
 
 
 
 
 
 
 
 

 

McIntosh, Alasdair (2018) Interpretable models of genetic drift applied 

especially to human populations. PhD thesis. 

 

 

https://theses.gla.ac.uk/30690/  

 

 

 

Copyright and moral rights for this work are retained by the author  

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge  

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author  

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author  

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 

 
 
 
 

 
 
 
 
 
 
 

Enlighten: Theses  

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 
 

https://theses.gla.ac.uk/30690/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk


Interpretable Models of Genetic

Drift Applied Especially to Human

Populations

Alasdair McIntosh

This thesis is submitted in

ful�lment of the requirements

of the Degree of

Doctor of Philosophy

School of Mathematics & Statistics

College of Science and Engineering

University of Glasgow

September 2017

c©Alasdair McIntosh, September 2017



i



Abstract

This thesis aims to develop and implement population genetic models that are

directly interpretable in terms of events such as population �ssion and admix-

ture. Two competing methods of approximating the Wright�Fisher model of ge-

netic drift are critically examined, one due to Balding and Nichols and another

to Nicholson and colleagues. The model of population structure consisting of all

present-day subpopulations arising from a common ancestral population at a sin-

gle �ssion event (�rst described by Nicholson et al.) is reimplemented and applied

to single-nucleotide polymorphism data from the HapMap project. This Bayesian

hierarchical model is then elaborated to allow general phylogenetic representations

of the genetic heritage of present-day subpopulations and the performance of this

model is assessed on simulated and HapMap data. The drift model of Balding and

Nichols is found to be problematic for use in this context as the need for allele

�xation to be modelled becomes apparent. The model is then further developed to

allow the inclusion of admixture events. This new model is, again, demonstrated

using HapMap data and its performance compared to that of the TreeMix model

of Pickrell and Pritchard, which is also critically evaluated.
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Chapter 1

Background

�Why do these people look so di�erent from us?� This question, or some variant of

it, is one that almost all parents have had posed to them by their small children at

some point and can become a test of parental tact and diplomacy if the question

is posed too loudly in a public space. Nevertheless, the questions of how people

whose ancestry is from di�erent parts of the world came to be there, why people

from particular parts of the world appear more similar to each other than they do

to people from other parts, and what that can tell us about humans in the past

forms the scienti�c �eld of biological anthropology.

1.1 Deoxyribonucleic Acid

One place to look for clues to the answer to these questions is from people's DNA

(Deoxyribonucleic Acid), a molecule that resides in every living cell and determines

much about the growth, development and even susceptibility to and ability to

recover from disease of the person to whom it belongs. DNA is a molecule that

is typically formed from two biopolymer strands in the shape of a double helix

(�gure 1.1).

1
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A

C

T

G

Figure 1.1: Double Helix of DNA
A schematic representation of a short section of a strand of DNA showing the double helix and
how the Adenine (A), Thymine (T), Cytosine (C) and Guanine (G) nucleotides are contained
in pairs along its length. Image reproduced from clipart-library.com.
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Each strand contains a sequence of nucleotides along its length. These nucleotides

naturally occur in four varieties, Adenine (A), Cytosine (C), Thymine (T) or Gua-

nine (G). The strands in the pair contain nucleotides that correspond with (or

complimentary to) each other such that where one has A, the other has T and

where one has C, the other has G. These form a so-called base pair. In humans

and other eukaryotic organisms (animals, plants, fungae and a few others such

as algae) their DNA is organised into a number of chromosomes. Humans are a

diploid species which means that they have two sets of chromosomes, one set from

each parent. Haploid species only have a single set. Humans ordinarily have 23

pairs of such chromosomes, 22 autosomes and a pair of sex chromosomes, an X

and a Y for males and a pair of Xs for females.

The human genome contains about 3,000 million base pairs in total (Human

Genome Project, 2003). In comparison, the Escherichia coli bacterium's genome

contains about 5 million base pairs (Blattner et al., 1997). The fruit �y, Drosophila

melanogaster, that features in so much biological research, as a model organism,

has about 175 million base pairs in its genome (Ellis et al., 2014). It might be

tempting to think that the number of base pairs in an organism's genome is related

to its complexity or size. This is not the case. Onion genomes have about 16,000

million base pairs, over 5 times that of humans (Palazzo and Gregory, 2014), whilst

the genome of the freshwater amoeba, Polychaos dubium was reported as having

a massive 670,000 million base pairs in its genome (Friz, 1968). This �gure is,

however, subject to con�rmation using more recent techniques.

1.1.1 Single Nucleotide Polymorphisms (SNPs)

Of these 3,000 million base pairs in the human genome, it is estimated that all

but about 10 million are the same for almost all humans so that, for example, if

one human has adenine at a particular locus in the genome, almost all humans

will have adenine at that locus. The remaining 10 million can contain di�erent
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nucleotides in di�erent people. These are called Single Nucleotide Polymorphisms

(SNPs). SNPs are loci (i.e. speci�c positions on the genome) where more than

one nucleotide variant has been identi�ed among humans and at least two of these

variants have a frequency above a very small minimum threshold. They occur at

1 in 300 base pairs on average (Making SNPs Make Sense, 2017). SNPs can occur

in coding and non-coding regions of the genome. A coding region is one where the

DNA sequence can be used to produce a protein. Each group of three nucleotides

in a coding region correspond to a particular amino acid in the protein's chain

(Hartl and Clark, 1997). A SNP in such a region can lead to a di�erent protein

being produced. While the vast majority of the genome is non-coding, that does

not mean it does not always have a useful role. For example, some non-coding

regions help facilitate the transcription of nearby coding DNA and non-coding

DNA near the end of chromosomes (telomeres) help to provide a bu�er zone that

protects coding DNA from damage and degradation (Mandal, 2014). SNPs are

less common in coding regions because the changes in protein structures to which

a changed nucleotide can lead can have a negative impact on the chances of the

resulting human surviving or reproducing to pass the SNP variant on to a future

generation. On the other hand, those changes in non-coding regions are less likely

to have reproductive implications and are thus more likely to survive into the next

generation (Barreiro et al., 2008).

1.1.2 Linkage and Independence

Focussing on one strand of the double helix, since the other is determined by it,

while the variant that appears at a SNP on one chromosome is independent of one

that appears at a SNP on another chromosome, it is not entirely independent of

that which appears at another SNP on the same chromosome. The reason for this

is called linkage. As has been mentioned, humans have 23 pairs of chromosomes

in each cell. However, in the cells involved in reproduction, the gametes, ova in
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females and sperm in males, there are only one set of 23 chromosomes. These are

produced by a process called meiosis. During that process each pair of chromo-

somes is separated but during separation they are sometimes cut at corresponding

positions and recombined (Figure 1.2).

Figure 1.2: Meiosis
The two versions of the same chromosome that an individual has is called a homologous pair.
First both versions of the chromosome are duplicated. At the Synapsis stage these sets of dupli-
cates pair up. The pairs are held together at points on their length called the chiasma. Often the
genetic material from one version of the chromosome swaps over to the other version and vice
versa at these points. This is called crossing-over. The cell then divides once and the chromo-
some pairs seperate at the chiasma leaving one modi�ed duplicate pair of a chromosome in each
cell. The cells then divide again so that there are four cells which have only one version of each
chromosome in each of the four cells. Chromosomes that have been modi�ed by crossing over are
called recombinants. This image was reproduced from BioNinja. (BioNinja, 2017)
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These produce a new pair of chromosomes that contain the genetic information

from the beginning of one of the original pair of chromosomes and from the end

of the other. This is called recombination. More rarely, such cuts can happen two

or more times. Each of the new pair becomes part of a di�erent gamete. While

a variant at a SNP could �nd itself in the gamete with a variant that appears at

another SNP on either of the two copies of another chromosome, it will be more

likely to appear with the variant that appears at another SNP on the same copy of

the chromosome that it is on. It will be even more likely to appear alongside it the

nearer it is to the �rst SNP on the same chromosome. The closer together they

are, the less likely it is that a recombination event occurs between them during the

recombination process. So these variants are more likely to appear together in the

next and subsequent generations. Loci on a chromosome that are close enough to

each other that the proportions of each variant (allele) they have at each SNP are

not independent at the population level, are said to be in linkage disequilibrium.

1.1.3 Mutation

But where do SNPs come from? How do they arise? It is estimated that every

time human DNA is passed from one generation to the next it results in about 60

new mutations (Conrad et al., 2011). Mutations can occur naturally as copying

errors when DNA is duplicated for cell division and can take several forms such

as a sequence of nucleotides being repeated, nucleotides being inserted or deleted

or a single nucleotide changing into another (a substitution). This would suggest

that an average base pair had a chance of about 1 in 50 million of having a novel

mutation occur in a single generation. Lipson et al. (2015) report a rate of about

1.6 mutations per 100 million bases per generation which is a slightly lower rate.
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1.2 Shared Ancestry

Any person alive has two biological parents (apart from a very small number

recently born using a new technique where mitochondrial DNA comes from a

third parent (Hamzelou, 2016)). These in turn will have two parents each and

so on back through the generations, there being more and more people that the

present day person is descended from as each generation in a diagram such as

�gure 1.3 is added.

Figure 1.3: Ancestors
The present-day person has two biological parents who each have two biological parents who each
have two biological parents and so on. Although the diagram shows the number of ancestors
doubling with each generation, this is not generally the case. People who are knowingly or un-
knowingly recently related can pair up to produce children reducing the number of ancestors in
earlier generations. For example, if the present-day person's parents were cousins, they would
only have 6 great grandparents rather than 8. This �gure is based on an image in waitbutwhy.com.
(Urban, 2014).

For any two people presently alive, such a pair of diagrams can be constructed
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adding generations until eventually, there will be a person or persons who will

appear on both diagrams. This is their most recent common ancestor. However,

each part of the genome has been inherited along di�erent paths through their

family tree, and so for any two individuals, di�erent parts of their genome will

have di�erent most recent common ancestors. Going further back, there will be

further individuals common to both trees who represent other common ancestors.

As has been noted above, the Y chromosome in humans occurs only in males and

can only be inherited patrilinearly. It rarely undergoes recombination with the

X chromosome and then only at its extreme ends; the rest of it can only change

through mutation. These mutations are then passed to subsequent generations.

These can be used to establish the way that present day men are related patrilin-

early. If the assumption is made that the same mutation is so unlikely to occur

more than once at the same locus in the chromosome that the possibility can be

discounted, people with the same Y chromosome sequence can be assumed to have

a common patrilineal ancestor in whose development the mutation originally oc-

curred. They in turn can be assumed to have a common ancestor with those who

carry a Y chromosome that is the same except for that mutation. By following this

process repeatedly, a hierarchy of common ancestors can be built up until a shared

common ancestor Y chromosome is arrived at for all living males. The person who

is the most recent common patrilineal ancestor of all living human males in this

way is termed Y chromosome Adam or Y-MRCA. Poznik et al. (2013) estimates

that this individual would have lived between 156,000 and 120,000 years ago.

Mitochondrial DNA is a small amount of DNA that exists outside a cell nucleus

and is not part of the 23 pairs of chromosomes that reside within a cell nucleus.

There is mitochondrial DNA in the female reproduction cell (ovum) when it fuses

with the male reproductive cell (sperm) to form a zygote. The mitochondrial

DNA in the sperm cell is almost never passed on (and is perhaps actively de-

stroyed) leaving only that from the ovum in the resulting embryo cells. In fact,

Pyle et al. (2015) could �nd no evidence of male mitochondrial DNA being passed
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on. Mitochondrial DNA is therefore inherited matrilinearly. A similar process of

analysing the mutations in mitochondrial DNA that exist in modern-day humans

can be followed as that described above for the Y chromosome to build up a hier-

archy of matrilineal most recent common ancestors. The most recent matrilineal

common ancestor of all living people is termed mitochondrial Eve or mt-MRCA.

Poznik et al. (2013) report that they would have lived between 148,000 and 99,000

years ago.

1.3 Natural Selection and Genetic Drift

Despite all humanity having shared ancestry and having the overwhelming pro-

portion of the human genome in common, people who have ancestry in particular

parts of the world clearly share physical characteristics that are not shared with

people with ancestry in other parts of the world. Natural selection in relation to

local environment in prehistoric times could explain some of these characteristics

(Smithsonian, 2017). For example, in a sunny part of the world, lighter skin pig-

mentation is a disadvantage. It sunburns easily and has a higher cancer risk but

also too much UV light leads to a degradation in folate and folic acid. Folate has

a role in preventing some birth defects (Borradale and Kimlin, 2012). In a part

of the world where dull and overcast weather is more common, the lighter skin

pigmentation is an advantage because it can make better use of the limited solar

ultra-violet radiation to produce vitamin D. In the modern world, however, with

more varied diet and better access to sun-block and vitamin supplements these

particular di�erences provide no biological advantage either way. Nevertheless,

not all di�erences can be explained by historical local advantages. To understand

how such di�erences could arise by random chance, the concept of genetic drift

needs to be introduced.

Imagine a population consisting of n individuals. They have two versions of each

chromosome each and so the population has 2n versions of each chromosome in
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total. Suppose there is a locus that is a SNP and there are two variants at that

SNP, C and T. Further suppose that there are 2nα
(
α ∈

{
0, 1

2n
, 2

2n
, ..., 1

})
versions

of the chromosome with a C at the locus, and hence 2n(1 − α) with a T in this

population. Putting the question of which sex each of the individuals are to one

side, reproduction in relation to this locus will be assumed to happen randomly

(�random mating�). This assumes that the locus does not a�ect the probability of

reproduction and is not in linkage disequilibrium with another SNP that does a�ect

the probability of reproduction. Each chromosome in the next generation will have

a probability of α of having a C at the locus and a probability of 1−α of having a T.

If the overall population size remains n, then the number of chromosomes with C

at the locus is random and can be modelled as Binomial(2n, α). This has expected

value 2nα, the same as the number observed in the �rst generation and variance

2nα(1− α). In this population of constant size, the number of chromosomes with

C can rise or fall over time from one generation to the next (�gure 1.4) until

either the C or T variants (alleles) completely disappears. When this happens the

remaining allele is said to be �xed. That is because, unless there is a mutation, the

next generation and all subsequent generations will only have that allele because

there is no individual in the previous generation from whom to inherit the other

allele. This random process where the proportion of chromosomes with a C at the

locus can rise or fall over time, not driven by any force like natural selection, is

called genetic drift. The model just described is the Wright-Fisher model from

Wright (1931) and Fisher (1930).

Next, imagine a population with n1 +n2 individuals in it and 2(n1 +n2)α versions

of the chromosome with a C at the locus. If the population stayed intact the next

generation would have a number of chromosomes with a C at the locus modelled

by Binomial(2[n1 + n2], α). However, suppose it splits into two groups, one with

n1 individuals and one with n2 individuals. The second group goes o� to live

in isolation, perhaps on an island, and they never meet again. The one with n1

individuals has 2n1β versions of the chromosome with a C at the locus and the
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Figure 1.4: Genetic Drift Over 3 Generations
Genetic drift over 3 generations of size n=14 using the Wright-Fisher model. The proportions of
each allele C or T can �uctuate from generation to generation in a process called genetic drift.
Over a su�ciently large number of generations one of the two variants will die out. Assuming
no mutation, once a variant dies out, it can never reappear in subsequent generations.
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group with n2 individuals has 2n2γ. There are two ways that the two populations

could end up having quite di�erent proportions of the allele C at the locus over

time. First, β and γ could be quite di�erent so that the two groups have di�erent

proportions and be quite di�erent from each other at the outset. The second is

that even if β and γ are very similar and both about the same as α, the number of

chromosomes with a C at the locus for the next generation for the �rst group will be

modelled as a draw from Binomial(2n1, α) and for the second as Binomial(2n2, α).

The proportions of the allele in that second generation are likely to be slightly

di�erent. Over subsequent generations, the proportion of chromosomes with a

C at the locus will vary for the two populations independently of each other, so

that as time goes on they can become more di�erent. That is to say, they will

experience genetic drift independently in di�erent ways. Eventually, the allele

could even become �xed in di�erent states. One group could end up with only

the C variant at the locus and the other with only T. If this is extended to cover

the proportions of alleles at other SNPs and some of these contribute to some

physical characteristics which are neither advantageous or disadvantageous, the

two populations can start to look less alike over time. These processes can start

to provide an explanation why some people who have ancestry in particular parts

of the world look di�erent to those from other parts of the world. However, the

vast majority of di�erences between them across their genome will be unrelated

to visible characteristics. A great many of the di�erences may have no functional

e�ect but some will have less obvious e�ects such as contributing risk factors to

particular disease conditions.
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1.4 Models of Population Genetics

1.4.1 Population Trees

The situation described in the preceding paragraph could be represented as a pop-

ulation tree (Figure 1.5) such as those described by Cavalli-Sforza et al. (1994).

The common ancestral population is at the root of the tree and the two derived

subpopulations are at the leaves. In this simple example there is a single branch-

ing or bifurcation. A more complex relationship between a number of present-day

subpopulations will also have a single common ancestor population. Such a rela-

tionship will involve a larger number of bifurcations. If it is assumed that there is

negligible contact between populations after they have branched from each other,

then a tree with s subpopulations will have s − 1 such bifurcations in it such as

the one in �gure 1.6 (reproduced from Cavalli-Sforza et al. (1994)). Models with

population trees of this type will be considered in more detail in chapter 4.

A variant of bifurcating population trees arises if two or more populations split o�

at about the same time resulting in a tree with multifurcations rather than just

bifurcations. An example of this is shown in �gure 1.7. In an extreme case all the

present-day subpopulations could be assumed to split from the shared ancestral

population at about the same time, leading to a single multifurcation such as that

in �gure 1.8. Models with this type of tree will be considered further in chapter 3.

1.4.2 Admixture

These models assume that after each bifurcation or multifurcation, the resulting

subpopulations and their descendants never have su�cient contact with each other

to interbreed to any meaningful extent again. There are several models that allow

this assumption to be relaxed in di�erent ways. Suppose that in the above example,

after one of the populations has left to go to the island, many generations pass
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Figure 1.5: The Simplest Population Tree
In this simple example of a population tree, a common ancestral population splits into one sub-
population that remains on the mainland and another subpopulation that moves to an island.
The fork or bifurcation represents the split and lines can be thought of as representing periods of
genetic drift. In this model the two resulting subpopulations have no further reproductive contact
with each other.

Figure 1.6: Example Population Tree for 7 Subpopulations
An example population tree with 7 subpopulations descended from a common ancestral population.
With 7 subpopulations lettered A to G, there will be 6 bifurcations including the one at the root,
one less than the number of subpopulations.
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Figure 1.7: A Population Tree With a Multifurcation
In this example of a population tree, a common ancestral population splits into one subpopulation
(subpopulation 4) and another which further undergoes a multifurcation resulting in subpopula-
tions 1 to 3.
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Figure 1.8: A Population Tree With Only a Multifurcation
In this example of a population tree, a common ancestral population undergoes a single multifur-
cation resulting in subpopulations 1 to 4.
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before a second island is discovered. The population on the mainland splits again

with some moving to this second island. Sometime after, the population of the �rst

island become aware of this second island and some of these also choose to leave

and move to the second island. The populations on the mainland and �rst island

then continue to experience genetic drift independently as before but those who

have moved to the second island meet and eventually interbreed. Thus a new third

population is created on the second island that has some of its genetic material

from the mainland population and some from the �rst island's population. This

kind of population is called an admixed population. Rather than being represented

by a tree, it is more naturally represented as a network. The story above could

result in the network shown in �gure 1.9. This can be modelled as a one-o� event as

by Wang (2003) as depicted in the �gure or as a continuous in�ow to the second

island as by Roberts and Hiorns (1962). Admixture will be considered in more

depth in chapter 5.

1.4.3 Many Islands Model

Hartl and Clark (1997) review yet another type of model, in which the popula-

tions become isolated from each other as before but the assumption that they

have negligable reproductive contact with each other and experience genetic drift

independently is relaxed in a di�erent way. Here, a more signi�cant number of

individuals are assumed to move between the populations at each generation (�g-

ure 1.10). If the populations are su�ciently large to make genetic drift negligible

compared to the e�ects of migration between the islands, the allele frequencies

converge over time to a common frequency. Otherwise, the populations become

di�erentiated and experience genetic drift di�erently but not entirely indepen-

dently of each other. The allele frequencies in the resulting subpopulations are

not as di�erent as if they had been entirely isolated. For example, in a number of

subpopulations that experience drift independently and separately, a variant at a
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Figure 1.9: A Simple Admixture Network
In this example of admixture, a common ancestral population splits into one subpopulation that
remains on the mainland and another subpopulation that moves to a �rst island. The only repro-
ductive contact between the two groups then occurs when some of each of these two populations
discover and move to a second island where they meet each other and form a new third subpopu-
lation together which has no further contact with the populations remaining on the mainland or
the �rst island.
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locus can become �xed or die out in one or some of the subpopulations but not

others. Once the variant has become �xed or died out in that subpopulation then

it will remain in that state for all time if it is isolated and no mutation is assumed.

However, if a number of individuals can move between subpopulations, a variant

that is missing from one of the subpopulations that still exists in another can

be reintroduced by immigration from other subpopulations. If the islands form a

linear chain (�gure 1.10 left) and individuals can only move into a neighbouring

island subpopulation but no others, this can lead over time to gradients of allele

frequency either increasing or decreasing from the �rst to the last island in the

chain. Much more complicated variants of this island model are possible such as

those depicted in �gure 1 of Evanno et al. (2005).

Figure 1.10: Two Examples of the Many Islands Model
In this �gure, the four circles in each of these two examples represent subpopulations that have
arisen from a bifurcation process such as that depicted in �gures 1.5 and 1.9. However, now
instead of having no further reproductive contact, they exchange individuals with other subpopu-
lations each generation. In the right hand example, any subpopulation can exchange individuals
with any other. In the left hand example, the subpopulations can only exchange individuals with
a neighbouring subpopulation and no others.

Any of these previous models describe di�erent types of population structure. Pop-

ulation structure arises from hidden relatedness. To think of population structure

another way, although all pairs of individuals will have a most recent common an-

cestor, two individuals from the same geographic location are more likely to have

had a most recent common ancestor who lived more recently than two individuals

from more distant geographical locations. Those who share a common ancestor

that lived more recently tend to have more of their genome in common. Scaling

this up to the level of local populations, if su�ciently representative samples of

DNA were taken from groups of individuals in a number of di�erent locations, the
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proportions of each allele observed at each locus on the genome for those popu-

lations in locations with more recent contact with each other will tend to be less

di�erent over the genome than those from populations that have been isolated for

a long time.

1.5 Some Existing Techniques for Analysing Pop-

ulation Structure

AMOVA (Analysis of Molecular Variance) is a statistical technique, similar to

Analysis of Variance (ANOVA), that is used to detect population structure and is

credited to Exco�er et al. (1992). It looks for the amount of variation between

individual's chromosomes within samples from local populations and between such

samples or, at higher strata, between groups of local samples. The di�erence

between two chromosomes is the Euclidean distance, where in its most basic form,

one is counted for every independent locus at which the two chromosomes di�er and

the square root of the total taken as the distance. If there is no population structure

then almost all the variation will be within samples. If there is population structure

in the samples, then signi�cant amounts of the variation will be observed between

samples. Signi�cance can be tested by permutation. There is an implementation

of AMOVA in the software ARLEQUIN (Schneider et al., 2000).

PCA (Principal Component Analysis) has been around since Pearson (1901). Price

et al. (2006) describe how it can be used in the context of population genetics. In

e�ect what PCA does is project a dataset with d2 dimensions into an d1 dimensional

space (where d1 < d2). The main steps are

1) Subtract the mean of each of the d2 dimensions of the dataset from each data-

point, e�ectively translating the dataset so that it is centred on the origin.
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2) A d2 × d2 covariance (or correlation) matrix is calculated for the resulting

dataset.

3) The eigenvalues and unit eigenvectors are calculated for this covariance matrix.

This produces d2 eigenvalues e1,..., ed2 which can be ordered by size, greatest �rst.

4) The eigenvectors corresponding to the �rst d1 eigenvalues in decreasing order

are the principal components. The eigenvectors are orthogonal and are linear

combinations of the original d2 dimensions or variables.

The size of an eigenvalue is proportional to the proportion of total variance of the

data projected onto its corresponding eigenvector. The d1 largest of these account

for the most variance possible within the dataset using only d1 dimensions. This

can be useful to approximate and visualise huge datasets. When d1= 2 or 3 the

dataset can be represented visually in 2D or 3D scatterplots. Even when d1 > 3,

plots can be produced of the data using pairs of these principal components as

axes. These visualisations can be used to identify clusters in genetic data that

can correspond to subpopulations whose members are more closely related to each

other than they are to members of other clusters and thus to signal the presence

of population structure in the data. The software EIGENSTRAT (Price, 2017)

described by Price et al. (2006) was developed for this purpose.

The methods used in the package STRUCTURE (Pritchard, 2017) are due to

Pritchard et al. (2000). Instead of using some measure of distance to describe

the di�erences between the chromosomes in the sample and forming clusters that

way, it works by assuming that Hardy-Weinberg equilibrium exists within each

cluster and that there is no linkage disequilibrium between loci. Recall that for

humans, each individual has two versions of each chromosome. In Hardy-Weinberg

equilibrium (HWE), the probability of observing an allele at a locus on the second

version chromosome of the individual is independent of the allele observed at that

locus on the �rst version of that chromosome. These assumptions about linkage

and HWE imply that each allele at each locus for each individual is an independent
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draw from a probability distribution given the subpopulations (cluster) of origin

of each individual and the allele frequency for each subpopulation at each locus.

The method seeks to �nd the allocation of individuals to subpopulations (clusters)

that most closely satis�es these assumptions. It does this using Bayesian methods

and MCMC. Denote Xζi as the genotype of the individual ζ at the ith locus, Zζ as

the subpopulation that individual ζ belongs to and πηij as the frequency of allele

η in subpopulation j at locus i. Then Pr(Z, π|X ) ∝ Pr(Z)Pr(π)Pr(X|Z, π) by

Bayes' Theorem. Pr(Z) and Pr(π) are priors. Pritchard et al. (2000) suggest

a discrete uniform and Dirichlet priors, respectively, for these. The steps of the

MCMC process are then to choose a set of allele frequencies given the data and the

subpopulation that the individuals belong to, from π|X ,Z and then to choose a

subpopulation for each individual given the data and the set of allele frequencies,

from Z|X , π . This results in samples from the posterior distributions for Z and,

as a by-product, for π. One of the interesting features of STRUCTURE is that it

can be used to help decide how many clusters or subpopulations, K, there should

be. It produces estimates of the probability of the data for di�erent values of K,

Pr(X|K), the marginal likelihood. The original paper cautions that while these

do seem to produce plausible results in practice, it should only be used as a guide.

Evanno et al. (2005) remarks that from their simulations using STRUCTURE,

�nding the maximum of the modulus of the second order (with respect to K) of

the rate of change of the likelihood of K was a better predictor of the true value

of K than the marginal likelihood itself. Falush et al. (2016) describe how similar

output from STRUCTURE can arise from quite di�erent population histories.

Additional information is needed to distinguish between them.

There have also been attempts to model genetic drift to describe the relationship

between clusters or subpopulations more directly. One such approach is developed

by Nicholson et al. (2002) which assumes all the present-day subpopulations arose

from their common ancestral population following a single multifurcation. The

genetic drift experienced by each subpopulation is modelled using a modi�ed Nor-
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mal (Gaussian) distribution. If the allele frequency at locus i is πi in the ancestral

population and the genetic drift for subpopulation j is quanti�ed as cj then the

subpopulation's allele frequency is modelled as a N (πi, πi [1− πi] cj) distribution

with the modi�cation that all resulting values above 1 are taken to be 1 and all

resulting values below 0 are taken to be 0. Markov Chain Monte Carlo techniques

are used to obtain posterior distributions for all the ancestral allele frequencies πi,

present-day subpopulation allele frequencies αij and genetic drifts for each subpop-

ulation cj. The bulk of this thesis will be concerned with developing this model

to cover much more complex population tree structures and admixtures. As such,

this model will be described in much more depth in chapter 3 and its advantages

and disadvantages discussed in chapters 3 and 4.

1.6 Review of Admixture Models

There is a considerable body of previous work on statistical models of admixture,

a new model for which will form the meat of chapter 5. One of the earliest exam-

ples is by Bernstein (1931). Although DNA had been discovered in cells as early

as 1869, the role of DNA in transmitting inherited traits would not be con�rmed

until the early 1950s. Nevertheless, models of pairs of genes on chromosomes trans-

mitting heritable traits were already being developed. These models were able to

explain the proportions of phenotypes observed to be inherited from parents by

their o�spring. Despite the fact that Gregor Mendel's work on genetics, describing

such a model to explain the results of his plant experiments, had been published

much earlier (Mendel, 1866), it was only becoming fully accepted as having much

wider implications by 1931. The phenotype that Bernstein's paper is concerned

with is that of blood groups. (A phenotype is an observable characteristic that

results wholly or in part from a particular genotype.) Karl Landsteiner had pi-

oneered work on blood groups in the early 20th century and had been awarded

the Nobel prize for medicine in 1930. The theory behind blood groups was also
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still at an early stage. The Rhesus types, for example, would not be discovered

until later in the decade. The model described by Bernstein (1931) uses the four

blood groups, A, B, AB and O. The alleles for O are recessive while those for A

and B are codominant. Bernstein takes the proportion of the A, B and O pheno-

types in a subpopulation, a, b and o respectively and calculates p = 1 −
√
o + b,

q = 1 −
√
o + a and r =

√
o. The values p,q and r will sum to a value close to 1.

Let the error be D = 1 − (p + q + r). To obtain three quantities that sum closer

to 1, he then computes ṗ =
(
1−
√
o + b

) (
1 + D

2

)
, ṗ =

(
1−
√
o + b

) (
1 + D

2

)
,

ṙ =
(√

o + D
2

) (
1 + D

2

)
. The error is then much smaller, D2

4
.

In the paper, an equilateral triangle of height 1 is drawn where each side repre-

sents one of ṗ, q̇ and ṙ. A point for a subpopulation is plotted at a distance ṗ

perpendicular to the p side, q̇ perpendicular to the q side and ṙ perpendicular to

the r side. For two such populations, two points can be drawn as shown in �gure

1.11. An admixture of these two populations, it is argued, will have a point that

will lie along a line connecting these two points. The position of the point on

the line will be proportional to the proportions of the two populations represented

in the admixture. If it is an admixture created from 25% of population 1 with

75% of population 2, then the point will be three quarters of the way from the

point for population 1 to the point for population 2 as shown in �gure 1.11. More

generally, this is just saying that ṗM = wṗ1 + (1 − w)ṗ2, where ṗM is the value

of ṗ for the admixed population. ṗ1 and ṗ2 are the ṗ for subpopulations 1 and 2,

respectively, and w is the admixture parameter, the proportion of subpopulation

1's contribution to the admixture. This type of expression for an admixture will

appear again in later models. The Streng triangle idea relies on the theorem that

for any point in or on an equilateral triangle, the sum of the shortest distances from

that point to each of the three sides is equal to the height (the shortest distance

from a corner to the opposite side) of the triangle. The remainder of Bernstein's

1931 paper discusses the use of the model on data for a number of populations

to infer historical population �ows. Given that it must do so without a modern
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understanding of the underlying genetic basis for the blood groups, no concept

of genetic drift and with relatively small datasets which are con�ned to this one

phenotype, it is a good simple early model. Nevertheless, the paper remains one

of historical interest.

Figure 1.11: Streng Triangle
A similar diagram to that shown in Bernstein (1931) where it is referred to as a Streng triangle.
The formulae for ṗ1,q̇1 and ṙ1 are calculated from the proportions of blood groups A B and O
in subpopulation 1, those for ṗ2,q̇2 and ṙ2 are similarly calculated for subpopulation 2. These
give rise to two points within the triangle, one for each subpopulation. These are the points with
distance p measured perpendicularly from the side labelled p, q measured perpendicularly from the
side labelled q and r measured perpendicularly from the side labelled r. An admixture of these
two subpopulations is then expected to have its point on the line (shown in green) joining these
two points. Its position along the line would be related to the proportions of the subpopulations
represented in the admixture. If there were a 3:1 ratio of subpopulation 2 to subpopulation 1
in the admixture (i.e., 25% of subpopulation 1 and 75% of subpopulation 2) then the point on
the triangle for the admixed population would be three quarters of the way along the line from
the point for subpopulation 1 to subpopulation 2. The values, ṗM, q̇M and ṙM, expected for the
admixed subpopulation can then be measured and read o�.

By the 1960s, the structure and role of DNA in genetic inheritance was known.
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An example of one of the pieces of work on admixture in the aftermath of this

major breakthrough is by Roberts and Hiorns (1962), which presents a determin-

istic dynamic model for the allele frequency in an admixed population where the

admixture is not treated as a single event but as a continuous �ow of people from

the parent populations into the admixed population. Later, in Roberts and Hiorns

(1965) they develop a least squares approach for estimating the proportionate con-

tribution to the admixed population from each parent population. The model is

relatively simple. If Q is a matrix of allele frequencies with a column for each

locus and a row for each parental subpopulation, q is a column vector of allele

frequencies for the admixed population and w is a column vector of contribution

proportions for each parental population to the admixed population, then their

model is

wT = qTQT
[
QQT

]−1
. (1.1)

However, they omit to mention that the resulting vector, w, has elements that

do not necessarily sum to one and that they perform an additional step of scaling

the vector so that the elements do sum to one. It is also not mentioned that

the elements of w are not necessarily positive. Indeed, in the helpful worked

example they give in the paper of African, Indian and Portuguese subpopulations

contributing to an admixture of Nordestinos in São Paulo, Brazil, changing a single

allele frequency in the admixed population would have led to a negative element

in w. So this model does not necessarily produce useful results but is another

interesting early attempt to quantify the contribution of parental subpopulations

to an admixed subpopulation.

Thompson (1973) introduces genetic drift into a model of admixture. It takes

account of genetic drift since the admixture event. It parametrises the measure of

drift in terms of the number of generations, t and e�ective population size, N . A

normal distribution model of genetic drift is used with the mean of the present-

day allele frequency, representing the earlier allele frequency and the variance

used is t
8N
. It also models the sampling variance as being 1

8n
, where n is the
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sample size. It also features the admixture event being modelled as αadmix =

wα1 + (1− w)α2, where αadmix is the admixed subpopulation's allele frequency,

α1 and α2 are the allele frequencies in the two parent subpopulations, and w,

the proportion that parental subpopulation 1 contributes to the admixture, is the

admixture parameter. It is interesting that αadmix = wα1 + (1− w)α2 is the same

as implied by the Streng triangle of Bernstein (1931).

Chikhi et al. (2001) use a likelihood MCMC approach to model drift since a single

admixture as well as the admixture coe�cient. The underlying model, is still sim-

ilar to that of Thompson (1973). They were limited by the technology available

at the time. Their simulated data sets contained data on only 20 loci, leading to

posterior distributions for the admixture parameter that were very wide. When

applied to a human data set of Jamaicans, it was found that the European ad-

mixture component had a 95% credible interval of 1.9% to 14.1%. Wang (2003)

develops this model further and takes a maximum likelihood approach. The drift of

the two parent subpopulations of the admixed subpopulation since their common

ancestral population is explicitly incorporated into the model. The approach still

only models a single admixture event and, as will be shown in chapter 5 further

episodes of drift can be incorporated. Wang uses his own modi�ed version of the

di�usion approximation of Crow and Kimura (1970) to model genetic drift because

the di�usion approximation itself is too computationally intensive. Choisy et al.

(2004) compare the MCMC approaches with the others available at the time and

�nds that they perform better in situations where the parental populations of the

admixture are not greatly di�erentiated from each other and where the admixture

proportions are far from being 50:50, particularly when e�ective population sizes

are low. Nevertheless, Choisy et al. (2004) do not consider the extra time that

MCMC methods take to be worthwhile.

Exco�er et al. (2005) takes an interesting alternative approach using Approximate

Bayesian Computation (ABC). Like Wang (2003), they model a single admixture

and the drift before and after the admixture. Their model also allows for mu-
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tations. Instead of using MCMC, it uses another approach. In the �rst step,

parameter values are drawn from their priors. A dataset is simulated according to

those priors and summary statistics of that dataset are calculated. This is repeated

a large number of times. The second step is to calculate the summary statistics for

the actual dataset. In the third step the large set of summary statistics are com-

pared to that of the real dataset. A metric, such as Euclidean distance between

each of the million simulated summary statistics and the real dataset's summary

statistics, is calculated. In the fourth step, a small proportion of the simulations

with the lowest such metrics are retained. The rest are discarded. The �fth step is

to use local and weighted linear regression on the retained simulations to estimate

the parameter values that generated the real dataset.

Patterson et al. (2006) take an entirely di�erent approach, using Principal Compo-

nents Analysis (PCA) to estimate admixture parameters. It makes no attempt to

model genetic drift or the admixture process directly but does have the advantage

of being fast and being able to be used on an admixed population when there

are many more than two parental populations. They point out the similarities

that this PCA approach has to clustering approaches. These approaches are a

useful and relatively fast alternative when only the admixture proportions in the

present day subpopulations are required and the genetic drift processes before and

after the admixtures are not of interest. This work led to the development of the

EIGENSTRAT package.

The paper of Alexander et al. (2009) is interesting in that it also was motivated

by an attempt to control for population structure in association studies. Like Pat-

terson et al. (2006) it also does not model genetic drift or the admixture process

directly but does seek to estimate the proportions that a number of parental pop-

ulations contribute to the genomes of individuals within an admixed population.

This work led to the development of the package ADMIXTURE (Alexander et al.,

2017). It takes a likelihood-based approach and then uses an EM algorithm to

maximise the likelihood. However, they wanted their program to run faster than a
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pure EM approach and after using EM to reach the neighbourhood of a maximum,

they switch to a block relaxation algorithm to complete the process faster. They

report that their program has a running time of a similar order to EIGENSTRAT.

It was mentioned earlier that Roberts and Hiorns (1962) modelled admixture as a

continuous process rather than a one-o� event. Models of admixture as a process

in time rather than an event are still developed. The paper of Verdu and Rosen-

berg (2011) is one such example. It treats time as a discrete quantity measured

in generations and develops a stochastic model for the distribution of allele fre-

quencies in an admixed population with an initial contribution from two parental

populations and then di�erent contributions �owing into it from the two parental

populations in each generation. It does not take genetic drift within the parental

populations into consideration. The larger the number of generations, and the

smaller the sizes of these parental populations, the more that will be a problem.

It is, nonetheless, easily generalisable to more than two parental populations.

Frichot et al. (2014) use a least-squares method. Again, genetic drift is not mod-

elled, just the admixture proportions. The method makes no assumption that

Hardy-Weinberg Equilibrium has been reached. They argue that this makes this

approach better than Alexander et al. (2009)'s approach when there are reasons

to doubt that assumption. They also report that in practical tests their algorithm

was faster than that of Alexander et al. (2009) particularly so as the number of

parent populations increases.

1.7 Applications of Population Structure Models

Historically, a common motivation for the development of these models is for use

in anthropology; the reconstructing of unrecorded human history to describe the

spread of humans across the planet. They are also applicable to other species.

There are, however many other practical applications of these population genetic
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models. One is in forensics using methods such as those described by Kayser

and de Knij� (2011). In forensics, markers from a DNA sample from a crime

scene are compared to those from a suspect. There may be a match. If so, the

chance of an equal (or better) match from a random member of the population is

assessed. The problem that can arise when there is population structure is that a

DNA pro�le that is uncommon in the general population may be more common

in a subpopulation associated with ethnicity or location or both. If ethnicity or

location played any role in the choice of suspect, comparing their pro�le wrongly,

to that of the general population rather than the subpopulation could lead to

an overstatement of the probability that the crime scene sample belongs to the

suspect.

Another application is in controlling for population structure in Genome Wide As-

sociation Studies (GWAS). The objective of a GWAS is to discover which locations

in the human genome are associated and potentially causal for particular pheno-

types. Often the phenotype of concern is susceptibility to a particular disease.

To do this allele frequencies in samples with and without that biological quality

are analysed. A problem arises in GWAS in that if population structure exists

in the samples and is not taken account of then it can lead to an elevated rate

of false associations between loci on the genome and biological qualities. Balding

(2006) describes this problem and many of the methods that have been used to

take account of it.

Chapter 2 describes the generic methods that will be used throughout the rest of

the thesis.
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Methods

A number of generic statistical methods that will be used in the following chapters

will be discussed here. The chapter will start o� discussing Bayesian Inference

and Markov Chain Monte Carlo methods before looking at Gibbs Sampling and

Metropolis-Hastings sampling. An adaptive algorithm used within Metropolis-

Hastings sampling to help ensure it performs well will then be discussed. Rejec-

tion sampling will then be considered and a customised version developed for this

project will be described. The chapter will then move on from sampling to describe

the Neighbour Joining Algorithm of Saitou and Nei. Gelman's R statistic which is

used as evidence that a model has not converged properly is described. Watanabe

Aikeke's Information Criterion, a method for choosing between potential models

by balancing how well they represent the data agains their complexity, is intro-

duced. Finally, Post Predictive Checking, a method for determining how well a

model represents the important aspects of the data is then described.

31
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2.1 Bayesian Inference and Markov-Chain Monte

Carlo (MCMC)

The Bayesian approach is the main approach to analysing data that will be used

during most of this thesis. It is desirable to know what the probability distribution

of a set of parameters, θ, in a probabilistic model, is given the available data, D,

that is p (θ|D). One way of approaching this is to use Bayes' Rule (Gelman et al.,

2013):

p (θ|D) =
p (θ) p (D|θ)

p (D)
. (2.1)

Here p(.) might be probability densities, mass functions or a combination of

both. In the simplest cases, the left hand side can be found analytically. The

distribution p (θ) is known as the prior distribution. It encodes beliefs about the

likely and unlikely values of the parameters before the data at hand have been

examined. p (D|θ), the probability of the data being observed conditional on

the parameters encapsulates the mechanics and distributional assumptions of the

model being used and is proportional to the likelihood function viewed as a function

of θ. Both of these terms involve making probabilistic assumptions about the

model parameters and the relationship of data to them respectively. In practice,

since well-known distributions are often chosen for these terms, expressions can

usually be derived for these, albeit often very complicated ones, particularly in the

case of hierarchical models where distributions involve some parameters which in

turn depend on distributions involving other parameters in a tree-like way. The

denominator, p (D), sometimes called the marginal likelihood or the evidence can

in practice be the most problematic. Sometimes, it can be found using the Law

of Total Probability, that is summing p (D|θ) p (θ) over all possible values of the

parameters, θ. In practice, this is often impractical or impossible. However p (D)

is constant with respect to θ. It is therefore common to use a version of Bayes' rule

that leads to an unnormalised expression for the distribution p (θ|D), the posterior
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distribution:

p (θ|D) ∝ p (θ) p (D|θ) . (2.2)

One means of making inference is to explore p (θ|D) by repeatedly sampling from

p (θ) p (D|θ) . However, it is often not possible or practical to sample directly from

such a posterior distribution. Again, this is particularly the case in complicated hi-

erarchical models. One idea that has been developed to sample from the posterior

distribution in a less direct way is to exploit Markov Chain Monte Carlo (MCMC)

methods. These methods depend on producing a Markov chain of simulated values

of θ (i.e., one where the next simulation only depends on the last), the limiting

distribution of which is constrained to be the posterior distribution. As the chain

approaches equilibrium, successive draws are taken from distributions that become

better approximations to the posterior distribution. The idea is that these succes-

sive draws eventually become close enough to being representative of the posterior

distribution that a series of them can be used to approximately describe the prop-

erties of that posterior distribution that are of interest. Note however that the

draws are correlated, since they are taken from a Markov chain.

2.2 Gibbs Sampling

Gibbs sampling, (e.g., Gelman et al., 2013), is an MCMC procedure that al-

lows sampling from the posterior distribution. It does this in a way such that

over a su�cient number of iterations or draws, the distribution being drawn

from becomes a better approximation to the posterior distribution and the set

of successive draws become more representative of a (correlated) sample from the

posterior distribution. It starts by partitioning the set of parameters, θ into a

number, ϑ, of subsets. In each iteration, each of the ϑ subsets of parameters

is drawn from its conditional distribution given the values of the others subsets.

This requires �nding an expression for the distribution of the ιth subset condi-
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tional on the others up to proportionality. Using Bayes rule as before, this is

p (θι|D,θ−ι) ∝ p (θι) p (D, θ−ι|θι) = p (θι,D, θ−ι) = p (θ,D) = p (D|θ) p (θ).

This is known as the full conditional for θι . This is easiest to do when the subsets

each contain just one parameter. There are, however, occasions when it is desir-

able to group parameters together and draw them from a joint full conditional

distribution, such as when the values of the parameters are highly correlated in

the posterior distribution, since doing so can lead to the chain exploring the joint

posterior distribution more e�ciently. It sometimes happens that the form of these

conditionals are such that they can be sampled from directly, e.g., when they are

a known standard distribution. Nonetheless, in many practical cases the forms

of these conditionals are more complicated and another means of sampling from

them needs to be used.

2.3 Metropolis-Hastings Sampling Within Gibbs

Since it is not always possible to sample directly from the full conditional distri-

butions, a number of alternative methods have been devised to perform this step

within the Gibbs sampling framework. One of the most remarkable and useful of

these is the Metropolis-Hastings algorithm (Hastings, 1970) which is also described

in more detail by Gelman et al. (2013). First an approximate set of starting values,

θ0 are assigned to the parameters θ. The superscript 0 here is refers to the state of

θ at iteration t = 0. These can be rough guesses or any other estimates to provide

a starting point for the process. At each iteration, i, a probability distribution is

used to draw from to generate a proposed new value for θi, θ∗i . The proposed new

value of the parameter can depend on the value of the parameter from the previous

iteration in some way. So, for example, if θi was just a single parameter, θi and the

proposal distribution chosen was a normal distribution, it would be usual to choose

that normal distribution to have mean θt−1
i , the value that the parameter had after

the last iteration, and some variance σ2 which can be chosen arbitrarily. To take
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account of bias in non-symmetric distributions, a ratio is calculated. If g
(
θ∗i |θt−1

i

)
represents the probability density at the proposal, θ∗i , of the proposal distribution

with its parameters dependent on θt−1
i , then g

(
θt−1
i |θ∗i

)
represents the probability

density at θt−1
i of the proposal distribution with its parameters dependent on θ∗i ,

that is the reverse of the proposed change to the value of the parameter. The ratio

Q =
g
(
θt−1
i |θ∗i

)
g
(
θ∗i |θ

t−1
i

) (2.3)

is then determined. With a symmetric proposal distribution such as a normal

distribution this ratio will always be 1 and this step can be omitted.

The next step is to use the expressions that have been found for the full condi-

tionals to calculate both p(θ∗i |D,θ−i) and p(θt−1
i |D,θ−i). The values of the other

parameters used to calculate this probability density (or probability in the discrete

case) are either those at iteration t− 1, for a parameter that has not yet been up-

dated at this iteration, or at iteration t, if it has, i.e., it is the most recent value

for the parameter. The ratio

ρ =
p(θ∗i |D,θ−i)
p(θt−1

i |D,θ−i)
(2.4)

is calculated. In the next step an acceptance probability, γ is calculated where

γ = min (ρQ, 1). With probability γ, the proposal is accepted and so θ∗i is assigned

as the value of θti , otherwise θ
t
i retains its value from the previous iteration, θt−1

i .

One of the attractions of this algorithm is that it is usually straightforward to

turn into computer code. In practice, because of the low numerical values of the

probability densities that are often involved and the distortions that can occur

when computers have to represent very small positive values in digital �oating

point arithmetic, it is very often practically easier and more accurate if most of

the Metropolis-Hastings algorithm calculations are carried out using logs. It is

nevertheless, remarkable that in the long run, given a su�ciently large number of
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iterations, this algorithm does produce a representative sample from the posterior

distribution. (See Chib and Greenberg (1995) for details of why this works).

2.4 Adaptive Metropolis-Hastings Algorithms

In the previous subsection, it was mentioned that the variance of the proposal dis-

tribution in the Metropolis-Hastings algorithm within a Gibbs sampling framework

could be chosen in an arbitrary way. However, some choices of variance lead to a

larger number of iterations being needed in the Markov Chain before the resulting

distribution can be said to be representative of the target posterior distribution

than others. If the choice of variance is too large, the proposed new value for the

parameter, θ∗i , will tend to be further from the value it took at the last iteration,

θt−1
i . This typically leads to lower probabilities of acceptance. This results in the

parameter keeping its value from the last iteration more often, and it can end up

doing that for many iterations at a time. If the parameter does not change value

often enough it will take more iterations for the Markov Chain to produce a series

of values for the parameters that will be representative of the posterior distribution

being sampled, a scenario described as �poor mixing�. Conversely, if the choice of

variance is too small, the proposed θ∗i will tend to be closer to θt−1
i and while this

will lead to a higher acceptance probability and prevent the Markov Chain sticking

in the same way, the moves will be small and it will take more iterations for the

Markov Chain to explore the full range of values and combinations of values which

the posterior distribution covers, again �poor mixing�.

There is therefore a �sweet spot�, an optimum choice for the variance of the proposal

distribution. The problem is that there is no easy way of knowing where it will be

before starting the MCMC process. It can be found approximately by trial and

error but where there are many such parameters this haphazard approach is often

simply impractical.
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Roberts and Rosenthal (2009) proposed a surprisingly simple adaptive MCMC

algorithm aimed at solving this problem. Instead of simply guessing what the

value of the proposal variance should be, they would let a computer algorithm

learn about where the optimal value approximately is over a number of iterations

at the beginning of the Markov Chain. First, an initial guess is made at the best

proposal variance, σ2 = exp (2lsi) where lsi can take a chosen value. If there is no

information about what a good value for lsi would be, then setting lsi = 0 is as

reasonable a starting point as any.

Roberts and Rosenthal (2009) state that, in one dimension, the optimal acceptance

rate is 0.44 (Gelman et al., 1996). So when θi represents a single parameter, the

optimal choice of proposal variance will lead to an acceptance rate of about 0.44.

Roberts and Rosenthal (2009) are clear that such a rule about the acceptance rate

is only based on approximations and has not been rigorously proven. Nevertheless,

even if only very approximately true, the algorithm resulting from targeting an

acceptance rate of 0.44 will still produce better results than guessing the proposal

variances.

After a particular number of iterations of the MCMC process, such as a batch

of 100, the acceptance rate over these iterations can be calculated and the value

of lsi for the parameter can be adjusted accordingly. If the acceptance rate was

less than 0.44 over the κth such batch, then lsi can be decreased by 1
κ
for the

next batch. Similarly, if the acceptance rate was more than 0.44 over the κth

such batch, then lsi can be increased by 1
κ
for the next batch. If this process

is continued for a su�ciently large number of batches, the value of lsi will tend

towards an approximately optimal value. After a su�cient number of batches, the

value of lsi and therefore the proposal variance can be held at the approximately

optimal value that has been found for the rest of the Gibbs sampling process.

It should be noted that the sample of iterations taken from the Markov Chain as

an approximation to the posterior distribution should be taken after the proposal
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variances are being held constant. This is because the adaptive part of the process

violates the Markov property. Since the decision to change the value of lsi after

each batch depends on the last whole batch of iterations, the value of the next state

of the Markov chain depends on what happened over the whole previous batch of

iterations and not simply the present state of the Markov chain. Nevertheless, it

is usual practice to discard a number of the early iterations of the Markov Chain

anyway as �burn in�, because, as noted in the previous sections, the series of states

of the Markov chain only become draws from the target posterior distribution

after a su�cient number of iterations have elapsed. If the number and size of the

batches in the adaptive part of the process are chosen such that the iterations over

which the adaptive process takes place end before the end of the �burn in� period

of iterations then no di�erence is made to the total number of iterations needed

before sampling from the approximate posterior distribution can begin.

If the adaption process were continued beyond the burn-in period there would

be blocks of chain states with di�erent variances in their proposal distributions.

Within each block, the states would represent draws from the target distribution.

However, there would be di�erent speeds of mixing between each block. When the

variance is nearest to the optimum value there will be faster mixing, while when

it is further away, there will be slower mixing. There might not appear to be any

particular problem on examination of the draws from the target distribution. It

might appear that the whole space of the target distribution has been explored.

However, the states that were visited when the mixing was at its slowest would

be over-represented compared with other states and so the chain as a whole would

not properly represent the target distribution.

2.5 Rejection Sampling

Metropolis-Hastings is not the only approach to drawing from a full conditional

distribution within the Gibbs sampling framework. Another approach is rejection
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sampling. In its simplest form, rejection sampling from a full conditional distribu-

tion consists of a number of steps. This can be done if the parameter for which it

is the full conditional has support on a �nite interval, [ν, ξ] say.

2.5.1 Simple Rejection Sampling

Simple rejection sampling is described in various sources such as Casella et al.

(2004). Step 1 is to �nd the maximum value of the full conditional distribution

or choose a value that is guaranteed to be above its maximum. There are various

ways to do this. Finding the points where the derivative is 0 and using the second

derivative to check whether the points are maxima rather than minima is one way.

