon terminals, it was noted whether these contained VGLUT2 (red). Boutons were 

only included in the study if  they were fully contained within the 12 optical sections.

Analysis of immunogold labelling

Grids were viewed with a Philips CM 100 transmission electron microscope. On 

grids reacted with each of the three neuropeptide antibodies, boutons were only considered 

as immunoreactive if they contained eight or more gold particles and these were located 

over dense-cored vesicles. The density o f background labelling with the neuropeptide 

antibodies was determined for each section analysed by counting gold particles that were 

not associated with dense-cored vesicles or located in immunolabelled axon terminals in 20 

randomly selected fields each o f 1 q n f . These background values were 0 .52-0 .71/qm^ for 

CGRP, 0 .85-1 .23/qm^ for somatostatin and 1.13-2.41/qm^ for enkephalin. Because dense- 

cored vesicles have a diameter of approximately 0.1 qm (cross-sectional area of 0.008 

q n r), the presence of a single gold particle over a dense-cored vesicle corresponds to a 

density o f approximately 130 particles/qm^, which is more than 50-times the highest 

background value measured. Seetions reacted with somatostatin or enkephalin antibodies 

were initially examined and immunoreactive axon terminals forming one or more synapses 

were selected. Each axon terminal selected for further analysis was given an individual 

number, and high (13500x), medium (4200x) and low (750x) magnification digital images 

were saved to a computer using the CCD camera connected to the EM. The low power 

image served as a map and the numbers marking the exact locations o f different boutons 

were inserted using image editing software (CM -Prof 2.10.220, Soft-Imaging Software 

GmbFl). With the aid of a relocation software (Remote XY Control, PW6472, Version 1.0; 

Philips Analytical, Electron Optics) and the map, somatostatin-immunoreactive terminals 

were relocated on the adjacent section reacted for CGRP, and the presence or absence of 

CGRP immunoreactivity in the bouton was noted. Boutons were classified as CGRP- 

negative if they had dense-cored vesicles in their axoplasm, but these contained no gold 

particles representing CGRP. The somatostatin- or enkephalin-immunoreactive boutons 

were then identified on the serial section reacted with GluRl and GluR2/3 antibodies, and 

those at which a synapse was still visible were included in the sample. Using this approach, 

45 boutons that were somatostatin-immunoreactive but lacked CGRP (9-21 from each 

experiment), 27 axon terminals that were both somatostatin- and CGRP - immu noreaeti ve 

(between 7 and 10 from each experiment) and 57 that were enkephalin-immunoreactive 

( 17-22 from each experiment) were selected and analysed. It is possible that some o f the
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somatostatin-immunoreactive boutons that were not CGRP-immunoreactive contained 

CGRP that was not detected with the postembedding method. However, it is highly 

unlikely that this would have been a common occurrence, as somatostatin-immunoreactive 

boutons in the superficial dorsal horn that lack CGRP greatly outnumber those which also 

contain CGRP (Sakamoto et ah, 1999). In addition, the level o f C GRP-immu no go 1 d 

labelling was high (up to 50 gold particles per individual dense-cored vesicle) in boutons 

that were identified as immunoreactive. Digital images of all o f the boutons analysed on 

each grid were captured, and in some cases these were also photographed. For each 

synapse, with the aid o f image analysis software (Zeiss KS400 Image Analysis System), 

gold particles representing GluRl and GluR2/3 were counted within 50 nm of the 

postsynaptie membrane, or within 50 nm of a line drawn along the centre o f the synapse if 

this was sectioned obliquely. This distance was chosen as Nagelhus et al. (1998) found that 

the density of gold partieles labelling membrane proteins reached background levels 50 nm 

from the membrane. This distance probably reflects the size o f the immunoglobulin 

molecules interposed between the antigen and the gold partiele (Matsubara et al., 1996), 

together with the distance the receptors extend from the lipid bilayer into the postsynaptic 

density. Synapses at whieh two or more gold particles were present were counted as 

immunoreactive, whereas those with a single particle were treated as equivocal.

Antibodies

The affinity purified antibodies against the GluRl and GluR2/3 subunits o f the 

AMP A receptor were raised in rabbits against the corresponding C-terminal 13 amino-acid 

segment of the rat GluRl and GluR2 subunits. The GluRl antibody was shown not to 

cross-reaet with any o f the other AMP A subunits, while due to the signifieant sequenee 

homology between the C-terminus of GluR2 and GluR3, the GluR2/3 antibody also 

recognize GluR3, but not GluRl or GluR4 (manufacturer’s specifieations). Both of these 

antibodies have been suceessfully used previously with light and electron microscopic 

i mmu no cytochemistry, including post-embedding immunogold on freeze-substituted, 

Lowieryl embedded material (e.g. Matsubara et ah, 1996, 1999; Propratiloff et ah, 1996, 

1998; Bernard et ah, 1997, 1998; Takuini et ah, 1999; Ragnarson et ah, 2003). The Met- 

enkephalin antibody shows 3% cross-reaetivity with Leu-enkephalin and none with 

dynorphin (manufacturer’s specification). CGRP and somatostatin antibodies were raised 

against corresponding rat peptides and were shown not to eross-react with other 

neuropeptides such as Substance P, VIP, NPY etc. (manufacturers’ specification). The 

guinea pig VGLUTl and VGLUT2 antibodies were raised against an unspecified 19 and
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18 amino acid sequence of the corresponding rat proteins, respectively. These were shown 

to label the same axons as the well-characterized rabbit VGLUTl and VGLUT2 (Synaptic 

Systems, Germany) antibodies, raised against known sequences (Todd et al., 2003).

RESULTS

Immunofluorescence and confocal microscopy

The staining patterns for VGLUTs and the neuropeptides were identical to those 

reported previously in other studies (e.g. .Tu et al., 1987; Sakamoto et al., 1999; Varoqui et 

al., 2002; Todd et al., 2003). CGRP labelling was very strong in lamina 1 and Ilo, with 

scattered boutons elsewhere in the dorsal horn (Fig. 3.1c). Somatostatin immuno staining 

was similar, but immunoreactive boutons were also numerous in lamina Hi (Fig. 3.1b) and 

besides the axon terminals, eell bodies were also labelled, mainly in lamina Hi (Fig. 3.2a). 

As expected, a number o f terminals contained both somatostatin and CGRP, while others 

showed immunoreactivity for only one o f these neuropeptides (Fig. 3.2b). Enkephalin- 

immunoreactivity was also strongest in the superficial laminae (Fig. 3.1a).

Both VGLUT antibodies labelled structures which resembled axonal varicosities. 

VGLUTl expression was very sparse in laminae 1 and Ilo, but strong in all deeper laminae 

(Fig. 3.3a), while VGLUT2 labelling was present throughout the gray matter, although it 

was particularly strong in the superficial laminae (Fig. 3.3d).

When the eolocalization between VGLUTs and the neuropeptides was examined, it 

Wcis found that VGLUTl never colocalized with either CGRP or somatostatin, suggesting 

that somatostatin-eontaining axon terminals o f both primary afferent and interneuron origin 

lacked this transporter (Figs 3.3a-e; 3.4a-c). Varicosities which contained only 

somatostatin were strongly labelled with the VGLUT2 antibody (Fig. 3.4d-f) and during 

the quantitative analysis o f one hundred CGRP-lacking, somatostatin-eontaining boutons 

that were sampled in each o f 3 rats, between 97-98% of these (mean 97.7%) showed 

immunostaining for VGLUT2. However, boutons that contained both somatostatin and 

CGRP were consistently either unlabelled or very weakly labelled with the VGLUT2 

antibody (Fig. 3.4d-f). The weak labelling in these terminals made it very difficult to 

differentiate between positive and negative profiles, and therefore the extent of co­

localization was not analysed quantitatively.

Postembeddiiig immunogold labelling and electron microscopy

Following freeze-substitution and Lowicryl embedding, the general ultrastructure 

of the tissue was excellent (Fig. 3.5g). After postembeddiiig immunocytochemistry for 

somatostatin, CGRP or enkephalin, tissue preservation was still good (Fig. 3.5a-b, d-e, h).
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Figure 3.1 Images showing the distribution o f methionine-enkephalin (Met-Enlc, red, a), 

somatostatin (Som, green, b) and calcitonin-gene-related peptide (CGRP, blue, c) in 

transverse seetions o f mid-lumbar rat spinal cord. Each peptide is present in the superficial 

dorsal horn, but the distribution of enkephalin and somatostatin is slightly different from 

that of CGRP. Enkephalin and somatostatin-eontaining axons are present throughout 

laminae i and II, while those with CGRP are infrequent in the ventral part o f lamina II. 

Arrows indicate the approximate position- of the lamina II/III border. Picture (u) comes 

from a different section than pictures {b) and (c). Seale bar, 200 qm.

Figure 3.2 Higher magnification views of somatostatin (green) and CGRP (blue) 

immunoreactivity in the superficial dorsal horn. The image on the left («) shows that 

besides being in axon terminals, somatostatin-immunostaining is also present in neuronal 

cell bodies {arrows). The right-hand image {b) is from a section double-labelled for both 

peptides: axons of somatostatin-eontaining intemeurons appear green (some are indicated 

with arrows), while those of somatostatin primary afferents (which also contain CGRP) are 

cyan (some shown with arrowheads). Scale bars, 50 qm (left), 10 qm (right).
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Figure 3.4 Confocal images showing the relationship between somatostatin (Som, green), 

CGRP (blue) and VGLUTl (red; b, c) or VGLUT2 (red; e, f )  in single optical sections 

from lamina 11 o f rat mid-lumbar spinal cord. The panels on the left show the 

neuropeptides (a, d), the ones in the middle represent VGLUTl or VGLUT2 {b, e), while 

the right pictures show merged images (c ,f) .  Again somatostatin-eontaining boutons that 

belong to interneurons lack CGRP, so these appear green {a, d; some are marked with 

arrows), while those belonging to primary afferents also express CGRP, so these are cyan 

(a, d; some indicated with arrowheads). VGLUTl is very sparse in the superficial laminae 

(b) and never colocaiizes with somatostatin-eontaining terminals (c). For VGLUT2 

somatostatin-immunoreactive primary afferents are either very weak {d, e, f ;  iinlabelled 

arrowhead) or negative {d, e, f ;  arrowhead with asterisks), while intemeurons generally 

express high levels o f this transporter {d, e, f ;  arrows), so these appear yellow on the 

merged image. Scale bar, 5 qm.
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Figure 3.5 Postembeddiiig immunogold labelling on three sets o f serial sections from 

freeze-substituted, Lowicryl embedded rat spinal cord, showing the relationship between 

neuropeptides and AMP A receptors in the superficial laminae. The axon terminal in the 

upper row (a, b, c) contains several dense-cored vesicles (dev) and these are somatostatin- 

immunoreactive (/;), but lack CGRP (a), therefore it is presumably o f interneuron origin. 

Section (c) has been reacted with a cocktail o f antibodies against the GluRl and GluR2/3 

subunits and the perpendicularly cut asymmetrical synapse contains several gold particles 

on its postsynaptic density corresponding to AMP A receptors (inset in c). The dev 

containing profile in the middle row {d, e , f )  issi primary afferent terminal as shown by its 

immunoreactivity for both somatostatin (e) and CGRP (d). It forms two oblique, but 

clearly asymmetrical synapses. The second, smaller synapse disappears on the section 

reacted against the AMP A receptors (/), but the remaining one contains 21 gold particles 

(inset in /) . The bottom row (g, li, i) shows a bouton, which forms a curved synapse on a 

small profile. Section (g) has not been postembeddiiig reacted, this therefore demonstrates 

the general idtrastructure o f freeze-substituted tissue after contrasting. In the subsequent 

section dcvs are immunoreactive for enkephalin (li) and again the synapse formed by the 

axon-terminal is immunolabelled for AMP A receptors {i, inset). Scale bar, 0.5 qm.

Fig 3.6 Frequency histograms showing the numbers of gold particles at GluRl/GluR2/3- 

immunoreactive synapses. Results from boutons that were somatostatin-immunoreactive 

but lacked CGRP (SomWCGRP-), that were both somatostatin- and CGRP- 

immunoreactive (Som+/CGRP+), and that were enkephalin-immunoreactive (M-Enlc) are 

shown on the left, middle and right, respectively.
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On sections incubated for the AMP A reeeptors, the etching with sodium ethanolate slightly 

eompromised the structure, but nevertheless cell organelles and synapses were still clearly 

identifiable (Fig. 3.5c, f  i, insets). Immunogold particles representing the three 

neuropeptides were mainly found over dense-cored vesicles in axon terminals (Fig. 3.5b, d, 

e, h), and there was virtually no background labelling. Somatostatin-immunoreactive 

boutons formed asymmetrical synapses with their postsynaptic target, while symmetrical 

synapses were never observed. Enkephalin-containing terminals on the other hand, formed 

both asymmetrical and symmetrical synapses, although the former greatly outnumbered the 

latter (only 2 symmetrical were found among 57 synapses examined). In sections reacted 

with antibodies against the AMP A subunits, immunogold particles were found at many 

asymmetrical synapses. Where the plane o f section was perpendicular to the cleft, most of 

the particles were associated with the postsynaptic density (Fig. 3.5c, f, I, insets). 

Immunoreactive synapses contained up to 31 gold particles. Scattered immunogold 

labelling was visible over cell membranes, and occasionally over mitochondria and dense- 

cored vesicles. The numbers o f gold particles at immunolabelled synapses were similar for 

each o f the sections reacted with GluR antibodies, and the data from each animal were 

therefore pooled for the histograms in Fig. 3.6.

For the somatostatin-immunoreactive boutons that were not CGRP-labelled, 39 of 

45 synapses (87%) were classified as immunolabelled with the GluR antibodies (i.e. they 

had 2 or more gold particles) (Figs 3.5a-c; 3.6). All 27 of the boutons immunoreactive for 

both somatostatin and CGRP (Figs 3.5d-f; 3.6) and 44 of 57 (77%) of those formed by 

boutons containing gold particles for enkephalin (Figs 3.5g-i; 3.6) were GluR- 

immunoreactive. The two symmetrical synapses formed by enkephalin-immunoreactive 

boutons had no gold particles corresponding to AMPA receptors.

DISCUSSION
It is generally accepted that all primary afferent terminals, including the 

neuropeptide-containing ones, are excitatory and use glutamate as a neurotransmitter. It is 

also well established that certain neuropeptide-containing neurons in the CNS, including 

some o f those in the dorsal horn of spinal eord, also use a classical amino-acid transmitter 

(glutamate, GABA or glyeine) at their axon terminals (Hokfelt et al., 2000b). 

Somatostatin-i mmunoreaetive intemeurons in the superfieial dorsal horn do not contain 

either GABA or glycine, therefore it was suggested that these eells are glutamatergic 

(Proudlock et ah, 1993). Conflicting evidence exists in the literature about the proportion 

o f enkephalin containing neurons that are GABAergic. In an earlier study Todd et al.
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(1992b) found that 69% of enkephalin containing cell bodies also contained GABA, which 

is St odds with their later findings (Todd et al., 2003) showing that 85% of enkephalin- 

immunoreaetive axon terminals expressed VGLUT2.

The results o f this study show that virtually all somatostatin-eontaining intrinsic 

neurons express VGLUT2 and their axon terminals form asymmetrical synapses, at which 

AMPA receptors are generally present in the postsynaptic density. These two independent 

observations strongly suggest that most (if not all) somatostatin-immunoreaetive neurons 

in the dorsal horn of spinal cord are excitatory glutamatergic intemeurons. The finding 

that all somatostatin-eontaining primary afferents express AMPA receptors at their 

synapses supports all previous results that primary afferents are glutamatergic. However 

the observation that these lack either VGLUTl or VGLUT2 and also fail to express 

VGLUT3 (Landry et al., 2004; Maxwell et al., unpublished observations) raises the 

possibility that there is a novel, as yet undiscovered VGLUT expressed by these axons. In 

support o f this, Todd et al. (2003) also found that substance P (SP)- and CGRP-containing 

and non-peptidergic C-fibres lacked VGLUTl and were either negative for, or contained 

very low levels of, VGLUT2.

It was also found that approximately 77% of enkephalin-containing terminals are 

apposed to AMPA receptor containing synapses, which confirms that the majority of these 

are indeed glutamatergic as suggested by Todd et al. (2003) who found that most 

enkephalin-immunoreactive boutons expressed VGLUT2. Asymmetrical synapses where 

gold partieles representing GluRl and/or GhiR2/3 subunits were absent (6 out o f 57 for 

enkephalin and 5 out of 72 for somatostatin) could still belong to glutamatergic terminals, 

and these could have been false negative results or could correspond to silent synapses, 

which lack AMPA receptors, but express NMD As (Nüsser et al., 1998). Only two 

symmetrical synapses (3.5%) were found on the 57 enkephalin-immunoreactive boutons 

examined and these lacked AMPA receptors, which suggests that these belonged to 

inhibitory, presumably GABAergic intemeurons. It is likely that previously Todd et al. 

( 1992b) overestimated the proportion of enkephalin-containing neurons that also contain 

GABA. Colchicine used in earlier studies had revealed many more enkephalin- 

immunoreactive cells. For example Todd et al. (1992b) found only 10-20 enkephalin- 

immunoreactive neurons in a 70 pm section, while after colchicine treatment Senba et al. 

( 1988) detected 60 in a 20 pm thick section. In their study Todd et al. avoided the use of 

colchicine, which is known to change the gene-expression pattern of various cells 

including neurons (Réthelyi et al., 1991; Koistinaho et al., 1993), and this probably 

resulted in a decreased detection o f enkephalin-containing dorsal horn neurons.
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In the light o f these findings, the funetion o f somatostatin- and enkephalin- 

containing intemeurons should be re-evaluated. Both neuropeptides have a depressant 

effect on dorsal horn neurons, and when administered in vivo they produee analgesia. 

Therefore it was suggested that the activation o f these intemeurons inhibits other cells or 

axons (Murase et al., 1982; Miller and Salvatierra, 1998; .Tiang et ah, 2003; Term an et al., 

2001 ). Surprisingly, the findings presented here show that this is not likely to be the only 

way that these neurons function. The colocalization of enkephalin and somatostatin with 

an excitatory transmitter, together with the fact that the majority of enkephalin- and 

somatostatin-eontaining terminals form synapses at which AMPA receptors are present, 

suggests that these cells have an excitatory effect on their postsynaptie targets. There is 

evidence that neuropeptides act through volume transmission (Agnati et al., 1986, 1991, 

1995a, 1995b), such that the site o f release and the site o f aetion can be quite a distance 

apart. Therefore, it is likely that the elassical amino-acid transmitter and the neuropeptide 

aet on different populations o f cells. It could be that glutamate is released at the synapses 

and exerts its excitatory effect on the postsynaptic neuron (possibly an inhibitory 

interneuron), whereas enkephalin or somatostatin could be released at extrasynaptic sites 

and diffuse to various other cells which express the appropriate receptor, resulting in a 

depressant effect on these neurons (either depolarization on primary afferents or 

hyperpolarization on dorsal horn excitatory intemeurons or projection cells). Another 

possible functional implication of this colocalization is that glutamate acts as a fast 

transmitter, while the two neuropeptides are slower with more long-lasting actions (Hokfelt 

et al., 2000b). In this scenario, the activation of enkephalin- and somatostatin-eontaining 

excitatory intemeurons could not only have a distinct spatial, but also a distinct temporal 

effect on dorsal horn intemeurons, projections cells and primary afferent terminals. To 

further complicate matters, glutamate and the neuropeptides could be released following 

different stimuli. There is evidence suggesting that neuropeptides are only released after 

high frequency stimulation (Otsuka and Konishi, 1976; Shen et al., 1996; Afrah et al., 

2002), while glutamatergic excitatory postsynaptic potentials can be recorded on the 

postsynaptic cell following a single action potential (Verhage et ah, 1991; Nicholls, 1994).

