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Abstract 

 

 Intrinsic and innate immunity play pivotal roles in limiting the replication 

of invading viral pathogens. Intrinsic immunity is constitutive and mediated by 

pre-existing host cell restriction factors (e.g., promyelocytic leukemia-nuclear 

body (PML-NB) constituent proteins) which directly confer antiviral properties. 

On the other hand, innate immunity is inducible and upregulated in response to 

infection. Pattern recognition receptors (PRRs) (e.g., interferon gamma 

inducible protein 16 (IFI16)) sense pathogen-associated molecular patterns 

(PAMPs) and induce downstream signaling cascades leading to the induction of 

Interferon-stimulated gene (ISG) products that confer antiviral properties. These 

two arms of immunity represent the first line of intracellular defense to HSV-1 

infection. Indeed, rapid recruitment of intrinsic and innate immune factors to 

viral DNA (vDNA) has a significant bearing on the outcome of infection. However, 

the spatial and temporal regulation of this recruitment remains poorly defined 

due to the technical challenges associated with vDNA detection at multiplicities 

of infection (MOI) that do not saturate intrinsic host factors. Utilizing 5-Ethynyl-

2’-deoxyuridine (EdU) labeling of HSV-1 DNA in combination with click 

chemistry, we directly visualized input viral genomes under low MOI conditions 

(MOI of ≤ 3 PFU/cell) at 30-90 minutes post-addition of virus (mpi). This protocol 

is sensitive, specific, and compatible with indirect immunofluorescence (IF) 

staining protocols, providing a valuable assay to investigate the temporal 

recruitment of immune regulators to infecting vDNA. 

 

 Upon entry of vDNA into the nucleus, PML-NB associated restriction 

factors (e.g., PML, SP100, and Daxx) were rapidly recruited to infecting viral 

genome foci. This process occurred in a PML-dependent manner and led to 

genome entrapment and silencing within PML-NBs. Interestingly, genome 

entrapment was observed during both wild-type (WT) and ICP0-null mutant 

(ΔICP0) HSV-1 infection. During WT HSV-1 infection, ICP0 induced PML 

degradation and the dispersal of PML-NB restriction factors, highlighting the 

importance of ICP0 to release viral genomes entrapped within PML-NBs to 

stimulate the onset of lytic HSV-1 replication. During ΔICP0 HSV-1 infection, 
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vDNA remained stably entrapped within PML-NBs leading to a repression in viral 

gene expression and a restriction in plaque formation. Importantly, IFI16 was not 

stably recruited to vDNA entrapped within PML-NBs, and ISG expression was not 

induced under low MOI conditions that do not saturate PML-NB intrinsic host 

defenses. These data demonstrate that vDNA entry into the nucleus alone is not 

sufficient to stimulate the induction of innate immunity. 

 

 Saturation of intrinsic host defenses under high MOI conditions stimulated 

the stable recruitment of IFI16 to infecting viral genomes, and induced ISG 

expression in a PML-, IFI16-, and Janus-associated kinase (JAK)-dependent 

manner. The induction of this innate immune response was dependent on the 

onset of vDNA replication, as treatment of the infected cell monolayers with 

phosphonoacetic acid (PAA), a vDNA polymerase inhibitor, inhibited ISG 

induction in a dose-dependent manner. Unlike PML depletion, inhibition of JAK 

signaling failed to relieve the plaque formation defect of ΔICP0 HSV-1, but 

instead significantly enhanced virus yields. 

 

 Collectively, these data, for the first time, demonstrate a temporal and 

sequential induction of intrinsic and innate immunity during HSV-1 infection. 

Intrinsic immunity is induced within minutes of nuclear infection to restrict the 

initiation of viral gene transcription and the onset of lytic replication. Escape 

from this intrinsic repression and initiation of vDNA replication, which takes 

several hours, triggers the induction of innate immunity. ISG products establish 

an antiviral state within infected and neighboring uninfected cells to constrict 

viral propagation and limit the spread of infection. We identify dual roles for 

PML in the regulation of intrinsic and innate immunity to HSV-1 infection. 

However, these host defenses are counteracted by the viral ubiquitin ligase 

ICP0, which targets PML for degradation to promote vDNA release from PML-NBs 

in order to evade intrinsic viral genome silencing from the onset of nuclear 

infection. 
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1. Introduction 

 

When host cells are invaded by viruses, cells deploy multifaceted defense 

mechanisms to control infection and minimize the damage they may cause. 

These antiviral responses can be classified into three main branches of 

immunity: intrinsic, innate, and adaptive. Intrinsic immune responses refer to 

pre-existing cellular defenses conferred by proteins (host cell restriction factors) 

that can directly and immediately control viral replication. In contrast, innate 

and adaptive immune responses are conferred by proteins and cells that are 

induced and upregulated in response to infection (Hannoun et al. 2016, Scherer 

and Stamminger 2016, Yan and Chen 2012). 

 

Efficient restriction of invading viral pathogens relies on both constitutive 

and induced arms of host immunity. Viruses, however, have evolved multiple 

strategies to evade these immune defenses. The molecular basis of these viral-

host interactions has been extensively studied (Lanfranca et al. 2014, Orzalli and 

Knipe 2014, Zheng 2018, Bieniasz 2004, Boutell and Everett 2013, Yan and Chen 

2012). This literature review will focus on the mechanisms employed by host 

cells to control herpes simplex virus type 1 (HSV-1) infection, as well as the 

strategies employed by the virus to counteract these immune responses. 

Particular attention will be given to promyelocytic leukemia-nuclear body (PML-

NB) constituent proteins and Interferon γ-inducible Protein (IFI16) due to their 

key role in regulating intrinsic and innate immune responses during herpesvirus 

infection, respectively. The central role of the viral infected cell protein 0 

(ICP0) to evade these immune mechanisms during HSV-1 infection is also 

discussed. 

 

1.1. An overview of HSV-1 infection 

 

HSV-1 infection is a common viral infection. Worldwide, 3.7 billion people 

(< 50 years old) are infected with HSV-1. Virus transmission occurs via direct 
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contact with infected individuals who are shedding the virus (Fields et al. 2013). 

Vertical transmission from infected mothers to their children during pregnancy is 

another route for viral transmission, although rare (Baldwin and Whitley 1989). 