The derivative may not always be easy to �nd. A more brute-force approach is

to choose a number, % of points at regular intervals, ν, ν + ξ−ν
%−1

, ν + 2(ξ−ν)
%−1

, . . . , ν +

(%−2)(ξ−ν)
%−1

, ξ, evaluate the full conditional at these points, and determine which of

these values, λ, produced the highest value for the full conditional. It is then

assumed that the maximum lies somewhere in the interval
[
λ− ξ−ν

%−1
, λ+ ξ−ν

%−1

]
. A

second more accurate search is now done by selecting a new set of points at regular

intervals between these two points. The process can be repeated, narrowing the

search each time until the maximum is found to su�cient accuracy. It is important

on the �rst search to choose a su�ciently large % otherwise a narrow peak could

fall between two points and be overlooked.

Once the maximum or some greater value, m, is found by one method or another

from step 1, step 2 is to sample a value x from Uniform(ν, ξ). Step 3 is to sample

a value y from Uniform(0,m). These two steps sample a random point uniformly

within [ν, ξ]× [0,m]. Step 4 �nds z, the value of the full conditional evaluated at x.

At step 5, if y > z then return to step 2 and choose another value for x, otherwise x

becomes the value drawn from the full conditional. These last two steps determine

whether the point drawn uniformly from the (ξ − ν) × m rectangle is above or

below the full conditional. If it is below the line, it is accepted. If it is above,
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it is rejected and a new point is drawn and tested. It is this rejection process

that gives the algorithm its name. It can be seen that one of the advantages of

rejection sampling is that it does not need the area under the full conditional

function curve to integrate to 1. It can be used on unnormalised distributions

without any additional di�culty.

2.5.2 The �Shawlands� Rejection Sampling Algorithm

Often, simple rejection sampling will be su�cient to be used without modi�ca-

tion. However, there are some situations where some modi�cation could improve

e�ciency. One such situation is where the full conditional is suspected to form a

single very sharp peak (�gure 2.1). Simple rejection sampling could take a long

time in this situation. An x is far more likely to be sampled that is not at or near

such a peak and will almost certainly be rejected. This could result in a great

many rejections occuring before an x is selected at or near the peak. In practical

terms, a computer program using this algorithm could appear to be doing nothing,

potentially for many hours, until an x is accepted.
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Figure 2.1: Simple Rejection Sampling
In simple rejection sampling a random point is chosen within the red box. If it is below the curve
of the full conditional distribution, such as the one shown in black, it is accepted. If not, it is
rejected and another point selected. Where the full conditional forms a sharp peak, such as in this
situation, it could take many rejections before a point is selected. The problem would be worse if
the peak was even sharper than that shown.

This problem can be alleviated by adopting a modi�ed version of rejection sam-

pling. It employs the % points used to �nd an approximate maximum in step 1 of

the description of the simple version of the algorithm to slice the full conditional

distribution up into % − 1 slices. Step 1 chooses a number, % of points at regular

intervals, ν, ν+ ξ−ν
%−1

, ν+ 2(ξ−ν)
%−1

, . . . , ν+ (%−2)(ξ−ν)
%−1

, ξ, evaluates the full conditional at

these points, and, as before, �nds the value λ, producing the highest value for the

full conditional. Again, it is then assumed that the maximum lies somewhere in

the interval
[
λ− ξ−ν

%−1
, λ+ ξ−ν

%−1

]
. A second more accurate search is now done to �nd

the universal maximum by selecting new set of points at regular intervals within

this interval. Third and fourth searches or the bisection method can again be used

for increased accuracy. (If the full conditional is suspected of having several local

maxima, second searches of this sort can also be done where the full conditional

evaluated at one of the % points, λj is greater than it is for the two points adjacent

to it, λj − ξ−ν
%−1

and λj + ξ−ν
%−1

to �nd more accurate values of these local maxima.)

Step 2 slices the full conditional up into % − 1 slices each of width ξ−ν
%−1

. The
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information from step 1 is used to �nd the maximum within each slice. Where a

slice does not have a local maximum, found by the second more accurate search

in step 1, the maximum for the jth slice mj is assumed to be the higher of the

two values of the full conditional found at the slice's boundaries because the full

conditional is assumed to be strictly increasing or decreasing over the interval of

that slice. Otherwise mj is the maximum value of the full conditional that was

found within the slice during the more accurate search for a maximum at step 1.

In step 3, the area of each slice is calculated Aj = ξ−ν
%−1

mj. Step 4 calculates the

total area enclosed by all the slices, Atot =
%−1∑
j=1

Aj and the proportion of the total

area that each slice accounts for, Aj

Atot
. These proportions sum to one and so can

be taken to be probabilities in a discrete probability distribution. Step 4 uses

that discrete probability distribution to randomly select a slice with probability

proportional to its area.

The next steps are similar to performing simple rejection sampling within the

selected slice. Suppose that the jth slice has been selected at step 4. It is bounded

by λj and λj + ξ−ν
%−1

on the x axis and by 0 and mj on the probability axis. Step

5 samples a value, x, from Uniform
(
λj, λj + ξ−ν

%−1

)
. Step 6 samples a value y from

Uniform(0,mj), so steps 5 and 6 sample a random point uniformly within the slice.

Just as in the simple case, step 7 �nds z, the value of the full conditional evaluated

at x. However, at step 8, if y > z then the algorithm rejects x, returns to step 4

and uses the discrete probability distribution to select a slice again. Otherwise x

becomes the value drawn from the full conditional.

In e�ect what this does is approximate the full conditional function with blocks of

width ξ−ν
%−1

before doing rejection sampling. This modi�cation makes it much more

likely that the �rst x chosen will not be rejected and that fewer rejections will be

needed before an x is selected compared with simple rejection sampling. This is

particularly useful where the full conditional function is anticipated to contain a

sharp peak. However, there are more steps involved, so where such a sharp peak
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is not likely, it will be less e�cient. There is also a trade o� to be made in the

choice of %. The larger % is, the more numerical calculations are involved but the

closer the blocks can approximate the full conditional and so the thinner the peak

it can deal with without a lot of rejections (�gure 2.2). Whether the choice of a

larger % makes the algorithm faster or slower depends on how sharp the peak is in

the full conditional. There is a judgement to be made based on the user's belief of

how likely that situation is to arise.

This scheme was devised as a solution to a problem that arose during work on

this thesis. During simple rejection sampling, the computer occasionally appeared

to freeze or slow down dramatically on that task and yet was performing other

tasks normally. On further investigation it was found that the problem was that

the sampler was attempting to sample from a function with a single very sharp

peak. The idea of approximating the area under a function with rectangles is far

from being a new one and can trace its history all the way back to Leibniz's idea

for calculus (Leibniz, 1684) who in turn drew inspiriation from Cavalieri's idea for

approximating the area under a curve by adding up the lengths of evenly spaced

parallel lines drawn below it (Cavalieri, 1635). Here it has been employed to avoid

the problem of having a large number of rejected values for x and so a lot of wasted

processor time. While it would be surprising if this idea has not been used before,

nothing exactly the same has been uncovered by a search. This may be because

it is mainly useful in the speci�c situation of sampling from a function with a

single very sharp peak. It has since been suggested that this quick-�x may be an

accidental innovation and is in need of a name. The idea for this scheme suggested

itself during a walk through the Shawlands area of Glasgow where, as with many

other areas of Glasgow, there were a cluster of tower blocks dominating the skyline.

The tower blocks looked like the rectangles in �gure 2.2, providing the inspiration

for the solution to the problem. It is therefore suggested that the sampling scheme

described in this subsection could be named after the area of Glasgow where the

idea occurred.
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Figure 2.2: �Shawlands� Rejection Sampling
In the �Shawlands� rejection sampling scheme described in this section, one of % blocks of width
ξ−ν
%−1 and height equal to the maximum value that the full condtional takes over their width, is
chosen with a probability proportional to its area. A point is then randomly chosen within that
block. If it is below the density of the full conditional distribution, such as the one shown in black,
it is accepted. If not, it is rejected and the process restarts by randomly choosing a block again.
In situations where the full conditional forms a sharp peak, such as in this situation, this process
could be faster than simple rejection sampling because fewer rejections would be expected before
a point is accepted. The blocks form an approximation to the area under the full conditional
distribution. The lower diagram has a larger value of %, the number of blocks. In that case,
the blocks form a closer approximation to the area under the curve, fewer rejections would be
expected before a point is accepted reducing the expected time the algorithm takes to run. However
the increased number of blocks increases the number of calculations that need to be done which
increases the expected running time.

To show how much time can be saved by this scheme, a number of tests were

carried out using a beta distribution, with both parameters greater than 1, as the

distribution being sampled from by rejection sampling. Obviously, there are far

more e�cient ways to sample from a beta distribution but it is being used here
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as an example of a function with a single sharp peak. The peak becomes sharper,

the larger the parameters are. To show relative di�erences in running times, the

sampling method described in both this and the previous subsection were imple-

mented in R and the times taken to successfully draw a sample of 100,000 values

are recorded. Six pairs of parameters and three choices of % are tested. As seen in

table 2.1 , where the fastest times taken for each distribution are shown in bold,

where the distribution has a wide peak, such as in Beta(2,3), the extra calculations

required by this scheme are not worthwhile and simple rejection sampling is faster.

However for sharper peaks, such as for Beta(20,30) and beyond, the Shawlands

method is faster and the di�erence in speed becomes more appreciable as the dis-

tribution becomes more sharply peaked. In addition, the best value of % becomes

larger for sharper peaks, as expected.

Table 2.1: Rejection Sampler Times Taken (in seconds) to Draw a Sample of Size
100,000

Rejection Sampling Method
Simple Shawlands

distribution % = 10 % = 100 % = 1000
Beta(2,3) 1.83 2.26 2.23 3.67
Beta(20,30) 5.01 2.75 2.28 3.65
Beta(200,300) 15.04 5.90 2.50 7.41
Beta(2000,3000) 46.83 17.32 3.17 7.00
Beta(20000,30000) 146.58 53.74 6.54 5.13

Beta(200000,300000) 462.10 169.76 19.52 5.34

For some extra insight into why the Shawlands method is so fast in this case,

the top histogram in �gure 2.3 summarizes the number of attempts needed to

make a successful sampling for the sample of 100,000 for the Beta(200000,300000)

distribution for the Shawland sampler with % = 1000. In well over 80% of cases

the sample was made �rst time. It rarely took the sampling method more than 6

attempts to achieve a point under the distribution curve. In contrast, for simple

rejection sampling the equivalent histogram is shown at the bottom of �gure 2.3.

It found a point below the distribution curve at the �rst attempt less than 0.4% of

the time . It was common for it to take more than 1000 attempts to �nd a point
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below the curve and could take it many thousands of attempts.
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Figure 2.3: Histograms for the Number of Attempts Needed Before a Valid Rejection
Sample for Beta(200000,300000) for (top) Shawlands Rejection Sampling
and (bottom) Simple Rejection Sampling

This is all very well in the case where many of the calculations needed for Shaw-

lands rejection sampling are needed anyway to �nd the maximum for simple rejec-
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tion sampling. The Shawlands method then doesn't need many extra calculations

over simple rejection sampling. But what about the case where the maximum can

be found analytically? In this case, during a practical situation such as Gibbs

sampling, the Shawlands method would need to evaluate the function at many

points before each draw since in a Gibbs sampler each draw could be from a di�er-

ent distribution whereas simple rejection sampling would not need to do this if an

analytical maximum were known. Could there be cases where Shawlands rejection

sampling is faster even in this situation? This was tested by requiring the Shaw-

lands sampler to repeat the calculations for the % points on the distribution again

before each of the 100,000 samples from the distribution were taken while allowing

the simple rejection sampler to use the known maximum without needing any such

calculations. In this case, the only thing slowing down the simple rejection sam-

pler is the number of attempts it needs to make before selecting a point below the

function curve. Even in this situation, which is particularly disadvantageous for

the Shawlands sampling method, there are situations where it is still faster if very

sharply peaked distributions are being regularly encountered as table 2.2 shows.

Table 2.2: Rejection Sampler Times Taken to Draw from 100,000 Distributions

Rejection Sampling Method
Simple Shawlands

distribution (analytical maximum) % = 10 % = 100 % = 1000
Beta(200000,300000) 464.91 474.76 475.94 1812.61
Beta(2000000,3000000) 1459.16 834.94 493.33 1802.26

Here the simple rejection sampler takes a similar amount of time for the

Beta(200000,300000) distribution even when the maximum is known analytically.

This is because the time it takes is dominated by the amount of time it takes

to sample a point under the curve, which by nature is random. The extra cal-

culations needed for each sample for the Shawlands sampler results in the whole

process taking a similar amount of time to the simple rejection sampler for % = 10

and % = 100. However, if the distributions are even more extremely sharply peaked

such as for Beta(2000000,3000000), the Shawlands sampler becomes quicker again
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even with having to make so many extra calculations before each sample. Here,

of the three values of % tested % = 100 was fastest but there will be an optimum

value of % somewhere between 10 and 1000.

In conclusion, the Shawlands sampler is useful in speci�c situations where a very

sharply-peaked distribution is being sampled from, particularly if the maximum

of the distribution function cannot be found analytically or in a reliable way by

some fast method.

2.6 Saitou and Nei's Neighbour Joining Algorithm

In the �rst chapter, population trees were introduced to describe the relationship

between present-day subpopulations and their common ancestors. But which tree

structure out of the many possible structures should be chosen to represent the

genetic relationships between the subpopulations?

If the tree is a bifurcating one then one way to reconstruct the tree is to use the

Neighbour Joining (NJ) method described by Saitou and Nei (1987) and Studier

and Keppler (1988).

The algorithm can be summarised in six steps.

Step 1 Make a distance matrix where the entries in the Ath row and Bth column

represent some measure of distance between subpopulations A and B. This will be

a symmetric matrix with 0s along its main diagonal. In this thesis the estimated

distances were obtained by making pairwise FST estimates from the data using the

equation

FST =
1

2L

L∑
i=1

(α̂i,A − α̂i,B)2

αi,AB (1− αi,AB)
(2.5)

where α̂i,j =
xi,j
ni,j

for locus i and j = A or B, representing the two subpopulations

in the pairwise estimate and αi,AB =
xi,A+xi,B
ni,A+ni,B

. xi,j is the allele counts for one
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of two variants for subpopulation j at locus i. ni,j is the sample size (twice the

number of subjects for a diploid species) for subpopulation j at locus i.

This produces a N ×N symmetric distance matrix

0 D12 D13 · · · D1N

D21 0 D23 · · · D2N

D31 D32 0 · · · D3N
...

...
...

. . .
...

DN1 DN2 DN3 · · · 0


, (2.6)

where there are N subpopulations and DAB = DBA is the FST calculated from

(2.5) for subpopulations A and B.

Step 2 For each unjoined subpopulation, A, out of the t remaining, compute

uA =
t∑
B=1

DAB
t− 2

. (2.7)

Step 3 Choose unjoined subpopulations, A and B for which DAB − uA − uB is

the smallest.

Step 4 Subpopulations A and B are neighbours, so draw branches joining these

subpopulations to a new common node which represents the common ancestral

population from which they are both descended.

A branch length can be calculated, if needed, from subpopulation A to the new

node and is

vA =
DAB + uA − uB

2
, (2.8)

and from subpopulation B to the new node is

vB =
DAB + uB − uA

2
. (2.9)
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Step 5 The new node represents the ancestral population of subpopulations A

and B. The entries for subpopulations A and B will be removed from the distance

matrix and replaced with one row and column for the new ancestral population.

The distance entries in the matrix from this new node S to each of the other

remaining subpopulations is calculated from

DST =
DAT +DBT −DAB

2
, (2.10)

for subpopulation T .

Step 6 If the distance matrix is now a 3×3 matrix then stop, otherwise return

to step one, treating ancestral subpopulations in the same way as the original

subpopulations. This will �nd the next two subpopulations to join together at a

new node and so on.

2.7 Gelman's R Statistic

One way to test for lack of convergence in an MCMC sampler is to use Gelman's

R statistic. This is described in Chapter 8 of Gilks and Richardson (1996) and in

Gelman et al. (2013). It consists of running d parallel chains of n iterations each

so that, in this context, I = 1, ..., d and J = 1, ..., n so that I labels the chain and

J labels the iteration in each chain. Ideally, each of the d chains has a di�erent

initial state. Let B be the between-chain variance,

B =
n

d− 1

d∑
I=1

(
ȲI − Ȳ

)2
, (2.11)

where

ȲI =
1

n

n∑
J=1

YIJ (2.12)
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is the mean of the Ith chain, and

Ȳ =
1

d

d∑
I=1

ȲI (2.13)

is the grand mean over all d chains. The within-chain variance is

W =
1

d

d∑
I=1

s2
I, (2.14)

where

s2
I =

1

n− 1

n∑
J=1

(
YIJ − ȲI

)2
(2.15)

is the within-chain variance for the ith chain. Gelman's R statistic is then

R̂ =

√
n− 1

n
+

B

nW
. (2.16)

It can be seen that R̂ is determined by the ratio of B, the between-chain variance

and W, the within-chain variance. If the sequence has converged, then these two

measures of variance should be about equal because the d chains should be indis-

tinguishable from each other. As a result, their ratio should be near 1. According

to Gilks and Richardson (1996), if R̂ is above 1.1 � 1.2 then the statistic provides

evidence that the sequence has not converged. Unfortunately, there is no way of

proving conclusively that the Markov chain process has converged; the best that

can be done is to say that there is no evidence that it has not converged.

2.8 WAIC

When there are two or more candidate models of the data, the question of which

of these models is �best� arises. It is advantageous for a model to describe the

data as well as possible. However relying solely on such a criterion would give

an inherent advantage to more complex models. Models with more estimated
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parameters will have an automatic advantage in describing the data. Indeed a

model with a su�cient number of parameters could �t the data exactly. Many

of these additional parameters may not contribute usefully to an explanation of

the actual process that gave rise to the data and may just be describing noise.

Typically such models then have poor predictive properties. Additionally, Occam's

Razor, holds that the simplest explanation for an event is the most likely to be true

(Collins, 2017). While it can be counter-argued that the real world processes that

gave rise to the data are, in reality, highly complex, by including such unhelpful

spurious additional complexity, the main features of the process that are of interest

become obscured. For this reason, models with fewer parameters that are almost

as good at describing the data are preferred to more complex ones so there must

be some penalty for models with greater numbers of parameters. So a measure of

how good a model is should incorporate terms that measure how well the model

describes the data and that also penalise complexity. This subsection draws on

pages 166 to 178 of Gelman et al. (2013).

Ideally, in a Bayesian context it would be useful to know how likely each model

was given the data, p(M |D), where M is the model and D is the data. Using

Bayes' rule this becomes

p(M |D) =
p(D|M)p(M)

p(D)
, (2.17)

where p(M) represents the prior belief in the truth of the model. Penny et al.

(2006) state that in Bayesian model selection, the model is chosen which has the

highest probability p(M |D). Where there are two possible models, M = 1 and

M = 2, equation 2.17 becomes

p(M = 1|D) =
p(D|M = 1)p(M = 1)

p(D|M = 1)p(M = 1) + p(D|M = 2)p(M = 2)
, (2.18)
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for M = 1 and

p(M = 2|D) =
p(D|M = 2)p(M = 2)

p(D|M = 1)p(M = 1) + p(D|M = 2)p(M = 2)
, (2.19)

for M = 2.

In this case, if the prior odds ratio is de�ned as p(M=1)
p(M=2)

, and the posterior odds

ratio as p(M=1|D)
p(M=2|D)

, then these can be related by a Bayes factor, F,

p(M = 1|D)

p(M = 2|D)
= F

p(M = 1)

p(M = 2)
. (2.20)

where

F =
p(D|M = 1)

p(D|M = 2)
(2.21)

In practice, however, it can be very di�cult to calculate p(D|M), particularly for

complex models. A number of other methods have been devised to aid model

selection based around the model parameters θ and their estimates θ̂.

A measure that is commonly used is the Akaike Information Criterion (AIC)

(Akaike, 1973). This has a relatively simple formula which shows how the ideas in

information criteria measures work. In these criteria, D represents the data and θ

represents the parameters. AIC is de�ned as

AIC = −2 ln
(
p(D|θ̂)

)
+ 2C. (2.22)

In this formula, the �rst term depends on the probability (density) of the data

given the estimated parameters. In the case of AIC, the latter are maximum like-

lihood estimates. The log of the probability of the data given the parameters or

log-likelihood is also known as the log predictive density. Models for the data

with a high probability have a low value for this �rst term and those with a lower

probability have a greater value. In the second term C represents the number of

parameters, so the second term gives a higher score to models with more param-
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eters. Since the model with the lower AIC score is preferred, this represents a

penalty for having a more complex model.

AIC is not appropriate in the case of the Bayesian hierarchical models that are

dealt with in most of this thesis. Simply penalising by the number of parameters

is not appropriate. For example, in hierarchical models it is sometimes possible to

integrate out some of the intermediate parameters. The overall model remains the

same, yet AIC would penalise the model with the parameters integrated out, and

hence with fewer parameters as a result, less harshly than the equivalent model

with those parameters remaining. Additionally, parameters with more informative

priors have less freedom to change to �t the data and so contribute less to the

over�tting problem. Until the last few years, the Deviance Information Criterion

(DIC) (Spiegelhalter et al., 2002) has been a commonly used information criterion

for Bayesian hierarchical models. DIC is de�ned by

DIC = −2 ln
(
p(D|θ̂)

)
+ 2VDIC. (2.23)

Here the parameter estimates are not the maximum likelihood estimates, but the

mean of the posterior distribution of each parameter. VDIC is called the e�ective

number of parameters and is analogous to C in (2.22). VDIC is calculated from

VDIC = 2

[
ln
(
p
[
D|θ̂

])
− 1

Y

Y∑
W=1

ln (p [D|θW ])

]
, (2.24)

where the posterior distribution of the parameters has been approximated by Y

draws from it such as would be obtained from an MCMC sampler, after discarding

burn-in. θW is the state of the parameter set at iteration W of the process. The

second term is (an estimate of) the posterior expectation of the log-likelihood. It

can be seen that if the parameters are not free to move far, such as might be the

case when they have a very informative prior, then the two terms in VDIC will be

close to each other and the e�ective number of parameters small. If they are free

to cover a wider range, the second term will include iterations with a θW that leads
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to relatively small likelihoods and hence to larger values of VDIC , representing a

larger penalty in the DIC for a greater number of e�ective parameters.

Another popular information criterion is the Bayesian Information Criterion (BIC).

The formula for BIC is

BIC = −2 ln
(
p(D|θ̂)

)
+ C ln Ξ, (2.25)

where Ξ is the number of pieces of independent data. The relationship to AIC

is obvious. The �rst term is identical and rewards accuracy. The second term

penalises the number of parameters, the penalty increasing with the size of the

data set. Where Ξ > e2, this penalty will be greater than that in AIC. Gelman

et al. (2013) does not consider it useful as a predictor of model performance.

However, su�cient others do �nd it useful and keep it in common use. It does

have the attraction of being related to marginal likelihood, p (D|M), under certain

assumptions such as large Ξ , Ξ� C and the priors p (θ|M) being relatively linear

near θ̂,

p (D|M) ≈ exp

[
−BIC

2
+O

(
Ξ0
)]
, (2.26)

where O (Ξ0) are terms of order Ξ0.

More recently, the Watanabe Akaike Information Criterion (WAIC) has emerged

(Watanabe, 2010). It makes greater use of the posterior distribution of θ. One of

the problems with DIC is its use of point estimates of θ based on the posterior

distribution. In the case of a multimodal or a unimodal but highly skewed posterior

distribution, situations can arise where the posterior mean value is not very typical

of the posterior distribution as a whole. It could sit near a deep minimum between

two modes of a posterior distribution or in the tail of a very skewed distribution.

The use of point estimates, as in DIC, is not in keeping with the spirit of the

Bayesian approach.
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WAIC is de�ned by

WAIC = −2
Ξ∑
ψ=1

ln

[
1

Y

Y∑
W=1

p (Dψ|θW)

]
+ 2VWAIC. (2.27)

Bearing in mind that likelihood, p(D|θ) =
Ξ∏
ψ=1

p(Dψ|θ), when there are Ξ pieces

of independent data, the log-likelihood is ln (p [D|θ]) =
Ξ∑
ψ=1

ln (p [Dψ|θ]). Then

1
Y

Y∑
W=1

p (Dψ|θW) is an estimate of the posterior mean of p (Dψ|θ), replacing p(D|θ̂)

in DIC. Similarly, VWAIC takes an expectation over the posterior distribution of θ

rather than uses a point estimate. In e�ect, VWAIC represents an estimate of the

e�ective number of parameters in just the same way as VDIC does:

VWAIC = 2
Ξ∑
ψ=1

[
ln

(
1

Y

Y∑
W=1

p (Dψ|θW)

)
− 1

Y

Y∑
W=1

ln (p [Dψ|θW ])

]
. (2.28)

This formula may super�cially look more complicated but is simpler to use in

practice. The draws from the posterior distribution of θ are readily available as

a result of the MCMC sampling process. Even with large datasets and complex

models, WAIC can be computed quite readily. As with the other information

criteria, models with lower values of WAIC are preferred.

WAIC, is particularly well suited to being used to compare Bayesian hierarchical

models. WAIC is also known as the Widely Applicable Information Criterion but

Watanabe's name has become attached to it because of their published work on

the subject e.g., Watanabe (2010). Alternatives, such as K-fold cross-validation

would be computationally more time consuming according to Vehtari and Gelman

(2014).

So should the candidate model with the lowest WAIC always be selected? Mech-

anistically choosing the model with the lowest WAIC without referring back to

the real-world problem or process that the model is intended to represent could



Chapter 2. Methods 57

lead to a model being selected that describes the data well but does not make

sense in relation to the real-world process. Inevitably some human judgement is

required to ensure the selected model makes sense in the context of the process

it is intended to represent. In a Bayesian context, this is re�ecting the fact that

di�erent models are a-priori more or less probable. WAIC only selects a model

which balances describing the data well with complexity. It makes no judgement

about whether the model is sensible or believable or not. It may be that, out of

one or more models that have similar WAIC, there is a cogent argument to be

made for selecting one that does not have the smallest WAIC if the parameters

included or posterior parameter distributions are easier to explain in relation to

the aspect of the real world that it was intended to describe.

2.9 Post Predictive Checking

Another tool that can be used to assist in considering how well a model represents

the data is post predictive checking. Here pages 143-159 of Gelman et al. (2013)

give more detail. The idea of post predictive checking is relatively simple but very

e�ective. A model and its parameter estimates can be used to generate a simulated

data set. In a Bayesian context, this set of parameter estimates can be obtained

from one draw from their joint posterior distribution. This can be repeated, making

a new draw from the posterior distribution each time, to generate a large number

of such simulated data sets. The idea of post predictive checking is that if the real

world data set were shu�ed in among these simulated data sets and if the model

was a good description of that data, then the real world data set would not look

unusual compared to the simulated data sets. But exactly how should the real

world data set be compared to the simulated data sets? To make the comparison,

some quality of the data set needs to be expressed as a single number. The choice

of that quality depends on what aspects of the data set it is considered important

to capture in the model. It could be anything. It could be one of the traditional



Chapter 2. Methods 58

measures of location or spread of the data or anything else that is of interest.

Once a measure has been chosen, that measure can be calculated for each of the

simulated data sets and for the real world data set. The value for the real world

data set can then be compared to the values for the simulated data sets to see

if it is unusual in any way. �Unusual� could mean in the tails of the distribution

of simulated values, and this can be captured by a tail probability (analogous to

a p-value). If D is the real data, Dsim is a simulated data set, and T (D) is the

function used to calculate the measure of the quality of the data set that is of

interest, the posterior predictive p-value is:

p = Pr
(
T (Dsim) ≥ T (D)|D

)
. (2.29)

With a su�ciently large number of simulated data sets, this can be estimated by

calculating the proportion of the simulated data sets for which T (Dsim) ≥ T (D).

Both large (close to 1) and small (close to 0) values of p are usually of interest in

this context because they both indicate that the real world data is out of place (in

the left and right tails, respectively) among the simulated data sets with respect to

the quality being tested. The criterion for judging closeness to 0 or 1 is arbitrary

and depends on how important it is to the experimenter that the model represent

the aspect of the data being measured by the function T .

More than one such quality may be of interest requiring several such T functions to

be evaluated and their associated predictive p-values obtained. Multiple-testing

considerations are not important here. It is true that if a lot of such p-values

are obtained, some will be extreme by chance. However, the experimenter will

consider it more important that the model represent some qualities well and less

important that it represents other qualities less well. If no model can represent all

the tested qualities well, the experimenter can choose a model that represents the

most important ones well.

In the applications that will appear later in this thesis, it will be desirable for the
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model to represent the relatedness between present-day subpopulations well. A

natural choice to quantify relatedness between two subpopulations is to calculate

Wright's pairwise FST (Wright, 1951).



Chapter 3

Models for Quantifying Genetic

Drift

This chapter will develop a model of genetic drift involving all present-day sub-

populations arising from a single multifurcation event from one common ancestral

population. Three models of genetic drift will be considered. The Wright�Fisher

Model which describes genetic drift from one generation to the next will be intro-

duced. Two approaches to approximating it over a larger number of generations

will then be considered. The �rst was developed by Balding and Nichols (Balding

and Nichols, 1995) which is based on a beta distribution and another developed

by Nicholson and others (Nicholson et al., 2002) is based on a modi�ed Normal

distribution. These will then be compared in the context of the simple single

multifurcation model.

60
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3.1 The Wright�Fisher Model

3.1.1 Drift of Rare Alleles in the Wright�Fisher Model

The goal of modelling genetic drift is a probability model that captures the salient

features of the Wright�Fisher model. This model was �rst described by Fisher

(1930), who was aware of earlier work by Wright that was not published until 1931

(Wright, 1931). This model assumes that the number of instances of a particular

allele at a locus at generation t + 1, at+1 is taken by randomly drawing n times

with replacement from the pool of alleles in generation t, so that the distribution

of the allele at generation t + 1 is Binomial with parameter at/n, the proportion

of the allele at generation t, in a (constant) population of size n, which is twice

the number of individuals in a diploid species like humans:

Pr(at+1 = x) =

(
n

x

)(at
n

)x (
1− at

n

)n−x
. (3.1)

The model has some interesting properties. It allows for an allele to become �xed

for all time. If at some generation t, either at = 0 or at = n, then at+K = 0 or

at+K = n, respectively, for all positive K. This makes sense because if we assume a

model with no mutation and an allele is not present in the population at generation

t, then no individual in a subsequent generation can inherit it. Similarly, if it is the

only allele present at a locus at generation t, then all individuals in all subsequent

generations must inherit it. Of course, if mutation is common enough, this would

be a poor model.

Another property of the model is that if the proportion of an allele, αt = at/n, is

known at generation t but not at a subsequent time, then the expected proportion

of the allele in a subsequent generation is the same as that last known proportion

regardless of how many generations into the future the expectation is taken. This
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remains true even as K →∞. That is,

E (αt+K |αt) = αt for all K > 0. (3.2)

It is sometimes stated wrongly (e.g., by Hartl and Clark 1997) that the proportion

of an allele in the Wright�Fisher model is just as likely to increase as decrease

from one generation to the next regardless of how common or rare that allele is.

For any �nite population this is not true; e.g., for all αt < 0.5, there is a higher

probability of a decrease than an increase (and a lower probability when αt > 0.5).

For practical reasons, it is not possible to use the Wright�Fisher model directly for

inference. Under the model, Pr (αt+K |αt) has too complicated a dependence on K.

The need here is to model drift over a potentially very large and unknown number

of generations so it is impractical to use the Wright�Fisher model. The reason for

using the Balding�Nichols drift model or any other model is to approximate the

behaviour of the Wright�Fisher model over a large number of generations. From

the above discussion, it is desirable for such a model to have similar properties to

the Wright�Fisher model. That is,

• the distributions of the proportions of alleles should be similar to those that

the Wright�Fisher model would produce over a large number of generations;

• it should allow for an allele to become �xed;

• the expected proportion of an allele under drift should be its last known

proportion;

• while it is therefore desirable for the mean of the proportion of an allele after

a period of genetic drift to be the last known proportion, it is not necessary

for its median to be that last known proportion.

In order to visualise the distributions of proportions of an allele under drift in the

Wright�Fisher model, it is helpful to look at a few simulations of that model over
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a large number of generations (�gure 3.1). The pattern observed here is that, with

increasing numbers of generations, the distribution of the proportion of an allele

spreads out and eventually collects at the points 0 and 1.

3.2 The Balding�Nichols Model

3.2.1 Drift of Rare Alleles in the Balding�Nichols Model

A beta distribution model of genetic drift was suggested by Balding and Nichols

(1995). In that paper it appears in its more general multivariate form as a Dirichlet

distribution but in the case of only two variants at a locus, it simpli�es to the

beta distribution αt+K |αt ∼ Beta
(
αt(1−c)

c
, (1−αt)(1−c)

c

)
, which has a mean of the

starting proportion of the allele αt and a variance of cαt (1− αt), where c represents

a measure of genetic drift into which, for example, numbers of generations and

�uctuations in population size have been abstracted. This distribution has the

property that the expected future proportion is the present proportion αt of the

allele. The beta distribution is convenient to work with and can lead to models

where the proportion of the allele at the end of the period of drift can be integrated

out to produce a Beta-Binomial model for the allele counts. However, it has

drawbacks. It does not allow an allele to become �xed, that is it does not allow

the proportion of the allele to reach 0 or 1, although it does allow proportions very

close to 0 or 1. In practice, however, it can produce proportions that are within

machine precision of 0 or 1. In the more complex models that will be considered

in subsequent chapters, the proportion of the allele αt+K resulting from one period

of drift becomes the starting point for a subsequent period of drift. In those cases,

this machine precision issue makes it necessary to prevent either parameter of the

beta distribution for the subsequent period of drift becoming 0 (for which the beta

distribution is unde�ned), so arti�cial barriers just above 0 and just below 1 have

to be imposed in that situation.
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Figure 3.1: Wright�Fisher Model: Distribution of αt+k for Increasing Genetic Drift
This illustrates how the distribution of αt+K |αt develops with increasing K, the number of
additional generations for an initial value of αt = 0.1 and a population size of 1000 for the
Wright�Fisher Model. The graphs show simulations of 10,000 replications with values of K of
5,10,51,78,105 and 692 generations. In particular, note how with increasing k, the distribution
becomes skewed, the mode shifts left and the probability density collects at atoms at �rst 0 and
eventually 1.

The other drawback is that the shape of the distribution of the proportions of an

initially rare allele with increasing drift look somewhat di�erent in shape to those
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for the Wright�Fisher model. In particular, the Balding�Nichols distribution is

skewed and does not develop the characteristic atom at 0 (or 1), as can be seen

by comparing �gure 3.1 with �gure 3.2. While it does have the property of the

expected future proportion of an allele being its present one, the skewness makes it

much more likely the next proportion of the allele will be lower than its current one,

compared with the Wright�Fisher model, so more likely to be closer to (although

never actually reaching) 0. This means that over successive periods of drift, a rare

allele will, far more likely than not, go on becoming rarer (more often than the

Wright�Fisher model would predict) without ever completely dying out (which

the Wright�Fisher model allows). In data simulated under the Balding�Nichols

model, a large amount of drift is highly likely to lead to only a small change in

the proportion of a rare allele and that change is very likely to be in the direction

that makes it rarer.

3.2.2 Implementation of the Balding�Nichols Model

The idea is to apply a variant of the single multifurcation model described by

Nicholson et al. (2002) (hereafter called the Nicholson�Donnelly model) to obtain

a measure of genetic drift for each subpopulation. This measure of genetic drift

is conceptually similar to the FST measure described by Wright (1951) which is

widely used elsewhere, but di�ers in that it is speci�c to each subpopulation.
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Figure 3.2: Balding�Nichols Model: Distribution of α for Increasing Genetic Drift c

This illustrates how Beta
(
αt(1−c)

c , (1−αt)(1−c)
c

)
, the Balding�Nichols model's approximation to

the Wright�Fisher model, develops with increasing c, the parameter for genetic drift. This is
shown for an initial value of αt = 0.1. Here, note how with increasing c, the mode shifts left
but there is a more exaggerated skew than for the Wright�Fisher model and although it appears
probability density is collecting �rst at 0 and eventually at 1, this is only because the histogram
has a resolution governed by the bin width. The values are very close to 0 (and 1) but an exact
0 or 1 cannot be drawn from a beta distribution such as this.

A Directed Acyclic Graph (DAG) of the model used is shown in �gure 3.3. Here
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xij|nij, αij ∼ Binomial (nij, αij), independently,

αij|πi, cj ∼ Beta
(
πi(1−cj)

cj
,

(1−πi)(1−cj)
cj

)
, independently,

with priors

πi|a ∼ Beta (a, a), independently,

cj ∼ Beta(b1j, b2j), independently,

where

i labels the locus: 1 6 i 6 L,

j labels the subpopulation 1 6 j 6 P,

nij is the total number of alleles observed at locus i in subpopulation j,

xij is the number of one of the two alleles observed at locus i in subpopulation j,

αij is the population proportion of that allele at locus i in subpopulation j,

πi is the proportion of that allele at locus i in the ancestral population,

cj is the amount of genetic drift in subpopulation j.

a is a hyperparameter in the prior of πi.

b1j, b2j are hyperparameters in the prior of cj and assigned the value 1 unless

otherwise stated.
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i=1,...,L

j=1,...,P

cj
a

�i �ij

xij

nij

b1j b2j

Figure 3.3: DAG of Variant of Nicholson�Donnelly Model

This di�ers from the model described by Nicholson et al. (2002) in that they used

αij|πi, cj ∼ N (πi, cjπi (1− πi)), with the mass of the distribution below 0 and

above 1, atomised at 0 and 1, respectively, to keep the values of α in [0, 1]. That

model will be considered in the next section. The beta distribution used here

has the same mean and variance as the Nicholson�Donnelly model but avoids the

analytical problems that would arise from the atoms at 0 and 1. The binomial

distribution is a natural choice of distribution for xij where it is a count of the

number of times out of a possible nij that one of two possible alleles can be drawn.

The πi can take values in (0, 1) and so a beta distribution prior is a natural choice.

Since the decision about which of two variants are counted is an arbitrary one, a

symmetric distribution is also a natural choice, hence the repeated hyperparameter,

a. There is no reason a-priori to believe that any locus should be di�erent from

any other, so a is the parameter for all πi. However, this can easily be changed

if there was a particular reason to do so. The cj can also take values in (0, 1) so
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a beta distribution prior is again a natural choice. Here, it is easier to envisage a

situation where there could be good arguments for a non-symmetrical distribution

to allow the experimenter �exibility to set a strong prior on the drift for a particular

period of drift j. Hence, the hyperparameters, b1j, b2j are allowed to di�er from

each other. Nonetheless, unless otherwise stated these hyperparameters will be

taken to be one to represent a prior where all values of the πi and cj are equally

likely. Often, a case can be made for other weak priors such as the Je�reys prior,

which in this case would be beta(0.5, 0.5). However, the reason for doing that

would be to make it invariant to alternative choices of scale. In the case of πi and

cj, there are no obvious alternative choices of scale so this was not considered to

be a worthwhile choice at this stage before considering robustness of the model to

alternative choices of prior later.

3.3 The Nicholson�Donnelly Model

3.3.1 Drift of Rare Alleles in the Nicholson�Donnelly Model

Nicholson et al. (2002) argue that since a normal distribution provides a good

approximation to a binomial distribution for all but small population sizes that

modelling genetic drift with some form of normal distribution is appropriate. How-

ever, since the proportion of an allele cannot vary beyond 0 and 1, the normal

distribution needs to be recti�ed at these points so that the whole of the normal

distribution below 0 counts as 0 and the whole of the distribution above 1 counts

as 1. So an alternative to the beta distribution used by Balding and Nichols is to

use a normal distribution recti�ed at 0 and 1. Nicholson et al. (2002) use a nor-

mal distribution with the same mean and variance as Balding and Nichols' beta

distribution so that it is NR[0,1] (αt, cαt (1− αt)). However, rectifying a Normal at

0 and 1 results in shifting the mean of the new distribution towards 0.5, while the

median remains at αt. So, as well as being analytically awkward, which was why
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it was not used for the earlier models, it also does not have the property that the

future expected proportion of the allele is the last known proportion αt; in fact it

will be slightly closer to 0.5. The median will be αt and so the proportion will be

as likely to increase as decrease. However, as noted above, this is not a property of

the Wright�Fisher model. Some notes on recti�ed normal distributions, including

the mean, variance and a notation for describing recti�ed normal distributions is

included in appendix B.

However, the Nicholson�Donnelly model does have a number of desirable proper-

ties. First of all, it does allow the alleles to become �xed with proportions at 0 or 1.

Importantly, it can be seen from �gure 3.4, that the shape of the recti�ed normal

distribution for a rare allele does look much more similar in shape to that for the

Wright�Fisher model as the amount of genetic drift (represented by c) increases

(compare �gure 3.4 with �gure 3.1). The main di�erence is that the central mode

of the distribution that can be seen shifting slightly to the left towards 0 in the

Wright�Fisher model of �gure 3.1 with increasing numbers of generations, remains

�xed in the Nicholson�Donnelly model of �gure 3.4.

3.3.2 Implementation of the Nicholson�Donnelly Model

Attention moved to implementing the Nicholson�Donnelly model as described by

Nicholson et al. (2002) with the idea of then moving on to extend it. This is

very similar to the Balding�Nichols model described earlier with the key di�erence

that the proportion of an allele αij at locus i for the present-day subpopulation

j is modelled by a recti�ed normal distribution rather than a beta distribution.

Before recti�cation, the normal distribution has the same �rst two moments as

the beta distribution used in the Balding�Nichols model (mean πi and variance

πi (1− πi) cj). However, the act of recti�cation perturbs these moments. The
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model is now

αij|πi, cj ∼ NR[0,1] (πi, πi (1− πi) cj) , independently, (3.3)

with the rest of the model remaining the same as in the previous section.

xij|nij, αij ∼ Binomial (nij, αij), independently,

with priors

πi|a ∼ Beta (a, a), independently,

cj ∼ Beta(b1j, b2j), independently,

where

i labels the locus: 1 6 i 6 L,

j labels the subpopulation 1 6 j 6 P,

nij is the total number of alleles observed at locus i in subpopulation j,

xij is the number of one of the two alleles observed at locus i in subpopulation j,

αij is the population proportion of that allele at locus i in subpopulation j,

πi is the proportion of that allele at locus i in the ancestral population,

cj is the amount of genetic drift in subpopulation j.

a is a hyperparameter in the prior of πi.

b1j, b2j are hyperparameters in the prior of cj and assigned the value 1 unless

otherwise stated.
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The DAG also remains the same (�gure 3.3). The reasons for the choices of priors

also remain the same as in section 3.2.2.
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Figure 3.4: Nicholson�Donnnelly Model: Distribution of α for Increasing
Genetic Drift c

This illustrates how the recti�ed normal distribution, NR[0,1] (αt, cαt (1− αt)), recti�ed at 0 and
1, the Nicholson�Donnelly Model's approximation to the Wright�Fisher model, develops with
increasing c, the parameter for genetic drift. This is shown for an initial value of αt = 0.1. The
spike that collects at 0 (and later 1) is mostly made up of exact 0s (or 1s). Here, note how,
with increasing c, unlike the Wright�Fisher model, a mode remains at 0.1 and the mean of the
distribution shifts towards 0.5.
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3.3.3 Interpretation of the Model Parameters

A virtue of the model developed by Nicholson et al. (2002) was that the parameters

had clear and interpretable meanings. This is a virtue that it is an aim for this

thesis to maintain throughout. There is a split between the locus-speci�c param-

eter, πi, the allele frequency at the ancestral population and the subpopulation

speci�c drift parameter, cj. The αij represent the di�erent allele frequencies for

each subpopulation in a clear way. The allele frequency parameters, πi and αij

have an obvious and intuitive interpretation. The cj, however, encapsulates e�ec-

tive population size and time in terms of generations and perhaps needs a little

more explanation.

Genetic drift in the Wright�Fisher model was explained in Chapter 1 in terms of

a new generation of alleles at a locus being formed by making draws of alleles

with replacement from its previous generation. Hartl and Clark (1997) give the

variance of the allele frequency change as π(1−π)
2N

where N is the population size

of a diploid species. The variance in the Balding�Nichols and Nicholson�Donnelly

models is π(1 − π)c so, in this one generation case, 1 − c can be interpreted as

1 − 1
2N
. However, the purpose of these models is to model drift over a great

many generations. Hartl and Clark (1997) describe what happens to Wright's

F statistic over a number of generations. Taking Ft to mean the value of the

F statistic at time t, they give the formula for its change over 1 generation as

1 − F1 =
(

1− 1
2N0

)
(1− F0) = (1− c) (1− F0). If the population stays constant

in size at N0 then over t generations, 1−Ft =
(

1− 1
2N0

)t
(1− F0). However, if the

population �uctuates then N0 is replaced with the e�ective population, Ne. Over

one generation, N0 = Ne but over t generations 1
Ne
≈ 1

t

(
1
N0

+ 1
N1

+ · · ·+ 1
Nt−1

)
.

1 − Ft =
(

1− 1
2Ne

)t
(1− F0) = (1− c) (1− F0). So c can be thought of as c =

1 −
(

1− 1
2Ne

)t
≈ 1 − exp

(
− t

2Ne

)
. So, in this way, c encapsulates population

�uctuations and time. There are a couple of interesting points to note here. First,

when F0 = 0, such as would be the case for a pairwise F of a population with itself,
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one part of which then splits o� and drifts giving rise to Ft > 0, 1 − Ft = 1 − c

or Ft = c, showing the relationship in concept of FST and c. The second is to

note that it takes just one generation with a small population size such as might

happen after a natural disaster, war, famine or other such incident, to drastically

reduce Ne, even if the population recovers to its earlier size over a small number of

generations, so c also re�ects the e�ects of population bottlenecks such as this as

well as time and population size. The use of c in this way, provides a population-

speci�c parameter with an interpretable meaning while avoiding the considerable

complications that would arise from modelling each generation and its population

size explicitly.

3.3.4 Full Conditionals for the Balding�Nichols Model

Using the Balding-Nichols drift model, it is possible to integrate out the αijs, since

the beta is conjugate to the binomial:

P (xij|πi,cj) =

ˆ 1

0

P (xij|αij)P (αij|πi,cj) dαij, (3.4)

so that

P (xij|πi,cj) =
nij!

xij! (nij − xij)!
1

B
(
πi(1−cj)

cj
,

(1−πi)(1−cj)
cj

) (3.5)

×
ˆ 1

0

α
xij
ij (1− αij)nij−xij α

(
πi−cjπi−cj

cj

)
ij (1− αij)

(
1−2cj−πi+cjπi

cj

)
dαij.

But, since
´ 1

0
ug−1 (1− u)h−1 du = B (g, h) the beta function of arguments g and

h,

P (xij|πi,cj) =
nij!

xij! (nij − xij)!

B
(
xij + πi

[
1−cj
cj

]
, nij − xij + (1− πi)

[
1−cj
cj

])
B
(
πi(1−cj)

cj
,

(1−πi)(1−cj)
cj

) .

(3.6)
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Thus xij, unsurprisingly, follows a beta-binomial distribution given πi and cj.

Taking θ = {π1, ..., πL, c1, ..., cP}, the full-conditional probabilities for πi and cj

that are needed for sampling from the posterior by Gibbs sampling can be obtained

from

P (θ|x) ∝ P (π)P (c)P (x|π, c) =
L∏
i=1

P (πi)
P∏
j=1

P (cj)
L∏
i=1

P∏
j=1

P (xij|πi, cj) , (3.7)

using the product rule, as,

P (πi|a, x, c, π−i) ∝ πa−1
i (1− πi)a−1

×
P∏
j=1

nij!B
(
xij + πi

[
1−cj
cj

]
, nij − xij + (1− πi)

[
1−cj
cj

])
xij! (nij − xij)!B

(
πi(1−cj)

cj
,

(1−πi)(1−cj)
cj

)
 (3.8)

and

P (cj|x, c−j, π, b) ∝
L∏
i=1

nij!B
(
xij + πi

[
1−cj
cj

]
, nij − xij + (1− πi)

[
1−cj
cj

])
xij! (nij − xij)!B

(
πi(1−cj)

cj
,

(1−πi)(1−cj)
cj

)


×cb1j−1
j (1− cj)b2j−1 . (3.9)

Since these full-conditionals cannot be directly sampled, a Metropolis-Hastings-

within-Gibbs MCMC approach was taken and implemented in R. A truncated

normal proposal distribution for πi and cj was chosen where the parts of the nor-

mal distribution outside [0, 1] are discarded and the remainder renormalised. This

was done because the only allowed values for πi and cj are in [0, 1]. This also

allowed more direct control of the variance of the proposal. In order to ensure

reasonable acceptance rates [of about 0.44 as suggested by Rosenthal (2010), an

adaptive algorithm for setting the variance of the proposal, as described by Rosen-
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thal (2012) and Roberts and Rosenthal (2009), was used, with an adaptation and

burn-in time of 10,000 iterations. In testing, by examining traces from the pos-

terior chains from each parameter, the chains appeared to converge much sooner

than 10,000 iterations (in fact less than 2,000 iterations) but 10,000 is a round

number that is comfortably large enough to feel comfortable about convergence

before checking with more formal methods such as Gelman's R. The proposal

variances were then �xed and a further 10,000 iterations were taken to provide

samples from the posterior distributions of the parameters. The model was run on

the HapMap data for each of the 22 autosomes and for all 22 autosomes together.

3.3.5 Full Conditionals for the Nicholson�Donnelly Model

Unlike for the Balding�Nichols model, αij cannot be integrated out analytically.

Nevertheless, all the αijs can be sampled too with the cost of increasing the com-

putational time. Full conditionals need to be found not only for πi and cj but also

for αij, if the sampling is done by Gibbs sampling.

The full conditional for πi is,

P (πi|α, c, π−i) ∝ πa−1
i (1− πi)a−1

P∏
j=1

g (cj, πi, αij) , (3.10)

where

g (cj, πi, αij) =


[cjπi (1− πi)]−

1
2
´ 0

−∞ exp
(
−(r−πi)2

2cjπi(1−πi)

)
dr, αij = 0,

[cjπi (1− πi)]−
1
2 exp

(
−(αij−πi)2

2cjπi(1−πi)

)
, 0 < αij < 1,

[cjπi (1− πi)]−
1
2
´∞

1
exp

(
−(r−πi)2

2cjπi(1−πi)

)
dr, αij = 1

(3.11)

and P is the number of subpopulations.
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The full conditional for cj is

P (cj|α, π, c−j, b) ∝
L∏
i=1

g (cj, πi, αij)× c
b1j−1
j (1− cj)b2j−1 , (3.12)

where L is the number of loci.

However, the full conditional for αij is a bit more awkward:

P (αij|cj, πi, α−ij, xij, nij) ∝ h (nij, xij, αij) g (cj, πi, αij) , (3.13)

where, this time, the [cjπi (1− πi)]−
1
2 term in g (cj, πi, αij) can be taken out because

it does not depend on the value of αij, and

h (nij, xij, αij) =



1, αij = 0, xij = 0,

α
xij
ij (1− αij)nij−xij , 0 < αij < 1,

1, αij = 1, xij = nij,

0, otherwise.

(3.14)

Once again, an MCMC sampler was implemented in R (R Core Team, 2013).

Metropolis�Hastings�within�Gibbs and the adaptive MCMC method described

by Roberts and Rosenthal (2009) were used to sample cj and πi at each iteration

but all the αij were sampled using rejection sampling. A �rst attempt was made

to sample αij also using Metropolis�Hastings�within�Gibbs. However this imple-

mentation led to αij getting stuck at the values 0 or 1 far more often than it should

have in cases where xij = 0 or xij = nij, respectively, leading to unsatisfactory

mixing. Using rejection sampling for αij remedied this problem.
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3.3.6 Results of Simulations

Data were simulated under the assumptions of the Nicholson�Donnelly model for

random values of the parameters, cj and πi. The cj were selected independently

from a continuous uniform(0,0.3) distribution. This is the likely range of values

to be met in practice. The πi were selected independently from a Beta(1,1) dis-

tribution to allow for the full range of possibilities. Data for 11 subpopulations

each of size 300 (or 150 individuals) and 2400 loci were simulated to make the

samples similar to those that might be encountered in the HAPMAP data for a

large chromosome. The sampler was used to see if the original parameter values

of cj and πi were recovered from the data. The results for the cjs are shown in

table 2 for one such typical simulation.

Table 3.1: Nicholson�Donnelly Model Estimates of Drift Parameters Compared With
True Values

Nicholson-Donnelly Model Estimates of Simulated cj
95% Central Credible Value Interval Bounds True Value

j lower upper
1 0.2515 0.2878 0.2614
2 0.2279 0.2618 0.2451
3 0.1394 0.1590 0.1570
4 0.1082 0.1242 0.1195
5 0.0971 0.1112 0.0995
6 0.2453 0.2817 0.2672
7 0.0087 0.0115 0.0102
8 0.1818 0.2090 0.2014
9 0.0947 0.1085 0.1001
10 0.1225 0.1399 0.1267
11 0.1934 0.2199 0.2189

It can be seen that despite there being a wide variety of magnitudes of drift, the

95% credible intervals all contain the true values of cj in this typical example.

In addition, the 95% credible intervals for the πis contained the true values 2262

times out of 2400, 94.25% of the loci, which is acceptable. The true values of the

11 × 2400 = 26400 αijs were found to be within the 95% credible intervals from

the sampler 25091 times or 95.04% of occasions which, again, is much as should
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be expected.

