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Abstract Summary

Only 5% of excitatory input to primary visual cortical (V1) neurons corresponds to feedfor-
ward input from the retina, and only 20% of responses by these neurons can be explained by
retinal input (Carandini, 2005; Muckli and Petro, 2013). Neuronal responses are therefore
highly influenced by non-feedforward interactions, allowing the brain to combine external
input from the retina with context and knowledge. This is accomplished by integrating feed-
forward input with signals from neurons processing higher-level or associative information.
The signals transmitted from higher cortical areas to V1 are known as cortical feedback.

The neuroscientific community is in agreement that cortical feedback is an important as-
pect of brain processing. However, the information transmitted by feedback and what factors
give rise to contextual feedback remain largely unknown. Feedback connections provide V1
neurons with information about their far surround receptive fields (Angelucci and Bressloff,
2006), and stimulation in the surround provides contextual information about the scene to
non-stimulated portions of V1 (Smith and Muckli, 2010; Muckli et al., 2015). Occluded V1
activity patterns recorded using fMRI have been used to decode different scenes, but again,
little is known regarding the nature and content of the contextual information that feedback
transmits.

This thesis aims to examine the information in contextual feedback to early visual cor-
tex, with a particular focus on V1. To investigate this topic we used an occlusion paradigm
derived from that of Smith and Muckli (2010) and Muckli et al. (2015). During normal vi-
sion, both feedforward and feedback signals are present. As such, a useful approach to study
feedback is to isolate it from feedforward input. We occluded one quadrant of the visual field
during stimulus presentation in order to remove meaningful feedforward input about scenes
in a portion of retinotopic visual cortex. We used fMRI to assess brain activity in early visual
cortex, allowing us to detect dendritic signaling associated with cortical feedback due to its
sensitivity to cortical energy consumption (Logothetis, 2007, 2008; Petro et al., 2014).

In Chapter 2, we investigated potential high-level information in cortical feedback to
V1 and V2. We presented subjects with an expanded version of the occlusion paradigm
from Smith and Muckli (2010) and Muckli et al. (2015). We included twenty-four partially
occluded scenes from six categories and spatial depths. These two high-level scene char-
acteristics were chosen because they have previously been shown to modulate early visual
cortical responses (Walther et al., 2009; Kravitz et al., 2011). We were therefore interested in
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Abstract Summary ii

whether these characteristics also modulate feedback to V1 and V2. We found that response
patterns in these subregions contain high-level category information, but we did not find that
visual depth information generalized across exemplars. Additionally, we found that retino-
topic responses in Occluded V1 and V2 differed from each other, suggesting that feedback
to these two areas has different information content, and matching the known anatomical
connections from mid- and higher-level visual areas in the ventral stream (Rockland et al.,
1994; Rockland and Ojima, 2003).

In Chapter 3, we probed the information content of Occluded V1 and V2 responses at
multiple levels of complexity using Representational Similarity Analysis (RSA) and en-
coding models. By analyzing data from Chapter 2 in these frameworks, we were able to
compare both local (voxelwise) and distributed (multi-voxel) Occluded responses to three
biologically-inspired computational models (the contrast energy-based Weibull model, the
orientation-based Gist model, and the mid-level vision H-Max model), and the high-level
scene characteristics explored in Chapter 2. Using RSA, we also compared scene represen-
tations from Occluded and Non-Occluded areas. We found that in Non-Occluded areas, V1
and V2 represent scenes similarly, while Occluded V1 and V2 do not. We also found that
scene representations in Occluded V1 and V2 were correlated with high-level Category and
H-Max models. Individual voxel encoding models showed that Occluded V1 voxels within
5◦ visual angle of fixation encode low-level information about the occluded scene, while
voxels outside of 5◦ encode higher-level information. These results highlight a potential vi-
sual field bias in the type of information transmitted to V1 through feedback, with foveal
voxels receiving more precise, low-level scene information, and peripheral voxels receiving
more invariant or global scene features.

In Chapter 4, we examined the laminar profile of Occluded V1 using high-resolution
(0.8mm3) 7T fMRI. We again expanded our stimulus set, now with 192 Occluded scenes
and 192 Non-Occluded scenes. This large stimulus set allowed us to map scene informa-
tion onto voxel responses in greater detail, and the use of both Occluded and Non-Occluded
scenes allowed us to compare voxel responses when receiving only feedback with responses
when receiving feedforward, lateral and feedback information. We found that V1 responses
exhibit predictive and high-level response properties in addition to feedforward orientation
and spatial frequency properties typically associated with V1 responses. These predictive
and high-level responses were primarily associated with superficial layers of cortex. We
also found that voxel tuning toward feedforward and feedback signals was different between
cortical layers of V1. Our findings suggest that feedback connections terminating in superfi-
cial layers provide V1 neurons with contextual and associative information not available via
localized feedforward input.

The neuroscientific results presented in this thesis extend our knowledge about the infor-
mation content of cortical feedback to early visual cortex. These results add support to the
notion that V1 can be considered to speak two languages (Muckli and Petro, 2013). Not only
does it play a role as an early stage of processing of sensory visual input, where it deals with
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processing low-level features, but it also receives messages from diverse areas of cortex and
these messages supplement local processing by providing contextual information.
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Chapter 1

Introduction

The conceptualization of the brain as a computing machine coincides with the invention of
modern computers during the 1940s. Prior to the current description of brain function in
terms of information processing and algorithmic computations, other then-current technolo-
gies were used to describe human intelligence. For instance, during the 17th century, Thomas
Hobbes described thought as being the result of tiny mechanical processes in the brain. Dur-
ing the 18th century, this was updated to electrical processes, and during the 19th century,
Helmholtz compared brain processes to the technology used to send telegraphs (Zarkadakis,
2015). Each of these brain descriptions reflected the most advanced technologies of their
time. Thinking of brain function as computer-like processes has led to “profound physi-
ological implications” for the study of cortical processing and to substantial gains in our
understanding of brain function (Kandel, 2009). Nevertheless, our brains are not computers,
and computers are not capable of performing many of the tasks that brains are capable of.
Some of these tasks are complicated ones, requiring abstract thought processes and creativ-
ity. Surprisingly though, some are tasks that we find relatively simple or intuitive, such as
catching a ball or describing a social context despite limited information.

Within a decade of modern computer development, studies began the pioneering work
of mapping details from organisms’ environments onto neuronal responses in order to test
whether sensory neurons are selective in what information they process, much like special-
ized computer sensors and hardware. Horace Barlow (1953a,b) showed that certain neurons
in frogs’ brains fired only in response to specific visual stimuli. Hubel and Wiesel (1959)
famously described spatially-localized receptive fields and orientation tuning of early visual
cortical neurons in cats. Barlow (1961a,b) further laid out a theory of sensory systems in
the brain, largely statistical in nature, which assigned sensory neurons the function of fil-
tering external input in order to reduce redundancy. These influential works helped to form
the still-current textbook account of early visual cortex, particularly primary visual cortex
(V1), as a bank of oriented line detectors, called Gabor filters (Lee, 1996; Olshausen and
Field, 1997). V1 neuronal responses would therefore represent visual input as oriented lines,
and downstream brain areas could access these representations for use in more complicated

1
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image computations.
This line of thinking, however, is focused on feedforward cascades of information pro-

cessing (Petro et al., 2014). It largely neglects that the majority of connections to V1 neurons
are not feedforward connections from the retina relayed through the Lateral Geniculate Nu-
cleus (LGN) of the Thalamus, but are from other cortical neurons via feedback and lateral
connections (Budd, 1998; Kayser, 2004). In fact, only 5% of excitatory input to V1 neu-
rons corresponds to feedforward thalamocortical retinal input, and only 20% of V1 neuronal
response variance can be explained by retinal input (Carandini, 2005; Muckli and Petro,
2013). V1 responses must therefore be highly influenced by cortico-cortical interactions oc-
curring via feedback and lateral connections. Cortico-cortical influence, i.e. influence on
cortical processing from other neurons within cortex, allows the brain to combine feedfor-
ward external input from the retina with context and knowledge by integrating feedforward
and feedback signals. This integration is remarkably adaptive and flexible because it occurs
at the level of local microcircuits throughout sensory and associative cortex rather than at a
more centralized brain location (Mumford, 1992; Spratling, 2008; Bastos et al., 2012).

The significance of top-down and lateral influences on V1 neurons can be appreciated by
considering cases when these cells do not strictly act as filter-like line detectors. For instance,
V1 neurons respond differently to the same sensory line feature depending on whether that
line appears in a natural or non-natural image stimulus (David et al., 2004). V1 activity also
contains information about occluded stimuli (Sugita, 1999; Lee and Nguyen, 2001; Smith
and Muckli, 2010; Muckli et al., 2015), about remembered scenes (Naselaris et al., 2015),
and about complex sound stimuli (Vetter et al., 2014). These examples suggest that while
much has been learned by mapping the feedforward aspects of neuronal activity, a complete
understanding of neuronal physiology and brain function will require uncovering what types
of information are conveyed by feedback and lateral interactions.

1.1 Information processing streams in the visual system

The human cortex performs increasingly complex computations in a hierarchical fashion.
Artificial neural networks have successfully used hierarchical architectures inspired by sen-
sory brain systems to perform many complex tasks, including scene and object classification,
as well as speech recognition (LeCun et al., 2015). Generally, feedforward connections,
also known as bottom-up connections, are those which project from an area specializing
in lower-level features to one specializing in higher-level features. Lateral connections are
those which connect neurons within a cortical area, and feedback connections, or top-down
connections, are those which connect a cortical area specializing in higher-level features to
one specializing in lower-level ones (Figure 1.1). The feedforward and feedback connections
that facilitate these computations in the human cortex are well-established in neuroscience
(Felleman and Van Essen, 1991; Markov et al., 2013a, 2014), but it is worth introducing the
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Figure 1.1: Types of cortical connections. Connection types are shown for three areas in an abstract cortical
hierarchy, with red, green and blue areas representing low-, mid- and high-level areas, respectively (e.g. V1,
V2, and V4). Circular nodes in these networks represent neurons or cortical microcircuits. Feedforward con-
nections generally transfer information upward in the hierarchy, lateral connections allow nodes within an area
to communicate, and feedback connections transfer information back down the hierarchy. Importanly, both
feedforward and feedback connections can skip levels in the hierarchy. Non-feedforward connections refer to
both lateral and feedback connections.

pathways through which information travels in the visual system from feedforward, lateral,
and feedback directions to reach early visual cortical neurons.

Feedforward visual input is initially translated into neuronal signals by retinal photore-
ceptors - non-spiking neurons that transmit photometric information to multiple types of
local spiking retinal ganglion cells (Hubel, 1988; Wässle, 2004). Individual photoreceptors
are sensitive to incoming visual input from only a small, but contiguous portion of the visual
field, and each receptor’s area of sensitivity is known as its receptive field. Each eye contains
approximately 125 million photoreceptors, but only 1 million ganglion cells. Ganglion cells
therefore combine signals from many photoreceptors through direct and indirect pathways
in topographically organized center-surround receptive fields. That is, they approximately
decorrelate their outputs while conserving the local structure of their sensory input (West-
heimer, 2004; Graham et al., 2006).

Through the optic nerve, the axons of retinal ganglion cells connect to various layers of
the contralateral hemisphere of the LGN of the Thalamus, depending on the ganglion cell
type they originated from (Figure 1.2). Continuing from this central-brain structure, axons
from the LGN then fan out in a large band and project onto V1, which is situated at the
Occipital pole and along the Calcarine Sulcus, a landmark sulcus on medial surface of the
Occipital cortex. The topographic organization that was observed in the retina is conserved
throughout this pathway (Hubel, 1988; Sereno et al., 1995; Brewer et al., 2005), thus, the
spatial organization of V1 is termed retinotopic.

V1 is the primary target of visual input in cortex, receiving approximately 90% of sig-
nals sent from the retina (Douglas and Martin, 1991; Shao and Burkhalter, 1996). V1 then
projects the majority of its output onto Secondary Visual Cortex (V2; Sincich and Horton,
2005). However, V1 also projects onto other higher visual areas, including V3-V5 (Figure
1.3). Projections from V1 span both the dorsal and ventral visual pathways, or the “where”
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Figure 1.2: Visual pathway of the human brain from eyes to primary visual cortex. Information comes
to the two purple-colored halves of the retinas (the right halves, because the brain is seen upside down) from
the opposite half of the environment (the left visual field) and ends up in the right (purple) half of the brain.
Reproduced with permission (Shepherd et al., 2013).

and “what” pathways according to the two-streams hypothesis (Goodale and Milner, 1992).
Projections also exist to parietal and temporal cortices, although these projections are sparse
(Borra and Rockland, 2011).

As one progresses anteriorly along the ventral surface of the Occipital cortex, corti-
cal areas become increasingly specialized in processing high-level visual features (Grill-
Spector and Malach, 2004). For instance, V2 preferentially responds to naturalistic patterns
(Freeman et al., 2013), V4 responds to visual features of intermediate complexity (Tanaka,
1996), and Inferior Temporal (IT) cortex contains areas specialized in high-complexity fea-
tures. These areas include the Fusiform Face Area (FFA), which preferentially responds to
faces (Kanwisher, 2006), the Parahippocampal Place Area (PPA), which is involved in scene
recognition and prefers scenes over objects (Epstein and Kanwisher, 1998), and the Lateral
Occipital Complex (LOC), which is involved in object processing (Grill-Spector et al., 1999,
2001). The dorsal visual pathway is involved in processing motion, representing object lo-
cations, and informing movement of the eyes, hands and limbs. These complex processes
recruit V2, the dorsomedial area, V5, and posterior parietal cortex (Goodale and Milner,
1992; Goodale, 2011).

As mentioned above, the sole direction of information passing is not upward in the visual
hierarchy. In addition to feedforward input, neurons at any level of the visual hierarchy, from
retinal ganglion cells all the way up to specialized neurons in IT cortex, also receive input
from other neurons within the same area. Lateral connections in V1 allow neurons in retino-
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Figure 1.3: Feedback pathways carrying top-down information. Processing visual information involves
feedforward connections across a hierarchy of cortical areas (represented by the blue arrows). The visual
cortical pathways begin in the primary visual cortex (V1), which receives subcortical input from the lateral
geniculate nucleus (LGN). The feedforward connections extend through a ventral pathway into the temporal
lobe and through a dorsal pathway into the parietal cortex and prefrontal cortex (PF). Matching these feedfor-
ward connections are a series of reciprocal feedback connections (represented by the red arrows), which provide
descending top-down influences that mediate re-entrant processing. Feedback is seen in direct cortico-cortical
connections (those directed towards area V1), in projections from area V1 to the LGN and in interactions be-
tween cortical areas mediated by the pulvinar (PL). Reproduced with permission (Gilbert and Li, 2013; Muckli
and Petro, 2013).

topically local neighborhoods to communicate, and can span up to 4.5mm along the cortical
surface (or up to 5◦ visual angle; Angelucci et al., 2002). However, if information needs to
travel laterally through multiple neurons (termed polysynaptic chains of lateral connections),
then it is more efficient for information to travel upward and back down in the hierarchy
via a shorter pathway consisting of feedforward and feedback connections (Angelucci and
Bressloff, 2006).

Feedback connections allow for information passing downward in the visual hierarchy.
Any given area of cortex receives feedback connections from about two-thirds of all brain
areas. Such connections are composed of local reciprocal links, long range connections, tha-
lamic and other subcortical connections (Figure 1.3; Larkum, 2013; Markov et al., 2013a).
V1 receives feedback input from almost every area of the brain specialized in visual pro-
cessing (Rockland et al., 1994; Rockland and Hoesen, 1994; Muckli and Petro, 2013; Petro
et al., 2014). Additionally, V1 receives input from a number of associative and Parietal areas
(Borra and Rockland, 2011), from subcortical structures (Markov et al., 2013a, 2014), and
even from other sensory processing areas, such as auditory cortex (Rockland and Hoesen,
1994; Falchier et al., 2002; Rockland and Ojima, 2003; Wang et al., 2008). The abundance
of non-feedforward connections to V1 neurons indicates that in addition to retinal input, V1
neurons are capable of integrating information from many different areas.

Some of the cortical feedback connections to V1 are likely transmitting aspects of sen-
sory input that are not available via feedforward processing of visual input, for instance,
information from other sensory modalities such as auditory or haptic information. However,
internally generated activity, or neuronal activity not directly linked to sensory input, ac-
counts for approximately 90% of cortical energy consumption (Raichle and Mintun, 2006;
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Raichle, 2011). Such activity impacts cortical processing substantially, having been shown
to be both perceptually and behaviorally relevant (Hesselmann et al., 2008; Takahashi et al.,
2016). Further, these signals constitute our models and predictions about the world around
us (Mumford, 1991, 1992; Muckli et al., 2013); models which can be described at multiple
levels of abstraction - from statistical models of the likely relationships between adjacent
visual patches (Lee, 1996; Gilbert and Li, 2013), to high-level visual models of scene cate-
gories (Oliva and Torralba, 2001, 2006; Walther et al., 2009), and even to conceptual beliefs
about the self.

In light of the substantial impact non-feedforward signals have on V1 processing, it has
been suggested that V1 models should incorporate cortical feedback signals in order to ac-
count for the wide response variance afforded to V1 neurons by their varied types of input
(Angelucci and Bullier, 2003; Muckli and Petro, 2013). It is clear that this sizable task is only
approachable by first systematically describing information conveyed by feedback. This is a
significant challenge for neuroscience - predictions in the brain do not happen in isolation,
but are instead constantly integrated with sensory input. Furthermore, cortical predictions
likely range as widely in their complexity as the areas connecting to V1 (Mumford and Des-
olneux, 2010). It is therefore useful when dealing with visual input to encapsulate some of
this complexity using high-level global properties such as scene category or scene depth. In
this thesis, we approached the problem of describing feedback properties by isolating corti-
cal feedback to human V1 using occlusion of natural scenes and recording activation patterns
with functional magnetic resonance imaging (fMRI; Smith and Muckli, 2010; Muckli et al.,
2015). This is possible because cortical neurons integrate feedforward, lateral and feedback
signals at different scales. In the next section we outline the details of these differences.

1.2 Receptive field structure in primary visual cortex

Each V1 neuron responds to visual input from a specific region of the visual field, referred
to as its classical, or central, receptive field. Within this preferred region, many neurons
respond fervently to a particular visual feature, such as to a line of a particular orientation
(Hubel and Wiesel, 1959). Importantly though, V1 neuronal firing rates can be influenced
by visual features outside of their classical receptive fields, including near and far surround
regions.

Figure 1.4 shows the structure of central, near-surround, and far-surround portions of
a V1 neuronal receptive field. The LGN transmits highly localized visual information to
the central portion of the V1 neuron’s receptive field, approximately 1◦ of visual angle in
diameter (Levitt and Lund, 2002). When presented in this center area, visual features which
match the spatial orientation and frequency tuning properties of the neuron induce spiking.
Surround receptive fields are referred to as the non-classical receptive field, as the presence
of stimuli in the surround does not necessarily invoke spikes, but modulates responses to
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Figure 1.4: Receptive field structure. Schematic diagram showing the spatial scale of the different com-
ponents of the receptive field center (white area) and surround (gray area) of V1 neurons and that of their
underlying anatomical substrates. Adapted with permission from Angelucci and Bressloff (2006).

stimuli in the central, or classical, receptive field via dendritic mechanisms (Angelucci and
Bullier, 2003; Angelucci and Bressloff, 2006; Gilbert and Li, 2013).

A neuron’s surround receptive field is split into two different areas, the near and far
surround, designating the types of connections influencing the neuron in that portion of its
receptive field. The near surround receives input from other V1 neurons in the form of
lateral connections, and neuronal responses are modulated by feedback connections in the
far surround. Surround receptive fields are on average 4.6 times larger than their respective
central counterparts, although this proportion depends on a neuron’s eccentricity in the visual
field (the visual distance from the center of the neuron’s receptive field to the fovea; see
Section 1.6). Between eccentricities of 2◦ and 8◦ of visual angle, V1 surround sizes are
on average 5.1◦ of visual angle and can be as large as 13◦ in the periphery (Angelucci and
Bressloff, 2006).