HSV-1 infection is usually asymptomatic or leads to mild symptoms (e.g., cold 

sores). However, it can also lead to severe or even life-threatening outcomes 

(e.g., encephalitis) (Whitley 2002, Terni et al. 1971, Binder 1977, Whitley et al. 

1984, Olson et al. 1967). Following primary infection and replication within 

epithelial cells, the virus is transported to the trigeminal ganglia of infected 

hosts where it establishes a life-long latent infection. Periodic viral reactivation 

causes episodes of recurrent disease and transmission to new hosts (Spruance 

1992, Ship et al. 1977, Segal et al. 1974). The frequency and severity of 

reactivation vary between individuals. Efficient antiviral drugs (e.g., acyclovir, 

famciclovir, and valacyclovir) are currently available (Coen 1990). However, 

HSV-1 drug-resistant strains have been reported (Frobert et al. 2014). Therefore, 

there is a need for novel anti-viral drugs or effective vaccines. 

 

1.2. Herpesviridae family 

 

HSV-1 belongs to the herpesviridae family that comprises more than 200 

members. Only nine of them can cause disease in humans (grouped as human 

herpesviruses; HHV). They are classified based on the genome structure, site of 

latent infection, pathogenesis and clinical manifestations into three subfamilies: 

(i) Alphaherpesvirinae which includes HHV-1, -2, and -3 (HSV-1, HSV-2, and 

varicella-zoster virus (VZV), respectively). (ii)  Betaherpesvirinae which includes 

HHV-5 (cytomegalovirus (CMV)), HHV-6A, HHV-6B, and HHV-7. (iii) 

gammaherpesvirinae which includes HHV-4 and HHV-8 (Epstein-Barr virus (EBV) 

and Kaposi sarcoma-associated herpesvirus, respectively) (Fields et al. 2013). 
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1.3. HSV-1 virion structure 

 

The HSV-1 virion is a spherical particle with an average diameter of 186 

nm (Figure 1) (Grunewald et al. 2003). It comprises four components: the core, 

capsid, tegument, and envelope. The core contains a linear double-strand (ds) 

DNA genome packaged as a toroid or spool (Furlong et al. 1972, Zhou et al. 

1999). However, this linear DNA is circularized rapidly after nuclear entry in the 

absence of protein synthesis (Poffenberger and Roizman 1985). Complete 

genome sequencing revealed that the HSV-1 strain 17 genome is 152,260 bp with 

68.3% guanine and cytosine and little variations between different strains. The 

viral genome consists of two elements: unique long (UL) and unique short (US) 

bracketed by inverted repeats ab and b’a’, and ac and c’a’, respectively 

(Wadsworth et al. 1975). The core is surrounded by an icosahedral (T=16) capsid 

which is composed of 162 capsomers (Schrag et al. 1989).The polyamines 

spermidine and spermine in the core neutralize the negative charge on viral DNA 

(vDNA) which allows proper folding of vDNA within the inner surface of the 

capsid (Gibson and Roizman 1971). Capsid assembly requires VP5, VP19C, VP21, 

pre-VP22a, VP23, VP24, and VP26 (Trus et al. 1996, Newcomb et al. 1996, 

Newcomb et al. 1999). Self-interaction of VP5-pre-VP22 complexes forms two 

types of capsomeres: pentons and hexons (Newcomb et al. 1993). VP26 forms a 

ring-like structure around the top of hexons (Trus et al. 1995, Zhou et al. 1995). 

The triplexes (1 copy of VP19C and two copies of VP23) link adjacent capsomeres 

generating a procapsid with a portal comprised of pUL6 through which vDNA 

enters and exists the capsid. Maturation of the procapsid is achieved by cleavage 

of pre-Vp22a by the VP24 viral protease (Desai et al. 1994, Gao et al. 1994). The 

area between the outer surface of the capsid and the undersurface of the 

envelope is called tegument. It is a highly unstructured element that forms in 

the cytoplasm as nuclear capsids are devoid of tegument. Newly assembled 

capsids undergo primary envelopment at the inner nuclear membrane, de-

envelopment at the outer nuclear membrane, and secondary envelopment at the 

trans-Golgi network and tubular membranes in order to acquire the tegument 

and envelope proteins (Ibiricu et al. 2011, Ibiricu et al. 2013, Owen et al. 2015, 

Duffy et al. 2006, Hollinshead et al. 2012). The tegument comprises more than 
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20 viral proteins identified by biochemical assays and proteomics analysis (Zhou 

et al. 1999, Roller and Roizman 1992, Loret et al. 2008). Tegument proteins 

regulate many aspects of viral infection, including entry into target cells, 

delivery of viral genome to the nucleus, transactivation and repression of viral 

genes, assembly and egress of progeny virions, and host immune evasion (Table 

1). The tegument is enclosed in the viral envelope which consists of a lipid 

bilayer with spike-like projections embedded in it. Thirteen glycosylated (gB-E, 

and gG-N) and, at least, two non-glycosylated (UL20 and Us9) envelope proteins 

have been identified. Glycoprotein projections embedded on the surface are 

particularly crucial for HSV-1 attachment to target cells. 

 

 

 

 

 

 

Figure 1. HSV-1 virion structure.  

The virion is composed of viral genome, capsid, tegument, and envelope. The viral 

genome is a linear dsDNA enclosed in the capsid. The tegument represents the area 

between the capsid and the envelope. The envelope is a lipid bilayer membrane with 

glycoprotein projections embedded in it (Fields et al. 2013). 
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Table 1. HSV-1 tegument proteins and their key functions during the viral 

replication cycle.  

Reviewed in (Kelly et al. 2009). 