3.4 The HapMap Dataset

The data that will be used in this chapter will be from HapMap. The HapMap

dataset comes from the HapMap project described by International HapMap Con-

sortium (2003). It contains data on SNPs from throughout the human genome for

988 individuals from 11 subpopulations. There are 4 subpopulations of African ori-

gin, African ancestry in southwest USA (ASW), Luhya in Webuye, Kenya (LWK),

Maasai in Kinyawa, Kenya (MKK) and Yoruba in Ibadan, Nigeria (YRI) (loosely

described as �Africans� subsequently). The remaining 7 subpopulations are Utah

residents with North and West European ancestry (CEU), Han Chinese in Beijing

(CHB), Han Chinese in Denver, Colorado (CHD), Gujaratis in Houston, Texas

(GIH), Japanese in Tokyo (JPT), residents of Los Angeles, California with Mexi-

can ancestry (MEX) and Tuscans, Italy (TSI). (The two Chinese and the Japenese

subpopulation will be collectively loosely described as �East Asian� subsequently,

while CEU and TSI will be loosely described as �European�).

3.4.1 Data Cleaning

A C++ program was written to parse the HapMap data �les from HAPMAP phase

3 release 2. There were 242 �les to process in all, 1 for each combination of the 22

autosomes and 11 subpopulations. Five of the subpopulations, ASW, CEU, MKK,

MEX and YRI contained some immediately related individuals, two parents and

a child. The child record was removed from these to ensure that there were no

immediately related individuals in the samples. Loci were selected to be at least

100,000 base pairs apart and to have no missing data for any subpopulation. The

loci were selected to be at least 100,000 base pairs apart to ensure the assump-

tion that they are independent is not violated by linkage to an important extent.
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Pritchard and Przeworski (2001) state that 5-10 markers within 50,000 bases of

a locus would be needed to ensure that one was in strong linkage disequilibrium

with that locus. While a spacing of at least 100,000 base pairs therefore reduces

the chance that adjacent such loci are in strong linkage disequilibrium with each

other, no spacing can eliminate the possibility. A judgement was made that this

represented the balance between reducing such a risk and the loss of useful allele

frequency information.

The data used are genotypes and are stored as allele counts. The loci selected all

have exactly two variants. One of two variants at a locus will be counted with

the one to be counted chosen at random. So if at a locus the two variants are

Guanine and Adenine, Guanine could be chosen at random to be counted out of

the two. For an individual in a subpopulation, there are three possibilities, the two

homozygotes, GG and AA and the heterozygote, GA (or equivalently, AG). The

�rst two of these cases would score 2 and 0 respectively, and the other would score

1. The scores for the individuals within a subpopulation are summed to produce

a total for the subpopulation which will be an integer between or including 0 and

twice the number of individuals sampled for that subpopulation. The dataset to

be used will thus take the form of allele counts for each of the 11 subpopulations

at each locus, which was written into a �le of counts data for each selected locus

and subpopulation in a format that could be easily read by R.

The total number of loci in each chromosome that was in the dataset after this

thinning process is shown in table 3.2. The remaining sample sizes and total

numbers of individuals in each subpopulation are shown in table 3.3.
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Table 3.2: Number of Loci in Each Chromosome in the Dataset

Chromosome Loci
1 2063
2 2189
3 1820
4 1737
5 1639
6 1568
7 1417
8 1319
9 1041
10 1216
11 1219
12 1204
13 898
14 804
15 721
16 705
17 719
18 697
19 513
20 565
21 312
22 309

Table 3.3: Sample Sizes for Each Subpopulation in the Dataset

Subpopulation Sample Size Individuals
ASW 98 49
CEU 224 112
CHB 168 83
CHD 170 85
GIH 176 88
JPT 172 86
LWK 180 90
MEX 100 50
MKK 286 143
TSI 176 88
YRI 226 113
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3.5 Results from Application to the HapMap Dataset

3.5.1 Results for Balding�Nichols Model

Figure 3.5 shows the estimated values of cj for each chromosome and each sub-

population. The whiskers show the central 95% posterior credible interval for

that point estimate. The parameter is the estimated median of the posterior dis-

tribution (which was found to be nearly identical to the posterior mean value).

There is a lot of variation between the drift estimates for each chromosome; more

than would be expected by random variation. In particular, there are prominantly

large estimates of drift for the East Asian, Central European, Tuscan and Mexican

subpopulations for chromosome 16 compared with those for other chromosomes.

Populations that might be expected to be closely related such as the Japanese and

Chinese subpopulations show similar patterns.

3.5.2 Results For Nicholson�Donnelly Model

The Nicholson-Donnelly drift model was applied to the same HapMap data to see

how the results from each model compared. Figure 3.6 shows the estimated values

of cj for each chromosome and each subpopulation. Some interesting points come

from the comparison. The unusually large c values for Chromosome 16 under the

Balding�Nichols model (see �gure 3.5 for comparison) are gone. There remains

more variation between each chromosome's estimates of genetic drift for each sub-

population than would be expected by random variation. In some subpopulations,

there is not a value of cj that would be contained inside enough of the 22 intervals

for random variation alone to be a plausible explanation for the di�erences. Nev-

ertheless, populations that would be expected to be closely related again produce

similar patterns. For example, the patterns for the East Asian sub-populations
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Figure 3.5: Estimated Values of cj by Subpopulation and Chromosome for the
Balding�Nichols Model

Coloured columns represent the di�erent chromosomes. Point estimates (medians) of the ge-
netic drift parameter, c were made for each subpopulation and each chromosome with whiskers
representing the central 95% posterior probability density interval in each case.
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Figure 3.6: Estimated Values of cj by Subpopulation and Chromosome for the
Nicholson-Donnelly Drift Model

Coloured columns represent the di�erent chromosomes. Point estimates (medians) of the genetic
drift parameter were made for each subpopulation and each chromosome with whiskers represent-
ing the central 95% posterior probability density interval in each case.
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remain similar, as do the two European subpopulations. In comparison with the

equivalent graph (�gure 3.5) for the Balding�Nichols model, the estimated levels of

drift have reduced for all subpopulations other than the Africans whose estimates

of drift have increased.

3.5.3 Comparison of the Models

Residuals were examined to assess how well each model �ts the data. The stan-

dardised residuals for the Nicholson�Donnelly model were calculated in the same

way as by Nicholson et al. (2002) as

eij =
xij/nij − π̂i

[{ĉj + (1− ĉj) /nij} π̂i (1− π̂i)]
1
2

, (3.15)

where π̂i is the estimated mean of the posterior distribution of πi and ĉj is the esti-

mated mean of the posterior distribution of cj. There were fewer large standardised

residuals for the Nicholson�Donnelly model and the sizes of the standardised resid-

uals were smaller in general. However the model �ts were compared more formally

using the Watanabe Akaike Information Criterion (WAIC) for the two models for

each chromosome. These are shown in table 3.4. It can be seen from the table that

the WAIC for the Nicholson-Donnelly model is much lower than for the Balding-

Nichols model for all 22 autosomes. The WAIC for the Nicholson�Donnelly model

is only about three quarters of the size of the WAIC for the Balding-Nichols model

in most cases. As with other information criteria, the model with the lower WAIC

is preferred. So these results indicate that the Nicholson�Donnelly model is a

clearly better model of the data compared to the Balding-Nichols model for all 22

autosome datasets.
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Table 3.4: Comparison of the Watanabe�Akaike Information Criterion for the Balding�
Nichols and Nicholson�Donnelly Models

WAIC
Chromosome BN ND Di�erence (BN-ND)

1 179049 128111 50938
2 193213 138874 54339
3 162975 117737 45238
4 156198 112482 43716
5 146613 106114 40499
6 139770 101214 38556
7 128023 93045 34978
8 118099 85338 32761
9 93399 67548 25852
10 107725 77906 29819
11 107357 77972 29384
12 105408 75721 29687
13 81727 59352 22376
14 71443 51738 19705
15 65988 47383 18605
16 60640 42915 17725
17 62917 45071 17846
18 61881 45079 16802
19 43472 31922 11550
20 50824 36457 14367
21 28293 20780 7513
22 27717 19863 7854

3.6 Problems with the Models

It would be expected that analysis of di�erent chromosomes would yield similar

values of cj for each subpopulation since drift should a�ect all chromosomes equally.

However, there is not enough overlap between the 95% credible intervals to support

this. In particular, chromosome 16 produces unusually high values of cj in non-

African subpopulations (labelled in red in �gure 3.5) and unusually low ones for

Africans in the Balding�Nichols model. Further, it was found that residuals had

a bimodal distribution (e.g., �gure 3.7).
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Figure 3.7: Histogram of Standardised Residuals for Chromosome 2 for the Balding�
Nichols model

The distribution of the residuals also has heavy tails. The extreme residuals were

found to be predominantly from the African subpopulations.

Histograms of standardised residuals had a bimodal pattern and normal QQ plots

were distinctly non-linear (e.g., �gure 3.8). The former indicated that there was

structure within the data that the model did not adequately explain and the

latter that the residuals were rather heavy-tailed. This was the case for both the

Balding-Nichols (�gure 3.8) and the Nicholson�Donnelly (�gure 3.9) models as can

be seen for a typical example (chromosome 22). However, the normal QQ plot is

markedly better behaved for the Nicholson�Donnelly model than it was for the

Balding�Nichols model.
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Figure 3.8: Histogram of Standardised Residuals and normal QQ Plot for Chromosome
22 for the Balding�Nichols Model

Diagnostic plots of standardised residuals for the Balding�Nichols model for Chromosome 22.
The histogram on the left shows a bimodal pattern suggesting that there is information in the
data that the model does not take su�ciently into account. The normal QQ plot on the right
shows the heavy tails of the distribution of the residuals.
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Figure 3.9: Histogram of Standardised Residuals and normal QQ Plot for Chromosome
22 for the Nicholson�Donnelly Model

Diagnostic plots of standardised residuals for the Nicholson�Donnelly models for Chromosome
22. The histogram on the left shows a bimodal pattern suggesting that there are factors in the
data that the model does not take su�ciently into account. The QQ plot on the right gives no
cause for concern on its own.

As mentioned, the most extreme residuals belonged predominantly to the African
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subpopulations. It appeared that the model was not fully able to represent these

subpopulations adequately within the full dataset. The model was re�tted for both

models for a subset of chromosomes to just the African subpopulations and just to

non-African subpopulations. The estimated drift parameters are lower and there

was an improved overlap between the credible intervals. Chromosome 16 is no

longer an outlier even for the Balding�Nichols model (�gure 3.10). The residual

distributions are still heavy tailed but less markedly so and, in the case of the

Africans, the bimodal feature of the distribution is reduced (�gure 3.11).
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Figure 3.10: Estimated Values of cj by Subpopulation and Chromosome (African Sub-
populations Analysed Separately) for the Balding�Nichols model
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Figure 3.11: Histogram of Standardised Residuals for Chromosome 2 for African Sub-
populations Analysed Separately Under the Balding�Nichols Model

However, the more interesting point is that the values for cj have unambiguously

reduced from those previously estimated. This is important because one of the

assumptions of the Nicholson�Donnelly model is that the subpopulations diverged

from a common ancestor population at much the same time. This seemed to

be an adequate assumption for the limited combinations of subpopulations they

considered (Nicholson et al., 2002). However, it is stretching credibility to imagine

that the Beijing Han Chinese (CHB) subpopulation diverged from the Denver Han

Chinese (CHD) at much the same time as it diverged from the Kenyan Maasai

(MKK).
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If the population tree is closer to �gure 3.13 than to �gure 3.12 then the model

with only Africans will only be estimating cj from the genetic drift from node C

on �gure 3.13 rather than from node A on �gure 3.12, which is not as long ago and

so would lead to a lower estimate of cj. Similarly, a model with non-Africans only

would calculate cj from node B on �gure 3.13 rather than node A on �gure 3.12

resulting in a lower estimate of cj. If �gure 3.12 was closer to the true population

genealogical tree then the values of cj for each subset model of subpopulations

would be unchanged (apart from some variation around the values due to loss of

information about the values of the πis, the proportions of each nucleotide at locus

i in the ancestral population) from that of the full model because the timescale of

genetic drift would remain unchanged.

Figure 3.12: Genealogical Tree Assumed by Nicholson�Donnelly Model
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Figure 3.13: Alternative Genealogical Tree to that in �gure 3.12

When the Nicholson�Donnelly model was rerun with only the data for African

subpopulations, the bimodal distribution of the residuals largely disappeared (�g-

ure 3.14). However, if the non-Africans are analysed separately, there is still a

suggestion of bimodality in the residuals (�gure 3.15), suggesting that further sub-

division may be necessary. In both cases, the normal QQ plots remain close to a

straight line, giving no cause for concern. As also explained by Nicholson et al.

(2002), the straight line deviates slightly from the x = y line because the vari-

ance of the standardised residuals will be slightly less than 1; there will be some

negative correlation between the P residuals associated with each locus where P

is the number of subpopulations. Just as was the case for the Balding�Nichols

model, when data from the African subpopulations are analysed alone, and when

data with only the non-African subpopulations are analysed, they produce lower

values for genetic drift from their ancestral population than when all the data were

analysed together. This is consistent with these groups of subpopulations having

diverged earlier from each other than the subpopulations within these two groups.



Chapter 3. Models for Quantifying Genetic Drift 94

 

residual

F
re

qu
en

cy

−6 −4 −2 0 2 4 6

0
20

40
60

80
10

0
12

0

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

 

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Figure 3.14: Histogram of Standardised Residuals and normal QQ Plot for Chromo-
some 22 for the Nicholson�Donnelly Model for African Subpopulations
Only

The histogram on the left gives no cause for concern. The normal QQ plot on the right shows
the residuals lying on an almost perfect straight line consistent with the residuals being normally
distributed. The line along which the points on the normal QQ lie close to, deviates from the
x = y line there will be some negative correlation between the P residuals associated with each
locus.
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Figure 3.15: Histogram of Standardised Residuals and normal QQ Plot for Chromo-
some 22 for the Nicholson�Donnelly Model Without Africans

DThe histogram on the left has a hint of bimodality which suggests these data may need to be
subdivided further before the model will explain the data properly. The normal QQ plot on the
right shows the residuals lying on an approximately straight line. The line along which the points
on the normal QQ lie close to, deviates from the x = y line there will be some negative correlation
between the P residuals associated with each locus.
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Additional evidence for the split between the four African and seven non-African

subpopulations was considered. If the African subpopulations were more similar to

each other than they were to the non-African subpopulations, then their residuals

at each locus would be expected to have the same sign signi�cantly more often

than would be expected from random chance. This turned out to be the case. For

example, for chromosome 22 above, there are 309 loci in the dataset and the four

African subpopulations all had the same sign of their residuals for 237 of these

loci. There are 330 combinations of 4 subpopulations from 11 subpopulations.

The number of loci for which each of the other 329 combinations of four subpopu-

lations all had the same sign was also counted. Of these, the highest scoring other

combination only scored 154. To place these scores in context, the median score

was only 26 and interquartile range was 11 to 63. So, the four African subpopula-

tion residuals had the same sign far more often than any other combination of four

subpopulations. In the context of the bimodal pattern of residuals, this provides

additional evidence that there is something about these subpopulations of which

the model was not taking su�cient account.

This leads to the conclusion that a more complex version of the model will be

needed to account for the fact that not all the subpopulations would have diverged

from the ancestral population simultaneously.



Chapter 4

Models Involving Bifurcating

Phylogenetic Trees

This chapter will develop the model of genetic drift in the previous chapter to

create a new model which includes more complex relationships between the sub-

populations in the form of phylogenetic trees. Each subpopulation will undergo a

number of di�erent periods of genetic drift since their common ancestral popula-

tion, sharing all but the last period of drift in common with other subpopulations.

After explaining what phylogenetic trees are and their origin in more detail, the

chapter will move on to describing how a model that incorporates them could be

built. It will describe the problems that arise from attempting to use the Balding�

Nichols model of drift in this context and explain why the Nicholson�Donnelly

one is preferred and the importance of the latter's ability to take �xation into

account. Some of the properties of the recti�ed normal distribution used by that

drift model will be discussed. After describing the results of using the model on

simulated data, the model will be used on the HapMap dataset. Issues arising

from examining standardised residuals and observing the e�ects on these of di�er-

ent choices of prior distributions in the model will be discussed. The use of post

predictive checking to evaluate how well the model �ts the data will be introduced.

96
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It will be explained how the results of examining the post predictive checks will

motivate the further development of the model in the following chapter.

4.1 Phylogenetic Trees

The concept of a phylogenetic tree is as old as the theory of evolution itself.

One of the earliest examples of what would now be recognised as a rudimentary

phylogenetic tree diagram appears in Darwin (1859)'s The Origin of Species (Ch4

pp116-117). The idea is to represent the evolutionary relationship between present-

day living organisms by showing their relationships to their common ancestors in

the form of a tree diagram. Darwin's theories have since been melded with those

of Mendelian genetics so that the bifurcations (or, occasionally, multifurcations)

that occur at each node refer to a genetic di�erentiation in terms of genotype,

rather than only di�ences in appearance or phenotype.

The �phylo-� of �phylogenetic� refers to phyla, a particular level of biological clas-

si�cation into which groups of organisms are arranged and alludes to the most

common use of phylogenetic trees, which is to show the genetic relationships be-

tween di�erent species and their ancestors. Figure 4.1, shows a simple version of

such a tree. The root of the tree represents the common ancestor of the �y, the

mouse and the human. A bifurcation event occurs where the species that will

evolve into the modern-day �y branches o� from the species that will evolve into

the most recent common ancestor of mice and humans. The species that is the

common ancestor of mice and humans but not �ies is located at the next bifurca-

tion or node. From there, the species that will evolve into modern-day mice and

humans become genetically distinct and so are represented as seperate branches.
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Figure 4.1: A Simple Phylogenetic Tree
Figure adapted from Theobald (2012).

Phylogenetic trees are usually used in this way to describe the ancestral rela-

tionships between di�erent species. The bifurcation event at each node happens

because the two organisms leading from it are genetically distinct to the extent

that they can no longer interbreed and produce fertile o�spring. In the context of

this thesis, phylogenetic trees will be used to describe the relationships between

di�erent subpopulations of one species, that of humans. In doing this, there is

a key di�erence. The subpopulations of humans can, of course, interbreed and

produce fertile o�spring. However, in general, this interbreeding has been halted

by sorts of barrier, leading subpopulations to become somewhat genetically diver-

gent. The most important barrier is geography. If members of two subpopulations

of humans don't physically meet, they cannot produce o�spring. Another cause

might be cultural, where members of the subpopulations could physically meet

but interbreeding has almost totally been prevented by a historical cultural or

religious taboo. However, unlike di�erent species, when di�erent subpopulations

of human diverge and become genetically di�erentiated from each other in this

way, there does remain the possibility or even likelihood, that after some time,

maybe hundreds or thousands of years, the subpopulations can meet again and in-

terbreed once more. This situation is not considered further in this chapter but is

considered in chapter 5. For the purposes of this chapter, the simplifying assump-



Chapter 4. Models Involving Bifurcating Phylogenetic Trees 99

tion is made that the subpopulations do not interbreed after becoming genetically

di�erentiated.

4.2 Applying the Neighbour�Joining Algorithm

In the previous chapter it was found that assuming that all the present-day sub-

populations diverged from a common ancestor at roughly the same time, as did

Nicholson et al. (2002), led to a model that produced an unsatisfactory �t to the

data. Phylogenetic trees can be used to depict a more realistic and complex re-

lationship between the present-day subpopulations and their common ancestors

with some pairs of subpopulations becoming genetically di�erentiated more re-

cently than others. One way to �nd a phylogenetic tree that might be appropriate

for a given set of data is to use the Neighbour Joining Algorithm.

Applying that procedure to the HapMap data for all 22 autosomes produced the

unrooted tree shown in �gure 4.2. The estimated population pairwise FST values

for each pair of subpopulations were calculated from (2.5) using the data set of all

22 autosomes.

The tree is unrooted but midpoint rooting (Swo�ord et al., 1996), taking the

midpoint of the longest path through the tree as the root, places it midway along

a path from the Tokyo Japanese (JPT) to the Nigerian Yoruba (YRI) (�lled red

circle in 4.2). If the data for each of the 22 autosomes are analysed individually,

the resulting tree di�ers materially only in the placing on the non-African side of

the tree of the Houston Gujaratis (GIH) and the Californian Mexicans (MEX).

The clear split between Africans and non-Africans is consistent with the analysis

in the previous chapter.

The Neighbour Joining algorithm used here is a simple one and one which a 21st

century computer can calculate quickly. However, it comes without any estimate
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Figure 4.2: Unrooted Neighbour Joining Tree of HapMap Subpopulations, Where a
Proposed Root is Shown With a Filled Red Circle

of uncertainty. The fact that the tree remains reasonably consistent when each

chromosome is analysed individually suggests it is a tree in which a reasonable

amount of con�dence can be placed, the only doubt being over the correct placing

of the GIH and MEX.

4.3 A Bifurcating Tree Model Incorporating the

Balding�Nichols Drift Model

The next stage is to develop the hierarchical model to take the structure of the

bifurcating population tree, such as the one produced by the Neighbour Joining

algorithm into account, by adding additional parameters for ancestral subpopula-

tions at the nodes of the tree. This produces an enhanced model. The drift model

from Balding and Nichols (1995) has the virtue that its beta distributions are

easier to work with compared to the recti�ed normal distributions from Nicholson

et al. (2002) and so it was the one for which this new model was implemented

�rst. The justi�cations for the priors and hyperparameters on πi and cj remain
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the same as described in section 3.2.2.

Much of the model is similar to last time

xij|nij, αij ∼ Binomial (nij, αij), independently,

αij|πi, cj ∼ Beta
(
πi(1−cj)

cj
,

(1−πi)(1−cj)
cj

)
, independently, for αs nearest the root of

the phylogenetic tree,

αij|αip, cj ∼ Beta
(
αip(1−cj)

cj
,

(1−αip)(1−cj)
cj

)
, independently, for other αs,

where αip is the alpha for the parent node to node j in the tree.

with priors

πi|a ∼ Beta (a, a), independently,

cj ∼ Beta(b1j, b2j), independently,

where

i labels the locus: 1 6 i 6 L,

j labels the subpopulation 1 6 j 6 P,

nij is the total number of alleles observed at locus i in subpopulation j,

xij is the number of one of the two alleles observed at locus i in subpopulation j,

αij is the population proportion of that allele at locus i in subpopulation j,

πi is the proportion of that allele at locus i in the ancestral population,

cj is the amount of genetic drift in subpopulation j.

a is a hyperparameter in the prior of πi.

b1j, b2j are hyperparameters in the prior of cj and assigned the value 1 unless

otherwise stated.
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4.3.1 Implementation of the Model and Full Conditionals

In contrast to the simpler version of the Balding�Nichols model described in Chap-

ter 3, none of the parameters were integrated out. This was to simplify the initial

programming task. Testing was done on a smaller model (DAG shown in �gure

4.3) which contains all the ideas of the model but with fewer populations. The

code was written in such a way that the model could be scaled up for any arbitrary

tree. After testing an R version of the program, it was translated into C++. The

faster running time of C++ made analysis of these larger models more feasible.

Figure 4.3: Directed Acyclic Graph of the Extended Bifurcating model
DAG of the Extended Bifurcating Balding�Nichols model.

In this smaller version, the second subscript of the αijs label the populations by

starting from the bottom left of the DAG and �lling in each level of the hierarchy

before proceeding to the next. In this way, the αij where j is more than the
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number of the observed subpopulations, J , is the proportion of the ith allele in

the population that is ancestral to the two subpopulations below it in the hierarchy.

πi is a special case of αij where j = 2J − 1. In this case the full conditional for πi

is

P (πi|α, c, π−i) ∝ πa−1
i (1− πi)a−1

∏
k∈Ψ

α πi
ck
−πi−1

ik (1− αik)
1
ck
−2− πi

ck
+πi

B
(
πi(1−ck)

ck
, (1−πi)(1−ck)

ck

)
 , (4.1)

where Ψ is the set of values of j for the two ancestral populations coming from

the root.

The full conditional for cj is

P (cj|π, α, c−j, b) ∝
L∏
i=1

α
αip
cj
−αip−1

ij (1− αij)
1
cj
−2−

αip
cj

+αip

B
(
αip(1−cj)

cj
,

(1−αip)(1−cj)
cj

)


×cb1j−1
j (1− cj)b2j−1 , (4.2)

where αip represents the allele frequency of the parent of αij (or πi if p = 2J − 1).

There are two cases to treat for α. The �rst is where the o�spring of the α is an

x, that is, where j 6 J . In that case the full conditional is

P (αij|π, α−ij, c, x, n) ∝ α
xij+

αip
cj
−αip−1

ij (1− αij)
nij−xij+ 1

cj
−2−

αip
cj

+αip, (4.3)

which is proportional to Beta
(
xij +

αip
cj
− αip, nij − xij + 1

cj
− 1− αip

cj
+ αip

)
so

can be sampled directly.
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Finally, there is the case of αij where j > J . This is where there are two o�spring

of the α that are other αs. In this case the full conditional is

P (αij|π, α−ij, c) ∝

∏
k∈Ψ

α
αij
ck
−αij−1

ik (1− αik)
1
ck
−2−

αij
ck

+αij

B
(
αij(1−ck)

ck
,

(1−αij)(1−ck)

ck

)


× α
αip
cj
−αip−1

ij (1− αij)
1
cj
−2−

αip
cj

+αip
. (4.4)

4.3.2 A Failure of the Model

To test the larger model, data were simulated under the assumptions of the

Balding�Nichols model for 11 subpopulations of size 200 (100 individuals each)

and 2400 loci. This kept the number of subpopulations, their sizes and the number

of loci similar to those in the HAPMAP dataset for a long chromosome. However,

the model was consistantly unable to recover the cjs. The parameter estimates

produced by the bifurcating Balding�Nichols model were consistently lower than

they should have been. This was the case even when all parameters other than

the values of drift, c, were kept �xed at their true values. The inability to retrieve

parameter values of data that have been generated under the model assumptions

was a serious failure of the test. A typical example is shown in table 4.1.
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Table 4.1: Underestimation of Drift Parameters by the Bifurcating Balding�Nichols
Model.

Bifurcating Balding�Nichols estimates of cj
Central 95% Credible Value Interval Bounds True Value Underestimate

j lower upper
1 0.0156 0.0174 0.0183 *
2 0.0144 0.0160 0.0163 *
3 0.0146 0.0163 0.0173 *
4 0.0188 0.0210 0.0201
5 0.0207 0.0230 0.0249 *
6 0.0125 0.0139 0.0141 *
7 0.0176 0.0195 0.0201 *
8 0.0206 0.0229 0.0230 *
9 0.0130 0.0145 0.0151 *
10 0.0199 0.0221 0.0228 *
11 0.0106 0.0119 0.0128 *
12 0.0090 0.0101 0.0102 *
13 0.0114 0.0127 0.0131 *
14 0.0164 0.0182 0.0189 *
15 0.0171 0.0190 0.0178
16 0.0215 0.0239 0.0237
17 0.0207 0.0230 0.0223
18 0.0098 0.0110 0.0103
19 0.0179 0.0193 0.0186
20 0.0179 0.0193 0.0186

To understand why this was happening, it was necessary to consider the way in

which genetic drift is modelled and some of the practical computational issues that

arise from implementing the model, particularly in the case of rare alleles.

4.4 Comparison of Genetic Drift Models

4.4.1 Full Conditional for c in the Balding�Nichols Model

Recall from chapter 3 that the Balding�Nichols (BN) model is being used as an

approximation to the Wright�Fisher (WF) model of genetic drift. There it was
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shown that the BN model shares the property of the WF model that the expected

future proportion of an allele under drift is the same as its last observed value.

However, the WF and BN distributions are far from identical. The beta distribu-

tion of the BN model makes it impossible for an allele to die out entirely, whereas

it can under the WF model, where an allele can become extinct or can become

�xed. So the proportion of an allele can never be 0 or 1 under the BN model

but it can under the WF model. Also importantly, the probability of a rare allele

becoming still rarer under the BN model is greater than under the WF model.

There is a strong tendency for rare alleles to become even rarer under the BN

model but never actually die out. It is therefore interesting to look at the shape

of the full conditional for the amount of drift c under such circumstances.

Recall from (4.2) that the full conditional for c under the bifurcating Balding-

Nichols model was (for a single locus and a particular subpopulation)

P (c|αk, αp, b) ∝
α
αp(1−c)

c
−1

k (1− αk)
(1−αp)(1−c)

c
−1

B
(
αp(1−c)

c
, (1−αp)(1−c)

c

)
×cb1j−1

j (1− cj)b2j−1 . (4.5)

Taking αp, the proportion of the allele at the parent node to be 0.01, which is a

rare but not extremely rare allele, and αk, the proportion of the allele at the child

node, to be 0.001, so that it has become rarer as is typical for this model, the full

conditional for c is plotted in the top left of �gure 4.4. Thinking about this in

terms of point estimates, the BN model interprets this as a signal for a value of

genetic drift close to c= 0.021. If αk had been 0.0001, which is only a little smaller,

the top right of �gure 4.4 shows the model would have taken that as a signal for

a larger maximum a-posteriori (MAP) estimate of c of about 0.047. However the

point estimate of c in the previous example was less than half the size of this drift

estimate. The point estimate of c increases greatly as αk is decreased towards 0

by small amounts. If the allele has become almost as close to �xed as machine
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precision can allow at a value of αk of 10−300, then this produces a signal of a very

large amount of genetic drift with a MAP estimate of 0.87 as shown in the bottom

left of �gure 4.4. The result of this is that very small changes in the proportion

αk can lead to signals for much larger amounts of genetic drift c. However, this

does not explain the underestimates of drift that were observed in the case of the

bifurcating Balding�Nichols model. To understand this, it is necessary to consider

the case where an allele has already become �xed. Because of the practical problem

with the beta distribution being unde�ned for parameters of 0, an arti�cial barrier

close to 0 had to be set for α. However, in reality any amount of drift from a value of

αk that has become �xed should leave it �xed because of the assumption that there

are no mutations. In this situation, the lack of drift between two proportions which

have become �xed should be uninformative about c. However, in the bifurcating

Balding�Nichols model, wherever the arti�cial barrier is placed on α, the model

instead takes this as a very strong signal indeed of no drift at all (c = 0) as shown

in the bottom right of �gure 4.4. There, the signal for a value of c very close to 0

is so strong that the values for c that have been displayed are just from 0 to 10−14,

rather than from 0 to 1 as in the other graphs, so that the behaviour can be seen.

The number and strength of these signals for a low value of c are what lead to a

downward bias in the estimate of the parameters for drift. This also explains why

the underestimates were more likely to be observed for low values of j (i.e., near

the leaves of the population hierarchy) because these are where the αs are most

likely to have become proximate to 0 or 1 because they have drifted further from

the ancestral proportion of the allele at the root.
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Figure 4.4: Balding�Nichols Full Conditional Examples.
Balding�Nichols Full Conditionals for c where (top left) αp= 0.01 and αk= 0.001; (top right)
αp= 0.01 and αk= 0.0001; (bottom left) αp= 0.01 and αk =10−300 ;(bottom right, with di�erent
horizontal axis scale) αp = 10−16 and αk= 10−16. The Balding�Nichols full conditional for c
where αp is the initial proportion of an allele at a locus before a period of genetic drift. αk is
the �nal proportion of an allele at that locus and c is the parameter encapsulating the amount of
genetic drift between these two proportions. Here the maximum a-posteriori estimates of c are
near c=0.021, c=0.047, c=0.87 and very close to c=0 respectively.

4.4.2 The Full Conditional for c in an Equivalent Nicholson�

Donnelly Model

To look for a way forward, the above results can be compared to the analogous

full conditional for c that would have come from the ND model.
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The full conditional for c in this case is

P (c|αk, αp, b) ∝


[cαp (1− αp)]−

1
2
´ 0

−∞ exp
(
−(r−αp)2

2cαp(1−αp)

)
dr, αk = 0,

[cαp (1− αp)]−
1
2 exp

(
−(αk−αp)2

2cαp(1−αp)

)
, 0 < αk < 1,

[cαp (1− αp)]−
1
2
´∞

1
exp

(
−(r−αp)2

2cαp(1−αp)

)
dr, αk = 1.

×cb1j−1
j (1− cj)b2j−1 . (4.6)

This time, taking αp = 0.01 and αk = 0.001, the results of using this model can

be seen in the top left of �gure 4.5. This does give a signal for a particular value

of genetic drift, with a MAP of 0.008. This time if αk had been lower at 0.0001,

as in the top right of �gure 4.5, the model would have taken that as a signal for

a similar MAP value for c of 0.010. So far the shapes of the full conditional are

similar for both models of genetic drift with the ND model being more tolerant to

the possibility that the value of the drift is larger than the MAP estimate. The

big di�erence between these two models is that the ND model allows an allele to

become either �xed or extinct. For αk = 0 the full conditional for c is shown in

the bottom left of �gure 4.5. This is a quite di�erent shape compared with the

previous plots. Although a small amount of genetic drift is considered unlikely,

the model doesn't give a strong signal for any particular value of c, �attening o�

for all but the smallest values. This makes much more sense from the point of

view of producing an analogy to the WF model than the comparable situation

for the BN model (bottom left of �gure 4.4). The fact that the allele has become

extinct gives little information on how much drift there has been beyond there

having been enough for it to have become extinct. For the situation of an allele

that has already become extinct so that αp = 0 and αk = 0, the full conditional

distribution is shown in the bottom right of �gure 4.5. Here, the distribution has

become perfectly �at. The situation is entirely uninformative about drift, as it

should be. The problem of there being an unwanted strong signal for no drift in

the roughly equivalent BN model (bottom right of �gure 4.4) has been avoided.
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The drawbacks of the ND model noted in chapter 3, namely that unlike the WF

model, the expected future value of an allele frequency is not its last observed value

and that recti�ed normal distributions are more awkward to work with than beta

distributions, may be worth accepting in order to have a model that better re�ects

genetic drift in a way that would be expected from the WF model and avoids the

pitfalls of having to set arti�cial (and unintentionally in�uential) thresholds near

frequencies of 0 and 1.

Figure 4.5: Nicholson�Donnelly Full Conditional Examples
Nicholson�Donnelly Full Conditional for c where (top left) αp= 0.01 and αk = 0.001; (top right)
αp= 0.01 and αk = 0.0001; (bottom left) αp = 0.01 and αk = 0; (bottom right) αp = 0 and αk
= 0. The Nicholson�Donnelly full conditional for c where αpis the initial proportion of an allele
at a locus before a period of genetic drift. αk is the �nal proportion of an allele at that locus and
c is the parameter encapsulating the amount of genetic drift between these two proportions. Here
the maximum a-posteriori estimates of c are near c=0.008 and c=0.010 in the top left and top
right plots respectively.
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4.4.3 Revisiting the Comparison of the Single Multifurca-

tion Models of Chapter 3

The Balding�Nichols drift and Nicholson�Donnelly drift models from chapter 3

can now be re-examined. The Balding�Nichols model's inability to allow an allele

to become �xed after a period of drift would be expected to lead to it producing

higher estimates of drift than the Nicholson�Donnelly model in cases where only

one allele is found at a locus for a particular subpopulation. The reason was

described above in the commentary on �gure 4.4, that the Balding�Nichols model

produces high estimates of drift for rare alleles becoming rarer and much more

so than the same change in α for a more common allele. On the other hand,

the Nicholson�Donnelly model allows for the possibility that an allele can become

�xed. Such a case only provides evidence that there must have been at least enough

drift to take it there but little information about how much drift there might have

been beyond that (bottom left of �gure 4.5). The problem encountered with

the bifurcating Balding�Nichols model of a �xed allele remaining �xed (�gure 4.4

bottom right) cannot happen in this simpler model because the common parent

population cannot have a �xed allele at any locus in the sample because it is not

�xed in at least one of the subpopulations.

The key di�erence between the two models is in how they treat the situation

where an allele is approaching becoming �xed. It would be expected that this

situation would be most likely to arise for loci and subpopulations where xij = 0

or xij = nij, that is where the data contained only one of the two variant alleles.

As the situation where αij is approaching 0 can arise in this simple model (the

situations in the bottom left plots of �gures 4.4 and 4.5) but not the ones where

αij starts the period of drift at 0 (bottom right plots of �gures 4.4 and 4.5), it

would be expected that the Balding�Nichols model would tend to produce larger

estimates of cj than the Nicholson�Donnelly model where a large proportion of the

data contains only one of the two possible variants. This is because as noted above,
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the Balding�Nichols model interprets the situation where αij is approaching 0 as

evidence for a large value of cj. The proportion of loci where xij = 0 or xij = nij

was counted for each chromosome and subpopulation j. These are situations where

it is possible for an αij to have reached or approached 0 or 1 respectively. This was

plotted against the di�erence in the point estimates of cj for each chromosome and

subpopulation from the two models (with the di�erence calculated as the estimate

from the Balding�Nichols model less the estimate from the Nicholson-Donnelly

model), in �gure 4.6.

Figure 4.6: Proportion of the Data Containing Only One Allele for the Chromosome
and Subpopulation against Di�erence in Estimate of cj (Balding�Nichols
minus Nicholson�Donnelly)

Proportions of the data for combinations of chromosome and subpopulation where only one al-
lele variant was recorded is plotted against the di�erence in point estimate of the drift parame-
ter, cj (Balding�Nichols minus Nicholson�Donnelly) between the Balding�Nichols model and the
Nicholson�Donnelly model. The graph illustrates the tendency of the Balding�Nichols model to
produce higher estimates of drift where a larger proportion of the data has only one allele variant
present. This is consistant with the observation that the Balding�Nichols model interprets situ-
ations where one of two allele variants is getting close to dying out in a subpopulation as being
evidence for unrealistically high estimates of the drift parameter.
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It clearly shows that where the Balding�Nichols estimate of drift is greater than

the Nicholson�Donnelly estimate of drift, a greater proportion of the data for that

chromosome and subpopulation has only one allele in the count, which is consistent

with the explanation given above.

4.4.4 Conclusions from the Comparison

While, as noted in chapter 3, the ND model di�ers in key respects from the WF

model, it is able to represent the extinction or �xation of an allele that is pos-

sible under the WF model and the resulting graphs of full conditionals for the

drift for the contribution of a single allele make intuitive sense both at and near

extinction and �xation. The BN model has some desirable properties but does

not produce full conditionals that make sense in these cases. This is because the

beta distribution only has support (0,1) and cannot take 0 as a parameter. The

beta distributions that typically arise when one of the parameters is close to 0

have very steep gradients near 0 or 1 that lead the model to associate very small

changes in the proportion of an allele with a very strong signal for a particular

value of genetic drift. When the proportion of an allele starts and ends at a small

value of similar magnitude for genetic drift, that signal is for a very small amount

of genetic drift. Such a situation must arise because minimum values near 0 but

not equal to 0 and maximum values near 1 but not equal to 1 must be set because

of the granularity of the digital (usually 64 bit) representation of �oating point

numbers. 64 bit numbers can only represent 264 points on the real number line.

They can never represent the entire set of real numbers. Using more bits or a

transformation from the 264 points in R to 264 points in (0, 1) would just move the

problem nearer 0 or 1 rather than solve it.

A number of attempts were made to overcome the problems with the bifurcating

BN model. As described, thresholds had to be put in place on the αs to prevent the

parameters of the beta distributions becoming computationally indistinguishable
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from 0. If the α moved beyond that threshold during an updating step, it was reset

to the threshold. Adjusting these thresholds did not help much. In an attempt

to solve this problem a possible solution was tried whereby if an αp had moved

too close to 0 or 1, then the contribution of that locus to the full conditional

for c was ignored. This was intended to re�ect the idea that the allele at that

locus had, to all intents and purposes, become �xed for that subpopulation and so

should contribute no information to estimates of the genetic drift. However this

was done at the expense of losing potentially useful information if the threshold

was set too far from 0 or 1 and of not really making much di�erence if it was set

too close to 0 or 1. The choice of such a threshold was arbitrary and although,

by trial and error, an optimum level could have been found for a particular set of

simulated data, there was not thought to be a way of guaranteeing that it would

be the best choice for real data sets. The decision was therefore made to abandon

the BN model and make an attempt to rebuild a similar model using Nicholson

et al. (2002)'s recti�ed normal model, despite the analytical and computational

complications that were expected to arise from it.

4.5 A Bifurcating or Multifurcating Tree Model

Incorporating the Nicholson�

Donnelly (ND) Model

4.5.1 Description of the Model

The modi�cation to the model is in the way the αs are modelled. The justi�cations

for the priors and hyperparameters on πi and cj remain the same as described in

section 3.2.2.

xij|nij, αij ∼ Binomial (nij, αij), independently,
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αij|πi, cj ∼ NR[0,1] (πi, πi (1− πi) cj) , , independently, for αs nearest the root of

the phylogenetic tree,

αij|αipi, cj ∼ NR[0,1] (αip, αipi (1− αip) cj) , , independently, for other αs,

where αip is the alpha for the parent node to node j in the tree.

with priors

πi|a ∼ Beta (a, a), independently,

cj ∼ Beta(b1j, b2j), independently,

where

i labels the locus: 1 6 i 6 L,

j labels the subpopulation 1 6 j 6 P,

nij is the total number of alleles observed at locus i in subpopulation j,

xij is the number of one of the two alleles observed at locus i in subpopulation j,

αij is the population proportion of that allele at locus i in subpopulation j,

πi is the proportion of that allele at locus i in the ancestral population,

cj is the amount of genetic drift in subpopulation j.

a is a hyperparameter in the prior of πi.

b1j, b2j are hyperparameters in the prior of cj and assigned the value 1 unless

otherwise stated.
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4.5.2 Implementation of the Model

The DAG for this model would be similar to that shown in �gure 4.3. However,

this time the model would allow for the possibility of an ancestral population hav-

ing more than two o�spring populations. This would allow for more complex but

parsimonious structures of relationships between the subpopulations and their an-

cestral populations to be modelled. In addition, it was believed that since there

is little power to make inferences about the overall ancestral population, that the

population at the root of the population tree should have more than two immediate

o�spring populations. Having three or more o�spring populations would anchor

it more �rmly without loss of generality. This was hoped to lead to the sampler

having better mixing. With the root ancestral population having only two o�-

spring populations, it could be that the combined drift that has occured between

that ancestral population and its two o�spring populations can be estimated but

uncertainty remains about how much of that total drift is attributable to each of

the two branches. This would be a case of weak identi�ability. The danger is that

such a situation could lead to slow mixing as the Gibbs sampler tries to explore a

ridge of combinations of drifts from the root ancestral population that have similar

probability density but are at roughly 45 degrees to the parameter axes. It was

thought that collapsing one of the edges corresponding to one of these two peri-

ods of drift would result in the root ancestral population becoming identi�ed with

one of its two previous o�spring populations. It would retain the other o�spring

population but inherit at least two more o�spring, resulting in it having at least

three o�spring which would be expected to ameliorate the identi�ability problem.

The drift that had occured in the collapsed edge would be expected to reappear

in the other uncollapsed edge keeping the total amount of drift in the tree much

the same. It turned out during testing that the model does not su�er so badly

from the weak identi�ability problem at its root and that arti�cially enforcing a

trifurcation there did not lead to the genetic drift being transferred to other edges

of the network in the way that was expected. So while the additional generality
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was not needed for the reason that was expected, it remained possible to treat

multifurcations using the model. While strictly speaking only bifurcations happen

in phylogenetic trees, if two bifurcations happened in a short period of time and

it cannot be con�dently discerned which happened �rst, a trifurcation could be a

reasonable approximation to the situation.

Changing to the ND drift model in this situation involves more than simply substi-

tuting a recti�ed normal distribution where there was a beta distribution before.

The ND drift model allows the allele at a node to become �xed or extinct. This

introduces a range of complications and new conditions to be set to prevent the

Gibbs sampler updating the model in such a way that it becomes logically incon-

sistent. There is also the problem of evaluating when the proportion of an allele

is in the atom (discrete part) of the recti�ed normal distribution (i.e., is 0 or 1) or

the continuous part. For example, an allele can only become extinct at a node if

the proportions of that allele below it towards the leaves of the tree (towards the

data and away from the root) are also 0. Logically, it can't have become extinct

and then reappeared again because the assumption of no mutation precludes a

variant being reintroduced. Similarly if the proportion of an allele at a node is

being updated but the proportion at the next node towards the root has already

become �xed, then the proportion at that node must also remain �xed for similar

reasons. These issues don't arise in the case of the BN drift model.

With that in mind, the full conditional for the ancestral proportion πi is much the

same as in the standard ND model:

P (πi|α, c, π−i) ∝ πa−1
i (1− πi)a−1

s∏
m=1

g1 (ckm , πi, αikm) , (4.7)

where {k1, ..., ks} is the set of child nodes (k for �kinder� or children) of the ancestral

node, s is the number of immediate o�spring populations (number of members of
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the set of child nodes) of the ancestral population, and

g1 (ck, πi, αik) =


[ckπi (1− πi)]−

1
2
´ 0

−∞ exp
(
−(r−πi)2

2ckπi(1−πi)

)
dr, αik = 0,

[ckπi (1− πi)]−
1
2 exp

(
−(αik−πi)2
2ckπi(1−πi)

)
, 0 < αik < 1,

[ckπi (1− πi)]−
1
2
´∞

1
exp

(
−(r−πi)2

2ckπi(1−πi)

)
dr, αik = 1.

(4.8)

The full conditional for cj is again similar,

P (cj|α, π, c−j) ∝
L∏
i=1

g2 (cj, αip, αij)× c
b1j−1
j (1− cj)b2j−1 , (4.9)

where

g2 (cj, αip, αij) =


[cjαip (1− αip)]−

1
2
´ 0

−∞ exp
(
−(r−αip)2

2cjαip(1−αip)

)
dr, αij = 0,

[cjαip (1− αip)]−
1
2 exp

(
−(αij−αip)2

2cjαip(1−αip)

)
, 0 < αij < 1,

[cjαip (1− αip)]−
1
2
´∞

1
exp

(
−(r−αip)2

2cjαip(1−αip)

)
dr, αij = 1.

(4.10)

L is the number of loci, and αip is the α for the ith locus from the parent node of

j. In the case where j is one of the child nodes of the root then αip ≡ πi.

There are two cases for the full conditional for αij. The �rst case is the one where

there are no further αs arising as o�spring of the α in question. In this case there

are the data, xij, nij below that α in the hierarchy and the full conditional is of a

similar form to the one in the model of chapter 3:

P (αij|cj, πi, α−ij, xij, nij) ∝ h1 (nij, xij, αij) g3 (cj, αip, αij) , (4.11)

where again, in the case where j is one of the child nodes of the root node, αip ≡ πi
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and

g3 (cj, αip, αij) =



´ 0

−∞ exp
(
−(r−αip)2

2cjαip(1−αip)

)
dr, αij = 0, 0 < αip < 1,

exp
(
−(αij−αip)2

2cjαip(1−αip)

)
, 0 < αij < 1, 0 < αip < 1,

´∞
1

exp
(
−(r−αip)2

2cjαip(1−αip)

)
dr, αij = 1, 0 < αip < 1,

1, αij = 1, αip = 1,

1, αij = 0, αip = 0,

0, otherwise.

(4.12)

The novelty here is that, as discussed above, if the parental αip has become �xed

(i.e., has the value 0 or 1), then αij must equal αip. Since it is assumed that

there is no mutation, once an allele becomes �xed at one node in the hierarchy

of populations, it must be �xed for all subpopulations that are o�spring of that

population.

Also, just as in the model described in chapter 3,

h1 (nij, xij, αij) =



1, αij = 0, xij = 0,

α
xij
ij (1− αij)nij−xij , 0 < αij < 1,

1, αij = 1, xij = nij,

0, otherwise.

(4.13)

The new element in the extended model is the other case of an α, which is one

which has two or more other αs as children of its node in the hierarchy. Then,

P (αij|c, π, α−ij) ∝ h2 (αij, α−ij, c) g3 (cj, αip, αij) , (4.14)

where g3 (cj, αip, αij) is as in (4.12).

An important point to note here is that this αij can take the value 1 only if all sj
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of its child αs all have the value 1. Similarly, αij can take the value 0 only if all sj

of its child αs all have the value 0. In other cases, h2 (αij, α−ij, c) is the product

of recti�ed normals. That is,

h2 (αij, α−ij, c) =



1 αij = 0, αik1 = αik2 = . . . = αiksj = 0,

1 αij = 1, αik1 = αik2 = . . . = αiksj = 1,
sj∏
m=1

f (ckm , αij, αikm) 0 < αij < 1,

0 otherwise,

(4.15)

where
{
k1, ...., ksj

}
is the set (of size sj) of child nodes of the node (j) in question

and

f (ck, αij, αik) =


[ckαij (1− αij)]−

1
2
´ 0

−∞ exp
(
−(r−αij)2

2ckαij(1−αij)

)
dr, αik = 0,

[ckαij (1− αij)]−
1
2 exp

(
−(αik−αij)2

2ckαij(1−αij)

)
, 0 < αik < 1,

[ckαij (1− αij)]−
1
2
´∞

1
exp

(
−(r−αij)2

2ckαij(1−αij)

)
dr, αik = 1.

(4.16)

The πs and cs could have been sampled by Metropolis�Hastings�within�Gibbs

as before, but the complexity created by the possibility of an allele becoming

�xed at various steps in the chain made it easiest to sample the αs by rejection

sampling. The model was originally built to use Metropolis�Hastings but it was

found during testing that proportions of alleles could become stuck at 0 or 1 for

large numbers of consecutive iterations and so were in those states much more

often than they should have been. This may have been due to an undetected error

in the computer code rather than the result of an inherent property of Metropolis�

Hastings. Nevertheless, since the problem was found to be remedied by using a

system of rejection sampling this sampling method was preferred.

The above describes the full conditionals up to proportionality. However, for

the problem of determining whether an α is in the probability atom (i.e., where

α = 1 or α = 0) an actual probability is needed. At a given locus (for clarity
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the i subscript will temporarily be dropped), there is no problem when the parent

alpha, αp, is in the atom. If αp = 1 then αj = 1 and if αp = 0 then αj = 0

because no mutation is assumed. Also if 0 < αp < 1 and at least one of the

child alphas is also not in the atom, 0 < αk < 1, then αj cannot be in an atom

because, again, no mutation is assumed. So the problem arises only when all

the child alphas αk1 , αk2 , ..., αksj of the alpha being updated, αj, are all in the

atom but the parent alpha is not, 0 < αp < 1. Here a two-stage process is

followed. First it is determined whether αj is in the atom. Second. if it has

been determined that it is not, then the usual sampling procedure is followed for

choosing a value in the (0, 1) interval. The �rst stage needs the probability of

that event. To see how this probability is determined, suppose at node j that

αk1 = αk2 = · · · = αksj = 1, all the child alphas were equal to 1 and the parent

alpha 0 < αp < 1. So here αj can be in the (0, 1) interval or it can be 1 but it

cannot be 0. The chance of the drift between αp and αj, governed by cj carrying

αj to 1 would be y (αp, cj) ≡ 1− Φ

(
1−αp√

αp(1−αp)cj

)
. However, that is not the only

possibility. drift from the parent, αp, may not have �xed αj, but subsequent drift

from αj could have led to �xation for all of the child alphas. The probability

density of the drift cj carrying αj to some value, r ∈ (0, 1), is v1 (αp, cj, r) ≡
1√

αp(1−αp)cj
φ

(
r−αp√

αp(1−αp)cj

)
where φ is the standard normal distribution pdf. The

probability of such a value, αj = r then resulting in all the child alphas being 1 is

then v2(ck1 , ..., cksj , r) =
sj∏
m=1

[
1− Φ

(
1−r√

r(1−r)ckm

)]
. The probability of αj being 1

is then the chance of cj carrying αj to 1, divided by sum of the probabilities of all

the possibilities,

Pr (αj = 1) =
y (αp, cj)

y (αp, cj) +
´ 1

0
v1 (αp, cj, r) v2(ck1 , ..., cksj , r)dr

. (4.17)

The integral can be done numerically e.g., by using the trapezium method. Anal-

ogous reasoning can be used to obtain the probability of αj = 0 when αk1 = αk2 =

· · · = αksj = 0 and 0 < αp < 1.



Chapter 4. Models Involving Bifurcating Phylogenetic Trees 122

Similar reasoning can be used in the cases of alphas which have no child alphas

and which are instead adjacent to the data. Such an alpha(αj) must be in the

same atom as its parent alpha if that alpha is in the atom. Also αj can only be 0 if

xj = 0 and can only be 1 if xj = nj. So the problem only arises when 0 < αp < 1

and either xj = 0 or xj = nj. Thinking of the case where xj = nj and 0 < αp < 1

, Pr (αj = 1) is the same as that described in equation 4.17 with v2(ck1 , ..., cksj , r)

replaced by rxj , the binomial probability that xj = nj if αj = r.

The functions being sampled from could be very sharply peaked. This makes a

simple rejection sampler ine�cient because it will take many attempts before it

hits a value in the peak. A more e�cient rejection sampling scheme was devised

and tested and found to be faster. The interval [0,1] was cut into a number of slices

(with a default number of 100, the best performing of the three options tested in

section 2.5.2 over what was thought to be the most likely function shapes). The

values of the function at the left and right of each slice were recorded and the higher

of the two values assigned to the slice. The maximum value of a narrowly peaked

function could be higher than either edge for the slice containing the maximum.