Receptive field sizes increase as one travels up the visual hierarchy (Kravitz et al., 2013),
so feedback from higher areas conveys information about a larger region of the visual field
compared to the classical receptive field. Additionally, it is important to note that the types
of connections in each portion of the receptive field are not exclusive. In other words, the
central receptive field receives feedforward, lateral and feedback connections, the near sur-
round receives lateral and feedback connections, and the far surround is only influenced
feedback connections. This organizational property of receptive fields means that isolating
the signals coming from any type of connection to V1 neurons is difficult, traditionally re-
quiring invasive methods such as pharmacological interventions, electrical stimulation, cool-
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ing or optogenetics (Muckli and Petro, 2013). These methods commonly aim to moderate
the non-feedforward signals reaching a particular neuron and then mapping modulations to
feedforward responses.

Fully controlling the statistical properties of the large modulatory portions of a neuron’s
receptive field while stimulating or silencing remote neurons is a difficult task. An alter-
native strategy is to selectively homogenize feedforward signals across stimuli to the more
easily-mapped central portion of the receptive field while allowing input to the surround
portions (Williams et al., 2008; Smith and Muckli, 2010; Petro et al., 2013; Muckli et al.,
2015). This approach effectively confines any differentiable aspects of the stimulus response
to the non-feedforward signals arriving at the neuron. As previously mentioned however,
non-feedforward signals often lack the direct spiking characteristics of feedforward input
to V1 neurons (Larkum, 2013). Therefore, dendritic imaging techniques such as 2-photon
microscopy are required to observe these signals directly (Denk et al., 1990; Helmchen and
Denk, 2005), or methods sensitive to energy-consumption such as fMRI can be used to mea-
sure them indirectly.

1.3 Measuring cortical feedback signals using fMRI

Feedback to V1 influences wide-spread dendritic activity, but does not necessarily translate
to spiking activity in cells (Olshausen and Field, 2005; Larkum, 2013). Functional MRI is
particularly powerful for studying feedback because it densely samples large areas of the
brain and is sensitive to energy-consumption (Logothetis, 2007, 2008). This means that its
signal is influenced by spatially-specific dendritic activity rather than by the spiking output
of neurons. Furthermore, fMRI is a non-invasive brain imaging technique, affording it access
to feedback signals in humans. Since fMRI is capable of densely sampling visual areas of
human cortex (Sereno, 1998; Brewer et al., 2005), it is possible to map the classical receptive
field structure of thousands of individual fMRI voxels (these are the volumetric sampling
units in fMRI - approximately 2-3mm3 in 3T MRI studies, approximately 0.7-1.5mm3 in 7T
studies). The receptive field structures of voxels are termed population receptive fields (pRF;
see Section 1.7.1; Dumoulin and Wandell, 2008) due to the summation of oxygenation-linked
fMRI signal over an area containing a population of approximately 630 thousand neurons
(3mm3 voxel; Herculano-Houzel, 2009; Lent et al., 2011). pRFs are able to encapsulate
the classical receptive fields of constituent neurons because a voxel contains neurons which
are spatially localized in the visual field due to the retinotopic organization of visual cortex
(Dumoulin and Wandell, 2008). Once voxel pRFs are calculated, it is possible to design
studies which modulate voxel responses without stimulating the classical receptive fields of
the contained neurons.

Section 1.2 stated that one strategy to study feedback is to selectively homogenize feed-
forward signals coming to the classical receptive field of neurons while allowing modulation
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Figure 1.5: Occlusion of natural scenes. Experimental design of natural scene occlusion experiments in
Smith and Muckli (2010) and Muckli et al. (2015). Cortical areas corresponding to the Occluded portion of
scenes are mapped using contrast checkerboard mapping shown on the left, and only those voxels preferentially
responding to the Occluded area compared to the surround of the Occluded area are included in analyses.
Adapted with permission from Muckli and Petro (2013).

by non-feedforward input (Muckli and Petro, 2013; Petro et al., 2014). This approach has
proven effective in experiments utilizing fMRI to study diverse forms of cortical feedback
to V1 in humans, having uncovered modulation of V1 activation by auditory stimulation
(Vetter et al., 2014), somatosensory stimulation (Liang et al., 2013), visual imagery (Vet-
ter et al., 2014; Naselaris et al., 2015), attentional and task changes (Williams et al., 2008;
Smith et al., 2010; Petro et al., 2013; Kay et al., 2015), and by contextual visual input to non-
classical receptive fields (Smith and Muckli, 2010; Muckli et al., 2015; Kok et al., 2016). As
mentioned in Section 1.1, this thesis examines cortical feedback based on occlusion of real-
world scenes, utilizing the paradigm of Smith and Muckli (2010) and Muckli et al. (2015).
The aforementioned paradigm presents subjects with images of real-world complex scenes
which have their lower-right quadrant occluded by a homogeneous white occluder (Figure
1.5). The use of a white occluder rather than a background-matched grey occluder is thought
to indicate to the viewer that visual information is hidden rather than missing, although ex-
periments using this paradigm work in both cases. In these previous studies, the authors
examined the response properties of cortical patches which retinotopically corresponded to
the Occluded portion of the scenes (defined by independent visual mapping conditions) using
multi-voxel pattern techniques (see Section 1.7). In this thesis, we have stringently modified
criteria for classifying voxels as corresponding to the Occluded portion of scenes, thereby
increasing confidence that examined voxels are not receiving meaningful feedforward input.
Here, only voxels with pRFs lying completely within the Occluded portion of scenes are
included in further analyses. Additionally, we have increased the number of scenes from 3
scenes from previous studies to 24 scenes in Chapters 2 and 3, and 192 scenes in Chapter 4.
To probe the information characteristics of feedback signals coming to Occluded portions of
early visual cortex, we chose scenes from different categories and scene depths.
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1.4 High-level scene information in cortical feedback

David Mumford proposed a role for the reciprocal cortical pathways comprising of feed-
forward and feedback information streams in which higher areas send predictions about
the world to lower cortical areas (Mumford, 1991). At lower cortical areas, such as V1,
top-down predictions would then be compared to sensory input arriving from the LGN. V1
receives feedback input from nearly every other visual area, including areas specializing in
high-level visual processing (Rockland et al., 1994; Rockland and Hoesen, 1994; Muckli
and Petro, 2013; Petro et al., 2014). Feedback signals sent to V1 are therefore conceivably
related to predictions about multiple higher-level properties of visual input, thus providing
abstract predictions that could bias processing at an early stage of visual processing (Lee and
Mumford, 2003; Clark, 2013).

In this thesis, we compared fMRI voxel activity to biologically-inspired computational
models spanning multiple levels of complexity. Models which would be considered feed-
forward models of V1 included relatively low-level image statistics from a model of LGN
processing known as the Weibull model (Scholte et al., 2009; Groen et al., 2013), and orien-
tation and spatial frequency statistics via a V1-like model called the Gist model (Oliva and
Torralba, 2001, 2006). More complex models, which can be thought of as feedback models
include mid-level visual information (akin to V4 to anterior IT-level processing) from the
H-Max model (Serre et al., 2007) and two high-level scene properties: scene category and
depth. These properties were included because they have been shown to contribute to early
visual cortical responses during normal vision (i.e. without occlusion; Walther et al., 2009;
Kravitz et al., 2011).

We were interested in whether higher-level scene properties could be read out directly
from feedback signals to Occluded V1. This would provide important detail about what types
of information are present in cortical feedback. In computer science, feedback from higher
to lower computational layers of artificial neural networks enhances their ability to represent
high-level properties of visual input in conditions when input might be missing or degraded,
such as during occlusion (Reichert and Serre, 2013; Spoerer et al., 2017). However, it is
unclear what types of information are portrayed by the feedback channels in these networks.
Such findings further highlight the importance of understanding the information content of
feedback signals and how that information is integrated into computations in early processing
stages like V1.

1.5 Layers in cortex

A critical aspect of the cortex is that it is not a two-dimensional homogeneous sheet, but is
organized in layers. Different layers contain functionally distinct neurons, and importantly,
feedforward and feedback connections terminate in different layers (Douglas and Martin,
1991; Felleman and Van Essen, 1991; Petro and Muckli, 2017). We have already established
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the macroscopic routes by which information reaches early visual cortical neurons, so we
now turn to a mesoscopic description of cortical layers. Artificial neural network models
often refer to different processing stages as layers, but neuroanatomically, a given area of
cortex (analogous to a single layer of a neural network) is commonly composed of 6 highly
interconnected layers of tissue.

Feedforward connections typically terminate in middle layers of cortex, while feedback
connections terminate in superficial and deep layers (Felleman and Van Essen, 1991; Markov
et al., 2013a). Layer 5 pyramidal neurons are thought to be a primary integration site for com-
bining forward and backward information streams in cortex. This is because their dendritic
structure spans almost all layers and they compose a large proportion of cortical neurons
(Larkum, 2013). Feedforward input to these cells is largely contained in middle layers.
First, projections from the LGN terminate on layer 4 pyramidal neurons, which project onto
layer 3 neurons, and finally input is fed to layer 5 pyramidal neurons through their basal
dendrites (Douglas and Martin, 1991). Meanwhile, the apical tuft dendrites of these neurons
are the primary targets of cortical feedback. Layer 5 pyramidal neuron cell bodies reside in
the relatively deep layer 5 of cortex, hence their name, but their apical tufts reside in layer 1,
the most superficial layer of cortex (Figure 1.6).

The distally located apical tuft dendrites of pyramidal neurons act as a separate integra-
tive zone, somewhat independent from the integrative properties of basal dendrites of the
same cells. These two distinct integrative compartments of pyramidal neurons appear to be
involved in associative processing by allowing internal brain processes to provide contextual
information to apical tuft dendrites that aids in processing of feedforward input to basal den-
drites (Larkum, 2013; Häusser and Mel, 2003). Importantly, activation and deactivation of
apical dendrites has been shown to directly influence perception in mice (Takahashi et al.,
2016). The purpose of such anatomical segregation of functionally distinct connections is
currently an open question; however, this cortical organization serendipitously allows exper-
imentalists to probe feedforward and feedback signals.

Ultra high-field fMRI (using magnet strengths of 7 Tesla or higher) allows for non-
invasive, functional imaging at multiple cortical depths in humans (Ugurbil, 2014). As men-
tioned in Section 1.3, many signaling processes in cortex are dendritic, which are linked to
energy consumption, but not necessarily to neuronal spiking. fMRI is therefore a useful tool
to measure these signals at a systems neuroscience level, and high-resolution 7T is a use-
ful tool to disentangle particular laminar contributions. When studying feedback processes,
this ability to differentiate signals from different layers can provide important information
regarding the types of signals being imaged. For instance, 7T fMRI has shown that su-
perficial and deep layers of cortex have larger receptive fields than middle layers (Fracasso
et al., 2016) and that cortical feedback to superficial layers carries contextual information to
localized areas of human visual cortex (Muckli et al., 2015).

In this thesis, we utilized both standard-resolution 3T (Chapters 2 and 3) and high-
resolution 7T fMRI (Chapter 4) to study feedback properties in early visual cortex. The
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Figure 1.6: Layer-specific fMRI. Feedforward and feedback pathways are found in distinct layers of cortex,
with feedback terminating largely in superficial and deep layers (green arrows) and feedforward in mid-layers
(red dashed arrow). An example layer 5 pyramidal cell is shown, as this is a prominent target cell type of
cortical feedback. Feedback arrives to the apical dendrites of pyramidal neurons in layer 1 (and to interneurons),
whereas feedforward input arrives to the somatic region. Pyramidal neurons thus have two integration sites;
one at the top of the apical trunk and one at the soma (see Larkum, 2013). Vertical color bars depict equidistant
cortical depth sampling levels as has been studied with high-resolution fMRI of early visual cortex, such as
that in the cortical model on the right. Adapted from Petro and Muckli (2017) under the Creative Commons
Attribution License (CC BY).

recording and analysis of high-resolution 7T fMRI data is intricate; distortion and inho-
mogeniety issues in the signal and highly-involved segmentation processes currently make
it difficult to conduct very large studies of mesoscopic processes. It was therefore useful
for us to investigate how consistent feedback properties are using a large subject set in 3T
fMRI (N = 23 across 2 experiments; 2 sessions each) before conducting longer and more
individualized experiments using 7T fMRI (N = 3; 6 sessions each). The remainder of this
introduction will briefly detail a number of important aspects of analyses used in this thesis.

1.6 Retinotopic mapping of early visual cortex

As described in Section 1.1, V1 straddles the Calcarine Sulcus of the Occipital cortex. Refin-
ing our description of the retinotopic organization of early visual areas, the deepest portion
of this sulcus roughly corresponds to the horizontal mid-line of the visual field. Similar to
the retina’s inverted visual field representation, the lower half of the visual field image is
represented by V1 in the dorsal Calcarine Sulcus, and the upper visual field is represented in
the ventral portion of the Calcarine. Areas V2 and V3 wrap around V1 at the Occipital Pole
(the most posterior portion of the brain). The lower visual field representation in dorsal V1
is reflected in dorsal V2, and once again in dorsal V3. The same occurs for ventral V1, V2
and V3 with the upper visual field. The fovea is represented at the Occipital Pole, and the
far periphery of the visual field is represented by the most anterior portions of early visual
cortical areas. More cortical area in V1 to V3 is dedicated to processing foveal portions of
the visual field than is dedicated to peripheral portions. This organization is termed cortical

magnification (Figure 1.7; Duncan and Boynton, 2003).
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Figure 1.7: Retinotopic Mapping. Polar angle and eccentricity retinotopic mapping examples are shown on
inflated Occipital Pole and Calcarine areas of the left hemisphere of an individual subject (from the data set
collected in Chapter 2). Black lines signifiy V1 to V3 borders which are discerned from representations of the
visual field. The dashed line on the polar angle map signifies the horizontal meridian of the visual field, and
semi-circles signify visual field correspondence. Eccentricity mapping extended to 10◦ visual angle.

This pattern of representation can be mapped using retinotopically-specific visual stimuli
in fMRI, and indeed was one of the first functional contrasts used (Turner et al., 1993). Two
primary forms of retinotopic mapping stimuli are used to map early visual areas, correspond-
ing to the angle and radius measures in a polar coordinate system. The first, called polar

angle mapping consists of a radially-rotating wedge of high-contrast flashing checkerboard
stimuli. The second, called eccentricity mapping consists of a checkerboard annulus which
begins at a fixation point and expands outward into the periphery (Brewer et al., 2005). Each
stimulus is typically presented as a “traveling wave” or “phase-encoded” stimulus, and is
analyzed using Fourier or cross-correlation analysis (Engel et al., 1994; Sereno et al., 1995).
By correlating the peak responses in voxel time courses to a particular stimulus phase, the
polar angle and distance from fixation can be determined (Tootell et al., 1998; Sereno, 1998).
Additionally, due to the representationally-reflective organization of retinotopic early visual
cortex, this information can be used to deduce the visual area to which each voxel belongs.

1.7 Modeling techniques for fMRI data

A common goal of computational and cognitive neuroscience is to detect and describe in-
formation processing that occurs in the brain. To this end, we can think of two distinct
and complimentary approaches to analyzing fMRI data. The first approach aims to predict
stimuli based on brain activity, and models with this objective are termed decoding models.
Decoding models are popularly referred to as brain-reading (Kessler and Muckli, 2011). The
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Figure 1.8: Encoding and decoding in fMRI. Encoding models: Pixel luminance is the input space of
visual experiments, with each point representing a different image. Brain activity measured in each voxel is
represented by an activity space, and between the input and activity spaces is a feature space. The mapping
between the input space and the feature space is nonlinear and the mapping between the feature space and
activity space is linear. Decoding models: The direction of mapping between activity and feature spaces is
reversed compared to encoding models. Rather than features being mapped onto brain activity, brain activity is
mapped onto the feature space. Adapted with permission from Naselaris et al. (2011).

second approach is the opposite; it aims to predict brain activity based on stimulus features,
and models with this objective are termed encoding models (Figure 1.8; Naselaris et al.,
2011). The studies contained in this thesis utilize a specific form of decoding model, a linear
classifier. Additionally, encoding models were used to determine whether particular types of
information are encoded by individual Occluded voxels (see Section 1.4).

Linear classifier models are a popular form of machine learning used in all branches of
data science. When applied to fMRI data, classifiers are commonly referred to as Multi-
Voxel Pattern Analyses (MVPA; Haxby et al., 2001; Kriegeskorte et al., 2008), and they
aim to utilize the information contained in spatially-distributed activity patterns from fMRI.
In MVPA, brain activity is analyzed at the level of patterns consisting of a number of vox-
els. This is important when studying feedback, as information in these signals could be
distributed over large areas of cortex (Larkum, 2013; Muckli et al., 2015). Multivariate sam-
ples of brain activity are assigned labels indicative of the condition under which they were
acquired. For example, the activity recorded while someone was viewing a picture of a cat
or a dog would be labeled “cat” or “dog,” respectively (Haynes, 2015).

As is depicted in the right column of Figure 1.8, it is helpful to consider fMRI activity
patterns in a multi-voxel activity space where the axes are individual voxel responses. In
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this way, fMRI patterns can be thought of as vectors corresponding to the responses of all
voxels taken together when an individual participant views a particular image (or any other
type of experimental condition). Within this framework, it is easy to see that the distribution
of responses between image categories (e.g. cat images vs. dog images) might not be sep-
arated within any of the single dimensions (single voxel responses). However, cat and dog
responses could more easily be separated when all dimensions are taken into account. This is
the task of classification algorithms: to find a way to separate categorical distributions while
at the same time avoiding overfitting (Bishop, 2006).

One popular algorithm used to achieve fMRI activity classification is the linear Sup-
port Vector Machine (SVM) algorithm, which has been previously successfully employed in
many fMRI studies for detecting different types of information in early visual cortex (Walther
et al., 2009; Smith and Muckli, 2010; Smith et al., 2010; Vetter et al., 2014; Muckli et al.,
2015). SVM uses a weight at each voxel to linearly project responses onto a single deci-
sion axis, which is defined as the maximum-margin hyperplane (Duda et al., 2000). That
is, the algorithm finds the axis which maximally separates the individual data points from
two classes. Training and testing of SVM classification models is performed on separate,
independent data sets. This cross-validation framework strives to avoid overfitting to train-
ing data. Results are then reported as the number of testing data points that fall on their
predicted side of the decision line (percentage correct). In addition, it is possible to train and
test models on separate stimuli if stimulus sets are large enough to allow it. This method,
known as cross-classification, avoids fitting models to specific exemplars from a category of
stimuli. It is employed in Chapter 2 of this thesis when examining scene category and depth
information in V1 and V2.

Classification generally requires training data to adhere to discrete groupings, each with
a unique label. Scene descriptions such as category are discrete and thus easily modeled
using classification methods. When scene descriptions are continuous, such as scene depth
or the output from many computer vision models, these descriptions must be quantized or
binned into discrete groups before decoding can be performed. However, binning continuous
descriptors loses information, so it can be advantageous to use methods that preserve the
information of continuous descriptors.

One such method is Representational Similarity Analysis (RSA; Kriegeskorte et al.,
2008; Nili et al., 2014). RSA tests how well models fit distributed activity patterns in a
given brain area by testing whether the similarity between brain responses to different stim-
uli matches the similarity between model responses to those same stimuli. This is done by
computing the similarity (or dissimilarity) between brain or model responses to all stimuli.
The choice between using similarity or dissimilarity is arbitrary, and might be dictated by
the choice of metric. A common metric for describing the similarity of different stimuli is
correlation (Pearson’s r), and for dissimilarity, linear distance measures are common (such as
Fisher’s linear discriminant; Walther et al., 2016). The collection of all possible comparisons
fully characterizes the “representational geometry” of the brain area or model in those stim-
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Figure 1.9: Representational Similarity Analysis. The activity pattern associated with each experimental
condition is taken as a brain representation. By comparing activity patterns associated with each pair of condi-
tions, we obtain a representational dissimilarity matrix (RDM), which serves to characterize the representation.
Model comparisons can then be made by correlating brain and model RDMs (Kriegeskorte et al., 2008).

uli. These values are stored in a similarity or dissimilarity matrix, the indices of which can
be compared to determine the similarity between brain and model representations (Figure
1.9).