Tegument 
protein 

Functions 

RL2 (ICP0) 
Transactivation of viral gene transcription and evasion of 

intracellular immunity 

RS1 (ICP4) Transactivation of viral gene transcription 

RL1 (ICP34.5) 
Neuro-virulence factor, evasion of intracellular immunity, and 

stimulation of host translation and vDNA replication 

Us2 Unknown 

Us3 

Stimulation of gB-mediated fusion, phosphorylation and 
dissociation of the tegument proteins from the nucleocapsid, 

promotion of anti-apoptotic activity, and regulation of nuclear 
egress and budding 

Us10 Unknown 

Us11 (US11) 
Packaging viral and cellular RNA into virions, and stimulation of 

host translation 

UL7 Regulation of mitochondrial function 

UL11 maturation and envelopment of capsids 

UL13 

Phosphorylation and dissociation of the tegument from the 
nucleocapsid, promotion of apoptosis, evasion of IFN-

dependent immunity, and regulation of nuclear egress and 
budding 

UL14 
Delivery of viral genome into the nucleus, enhancement of 
VP16 nuclear localization, and promotion of anti-apoptotic 

activity 

UL16 maturation and envelopment of capsids 

UL21 maturation and envelopment of capsids 

UL23 
(Thymidine 

kinase) 
Regulation of nucleotide metabolism and vDNA replication 

UL36 (VP1-2) 

Promotion of capsid motility along microtubules, delivery of 
viral genome into the nucleus, regulation of cellular 
posttranslational ubiquitination, and maturation and 

envelopment of capsids 
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UL37 
Regulation of immediate early (IE) gene transcription, 
promotion of capsid motility along microtubules, and 

maturation of capsids into enveloped virions 

UL41 (vhs) 
Suppression of host cell and viral protein synthesis, and evasion 

of intracellular immunity 

UL46 (VP11-12) 
Enhancement of VP16 transcriptional activity, and maturation 

and envelopment of capsids 

UL47 (VP13-14) 
Enhancement of VP16 transcriptional activity, packaging viral 

and cellular RNA into virions, and maturation and envelopment 
of capsids 

UL48 (VP16) 
Initiation of IE gene expression, and maturation and 

envelopment of capsids 

UL49 (VP22) 
Packaging viral and cellular RNA into virions, binding to 
histones and inhibition of nucleosome formation, and 

maturation and envelopment of capsids 

UL50 Regulation of nucleotide metabolism and vDNA replication 

UL51 Assembly of virions 

UL55 Unknown 

 

 

1.4. HSV-1 replication cycle 

 

1.4.1. Attachment, fusion, and nuclear delivery of viral genomes 

 

To start replication, the virus needs to first attach to cellular receptors. 

Several viral-host interactions have been identified during viral attachment: (i) 

the initial interaction between viral glycoprotein (gB and gC) and heparan 

sulfate glycosaminoglycans (Spear et al. 1992), and (ii) the interaction between 

HSV-1 gD and cellular nectin, herpesvirus entry mediator, or 3-O-sulfated 

heparin sulfate (Shukla et al. 1999, Warner et al. 1998, Geraghty et al. 1998). It 

is believed that the interaction between gD and its receptors leads to 

conformational changes of gH and gL, and activation of gB. These processes 

allow the fusion of the viral envelope with the cellular plasma membrane which 

mediates viral entry (Avitabile et al. 2007, Gianni et al. 2009, Satoh et al. 2008). 

In addition to direct fusion with the plasma membrane, endocytosis is another 
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pathway utilized by HSV-1 to enter into target cells (Lycke et al. 1988, Wittels 

and Spear 1991, Nicola et al. 2003, Nicola et al. 2005, Nicola and Straus 2004). 

Following viral entry into the cell, the de-enveloped nucleocapsid is transported 

to the nuclear pore through the microtubular network (Kristensson et al. 1986, 

Sodeik et al. 1997, Wolfstein et al. 2006, Radtke et al. 2010). The vDNA is 

released into the nucleus through nuclear pores without capsid dissociation 

(Miyamoto and Morgan 1971). The viral protein UL25 and host nuclear protein 

importin B play central roles in capsid interaction with nuclear pore complex and 

delivery of vDNA into the nucleus (Pasdeloup et al. 2009, Rode et al. 2011, 

Copeland et al. 2009). The viral proteins VP1-2, encoded by UL36, must also be 

cleaved to allow proper uncoating (Jovasevic et al. 2008). 

 

1.4.2. Viral gene expression and DNA replication 

 

The viral gene products are expressed in a temporal manner. They are 

classified as immediate-early (IE encoded by α genes), early (E encoded by β1 

and β2 genes), and late (L encoded by γ1 and γ2 genes) proteins (Honess and 

Roizman 1974, Honess and Roizman 1975). IE protein (ICP0, ICP4, ICP22, ICP27, 

and ICP47) expression is turned on by the virion-associated protein VP16, a 

tegument protein which dissociates from the capsid and localizes to the nucleus 

upon ejection of vDNA through the nuclear pores (Triezenberg et al. 1988). VP16 

forms a transcription complex containing host cell factor (HCF-1) and the 

octamer-binding protein (Oct-1) which, in turn, recruits Lysine-specific histone 

demethylase 1A (LSD1) to enable the transcription of the α gene promoters 

(Gerster and Roeder 1988, Herr 1998, Stern et al. 1989, Wysocka and Herr 2003, 

Liang et al. 2009). Additional binding between VP16 and other host 

transcriptional factors (e.g., TATA-binding protein (TBP) and TBP-associated 

factors) induces the formation of RNA polymerase II preinitiation complex at α 

gene promoters to stimulate their expression (Sampath and Deluca 2008). 

 

De novo Synthesis of α gene products promotes the expression of E and L 

viral genes. The IE protein ICP4 is an essential regulator for this process. ICP4 is 
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a vDNA-binding protein, and it serves as both a transactivator and repressor of 

viral gene expression depending on the target promoter (O'Hare and Hayward 

1985b, DeLuca and Schaffer 1985, Gelman and Silverstein 1985, O'Hare and 

Hayward 1985a). ICP4 mutants that failed to bind to vDNA stimulated a lower 

level of E and L protein expression (Shepard et al. 1989), but retained some 

transactivation activity, suggesting that ICP4 vDNA binding is not solely 

responsible for its transactivation properties (Shepard and DeLuca 1991). ICP4 

interacts with cellular transcription factors (e.g., TBP, transcription factor II B 

(TFIIB), TFIID, and the Mediator complex) which are required for RNA polymerase 

II-dependent viral gene transcription. These protein-protein interactions have 

significant effects on the ability of ICP4 to regulate viral gene expression (Smith 

et al. 1993, Lester and DeLuca 2011, Sampath and Deluca 2008). 

 

ICP27 is essential for viral replication, and the stimulation of E and L gene 

expression. ICP27 directly interacts with RNA polymerase II in the absence of 

vDNA synthesis (Zhou and Knipe 2002). Given that ICP27 binds to vDNA-binding 

proteins ICP4 and ICP8, it has been proposed that ICP27 recruits RNA polymerase 

II to vDNA to transactivate gene expression (Panagiotidis et al. 1997, Olesky et 

al. 2005). ICP27 also enhances the nuclear export of viral mRNA, and promotes 

their expression (Sandri-Goldin 1998, Fontaine-Rodriguez and Knipe 2008). 