So the two slices sharing the edge at which the highest such value was found were

divided again into a number (again defaulting to 100) of slices each and the values

of the function at each of these points calculated, the highest of which was then

assigned to the two slices. The values assigned to the 100 slices are added together

and a total found. The proportion of the total then becomes the probability that

slice will be selected. A random uniform(0,1) number is generated to select a

slice. The selected slice then has a simple rejection sample performed within it by

choosing a uniform random point within its width and a uniform random number

up to the value that had been assigned to the slice. If this is a value that is

less than the value of the function at that point then that becomes the sampled

value. If it is more than the value of the function, the process repeats by randomly

selecting a slice in the way described, again. Sometimes, particularly for the c

parameters, the function can be extremely narrowly peaked close to 0. After a
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particular number of iterations of the sampler (default is set to 7,000 within the

burn-in period but not too early that the chain hasn't settled down at all or too

late to place it too near the end of the burn-in period) the program checks to see if

extremely low numbers are being sampled for that parameter . If they are, then the

number of slices used is increased to 1,000 at each step instead of 100, for greater

accuracy (also 1,000 is the largest number tested in section 2.5.2 and found to be

e�ective for the most extremely sharply peaked functions. The sharpest peaks in

full conditional functions for c were observed most often in testing at very low

values),. The program was written to allow the numbers of slices and point at

which the program checks for low values to be easily changed.

4.5.3 Results from Application to the HapMap Dataset

The 20 edges corresponding to periods of drift in the model are shown in �gure 4.7

numbered 0 to 19. This tallies with the tree obtained from the neighbour joining

algorithm in �gure 4.2.

The mean genetic drift, c, and the 95% central credible interval from the posterior

distribution for each chromosome are given in Tables C.1-C.22 in appendix C.

These results are fairly consistent with each other but there are still too many

cases where the 95% credible intervals of genetic drift for a particular edge in

the graph do not overlap for di�erent chromosomes to be sensibly attributable to

randomness. These multiple large tables of numbers are also di�cult to digest. To

aid interpretation, trees like �gure 4.7 were produced using a custom-built JAVA

program, but with the edge lengths proportional to the point estimate of genetic

drift. Figure 4.8 is such a tree created by taking the weighted average of the point

estimates for the 22 autosomes. The weightings used were the number of loci in

the sample for each chromosome.

Some of the main features of the tree are unsurprising. The east Asian subpopu-
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Figure 4.7: The Twenty Periods of Genetic Drift to be Modelled
The twenty periods of genetic drift to be modelled correspond to the edges in the graph and are
numbered from 0 to 19. The ancestral population is at the top of the diagram and the present-day
subpopulations in the HapMap dataset are shown at the bottom of the diagram.

lations (CHB, CHD, JPT) are arranged very close to each other with the two Han

Chinese subpopulations (CHB, CHD) being so close together as to be almost in-

distinguishable. The two European subpopulations (CEU, TSI) are also very close

to each other. The African subpopulations (YRI, LWK, ASW, MKK) are closer

to each other than any other subpopulation but are more spread out than the two

previous clusters, re�ecting greater genetic di�erentiation among them. The re-

maining two subpopulations Mexicans (MEX) and Gujuratis (GIH) are nearer to

the Europeans than they are to the other groups but not very close to them. In the

case of the Mexicans, this is not particularly surprising because they are likely to

have some European admixture from over �ve centuries of European colonial in�u-

ences. One interesting feature is just how much genetic drift there is between the

Europeans, Gujaratis and Mexicans and the east Asians. This possibly suggests

that the east Asians are historically descended from a small number of individuals

making up their ancestral population (a founder e�ect) between the nodes 17 and

14. There is also a lot of genetic drift between nodes 20 and 19. This would be
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Figure 4.8: Phylogenetic Tree with Edge Lengths Proportional to Estimated Genetic
Drift

The twenty periods of genetic drift for the HapMap dataset with the edge lengths proportional
to the average (weighted by number of loci) of the posterior mean estimates of drift for the 22
autosomes.
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consistent with the theory, such as that described by Macaulay et al. (2005) that

all the populations outside of Africa are descended from a relatively small num-

ber of individuals who left Africa in a wave of migration 60,000-80,000 years ago,

with all humans descended from an original ancestral population that was located

somewhere in east Africa.

Many features of the model make story-telling sense but there are, nevertheless,

some issues with it that will be explored in the following subsections.

4.5.4 Mixing and Convergence Issues

One of the problems that arose when looking at the Markov chains from the

sampler was that in some cases the traces showed evidence of slow mixing and

autocorrellation as in the left panel of �gure 4.9. Examples of good mixing were

also found as in right panel of �gure 4.9. The problem of poor mixing was not

universal but was found to be most apparent for the genetic drift parameter, c,

when it was small. The sluggish mixing would need to be addressed in subsequent

models.

4.5.4.1 Solution to the Problems Arising From Autocorrelation

The problem that slow mixing causes is that the resulting chain may be unrep-

resentative of the posterior distribution. This can be remedied by running the

process for a greater number of iterations. However, this has practical di�culties.

For the longest chromosomes, such as number 2, 20,000 iterations take approxi-

mately two days to obtain, even in C++. Running the process for longer would

take proportionately longer. Nevertheless to show that this, in principle, provides

a solution to the problem the chain was run for longer using a shorter chromosome,

number 22.
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Figure 4.9: Traces of the chains produced by the Gibbs sampler for di�erent periods of
genetic drift.

Traces from the Gibbs sampler for two periods of genetic drift. The panel on the top shows an
example of poor mixing which tended to occur when the estimated value of the drift parameter,
c, was very small. The panel on the bottomt shows an example of good mixing characterised by
rapid movement centred on a particular value.

The left hand plots in �gure 4.10 show the trace plot and a histogram of the samples

for the drift parameter, c15 after a 20,000 iteration chain. The �rst 10,000 of these

were discarded as burn-in before the histogram below it was made. The chain was

then allowed to continue for a further 80,000 iterations. The total being 100,000,

an arbitrary round number that was found to be adequate. The right hand plots of
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�gure 4.10 show the trace plot and histogram for the same parameter after these

additional iterations. It can be seen that the histogram for the longer chain is

smoother, and although there is still considerable autocorrelation, there is some

reassurance from the longer trace that the whole range of plausible values for the

parameter has been explored. Nevertheless, the distribution after 20,000 iterations

does provide a passable approximation to it. A longer chain would therefore be

desirable for use by a �nal model. However, although not ideal, the �nite amount

of time available suggests that 20,000 iterations is adequate for the purposes of

testing and evaluating the performance of the model at this stage.

4.5.5 Assessment of Model Fit

4.5.5.1 Standardisation of Residuals in the Context of Recti�ed Normal-

Distribution-Based Models

To assess the �t of a model it is traditional to look at the values the model would

predict at a data point (��tted values�) compared to the observed data at that

point. However, simply looking at the di�erence between the two, the residual, is

usually not enough. If it is assumed, as it usually is, that the residuals are normally

distributed (at least approximately) then to compare the residuals, they need to be

standardised. To standardise them, the residual is divided by its standard error.

If they can be assumed to be approximately normally distributed, the distribution

of these standardised residuals will be approximately N(0, 1) and so about 95%

of them should be in the interval [−2, 2]. This method of standardisation is used

by Nicholson et al. (2002) for their simpler model. However, in that paper, the

simplifying assumption was made when calculating these standardised residuals,

without being explicitly stated, that the mean of the NR[0,1](µ, σ2) remains µ and

its variance is σ2.

In fact, rectifying the distribution at 0 and 1 shifts the value of the mean to-
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wards 0.5 and reduces the value of the variance compared to σ2. It can be seen

intuitively that the variance must be less than σ2 because the range of values

over which NR[0,1](µ, σ2) can vary is restricted to [0, 1] in this recti�ed normal

distribution compared to R for the unrecti�ed normal distribution. The variance

of NR[0,1](µ, σ2) approaches 1
4
from below as σ2 → ∞. That the mean must be

nearer 1
2
than µ can also be understood intuitively. In the case where µ > 1

2
, in the

unrecti�ed normal distribution, more probability density is above 1 than below

0. The act of rectifying the distribution at 0 and 1 �moves� all the probability

above 1 to 1 and below 0 to 0. Since more probability has been reduced to value 1

than increased to value 0, the act of rectifying in this way must reduce the value

of the mean. However, since the original distribution was a normal distribution,

symmetric about µ and µ > 1
2
, the resulting recti�ed normal distribution will still

have a mean above 1
2
because for any value δ where 0 ≤ δ ≤ 1

2
there will be more

probability density at 1
2

+ δ than at 1
2
− δ. Similar reasoning can be used in the

case where µ < 1
2
.

The upshot of this is that there are two ways of standardising the residual de-

pending on which values are used for the mean and variance, approximate ones

as used by Nicholson et al. (2002) or the �true� ones which have been derived for

this thesis (Appendix B). In the context of a phylogenetic tree model, there are

several periods of drift to take into account between the ancestral population and

the observed allele counts rather than just one in Nicholson et al. (2002) and in

chapter 3 of this thesis. However, if the simplifying approximation that Nichol-

son et al. (2002) make, namely that the mean of a recti�ed normal distribution is

approximately µ and variance is approximately σ2, is used then a general formula

for d periods of genetic drift can be derived for the variance of the proportion of

an allele at locus i:

V ar

(
xi
ni
| πi, c

)
=
πi (1− πi)

ni
[1 + (ni − 1) {1− (1− cd) (1− cd−1) ... (1− c1)} .]

(4.18)
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This formula was derived for the purposes of this thesis and a proof is provided

in appendix A. Here c1, ..., cd are the drift parameters in each of the d periods of

genetic drift in series, πi is the proportion of the allele at locus i in the ancestral

population, xi is the observed frequency of one of the alleles at locus i and ni is the

total number of both (or all) variants observed at locus i so that xi
ni
is the observed

proportion of an allele at locus i. This is a simple formula and it can be used to

estimate the size of a single period of genetic drift that is equivalent to d periods

of genetic drift in series (at least in terms of variance):

cs = 1− (1− cd) (1− cd−1) · · · (1− c1) , (4.19)

where cs is the value of the equivalent e�ective genetic drift. Encouragingly, this

formula also ties in with the discussion of the interpretation of the c parameter in

section 3.3.3.

However, if the approximation cannot be made, and the more complicated expres-

sions for the true mean and variance of the recti�ed normal distribution have to

be used, the process of calculating the variance to be used in standardising the

residuals after d periods of genetic drift is considerably more complicated and has

to be done numerically. The question of whether the simpli�cation can be made

depends on how good an approximation to the true values of mean and variance

µ and σ2 make in situations that could realistically arise.

4.5.5.2 Di�erences Between Approximate Mean and Variance and True

Mean and Variance in Recti�ed Normal Distributions

The problem then turns on how di�erent the approximate means and variances

are to the true means and variances over typical values of the genetic drift during

a period of drift, c, from an ancestral proportion of the allele, π, at a given locus

and subpopulation. The di�erences have been computed and are shown in Figure
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4.11. It can be seen that the di�erences are smallest for small values of c, becoming

larger as c increases. Values of c above 0.4 are not practically realistic and there

is relatively little di�erence between the two over these values. The values of π

where the di�erence is largest are near π = 0.1 and π = 0.9, with the di�erence

always being 0 at π = 0.5. Combined this gives a maximum di�erence between

the two of 0.0360 at c = 0.4 and π = 0.904 or 0.096.

The di�erence between the true and approximate variance was also calculated over

a range of typical values (�gure 4.12). Here the maximum di�erence, unsurpris-

ingly, always occurs at π = 0.5 and increases with increasing c. Again, taking

c = 0.4 to be the largest realistic value of that parameter, the maximum absolute

di�erence between the true and approximate variances is 0.0191.

Figure 4.11: Surface showing the di�erence between the true and approximate means
of NR[0,1] for di�erent values of π and c

A surface showing the di�erence between the true and approximate values of the mean for the
NR[0,1](π, π(1−π)c) distribution for di�erent values of the ancestral allele proportion π and drift
parameter c.

Overall, the di�erences between the true means and variances and their approxi-

mations look su�ciently small to make little material di�erence. From this point
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Figure 4.12: Surface showing the di�erence between the true and approximate vari-
ances of NR[0,1]for di�erent values of π and c

A surface showing the di�erence between the true and approximate values of the variance for the
NR[0,1](π, π(1− π)c) distribution for di�erent values of the ancestral allele proportion π and the
drift parameter c.

of view, the use of the approximate result by Nicholson et al. (2002) appears to be

reasonable. A material di�erence would arise if examining standardised residuals

using each of these methods of standardisation led to di�erent conclusions about

how well the model �tted the data.

4.5.5.3 Comparison of Standardised Residuals Using Di�erent Meth-

ods of Standardisation

It is worth recounting the events which �rst motivated such an examination of

the di�erence between the approximate mean and variance and the true mean

and variance. During diagnostic checking of the model, Normal QQ plots such

as those shown in Figure 4.13 were produced using residuals calculated from the

approximate mean and variance.
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Figure 4.13: Plot of Standardised Residuals using the approximate mean and variance
and QQ Plot for Chromosome 2

Diagnostic plots of standardised residuals for the bifurcating ND model for Chromosome 2. The
histogram on the left shows a bimodal pattern suggesting that there are factors in the data that
the model does not take su�ciently into account. The QQ plot on the right gives no cause for
concern on its own.

The line in the QQ plot is not y = x, just as was the case in chapter 3. Once again,

the variance of the standardised residuals is less than 1 because there is negative

correlation between the P residuals associated with each locus, where P is the

number of subpopulations. The QQ plot is consistent with the residuals being

approximately normally distributed. Histograms of residuals were also produced.

Many of these, such as that on the left of Figure 4.13, are still bimodal. The phy-

logenetic branching structure in the new model clearly had not solved the problem

of bimodality of residuals that had, in part, motivated it. Discovering the reason

for the bimodality needed further investigation. However, another puzzling pat-

tern emerged when boxplots of the residuals were constructed by subpopulation.

One of these is shown in Figure 4.14. An examination of the diagram reveals that

the boxes for two of the subpopulations, the Maasai (MKK) and Afro-Americans

(ASW) had smaller variances for their residuals than the other subpopulations.

Conversely, the two Chinese (CHB and CHD) and the Japanese (JPT) subpop-

ulations have a larger range for their residuals than the other subpopulations.



Chapter 4. Models Involving Bifurcating Phylogenetic Trees 135

Referring back to Figure 4.8, what distinguishes ASW and MKK from the other

subpopulations is the smaller number of periods of drift from the ancestral popula-

tion and a lower overall amount of genetic drift. Conversely, those with the largest

number of periods of drift and largest amount of drift, CHB, CHD and JPT, had

the largest spread among their residuals.

Figure 4.14: Boxplot of Standardised Residuals using the approximate mean and vari-
ance by Subpopulation for Chromosome 2

Diagnostic boxplots of standardised residuals for the bifurcating ND model for Chromosome 2.
The boxplot shows that the least variance in the residuals occurs for subpopulations that experi-
enced the lowest level of overall drift.

It was this observation that originally prompted a more careful examination of the

di�erence between the approximate and true values of the means and variances

of recti�ed normal distributions and whether the di�erence might be what was

causing this pattern in the standardised residuals. If the use of the approximate

values caused the unstandardised residuals of subpopulations which had experi-

enced little genetic drift to be divided by too large a number and those which had
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experienced a large amount of genetic drift to be divided by too small a number,

it would explain the pattern and the problem would be remedied by using the true

values of the mean and variance instead of the approximations. To test this idea,

a small �ve subpopulation dataset with 1000 loci and subpopulation sizes 98, 224,

168, 170 and 176 respectively (49, 112, 84, 85 and 88 individuals respectively) was

simulated from the assumption that one of the subpopulations had experienced a

very much smaller amount of genetic drift than the other four. These were chosen

to be the same as those observed in the HAPMAP dataset. Di�erent sizes were

chosen as in the HAPMAP dataset, rather than having them all the same, in case

this made a di�erence. 1,000 loci would be similar to the number for a medium

chromosome in the HAPMAP dataset. It was simulated under the non-branching

version of the Nicholson�Donnelly model described in chapter 3. The reason for

this was that if all the subpopulations experienced the same number of periods of

genetic drift (one) and the phenomenon could be replicated, then the reason would

be to do with the overall amount of genetic drift experienced by the subpopula-

tions and not the number of periods of genetic drift. A residual plot for such an

experiment is reproduced in Figure 4.15.

The intersting point to notice is that the spread of standardised residuals is smaller

for population 4, which is the one for which the genetic drift was smallest (0.001

compared with 0.1 for the other 4 subpopulations). The phenomenon is therefore

to do with the overall amount of genetic drift and not the number of periods of

drift. The residuals were then standardised using the true means and variances of

NR[0,1](Figure 4.16).
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Figure 4.15: Boxplot of Standardised Residuals from Simulated Data using the approx-
imate mean and variance

Diagnostic boxplots of standardised residuals for the bifurcating ND model for simulated data. The
boxplot shows that the least variance in the residuals occurs for subpopulations that experienced
the lowest level of overall drift.

Figure 4.16: Boxplot of Standardised Residuals from Simulated Data using the true
mean and variance

Diagnostic boxplots of standardised residuals for the ND model for simulated data. The residuals
for the data using the true means and variances were not di�erent enough from those using
approximate means and variances to lead to di�erent conclusions about the �t of the model.

This did not solve the problem of the subpopulation that experienced the least drift
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having a narrower spread of residuals. The two plots (�gures 4.15 and 4.16) are

only slightly di�erent, re�ecting the slight change in the values of the standardised

residuals but not materially so. The conclusions they lead to are the same. Once

again, the use of residuals standardised by the approximate variance rather than

the exact more complicated form does not make su�cient practical di�erence to

justify the additional complexity.

4.5.5.4 Posterior Predictive Checking

The classical practice of examining residuals to consider how well the model was

�tting the data did not appear helpful in this case. The usual assumption is

that the boxplots of residuals by subpopulation should be approximately the same

in each case. However, the spread of residuals for di�erent subpopulations were

related to the amount of genetic drift that the subpopulation had experienced.

Should this be a cause for concern? Or is this simply a case where the usual

classical assumptions should not be made? To answer this another approach to

model checking was examined, posterior predictive checking.

The theory of posterior predictive checking can be found on pages 143-153 of

Gelman et al. (2013). The idea behind it is quite simple and elegant. If the model

�ts the data well, then the data should not look grossly di�erent to datasets

simulated under the model assumptions and with typical values of its parameters.

The Gibbs sampler gives a set of parameter values at each iteration. For each

iteration, a dataset can be simulated under the model's assumptions using the

parameter values at that iteration. This generates a number, τ, of simulated

datasets equal to the number of iterations that the Gibbs sampler was run for after

the burn-in period. Any data set can be summarised using a summary function

T . If the summary value for the actual data is unlikely given the distribution of

the summary of the simulated data, this is evidence of model mis�t. The values

of the T function for the τ simulated datasets and 1 true dataset can be ordered.
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The proportion of simulated datasets whose value for T is larger than that of the

true dataset in e�ect becomes a sort of p-value. If almost all of the simulated

datasets produce a value of T that is higher than that for the true dataset, or

if they almost all produce a value that is lower than that for the true dataset

then the true dataset is out of place among the simulated datasets. This would

not occur if the model was a good �t to the data. So, as for p-values in two

tailed tests, proportions of the simulated datasets with T values higher than that

of the data close to 1 or 0 are evidence for mis�t, those near the middle of the

[0,1] interval give no cause for concern. This method is more in keeping with the

Bayesian philosophy of fully capturing uncertainty via the posterior distribution.

The downside to this approach is that it can be quite computer intensive.

One important point is that the function T could be anything. So a decision needs

to be made about what T should be. To decide this some thought needs to be

given to what aspects of the data the model is trying to re�ect. It is rare for

models to need to be a fully accurate re�ection of reality. The model needs only

to be a good approximation to the properties of the problem that are of interest.

The choice of T should, therefore, be determined in relation to and re�ect these

properties. More than one T can be examined. Gelman et al. (2013) states that in

this case, multiple testing is not a problem because the process is not being used

for model selection, but to test the limits of the applicability of the model.

Applying this approach to the question of deciding whether the spread of residuals

in the ASW and MKK subpopulations (Figure 4.14) should be a cause for concern

leads to a choice of T being the variance of the residuals for that subpopulation.

It is one of the �exibilities of this approach that since T can be anything, T can

be a function that applies to a subset of the data. It is then possible to calculate

T functions for more than one subset of the data and so produce a number of

di�erent p-values. In this case a T has been de�ned that can be applied to each

subpopulation, so a p-value will be produced for each subpopulation. The p-values

arising from this de�nition of T are shown in Table 4.2. The p-values for the ASW
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and MKK subpopulations, the ones which had the smaller spread of residuals in

Figure 4.14, are 0.7402 and 0.8646, respectively. These are not extreme and so the

small spread of those residuals is not a cause for concern. Nonetheless, there are

some interesting aspects to the p-values. All of them are higher than 0.5 indicating

that the spread of standardised residuals for the data tends to be higher than for the

simulations and the highest p-values come from the two European subpopulations,

CEU and TSI, which are closely related.

Subpopulation p-Value
ASW 0.7402
CEU 0.9702
CHB 0.7402
CHD 0.7670
GIH 0.9485
JPT 0.7918
LWK 0.7338
MEX 0.9145
MKK 0.8646
TSI 0.9683
YRI 0.7300

Table 4.2: p-values for Variances of Residuals Produced from Post Predictive Checking
Results of post predictive checking of the variances of residuals shown in Figure 4.14. The small
spread of residuals for the ASW and MKK subpopulations does not cause concern under post
predictive checking.

To examine this further, a more speci�c question needs to be asked and an ap-

propriate function, T , de�ned to answer it. The intention of the phylogenetic tree

model is to re�ect the relationships of the subpopulations between each other and

the genetic drift they have experienced since the time of the common ancestral

population. A natural choice then is to take T as Wright's pairwise FST (Wright,

1951). A T function can then be calculated for each pair of subpopulations to see

if the relationship between each pair in the τ simulated datasets is similar to the

relationships in the actual data. If the p-value is close to 0 then it means that the

subpopulations are more closely related in the data than in the simulated datasets

and therefore more closely related than the model suggests. Conversely, a p-value
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close to 1 would mean that the subpopulations are less closely related in the data

than in the simulated datasets. The results for a typical chromosome (chromosome

2) are shown in Table 4.3.
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Table 4.3: p-values for Pairwise FST for Each Pair of Subpopulations Produced from
Post Predictive Checking of the Phylogenetic Tree Model of Chromosome 2

Results of post predictive checking of the p-values for pairwise FST for each pair of subpopula-

tions produced from post predictive checking of the phylogenetic tree model of Chromosome

2 presented as a symmetric matrix. Numbers near 0 indicate that the subpopulations are

more closely related in the data than in the model. Numbers close to 1 indicate the

opposite.

Here it can be seen that the model does not provide a good �t to the data in this
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respect but the ways in which it does not are interesting. For example, the p-values

indicate that the Afro-Americans (ASW) are more closely related to the European

subpopulations (CEU, TSI) than the model allows. This may not be too surpris-

ing. Most of today's African Americans in the south-west USA are descended from

slaves. There are many stories of the sexual exploitation of Afro-American slaves

during the era when slavery was legal in the USA. For example, Marable (1999)

tells of instances of sexual relations between master and slave occurring to pro-

duce slave children for pro�t. Many of today's Afro-Americans, including those in

the HapMap sample, could thus well have some European ancestry. ASW would

therefore be an example of an admixed population, a subpopulation produced by

the mixing of two or more other subpopulations. There are also low values for

the pairing of ASW with Asian subpopulations (CHB, CHD, GIH, JPT) but also

with MEX. This could be just because the model poorly describes the ancestry of

the ASW subpopulation but it may be that there is also a possibility of Native

American ancestry too. That they should be closer to the YRI (Yoruba in Nige-

ria) subpopulation perhaps re�ects that Nigeria is part of the coast of Africa from

which slaves bound for America were traded. The Mexicans (MEX) are also inter-

esting. They have low p-values for the pairs with the east Asian subpopulations

(CHB, CHD, JPT). In this model, MEX is placed near the European subpopula-

tions (CEU, TSI) but these p-values suggest that MEX should also be nearer the

East Asian subpopulations than the model allows. This again could be because

the Mexicans are an admixed population. Genetic and archaeological studies such

as that by Rasmussen et al. (2014) point to Asians having crossed into North

America between 10,000 and 15,000 years ago. These would then have migrated

south to present-day Mexico over time. They were later met by European settlers

from the time of Columbus, 1492, onwards forming the admixture population that

is today's Mexicans. There are also a few points that are di�cult to explain. That

the p-values suggest the Maasai (MKK) should be closer to the Tuscans (TSI)

but not the central Europeans (CEU) is puzzling. The p-values also suggest that

the Gujaratis (GIH) should be more closely related to the Europeans (CEU, TSI)
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and Afro-Americans. It may be that all these subpopulations are more closely

related to another subpopulation that is not in the HapMap dataset such as an

Arab subpopulation, rather than directly to each other but without a sample from

such a subpopulation to test the idea, this cannot be more than speculation.

The upshot of this is that this analysis highlights that the assumption of the

phylogenetic tree model that once subpopulations split, they never have contact

with each other or any other subpopulation ever again and develop in isolation

is an unrealistic one. The model does not capture the relationships between the

subpoplations adequately. To represent the HapMap data more accurately, it is

necessary to model subpopulations meeting and merging to form admixed subpop-

ulations. This increases the complexity of the model but it is necessary to explain

the data.

This type of analysis can also be used to show that the simpler model from the

previous chapter where all subpopulations diverge from the ancestral population

simultaneously was also inadequate. Table 4.4 shows the matrix of p-values that

would have been produced by the simple model with ND drift from the previous

chapter.
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Table 4.4: p-values for Pairwise FST for Each Pair of Subpopulations from Post Pre-
dictive Checking of the Simple Model for Chromosome 2

Results of post predictive checking of the p-values for pairwise FST for each pair of subpop-

ulations produced from post predictive checking of the simple model with the Nicholson-

Donnelly drift model from the previous chapter for Chromosome 2 presented as a sym-

metric matrix. Numbers near 0 indicate that the subpopulations are more closely related

in the data than in the model. Numbers close to 1 indicate the opposite.

It can be seen that the p-values suggest the subpopulations form three groups of

subpopulations that should be more closely related than the simple model suggests.

There is a group of Africans (ASW, LWK, MKK, YRI), a group of east Asians

and Mexicans (CHB, CHD, JPT, MEX) and a group of Europeans, Gujaratis and



Chapter 4. Models Involving Bifurcating Phylogenetic Trees 145

Mexicans (CEU, GIH, MEX, TSI). These are distinct except the Mexicans appear

in both of the last two groups. This surely re�ects them needing to be more closely

related to both Europeans and to east Asians due to the admixed nature of the

subpopulation, as described above. This structure is re�ected in the phylogenetic

tree model that has been the subject of this chapter. The appearance of more

extreme values in table 4.4 compared with table 4.3 re�ects that the phylogenetic

tree model is a better �t to the data than the model of the last chapter, so while

the former is not perfect by any means, it does represent progress towards a better

model of the dataset.

4.5.6 Sensitivity to Alternative Choices of Prior

In Bayesian modelling it is useful to �nd out what e�ect the assumptions about

the prior have on the �tted model and, in particular, the conclusion that would

be drawn from it. In this case an assumption is made about the distribution of

proportions of alleles in the ancestral population. These are the πis in the model.

It has been assumed, that these have a Beta(1,1) distribution and this value was

also used in Nicholson et al. (2002). The e�ect of varying the parameter in the

beta distribution was examined, with two interesting results.

To illustrate the �rst of these, the results from the model on one of the chromo-

somes can be examined. This is presented in the form of a graph of the phylogenetic

tree with the edge lengths proportional to the point estimates of the size of drift

along them. The result for the Beta(1,1) prior is shown in Figure 4.17. Compare

that with the �gure that is produced when an alternative uninformative prior,

Beta(0.5,0.5), which is the Je�reys prior in this case, is assumed. This is shown

in Figure 4.18. There is no material di�erence in the results with the notable

exception that the ancestral population has moved closer to node 18, which is the

ancestral population for the African subpopulations.
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Next, if the parameter of the beta distribution is increased, so that the prior on π

is now Beta(2,2), a bell-shaped distribution, the ancestral population moves away

from the African ancestor at node 18. This is shown in Figure 4.19. Again it

has no material e�ect on the rest of the tree. What is happening here is that the

more u-shaped the prior distribution, the more the ancestral population becomes

closer to the African ancestral population and so needs less genetic drift to get it

there. However, �atter and more bell-shaped distributions make it more like the

ancestral population for the rest of the world at node 19. But this is only true up

to a point. If a stronger bell-shaped prior like Beta(10,10) is used, the ancestral

population becomes more unlike either of its two o�spring populations at 18 and

19. The result of this can be seen in Figure 4.20.

It is important to note that the scale of the tree has been changed in �gure 4.20 to

half the size of that of its predecessors to �t on the page. Now the ancestral popu-

lation has become so unlike its two o�spring populations with its allele frequencies

being dragged towards 0.5 by the prior that it takes a lot of genetic drift for it to

reach either of them. One of the e�ects of genetic drift is to make the distribution

of allele proportions more u-shaped and less bell-shaped as was shown in chapter

3. A lot of drift is needed to �atten out the marked bell-shape of the Beta(10,10)

distribution.
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Figure 4.17: Phylogenetic Tree with Edge Lengths Proportional to Estimated Genetic
Drift for chromosome 22 with a Beta (1,1) prior on π

The twenty periods of genetic drift for the HapMap dataset with the edge lengths proportional to
the posterior mean estimates of drift for chromosome 22. A Beta(1,1) prior on π is assumed.
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Figure 4.18: Phylogenetic Tree with Edge Lengths Proportional to Estimated Genetic
Drift for chromosome 22 with a Beta (0.5,0.5) prior on π

The twenty periods of genetic drift for the HapMap dataset with the edge lengths proportional to
the posterior mean estimates of drift for chromosome 22. A Beta(0.5,0.5) prior on π is assumed.
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Figure 4.19: Phylogenetic Tree with Edge Lengths Proportional to Estimated Genetic
Drift for chromosome 22 with a Beta (2,2) prior on π

The twenty periods of genetic drift for the HapMap dataset with the edge lengths proportional to
the posterior mean estimates of drift for chromosome 22. A Beta(2,2) prior on π is assumed.
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Figure 4.20: Phylogenetic Tree with Edge Lengths Proportional to Estimated Genetic
Drift for chromosome 22 with a Beta (10,10) prior on π

The twenty periods of genetic drift for the HapMap dataset with the edge lengths proportional to
the posterior mean estimates of drift for chromosome 22. A Beta(10,10) prior on π is assumed.
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So, one e�ect of di�erent choices of prior on the πis is to move the position of the

ancestral population in relation to the subpopulations below it. The remainder of

the inferred tree is quite robust. The other interesting e�ect is the impact this

has on the residuals that are calculated from the �tted model. Figure 4.21 shows

the histogram of standardised residuals for the model �tted to the chromosome 15

data, along with the boxplot with the prior as Beta(1,1).
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Figure 4.21: Plots of Standardised Residuals using the approximate mean and variance
and QQ Plot for Chromosome 15 with the Beta(1,1) prior

Diagnostic plots of standardised residuals for the bifurcating ND model for Chromosome 15. The
histogram in the centre shows hints at a possible bimodal pattern suggesting that there are factors
in the data that the model does not take su�ciently into account. The QQ plot on the left gives
no cause for concern on its own. The boxplot shows less spread of the standardised residuals
for the subpopulations experiencing the least drift, the Afro-Americans (ASW) and the Maasai
(MKK).
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The QQ plot is unremarkable and gives no cause for concern, while the boxplot has

a smaller spread of standardised residuals for the two subpopulations experiencing

the least drift, the Maasai (MKK) and the Afro-Americans (ASW). The histogram

shows a hint of the bimodality that was seen in Figure 4.13 for chromosome 2.

Now, if the prior on π is changed to Beta(0.5,0.5), the Je�reys prior, the plots of

residuals are shown in Figure 4.22.
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Figure 4.22: Plots of Standardised Residuals using the approximate mean and variance
and QQ Plot for Chromosome 15 with the Beta(0.5,0.5) prior

Diagnostic plots of standardised residuals for the bifurcating ND model for Chromosome 15 with
the Beta(0.5,0.5) prior on π. The histogram in the centre shows less evidence of a bimodal
pattern. The QQ plot on the left gives no cause for concern. The boxplot shows even less spread of
the standardised residuals for the subpopulations experiencing the least drift, the Maasai (MKK).
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Here the QQ plot shows a departure from linearity in the tails compared to the

Beta(1,1) prior. The boxplot for the Maasai (MKK), the subpopulation that has

experienced the least drift, re�ects an even smaller spread of residuals, but the

histogram shows less evidence of bimodality than for Beta(1,1). A poor choice of

prior seems to be contributing to the bimodality in the histogram. The narrower

boxplot for MKK re�ects the fact that this choice of prior moves the ancestral pop-

ulation closer to the African subpopulations as was seen earlier. This means that

the MKK subpopultion is now expriencing even less overall drift from the ances-

tral population and, since the spread of residuals is lower for those subpopulations

that have experienced less drift, this leads to its boxplot narrowing. Moving the

parameter of the prior in the opposite direction, with a prior on π of Beta(2,2),

gives the plots shown in Figure 4.23.

Unsurprisingly, the opposite e�ects are observed for this change of prior. Now the

QQ plot is starting to show the �rst signs of skew. The residual histogram now

has a more obvious bimodal pattern and the boxplot has a more even pattern of

spread for the standardised residuals by subpopulation. Indeed if the parameter of

the prior is increased the e�ects become greater. A model for the chromosome 22

data was �tted with the rather extreme Beta(10,10) prior to illustrate the point

clearly. The residual plots in that case are shown in Figure 4.24.

Here the QQ plot shows a clear S shape, the bimodal pattern for the standardised

residuals is extreme but the boxplots for the standardised residuals by subpopu-

lation are quite even. This re�ects the fact that a lot of genetic drift has been

experienced by all the subpopulations to get from such an extreme bell-shaped

distribution in the ancestral population so, since they have all experienced a lot

of genetic drift, their boxplots will this time appear about even.
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Figure 4.23: Plots of Standardised Residuals using the approximate mean and variance
and QQ Plot for Chromosome 15 with the Beta(2,2) prior

Diagnostic plots of standardised residuals for the bifurcating ND model for Chromosome 15 with
the Beta(2,2) prior on π. The histogram in the centre shows more marked evidence of a bimodal
pattern. The QQ plot on the left gives no cause for concern. The boxplot shows a more even
spread of standardised residuals for the subpopulations.

Clearly, the choice of prior on π does a�ect the position of the ancestral population

at the root of the phylogenetic tree in relation to its subpopulations and this

impacts on the standardised residuals since the estimated values of π for each

locus and the estimated values of c for the genetic drift for each of the ancestral

population's immediate subpopulations feed into that calculation and are a�ected

by the choice of prior.
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Figure 4.24: Plots of Standardised Residuals using the approximate mean and variance
and QQ Plot for Chromosome 15 with the Beta(10,10) prior

Diagnostic plots of standardised residuals for the bifurcating Nicholson�Donnelly model for Chro-
mosome 15 with the Beta(10,10) prior on π. The histogram in the centre shows an extreme
bimodal pattern. The QQ plot on the left has a marked S shape. The boxplot shows a very even
spread of the standardised residuals for the subpopulations.

However, the rest of the phylogenetic tree seems to be robust to this choice of prior.

This will need to be borne in mind and some experimentation with di�erent, but

sensible, choices of prior that more accurately re�ect the, unfortunately, poorly

understood distribution of proportions of alleles that might reasonably be expected

in the ancestral population. Section 5.6.2.1 investigates the use of an outgroup to

mitigate the e�ects of a poor choice of prior on π. Choosing a di�erent prior on c
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in the same way, Beta(0.5, 0.5) or Beta(2, 2) in place of Beta(1, 1), was not found

to make any material di�erence.

4.6 Conclusions

Tests on the model showed that it works as intended. Nevertheless, it did not

model the HapMap data as well as was hoped. Examination of the standardised

residuals revealed a persistent bimodal pattern. This turned out to be remedied

by using an appropriate choice of prior on the ancestral proportions of the allele

counted at each locus. The problem with the residuals for each subpopulation

not being equally spread was investigated and found not to be due to the use of

approximate values of the mean and variance of the distribution describing drift.

Posterior predictive checking revealed that the assumption that they should be

equally spread was, in fact, erroneous and that the pattern was not actually a

cause for concern. In the light of bimodality of the residuals being explained

by choice of prior, it was necessary to consider whether this more complicated

phylogenetic tree model was necessary. Posterior predictive checking did show

that the phylogenetic part of the model was indeed necessary to better explain

the data. Nevertheless, the results of posterior predictive checking also showed

that this phylogenetic tree model alone does not describe the data adequately. It

is highly plausible that at least two of the subpopulations, the Afro-Americans

and the Mexicans, have resulted from admixture events in their past and so are

related to other subpopulations in ways that this model does not attempt to take

into account. To extend this model to take admixture into account would be an

ambitious undertaking that is nevertheless worth trying. It is the development of

such a model that is the subject of the next chapter.



Chapter 5

Generalisation to Allow Admixture

Events

The new models described in the previous chapter assume that subpopulations

never become socially involved with other subpopulations to the extent of produc-

ing o�spring with parentage shared between the two subpopulations in su�cient

numbers to warrant representation in the model. New subpopulations could only

be created by two groups within one parent subpopulation becoming isolated from

each other so that they experienced genetic drift independently. In this chapter,

that assumption is relaxed. Two subpopulations can meet and create a new sub-

population with its genetic character partially inherited from each of the parent

subpopulations. The new model introduced in the previous chapter is further

developed here to accommodate these admixture events.

5.1 Admixture Events in Genetics

The emergence of a new subpopulation that inherits its genetic character from at

least two parent subpopulations is called admixture (Balding et al., 2007). Two

157
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subpopulations or parts of these two subpopulations, which were previously iso-

lated from each other, meet and integrate to the extent of producing o�spring

who form a new subpopulation which has inherited genetic material from both the

two parent subpopulations. The two subpopulations could meet at a particular

place and combine at a particular time in history to form the new subpopulation.

However, the process of integration may not be instantaneous. It may take place

over a number of generations. If the two populations meet geographically, there

may be migratory �ow from one or both the parent subpopulations over a number

of generations. While it is more socially and geographically realistic to suppose an

admixture event took place over a period of time, in the interests of simplicity, it

will be assumed that it can be modelled as if it were an instantaneous event.

5.1.1 Examples of Di�erent Types of Historical Admixture

Events

Historically, large-scale human admixture events have happened at a great many

points in history and in many di�erent circumstances. One way that two pre-

viously isolated subpopulations could meet in prehistoric times was if a physical

geographical barrier between them ceased to exist as a result of climate change.

This could happen if a land bridge between two land bodies appears as the result

of lower sea water levels e.g., the Bering Strait (Elias et al., 1996). Often techno-

logical developments would allow movement by one or other subpopulation over a

barrier. Developments in ability to navigate accurately at sea or improved ships

are such examples (Rayment, 2017). Improvements in both of these technologies

contributed to an age of exploration from the 16th century onwards that brought

populations into contact that had been previously isolated. Barriers need not be

physical. They can be social. The Amish in North America are descended from

central European immigrants. They live without many forms of modern tech-

nology and have deep paci�st and religious beliefs. While they live among other
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Americans, it is extremely rare for people outwith the Amish to marry into their

communities (Hou et al., 2013). Many societies have historically had taboos about

admixture. Indeed, it is only as recently as 1967 that the US supreme court, in

the case of Loving v Virginia (US Supreme Court, 1967), ruled the laws banning

miscegenation (interracial marriage) that still existed in 16 of the 50 states of the

USA were unconstitutional. The Immorality Act in South Africa which banned

South Africans of European ancestry from intercourse with people from other sub-

populations was repealed only as recently as 1985 (Republic of South Africa, 1985).

It should be noted that the participants in admixture events may not always have

done so willingly. Slavery has featured in many societies throughout human his-

tory. In most cases slaves were often taken from a di�erent subpopulation or

culture to that of their owners. Slaves were sexually exploited leading to admixed

populations (Baptist, 2001). Large colonial migrations can be driven by the possi-

bility of making a better life and stories of riches on o�er. Colonial migrations are

also not always undertaken voluntarily. Convicts in the British Empire were often

transported to penal colonies, �rst in North America (Ekirch, 1990) and later, in

Australia (McConville, 1981). Still others felt compelled to migrate due to hunger.

The potato famine which hit Ireland in the 19th century led many to migrate to

the colonies of the then British Empire (Foster, 1988). Colonists, whatever the

reason for their migration, would then be in proximity to native subpopulations

leading to the possibility for admixture.

5.1.2 Features of an Admixture Event in a Simple Context

How could an admixture event be modelled in a way that will �t into the branching

genetic drift models that have been described thus far? An admixture model

in its simplest context is shown in �gure 5.1. Each line represents a period of

genetic drift. The ancestral population at A diverges into two subpopulations that

experience independent genetic drift until they reach points B and C. At point B, a
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subset of that subpopulation is destined to be involved in an admixture event. The

remainder of that subpopulation continues to experience genetic drift and becomes

the present-day subpopulation represented at G. Similarly the other subpopulation

at C also has a subset that is destined to be involved in the same admixture event

while the remainder of that subpopulation continues to drift and becomes the

present-day subpopulation at J. The subset of the subpopulations at B and C

that are destined to become admixed may each experience genetic drift on their

journeys towards meeting each other at points D and E, respectively. These two

subpopulations now meet and mix to become a new composite third subpopulation

at F. This new admixed subpopulation can experience genetic drift itself, becoming

the present-day admixed population at H. Each of the two subpopulations at D and

E will contribute to a proportion of the new admixed population at F. So that if D

contributes a proportion, w, of the admixed subpopulation then E must contribute

a proportion, 1 − w, of the admixed subpopulation. Thus at any particular SNP

locus, if the proportion of an allele in the subpopulation at D is αD and at E is

αE, the proportion of the allele in that new admixed subpopulation at F must be

αF = wαD + (1− w)αE. Moreover, the proportion w has the same value at every

locus.

This shows how an admixture event could be modelled in a simple setting, but the

salient elements of it can be easily incorporated into far more complex phylogenetic

trees which could have several such admixture events. This model allows there to

be genetic drift along any or all of the edges BD, CE and FH and so is quite general.

In reality, there may be very little genetic drift along one or more of these edges, if

the time periods represented by them are very short and the subpopulation sizes

not too small. For example, the edge BD could represent the transportation of

convicts to a penal colony on an island who are later released and mix with the

native population there. This would take only a single generation. The only drift

would result from the sampling e�ect of taking a number of convicts from a much

larger colonial parent population at point B. The proportions of alleles at each
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Figure 5.1: A Simple Admixture Model
Each line represents a period of genetic drift. The ancestral population at A diverges into two
subpopulations that experience independent genetic drift until they reach points B and C. At point
B, a subset of that subpopulation is destined to be involved in an admixture event. The remainder
of that subpopulation continues to experience genetic drift and becomes the present day subpopu-
lation represented at G. Similarly the other subpopulation at C also has a subset that is destined
to be involved in the same admixture event while the remainder of that subpopulation continues
to drift and becomes the present-day subpopulation at J. The subset of the subpopulations at B
and C that are destined to become admixed may each experience genetic drift on their journeys
towards meeting each other at points D and E, respectively. These two subpopulations now meet
and mix to become a new composite third subpopulation at F. This new admixed subpopulation
can experience genetic drift itself, becoming the present-day admixed population at H.
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locus in the convict population at D from the colonial parent population at B

would not be the same and therefore would appear to have drifted slightly but

would only di�er because of sampling variation rather than genetic drift, strictly

speaking, because no reproduction has taken place along the edge BD. However, a

lot of people in close proximity to each other on board a ship would be vulnerable

to the spread of disease, so it could also be argued that those that survive are more

di�erent from the populations they are taken from than this drift would explain,

due to selection e�ects.

5.2 Description of the Model

The new parameter is w, the admixture parameter. This takes values in (0, 1) and

so a beta prior, which covers those values, seems a reasonable choice. Giving it

two hyperparameters, ω1, ω2 allows the possibility for a strong prior to be set by

the experimenter where outside knowledge or previous studies make a particular

value more likely. However setting these to 1 sets a weak prior where all values are

as likely as each other a-priori. Alternative weak priors such as the Je�reys prior

beta(0.5,0.5) could be used but since there is no obvious alternative scale on which

to measure the admixture parameter, this seems unnecessary. The justi�cation for

the priors on cj and πi remain as they were described in the earlier model of section

3.2.2.

xij|nij, αij ∼ Binomial (nij, αij), independently,

αij|πi, cj ∼ NR[0,1] (πi, πi (1− πi) cj) , , independently, for αs nearest the root of

the phylogenetic network,

αij = wjαip1 + (1− wj)αip2 , deterministically, for the αs immediately following

an admixture event.
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where αip1 and αip2 are the alphas for the two parent nodes in the network that

feed into the admixture event.

αij|αipi, cj ∼ NR[0,1] (αip, αipi (1− αip) cj) , independently, for other αs,

where αip is the alpha for the parent node to node j in the tree.

with priors

wj|ω1, ω2 ∼ Beta (ω1, ω2), independently,

πi|a ∼ Beta (a, a), independently,

cj|b1j, b2j ∼ Beta(b1j, b2j), independently,

where

i labels the locus: 1 6 i 6 L,

j labels the subpopulation 1 6 j 6 P,

nij is the total number of alleles observed at locus i in subpopulation j,

xij is the number of one of the two alleles observed at locus i in subpopulation j,

αij is the population proportion of that allele at locus i in subpopulation j,

πi is the proportion of that allele at locus i in the ancestral population,

cj is the amount of genetic drift in subpopulation j.

wj is the admixture proportion for the admixture event that results in subpopu-

lation j where that subpopulation is the direct result of an admixture event.
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a is a hyperparameter in the prior of πi.

b1j, b2j are hyperparameters in the prior of cj and will be assigned the value 1

unless otherwise stated.

ω1 and ω2 are hyperparameter in the prior of wj and will be assigned the value 1

unless otherwise stated.

5.3 Implementation of the Model

5.3.1 Hierarchical Model of an Admixture Event

The DAG of the simple admixture event described in �gure 5.1 is shown in �gure

5.2.

The new parameters of this model are the admixture proportion, w, its prior

ω, and the allele frequencies at each SNP (generically i) in the newly admixed

subpopulation, αi,F , with a deterministic relationship to w, αi,D and αi,E. These

are shown in this simple context for illustrative purposes but are generalisable in

the obvious way to more complicated phylogenetic trees which could have several

such admixture events. The said deterministic relationship is αi,F = wαi,D +

(1− w)αi,E. The remaining features of this model are directly analogous to those

described in chapters 3 and 4.
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Figure 5.2: DAG of an Admixture Model in a simple context
DAG of the simple model including an admixture event where
i labels the locus: 1 6 i 6 L,
Letters A,B,...H,J correspond to the nodes in the phylogeneitic tree shown in �gure 5.1.
nij is the total number of alleles observed at locus i in subpopulation j,
xij is the number of one of the two alleles observed at locus i in subpopulation j,
αij is the population proportion of that allele at locus i in subpopulation j,
πi is the proportion of that allele at locus i in the ancestral population, with a as a parameter
within its prior,
cj parameterises the amount of genetic drift in subpopulation j,
w is the proportion of the admixed subpopulation at F that is contributed by D and consequently
(1 − w) is the proportion of the admixed population contributed by E. ω is a parameter in its
prior.

Once again, the full conditional for the ancestral allele frequency,πi in this simpli-

�ed case is

P (πi|α, c, π−i) ∝ πa−1
i (1− πi)a−1 g1 (cB, πi, αiB) g1 (cC , πi, αiC) , (5.1)
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and in a more general setting where s subpopulations rather than just the two at

B and C are directly descended from it becomes

P (πi|α, c, π−i) ∝ πa−1
i (1− πi)a−1

s∏
m=1

g1 (ckm , πi, αikm) , (5.2)

where {k1, ..., ks} is the set of child nodes of the ancestral node as before, and

g1 (ck, πi, αik) =


[πi (1− πi)]−

1
2
´ 0

−∞ exp
(
−(r−πi)2

2ckπi(1−πi)

)
dr, αik = 0,

[πi (1− πi)]−
1
2 exp

(
−(αik−πi)2
2ckπi(1−πi)

)
, 0 < αik < 1,

[πi (1− πi)]−
1
2
´∞

1
exp

(
−(r−πi)2

2ckπi(1−πi)

)
dr, αik = 1.

(5.3)

The full conditional for cj is also unchanged,

P (cj|α, π, c−j, b) ∝
L∏
i=1

g2 (cj, αip, αij)× c
b1j−1
j (1− cj)b2j−1 ., (5.4)

where

g2 (cj, αip, αij) =


c
− 1

2
j

´ 0

−∞ exp
(
−(r−αip)2

2cjαip(1−αip)

)
dr, αij = 0,

c
− 1

2
j exp

(
−(αij−αip)2

2cjαip(1−αip)

)
, 0 < αij < 1,

c
− 1

2
j

´∞
1

exp
(
−(r−αip)2

2cjαip(1−αip)

)
dr, αij = 1.

(5.5)

Here, L is the number of loci, and αip is the allele frequency for the ith locus at

the parent node of j. As before and also below, in the case where j is one of the

child nodes of the ancestral root then αip ≡ πi.

The full conditionals for αij at the tips of the phylogenetic tree such as αiG, αiH

and αiJ in the above simpli�ed example, that represent present-day subpopulations

also remain una�ected. These are the αs nearest the data, xij, nij, in the hierarchy:

P (αij|cj, πi, α−ij, xij, nij) ∝ h1 (nij, xij, αij) g3 (cj, αip, αij) (5.6)
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and

g3 (cj, αip, αij) =



´ 0

−∞ exp
(
−(r−αip)2

2cjαip(1−αip)

)
dr, αij = 0, 0 < αip < 1,

exp
(
−(αij−αip)2

2cjαip(1−αip)

)
, 0 < αij < 1, 0 < αip < 1,

´∞
1

exp
(
−(r−αip)2

2cjαip(1−αip)

)
dr, αij = 1, 0 < αip < 1,

1, αij = 1, αip = 1,

1, αij = 0, αip = 0,

0, otherwise.

(5.7)

h1 (nij, xij, αij) =



1, αij = 0, xij = 0,

α
xij
ij (1− αij)nij−xij , 0 < αij < 1,

1, αij = 1, xij = nij,

0, otherwise.

(5.8)

Full conditionals for the αs not at the tips of the phylogenetic tree and that are not

directly involved with the admixture such as αiB and αiC in the simple example

above are also una�ected. These are

P (αij|c, π, α−ij) ∝ h2 (αij, α−ij, c) g3 (cj, αip, αij) , (5.9)

and

h2 (αij, α−ij, c) =



1 αij = 0, αik1 = αik2 = ... = αiksj = 0,

1 αij = 1, αik1 = αik2 = ... = αiksj = 1,
sj∏
m=1

f (ckm , αij, αikm) 0 < αij < 1,

0 otherwise,

(5.10)

where again,
{
k1, ...., ksj

}
is the set (of size sj) of child nodes of the node (j) in
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question and

f (ck, αij, αik) =


[αij (1− αij)]−

1
2
´ 0

−∞ exp
(
−(r−αij)2

2ckαij(1−αij)

)
dr, αik = 0,

[αij (1− αij)]−
1
2 exp

(
−(αik−αij)2

2ckαij(1−αij)

)
, 0 < αik < 1,

[αij (1− αij)]−
1
2
´∞

1
exp

(
−(r−αij)2

2ckαij(1−αij)

)
dr, αik = 1.

(5.11)

That leaves the αs directly involved in the admixture event. The case of αiF is

relatively simple. As noted before, it is determined from the values of the admix-

ture parameter w and the proportions of the allele from the two subpopulations

that make up the admixture αiF = wαiD + (1− w)αiE. More generally, if that α

is labelled αij to be consistent with the notation above and its two contributing

parent αs as αip1 and αip2 this deterministic relationship becomes

αij = wαip1 + (1− w)αip2 . (5.12)

The remaining cases are those αs that contribute to an admixture such as αiD and

αiE in the simple case. In these cases the full conditionals are

P (αij|c, w, α−ij) ∝ g4 (αij, α−ij, w, c) g3 (cj, αip, αij) , (5.13)

where g3 (cj, αip, αij) is as above and,

g4 (αij , α−ij , w, c) =



[αim (1− αim)]−
1
2
´ 0
−∞ exp

(
−(r−αim)2

2ckαim(1−αim)

)
dr, αik = 0, αij 6= αiυ ,

[αim (1− αim)]−
1
2
´ 0
−∞ exp

(
−(r−αim)2

2ckαim(1−αim)

)
dr, αik = 0, αij = αiυ < 1,

[αim (1− αim)]−
1
2 exp

(
−(αik−αim)2

2ckαim(1−αim)

)
, 0 < αik < 1, αij 6= αiυ ,

[αim (1− αim)]−
1
2 exp

(
−(αik−αim)2

2ckαim(1−αim)

)
, 0 < αik < 1, αij = αiυ , 0 < αij < 1,

[αim (1− αim)]−
1
2
´∞
1 exp

(
−(r−αim)2

2ckαim(1−αim)

)
dr, αik = 1, αij 6= αiυ ,

[αim (1− αim)]−
1
2
´∞
1 exp

(
−(r−αim)2

2ckαim(1−αim)

)
dr, αik = 1, αij = αiυ > 0

0 otherwise

(5.14)

where αim = wαij+(1−w)αiυ in the case where αij is the proportion of the allele in

the �rst population contributing to the admixture, analogous to αiD in �gure 5.2.