Importantly, RSA is not limited to comparisons between brain recordings and compu-
tational models. This method is also capable of comparing brain recordings to behavioral
responses, brain recordings from different modalities, different species, and different corti-
cal areas. In Chapter 3, RSA is used to compare Occluded V1 and V2 to both computational
models and to other brain areas (to Non-Occluded V1 and V2 and to each other).

As previously mentioned, a key difference between encoding and decoding models can
be summarized by the direction of mapping between feature and activity spaces. Decoding
aims to map voxel responses onto the feature space, either discretely or continuously in clas-
sification and RSA, respectively. Encoding models, however, map a feature space onto the
activity space, and thus weights are assigned to stimulus features rather than to voxels. This
mapping is most often performed independently for each voxel because regression methods
commonly used to build these models are not well-suited for multidimensional data (for a
demonstration, see Bishop, 2006). This means that when analyzing brain activity, decoding
methods are convenient for describing information present in distributed patterns of activity
over many voxels, and encoding methods are convenient for describing the stimulus features
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that drive individual voxel responses1.
Encoding models can be estimated from stimulus features of varying complexity. When

mapping visual stimuli onto voxel activity, feature sets can range from simple pixel inten-
sities (taken directly from presented images), to invertible changes of basis (Gabor pyramid
decomposition or Fourier analysis), to nonlinear transformations such as the hidden layers of
deep learning networks. The multitude of possible features for encoding makes these models
incredibly powerful and flexible. This flexibility also means that encoding models need to
be well-informed by theory. One example of the importance of theory-informed encoding
modeling is pRF mapping, which we will discuss separately due to its importance in this
thesis.

1.7.1 Population receptive field mapping

As discussed in Section 1.3, the term Population Receptive Field (pRF) refers generally to re-
ceptive field mapping, as in Hubel and Wiesel (1959), but derived from fMRI measurements.
Adding the word ’population’ to the name acknowledges that fMRI signals are influenced by
the summed responses of many neurons (Victor et al., 1994; Dumoulin and Wandell, 2008).
Briefly described, pRF mapping consists of mapping the response specificity of each voxel
onto a stimulus space. In vision, this mapping is onto the visual field. A temporally- and
spatially-varying stimulus is presented to the subject. Just as in other encoding regimes, the
stimulus can have any level of complexity, and must span the parameters which the exper-
imenter intends to assign to the voxel. For example, Kay et al. (2008) presented a large
number of natural scenes to participants and assigned orientation, spatial frequency, position
and size tuning characteristics to voxel pRFs. Natural scenes were used because when de-
composed into Gabor filter responses, natural scenes span all of these characteristics in an
efficient manner. Even still, many images are required to uncover all of these voxel response
properties.

Many vision studies do not require orientation and frequency tuning information for in-
dividual voxels. Therefore, only spatial position and size parameters are mapped onto voxel
responses. In this case, flashing checkerboards (as used for retinotopic mapping; see Section
1.6) are sufficient for pRF mapping. This is because retinotopic mapping stimuli elicit very
strong retinotopically-specific visual responses even though they do not contain enough vi-
sual information to determine voxel orientation and frequency tuning. To efficiently model
pRF maps with relatively small amounts of data (20 or fewer minutes of an fMRI experi-
ment are typically dedicated to retinotopic mapping), pRFs are assumed to have an isotropic
Gaussian structure (Dumoulin and Wandell, 2008). Under this assumption, it is possible to
do a grid search of the parameter space to find the best fitting location and size model for
each voxel.

1Methods are available for multi-voxel encoding and voxel-wise decoding, but are not common when ana-
lyzing fMRI data (Haynes, 2015).
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In this thesis, visual pRF models aid our definitions of Occluded and Non-Occluded re-
gions of interest (ROIs). We excluded any voxels that are not fully contained by both cortical
surface and visual field ROIs. Based on the Gaussian structure of each voxel’s model we can
be confident that more than 97% of their feedforward responses are contained within 2σ of
the pRF location. When building encoding models, pRF locations are also used to define
relevant scene statistics for each voxel. By building feature sets using this prior knowledge
about the response properties of voxels, we dramatically reduce the dimensionality of our
models, and thus increase their statistical power.

1.8 Thesis Aims

The neuroscientific community is in agreement that cortical feedback is an important aspect
of brain processing. However, the information transmitted by feedback and what factors
give rise to contextual feedback remain largely unknown. Feedback connections provide V1
neurons with information about their far surround receptive fields (Angelucci and Bressloff,
2006), and stimulation in the surround provides contextual information about the scene to
non-stimulated portions of V1 (Smith and Muckli, 2010; Muckli et al., 2015). Occluded V1
activity patterns recorded using fMRI have been used to decode different scenes, but again,
little is known regarding the nature and content of the contextual information that feedback
transmits.

The aim of this thesis is to examine potential levels of information in contextual feedback
to early visual cortex, with a particular focus on V1. To investigate this topic we used an oc-
clusion paradigm (see Section 1.3) previously used by Smith and Muckli (2010) and Muckli
et al. (2015). During normal vision, both feedforward and feedback signals are present. As
such, a useful approach to the study of feedback is to isolate it from the feedforward input.
We therefore occlude one quadrant of the visual field during stimulus presentation in order to
remove meaningful feedforward input about scenes in a portion of retinotopic visual cortex.

To assess brain activity in these regions we used fMRI, multi-voxel pattern analyses
(MVPA) and encoding models. The use of fMRI allowed us to densely sample early visual
cortex. Additionally, fMRI signals can detect dendritic signaling associated with cortical
feedback due to its sensitivity to cortical energy consumption (Logothetis, 2007, 2008; Petro
et al., 2014). MVPA allowed us to decode high-level features about the scenes surrounding
occluded portions of the visual field from distributed brain activity patterns and to compare
scene representations to biologically-inspired computational models of the occluded portions
of scenes. The use of encoding models allowed us to predict individual voxel responses based
on scene information ranging in complexity from low-level contrast energy or orientation
filters to high-level global properties of scenes.

Experiments are described in Chapters 2, 3, and 4. In Chapter 2, we investigated po-
tential high-level information in cortical feedback to V1 and V2. We presented subjects
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with an expanded version of the occlusion paradigm (Smith and Muckli, 2010; Muckli et al.,
2015). This paradigm included twenty-four partially occluded scenes from 6 categories:
Beaches, Buildings, Forests, Highways, Industries, and Mountains. Two exemplars from
these categories were selected to be near the viewer, and two were farther away. These two
high-level scene characteristics, Scene Category and Scene Depth, were chosen because they
have previously been shown to modulate early visual cortical responses (Walther et al., 2009;
Kravitz et al., 2011). We were interested in whether these characteristics also modulate feed-
back to V1 and V2. We found that response patterns in these subregions contain high-level
category information, but we did not find that visual depth information generalized across
exemplars. Additionally, retinotopic responses in Occluded V1 and V2 differed from each
other, suggesting that feedback to these two areas has different information content. This
finding matches the known anatomical connections from mid- and higher-level visual areas
in the ventral stream (Rockland et al., 1994; Rockland and Ojima, 2003).

In Chapter 3, we probed the information content of Occluded V1 and V2 responses
at multiple levels of complexity using Representational Similarity Analysis (RSA) and en-
coding models. By analyzing data from Chapter 2 in these frameworks, we were able to
compare both local (voxelwise) and distributed (multi-voxel) Occluded responses to three
biologically-inspired computational models. First, the Weibull model is a contrast energy
and coherence model reminiscent of LGN processing (Scholte et al., 2009; Groen et al.,
2012, 2013); second, the Gist model is a model of spatially-specific orientation and spa-
tial frequency information, likened to V1 processing (Oliva and Torralba, 2001, 2006); and
lastly, the H-Max model is a mid-level visual feature model with more spatial feature invari-
ance, similar to V4 or anterior IT processing (Serre et al., 2007; Kriegeskorte et al., 2008).
We also compared responses to the high-level scene characteristics explored in Chapter 2
(Category and Depth), and using RSA, we compared scene representations from Occluded
and Non-Occluded areas. We found that in Non-Occluded areas, V1 and V2 represent scenes
similarly, while Occluded V1 and V2 do not, confirming differences observed in Chapter 2.
Further, RSA showed that scene representations in Occluded V1 and V2 were correlated with
high-level Category and H-Max models, but were uncorrelated with the orientation-specific
Gist model. Using encoding analyses, we showed that uniquely high-level Category and
Depth information is statistically correlated with individual voxel responses. These analyses
also uncovered relationships between voxel scene responses and the scene statistics hidden
by our occluder. Furthermore, they show that across subjects, V1 voxels within 5◦ visual
angle of fixation were uniquely related to low-level models (Weibull and Gist), while voxels
outside of 5◦ were related to higher-level models. This highlights a potential visual field bias
in the type of information transmitted to V1 through feedback, with foveal voxels receiving
more precise, low-level scene information, and peripheral voxels receiving more invariant or
global scene features.

In Chapter 4, we examined the laminar profile of Occluded V1 using high-resolution
(0.8mm3) 7T fMRI. We again expanded our stimulus set, now with 192 Occluded scenes
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and 192 Non-Occluded scenes. This large stimulus set allowed us to map scene informa-
tion onto voxel responses in greater detail, and the use of both Occluded and Non-Occluded
scenes allowed us to compare voxel responses when receiving only feedback with responses
when receiving feedforward, lateral and feedback. We found that V1 responses exhibit pre-
dictive and high-level response properties in addition to feedforward orientation and spatial
frequency properties typically associated with V1 responses. These predictive and high-level
responses were primarily associated with superficial layers of cortex. We also found that
voxel tuning toward feedforward and feedback signals was different between cortical lay-
ers of V1. Our findings suggest that feedback connections terminating in superficial layers
provide V1 neurons with contextual and associative information not available via localized
feedforward input.

The findings from all three experimental chapters are discussed in Chapter 5 in line with
the current literature and I propose ideas for further research for the remaining unanswered
questions.



Chapter 2

Cortical feedback to V1 and V2 contains
unique information about high-level
scene structure.

Early visual cortical neurons receive highly selective feedforward input, which is amplified
or disamplified by contextual feedback and lateral connections. A significant challenge for
systems neuroscience is to measure the feature space that drives these cortical feedback
channels. We occluded visual scenes and measured non-feedforward stimulated subregions
of V1 and V2 using fMRI and multi-voxel pattern analyses. We found that response patterns
in these subregions contain high-level category information, but we did not find that visual
depth information generalized across exemplars. Responses in non-feedforward stimulated
V1 and V2 differed from each other, suggesting that feedback to these two areas has different
information content. Our findings are consistent with descriptions of the visual system as
a hierarchical inference network, with V1 acting as a high-resolution geometric buffer or
blackboard to which feedback is projected.

2.1 Introduction

Cortical neurons receive two sources of input. The first, feedforward input, is sensitive
to small portions of stimulus space as defined by classical receptive fields. The second
consists of non-feedforward input from feedback and lateral interactions, which amplify and
disamplify responses to the feedforward signals based on context (Gilbert and Li, 2013;
Phillips et al., 2015). The abundance of feedback connections in cortical circuits (Budd,
1998; Muckli and Petro, 2013) and the diversity of responses to identical stimuli in different
contexts (Petro et al., 2013) points to a challenge central to the understanding of neural
computations. Improving our knowledge of feedback will provide insight to fundamental
neuroscientific questions such as cognition, attention, perception, memory, action and mental
disorders.

21
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To study feedback, one must disentangle feedforward and non-feedforward sources of
input. This involves independent stimulation or inactivation of feedback and feedforward
pathways, which is achieved via single- or multiunit recordings paired with electrical stimu-
lation, pharmacological intervention, cooling or optogenetics (Muckli and Petro, 2013; Petro
et al., 2014). These methodologies provide detailed characterizations of neural activity, but
are generally too invasive for studying the healthy human brain. Since the coordination of
feedforward signals likely occurs through widely distributed feedback processes of contex-
tual modulation (Phillips et al., 2015), non-invasive modalities with large spatial coverage
such as functional magnetic resonance imaging (fMRI) are advantageous for studying feed-
back properties. Furthermore, fMRI is sensitive to energy-use rather than directly to spiking,
and while feedback modulates feedforward responses, it does not necessarily generate spikes
(Phillips et al., 2015).

A non-invasive strategy to measure feedback is to homogenize feedforward input us-
ing visual occlusion. Functional brain imaging studies have measured feedback-specific
effects in retinotopic visual cortex (V1) by occluding feedforward input across experimental
conditions and observing that feedback signals are heterogeneous (Muckli and Petro, 2013;
Williams et al., 2008; Smith and Muckli, 2010; Muckli et al., 2005). Smith and Muckli
(2010) blocked feedforward input to subsections of V1 using a uniform occluder and demon-
strated that scenes can be decoded using pattern classification methods from responses in the
occluded cortical area. Petro et al. (2013) showed that decoding of faces in regions of V1
that process facial features is dependent on task. Vetter et al. (2014) were able to decode
different sounds from V1 activity in blindfolded subjects. These results provide evidence for
feedback affecting V1 responses in a contextually relevant way, yet we can say little about
the content of feedback signals. These signals may process specific feature predictions, and
therefore produce response patterns similar to those observed when early visual cortex is
stimulated by feedforward inputs (Naselaris et al., 2015). Conversely, feedback may provide
early visual cortex with general templates for expected scene structure based on high-level
characteristics. In the current study, we aimed to investigate the specificity of feedback sig-
nals to human primary and secondary visual cortices (V1 and V2) during scene processing.

2.2 Results

We blocked feedforward input to subsections of retinotopic visual cortex using a uniform
visual occluder covering one quarter of the visual field (Smith and Muckli, 2010) while par-
ticipants viewed 24 real-world scenes. To probe information characteristics of feedback,
we identified two abstract features that modulate V1 responses: scene category and depth
(Walther et al., 2009; Kravitz et al., 2011). Scenes were balanced across six categories
(Beaches, Buildings, Forests, Highways, Industry and Mountains) and two spatial depths
(Near and Far). We localized subsections of V1 and V2 responding either to the occluded



Chapter 2. High-level scene structure in feedback to V1 & V2 23

�

Figure 2.1: Experimental procedures. Participants viewed 24 scenes with lower right quadrants occluded.
Scenes spanned 6 categories (Beaches, Buildings, Forests, Highways, Industry, and Mountains) and 2 depths
(Near and Far). Occluded and Non-Occluded subsections of early visual cortex were localized using mapping
contrasts. Retinotopic mapping data were used to separate V1 and V2 and for mapping population receptive
fields (pRFs). Voxel pRFs not completely contained by the quadrant of interest (2σ from pRF center) were
excluded from further analyses. Remaining voxels were included in multi-voxel pattern analyses.

portion of the visual field (lower-right image quadrant), or non-occluded visual field (upper-
right and lower-left quadrants; Figure 2.1). This process yielded three regions of interest
(ROIs) in each of V1 and V2, hereafter referred to as Occluded and Non-Occluded (ei-
ther Upper-Right or Lower-Left), totaling six ROIs (3 positions in V1 and V2). We also
mapped population receptive field (pRF) locations of individual voxels (Dumoulin and Wan-
dell, 2008) to ensure that their response profiles were within regions of interest in the oc-
cluded visual field.

2.2.1 Decoding high-level cortical feedback to early visual cortex

Using single-trial linear Support Vector Machine (SVM) classification we could decode in-
dividual scene, category, and depth information in occluded and non-occluded regions of V1
and V2 (Figure 2.2, Table S1A; permutation tested against chance-level using 1000 sam-
ples, all p-values < 0.001). Occluded V1 and V2 were not significantly different when
decoding category and depth. However, scene, category and depth decoding was higher
in Non-Occluded V1 than Non-Occluded V2 in all analyses other than category decoding
in the lower-left quadrant (p < 0.05). Our decoding results were reliable at the individual-
subject level (Figure A.4); scene, category, and depth decoding were above chance-level in
at least 14 of 18 subjects in nearly all regions tested (Table A.2). Only decoding of Depth
in Occluded areas had lower individual-subject classifier performances, which were above
chance-level in 10 and 7 (of 18) subjects in Occluded V1 and V2, respectively.

To further test whether non-stimulated V1 and V2 represent higher-level properties of
scenes, we performed cross-classification analyses for category and depth information. We
trained SVM models using responses to a subset of our scenes, leaving out a test-set for later
cross-classification. For analysis of category, 18 (of 24) scenes were selected, leaving out one
scene per category. For depth, we selected 22 (of 24) scenes, leaving out one scene per depth.
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Figure 2.2: Classification and cross-classification performance of Occluded and Non-Occluded V1 and
V2. (A) Average classifier performances (18 subjects) are shown for each visual area with 95% confidence
intervals (calculated via 1000 bootstrap samples of individual subject performances). Occluded analyses are
shown in green; Non-Occluded analyses are shown in blue. Asterisks indicate greater than chance-level decod-
ing accuracy, p < 0.05. Chance level is 4.17% for individual scenes, 16.67% for categories, and 50% for depth.
(B-C) Cross-classification performance for Experiments 1 and 2 (18 subjects in Experiment 1; 5 subjects in
Experiment 2). Training occurred on 18 and 22 (of 24) randomly chosen scenes in category and depth analy-
ses, respectively, and testing occurred on scenes not used for classifier training. This was repeated 100 times
per subject, and 95% confidence intervals were calculated via 1000 bootstrap samples of individual subject
performances. See also Table A.1, Table A.2, Figure A.1 and Figure A.4.
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Figure 2.3: Representational Similarity Analyses for Occluded and Non-Occluded V1 and V2. (A) Simi-
larity matrices comprise of correlations in the patterns of response between pairs of scenes, averaged amongst
subjects. Diagonals (outlined in black) are correlations of scene responses in each half of the data; a measure
of signal reliability. V1 is shown in the lower triangle of each matrix and V2 in the upper triangle. (B) The
presence of high-level information in each RSA matrix is tested by comparing the average of all within- and
between-Category (or -Depth) indices.

We tested the classifier on the remaining scenes in a cross-classification approach. Due to
the large number of possible image permutations in these analyses, we randomly assigned
scenes to training and testing sets 100 times in each subject. Cross-classification of category
was successful in Occluded and Non-Occluded areas. Cross-classification of depth was only
successful in the Non-Occluded Upper-Right quadrant, suggesting that depth information is
not available in lower visual field responses regardless of whether feedforward information
is available (Figure A.2, Table A.2).

Our cross-classification results show that responses in both Occluded and Non-Occluded
areas of the lower visual field do not contain depth information. This visual field bias limits
our interpretation about the presence of depth information in feedback to early visual cortex.
We therefore conducted a second fMRI experiment in five subjects using the same scenes, but
with the occluder moved to the upper-right quadrant of the visual field. In this experiment,
we successfully cross-classified category in all areas, but once again failed to cross-classify
depth information in the Occluded quadrant (Figure 2.2, Table A.3). Based on the cross-
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classification results of our two experiments, we conclude that Occluded responses contain
generalizable information about scene category, but not scene depth.

SVM classification and cross-classification allowed us to determine whether information
about individual scenes, category, and depth was present in the responses to single presenta-
tions of images and whether this information was generalizable across scenes. Additionally,
we aimed to detect Individual Scene, Category and Depth information in average response
patterns by conducting Representational Similarity Analyses (RSA). Applying an iterative
split-half cross-correlation procedure (Kravitz et al., 2011), we compiled matrices repre-
senting correlations between individual scene response pairs in each region (Figure 2.3).
Diagonal points of similarity matrices indicate consistency in response patterns to individual
scenes between the two halves of the data, and off-diagonal points are correlations between
pairs of responses to different scenes. As such, higher correlations in the diagonal indicate
the ability to distinguish individual scenes within a region of interest. Here, comparison of
values along the diagonal against those off the diagonal showed significant differences in
regions (p<0.001, two-sided t-test of Fisher-transformed correlation values). These results
reaffirm that responses in Occluded subregions of V1 and V2 contain information about
individual scenes. To test for category and depth information, we implemented a two-sided
paired t-test comparing average within- to between-Category (and Depth) comparisons using
Fisher-transformed correlation values (Figure 2.3). Corroborating our cross-classification re-
sults, we found that Category information is present in all areas, and that depth information is
only present in the Upper-Right Non-Occluded areas (Table A.3). Overall, combined results
from SVM and RSA analyses demonstrate that Occluded responses carry information about
individual scenes and about scene category, but not about depth.