 

ICP0 plays an important role in promoting the expression of E and L genes. 

ICP0 is not essential for this process but promotes the efficient onset of viral 

gene expression under low multiplicity of infection (MOI) conditions in a cell-

type dependent manner (Cai et al. 1993, Sacks and Schaffer 1987, Yao and 

Schaffer 1995). The importance of ICP0 in promoting viral gene expression and 

host immune evasion is discussed below (section 1.7.1.). 

 

The accumulation of E proteins provides the necessary components for 

triggering vDNA replication. Seven viral gene products have been shown to be 

essential for vDNA replication: the origin-binding protein UL9, vDNA polymerase 

catalytic subunit UL30 and its processivity factor UL42, the multifunctional 
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single-strand (ss) DNA-binding protein ICP8, and the helicase-primase complex 

(UL5, UL8, and UL52). vDNA replication starts at “prereplicative sites” adjacent 

to PML-NBs, and then forms larger vDNA replication compartments (Uprichard 

and Knipe 1997). vDNA replication involves two modes: (i) theta replication 

starts by binding of UL9 to one of the three replication origins (two OriS and an 

OriL) which begins unwinding and separation of dsDNA. This process is followed 

by the recruitment of ICP8 and the formation of replication complex (Weir et al. 

1989, Rabkin and Hanlon 1991, Olivo et al. 1988). dsDNA is further separated, 

and primers are synthesized by the helicase-primase complex (UL5, UL8, and 

UL52). Then, vDNA polymerase (UL30- UL42) is recruited to perform leading- and 

lagging-strand synthesis (Wu et al. 1988, Purifoy et al. 1977). (ii) theta 

replication then switches to a rolling circle mechanism generating long 

concatemers that are cleaved into unit-length monomers by the terminase 

complex (UL15, UL28, and UL33) during packaging into progeny virions (Rabkin 

and Hanlon 1990, Wilkinson and Weller 2003). vDNA replication in cooperation 

with IE protein ICP22 stimulates the expression of L proteins (Long et al. 1999, 

Rice et al. 1995, Advani et al. 2000, Advani et al. 2003). Following synthesis of L 

proteins, the nucleocapsid assembly and vDNA packaging are initiated. 

   

1.4.3. Nucleocapsid assembly and viral egress 

    

 Capsid assembly requires VP5, VP19C, VP21, pre-VP22a, VP23, VP24, and 

VP26 (Trus et al. 1996, Newcomb et al. 1996, Newcomb et al. 1999). Some of 

these capsid proteins cannot directly localize to the nucleus. They form 

complexes in the cytoplasm in order to enter the nucleus. VP5, the major capsid 

protein, is carried into the nucleus by scaffolding protein pre-VP22a. In the 

nucleus, VP5-pre-VP22 complexes undergo self-interaction forming two types of 

capsomeres (pentons and hexons) (Newcomb et al. 1993). VP26, the smallest 

capsid protein, forms a ring-like structure around the top of hexons (Trus et al. 

1995, Zhou et al. 1995). The triplexes (1 copy of VP19C and two copies of VP23) 

link adjacent capsomeres generating a procapsid with a portal comprised of 

pUL6. Maturation of the procapsid is achieved by cleavage of the scaffolding 
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protein (pre-Vp22a) by the VP24 viral protease (Desai et al. 1994, Gao et al. 

1994). Empty capsids containing scaffolding structures are formed at sites in 

proximity to vDNA replication compartment. This is followed by insertion of 

progeny DNA through the pUL6 portal into the capsids, cleavage of concatemers 

into unit-length monomers, and packaging of these monomers into the capsids 

(Newcomb et al. 2001, Yang et al. 2011, Yang and Baines 2006, Beard and Baines 

2004). 

 

 Viral egress is a complicated process because mature nucleocapsids are 

required to bud through nuclear membrane, transport through the cytoplasm, 

and fuse with the plasma membrane to release infectious progeny virions 

(Mettenleiter et al. 2009). The most widely accepted model for viral egress is 

the envelopment/de-envelopment/re-envelopment model (Mettenleiter et al. 

2013). Newly synthesized nucleocapsids bud at the inner nuclear membrane 

forming primary enveloped particles within the lumen of the nuclear envelope 

(primary envelopment). The nuclear egress is mediated by the nuclear egress 

complex which is composed of the phosphoprotein pUL31 and the integral 

membrane protein pUL34 (Chang and Roizman 1993, Roller et al. 2000, Reynolds 

et al. 2001, Newcomb et al. 2017, Bigalke et al. 2014). The pUL31 and pUL34 is 

associated with primary but not mature virions (Reynolds et al. 2002, Loret et al. 

2008). Following primary envelopment, primary enveloped particles fuse with 

the outer nuclear membrane releasing nascent capsids into the cytoplasm (de-

envelopment). In the cytoplasm, capsids acquire inner tegument proteins 

followed by a secondary envelopment in which outer tegument proteins and 

envelope glycoproteins are acquired via budding into the trans-Golgi network 

and tubular membranes (Ibiricu et al. 2011, Ibiricu et al. 2013, Owen et al. 2015, 

Duffy et al. 2006, Hollinshead et al. 2012). Mature virions are then released from 

the cell by exocytosis ready to attach to cellular receptors on non-infected 

neighbor cells, and the cycle continues. An overview of HSV-1 replication cycle is 

shown in Figure 2. 
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Figure 2. HSV-1 replication cycle. 