In summary, it is likely that when they are activated, somatostatin- and enkephalin- 

containing intemeurons not only produee analgesia through the release o f these 

neuropeptides, but also play a more complex role in the processing o f nociceptive 

information in the dorsal horn. To understand their exact function, further investigations 

are needed to identify and neurochemically characterize their postsynaptie targets.
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Chapter 4

Detection of NMD A receptors in the rat spinal cord with postembeddiiig 

immunocytochemistry and non-specific labelling with 

an antibody against the NR2A subunit



INTRODUCTION

Although it is well-established that NMDA receptors in the spinal dorsal horn are 

involved in chronic pain states (see Chapter 1), we know very little about their synaptic 

distribution and involvement in nociceptive circuits. Even less is know about the NMDA 

(and AMP A) receptor expression pattern o f selected cell populations, such as the 

projection neurons in laminae III and IV that possess the neurokinin 1 (N K l) receptor (a 

receptor for SP). These cells receive strong synaptic input from nociceptive primary 

afférents that contain SP and CGRP (Todd, 2002), The lack o f knowledge about synaptic 

NMDA receptors is mainly because conventional immunocytochemical methods fail to 

reveal ionotropic receptors at synapses, as these are masked by the protein meshworks o f 

the post-synaptic density and synaptic cleft. Post-embedding immunogold labelling 

following freeze-substitution has been widely used to study the synaptic distribution o f 

receptors (see Chapter 2). The aim o f this part of the study was to use this teclmique to 

investigate the distribution of N R l, NR2A and NR2B subunits o f the NMDA receptors in 

the dorsal horn. An additional goal was to determine the AMP A and NMDA receptor 

expression pattern of NKl-immunoreactive neurons at synapses formed by SP- and CGRP- 

containing nociceptive primary afférents. In preliminary experiments it was found that 

NKl-receptors are not detectable with the postembedding immunogold method. Although 

a theoretical alternative would be to use a preembedding technique to reveal these 

receptors, it was found that preembedding methods are not readily compatible with freeze- 

SLibstitution. For example the diaminobenzidine (DAB) reaction product that results from 

immunoperoxidase labelling is not electron dense without osmication, while biotin, avidin, 

horseradish peroxidase (HRP) or primary antibodies are not recognizable in freeze- 

substituted sections. An additional requirement for this part o f the study was to visualize 

the 3D structure of individual lamina III/IV NKl-immunoreactive neurons, firstly to 

confirm the location of their cell bodies, and secondly to allow different parts of their 

dendritic trees to be examined. Therefore, in order to examine neurons expressing the 

NKl-receptor, a novel method for combining post-embedding electron microscopy with 

immunofluorescence and confocal microscopy was developed. However, during the 

course o f this study unexpected immunogold labelling patterns were observed with several 

NMDA receptor antibodies, which raised questions about the quality and validity o f the 

postembedding method for NMDA receptors. In search for alternative techniques an 

antigen unmasking method, initially developed by Watanabe et al. (1998), was adopted and 

used to reveal NMDA receptors at synapses (see also Chapter 6).
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MATERIALS AND METHODS
Animals for immiiiiocytocliemistry

Five adult male Wistar rats (190-300 g; Harlan, Loughborough, UK), 5 control 

wild-type mice and 5 transgenic mice in which the NMDA NR2A subunit had been 

knocked out (Sakimura et ah, 1995; generous gifts from Prof. Masahiko Watanabe, 

Hokkaido University, .Japan) were used during this study. Animals were perfused through 

the left ventricle with a fixative consisting of 4% freshly depolymerized formaldehyde (10 

mice for postembedding immunogold or immunofluorescence following antigen 

unmasking), 4% formaldehyde and 0.1% glutaraldehyde (3 rats, for postembedding 

immunogold) or 4% formaldehyde, 0.1% glutaraldehyde and 0.2% picric acid (Somogyi 

and Takagi, 1982) (2 rats for combined confocal and electron microscopy). Lumbar spinal 

cord segments from all animals, as well as brains from the wild-type and knock-out mice, 

were removed and stored in the same fixative for 8-24 hours, before being processed for 

immunocytochemistry. DNA from the transgenic NMDA NR2A lacking mice was 

extracted before perfusion by a collaborative partner in .Tapan, and it was confirmed by 

diagnostic PCR that the NR2A gene was knocked out.

Antibodies

To reveal NRl subunits o f the NMDA receptor, an affinity purified rabbit antibody, 

raised against a synthetic peptide corresponding to a C-terminal epitope o f the rat NRl 

protein was used (Chemicon International, Harlow, UK; cat. no. AB1516). It was selective 

for splice variants N R l-Ia-b and NRl-2a-b. No cross-reaction with other glutamate 

receptor subunits was observed with Western blot analysis. The antibody recognized a 

single protein band with the molecular weight of 116 kDa, corresponding to NMDA N Rl 

subunits (manufacturer’s specifications). Affinity purified rabbit antibodies against NR2A, 

and NR2B subunits were generous gifts from Prof. Masahiko Watanabe (Hokkaido 

University, Japan). These antibodies were raised against synthetic peptides corresponding 

to the C-terminal residues 1126-1408 of the NR2A subunit, and the C-, or N-terminal 

residues 1353-1432 (NR2B-C) or 1-48 (NR2B-N) o f the NR2B subunit. On immunoblots 

the NR2A antibody labelled a single protein band with a molecular mass o f 175 kDa and 

no labelling was observed in mice where the NR2A subunit was knocked out (Watanabe et 

ah, 1998). These observations indicate that the NR2A antibody does not cross-react with 

other NMDA receptor subunits and the 175 kDa band seen on immunoblots represents 

authentic NR2A subunits. Both the NR2B-N and NR2B-C antibodies labelled a single 

protein band at 180 kDa. This band was substantially reduced in NR2B (+/-) mice and was
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absent in the NR2B knock-oiit animals, indicating the these antibodies also recognize 

authentic NR2B subunits and do not cross-react with other PSD proteins (Watanabe et ah, 

1998). Mouse monoclonal antibody against Neuron-Specific Nuclear Protein (NeiiN; 

Chemicon, cat. no. MAB377; Mullen et ah, 1992) has been shown to label only neuronal 

nuclei in the spinal cord (Todd et ah, 1998). The rabbit anti-NKl-receptor antibody was 

specific for a synthetic peptide corresponding to the C-terminus of the receptor ])rotein 

(Sigma-Aldrich Inc., Saint Louis, Missouri, USA, product no. 058H4848).

Frecze-siibstitution and postembeddiiig immiinocytochemistry for EM

Mid-lumbar segments of rat or mouse spinal cord were cut into transverse 400 pm 

thick sections with a Vibratome, cryoprotected and plunge-frozen in liquid propane at 

-170°C. Freeze-substitution was carried out as described in Chapter 3. From the resin 

embedded tissue, ultrathin sections were cut with a diamond knife and collected on mesh 

or single-slot Formvar-coated nickel grids. Sections were etched for approximately 2 s in a 

saturated solution o f sodium hydroxide in ethanol to remove the resin from the section 

surface (Matsubara et ah, 1996). To investigate the distribution o f NMDA receptor 

subunits in the dorsal horn o f rat spinal cord, postembedding immunogold labelling was 

carried out by incubating sections in the following solutions: (I) Tris-buffered saline (0.3% 

NaCl) containing 0.1% Triton X-100 (TBST) with 50niM glycine (10 min); (2) TBST with 

2% human serum albumin (liSA) 10 min; (3) affmity-purified rabbit primary antibodies 

against NMDA N Rl (1 pg/ml), NMDA NR2A (5.4 pg/ml), NR2B-C (5.2 pg/ml) or 

NR2B-N (10.6 pg/ml) diluted in TBST with 2% HSA (overnight); (4) TBST (2x10 min);

(5) TBST with 2% HSA (10 min); and (6), goat anti-rabbit Fab-fragment coupled to 10 mn 

gold particles (British BioCell International, Cardiff, UK) diluted 1:20 in TBST with 2% 

HSA. Grids were rinsed in ultra pure water and contrasted with aqueous uranyl acetate (10 

min) and lead acetate (2 min). Incubations were carried out at 20°C, although for some 

sections reacted against NMDA N R l, an antigen retrieval method with heat treatment was 

performed. This was achieved by performing the first step of the incubation in a humid 

chamber in a hot air vented oven at 80°C, 90°C or 100°C.

To compare the NMDA NR2A labelling in wild-type and NR2A knock-out mice, 5 

control and 5 transgenic animals were examined with the postembedding method as 

described above. On 2 wild-type and 2 KO animals quantitative analysis of immunogold 

labelling was carried out. The effect o f increasing the salt concentration in the TBST from 

0.3% to 0.6% and 0.9% was also investigated as this could improve the signal/noise ratio 

by decreasing non-specific labelling. Three ultrathin sections from each animal were
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reacted as described above, with TBST containing 0.3%, 0.6% or 0.9% NaCl. One- 

hundred synapses were selected from each grid from lamina III at a magnification at which 

the 10 nm gold particles thought to represent the NR2A subunits were not visible. Lamina 

111 was chosen as this is the area which expresses the highest levels of the NR2A subunit in 

the spinal cord (see Results). Once the synapses were selected, the magnification was 

increased and the number o f gold particles associated with the postsynaptic density was 

noted. To enable an unbiased assessment of differences in labelling intensity between 

control and transgenic animals, the investigator was blind to which animal the tissue 

examined came from and to the NaCl concentration in buffers used during the incubation.

Inimunocytochemistry for combined confocal and electron microscopy

For confocal microscopy, mid-lumbar spinal cord segments from two rats were cut 

into parasagittal, 100 pm thick sections with a Vibratome. This orientation was chosen, 

because it is optimal for revealing the dors all y projecting dendritic trees of lamina III/IV 

NKl-immunoreactive cells. Sections were immersed in 50% ethanol for 30 minutes prior 

to immunoreaction to enhance antibody penetration (Llewellyn-Smith and Minson, 1992). 

They were then incubated in a cocktail o f rabbit anti-NKl (1:10,000) and mouse anti- 

NeuN (1:1000) antibodies diluted in phosphate-buffered saline (PBS) for 72 hours on a 

shaker table at 4“C. Following rinsing in PBS, sections were incubated for 24 hours in 

species-specific secondary antibodies (Jackson Immunoresearch, all raised in donkey, 

diluted 1:100) conjugated to FITC for NKl or cyanine 5.18 for NeuN. Following further 

rinsing in PBS, sections were incubated in a mixture of propidium iodide (PI, 1:500) and 

RNAase (1:100) in PBS for 30 minutes at 35"^C to reveal cell nuclei (neuronal, glial and 

endothelial). The RNAase was added to digest cytoplasmic RNA, which would otherwise 

give cell body labelling with PI. Sections were then mounted with anti-fade medium 

(Vectashield) and stored at -20°C before being viewed with a confocal microscope.

Dark field digital images were first saved using 4x, lOx and 2Ox dry lenses. These 

pictures later served as “maps” for locating and marking the exact position o f NICl- 

immunoreactive neurons, laminar boundaries and landmarks such as blood vessels and 

myelin bundles. Sections were then scanned with a BioRad confocal laser scanning 

microscope (MRC1024) using a 20x dry and 40x and 6Ox oil immersion lenses. Two 

rejiresentative NKl-immunoreactive lamina III/IV cells (“Cell 6” and “Cell 8”) were 

selected in different sections. Low, medium and high power confocal image stacks 

showing the cell body and dendritic arbor of both neurons, together with the surrounding 

neuronal and non-neuronal nuclei were saved. These nuclei served as landmarks for the
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relocation o f the NKl-immimoreactive cells during the EM part o f the study. The distance 

o f the selected neurons from the surface o f the tissue was also noted.

The two selected sections were then removed from the slides, rinsed in phosphate 

buffer (PB) containing 4% glucose for 1 hour, cryoprotected and processed for freeze- 

substitution as described above. There are two critical steps during plunge-freezing at 

-1 70°C; (1) the high-speed immersion o f the sections into the liquid propane, as due to the 

impact, the tissue slices can become detached from the pin and lost in the bottom o f the 

cylinder containing the propane; (2) the removal of the sections from the pin following 

freezing, because at this stage the frozen tissue can break due to handling. To avoid these 

problems a custom made metal sieve fitted to the bottom of the propane-cylinder was used 

to retrieve any sections that detached from the pin during immersion freezing. To avoid 

the disintegration o f sections during removal from the pin, 400 pm thick slices were cut 

From a translucent elastic silicone block with a Vibratome. To provide support these 

transparent slices were placed on the pin, below the sections. During the freeze- 

substitution the tissue separated from the Sylgard slices following gentle agitation.

The resin blocks obtained after freeze-substitution were transilluminated with a 

light microscope and the regions that contained the NTCl-immunoractive cells were 

identified with the aid o f the low power dark field and confocal images. The blocks were 

ti imined to an area that included the selected cells. They were then tilted to an angle that 

ensured that the plane of the knife was parallel to the surface o f the original Vibratome 

section. Semi-thin serial sections (1 pm) were cut with a diamond Imite, mounted on glass 

slides, counter-stained with toluidine-blue and viewed with light microscopy. Once a 

depth close to the selected NITl-immunoreactive cell was reached, ultrathin serial sections 

were cut and collected on Formvar-coated single slot nickel grids. These were then 

contrasted with aqueous uranyl acetate (10 min) and lead acetate (2 min), and viewed with 

a Philips CM 100 electron microscope. The EM image was compared to the appropriate 

optical section from the confocal stack, and dendrites o f the NICl-immunoreactive cells 

were relocated by using the neuronal and non-neuronal cell nuclei as landmarks.

Once the neurons were identified, 90 serial sections from Cell 6 and 135 from Cell 

8 were collected on either Formvar-coated, single-slot nickel grids or uncoated nickel mesh 

grids. Grids were then individually numbered. The Formvar coating on the slot grids was 

generally damaged by the high temperature antigen retrieval method used to enhance the 

detection o f NMDA N R l subunits. Therefore, although mesh grids are not optimal for 

examining serial sections (as grid bars can cover the regions o f interest), these were used 

lor sections reacted against this subunit. Starting from the third grid, every fifth section
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was reacted with an antibody against substance P to identify axon terminals that contained 

this neuropeptide and formed a synapse with a dendrite of the NKl-imm unoreactive 

neuron. The grids before and after the SP immuno label led section were reacted with an 

A MPA or NMDA antibody. The remaining grids were reacted against another iGluR or 

CGRP, depending on the results obtained from the initial incubations. Boutons were only 

included in the survey if they were both SP- and the CGRP-immunoreactive and formed a 

synapse on the section incubated against a particular iGluR subunit. This approach made it 

possible to determine which iGliiRs were expressed on NKl-immunoreactive cells at 

synapses formed by SP- and CGRP-containing nociceptive primary afferent terminals.

Postembedding incubations were carried out as described above. Sections reacted 

against the glutamate receptors were etched prior to the immunoreaction, while this step 

was omitted for the neuropeptides (see Chapter 3). Primary antibodies and their 

concentrations as follows: (1) rabbit antibody against NMDA N R l (1 jug/ml), (2) rabbit 

antibody against NMDA NR2A (5.4 pg/ml), (3) a cocktail o f rabbit antibodies against 

NMDA NR2B-N (10.6 pg/ml) and NR2B-C (5.2 pg/ml), (4) rabbit antibody against GluRl 

(1:50), (5) rabbit antibody against GluR2 (1:100), (6) rabbit antibody against GluR 2/3 

(1:150) (7) rabbit antibody against GluR4 (1:200), (8) rabbit antibody against SP 

(1:10,000), and (9) sheep antibody against CGRP (1:20,000). Sections reacted with the 

sheep CGRP antibody were incubated in unlabelled rabbit anti-sheep IgG (Vector, 1:200) 

for 2 hours before immunogold labelling.

Initially the SP reacted grids were viewed with the EM. The locations o f boutons 

which formed a synapse with the NKl-immunoreactive neurons were marked on a low 

(75Ox) and medium (4,200x) power image obtained using the CCD camera attached to the 

electron microscope. With the aid o f relocation software (Remote XY Control, PW6472, 

Version 1.0; Philips Analytical, Electron Optics) and the low and medium power images, 

the selected axon terminals were relocated on the adjacent sections reacted for CGRP or 

iGluR. The presence or absence of CGRP immu noreactivity in the bouton and the number 

o f gold particles representing glutamate receptors at synapses were noted. With both 

neuropeptide antibodies, boutons were counted as immunoreactive if  they contained eight 

or more gold particles located over dense-cored vesicles, while they were classified as 

negative if the profile contained dcvs that had no gold particles representing CGRP or SP. 

Axon terminals with dense-cored vesicles that had 0-8 gold-particles for SP or CGRP were 

excluded from the survey. From the relocated terminals high power (17,500x or 24,500x) 

digital images were saved and in some cases photographs were also taken.

65



immiiiioniiorescence staining for light microscopy following antigen unmasking

Lumbar spinal cord segments and cerebella from two wild-type and two NMDA 

NR2A knock-out mice were cut into 60 pm thick sections with a Vibratome. In order to 

expose NMDA NR2A receptor subunits at synaptic sites, sections were processed 

according to an antigen unmasking method involving limited proteolytic digestion with 

pepsin, as described by Watanabe et al. (1998). A stock solution, containing 100 mg/ml 

pepsin in distilled water was aliquoted and stored at -70°C, and a fresh aliquot was thawed 

immediately before pepsin treatment. This stock solution was diluted with pre-warmed 

0 .2 M H'Cl to make up the pepsin working solution. Pepsin treatment was carried out by 

incubating sections at 37°C for 30 minutes in double distilled water, followed by 5, 10 or 

15 minutes in 0.2M HCl containing 1 mg/ml pepsin (Dako, Glostrup, Denmark) with 

continuous agitation. The sections were then rinsed ( 3 x 1 0  minutes) in PBS with 0.1% 

Triton X-100 (PBST) and incubated in affinity purified rabbit anti-NR2A antibody (0.05 

pg/ml) for 24 hours at 4°C. As the NR2A antibody is not commercially available, to allow 

its use at a very low concentration, a tyramide signal amplification (TSA) method was 

generally used to reveal NR2A subunits. Sections were rinsed and incubated for 2 hours at 

room temperature in biotinylated donkey anti-rabbit IgG (.Jackson Immunoresearch, West 

Grove, PA; diluted 1:500), followed by Streptavidin conjugated to HRP (diluted 1:100, 

part o f TSA kit) for 30 minutes. Amplification was carried out by incubating the sections 

in tetramethylrhodamine fluorophore stock solution diluted 1:50 in Amplification Diluent 

according to the manufacturer's instructions (Perkin Elmer, Boston, MA; NEL 702). The 

amplification time was 7 minutes. Following rinsing, sections were mounted and stored in 

Vectashield at -20°C. In order to assess the effect o f pepsin treatment, some sections that 

had not been pepsin-treated were also processed in the same bottles.

Cerebellum and spinal cord sections were viewed with a confocal microscope using 

a 60x oil immersion lens. Representative areas (laminae I-III from the dorsal horn o f the 

spinal cord and the molecular, Purkinje-cell and granular layers o f the cerebellum) were 

scanned from the wild-type and NMDA NR2A knock-out mice using the same laser 

settings. From the cerebellar folia, where the labelling for NR2A was very strong, low 

power images were also obtained for illustration, using a 2 0 x dry lens.

RESULTS
Postembeddiiig immunogold labelling for NMDA receptors in the rat spinal cord

The ultrastructural appearance of the tissue following freeze-substitution was good. 

Membranes were intact and cell organelles were easily identifiable. The etching and the
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i30stembedding reaction moderately decreased the preservation of tissue morphology, 

nevertheless cell organelles and synapses were still clearly recognizable (Fig. 4. la-1).

All NMDA receptor antibodies tested in this part of the study gave strong synaptic 

labelling in the spinal cord. The gold particles representing N R l subunits were present at 

asymmetrical synapses throughout the dorsal horn. Where the plane o f section was 

pel pendicular to the synaptic cleft, most of the particles were associated with the post­

synaptic density. Labelled synapses contained up to 15 gold particles. At the antibody 

concentration at which synaptic labelling was the strongest, some mitochondria, the 

heterochromatin of cell nuclei and a proportion of dense-cored vesicles (Fig. 4.2a-b) were 

also heavily labelled. Occasional gold particles were scattered over non-synaptic 

membranes. The ten-minute heat treatment before the postembedding incubation 

dramatically improved the signal/noise ratio for this subunit by increasing the synaptic and 

reducing the non-synaptic labelling (Fig. 4.1a-d). Pleating the sections to 90°C gave a 

better result than heating to 80°C. Sections treated at 100°C often came off the grid 

probably due to the bubbles formed in the boiling buffer, and in addition the ultrastructure 

of these sections was inferior to those for which antigen retrieval was carried out at 90°C. 

Following heat treatment immunoreactive synapses contained up to 30 gold particles and 

non-synaptic labelling was almost exclusively restricted to mitochondria and some dense- 

cored vesicles. Pleating did not have a beneficial effect on the other IGluR antibodies.

From the NMDA antibodies used in this part o f the study the NMDA NR2A 

antiserum appeared to give the best synaptic labelling. Immunopositive asymmetrical 

synapses contained up to 25 gold particles at their postsynaptic density (Fig. 4.1g-h). 

Synapses in laminae Hi and III were more heavily labelled than those in laminae I and IIo. 

There was relatively little mitochondrial or extra-synaptic labelling, but dense core vesicles 

were occasionally very heavily immunoreactive (Fig. 4.2c-d).

Both NMDA NR2B antibodies gave strong synaptic labelling in the dorsal horn, 

with up to 10 gold particles per synapse. Immunogold particles were also scattered at non- 

synaptic sites with both antibodies, and some dense-cored vesicles were heavily labelled 

(Fig. 4.2e-f). Incubating the sections in a cocktail of NR2B-N and NR2B-C antibodies 

approximately doubled the intensity o f the labelling (Fig. 4.1i-l). To enhance synaptic 

labelling during the combined confocal and EM part o f the study these two antibodies were 

therefore used in a mixture.
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Figure 4.1 Electron micrographs showing postembedding immunogold labelling against 

the NMDA NRl (n-r/), NR2A {e-h) or NR2B (/-/) subunits on freeze-substituted, Lowicryl 

embedded rat spinal cord. Where the plane of section is peipendicular to the synaptic cleft 

(e.g. n), the 10 nm gold particles representing the receptor subunits are located at the 

postsynaptic densities of asymmetrical synapses. Immunoreactive synapses contain up to 

28 gold particles. Pictures representing N R l subunits were obtained from sections which 

were subjected to heat-treatment. Scale bars, 200 nm.
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Combined confocal and electron microscopic analysis of N K l cells

The distribution o f NICl receptor expressing cells seen with confocal microscopy 

was similar to that reported in other studies (Sakamoto et ah, 1999). NKl-immunoreactive 

cell bodies were found in laminae I, III and IV. The neurons selected for analysis were 

representative examples of the large lamina 111/IV NKl-immunoreactive cells that have 

dendrites projecting dorsally to the superficial laminae (Fig. 4.3a). Neuronal nuclei were 

stained with both PI and NeuN, while non-neuronal nuclei were only labelled with PI. In 

neurons weak cytoplasmic labelling against NeuN was often visible (Figs. 4.3c; 4.4a).