In this case αiυ is the proportion of the allele in the second population contributing
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to the admixture. Similarly, in the case where αij is the proportion of the allele in

the second population contributing to the admixture, analogous to αiE in �gure

5.2, αim = wαiυ + (1 − w)αij. This time, αiυ is the proportion of the allele in

the �rst population contributing to the admixture. In these cases, the parameters

w and the α for the other subpopulation contributing to the admixture enter the

full conditional through the relationship 5.12. It should be noted that if αiυ = 0

and αik 6= 0 then αij 6= 0 (or in �gure 5.2, if αiE = 0 and αiH 6= 0 then αiD 6= 0)

because the combination αiυ = αij = 0 (or αiD = αiE = 0 in �gure 5.2), i.e.,

�xation in the two subpopulations that contribute to the new admixed population

would imply that in the admixed population αim = 0 (or in �gure 5.2 αiF = 0)

but the admixed population has reaching �xation cannot be true if αik 6= 0 (or in

�gure 5.2 αiH 6= 0) in the absence of mutation. By analogous reasoning, if αiυ = 1

and αik 6= 1 then αij 6= 1. This is enforced by the conditions in g4 (αij, α−ij, w, c).

This leaves the full conditional for w. Since w can vary between 0 and 1, its prior

should re�ect that, so a beta prior is a reasonable choice. It may be useful to

allow the possibility for �exibility in setting strong priors on w that using both

parameters allows, so a Be(ω1, ω2) prior seems reasonable. To make it a weak

prior, there is no a-priori reason to assume it should be asymmetrical, ω1 = ω2 = 1

is one reasonable choice but is not the only reasonable choice. This leads to a full

conditional for w of

P (w|ω, αip1αip2 , αik, ck) ∝ wω1−1 (1− w)ω2−1
L∏
i=1

g4 (ck, wαip1 + (1− w)αip2 , αik) ,

(5.15)

where αip1αip2 are the αs from the two subpopulations contributing to the admix-

ture (αiD and αiE in �gure 5.2). Here k indexes the population descending from

the admixed population (H in �gure 5.2).

These describe the full conditionals up to proportionality. A similar process is

followed for determining whether the alphas are in the atoms (equal to 0 or 1)

as that described in section 4.5.2 of the previous chapter. There is, nonetheless,
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an additional situation that has not been covered; the αs that contribute to an

admixture such as αD and αE (dropping the i subscript for clarity) can also enter

the atoms at 0 and 1 and an actual probability is, again, needed. Looking at this

from the point of view of determining whether αD is in the atom, when the parent

alpha, αB, is 0 or 1 then αD must be in the same state because no mutation is

assumed. That is a straightforward situation. But this time, if 0 < αB < 1 then

αD can be 0 or 1 even if αH is not. Again, a two-stage process is followed. First it

is determined whether αD is 0 or 1. Second, if it is not, then the usual sampling

procedure is again followed for choosing a value in the (0, 1) interval. The �rst

stage needs probabilities for αD = 0 and for αD = 1. Taking the case of αD = 0, it

must have got there by drift from αP and αF = 0 + (1− w)αE must have drifted

to αH . The latter condition is clearly impossible if (1− w)αE = 0 and αH > 0.

Otherwise, these two steps are represented by

y1 (αB, cD) = Φ

(
0− αB√

αB (1− αB) cD

)
, (5.16)

and

y2 (αF = 0 + [1− w]αE, αH , cH) =
1√

αF (1− αF ) cH
φ

(
αH − αF√

αF (1− αF ) cH

)
,

(5.17)

respectively when 0 < αH < 1.

When αH = 0, the second step is represented by

y2 (αF = 0 + [1− w]αE, cH) = Φ

(
0− αF√

αF (1− αF ) cH

)
, (5.18)

and when αH = 1 by

y2 (αF = 0 + [1− w]αE, cH) = 1− Φ

(
1− αF√

αF (1− αF ) cH

)
, (5.19)
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or if (1− w)αE = 0 and αH > 0 (the case where αD = 0 is impossible) then

y2 (αF = 0 + [1− w]αE, cH) = 0.

By similar reasoning, the equivalent functions can be found to represent the case

of αD = 1,

z1 (αB, cD) = 1− Φ

(
1− αB√

αB (1− αB) cD

)
, (5.20)

and when 0 < αH < 1,

z2 (αF = w + [1− w]αE, αH , cH) =
1√

αF (1− αF ) cH
φ

(
αH − αF√

αF (1− αF ) cH

)
,

(5.21)

or when αH = 0,

z2 (αF = w + [1− w]αE, cH) = Φ

(
0− αF√

αF (1− αF ) cH

)
, (5.22)

or when αH = 1

z2 (αF = w + [1− w]αE, cH) = 1− Φ

(
1− αF√

αF (1− αF ) cH

)
. (5.23)

Again, this is impossible when w + (1− w)αE = 1 and αH < 1,

so z2 (αF = w + [1− w]αE, cH) = 0 in that case.

Next, there is the possibility that αD is in the interval (0, 1). The probability

density of the drift from αB to αD is represented by

v (αB, cD, r) =
1√

αB (1− αB) cD
φ

(
r − αB√

αB (1− αB) cD

)
. (5.24)

The drift from αF = wαD + (1 − w)αE to αH is represented by the probability
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density

u (αH , cH , r) =
1√

r (1− r) cH
φ

(
αH − r√
r (1− r) cH

)
, (5.25)

when 0 < αH < 1. If αH = 0 then

u (αH , cH , r) = Φ

(
0− r√

r (1− r) cH

)
, (5.26)

or when αH = 1

u (αH , cH , r) = 1− Φ

(
1− r√

r (1− r) cH

)
. (5.27)

The maximum value that αF can take is αFU = w+ (1−w)αE, and the minimum

it can take is αFL = (1− w)αE.

The probability of αD being 0 is then the expression for the drift cD carrying αD

to 0, divided by sum of the expressions for all the possibilities,

Pr (αD = 0) =
y1y2

y1y2 + z1z2 +
´ αFU
αFL

v (αB, cD, r)u (αH , cH , r) dr
. (5.28)

A draw from Uniform(0,1) can be taken and if it is lower than this value, then

αD = 0. Otherwise, this possibility is eliminated and the case of αD = 1 is

considered in light of this, which has probability

Pr (αD = 1) =
z1z2

z1z2 +
´ αFU
αFL

v (αB, cD, r)u (αH , cH , r) dr
. (5.29)

Another draw from Uniform(0,1) is taken and if it is lower than this new value,

then αD = 1. Otherwise, with these two possibilities eliminated, αD takes a value

in (0, 1) drawn by the Gibbs sampler as usual. The same process can be found

and followed for αE by symmetry.
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5.3.2 Determination of Candidate Subpopulations for Mod-

elling as an Admixture

A reasonable question to ask is how can it be determined that a subpopulation

should be modelled as admixed and of which subpopulations should it be an admix-

ture? If it is known, as in the case of the HapMap data, what the subpopulations

represent then knowledge of world history can be used to determine which subpop-

ulations are likely to need to be modelled as admixture events. For example, there

is a Mexican subpopulation in the HapMap dataset. There were native Americans

in Mexico, the best known being the Aztec and Mayan civilisations. Europeans

from Spain colonised the area in the early 16th century and as they were mostly

men, took native wives and concubines and produced children. Martínez-Cortés

et al. (2012) found the Y chromosome (male lineage) ancestry of modern Mexicans

to be over 60% European, while Kumar et al. (2011) found that their maternal an-

cestry through mitochondrial DNA was 85%-90% native American. A knowledge

of world history would lead to a view that present-day Mexicans are descended

from an admixture of native Americans and Spanish Europeans. Native Ameri-

cans are, in turn descended from people who crossed the Bering Straight from east

Asia when sea levels were lower and it formed a land bridge (Elias et al., 1996). So

it would seem reasonable to model Mexicans as an admixture of a drifted version

of an old east Asian subpopulation such as the ancestor of modern day Japanese

and Chinese subpopulations and a more recent ancestor of a west European sub-

population such as maybe CEU, the European subpopulation, or the ancestor

of both CEU and the TSI Tuscan subpopulation. Similarly, the Afro-Americans

(ASW) subpopulation could reasonably be expected to be an admixed subpopu-

lation. Afro-Americans are descended from slaves taken from mostly West Africa

and transported to America to work on plantations and for domestic service. There

is also the possibility of more recent admixture, since cultural taboos about mixed

race relationships and legal prohibitions fell away in the last few decades of the

20th century. These would lead the population of modern day Afro-Americans
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to be mostly descended from a west African subpopulation like the Yoruba from

Nigeria (YRI) but also to have an element of European ancestry, which again could

be CEU, TSI or an ancester of both.

In a more general situation, it may not be the case that the history of the sub-

population is known from other sources. How could the need for modelling a

subpopulation as an admixed population be identi�ed then? One way would be

to examine a post predictive checking table such as that in table 4.3. There it

can be seen that ASW, has a large number, 8 out of 10, of predictive p-values

below 0.025. A low p-value in that case indicates that ASW is more closely re-

lated to the subpopulation to which it is being compared than the model that

led to that post predictive check allows. There ASW was placed in a branch of

the phylogenetic tree with African subpopulations, which makes sense but how

can it be simultaneously kept close to those subpopulations in the tree but also

moved nearer to the non-African subpopulations without simultaneously moving

the other African subpopulations? It can if it were modelled as an admixture of an

African subpopulation with a non-African subpopulation. Its lowest p-values are 0

for the two European subpopulations, CEU and TSI, and the Gujarati subpopula-

tion GIH. This suggests that one of these population's ancestors or their common

ancestors would be good candidates to be one of the two populations contributing

to the admixture. The other contributing subpopulation would be African. Of the

African subpopulations, the Yoruba from Nigeria, YRI, also has a low p-value of

0.003 indicating that it should be more closely related to the Afro-Americans than

in that model so taking the other contributing subpopulation to be its ancestor is

worth trying. The other subpopulation with a lot of low predictive p-values in ta-

ble 4.3 is the Mexican one, MEX, which has low p-values with ASW and the three

east Asian subpopulations, CHB, CHD and JPT. For that model the Mexicans

were placed on a branch of the tree that included the two European subpopula-

tions, TSI and CEU. Assuming that modelling the Afro-American subpopulation

as an admixture as described above eliminates that low p-value, that suggests that
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the Mexicans are more closely related to the east Asian subpopulations than that

model allows, so an admixture involving an ancestor of the European subpopu-

lations and an ancestor of the east Asian subpopulations would be a promising

candidate as an admixture. The process could proceed by running a model with

the Afro-American admixture, examining the resulting post predictive check table

to make sure that the Afro-American subpopulation is now modelled adequately.

This table may still suggest that the Mexican subpopulation needs to be modelled

by the sort of admixture that has just been described. The next step would be to

run a model with both these admixtures and to examine the resulting post predic-

tive check table to consider whether further admixtures are required to adequately

model the data. This process does, however, have the obvious downside that it is

iterative and involves some trial and error of running models that may well take

some days to accumulate a su�cient number of iterations of the Gibbs sampler

to provide a su�ciently representative posterior distribution. In practice with the

HapMap data, 100,000 MCMC iterations were used, taking a little over a week

in each case for 2,000 loci. 100,000 is the number of iterations found, partly by

accident, to be adequate in section 5.4.1 after an automated Windows shutdown

at about this number.

5.3.3 Identi�ability of Parameters Near Admixture Events

The model of admixture described thus far has a drawback. To understand what

it is, consider �gure 5.1 again. Consider what happens between the admixed

population's two ancestor populations at B and C and the present-day admixed

subpopulation at H. There are three periods of genetic drift, between B and D, and

C and E, before the admixture event and between F and H after the admixture

event. Imagine the case of an allele for which �xation is not a realistically likely

outcome during these time periods. The possibility of �xation is being put to

one side for now for simplicity, to make the problem easier to understand. The
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proportion of an allele, αD which is modelled as αD ∼ NR[0,1] (αB, αB (1− αB) cD)

has rather complicated expressions for its �rst and second moments as described

in appendix B. However, as discussed in section 4.5.5.2, over realistic values of cD,

the mean of αD would be approximately αB and the variance is approximately

αB (1− αB) cD particularly where �xation is unlikely. Similarly, the mean of αE

would be approximately αC and the variance approximately αC (1− αC) cE and

for αH the mean would be approximately αF and the variance approximately

αF (1− αF ) cH . Now, recall that αF = wαD + (1 − w)αE. So the mean of αH

is approximately wαD + (1 − w)αE whose mean is in turn approximately wαB +

(1 − w)αC . This would provide an estimate for w given αH , αB, αC since there

would be one equation and one unknown. The variance of αH is approximately

wαD + (1−w)αE (1− wαD − (1− w)αE) cH . Putting this in terms of αB and αC

instead of αD and αE will produce an expression that involves not only αH , αB, αC

but also cH , cD and cE. So if these former 3 are known and w is identi�able, there

will still not be a unique solution for cH , cD and cE.

To look at this a di�erent way, suppose the values for αB and αC were known

with certainty for all loci to be 0.3 and 0.7, respectively, and suppose there was

a lot of data for the admixed subpopulation at H so that the mean value of xH
nH

over all the loci was 0.6 but distributed such that it is extraordinarily unlikely

that αH = 0.6 for all loci. The values of αH would then be distributed around a

value close to 0.6. It would then be reasonable from this to estimate that w has

a most likely value of about 0.25, αH being distributed in such a way as to be

on average, three times further from αB than αC but this still leaves uncertainty

about what the drift parameters should be. Clearly there has been some drift

since if there was none, αH = 0.6 for all loci would be reasonably likely, which it

is not. But how much of that drift took place between B and D, and C and E

before the admixture event and how much between F and H after the admixture

event? Even knowing αB and αC for all loci with certainty and having a lot

of information about αH at each locus from the data, there is still not enough
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information to say. There could have been little time before the admixture event

and all the αF exactly 0.6 and the variation observed in αH occurred due to drift

after the admixture event, or the admixture event could have been very recent so

that αF and αH would be nearly identical and all the variation occurred before

the admixture event. In other words, there is an identi�ability problem near

the admixture event in relation to the drift parameters even though estimates

of the admixture parameter are still reliable. The consequence of this is that

individual drift parameters in the vicinity of admixture events have to be viewed

with caution and their joint posterior distributions will re�ect the uncertainty. The

drift parameter after the admixture will be negatively correlated with those before

it, since the more drift happened after the admixture, the less happened before

it. As such, looking at overall drift in a lineage before and after the admixture

event may be more reliable than the individual parameters. It would be possible

to get around this problem by imposing some additional constraint by making

an additional assumption. For example, in the case of the Mexicans, it might be

possible to argue that no drift took place for the Europeans on the pre-admixture

branch, because the journey took a relatively short amount of time. Alternatively,

it could be assumed that admixture was recent and therefore no drift has taken

place since admixture. However, these assumptions might be reasonable in speci�c

cases, but they would not be reasonable in all cases, and to make them hard

features of the model would involve a loss of generality. If they were imposed

inappropriately, they would also lead to problems with interpretability. For these

reasons, it has been decided to leave the model as it is and accept that identi�ability

is a problem in relation to genetic drift parameters near an admixture, which will

be manifest in their posterior distributions.

Despite this issue, it is one of the useful features of Bayesian Hierarchical modelling

that strong priors can be used to mitigate this problem where outside knowledge

is available that allows the experimenter to believe that some values of cH , cD and

cE (or even w) are more likely and others less credible by adjusting the hyperpa-
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rameters in the priors for these parameters or even changing the prior family. The

approach used here preserves that �exibility.

So far in the discussion of identi�ability, the e�ect of �xation has been ignored.

However, this model does allow the possibility of alleles becoming �xed. How does

�xation a�ect the discussion? The two situations where the allele has become �xed

at both B and C, that is where αB = αC = 0 or αB = αC = 1 are uninformative

about drift between B and D, C and E, and between F and H. In these cases the

allele remains �xed regardless of how much genetic drift there has been. They are

also uninformative about the admixture parameter, w. Regardless of the value of

w in these cases, αF = αB = αC .

Next, consider the case where αB = 1 and αC = 0. In this case, regardless of the

genetic drift between B and D or C and E, αD = 1 and αE = 0 so it is uninformative

about these drifts. However, αF = w and so αH has approximate mean w and

approximate variance cHw [1− w]. This provides clearer information about cH

than is available in any of the scenarios discussed so far. If this scenario were

common, it would be possible that these situations would give useful information

about cH and that this would inform the situations where there is no �xation

e�ect and thus alleviate the identi�ability problem. Unfortunately, it is not likely

to happen very often in practice that alleles will be �xed in opposite states on

either side of an admixture event in this way. The rarity of this situation means

that it is unlikely to help much: we should expect weak identi�ability at best. The

situation where αB = 0 and αC = 1 is similar to this except that 1 − w would

appear in place of w.

The other possibility is that an allele is �xed on one side of the admixture but not

on the other. Suppose αC = 0 but 0 < αB < 1. Other situations where the allele on

only one side of the admixture is �xed are analogous to this by symmetry. There is

no information about the drift between C and E and αE = 0. Now αD has approx-

imate mean αB and approximate variance cDαB [1− αB]. and αF has approximate
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mean wαB and approximate variance, wcDαB [1− αB]. αH has approximate mean

αF whose mean is in turn approximately wαB. This can provide a good estimate

of w. The approximate variance of αH is wcDαB [1− αB] + wcHαB [1− wαB].

However, this does not allow cD and cH to be identi�ed separately. The expression

for the variance of αH shows that for a particular variance of αH , if cD is larger

then cH is smaller and vice versa. cD and cH should be expected to be related in

this way. In other words, there is still a lot of uncertainty about how much drift

has occured between B and D and between F and H but less uncertainty about

how much has occured between B and H. The situation is entirely uninformative

about drift between C and E.

These issues can be illustrated using simulated data. Data were simulated for 1,000

loci, with sample sizes of 200 in each population in three simulations, comparable

to HAPMAP data for a medium-sized chromosome. The three simulations di�ered

in having 10%, 20% and 30% of the true values for αB and αC being either 0 or

1 (�xation) corresponding to increasing chance of the locus reaching �xations for

di�erent alleles on either side of an admixture event but also increasing the chance

of the uninformative case of the locus having reached �xation for the same allele

on both sides of the admixture event. The model was used on the datasets with

the assumption that the true values for αB and αC were known in each case. To

do this, they were held at their true values for each of the MCMC iterations. This

was to enable the e�ect on the drift and admixture parameters of more and more

alleles having reached �xation to be seen more clearly. The results of doing this

are shown in tables 5.1 to 5.3.
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95% HPD Interval
Lower Bound Upper Bound Width True Value

cD 0.0001 0.0236 0.0235 0.03
cE 0.0014 0.0290 0.0276 0.03
cH 0.0305 0.0450 0.0145 0.03
w 0.2323 0.2603 0.0280 0.25

Table 5.1: Results of Using the Model on Simulated Data with αB and αC Held at
Their True Values and 10% of These Having Reached Fixation.

Data were simulated for 1000 loci. αB and αC were assumed known and held �xed in the infer-
ence, 10% of which were either 0 or 1 representing �xation having been reached. The table shows
the resulting 95% HPD intervals from using the model on such data for the three drift parameters
around the admixture event and the 95% HPD for the admixture parameter, w.

95% HPD Interval
Lower Bound Upper Bound Width True Value

cD 0.0003 0.0319 0.0316 0.03
cE 0.0029 0.0360 0.0331 0.03
cH 0.0280 0.0411 0.0131 0.03
w 0.2440 0.2645 0.0205 0.25

Table 5.2: Results of Using the Model on Simulated Data with αB and αC Held at
Their True Values and 20% of These Having Reached Fixation.

Data were simulated for 1000 loci. αB and αC were assumed known and held �xed in the infer-
ence, 20% of which were either 0 or 1 representing �xation having been reached. The table shows
the resulting 95% HPD intervals from using the model on such data for the three drift parameters
around the admixture event and the 95% HPD for the admixture parameter, w.

95% HPD Interval
Lower Bound Upper Bound Width True Value

cD 0.0002 0.0412 0.0410 0.03
cE 0.0038 0.0313 0.0275 0.03
cH 0.0267 0.0381 0.0113 0.03
w 0.2409 0.2591 0.0182 0.25

Table 5.3: Results of Using the Model on Simulated Data with αB and αC held at Their
True Values and 30% of These Having Reached Fixation

Data were Simulated for 1000 loci. αB and αC were assumed known and held �xed in the
inference, 30% of which were either 0 or 1 representing �xation having been reached. The table
shows the resulting 95% HPD intervals from using the model on such data for the three drift
parameters around the admixture event and the 95% HPD for the admixture parameter, w.

Highest Probability Density (HPD) intervals were calculated using the boa package
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in R (Smith, 2007) which uses the algorithm described in Chen and Shao (1999).

The width of the intervals for cD and cE over the three tables tends to increase, as

the proportion of loci at �xation increases, as expected due to there being more

cases that are uninformative about these parameters, even though the width of

the interval for cE in table 5.3 does buck this trend. The intervals are still very

wide regardless, re�ecting the uncertainty about individual periods of drift around

the admixture event. Nonetheless, in table 5.1, the intervals do not quite contain

the true values. They underestimate the true value. The interval for cH in that

table correspondingly overestimates its true value, again only narrowly failing to

contain it. To an extent this is expected. When the drift parameters cD and cE,

the drifts before the admixture event, are lower than the true values, the parameter

cH is usually correspondingly higher than its true value and vice versa. This is

consistent with there being less uncertainty about the drift overall, through (before

plus after) the admixture event, than there is for each separate period immediately

before or after it. The interesting thing here is how the widths of the HPD for the

cH parameters narrow as the proportion of αB and αC that are at �xation increases.

The discussion above showed that cases where there are opposite �xations on either

side of the admixture event should provide useful information about cH . As these

cases become more common, having more information about cH is re�ected in its

HPD interval narrowing. The HPD intervals for the admixture parameter w are

relatively tight around the true value showing that there is much less uncertainty

about it than there is for the individual drift parameters around the admixture

event. The admixture parameter w is far less a�ected by the non-identi�ability

issue as was expected from the preceding discussion.

Another simulation was carried out with the structure shown in �gure 5.3. 1,000

loci were simulated in samples from each of 3 populations plus an outgroup each

of size 500. The larger than usual sample size was intended to reduce the variance

from this source because it is the admixture that is of interest here. In this sim-

ulation the true drift parameter along each edge was 0.1 and the true admixture
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Figure 5.3: Simulation Model Used to Investigate Admixture Model Behaviour
A phylogenetic network of a simulation used to investigate the behaviour of drift parameters before
and after an admixture event. The parameters of interest are cH and cE.

parameter was 0.5 and all alphas were drawn at each iteration by the Gibbs sam-

pler as usual. The correlation between the drift parameters before and after the

admixture is manifest in the bottom left plot in �gure 5.4, where there is a clear

ridge at an angle to the axes. There is a lot of uncertainty about each parameter:

the 95% HPD interval for cH was (0.034, 0.120) with a median of 0.075 and for cE

was (0.003, 0.298) with a median of 0.141. However taking the drift through the

admixture, using the formula ctot = 1− (1− cE)(1− cH) (see Appendix A) at each

iteration, the HPD for ctot was (0.106, 0.348), narrower than that of cE alone and

the median was 0.204, closer to the true value of 0.19 than the point estimates of

each individual parameter.

Looking at the other plots in �gure 5.4, the top left one shows no evidence of a

correlation between the drift after the admixture event, cH , and the value of the

admixture parameter, w. The other plots involving the admixture parameter do

show some evidence that unusually large values of a drift parameter feeding into

an admixture at an iteration, i.e., cD or cE are associated with an admixture pa-

rameter indicating a lower contribution to the admixture from that subpopulation.

It makes sense that if a subpopulation has allele proportions that have drifted by
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Figure 5.4: Pairwise Scatterplots of Drift Parameters cD, cE , cH and Admixture Pa-
rameter w at Each Iteration.

an unrealistic amount that the model will compensate by not allowing that sub-

population to contribute so much to the admixture. There is a similar relationship

between cD and cH , re�ecting the symmetry of the model. Finally, there is an

apparent inverse relationship between cD and cE in the bottom right plot with

very high levels of drift in one parameter being associated with moderate or low

levels in the other. As noted above, if one of the drifts has become unrealistic,

the admixture parameter is likely to allow it a relatively small contribution to the

admixture and so the other drift parameter is more likely to be realistic. While

one parameter becoming unrealistically high is a possible solution if it contributes

little to the admixture, the other must remain within a realistic range for the

state of the model at that iteration to be reasonably probable. This again, shows

that looking at the marginal posterior distributions for each drift parameter would

suggest more uncertainty about these values than there is if considering pairs of

them.

In conclusion, although the case where there is �xation to di�erent alleles on either
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side of an admixture event can help to alleviate the problem of identi�ability in the

drift parameters around the event, that case is unlikely to be su�ciently common in

practical situations to help. Outside knowledge could be used to apply additional

constraints on particular drift parameters to ameliorate the identi�ability issue,

for example, if it is known from other historical sources that one or more of the

three periods of drift around the admixture event is reasonably modelled with

a c equal to 0. Here, instead, no such assumptions are made. This has the

advantage of keeping the model as general as possible but has the downside that

there will be considerable uncertainty in marginal estimates of the drift parameters

for the three periods of drift adjacent to the admixture event. Point estimates

in particular should be treated with extreme caution. The uncertainty will be

re�ected in the posterior distributions for these parameters. Estimates of overall

drift through (both before and after) the admixture event should be more reliable

than the drift parameters individually. The posterior distribution of the admixture

parameter, w, and therefore the estimates of the proportions of the genome that

the admixed population inherits from its two parent populations does not su�er

from this problem to anything like the same extent.

5.4 Application to the HapMap Dataset

To illustrate how the admixture models in this chapter are represented �gure

5.5 shows a four subpopulation model with an admixture. It involves only Han

Chinese in Beijing (CHB), Mexicans (MEX), Italians in Tuscany (TSI) and Lhosa

in Kenya (LWK). The MEX are modelled as an admixture of the TSI and the

CHB. The Mexicans can be thought of as an admixture of European colonists of

America, the Spanish conquistadors, and the Native Americans that were already

living in Mexico before European colonisation. These Native Americans will have

descended from the people that arrived in America by crossing what is now the

Bering Strait from east Asia during the period when there was a land bridge at
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that location, that is to say, at the time when there was no water in the strait

(Elias et al., 1996). These people in turn would have had a common ancestor in

East Asia with the Han Chinese, making the Chinese the best of the available

subpopulations to represent the native American component in the ancestry of the

Mexicans.

Figure 5.5: Four Subpopulation Model
A model of four present-day subpopulations featuring an admixture event for the MEX subpopu-
lation. The edges represent periods of genetic drift. The common ancestral population is at the
top and is the root of this phylogenetic network.

The network in �gure 5.5 shows the present-day subpopulations at the bottom with

these leaves numbered from 0 to 3. All the ancestral subpopulations at bifurcation

points and around the admixture event are represented by higher numbers so that

4 is the ancestor of the Mexicans just after the admixture event. Nodes 5 and 6

are the two ancestral populations of the Mexicans, the descendants of East Asians

and Europeans respectively, just prior to the admixture event. Node 7 is the

common ancestor of 5 and the present-day Han Chinese at the point where the

two subpopulations diverged. Node 8 is the common ancestor of 6 and modern-

day Tuscans. Node 9 is the common ancestor of 7 and 8, and node 10 is the

common ancestor of all the other subpopulations in this model. Table 5.4 shows the

posterior median estimates and 95% credible intervals for the drift along each of the

edges in the �gure based on 40,000 posterior samples. Note that w represents the
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proportion of the resulting admixed subpopulation's genetic information that has

been inherited from the lower numbered of the two contributing subpopulations. So

the point estimate for w4 of 0.4474 means that 44.7% of the admixed population's

genomes come from subpopulation 5, the one descended from the East Asians, and

55.3% comes from subpopulation 6, the population of European descent. The 95%

credible interval for w4 ranges from 38.4% to 50.2%, so the European contribution

ranges from 48.8% to 61.6%.

Table 5.5 shows the post predictive checking table for the model. All of the values

are within the [0.025, 0.975] interval so none are particularly high or low, suggest-

ing that the model represents the relationships between the four subpopulations

reasonably well, at least in terms of the FST statistic.

Table 5.4: Parameter Estimates for the Model in Figure 5.5

Bounds for 95% HPD Interval
Parameter lower upper Median

c0 0.0726 0.1089 0.0911
c1 0.0796 0.1080 0.0933
c2 0.0001 0.0011 0.0005
c3 0.0168 0.0338 0.0248
w4 0.3837 0.5024 0.4474
c5 0.0378 0.1122 0.0723
c6 0.0001 0.0021 0.0008
c7 0.0762 0.1142 0.0936
c8 0.0201 0.0508 0.0353
c9 0.0916 0.1255 0.1083

The table shows the resulting 95% HPD intervals for the drift parameters, ci(i = 0, ..., 3, 5, ..., 9),
and the admixture parameter, w4. The subscripts for the drift parameters refer to the node in
the �gure where the drift ends. For the admixture parameter, it refers to the node at which the
admixture takes place.
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p-value CHB LWK MEX TSI

CHB X 0.9086 0.6952 0.8861

LWK 0.9086 X 0.8548 0.9697

MEX 0.6952 0.8548 X 0.2559

TSI 0.8861 0.9697 0.2559 X

Table 5.5: Predictive p-values for Pairwise FST for Each Pair of Subpopulations Pro-
duced from Post Predictive Checking of the Model in Figure 5.5.

Values near 0 indicate that the subpopulations are more closely related in the data than

in the model. Numbers close to 1 indicate the opposite.

Moving to the full complement of the HapMap dataset, a range of models will now

be examined and compared to those produced in the previous chapters. Table

5.6 provides a summary of the models including the WAIC for each model, the

number of very low or very high predictive p-values and whether an implausibly

high drift parameter is present, which may be suggestive of a misspeci�cation.

WAIC was used for model comparison because of the convenient comparative ease

with which it can be calculated from the posterior distribution chains. The �rst

batch of models in the middle of that table are based on adding admixtures to the

tree suggested by the neighbour joining algorithm. The second batch in the lower

part of that table are based on adding admixtures to an alternative tree structure.

5.4.1 Models Based on the Neighbour Joining Algorithm

Tree

In the previous chapter, a purely tree-like model without any admixture events

was considered and when its associated post predictive checking table (table 4.3)

was considered was found to be inadequate to describe the data. Examining that

table revealed that the Afro-American subpopulation (ASW) needed to be more

closely related to the European subpopulations while still needing to be like the

African subpopulations. This strongly suggested an admixture relationship. Nige-

ria is on the coast of Africa from which most Africans were involuntarily migrated
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Table 5.6: Summary Table of Admixture Models
Models in the top section are from previous chapters. Models in the middle section are based
on the structure suggested by the Neighbour Joining algorithm. Models in the bottom section are
based on the structure suggested by TreeMix.
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to America, so the YRI subpopulation is the most likely candidate to be most

closely related to the African ancestor population from which Afro-Americans are

descended, while the European ancestors of African Americans could have come

from many parts of Europe and so both European subpopulations could be de-

scended from it. Such an admixture model is shown in �gure 5.6. Table D.1 shows

the posterior medians and 95% Highest Probability Density (HPD) interval based

on 100,000 posterior samples (of which the �rst 10,000 were discarded as burn-

in) for the drift and admixture parameters for that model. As will be explained

shortly, this was found to be an adequate number of iterations by accident after

an automated Windows shutdown at around that number. Of interest is that it

estimates the proportion of the Afro-American's genetic heritage that is European

to be between 18.9% and 21.1%. This might sound like a higher estimate than

might be expected. However, previous studies such as that of Bryc et al. (2015)

produce estimates using di�erent datasets and di�erent techniques that are simi-

lar, if anything, a little higher (24%). That this estimate is similar to those found

by previous work is encouraging. Of the estimates of genetic drift, c15 at between

0.130 and 0.153 seems surprisingly large and raises suspicions that the model is

misspeci�ed somewhere. One possibility is that the branch to the Gujarati (GIH)

at node 16 could be misplaced. The post predictive check table (table D.2) asso-

ciated with the model still shows the Mexicans as being more closely related to

the East Asians than this model allows. This model has a WAIC of 129,183 which

compares favourably to the model from the previous chapter which had a WAIC

of 129,353 and the simpler model from Chapter 3 which had a WAIC of 138,874.

The next model includes an admixture model for the Mexicans as well as the Afro-

Americans in response to the low predictive p-values in the relationship between

them and the three East Asian subpopulations. It is shown in �gure 5.7. The

estimates and 95% HPD intervals for the parameters are given in table D.3 based

on 102,000 samples. (It was intended to run the sampler for more iterations,

however the process was interrupted by an automatic Windows operating system
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Figure 5.6: Model with Afro-American Admixture
A model of all eleven present-day subpopulations in the HapMap dataset featuring an admixture
event for the Afro-American (ASW) subpopulation.

shutdown. At that stage there were 102,000 samples from the joint posterior

distribution saved to disk. Examination of the posterior distributions suggested

this was an adequate number and models after this batch were run for the similar,

but rounder number of 100,000 iterations.) This model has a large estimate of the

drift leading up to the Mexican admixture with c14 being between 0.144 and 0.274.

As noted before, the drift estimates around any admixture event should be treated

with some caution. It could be argued that if the migrations across the Bering

Strait involved only a small population this could lead to this edge having a large

genetic drift parameter. Nevertheless, it still seems more likely that the model is

misspeci�ed in some way. The post predictive checking table (table D.4) has only

one very small value, for the Maasai (MKK) and Tuscan (TSI) pair, suggesting

that these are more closely related than the model allows. There are also a few

high values for the Central Europeans (CEU) with the Denver Chinese (CHD),

Lhosa (LWK) and Yoruba (YRI) so there are still a few issues with this model.

The WAIC for this model is 129,106, making it the best model so far.
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Figure 5.7: Model With Admixture events for ASW and MEX
A model of all eleven present-day subpopulations in the HapMap dataset featuring admixture
events for the Afro-American (ASW) and Mexican (MEX) subpopulations.

The high drift parameter leading to the Mexican admixture could suggest the

model is misspeci�ed somewhere near that edge. In the models so far, the termi-

nal edge for the Gujaratis (GIH) has branched from the Asian side just before the

branch towards the Mexican admixture. How does removing the Gujaratis a�ect

the size of the drift parameter leading to the Mexican admixture? The model

in �gure 5.8 is intended to answer this. As can be seen from the parameter es-

timates for that model in table D.5, the drift parameter for the branch leading

to the admixture, c12, is much reduced to between 0.046 and 0.117, suggesting

that the Gujarati may be misplaced in the model in some way. The proportion

of the Mexican genomes deriving from their Asian ancestry, w10, is estimated to

be between 39.2% and 48.4% which is a little higher, but still broadly consistent

with the previous model. The exclusion of the Gujarati leaves the proportion of

European ancestry among Afro-Americans, w11, at between 19.1% and 21.4%.

So, if the Gujarati are wrongly placed in the model, where would be better? A

number of alternatives were tested. Firstly, what if the branch going towards the
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Figure 5.8: Model with Admixture for MEX and ASW without the Gujarati (GIH)

Mexican admixture happens before the branch to the Gujaratis? This is the model

in �gure 5.9. Table D.6 shows that the proportion of the Mexican genome that

has European ancestry, 1 − w14, falls sharply to between 31.9% to 43.9%, almost

20% lower than in the model without Gujaratis. The amount of drift between the

Gujarati branch at 13 in the �gure and the branch where the Japanese branch o�,

c12, is rather high at between 0.135 and 0.159. Finally, the post predictive p-values

in table D.7 for both the Mexicans (MEX) with the Beijing Chinese (CHB) and

Japanese (JPT) are very low even with the admixture. Overall, this model is even

less plausible than those considered earlier.
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Figure 5.9: Model with Admixture for MEX and ASW and with GIH Placed Nearer
East Asians

What if the branch to the Gujaratis were instead moved above the European/Asian

ancestor (�gure 5.10)? Examining the drift and admixture parameters in table D.8,

the Asian drift parameter before the Mexican admixture, c12, has a 95% HPD

interval from 0.096 to 0.198. While the lower end of the interval is not incredibly

huge, it is still high. Looking at the predictive check table (table D.9) in this case,

the only very small value is for the pair of Maasai (MKK) and Tuscans (TSI).

There is also a small value for the pairing of Mexicans and Maasai (MEX and

MKK). While this does seem a plausible candidate model, its WAIC of 129,184

is rather larger than the 129,106 for the model with the Gujarati in their original

position.
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Figure 5.10: Model with Gujarati branching before the European/East Asian Ancestor

Returning the Gujarati to their original position, it is a curious feature of the better

models so far that the post predictive p-values are low for the pairing of Maasai

(MKK) and Tuscans (TSI) meaning that they are more closely related than this

model re�ects. The central Europeans (CEU) are closely related to the Tuscans,

but there is no correspondingly low value for their pairing with the Maasai. This

suggests there is a speci�cally South European relationship to the Maasai. It is

true that Italy was a colonial power in the area of East Africa near Ethiopia and

Somalia (then known as Abyssinia and Italian Somaliland) (Oliver and Fage, 1970).

However, this seems too recent to create such a close genetic link between the

two subpopulations. There is another theory that the Maasai are descended from

Roman soldiers. Its proponents point to the traditional footwear, weapons and red

cloak of the Maasai saying that they resemble designs from ancient Rome (Saruni,

2016). However, no support for this idea could be found among serious academic

historians. More likely, both populations could be related to a third subpopulation

that is absent from the HapMap dataset, such as a Near Eastern or North African

one. It might also be tempting to dismiss the p-value as spurious and put it down

to random chance. It is, however, a feature of some East African populations
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that has been noted by others such as Pickrell et al. (2014), who suggest a back

migration from Western Eurasia occured into East Africa and admixtures with

African populations went all the way to Southern Africa. Much earlier work by

Cruciani et al. (2002) suggests a similar back migration into sub-Saharan Africa

from Asia. These could support both groups being related to a third Eurasian

group but that would make it curious that the Central Europeans are not so closely

related to the Maasai when the Tuscans are. Llorente et al. (2015, 2016) suggest

Eurasian DNA in modern East African populations could be as much as 25%. So,

could the Maasai be modelled as an admixture of Tuscans and other Africans?

This is re�ected in the model shown in �gure 5.11. The 95% credible intervals for

the resulting drift and admixture paramers are shown in table D.10. This still has

the problem that the drift on one of the branches preceding the admixture for the

Mexicans, c18, is unrealistically high at between 0.150 and 0.267, but there are no

such problems on the branches around the other two admixtures. This suggests

that the Maasai have an ancestry that is between 19.0% and 23.1% Tuscan-like

and between 76.9% and 81.0% sub-Saharan African. The former is similar to the

proportion of European ancestry in Afro-Americans. Table D.11, of the pairwise

post predictive p-values, has no very low values in it. There are a few very high

values. The pairings of CEU with CHD and with YRI, as well as that of CHD with

the Tuscans TSI are rather high suggesting that they are not as closely related

as this model suggests but there is no obvious way to modify the model to re�ect

that without disturbing the other relationships within it. It has a WAIC of 129,123

which is higher than the 129,106 for the earlier model without the admixture for

the Maasai. The di�erence in WAIC is not large but it does suggest that the extra

complexity of this model with three admixtures is not justi�ed by the improvement

in the way the model represents the data.
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Figure 5.11: Model with Mexican, Afro-American and Maasai Admixtures

A simpler model with just a Mexican admixture was �tted as shown in �gure 5.12.

The parameter values for this model are shown in table D.12. The drift parameter

to the Mexican admixture on the Asian side, c12, is still high at between 0.159 and

0.281. There are a number of low predictive p-values (table D.13), particularly

involving the Afro-Americans (ASW). This model has a high WAIC of 129,262 so

does not represent the data as well as many of the other models considered so far.
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Figure 5.12: Model with Admixture for just Mexicans

5.4.2 Models Based on the TreeMix Tree

So far the models have all had a problem with at least one suspiciously high drift

parameter suggesting a misspeci�cation and the position of GIH on the network

being a likely cause. Next the admixture adding process is restarted from a dif-

ferent tree model. First the case with no admixtures is considered. This tree is

a model suggested by the method of Pickrell and Pritchard (2012) implemented

in software called TreeMix which will be discussed in more depth below. The

model structure is shown in �gure 5.13. It di�ers from the Neighbour Joining tree

in the last chapter (�gure 4.7) in the position of GIH on the European branch

and MEX on the Asian branch. These have swapped position compared to the

Neighbour Joining tree. Given the problems that have been experienced thus far

by the positioning of the Gujarati, this alternative tree is worth considering. The

drift parameter values for this model are shown in table D.14. The drift param-

eter, c12, is high at between 0.134 and 0.156 suggesting that there may still be

something misspeci�ed near the East Asian branch. The obvious explanation is



Chapter 5. Generalisation to Allow Admixture Events 198

that the Mexicans are still modelled as being purely on the Asian branch when

they should be admixed with Europeans. This is con�rmed by the low predictive

p-value (table D.15) for the pair of MEX with CEU. There are also low values for

ASW with all non-African subpopulations, strongly suggesting an admixture, and

for the pairing of TSI with MKK which has been noted before. The WAIC for

the model is 129,364 which is not better than the 129,353 for the model with no

admixtures based on the neighbour joining tree.

Figure 5.13: Model suggested by TreeMix with no Admixtures
A model of all eleven present day subpopulations in the HapMap dataset as suggested by TreeMix.

Interestingly, the �rst admixture that TreeMix suggests relates not to the Mexicans

or Afro-Americans but is one for the Gujaratis. It suggests an admixture involving

the Europeans and the Chinese. This is perhaps plausible given that Gujerat was

historically on the trade routes running between Arabia and Indo-China (Sharma,

2014). This leads to the model structure shown in �gure 5.14. The drift and

admixture parameters for this model are given in table D.16. The model suggests

that the Gujarati have between 21.2% and 26.7% ancestry with Chinese (and

between 73.3% and 78.8% with Europeans). However, the drift parameter leading

from the Chinese branch to the admixture, c12, is very large at between 0.166 and
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0.437 and is di�cult to justify. As might be expected, the predictive p-values (table

D.17) are very small for several pairings involving the Afro-Americans (ASW) as

well as the pairing of Maasai (MKK) with Tuscans (TSI). The WAIC for this

model was 129,293 and so was an improvement of only 71 on the previous model.

Figure 5.14: Model with an Admixture for the Gujarati Subpopulation
A model of all eleven present day subpopulations in the HapMap dataset featuring an admixtures
for the Gujarati (GIH) subpopulation.

The next admixture that TreeMix suggests is not for the Afro-Americans as might

be expected, but for the Mexicans. It connects the Mexicans with the Central

European (CEU) branch only and so is slightly di�erent from the way the Mexican

admixture has been treated earlier. The model is shown in �gure 5.15. The

resulting admixture and drift parameters are shown in table D.18. The admixture

parameter for the Mexicans is now between 50.9% and 58.6% Asian, so is now

slightly more Asian than European, compared with the opposite in the preceding

models (such as �gure 5.7) but is still within the range of values found from

other studies. Lisker et al. (1995) note that the European contribution to modern

Mexican DNA has been estimated variously as between 34.8% and 70.8%. In

trying to account for this wide variation, they suggest, by considering the places
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and groups that the samples in each previous study were drawn from, that this

may be due to samples being drawn from di�erent social strata, with the lowest

social strata having the highest levels of native American ancestry. There are now

no unrealistically high drift parameters leading to or from the Mexican admixture.

The drift parameter leading to the Gujerat admixture, c12, is still high at between

0.105 and 0.339. This is, however, smaller than in the previous model and the

bottom end of that range is not unreasonable. The predictive p-values (table

D.19) are still low for some pairs involving the Afro-Americans (ASW) as well as

for the pairing of the Maasai (MKK) and Tuscans (TSI). The WAIC of 129,306

is not an improvement of over the previous model and nowhere near the best of

those examined so far.

Figure 5.15: Model with Admixtures for the Gujarati and Mexicans
A model of all eleven present day subpopulations in the HapMap dataset featuring an admixtures
for the Gujarati GIH and Mexican MEX subpopulations. The blue line in this �gure and the ones
which follow is a period of drift just like the black lines but can be thought of as passing behind
the black lines that cross it without touching them.

TreeMix next suggests adding an admixture for the Afro-Americans with connec-

tions to the European branch and the Yoruban branch. This is similar to the

Afro-American admixture considered earlier. This model is shown in �gure 5.16.
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The table of drift and admixture parameters for this model is in table D.20. The

proportion of Afro-American genomes that is of European heritage is between

18.7% and 20.9%, which is in line with that seen in previous models. Parame-

ters in the non-African part of the tree have not changed much from the previous

model. Those in the African part of the tree are plausible. The predictive p-values

in table D.21 are much improved from the previous model with only the only very

low value being for the pairing of the Maasai (MKK) and the Tuscans (TSI). The

WAIC for this model was 129,141 which is a clear improvement over the previous

model but still 35 more than the lowest seen so far.

Figure 5.16: Model with Admixtures for the Afro-Americans, Mexicans and Gujarati
A model of all eleven present day subpopulations in the HapMap dataset featuring an admixtures
for the Gujarati GIH, Afro-American ASW and Mexican MEX subpopulations.

The fourth admixture suggested by TreeMix is for the Maasai, mixing Tuscans and

the African branch. This model is shown in �gure 5.17. The drift and admixture

parameters are in table D.22. The (African) admixture parameter for the Maasai

of between 19.4% and 23.2% is similar to that obtained earlier (e.g., �gure 5.11),

an encouraging level of consistency. The drift parameter leading from the Chinese

branch to the Gujarati admixture, c12, is still stubbornly high at between 0.100
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and 0.332, but the lower end of that range could be reasonable. No predictive

p-values (table D.23) are very low and the only very high values are for the pairing

of the Central Europeans (CEU) and Yoruba (YRI), making it the best model so

far in terms of post predictive checks. The WAIC has however risen by only 1

compared to the previous model to 129,142, leaving it as a matter of judgement

whether the extra complexity justi�es its improved representation of the data.

Figure 5.17: Model with Admixtures for the Gujarati, Afro-Americans, Mexicans and
Maasai

A model of all eleven present day subpopulations in the HapMap dataset featuring an admixtures
for the Gujarati GIH, Maasai MKK, Afro-American ASW and Mexican MEX subpopulations.

If, as the WAIC for the previous model suggests, four admixtures is too much

complexity, do any of the other models with three admixtures have a lower WAIC?

The model without the Maasai admixture has already been described. What if

the Mexican admixture were removed? This is the model shown in �gure 5.18.

The drift and admixture parameters are in table D.24. The drift between the

Mexican branch and the East Asian cluster, c22, has grown uncomfortably to

between 0.140 and 0.164 which suggests that this treatment of the Mexicans may

be a model misspeci�cation. The drift from the Chinese to the Gujarati admixture

event, c12, has also grown to between 0.169 and 0.415 which is moving back to
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being unrealistically large. The predictive p-values (table D.25), however, are

surprisingly good, with no very low values, although some high ones remain. The

WAIC for the model is 129,124, which is 17 better than the model with the Mexican

admixture but without the Maasai admixture but only slightly so.

Figure 5.18: Model with Admixtures for the Gujarati, Afro-Americans and Maasai
A model of all eleven present day subpopulations in the HapMap dataset featuring an admixtures
for the Gujarati GIH, Afro-American ASW and Maasai MKK subpopulations.

Next the model without the Gujarati admixure was considered. This admixture

was the �rst of these admixtures to be suggested by TreeMix. This model considers

excluding it and is shown in �gure 5.19. The Gujarati are now branching o� at node

27 from a European branch of the tree rather than an Asian branch. The drift and

admixture parameters for this model are in table D.26. There are no incredibly

large drift parameter values for this model. This is the �rst model examined

that has this property, suggesting that a satisfactory speci�cation may have been

achieved or be close. The drift parameter from the Asian branch down to the

Mexican admixture, c12, which was a problem for models with other positions of

the Gujarati branch is now between 0.048 and 0.090. The admixture parameters

are similar to those seen in earlier models for their respective admixtures. The
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predictive p-values (table D.27) for this model were also very encouraging. There

are no very low values in that table and only four very high values. These were for

the pairings of the Denver Chinese (CHD) with the two European subpopulations

(CEU and TSI) and for the Central Europeans and Gujarati (CEU and GIH)

with the Yoruba (YRI). Taken together, this model looks very encouraging. The

problem is that the WAIC is 129,156, a little higher than some of the models

considered so far, the lowest WAIC of which was 129,106 (from �gure 5.7). However

since there was a suspicion of misspeci�cation in those models, this model seems

worthy of consideration.

Figure 5.19: Model with Admixtures for the Maasai, Mexicans and Afro-Americans
A model of all eleven present day subpopulations in the HapMap dataset featuring an admixtures
for the Maasai MKK, Afro-American ASW and Mexican MEX subpopulations.

For completeness, the Afro-American admixture can be removed. This model is

shown in �gure 5.20. The parameter values for the model are shown in table

D.28. The problem of the large drift parameter from the Chinese to the Gujarati

admixture, c12, has returned, it being between 0.090 and 0.341. The lower end

of that range might, nonetheless, be reasonable. What rules this model out is

consideration of the predictive p-values (table D.29). The Afro-Americans (ASW)
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have very low values for all subpopulations except the two Kenyan ones (MKK) and

(LWK). Removing the admixture for the Afro-Americans has damaged the way the

model represents their genetic relationship to eight of the other subpopulations.

Figure 5.20: Model with admixtures for the Gujarati, Mexicans and Maasai
A model of all eleven present day subpopulations in the HapMap dataset featuring an admixtures
for the Gujarati GIH, Maasai MKK and Mexican MEX subpopulations.

At this stage the model of �gure 5.19 looked quite promising. It has three admix-

tures for ASW, MEX and MKK. Experience of the process thus far has shown that

removing admixtures for ASW or MEX leads to models that do not represent the

data well enough. Those admixtures are imporant if the dataset is to be adequately

represented by a model. But could a simpler model still be good if the admixture

for MKK was removed? This model is shown in �gure 5.21. There are still no

incredibly high drift parameter values (table D.30), the WAIC increases slightly

to 129,162, an increase of only 6 compared to the model of �gure 5.19 but there

is now a low predictive p-value for the MKK and TSI pairing and an additional 4

high values (7 compared to 3 for �gure 5.19) suggesting that the earlier model in

�gure 5.19 was a superior model of the data.
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Figure 5.21: Model with admixtures for the Mexicans and Maasai
A model of all eleven present day subpopulations in the HapMap dataset featuring an admixtures
for the Gujarati GIH, Maasai MKK and Mexican MEX subpopulations.

5.5 Comparison of Proposed Models

It could be argued that the best model is the one with the lowest WAIC. However,

see the discussion in section 2.8. The model with the lowest WAIC would be the

one shown in �gure 5.7, with a WAIC of 129,106. However in table D.3, the model

has a large estimate of the drift leading to the Mexican admixture (c14 in that

table) being between 0.144 and 0.274. Even at the lower end, that is high. All

of the models based on the Neighbour Joining tree had the problem of having

a larger than credible drift parameter. The problem however went away when

the Gujarati were removed from the dataset, strongly suggesting that the models

were misspeci�ed in the way they treat that subpopulation. The TreeMix-based

models also had a similar problem until the admixture involving the Gujarati, the

�rst admixture that TreeMix suggests, was removed. While these models have

WAIC values higher than 129,106 they are not much higher. To dismiss them

without considering their merits could be criticised as being overly mechanistic.
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In particular, the model of �gure 5.19 has a WAIC of 129,156, only 50 points

higher. The post predictive checks in table D.27 for that model do not suggest

that any further admixtures are required. However, removing admixtures, such as

in the model of �gure 5.21, results in a model that is a poorer representation of

the data and no improvement in terms of WAIC. It can be argued that to select

the model of �gure 5.19 over the one with the lowest WAIC (�gure 5.7) moves

away from the objectivity of using an information criterion into making subjective

judgements about the models. Reasonable arguments can be advanced for either of

these models. In this case, it is judged here that the model in �gure 5.19 with the

more plausible parameter values and better post predictive behaviour is preferred

(despite the slightly higher WAIC).