The virus attaches via glycoproteins to cellular receptors. It enters the cells via fusion 

of viral envelope with the plasma membrane or endocytosis. The de-enveloped 

nucleocapsid is transported to the nuclear pores, and the vDNA is ejected into the 

nucleus. The viral genes are transcribed in a temporal cascade: immediate early (IE), 

early (E), and late (L) proteins. IE protein expression is turned on by the virion-

associated protein VP16. E proteins require IE protein synthesis for their expression and 

play critical roles in triggering vDNA replication. Theta replication and rolling circle are 

two suggested mechanisms for vDNA replication. L protein expression is dependent on 

vDNA replication. The capsid is assembled at sites adjacent to vDNA replication 

compartments permitting the insertion of vDNA into the capsid. The nucleocapsid buds 

through nuclear membrane, transports through the cytoplasm, and fuses with the 

plasma membrane. During this journey, the nucleocapsid acquires tegument and 

envelope proteins. The release of mature progeny virions promotes attachment to new 

cells, and the cycle continues (Fields et al. 2013). 
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1.5. Viral latency 

 

Epithelial cells are the primary sites of HSV-1 lytic replication. The virus 

then gains access to the sensory neurons at the axonal termini followed by 

retrograde axonal transport of nucleocapsid to the neuronal nucleus where viral 

latency is established (Arthur et al. 2001, Camarena et al. 2010). The vDNA is 

circularized and associated with nucleosomal chromatin, leading to viral gene 

silencing with the exception of latency-associated transcripts (LATs) (Rock and 

Fraser 1983, Rock and Fraser 1985, Deshmane and Fraser 1989). Indeed, most of 

the lytic gene promoters are associated with heterochromatic marks (e.g., 

H3K27me3 and H3K9me3) during viral latency, rendering them transcriptionally 

inactive (Kwiatkowski et al. 2009). In contrast, LAT promoters are associated 

with acetylated histones during viral latency (Kubat et al. 2004). The expressions 

of LATs in addition to microRNAs have been shown to promote the loading of 

heterochromatin on lytic gene promoters required for lytic replication; 

demonstrating a pivotal role for LATS and microRNAs in the establishment of 

viral latency (Umbach et al. 2008, Mador et al. 1998, Cliffe et al. 2009, Wang et 

al. 2005). Host immunity also promotes the establishment and maintenance of 

viral latency. Prolonged and persistent cytokines and chemokines expression, 

and continued activation of CD8+ T cell have been reported in the latently-

infected neurons (Cantin et al. 1995, Cook et al. 2004, Halford et al. 1996, 

Khanna et al. 2003). HSV-1 can reactivate from latency in response to different 

stimuli including stress, exposure to UV irradiation, hyperthermia, and injuries 

and trauma (Sawtell and Thompson 1992, Laycock et al. 1991, Hill et al. 1978). 

During reactivation, LAT-associated histones are deacetylated while histones 

associated with viral lytic genes (e.g., ICP0) are acetylated promoting the onset 

of lytic replication (Du et al. 2011, Amelio et al. 2006). Reactivated virus 

travels, via anterograde axonal transport, to peripheral tissues at or near sites of 

primary infection (Penfold et al. 1994). The severity of reactivation ranges from 

shedding viruses in the absence of symptoms to severe and serious lesions. 
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1.6. Host immunity to HSV-1 infection 

 

Host cells possess many antiviral factors. Some of them are activated as 

soon as the virus attaches to the target cell, while others are triggered at 

different stages of infection. They can act directly and immediately to control 

the onset of infection, or confer antiviral activities indirectly by inducing 

signaling cascades and activating effector proteins. The molecular basis of this 

multifaceted system has been extensively studied during HSV-1 infection. In this 

section, the current understanding of all three branches of host immunity 

(intrinsic, innate, and adaptive) to HSV-1 infection is discussed. The 

ubiquitination and SUMOylation pathways are introduced first given the 

importance of these post-translational modifications in maintaining the 

integrity, localization, and functions of host immune factors as well as the fact 

that HSV-1 employs these modifications to counteract the effect of these 

factors. 

 

Ubiquitination: 

 

Ubiquitination involves a three-step enzymatic cascade leading to 

covalent attachment of a ubiquitin (Ub) molecule to a lysine residue of the 

target substrate (Figure 3). Ubiquitin is a small protein (8.6 kDa) that is 

translated as an inactive polyprotein which is then cleaved into monomers by 

the action of deubiquitinating enzymes (Ciechanover et al. 1980). Ubiquitin 

monomer is activated at its C-terminal glycine by E1-Ub activating enzyme 

forming E1-Ub thioester which is, then, transferred to E2-Ub conjugating enzyme 

(Ciechanover et al. 1981). In the third enzymatic step, E3-Ub ligase facilities and 

promotes the transfer of the E2-conjugated Ub to the substrate (Hershko et al. 

1983, Hershko et al. 1986). The conjugated Ub itself can be ubiquitinated at one 

of its seven lysine residues or N-terminal methionine forming a poly-ubiquitin 

chain on the target protein (Hershko and Heller 1985). Deubiquitinating enzymes 

can detach Ub from its substrate and, thereby, reverse the effect of 

ubiquitination (Hershko et al. 1980). Ubiquitination and deubiquitination are 
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widely utilized by hosts and viruses in order to modulate the stability, integrity, 

and function of their proteins including key intrinsic and innate immune 

regulators (Table 2). 

 

Figure 3. Ubiquitination pathway. 

Ubiquitination involves a three-step enzymatic cascade leading to covalent attachment 

of a ubiquitin (Ub) molecule to a lysine residue of the target substrate. Ubiquitin is a 

small protein (8.6 kDa) that is translated as an inactive polyprotein which is then 

cleaved into monomers by the action of deubiquitinating enzymes (Ciechanover et al. 

1980). Ubiquitin monomer is activated at its C-terminal glycine by E1-Ub activating 

enzyme forming E1-Ub thioester, which is then transferred to E2-Ub conjugating 

enzymes (Ciechanover et al. 1981). In the third enzymatic step, E3-Ub ligases promote 

the transfer of the E2-conjugated Ub to the substrate (Hershko et al. 1983, Hershko et 

al. 1986). Of note, Ub itself can be ubiquitinated at one of its seven lysine residues or 

N-terminal methionine forming a poly-ubiquitin chain on the target protein (Hershko 

and Heller 1985). Deubiquitinating enzymes can detach Ub from its substrate, thereby 

reverse the effect of ubiquitination (Hershko et al. 1980). Hosts and viruses widely 

utilize ubiquitination and deubiquitination to modulate the stability, integrity, and 

function of many immune regulators (Heaton et al. 2016, Davis and Gack 2015). 
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 SUMOylation: 

 

SUMOylation is the process of attaching a mature SUMO molecule to the 

target protein via a three-step enzymatic pathway (Figure 4). SUMO is a small 

protein (12 kDa) that is produced normally as an immature precursor (Mahajan et 

al. 1997, Matunis et al. 1996, Boddy et al. 1996, Shen et al. 1996, Okura et al. 