2.2.2 Visualizing Retintopic Information Patterns

Our Occluded V1 and V2 decoding results detect reliable differences in response patterns
between conditions, but do not indicate what scene features elicited them. This considera-
tion is particularly important in Occluded regions, where we would like to better understand
the nature of feedback information. For example, we want to ensure that successful decod-
ing is not simply due to spill-over or edge effects at the occlusion boundary. Additionally,
we are also interested in whether information utilized by classifiers corresponds to continu-
ations of objects or contours under the occluder. To visualize classification information over
corresponding scene features, we projected voxel classifier weights (the relative contribution
of each voxel to an LDA solution) into visual space (Figure 2.4). Positive weights indicate
voxel responses associated with a classifier choosing the current scene and negative weights
indicate responses associated with a classifier choosing a different scene. To assess whether
weights were significantly different from zero we performed two-sided t-tests across sub-
jects at every pixel location in the visual field, and maps show t-values surpassing a p < 0.05
threshold.



Chapter 2. High-level scene structure in feedback to V1 & V2 27

�

Figure 2.4: Projections of V1 (A) and V2 (B) Linear Discriminant classifier weights into visual space.
Voxel classifier weights (the relative contribution of each voxel to an LDA solution) were averaged for signif-
icant classifications involving each scene, resulting in one map of discriminatory visual information for each
scene in each subject. A two-tailed t-test was conducted across subjects at each pixel location in visual space
to obtain t-value maps (p<0.05 threshold). Warm colors are visual areas of the scene where voxel activation
is indicative of the respective scene. Cool colors are areas where voxel activation is indicative of a different
scene. See also Figure A.2.

Classifier information corresponds to visible scene features closely in Non-Occluded ar-
eas Figure 2.4. Visual inspection shows that positive weights often match edges or high-
contrast scene areas and negative weights match low-contrast areas such as sky or water. In
contrast, we did not find that informative areas in the Occluded quadrant are consistently lo-
cated where objects or contours would continue under the occluder, as might be expected if
voxels actively “filled in” objects in occluded portions of scenes. Importantly though, despite
relatively small response amplitudes in Occluded areas (Figure A.2), there are retinotopically
consistent areas across individuals which are informative to classifier models. These consis-
tent areas do not reside along the Occlusion boundary, indicating that information driving
successful decoding is not due to spill-over or edge effects.

Visual inspection of Figure 2.4 indicates that retinotopic patterns are highly consistent
between Non-Occluded areas of V1 and V2, consistent with previous reports of responses to
natural stimuli (Freeman et al., 2013). Occluded V1 and V2 do not display the same level of
consistency. To verify this observation, we tested whether V1 and V2 classifier information
was similar enough to enable cross-decoding of scene projection maps in each quadrant by
correlating quadrant pixel values from every V1 projection with every V2 projection (Spear-
man rho) with subjects treated as a random effect. Cross-decoding of V1 and V2 classifier
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weights was successful in both Non-Occluded quadrants (p < 0.001and p = 0.02 for upper-
right and lower-left quadrants, respectively), and was unsuccessful in the Occluded quadrant
(p = 0.22). Therefore, classifier information in Non-Occluded V1 and V2 is similar, but
it is not in Occluded V1 and V2. This suggests that retinotopic targets of feedback differ
between V1 and V2. This matches anatomical labelling studies which have shown that feed-
back projections from ventral occipital and parietal areas to V1 and V2 differ retinotopically
(Rockland and Hoesen, 1994; Borra and Rockland, 2011).

By projecting RSA voxel weights into visual space, we have provided additional detail to
supplement our decoding results and provide an intuitive visualization of features which are
used for scene decoding across subjects. In Non-Occluded scene regions, important features
include edges and high-contrast objects and are very similar in V1 and V2, matching what
is known about response properties in early visual cortex (Freeman et al., 2013; Kay et al.,
2008). By design, Occluded regions do not contain useful visual features for decoding, yet
projections depict retinotopically consistent locations of information in Occluded responses.
These informative areas are not limited to occlusion boundaries and differ between V1 and
V2 responses.

2.3 Discussion

We observed activation patterns in Occluded regions of early visual cortex that were in-
formative for determining individual scene and category information about the surrounding
images, thus indicating that contextual feedback to early visual cortex is scene-specific, yet
exhibits high-level structure. Moreover, we found that responses in Occluded V1 and V2
differed from each other, suggesting that feedback to these two areas have unique retinotopic
targets. Our findings are consistent with descriptions of the visual system as a hierarchi-
cal inference network, with V1 acting as a high-resolution geometric buffer or blackboard
(Lee et al., 1998; Lee and Mumford, 2003). In other words, V1 preserves scene informa-
tion for reference in calculations where high-resolution image details or spatial precision are
required.

The current results and several other studies lend support to the presence of expected in-
formation in early visual cortex during perception of absent visual input (Smith and Muckli,
2010; Muckli et al., 2005; Lee and Mumford, 2003; Lee et al., 1998; Muckli et al., 2015;
Alink et al., 2008; Sugita, 1999). Still, we are left with the question of how the relatively
small high-level effects that we observe in Occluded areas are able to impact cortical pro-
cessing. We hypothesize that cortical feedback signals can play an important role in deter-
mining the output of neurons, and that this mechanism is linked to perception (Takahashi
et al., 2016). Evidence from animal models suggests that cortical layer 5 pyramidal cell
spiking is virtually unaffected by dendritic stimulation of the apical tuft dendrites, where
feedback is largely received. However, cells are tuned to be extremely sensitive to associa-
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tive feedback upon receiving feedforward input to their somatic dendrites in a process termed
backpropagation-activated Ca2+ spike firing (BAC firing) (Larkum, 2013), where coincident
arrival of feedforward and feedback tuft inputs leads to bursts of action potentials. Since
the BOLD signal in fMRI is sensitive to energy consumption in both dendritic synaptic pro-
cesses and spiking activity, as has been shown in primate data (Logothetis, 2008, 2007),
we might be detecting dendritic stimulation without feedforward input in Occluded regions
of cortex. These synaptically-driven BOLD responses should appear comparatively weak
to those caused by the rigorous BAC firing that occurs when feedforward and feedback in-
puts are integrated. Combined, these points provide one explanation of how relatively small
BOLD changes in Occluded regions can be associated with higher-level neuronal processes
that significantly affect cortical processing and perception.

These data go beyond the inferential filling-in of expected information in early visual
cortex. Our cross-classification results suggest that internal models are based on generalized
scene templates that are then constrained by feedforward inputs. The visual system first at-
tends to coarse-scale scene information to quickly estimate input and activate scene templates
in memory (Schyns and Oliva, 1994; Oliva and Torralba, 2006). Feedback loops connecting
higher areas to early visual cortex may incorporate scene-specific information into the initial
template structure. Since fMRI is associated with late components of neural response time
courses (Freeman et al., 2013), Occluded responses may display characteristics of initial tem-
plates as well as additional scene-specific details. This could explain our ability to classify
individual scenes and cross-classify category information; Non-Occluded portions of scenes
activate global scene templates that also cover Occluded portions of scenes. Scene-specific
additions to these templates would allow for individual scene classification, even between
scenes of the same category.

In two separate fMRI experiments, we found that category information is present in feed-
back to V1 and V2, but did not find evidence to support the presence of depth information
in feedback. We also found that the V1 and V2 responses in the lower visual field did not
contain depth information in Non-Occluded areas either. However, scene depth was the best
tested model for describing scene representations in the Non-Occluded upper visual field.
Future studies are needed to fully understand visual field processing biases in V1 and V2 (as
well as the rest of the visual hierarchy) and their relationship to scene depth. A recent study
showed that several localized early visual cortical patches respond preferentially to objects
nearer the viewer (Lescroart et al., 2015). In future, systematically mapping depth properties
onto the cortex and manipulating the availability of feedforward image information in such
large-scale experimental designs (such as by occlusion) will enable researchers to resolve the
contributions of feedforward and feedback signals to these and many other cortical response
properties.

Our projection analyses showed that informative areas of Occluded V1 and V2 differ,
suggesting that retinotopic targets of feedback to these two areas also differ. These findings
are supported by anatomical tracing studies showing that feedback connections to V1 and
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V2 terminate in different subsections of these cortical areas (Rockland and Hoesen, 1994;
Borra and Rockland, 2011). V1 and V2 receive feedback from many brain areas (Kennedy
and Bullier, 1985; Markov et al., 2014), and feedback to each area likely plays a specialized
role in predicting aspects of visual scenes. Despite V2’s interconnectedness with extrastriate
cortex, it is highly dependent on input from V1 due to its role in summarizing natural patterns
(Freeman et al., 2013; Serre et al., 2007; Sincich and Horton, 2005). The specific source
of contextual information fed to V2 is not known from our results, but our results suggest
that V2 might receive more input from Occluded V1 than it is receiving feedback from
other areas. In the current study, input to V2 from V1 could be a disparate reconciliation
of non-meaningful feedforward input and contextual expectations from feedback (Lee and
Mumford, 2003).

Our results are in line with theoretical views explaining the visual system as a hierarchi-
cal inference network. Moreover, feedback to Occluded V1 & V2 have unique retinotopic
targets. We also found that feedback signals to early visual cortex do not include orienta-
tion information. Together these results highlight that a true understanding of the neural
computations of early visual cortex will involve understanding more about how and what
information is conveyed by feedback.

2.4 Methods

2.4.1 Participants

Twenty-three healthy individuals (N = 18 in main experiment: 12 female, age = 26.45 ± 5.70,
mean ± SD; N = 5 in Experiment 2: 2 female, age = 26.50 ± 5.58) with normal or corrected-
to-normal vision gave written informed consent to participate in this study, in accordance
with the institutional guidelines of the local ethics committee of the College of Science &
Engineering at the University of Glasgow (#CSE01127).

2.4.2 Stimuli

Twenty-four real-world scenes from six categories were chosen from a dataset compiled by
Walther et al. (2009). Images were displayed in gray-scale (matched for global luminance)
on a rear-projection screen using a projector system (1024 x 768 resolution, 60 Hz refresh
rate). Stimuli spanned 19.5 x 14.7◦ of visual angle, and were presented with the lower-right
quadrant occluded by a white box (occluded region spanned ≈ 9 x 7◦). A centralized fixation
checkerboard (9 x 9 pixels) marked the center of the scene images. Stimuli in Experiment 2
were identical other than that the occluder was moved to the upper-right quadrant.
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2.4.3 Experimental Design

Each of the eight runs consisted of six blocks of eight sequences of stimulation with inter-
vening fixation periods, plus two mapping blocks (total scanning time per run was 804s).
Each stimulation sequence lasted 120s, with 12s fixation at the beginning and the end of
each series. Stimuli were flashed at a rate of 5Hz in order to maximize the signal-to-noise
ratio of the BOLD response (Kay et al., 2008). Each sequence was presented in a pseudo-
randomized order where individual images were not shown repeatedly. Over the course of
the experiment, each scene was presented 16 times (two times per run). To ensure fixation,
we instructed participants to respond via a button press to a temporally random fixation color
change. So that participants would attend to the scenes, participants were asked to report the
category of the scene being presented during the fixation color change using 6 randomized
response buttons.

We used mapping blocks to localize the cortical representation of the occluded region
(Muckli et al., 2005). In a block design, subjects viewed contrast-reversing checkerboard
stimuli (5Hz) at three visual locations: Target (lower-right quadrant in main experiment,
upper-right quadrant in Experiment 2), Surround (of the target), and Control (remaining
three quadrants). Each condition was displayed for 12s with a 12s fixation period following,
and mapping blocks were randomly inserted between experimental blocks, once per run. We
conducted retinotopic mapping (polar-angle and eccentricity) runs separately from the main
experiment.

2.4.4 fMRI Acquisition

MRI data were collected at the Centre for Cognitive Neuroimaging, University of Glas-
gow. T1-weighted anatomical and echo-planar (EPI) images were acquired using a research-
dedicated 3T Tim Trio MRI system (Siemens, Erlangen, Germany) with a 32-channel head
coil and integrated parallel imaging techniques (IPAT factor: 2). Functional scanning used
EPI sequences to acquire partial brain volumes aligned to maximize coverage of early visual
areas (18 slices; voxel size: 3mm, isotropic; 0.3mm interslice gap; TR = 1000ms; TE =
30ms; matrix size = 70x64; FOV = 210x192mm). Four runs of the experimental task (804
vol.), one run of retinotopic mapping [session 1: polar angle (808 vol.); session 2: eccen-
tricity (648 vol.)], and a high-resolution anatomical scan (3D MPRAGE, voxel size: 1mm,
isotropic) were performed during each of two scanning sessions.

2.4.5 fMRI Data Preprocessing

Functional data for each run were corrected for slice time and 3D motion, temporally filtered
(high-pass filter with Fourier basis set [6 cycles], linearly detrended), and spatially normal-
ized to Talairach space using Brain Voyager QX 2.8 (Brain Innovation, Maastricht, Nether-
lands). No spatial smoothing was performed. These functional data were then overlaid onto
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their respective anatomical data in the form of an inflated surface. Retinotopic mapping runs
were used to define early visual areas V1 and V2 using linear cross-correlation of eight polar
angle conditions.

A general linear model (GLM) with one predictor for each condition (Target > Surround;
mapping conditions from experimental runs) was used to define regions of interest (ROI)
that responded to the visual target region (lower-right quadrant) and two control regions
(upper-right and lower-left quadrants), within V1 and V2. We then performed pRF analyses
(Dumoulin and Wandell, 2008) on all ROI voxels, and excluded those voxels whose response
profiles were not fully contained (within 2σ of their pRF center) by the respective visual ROI.
Lastly, a conjunction of two GLM contrasts (Target > Surround & Target > Control for Oc-
cluded ROIs, and Control > Surround & Control > Target for Non-Occluded ROIs) was used
to exclude any voxels responding to stimuli presentation outside their respective visual ROI
(see Figure 2.1). Time courses from each selected vertex were then extracted independently
per run and a GLM was applied to estimate response amplitudes on a single-block basis. The
resulting beta weights estimated peak activation for each single block assuming a standard
2γ hemodynamic response function.

2.4.6 Multivariate Pattern Analyses

For SVM classification analyses, a separate regressor modeled each experimental trial. This
procedure yielded a pattern of voxel activations for each single trial, and parameter estimates
(β values) were obtained for each voxel and then z-scored. A Linear SVM classifier was
trained to learn the mapping between a set of all available multivariate observations of brain
activity and the particular scene presented, and the classifier was tested on an independent
set of test data. Classification analyses were performed using a pairwise multiclass method.
Classifier performance was assessed using an n-fold leave-one-run-out cross-validation pro-
cedure where models were built on n – 1 runs and were tested on the independent nth run
(repeated for the eight runs of the experiment). In analyses of category and depth-based clas-
sification, individual scene presentation labels were combined based on these distinctions
before training and testing of the SVM classifiers. Significance of individual subject testing
was assessed using permutation testing of SVM classifiers. We shuffled data labels in train-
ing sets and left testing set labels intact, repeating this procedure 1000 times. This procedure
resulted in a null classification model around chance-level and our observed classification
value was compared to this distribution to determine the classification significance com-
pared to chance. To determine the group-level distribution of classification performances,
we resampled the average observed performances across all subjects 1000 times and report
95% confidence intervals on these bootstrapped values.

Cross-classification analyses were performed similarly to those of our cross-validated
classification, but our scene set was split up prior to model training. Training set sizes were
18 and 22 scenes for category and depth analyses, respectively, and testing sets consisted
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of the remaining scenes. Due to the large number of possible scene permutations, we con-
ducted 100 iterations of our analyses in each subject. For these analyses, training and testing
sets were defined in a pseudo-random manner where each category or depth was evenly
represented within both sets. As in our cross-validated classification, training and testing
of models occurred on independent data sets using a leave-one-run-out procedure. Since
we performed leave-one-run-out cross-validation on each of the 100 training/testing sets,
permutation testing for individual-subject classification significance was not feasible, as it
would have required 100,000 tests in each ROI, information type and subject. We there-
fore employed Wilcoxon rank-signed testing to examine individual subject performance. In
each of the 100 training/testing sets, we averaged the 8 cross-validated classification perfor-
mances, resulting in 100 performance values and tested those values against chance-level
(See Table S2C). To report group-level performance in these analyses, we averaged over
cross-validation folds and then averaged performances over the 100 training/testing sets to
get an individual subject performance. These values were bootstrapped to determine 95%
confidence intervals.

For RSA, an iterative split-half correlation method (Kravitz et al., 2011; Kriegeskorte
et al., 2008) was applied to each subject’s data where runs were split into two halves (four
runs in each) and concatenated. GLM analyses were then conducted to estimate condition-
based responses to each scene in the respective half of the data and repeated for the 35
possible combinations of data splits. Cross-correlation was then used to establish the sim-
ilarity between the reponse patterns of each pair of scenes. A Fisher transformation was
applied to each correlation value before combining correlations into group analyses, and the
transformation was reversed for results presentation.

2.4.7 Retinotopic projections

Using each voxel’s two-dimensional Gaussian response, as estimated in our pRF analysis, we
projected voxel classifier weights and activity patterns into visual space. Voxel pRF functions
were multiplied by their respective weights from a Fisher Linear Discriminant Analysis to
produce a single visual field map for each scene comparison (each voxel is assigned a weight
between -1 and 1). All comparisons involving a scene that had significant classification were
averaged to produce a single map for each scene in each subject. We then performed a two-
sided t-test across subjects at every pixel location in the visual field in each scene to assess
whether weights were significantly different from zero. This procedure was repeated with
voxel responses to each scene (mean removed) to produce Figure A.2.

To compare retinotopic patterns in projections, we tested whether V1 and V2 response
and classification weights were similar enough to enable cross-decoding of scenes in each
quadrant. This procedure involved correlating quadrant pixel values from every V1 scene
with every V2 scene (Spearman rho), resulting in a 24x24 scene correlation matrix (similar
to an RSA matrix). If the average Fisher-transformed correlation value of the matrix diag-
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onal was greater than the average off-diagonal value, then cross-decoding was successful.
Subjects were treated as random effects, thus scenes for V1 and V2 were randomly chosen
from subjects. This procedure was repeated 1000 times and used to calculate p-values for
cross-decoding significance in each quadrant.



Chapter 3

Relating feedback to V1 and V2 to
multiple levels of scene information.

Many cortical areas send feedback signals to early visual cortex. Areas with feedback con-
nections to primary visual cortex range in their computational complexity from specializ-
ing in low-, mid- and high-level visual features, associative processing, and multisensory
information. We utilized data previously described in Chapter 2 to relate responses in non-
feedforward stimulated subregions of V1 and V2 to computational models of visual pre-
dictions using Representational Similarity Analysis and encoding modeling. We found that
multiple levels of predictive information are present in the responses of non-stimulated V1
and V2. Interestingly, foveal portions of V1 and V2 displayed predictions related to low-
level visual properties, while more peripheral areas displayed higher-level properties. Our
findings suggest that feedback connections from different cortical areas to early visual cortex
might be retinotopically organized based on visual properties.