The posterior traces for all 70,080 parameters of the selected model were divided

into 5 equal parts, after discarding 10,000 iterations for burn-in. Gelman's R was

calculated for these to ensure the chain had converged. The results provided no

reason to doubt that the model had converged for any of these parameters. Fur-

thermore, to ensure that this �nally selected model's chain had indeed converged

properly, four other MCMC chains were started, each chain with di�erent starting

values for the parameters, the �rst with α, π and w started from 0.5 and c started

from 0.1, the second with α and π started from 0.3, w started from 0.5 and c

started from 0.2, the third with α and π started from 0.7, w started from 0.5 and

c started from 0.05, the fourth with α and π started from 0.2, w started from 0.2

and c started from 0.05 and the �fth with α and π started from 0.8, w started from

0.8 and c started from 0.2, these were run for 80,000 iterations, the �rst 10,000

in each case were discarded as burn-in, providing 70,000 samples from their pos-

terior distributions each. Gelman's R statistic was calculated for the �ve groups

consisting of these four chains and the �fth being iterations 10,001 to 80,000 of

the original chain. Again, the R statistics were nowhere near giving any cause for

concern about convergence for this model.
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5.6 Comparison with TreeMix Model

5.6.1 Description of the TreeMix Model

Earlier, a software package called TreeMix was mentioned, which was announced

in the paper of Pickrell and Pritchard (2012). Like the method developed earlier

in this chapter, this also seeks to develop a bifurcating network model representing

population splits and admixture events. However, unlike the approach developed

here, it attempts to do so within a frequentist framework. In order to do that it

has to make a number of additional assumptions that impact on the applicability

of the model and the ease of interpretation of the results. In return for making

these assumptions, Pickrell and Pritchard obtain a model that has the attraction

of being much less compuationally intensive, producing output within a handful

of minutes as opposed to the many hours that the model described above takes.

Their model will be examined critically in this section.

If the frequency of an allele at a particular locus in the ancestral population A is

πA, in a population B descended from population A the frequency of that allele

αB under a similar model of genetic drift as described by Nicholson et al. (2002)

can be written as

αB ∼ N (πA, πA (1− πA) cB) . (5.30)

This is similar to the same way that drift has been modelled in this and the

preceding chapter. However, it has a key di�erence. An ordinary Normal dis-

tribution has been used instead of a Normal distribution recti�ed at 0 and 1 as

used by Nicholson et al. (2002) and in the new models in this thesis. Pickrell and

Pritchard explicitly do not model the boundary e�ects at 0 and 1 and so do not

model �xation. This means that their model cannot be expected to be accurate

in modelling drift where there are alleles near, or which may have reached, these

boundaries in the present-day subpopulations. This can happen when some alleles

were already near that boundary in the ancestral population or where there has
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been appreciable genetic drift separating the present-day subpopulations from the

ancestral population. This already restricts the applicability of the model. It will

also be seen later to have a potential impact on interpretability. The model of

drift can be rewritten by separating the mean and variance.

αB = πA + εB, (5.31)

where

εB ∼ N (0, πA (1− πA) cB) . (5.32)

Similarly, the frequency of the allele in a population C, αC , that is in turn de-

scended from B and therefore a grand-descendant of A can be described as

αC = αB + εC (5.33)

where

εC ∼ N (0, αB (1− αB) cC) . (5.34)

Pritchard and Pickrell then make the additional simplifying assumption that the

overall amount of genetic drift between all the populations involved in the model

is small. E�ectively, this restricts the model to only being applicable to data sets

where the present-day subpopulations are already very closely related. This again

restricts the applicability of the model. The models developed so far in this thesis

make no such assumptions. These two conditions do, however, allow Pritchard

and Pickrell to assume that the genetic drift between populations B and C is inde-

pendent of that between A and B and that αB (1− αB) is approximately the same

as πA (1− πA). Then the variance of αC is approximately V ar (εB) + V ar (εC) ,

which is in turn approximately πA (1− πA) (cB + cC). Drift parameters in series

are then simply additive rather than the slightly more complicated relationship

derived in appendix A which allows for larger drift parameters.

Next they consider the e�ects of bifurcations in the phylogenetic tree. Suppose
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that population B has a second o�spring population, D, in addition to C and that

A has a second o�spring population, E, in addition to B, so that C, D and E are

the present day subpopulations, B is the common ancestor of C and D and A is

the ancestor of B and E (5.22).

Figure 5.22: Example Phylogenetic Tree

The covariance of αC and αD is just the drift parameter for the period of drift

that C and D share in common before the bifurcation at B, cB, multiplied by

πA (1− πA). Neither C nor D shared any period of drift in common with E after

the ancestral population A, so the covariances of αC and αE and of αD and αE are

both 0. This pattern is followed in a general tree, the covariance of an allele fre-

quency in two present-day subpopulations is the sum of the drift parameters along

any periods of drift they have in common multiplied by πA (1− πA), or equiva-

lently, the variance of the allele frequency in their most recent common ancestor,

unless that ancestor is the root, in which case it is 0. By building up a covariance

matrix, V, based on the phylogenetic relationships between the present-day sub-

populations in this way, the allele frequencies in these present-day subpopulations

can be modelled as a Multivariate Normal distribution where all the means are

the ancestral frequency, πA, MVN(πA,V) where πA = [πA πA . . . πA]T .

Admixtures can be added to this framework in a similar way to the model devel-

oped earlier in this chapter but with an important di�erence. In the Pickrell and



Chapter 5. Generalisation to Allow Admixture Events 211

Pritchard model, a population, H, that is an admixture of two populations F and

G that are ancestral to it, has an allele frequency αH = wαF + (1− w) (αG + εH).

Like the models developed earlier, this has an admixture parameter, w, and the al-

lele frequency of the admixed population is a linear combination of the two parent

populations' frequencies. There is also an extra term (1− w) εH . There is a reason

for this. Recall that in the models developed earlier, there were three periods of

drift allowed around an admixture event. There were two periods of drift before

the admixture event, one from each of the two parent populations and a third

period of drift after the admixture event. However, this led to non-identi�ability.

In a Bayesian hierarchical model this can lead to problems with sluggish mixing

and high uncertainty about marginal parameter values in the posterior distribu-

tion. In a frequentist setting, it is a bigger problem. There is no single point of

maximum likelihood. Instead, there is typically a maximum likelihood �ridge� of

points that the models cannot distinguish between, preventing it from estimating

the parameters. For that reason, Pickrell and Pritchard have to impose additional

assumptions. They assume that there is only drift near an admixture event in one

of these three directions. They assume no drift after the admixture event and also

that there is no drift between the parent population with the lower admixture pa-

rameter weight and the admixture event. They do, however allow drift between the

heavier-weighted population and the admixture event, leading to the (1− w) εH

term above. This breaks the symmetry before the admixture event, and restricts w

to being less than 1
2
. The edge in the graph just before the admixture, to which w

is applied is termed the migratory edge. While this is really just a case of a choice

of labelling, this terminology risks being misinterpreted. The word 'migratory' im-

plies that it is that parent population that moved in order to meet the other parent

population and create an admixture. Since it has the lower weight, this may well

usually be the case but it need not necessarily be so. For example, most of the

models featured earlier in this chapter with admixture events for the Mexicans,

gave the Europeans contributing to the admixture slightly higher weights than

the East Asians, even though the native Americans as descendants of the Asians
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were already in Mexico and it was the Europeans who were migrating there. The

assumption may also explain why the TreeMix model was only observed to suggest

admixture events at the leaves of the tree. The model developed earlier in this

chapter is more general and can accommodate admixtures earlier in the tree or,

indeed, have two or more two parent population admixtures in series to represent

an admixture with three or more parent populations.

The entries for an admixed population in the covariance matrix are built in a

similar way to those for the non-admixed present-day subpopulations. Periods

of drift that are common to a population and the path to the migratory edge of

the admixed population are weighted by w. Periods of drift that are common to

a population and the path to the other edge leading to the admixed population

are weighted by 1− w. These may occur for the same population, in which case,

the two terms are added together. A population that shares no period of drift

in common with either path from the overall ancestor to the admixed population

has a covariance with it of 0. The resulting combination of drift parameters are

multiplied by πA (1− πA) and enter into the covariance matrix V.

The problem with using the resulting covariance matrix V is that the values of the

proportions of alleles in the ancestral populations are not known. So an expectation

based covariance matrix, W with (I,J )th element

WIJ = E

[(
xI
nI
− µ̂

)(
xJ
nJ
− µ̂

)]
, (5.35)

where

µ̂ =
1

J

J∑
I=1

xI
nI

(5.36)

and J is the number of populations, is considered instead. xI and nI are the allele

counts and sample sizes for each population as before. This can be shown to be
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related to VIJ by

WIJ = VIJ −
1

J

J∑
A=1

VAI −
1

J

J∑
A=1

VAJ +
1

J2

J∑
A=1

J∑
B=1

VAB (5.37)

In practice this matrix W is estimated from the data to produce a sample covari-

ance matrix Ŵ, using

ŴIJ =
1

L

L∑
i=1

[(
xiI
niI
− µ̂i

)(
xiJ
niJ
− µ̂i

)]
(5.38)

where, as usual, i indexes loci and L is the total number of loci.

µ̂i =
1

J

J∑
I=1

xiI
niI

(5.39)

To deal with linkage disequilibrium, the sample is divided into equal-sized blocks

of loci so that there is no linkage disequilibrium between two loci in di�erent

blocks. ŴIJ is then calculated within each block as described above. The mean

over all the blocks is used in the overall estimated covariance matrix, ¯̂
WIJ . So if

ŴHIJ is the entry for subpopulations I and J for the H th block out of P blocks,
¯̂W IJ = 1

P

P∑
H=1

ŴHIJ . This does allow Pickrell and Pritchard to make use of data

on loci that are in linkage disequilibrium. Each block is assumed to be independent

of each other. However, it is likely that adjacent blocks will contain loci that are in

linkage disequilibrium. This is in contrast to the approach in the models that have

been developed earlier in this thesis where only loci that are seperated enough

from each other to be reasonably assumed independent are analysed. There is

a trade-o� between the robustness of the independence assumption and making

fuller use of available data.

Taking samples introduces an additional source of variance or noise into the anal-

ysis, so each ¯̂W IJ can be thought of as being approximately normally distributed

around a true ŴIJ [true] with a variance σ2
IJ to express the variability across blocks.
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This variability can be estimated from the data from

σ̂IJ =

√√√√√ P∑
H=1

(
ŴHIJ − ¯̂W IJ

)2

P (P − 1)
(5.40)

The P − 1 in the denominator comes from the de�nition of variance and the P

comes from σ̂IJ being the error of a mean or standard error. The point of all this

is to obtain a likelihood for the data for a given graph. Each graph, G, will have

a particular covariance matrix, V associated with it and corresponding W. The

composite likelihood for ¯̂W is the product of the probability density for each pair

of subpopulations, I and J .

L
(

¯̂W|W
)

=
J∏
I=1

J∏
J=I

N
(

¯̂W IJ |WIJ (G, c), σ̂2
IJ

)
(5.41)

For diagnostic purposes for a given graph G, a matrix of residuals, R can be

calculated from R = ¯̂W −W (c). These residuals can be used to calculate the

proportion of the variance in ¯̂W, which has been calculated from the data, that

is explained by W, which depends on the choice of graph. This approximate

proportion of the relatedness that is re�ected in the model, F , is de�ned by

F = 1−

J∑
I=1

J∑
J=I+1

(
RIJ − R̄

)2

J∑
I=1

J∑
J=I+1

(
¯̂W IJ − ¯̂W

)2 , (5.42)

where

R̄ = 1− 2

J(J − 1)

J∑
I=1

J∑
J=I+1

RIJ , (5.43)

and
¯̂W = 1− 2

J(J − 1)

J∑
I=1

J∑
J=I+1

¯̂W IJ . (5.44)

But how does TreeMix go about choosing which graph G, to analyse? For any
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unrooted bifurcating tree graph with J present-day subpopulations, there are

(2J − 5)!! possible graphs (Penny et al., 2007). For J = 5, say, that is only 15

possible trees and it is feasible to test all the possible graphs and �nd the one with

the highest (composite) likelihood by exhaustion or brute force. Such an approach

would even be feasible for the Bayesian hierarchical models described above. How-

ever, the number of graphs very quickly becomes huge with increasing J . For the

11 subpopulations of the HapMap dataset, the number of possible unrooted bi-

furcating graphs is 34,459,425. If it took only 1 second to compute the likelihood

for each graph, it would still take nearly 400 days to �nd the optimal one by an

exhaustive search. Clearly for larger numbers of subpopulations, it is not feasible

even in the framework of Pritchard and Pickrell's relatively fast frequentist model,

to consider every possible graph. Instead a greedy algorithm can be used such as

that of Felsenstein (1981).

To within graph isomorphism, there is only one possible unrooted tree for 3 sub-

populations, A, B and C (�gure 5.23). To understand what graph isomorphism

means, imagine the tree is made of rubber in 3D. It can be stretched, bent, �ipped

over, rotated and its edges can even be twisted without breaking it, but it must

not have any parts cut and/or re-attached to another part of the tree. If one

unrooted tree can be made to look exactly like another by any combination of

these permitted operations then the two trees are said to be graph isomorphic.

E�ectively, they are just two di�erent ways of drawing the same unrooted tree.

Figure 5.23: The only unrooted tree for 3 subpopulations.

Figure 5.24 shows the three such possible unrooted trees for 4 subpopulations
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labelled A, B, C and D. These are e�ectively the same trees as would have been

produced by adding the edge leading to D to each of the three edges in the unrooted

tree in �gure 5.23. In general an unrooted bifurcating tree with J subpopulations

has 2J − 3 edges. So, for each of these three graphs there are 2 × 4 − 3 = 5

edges to which a �fth subpopulation, E could be attached leading to 3 × 5 = 15

possible trees for 5 subpopulations. By building trees up in this way, it can be

readily seen where the expression (2J − 5)!! for the possible number of trees with

J subpopulations comes from.

Figure 5.24: The three unrooted trees for 4 subpopulations.
All three unrooted trees of three subpopulations A, B,C and D. All other ways of drawing the
unrooted trees can be made to look identical to one of these trees by stretching, squashing, �ipping,
twisting, rotating or bending them.

So how does this help to solve the problem of reducing the number of possible

unrooted trees that need to have their likelihood evaluated? The procedure starts

by taking three of the subpopulations and arranging them in their only possible

tree. The choice of which three is arbitrary and can just be the order in which the

subpopulations have been indexed. A fourth subpopulation is chosen. This can

be added, as has been seen, in three di�erent ways. Three is not a large number

so the likelihood of each of these three resulting trees can be calculated. The one

with the largest likelihood is accepted and moves forward to the next step. A �fth

subpopulation is chosen, which can be added to the tree in �ve di�erent ways. Five

is still not a large number, so it is reasonable to calculate the likelihood for all of

these. Again, the one with the largest likelihood is accepted and moves forward
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to the next step. It would be possible to keep adding subpopulations in this way

until they have all been added. However, this would have the drawback that the

resulting unrooted tree could be dependent on which three subpopulations had

been chosen to start the process and the order in which the subpopulations were

added. Trying all the possible orders of subpopulations would just lead back to

having to test a very large number of trees, defeating the point of trying to �nd

an algorithm to reduce the number of trees that have to be tested. Early versions

of this algorithm advocated trying a small number of possible orders to see how

robust the resulting tree was to the choice of order. Later, an additional step was

added between adding subpopulations that evaluated �local rearrangements� of the

tree, so that before adding a sixth (or subsequent) subpopulation, the likelihood

of a number of these local rearrangements of the tree would be evaluated before

the additional subpopulation is added.

So what are these local rearrangements? One local rearrangement method, called

Nearest Neighbour Interchange, involves looking at rearrangements of the tree

around internal edges. Every such tree with J subpopulations will have J − 3

internal edges. Internal edges are edges with no present-day subpopulation labels

at either end, or equivalently in the case of these unrooted bifurcating trees, an

edge that is connected to exactly four other edges. So, in �gure 5.23, the tree

has no internal edges and in �gure 5.24, each tree has one internal edge. At each

internal edge of a tree, the four edges connecting to it can be disconnected and

reconnected to it in exactly three di�erent ways up to graph isomorphism. There

are a total of three ways for exactly the same reason that there are only three

di�erent trees with four subpopulations. So, at any internal edge, the four edges

connecting to it can be reconnected in three di�erent ways, the original way and

two others. The likelihood for the graphs resulting from these two other ways of

connecting to the internal edge can be evaluated and compared to the likelihood

for the original tree. The tree with the largest likelihood is selected and the next

internal edge is examined in the same way. Since there are only J − 3 internal
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edges and 2 new trees to evaluate at each edge then, on each cycle through the

internal edges, only 2(J − 3) tree likelihoods are evaluated. For 11 subpopulations

that is only 16 trees so the numbers are very manageable. This is repeated until

such a cycle through all the internal edges reveals no trees were more likely than

the tree that had been the selected one at the beginning of the cycle. It is at that

point that the next subpopulation is added to the tree. The process of adding

subpopulations and doing local rearrangements continues until there are no more

subpopulations to add.

But to construct the matrix V requires a graph that is rooted and these are un-

rooted trees. The user then must choose where the root should go. The user names

a subpopulation and the root always goes on the edge nearest that subpopulation.

This subpopulation must also be one of the �rst three subpopulations that start

the process with a three subpopulation tree. This does restrict the number of

possible rooted trees. The way Pritchard and Pickrell advocate getting round this

is to have an outgroup among the subpopulations that is not as related to the

other subpopulations as they are to each other. This makes it obvious that the

root belongs on the edge leading to the outgroup. This has a downside however.

One of the assumptions of this model is that there is not much drift along any

edge. Advocating the use of a less related outgroup seems inconsistant with that

assumption but manifestly some way of locating the root is needed.

So how are the admixtures chosen and the migration edges added? That part

of the process uses the residual matrix, R, although the speci�cs are somewhat

sketchy. The user de�nes how many migrations there should be. Suppose they

specify that there should be M migrations. If M = 0 no migration edges are

added and the process ends. Otherwise, the M pairs of populations with the

highest entries in R are found. Migration edges between edges and nodes near or

at these population pairs are tried and the one that most increases the likelihood is

chosen. There is another round of the �local rearrangements� part of the algorithm

described above before repeating the migration edge selection procedure for the
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second edge, unless of course, M = 1 when the process �nishes. The process of

adding migration edges and performing local rearrangements continues until M

edges have been added and the last round of local rearrangements have taken place.

This process is a greedy algorithm which arrives at some locally optimal graph. It is

not guaranteed to �nd the graph with the globally maximal component likelihood

in the way an exhaustive approach would. It does however, cut down greatly

on the number of trees whose likelihood needs to be evaluated and renders the

whole process practical enough to take place in minutes even for large numbers of

subpopulations.

5.6.2 Comparison of Output for the Two Models

Data were simulated for a simple tree of four �cticious Celtic tribes, Aon, Dhà,

Trì and Ceithir (�gure 5.25).

Figure 5.25: Phylogenetic Tree for Simulated Data for Four Subpopulations

The drift parameters along each edge were set at 0.05. The ancestral distribu-

tion of the allele frequencies was Uniform(0,1). There were no admixture events
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simulated. Since all the 1000 loci (similar to the number in the dataset for a

medium HAPMAP chromome) were simulated to be independent, there was no

need for blocking. The root was set to its true position in running TreeMix. Figure

5.26 shows the TreeMix output graph for this data. TreeMix retrieves the correct

structure. However, the drift parameters on the scale below the graph are more

of a problem. If they were drift parameters (cs) and retrieved correctly, the nodes

would be about 0.05 apart. They are nearer 0.006 to 0.009 apart. The label on

the scale is misleading. It is a scale for cπA (1− πA) rather than for just c. The

scale measures variances rather than the drift parameters themselves. The models

developed in this thesis, in contrast, do not seek the correct structure themselves

but do give posterior distributions for the drift parameters, cj, from which point

estimates and measures of uncertainty about the parameters themselves can be

derived.

To show how the interpretation of the TreeMix drift variances could be di�cult,

data with the same drift values but from a di�erent distribution of ancestral

allele frequencies were produced and analysed using TreeMix. The case where

π ∼Beta(0.5,0.5), a u-shaped distribution, was used is shown in �gure 5.27. Al-

though, the graph has been drawn di�erently, it is still graph isomorphic to the

correct structure. However, it can be seen that the positions of the nodes along

the �Drift parameter� axis are shifted to the left. This appears to suggest that the

estimates of drift are less but it is only the estimates of cjπA (1− πA) that have

been reduced.

The same was done with π ∼Beta(10,10) a very n-shaped distribution of ancestral

allele frequencies (5.28). Once the change in scale of the �Drift parameter� axis

has been taken into account, the graph can be seen to have been stretched to the

right. The value of E [πA (1− πA)] is 1
8
for Beta (0.5, 0.5), 1

6
for Beta (1, 1) and 5

21

for Beta (10, 10). Comparison of the scales of �gures 5.26-5.28 shows them to di�er

in scale in proportion to these values. To the user who may be unaware of the

detailed internal workings of TreeMix, the drift parameters appear to be di�erent
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Figure 5.26: TreeMix Output from Analysis of Data Simulated with True Ancestral
Allele Frequencies Drawn From Beta(1,1)

Output from TreeMix from analysing data simulated from the model in �gure 5.25. The true
drift parameters c1...c6 were all set to 0.05 and the ancestral allele frequencies πA drawn from
Beta(1,1). 1000 independent loci were simulated. No admixture events are inferred so the mi-
gration weight scale is irrelevant.
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Figure 5.27: TreeMix Output from Analysis of Data Simulated with True Ancestral
Allele Frequencies Drawn From Beta(0.5,0.5)

Output from TreeMix from analysing data simulated from the model in �gure 5.25. The true
drift parameters c1...c6 were all set to 0.05 and the ancestral allele frequencies πA drawn from
Beta(0.5,0.5). 1000 independent loci were simulated.
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in each case but in fact are all the same. Even if the fact that these are really only

variances is known, it is still hard to discern what the real drift parameters are. It

does, however, show the relative size of the drift parameters because they are all

multiplied by the same factor.

Figure 5.28: TreeMix Output from Analysis of Data Simulated with True Ancestral
Allele Frequencies Drawn From Beta(10,10)

Output from TreeMix from analysing data simulated from the model in �gure 5.25. The true
drift parameters c1...c6 were all set to 0.05 and the ancestral allele frequencies πA drawn from
Beta(10,10). 1000 independent loci were simulated.

This dependence of the TreeMix �Drift parameter� on the distribution of πA has

other unfortunate consequences. It can become sensitive to irrelevant data. 1000

additional loci where the counts for all four populations were all 0 were added to

the dataset analysed in �gure 5.26. By far the most likely reason for an observation

of 0 counts in all four populations is that the ancestral frequency is 0. If that was

the case then these loci will contribute no information about the drift that has

taken place because any level of drift would have the same outcome. The 1000

additional loci with 0 counts contain no (or at least little) information about drift



Chapter 5. Generalisation to Allow Admixture Events 224

and so are uninformative which should not impact on any output. However, in

the case of TreeMix it causes a problem. TreeMix does not take �xation into

account. It will instead take the same data as being evidence of little or no drift

(5.29). As might be expected, while the structure has still been retrieved, the

�Drift parameter� estimates have reduced to about half their earlier values. Thus

the estimates have been a�ected by the additional irrelevant data.

Figure 5.29: TreeMix Output from Analysis of Data Simulated with Half True Ances-
tral Allele Frequencies Drawn From Beta(1,1) and Half Set at 0.

Output from TreeMix from analysing data simulated from the model in �gure 5.25. The true
drift parameters c1...c6 were all set to 0.05 and the ancestral allele frequencies πA drawn from
Beta(1,1). 1000 independent loci were simulated. 1000 more loci were added with ancestral allele
frequencies of 0.

This might be thought not to be a problem. In a real dataset, such loci with all

0 counts could be screened out. The problem is that in a setting with a more

complicated structure and a larger number of subpopulations, the situation of

the four Celtic tribes in these simulations could be a subtree of a much larger

phylogenetic tree, analogous to the four African subpopulations in �gure 4.7. There

could be non-zero counts in other subpopulations and zeros for these four and these
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zeros would have the e�ect of reducing the estimate of drift in their areas. It could

be possible to weed out all the loci in a dataset containing any counts where there

is any subpopulation where the count was 0 or the same as the sample size but that

would mean discarding information that would convey useful information about

drift elsewhere in the tree in order to satisfy the assumptions of the model and

still not have drift parameter estimates that are easily interpreted anyway.

5.6.2.1 Use of An Outgroup to Strengthen Identi�ability Near the

Root

To show that the model developed in Chapter 4, deals more appropriately with

irrelevant information, table 5.7 displays the 95% HPD range of the estimates of

the drift parameters for the simulated dataset without the 1,000 loci with zero

counts added. Subpopulation sizes were all 200 (100 individuals) similar to those

in the HAPMAP dataset. Table 5.8 shows the same information with these 1,000

zero count loci added. When the 1,000 extra loci are added, the drift parameters

for periods of drift that are not adjacent to the ancestral population, are almost

unchanged. They are only changed for the two periods of drift c4 and c6 that

are either side of the ancestral population. This has happened because the prior

on π is now misspeci�ed. This can, nonetheless, be easily overcome by use of

an outgroup. The outgroup does not have to contain additional data. The allele

counts of the outgroup used in this case, (�gure 5.30) were created from taking

an unweighted mean of the counts from the four subpopulation counts that had

already been simulated. The estimates for c4 and c6 (table 5.9) are now much closer

to those for the original dataset (table 5.7). The drifts c7 and c8 are arti�cial and

can be ignored. When using an outgroup with the model in this way, it may be

better to use a more bell-shaped distribution for the prior on π. This is because

periods of drift make the distribution of the αs more u-shaped. The extra period

of drift at c7 should be taken into account. If there is a particular distribution of

α expected after that drift, (in this case it was known to be Uniform(0,1) because
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the data are simulated), a more bell-shaped one is really needed as the prior

before c7. The model's choice for the amount of drift will then help adjust to the

more sypathetic distribution. For this reason it may be best to overestimate the

bell-shapedness of the prior. For example, table 5.10 shows the results of using

a rather extreme Beta(10,10) prior. This produces results, after drifts c7 and c8

are discarded, even closer to the original output (table 5.7). The true values of

drift, 0.05, are now within the 95% intervals for all of c1 to c6. This approach

shows how the whole problem described in section 4.5.6 of the results for drifts

near the ancestral population being very sensitive to choice of the prior on the

ancestral allele frequency can be overcome by use of an outgroup and a larger a

on the prior for π, making it more bell-shaped. In this way, the model copes well

with the irrelevant information when estimating drift parameters and with minor

modi�cation can cope even better, whereas TreeMix results are adversely a�ected.

Table 5.7: Parameter Estimates of the Model in Figure 5.25

95% HPD Interval Bounds
variable lower upper median
c1 0.0425 0.0589 0.0504
c2 0.0395 0.0556 0.0473
c3 0.0389 0.0556 0.0471
c4 0.0444 0.0668 0.0554
c5 0.0354 0.0538 0.0442
c6 0.0319 0.0525 0.0417

Table of parameter estimates obtained for data simulated according to the model in �gure 5.25.
The true drift parameters c1...c6 were all set to 0.05 and the ancestral allele frequencies πA drawn
from Beta(1,1). 1000 independent loci were simulated. The table shows the resulting 95% HPD
intervals from using the model on such data for the drift parameters, c.
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Table 5.8: Parameter Estimates of the Model in Figure 5.25 with 1,000 Additional
Uninformative Loci Added

95% HPD Interval Bounds
variable lower upper median
c1 0.0430 0.0598 0.0511
c2 0.0381 0.0543 0.0461
c3 0.0380 0.0598 0.0484
c4 0.9248 1.0000 0.9793
c5 0.0336 0.0557 0.0445
c6 0.9025 1.0000 0.9697

Table of parameter estimates obtained for data simulated according to the model in �gure 5.25.
The true drift parameters c1...c6 were all set to 0.05 and the ancestral allele frequencies πA
drawn from Beta(1,1). 1,000 independent loci were simulated. Then 1,000 additional loci were
simulated with πA set at 0. The table shows the resulting 95% HPD intervals from using the
model on such data for the drift parameters, c.

Figure 5.30: Phylogenetic Tree for Simulated Data for Four Subpopulations and an
Outgroup

The outgroup is fabricated by taking the unweighted means of the counts in the four simulated
subpopulations and rounding to the nearest integer.
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Table 5.9: Parameter Estimates of the Model in Figure 5.30 with 1,000 Additional
Uninformative Loci Added with a Beta(1,1) Prior on π.

95% HPD Interval Bounds
variable lower upper median
c1 0.0423 0.0586 0.0503
c2 0.0397 0.0555 0.0472
c3 0.0393 0.0562 0.0475
c4 0.0481 0.0717 0.0596
c5 0.0344 0.0529 0.0434
c6 0.0272 0.0471 0.0370
c7 0.7296 0.9752 0.8468
c8 0.7371 0.9800 0.8535

Table of parameter estimates obtained for data simulated according to the model in �gure 5.30.
The true drift parameters c1...c7 were all set to 0.05 and the ancestral allele frequencies πA
drawn from Beta(1,1). 1,000 independent loci were simulated. Then 1,000 additional loci were
simulated with πA set at 0. The table shows the resulting 95% HPD intervals from using the
model on such data for the drift parameters, c. The Prior on π for the analysis was Beta(1,1).
The outgroup was fabricated by taking the unweighted means of the counts in the four simulated
subpopulations and rounding to the nearest integer.

Table 5.10: Parameter Estimates Table of the Model in Figure 5.30 with 1,000
Additional Uninformative Loci Added after 100,000 Iterations With a
Beta(10,10) Prior on π.

95% HPD Interval Bounds
variable lower upper median
c1 0.0424 0.0587 0.0502
c2 0.0394 0.0551 0.0471
c3 0.0388 0.0555 0.0469
c4 0.0462 0.0679 0.0566
c5 0.0352 0.0538 0.0440
c6 0.0333 0.0534 0.0430
c7 0.9908 1.0000 0.9978
c8 0.9913 1.0000 0.9980

Table of parameter estimates obtained for data simulated according to the model in �gure 5.30.
The true drift parameters c1...c7 were all set to 0.05 and the ancestral allele frequencies πA
drawn from Beta(1,1). 1,000 independent loci were simulated. Then 1,000 additional loci were
simulated with πA set at 0. The table shows the resulting 95% HPD intervals from using the
model on such data for the drift parameters, c. The Prior on π for the analysis was Beta(10,10).
The outgroup was fabricated by taking the unweighted means of the counts in the four simulated
subpopulations and rounding to the nearest integer.



Chapter 5. Generalisation to Allow Admixture Events 229

5.6.3 Choices of Phylogenetic Tree in TreeMix

In reality, it will be unusual for a dataset to meet all the assumptions of the TreeMix

model. To clean a dataset of data that compromise the assumptions would involve

discarding much potentially useful information. Nevertheless, the model is still

useful if, despite its assumptions, it is a su�ciently good approximation to reality

to answer the questions of interest. All statistical models are, after all, to a greater

or lesser extent, approximations to reality. In testing both with simulated and the

HapMap data, TreeMix has suggested plausible phylogenetic trees in most cases.

So what did TreeMix do with the HapMap dataset for Chromosome 2? If no root

is speci�ed, TreeMix attempts to root the tree near the Gujarati (GIH) as shown

in �gure 5.31. However, the tree is reasonably plausible after a relocation of the

root to the point marked by the red dot. Then it becomes the tree of �gure 5.13.

This in turn is the tree of �gure 4.7 discussed in the last chapter with the Gujarati

and Mexicans swapped. Since these were the two subpopulations whose positions

were the least certain, this tree is not implausible.

The nearest (in terms of distance along the tree) subpopulation to the red dot

root position is the Maasai (MKK) so the nearest position of the root that can be

speci�ed to TreeMix is to place it there. Figure 5.32 shows what happens if that

is done. Other than the position of the root, the tree topology is unchanged. The

model performs surprisingly well at the task of choosing a plausible structure con-

sidering how many of its assumptions are being blatently violated by this dataset.

But then again, the same can also be said for the much simpler Neighbour Joining

algorithm. The �drift parameters� suggested by TreeMix still however are hard to

interpret since they con�ate the demographically interpretable cs with ancestral

allele frequencies (which of course vary over loci).

The problem thus far, is that the tree root cannot be speci�ed to be along any edge

- it has to be a terminal edge, which is not appropriate here. One of the things
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Figure 5.31: TreeMix Output for Chromosome 2 HapMap Data
TreeMix output from applying it to the Chromosome 2 HapMap dataset. TreeMix chose a root
at the Gujarati (GIH). The Red dot marks an edge which is most consistant with where the root
was placed in previous models. The number of admixtures was set to 0.



Chapter 5. Generalisation to Allow Admixture Events 231

Figure 5.32: TreeMix Output for Chromosome 2 HapMap Data with Root Set on the
MKK Edge

TreeMix output from applying it to the Chromosome 2 HapMap dataset. A root on the MKK
edge was speci�ed. The Red dot marks an edge which is most consistant with where the root was
placed in previous models. The number of admixtures was set to 0.
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that Pritchard and Pickrell suggest is to use an outgroup. Given the diversity of

the subpopulations in the HapMap dataset ideally the outgroup would be some

other species of human such as Neanderthal or Denisovan or perhaps a chimpanzee

or one of the other Hominidae. However, no comparable data for these was readily

available. An alternative approach was used. An easily calculated rough approx-

imation to �cticious allele counts for the common ancestral population, could be

calculated at each locus as an unweighted mean of the count data for all eleven

subpopulations. These means, rounded to the nearest integer, could be included as

a twelfth �ctional subpopulation and since it should be vaguely similar to the com-

mon ancestral population, the root could be placed there. The results of adding

this twelfth supopulation and analysing the resulting dataset using TreeMix were

interesting but not in the way that was anticipated (�gure 5.33). The addition

of this �ctional subpopulation has changed the suggested structure in a surprising

and implausible way.

It understandably estimates that the outgroup has su�ered little or no drift since

the ancestral population, but now has all subpopulations other than the Yoruba

(YRI), Afro-Americans (ASW) and Lhosa (LWK) as diverging at about the same

time from this ancestral population. As has been noted before, the idea that the

Han Chinese in Beijing and Han Chinese in Denver diverged from each other at

much the same time as they diverged from the Maasai (MKK) is simply silly.

Even if the idea of using the unweighted mean of the allele counts of the other

subpopulations for an outgroup is itself a �awed idea, the addition of it as an extra

subpopulation, should not radically alter the structure of the rest of the tree. It

is di�cult to see why adding one new subpopulation to the dataset should be

disturbing the others' place in the phylogenetic tree to this extent.

As a point of interest, the same data were fed into the Neighbour Joining algo-

rithm. The unrooted tree that results from doing that is shown in �gure 5.34.

The outgroup appears along an edge that is very reasonably the root of the tree,

separating the African subpopulations from the non-African ones. This can be
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Figure 5.33: TreeMix Output for Chromosome 2 HapMap Data with Root Set Near
An Arti�cial Outgroup

TreeMix output from applying it to the Chromosome 2 HapMap dataset. An arti�cial outgroup
was added with its allele frequencies at each locus set to be the unweighted average of those of
the 11 real subpopulations.
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compared with �gure 4.2. The only change is that the Gujarati (GIH) have moved

from the Asian branch (the branch leading to CHD and CHB) to being along

the European branch leading to CEU and TSI. This is still a plausible position

for them and the Mexicans. It does not represent a huge disturbance to the en-

tire tree. In this particular case, Neighbour Joining seems to have behaved in a

much more consistent way than TreeMix when the additional �ctional outgroup

population was added to the dataset.

Figure 5.34: Neighbour Joining Tree for Chromosome 2 HapMap Data with An Arti-
�cial Outgroup

An arti�cial outgroup was added with its allele frequencies at each locus set to be the unweighted
average of those of the 11 real subpopulations.

The point to be taken from this is that TreeMix usually suggests sensible struc-

tures, albeit after some manual adjustment to the position of the root. However, it

does not always do so. The same can be said for the much simpler Neighbour Join-

ing algorithm. To be fair, the HapMap dataset does violate many of the model's

basic assumptions: it does not exclude loci that are likely close to �xation, and

it does include subpopulations that are not so closely related and so potentially

involves large periods of drift. Nonetheless, it would not be useful if datasets had

to be put through contortions to �t the model. However, it does run quickly (as

does the Neighbour Joining algorithm). The output of both these models can
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be used as suggestions for further investigation using for example the approaches

developed in Chapters 4 and 5.

5.6.4 Choices of Admixture Events in TreeMix

One thing that TreeMix can do that Neighbour Joining cannot is suggest admix-

ture events, or as TreeMix calls them, migrations. To look at how well TreeMix

handles admixture in a simple setting, data were simulated according to the model

structure shown in �gure 5.35. Here the tribe Dhà is an admixture of the two tribes

Aon and Trì. Dhà will take 100w% of its ancestry from Aon and the rest from Trì.

Each of the 1000 simulated loci (similar to that found in the dataset for a medium

HAPMAP chromosome) had its π drawn from Uniform(0,1). All drift parameters

c1, ..., c9 are 0.05 unless stated otherwise.

Figure 5.35: Phylogenetic Network for Simulated Data with Admixture for Dhà

A 50% admixture was used (w = 0.5) initially. To �t in with Pritchard and

Pickrell's assumptions on the drift parameters near an admixture event as closely

as possible, c2 and c5 were made very small (0.0001). The resulting simulated data



Chapter 5. Generalisation to Allow Admixture Events 236

were analysed by TreeMix and it was asked to add one migration. The resulting

structure is shown in �gure 5.36. It produces the correct network but suggests a

w of 0.397084 which is some way away from the true weight of 0.5.

Figure 5.36: TreeMix Output For a 50% Admixture
TreeMix output for data simulated according to the model in �gure 5.35. A 50% admixture was
used (w = 0.5). To �t in with Pritchard and Pickrell's assumptions as closely as possible on the
drift parameters near an admixture event, c2 and c5 were made very small (0.0001). The other
true drift parameters were 0.05.

The same experiment was repeated with the only di�erences being that the data

were simulated with w = 0.75, c5 = 0.05 and c6 = 0.0001. The results were much

as expected as shown in �gure 5.37. Again, the correct admixture is shown. The

�migration� has �ipped over to coming from Trì. However, it gives an admixture

parameter of 0.397; the same as before. In this case, it translates to a w of

1 − 0.397 = 0.603 which is still a long way from the true value of 0.75. TreeMix

seems to pick only particular values for the admixture parameter. If a w = 0.85

admixture is used the result is the same.
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Figure 5.37: TreeMix Output For a 75% Admixture
TreeMix output for data simulated according to the model in �gure 5.35. A 75% admixture was
used (w = 0.75). To �t in with Pritchard and Pickrell's assumptions as closely as possible on the
drift parameters near an admixture event, c2 and c6 were made very small (0.0001). The other
true drift parameters were 0.05.

If the proportion is pushed even higher to an admixture with w = 0.95, a di�erent

value of 0.100 is returned for the admixture parameter. This corresponds to a

w of 1 − 0.100 = 0.900. In these and similar experiments, TreeMix did retrieve

the correct structure and suggest a sensible migration that corresponded with the

simulated admixture, but as well as the drift parameters being di�cult to interpret,

only particular values of the admixture parameter seem to be possible and these

were not particularly close to the true value.

It might be wondered what would happen if the TreeMix model assumptions about

two of the three periods of drift adjacent to an admixture being zero were violated

to some extent and to what extent can they be bent without the model badly

failing. To address this, all c1, ..., c9were set at 0.05 contrary to the TreeMix
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assumption and w was set to 0.75 to simulate the data. The TreeMix results

are shown in �gure 5.38. As can be seen from that �gure, a completely wrong

migration is selected. The migration parameter for the selected migration was

again 0.397.

Figure 5.38: TreeMix Output for a 75% Admixture with Data Simulated That Does
Not Conform to TreeMix Drift Assumptions Near an Admixture: All True
Drift Parameters, Including Before and After Admixture set at 0.05

TreeMix output for data simulated according to the model in �gure 5.35. A 75% admixture was
used (w = 0.75). All true drift parameters were 0.05.

So clearly, there are situations in which TreeMix will suggest erroneous migrations

when its model assumptions are not met. But how far do the assumptions need to

be bent before TreeMix fails in this way? Keeping w at 0.75, if the drift marked

c2 in �gure 5.35 is reduced to 0.0001, the model still chooses the same wrong

migration. If c2 is returned to 0.05 and c6 is reduced to 0.0001, the model yet

again chooses the same wrong migration, so if either drift parameter that TreeMix

assumes to be 0 is too far from 0, TreeMix can fail. How far from 0 can they be

before this happens? After some experimentation, it was found that when c2 and c6
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were both 0.011, TreeMix produced the correct structure and suggested the correct

migration, albeit with the wrong migration parameter of 1− 0.09999 = 0.90001 as

shown in �gure 5.39. If c2 and c6 were both 0.012 or higher, however, the wrong

migration is selected as shown in �gure 5.40. In this simple setting, it appears that

if the true genetic drifts around an admixture are less than about 0.01, then the

model can make sensible suggestions for the admixtures/migrations, but if they

are larger than that, the inference becomes unreliable. In reality, there is no way

to be sure which is the case by just using TreeMix, so the migrations suggested

by TreeMix may be useful suggestions but should be treated with caution without

investigating further in other ways. Like the drift parameters, it would be unwise

to use the migration or admixture parameters suggested by TreeMix without also

investigating these further, perhaps by using a more �exible model such as the one

developed earlier in this chapter.

Figure 5.39: TreeMix Output for a 75% Admixture with Data Simulated That Does
Not Conform to TreeMix Drift Assumptions Near Admixture: True Drift
Parameters After, and the Migration Before Admixture Set at 0.011

TreeMix output for data simulated according to the model in �gure 5.35. A 75% admixture was
used (w = 0.75). To test the limits of Pritchard and Pickrell's assumptions the drift parameters
near the admixture event, c2 and c6, were set to 0.011. The other true drift parameters were
0.05. This returns the correct structure.
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Figure 5.40: TreeMix Output for a 75% Admixture with Data Simulated That Does
Not Conform to TreeMix Drift Assumptions Near Admixture: True Drift
Parameters After, and the Migration Before Admixture Set at 0.012

TreeMix output for data simulated according to the model in �gure 5.35. A 75% admixture was
used (w = 0.75). To test the limits of Pritchard and Pickrell's assumptions the drift parameters
near the admixture event, c2 and c6, were set to 0.012. The other true drift parameters were
0.05.This returns the wrong structure.
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Figure 5.41: TreeMix Output for the HapMap Chromosome 2 Dataset with the Root
Set Above the Maasai and with One Admixture Speci�ed

Migration/admixture is displayed with a coloured arrow.

The HapMap dataset for Chromosome 2 was again �tted by TreeMix. This time

TreeMix was instructed to suggest 1 migration or admixture, then it was asked

for 2, then 3 and so on. The �rst migration it suggested was a bit unexpected, as

shown in �gure 5.41, it proposed that the Gujarati (GIH) could be modelled as an

admixture of the Chinese (CHB and CHD) and the European branch ending in

Tuscans (TSI) and Central Europeans (CEU) as shown, when a migrations leading

to the Mexicans, Afro-Americans or even the Maasai might have been expected.

The next three migrations that TreeMix suggested were more expected. First the

Mexicans were proposed as an admixture between Central Europeans and East

Asians, then Afro-Americans as an admixture between Europeans and Nigerian

Yoruba, then Maasai as an admixture involving Africans and Tuscans, as shown

in �gure 5.42. These three are all very reasonable migrations to suggest and,

as seen earlier in the chapter, could be identi�ed by other means. Note that

the direction of the migration from Central Europeans to Mexicans chosen by
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TreeMix does restrict the Central Europeans to contributing no more than 50%

of the genetic information to the admixture. Earlier analysis by the more �exible

model developed earlier in the chapter suggests that it is at least unclear whether

Europeans contribute less than 50%. They may indeed have contributed slightly

more.

Figure 5.42: TreeMix Output for the HapMap Dataset with the Root Set Above the
Maasai and Four Admixtures Speci�ed

After this, the next two migrations, TreeMix suggests are, a migration from the

Chinese to the Central Europeans (CEU) and one from Africans to the Lhosa in

Kenya (LWK) as shown in �gure 5.43. The former could be explained as a legacy of

the Mongol invasion in the second half of the 13th century or an earlier migration.

The �rst four migrations that TreeMix suggested were the ones used earlier in the

chapter and analysed using the model that was developed in the early part of this

chapter. However, the �rst admixture that TreeMix suggested, involving the Gu-

jarati, was the one which was eventually found to be the least important in terms
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Figure 5.43: TreeMix Output for the HapMap Dataset with the Root Set Above the
Maasai and Six Admixtures Speci�ed
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model �t and discarded after further analysis. It was, nevertheless, reasonably

plausible a-priori and was worth looking at in the further depth that the more

�exible Bayesian hierarchical model allowed. So, in practice, TreeMix made some

useful suggestions in terms of migrations to investigate. However, migrations were

not suggested in a believable order of importance, so it is worth asking TreeMix

to produce more suggestions to analyse more deeply than are really expected to

be used as in this case. The output itself cannot always be simply relied on, on its

own, without further analysis.

5.6.5 Comparison of the Merits of the Two Approaches

TreeMix has the undeniable attraction that it runs very quickly and produces

graphical output. It suggests trees and admixtures, only requiring the user to

specify the tree root and number of admixtures required. In these respects, it does

things that the more �exible model developed in the earlier part of this chapter

does not even attempt to do. As is common for Bayesian hierarchical models, the

latter takes many hours and sometimes days to run in order to obtain an adequate

representation of the posterior distribution. A particular tree to be investigated

must be speci�ed as must the admixtures. These need to be suggested by other

means or by examining the results (e.g., post predictive checks) of previous runs

of analysis on other phylogenetic trees. The other thing that TreeMix does is

allow the use of data that has not been thinned to ensure that the loci used are

not in linkage disequilibrium and so can be modelled as independent. However,

in exchange for these advantages, TreeMix makes a lot of assumptions that carry

a price. Ignoring �xation, assuming that the allele frequency, αj for all nodes j

throughout the tree is approximately the same as that for the overall common

ancestor, πA, for the purposes of calculating variances and assuming all periods of

genetic drift are small are quite restrictive assumptions that are not made in the

model developed earlier in this chapter. As a result, TreeMix drift parameters are
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dependent on the distribution of the πA across loci in a non-transparent way that

is not the case the model developed here. In fact, it has been shown earlier that

when an outgroup is used with the more interpretable model developed here, the

e�ect on the drift parameters near the root of the tree of misspecifying the prior on

πA almost vanishes. The consequence of the dependence on the distribution of the

πA across loci is that TreeMix drift parameters are much harder to interpret. The

assumptions also mean that TreeMix is not robust when data that are uninforma-

tive about drift due to �xation are introduced. The phylogenetic trees it suggests

have to be treated with caution since they can, for example, be radically altered

simply by adding an extra subpopulation to the dataset as has been demonstrated

above. Its suggestions do, as such, require critical investigation e.g., with a more

�exible model such as the one developed here.

In the case of admixture, both models su�er in di�erent ways from the prob-

lem of non-identi�ability of drift parameters in the vicinity of an admixture event.

TreeMix gets around the problem by applying hard constraints i.e., assuming there

is drift only along one of the edges involved in the admixture. The Bayesian hierar-

chical model does not need to make such assumptions but pays a price in terms of

slower mixing requiring more iterations of the Gibbs' sampler and therefore longer

running time. It also leads to uncertainty about the values of drift immediately

adjacent to the admixture e.g., as re�ected in the di�useness of their marginal

posteriors, but it may be argued that this is an honest uncertainty that is prefer-

able to making assumptions about some of these parameters that lead to a false

level of certainty about the other parameters. Of course, cogent prior information

about any of the drift parameters around an admixture can be re�ected in infor-

mative priors for them. This can also be argued to make the output of the more

�exible model more easily interpretable. The admixture parameter estimates from

TreeMix have been observed to take one of a small number of particular values. In

contrast, the output for the admixture parameters, wj, from the model developed

here is, as is always the case for Bayesian models, in the form of a posterior distri-
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bution from which point estimates, measures of uncertainty and correlation with

other parameters can be drawn. The wj can take take all values in the range (0, 1).

In many applications of this type of model these parameters may be of particular

interest and the more �exible model is able to give much fuller information about

them. The admixture parameters do not su�er from the uncertainty issues arising

from non-identi�ability in the same way that the adjacent drift parameters do.

These di�erences are summarised in table 5.11.

TreeMix is an interesting model the speed of which, like that of Neighbour Joining,

can play a useful role in suggesting phylogenetic tree structures and additionally,

potential admixtures for further investigation. The models it suggests are not

always the best ones on further investigation and the parameters for drift and

admixture in its output can be di�cult to interpret and need to be treated with

some caution. The more �exible models developed in this thesis dispense with

many of the assumptions that TreeMix makes but take a long time to run and

require phylogenetic trees and admixtures to consider to be set manually. Nev-

ertheless, they do provide posterior distributions for the parameters from which

more easily interpretable point estimates and measures of uncertainty can be de-

rived. In particular, this is much more useful in situations where these parameters

are of interest rather than the tree or network structure. The running time is not

so much of an issue when the length of time it takes to gather su�cient reliable

genetic data is taken into consideration. If analysing a genetic dataset is thought

of as a multi-stage process the approaches become complimentary. Models like

Neighbour Joining and TreeMix that run quickly can be used at an earlier stage to

produce starting points and suggestions for analysis by more �exible models such

as those developed in this thesis, that take considerably longer to run but which

provide much more detailed and easily interpreted information about the model

parameters, that properly quantify uncertainty.
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Table 5.11: Comparison of Chapter 5 Model with TreeMix.

Chapter 5 Model TreeMix
Running time. A few days. A few minutes.
Suggests trees? No, these need to be

determined by other means.
Yes, but not always good

ones.
Suggests

admixtures?
No, these need to be

determined by other means.
Yes, but not always good

ones
Does data need to
be thinned to take

linkage
disequilibrium into

account?

Yes, assumes independence
between loci.

No, but block sizes need to
be set by the user.

Assumes independence
between blocks.

Takes �xation into
account?

Yes. No, completely ignores this
issue.

Models allele
frequencies for all
subpopulations?

Yes. No, assumes allele
frequencies remain

approximately the same as
that in the ancestral

population?
Are drift
parameters

interpretable in
terms of time and

e�ective
population size?

Yes. No, the drift parameters
are dependent on the
distribution of the

ancestral population's
allele frequencies and so are

di�cult to interpret.
Are admixture
parameters

interpretable?

Yes, allows the admixture
parameters to take any

value in (0, 1).

Yes, but only allows the
admixture parameter to be
in (0, 0.5) and even then

only some particular values
were observed.

Is output robust to
extra

uninformative
data?

Yes, particularly if an
outgroup is used.

No

How does it deal
with the

non-identi�ability
issue near the
admixture?

Allows user to set strong
informative priors on any,
all or none of the drift and
admixture parameters.

Has constraints hardcoded
that assume no drift from
one of the contributing
subpopulations and no

drift after the admixture.
Produces joint

posterior
distributions?

Yes, allows the uncertainty
of the parameters and their
joint relationships to be
explored and allows the
user to set their own
favoured estimates of
location and spread.

No, making estimation of
uncertainty of the
parameters di�cult.
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5.6.6 EIGENSTRAT

EIGENSTRAT (Price, 2017) was mentioned previously in section 1.5 and is de-

scribed by Patterson et al. (2006) and Price et al. (2006). The �rst of these papers

describes a simulation that was done to �nd out what pattern the principal com-

ponents of an admixed population made compared to its two parent populations.

It found that, if the �rst two principal components clustered the subjects from the

two parent populations, those of the admixed population derived from these two

populations formed a pattern that stretched between these two clusters. One way

to support the admixtures detected in this chapter could be to use the principal

components analysis of EIGENSTRAT (from within the SMARTPCA package)

on the HAPMAP data for chromosome 2, �nd the �rst two principal components,

plot the data projected onto those components and �nd out if the candidate ad-

mixed subpopulation does indeed form a pattern between the two proposed parent

populations which themselves appear as clusters.

EIGENSTRAT uses data on individuals within subpopulations whereas the meth-

ods described in this chapter use aggregated data at the subpopulation level. The

same procedure was used as described in section 3.4.1 with the exception that the

data was not aggregated on subpopulation level and was instead processed into

.map and .ped �les which are formats that SMARTPCA can use as inputs.

The �rst ten principal components had eigenvalues 99.49, 45.11, 6.89, 6.03, 3.10,

3.03, 2.90, 2.89, 2.86, 2.80. The total of all the eigenvalues was 959. The two largest

of these were much larger than all the others and together account for 15.1% of the

total variation. Although this is not the majority of the variation in a large and

complex dataset, using more than two eigenvectors would make visualisation more

di�cult. It would require 167 eigenvectors to take account of 50% of the variation,

which is clearly an impractically large number for the purposes here. Using two

eigenvectors should give an adequate impression of the data for the purpose of

�nding out if subpopulations can reasonably be modelled as admixtures. It does,
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nonetheless, have to be borne in mind that it is far from the full picture.

A full plot of the data for all 11 subpopulations projected onto these two principal

components is shown in �gure 5.44. Many of the features are as expected. The

two European subpopulations, CEU and TSI cluster near each other. The three

East Asian subpopulations, JPT, CHB and CHD, also cluster near each other.

The African subpopulations, ASW, MKK, LWK and YRI, are also very close to

each other. While LWK and YRI appear as clusters (but not as close together,

re�ecting the greater genetic diversity in Africa), the patterns for MKK and ASW

are more elongated. GIH and MEX are near each other but MEX has an elongated

pattern rather than a cluster, while GIH could be argued to be closer to being like

a cluster than MEX.
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Figure 5.44: Plot of HAPMAP data for All 11 Subpopulations on First Two Principal
Components

Looking at the candidate admixtures individually, �gure 5.45 shows the Afro-

American, (ASW) subpopulation plotted with the Yoruba (YRI) cluster and the

two European clusters (CEU and TSI). ASW forms a pattern strung out away from

the YRI cluster and towards the CEU and TSI clusters. This is a pattern consistent
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with ASW being an admixture of ancestral YRI and European populations. That

the pattern is nearer the YRI cluster is expected if YRI contributes more of the

ASW genome on average than the European subpopulations do. This is consistent

with the �ndings earlier in this chapter.
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Figure 5.45: Plot of HAPMAP data for Afro Americans (ASW), Europeans (CEU and
TSI) and Yoruba (YRI) Subpopulations on First Two Principal Compo-
nents.