1996).  SUMO maturation upon truncation of the last four amino acids of its C-

terminus by SUMO-specific proteases (SENP) (Li and Hochstrasser 1999). This 

process reveals a diglycine motif required for efficient binding of SUMO to E1 

SUMO activating enzyme (SAE) (Desterro et al. 1999). SAE induces adenylation 

and processing of mature SUMO forming an E1-SUMO thioester which is, then, 

passed to the SUMO E2 conjugating enzyme Ubc9. UBC9 can directly and 

independently pass SUMO to the substrate (Lee et al. 1998, Schwarz et al. 1998). 

However, the contribution of E3 SUMO ligases to this pathway promotes 

specificity and enhances conjugation between the C-terminal glycine residue of 

SUMO and a lysine residue on the target protein (Kagey et al. 2003). SUMOylation 

can be reversed by the action of SENP which disrupts the isopeptide bond 

between SUMO and its target substrate leading to SUMO deconjugation (Li and 

Hochstrasser 1999). 

 

In human, 5 SUMO isoforms (designed as SUMO 1−5) have been identified. 

Mature forms of SUMO2 and SUMO3 demonstrate a great level (97%) of homology 

in amino acid sequence, and the current antibodies available cannot distinguish 

between these two isoforms. SUMO2/3 covalently attached to the target protein 

can be further SUMOylated leading to the formation of poly-SUMO chains 

(Tatham et al. 2001). SUMO1 shares only about 46% amino acid identity with 

SUMO2/3, and lack the ability to be SUMOylated (Kamitani et al. 1998a). Hence, 

it can only promote mono-SUMOylation, or alternatively terminates a poly-

SUMO2/3 chain. SUMO4 shares 86% sequence identity with SUMO 2/3 (Bohren et 

al. 2004). Unlike SUMO1 and SUMO2/3, SUMO4 and SUMO5 are expressed 

exclusively in specific types of human cells (Guo et al. 2004). SUMOylation plays 
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a key role in regulating the function and activity of many intrinsic and innate 

immune factors (Table 2). Moreover, some viruses including HSV-1 have been 

shown to manipulate some aspects of this pathway in order to evade host 

intracellular immunity and promotes viral replication. 

  

 

Figure 4. SUMOylation pathway. 

Small ubiquitin-like modifiers (SUMO) are activated by SUMO-activating enzymes 

(SAE1/2) (Desterro et al. 1999). Activated SUMO molecule is transferred to the SUMO E2 

conjugating enzyme Ubc9 which directly, or with the support of E3 SUMO ligases, 

conjugates SUMO onto the target substrate (mono-SUMOylation) (Lee et al. 1998, 

Schwarz et al. 1998, Kagey et al. 2003). The conjugated SUMO can also be SUMOylated 

to form poly-SUMO chains (poly-SUMOylation). SUMO specific protease (SENP) breaks the 

bond between SUMO and its target substrate leading to deSUMOylation (Li and 

Hochstrasser 1999). 
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Table 2. The role of post-translational modifications in regulating host 

immunity: 

Target PTM effect References 

IRF1 SUMOylation 
Represses its 

transcriptional activity 

(Nakagawa and 

Yokosawa 2002, 

Kim et al. 2008) 

IRF2 SUMOylation 
Represses its 

transcriptional activity 
(Han et al. 2008) 

IRF3 SUMOylation Enhances its antiviral role (Ran et al. 2011) 

IRF7 SUMOylation 
Negatively regulates IFN 

type I 

(Kubota et al. 

2008) 

RIG-I and 

MDA5 
SUMOylation 

Positively regulates IFN 

type I 

(Mi et al. 2010, Fu 

et al. 2011) 

PML, PKR, ad 

P35 
SUMOylation 

Required for their antiviral 

activity 

(de la Cruz-Herrera 

et al. 2014, 

Marcos-Villar et al. 

2013, Cuchet-

Lourenco et al. 

2011) 

TRAF6 Ubiquitination 

TLR signaling, T cell 

tolerance, and B cell 

development 

(Deng et al. 2000, 

King et al. 2006, 

Rowland et al. 

2007) 

TRIM25 Ubiquitination 
RIG-I signaling, and IFN 

type I production 
(Gack et al. 2007) 

TRAF2 and 3 Ubiquitination B cell development 
(Vallabhapurapu et 

al. 2008) 

LUBAC Ubiquitination IL-1β signaling 
(Tokunaga et al. 

2009) 
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1.6.1. Intrinsic immunity 

 

Intrinsic immunity is the first line of intracellular defense against viral 

pathogens. This arm of immunity is mediated by constitutively expressed host 

cell restriction factors that can directly and immediately act to control viral 

replication.  In the case of HSV-1 infection, the use of HSV-1 ICP0-null mutants 

(ΔICP0) has been extremely valuable for defining many aspects related to the 

regulation of intrinsic antiviral immunity. Compared to wild type (WT) HSV-1, 

ΔICP0 HSV-1 grows poorly under low MOI conditions (Stow and Stow 1986, Sacks 

and Schaffer 1987). This phenotype is both cell type- and MOI-dependent. 

Indeed, the replication defect of ΔICP0 HSV-1 ranges from severe (e.g., ~1000 

fold in fibroblast and keratinocytes) to intermediate (e.g., 30-100 fold in BHK 

and Vero cells) to almost absent (e.g., U2OS and SAOS) when compared to the 

replication of WT HSV-1 in these cells (Yao and Schaffer 1995, Everett et al. 

2004a). This has led to cells being described as restrictive or permissive based on 

their ability to support ΔICP0 HSV-1 replication. Given that U2OS cells fully 

complement the growth defect of ΔICP0 HSV-1, these cells are used to 

determine both WT and ΔICP0 HSV-1 titers (Yao and Schaffer 1995, Everett et al. 

2004a). 