With the electron microscope the ultrastructural appearance o f the tissue previously 

subjected to confocal microscopy was slightly compromised. Nevertheless, membranes, 

cell organelles and synapses were identifiable (Fig. 4.4d-g). On sections reacted with 

antibodies against either SP or CGRP, gold particles representing the neuropeptides were 

mainly found over dense-cored vesicles in axon terminals. Several SP-immunoreactive, 

dense-cored vesicle containing boutons were apposed to the dendrites o f the N K l-cells, but 

these were only analysed if  they had gold particles representing CGRP and formed at least 

one synapse on any o f the serial sections reacted against an iGluR (Fig. 4.4). Altogether 

42 SP- and CGRP-immunoreactive, (presumed nociceptive primary afferent) axon 

terminals that formed synapses on grids reacted for an iGluR were identified on the two 

cells (33 on Cell 8 and 9 on Cell 6 ). These boutons formed 54 asymmetrical synapses. 

Gold particles representing all five iGliiR subunits examined in this study were found 

associated with the postsynaptic densities of NKl-positive dendrites. However, the 

number of particles/synapse and the proportion of labelled synapses varied for the different 

subunits (Fig. 4.5). Synapses were counted as positive if they were associated with two or 

more gold particles coding for an iGluR subunit and were considered equivocal if they 

only had one particle. Out o f the 25 synapses found on ultrathin sections reacted for 

G luRl, 10 were positive, 11 were negative and 4 were equivocal. O f the 17 synapses 

examined for GluR2, 7 were positive, 7 were negative and 3 were equivocal. Only four 

synapses could be relocated on grids reacted with the NRl antibody: 3 were positive and 1 

was negative. For NR2A, 21 synapses were found and 3 of these were equivocal, while the 

remaining 18 were positive. For NR2B out o f the 18 synapses, 1 was negative, 1 was 

equivocal and 16 were positive. The average number of gold particles/synapse was 1.6 for 

G luR l, 3.3 for GluR2, 2.5 for N R l, 5.6 for NR2A and 5.5 for NR2B. Statistical analysis 

o f the immunogold labelling was not carried out, due to the small sample number.

Serial sections cut through the same synapse and reacted against different iGluR 

subunits revealed that gold particles corresponding to different subunits could be found on
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Figure 4.3 Projected confocal image showing an NKl-immunoreactive neuron {a, green), 

with its cell body located in lamina III and dendrites projecting dorsally to laminae I-II. 

Several other NKl-immunoreactive dendrites form a plexus in the superficial lamina. Part 

o f the top left dendrite {box) is shown at higher magnification at the right {b-c). On (c) cell 

nuclei surrounding the selected dendrite are also visible. All nuclei are stained with 

propidium iodine (red), while NeuN-immunoreactive neuronal nuclei are also stained with 

Cy5 (blue). Cell nuclei serve as landmarks and three of these are marked with numbers {1, 

2 and 3). The same area is shown on Figure 4.4 with both confocal and electron 

microscopy. Scale bars, 10 pm.





Figure 4.4 Matching confocal and EM images from tiie same cell (Figure 4.3a-c) are 

shown in {a) and {b). On the left image, an NKl-immunoractive dendrite (the same as 

illustrated on Figure 4.4b-c) fonns two branches {dl and d2). Glial cell nuclei (red) are 

marked with asterisks, while neuronal nuclei (purple) are numbered (1-5). There is a faint 

cytoplasmic NeuN staining (blue) suiTounding the neuronal nucleus marked with (i). An 

endothelial cell nucleus (arrow) is also visible. The same profiles are present and clearly 

identifiable on the low power EM picture (b). (c) shows the box in (b) at a higher

magnification. The two dendritic branches (dl and d2) are surrounded by several axon 

terminals, some o f which form synapses. A bouton forming a synapse with the dendrite is 

visible inside the box. (d-e) are serial sections cut through the same bouton and reacted 

with an antibody against CGRP (d, g), SP if) or NR2A (e). On the serial sections reacted 

for the neuropeptides, 10 nm gold particles representing SP or CGRP are located inside 

dense-cored vesicles, suggesting that the bouton belongs to a nociceptive primary afferent 

terminal. The synapse formed by this bouton has 21 gold particles representing the NR2A 

subunit o f the NMDA receptor (e). (li) and (i) are higher magnification untilted and tilted 

images o f the synapse from (e). On the tilted image (/) gold particles are located on the 

postsynaptic density. Box on (b) corresponds to an area o f 15.8 x 14 pm. Gold particles 

are 5 pm. Scale bar, 500 nm.
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the same synapse. Four synapses were immunoreactive for NR2A and NR2B, one for 

GluR2 and NR2B, 3 for GluRl and NR2A, one for G luRl, GluR2 and NR2A, and 2 for 

NRl and NR2B.

Iinmunotluorescence and immunogold study of NMDA NR2A knock-out mice

During the study into the synaptic distribution of NMDA receptors in the dorsal 

horn, strong dense-cored vesicle labelling was observed inside axon terminals with all 

NMDA antibodies used (Fig. 4.2a-f). NMDA receptors have been found in primary 

afferent axon terminals in the spinal gray matter (Liu et ah, 1994; Lu et ah, 2003), and 

these are thought to function as presynaptic receptors (see Chapter 1). In order to 

determine whether gold particles found over dense-cored vesicles corresponded to 

presynaptic receptors in transit to the membrane or whether these represented non-specific 

labelling, postembeddiiig immunogold reactions were carried out against NR2A on five 

wild-type and five NMDA NR2A knock-out mice.

With the postembedding immunogold method wild-type mice showed similar 

labelling pattern (i.e. dev and synaptic labelling) to that observed in rats. Flowever, 

surprisingly, in the knock-out animals not only did the dense-cored vesicle labelling 

remain (Fig. 4.6d), but there was also significant synaptic labelling (Fig 4.6a-c). Synaptic 

labelling in the knock-out animals was always weaker than that in the wild-types (Figs. 

4.7, 4.8, 4.9). Although not studied systematically, it appeared that in the NR2A knock-out 

animals, postsynaptic densities of asymmetrical synapses were thinner than in the control 

mice. A quantitative analysis o f the immunogold labelling was carried out to test whether 

increasing the salt concentration in the TBST from 0.3% to 0.6% or 0.9% could eliminate 

this apparent non-specific immunolabelling in the knock-out tissue, while leaving the 

authentic synaptic labelling intact. Increasing the NaCl concentration in the buffers 

dramatically reduced the intensity of synaptic labelling in both the wild-type and the ICO 

animals. On sections from two wild-type and two NMDA NR2A ICO mice incubated in 

bu ffers containing 0.3% NaCl the means of the total number of gold particles counted over 

100 randomly selected synapses in each animal were 180 (WT) and 84 (ICO), respectively. 

Corresponding numbers for sections incubated in TBST containing 0.6% NaCl were 76 

and 28, while for 0.9% salt concentration these numbers were 31 and 12 (Fig. 4.9). The 

ratio of these means (WT/ICO) were 2.1 for 0.3% NaCl, 2.7 for 0.6% NaCl and 2.6 for 

0.9% NaCl.

Although diagnostic PCR showed that the NR2A subunit was absent in the knock­

out mice (Prof. Masahiko Watanabe, personal communications), antigen unmasking
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Figure 4.6 Electron microscopic images showing postembedding immunogold labelling 

for NR2A subunits at synapses (a-c) and dense-cored vesicles {d) in mice where the NR2A 

subunit has been knocked-out. Note the thin appearance o f the postsynaptic densities. 

Scale bars, 200 nm.
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Figure 4.9 Diagram showing the total number o f gold particles counted over 100 

randomly selected synapses in lamina III o f two wild-type (red and light blue) and two 

NR2A knock-out (pink and dark blue) mice, using the NR2A antibody with various NaCl 

concentrations in the incubation buffers (0.3%, 0.6% and 0.9%). Increasing the salt 

concentration reduced the numbers of gold particles at synapses in both the knock-out and 

the control animals, but did not dramatically increase the ratio of wild-type/laiock-out 

labelling.
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immunocytochemistry was also performed to confirm this with an independent technique. 

Sections that had not been treated with pepsin did not show any immimostaining, while 

after pepsin-treatment a strong punctate immunostaining representing NK.2A appeared in 

the sections from wild-type animals (Fig. 4.10a-c). Punctate labelling was strongest on 

sections pepsin treated for 10 minutes, while it was weak or absent following proteolytic 

digestion For 5 minutes. Many of the sections pepsin digested for 15 minutes were 

damaged, although the ones which remained intact showed punctate labelling. The 

granular layer of the cerebellum showed a very strong immunoreactivity, which was 

presumably associated with synapses formed by mossy-fibre terminals (Yamada et ah, 

2001). No staining was seen in the molecular layer. A faint non-specific immuno staining 

was observed in the cell bodies o f Purkinje-cells in the Purkinje-cell layer (Fig. 4.10a-b). 

This distribution of NR2A labelling in the cerebellum matched those reported previously 

by other studies (e.g. Yamada et ah, 2001). In the spinal cord o f the control animals 

punctate NMDA NR2A labelling was strongest in lamina III with much lower levels 

elsewhere, except lamina II, where it was virtually missing (Fig. 4.10c). A few strongly 

labelled puncta were also visible in lamina I. The NMDA NR2A knock-out mice did not 

show any immunolabelling, except in the Purkinje-cell layer of the cerebellum, where a 

faint non-specific staining was seen in the cell bodies, similar to that observed in the 

control animals (Fig. 4.10d-e).

DISCUSSION
Enhanced immunogold labelling for N R l following antigen retrieval with heat

Aldehyde fixation, especially with divalent aldehydes like glutaraldehyde creates 

cross-links between tissue proteins, which mask the epitopes from being recognized by 

antibodies. Various antigen retrieval techniques, including heating the tissue to 100°C and 

above, have been used to overcome these difficulties (for reviews see Shi et ah, 2000; 

Hay at, 2002). This approach has also been successfully used previously to increase the 

level of postembedding immunogold labelling on sections embedded in both epoxy-, and 

acrylic-resins (Stirling and Graff, 1995; Brorson et ah, 1998, 1999a, 1999b, 2001). The 

finding that incubating the grids at 90°C for 10 minutes increased synaptic labelling and 

decreased non-synaptic immunogold labelling, suggests that heat reduces the detrimental 

effects o f aldehydes on the antigenicity of synaptic N Rl epitopes. This is probably 

achieved by breaking up the cross-links formed during fixation, while heating presumably 

denatures epitopes responsible for non-synaptic and background labelling. The increased 

sensitivity at synapses and the decreased level o f background labelling both contributed to
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ail improved signal/noise ratio. The fact that heating does not improve the immunogold 

labelling for the other iGluR antibodies tested suggests, that these receptors are either not 

extensively cross-linked during fixation, or else that they do not tolerate heat treatment. 

However, the value o f antigen retrieval with heating for the detection o f N Rl subunits 

needs to be reconsidered in the light o f subsequent findings with the NR2A antibody on 

NR2A knock-out mice.

Ap])areiit non-specific immunogold labelling with an NMDA NR2A antibody

Postembedding immunocytochemistry on freeze-substituted tissue has been widely 

used to study the localization o f synaptic proteins (Niisser et ah, 1994, 1995, 1996, 1998; 

Baude et al., 1995; Bernard et al., 1997; Lujan et al., 1996; Clarke and Bolam, 1998; 

Gingrich et al., 2004), including the NMDA receptors (He et ah, 1998; Racca et ah, 2000; 

Rossi et ah, 2002; Kohr et ah, 2003; Nyiri et ah, 2003) which are usually not detectable 

with conventional immunocytochemical techniques. In this study, commonly used tissue 

processing and incubation protocols were employed (Matsubara et ah, 1996, 1999; 

Landsend et ah, 1997; Niisser et ah, 1998; Takumi et ah, 1999; Sassoè-Pognetto et ah, 

2000, 2003; Bergers en et ah, 2001; He et ah, 2001; Rossi et ah, 2002; Kohr et ah, 2003; 

Ragnarson et ah, 2003; Todd et ah, 2003), and these were optimized for the detection o f 

synaptic proteins (etching, overnight incubation at room temperature, 0.3% NaCl in 

buffers). With this method, dense-cored vesicle and synaptic labelling were observed with 

a well-chai'acterized, affinity-purified NMDA NR2A antibody in five mice, in which the 

NMDA NR2A subunit had been knocked out. Diagnostic PCR and immuno fluorescence 

following antigen unmasking confirmed that these animals lacked the NR2A subunit. This 

suggests that the immunogold labelling observed was non-specific. It is possible to explain 

Ihe dense-cored vesicle labelling by the fact that the cross-reactivity o f the NR2A antibody 

was tested on Western blots prepared from the PSD fraction of brain homogenates 

(Watanabe et ah, 1998). Therefore, the antibody could react with one or more proteins 

expressed in dense-cored vesicles and this would remain undetected during specificity 

tests. However it is not easy to account for the synaptic labelling observed in the 

transgenic animals. A possible explanation would be that the knock-out mice express a 

truncated form of the receptor, which is susceptible to proteolytic digestion, thus it is not 

revealed by immunocytochemistry following antigen unmasking, but remains detectable 

with postembedding immunogold method. However, this can be ruled out since the NR2A 

antibody did not give immunolabelling on Western blots prepared from the PSD fraction o f 

NR2A knock-out animals (Watanabe et ah, 1998).
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The immunogold labelling pattern in the knock-out animals suggests that the 

NMDA NR2A antibody selectively binds to siibcellular compartments with a high protein 

content, and that this binding is non-specific. Sites with high protein concentration include 

the heterochromatin o f cell nuclei, mitochondria, dense-cored vesicles and postsynaptic 

densities. Non-specific binding of antibodies to structures with high protein concentration 

is a well-known phenomenon in immuno hi s to c hemi stry. It is generally caused by weak 

ionic forces acting between the antibody and tissue proteins. As early as 1975, Aarli et al. 

found that the Fc-portion o f purified IgG antibody molecules binds to proteins in the CNS. 

Paasivuo and Saksela (1983) found that Fc-fragments were responsible for the non-specific 

binding of antibodies to astrocytes in human brain tumors, while Costa et al. (1984) 

reported that the Fc-fragment o f antibodies binds to histone proteins.

Using postembedding immunocytochemistry Josephsen et al. (1999) showed 

selective, but non-specific labelling o f enamel protein-associated compartments by a 

monoclonal antibody against vimentin. The antibody used in their study was specific for 

vimentin, and on Western blots it did not stain unfixed enamel proteins. However, 

following fixation these proteins also became immunoreactive, suggesting that the 

aldehyde fixation secondarily generated the epitopes responsible for the non-specific 

immunostaining and immunogold labelling. This implicates the role o f the Fab-portion of 

the IgG molecules involved.

Non-specific labelling o f synaptic proteins with the NMDA NR2A antibody 

appeared to occur with the postembedding method, but not with the antigen unmasking 

technique or with Western blotting. This raises the possibility that a tissue processing step 

during freeze-substitution and resin embedding led to the changes in synaptic protein 

structure, which resulted in the non-specific binding to PSDs. This binding could be 

mediated by the Fgb-fragment of the antibody, because (1) not all asymmetrical synapses 

were labelled, (2) the non-specific labelling occurred despite blocking with 2% HSA, 

which is known to block epitopes contributing to background staining and (3 ) increasing 

the NaCl concentration in the TBST to compensate for the weak ionic forces usually 

responsible for background labelling did not significantly change the signal/noise ratio at 

synapses. However, it is equally possible that the non-specific labelling observed at 

synapses in the Icnock-out animals is not against a particular epitope, but only represents 

selective binding of the antibody to proteins in the PSD. For postembedding iGluR 

immunogold labelling antibodies are generally used at a much higher concentration (for 

NR2A 5.4 pg/ml) than for immunofluorescence (for NR2A 0.05-1 pg/ml) or 

immunoblotting (for NR2A 1 pg/ml). This fact could cause or contribute to the non­
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specific binding seen with the NR2A antibody. Regardless o f whether the Fab- or F^- 

f'ragments were responsible for the non-specific synaptic labelling observed in this study, 

these findings draw attention to the fact that antibodies can behave differently under 

different conditions and this could lead to a serious misinterpretation o f the results.

The intensity o f synaptic labelling was on average only 2.5 times higher (2.1 for 

0.3%, 2.7 for 0.6% and 2.6 for 0.9% NaCl) in the wild-type animals than in the knock-outs. 

This suggests that at least 40% of the immunogold labelling at synapses seen with the 

NR2A antibody in control mice was non-specific. In fact, this could be an underestimate, 

because asymmetrical synapses appeared to be thinner in the transgenic animals. NR2A 

subunits have a large carboxy-terminal domain (Ikeda et ah, 1992) and this region contains 

interaction sites with other NMDA subunits and a number of synaptic proteins such as 

PSD95 (Kornau et ah, 1995; Kim et ah, 1996; Mori et ah, 1998; Sprengel et ah, 1998). In 

addition, this region also provides a physical linkage to several intracellular signal­

tran sducti on molecules, for example Ca^Vcalmodulin-dependent protein kinase II 

(Omkumar et ah, 1996). The loss o f NR2A subunits from a region where they are 

otherwise expressed at high levels could result in the subsequent loss or reduction o f other 

PSD components. Tsunoda et al. (1997) suggested that preventing the interaction o f ion 

channels with their PDZ-domain proteins could decrease the half-life o f the signalling 

molecules. The loss of NR2A subunits and the reduction o f other synaptic proteins could 

thus result in the thinner electron microscopic appearance o f the PSD. This might partly 

account for the weaker labelling observed in the knock-out mice. Some of the synaptic 

gold particles in the wild-type mice may represent authentic NR2A subunits. However, 

even if this is the case, such a high non-specific/specific ratio would be unacceptable for 

the accurate localization o f synaptic NR2A subunits.

The labelling patterns seen in rats were similar with all NMDA antibodies tested, 

particularly in terms of dense-cored vesicle labelling. Therefore the non-specific labelling 

observed with the antibody against NMDA NR2A subunits raised serious concerns about 

the validity o f the immunogold labelling carried out against the other NMDA receptors in 

this study. Although it cannot be ruled out that the labelling with the N R l, NR2B-N and 

NR2B-C antibodies was specific, due to the lethality o f NMDA N R l and NR2B knock-out 

mice (Kutsuwada et ah, 1996; Forrest et ah, 1994), the specificity of these other antibodies 

could not be tested on transgenic animals. It was therefore concluded that the data 

obtained on the distribution o f N R l, NR2A and NR2B subunits in the spinal cord and the 

NMDA receptor expression pattern of NKI-immunoreactive neurons, could not be 

considered valid.
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These findings raise the question, whether the postembedding method is suitable 

For detecting synaptic AMP A receptors. There is evidence suggesting that these receptors 

can reliably be detected with the immunogold technique. For example 62-receptor (a 

synaptic protein structurally related to AM PA and NMDA receptors) antibodies 

distinguished almost perfectly between the postsynaptic densities o f parallel and climbing 

fibres in the cerebellum (Landsend et al., 1997). AMP A receptors were absent from those 

Schaffer collateral-commissural synapses of the adult rat hippocampus, which were 

smaller than 180 nm in length, while they were present at larger ones (Takumi et al., 1999). 

The AMPA/NMDA receptor ratio for these synapses was a linear function o f the 

postsynaptic density diameter. Matsubara et al. (1996) found that synapses between the 

inner hair cells and the afferent dendrites in the rat organ o f Corti had gold particles 

representing GluR2/3 and GluR4 subunits o f the AMPA receptor, but they lacked G luR l. 

This lack o f GluRl immunogold signal was not caused by methodological problems since 

labelling was observed in hippocampal sections processed in an identical way. Ragnarson 

et al. (2003), Found that la synapses in the ventral horn o f rat spinal cord were very rarely 

labelled with a GluRl antibody (<5%), but had other AMPA subunits, while Alvarez et al. 

(personal communications) has detected high levels of GluR4 in the ventral horn and very 

low levels in the superficial laminae o f the dorsal horn. These findings in the spinal cord 

are consistent with those obtained with antigen unmasking iramunohistochemistry (see 

Chapter 5). It should also be pointed out that in the present study significant non-synaptic 

labelling was observed with all iGluR antibodies used, while for example Baude et al. 

(1995) reported that in the hippocampus immunogold particles representing AMPA 

receptors were very rarely seen at extrasynaptic membranes and not at all within the spine 

away from the plasma membrane. These findings therefore suggest that postembedding 

immunogold can be successfully used to detect AMPARs. However these results show 

that as with other immunocytochemical techniques, the postembedding immunogold 

method on freeze-substituted tissue is not free of artefacts. They stress the need for the use 

o F appropriate controls during immunocytochemistry, ideally involving knock-out animals. 

Controls have to be carried out under conditions identical or closely similar to those used 

For obtaining the data.

Combination of immunofluorescence and postembedding immunocytochemistry

The original aim of the combined confocal and EM study was to identify three 

lamina IlI/lV NKl-immunoreactive neurons and to examine at least 20 synapses formed by 

SP- and CGRP-containing nociceptive primary afferents for each receptor on each cell.
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Due to the concerns with the postembedding detection of NMDA receptors on freeze- 

substituted tissue this study was aborted less than half way through.

Nevertheless, the combined confocal and electron microscopic method developed 

For this study could be useful in the future for morphological investigations at the 

Liltrastructural level. This method is especially powerful for (1) identifying and 

neurochemically characterizing cells with a particular three-dimensional structure or (2 ) for 

examining markers which are not detectable by the postembedding immunogold teclmiqiie.

Antigen unmasking can serve as an alternative for detecting synaptic receptors

Although this study initially set out to examine NMDA receptors in the spinal cord 

using the postembedding method, it became apparent during the course o f the work that the 

immunogold technique can give non-specific synaptic labelling with NMDA receptors 

antibodies. However, an important finding o f this study has been that antigen unmasking 

with partial proteolytic digestion can be a suitable alternative to the postembedding 

immunogold method for detecting synaptic NMDA receptors. In the past, various 

techniques including heat treatment, microwaving and proteolytic digestion, have been 

developed by pathologists to reduce the detrimental effect o f aldehyde-containing fixatives 

on antigenicity. These are collectively called antigen retrieval techniques as they aim to 

recover epitopes cross-linked during fixation (For reviews see Shi et al., 2000; Hayat, 

2002). The situation is somewhat different for iGliiRs located at asymmetrical synapses as 

these are not only cross-linked by the fixative, but also masked by the postsynaptic density. 