Turning next to the Mexicans, who are plotted in �gure 5.46. The European

(CEU) subpopualation is also shown, as are the three East Asian subpopulations

(CHB,CHD and JPT). The pattern for MEX is strung out away from CEU and

towards the direction of the East Asian subpopulations but not quite directly in

their direction. The method used in this subsection assumes that the admixture

happened su�ciently recently and su�ciently quickly that drift plays little signi�-

cant part. There is plenty of reason to expect some drift between the ancestors of

the Aztecs leaving East Asia and when they encountered Europeans which could

easily explain this pattern. Again this pattern is consistent with the �ndings earlier

in the chapter.
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Figure 5.46: Plot of HAPMAP data for Central European (CEU), East Asian (CHB,
CHD and JPT) and Mexican (MEX) Subpopulations on First Two Prin-
cipal Components

Next, the Maasai, (MKK) are plotted along with two African clusters, (LWK and

YRI) and the European Tuscans (TSI) in �gure 5.47. The Maasai pattern is a

bit tighter than the two earlier admixtured populations, that is closer to that of

a cluster, but is still elongated between the two other African clusters and the

TSI cluster, providing a hint of an admixture here but it is not as clear as the

previous two cases. It is, nonetheless, not inconsistent with the �ndings earlier in

this chapter.

The �nal candidate admixture is for GIH. This is plotted along with the European

and East Asian subpopulations in �gure 5.48. This time things are unclear. The

GIH pattern can be interpreted as a cluster in its own right. It is not as elongated

as the MEX pattern was but it could also be interpreted as an admixture between

Europeans and the Asians if some signi�cant drift has taken place or between

the Europeans and an unsampled subpopulation. This di�culty in interpretation

mirrors the di�culty found in placing GIH in the phylogenetic network earlier
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Figure 5.47: Plot of HAPMAP data for Tuscan (TSI), Lhosa (LWK), Maasai (MKK)
and Yoruba (YRI) Subpopulations on First Two Principal Components

in the chapter. The �nally chosen model does not treat them as an admixed

population and there is no strong evidence against this interpretation provided by

these plots.

The PCA approach of EIGENSTRAT, used here, produces plots that are consistent

with the decisions on candidate admixture subpopulations that appeared earlier

in this chapter and were also suggested by TreeMix.

5.7 Conclusions

This chapter developed the model from chapter 4 to include the possibility of

admixture events. The increased complexity of the model and in particular, the

problem of non-identi�ability of the drift parameters that are adjacent to an ad-

mixture event in the hierarchy (and the concomitant posterior correlation of the

parameters) necessitate the resulting model being run for many more iterations
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Figure 5.48: Plot of HAPMAP data for East Asians (CHB, CHD and JPT), Euro-
peans (CEU and TSI) and Gujarati (GIH) Subpopulations on First Two
Principal Components

than the one in the previous chapter, in practice, 100,000 iterations were used for

the one chromosome of the HapMap data in this chapter, rather than the 20,000

iterations for the models in Chapter 4. This greatly increases the processor time

required. Nevertheless, models including admixture do provide a much improved

explanation of the observed data with WAIC values that are much lower despite

the increased complexity. When applied to the HapMap data, it was judged that

the model in �gure 5.19 provided the most plausible model of the data despite not

having the lowest WAIC of all the models considered. Models with lower WAIC

had at least one implausibly large drift parameter.

The issue identi�ed in the previous chapter that the model parameters for periods

of drift adjacent to the ancestral population, were sensitive to the choice of prior

on π, the allele frequency in the ancestral population, was found to be almost

entirely mitigated by introducing an outgroup that did not even have to be made

up from real data. It could instead be made up from an unweighted mean of
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the observed frequencies in the data, with counts and sample size rounded to the

nearest integer.

An existing model called TreeMix that appears to start from a similar standpoint to

the models developed in this thesis but then introduces additional assumptions in

order to take a more traditional likelihood-based approach was examined in detail.

It has the attraction of running very quickly and suggests trees and admixtures

where the models developed here need the trees and admixtures to be suggested

by external means. However, it ignores the issue of �xation and assumes that

the allele frequency, αj for all nodes j throughout the tree is approximately the

same as that of the common ancestor. It also assumes there is no drift along

two of the three edges adjacent to an admixture. All of these are assumptions

the model developed in this thesis does not make. TreeMix's drift parameters are

based on variance and so depend on the distribution πA in a way that makes them

much harder to interpret than the ones for the model developed in this thesis.

The phylogenetic trees and admixtures TreeMix suggests have to be treated with

caution since they can, for example, be radically altered simply by adding an

extra subpopulation to the dataset. Its suggestions do, as such, require further

investigation with a more nuanced model such as the one developed in this and

the previous chapter. Nevertheless along with Neighbour Joining it could play a

useful role in suggesting phylogenetic tree structures and potential admixtures for

deeper investigation using models such as the one developed here.



Chapter 6

Discussion

This thesis has focussed on examining and developing models of genetic drift and

population history. There are some points that it would be useful to highlight in

this closing chapter.

1. A model of drift has been developed that is su�ciently general that it can

include admixture events. It builds on the foundation of Nicholson and others

(Nicholson et al., 2002), placing an emphasis straight-forward demographic

interpretation.

2. When modelling genetic drift over a great many generations, it is important

to take proper account of the possibility of �xation if the intention is to

obtain drift parameters that can be interpreted meaningfully.

These will be discussed in turn, some problems will be highlighted and sugges-

tions for further development proposed which are aimed at mitigating or even

eliminating these problems.

255
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6.1 A Model of Genetic Drift that Accommodates

Admixture Events

Increasingly general models of genetic drift and population history were developed

over chapters 3 to 5. Models combining splitting events and isolated subpopula-

tions, leading to tree relationships between the present-day subpopulations, were

developed and these were further generalised to include admixture events.

A key practical issue with the admixture model was that of slow mixing, partic-

ularly of drift parameters adjacent to admixture events. This was dealt with by

brute force, running the MCMC sampler for a much larger number of iterations.

Many of the models described in chapter 5 took as long as 5 to 8 days on what

was then a high-end Intel Core i7 processor to complete 100,000 iterations of the

Gibbs sampler. In those situations, only 2,189 loci and 11 subpopulations were

being modelled. If there were more loci to analyse and/or more subpopulations,

the process would take at least proportionately longer. It might be argued that

this renders the model impractical in such situations. However, many techniques

that are commonly used today would have been impractical using past technology.

For example, in 1981, the then common and a�ordable NEC D780C-1 processor

running at 3.25MHz was capable of 0.5 MIPS (million instructions per second)

(Gamia, 2013). In 2016, the Intel Core i7 6700K on which the analysis for chapter

5 was done is capable of over 160,000 MIPS at 4GHz (Scott, 2015). Moore's Law,

which has held true or been surpassed over the past 40-50 years, predicts the num-

ber of transistors that can be crammed into the same area of an integrated circuit

doubles every two years (Moore, 1975) and processing power has increased simi-

larly as a consequence. If processing power continues to double every two years, a

statistical model that takes a week to process in 2016 will take just 5.25 hours by

2026 and under 10 minutes by 2036. Something that seems barely feasible now can

be reasonably expected to be imminently feasible. There is no reason to refrain

from developing such models now to show they are conceptually sound in anticipa-
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tion of future technology. Analysis time should also be put into the context of the

time it takes to design and implement a population genetics study. Nevertheless,

there are ways that could possibly be used now to speed the process up. Many

of the parameters of the model have full conditionals that do not depend directly

on each other. The drift parameters do not depend on each other and the allele

frequency parameters for di�erent loci do not depend directly on each other. The

multi-core, multi-threaded nature of the processor was used during this project to

run up to seven models simultaneously. However, if only one model was of interest,

rewriting the Gibb's sampler to make use of multi-threading could allow many of

these parameters to be sampled simultaneously.

The slow mixing was largely related to the weak non-identi�ability of the drift

parameters adjacent to an admixture event. This makes these parameters very

correlated in their joint posterior distributions. Rewriting the Gibbs sampler to

use block updating of these parameters, drawing them from joint full conditionals

should improve mixing and potentially also speed things up by not requiring the

sampler to be run for so many iterations (if sampling from those joint full con-

ditionals is not a bottleneck). Weak priors were used for the drift parameters to

re�ect an a-priori position of being indi�erent between all the possibilities. How-

ever, there may be situations where more information is available for the periods

of drift leading up to admixture and could justify the use of much more informa-

tive priors. This ability to incorporate additional information is a key advantage

of the �exibility of the Bayesian approach. For example, take the case of Iceland

which was settled by a mixture of people of Norse and Celtic descent in the 9th

and 10th century AD (Helgason et al., 2001). The Icelandic people wrote down

a lot about their origins and early settlement of their island in documents such

as the Landnámabók (Palsson and Edwards, 2007) as well as the Sagas of the

Icelanders, the Íslendingasögur (Smiley, 2005). If study of these documents gave

even rough information about the numbers, origins and time of the arrivals during

the period of settlement, that would provide estimates or at least sensible ranges
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for the parameters associated with the admixture event that could be re�ected in

much more informative priors for these parameters. Stronger priors for the drift

parameters leading up to the admixture event would help mitigate the problem of

weak non-identi�ability.

A scenario that is not modelled is that of low-level recurrent migration between

subpopulations. The model assumes that when each subpopulation splits at each

bifurcation, the only way that they can come back into contact with the other

subpopulation or any other subpopulation is through admixture. However, it is

possible that enough low-level recurrent migration takes place between two subpop-

ulations, to in�uence each other's allele frequencies, so that it cannot be ignored,

but not enough that they can be reasonably treated as the same subpopulation

with common allele frequencies. The e�ect of such low level migration would be

to move the allele frequencies of the a�ected subpopulations closer to each other.

If such a situation occured but were modelled by the present model, this would be

expected to manifest in reduced genetic drifts if the subpopulations involved were

close to each other in the phylogenetic tree or if they were not close to each other

in the tree, in a pairwise posterior predictive FST that was low, indicating that

the two subpopulations are more alike than the current model allows. Incorpo-

rating the possibility of low-level migrations may be another way that the model

could be further re�ned. Models of isolation with migration, e.g., Hey (2009),

can involve �tting a great many migration parameters which in that study were

found to have some sensitivity to choice of prior so such a re�nement might not

be straightforward.

One of the di�erences between TreeMix and the model developed here from chap-

ter 4 onwards is that TreeMix does suggest a phylogenetic tree while the model

developed in this thesis does not. Instead other means such as outside knowledge

or the Neighbour Joining algorithm are used to suggest a tree to analyse. Neither

method is able to quantify uncertainty about the chosen tree or suggest how likely

alternative trees are. A possible future development of the model could address
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this issue. Huelsenbeck and Ronquist (2001) and Yang (2006) describe a method

that could be adapted to do this. While these papers describe a substitution model

as might be appropriate if mutation is being modelled, the ideas could be adapted

to the drift model. If Tl represents the lth possible tree topology out of P possible

trees, then letting D represent the data and for simplicity (and to focus on the

impact of the tree toplologies), θ represent all the other parameters of the model,

α, π and c, then the posterior probability of tree Tl is

p(Tl|D) =
p (D|Tl) f (Tl)∑P

n=1 p (D|Tn) f (Tn)
, (6.1)

where

p (D|Tl) =

ˆ
θ

p (D|Tl, θ) f (θ) dθ (6.2)

The term p (Tl) is a prior which can either be taken to have value 1
P
, a prior

representing prior indi�erence between any of the possible trees, or set to other

values that could re�ect other outside (e.g., archaeological) information about how

likely the tree topology is before considering the data. In this framework a full

conditional for a given tree could be derived and tree topology could besampled

as an additional Metropolis-Hastings within Gibbs step. After starting with an

initial random tree, the steps of updating the parameters for the given tree are

performed as usual followed by a proposal to change the tree topology to another

similar but di�erent one, for example, by proposing to remove a (non root or leaf)

node and reattach one of the two subtrees attached to it to another edge on the

tree, creating a new node.

This does, however, raise a problem. When a move to a new tree topology is pro-

posed, the parameter values at that step will be appropriate to the existing one,

making such a transition less likely to be accepted. Looking at it in likelihood

space, there will be a lot of local maxima for combinations of trees and param-

eters, separated by chasms of low likelihood, with it being very unlikely for the

Metropolis-Hastings step to successfully jump between the hypervolumes around
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them. One way around this that is suggested by Huelsenbeck and Ronquist (2001)

is to use Metropolis-coupled Markov chain Monte Carlo (MC)3. This involves

running a number of chains alongside the main chain. The di�erence is that in

these additional chains, the chance of the chain moving between tree topologies is

increased by di�erent proportions. After all the chains have updated at the end

of an iteration, there is a proposal to swap the states of two of the chains which

are chosen at random. If accepted the two chains swap states and the MCMC

processes continue at the next iteration. In this way, the main chain can be chosen

as one of these two chains, making the proposal more likely to move near to one

of the other likelihood peaks, o�ering the possibility for the main chain to leap

over a likelihood chasm, changing to a state with another tree topology and set of

parameter values in one move. One practical problem here is that the likelihood

expressions that would need to be calculated to within proportionality for this step

could be challenging.

While the idea of incorporating the tree topology in the model in this way appears

theoretically possible, there are a number of practical drawbacks. Running the

chains for models as described in chapters 4 and 5 could take as long as a week

to produce 100,000 iterations for a particular tree or network even on a fast pro-

cessor in C++. If, in addition, the chains were exploring the very large number of

possible trees for 11 subpopulations, the time taken to produce a useful posterior

distribution could stretch from weeks into many months, something that is not

really practical at present but could become possible in the future with improved

technology. Using (MC)3 would be necessary and would also place even greater

load on processor time. However, when it does become practically possible, it

would enhance the models developed here because it would not only suggest the

most likely tree topology but also describe other likely ones and how likely these

are by examining the proportions that each tree topology was represented in the

posterior distribution of the main chain. It may even be possible to extend this

framework to suggest other changes to the tree or network topology, for example
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proposing that a subpopulation becomes an admixture of the subpopulations at

two other nodes, or to remove an admixture and attach it to only one of its two

parent subpopulations. These operations would bring the added complications of

changing the number of parameters and would increase the number of possible

network topologies to be explored again, with another consequent increase in pro-

cessor time but would allow uncertainty about the admixture events to be explored

as well.

The issue of ascertainment that is covered by Nicholson et al. (2002) is not ad-

dressed in this thesis. The problem arises because the SNPs in historical datasets

are not random loci in the genome but have been identi�ed from variability in

small samples. Often particular subpopulations will be over-represented in the

ascertainment process. The SNPs will tend to have allele frequencies that are in

the mid-range around 0.5 and fewer over 0.9 or under 0.1 than would be expected

by random chance simply because they have more chance of being identi�ed as

SNPs. This is an issue with the HapMap dataset that has been used in this work.

However, looking towards the future, with genome-wide sweeps taking in more and

more loci and even full genome resequencing becoming increasingly common, the

bias towards mid-range allele frequencies could be expected to be greatly reduced

removing ascertainment e�ects as an issue.

On the topic of full genome resequencing, in the near future a greater amount of

information will become available. The models developed in this thesis assume

independence between loci and as they stand, cannot make full use of that infor-

mation, needing to keep the loci used in analysis su�ciently spaced to avoid any

serious linkage disequilibrium. The model could be developed to make more use

of it. However, much of this additional information will be highly correlated due

to linkage disequilibrium. It is unclear how far it would provide additional useful

information. Developing and practically testing such a model would be necessary

without any guarantee that it would improve greatly on the existing one. Even if

it did, the additional processing time for the increased amount of data should be
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balanced against any gains.

6.2 Importance of Fixation

The problems described in chapters 3 and 4 of using a beta distribution based

model of genetic drift led to an unexpected �nding as locus drifts towards �xation.

A beta distribution model doesn't allow �xation but at least as importantly, in

that model, it takes a greater and greater amount of drift to change the allele fre-

quency by the same amount towards �xation, the nearer it starts to �xation. Very

small changes in allele frequency of a rare allele can thus be taken as signals of

disproportionately large amounts of drift, much larger than in the Wright-Fisher

model that is the one that is being approximated. One option would have been to

modify the beta distribution model to allow the possibility of �xation and modify

its behaviour near allele frequencies of 0 and 1. However, an alternative model

proposed by Nicholson et al. (2002) was readily available based on a normal dis-

tribution recti�ed at 0 and 1 which inherently took �xation into account. Models

with this recti�ed normal model of drift �tted the data dramatically better as re-

�ected in reduced WAIC values. This was a particularly interesting �nding. Apart

from the work of Nicholson et al. (2002), much of the previous work in the area of

modelling genetic drift has avoided the issue of explicitly modelling �xation, often

arguing that allele frequencies are insu�ciently far from 0.5, populations are so

large or time scales too small to warrant taking �xation into account. However,

anthropological investigations inevitably involve large time scales. Newly discov-

ered SNPs would be expected to have small allele frequencies. Fixation itself can

be highly suggestive of ancestry; if a number of present-day subpopulations are

observed to have reached �xation at a locus but others have not, it is possible

that all these subpopulations reached �xation independently but it is also a likely

explanation of their present day �xation that some or all of these subpopulations

share a common ancestor in which �xation had already occurred. Treating �xation



Chapter 6. Discussion 263

did make the modelling process somewhat more complicated but repaid that e�ort

in a model that better �tted the data and with drift parameters that are much

more easy to interpret.

One of the arguments made for including �xation is that it is necessary in a

model that allows long time scales to be modelled. Arguably the same could be

said for mutation. The model developed in this thesis is open to the criticism

that it assumes no mutation at any locus since the population at the root of the

tree. When outlier residuals for some models were examined, for example during

the analysis in chapter 3, it did happen very occasionally that these occured in

situations where one subpopulation had a mid-range allele frequency while all the

others were at �xation. This could always have happened by genetic drift, but

another explanation is that a mutation event occurred in only one subpopulation

some time near its foundation or during a population bottleneck and that mutation

drifted to become common in that subpopulation. Although mutation events at a

particular locus that result in a variant that does not soon die out are usually too

uncommon to be worth modelling, over a su�ciently large number of generations

and at a su�ciently large number of loci, the probability that they do happen could

become appreciable. One possible future development of the model could be to

take mutation into account. There would only be need to model a mutation event

at a bifurcation where the allele frequency for one child node is at �xation and

not at the other. A Metropolis-Hastings step could be added to decide whether to

add (or remove) a mutation event that would have the e�ect of changing the allele

frequency to that branch or not while leaving the parent node at the start of the

bifurcation at �xation. However, this would be no easy task. In any event, the

number of loci investigated as outliers where there was a suspicion that mutation

might be the reason were very rare so the e�ort in making such a re�nement was

judged, for the purpose of this thesis, unlikely to repay the investment.

A drawback of using a model of drift based on the recti�ed normal distribution is

that it is not exactly equivalent to the Wright-Fisher model, one of which is that
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the expected value of an allele frequency is its last observed one no matter how

many generations have elapsed since then. (Nevertheles, even the Wright-Fisher

model is still just a model and does not fully re�ect reality.) The mean of the

recti�ed normal distribution used is not the same as the allele frequency before drift

which is used as the location parameter in the distribution. The expected allele

frequency after drift shifts slightly towards 0.5 compared to the allele frequency

before drift using the recti�ed normal model of drift. In the human population

context that this thesis is mostly concerned, a drift parameter larger than 0.4

seems unlikely. Then the largest expected shift of allele frequency towards 0.5 of

the allele frequency that would result is only 0.036 for an allele frequency of 0.904

(or 0.096) so is unlikely to a�ect much. However, this issue does need to be borne

in mind if it is intended to use the model on other species where larger genetic

drift parameters might well be encountered.

6.3 Closing Remarks

Over the course of this thesis a model of population history has been developed

that uses genetic data from present-day people grouped into subpopulations. It

builds on earlier work by Nicholson and others and of Balding and Nichols and

generalises it to, not only model the relationships and history of these subpopula-

tions as phylogenetic trees starting from a common ancestral population, but also

allows subpopulations to be formed from admixtures of earlier ones. The model

could be used in a number of areas such as genome-wide association studies in

medical genetics but most obviously lends itself to anthropological investigations.

From that point of view, the parameters of the model, of genetic drift, admix-

ture proportion and allele frequency have readily interpretable demographic and

genetic meanings. Since draws from the joint posterior distribution of the param-

eters are produced by the model, point estimates of the parameters, uncertainty

about those estimates and relationships between them can readily be assessed. It
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is these properties that should be attractive to future investigators.
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Appendix A

Proof of the Formula for the

Variance After d Periods of Genetic

Drift

The general formula for the variance for a particular locus i after d periods of drift

between the ancestral population and a particular present day subpopulation is

stated to be approximately

Var

(
xi
ni

∣∣∣ π, c) =
πi (1− πi)

ni

(
1 + (ni − 1) [1− (1− cd) (1− cd−1) · · · (1− c1)]

)
.

(A.1)

As usual, i labels the locus, πi represents the proportion of the allele at that

locus in the ancestral population, and c = (c1, ..., cd) represent drift parameters

for d consecutive periods of drift. Further, xi repesents the number of counts of

one variant allele out of a sample of ni at locus i. One use of this formula is

to standardise residuals. This appendix provides a proof by induction for this

formula. This proof has three steps. First, the formula will be proved in the case

d = 1. Then, it will be shown that if the formula is assumed to be true for d = k
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periods of drift then it must also be true that

Var
(
αik

∣∣∣ π, c) = πi (1− πi) [1− (1− ck) (1− ck−1) ... (1− c1)] , (A.2)

where αik is the proportion of the allele at locus i after k periods of drift have

taken place since the ancestral population. This result is used in the �nal step to

show that if the formula is assumed true for d = k periods of drift then it must

also be true for d = k + 1 periods of drift, completing the proof.

The variance in the case where d = 1 is contained in Nicholson et al. (2002) and

is given as:

Var

(
xi
ni

∣∣∣ π, c) =
πi (1− πi) (1− c1)

ni
+ πi (1− πi) c1. (A.3)

This formula, which follows from the law of total variance (also known as the vari-

ance decomposition formula) assumes that E (αi1|c1, πi) = πi and Var (αi1|c1, πi) =

πi (1− πi) c1 which is only approximately true under their recti�ed normal mode

of drift (see chapter 4), can be rearranged to provide the basis for the induction,

completing the �rst step of the proof.

Var

(
xi
ni

∣∣∣ π, c) =
πi (1− πi)

ni

(
1 + (ni − 1) [1− (1− c1)]

)
. (A.4)

For the inductive step, if it can be assumed that the formula is true for d = k

periods of drift then it must be shown that it must also be true for d = k + 1

periods of drift where k ∈ N (Figure A.1).

For simplicity, since this proof concentrates on a particular locus the subscript i

will be suppressed in what follows. First notice that in the case where there are
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Figure A.1: Diagram of the Induction Step Showing k + 1 Periods of Genetic Drift.
Diagram of the induction step showing k + 1 periods of genetic drift between the ancestral pop-
ulation and the data at locus i. The direction of time is downward. The cs represent k + 1
periods of genetic drift in series that have taken place since the time of the ancestral population
whose proportion of the allele at locus i is represented by πi. αij represents the proportion of the
allele at every intermediate population, labelled byj, after each period of drift after the ancestral
population. xi represents the counts of the allele out of a sample of size ni in the present-day
data. The induction step is about showing that if the formula is true for k periods of drift then
it is also true when the (k + 1)th period of drift is added.
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only d = k periods of drift

Var
(x
n

∣∣∣ π, c) = Eαk

[
Var

(x
n

∣∣∣ αk)]+ Var
[
E
(x
n

∣∣∣ αk)]
=

1

n
Eαk (αk (1− αk) | ck, αk−1) + Varαk (αk | ck, αk−1)

=
1

n
Eαk (αk|ck, αk−1)− 1

n
Eαk

(
α2
k|ck, αk−1

)
+ Varαk (αk | ck, αk−1)

=
1

n
Eαk (αk|ck, αk−1)− 1

n

[
Eαk (αk|ck, αk−1)2 + Varαk (αk | ck, αk−1)

]
+ Varαk (αk | ck, αk−1) (A.5)

=
1

n
Eαk (αk|ck, αk−1)− 1

n
Eαk (αk|ck, αk−1)2 (A.6)

+
n− 1

n
Varαk (αk | ck, αk−1) (A.7)

However for any m > 1, where the subscripts on E and Var indicate what random

variable is averaged over, Eαm (αm|cm, αm−1) = αm−1 and when m = 1,

Eα1 (α1|c1, π) = π by the assumption that the expected proportion of an allele is

preserved under drift. This is a standard property of the Wright-Fisher model as

was shown in Chapter 3. If it can be assumed, as Nicholson et al. did, that this is

approximately true, then A.7 reduces to

Var
(x
n

∣∣∣ π, c) =
1

n
π (1− π) +

n− 1

n
Varαk (αk | ck, αk−1) . (A.8)

Equating (A.8) and (A.1), it can be seen that the inductive assumption that the

formula at (A.1) is true for d = k then implies that

1

n
π (1− π) +

n− 1

n
Varαk (αk | ck, αk−1)

=
π (1− π)

n
(1 + (n− 1) [1− (1− ck) (1− ck−1) ... (1− c1)]) ,

which, in turn implies that

Varαk (αk | ck, αk−1) = πi (1− πi) [1− (1− ck) (1− ck−1) ... (1− c1)] . (A.9)
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So this can be assumed to be true if the inductive assumption can be assumed to

be true. This completes the second of the three steps of the proof.

To begin the third step, in the case of d = k + 1 periods of drift,

Var
(x
n

∣∣∣ π, c) = Eαk+1

(
Var x

n

(x
n

∣∣∣ αk+1

))
+ Varαk+1

(
E x
n

(x
n

∣∣∣ αk+1

))
=

1

n
Eαk+1

[αk+1 (1− αk+1) | ck+1, αk] + Varαk+1
(αk+1 | ck+1, αk)

=
1

ni

[
Eαk+1

(αk+1|ck+1, αk)− Eαk+1
(αk+1|ck+1, αk)

2]
+
ni − 1

ni
Varαk+1

(αk+1 | ck+1, αk) .

As before, if for any m > 1, Eαm (αm|cm, αm−1) = αm−1 and when m = 1,

Eα1 (α1|c1, π) = π can be assumed to hold at least approximately, this can be

reduced to

Var
(x
n

∣∣∣ π, c) =
π (1− π)

n

+
n− 1

n

[
Eαk

(
Varαk+1

(αk+1|ck+1, αk)
)
+Varαk

(
Eαk+1

(αk+1|ck+1, αk)
)]

=
π (1− π)

n

+
n− 1

n
[Eαk (αk (1− αk) ck+1 | ck, αk−1) + Varαk (αk | ck, αk−1)]

=
π (1− π)

n
+
n− 1

n

[
ck+1Eαk (αk|ck, αk−1)− ck+1Eαk (αk|ck, αk−1)

2
]

+
n− 1

n
[Varαk (αk | ck, αk−1)− ck+1Varαk (αk | ck, αk−1)]

Again, allowing the simpli�cations for any m > 1, Eαm (αm|cm, αm−1) = αm−1 and

when m = 1, Eα1 (α1|c1, π) = π leads to:

Var
(x
n

∣∣∣ π, c) =
π (1− π)

n
+
n− 1

n
[ck+1π (1− π) + (1− ck+1) Varαk (αk | ck, αk−1)] .

(A.10)

Now substituting in (A.9) from the second step quickly gives

Var
(x
n

∣∣∣ π, c) =
π (1− π)

n
[1 + (n− 1) {1− (1− ck+1) (1− ck) · · · (1− c1)}] ,

(A.11)
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which is the same as (A.1) where d = k + 1. The formula has been shown to be

approximately true for d = 1 and that if it is approximately true for d = k then it

must also be approximately true for d = k+1, so by the principle of mathematical

induction it must be approximately true for all d ∈ N completing the proof.

Comparing (A.1), the formula for d periods of drift, with (A.3), for one period of

drift, a formula can be derived that gives a value of c for a single period of drift

that is equivalent, at least in terms of variance, to that for d periods of drift in

series:

c = [1− (1− cd) (1− cd−1) · · · (1− c1)] . (A.12)

Noting that this implies that

1− c = (1− cd) (1− cd−1) · · · (1− c1) , (A.13)

it can be seen that this ties in with the discussion on the interpretation of the drift

parameter, c, in section 3.3.3.
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Recti�ed Normal Distributions

Any random variable with a normal distribution can take values in the interval

(−∞,∞). This distribution shall be called the �conventional normal distribution�.

However, there are situations in which a normal distribution is a good approxima-

tion to the process being modelled but where only a subset of these values makes

sense for that process. This has led to a number of modi�ed versions of the nor-

mal distribution (�gure B.1). One of the better known of these is the truncated

normal distribution. Suppose for a given process only values in the interval [a, b],

where a, b ∈ R:a < b, make sense; the truncated normal distribution uses only the

part of the normal distribution that lies within that interval and renormalises it to

produce a proper probability density function. This is equivalent to drawing from

the conventional normal distribution, checking to see whether the draw lies in the

interval [a, b] and rejecting it and making a new draw if the draw lies outside the

interval.

Another, lesser-known variant deals with the problem in a di�erent way. This

involves starting from the conventional normal distribution and taking all the

probability below a and assigning it all to a probability mass at a. Similarly all

the probability above b is assigned to a probability mass at b. This leads to a hybrid

distribution which has a discrete part with probability masses at a and b and a
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continuous part with probability density in the interval (a, b). Such a distribution

is referred to by Meng et al. (2011) in the special case a = 0 and b = ∞. In that

paper the distribution is referred to as a Recti�ed Normal Distribution. This takes

its name from the result of putting a waveform through a half-recti�er circuit in

electronics. In that case all the input signal that is below 0 leads to an output signal

of 0 Volts but input signals above 0 remain unchanged. Nicholson et al. (2002) use

this type of distribution with a = 0 and b = 1 in their paper. However, they refer

to it as a truncated normal distribution. Such a nomenclature could be potentially

confusing; it could be considered undesirable to have two probability distributions

with quite di�erent properties having the same name. For that reason, in this

thesis this type of distribution will be referred to using Meng et al. (2011)'s name

- the recti�ed normal distribution.

a b� a b� a b�

Figure B.1: Conventional Normal Distribution, Trucated Normal Distribution and Rec-
ti�ed Normal Distribution

A conventional Normal Distribution (left), a Truncated Normal Distribution with the same µ
and σ2 truncated at a and b (middle) and a Recti�ed Normal Distribution with the same µ and
σ2 recti�ed at a and b (right). The thick bars represent point masses at those values. These are
probabilities rather than probability densities.

B.1 Notation for Recti�ed Normal Distributions

Meng et al. (2011) use the notation NR(µ, σ2) where µ is the mean and σ2 the

variance of the conventional normal distribution from which the recti�ed normal

distribution is derived. It should be noted that the act of recti�cation means
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that, in general, µ is no longer the mean and σ2 no longer the variance of the

recti�ed normal distribution. However Meng et al. (2011) were only referring

to the distribution for the case where a = 0 and b = ∞. For this notation to

be used more generally without ambiguity the range of acceptable values which

the random variable can take must also be speci�ed. The notation used in this

thesis includes the interval by placing it after the R so that NR[0,1](µ, σ2) would

refer to the distribution used by Nicholson et al. (2002) and NR[0,∞)(µ, σ2) would

refer to that used by Meng et al. (2011); in deference to that paper, where the

interval is omitted from the notation, the interval is assumed to be [0,∞) so that

NR(µ, σ2) ≡ NR[0,∞)(µ, σ2). This last distribution is a case where recti�cation

takes place only on the left of the distribution at 0. Such a distribution where

the interval is of the form [a,∞) will be referred to as a left-recti�ed distribution.

Similarly one where the interval is of the form (−∞, b] will be referred to as a

right-recti�ed distribution (�gure B.2).

a b� a b�

Right Rectified Normal 

Distribution

Left Rectified Normal 

Distribution

Figure B.2: A NR(−∞,b](µ, σ2) Right Recti�ed Normal Distribution and NR[a,∞)(µ, σ2)
Left Recti�ed Normal Distribution
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B.2 First Two Moments of Recti�ed Normal Dis-

tribution

As has been mentioned, in general, µ is not the mean and σ2 not the variance of

NR[a,b](µ, σ2). There is little literature on this distribution, which necessitated the

moments to be found from �rst principles. These results are reproduced here.

B.2.1 Mean of a NR[a,b](µ, σ2) Distribution

Splitting the distribution into three parts gives

E(X) =

ˆ a

−∞
af(x)dx+

ˆ b

a

xf(x)dx+

ˆ ∞
b

bf(x)dx, (B.1)

where f(x) is the probability density function of the N(µ, σ2) distribution. Hence

E(X) = aΦ

(
a− µ
σ

)
+

ˆ b

a

x√
2πσ2

exp

(
−1

2

(
x− µ
σ

)2
)
dx+b

[
1− Φ

(
b− µ
σ

)]
.

(B.2)

Using the substitution t = x−µ√
2σ2

leads to

ˆ b

a

x√
2πσ2

exp

(
−1

2

(
x− µ
σ

)2
)
dx =

ˆ β

α

√
2σ2 t+ µ√

2πσ2
exp

(
−t2
)√

2σ2dt (B.3)

where α = a−µ√
2σ2

and β = b−µ√
2σ2

. Performing the integral yields

ˆ b

a

x√
2πσ2

exp

(
−1

2

(
x− µ
σ

)2
)
dx =

√
2

π
σ

(
1

2

[
exp

(
−α2

)
− exp

(
−β2

)])
+
µ

2

[
2Φ
(√

2β
)
− 2Φ

(√
2α
)]
. (B.4)
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Substituting back a and b for α and β in (B.4) and substituting this back into

(B.2) gives the the mean of the NR[a,b](µ, σ2) distribution to be:

E(X) = (a− µ) Φ

(
a− µ
σ

)
− (b− µ) Φ

(
b− µ
σ

)
+ b

+
σ√
2π

[
exp

(
−(a− µ)2

2σ2

)
− exp

(
−(b− µ)2

2σ2

)]
. (B.5)

B.2.2 Variance of a NR[a,b](µ, σ2) Distribution

Starting from

Var(X) = E(X2)− E(X)2, (B.6)

E(X) has already been found at (B.5). It remains to �nd E(X2).

E(X2) =

ˆ a

−∞
a2f(x)dx+

ˆ b

a

x2f(x)dx+

ˆ ∞
b

b2f(x)dx

=a2Φ

(
a− µ
σ

)
+

ˆ b

a

x2

√
2πσ2

exp

(
−1

2

(
x− µ
σ

)2
)
dx

+ b2

(
1− Φ

(
b− µ
σ

))
. (B.7)

Again using the substitution t = x−µ√
2σ2

on the second term leads to

ˆ b

a

x2

√
2πσ2

exp

(
−1

2

(
x− µ
σ

)2
)
dx

=
1√
π

[
2σ2

ˆ β

α

t2 exp
(
−t2
)
dt+ 2µ

√
2σ2

ˆ β

α

t exp
(
−t2
)
dt+ µ2

ˆ β

α

exp
(
−t2
)
dt

]
.

(B.8)
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But

ˆ β

α

t2 exp
(
−t2
)
dt =

1

2
α exp

(
−α2

)
− 1

2
β exp

(
−β2

)
+

√
π

4
[erf (β)− erf (α)] .

(B.9)

Substituting this back into (B.8) and dealing with the other integrals gives

ˆ b

a

x2

√
2πσ2

exp

(
−1

2

(
x− µ
σ

)2
)
dx

=
1√
π

[
2σ2

(
1

2
α exp

(
−α2

)
− 1

2
β exp

(
−β2

)
+

√
π

4
[erf (β)− erf (α)]

)]
+

1√
π

[
2µ
√

2σ2

(
1

2

[
exp

(
−α2

)
− exp

(
−β2

)])
+ µ2

(√
π

2
[erf (β)− erf (α)]

)]
.

(B.10)

Substituting back a and b for α and β in (B.10) and then in turn substituting into

(B.7) leads to

E(X2) =
(
a2 − µ2 − σ2

)
Φ

(
a− µ
σ

)
+ b2 −

(
b2 − µ2 − σ2

)
Φ

(
b− µ
σ

)
+

√
2

π
µσ

[
exp

(
−(a− µ)2

2σ2

)
− exp

(
−(b− µ)2

2σ2

)]

+
σ2

√
π

[(
a− µ√

2σ2

)
exp

(
−(a− µ)2

2σ2

)
−
(
b− µ√

2σ2

)
exp

(
−(b− µ)2

2σ2

)]
.

(B.11)

Finally, substituting equations (B.11) and (B.5) into (B.6) gives the variance of
the NR[a,b](µ, σ2) distribution:

Var(X) =
(
a2 − µ2 − σ2

)
Φ

(
a− µ
σ

)
+ b2 −

(
b2 − µ2 − σ2

)
Φ

(
b− µ
σ

)
+

√
2

π
µσ

[
exp

(
−

(a− µ)2

2σ2

)
− exp

(
−

(b− µ)2

2σ2

)]

+
σ2

√
π

[(
a− µ
√

2σ2

)
exp

(
−

(a− µ)2

2σ2

)
−
(
b− µ
√

2σ2

)
exp

(
−

(b− µ)2

2σ2

)]

−
[

(a− µ) Φ

(
a− µ
σ

)
− (b− µ) Φ

(
b− µ
σ

)
+ b+

σ
√

2π

(
exp

(
−

(a− µ)2

2σ2

)
− exp

(
−

(b− µ)2

2σ2

))]2
(B.12)
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B.2.3 Mean and Variance of a Right-Recti�ed NR(−∞,b](µ, σ2)

Normal Distribution

The mean and variance of right-recti�ed normal distributions can be found by

following an analogous procedure to that above.

The mean of a right-recti�ed NR(−∞,b](µ, σ2) normal distribution is

E(X) = b− (b− µ) Φ

(
b− µ
σ

)
− σ√

2π
exp

(
−(b− µ)2

2σ2

)
(B.13)

and its variance is

Var(X) = b2 −
(
b2 − µ2 − σ2

)
Φ

(
b− µ
σ

)
−
√

2

π
µσ exp

(
−(b− µ)2

2σ2

)

− σ2

√
π

(
b− µ√

2σ2

)
exp

(
−(b− µ)2

2σ2

)

−

[
b− (b− µ) Φ

(
b− µ
σ

)
− σ√

2π
exp

(
−(b− µ)2

2σ2

)]2

. (B.14)

B.2.4 Mean and Variance of a Left-Recti�ed NR[a,∞)(µ, σ2)

Normal Distribution

Finally, the mean of a left-recti�ed NR[a,∞)(µ, σ2) normal distribution is

E(X) = (a− µ) Φ

(
a− µ
σ

)
+

σ√
2π

exp

(
−(a− µ)2

2σ2

)
+ µ (B.15)
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and its variance is

Var(X) = µ2 + σ2 +
(
a2 − µ2 − σ2

)
Φ

(
a− µ
σ

)
+

√
2

π
µσ exp

(
−(a− µ)2

2σ2

)

+
σ2

√
π

(
a− µ√

2σ2

)
exp

(
−(a− µ)2

2σ2

)

−

[
(a− µ) Φ

(
a− µ
σ

)
+

σ√
2π

exp

(
−(a− µ)2

2σ2

)
+ µ

]2

. (B.16)
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Results from Applying the

Phylogenetic Tree Model of Chapter

4 to the

HapMap Data

Tables C.1-C.22 contain the results of applying the phylogenetic tree model with

Nicholson�Donnely drift to the HapMap dataset for each of the 22 autosomes.
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Genetic Drift Central 95% Credible Point Estimate
Along Edge Interval Bounds for

Genetic Drift, c
low high mean

0 0.0004 0.0026 0.0012
1 0.0030 0.0055 0.0042
2 0.0002 0.0010 0.0005
3 0.0010 0.0027 0.0018
4 0.0161 0.0238 0.0198
5 0.0081 0.0122 0.0101
6 0.0028 0.0054 0.0041
7 0.0079 0.0135 0.0105
8 0.0103 0.0148 0.0125
9 0.0017 0.0042 0.0029
10 0.0098 0.0128 0.0112
11 0.0022 0.0057 0.0038
12 0.0329 0.0401 0.0364
13 0.0169 0.0207 0.0187
14 0.1166 0.1379 0.1271
15 0.0015 0.0068 0.0040
16 0.0064 0.0107 0.0085
17 0.0164 0.0237 0.0199
18 0.0246 0.0423 0.0331
19 0.1081 0.1381 0.1227

Table C.1: Estimated Drift Parameters for Chromosome 1
The estimated value and 95% central credible intervals for c for each of the 20 periods of drift
for the 11 subpopulations in the HapMap dataset estimated by the bifurcating Nicholson-Donnelly
model applied to Chromosome 1.
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Genetic Drift Central 95% Credible Point Estimate
Along Edge Interval Bounds for

Genetic Drift, c
low high mean

0 0.0002 0.0015 0.0007
1 0.0048 0.0076 0.0062
2 0.0002 0.0011 0.0006
3 0.0005 0.0021 0.0012
4 0.0187 0.0266 0.0225
5 0.0080 0.0119 0.0099
6 0.0032 0.0059 0.0046
7 0.0107 0.0165 0.0136
8 0.0099 0.0146 0.0122
9 0.0014 0.0038 0.0026
10 0.0098 0.0127 0.0112
11 0.0042 0.0073 0.0057
12 0.0350 0.0428 0.0387
13 0.0127 0.0161 0.0144
14 0.1298 0.1526 0.1406
15 0.0003 0.0023 0.0010
16 0.0151 0.0209 0.0180
17 0.0132 0.0198 0.0164
18 0.0170 0.0306 0.0237
19 0.1101 0.1362 0.1230

Table C.2: Estimated Drift Parameters for Chromosome 2
The estimated value and 95% central credible intervals for c for each of the 20 periods of drift for
the 11 subpopulations in the HapMap dataset estimated by the bifurcating Nicholson�Donnelly
model applied to Chromosome 2.
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Genetic Drift Central 95% Credible Point Estimate
Along Edge Interval Bounds for

Genetic Drift, c
low high mean

0 0.0004 0.0029 0.0012
1 0.0032 0.0057 0.0044
2 0.0002 0.0011 0.0006
3 0.0010 0.0029 0.0020
4 0.0152 0.0225 0.0188
5 0.0065 0.0104 0.0083
6 0.0009 0.0036 0.0023
7 0.0111 0.0171 0.0141
8 0.0092 0.0141 0.0116
9 0.0030 0.0058 0.0043
10 0.0105 0.0138 0.0121
11 0.0025 0.0057 0.0040
12 0.0323 0.0406 0.0363
13 0.0166 0.0207 0.0186
14 0.1015 0.1212 0.1110
15 0.0003 0.0036 0.0014
16 0.0100 0.0155 0.0127
17 0.0174 0.0249 0.0209
18 0.0201 0.0374 0.0277
19 0.1120 0.1444 0.1281

Table C.3: Estimated Drift Parameters for Chromosome 3
The estimated value and 95% central credible intervals for c for each of the 20 periods of drift for
the 11 subpopulations in the HapMap dataset estimated by the bifurcating Nicholson�Donnelly
model applied to Chromosome 3.
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Genetic Drift Central 95% Credible Point Estimate
Along Edge Interval Bounds for

Genetic Drift, c
low high mean

0 0.0002 0.0017 0.0007
1 0.0023 0.0048 0.0035
2 0.0001 0.0010 0.0004
3 0.0011 0.0030 0.0021
4 0.0195 0.0282 0.0237
5 0.0092 0.0131 0.0112
6 0.0041 0.0067 0.0053
7 0.0172 0.0243 0.0205
8 0.0062 0.0111 0.0084
9 0.0014 0.0039 0.0027
10 0.0084 0.0114 0.0099
11 0.0006 0.0034 0.0018
12 0.0330 0.0419 0.0373
13 0.0100 0.0135 0.0117
14 0.1057 0.1272 0.1160
15 0.0005 0.0064 0.0026
16 0.0152 0.0218 0.0185
17 0.0121 0.0200 0.0158
18 0.0225 0.0420 0.0316
19 0.1186 0.1546 0.1364

Table C.4: Estimated Drift Parameters for Chromosome 4
The estimated value and 95% central credible intervals for c for each of the 20 periods of drift for
the 11 subpopulations in the HapMap dataset estimated by the bifurcating Nicholson�Donnelly
model applied to Chromosome 4.
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Genetic Drift Central 95% Credible Point Estimate
Along Edge Interval Bounds for

Genetic Drift, c
low high mean

0 0.0002 0.0017 0.0008
1 0.0026 0.0054 0.0039
2 0.0002 0.0009 0.0004
3 0.0008 0.0027 0.0017
4 0.0138 0.0210 0.0173
5 0.0080 0.0127 0.0101
6 0.0030 0.0057 0.0044
7 0.0153 0.0225 0.0187
8 0.0084 0.0133 0.0107
9 0.0017 0.0045 0.0030
10 0.0086 0.0116 0.0100
11 0.0005 0.0048 0.0029
12 0.0298 0.0373 0.0334
13 0.0118 0.0155 0.0136
14 0.1192 0.1441 0.1313
15 0.0004 0.0047 0.0020
16 0.0115 0.0173 0.0144
17 0.0118 0.0188 0.0151
18 0.0206 0.0389 0.0297
19 0.1037 0.1363 0.1193

Table C.5: Estimated Drift Parameters for Chromosome 5
The estimated value and 95% central credible intervals for c for each of the 20 periods of drift for
the 11 subpopulations in the HapMap dataset estimated by the bifurcating Nicholson�Donnelly
model applied to Chromosome 5.
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Genetic Drift Central 95% Credible Point Estimate
Along Edge Interval Bounds for

Genetic Drift, c
low high mean

0 0.0002 0.0017 0.0007
1 0.0027 0.0055 0.0041
2 0.0001 0.0009 0.0004
3 0.0017 0.0037 0.0027
4 0.0195 0.0278 0.0235
5 0.0080 0.0125 0.0101
6 0.0030 0.0058 0.0043
7 0.0133 0.0205 0.0169
8 0.0108 0.0161 0.0134
9 0.0010 0.0038 0.0023
10 0.0093 0.0127 0.0109
11 0.0032 0.0070 0.0051
12 0.0351 0.0442 0.0395
13 0.0142 0.0183 0.0162
14 0.1096 0.1332 0.1209
15 0.0003 0.0038 0.0015
16 0.0067 0.0123 0.0094
17 0.0108 0.0179 0.0142
18 0.0384 0.0605 0.0490
19 0.0780 0.1084 0.0925

Table C.6: Estimated Drift Parameters for Chromosome 6
The estimated value and 95% central credible intervals for c for each of the 20 periods of drift for
the 11 subpopulations in the HapMap dataset estimated by the bifurcating Nicholson�Donnelly
model applied to Chromosome 6.
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Genetic Drift Central 95% Credible Point Estimate
Along Edge Interval Bounds for

Genetic Drift, c
low high mean

0 0.0001 0.0012 0.0006
1 0.0019 0.0047 0.0033
2 0.0002 0.0014 0.0006
3 0.0004 0.0019 0.0011
4 0.0181 0.0276 0.0225
5 0.0073 0.0122 0.0097
6 0.0039 0.0069 0.0054
7 0.0078 0.0144 0.0112
8 0.0038 0.0084 0.0061
9 0.0011 0.0038 0.0024
10 0.0094 0.0129 0.0111
11 0.0027 0.0067 0.0046
12 0.0274 0.0352 0.0313
13 0.0103 0.0140 0.0121
14 0.1118 0.1367 0.1239
15 0.0019 0.0087 0.0048
16 0.0171 0.0235 0.0202
17 0.0109 0.0189 0.0147
18 0.0279 0.0493 0.0379
19 0.0894 0.1234 0.1058

Table C.7: Estimated Drift Parameters for Chromosome 7
The estimated value and 95% central credible intervals for c for each of the 20 periods of drift for
the 11 subpopulations in the HapMap dataset estimated by the bifurcating Nicholson�Donnelly
model applied to Chromosome 7.
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Genetic Drift Central 95% Credible Point Estimate
Along Edge Interval Bounds for

Genetic Drift, c
low high mean

0 0.0002 0.0016 0.0007
1 0.0042 0.0075 0.0058
2 0.0001 0.0012 0.0006
3 0.0006 0.0025 0.0015
4 0.0207 0.0304 0.0254
5 0.0051 0.0098 0.0072
6 0.0018 0.0046 0.0031
7 0.0130 0.0214 0.0172
8 0.0068 0.0121 0.0093
9 0.0008 0.0038 0.0022
10 0.0105 0.0141 0.0122
11 0.0026 0.0073 0.0049
12 0.0330 0.0426 0.0375
13 0.0135 0.0179 0.0156
14 0.0996 0.1231 0.1108
15 0.0041 0.0121 0.0080
16 0.0110 0.0169 0.0140
17 0.0068 0.0145 0.0104
18 0.0253 0.0489 0.0365
19 0.1035 0.1428 0.1218

Table C.8: Estimated Drift Parameters for Chromosome 8
The estimated value and 95% central credible intervals for c for each of the 20 periods of drift for
the 11 subpopulations in the HapMap dataset estimated by the bifurcating Nicholson�Donnelly
model applied to Chromosome 8.
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Genetic Drift Central 95% Credible Point Estimate
Along Edge Interval Bounds for

Genetic Drift, c
low high mean

0 0.0002 0.0023 0.0009
1 0.0022 0.0057 0.0039
2 0.0001 0.0013 0.0006
3 0.0010 0.0034 0.0022
4 0.0110 0.0197 0.0152
5 0.0071 0.0131 0.0099
6 0.0019 0.0053 0.0036
7 0.0124 0.0216 0.0169
8 0.0100 0.0168 0.0133
9 0.0021 0.0057 0.0039
10 0.0106 0.0152 0.0128
11 0.0023 0.0075 0.0049
12 0.0299 0.0399 0.0347
13 0.0146 0.0200 0.0172
14 0.1088 0.1373 0.1226
15 0.0010 0.0118 0.0057
16 0.0050 0.0115 0.0082
17 0.0150 0.0256 0.0202
18 0.0259 0.0510 0.0377
19 0.0914 0.1312 0.1105

Table C.9: Estimated Drift Parameters for Chromosome 9
The estimated value and 95% central credible intervals for c for each of the 20 periods of drift for
the 11 subpopulations in the HapMap dataset estimated by the bifurcating Nicholson�Donnelly
model applied to Chromosome 9.
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Genetic Drift Central 95% Credible Point Estimate
Along Edge Interval Bounds for

Genetic Drift, c
low high mean

0 0.0002 0.0014 0.0006
1 0.0028 0.0059 0.0042
2 0.0001 0.0010 0.0005
3 0.0005 0.0021 0.0012
4 0.0149 0.0241 0.0193
5 0.0089 0.0143 0.0115
6 0.0033 0.0067 0.0049
7 0.0068 0.0140 0.0103
8 0.0081 0.0144 0.0111
9 0.0005 0.0034 0.0020
10 0.0081 0.0117 0.0098
11 0.0011 0.0053 0.0029
12 0.0311 0.0406 0.0357
13 0.0118 0.0161 0.0139
14 0.1000 0.1250 0.1120
15 0.0066 0.0155 0.0109
16 0.0106 0.0173 0.0139
17 0.0159 0.0259 0.0206
18 0.0369 0.0644 0.0498
19 0.0695 0.1023 0.0856

Table C.10: Estimated Drift Parameters for Chromosome 10
The estimated value and 95% central credible intervals for c for each of the 20 periods of drift for
the 11 subpopulations in the HapMap dataset estimated by the bifurcating Nicholson�Donnelly
model applied to Chromosome 10.
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Genetic Drift Central 95% Credible Point Estimate
Along Edge Interval Bounds for

Genetic Drift, c
low high mean

0 0.0004 0.0031 0.0013
1 0.0031 0.0065 0.0046
2 0.0001 0.0013 0.0006
3 0.0006 0.0027 0.0016
4 0.0201 0.0297 0.0247
5 0.0065 0.0117 0.0090
6 0.0027 0.0061 0.0045
7 0.0150 0.0237 0.0191
8 0.0090 0.0149 0.0118
9 0.0007 0.0045 0.0028
10 0.0096 0.0136 0.0115
11 0.0058 0.0105 0.0080
12 0.0266 0.0356 0.0309
13 0.0124 0.0170 0.0147
14 0.0969 0.1215 0.1088
15 0.0006 0.0059 0.0025
16 0.0078 0.0146 0.0112
17 0.0108 0.0191 0.0148
18 0.0134 0.03389672 0.0237
19 0.1056 0.1434871 0.1233

Table C.11: Estimated Drift Parameters for Chromosome 11
The estimated value and 95% central credible intervals for c for each of the 20 periods of drift for
the 11 subpopulations in the HapMap dataset estimated by the bifurcating Nicholson�Donnelly
model applied to Chromosome 11.
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Genetic Drift Central 95% Credible Point Estimate
Along Edge Interval Bounds for

Genetic Drift, c
low high mean

0 0.0002 0.0016 0.0007
1 0.0029 0.0062 0.0044
2 0.0001 0.0009 0.0004
3 0.0004 0.0023 0.0012
4 0.0123 0.0216 0.0170
5 0.0074 0.0127 0.0100
6 0.0018 0.0052 0.0034
7 0.0159 0.0242 0.0199
8 0.0091 0.0148 0.0119
9 0.0025 0.0062 0.0044
10 0.0104 0.0144 0.0123
11 0.0020 0.0063 0.0039
12 0.0305 0.0404 0.0352
13 0.0156 0.0205 0.0180
14 0.1268 0.1583 0.1418
15 0.0002 0.0045 0.0014
16 0.0086 0.0149 0.0117
17 0.0147 0.0237 0.0190
18 0.0168 0.0372 0.0258
19 0.1058 0.1460 0.1252

Table C.12: Estimated Drift Parameters for Chromosome 12
The estimated value and 95% central credible intervals for c for each of the 20 periods of drift for
the 11 subpopulations in the HapMap dataset estimated by the bifurcating Nicholson�Donnelly
model applied to Chromosome 12.
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Genetic Drift Central 95% Credible Point Estimate
Along Edge Interval Bounds for

Genetic Drift, c
low high mean

0 0.0002 0.0033 0.0013
1 0.0017 0.0052 0.0034
2 0.0001 0.0014 0.0006
3 0.0019 0.0046 0.0032
4 0.0174 0.0291 0.0229
5 0.0055 0.0116 0.0084
6 0.0024 0.0059 0.0040
7 0.0069 0.0159 0.0113
8 0.0034 0.0099 0.0064
9 0.0022 0.0058 0.0038
10 0.0085 0.0126 0.0105
11 0.0009 0.0071 0.0043
12 0.0322 0.0436 0.0375
13 0.0074 0.0119 0.0096
14 0.1037 0.1349 0.1185
15 0.0005 0.0098 0.0040
16 0.0140 0.0231 0.0184
17 0.0137 0.0251 0.0191
18 0.0306 0.0618 0.0448
19 0.0805 0.1247 0.1015

Table C.13: Estimated Drift Parameters for Chromosome 13
The estimated value and 95% central credible intervals for c for each of the 20 periods of drift for
the 11 subpopulations in the HapMap dataset estimated by the bifurcating Nicholson�Donnelly
model applied to Chromosome 13.
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Genetic Drift Central 95% Credible Point Estimate
Along Edge Interval Bounds for

Genetic Drift, c
low high mean

0 0.0002 0.0025 0.0009
1 0.0053 0.0092 0.0071
2 0.0002 0.0015 0.0007
3 0.0004 0.0031 0.0016
4 0.0142 0.0253 0.0195
5 0.0084 0.0151 0.0117
6 0.0020 0.0055 0.0036
7 0.0165 0.0277 0.0218
8 0.0081 0.0159 0.0118
9 0.0002 0.0027 0.0011
10 0.0084 0.0129 0.0105
11 0.0021 0.0075 0.0047
12 0.0354 0.0488 0.0417
13 0.0118 0.0173 0.0145
14 0.1011 0.1323 0.1159
15 0.0004 0.0065 0.0022
16 0.0091 0.0172 0.0131
17 0.0134 0.0243 0.0185
18 0.0191 0.0487 0.0328
19 0.0848 0.1322 0.1076

Table C.14: Estimated Drift Parameters for Chromosome 14
The estimated value and 95% central credible intervals for c for each of the 20 periods of drift for
the 11 subpopulations in the HapMap dataset estimated by the bifurcating Nicholson�Donnelly
model applied to Chromosome 14.
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Genetic Drift Central 95% Credible Point Estimate
Along Edge Interval Bounds for

Genetic Drift, c
low high mean

0 0.0001 0.0015 0.0006
1 0.0053 0.0092 0.0072
2 0.0001 0.0011 0.0004
3 0.0002 0.0023 0.0009
4 0.0172 0.0300 0.0233
5 0.0063 0.0131 0.0096
6 0.0027 0.0074 0.0050
7 0.0162 0.0292 0.0223
8 0.0040 0.0114 0.0074
9 0.0002 0.0025 0.0010
10 0.0103 0.0157 0.0129
11 0.0026 0.0080 0.0051
12 0.0349 0.0492 0.0417
13 0.0105 0.0162 0.0133
14 0.1121 0.1488 0.1292
15 0.0046 0.0166 0.0104
16 0.0149 0.0248 0.0197
17 0.0051 0.0165 0.0107
18 0.0168 0.0469 0.0304
19 0.1077 0.1651 0.1349

Table C.15: Estimated Drift Parameters for Chromosome 15
The estimated value and 95% central credible intervals for c for each of the 20 periods of drift for
the 11 subpopulations in the HapMap dataset estimated by the bifurcating Nicholson�Donnelly
model applied to Chromosome 15.
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Genetic Drift Central 95% Credible Point Estimate
Along Edge Interval Bounds for

Genetic Drift, c
low high mean

0 0.0002 0.0025 0.0009
1 0.0032 0.0070 0.0050
2 0.0001 0.0014 0.0006
3 0.0007 0.0036 0.0021
4 0.0151 0.0290 0.0216
5 0.0083 0.0156 0.0118
6 0.0031 0.0080 0.0054
7 0.0134 0.0256 0.0191
8 0.0067 0.0146 0.0105
9 0.0002 0.0029 0.0012
10 0.0095 0.0152 0.0122
11 0.0008 0.0060 0.0030
12 0.0355 0.0508 0.0428
13 0.0151 0.0221 0.0183
14 0.1026 0.1399 0.1200
15 0.0013 0.0096 0.0045
16 0.0120 0.0221 0.0169
17 0.0176 0.0310 0.0239
18 0.0074 0.0282 0.0170
19 0.1278 0.1806 0.1534

Table C.16: Estimated Drift Parameters for Chromosome 16
The estimated value and 95% central credible intervals for c for each of the 20 periods of drift for
the 11 subpopulations in the HapMap dataset estimated by the bifurcating Nicholson�Donnelly
model applied to Chromosome 16.