 

Importantly, the intrinsic antiviral immunity in restrictive cell lines can be 

saturated at increased MOI (Everett et al. 2004a). A study conducted on human 

fibroblasts demonstrated that ΔICP0 HSV-1 under low MOI conditions (e.g., 0.2 to 

1 PFU/cell based on viral titer in U2OS) was able to initiate plaque formation 

only in a minor population of infected cells, with the majority of cells containing 

quiescent viral genomes (Everett et al. 2004a). Correspondingly, at equivalent 

genome input levels, gene expression of ΔICP0 HSV-1 were severely restricted in 

comparison to WT virus. However, at higher MOI (5 to 10 PFU/cell), the extent 

of ΔICP0 HSV-1 replication defect was reduced leading to WT level of replication 

(Everett et al. 2004a). 
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Collectively, these data demonstrate that intrinsic immunity renders some 

cell types non-permissive to HSV-1 infection in the absence of ICP0 and under 

low MOI conditions. Several intrinsic antiviral factors have been identified 

including PML-NB constituent proteins (PML, Sp100, Daxx, ATRX, and MORC3), E3 

SUMO ligases (PIAS1 and PIAS4), and interferon gamma inducible protein 16 

(IFI16) (Everett et al. 2006, Everett et al. 2008, Lukashchuk and Everett 2010, 

Conn et al. 2016, Brown et al. 2016, Sloan et al. 2016, Orzalli et al. 2013). 

 

1.6.1.1. PML-NB constituent proteins 

 

PML-NB constituent proteins (e.g., PML, SP100, Daxx, ATRX, and MORC3) 

are involved in many cellular processes, including the cell cycle, DNA damage 

response, DNA repair, apoptosis, and metabolism. In addition, they play vital 

roles in the regulation of intrinsic host immunity against several viruses (e.g., 

herpes-, retro-, papilloma-, adeno-, and parvoviruses (Dutrieux et al. 2015, 

Kahle et al. 2015, Mitchell et al. 2014, Reichelt et al. 2011, Stepp et al. 2013, 

Tavalai and Stamminger 2009). 

 

 Over two decades ago, a disappearance of PML-NBs following HSV-1 

infection was observed; a process that was linked to the expression of the viral 

IE protein ICP0 and the functional activity of its really interesting new gene 

(RING) finger domain (section 1.7.1.) (Maul and Everett 1994). Fluorescent in 

situ hybridization (FISH) experiments demonstrated that infecting HSV-1 

genomes localized adjacent to PML-NBs upon nuclear entry; suggesting a role for 

these bodies during viral infection (Maul et al. 1996). This phenotype was 

prominent in newly infected cells at the edge of developing plaques where an 

accumulation of dot-like complexes of ICP4 was observed in close proximity to 

PML-NBs (Everett et al. 2004b). These viral-induced complexes contained 

incoming viral genomes (Everett and Murray 2005). PML-NB constituent proteins 

(PML, SP100, Daxx, and ATRX) rapidly associated with these complexes and 

demonstrated a distinct asymmetric distribution from that observed in non-

infected cells (Everett et al. 2004b, Everett and Murray 2005). Although it was 
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initially unclear whether this phenotype reflected a beneficial or inimical effect 

on viral infection, it is now evident that PML-NB proteins play fundamental roles 

in the regulation of intrinsic antiviral defense to HSV-1 infection. 

 

1.6.1.1.1. PML (Promyelocytic leukemia protein) 

 

PML is the major scaffolding protein of PML-NBs. It belongs to the 

tripartite motif (TRIM) family of proteins that share conserved structural 

features, including an amino-terminal RING finger, one or two B boxes, and a 

coiled-coil domain (Duprez et al. 1999, Tao et al. 2008, Kastner et al. 1992) 

(Figure 5). There are several PML isoforms in humans which have common N-

terminal 418 amino acids but vary in carboxy-terminal domains as a consequence 

of alternative splicing (Jensen et al. 2001). PML isoforms are predominantly 

nuclear but can be cytoplasmic depending on the presence of nuclear 

localization signal (NLS). Different isoforms confer distinct functions (Jensen et 

al. 2001). All PML isoforms are highly modified by SUMO family of proteins. 

Studies identified several PML SUMOylation sites (K65, K160, K490, and K616), 

which are known to play key roles in modulating its function (Kamitani et al. 

1998b, Cuchet-Lourenco et al. 2011, Vertegaal et al. 2006, Galisson et al. 2011). 

SUMOylation of PML is also essential for maintaining the structural integrity of 

PML-NBs (Zhong et al. 2000). In response to stimuli, PML is also subjected to 

other forms of post-translational modification (e.g., phosphorylation and 

ubiquitination) which influences PML-NB stability and function (Cheng and Kao 

2012). 
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Figure 5. PML structure and isoforms. 

PML exists in different isoforms due to alternative splicing of its C-terminus. All isoforms 

contain a RING finger domain (R), two B-boxes (B), and a coiled-coil domain (CC) that 

are encoded by the first three exons. PML isoforms are mostly nuclear (PML.I-VI), but 

can be cytoplasmic (PML.VII), depending on the presence or absence of the nuclear 

localization signal (NLS) (Jensen et al. 2001). Several SUMOylation sites (K65, K160, 

K490, and K616) have been identified (Kamitani et al. 1998b, Cuchet-Lourenco et al. 

2011, Vertegaal et al. 2006, Galisson et al. 2011). All nuclear PML isoforms (with the 

exception of PML.IV) include exon 7a that encodes a SUMO-interacting motif (SIM) 

(Cuchet-Lourenco et al. 2011, Jensen et al. 2001). PML.I and PML.II are the most 

abundantly expressed among PML isoforms (Condemine et al. 2006). 
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During HSV-1 infection, PML and other PML-NB proteins relocalize to sites 

that are associated with viral genomes. This recruitment occurs rapidly as a 

consequence of viral genome entry into the nucleus, and independently of de 

novo viral protein expression (Everett and Murray 2005, Everett et al. 2007). 

Although recruitment could be detected during WT HSV-1 infection, it was more 

evident during ΔICP0 HSV-1 infection. Importantly, PML recruitment to ΔICP0 

HSV-1 genomes correlates with a repressive activity that impedes lytic 

replication (Everett et al. 2006). Depletion of PML from human fibroblasts by 

short-hairpin (sh) RNA has been shown to enhance plaque formation and viral 

protein expression of ΔICP0, but not WT, HSV-1. This study provided the first 

conclusive evidence that PML confers intrinsic antiviral immunity to HSV-1 

infection that is countered by the activity of ICP0 (Everett et al. 2006).  

 

PML recruitment to the infecting viral genomes is dependent on the 

SUMOylation pathway (Cuchet-Lourenco et al. 2011). PML isoforms (PML.I-V) 

associate with ICP4 foci, a proxy for viral genome localization, in a SUMO-

interacting motif (SIM)-dependent manner. Notably, PML.VI failed to associate 

with viral-induced foci due to a lack of exon 7a that contains the PML.SIM. 