For these receptors pepsin treatment is likely to act by partially digesting the proteins of 

the PSD or synaptic cleft. This presumably exposes proteins that are otherwise hidden. 

Therefore the term antigen unmasking is used throughout this thesis, because it better 

describes the mechanism by which pepsin digestion is likely to work. For more details on 

the theory behind antigen unmasking with pepsin see Chapter 5.

A potential advantage of confocal detection of iGluRs is that it is suitable for 

examining large number o f synapses. However this technique is not appropriate for 

analysing the subsynaptic distribution o f proteins or for differentiation between receptors 

located in the pre- or postsynaptic membrane. The punctate NR2A labelling found in the 

spinal cord with this method is almost certainly authentic as it was absent in the NR2A 

knock-out mice, and also because the laminar distribution matched that reported with in 

situ hybridization for NR2A inRNA (Watababe et al., 1994). For further details 

concerning NMDA receptors in the spinal cord see Chapter 6 .
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Chapter 5

Distribution of AMPA receptors at glutamatergic synapses in the rat 

spinal cord and phosphorylation of GluRl in response to noxious 

stimulation revealed with an antigen unmasking method



INTRODUCTION
Despite a number of previous anatomical studies the precise distribution o f AMPA 

receptors at glutamatergic synapses in the spinal cord remains unknown. inRNAs for all 

four subunits o f the AMPA receptor have been identified in the spinal gray matter (see 

Chapter 1). Although several immunocytochemical studies have also been carried out with 

antibodies against various AMPA subunits (Tachibana et al., 1994; Jakowec et al., 1995a; 

Popratiloff et al., 1996, 1998a; Morrison et al., 1998; Spike et al., 1998), it is unlikely that 

these revealed receptors at excitatory synapses, since these are thought to be inaccessible 

due to the extensive cross-linking of the elaborate protein meshwork o f the synaptic cleft 

and post-synaptic density that occurs as a result o f chemical fixation (see Chapter 2). 

Popratiloff et al. (1996, 1998a) used a postembedding immunogold method to identify 

AMPA receptors at synapses formed by primary afferents in the dorsal horn, while 

Morrison et al. (1998) and Ragnarson et al. (2003) used the same approach to examine 

GluRs at ventral horn synapses. Postembedding immunogold labelling was also used in 

Chapter 3 to detect the GluR2/3 and GluRl subunits at somatostatin- and enkephalin- 

im mu noreactive axon terminals. However, despite these studies, the distribution and 

colocalization o f AMPA subunits at individual synapses and the AMPA receptor 

expression pattern of various neuronal circuits in the spinal cord remains unknown. In 

addition the postembedding method for detecting AMPA receptors is relatively insensitive, 

it is not suitable for examining large numbers of synapses and due to the non-specific 

labelling patterns observed with the NR2A antibody it cannot be used for determining 

whether AMPA and NMDA receptors are expressed at the same synapse.

Detection of iGliiR subunits at synapses in the spinal cord with confocal 

microscopy would allow several important and yet unresolved issues to be addressed. 

These include the occurrence o f synapses that lack GhiR2, and would thus have 

exclusively Ca^’̂ -permeable AMPA receptors (e.g. Engelman et al., 1999; Vandenberghe et 

ai., 2001), the possible existence of "silent" synapses that possess NMDA but not AMPA 

receptors (Li and Zhuo, 1998; Bardoni et ah, 1998; Baba et al., 2000), the insertion of 

AMPA receptors into glutamatergic synapses as a possible mechanism contributing to 

central sensitization in chronic pain states (Popratiloff et al., 1998a; Ji et al., 2003) and the 

changes in AMPA expression pattern o f synapses during development (.lakowec et al, 

1995a, 1995b) or pathological conditions (Mennini et al., 2002; Van Damme et al., 2002; 

iCawahara et al., 2003, Nagano et al., 2003). In addition, AMPA receptors subunits are 

significantly different in their physiology, pharmacology and involvement in synaptic 

plasticity (Dingledine et ah, 1999). For example GluRl subunit-containing AMPA
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complexes require activity for synaptic delivery, while those that contain GhiR3 

constitutively cycle into and out of the synapse (Bredt and Nicoll, 2003). Phosphorylation 

can also effect the function o f AMPA subunits in different ways and this has been reported 

to play a role in the central sensitization occurring in chronic pain states (Sandktihler, 

2000; Fang et ah, 2002, 2003; Ji et ah, 2003). ICnowledge o f the subunit composition at 

synapses in specific neuronal circuits is therefore of fundamental importance for our 

understanding of synaptic function and plasticity.

In the present study, synaptic AMPA subunits were examined with confocal and 

electron microscopy, by using the antigen unmasking method based on proteolytic 

digestion. It has been shown in Chapter 4 that this method is suitable for revealing synaptic 

receptor subunits in the spinal cord. In this Chapter the first demonstration of the laminar 

distribution of all four AMPA subunits at synapses in the rat spinal cord is provided and 

the extent of colocalization between GluR2 and GluRl or GluR2, GluR3 and GluR4 

subunits is also examined. For GluRl and GluR2 subunits, their relationship to different 

types o f glutamatergic axon was investigated. These two subunits are the most abundant in 

the dorsal horn, and are thus likely to be present at synapses formed by primary afferents 

and involved in sensory processing. It is also shown that this method can be used in 

functional studies, since it was possible to demonstrate phosphorylation o f GluRl at 

synapses in the superficial laminae in response to noxious stimulation.

MATERIALS AND METHODS 
Antibody preparation

Affinity-purified rabbit antibodies against GluRl and GluR2 (Chemicon) and a 

monoclonal mouse antibody against GluR2 (Chemicon; cat. no. MAB397; clone 6C4) 

were all found to give a punctate labelling pattern on sections o f spinal cord following 

antigen retrieval with pepsin treatment. However, other commercially available GluR 

antibodies did not give acceptable immunostaining with this method. Therefore a rabbit 

polyclonal antibody against the C-terminal amino acid residues 830-862 o f the mouse 

GluR3 (R3C peptide) and a guinea pig polyclonal antibody against amino acid residues 

245-273 of the mouse GluR4 (R4N peptide) were generated by a collaborative partner in 

.lapan, as described by Nagy et al. (2004). To test the specificity o f these antibodies. 

Western blotting, dot blotting and immunocytochemistry, using antibodies that had been 

pre-absorbed with the appropriate synthetic peptides, were carried out. Immunoblots were 

performed by Dr. Masahiro Fukaya (as described by Nagy et ah, 2004). For pre-absorption 

experiments synthetic peptides (0.2 pg/ml) were added to the primary antibodies. To check
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the cross-immunoreactivity o f GhiR3C antibody to the GluR2 subunit, dot blot assay was 

performed using C-terminal peptide for GluR2 and GluR3 subunits (R2C and R3C).

Animals for immunocytochemistry

Twelve adult male Wistar rats (220-390 g; Harlan, Loughborough, UK) were 

deeply anaesthetised with pentobarbitone (300 mg i.p.) and perfused through the left 

ventricle with a fixative consisting o f 4% freshly de-polymerized formaldehyde (10 rats, 

for confocal microscopy) or 4% formaldehyde/0.1 % glutaraldehyde (2 rats, for electron 

microscopy). To investigate the phosphorylation of GluRl subunits at glutamatergic 

synapses following noxious stimulation, three additional adult male Wistar rats were used. 

These animals received a capsaicin injection (Sigma, Poole, UK; 250 pg dissolved in 25 pi 

saline containing 7% Tween 80) into the plantar surface of the left hindpaw under general 

anaesthesia with ketamine and xylazine (73.3 and 7.3 mg/kg i.p., respectively). Rats were 

maintained under general anaesthesia for 10 minutes after capsaicin injection and then 

perfused with 4% formaldehyde under terminal pentobarbitone anaesthesia (as described 

above). Lumbar spinal cord segments from all animals were removed and stored in the 

same fixative for 8-24 hours, before being cut into transverse 60 pm thick sections with a 

Vibratome. Sections were immersed in 50% ethanol for 30 minutes prior to 

immunoreaction to enhance antibody penetration (Llewellyn-Smith and Minson, 1992).

Immiiiionuoresceiit detection of GIiiRl-4

In order to expose AMPA receptor subunits at synaptic sites, sections were 

processed according to an antigen unmasking method involving limited proteolytic 

digestion with pepsin, as described by Watanabe et al. (1998). In some experiments 

glutamatergic axons were identified by using antibodies against the glutamate transporters 

VGLUTl and VGLUT2, which are mainly associated with myelinated primary afferents 

and excitatory interneurons, respectively (Todd et ah, 2003). Although unmyelinated (C) 

primary afferents are glutamatergic (De Biasi and Rustioni, 1988; Broman et ah, 1993), it 

has been found that many o f them do not have detectable levels o f either VGLUTl or 

VGLUT2 (Todd et ah, 2003; Landry et ah, 2004), and it also appears that these afferents 

do not contain VGLUT3 (Oliveira et ah, 2003; Landry et ah, 2004). Peptidergic and non- 

peptidergic C afferents were therefore identified with antibody against calcitonin gene- 

related peptide (CGRP) (.Tu et ah, 1987), and binding o ï Bandeiraea simplicifolia isolectin 

B4 (1B4) (Silverman and Kruger, 1990), respectively. In preliminary experiments it was 

Found that following antigen unmasking with pepsin immunostaining for CGRP 

completely disappeared, while staining for VGLUTs and binding o f IB4 were reduced near
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the surfaces of the Vibratome section, where punctate staining for the GluRs was optimal. 

Detection o f these axonal markers was therefore carried out prior to proteolysis, by using 

the tyramide signal amplification (TSA) method. This results in deposition of covalently- 

bound fluorophore (Gross and Sizer, 1959) that was found to be resistant to subsequent 

pepsin treatment. Pepsin treatment was carried out by incubating sections at 37°C for 30 

minutes in phosphate buffered saline (PBS) followed by 10 mins in 0.2M HCl containing 1 

mg/ml pepsin (Dako, Glostrup, Denmark) with continuous agitation. The sections were 

then rinsed (3 x 10 minutes) in PBS. For sections that were processed for 

immunofluorescence and confocal microscopy, the PBS contained 0.3% Triton-XlOO.

To investigate whether G luRl- and GluR2-immunoreactive puncta are apposed to 

various types of glutamatergic axon terminal, spinal cord sections from three rats were

incubated for 72 hours at 4°C in one of the following: (1) guinea pig anti-VGLUTl

antibody (Chemicon, diluted 1:200,000 or 1:500,000), (2) guinea-pig anti-VGLUT2

antibody (Chemicon, diluted 1:50,000), (3) a mixture o f both guinea pig VGLUT

antibodies (at the corresponding concentrations), (4) guinea-pig antibody against calcitonin 

gene-related peptide (CGRP) (Bachem Ltd, Merseyside, UK, diluted 1:100,000), or (5) 

biotinylated BS-IB4 (Sigma, 2 pg/ml). Following rinsing they were incubated for 2 hours 

at room temperature in biotinylated donkey anti-guinea pig IgG (Jackson Immunoresearch, 

West Grove, PA; diluted 1:500) (except for those sections which were used to detect ÎB4- 

binding) and then processed with a TSA kit (tetraniethylrhodamine, NEL 702; Perkin 

Elmer, Boston, MA) as described in Chapter 4. Sections were rinsed three times in PBST, 

subjected to pepsin treatment (as described previously) and then incubated for 24 hours at 

4°C in a cocktail of rabbit anti-GluRl (1:500) and mouse anti-GluR2 (3.9 pg/ml) 

antibodies. Following further rinsing, they were incubated for 2-24 hours in species- 

specific fluorescent secondary antibodies: donkey anti-mouse IgG conjugated to Alexa 488 

(Molecular Probes, Eugene, OR; diluted 1:500) and donkey anti-rabbit IgG conjugated to 

cyanine 5.18 (Jackson Immunoresearch ; diluted 1:100). They were then mounted with anti­

fade medium (Vectashield, Vector Laboratories, Peterborough, UK) and stored at -20°C.

To examine the relationship between GluR2, GluR3 and GluR4 subunits, triple­

labelling immuno fluorescence was carried out. Pepsin-treated sections from 3 rats were 

incubated for 72 hours at 4°C in a mixture of mouse anti-GluR2 (3.9 pg/ml), rabbit anti- 

GluR3 (GluR3C) (0.41 pg/ml) and guinea-pig anti-GluR4 (GluR4N) (0.76 pg/ml) 

antibodies. They were then rinsed in PBST and incubated in a mixture of the following 

species-specific secondary antibodies: donkey anti-mouse IgG conjugated cyanine 5.18 

(Jackson Immunoresearch, diluted 1:100) for GhiR2, donkey anti-guinea-pig IgG
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conjugated to Rliodainiiie Red (Jackson Immunoresearch, diluted 1:100) for GluR3 and 

donkey anti-rabbit IgG conjugated to Alexa 488 (Molecular Probes; diluted 1:500) for 

GhiR4. After the incubation sections were mounted in Vectashield and stored at -20°C.

Pre-absorption controls for the GluR3 and GluR4 antibodies were carried out by 

adding R4N peptide to the GluR4 antibody and R2C or R3C peptide to the GluR3 antibody 

( 10 pg/ml peptide added to 50 pg/ml antibody in each case) and then diluting the antibody 

lo (he concentrations given above. To compare the staining obtained with the rabbit and 

mouse GhiR2 antibodies, some sections were treated with pepsin and incubated in a 

cocktail of these two primary antibodies, followed by appropriate fluorescent species- 

specific secondary antibodies.

In order to assess the quality o f AMP A-i mmunolabelling on tissue that has not been 

subjected to antigen unmasking, spinal cord sections that had not been pep sin-treated were 

also processed for immunofluorescence. These control sections were incubated in either 

rabbit anti-GluRl (1:500), mouse anti-GluR2 (3.9 pg/ml), rabbit anti-GluR3 (0.41 pg/ml), 

or guinea-pig anti-GluR4 (0.76 pg/ml), followed by appropriate fluorescent species- 

specific secondary antibodies (as described above).

Confocal microscopy and analysis of G luR l-4

To investigate the colocalization o f GluR2, GluR3 and GhiR4 at immunoreactive 

synapses, sections reacted with a cocktail o f antibodies against these three subunits were 

analysed. A single, representative section from each o f the three animals was scamied 

through a 60x oi 1-immersion lens with the Bio-Rad Radiance 2100 confocal laser scanning 

microscope. Z-series were scanned at 0.3 pm z-separation through the upper 10-15 pm of 

the section (since penetration o f GluR staining was generally limited to this depth), and 5 

regions were analysed in each case: laminae 1/11, III, IV, V and IX (Molander and Grant,

1984). Confocal image stacks were analysed using the MetaMorph image analysis software 

(Universal Imaging Corporation). During the selection o f immunoreactive puncta for 

analysis, it was important not to be able to determine the subunit combination o f individual 

puncta. Therefore the three colour channels representing GluR2, GluR3 and GluR4 

subunits were initially merged and then combined to produce a monochrome image. One 

hundred immunoreactive puncta were selected from each region in each animal. To avoid 

bias towards brighter puncta, a 100 -square grid was placed on the image and the punctum 

that was closest to the lower right corner o f each square on the grid was selected on an 

optical section from near the upper surface of the Vibratome section. The selected
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immunoreactive puncta were then examined in the original three-colour image stack and 

the presence or absence o f immunoreactivity for each subunit was determined.

To examine the relationship of GluRl and GluR2 to various glutamatergic axon 

terminals, from each o f three rats a single section reacted against these subunits and 

VGLUTl, VGLUT2, CGRP or IB4 was analysed. These sections were scanned through a 

60x oil-immersion lens, as described above. VGLUTl- and VGLUT2-immunoreactive 

boutons were analysed in laminae I, IIo, Hi, III, IV, V and IX. Lamina II was subdivided 

into inner and outer halves, because VGLUTl terminals in these two region form 

functionally distinct populations. Most VGLUT 1 -immunoreactive boutons in lamina Ili 

belong to myelinated primary afferents, while those in lamina IIo are not o f primary 

afferent origin (Todd et ah, 2003). CGRP- and IBT-immunoreactive axon terminals were 

analysed in those regions where they were most numerous: laminae I/IIo for CGRP and 

lamina II for IB4. Confocal image stacks were initially viewed with MetaMoiph such that 

only the axonal marker was visible, and 100  labelled axons were randomly selected from 

each o f the regions to be analysed in each animal. The other two confocal channels were 

then viewed, and the number of G luRl- and/or GluR2-immunoreactive puncta in contact 

with each o f the selected axonal boutons was determined. The colocalization o f G luR l- 

and GluR2-immunoreactivity in puncta apposed to glutamatergic boutons was also noted.

VGLUTl and VGLUT2 are thought to label the great majority o f glutamatergic 

terminals in the spinal cord, apart from those belonging to C-afferents (Todd et al., 2003; 

Landry et al., 2004). To investigate the proportion of GluR2 puncta that were in contact 

with glutamatergic terminals and are thus likely to represent synaptic receptors, sections 

that had been reacted with antibodies against both o f these transporters, as well as GluR2 

were analysed. One section from each o f three animals was scanned through a 60x oil- 

immersion lens and 3 regions were analysed in each case: laminae LII, laminae III/IV and 

lamina IX. Image stacks were initially viewed such that only GluR2 staining was visible, 

and 100 immunoreactive puncta were selected from each region in each animal, by using a 

100-square grid (as described above). This approach was used to avoid bias towards 

selecting clusters o f puncta that were found to surround some glutamatergic terminals. The 

VGLUT staining was then examined, and the proportion o f the selected puncta that were in 

contact with a VGLUT-immunoreactive bouton was determined.

Electron microscopy

iGluRs have been found in primary afferent axon terminals in the spinal gray 

matter (Lu et al., 2002, 2003), and these are thought to function as presynaptic receptors
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(Lee et al., 2002). With confocal microscopy of pepsin-treated sections, AMPA receptor- 

immiinostaining that appeared to be located inside primary afferent boutons was not seen. 

However, it was possible that some of the punctate labelling apposed to primary afferent 

terminals represented receptors located in the presynaptic membrane, since the spatial 

resolution o f the confocal microscope is not adequate to allow the distinction between pre- 

and postsynaptically located proteins. Therefore electron microscopy was carried out to 

confirm that the punctate labelling seen with GluRl and GluR2 antibodies after pepsin 

treatment represented postsynaptic receptors. Sections from the two rats that had been 

fixed with formaldehyde/glutaraldehyde were treated with 50% ethanol to enhance 

antibody penetration and with 1% sodium borohydride for 30 mins to reduce the 

detrimental effects of glutaraldehyde on antigenicity (Kosaka et al., 1986). They were 

I'insed extensively, treated with pepsin (as described above) and incubated either in rabbit 

anti-GluRl (1:2,000) or rabbit anti-GluR2 (1:500) for 72 hours, and in biotinylated donkey 

anti-rabbit IgG (.Tackson Immunoresearch; 1:500) followed by Extravidin-peroxidase 

conjugate (Sigma, 1:1000) each for 24 hours. The PBS used for diluting these reagents did 

not contain Triton. Peroxidase was revealed with 3,3'-diaminobenzidine, and the sections 

were then osmicated (1% OSO4 for 20  minutes), dehydrated in acetone, embedded in 

Durcupan between acetate foils and cured for 48 hours at 70°C. A single section from each 

animal reacted with each antibody was selected, mounted on a stub of cured resin, and 

trimmed to an area that included laminae I-III o f the dorsal horn. Ultrathin sections (silver 

interference colour) were cut with a diamond knife, collected onto Formvar-coated single­

slot grids and stained with lead citrate. For comparison, some Vibratome sections were 

processed in exactly the same way, except that pepsin-treatment was omitted.

Sections were viewed with a Philips CM 100 transmission electron microscope. For 

the pepsin-treated material, one ultrathin section from each animal reacted with GluRl and 

one reacted with GluR2 was examined. The region corresponding to laminae I-III was 

systematically scanned at high magnification until 50 immunoreactive synapses had been 

identi fied on each section, and the location o f the DAB reaction product in relation to the 

synaptic membranes was noted at each immunoreactive synapse. The total area that had 

been scanned on each section was estimated from the X-Y co-ordinates. During the course 

of this survey, any immunoreactive vesicle-containing profiles found were also noted. 

Ultrathin sections from tissue reacted with GluRl or GluR2 antibodies without pepsin 

Ireatment were then viewed (1 from each rat for each antibody), and in each case an area 

equivalent to that scanned in the corresponding pepsin-treated sections was examined.
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Detection of phosphorylated GluRl subunits

To determine whether imniimocytochemically detectable changes involving 

synaptic AMPA receptors occurred in response to a peripheral noxious stimulus, 

immunofluorescence labelling was carried out to reveal GluRl subunits that had been 

phosphorylated at the Serine 845 site (Roche et al., 1996). Spinal cord sections from three 

rats that had received capsaicin injection into the left hindpaw (ten minutes before 

perfusion) were subjected to pepsin treatment and incubated in a mixture o f affinity- 

purified rabbit antibody against GluRl phosphorylated at Ser845 (G luR l-pS845; Covance, 

Berkeley, CA; 0.5 pg/ml) and mouse anti-GluR2 (3.9 pg/ml) for 48 hours. Following 

I'insing sections were incubated in a cocktail of species-specific secondary antibodies 

raised in donkey and conjugated to biotin (Jackson, diluted 1:500, for G luRl) or Alexa 488 

(Molecular Probes, diluted 1:500, for GluR2 ) for 2 hours. To enhance the immunosignal 

GluRl-pSS45 was revealed by using a TSA kit as described above (tetraniethylrhodamine, 

NEL 702; Perkin Elmer). Following the immunoreaction, sections were rinsed in PBST, 

mounted in Vectashield and stored at -20°C. The antibody against GluR2 was used in this 

part o f the study to demonstrate that following pepsin-treatment the punctate 

immunostaining observed with the G luR l-pS845 antibody corresponded to AMPA- 

containing synapses, since GluR2 was found to be present in virtually all puncta that 

contain GluRl (see Results). It was not possible to detect GluRl and GluRl-pS845 

simultaneously, since both antibodies were raised in rabbits.