Appendices 310

Genetic Drift Central 95% Credible Point Estimate
Along Edge Interval Bounds for

Genetic Drift, c
low high mean

0 0.0002 0.0036 0.0013
1 0.0024 0.0071 0.0047
2 0.0001 0.0011 0.0005
3 0.0004 0.0025 0.0013
4 0.0070 0.0183 0.0126
5 0.0043 0.0108 0.0074
6 0.0027 0.0068 0.0046
7 0.0071 0.0174 0.0119
8 0.0115 0.0203 0.0156
9 0.0026 0.00737 0.0048
10 0.0072 0.0120 0.0095
11 0.0034 0.0097 0.0064
12 0.0303 0.0438 0.0369
13 0.0171 0.0242 0.0205
14 0.1037 0.1384 0.1202
15 0.0055 0.0188 0.0118
16 0.0014 0.0108 0.0063
17 0.0157 0.0301 0.0224
18 0.0149 0.0423 0.0277
19 0.1186 0.1743 0.1452

Table C.17: Estimated Drift Parameters for Chromosome 17
The estimated value and 95% central credible intervals for c for each of the 20 periods of drift for
the 11 subpopulations in the HapMap dataset estimated by the bifurcating Nicholson�Donnelly
model applied to Chromosome 17.
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Genetic Drift Central 95% Credible Point Estimate
Along Edge Interval Bounds for

Genetic Drift, c
low high mean

0 0.0001 0.0023 0.0009
1 0.0013 0.0050 0.0030
2 0.0001 0.0011 0.0005
3 0.0005 0.0033 0.0017
4 0.0110 0.0225 0.0162
5 0.0073 0.0141 0.0105
6 0.0037 0.0080 0.0057
7 0.0072 0.0167 0.0119
8 0.0098 0.0183 0.0137
9 0.0029 0.0072 0.0050
10 0.0070 0.0116 0.0092
11 0.0009 0.0063 0.0034
12 0.0274 0.0388 0.0328
13 0.0105 0.0162 0.0132
14 0.0965 0.1290 0.1118
15 0.0009 0.0085 0.0039
16 0.0066 0.0153 0.0109
17 0.0123 0.0238 0.0179
18 0.0113 0.0347 0.0215
19 0.1026 0.1509 0.1255

Table C.18: Estimated Drift Parameters for Chromosome 18
The estimated value and 95% central credible intervals for c for each of the 20 periods of drift for
the 11 subpopulations in the HapMap dataset estimated by the bifurcating Nicholson�Donnelly
model applied to Chromosome 18.
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Genetic Drift Central 95% Credible Point Estimate
Along Edge Interval Bounds for

Genetic Drift, c
low high mean

0 0.0003 0.0038 0.0016
1 0.0016 0.0056 0.0034
2 0.0002 0.0019 0.0008
3 0.0002 0.0024 0.0009
4 0.0175 0.0337 0.0251
5 0.0071 0.0145 0.0106
6 0.0007 0.0051 0.0028
7 0.0102 0.0229 0.0162
8 0.0058 0.0143 0.0098
9 0.0004 0.0048 0.0023
10 0.0065 0.0117 0.0090
11 0.0009 0.0069 0.0037
12 0.0261 0.0408 0.0329
13 0.0106 0.0173 0.0136
14 0.0875 0.1243 0.1047
15 0.0004 0.0064 0.0024
16 0.0065 0.0162 0.0113
17 0.0120 0.0257 0.0184
18 0.0161 0.0463 0.0288
19 0.0771 0.1254 0.1003

Table C.19: Estimated Drift Parameters for Chromosome 19
The estimated value and 95% central credible intervals for c for each of the 20 periods of drift for
the 11 subpopulations in the HapMap dataset estimated by the bifurcating Nicholson�Donnelly
model applied to Chromosome 19.
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Genetic Drift Central 95% Credible Point Estimate
Along Edge Interval Bounds for

Genetic Drift, c
low high mean

0 0.0002 0.0025 0.0010
1 0.0028 0.0076 0.0051
2 0.0002 0.0024 0.0010
3 0.0016 0.0052 0.0032
4 0.0192 0.0344 0.0263
5 0.0031 0.0101 0.0064
6 0.0040 0.0089 0.0063
7 0.0124 0.0245 0.0182
8 0.0063 0.0150 0.0103
9 0.0010 0.0053 0.0028
10 0.0095 0.0154 0.0122
11 0.0028 0.0095 0.0059
12 0.0274 0.0410 0.0338
13 0.0089 0.0150 0.0119
14 0.1069 0.1490 0.1261
15 0.0003 0.0088 0.0031
16 0.0135 0.0238 0.0185
17 0.0131 0.0278 0.0199
18 0.0167 0.0557 0.0342
19 0.0951 0.1621 0.1269

Table C.20: Estimated Drift Parameters for Chromosome 20
The estimated value and 95% central credible intervals for c for each of the 20 periods of drift for
the 11 subpopulations in the HapMap dataset estimated by the bifurcating Nicholson�Donnelly
model applied to Chromosome 20.
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Genetic Drift Central 95% Credible Point Estimate
Along Edge Interval Bounds for

Genetic Drift, c
low high mean

0 0.0002 0.0059 0.0022
1 0.0017 0.0081 0.0047
2 0.0002 0.0025 0.0010
3 0.0003 0.0036 0.0017
4 0.0126 0.0298 0.0205
5 0.0086 0.0198 0.0140
6 0.0013 0.0080 0.0045
7 0.0196 0.0386 0.0284
8 0.0108 0.0224 0.0165
9 0.0006 0.0061 0.0030
10 0.0093 0.0175 0.0131
11 0.0010 0.0100 0.0047
12 0.0232 0.0411 0.0313
13 0.0126 0.0227 0.0173
14 0.0916 0.1414 0.1146
15 0.0002 0.0097 0.0032
16 0.0005 0.0091 0.0035
17 0.0054 0.0189 0.0118
18 0.0224 0.0743 0.0452
19 0.0632 0.1342 0.0963

Table C.21: Estimated Drift Parameters for Chromosome 21
The estimated value and 95% central credible intervals for c for each of the 20 periods of drift for
the 11 subpopulations in the HapMap dataset estimated by the bifurcating Nicholson�Donnelly
model applied to Chromosome 21.
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Genetic Drift Central 95% Credible Point Estimate
Along Edge Interval Bounds for

Genetic Drift, c
low high mean

0 0.0000 0.0019 0.0004
1 0.0027 0.0061 0.0044
2 0.0001 0.0009 0.0003
3 0.0003 0.0023 0.0012
4 0.0130 0.0218 0.0171
5 0.0078 0.0130 0.0103
6 0.0019 0.0051 0.0034
7 0.0159 0.0244 0.0201
8 0.0094 0.0152 0.0122
9 0.0027 0.0062 0.0044
10 0.0103 0.0144 0.0123
11 0.0013 0.0057 0.0035
12 0.0307 0.0405 0.0354
13 0.0157 0.0206 0.0180
14 0.1264 0.1576 0.1413
15 0.0002 0.0044 0.0017
16 0.0084 0.0148 0.0115
17 0.0142 0.0233 0.0186
18 0.0149 0.0363 0.0248
19 0.1064 0.1478 0.1263

Table C.22: Estimated Drift Parameters for Chromosome 22
The estimated value and 95% central credible intervals for c for each of the 20 periods of drift for
the 11 subpopulations in the HapMap dataset estimated by the bifurcating Nicholson�Donnelly
model applied to Chromosome 22.
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Results from Applying the

Admixture Models of Chapter 5 to

the HapMap Data

Tables D.1-D.31 contain the main parameter estimates and post predictive check-

ing tables for the models discussed in chapter 5.
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Table D.1: Parameter Estimates for the Model in Figure 5.6 at 100,000 iterations.

Bounds on 95% Credible Interval
Parameter lower upper Median

c0 0.0002 0.0016 0.0008
c1 0.0047 0.0073 0.0060
c2 0.0002 0.0011 0.0006
c3 0.0005 0.0019 0.0012
c4 0.0182 0.0257 0.0220
c5 0.0081 0.0121 0.0100
c6 0.0002 0.0012 0.0006
c7 0.0113 0.0168 0.0140
c8 0.0007 0.0035 0.0020
c9 0.0015 0.0041 0.0028
c10 0.0023 0.0047 0.0035
w11 0.1891 0.2107 0.1998
c12 0.0003 0.0125 0.0039
c13 0.0002 0.0026 0.0013
c14 0.0038 0.0072 0.0055
c15 0.1298 0.1527 0.1410
c16 0.0137 0.0202 0.0168
c17 0.0021 0.0143 0.0082
c18 0.0223 0.0367 0.0296
c19 0.0002 0.0016 0.0008
c20 0.0916 0.1168 0.1039
c21 0.0110 0.0144 0.0127
c22 0.0364 0.0434 0.0398
c23 0.0356 0.0529 0.0441

The table shows the posterior mean and 95% HPD intervals for the drift, c, and admixture, w,
parameters.
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Table D.2: Predictive p-values for Pairwise FST for Each Pair of Subpopulations Pro-
duced from Post Predictive Checking of the Model in Figure 5.6.
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Table D.3: Parameter Estimates for the Model in Figure 5.7 at 102,000 iterations.

Bounds of 95% Credible Interval
Parameter lower upper Median

c0 0.0002 0.0016 0.0008
c1 0.0051 0.0077 0.0064
c2 0.0001 0.0011 0.0005
c3 0.0004 0.0019 0.0012
c4 0.0083 0.0146 0.0113
c5 0.0082 0.0123 0.0103
c6 0.0002 0.0013 0.0006
c7 0.0001 0.0011 0.0005
c8 0.0006 0.0032 0.0018
c9 0.0012 0.0035 0.0023
c10 0.0023 0.0047 0.0035
c11 0.0035 0.0069 0.0052
c12 0.0418 0.0671 0.0541
w13 0.3374 0.4136 0.3784
c14 0.1442 0.2743 0.2019
c15 0.0002 0.0014 0.0006
c16 0.0801 0.1117 0.0953
c17 0.0224 0.0317 0.0269
c18 0.0052 0.0160 0.0101
w19 0.1921 0.2148 0.2033
c20 0.0003 0.0121 0.0041
c21 0.0002 0.0026 0.0013
c22 0.0048 0.0177 0.0113
c23 0.0012 0.0106 0.0056
c24 0.0876 0.1131 0.0998
c25 0.0111 0.0144 0.0127
c26 0.0367 0.0436 0.0402
c27 0.0362 0.0541 0.0448

The table shows the posterior mean and 95% HPD intervals for the drift, c, and admixture, w,
parameters.
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Table D.4: Predictive p-values for Pairwise FST for Each Pair of Subpopulations Pro-
duced from Post Predictive Checking of the Model in Figure 5.7
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Table D.5: Parameter Estimates for the Model in Figure 5.8 at 87,000 iterations

95% HPD Interval Bounds
Parameter lower upper Median

c0 0.0001 0.0015 0.0007
c1 0.0046 0.0073 0.0059
c2 0.0000 0.0009 0.0004
c3 0.0005 0.0020 0.0012
c4 0.0081 0.0123 0.0101
c5 0.0000 0.0010 0.0004
c6 0.0001 0.0010 0.0004
c7 0.0007 0.0035 0.0020
c8 0.0015 0.0041 0.0028
c9 0.0023 0.0049 0.0036
w10 0.3920 0.4843 0.4349
w11 0.1907 0.2144 0.2023
c12 0.0457 0.1166 0.0780
c13 0.0000 0.0013 0.0004
c14 0.0001 0.0122 0.0043
c15 0.0000 0.0027 0.0011
c16 0.0034 0.0071 0.0053
c17 0.0635 0.0968 0.0794
c18 0.0739 0.1082 0.0904
c19 0.0046 0.0191 0.0118
c20 0.0046 0.0221 0.0125
c21 0.0085 0.0378 0.0241
c22 0.0109 0.0145 0.0127
c23 0.0362 0.0433 0.0398
c24 0.0366 0.0561 0.0458
c25 0.0703 0.0970 0.0833

The table shows the posterior mean and 95% HPD intervals for the drift, c, and admixture, w,
parameters.
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Table D.6: Parameter Estimates for the Model in Figure 5.9 at 102,000 iterations

95% HPD Interval Bounds
Parameter lower upper Median

c0 0.0002 0.0016 0.0008
c1 0.0049 0.0075 0.0062
c2 0.0002 0.0011 0.0005
c3 0.0005 0.0019 0.0012
c4 0.0153 0.0225 0.0189
c5 0.0082 0.0121 0.0101
c6 0.0002 0.0012 0.0006
c7 0.0001 0.0017 0.0007
c8 0.0004 0.0033 0.0018
c9 0.0014 0.0038 0.0026
c10 0.0023 0.0047 0.0035
c11 0.0038 0.0072 0.0055
c12 0.1353 0.1594 0.1471
c13 0.0122 0.0190 0.0156
w14 0.5610 0.6812 0.6237
c15 0.0002 0.0024 0.0009
c16 0.1225 0.2917 0.1938
c17 0.0002 0.0041 0.0016
c18 0.0022 0.0146 0.0086
w19 0.1894 0.2117 0.2008
c20 0.0003 0.0116 0.0037
c21 0.0002 0.0026 0.0013
c22 0.0165 0.0317 0.0241
c23 0.0002 0.0048 0.0015
c24 0.0896 0.1154 0.1021
c25 0.0110 0.0143 0.0127
c26 0.0367 0.0437 0.0401
c27 0.0349 0.0531 0.0438

The table shows the posterior mean and 95% HPD intervals for the drift, c, and admixture, w,
parameters.
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Table D.7: Predictive p-values for Pairwise FST for Each Pair of Subpopulations Pro-
duced from Post Predictive Checking of the Model in Figure 5.9
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Table D.8: Parameter Estimates for the Model in Figure 5.10 after 100,000 iterations

95% HPD Interval Bounds
Parameter lower upper Median

c0 0.0002 0.0016 0.0008
c1 0.0049 0.0074 0.0061
c2 0.0002 0.0011 0.0005
c3 0.0005 0.0019 0.0012
c4 0.0198 0.0267 0.0232
c5 0.0080 0.0121 0.0101
c6 0.0002 0.0012 0.0006
c7 0.0002 0.0012 0.0005
c8 0.0005 0.0035 0.0020
c9 0.0014 0.0038 0.0026
c10 0.0023 0.0048 0.0035
w11 0.3621 0.4501 0.4019
c12 0.0960 0.1982 0.1462
c13 0.0001 0.0015 0.0007
w14 0.1898 0.2116 0.2007
c15 0.0002 0.0127 0.0039
c16 0.0003 0.0029 0.0014
c17 0.0036 0.0071 0.0053
c18 0.0030 0.0146 0.0083
c19 0.0553 0.0822 0.0682
c20 0.0715 0.1004 0.0856
c21 0.0017 0.0160 0.0093
c22 0.0152 0.0270 0.0213
c23 0.0001 0.0008 0.0004
c24 0.0110 0.0143 0.0127
c25 0.0365 0.0435 0.0399
c26 0.0878 0.1132 0.1003
c27 0.0360 0.0538 0.0446

The table shows the posterior mean and 95% HPD intervals for the drift, c, and admixture, w,
parameters.



Appendices 325

p
-v
a
lu
e

A
S
W

C
E
U

C
H
B

C
H
D

G
IH

J
P
T

L
W
K

M
E
X

M
K
K

T
S
I

Y
R
I

A
S
W

X
0
.8
1
6
5

0
.8
1
2
4

0
.7
9
2
5

0
.8
8
2
0

0
.7
0
8
5

0
.5
3
3
2

0
.2
5
3
0

0
.2
3
5
7

0
.4
8
3
6

0
.7
2
4
3

C
E
U

0
.8
1
6
5

X
0
.7
2
3
1

0
.9
9
1
2

0
.4
4
7
2

0
.9
0
2
9

0
.9
9
6
6

0
.1
4
7
2

0
.4
5
8
5

0
.6
1
1
8

0
.9
9
9
6

C
H
B

0
.8
1
2
4

0
.7
2
3
1

X
0
.1
4
2
7

0
.0
4
9
2

0
.2
5
6
1

0
.8
5
9
4

0
.3
2
9
4

0
.2
8
8
0

0
.8
6
7
4

0
.9
6
2
7

C
H
D

0
.7
9
2
5

0
.9
9
1
2

0
.1
4
2
7

X
0
.2
2
4
2

0
.6
9
1
8

0
.7
5
0
7

0
.6
2
1
2

0
.2
7
1
1

0
.9
9
3
3

0
.9
4
1
0

G
IH

0
.8
8
2
0

0
.4
4
7
2

0
.0
4
9
2

0
.2
2
4
2

X
0
.1
7
5
9

0
.9
6
3
2

0
.8
0
0
6

0
.4
0
8
4

0
.2
0
0
7

0
.9
9
4
9

J
P
T

0
.7
0
8
5

0
.9
0
2
9

0
.2
5
6
1

0
.6
9
1
8

0
.1
7
5
9

X
0
.8
0
5
1

0
.3
9
2
8

0
.2
5
0
8

0
.9
4
3
3

0
.9
6
3
2

L
W
K

0
.5
3
3
2

0
.9
9
6
6

0
.8
5
9
4

0
.7
5
0
7

0
.9
6
3
2

0
.8
0
5
1

X
0
.4
1
2
3

0
.0
8
0
9

0
.8
3
0
8

0
.2
4
5
7

M
E
X

0
.2
5
3
0

0
.1
4
7
2

0
.3
2
9
4

0
.6
2
1
2

0
.8
0
0
6

0
.3
9
2
8

0
.4
1
2
3

X
0
.0
1
2
9

0
.6
1
3
0

0
.7
1
9
8

M
K
K

0
.2
3
5
7

0
.4
5
8
5

0
.2
8
8
0

0
.2
7
1
1

0
.4
0
8
4

0
.2
5
0
8

0
.0
8
0
9

0
.0
1
2
9

X
0
.0
0
1
1

0
.8
1
8
2

T
S
I

0
.4
8
3
6

0
.6
1
1
8

0
.8
6
7
4

0
.9
9
3
3

0
.2
0
0
7

0
.9
4
3
3

0
.8
3
0
8

0
.6
1
3
0

0
.0
0
1
1

X
0
.9
4
3
0

Y
R
I

0
.7
2
4
3

0
.9
9
9
6

0
.9
6
2
7

0
.9
4
1
0

0
.9
9
4
9

0
.9
6
3
2

0
.2
4
5
7

0
.7
1
9
8

0
.8
1
8
2

0
.9
4
3
0

X

Table D.9: Predictive p-values for Pairwise FST for Each Pair of Subpopulations Pro-
duced from Post Predictive Checking of the Model in Figure 5.10
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Table D.10: Parameter Estimates Table of the Model in Figure 5.11 after 72,000 iter-
ations

95% HPD Interval Bounds
Parameter lower upper Median

c0 0.0002 0.0017 0.0008
c1 0.0052 0.0078 0.0065
c2 0.0002 0.0010 0.0005
c3 0.0004 0.0019 0.0012
c4 0.0080 0.0141 0.0110
c5 0.0082 0.0122 0.0102
c6 0.0001 0.0011 0.0005
c7 0.0001 0.0011 0.0005
c8 0.0060 0.0132 0.0097
c9 0.0002 0.0020 0.0009
c10 0.0022 0.0046 0.0033
w11 0.1939 0.2161 0.2042
c12 0.0002 0.0115 0.0037
c13 0.0002 0.0028 0.0013
w14 0.1905 0.2311 0.2109
c15 0.0333 0.1083 0.0693
c16 0.0017 0.0129 0.0077
w17 0.3443 0.4077 0.3772
c18 0.1497 0.2668 0.2038
c19 0.0001 0.0014 0.0006
c20 0.0036 0.0069 0.0052
c21 0.0401 0.0651 0.0524
c22 0.0819 0.1133 0.0973
c23 0.0216 0.0310 0.0262
c24 0.0005 0.0027 0.0015
c25 0.0040 0.0150 0.0096
c26 0.0046 0.0163 0.0106
c27 0.0030 0.0128 0.0074
c28 0.1066 0.1412 0.1235
c29 0.0110 0.0144 0.0127
c30 0.0037 0.0117 0.0078
c31 0.0717 0.1012 0.0859

The table shows the posterior mean and 95% HPD intervals for the drift, c, and admixture, w,
parameters.
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Table D.11: p-values for Pairwise FST for Each Pair of Subpopulations Produced from
Post Predictive Checking of the Model in Figure 5.11
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Table D.12: Parameter Estimates Table of the Model in Figure 5.12 after 100,000 iter-
ations

95% HPD Interval Bounds
Parameter lower upper Median

c0 0.0002 0.0013 0.0006
c1 0.0053 0.0079 0.0066
c2 0.0002 0.0011 0.0006
c3 0.0004 0.0019 0.0012
c4 0.0081 0.0144 0.0111
c5 0.0082 0.0123 0.0102
c6 0.0033 0.0058 0.0046
c7 0.0002 0.0012 0.0005
c8 0.0096 0.0142 0.0119
c9 0.0010 0.0034 0.0022
c10 0.0098 0.0126 0.0112
w11 0.3365 0.3994 0.3694
c12 0.1593 0.2813 0.2148
c13 0.0002 0.0013 0.0006
c14 0.0035 0.0069 0.0052
c15 0.0396 0.0640 0.0518
c16 0.0829 0.1142 0.0981
c17 0.0216 0.0305 0.0261
c18 0.0172 0.0249 0.0210
c19 0.0026 0.0124 0.0073
c20 0.1062 0.1341 0.1200
c21 0.0128 0.0161 0.0144
c22 0.0152 0.0211 0.0182
c23 0.0158 0.0308 0.0227

The table shows the posterior mean and 95% HPD intervals for the drift, c, and admixture, w,
parameters.
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Table D.13: p-values for Pairwise FST for Each Pair of Subpopulations Produced from
Post Predictive Checking of the Model in Figure 5.12
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Table D.14: Parameter Estimates Table of the Model in Figure 5.13 after 100,000 iter-
ations

95% HPD Interval Bounds
Parameter lower upper Median

c0 0.0002 0.0012 0.0006
c1 0.0051 0.0078 0.0064
c2 0.0002 0.0011 0.0006
c3 0.0005 0.0019 0.0012
c4 0.0239 0.0307 0.0272
c5 0.0078 0.0118 0.0098
c6 0.0034 0.0058 0.0046
c7 0.0003 0.0039 0.0019
c8 0.0100 0.0148 0.0123
c9 0.0011 0.0036 0.0023
c10 0.0097 0.0126 0.0112
c11 0.0041 0.0075 0.0058
c12 0.1340 0.1564 0.1449
c13 0.0068 0.0129 0.0098
c14 0.0260 0.0329 0.0293
c15 0.0154 0.0222 0.0187
c16 0.1073 0.1346 0.1205
c17 0.0127 0.0161 0.0143
c18 0.0149 0.0207 0.0177
c19 0.0172 0.0316 0.0241

The table shows the posterior mean and 95% HPD intervals for the drift, c, and admixture, w,
parameters.
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Table D.15: p-values for Pairwise FST for Each Pair of Subpopulations Produced from
Post Predictive Checking of the Model in Figure 5.13
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Table D.16: Parameter Estimates Table of the Model in Figure 5.14 after 100,000 iter-
ations

95% HPD Interval Bounds
Parameter lower upper Median

c0 0.0002 0.0013 0.0006
c1 0.0051 0.0077 0.0064
c2 0.0002 0.0011 0.0006
c3 0.0005 0.0019 0.0012
c4 0.0077 0.0178 0.0127
c5 0.0081 0.0120 0.0099
c6 0.0033 0.0058 0.0045
c7 0.0001 0.0016 0.0007
c8 0.0100 0.0147 0.0123
c9 0.0011 0.0036 0.0024
c10 0.0098 0.0127 0.0112
w11 0.2123 0.2673 0.2394
c12 0.1662 0.4374 0.2940
c13 0.0085 0.0249 0.0168
c14 0.0002 0.0052 0.0014
c15 0.0004 0.0062 0.0041
c16 0.1408 0.1642 0.1523
c17 0.0069 0.0139 0.0104
c18 0.0086 0.0161 0.0123
c19 0.0284 0.0396 0.0338
c20 0.1073 0.1352 0.1207
c21 0.0127 0.0161 0.0143
c22 0.0148 0.0206 0.0176
c23 0.0172 0.0322 0.0245

The table shows the posterior mean and 95% HPD intervals for the drift, c, and admixture, w,
parameters.
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Table D.17: p-values for Pairwise FST for Each Pair of Subpopulations Produced from
Post Predictive Checking of the Model in Figure 5.14
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Table D.18: Parameter Estimates Table of the Model in Figure 5.15 after 100,000 iter-
ations

95% HPD Interval Bounds
Parameter lower upper Median

c0 0.0002 0.0013 0.0006
c1 0.0030 0.0067 0.0050
c2 0.0002 0.0011 0.0006
c3 0.0004 0.0019 0.0011
c4 0.0079 0.0172 0.0123
c5 0.0081 0.0122 0.0101
c6 0.0034 0.0057 0.0045
c7 0.0002 0.0016 0.0006
c8 0.0098 0.0145 0.0121
c9 0.0010 0.0034 0.0022
c10 0.0098 0.0127 0.0112
w11 0.2048 0.2656 0.2355
c12 0.1048 0.3389 0.2121
c13 0.0090 0.0237 0.0161
w14 0.5093 0.5865 0.5474
c15 0.0268 0.0624 0.0439
c16 0.0002 0.0035 0.0011
c17 0.0002 0.0055 0.0015
c18 0.0003 0.0058 0.0036
c19 0.0825 0.1079 0.0951
c20 0.0551 0.0785 0.0666
c21 0.0003 0.0038 0.0017
c22 0.0117 0.0221 0.0169
c23 0.0435 0.0610 0.0520
c24 0.0796 0.1044 0.0917
c25 0.0127 0.0161 0.0143
c26 0.0149 0.0208 0.0179
c27 0.0167 0.0307 0.0234

The table shows the posterior mean and 95% HPD intervals for the drift, c, and admixture, w,
parameters.



Appendices 335

p
-v
a
lu
e

A
S
W

C
E
U

C
H
B

C
H
D

G
IH

J
P
T

L
W
K

M
E
X

M
K
K

T
S
I

Y
R
I

A
S
W

X
0

0
.0
0
9
7

0
.0
0
8
7

0
0
.0
0
6
3

0
.8
6
9
9

0
0
.9
6
0
5

0
0
.0
0
0
1

C
E
U

0
X

0
.4
3
3
1

0
.9
5
5
7

0
.7
2
2
8

0
.7
2
4
6

0
.9
9
8
0

0
.4
3
7
9

0
.7
4
1
1

0
.5
0
9
6

1

C
H
B

0
.0
0
9
7

0
.4
3
3
1

X
0
.1
3
6
9

0
.4
7
9
2

0
.2
2
4
5

0
.8
8
2
7

0
.4
1
5
7

0
.4
5
1
6

0
.6
1
8
9

0
.9
9
8
5

C
H
D

0
.0
0
8
7

0
.9
5
5
7

0
.1
3
6
9

X
0
.8
0
0
0

0
.6
8
9
9

0
.7
9
1
0

0
.7
1
3
8

0
.4
4
3
2

0
.9
5
8
4

0
.9
9
7
5

G
IH

0
0
.7
2
2
8

0
.4
7
9
2

0
.8
0
0
0

X
0
.6
5
4
8

0
.7
7
5
3

0
.5
1
8
4

0
.1
4
4
2

0
.6
3
0
9

0
.9
9
6
8

J
P
T

0
.0
0
6
3

0
.7
2
4
6

0
.2
2
4
5

0
.6
8
9
9

0
.6
5
4
8

X
0
.8
3
1
4

0
.4
8
3
9

0
.4
0
2
5

0
.7
9
3
8

0
.9
9
8
3

L
W
K

0
.8
6
9
9

0
.9
9
8
0

0
.8
8
2
7

0
.7
9
1
0

0
.7
7
5
3

0
.8
3
1
4

X
0
.8
3
8
2

0
0
.9
2
4
9

0
.5
6
9
5

M
E
X

0
0
.4
3
7
9

0
.4
1
5
7

0
.7
1
3
8

0
.5
1
8
4

0
.4
8
3
9

0
.8
3
8
2

X
0
.3
1
0
5

0
.8
3
5
2

0
.9
9
7
4

M
K
K

0
.9
6
0
5

0
.7
4
1
1

0
.4
5
1
6

0
.4
4
3
2

0
.1
4
4
2

0
.4
0
2
5

0
0
.3
1
0
5

X
0
.0
2
1
1

0
.9
4
8
7

T
S
I

0
0
.5
0
9
6

0
.6
1
8
9

0
.9
5
8
4

0
.6
3
0
9

0
.7
9
3
8

0
.9
2
4
9

0
.8
3
5
2

0
.0
2
1
1

X
0
.9
9
9
5

Y
R
I

0
.0
0
0
1

1
0
.9
9
8
5

0
.9
9
7
5

0
.9
9
6
8

0
.9
9
8
3

0
.5
6
9
5

0
.9
9
7
4

0
.9
4
8
7

0
.9
9
9
5

X

Table D.19: p-values for Pairwise FST for Each Pair of Subpopulations Produced from
Post Predictive Checking of the Model in Figure 5.15
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Table D.20: Parameter Estimates Table of the Model in Figure 5.16 after 100,000 iter-
ations

95% HPD Interval Bounds
Parameter lower upper Median

c0 0.0002 0.0016 0.0008
c1 0.0034 0.0068 0.0052
c2 0.0002 0.0011 0.0006
c3 0.0005 0.0019 0.0011
c4 0.0083 0.0180 0.0129
c5 0.0082 0.0122 0.0102
c6 0.0002 0.0012 0.0006
c7 0.0002 0.0016 0.0007
c8 0.0008 0.0037 0.0021
c9 0.0013 0.0037 0.0025
c10 0.0023 0.0049 0.0036
w11 0.2110 0.2725 0.2418
c12 0.1011 0.3383 0.2144
c13 0.0091 0.0244 0.0165
w14 0.5030 0.5843 0.5449
c15 0.0269 0.0674 0.0450
c16 0.0002 0.0033 0.0011
w17 0.1868 0.2094 0.1976
c18 0.0004 0.0153 0.0047
c19 0.0003 0.0029 0.0014
c20 0.0002 0.0049 0.0016
c21 0.0004 0.0059 0.0035
c22 0.0803 0.1075 0.0939
c23 0.0556 0.0808 0.0681
c24 0.0001 0.0030 0.0012
c25 0.0002 0.0128 0.0029
c26 0.0007 0.0177 0.0117
c27 0.0425 0.0601 0.0511
c28 0.0663 0.0889 0.0772
c29 0.0109 0.0143 0.0126
c30 0.0362 0.0432 0.0397
c31 0.0348 0.0516 0.0429

The table shows the posterior mean and 95% HPD intervals for the drift, c, and admixture, w,
parameters.
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Table D.21: p-values for Pairwise FST for Each Pair of Subpopulations Produced from
Post Predictive Checking of the Model in Figure 5.16
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Table D.22: Parameter Estimates Table of the Model in Figure 5.17 after 100,000 iter-
ations

95% HPD Interval Bounds
Parameter lower upper Median

c0 0.0002 0.0017 0.0008
c1 0.0032 0.0069 0.0052
c2 0.0002 0.0011 0.0006
c3 0.0004 0.0019 0.0011
c4 0.0082 0.0178 0.0131
c5 0.0082 0.0123 0.0102
c6 0.0002 0.0012 0.0006
c7 0.0002 0.0017 0.0007
c8 0.0059 0.0131 0.0096
c9 0.0002 0.0018 0.0008
c10 0.0023 0.0047 0.0034
w11 0.2100 0.2759 0.2433
c12 0.0996 0.3323 0.2138
c13 0.0090 0.0247 0.0166
w14 0.4998 0.5774 0.5373
c15 0.0280 0.0671 0.0467
c16 0.0002 0.0038 0.0013
w17 0.1890 0.2111 0.1996
c18 0.0002 0.0133 0.0037
c19 0.0003 0.0029 0.0014
w20 0.1937 0.2315 0.2130
c21 0.0344 0.1051 0.0680
c22 0.0025 0.0136 0.0080
c23 0.0002 0.0055 0.0023
c24 0.0002 0.0056 0.0028
c25 0.0791 0.1054 0.0922
c26 0.0504 0.0747 0.0625
c27 0.0002 0.0032 0.0013
c28 0.0006 0.0031 0.0019
c29 0.0003 0.0116 0.0030
c30 0.0005 0.0177 0.0109
c31 0.0487 0.0690 0.0585
c32 0.0838 0.1143 0.0986
c33 0.0109 0.0142 0.0125
c34 0.0038 0.0114 0.0074
c35 0.0684 0.0961 0.0818

The table shows the posterior mean and 95% HPD intervals for the drift, c, and admixture, w,
parameters.



Appendices 339

p
-v
a
lu
e

A
S
W

C
E
U

C
H
B

C
H
D

G
IH

J
P
T

L
W
K

M
E
X

M
K
K

T
S
I

Y
R
I

A
S
W

X
0
.8
2
8
4

0
.7
0
2
2

0
.6
7
6
8

0
.5
1
8
0

0
.5
6
7
5

0
.3
1
8
2

0
.4
0
9
8

0
.6
9
0
4

0
.5
6
8
8

0
.7
0
5
8

C
E
U

0
.8
2
8
4

X
0
.4
9
0
5

0
.9
6
6
7

0
.7
6
6
1

0
.7
6
3
7

0
.9
2
3
6

0
.4
9
9
5

0
.9
6
3
7

0
.3
2
2
7

0
.9
9
9
0

C
H
B

0
.7
0
2
2

0
.4
9
0
5

X
0
.1
4
1
7

0
.4
8
6
9

0
.2
2
4
2

0
.7
7
4
0

0
.4
2
6
1

0
.5
2
3
8

0
.6
4
7
9

0
.9
7
1
6

C
H
D

0
.6
7
6
8

0
.9
6
6
7

0
.1
4
1
7

X
0
.8
0
1
0

0
.6
7
4
6

0
.6
4
2
2

0
.7
1
9
1

0
.5
1
9
6

0
.9
6
3
7

0
.9
5
4
4

G
IH

0
.5
1
8
0

0
.7
6
6
1

0
.4
8
6
9

0
.8
0
1
0

X
0
.6
5
9
0

0
.2
8
4
6

0
.4
9
7
0

0
.2
5
5
3

0
.5
9
0
3

0
.8
3
6
3

J
P
T

0
.5
6
7
5

0
.7
6
3
7

0
.2
2
4
2

0
.6
7
4
6

0
.6
5
9
0

X
0
.7
0
5
8

0
.4
8
9
5

0
.4
6
2
3

0
.8
1
2
1

0
.9
7
0
1

L
W
K

0
.3
1
8
2

0
.9
2
3
6

0
.7
7
4
0

0
.6
4
2
2

0
.2
8
4
6

0
.7
0
5
8

X
0
.4
4
4
8

0
.1
8
4
2

0
.4
7
3
3

0
.2
8
7
3

M
E
X

0
.4
0
9
8

0
.4
9
9
5

0
.4
2
6
1

0
.7
1
9
1

0
.4
9
7
0

0
.4
8
9
5

0
.4
4
4
8

X
0
.3
7
7
9

0
.8
4
1
7

0
.9
1
0
5

M
K
K

0
.6
9
0
4

0
.9
6
3
7

0
.5
2
3
8

0
.5
1
9
6

0
.2
5
5
3

0
.4
6
2
3

0
.1
8
4
2

0
.3
7
7
9

X
0
.2
3
1
4

0
.9
1
6
2

T
S
I

0
.5
6
8
8

0
.3
2
2
7

0
.6
4
7
9

0
.9
6
3
7

0
.5
9
0
3

0
.8
1
2
1

0
.4
7
3
3

0
.8
4
1
7

0
.2
3
1
4

X
0
.9
3
9
9

Y
R
I

0
.7
0
5
8

0
.9
9
9
0

0
.9
7
1
6

0
.9
5
4
4

0
.8
3
6
3

0
.9
7
0
1

0
.2
8
7
3

0
.9
1
0
5

0
.9
1
6
2

0
.9
3
9
9

X

Table D.23: p-values for Pairwise FST for Each Pair of Subpopulations Produced from
Post Predictive Checking of the Model in Figure 5.17
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Table D.24: Parameter Estimates Table of the Model in Figure 5.18 after 100,000 iter-
ations

95% HPD Interval Bounds
Parameter lower upper Median

c0 0.0002 0.0016 0.0009
c1 0.0050 0.0076 0.0063
c2 0.0002 0.0011 0.0006
c3 0.0005 0.0019 0.0012
c4 0.0086 0.0180 0.0133
c5 0.0081 0.0120 0.0100
c6 0.0002 0.0012 0.0006
c7 0.0002 0.0015 0.0007
c8 0.0062 0.0132 0.0098
c9 0.0002 0.0017 0.0008
c10 0.0022 0.0046 0.0034
w11 0.2216 0.2763 0.2489
c12 0.1686 0.4149 0.2844
c13 0.0100 0.0256 0.0173
w14 0.1896 0.2108 0.2004
c15 0.0003 0.0135 0.0044
c16 0.0003 0.0027 0.0013
w17 0.1942 0.2329 0.2139
c18 0.0345 0.1073 0.0689
c19 0.0025 0.0130 0.0078
c20 0.0003 0.0059 0.0026
c21 0.0002 0.0058 0.0028
w22 0.1405 0.1639 0.1520
c23 0.0033 0.0107 0.0071
c24 0.0006 0.0031 0.0019
c25 0.0004 0.0114 0.0066
c26 0.0002 0.0101 0.0031
c27 0.0318 0.0448 0.0386
c28 0.1105 0.1460 0.1278
c29 0.0110 0.0142 0.0126
c30 0.0034 0.0111 0.0072
c31 0.0708 0.1000 0.0850

The table shows the posterior mean and 95% HPD intervals for the drift, c, and admixture, w,
parameters.



Appendices 341

p
-v
a
lu
e

A
S
W

C
E
U

C
H
B

C
H
D

G
IH

J
P
T

L
W
K

M
E
X

M
K
K

T
S
I

Y
R
I

A
S
W

X
0
.8
0
1
6

0
.7
7
9
9

0
.7
5
7
0

0
.4
6
7
3

0
.6
8
0
6

0
.3
3
0
5

0
.8
7
7
7

0
.6
9
8
1

0
.4
6
6
7

0
.7
0
8
3

C
E
U

0
.8
0
1
6

X
0
.6
9
9
8

0
.9
8
9
5

0
.8
2
5
4

0
.9
0
8
2

0
.9
0
2
3

0
.0
2
8
9

0
.9
5
5
8

0
.4
7
4
8

0
.9
9
8
8

C
H
B

0
.7
7
9
9

0
.6
9
9
8

X
0
.1
2
5
1

0
.5
2
8
4

0
.2
0
2
0

0
.7
2
6
7

0
.0
5
3
5

0
.5
1
9
3

0
.8
5
4
3

0
.9
6
2
2

C
H
D

0
.7
5
7
0

0
.9
8
9
5

0
.1
2
5
1

X
0
.8
2
2
9

0
.6
3
4
5

0
.5
8
2
3

0
.2
0
2
2

0
.5
0
2
3

0
.9
9
2
4

0
.9
4
0
0

G
IH

0
.4
6
7
3

0
.8
2
5
4

0
.5
2
8
4

0
.8
2
2
9

X
0
.7
2
1
6

0
.1
6
7
5

0
.2
2
9
7

0
.1
5
6
6

0
.6
5
6
9

0
.7
2
9
7

J
P
T

0
.6
8
0
6

0
.9
8
0
2

0
.2
0
2
0

0
.6
3
4
5

0
.7
2
1
6

X
0
.6
7
1
7

0
.0
9
0
6

0
.4
7
8
9

0
.9
4
7
9

0
.9
6
5
1

L
W
K

0
.3
3
0
5

0
.9
0
2
3

0
.7
2
6
7

0
.5
8
2
3

0
.1
6
7
5

0
.6
7
1
7

X
0
.9
2
4
8

0
.1
8
4
6

0
.3
6
2
3

0
.2
8
3
3

M
E
X

0
.8
7
7
7

0
.0
2
8
9

0
.0
5
3
5

0
.2
0
2
2

0
.2
2
9
7

0
.0
9
0
6

0
.9
2
4
8

X
0
.8
5
4
5

0
.3
1
7
0

0
.9
9
8
4

M
K
K

0
.6
9
8
1

0
.9
5
5
8

0
.5
1
9
3

0
.5
0
2
3

0
.1
5
6
6

0
.4
7
8
9

0
.1
8
4
6

0
.8
5
4
5

X
0
.1
5
2
5

0
.9
1
5
9

T
S
I

0
.4
6
6
7

0
.4
7
4
8

0
.8
5
4
3

0
.9
9
2
4

0
.6
5
6
9

0
.9
7
4
9

0
.3
6
2
3

0
.3
1
7
0

0
.1
5
2
5

X
0
.8
9
8
4

Y
R
I

0
.7
0
8
3

0
.9
9
8
8

0
.9
6
2
2

0
.9
4
0
0

0
.7
2
9
7

0
.9
6
5
1

0
.2
8
3
3

0
.9
9
8
4

0
.9
1
5
9

0
.8
9
8
4

X

Table D.25: p-values for Pairwise FST for Each Pair of Subpopulations Produced from
Post Predictive Checking of the Model in Figure 5.18
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Table D.26: Parameter Estimates Table of the Model in Figure 5.19 after 100,000 iter-
ations

95% HPD Interval Bounds
Parameter lower upper Median

c0 0.0002 0.0017 0.0008
c1 0.0031 0.0067 0.0051
c2 0.0002 0.0011 0.0006
c3 0.0004 0.0019 0.0012
c4 0.0110 0.0172 0.0141
c5 0.0081 0.0122 0.0101
c6 0.0002 0.0013 0.0006
c7 0.0002 0.0014 0.0006
c8 0.0061 0.0133 0.0097
c9 0.0002 0.0019 0.0009
c10 0.0023 0.0047 0.0035
w11 0.4828 0.5507 0.5165
c12 0.0481 0.0896 0.0669
c13 0.0002 0.0031 0.0011
w14 0.1872 0.2065 0.1968
c15 0.0003 0.0166 0.0055
c16 0.0003 0.0027 0.0013
w17 0.1947 0.2330 0.2144
c18 0.0342 0.1045 0.0674
c19 0.0030 0.0133 0.0081
c20 0.0037 0.0071 0.0053
c21 0.0695 0.0915 0.0804
c22 0.0402 0.0597 0.0497
c23 0.0002 0.0030 0.0012
c24 0.0007 0.0031 0.0019
c25 0.0002 0.0031 0.0011
c26 0.0373 0.0476 0.0424
c27 0.0264 0.0404 0.0334
c28 0.0941 0.1262 0.1100
c29 0.0108 0.0141 0.0124
c30 0.0030 0.0112 0.0072
c31 0.0675 0.0951 0.0809

The table shows the posterior mean and 95% HPD intervals for the drift, c, and admixture, w,
parameters.
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Table D.27: p-values for Pairwise FST for Each Pair of Subpopulations Produced from
Post Predictive Checking of the Model in Figure 5.19
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Table D.28: Parameter Estimates Table of the Model in Figure 5.20 after 100,000 iter-
ations

95% HPD Interval Bounds
Parameter lower upper Median

c0 0.0003 0.0023 0.0011
c1 0.0030 0.0069 0.0052
c2 0.0002 0.0011 0.0006
c3 0.0005 0.0019 0.0012
c4 0.0081 0.0174 0.0125
c5 0.0082 0.0122 0.0101
c6 0.0033 0.0057 0.0045
c7 0.0002 0.0016 0.0006
c8 0.0099 0.0179 0.0140
c9 0.0002 0.0021 0.0010
c10 0.0098 0.0127 0.0112
w11 0.2071 0.2691 0.2373
c12 0.0905 0.3406 0.2130
c13 0.0092 0.0238 0.0161
w14 0.5051 0.5797 0.5413
c15 0.0277 0.0661 0.0459
c16 0.0002 0.0033 0.0010
w17 0.1165 0.1583 0.1385
c18 0.0088 0.1385 0.0650
c19 0.0053 0.0160 0.0105
c20 0.0002 0.0058 0.0028
c21 0.0002 0.0055 0.0023
c22 0.0809 0.1066 0.0935
c23 0.0534 0.0775 0.0652
c24 0.0003 0.0037 0.0014
c25 0.0004 0.0027 0.0015
c26 0.0105 0.0215 0.0160
c27 0.0453 0.0637 0.0543
c28 0.0948 0.1249 0.1094
c29 0.0114 0.0148 0.0131
c30 0.0002 0.0044 0.0019
c31 0.0249 0.0427 0.0336

The table shows the posterior mean and 95% HPD intervals for the drift, c, and admixture, w,
parameters.
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Table D.29: p-values for Pairwise FST for Each Pair of Subpopulations Produced from
Post Predictive Checking of the Model in Figure 5.20
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Table D.30: Parameter Estimates Table of the Model in Figure 5.21 after 100,000 iter-
ations

95% HPD Interval Bounds
Parameter lower upper Median

c0 0.0002 0.0016 0.0008
c1 0.0029 0.0064 0.0048
c2 0.0002 0.0011 0.0006
c3 0.0004 0.0019 0.0012
c4 0.0129 0.0193 0.0160
c5 0.0081 0.0121 0.0101
c6 0.0002 0.0012 0.0006
c7 0.0001 0.0013 0.0006
c8 0.0008 0.0041 0.0024
c9 0.0015 0.0039 0.0027
c10 0.0024 0.0048 0.0036
w11 0.4922 0.5644 0.5290
c12 0.0427 0.0831 0.0615
c13 0.0002 0.0033 0.0010
w14 0.1846 0.2043 0.1947
c15 0.0002 0.0131 0.0046
c16 0.0003 0.0027 0.0013
c17 0.0037 0.0071 0.0054
c18 0.0724 0.0948 0.0835
c19 0.0433 0.0631 0.0530
c20 0.0002 0.0031 0.0014
c21 0.0002 0.0038 0.0013
c22 0.0347 0.0451 0.0399
c23 0.0225 0.0351 0.0288
c24 0.0757 0.0995 0.0873
c25 0.0108 0.0141 0.0125
c26 0.0357 0.0429 0.0392
c27 0.0357 0.0530 0.0440

The table shows the posterior mean and 95% HPD intervals for the drift, c, and admixture, w,
parameters.
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0

0
.3
3
5
1

0
.3
8
5
9

0
.3
6
7
9

0
.2
5
3
3

0
.3
4
2
1

0
.0
9
1
6

0
.0
4
3
1

X
0
.0
0
0
1

0
.8
4
1
3

T
S
I

0
.4
9
1
6

0
.5
1
5
3

0
.8
2
8
5

0
.9
9
0
1

0
.6
0
2
5

0
.9
2
5
9

0
.7
9
5
9

0
.8
3
8
1

0
.0
0
0
1

X
0
.9
2
2
3

Y
R
I

0
.7
4
0
4

0
.9
9
9
5

0
.9
7
7
4

0
.9
6
3
7

0
.9
8
8
3

0
.9
7
8
3

0
.2
4
4
8

0
.8
5
9
9

0
.8
4
1
3

0
.9
2
2
3

X

Table D.31: p-values for Pairwise FST for Each Pair of Subpopulations Produced from
Post Predictive Checking of the Model in Figure 5.21