3.1 Introduction

Theories of predictive coding postulate that the brain predicts upcoming perceptual experi-
ences based on internal models. In predictive coding, the brain is essentially an inference
engine, aiming to optimize representations of the causes of sensory input (Mumford, 1991;
Lee and Mumford, 2003; Clark, 2013). Importantly though, the internal models which are
compared to sensory input are not central, but are distributed across the brain. In predictive
coding, feedforward and feedback signals are compared at every level of the brain’s hier-
archical systems (Friston, 2008; Bastos et al., 2012). Each hierarchical level attempts to
predict responses at each lower level (Rao and Ballard, 1999). As such, higher areas, such as
Inferior Temporal Cortex in the visual system, deal with more abstract information, whereas
lower areas, such as Primary Visual Cortex, deal with more concrete data.

However, feedback connections can skip levels in the hierarchy. For instance, V1 receives
feedback input from almost every visual processing area (Rockland et al., 1994; Rockland

35



Chapter 3. Relating scene information to feedback 36

and Hoesen, 1994; Muckli and Petro, 2013; Petro et al., 2014), and from a number of asso-
ciative and Parietal areas (Borra and Rockland, 2011). It also receives input from subcortical
structures (Markov et al., 2013a, 2014), and from sensory processing areas outside of the
visual system, such as auditory cortex (Rockland and Hoesen, 1994; Falchier et al., 2002;
Rockland and Ojima, 2003; Wang et al., 2008). The abundance of feedback connections to
V1 neurons indicates that in addition to retinal input, V1 neurons are capable of integrating
a diverse range of information.

In Chapter 2, we found that feedback to early visual cortex carries high-level scene cat-
egory information. To do so, we blocked feedforward input to subsections of retinotopic
visual cortex using a uniform visual occluder covering one quarter of the visual field (Smith
and Muckli, 2010) while participants viewed 24 real-world scenes. Scenes came from six
categories (Beaches, Buildings, Forests, Highways, Industry and Mountains), allowing us to
decode category information from fMRI responses in Occluded V1 and V2. We also found
that individual scenes could be decoded from Occluded responses, which posits an open
question: what other types of information are carried by feedback to early visual cortex?
In the current study, we aimed to further probe the information characteristics of feedback
to early visual cortex by comparing V1 and V2 responses to biologically-inspired compu-
tational models ranging in complexity alongside the global scene properties investigated in
Chapter 2. We were also interested in whether high-level information in feedback is unique,
or whether category information is shared by lower-levels of contextual information.

3.2 Results

We have expanded our analyses of the dataset described in Chapter 2 to compare Occluded
V1 and V2 responses to computational models. These biologically-inspired models coarsely
spanned the levels of complexity which exist in the visual system along the ventral Occiptial
pathway. The Weibull contrast model is inspired by lateral geniculate processing (Scholte
et al., 2009; Groen et al., 2013, 2012). The Gist algorithm carries orientation and spatial
frequency information, like Gabor filters in V1 (Oliva and Torralba, 2001). The H-MAX
model (Layer C2) is tuned to mid-level visual features (combinations of edge segments), and
is similar to the tuning of intermediate ventral stream areas such as V4 or posterior IT (Serre
et al., 2007). Lastly, global features, Category and Depth, modulate responses in the ventral
temporal parahippocampal place area (PPA; Kravitz et al., 2011).

By projecting RSA voxel weights into visual space in Chapter 2, we provided additional
detail to supplement our decoding results. We were able to see that in Non-Occluded scene
regions, features eliciting higher classifier weighting included edges and high-contrast ob-
jects, matching what is known about response properties in early visual cortex (Lee, 1996;
Kay et al., 2008; Freeman et al., 2013). By design, Occluded regions did not contain useful
visual features for decoding, yet projections depicted retinotopically consistent sources of
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information in Occluded responses. However, we did not find evidence that informative ar-
eas consistently resemble edge or object continuations into the Occluded regions. The scene
features relating to Occluded responses therefore remains an open question. To investigate
this question and to expand on results from our decoding and projection analyses, we related
scene representations from cortical areas and computational high-level models using RSA
and encoding models.

3.2.1 Relating Scene Representations in V1 and V2

Figure 3.1 shows the representational similarities of the six cortical regions with high-level
models (Category and Depth) and three popular biologically-inspired computational mod-
els: the Weibull contrast model, inspired by lateral geniculate processing (Scholte et al.,
2009; Groen et al., 2013, 2012); the Gist algorithm, similar to Gabor filters in V1 (Oliva and
Torralba, 2001); and the H-MAX model (Layer C2), matched to tuning properties of inter-
mediate ventral stream areas such as V4 or posterior IT (Serre et al., 2007). We assessed the
level of similarity in how each cortical area or model represented the scene set. To evaluate
this similarity, we calculated the rank-correlation (Kendall’s tau-a) of response differences
(Linear Discriminant Contrasts; Walther et al. 2016) in independent data sets. Individual
subject correlation values were bootstrapped to produce 95% confidence intervals for each
cortical area or model comparison. Grey bands indicate a noise ceiling, which is the compar-
ison of the representational structure in each cortical area with itself in independent data sets
(a replicability measure for the representational structure of each area; see Section 3.4.2).
Occluded areas had lower replicability levels than Non-Occluded areas, which was antici-
pated given their much lower response amplitudes and thus smaller first-level distances. All
regions had discrimination indices greater than zero (p ≤ 0.005, one-sample t-test, for each
cortical region across subjects), indicating that each cortical region was suitable for RSA
(Henriksson et al., 2015).

All areas reliably explained some of the variance of the representational structure of other
areas, and retinotopically corresponding V1 and V2 displayed particularly high correlations
in Non-Occluded areas (i.e. upper-right and lower-left visual field; see raised blue and red
bars in the center and right columns of Figure 3.1). Since correlations were calculated across
independent splits of data, similarity cannot be explained by intrinsic fluctuations (Henriks-
son et al., 2015). High correlation values therefore indicate that Non-Occluded portions of
V1 & V2 represent the scenes very similarly. In contrast, Occluded V1 represented scenes
more similarly to its Non-Occluded neighboring areas than to its Occluded V2 counterpart
(p < 0.05, paired-sample t-test, indicated by black lines below bars in Figure 5). Further-
more, we found that Occluded V2 exhibits the opposite pattern; it represents scenes more
like Occluded V1 than Non-Occluded areas.

In addition to detailed characterizations of inter-ROI relationships, RSA also allows us
to compare cortical ROIs and computational and high-level models. Decoding results were
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Figure 3.1: Similarity of six cortical regions of interest and computational models measured with Repre-
sentational Similarity Analysis. Split-quarter (2 runs in each quarter) Linear Discriminant Contrast distances
were used to define first-level representational structures. Second-level rank correlations were calculated us-
ing split-half Kendall’s tau-a between different areas and models (in independent datasets). Individual subject
correlation values were bootstrapped to produce 95% confidence intervals. Grey bands indicate a replicability
noise ceiling, which is the comparison of the representational structure in each cortical area with itself in inde-
pendent sets of data. Black lines below cortical regions indicate significant differences in correlations based on
a paired-sample t-test (p<0.05). See also Figure A.3.

limited to comparisons of discrete scene characteristics (e.g. Beaches vs. Forests, Near vs.
Far, etc.), but using RSA, we can compare cortical responses to models with continuous out-
puts (contrast energy, orientation tuning, etc.). Figure 3.1 makes it easy to see which models
explain a portion of each region’s representational variance and which are unrelated. Suc-
cinctly, the Gist orientation model is unrelated to the representational structure of Occluded
areas, and the high-level H-Max model is unrelated to the Upper-Right visual field. All other
model comparisons explain a portion of cortical representations in our ROIs. Based on H-
Max results, early visual cortical responses contain some high-level information, and this
high-level information is invariant to the availability of feedforward information. Further,
our results suggest that feedback to V1 and V2 does not contain orientation information, as
the Gist model does not explain any variance of Occluded representations.

Importantly, scene depth can be more detailed than just a ’Near’ or ’Far’ characterization.
We therefore conducted a behavioral experiment where 10 subjects rated the scene depths
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of each of our 24 scenes in meters (see Appendix A; Figure A.3). With the addition of be-
havioral depth ratings, we could compare regions to an absolute depth model (Figure 3.1, far
right bar in each plot). This model explained more representational variance than any other
model for the upper visual field of both V1 and V2 (center column of plots). In the lower
visual field, Non-Occluded V1 and V2 were negatively correlated with absolute depth (right
column), meaning that these areas had greater response differences to scenes with similar
depths than to those with dissimilar depths. In the Occluded regions, V2 also exhibited this
negative relationship, while the representational structure of V1 was unrelated to absolute
depth (left column).

The negative correlation of Occluded V2 with depth that we observe in RSA is indicative
of information about depth, even if it cannot be used for decoding (our discrete Depth model
did not exhibit a negative correlation). So, could depth information be fed back to V2, but
not fed back to V1? If this is the case, we would expect this effect to be as strong, or
perhaps stronger, when the upper visual field is occluded based on the upper-right quadrant’s
high correlation values with the absolute depth model in our main experiment. To examine
this possibility, we analyzed our second fMRI experiment, where the upper-right quadrant
was occluded, using RSA. We found that Occluded V1 and V2 were both unrelated to the
absolute depth model in these data (not shown). Non-Occluded quadrants (both V1 and V2)
had negative correlations with the model, matching results from our main experiment in the
lower visual field. Depth information is therefore not consistently fed back to V1 or V2
across the visual field and the lower visual field consistently has a negative relationship with
scene depth.

Lastly, high-level scene characteristics are intrinsically linked to low-level visual prop-
erties, as evidenced by the impressive capabilities of feedforward deep-learning networks to
represent scene categories in their higher layers simply by multiple stages of non-linear sta-
tistical summation (LeCun et al., 2015). To investigate whether low-level confounds could
explain the high-level effects in our data, we filtered Occluded V1 and V2 RSA distances (as
used to create Figure 3.1) by visible low-level properties of scenes (Weibull and Gist model
distances from Non-Occluded quadrants) using a GLM. We then ran a separate GLM with
Category and both Depth models as predictors on the residuals from this filtering process,
which can be thought of as scene decoding that cannot be explained by available low-level
visual information. Category was a significant predictor in this analysis (p < 0.01 in Oc-
cluded V1 and V2), and as expected, Depth was not. Therefore, high-level Category effects
in our data cannot be explained by low-level confounds alone.

3.2.2 Voxel-wise Information Encoding

We have investigated and characterized some of the properties of distributed activation pat-
terns in Occluded V1 and V2 using multi-voxel pattern analyses in Chapter 2 and in Section
3.2.1. We were also interested in whether the information portrayed by computational mod-
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els and high-level scene characteristics are related to the responses of individual Occluded
voxels. We investigated this possibility by mapping Weibull, Gist, H-Max, Category and
Depth information onto individual voxel responses using encoding models.

In each voxel that was included in previous analyses, we calculated the responses of the
three computational models based on to the portion of each scene spanned by the voxel’s
pRF. This process resulted in pRF-specific predictors for each voxel as well as two global
predictors - Category and the continuous Depth model defined in Section 3.2.1. In the case
of Occluded voxels, models were defined using the portion of the scene hidden by the oc-
cluder. Models were fitted using partial least squares (PLS) regression to the voxel responses
(GLM β weights from previous analyses) to twelve scenes and tested on the responses to
the remaining twelve scenes. This process was repeated over 1000 cross-validation folds.
We used PLS regression because it is capable of dealing with the number of predictors being
much greater than the number of training examples. PLS regression is also capable of sep-
arating predictors into covarying components that are related to response variability (Geladi
and Kowalski, 1986),

In our analyses, we were particularly interested in the unique contributions of each
model. This was because models inevitably share information, and shared information can-
not help us determine the importance of each model to overall response predictions. Here,
we quantified the unique contributions of each model by calculating their semi-partial cor-
relation statistics, which provide the explanatory power of each model with all other models
held constant. Figure 3.2 (left plot) displays the average unique model information for each
region of interest. Non-Occluded areas are dominated by low-level information, as the corre-
lations are highest for Weibull and Gist models, and decrease through the mid-level H-Max
model and high-level Category and Depth predictors. This finding is very much in line with
textbook descriptions of early visual cortex, which describe V1 and V2 responding to low-
level features such as oriented edges (Hubel and Wiesel, 1959; Lee, 1996; Olshausen and
Field, 2005). In Occluded V1 and V2, mean correlation values for all models were similarly
low for all models.

Universally-low information levels in Occluded regions could indicate that very little
information is present in the responses of individual Occluded voxels. However, we are able
to assess the significance of individual voxels’ information levels because we cross-validated
our models 1000 times. The middle plot of Figure 3.2 shows the percentage of each region
that meets statistical threshold (p<0.05) for positive correlation values. Here we see that more
Occluded voxels encode Category information than any other type of information. Further,
the percentage of Occluded V1 and V2 with significant Category encoding is the same as in
Non-Occluded areas.

There is significant encoding of information in individual Occluded voxels, though only
in a small proportion of V1 and V2. To understand the information of this population of
voxels, we next examined the correlation values of voxels which significantly encode any
type of model information (Figure 3.2, right plot). The profiles of Non-Occluded voxels re-
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Figure 3.2: Voxelwise unique model information encoding. [Left] Unique model information is displayed as
the average of all individual voxel semi-partial correlations of model predictors while all other models are held
constant. Solid lines indicate mean correlation and shaded areas indicate 95% confidence intervals (calculated
by 1000 bootstrap samples of the mean). [Center] The percentage of voxels in each ROI displaying significant
individual voxel encoding for each model (p < 0.05; calculated via cross-validated semi-partial correlation 1000
random splits of training and testing scenes). [Right] Unique model information of voxels with significant
encoding for any model.

mained similar to those of the full regions, while the information profile of Occluded regions
changed dramatically. These Occluded voxels still display less low-level information than
Non-Occluded regions, but have more high-level information, even compared to the amount
of unique high-level information in Non-Occluded areas.

We have shown that there is increased high-level information in the responses of a small
proportion of Occluded voxels, so we next investigated whether informative voxels in differ-
ent subjects occupy similar retinotopic space. We projected semi-partial correlations from
each model into visual space following the same method used in Chapter 2 to project RSA
weights. Figure 3.3 displays projections for all voxels and for voxels with statistically sig-
nificant encoding, matching voxels in the left and right panels of Figure 3.2, respectively.
Different areas of Occluded regions encode for model information consistently across sub-
jects (p<0.01, FDR corrected). In both V1 and V2, the low-level Gist model (and to a certain
extent, the LGN-type Weibull model) occupy more foveal areas of the occluded scenes. In
V1, the high-level models (H-Max, Category and Depth) occupy peripheral areas, starting
at approximately 5◦ visual angle from fixation. In V2, high-level model information is not
retinotopically localized across subjects, as only a small patch reaches significance for the
depth model.

We also asked whether voxels that have significant encoding for model information at an
individual voxel level are retinotopically similar across subjects (right plots). In both V1 and
V2, this is only true for high-level models (right images below), with V1 patches appearing
in a segmented ring containing information about H-Max, Category and Depth at approxi-
mately 5◦ visual angle. V2 patches only appear for Category and Depth and span much of
the occluded space. Overall, these results show that high-level information is encoded at a
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Figure 3.3: Projections of V1 and V2 unique model information encoding into visual space. Fisher-
transformed semi-partial correlations for each model were projected into visual space, resulting in one map
of unique model information in each subject. A two-tailed t-test was conducted across subjects at each pixel
location in visual space to obtain model-specific t-value maps. Maps are overlayed together and colored outlines
signify areas reaching a p<0.05 threshold (FDR corrected).

statistically significant level by individual voxels not receiving feedforward input. In V1 and
V2, these voxels largely reside in peripheral areas, suggesting that the types of information
which make up predictions fed back to early visual areas during occluded scene processing
are not homogenous across the visual field and that there may be differing roles of feedback
between foveal and peripheral areas.

3.3 Discussion

Our data challenge feedforward models of visual processing in early visual cortex; V1 and
V2 response patterns to visual stimulation are different than would be predicted by common
computational models in Occluded regions. Models would predict identical responses to
the white occluder because they do not account for contributions from contextual feedback.
However, we observed activation patterns in Occluded regions that were informative for de-
termining individual scene and category information about the surrounding images (Chapter
2), thus indicating that contextual feedback to early visual cortex is scene-specific, yet ex-
hibits high-level structure. In the current chapter, we found evidence that multiple levels
of predictive information about occluded portions of scenes are present in the responses of
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Occluded V1 and V2. Such findings are consistent with descriptions of the visual system
as a hierarchical inference network, with V1 acting as a high-resolution geometric buffer or
blackboard (Lee et al., 1998; Lee and Mumford, 2003). In other words, V1 preserves scene
information for reference in calculations where high-resolution image details or spatial pre-
cision are required. At first glance, this description seems incongruent with the idea that V1
can depict visual information that is missing or hidden from view, such as that masked by
the occluder in our study. However, feedback to V1 depicts detailed internal models that
share information characteristics with expected or predictable feedforward input (Mumford,
1992). Due to the large number of areas that send feedback to V1, it is logical that these
internal models span multiple levels of visual complexity.

We projected classifier weights into visual space in Chapter 2, showing that informa-
tive Occluded voxels occupy retinotopically similar areas of the visual field across subjects.
These areas did not correlate with edges which extend into the occluded area. Anatomical
tracing studies have shown that feedback terminations do not correlate with the compart-
mental organization in V1 and V2 and suggest that feedback might play a distinct functional
role from feedforward processing in early visual cortex (Rockland and Hoesen, 1994; Borra
and Rockland, 2011). Our RSA results support the possibility that in the absence of mean-
ingful feedforward information, V1 and V2 responses no longer correlate with orientation
properties of the occluded portions of scenes. This finding might suggest that edge detection
is only a feedforward property of early visual areas, and not of information carried by feed-
back. However, results from Occluded V1 and V2 encoding models showed that orientation
information was an important aspect of Occluded predictions in the fovea.

What could the source of these discrepant results be? One possibility lies in the retino-
topic organization of the Gist model compared to early visual cortex. Due to cortical mag-
nification, the density and resolution of cortical scene sampling is much higher in the fovea
than in the periphery (Duncan and Boynton, 2003). In the Gist model, this is not the case -
scenes are split into a 4 × 4 grid, where orientation and spatial frequency are summarized
within each of the 16 evenly-spaced receptive fields. Encoding models in our study calcu-
lated orientation and spatial frequency information using the Gist model within each voxel’s
pRF, thus more closely matching the sampling of V1 and V2. These results highlight the
importance of retinotopic structure when assessing model similarity to early visual cortical
responses.

By measuring the representational similarity between different cortical regions and com-
putational models, our analyses aimed to characterize properties of distributed response pat-
terns associated with feedback to V1 and V2. We found that the relationships between Oc-
cluded V1, Occluded V2, and their Non-Occluded counterparts do not match. This result
refined our conclusions about differing projections of classification weights into visual space
in Occluded V1 and V2. Rather than simply not being similar, which is the only conclusion
we could make from the negative result in Chapter 2, we can now see that Occluded V1 is
more related to its Non-Occluded counterpart than Occluded V2. V1 therefore might receive
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more contextual input from the rest of the visual field than V2 does, thus adding an expla-
nation for the higher SVM decoding results in V1 compared to V2 in Chapter 2. Occluded
V2 was most similar in its scene representations to Occluded V1, suggesting that V2 might
receive more input from a subsection of V1 that is only receiving feedback signals than it is
receiving feedback from other areas.

The computational models that we compared to cortical representations are inspired by
biological visual systems, but they process scene statistics in a strictly feedforward man-
ner. High-level feature detection has enabled deep learning networks to achieve incredibly
high performance on a number of natural signal processing tasks including visual object and
speech recognition (LeCun et al., 2015). Still, such networks predominately use feedforward
architectures, and would therefore perform sub-optimally when presented with partially oc-
cluded visual scenes because they are unable to recognize occluded portions of the visual
field as missing information. Occluded areas would be integrated identically to the rest of
the scene, but without contributing any useful information. Recent work has shown that by
including feedback and lateral connections, convolutional networks are able to outperform
those with only feedforward connections on tasks involving occlusion (Spoerer et al., 2017).
Additionally, networks utilizing synchronization (a form of feedback) by allowing complex
weights between network nodes can disentangle occluded shapes (Reichert and Serre, 2013).
We have shown that Occluded V1 and V2 responses contain predictive information about
missing feedforward input. Combined with these recent neural network results, we suggest
that models of early visual cortex would benefit from the addition of feedback components.
Further development of such networks will explain aspects of cortical responses not yet cap-
tured by current computational models, and may provide insight to mechanisms of feedback
processing in early visual cortex.