A single section from each o f the three rats was scanned with the confocal 

microscope using a 60x oil-immersion lens. From each section, three adjacent overlapping 

fields (each with an area o f 155 x 155 pm) from the medial half o f laminae I and II o f each 

dorsal horn were scanned with a z-separation of 1 pm. This region was chosen since this is 

the area where nociceptive primary afferents from the hindpaw terminate, and also because 

this was the region in which GluR 1 -pS845-immunoreactivity was observed in the 

ipsilateral dorsal horn (see Results). For each dorsal horn, the three image stacks were 

stitched together with Adobe Photoshop 7.0 (Adobe Systems). This resulted in an image (a 

single optical section) which covered the medial half of the dorsal horn. The region 

corresponding to laminae I and II was selected for subsequent analysis (using MetaMorph 

software). The red channel (corresponding to GluRl-pS845) was switched off while this 

was carried out, to avoid bias in the selection of the optical section or the area that was to 

be analysed. GluRl-pS845-immunoreactivity was analysed in each o f the three optical 

sections (one from each rat) by setting a threshold for the pixel luminance value that 

excluded most o f the "basal" immunostaining (see below) that was present in the
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contralateral (right) dorsal horn. All piincta in each dorsal horn that had at least one pixel 

exceeding this threshold value were then identified and counted, and the presence or 

absence o f GluR2 - immunostaining in these puncta was determined. Because the TSA 

method involves an enzyme reaction (catalysed by horseradish peroxidase), it is likely that 

there is a non-linear relationship between the amount o f antigen present and the intensity of 

(luorescence. For this reason, a densitometric approach was not appropriate, and the 

threshold method was therefore used to determine whether puncta with relatively high 

levels of G iuRl-pS845“immunoreactivity were significantly more numerous on the side 

ip si lateral to the capsaicin injection.

The affinity purified GluRl-pS845 antibody was raised against a synthetic 

phosphopeptide corresponding to an sequence that includes the Ser845 residue of the rat 

GluRl subunit. On Western blots prepared from rat hippocampus the antibody recognized 

a single protein band corresponding to a molecular weight o f approximately lOOkDa, and 

this labelling was blocked by the phosphopeptide against which it was raised, but not by 

the dephosphopeptide, indicating that it is specific for the phosphorylated form of GluRl 

(manufacturer's specification). Pre-absorption controls for immunocytochemistry were 

performed by adding either the phosphopeptide used to raise the antibody or the 

corresponding dephosphopeptide (0.1 pg/ml in each case) to the G luR l-pS845 antibody 

(0.5 pg/ml) 24 hours before use.

Characteristics of other antibodies

The rabbit antibodies against GluRl and GluR2 were raised against amino acid 

sequences corresponding to the C terminal 13 residues (G luRl) and residues 827-842 near 

the C terminus (GluR2), and are reported to show no cross-reactivity with other GluR 

subunits (manufacturer's specification). The monoclonal antibody against GhiR2 was 

raised against a peptide sequence corresponding to residues 175-430. It has been 

extensively characterised and shown to detect GluR2, but not any other AMPA or kainate 

subunits, in transfected cells (Vissavajjhala et al., 1996). Staining o f brain sections with 

this antibody was blocked by the GluR2 fusion protein, but not by fusion proteins to the 

corresponding regions o f GluRl or GluR3 (Vissavajjhala et ah, 1996). The guinea-pig 

antibodies against VGLUTl and VGLUT2 were raised against unspecified sequences 

corresponding to 19 or 18 amino acids (respectively) from the corresponding rat proteins. 

It has been previously shown that these antibodies stain identical structures to well- 

characterised rabbit antibodies against VGLUTl and VGLUT2 (Todd et ah, 2003).
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RESULTS
GIuR3 and GluR4 antibodies

Although the amino acid sequence for the R4N peptide is specific to GluR4, the 

sequence used for the R3C peptide has a high level of homology with the corresponding 

part of the GluR2 subunit, having 20 identical amino acids (Fig. 5.1 A). To confirm that 

the GhiR3C antibody did not cross-react with the GluR2 subunit, specificity tests were 

carried out by means o f dot blots, Western blots and immunostaining using pre-absorbed 

antibodies (Fig. 5.1B-D). Western blots and dot blots were performed by Dr. Masahiro 

Fukaya (Hokkaido University, Japan), while pre-absorption controls were carried out as 

part o f this study. On dot blots the GluR3 antibody only detected the R3C but not the R2C 

peptide, indicating that it did not cross-react with the C-terminal region o f GluR2 (Fig. 

5 .IB). In Western blots prepared from the PSD fraction o f homogenized mouse spinal 

cord, the GluR3 and GluR4 antibodies each detected a single protein band with a 

molecular weight o f approximately 98 kDa. The pre-absorption o f the GluR3 antibody 

with the R3C peptide, but not with the R2C peptide and the pre-absorption o f the GluR4 

antibody with the R4N peptide abolished staining with these antibodies. (Fig. 5.1C). On 

pepsin-treated spinal cord sections, punctate immunostaining was observed with both 

antibodies. Again, staining with GluR3 was blocked by pre-absorption with R3C but not 

R2C peptide, and GluR4 staining was blocked with R4N peptide (Fig. 5 .ID). These 

antibodies are therefore specific for the corresponding subunit.

General appearance of immunofluorescence with G luR l-4 antibodies following 

antigen unmasking

On pepsin-treated spinal cord sections, punctate staining was seen near the surface 

o f the section (superficial 10-15 pm) with each of the GluR antibodies (Figs 5.2, 5.3). This 

became progressively weaker deeper in the section, and in the case o f both GluR2 

antibodies it was replaced by a pattern o f cell body labelling identical to that reported with 

these antibodies on sections not treated with pepsin (e.g. Jakowec et ah, 1995a; Popratiloff 

et ah, 1996, 1998a; Spike et ah, 1998). The distribution o f immunostaining seen with 

rabbit and mouse GluR2 antibodies was exactly the same, and dual-immunofluorescence 

labelling with these antibodies revealed that each antibody stained identical structures.

Laminar distribution of AMPA subunits

O f the four AMPA subunits examined, GluRl showed the most restricted 

distribution in the spinal cord, with immunoreactive puncta being very frequent in lamina

106



II, and present at lower density in other dorsal horn laminae. In the ventral horn pimcta 

immunostained for GluRl were rarely seen (Fig. 5.2). A large number o f GluR2- 

immunoreactive puncta were present throughout the grey matter, with the strongest 

labelling in laminae I and II (Fig. 5.2). The staining pattern for GluR3 was similar to that 

for GluR4. In both cases immunoreactive puncta were densely distributed throughout the 

ventral horn and the deeper regions of the dorsal horn (laminae III-VI), with much weaker 

labelling in laminae I and II, although a few strongly labelled puncta were seen in this 

region, particularly In lamina I (Fig. 5.3).

In sections that had not been treated with pepsin, some labelling o f cell bodies, and 

smaller profiles that resembled dendrites, was seen with both the GluRl and GluR2 

antibodies, as described previously (e.g. .lakowec et al., 1995a; Popratiloff et ah, 1996, 

1998a; Engelman et al., 1999). GluR2-immunoreactive cell bodies were frequent in 

laminae l-III, while with the GluRl antibody only scattered neurons were labelled mainly 

in laminae l-II, but occasionally also in the deeper laminae o f the dorsal horn. However, 

the immii 110fluorescent staining with the GluRl and GluR2 antibodies in sections that were 

not pepsin-treatment was much weaker than that in sections which had undergone antigen 

unmasking. In addition, puncta similar to those seen after pepsin treatment were not 

visible in these sections (Fig. 5.4a,b,e,f). The GluR3 and GluR4 antibodies did not stain 

cell bodies or give punctate labelling in the absence o f pepsin treatment (Fig. 5.4c,d,g,h). 

This theiefore suggests that conventional immunocytochemistry without antigen 

unmasking does not give significant labelling of synaptic AMPA receptors.

Colocalisatioii ol AMPA subunits

This part of the study was mainly carried out to determine whether any AMPA- 

immunoreactive glutamatergic synapses in the spinal cord lacked GluR2 subunits, and 

would therefore have exclusively Ca^^-permeable AMPA receptors.

In sections that were labelled with both GluRl and GluR2 antibodies, it was found 

that virtually all GluRl-immunoreactive puncta throughout the dorsal horn also showed 

immunoreactivity for GluR2 (Fig. 5.5a-c), although the relative intensity of 

immunofluorescence for these two subunits varied considerably between puncta. The 

extent o f colocalisation o f these two subunits was investigated in more detail in the 

analysis o f different types o f glutamatergic axons (see below).

The relationship between GluR2, GluR3 and GluR4 was examined in triple­

labelled sections (Fig. 5.5d-o, Table 5.1). These subunits showed an extensive 

colocalization throughout the grey matter and this was most prominent in the deep dorsal
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Figure 5.1 Characterization o f GhiR3 and GhiR4 antibodies. A , Amino acid sequences 

showing the C-terminal region o f GluR2 and GluR3. Residues which are identical in both 

subunits are shaded, while the regions used for antibody preparation are boxed (R2C and 

R3C). Asterisks mark the C-terminal end of the protein. B , Dot blot showing that the 

GluR3C antibody (Ab) recognizes the R3C peptide, and it does not cross react with the 

R2C peptide. C, Western blots prepared from the PSD fraction of spinal cord homogenate 

using the GluR3C and GluR4N antibodies (Ab). Each antibody detected a single protein 

band at about 98 kDa, and in each case this was blocked by pre-absorption with the 

corresponding peptide (R3C and R4N). Again, staining with the GluR3 antibody was not 

blocked by absorption with the R2C peptide. D, Pre-absorption controls for the GluR3 and 

GluR4 antibodies on pepsin-treated spinal cord sections. Single optical sections were 

obtained from lamina IX from sections incubated with GluR3 or GIuR4 antibodies. 

Following antigen unmasking both antibodies gave punctate immunostaining {GluR4N and 

GluR3C). Pre-absorption o f GluR4N antibody with R4N peptide abolished staining 

{Gh(R4N~R4N). Staining with the GluR3C antibody was blocked by absorption with R3C 

peptide {GbiR3C-R3C), but not R2C peptide {GluR3C~R2C). Scale bar, 2 pm. Figures A -C  

were prepared and kindly provided by Dr. Masahiro Fukaya, from Hokkaido University 

School of Medicine, .lapan.
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Figure 5.2 Con focal images o f pepsin-treated spinal cord sections showing the 

distribution of G luR l- and GliiR2-inimunoreactive puncta. Pictures {a-b) correspond to 

the medial portion of laminae I-III, {c~d) to the medial part o f laminae IV-V, while {e-f) 

represents lamina IX. GluR2-inununoreactive puncta are distributed throughout the dorsal 

horn and the ventral horn, but the labelling is strongest in lamina II. GluRl shows a more 

restricted distribution. Immunoreactive puncta are numerous in the superficial laminae, 

present at a lower density in other parts o f the dorsal horn, and are virtually missing from 

lamina IX. All images are projections of three optical sections, scanned at O.Spm z- 

separation. Scale bar, 100pm.
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Figure 5.3 Con focal images of pepsin-treated spinal cord sections showing the 

distribution of GluR3- and GluR4-immunoreactive puncta. Pictures {a-b) coirespond to 

the medial portion o f laminae I-III, {c-d) to the medial part o f laminae IV-V, while {e-f) 

represents lamina IX. With both antibodies immunoreactive puncta are densely distributed 

throughout the ventral horn and the deeper regions o f the dorsal horn, with much weaker 

labelling in laminae 1 and II. All images are projections of three optical sections, scamied 

at 0.5pm z-separation. Scale bar, 100pm.
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Figure 5.4 Comparison of immimofluorescent labelling with G luR l-4 antibodies on 

pepsin-treated {a-d) and non-pepsin-treated {e-fi) sections. Images are single optical 

sections obtained from lamina II {a-b, e-f) or lamina IX {c~d, g-h). Each pair was scanned 

with identical con focal settings. All four antibodies gave strong punctate labelling 

following antigen unmasking. The GluR3- and GluR4-immunoreactive puncta outline 

profiles which appear to be dendritic shafts {c-d). In sections that had not been treated 

with pepsin GluRl and GluR2 antibodies both stained cell bodies, however the labelling o f 

these was so weak that it was either undetectable (G luRl) or barely detectable (GluR2) at 

confocal settings that clearly revealed punctate staining with these antibodies on pepsin- 

treated sections. A very faintly GluR2-immunoreactive cell body is visible in (/). The 

GluR3 and GluR4 antibodies did not give immunostaining without antigen unmasking. 

Scale bar, 2 pm.

Figure 5.5 Colocalisation of various AMP A subunits, {a-c) show GluRl and GluR2 

immunostaining in corresponding fields from lamina II. All of the GluRl-immunoreactive 

puncta are also labelled for GluR2 (appear yellow on the merged image), while there are 

G luR2-immunoreactive puncta that lack GluRl {arrows). {d-o) demonstrate the 

relationship between GluR2, GhiR3 and GluR4 subunits in lamina I {d-g), lamina IV {h~k) 

and lamina IX {l-o). Nearly all o f the immunoreactive puncta in laminae IV and IX are 

triple-labelled, although the relative intensity o f each type varies between puncta. In 

lamina II GluR3- or GluR4-immunoreactive puncta are also labelled for GluR2, but several 

puncta are only immunoreactive w ith the GluR2 antibody {arrows). All images show 

single optical sections. Scale bar, 2 pm.
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horn and ventral horn, where the great majority of immunoreactive puncta were triple- 

labelled for all three subunits. The colocalization was analysed quantitatively in laminae: 

1/11, I ITV and IX (Table 5.1). In laminae IV, V and IX the great majority (>90%) o f 

labelled puncta were immunoreactive w ith all three antibodies. The proportions o f puncta 

that were triple-labelled in lamina III and laminae 1-11 were 82% and 36%, respectively. In 

all areas, between 98% and 99% of the puncta that were analysed showed GluR2- 

immunoreactivity. The relative intensity of labelling for the three subunits also varied 

between individual puncta (Fig. 5.5d-o). In particular, labelling for GluR3 and GluR4 was 

usually much weaker in the superficial dorsal horn than that observed in other laminae. 

However, a few puncta with strong GluR3- or GluR4-immunoreactivity were seen in this 

region (Fig. 5.5d-g). In contrast, the intensity of GluR2-immunoreactivity in individual 

puncta was generally much higher in the superficial laminae than in other regions.

Relationship of GIuRl and GhiR2 to gUitamatergic axons

Detection o f VGLUT1-, VGLUT2- and CGRP-immunoreactivity and IB4 binding 

with the TSA method prior to pepsin treatment, resulted in labelling patterns identical to 

those reported previously for these markers in the rat spinal cord (e.g. Sakamoto et al.,

1999; Varoqui et al., 2002; Todd et al., 2003).

VGLUT 1 - immunoreactive boutons were sparse in laminae I and llo and densely 

distributed throughout the remainder o f the grey matter, whereas VGLUT2-positive 

boutons were numerous in all laminae. CGRP-immunoreactive axons formed a dense 

plexus in laminae I-IIo with scattered profiles deeper in the dorsal horn and IB4-labelled 

axons were present throughout laminae I-II, with many labelled boutons in the central part 

o f lamina II. More than 90% of the labelled boutons in each o f these populations were in 

contact with one or more GluR2-immunoreactive puncta (Figs. 5.6-5.8; Tables 5,2, 5,3), 

and o f the 4,800 glutamatergic boutons analysed in this part of the study, 96.2% had at 

least one contact.

In all regions examined, generally more than one GluR2 punctum was apposed to 

each VGLUTl-immunoreactive bouton (Table 5.2). In laminae Hi and III, clusters o f 

GhiR2 puncta were seen surrounding several VGLUTl-immunoreactive boutons. The 

appearance o f these clusters resembled a glomerular arrangement (Fig. 5.6a-e). In laminae 

Hi and III the mean numbers of GluR2 puncta associated with each VGLUTl bouton were 

4.2 and 3.7, respectively, while for lamina IX this figure was 5.5 (Table 5,2, Fig. 5.6). The 

mean numbers of GluR2 puncta associated with VGLUTl boutons in the other laminae 

analysed varied from 1.9-2.8 (Table 5.2). VGLUT2 boutons were associated with fewer
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Figure 5.6 Glu RI and GluR2 puncta associated with VGLUTl-immunoreactive boutons. 

Images are single optical sections obtained from laminae Hi (a-c), IV (d-f) or IX (g-h). In 

each case GluR2-immunostaining is shown in the left panel (green), GluRl in the centre 

panel (blue) and these have been merged with VGLUTl-staining (red) in the right panel. In 

all cases, the VGLUTl boutons contact several GluR2-iimmmoreactive puncta. In the 

dorsal horn, some of these puncta are also GluRl-immunoreactive, while there is no 

immunostaining for this subunit in the ventral horn. Again all GluRl puncta are double 

labelled, while some o f the puncta only show immunoreactivity for GluR2. hi lamina Hi 

immunoreactive puncta often surround the VGLUTl bouton, with an appearance that is 

suggestive o f a glomerular arrangement (arrows). Scale bar, 2 pm.





Figure 5.7 GluRl and GluR2 puncta associated with VGLUT2-immunoreactive boutons. 

Images are single optical sections obtained from laminae I (a-c), V (d-f) or IX (g-h). In 

each case GluR2-immunostaining is shown in the left panel (green), GluRl in the centre 

panel (blue) and these have been merged with VGLUT2-staining (red) in the right panel. In 

all cases, the VGLUT2 boutons contact GluR2-immunoreactive puncta. In the dorsal horn, 

some of these puncta are also GluRl-immunoreactive, while there is no immunostaining 

for this subunit it the ventral horn. Again all GluRl puncta are double labelled, while some 

of the puncta only show immunoreactivity for GluR2. hidividual VGLUT2- 

immunoreactive boutons are only associated with a few immunoreactive puncta. Scale bar, 

2 pm.
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Figure 5.8 GluRl and G luR l puncta associated with peptidergic and non-peptidergic C- 

fibre terminals in lamina II. In each case GluR2-immunostaining (a,d) is shown in the left 

panel (green), GluRl {b,e) in the centre panel (blue) and these have been merged with the 

axonal labelling (red) for IB4 (c) or CGRP (/) in the right panel. IB4- and CGRP- 

immunoreactive terminals are in contact with GluR2 puncta, some o f which also show 

GluRl-immunostaining. Some of the IB4-labelled boutons are suiTounded by GluR2- 

iminunoreactive puncta with an appearance that was suggestive o f a glomerular 

arrangement {arrow). All images were obtained from a single optical section. Scale bar, 2 

pm.

Figure 5.9 Electron microscopic images o f G luRl- and GluR2-innnunoreactive synapses 

in the superficial laminae o f the spinal cord after pepsin-treatment. {a-c) show GluRl 

immuno label ling, while (d-f) show GluR2 immunolabelling. hr all cases the

immunoperoxidase reaction product is located inside postsynaptic profiles and associated 

with the postsynaptic density o f synapses, (arrows). Scale bar, 0.5 pm.
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GluR2 puncta (Fig. 5.7). The mean number of puncta per VGLUT2-immunoreactive 

bouton varied from 1.4-1.9 (Table 5.2). The difference between the number o f GluR2 

puncta associated with VGLUTl- and VGLUT2-immunoreactive boutons in each lamina 

was found to be significant (General Linear Model with Tukey's test post-hoc; p<0.05 for 

lamina I, p<0.001 for all other regions examined). IB4-labelled boutons in lamina II were 

also frequently surrounded by several GluR2-iminunoreactive puncta (Fig. 5.8 a-c) and the 

mean number of puncta per bouton was 4.8 (Table 5.3). The mean number o f GluR2 

puncta associated with CGRP-iinmunoreactive boutons in laminae I-IIo was 2.6 (Table 5,3, 

Fig. 5.8d-f).

Virtually all GluRl-immunoreactive puncta in the dorsal horn was also labelled for 

GluR2 (Figs 5.6-5.8 ; Tables 5.2, 5.3). Only 18 (0.14%) o f the 12,493 puncta identified on 

the 4800 boutons examined in this part o f the study showed G luR l- but not GluR2- 

immunoreactivity. Interestingly, in the dorsal horn, puncta with G luR l- and GluR2- 

immunoreactivity were less frequently associated with VGLUT2 boutons than with axon 

terminals immunoreactive for VGLUTl, CGRP or IB4. In laminae I and II, between 30 

and 40% of the GluR2 puncta associated with VGLUTl boutons were also G luR l- 

immunoreactive, whereas for VGLUT2 boutons the proportion was much lower, between 

13 and 17% (Table 5.2). Similarly in laminae III and IV, 19% of puncta adjacent to 

VGLUTl boutons were GluRl -immunoreactive, compared to 2-4% for VGLUT2 boutons 

in these laminae (Table 5.2). The proportion of puncta showing both G luRl- and GluR2- 

immunoreactivity was significantly higher for VGLUTl than for VGLUT2 boutons in each 

of laminae 1-lV (General Linear Model with Tukey's test post-hoc; p<0.05 for laminae I 

and 111, p<0.01 for laminae IIo, Hi and IV). For the 1B4 and CGRP boutons, the 

proportions of GluR2 puncta that were also GluRl-immunoreactive were 34 and 31%, 

respectively (Table 5.3), and these values were also significantly different from those for 

VGLUT2 boutons in the corresponding laminae (General Linear Model with Tukey's test 

post-hoc; p<0.05). These results suggest that GluRl-containing synapses are preferentially 

associated with primary afferent terminals.