3.4 Methods

3.4.1 fMRI Data

Analyses were performed on the 18-subject fMRI dataset described in full in Section 2.4.
Functional scanning was aligned to maximize coverage of early visual areas (18 slices; voxel
size: 3mm, isotropic; 0.3mm interslice gap; TR = 1000ms; TE = 30ms; matrix size = 70x64;
FOV = 210x192mm). Eight runs consisted of six blocks of eight sequences of stimulation
with intervening fixation periods, plus two mapping blocks (total scanning time per run was
804s). Each stimulation sequence lasted 120s, with 12s fixation at the beginning and the
end of each series. Stimuli included twenty-four real-world scenes from six categories were
chosen from a dataset compiled by Walther et al. (2009) that were presented with the lower-
right quadrant occluded by a white box.
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3.4.2 Representational Similarity Analysis

An iterative split-half correlation method (Kravitz et al., 2011; Kriegeskorte et al., 2008) was
applied to each subject’s data where runs were split into two halves (four runs in each) and
concatenated. GLM analyses were then conducted to estimate condition-based responses to
each scene in the respective half of the data and repeated for the 35 possible combinations of
data splits. Cross-correlation was then used to establish the similarity between the reponse
patterns of each pair of scenes. A Fisher transformation was applied to each correlation value
before combining correlations into group analyses, and the transformation was reversed for
results presentation.

We assessed second-order correlations of dissimilarity matrices for Occluded and Non-
Occluded V1 and V2 ROIs, idealized Category and Depth models, an Absolute Depth model,
and three computational models: Weibull (Groen et al., 2013, 2012), Gist (Oliva and Tor-
ralba, 2006), and H-MAX C2 (Serre et al., 2007). Kendall’s tau-a was calculated in a
cross-validated fashion where all comparisons were made between independent sets of data
(split-quarter Linear Discriminant Contrast (Walther et al., 2016) distances in first-level and
split-half Kendall’s tau-a in second-level). This process avoids the increased correlations
associated with intrinsic fluctuations reported in Henriksson et al. (2015). Kendall’s Tau-a
was used because we were comparing response patterns to models that predict rank-ties be-
tween scenes (Nili et al., 2014). Values from each possible data fold were averaged within
subjects, as folds are not independent from each other (Nili et al., 2014). Individual subject
correlation values were then bootstrapped to produce 95% confidence intervals. Grey bands
indicate a noise ceiling, which is the comparison of the representational structure in each
cortical area with itself in independent sets of data. This is computed in the same way as
other comparisons and can be thought of a reliability measure for the representational struc-
ture of each area. To confirm the suitability of these data for second-level RSA, a cortical
region discrimination index was calculated for each area (Henriksson et al., 2015). This in-
dex was calculated by subtracting the off-diagonal values involving the cortical area from
the replicability value for each area, calculated for each subject individually.

3.4.3 Encoding Models

In each voxel, we calculated the responses of three computational models (Weibull, Gist, and
H-MAX; see individual sections for detail) based on to the portion of each scene spanned by
the voxel’s pRF. This process resulted in pRF-specific predictors for each voxel as well as
two global predictors - Category and the continuous Depth model defined in Section 3.2.1.
In the case of Occluded voxels, models were defined using the portion of the scene hidden
by the occluder. In total, each model consisted of 2041 voxel-specific predictors (2 Weibull,
32 Gist, 2000 H-MAX, 6 Category, and 1 Depth predictor).

Models were fitted using partial least squares (PLS) regression (via the SIM PLS algo-
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rithm; de Jong, 1993) to voxel responses (GLM β weights from previous analyses) to twelve
scenes and tested on the responses to the remaining twelve scenes. PLS regression was
used because it is capable of dealing with the number of predictors being much greater than
the number of training examples by separating predictors into covarying components that
are related to response variability (Geladi and Kowalski, 1986). This process was repeated
over 1000 pseudo-randomly chosen cross-validation folds where training and testing sets
contained even numbers of category exemplars (the only discrete variable in the model).

In each fold of the data, we calculated semi-partial correlation statistics for each individ-
ual model:

r1(2.3) =
r12 − r13r23√

1− r2
23

(3.1)

Where r12 is the Pearson correlation of testing data and predicted responses based on
the model of interest, r13 is the correlation of testing data and predicted responses based on
the remaining four models, and r23 is the correlation between predicted responses from the
model of interest and the predicted responses from the remaining four models. The use of
semi-partial correlations, as opposed to squared semi-partial correlations which can be used
for variance decomposition, was that r1(2.3) values are zero-centered, meaning that we could
perform significance testing on the 1000 cross-validation folds to see if correlations were
greater than zero. Further, correlation values are t-distributed after a Fisher Z transformation.
This allowed us to validly calculate mean values within regions of interest and to perform
t-testing of these values in projection analyses.

3.4.4 Weibull Model

The Weibull image contrast model measures the distribution of contrast values for an image
and seeks to emulate the X and Y cells in the Lateral Geniculate. It has a two-dimensional
output. We used the Weibull image contrast model outlined in Groen et al. (2012, 2013) with
the field of view for estimation of the beta and gamma parameters set to 1.5 and 5 degrees,
respectively.

For encoding models, Par and Mag components of the model (X and Y cell models,
respectively) were calculated as maps. Voxelwise contrast energy (the first component of the
model) was estimated as the weighted mean of Par maps based on each voxel’s pRF:

x̄ =

n
∑

i=1
wixi

n
∑

i=1
wi

(3.2)

Where x represents the Par map values and w represents the values of each voxel’s two-
dimensional pRF function. Spatial coherence (the second component of the model) was
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estimated as the weighted variance of the Mag maps based on each voxel’s pRF:

σ̂
2
w =

n
∑

i=1
wi (xi − x̄)2

n
∑

i=1
wi

(3.3)

Where x represents the Mag map values, x̄ is the weighted mean of the Mag values based
on the pRF, and w represents pRF values.

3.4.5 Gist Model

The Gist algorithm (Oliva and Torralba, 2001) measures the distribution of oriented bandpass
Gabor filter responses in localized portions of images. Our model consisted of 16 locations
(4 x 4 grid), 8 orientations, and 4 spatial frequencies. This model had a 512-dimensional
output.

For encoding models, we calculated maps for each feature (8 orientations and 4 spatial
frequencies), resulting in 32 maps. Voxelwise Gist features were then calculated as the
weighted mean of the maps based on each voxel’s pRF (Equation 3.2).

3.4.6 H-MAX Model

The H-MAX model is a hierarchical model which gradually combines visual features of
higher complexity. Here, we used the output of its fourth sequential stage, C2. The first two
stages (S1 and C1) correspond to the simple and complex cells or early visual cortex. Stages
S2 and C2 use the same pooling mechanisms as S1 and C1, but pool from the C1 stage and
respond most strongly to a particular prototype input pattern. Prototypes were learned from
a database of natural images outside of this study (Serre et al., 2007). The output of this
model had 2000 dimensions.

In encoding models, S2 layer maps were defined and the maximization operation used
to calculate C2 layer features was limited to the region of the image within each voxel pRF
(defined as 2σ from pRF center). This resulted in 2000 predictor channels per voxel.

3.4.7 Model redundancy measurements

Due to the large number of model predictors, before fitting model data to voxel responses,
we tested the level of redundancy within Gist and H-MAX models. This analysis was per-
formed by calculating Gist and H-MAX features in randomly chosen voxel pRFs and images,
100,000 times. Voxels were chosen from any subject and ROI in our analyses, and images
were chosen from the 131,000 image SUN database (Xiao et al., 2010). We then performed
principal component analysis to determine what dimensionality was required to describe
these models.
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We found that the Gist model was moderately redundant, as approximately 96% of the
model’s variance could be described by 15 components (32 original predictors). The H-
MAX model was highly redundant, with 96% of its variance being explained by 14 compo-
nents (2000 original predictors). Based on these findings, we included both models in voxel
response models since PLS regression works to combine these highly covarying separate
predictors.

3.4.8 Absolute Depth Model

To quantify the depths of our scenes, 10 subjects were asked to rate in meters the absolute
depth for each of our 24 scenes. To ensure we were probing the perceptual depth of each
scene, participants were given minimal guidance on the definition of the term “scene depth.”
Depth ratings were converted to a log10 scale, bootstrapped via 1000 samples of the mean,
and a normal distribution was fit to the resampling histogram for each scene. This produced
probability distributions for each scene’s depth, similar to depth ratings in Torralba and Oliva
(2002).

3.4.9 Retinotopic projections

Using each voxel’s two-dimensional Gaussian response, as estimated in our pRF analysis,
we projected semi-partial correlation statistics into visual space. Voxel pRF functions were
multiplied by their respective correlation values for each model and summed across voxel
pRFs within each subject’s data. We then performed a two-sided t-test across subjects at ev-
ery pixel location in the visual field to assess whether correlations were significantly different
from zero. Contours define areas meeting statistical threshold (FDR corrected to q<0.05).
This procedure was repeated for each model.



Chapter 4

Cortical feedback to superficial layers of
V1 contains predictive scene information.

Cortical neurons receive a combination of feedforward and feedback input, and these input
streams arrive in different cortical layers. Many experiments have progressed our under-
standing of the feedforward features that modulate early sensory areas, but relatively little is
known about the feature space that drives cortical feedback channels. We blocked feedfor-
ward input to subsections of retinotopic visual cortex by occluding one quarter of the visual
field while participants viewed 384 real-world scenes and recorded V1 responses using high-
resolution 7T fMRI (0.8mm3). We provide evidence that V1 responses exhibit predictive and
contextual response properties in addition to feedforward orientation and spatial frequency
properties typically associated with V1 responses and that these predictive and contextual re-
sponses are primarily associated with superficial layers of cortex. Our findings suggest that
feedback connections terminating in superficial layers provide V1 neurons with contextual
information not available via localized feedforward input.

4.1 Introduction

Neuronal activity in nearly all cortical regions depends on a combination of feedforward
and feedback signals (Bastos et al., 2012; Gilbert and Li, 2013; Markov et al., 2013b). In
early visual cortex, neurons receive feedforward sensory signals from the retina and receive
modulatory predictive signals through lateral connections and cortical feedback (Smith and
Muckli, 2010; Phillips et al., 2015). Only 5% of input to V1 neurons corresponds to feedfor-
ward retinal input, and only 20% of V1 neuronal activity can be explained by retinal input
(Carandini, 2005; Muckli and Petro, 2013). V1 responses must therefore be highly influ-
enced by feedback and lateral connections. Substantial progress has been made mapping the
feedforward features that modulate early visual cortex, but measuring the feature space that
drives cortical feedback channels presents a significant challenge for systems neuroscience.

By integrating feedforward and feedback signals, the brain can combine sensory retinal

49
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input with context and knowledge from internal models of the world (Friston, 2008; Clark,
2013). This integration is remarkably adaptive and flexible because it occurs at the level of
local microcircuits throughout sensory and associative cortex rather than at a more central-
ized brain location (Mumford, 1992; Spratling, 2008; Bastos et al., 2012). Feedforward and
feedback signals originate and terminate in different cortical layers (Markov and Kennedy,
2013), with feedforward connections coming to middle layers of cortex and feedback com-
ing to superficial and deep layers of cortex. Human neuroimaging experiments have assessed
feedback responses in different cortical depths using high-resolution ultra high-field MRI
(Muckli et al., 2015; Kok et al., 2016). However, the information content of these feedback
responses remains an open question.

In Chapter 3, we found that multiple levels of predictive information are present in the
responses of non-stimulated V1 and V2. To do so, we blocked feedforward input to sub-
sections of retinotopic visual cortex using a uniform visual occluder covering one quarter
of the visual field (Smith and Muckli, 2010) while participants viewed real-world scenes.
We related responses in Occluded V1 and V2 to models of visual predictions to uncover
what types of information were present in Occluded responses. In the current study, we ex-
tended this question and asked whether feedforward sensory input and predictive feedback
signals could be read out from different layers of cortex, and what types of information these
two inputs to early visual cortical neurons contain. By utilizing an occlusion paradigm in
combination with recordings from high-resolution fMRI, we compared depth-specific V1
responses to sensory- and prediction-based computational models and to high-level scene
category information.

4.2 Results

We exploited the retinotopic organization of visual cortex and blocked meaningful sensory
input to a portion of primary visual cortex by occluding one quarter of visual real-world
scenes (Smith and Muckli, 2010). We recorded brain activity using high-resolution 7T fMRI,
allowing us to assign functional voxels to six different cortical depth layers (Muckli et al.,
2015). To uncover the information properties of different cortical depths, we mapped sen-
sory and predictive information processing onto voxel responses to 192 Occluded and 192
Non-Occluded scenes using encoding models. In each voxel, we defined voxel-specific pre-
dictors relating to feedforward and feedback information streams. Feedforward models were
defined as model responses to scenes as they were presented. In other words, if a V1 neu-
ron’s receptive field was located in the lower-right quadrant of the scenes, it would receive
meaningful sensory input during Non-Occluded scene presentations, but would not receive
meaningful input during Occluded scenes. For feedforward models, we calculated the re-
sponses of two low-level computational models (Weibull and Gist) based on the portion of
each scene spanned by the voxel’s pRF exactly as scenes were presented (Figure 4.1). The



Chapter 4. Modelling layer-specific feedback V1 responses 51

�

Figure 4.1: Creation of voxel-specific feature timecourses. The process of creating feature-based predicted
timecourses is shown for one voxel (the pRF of this example voxel is shown in red). Each stimulus image was
decomposed into feedforward and feedback Weibull and Gist feature maps. Feedforward maps were based on
the image as it was presented, with the occlusion in place. Feedback maps treated the image as if it had not been
occluded, and therefore feedback features were based on possible predictive voxel responses. Additionally, a
high-level category model based on the SUN database hierarchy was included (Xiao et al., 2010). Feature
responses were used to create predicted timecourses, which were convolved with a hemodynamic response
function. These feature timecourses were used for encoding models.

Weibull model is based on contrast energy and spatial coherence information (Groen et al.,
2012, 2013), and the Gist model is orientation and spatial frequency-based (Oliva and Tor-
ralba, 2001, 2006).

Feedback models aimed to uncover predictive voxel responses. These models treated
each scene as if it was Non-Occluded even if the scene was presented with occlusion. We
calculated pRF-specific responses of the Weibull and Gist models based on Non-Occluded
versions of each scene. Additionally, a high-level Category model was also included as a
contextual feedback model. Since the occluder only ever appeared in lower-right quadrant
of scenes, only voxels with pRFs in that area included predictive feedback (Weibull and
Gist) models. In Non-Occluded areas, predictors for feedforward and feedback models were
identical. Models were fitted to voxel time courses and tested on left out data. To determine
the amount of unique information each model contributed to voxel predictions, we calculated
semi-partial correlation statistics for each individual model.

4.2.1 Depth-dependent information encoding

Figure 4.2 displays average voxelwise unique model information encoding in six cortical
depth ROIs of three subjects. These values have been corrected for fMRI amplitude increases
toward the cortical surface in gradient echo images by normalizing by the mean image re-
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Figure 4.2: Voxelwise unique model information encoding by cortical depth. [Left Column] Unique model
information is displayed as the average of all voxel-model semi-partial correlations with standard error at 6
cortical depths [10%, 26%, 42%, 58%, 74%, 90%], with Layer 1 being labeled as the deepest layer and Layer
6 as the most superficial. Layers are normalized by their mean image response to all Non-Occluded images.
[Right Column] The percentage of each ROI displaying significant voxelwise encoding for each model (p <
0.05; calculated via 1000 cross-validation splits of training and testing data).
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Figure 4.3: Depth-specific projections of V1 voxels with significant model information encoding into
visual space. Voxels from Figure 4.2, bottom row, are projected into visual space by summing their 2D
Gaussian pRF functions. Feedback Weibull and Gist models (rows 3 & 4) only have Occluded components
because these models do not exist for Non-Occluded scene presentations.

sponse to all Non-Occluded images within that layer (uncorrected values are displayed in
Figure B.1). In Subject 1, all layers show more information for feedforward models than
for feedback models, and Gist is the more informative of the two feedforward models. This
makes sense given V1’s prominent orientation and spatial frequency sensitivity (Hubel and
Wiesel, 1959; Kay et al., 2008). In Subjects 2 and 3, Category contributes the most unique
information of any model. The feedforward Gist model contributes equal unique information
in Subject 3 and much less information in Subject 2. Importantly though, all feedback mod-
els display unique information, and the amount of feedback information largely increases
from deep to superficial layers, where many feedback connections to V1 terminate (Douglas
and Martin, 1991; Felleman and Van Essen, 1991; Petro and Muckli, 2017).

The right column of Figure 4.2 shows the percentage of voxels in each layer with signif-
icant model encoding. All models have increasing percentages of significant voxel encoding
from deep to superficial layers (these plots were not normalized by response amplitude),
and notably, there is significant encoding for all feedback models in the most superficial
layer of the Occluded area. We projected voxels with significant encoding from Subject
1 (the subject with most bias toward feedback information encoding) into visual space by
summing their pRFs (Figure 4.3). Voxels which code feedforward information are largely
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Figure 4.4: Depth-specific feedforward and feedback voxel tuning. Voxel tuning density plots are shown
for each cortical depth separately. Tuning was calculated by contrasting the unique information encoding of
feedforward models to that of feedback models for each voxel. Probability density functions were defined for
each cortical depth ROI using kernel density estimation.

homogeneous within the visual field and increase through layers, as observed in Figure 4.2.
Feedback Weibull and Gist models only have Occluded components, but importantly, vox-
els with significant encoding for these models do not have pRFs at the edge of the occluder,
thus increasing confidence that voxels receive predictive signals from feedback. Category in-
formation encoding is also generally homogeneous across the visual field, and these voxels
cover much of the Occluded area.

4.2.2 Individual voxel tuning to feedforward and feedback signals

We have shown that the amount of unique feedforward and feedback information differs
across layers, but it is unclear how feedforward and feedback information is balanced in
individual voxels. To investigate individual voxel tuning to sensory and predictive signals,
we converted the previously calculated semi-partial correlations to compositional values by
dividing each model’s value by the sum of all correlation values within each voxel. We were
then able to sum the two feedforward models to get a measure of the total tuning toward
sensory input. The same was done with feedback models to get tuning toward contextual
and predictive signals. Figure 4.4 shows the voxel tuning histograms for each cortical depth.
In Subject 1’s Occluded area, voxels in deep layers are more likely to be tuned toward feed-
forward models, with a peak probability of more than 90% feedforward tuning. Voxels in
superficial layers are tuned more toward feedback models, with approximately 33% feedback
tuning. Subject 2 also shows a trend of feedforward tuning in deep layers which gradually
become more tuned to feedback signals in superficial layers. However, this effect is not as
strong in Subject 2 as it is in Subject 1. Subject 3 does not show any clear differences in
layer tuning.

One potential source of these differences is the size of each subject’s Occluded subsection
of V1. Subjects had 1502, 791, and 335 voxels in their Occluded cortical patches, respec-
tively. Additionally, Subject 3 had substantially more vasculature in the occluded patch than
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the other two subjects, resulting in substantially smaller superficial layer ROIs than other lay-
ers (73 voxels in the most superficial layer). These differences suggest that a larger sample
size is required to fully understand differences in feedforward and feedback tuning between
cortical layers.