To determine whether a significant proportion of the GluR2~immunoreactive 

puncta seen after pepsin treatment represented non-synaptic (e.g. cytoplasmic) receptors, 

sections that had been reacted with GluR2, VGLUTl and VGLUT2 antibodies were 

analysed. Between 49-60% (mean 55.7) of GluR2-immunoreactive puncta in laminae I-II 

were associated with a bouton that was VGLUTl- and/or VGLUT2-immunoreactive. The 

corresponding values for laminae HI-IV were 84-89% (mean 86.3) and for lamina IX they 

were 83-87% (mean 84.7). This suggests that for the deep dorsal horn and ventral horn, the
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great majority ( -  85%) o f pimcta are associated with glutamatergic synapses, and since 

VGLUTl and VGLUT2 do not stain all glutamatergic axons, this figure is probably an 

underestimate. Since boutons belonging to C fibres are often not labelled with VGLUTl or 

VGLUT2 antibodies (Todd et ah, 2003; Landry et ah, 2004), these are likely to account for 

many o f the GluR2 puncta that were not in contact with a VGLUTl/VGLUT2 containing 

bouton in laminae 1 and II (Fig. 5.8).

Electron microscopy

The penetration o f immunoperoxidase reaction product in pepsin-treated sections 

prepared for electron microscopy was very limited, and therefore only ultrathin sections 

near the surface o f the original Vibratome section were examined. In this region, the 

ultrastructural appearance was severely compromised by the pepsin treatment. Vesicles 

and other cell organelles were often distorted and membranes were disrupted. However, 

with both GluRl and GluR2 antibodies it was frequently possible to identify 

immunoreactive synapses, and in all cases the reaction product was restricted to the 

postsynaptic profile, and was always associated with the postsynaptic density (Fig. 5.9). 

This staining pattern is consistent with a cytoplasmic location for the C terminal o f these 

subunits, against which the antibodies were raised, and confirms that the puncta seen 

adjacent to glutamatergic boutons with confocal microscopy correspond to post-synaptic 

receptors.

With both antibodies, reaction product was occasionally seen in cell bodies, non- 

synaptic regions of dendrites and vesicle-containing profiles. While scanning an area that 

contained 50 immunoreactive synapses on each section, 3 immunoreactive vesicle- 

containing profiles were found in each of the 2 GluRl sections analysed and only 1 was 

located in one of the GluR2 sections. One of these profiles (that found in the GluR2 

section) was presynaptic at an asymmetrical synapse and was therefore presumably an 

axonal bouton. The reaction product in this profile was not associated with the presynaptic 

membrane, but was located in the centre o f the bouton. The other 6 vesicle-containing 

profiles did not form synapses in these sections and it was therefore not possible to 

determine whether these were axons or vesicle-containing dendrites, which are relatively 

common in the superficial dorsal horn (Gobel et ah, 1980), since distinguishing between 

these two types o f profile can be difficult even in tissue with optimal ultrastructural 

preservation. In formaldehyde-fixed tissue treated with pepsin and viewed with confocal 

microscopy, GluRl-immunoreactive cell bodies were never seen, and GluR2- 

immunoreactive cell bodies were only observed in deeper parts o f the section (see above).
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Numerous synapses were seen in the sections that had been reacted with GluRl and 

GluR2 antibodies without pepsin treatment, however none o f these was immunoreactive 

with either antibody. This is consistent with our failure to see punctate staining for GluRl 

and GluR2 with confocal microscopy on sections that had not been pepsin treated (Fig. 

5.4e,f).

Detection of GUiRl-pS845 following intra-plantar capsaicin injection

Immunostaining for phosphorylated GluRl was abolished by pre-absorbing the 

antibody with the phosphopeptide, but not with the dephosphopeptide (Fig. 5.1 Ig-i), 

indicating that it is specific for GluRl subunits that had been phosphorylated at the S845 

site. The antibody showed strong punctate immunostaining in the dorsal horn o f rats 

which were subjected to noxious peripheral stimulation with an intradermal injection of 

capsaicin 10 minutes before fixation. The G1 uR 1 -pS845-immunoreactive puncta were 

largely restricted to the medial half o f laminae l-II on the left (ipsilateral) side (Figs. 5.10, 

5.1 la-f). A small number o f weakly immunoreactive puncta were also observed on the 

contralateral side and in the lateral part of the ipsilateral side. The distribution o f strongly 

labelled puncta in the medial part of the ipsilateral superficial dorsal horn matches that of 

nociceptive afferents that innervate the plantar surface o f the foot (Willis and Coggeshall,

1991). Strong labelling for phosphorylated GluRl was not seen in the lateral part o f the 

dorsal horn, which receives input from dorsal and proximal parts o f the limb. The vast 

majority of G1 uR l-pS845-immunoreactive puncta were also labelled with the GluR2 

antibody (Fig. 5.11 a-c. Table 5.4). Between 67 and 126 puncta with pixels that exceeded 

the threshold luminance value (see Methods) were seen on the ipsilateral side in the medial 

half o f laminae l-II in a single optical section (1.66-3.3/1000 pm^), compared to between 4 

and 14 puncta (0.1-0.37/1000 p n f)  in the corresponding part of the contralateral dorsal 

born (Table 5.4), and this difference was found to be significant (Mann-Whitney, one- 

tailed U test, p<0.05).

In addition to the strongly labelled puncta, numerous very weakly immunoreactive 

puncta were seen throughout the superficial dorsal horn on both sides with the G luR l- 

pS845 antibody, and again these were generally also GluR2-immunoreactive. This weak 

staining, which is also seen in naïve rats (G. Nagy and A. Todd, unpublished observations), 

is likely to reflect a low basal level of phosphorylation o f GluRl subunits at glutamatergic 

synapses.
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Figure 5.10 Distribution of G luR l-pS845-immunoreactive puncta in the lumbar spinal 

cord o f a rat following noxious stimulation with an intrademial injection of capsaicin. 

Numerous immunoreactive puncta are present in the medial half of the superficial laminae 

on the ipsilateral side («), while these are very sparse on the contralateral side (b). The 

dashed line marks the border between the gray and white matter. Each image was obtained 

from a projection o f 11 optical sections at 0.5 pm z-separation. Scale bar, 100  pm.
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Figure 5.11 High magnification views o f GIuRl-pS845 immunostaining and pre­

absorption controls, (a-c) show a region from laminae 1 and II ipsilateral to an intradermal 

capsaicin injection. Several pGluRl-immunoreactive puncta are visible (red) and these are 

also immunoreactive for GluR2 (green). Some o f the double-labelled puncta are indicated 

with arrows, (d-f) show a similar region from the superficial dorsal horn on the 

contralateral side o f the same section. Immunostaining for pGluRl is much fainter, (g-i) 

show the superficial dorsal horn ipsilateral to capsaicin injection. For (h) and (/) the 

GluRl-pS845 antibody was pre-absorbed with the dephosphopeptide (dp) and the 

phosphopeptide (jpj), respectively. Incubating the antibody with the phosphopeptide, but 

not with the dephosphopeptide abolished the staining. All images are from single optical 

sections. Scale bar, 20 pm.





DISCUSSION
The main finding o f this study is that antigen unmasking with partial proteolytic 

digestion reveals punctate immunolabelling patterns in rat spinal cord using antibodies 

against G luR l-4 subunits. These puncta correspond to synapses, since a great majority of 

them were apposed to various types o f glutamatergic axon and with electron microscopy 

on pepsin-treated sections the reaction product was associated with PSDs o f asymmetrical 

synapses. There was extensive colocalization between different subunits, with GluR2 

being present at virtually all AMP A receptor-immunoreactive puncta in all laminae 

examined. This suggests that GluR2 is almost universally expressed at A MPA-containing 

synapses throughout the spinal cord and that it can therefore serve as an 

immunocytochem ical marker for these synapses. In addition, it was demonstrated that 

noxious stimulation with capsaicin results in phosphorylation o f synaptic GluRl subunits 

at the S845 residue in a somatotopically appropriate area o f the superficial dorsal horn.

Teehnical considerations

The proteolytic method for antigen retrieval o f iGliiR subunits is thought to allow 

antibodies to gain access to epitopes that are normally masked by cross-linking due to 

fixation (Watanabe et ah, 1998). The technique resulted in punctate labelling with both C- 

(G luRl, GluR3, polyclonal GluR2) and N-terminal antibodies (GluR4, monoclonal 

GluR2), and since the C-terminal o f GluR subunits is intracellular and the N-terminal 

extracellular, this suggests that proteolytic digestion allows access to both the postsynaptic 

density and the synaptic cleft at glutamatergic synapses. It is important to point out that 

fixation has a dramatic effect on the quality of labelling after pepsin-treatment. Fixing for 

more than 8 hours resulted in a decreased intensity of punctate iGliiR labelling, while if  the 

lissLie was fixed for a shorter time, sections had a tendency to disintegrate during the 

pepsin treatment. Postfixing at room temperature for 8 hours also reduced punctate iGluR 

immunostaining, suggesting that fixation is more efficient at elevated temperatures.

Conventional immunocytochem ical techniques have revealed cytoplasmic staining 

for GluR subunits in spinal neurons (e.g. Tachibana et a l , 1994; Jakowec et a l , 1995a; 

Pop rati loff et a l , 1996, 1998a; Morrison et a l , 1998; Spike et a l ,  1998), and this is thought 

to represent receptors that are in transit to the plasma membrane. Presumably the epitopes 

on these subunits are damaged by the proteolytic treatment, since cytoplasmic labelling 

was only seen with the GluR2 antibodies, and this was restricted to the deep parts o f the 

section, where the pepsin digestion was presumably less effective as judged by the absence 

o f punctate labelling. Synaptic receptors are presumably protected by the protein 

mesh work o f the postsynaptie density and synaptic cleft.
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Lu et al. (2002) found that following weak fixation, GluR2/3, GluR2/4 and GluR4 

antibodies labelled central terminals of primary afferents in the dorsal horn, and concluded 

that this represented presynaptic receptors. A similar staining pattern was not seen with any 

o f the GluR antibodies used in this study, suggesting that epitopes on these presynaptic 

receptors are either damaged or remain inaccessible following pepsin treatment in 

formaldehyde-fixed tissue.

The finding of occasional G luRl- and G1 uR2-immunoreactive cell bodies near the 

surface o f pepsin-treated sections processed for electron microscopy suggests that 

glutaraldehyde (which was included in the fixative for this tissue) can protect non-synaptic 

A MPA receptor subunits from loss during pepsin digestion, presumably by limiting the 

extent of proteolysis. If the glutaraldehyde also preserves some presynaptic receptors in 

glutamatergic axons during pepsin treatment, this may account for some o f the labelled 

vesicle-containing profiles seen with EM.

These findings with confocal and electron microscopy, taken together with the 

results o f other studies that have revealed presynaptic receptors on lightly fixed material 

(Lu et al., 2002, 2003), suggest that receptor subunits located at different subcellular 

locations are affected differently by fixation and pepsin treatment. It is therefore likely that 

no single method can provide simultaneous labelling of iGluR subunits in all locations (i.e. 

postsynaptic, presynaptic and non-synaptic).

Another important technical finding o f this study is, that the loss of labelling for 

various other antigens due to pepsin treatment can be prevented by the use o f the tyramide 

signal amplification method. The TSA reaction carried out before the pepsin treatment 

covalently links the tyramide conjugated fluorescent dye to the tissue, therefore even if 

epitops are destroyed during the proteolytic digestion the labelling remains visible. This 

shows that the TSA reaction, which was initially developed to amplify weak signals during 

i m munocytochemi stry or fluorescent in situ hybridization, can also be used to preserve 

immunostaining for labile epitopes prior to antigen unmasking with pepsin.

Laminar distribution of AMPA subunits

Previous studies with in situ hybridization and conventional immunocytochem istry 

have suggested that GluRl and GluR2 subunits are present throughout the dorsal horn, 

with highest levels in laminae 1 and II, that GluR2 is also present in the ventral horn and 

that GluR3 and GluR4 have high levels in the ventral horn, moderate levels in the deep 

dorsal horn and limited expression in laminae l-II (Furuyaina et ah, 1993; Tdlle et al., 

1993; Tachibana et al., 1994; Jakowec et al. 1995a,b; Popratiloff et ah, 1996, 1998a;
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Morrison et al., 1998; Spike et al., 1998; Shibata et al. 1999). The findings o f this study on 

the laminar distribution of punctate staining following pepsin treatment are consistent with 

these previous investigations. However, there have been reports that motoneurons express 

GluRl (Pellegrini-Giampietro et a l ,  1994; Virgo et a l , 1996; Temkin et a l , 1997; 

Williams et a l , 1997; Bar-Peled et a l ,  1999; Shibata et a l ,  1999) or lack GluR2 subunits 

(Williams et a l , 1997; Bar-Peled et a l , 1999; Del Cano et a l , 1999; Shaw et a l ,  1999). 

The results of this study are in disagreement with these suggestions, since it was found that 

in lamina IX there was virtually no punctate staining for G luR l, while GluR2 was 

expressed at virtually all puncta that were immunoreactive for any o f the AMPA subunits.

Although the studies with in situ hybridization and conventional 

immunocytochem istry have provided information about the laminar distribution of neurons 

with different AMPA subunits, they are not suitable for determining the proportions o f 

neurons that express a particular subunit, or the extent o f colocalisation o f subunits at 

individual synapses. Based on the assumption that all spinal neurons express AMPA 

receptors, the results o f the present study suggest that all (or virtually all) dorsal horn 

neurons and motoneurons express the GluR2 subunit, that GluRl is restricted to certain 

dorsal horn cells (particularly those in the superficial laminae) and is not expressed by 

motoneurons. GluR3 and GliiR4 are expressed by all (or virtually all) motoneurons, by the 

great majority of neurons in the deep dorsal horn (laminae Ill-V) and by some o f those in 

(he superficial laminae. The extensive colocalisation o f GluR2, GluR3 and GluR4 at 

puncta in laminae IV, V and IX (Table 5.1) suggests that neurons in these laminae have all 

three subunits at the great majority o f synapses that possess AMPA receptors.

Although Morrison et al. (1998) found GluR2-immunoreactivity in many neuronal 

cell bodies throughout the spinal cord, most other studies with antibodies specific for 

G1liR2 or GluR2/3 subunits have found a much more restricted distribution in the dorsal 

horn, with labelled neurons being highly concentrated in the superficial laminae but 

relatively sparse elsewhere (Jakowec et a l ,  1995a; Harris et a l ,  1996; Popratiloff et a l , 

1996, 1998a; Petralia et a l , 1997; Spike et a l , 1998; Engelman et a l , 1999; Lu et a l, 

2002). Since the present study suggests that all dorsal horn express GluR2, this indicates 

that most conventional immunocytochem ical techniques only detect a proportion o f the 

neurons that use this subunit. It is not clear why some cells have relatively high levels o f 

the protein in their cell bodies, but from their laminar distribution it is likely that these 

correspond to the neurons with the highest levels of GluR2 at their synapses.
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Relation to glutamatergic axons

The GliiR2 subunit was almost universally present at AMPA containing 

glutamatergic synapses in all laminae of the adult rat spinal cord, examined in this study. 

Therefore its relationship to various types of glutamatergic axon terminal was investigated. 

VGLUTl boutons were surrounded by significantly more GluR2-immiinoreactive puncta 

than those containing VGLUT2 (Table 5.2). VGLUT2-immunoreactive terminals in the 

spinal cord are thought to belong mainly to excitatory interneurons, while most o f those 

with VGLUTl are central terminals of myelinated primary afferents (Todd et al., 2003). 

The puncta seen with confocal microscopy do not necessarily represent individual 

synapses, but could correspond to active sites within a synapse. Many o f the V G L U T l- 

immunoreactive boutons in lamina IX are terminals of la muscle-spindle afferents. Pierce 

and Mendel 1 (1993) found that in cats these were presynaptic to a single profile and the 

mean number of active sites present at these synapses was 6.1. The mean number of 

GluR2 puncta apposed to VGLUTl-containing boutons in lamina IX was 5.5. This 

therefore suggests that the puncta observed with confocal microscopy after antigen 

unmasking correspond to active sites within individual synapses.

VGLUTl-immunoreactive boutons in laminae Hi and III were generally associated 

with more GluR2 puncta than those observed in other laminae of the dorsal horn. A5 

down-hair afferents terminate in this region, and some of these form central axons o f type 

II synaptic glomeruli. GluR2-immunoreactive puncta were often seen in clusters 

SLiri ounding VGLUTl-containing boutons in laminae Hi and III, and these presumably 

corresponded to synapses formed by type II glomeruli (Fig. 5.6a-c). A(5 primary afferent 

terminals usually terminate in laminae III-V and these form simpler synaptic arrangements 

(Maxwell and Réthelyi, 1987). This is consistent with the fact the number of GluR2- 

immunoreactive puncta associated with VGLUTl-containing boutons was lower in 

laminae IV and V. Less is known about the number of synapses formed by axons of 

excitatory interneurons, but the number of puncta associated with VGLUT2- 

immunoreactive boutons (1.4-1.9, Table 5.2) suggests that these have simpler 

arrangements, in many cases with only a single post-synaptic element. IB4-labelled 

boutons were also frequently surrounded by clusters of GluR2 puncta (Fig. 5.8) and these 

probably corresponded to type I synaptic glomeruli.

A ve]-y important finding of this study is that the proportions of GluR2- 

immunoreactive puncta that were also labelled with the G luRl antibody were significantly 

higher for VGLUTl boutons than for VGLUT2 boutons in laminae I-IV. Similarly, in the 

superficial laminae IB4- and CGRP-labelled boutons were also associated with
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significantly more G luRl puncta than were VGLUT2 boutons. This suggests that the 

GluRl subunit is more often present at synapses formed by primary afferents than at those 

formed by excitatory interneurons and raises the possibility that GluRl subunits are 

selectively targeted to those glutamatergic synapses which receive input from primary 

afferent terminals. An alternative explanation is that neurons with G luRl have higher 

density o f primary afferent input than those that lack this subunit. Rubio and Wenthold 

( 1997) found evidence for the selective targeting o f AMPA subunits in the dorsal cochlear 

nucleus. They reported that on fusiform neurons the GluR4 subunit was preferentially 

associated with synapses formed by auditory nerve terminals. In the spinal cord the 

presence of GluRl at synapses formed by nociceptive afferents is important because 

G luR l- (and GluR4-) containing receptors are inserted into glutamatergic synapses in 

response to synaptic activity, unlike those that contain only GluR2 or GluR3, which are 

constitutively inserted (Bredt and Nicoll, 2003; see also Chapter 1). This suggests that 

insertion of new receptor subunits could contribute to activity-dependent plasticity at 

synapses formed by these afferents.

Popratiloff et al. (1996) reported that the GluRl subunit was more frequently 

associated with synapses formed by type 1 synaptic glomeruli, while GluR2 was more 

commonly found at synapses fanned by type II glomeruli. Although in this study it was not 

possible to distinguish the central axons of glomeruli from other boutons with confocal 

microscopy, the results obtained after the quantitative analysis o f IB4-labelled and 

VGLUTl-immunoreactive boutons in laminae lli-III (Tables 5 .2 , 5 .3 ) suggest that there is 

a more even distribution of the G luRl subunit at synapses formed by these different types 

o f afferent. In addition, since the GluR2 subunit is present at most or all AMPA- 

containing synapses, it is unlikely that that GluR2 is more commonly associated with 

synapses formed by type II glomeruli. The discrepancies between these two studies are 

likely to result from the lower sensitivity o f the post-embedding method. For example, it is 

likely that in the study carried out by Popratiloff et al. they detected a large number of 

false-negative synapses since many of the immunoreactive PSDs sampled in their study 

were labelled with only a single gold particle.

Baba et al. (2000) found that in adult rats silent synapses that express NMDA 

subunits, but lack AMPA receptors (see Chapter 1) are absent from lamina II and are 

extremely rare in lamina III. Although in this study only those synapses were examined 

which expressed AMPA receptors, the fact that out o f the 3000 glutamatergic axon 

teiminals analysed in laminae I-III fewer than 5% were not apposed to at least one GluR2
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punctum (data from Tables 5.2, 5.3) supports the finding that silent synapses are not 

common in the dorsal horn.