4.3 Discussion

Our current understanding of cortical feedforward and feedback connectivity and function
is still in its infancy (Markov et al., 2014). Anatomical studies have made great strides in
mapping feedback connectivity patterns to different layers of cortex (Felleman and Van Es-
sen, 1991; Rockland et al., 1994; Rockland and Ojima, 2003; Markov and Kennedy, 2013;
Markov et al., 2013b), but how these patterns relate to brain function remains a largely open
question. A promising theory points to the segregated arrival of feedback and feedforward
inputs to the apical and basal dendrites of cortical layer 5 pyramidal neurons (Larkum, 2013).
This theory posits that in addition to feedforward action on basal dendrites in middle to deep
layers of cortex, pyramidal neuron activity is affected by feedback inputs arriving to apical
tuft dendrites in superficial layer 1, which trigger Ca2+ spikes. Through a mechanism known
as backpropagation-activated Ca2+ spike firing (BAC firing), these Ca2+ spikes can convert
a single somatic output spike into a 10 ms burst containing 2–4 spikes (Larkum et al., 1999),
meaning that feedback inputs might have a substantially greater role in determining the firing
of pyramidal neurons than previously understood (Larkum et al., 2009).

High-resolution fMRI provides a valuable tool for the examination of feedback in human
cortex. fMRI is sensitive to dendritic energy consumption that might not translate to spiking
activity and thus not appear in cellular recordings (Petro and Muckli, 2017). Further, it
provides sub-millimeter resolution of human cortex at the level of layers (Olman et al., 2012)
and columns (Yacoub et al., 2008) - important features to separate feedforward and feedback
processes occurring in different layers. In the current study, we utilized the spatial resolution
of high-resolution 7T fMRI to record cortical depth-specific V1 responses while we blocked
feedforward input to subsections of retinotopic visual cortex by occluding one quarter of
the visual field (Smith and Muckli, 2010; Muckli et al., 2015). Participants viewed 384
real-world scenes, allowing us to build models of individual voxels based on feedforward
signals of local sensory input as well as predictive and high-level feedback signals. We
have shown in two of three subjects that V1 responses exhibit predictive and high-level
response properties in addition to feedforward orientation and spatial frequency properties
typically associated with V1 responses. Furthermore, predictive and high-level responses
were associated primarily with superficial layers of cortex, supporting the known anatomy
of connections believed to deliver predictive signals (Felleman and Van Essen, 1991; Friston,
2008; Bastos et al., 2012).

An important factor in analyzing high-resolution fMRI data is the contribution of vascu-
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lature, particularly when examining differences between cortical layers. Data from our third
subject had substantial vasculature in their Occluded patch of cortex, and this adds a poten-
tial source of noise to analyses. Interestingly, this topic has been very recently addressed in a
critical assessment of 7T methods (Kay et al., 2018), indicating that dealing with vasculature
poses a significant challenge in 7T fMRI studies. Careful examination of vascular patterns
is clearly important for intensive 7T fMRI studies, and in studies of occluded cortical areas,
it will be useful to map out these patches of cortex prior to collection of large-scale data.

While it is appealing to imagine that the mere use of layer-specific measures of human
brain activity allows access to feedback signals, we have shown that studying feedback re-
quires experimental manipulations aimed at separating feedforward and feedback signals.
Figure 4.4 shows that the tuning of voxels toward feedforward or feedback signals is differ-
ent between cortical layers of V1, but importantly it also shows that this is only the case for
Occluded voxels. In Non-Occluded voxels, all cortical layers have similar tuning. The mech-
anism underlying this observation might be related to BAC firing. Larkum (2013) explains
that the conceptual importance of this mechanism is that pyramidal neurons are able to detect
coincident input to basal and apical dendritic regions. This detective capability provides the
cortex with an associative mechanism to combine feedforward and feedback information.
In our data, voxels in Non-Occluded V1 have matching sensory and predictive signals, and
could therefore have substantial energy consumption in middle and deep layers to sustain
bursting activity. These signals are inseparable from feedback responses due to matching
dendritic energy consumption in superficial layers. However, in Occluded voxels, the same
apical dendritic energy consumption is not accompanied by BAC firing, thus allowing us to
isolate information associated with feedback.

We have shown that occlusion of real-world scenes triggers feedback signals to early vi-
sual cortex about scene information not available via localized feedforward input, and that
such signals can be detected and described using cortical depth-specific fMRI. These find-
ings progress our understanding of intracortical interactions, but do not fully describe the
modulatory actions of feedback on V1. A brief list of cognitive functions that feedback to
V1 has also been associated with includes motion perception and action (Alink et al., 2010;
Vetter et al., 2013; Ban et al., 2013; Edwards et al., 2017), visual imagery and memory (Vetter
et al., 2014; Naselaris et al., 2015; Hindy et al., 2016), and reward (Tan, 2009). Understand-
ing more about what cortical layers are associated with these functions of feedback will help
uncover new information about the underlying circuits and the role V1 plays in higher-level
brain functioning.

Our analysis of voxel tuning toward feedforward or feedback signals provides important
information on the involvement of different cortical layers in processing sensory and pre-
dictive signals. However, it also begs the question of how specific information tuning could
be in different cortical layers. Our analyses uncovered unique information from multiple
feedforward and feedback models, and models from each had different layer profiles. In fu-
ture, we would like to separate voxel tuning into more than just the balance between sensory
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and predictive signals. The balance of different types of information in cortical layers might
provide further clues to the underlying functional circuitry. Additionally, the analyses in this
chapter can be extended by including more diverse computational and categorical models.
For instance, our results from Chapter 3 showed that the mid-level visual H-MAX model
described responses in portions of Occluded V1. Due to computational limitations related
to computing H-MAX features, this model was not included in the battery of models in the
current chapter, but future analyses should strive to include a wide array of models varying in
computational complexity to uncover tuning properties of feedforward and feedback signals.

In this chapter, we have expanded on results from previous chapters to show that cortical
depth-dependent V1 responses exhibit predictive and high-level response properties which
are most prevalent in superficial layers of cortex, where many feedback connections termi-
nate in V1. Importantly, predictive and high-level responses are unique in their information
content from feedforward orientation and spatial frequency properties typically associated
with V1 responses. Overall, these findings suggest that feedback connections terminating in
superficial layers provide V1 neurons with contextual and associative information not avail-
able via localized feedforward input.

4.4 Methods

4.4.1 Participants

Three healthy individuals (ages 26, 23, 24) with corrected-to-normal vision gave written
informed consent to participate in this study, in accordance with the institutional guidelines
of the local ethics committee of the College of Science & Engineering at the University of
Glasgow (#CSE300160103).

4.4.2 Stimuli

384 real-world scenes were chosen from the SUN database (Xiao et al., 2010). In order to
maximize power in encoding models, scenes were chosen to be maximally uncorrelated in
their spatial structure. We randomly generated 5,000 sets of 96 scenes, decomposing them
using a Gabor wavelet pyramid with 8 orientations, 6 spatial frequencies, and 2 phases.
Gabor filters were arranged on a Cartesian grid and spaced by double the bandwidth of
the filter at each frequency. Thus, higher frequency filters were closer together than low
frequency filters. Decomposed images within each set were then correlated, and the 3 sets
with the lowest average Fisher Z-transformed Pearson correlations were chosen as stimulus
sets. One set was presented with the lower-right quadrant occluded by a white box, one set
was presented without occlusion, and one set was presented with and without occlusion.

Images were displayed in grayscale, matched for global luminance, and masked with
a circular aperture which linearly faded to the background (mean grayscale across scenes)
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from 4.9◦ to 5.15◦ visual angle (Kay et al., 2008). Stimuli were presented on a rear-projection
screen using a projector system (768 × 768 resolution, 60 Hz refresh rate). Stimuli spanned
10.38 × 10.38◦ visual angle. A centralized fixation checkerboard (9 x 9 pixels) marked the
center of the scene images.

4.4.3 Experimental Design

Each of the 48 event-related experimental runs consisted of 16 blocks of 3 scene presen-
tations. Each image was flashed at 2.5Hz for 1 second, followed by 5 seconds baseline.
After each block of 3 scene presentations, a null trial consisting of 6 seconds baseline was
presented. Each scene was presented 3 times in two runs, totaling 6 presentations over the
experiment. Scene presentation orders were pseudo-randomized so that each scene appeared
as the first trial in a block once, no scene could appear in two consecutive blocks, and the
temporal design was optimized based on Dale 1999. To ensure fixation, we instructed par-
ticipants to respond via a button press to a temporally random fixation color change. So
that participants would attend to the scenes, participants were asked to report whether scenes
were man-made or natural scenes. We conducted 5 runs of retinotopic mapping (polar-angle,
eccentricity, and 3 runs of moving bars in 8 directions) separately from the main experiment.

4.4.4 fMRI Acquisition

MRI data were collected at the Scannexus, University of Maastricht, Maastricht, Netherlands
over five scanning sessions using a research-dedicated 7T Magnetom MRI system (Siemens,
Erlangen, Germany) with a 32-channel head coil (Nova Medical Inc.; Wilmington, MA,
USA). Five T1-weighted anatomical datasets were acquired using a 3D-MPRAGE sequence
(256 sagittal slices, matrix = 384 × 384, voxel size = 0.6mm isotropic). To correct for
inhomogeneities, we collected a gradient echo proton density (GE-PD) scan with the same
parameters as the MPRAGE acquisition during each session.

High-resolution functional images were obtained using a T2*-weighted gradient echo
EPI with the following parameters: echo time (TE) = 25ms, repetition time (TR) = 2000ms,
iPAT-factor = 3, multi-band factor = 2, flip angle = 75◦, number of slices = 56, matrix =
186 × 186, voxel size = 0.8mm isotropic. The field-of-view included occipital early visual
cortex, centered on the Calcarine Sulcus. To correct for EPI distortions additional functional
volumes (five volumes in the encoding direction and five volumes with a reversed encoding
direction) were acquired before each experimental run.

4.4.5 MRI Data Preprocessing

Functional and anatomical images were analyzed using BrainVoyager QX (version 2.8; Brain
Innovation; Maastricht, Netherlands) and custom code in MATLAB (version 2016b; The
MATHWORKS Inc.; Natick, MA, USA). Anatomical images were corrected for bias field
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inhomogeneities by dividing the Proton Density images by the T1-weighted images and in-
terpolated to a nominal voxel size of 0.4mm isotropic so that functional data would have a
voxel geometry twice that of anatomical images. Gray matter/white matter and gray mat-
ter/CSF boundaries were detected using a combination of automatic and manual segmenta-
tion tools from BrainVoyager QX, ITK-SNAP (Yushkevich et al., 2016), and Segmentator
software (Gulban and Schneider, 2017). These boundaries were used to define an inflatable
cortical mesh and define 6 cortical depth ROIs within V1 (Depths = 90%, 74%, 58%, 42%,
26% and 10% gray matter depth; Brainvoyager QX).

To correct distortions in functional images we recorded 5 functional volumes with re-
versed phase encoding compared to experimental runs. In these pairs of images distortions go
in opposite directions and we used them to estimate the susceptibility-induced off-resonance
field using a method described in Andersson et al., 2003, as implemented in the FSL soft-
ware package (Smith et al., 2004). After aligning all functional runs to the first run using
3D rigid body motion correction, the estimated off-resonance field was used to correct for
EPI distortions. Functional runs were co-registered to the individual anatomical scan with a
rigid body (6 parameter) transformation. No spatial or temporal smoothing was performed.
Retinotopic data were overlaid onto their respective anatomical data in the form of an in-
flated surface and were used to define early visual areas V1 using linear cross-correlation of
eight polar angle conditions based on Polar Angle mapping.

4.4.6 Population Receptive Field Mapping

We performed Population Receptive Field (pRF) modeling on all V1 voxels (Dumoulin and
Wandell, 2008). We defined potential pRF models as two-dimensional isotropic Gaussian
functions with 24 logarithmically-spaced sizes (σ ) between 0.1◦ visual angle and the size
of the stimulus (5.19◦). They had spatial positions based on a Cartesian grid where spacing
between potential models was 1σ for each size. Additionally, positions were only within the
size of the stimulus (i.e. < 5.19◦ visual angle). Potential model time courses were calculated
by taking the dot product of each model with a binarized stimulus time course and convolving
with a canonical 2γ hemodynamic response function.

In addition to the predicted model time course, models included polynomial confound
predictors (degree 0 through half the number of minutes of each functional run). Each model
was fit to 3 of 5 retinotopic mapping runs and tested on the left-out two. Data were folded
over every combination of training and testing runs. Model fitting used Ordinary Least
Squares with Bootstrap Aggregation (Breiman, 1996); 50 random samples of 60% of the
training data were used to derive model parameters, which were then averaged. The use of
Bootstrap Aggregation has two advantages: it acts as a regularizer on the model estimation
by averaging over unstable parameters, and it decreases the autoregressive components of
the model. This method has shown to outperform autoregressive time series models in eco-
nomic data (Inoue and Kilian, 2004). Each voxel’s pRF was defined as the model with the
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highest average R2 value (with confound variables held constant).

4.4.7 Encoding models

In each voxel, we defined voxel-specific predictors relating to feedforward and feedback
information streams. Feedforward models were defined as model responses to scenes as they
were presented. In other words, if a V1 neuron’s receptive field was located in the lower-
right quadrant of the scenes, it would receive meaningful sensory input during Non-Occluded
scene presentations, but would not receive input during Occluded scenes. For feedforward
models, we calculated the responses of two low-level computational models (Weibull and
Gist; see individual sections for detail) based on the portion of each scene spanned by the
voxel’s pRF exactly as scenes were presented (see Figure 4.1).

Feedback models were defined as model responses as they would be predicted. These
models treated each scene as if it was Non-Occluded whether it was presented Occluded
or not. We therefore calculated the pRF-specific responses of the Weibull and Gist models
based on Non-Occluded versions of each scene. A high-level Category model was also
included as a feedback model. In total, each model consisted of 87 voxel-specific predictors
(2 FF Weibull, 2 FB Weibull, 32 FF Gist, 32 FB Gist, and 19 Category predictors). Voxels
with pRFs in the Non-Occluded portions of scenes did not include FB Weibull or FB Gist
models because predictors were identical in feedforward and feedback cases due to lack of
occlusion.

Models also included polynomial confound predictors (degree 0 through half the num-
ber of minutes of each functional run). Models were fitted using Ordinary Lease Squares
regression to voxel time courses of 40 runs (320 scenes) and tested on the remaining 8 runs
of data (64 scenes). Bootstrap Aggregation was used with 50 random samples of 50% of
time points to reduce autoregressive model components and to increase estimated parameter
generalizability (Breiman, 1996; Inoue and Kilian, 2004). This process was repeated over
1000 cross-validation folds. In each fold of the data, we calculated semi-partial correlation
statistics for each individual model (Equation 3.4.3) to determine the unique correlation of
each model.

4.4.8 Weibull Model

The Weibull image contrast model measures the distribution of contrast values for an image
and seeks to emulate the X and Y cells in the Lateral Geniculate. It has a two-dimensional
output. We used the Weibull image contrast model outlined in Scholte et al. (2009) and
Groen et al. (2012, 2013). Par and Mag components of the model (X and Y cell models,
respectively) were calculated as maps. Voxelwise contrast energy (the first component of
the model) was estimated as the weighted mean of Par maps based on each voxel’s pRF
(Equation 3.2). Spatial coherence (the second component of the model) was estimated as the
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weighted variance of the Mag maps based on each voxel’s pRF (Equation 3.3).

4.4.9 Gist Model

The Gist algorithm (Oliva and Torralba, 2001) measures the distribution of oriented bandpass
Gabor filter responses in localized portions of images. Our model consisted of 8 orientations,
and 4 spatial frequencies. We calculated maps for each feature, resulting in 32 maps. Vox-
elwise Gist features were then calculated as the weighted mean of the maps based on each
voxel’s pRF (Equation 3.2).

4.4.10 Category model

In addition to the lower-level Weibull and Gist models, we included a high-level category
model. This model was based on the hierarchical organization of the SUN database (Xiao
et al., 2010). We included predictors for the two highest levels of the hierarchy (19 total
predictors):

• Indoor:

– Shopping and Dining

– Workplace (office building, factory, lab, etc.)

– Home or hotel

– Transportation (vehicle interiors, stations, etc.)

– Sports and leisure

– Cultural (art, education, religion, military, law, politics, etc.)

• Outdoor Natural

– Water, ice, and snow

– Mountains, hills, desert, and sky

– Forest, field, and jungle

– Man-made elements

• Outdoor Man-made

– Transportation (roads, parking, bridges, boats, airports, etc.)

– Cultural or historical building/place (military, religious)

– Sports fields, parks, and leisure spaces

– Industrial and construction

– Houses, cabins, gardens, and farms

– Commercial buildings, shops, markets, cities, and towns
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4.4.11 Retinotopic projections

Using each voxel’s two-dimensional Gaussian response, as estimated in our pRF analysis,
we projected voxels with significant voxelwise model encoding into visual space. Voxel pRF
functions for all voxels with significant encoding were summed within each the subject’s
data. This procedure was repeated for each model. Feedback Weibull and Gist models
(Rows 3 & 4 of Figure 4.3) only have Occluded components because these models do not
exist for Non-Occluded scene presentations.

4.4.12 Voxel tuning

Tuning was calculated by averaging semi-partial correlation values for each model across
validation folds on a voxelwise basis. Within each voxel, model values were divided by the
sum of all model semi-partial correlations, resulting in a compositional structure (Aitchison,
1982). Since compositional analyses cannot contain negative values, any negative correlation
values were assigned a value of zero. We then summed the two feedforward models to get a
measure of the total tuning toward sensory input. The same was done with feedback models
to get tuning toward predictive signals. We then subtracted the feedforward value from the
feedback values to get a measure of each voxel’s overall tuning toward sensory or predictive
signals. These values ranged from -1 (100% tuning for Feedforward signals, 0% tuning for
Feedback) to 1 (0% tuning for Feedforward signals, 100% tuning for Feedback), with a value
of 0 indicated a 50/50 split.

To visualize the tuning of voxels within each cortical depth, we calculated histograms
of feedforward-feedback tuning values within each depth with 100 bins. Probability density
functions of tuning values were then defined by kernel density estimation of each histogram
with a Gaussian kernel (Hill, 1985; Silverman, 1986).



Chapter 5

General Discussion

The work presented in this thesis describes neuroscientific results on the information con-
tent of cortical feedback to early visual cortex, particularly primary visual cortex. We uti-
lized the sensitivity of functional magnetic resonance imaging (fMRI) to dendritic energy-
consumption (Logothetis, 2007, 2008) to detect and characterize feedback signals in combi-
nation with an occlusion paradigm derived from that of Smith and Muckli (2010) and Muckli
et al. (2015). During normal vision, both feedforward and feedback signals are present, thus
a useful approach to study feedback is to isolate it from feedforward input. We occluded one
quadrant of the visual field during stimulus presentation in order to remove meaningful feed-
forward input about scenes in a portion of retinotopic visual cortex. We used fMRI to assess
brain activity in early visual cortex, allowing us to detect dendritic signaling associated with
cortical feedback due to its sensitivity to cortical energy consumption .

In Chapter 2, we investigated potential high-level information in cortical feedback to
V1 and V2. We presented subjects with an expanded version of the occlusion paradigm
from Smith and Muckli (2010) and Muckli et al. (2015). We included twenty-four partially
occluded scenes from six categories and spatial depths. These two high-level scene char-
acteristics were chosen because they have previously been shown to modulate early visual
cortical responses (Walther et al., 2009; Kravitz et al., 2011). We were therefore interested in
whether these characteristics also modulate feedback to V1 and V2. We found that response
patterns in these subregions contain high-level category information, but we did not find that
visual depth information generalized across exemplars. Additionally, we found that retino-
topic responses in Occluded V1 and V2 differed from each other, suggesting that feedback to
these two areas has different information content. These results match the known anatomical
connections from mid- and higher-level visual areas in the ventral stream (Rockland et al.,
1994; Rockland and Ojima, 2003).