Ca"-permeable AMPA receptors

Several authors have investigated the presence of Ca^' -permeable AMPA receptors 

in the spinal cord (see Chapter 1), These have been detected in both the dorsal horn 

(Albuquerque et af, 1999; Engelman et al., 1999; Stanfa et al., 2000) and the ventral hom 

(e.g. Vandenberghe et al., 2000a, 2000b, 2001; van Damme et al., 2002). On dorsal horn 

neurons Ca^^-peimeable AMPA receptors are thought to play a role in tactile allodynia 

following noxious thermal stimulation or in carrageenan-induced acute inflammation 

(Sorkin et al., 1999, 2001). On motoneurons these receptors have been implicated in the 

excitotoxic cell death occurring in certain neurodegenerative disorders, such as 

amyotrophic lateral sclerosis. Ca^'-permeability is prevented by the replacement o f a 

single glutamine residue with an arginine in the channel pore (M? re-entrant membrane 

domain) at position 586 of the GluR2 subunit as a result of RNA editing (Burnashev et ak,

1992). It has been demonstrated that a great majority of GluR2 subunits in the spinal eord 

are in the edited form (Greig et a l ,  2000; Vandenberghe et a l , 2000b). Therefore AMPA 

receptors with Ca^’̂ -permeability are likely to lack this subunit. Several authors have 

demonstrated that Ca^’̂ '-peimeable and impermeable AMPA receptors can be co-expressed 

within the same cell (Goldstein et a l ,  1995, Gu et a l ,  1996, Vandenberghe et a l ,  2001; van 

Damme et a l , 2002). In addition, the results of this study indicate that probably all spinal 

cord neurons express the GluR2 subunit. This raises the question whether the two receptor 

subtypes are spatially completely segregated at different synapses or whether AMPA 

complexes with and without Ca^^-permeability are found together within the same 

synapses. Vandenberghe et al. (2001) reported that 8% of GluR4-immunoreactive clusters 

on cultured motoneurons lacked GluR2-immunoreactivity, suggesting that some synapses 

have solely Ca^’̂ '-permeable AMPA receptors. There is evidence that different AMPA 

subunits in the dorsal cochlear nucleus can be selectively targeted to synapses formed by 

two distinct glutamatergic inputs (Rubio and Wenthold, 1997). However the findings of 

this study indicate, that in vivo a great majority o f AMPA-containing synapses (>98%) in 

the spinal cord possess the GluR2 subunit, even though the relative concentrations o f the 

different subunits can vary considerably. This makes it unlikely that there are synapses 

which express exclusively Ca^^-permeable AMPA receptors. Instead, for neurons which 

have Ca^’̂ '-permeable AMPA receptors, these are probably intermingled with GluR2- 

containing receptors within the same active sites. This is consistent with in vitro
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experiments demonstrating that the co-expression of the edited form o f GluR2 with other 

AMPA subunits results in a mosaic of receptors showing a wide range o f Ca"" -̂ 

permeability (Burnashev et ah, 1992, 1995; Washburn et ah, 1997).

Phosphorylation of GluRl siibiiiiits following noxious stimulation

Phosphorylation o f different AMPA subunits in the CNS has been implicated in 

synaptic plasticity, including long-term potentiation and depression (Song and Huganir, 

2002; Bredt and Nicoll, 2003). Roche et al. (1996) showed that the GluRl subunit has two 

main phosphorylation sites, Ser-831 and Ser-845 and that in transfected HEK-293 cells 

]]hosphorylation o f homomeric GluRl chamiels at the Ser-845 site resulted in a 40% 

increase of peak current flow. This enhanced current flow resulted from an increase in the 

peak open chamiel probability (Banke et ak, 2000). Lee et al. (2003) reported that 

preventing the phosphorylation of GluRl by mutating the phosphorylation sites resulted in 

a loss of spatial memory retention and reduced hippocampal LTP. In addition, it is widely 

accepted, that phosphorylation of the Ser-845 residue is necessary for the recruitment of 

additional GluRl subunit into the postsynaptic densities of excitatory synapses (Esteban et 

al., 2003). This phenomenon is thought to be involved in synaptic plasticity.

In the spinal cord AMPA receptor phosphorylation has been implicated in central 

sensitization and this is though to contribute to chronic pain states (Sandkuhler, 2000; Fang 

et ah, 2002, 2003; Ji et ah, 2003). This study shows that the basal phosphorylation of 

GluRl at Ser-845 site in glutamatergic synapses of the dorsal horn is normally very low. 

Following noxious stimulation with intradermal injection of capsaicin, a stimulus know to 

cause central sensitization (Simone et ah, 1991), this basal level of phosphorylation was 

rapidly and significantly increased at a proportion of glutamatergic synapses in a 

somatotopically appropriate location. The demonstration of phosphorylation at synapses is 

particularly important, since Chung et al. (2000) found that although there were relatively 

high levels o f phosphorylated GliiR2 in dendritic shafts o f cultured hippocampal neurons, 

the level o f phosphorylation at synapses remained very low.

This study apparently provides the first demonstration o f phosphorylation of 

iGluRs at synapses in vivo. Noxious stimulation induces rapid phosphorylation o f GluRl 

subunits at glutamatergic synapses and provides a novel approach for investigating central 

sensitization and other forms o f synaptic plasticity in specific neuronal circuits throughout 

the CNS.
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Chapter 6

Distribution of the NMDA receptor NRl, NR2A and NR2B 

subunits at glutamatergic synapses in the rat spinal cord 

revealed with an antigen unmasking method



INTRODUCTION

In Chapter 5 it was shown that immunofluorescence following antigen unmasking 

with partial proteolytic digestion is suitable for revealing all four AMPA subunits at 

glutamatergic synapses in the spinal cord. In addition, it was demonstrated in Chapter 4 

that pepsin-treatment can also be used to reveal punctate labelling for the NMDA NR2A 

subunit in mouse spinal cord and cerebellum and that this immunostaining disappears from 

transgenic animals in which the NR2A protein has been knocked out. This method 

therefore appears to be suitable for detecting synaptic NMDA receptors.

Fleteromeric NMDA receptor channels containing different NR2 subunits have 

significantly different physiological, biophysical and pharmacological properties in terms 

of their sensitivity to magnesium block, desensitization kinetics, affinity for agonists and 

antagonists and the effects o f phosphorylation (Monyer et a f, 1994; Petrenko et ak, 

2003b). 1 herefore knowledge about which NR2 subunits are expressed at glutamatergic 

synapses in particular areas of the spinal gray matter is o f great importance. In this study 

the antigen unmasking technique was used to pi'ovide the first description o f the synaptic 

distribution of N R l, NR2A and NR2B subunits in the rat spinal cord. Since most previous 

studies have reported that NR2C and NR2D subunits are absent or present at very low 

levels in neurons o f the adult rat spinal cord (Luque et ak, 1994; Watanabe et ak, 1994b; 

Yung et ak, 1998; Shibata et ak, 1999), these subunits were not investigated.

The GluR2 subunit is expressed at virtually all AMPA-containing excitatory 

synapses in the spinal cord, and therefore its relationship to N R l, NR2A and NR2B 

subunits was examined and quantitatively analysed. It is widely accepted that NMDA 

subunits do not form homomeric channels and N Rl must be assembled with at least one 

NR2 subunit to form functional receptors (Ishii et ak, 1993). Therefore the colocalization 

o f NRl with NR2A or NR2B subunits was also investigated.

MATERIALS AND METHODS 

Animals for immunocytochemistry

Nine adult male Wistar rats (210-310 g; Harlan, Loughborough, UK) were deeply 

anaesthetised with pentobarbitone (300 mg i.p.) and perfused tluough the left ventricle 

with a fixative consisting o f 4% freshly de-polymerised formaldehyde. Lumbar spinal 

cord segments from all animals were removed and postfixed in the same fixative for 8 

hours at 4°C, before being cut into transverse 60 pm thick sections with a Vibrato me. 

Sections were immersed in 50% ethanol for 30 minutes prior to immunoreaction to 

enhance antibody penetration (Llewellyn-Smith and Minson, 1992).

141



Antibodies

Monoclonal mouse antibody against GluR2 and affinity purified rabbit antibodies 

against NR2B (N-termiiial) and NR2A were described in Chapters 4 and 5. To detect NRl 

subunits an affinity-purified guinea-pig antibody was used (kind gift from Dr. Masahiro 

Fukaya, Hokkaido University, Japan). It was raised against a synthetic peptide 

corresponding to the C2’-cassette o f the receptor. This antibody was chosen because it has 

been reported that approximately 90% of NRl subunits in the adult rat spinal cord express 

the C2'-cassette (Prybylowski et ak, 2001). On Western blots prepared from cerebellar 

homogenates the N R I-C 2’ antibody detected a protein band at 117 kDa, corresponding to 

the NRl subunit o f the NMDA receptor (Abe et ak, 2004). On Western blots from 

HEK293 cells transfected with plasmid encoding NRl-1 (NRl tailed with C |- and 02- 

cassettes) or N R l-4 (NRl tailed with C2’-cassette), the antibody selectively recognized a 

single protein band corresponding to N R l-4, and gave no immunosignal for NRl-1 (Abe et 

ak, 2004). The pre-absorption o f the antibody with C2’-peptide, but not with C2-peptide 

abolished this protein band and also immunostaining in the mouse brain (Abe et ak, 2004). 

These results indicate that the N R l antibody is specific to the C2-cassette and shows no 

cross-reactivity with C |- or C2-cassettes or with other NMDA subunits.

hnniuiionuoresceiit detection NMDA subunits

To demonstrate the distribution o f the various NMDA subunits at synapses and to 

investigate their relationship to GluR2, double-labelling immunofluorescence was carried 

out. The colocalization between NMDA receptors and GluR2 was investigated for two 

reasons: (1) the punctate immunostaining for GiuR2 has been shown to correspond to 

synapses, therefore an overlap between the two different types o f iGluR would indicate 

that the punctate labelling seen with the NMDA antibodies (see below) also represented 

synaptic receptors; (2) GluR2 is present at virtually all AMPA-containing glutamatergic 

synapses. Therefore determining the proportion of GluR2 puncta that are also NR1-, 

NR2A-, or NR2B-immunoreactive in a particular spinal cord lamina would reveal whether 

NMDA receptors are always expressed together with AMPA receptors at synapses or are 

restricted to a subpopulation o f glutamatergic synapses.

Mid-lumbar spinal cord sections from six rats were pepsin-treated to expose 

synaptic receptors (as described previously) and incubated for 72 hours at 4°C in the 

following antibody cocktails: (1) guinea-pig antibody against N R l (1.5 pg/nil) and mouse 

antibody against GluR2 (Chemicon; eat. no. AB1768, 3,9 pg/ml), (2) rabbit antibody
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against NR2A (0.11 pg/ml) and mouse antibody against GluR2, (3) rabbit antibody against 

NR2B (0.1 pg/ml) and mouse antibody against GluR2, Sections were rinsed in PBST and 

incubated for 2 hours at 21°C in a mixture of Alex a 488 conjugated donkey anti-mouse 

(Molecular Probes; diluted 1:500) and biotinylated donkey anti-guinea-pig or anti-rabbit 

(Jackson Immunoresearch; diluted 1:500) secondary antibodies. To reveal the NMDA 

receptors in this part o f the study TSA reaction (tetramethylrhodamine, NET 702; Perkin 

Elmer) was carried out as described in Chapter 4. Following rinsing in PBST sections 

were mounted with anti-fade medium (Vectashield) and stored at -20°C.

To investigate the extent o f colocalization between N R l and NR2A or NR2B, 

pepsin-treated mid-lumbar sections from three rats were incubated for 72 hours at 4°C in a 

mixture o f guinea-pig anti-NRl and rabbit anti-NR2A or anti-NR2B antibodies, followed 

by species specific secondary antibodies raised in donkey and conjugated to Rliodamine 

Red (Jackson Immunoresearch, diluted 1:100, for N R l) or Alexa 488 (for NR2A or 

NR2B). After the incubation sections were mounted with anti-fade medium (Vectashield) 

and stored at -20°C.

Analysis of immimofluoresceiice labelling

To determine the proportion o f GluR2-immunoreactive puncta that were also 

labelled for N R l, NR2A or NR2B a representative section was scanned with the Bio-Rad 

Radiance 2100 confocal laser scanning microscope from each o f the tluee animals, using a 

OOx oil immersion lens. Z-series were scanned at 0.3 pm separation and six spinal cord 

regions were analysed in each case: lamina 1, II, III, IV, V and IX. Confocal image stacks 

were viewed with MetaMorph software. Initially only the green channel was viewed, and 

from each region 100 GluR2-immunoreactive puncta were randomly selected for analysis. 

The red channel (for the NMDA subunit) was then turned on to determine what proportion 

o f GluR2-immunoreactive puncta were also labelled for N R l, NR2A or NR2B. To 

determine the proportion o f NR1-, NR2A- or NR2B-immunoreactive puncta that also 

contained GluR2 a similar analysis was carried out, but a different optical section was used 

to select the NMDA receptor labelled puncta.

For each animal, the extent o f colocalization between N R l and NR2A or N R l and 

NR2B was examined (as described above) in laminae I/II and III/IV for NR2A and laminae 

1/11 for NR2B. Without signal amplification, the intensity o f immunoIabelling for NR2B 

was very weak in the deep dorsal horn and in the ventral horn, while lamina IX also 

showed weak immunoreactivity for the other two NMDA subunits. These regions were 

therefore not analysed quantitatively.
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RESULTS
General appearance of imimmostamiiig and distribution of synaptic NMDA subunits

Following antigen unmasking with pepsin, and tyramide signal amplification, 

punctate immuno labelling was observed throughout the gray matter for all NMDA 

subunits examined (Fig. 6.1). The general appearance o f this punctate immunostaining 

was similar to that reported for AMPA subunits in Chapter 5. The penetration of 

immunol abel ling was usually limited to the superficial parts o f the Vi hr atome sections 

(%20 pm), but it extended deeper into the tissue than that of GluR2. In addition to the 

punctate labelling, the NR2B antibody also labelled cell bodies, especially in the deep 

dorsal horn and ventral horn (Fig. 6.2). This labelling had a reticular appearance and 

occupied mainly the perikaryal cytoplasm, although occasionally proximal dendrites and 

axons were also immunoreactive. It was present in the entire depth o f the sections, but 

weaker near the surface. The highest level o f cytoplasmic labelling was observed in 

motoneurons. Although several authors have reported that NMDA receptors are present in 

DRG neurons and primary afferent axon terminals (Shigemoto et ak, 1992; Sato et ak, 

1993; Liu et ak, 1994; Watanabe et ak, 1994a; Ma and Hargreaves, 2000; Marvizon et ak, 

2002; Lu et ak, 2003), in this study no apparent immunostaining was observed inside 

profiles that appeared to be axonal boutons.

N R l-, NR2A- and NR2B-immunoreactive puncta were present in all laminae o f the 

spinal cord, but their numbers and brightness varied considerably between different regions 

(Fig. 6.1). NRl-immunoreactive puncta were almost uniformly distributed in all laminae, 

but the immunostaining was weaker in the ventral horn than in the dorsal horn. NR2A and 

NR2B showed a differential distribution in the dorsal horn. Labelling with the NR2A 

antibody was strongest in lamina III and was present at lower levels elsewhere, with 

lamina IIo containing only very few, weakly immunoreactive puncta. Lamina I also 

contained a moderate number o f puncta showing strong immunostaining for NR2A. 

NR2B-immiinoreactive puncta were brightest and most numerous in laminae I-II and the 

intensity o f the labelling gradually decreased towards the deeper laminae. Similarly to 

NRl ,  immunoreactivity for NR2A and NR2B was weaker in the ventral horn than in the 

dorsal horn.

Relationship of N R l, NR2A and NR2B subunits to GiiiR2

In the dorsal horn the great majority of N R l- or NR2A~immunoreactive puncta 

wei'e also labelled for GluR2 (on average 87% for N Rl and 88% for NR2A; Fig. 6.3; Table
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Figure 6.2 Cell body labelling with the NR2B antibody in the ventral hom  following 

pepsin-lreatnienl. The immunostaining has a reticular appearance and it extends into the 

axons and proximal dendrites. The nuclei are not labelled. Besides the cytoplasmic 

NR2B-label ling a faint punctate immunostaining is also visible. Images are projections of 

10 optical sections, scanned at 0.5 pm z-separation from the middle portion o f the sections. 

Scale bar, 20  pm.
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Figure 6.3 Confocal images showing the colocalization of N R l, NR2A or NR2B subunits 

with GluR2 . {(i-c) and (g-i) were obtained from the superficial laminae, while {d-f) show 

immunostaining in lamina III. In each case the vast majority o f NR1-, NR2A- or NR2B- 

immunoreactive puncta (red) are also immunoreactive for GliiR2 (green). There are 

numerous GluR2-iinmunoreactive puncta which lack NMDA subunits. All images are 

from single optical sections. Scale bar, 5pm.

Figure 6.4 Con focal images showing the colocalization of N R l and NR2A {a-c) and N R l 

and NR2B (d-f). (a-c) were obtained from lamina III, while (d-f) show the superficial 

laminae. There is extensive co localization between N Rl and NR2A and N R l and NR2B. 

All images are from single optical sections. Scale bar, 5pm.
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6.1). The proportion of NR2B-imimmoreactive piincta that were also immiinostained for 

GliiR2 was on average 72% in the dorsal horn. Corresponding numbers for lamina IX 

were slightly lower; 67% for N R l, 75% for NR2A and 70% for NR2B.

The proportion o f GluR2-immunoreactive synapses that were also labelled for N R l 

was very similar in laminae I, II, III, IV and V. Slightly more than half (on average 57%) 

of G 1 uR2-immunoreactive synapses also showed labelling with the N R l antibody in these 

laminae. As could be predicted from its distribution, the corresponding proportions for 

NR2A were lower in the superficial laminae (15% and 25% for lamina I and II) than in the 

deeper layers o f the dorsal horn (on average 37% for laminae III-V). Surprisingly, 

although NR2B-immunoreactivity was strongest in the superficial dorsal horn, the 

proportion o f GluR2-immunoreactive puncta that were also NR2B-immunoreactive was 

only slightly higher in this region (on average 38%) than in laminae III-V (on average 

32%). Consistent with the lower levels of immunostaining for various NMDA subunits in 

the ventral horn, 31%, 21% and 23% of GluR2 expressing synapses in lamina IX were 

immunoreactive for N R l, NR2A or NR2B subunits, respectively. The brightness o f 

NMDA-immunoreactive puncta was not uniform, but varied considerably within each 

region.

Colocalization between N R l and NR2A or NR2B subunits

NR2A and NR2B showed extensive colocalization with N R l in all of the laminae 

that were analysed (Fig. 6.4, Table 6.2). The immunoreaction without tyramide signal 

amplification was weak in the deep dorsal horn for NR2B and in the ventral horn for all 

three NMDA subunits. Therefore, the ventral horn was not analysed for either 

combination, and the deep dorsal horn was not examined for NR2B/NR1.

On average 92% (84-98%) of NR2A- and 93% (88-98%) o f NR2B-immunoreactive 

puncta were also labelled with the N R l antibody in the regions analysed (laminae I-II and 

III-IV for NR2A and laminae I-II for NR2B). In the superficial laminae on average 58% 

(50-63%) of puncta immunoreactive for NRl were also stained for NR2A, while the 

corresponding value for the deep dorsal horn was 69% (54-82%). The proportion o f N R l- 

immunoreactive synapses that were also labelled for NR2B was 89% (88-91%) in laminae 

1 - 1 1 .

DISCUSSION
The main finding o f this part of the study is that antigen unmasking with pepsin 

results in punctate inimunolabelling for N R l, NR2A and NR2B subunits. A majority o f 

these puncta are also immunoreactive for GluR2 , a marker for AMPA containing synapses
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(see Chapter 5). This indicates that pepsin-treatment is suitable for the detection o f N R l, 

NR2A and NR2B subunits at glutamatergic synapses in the rat spinal cord. The great 

majority of NR2A- or NR2B-immunoreactive puncta were also immunoreactive for N R l, 

which is consistent with the current view that functional NMDA receptors are heteromers 

o f N Rl and NR2 subunits.

Distribution of N R l, NR2A and NR2B subunits

Several authors have investigated the distribution o f NMDA subunits in the spinal 

cord using in situ hybridization or conventional immunocytochem istry (see Chapter 1). 

Kowever with in situ hybridization only the cell bodies of neurons that synthesize the 

subunits are labelled, while conventional immunocytochem istry generally failed to detect 

synaptic proteins (see Chapter 2, 4 and 5).

Moderate to high levels o f N R l subunit mRNAs have been found in cell bodies 

throughout the gray matter (Furuyama et al., 1993; Toile et al., 1993; Luque et al., 1994; 

Shibata et al., 1999). The expression o f niRNA for this subunit appeared to be higher in 

the ventral horn than in the dorsal horn (Furuyama et ah, 1993; Kus et a f, 1995; Stengenga 

and Kalb 2001). The results of the present study are partly consistent with these 

investigations, since following pepsin-treatment, punctate labelling for N Rl subunits at 

glutamatergic synapses was also present in all laminae, although it was much weaker in the 

ventral horn than in the dorsal horn. The relatively strong signal in the ventral horn with in 

situ hybridization probably resulted from the fact that motoneurons are large cells with 

active protein synthesis and well-developed rough endoplasmic reticulum.

In situ hybridization and immunocytochemical studies into the distribution of 

different NR2 subunits have yielded highly controversial results. Tdlle et al. (1993) only 

detected mRNA for NR2C and NR2D subunits and claimed that NR2A and NR2B mRNAs 

were undetectable. Stengenga and Kalb (2001) reported that in adult rats the signal for 

NR2A was just above background with a slightly higher level in lamina II, while NR2B, 

NR2C and NR2D transcripts were undetectable. Watanabe et al. (1994b) on the other hand 

reported that mRNA for NR2A was present in all laminae except in lamina II and that 

transcript for NR2B was restricted to lamina 11. Luque et al. (1994) detected NR2A 

mRNA throughout the gray matter, including lamina II and reported that mRNA for NR2B 

was only present in laminae II and IX. Shibata et al. (1999) also found NR2B mRNA in 

somatomotor neurons. Using immunocytochem istry Boyce et al. (1999) reported that 

NR2 A-immunoreactive cell bodies were uniformly present in the rat spinal cord 

throughout the dorsal and ventral horn. Immunostaining with an NR2B antibody was more

153



restricted, with moderate labelling of fibres in laminae I-II, suggesting a presynaptic 

localization for this subunit. Yung (1998) found NR2B immunostaining in laminae I-III, 

but could not detect immunosignal for NR2A in this region.

The present study with antigen unmasking clearly shows that both NR2A and 

NR2B subunits are expressed at glutamatergic synapses in all laminae, but their levels vary 

considerably between different regions. NR2A is expressed at highest levels in lamina III 

and it has much lower levels elsewhere with the immuno staining being weakest in lamina 

llo. NR2B is present at high levels in laminae I-II, these gradually decrease towards the 

ventral horn. The expression o f both NR2A and NR2B at synapses is much weaker in the 

ventral horn than in the dorsal horn.

Colocalization of N R l, NR2A or NR2B with GhiR2

A proportion of NR1-, NR2A- or NR2B-immunoreactive puncta did not show 

immunolabelling for GluR2, These puncta could correspond to (1) silent synapses, which 

lack AMPA receptors, but express NMDARs, (2) synapses at which GluR2 is present but 

at levels below the detection threshold (false-iiegatives), (3) synapses which lack GluR2, 

but express another AMPA subunit or (4) non-synaptic (i.e. cytoplasmic) labelling. The 

proportions o f these GluR2-lacking puncta were similar for N R l and NR2A, but higher for 

NR2B. This difference may result from the cytoplasmic labelling, which was clearly 

present with the NR2B antibody. During the random selection o f puncta for analysis it was 

not possible to distinguish these immunoreactive cytoplasmic structures from puncta that 

are likely to correspond to synapses.

The finding that only a proportion (approximately half for N R l and one-third for 

NR2A and NR2B) of GluR2-immimoreactive synapses express an NMDA subunit 

indicates that NMDA receptors are either selectively expressed by certain neurons or 

selectively targeted to particular synapses within individual neurons. Popratiloff et al. 

(1998b) used the postembedding immunogold method to investigate N R l subunits at 

synapses formed by primary afferent terminals. They concluded that most primary afferent 

synapses in the superficial laminae express N R l. Since only about half o f GluR2- 

containing synapses in laminae I-II were also immunoreactive for N R l, these findings 

raise the possibility that NMDA receptors a preferentially associated with synapses formed 

by primary afferent terminals. Further studies are needed to determine exactly which 

neuronal circuits express particular NMDA subunits in the spinal cord.
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Colocalization of NR2A and NR2B with NRl

Studies using conventional immunocytochem istry or in situ hybridization only 

detected cell body labelling for NMDA receptors (e.g. Yung et al, 1998; Zhang et al.,

1998; Boyce et al., 1999; Zou et al., 2002) and it was generally not possible to demonstrate 

that these subunits form functional receptors at synapses. There is evidence that certain 

neurons in the CNS can express a particular NMDA subunit, which is not present at their 

synapses, is thus not likely to form functional channels. For example N Rl subunits are 

highly expressed in adult rat Purkinje cells in the cerebellum, but they are not detectable at 

synapses (Yamada et af, 2001). In a recent study Abe et al. (2004) demonstrated that in 

the cerebellum NR2 subunits are essential for the postsynaptic localization o f N R l. 

Indeed, Watanabe et al. (1994e) demonstrated that none of the NR2 subunits were 

transcribed by adult rat Purkinje cells, and this presumably explains the finding that N Rl 

subunits cannot be detected at their synapses. In addition, Fukaya et al. (2003) found that 

without N R l, NR2 subunits are retained in the endoplasmic-reticulum. These finding 

indicate that heteromer formation between NRl and NR2 subunits is essential for their 

trafficking into PSDs and the formation o f functional receptor channels. In the present 

study it was found that the great majority o f NR2A or NR2B-immunoreactive puncta were 

also labelled for N R l, and this strongly suggests that immunoreactive puncta observed in 

the rat spinal cord after antigen unmasking correspond to functional NMDA receptors at 

glutamatergic synapses.

It was not possible to examine the relationship between the two NR2 subunits, 

because both antibodies used in this study were raised in rabbits. However the fact that the 

distribution o f NR2A and NR2B subunits overlap throughout the gray matter (although 

their levels vary between different regions) and that in laminae I-II 58% and 89% of N R l- 

immunoreactive puncta were also immunoreactive for NR2A and NR2B, respectively, 

suggests that these subunits can be co-expressed at individual synapses. This is supported 

by Kaiisson et al. (2002), who used single-cell RT PCR to show that single dorsal horn 

neurons can express mRNA for multiple NR2 subunits and that 84% of neurons 

investigated in their study had mRNA for both NR2A and NR2B. These finding raise the 

question whether NR2A and NR2B subunits within individual synapses form di- or tri­

ll eteromer channels with N R l. In the rat cerebral cortex Luo et al. (1997) demonstrated 

that the dominant NMDA receptor complex contains at least three different subunits 

including N Rl, NR2A and NR2B. There is also evidence that NMDA receptors in the 

superficial laminae o f neonatal rats are not simply composed o f NR1/NR2B or NR1/NR2D 

subunits, but are probably a combination o f two different NR2 subunits together with N Rl
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(Green and Gibb, 2001). This is important, because NMDA complexes, containing more 

than two different subunits differ from those containing only two subunits in terms o f  their 

sensitivity to Mg^’̂’-block, channel-conductance and affinity for agonists and antagonists 

(Brimecombe et ak, 1997; Kirson et ak, 1999; Green and Gibb, 2001).

NMDA subunits in the dorsal horu

The high level o f NR2B at synapses in the superficial laminae, where C and Aô 

|i ri mary afferents are known to tenninate, strongly suggest that this subunit may play an 

important role in nociceptive sensory processing and chronic pain states. In support of 

this suggestion, selective NR2B antagonists were shown to have an antinociceptive effect 

in capsaicin-induced acute pain, and attenuated carrageenan-induced mechanieal 

hyperalgesia and mechanical allodynia following chronic nerve ligation (Taniguci et ak, 

1997; Boyce et ak, 1999). Minami et ak (2001) reported that the NR2B antagonist CP- 

101,606 abolished the induction o f allodynia evoked by the administration o f PGE2 or 

NMDA. In addition, NR2B antagonists were found to have an inhibitory effect on the 

windup o f single spinal neurons in spinalized rats and rabbits in vivo (Boyce et ak, 1999; 

Ko vacs et ak, 2004). Further evidence for the role o f NR2B subunits in nociceptive 

proeessing comes from the study of Guo et ak (2002). Using immunoprécipitation and an 

anti-phosphotyrosine antibody they reported that the tyrosine phosphorylation o f this 

subunit correlated with the development o f inflammation and hyperalgesia induced by 

intraplantar injection o f complete Freund’s adjuvant. The increase in NR2B 

phosphorylation was dependent on primary afferent activity suggesting that this subunit 

might be postsynaptic to nociceptive primary afferents.

Interestingly, Momiyama (2000) claimed that NR2B subunits in lamina II neurons 

o f the adult rat spinal cord are extrasynaptic. She found that in somatic outside-out 

patches, presumably derived from the extrasynaptic membrane, ifenprodil, a selective 

NR2B antagonist, blocked high-conductance NMDA channels. Using a blind-patch 

technique applied to thick slices retaining dorsal roots, this antagonist was ineffective on 

NMDA-EPSCs. Results o f the present study with immunofluorescence do not support 

Momiyama’s interpretation. Although following antigen-unmasking it was not possible to 

detect extrasynaptic receptors, NR2B-immunoreactive puncta were common in lamina II. 

On average 64% (55-78%) of these puncta colocalized with GluR2 and 39% (30-47%) of 

G 1 u R2- i mmunoreacti ve synapses were also labelled for NR2B in this region. These 

findings suggest that in pep sin-treated sections the majority o f NR2B-immunoreactive 

puncta in lamina II represent synaptic NR2B subunits. A possible explanation for the
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Failure o f ifenprodil to inhibit NMDA-EPSCs in the above mentioned study could lie in the 

pharmacological properties o f the drug. Zhang et al. (2000) found that ifenprodil enhanced 

NMDA-induced currents in both cortical and subcortical areas. Hov/ever, this enhancing 

effect was only observed at low NMDA concentrations. With increasing concentrations of 

NMDA, the effect o f ifenprodil on NMDA-evoked currents changed from potentiation to 

inhibition (Kew et ak, 1996). In her study, Momiyama used 0.1 Hz dorsal root stimulation 

for the patch-clamp recording of NMDA EPSCs, while NMDA receptors in the outside-out 

patches were activated with 50 pM NMDA. It is possible that dorsal root stimulation did 

not produce the same extent o f NMDA receptor activation as the application of 50pm 

NMDA. If this was the case ifenprodil might not have inhibited synaptic NR2B subunits 

effectively. However, results from Brimecombe et al (1997) provide a more likely 

alternative explanation. They found that the presence o f both NR2A and NR2B subunits 

within the same heteromer significantly alters its pharmacological attributes when 

compared with channels containing only a single type of NR2 subunit. The presence o f 

NR2A in the triheteromer decreased the sensitivity of the receptor to ifenprodil analogues. 

These findings when taken together could further confirm the suggestion that at least a 

proportion o f synaptic NMDA receptors in the spinal cord contain both NR2A and NR2B 

subunits together with N R l (see above).

The distribution o f strongly NR2A-immunoreactive puncta in the dorsal horn is 

similar to that of transganglionically transported CTb inside primary afferent terminals 

(Ganser et ak, 1983). This suggests that NR2A could be postsynaptic to myelinated 

Af3/A5 low-threshold and A5 nociceptive pimary afferents which are known to terminate 

mainly in laminae Ili-IV and lamina I, respectively. Preliminary studies confirm this 

hypothesis, since we have recently found that NR2A-immunoreactive puncta were apposed 

CTb-labelled primary afferent axon terminals in laminae I and III/IV (G. G. Nagy, D. 

Hughes and A. .1. Todd, unpublished observations). This raises the possibility that NR2A 

subunits might be involved in mechanical allodynia. Indeed, evidence for this is provided 

by Minami et ak (2001), who found that NR2A knock-out mice did not develop 

prostaglandin E] (PGE2)- or NMDA-induced mechanical allodynia. However they also 

found that after neonatal capsaicin treatment PGE2 or NMDA could not induce allodynia 

and that capsaicin-treated, NR2A lacking mice did not show PGE2-induced hyperalgesia 

(Minami et ak, 1997). This suggests that in PGE2-induced hyperalgesia and mechanical 

allodynia C-fibres are the most important contributing factor. However the synaptic 

expression of NR2A is the weakest in lamina llo, where most (although clearly not all) of 

the nociceptive C-fibres terminate. In another study Petrenko et ak (2003a) reported that
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foi'jnalin-induced acute pain, complete Freund’s adjuvant-induced thermal hyperalgesia 

and mechanical allodynia following spared nerve injury (SNI) were all unaltered in NR2A 

knock-out mice. The apparent inconsistencies between behavioral, physiological and 

morphological investigations stress the need for further studies to determine which NR2 

subunits are associated with particular neuronal circuits in the spinal cord.

NMDA subunits in the ventral horn

There has been great interest in which iGluRs are expressed by motoneurons, since 

Ca“' enti'y through these channels has been implicated in the excitotoxic cell death 

occurring in certain pathological conditions, such as ALS. The increased intracellular Ca^ '" 

concentration can lead to the generation o f free radicals, the activation o f proteases and the 

induction o f apoptosis (Urushitani et af, 2001; Arundine and Tymianski, 2003). Several 

authors have suggested that Ca^^-permeable AMPA receptors are the determining factor in 

the selective vulnerability o f motoneurons to glutamate toxicity (Carriedo et ah, 1996; 

Pellegrini-Giampietro et ai., 1997; Williams et ah, 1997; Shaw, 1999; van Den Bosch et 

ah, 2000; van Damme et ah, 2002). However, NMDA receptors also have Ca^’*’- 

conductance and several authors have stressed their importance in the degeneration of 

ventral horn neurons (Wagey et ah, 1997; Virgo et ah, 2000; Urushitani et ah, 2001; 

Saneili et ah, 2004). The present findings provide morphological evidence for the first 

time that N R l, NR2A and NR2B subunits are expressed at synapses in the ventral horn, 

although the intensity of immunostaining was very much weaker than in the dorsal horn.

The strong labelling for NR2B around the cell nucleus of motoneurons and the 

weak NR2B-immunoreactivity at synapses in the ventral horn suggests that these cells 

produce NR2B protein, but that it is not present in large amounts at their synapses. The 

shape and location o f these NR2B-inimunoreactive cytoplasmic structures resembles that 

o f the Golgi-apparatus and endoplasmatic reticulum (ER). This is supported by the fact 

that in rats which received a CTb injection into the sciatic nerve the NR2B- 

i mmunoreacti ve cytoplasmic puncta colocalized with the tracer (G. G. Nagy, D. Hughes, 

A. J. Todd, unpublished observations). CTb is known to be transported to the Golgi- 

apparatus o f motoneurons (Ragnarson et ah, 1998). Using conventional 

immunofluorescence Marvizon et ah (2002) also reported a similar cytoplasmic labelling 

pattern for NR2A/B receptors in DRG neurons, in their study the cytoplasmic labelling for 

NR2A/B colocalized with CGRP, which is produced from its precursor protein in the 

Golgi-apparatus (Wimalawansa, 1996). The additional cytoplasmic labelling inside 

cellular processes might represent the intracellular trafficking o f the receptor. It is possible
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that NR2B subunits on motoneurons are constitutively inserted into the membrane, but are 

expressed mainly at extrasynaptic sites. Extrasynaptic receptors are lost during pepsin 

treatment (see Chapter 5), therefore during this study these NR2B subunits would have 

been undetectable following antigen unmasking. Evidence for the presence o f 

extrasynaptic NR2B subunits in the dorsal horn was provided by Momiyama (2000), using 

patch clamping (see above). Alternatively, the Golgi-apparatus and/or ER in motoneurons 

could serve as a storage place for NR2B subunits, and these could be inserted into the 

membrane following certain type of cellular events, such as stimulation. Recruitment of 

NR2B subunits to the synaptic membrane could lead to an increase in NMDA mediated 

currents. NR2A or NR2B containing NDMA receptors have high-conductance channel 

openings (Petrenko et ah, 2003b), while currents generated by NMDA receptors containing 

the NR2B subunit decay several times more slowly than those generated by NR2A 

containing NMDARs (Vicini et ah, 1998). Ca"’̂ entry through new ly inserted NMDA 

receptors could be involved in synaptic plasticity or in motoneuron degeneration occurring 

in amyotrophic lateral sclerosis or nerve injury. In a recent in vitro study Sanelli et ah 

(2004) found that spinal motoneurons from mice over-expressing the human low molecular 

weight neuro Elament showed significant increases in intracellular Ca^  ̂ following 

stimulation with NMDA and that this contributed to the cell death. In control animals only 

minimal alterations in Ca^^ levels were observed. Transgenic mice over-expressing 

neuroE laments develop motoneuron disease (Strong, 1999) and the intracellular trafficking 

of certain synaptic proteins is also impaired (Sanelli et ah, 2004). Virgo et ah (2000) 

detected a significant upregulation o f N R l and NR2B mRNA in motoneurons following 

the crushing o f the common peroneal nerve. They suggested that induction o f these two 

NMDA subunits could contribute to excitotoxic cell death. Further studies are needed to 

examine whether cytoplasmic NR2B-immunostaining is translocated to the synaptic 

membrane during pathological conditions or following stimulation.

159



Chapter 7

Summation of the most important findings of the thesis



The most important findings of the investigations presented in this thesis are 

summarized below. Where appropriate, a brief interpretation o f the results is also 

provided together with a short discussion of their functional significance.

1. The great majority (97.7%) o f somatostatin-containing and C GRP-lacking 

boutons show immunoreactivity for VGLUT2. These terminals form 

asymmetrical synapses, the majority of which (87%) express AMPA subunits at 

their PSDs. These results suggest that somatostatin-containing interneurons in the 

dorsal horn are excitatory, and use glutamate as a neurotransmitter.

2. A majority (96.5%) o f enkephalin-containing boutons form asymmetrical 

synapses, the majority of which (77%) express AMPA subunits at their PSDs. A 

small proportion (3.5%) o f enkephalin-immunoreactive terminals form 

symmetrical synapses and these lack AMPA receptors. These results suggest that 

somatostatin-containing interneurons in the dorsal horn are excitatory, and use 

glutamate as a neurotransmitter.

3. Postembedding immunogold labelling on freeze-substituted spinal cord tissue can 

give non-specific synaptic labelling for NR2A, as judged by the presence o f gold 

particles at asymmetrical synapses in the NR2A knock-out mice. This Ending 

raises questions about the validity o f the postembedding method for the detection 

o f NMDA subunits and stress the need for the use of appropriate controls during 

i m muno cytochemistry.

4. Antigen unmasking with limited proteolytic digestion using pepsin is suitable to 

reveal AMPA and NMDA receptors at glutamatergic synapses in the spinal cord. 

This method probably allows antibodies to gain access to epitopes that are 

normally masked by cross-linking due to fixation. With immunofluorescence 

immiinoreactive synapses appear as small puncta, while with electron microscopy 

the DAB reaction product is associated with PSDs.

5. Following pepsin-treatment GluR2-immunoreactive puncta are present throughout 

the gray matter, whereas GluR 1 -immunoreactive puncta are restricted to the 

dorsal horn and are most numerous in the superficial laminae. Punctate 

immuno staining for GluR3 and GluR4 is present in all laminae, but it is weak in 

the superficial dorsal horn.

6. GluR2 is present at virtually all (98%) puncta that are G luRl-, GluR3- or GluR4- 

immunoreactive. This subunit can therefore serve as a marker for glutamatergic 

synapses that contain AMPA receptors in the spinal cord. These results also 

suggest the all spinal cord neurons express GluR2. Since the presence or absence
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of GIiiR2 determines the Ca^^-permeabihty o f AMPA complexes, it is likely that 

Ca^'-permeable and impermeable AMPA receptors are intermingled within the 

same active sites.

7. GliiR2~ and GluR 1-immunoreactive puncta are apposed to various types o f 

glutamatergic axon terminal. O f the 4,800 glutamatergic boutons analysed, 96.2% 

formed at least one synapse where AMPA receptors were present.

8. GluRl subunits are more often present at synapses formed by primary afferents 

than at those formed by excitatory interneurons. This is very important since 

GluRl subunits have been implicated in activity-dependent synaptic plasticity 

both in the spinal cord and other parts of the CNS.

9. Intradermal injection o f capsaicin leads to the rapid phosphorylation o f GluRl 

subunits at glutamatergic synapses in a somatotopically appropriate area of the 

SLiperficiai dorsal horn. Since phosphorylation of this subunit increases the open 

channel probability o f the receptor complex, this could underlie the central 

sensitization of nociceptive neurons.

10. Following pepsin-treatment NRl-immunoreactive puncta are fairly evenly 

distributed throughout the gray matter. Punctate immunostaining for NR2A is 

strongest in the deep dorsal horn, with much lower levels elsewhere, except for 

lamina IIo, where it is virtually missing. NR2B is present at high levels in 

laminae I-Il, and these gradually decrease towards the ventral horn. The laminar 

distribution of NR2B and NR2A subunits suggests that these might be associated 

preferentially with synapses formed by unmyelinated nociceptive C-fibres and 

myelinated A[3/Aô-fîbres, respectively.

11. Only a proportion (approximately half for N Rl and one-third for NR2A and 

NR2B) o f GluR2-immunoreactive synapses express an NMDA subunit and this 

indicates that NMDA receptors are either selectively expressed by certain neurons 

or selectively targeted to particular synapses within individual neurons. Further 

studies are needed to determine exactly which neuronal circuits express particular 

NMDA subunits.

12. The majority o f NR2A- or NR2B-immunoreactive puncta are also labelled for 

N R l, and this strongly suggest that immunoreactive puncta observed after antigen 

unmasking correspond to functional NMDA receptors at glutamatergic synapses.
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Appendix

0.1 M PHOSPHATE BUFFER (PB)

O NaHzP0 4 X (2 H2O) 37.44 g in 1200 ml H2O Solution A

o Na2HP0 4  84.9 g in 3000 mi H2O Solution B

Mix 1120 ml o f Solution A and 2880 ml of solution B.

Adjust pH to 7.4 with HCl or NaOH.

Add 3000 ml distilled water.

PHOSPHATE BUFFER WITH 0.3 M SALINE (PBS)
o 0.2 M PB 200 ml

o NaCl 72 g

o distilled water 3800 ml

TRIS-BUFFERED SALINE WITH TRITON X-100 (TBST)
o 0.05 M Tris pH 7.4 100 ml

o distilled water 900 ml

o NaCl 3-9 g

o Triton X-100 1 g

MAMMALIAN RINGER (MR)
0 NaCl 45 g

0 KCl 2 g

0 CaClz 1,25 g

0 M gC f 0.025 g

0 NaHCO] 2.5 g

0 N afl2P0 4 0.25 g

0 glucose 5 g

0 distilled water 5000 ml

M  BICA RBONA TE BU FFER to

0 NaHCOa 16.8 g

0 0.1 M NaOH 175 ml

0 distilled water make up
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02. M SODIUM ACETATE BUFFER (uH 6.0)

o sodium acetate 16.4 g

o 0.2 M acetic acid 3 ml

o distilled water make up to 1000 ml

URANYL ACETATE FOR CONTRASTING

o saturated solution o f uranyl acetate in ultra pure water

LEAD ACETATE FOR CONTRASTING

o lead acetate 39 g

o distilled water 100 ml —> saturated lead acetate

o saturated lead acetate 100 ml

o ammonium acetate 18.5 g

LEAD CITRATE FOR CONTRASTING

o lead nitrate 1.33 g

o sodium citrate 1.76 g

o distilled water 30 ml

o 1 M NaOH 8 ml

o distilled water make up to 50 ml
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