In Chapter 3, we probed the information content of Occluded V1 and V2 responses at
multiple levels of complexity using Representational Similarity Analysis (RSA) and en-
coding models. By analyzing data from Chapter 2 in these frameworks, we were able to
compare both local (voxelwise) and distributed (multi-voxel) Occluded responses to three

63
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biologically-inspired computational models (the contrast energy-based Weibull model, the
orientation-based Gist model, and the mid-level vision H-Max model), and the high-level
scene characteristics explored in Chapter 2. Using RSA, we also compared scene represen-
tations from Occluded and Non-Occluded areas. We found that in Non-Occluded areas, V1
and V2 represent scenes similarly, while Occluded V1 and V2 do not. We also found that
scene representations in Occluded V1 and V2 were correlated with high-level Category and
H-Max models. Individual voxel encoding models showed that Occluded V1 voxels within
5◦ visual angle of fixation encode low-level information about the occluded scene, while
voxels outside of 5◦ encode higher-level information. These results highlight a potential vi-
sual field bias in the type of information transmitted to V1 through feedback, with foveal
voxels receiving more precise, low-level scene information, and peripheral voxels receiving
more invariant or global scene features.

In Chapter 4, we examined the laminar profile of Occluded V1 using high-resolution
(0.8mm3) 7T fMRI. We again expanded our stimulus set, presenting 192 Occluded scenes
and 192 Non-Occluded scenes. This large stimulus set allowed us to map scene informa-
tion onto voxel responses in greater detail, and the use of both Occluded and Non-Occluded
scenes allowed us to compare voxel responses when receiving only feedback with responses
when receiving feedforward, lateral and feedback information. We found that V1 responses
exhibit predictive and high-level response properties in addition to feedforward orientation
and spatial frequency properties typically associated with V1 responses. These predictive
and high-level responses were primarily associated with superficial layers of cortex. We
also found that voxel tuning toward feedforward and feedback signals was different between
cortical layers of V1. Our findings suggest that feedback connections terminating in superfi-
cial layers provide V1 neurons with contextual and associative information not available via
localized feedforward input.

The neuroscientific results presented in this thesis extend our knowledge about the in-
formation content of cortical feedback to early visual cortex. These results add support to
the notion that V1 can be considered to speak two languages (Muckli and Petro, 2013). Not
only does it play a role as an early stage of processing of sensory visual input, where it deals
with processing low-level features, but it also receives messages from diverse areas of cortex.
These messages might supplement local processing by providing contextual information.

5.1 Decomposing the explanatory aspects of models

As part of our analyses of encoding models, we used semi-partial correlations to measure
unique information in individual model responses that related to cortical responses from
fMRI signals. Statistically, this measure is the association between voxel response and a
model of interest after removal of any model variability which exists in other models, too.
Measuring the unique relationships between individual models and voxel responses allowed
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us to ascertain which models improved predictions and which ones did not. In the case that
individual models did improve predictions, we were also able to quantify by how much.
This method has distinct advantages over evaluating models individually, as responses from
different models can be highly correlated with each other, and thus share explained variance
in their predictions of neuronal response data. For example, imagine comparing the efficacy
of three different models. If all three models perform identically in explaining a dataset, then
one might assume that each is an equally good model. This is in fact true, but does not always
tell the complete story. Suppose semi-partial correlations are then computed for each model;
Model A has the same unique explanatory power as it did when tested individually, while
Models B and C have no unique explanatory power. We now know that Model A explained
a portion of the data completely unique from that of Models B and C, and we know that the
portion of the data explained by Models B and C was identical. These three models are still
equally good at explaining the data, but we now know that Models B and C are redundant in
doing so.

In this extreme example, if Models A, B and C were two feedforward and one feedback
model, respectively, then there is no evidence for feedback playing a role in processing.
Feedforward models already explain everything that can be explained in the data. If, how-
ever, Model A was a feedback model, then something has been added by its inclusion. This
was the case in Chapters 3 and 4 of this thesis. We found that extra explanatory power
was afforded by including models of predictive and contextual feedback that could not be
explained by feedforward models alone. However, the example we have provided is an in-
tentional oversimplification. It is relatively rare for any models to be completely uncorrelated
with other models unless they are designed that way. Therefore in future analyses, it will be
important to decompose the explanatory power of models to understand better which aspects
are shared and which are unique. This has previously been accomplished with low numbers
of models (Lescroart et al., 2015; Ince et al., 2016; Giordano et al., 2017), but this process be-
comes increasingly difficult as the number of models under consideration grows. Despite the
challenges associated with variance partitioning, understanding the amount of explanatory
power that is shared between models could help researchers develop more effective models
of sensory processes in cortex.

5.2 Deep learning models for studying feedback to early vi-
sual cortex

One promising class of models for studying the brain is that of deep learning. Deep learning
models are from the field of artificial intelligence and are loosely based on cortical architec-
tures (LeCun et al., 2015). By mimicking aspects of brain function, deep learning can rival,
and even outperform, human beings on a number of limited tasks, such as image recognition
(Krizhevsky et al., 2017), motor control (Mnih et al., 2015), and speech recognition (Hinton
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et al., 2012). Moreover, deep networks can better explain cortical neuronal recordings in
humans or non-human primates than existing neuroscientific models (Khaligh-Razavi and
Kriegeskorte, 2014; Cadieu et al., 2014). Despite some biologically-unrealistic aspects of
modern deep learning implementations, these examples strongly suggest that deep learning
captures something important about how the cortex works (Marblestone et al., 2016).

With this sentiment in mind, it is logical that deep learning algorithms could be used as
a general framework to devise computational hypotheses which can be tested against exper-
imental data. Like the sensory systems of the brain, deep learning models stack multiple
layers of non-linear computations on top of each other in order to learn complex statistical
dependencies in input data. As previously mentioned, this has been implemented with great
success to explain aspects of higher-order brain function (Serre et al., 2007; Khaligh-Razavi
and Kriegeskorte, 2014; Cadieu et al., 2014; Güçlü and van Gerven, 2014). More relevant
to this thesis, however, is a growing body of work dedicated to the understanding the gen-
eral role of feedback in cortical circuitry using network models (see Reichert and Serre,
2013; Spoerer et al., 2017). One interesting line of inquiry is the development of multi-
compartment neuron models, which implement segregated dendrites for more complicated
computations than simple integrate-and-fire neural models are capable of (Klijn et al., 2017).
Recently, Naud and Sprekeler (2017) fitted multi-compartment biophysical models of layer 5
pyramidal neurons to patch-clamp data collected by Larkum et al. (1999). This work showed
that basal and apical dendritic inputs to pyramidal neurons are both recoverable from the out-
put of these cells, meaning that neurons might use signal multiplexing to deliver both their
feedforward and feedback information to other neurons. If true, this exciting work would
add credence to the applicability of deep learning models to the study of brain function, as
it shows that cortical neurons have a built-in capability for error propagation (the principle
that endows deep learning its ability to learn through backpropagation; LeCun et al., 2015;
Guergiuev et al., 2016; Lillicrap et al., 2016).

In Chapter 3 of this thesis, our comparisons of models to brain data included multiple
levels of model complexity. Due to the hierarchical nature of deep learning networks, these
models are ideal candidates for naturally spanning multiple levels of complexity, and thus
could be used similarly. By calculating the unique information from each layer which can
be used to describe voxel responses, we might be able to learn more about the retinotopic
organization of feedback to early visual cortex. We found that feedback signals sent to foveal
portions of V1 share information with low-level properties of occluded scenes, while feed-
back to peripheral portions of V1 are more associated with high-level scene properties. This
finding suggests that the pattern of connections to V1 is retinotopically specific, but raises a
question of how topological this specificity might be. It is possible that there is a gradient of
complexity in feedback to V1, with low-level information to the fovea smoothly giving way
to more and more complex information as eccentricity increases. Alternatively, the topology
might be more segregated, with low-level information being sent homogeneously to foveal
areas up to a particular eccentricity, with a sharp switch to higher-level information outside
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of this region.
We have described how diverse levels of complexity in deep learning networks could help

to clarify information encoding of feedback signals, but these arguments equally hold for
feedforward information encoding. In Chapter 3, Non-Occluded areas encoded information
from all models, but were dominated by low-level Weibull and Gist models, while voxels
in Occluded areas preferred higher-level information. In Chapter 4, where feedforward and
feedback models are separable based on voxels seeing scenes with and without occlusion,
we could test whether the same holds true. It would be interesting to examine the balance
of information complexity in different cortical layers of V1. Deep learning models provide
a means of testing these and many other hypotheses about the organization of retinotopic
cortex.

5.3 Studying cortical layer function in humans

Ultra high-field, high-resolution fMRI can measure functional activity in human cortex at the
level of layers (Olman et al., 2012) and columns (Yacoub et al., 2008), providing unprece-
dented views of cognitive processes in the human brain. Layer-specific imaging at ultra-high
field is currently helping to bridge the gap between the microscopic resolution of neurophys-
iology and large-scale sampling of the active brain in functional imaging (Dumoulin et al.,
2017). Furthermore, layer-specific fMRI is helping to draw inference about the direction of
information flow in the brain. In Chapter 4 of this thesis, we utilized the high-resolution
capabilities of 7T fMRI to measure feedback signals sent to specific layers of V1. We found
that predictive and contextual signals are sent to superficial layers of early visual cortex,
building on previous layer-specific results of occlusion (Muckli et al., 2015).

While there has been substantial technological maturity of ultra high-field fMRI in recent
years, effective use of high-resolution fMRI is still highly specialized (Kashyap et al., 2017;
Uludağ and Blinder, 2017). Image acquisition is more complicated at magnet strengths
greater than or equal to 7 Tesla due to complications regarding static and radio-frequency
field inhomogeneities (Vaughan et al., 2001), which can cause image artifacts and distor-
tions. The so-called Nyquist ghosting effect in functional images using EPI readouts can
also affect image quality at high-field (Yarach et al., 2017). Additionally, higher spatial res-
olution increases the possibility that participant motion will affect anatomical image quality
(Trampel et al., 2017) from which cortical depths are defined. Analysis choices can also
greatly impact the quality of cortical depth-based results (Kashyap et al., 2017). One exam-
ple cause of this is that high-resolution anatomical and functional images often do not match
because of image distortions due to differing image readouts.

The increased overhead required to collect high-quality 7T data and analyze it effectively
calls for pragmatic study designs. For instance, data collected in Chapter 4 of this thesis was
from a single subject who was scanned in five sessions. This design allowed us to examine
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the responses of different cortical layers of one brain area in great detail (V1). Since we
were able to collect anatomical data in each session, we had substantial information from
multiple anatomical image contrasts to differentiate different tissue classes. This plays an
important role in our ability to manually identify vasculature and separate it from the tissue
of interest, gray matter. As neuroscientific studies continue to move toward examining brain
mechanisms at the mesoscopic scale (Martino et al., 2017), it will be increasingly important
to focus efforts on understanding the characteristics of the individual brain being studied.

An important factor in future studies investigating cortical layers using fMRI will be the
magnetic properties of the underlying tissues. Many groups have shown that different lay-
ers are differentiable based on their tissue properties (Trampel et al., 2017; Lifshits et al.,
2017; Yen et al., 2017). These tissue properties, spin-lattice relaxation time (T1), spin-spin
relaxation time (T∗

2), and proton density (or baseline magnetism; S0), are the properties that
determine signal in fMRI. It will therefore be crucial to map these properties along with
vasculature considerations as experiments achieve higher resolutions through cortical lay-
ers. Yu et al. (2013) showed that it is possible to achieve 50µm spatial resolution (and 50ms
temporal resolution) through cortical layers in functional imaging of mice by focusing imag-
ing on only a small column and turning off any phase encoding steps in acquisition. With
such high-resolution functional scanning, it would be important to tune sequences toward the
tissue properties of layers of interest. Additionally, Tian et al. (2010) showed by mapping
layer-specific microvasculature using two-photon microscopy in mice and then recording ac-
tivity using fMRI that cortical layers have predictable onset latency differences. This shows
the importance of understanding vasculature in human cortex for layer-specific experiments.

Despite challenges set forth by technological and biological constraints, advances in tools
from the fields of functional MRI, information processing and computer science are making
it possible to study cortical feedback processes in greater and greater detail. This thesis
has aimed to progress our understanding of some of the types of information that might be
present in cortical feedback to early visual cortex by leveraging these tools. We have shown
that it is possible to isolate and map information onto responses in retinotopic cortex not
receiving meaningful feedforward input, and that there is much to be learned from studying
responses associated with cortical feedback.
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V1 V2
Ind. Scenes Category Depth Ind. Scenes Category Depth

Upper-right quadrant 54.72 40.3 22.2 45.6 35.0 20.5
(Non-Occluded) [48.8 60.8] [36.9 43.9] [20.6 24.1] [39.3 52.3] [31.2 28.4] [19.2 21.8]

Lower-left quadrant 51.3 36.6 17.7 40.1 33.6 13.9
(Non-Occluded) [44.6 57.3] [32.1 40.6] [15.6 19.5] [33.5 45.7] [30.4 37.1] [11.5 15.8]

Lower-right quadrant 6.4 8.5 5.32 3.8 6.7 3.7
(Occluded) [4.9 8.1] [6.5 10.3] [3.7 6.9] [2.8 4.8] [5.5 8.0] [2.4 5.1]

Table A.1: Quantitative results from SVM classification analyses. Related to Figure 2.2. Classification results, reported as percent above chance-level (chance-level = 4.17%,
16.67%, and 50% for individual scenes, category and depth, respectively). 1000 bootstrap samples of mean performance were drawn from individual subject results, and 95%
confidence intervals are shown in brackets.
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V1 V2
Category Depth Category Depth

Upper-right quadrant 9.6 7.7 9.1 8.1
(Non-Occluded) [8.7 10.6] [5.3 10.0] [8.0 10.0] [6.1 9.8]

Lower-left quadrant 6.3 -0.2 8.9 -1.7
(Non-Occluded) [5.2 7.5] [-2.2 1.6] [7.5 10.0] [-3.7 0.0]

Lower-right quadrant 3.0 0.5 2.2 -0.5
(Occluded) [2.1 4.1] [-0.9 2.0] [1.5 2.9] [-2.1 1.0]

Table A.2: Quantitative results from SVM cross-classification analyses (lower-visual field occluder).
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V1 V2
Category Depth Category Depth

Upper-right quadrant 1.9 1.1 1.9 0.9
(Non-Occluded) [1.0 3.1] [-1.4 3.6] [0.1 3.9] [-0.1 2.6]

Lower-left quadrant 9.9 1.0 9.3 -3.9
(Non-Occluded) [4.9 14.5] [-4.5 6.5] [5.3 13.1] [-9.4 0.9]

Lower-right quadrant 4.1 2.5 4.7 0.5
(Occluded) [2.2 6.4] [0.6 4.9] [2.6 6.5] [-3.2 4.0]

Table A.3: Quantitative results from SVM cross-classification analyses (upper-visual field occluder). Related to Figure 2.2. Cross-classification results (Main experiment
and Experiment 2), reported as percent above chance-level (chance-level = 16.67% for category and 50% for depth). For analysis of category, 18 (of 24) scenes were selected,
leaving out one scene per category. For depth, 22 (of 24) were selected, leaving out one scene per depth. The classifier was tested on the remaining scenes in a cross-classification
approach. Due to the large number of possible image permutations in these analyses, we randomly assigned scenes to training and testing sets 100 times in each subject. 1000
bootstrap samples of mean performance were drawn from individual subject results, and 95% confidence intervals are shown in brackets.

V1 V2
Ind. Scenes Category Depth Ind. Scenes Category Depth

Upper-right quadrant 18 18 18 18 18 18
(Non-Occluded)

Lower-left quadrant 18 18 18 18 18 17
(Non-Occluded)

Lower-right quadrant 17 16 10 14 16 7
(Occluded)

Table A.4: Subjects with significant individual subject classifications (permutation). Number of subjects (from N=18) with significant individual subject classifications based
on permutation testing (1000 random permutations of training data labels). In individual subjects, significance was determined by comparison to a null distribution of 1000
permutations, p < 0.05 considered significant.
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V1 V2
Ind. Scenes Category Depth Ind. Scenes Category Depth

Upper-right quadrant 18 18 18 18 18 18
(Non-Occluded)

Lower-left quadrant 18 18 18 18 18 17
(Non-Occluded)

Lower-right quadrant 15 17 9 13 15 7
(Occludened)

Table A.5: Subjects with significant individual subject classifications (Wilcoxon signed-rank). Number of subjects (from N=18) with significant individual subject classifica-
tions based on Wilcoxon signed-rank testing (classification performance from 8 cross-validated folds compared to chance-level).

V1 V2
Category Depth Category Depth

Upper-right quadrant 18 15 18 15
(Non-Occluded)

Lower-left quadrant 18 5 18 5
(Non-Occluded)

Lower-right quadrant 15 5 14 6
(Occluded)

Table A.6: Subjects with significant individual subject cross-classification (Wilcoxon signed-rank). Number of subjects (from N=18) with significant individual subject
cross-classification performances tested using Wilcoxon signed-rank.
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We tested whether the number of voxels in V1 was greater than the number in V2 (Figure
A.1). There was a significant difference in voxel counts for Upper-Right and Lower-Left
quadrants, but not in the Lower-Right Occluded quadrant (p = 0.007, 0.016, and 0.116,
respectively, one-sided paired t-tests). Occluded areas were the only quadrant to not have
significant differences in voxel counts between V1 and V2. We conclude that differences
between Occluded V1 and V2 are not due to differences in voxel counts. We mapped the
voxel density from our visual space analyses using the inverse of Scott’s Rule-of-Thumb
(Scott, 2009) for the bandwidth of a 2-dimensional kernel density estimator:

h∗ = σ̄n
1
6 (A.1)

Where h∗ is the weighted average of pRF sizes based on a Gaussian kernel with σ = 1◦

of visual angle, and n is the weighted number of voxels based on the same kernel. The kernel
was convolved with the image and multiplied by a map of voxel coverage. Figure S1B shows
the group average (N=18) of individual subject maps.

Figure A.1: Related to Figure 2.1. (A) V1 and V2 voxel counts in each region of interest. Black points
and lines indicate individual subject voxel counts in V1 and V2 in each region of interest, and group statistics
are shown in blue (with standard error). (B) Voxel density in regions of interest in visual space. Voxel density
maps were calculated using the inverse of Scott’s Rule-of-Thumb (kernel width of 1º visual angle) in individual
subjects, masked by voxel coverage maps, and averaged across subjects.
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Figure A.2: Related to Figure 2.4. Projections of (A) V1 and (B) V2 response patterns into visual space.
Voxel responses versus baseline were projected to visual space by calculating a weighted average of all voxels’
pRFs, where weights were each voxel’s response amplitude with the mean response to all scenes removed.
Projections were mapped in individual subjects and a two-tailed t-test was conducted across subjects at each
pixel location in visual space to obtain t-value maps (p<0.05 threshold). Warm colors are above mean responses,
and cool colors are below.
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Figure A.3: Related to Figure 3.1. (A) Absolute depth ratings of scenes organized by category. Absolute
depth ratings (log10(meters)) for our 24 scenes are shown, grouped by category. Depth ratings were obtained
a separate behavioral experiment (N=10). (B) Absolute depth ratings of full scene set. Absolute depth ratings
(log10(meters)) for our 24 scenes (scenes are identical to (A), but plotted together).
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Figure A.4: Related to Figure 2.2. (A) Individual results from SVM decoding analyses. Classification
performances are displayed as compared to chance-level for each analysis type. Performances from each leave-
one-run-out fold are shown as black dots, with the mean of all folds shown in red. 95% confidence intervals on
a permutation-based null distribution are shown in blue. (B) Individual results from SVM cross-classification
analyses. Individual performances on random splits of the scene set pare shown as black dots, and 95% con-
fidence intervals on the mean performance are shown in red. Chance-level performance is shown as a blue
line.



Appendix B

Supplemental Data for Chapter 4

78



Appendix B. Supplemental Data for Chapter 4 79

�

Figure B.1: Voxelwise unique model information encoding by cortical depth. Unique model information
is displayed as the average of all individual voxel semi-partial correlations of model predictors while all other
models are held constant. Measurements are shown for regions of interest at 6 cortical depths [10%, 26%, 42%,
58%, 74%, 90%], with Layer 1 being labeled as the deepest layer and Layer 6 as the most superficial. Lines
indicate the mean correlation and error bars indicate standard error.
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