Mutations of SIMs in PML.I and PML.IV influenced their recruitment to viral-

induced foci. Consistent with the correlation between PML recruitment to viral 

genomes and repressive activity, the relief of restriction of ΔICP0 HSV-1 in PML-

depleted cells was reversed following reconstitution of WT PML.I, but not PML.I 

SIM mutants (Cuchet-Lourenco et al. 2011). Similar to PML SIM mutants, PML.I 

and PML.IV carrying a single or multiple mutation(s) at major SUMOylation sites 

(K65, K160, K490, and K616) were less efficiently recruited to viral genome foci 

(Cuchet-Lourenco et al. 2011). Correspondingly, depletion of Ubc9, the sole 

SUMO E2 conjugating enzyme, impaired the recruitment of PML (and other PML-

NB restriction factors) to ΔICP0 HSV-1 genomes and enhanced plaque formation 

(Boutell et al. 2011). These studies collectively demonstrated a key role for host 

SUMOylation in the regulation of PML-NB mediated intrinsic antiviral immunity. 

Of note, the TRIM domains (B-box 1, the coiled-coil domain, and to lesser extent 

the RING finger domain) of PML also play important roles during PML recruitment 
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to infecting ΔICP0 HSV-1 genomes (Cuchet-Lourenco et al. 2011, Cuchet et al. 

2011). 

 

1.6.1.1.2. SP100 (Speckled protein of 100 kDa) 

 

SP100 shares many features with PML. For instance, SP100 is covalently 

SUMO-modified and highly localized at PML-NBs (Sternsdorf et al. 1997). It also 

contains A SIM (residues 323-326) and a major SUMOylation acceptor site (K297). 

SP100 exists in different isoforms due to alternative splicing which influences 

their functions (Kim et al. 2009, Sternsdorf et al. 1999, Guldner et al. 1999, 

Negorev et al. 2006). 

 

During HSV-1 infection, SP100 is rapidly recruited to sites associated with 

infecting viral genomes in a PML-independent manner (Everett et al. 2008, 

Everett et al. 2006). The presence of SIM, but not the major SUMO modification 

site, is required for the recruitment of SP100A (the most abundant isoform) to 

viral genomes (Cuchet-Lourenco et al. 2011). The recruitment phenotype of 

SP100 correlates with repression of viral gene expression (Everett et al. 2008). 

Indeed, SP100 depletion enhanced the plaque formation of ΔICP0, but not WT, 

HSV-1. Moreover, double depletion of PML and SP100 additively enhanced the 

plaque formation and gene expression of ΔICP0, demonstrating that each protein 

independently contributes to the repression of HSV-1 in the absence of ICP0 

(Everett et al. 2008). Importantly, simultaneous depletion of PML and SP100 was 

not sufficient to complement the plaque forming defect of ΔICP0 HSV-1 to WT 

levels; indicative of the presence of other cellular restriction factors (Everett et 

al. 2008). 
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1.6.1.1.3. Daxx (Human death-domain associated protein) and 

ATRX (Alpha-thalassemia mental retardation X-linked) 

 

 Daxx is a transcriptional repressor that physically interacts with several 

nuclear proteins. Daxx interacts with PML and localizes to PML-NBs. The 

presence of SUMO-modified PML is important for maintaining Daxx localization at 

PML-NBs (Li et al. 2000, Ishov et al. 1999). Daxx interacts with ATRX via its 

paired amphipathic helices (PAH1) domain forming an ATP chromatin-remodeling 

complex (Tang et al. 2004). Daxx-ATRX association mediates histone H3 variant 

(H3.3) loading at specific genomic locations (Xue et al. 2003, Goldberg et al. 

2010). Daxx, like other PML-NB constituent proteins, is subjected to post-

translational modifications that modulate its function (Hollenbach et al. 2002). 

 

Similar to PML and SP100, Daxx is recruited to sites associated with 

infecting viral genomes in a SIM-dependent manner (Lukashchuk and Everett 

2010, Glass and Everett 2013, Cuchet-Lourenco et al. 2011). Depletion of Daxx 

enhanced the plaque formation of ΔICP0, but not WT, HSV-1 (Lukashchuk and 

Everett 2010). The relief of restriction of ΔICP0 HSV-1 in Daxx-depleted cells was 

reversed following reconstitution of WT Daxx, but not Daxx SIM mutant, again 

highlighting a crucial role of host SUMOylation in mediating intrinsic immunity in 

response to HSV-1 infection (Cuchet-Lourenco et al. 2011). 

 

Daxx recruitment to viral genome foci occurs independently of PML and 

SP100 (Everett et al. 2006). Correspondingly, triple depletion of PML, SP100, and 

Daxx substantially enhanced the PFE of ΔICP0 HSV-1 (~100 fold) in comparison to 

single or double depleted cells (Glass and Everett 2013). These data suggested 

that PML-NB proteins act cooperatively, but independently, to impair viral 

infection. However, the additive effect of triple depletion was not enough to 

fully complement the lack of ICP0 (Glass and Everett 2013), again highlighting 

that additional restriction factors contribute to the repression of ΔICP0 HSV-1. 
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ATRX has also been identified as a PML-NB restriction factor (Lukashchuk 

and Everett 2010). However, the recruitment phenotype and repression activity 

of ATRX on ΔICP0 HSV-1 is dependent on its interaction with Daxx. Indeed, ATRX 

failed to localize to viral genome foci in Daxx-depleted cells. Reintroduction of 

WT Daxx, but not Daxx PAH1 mutant, in Daxx-depleted cells restored the 

recruitment phenotype and the efficient restriction of ΔICP0 HSV-1 (Lukashchuk 

and Everett 2010). These findings demonstrated that the interaction between 

ATRX and Daxx is essential for ATRX-mediated restriction of ΔICP0 HSV-1 

replication (Lukashchuk and Everett 2010).  

 

1.6.1.1.4. MORC3 (Microrchidia family CW-type zinc finger 3) 

  

MORC3 has been recently shown to restrict ΔICP0 HSV-1 replication. 

MORC3 is a nuclear matrix protein that belongs to the MORC family (Iyer et al. 

2008). Among the four family members (MORC1-4), MORC3 is considered as a 

PML-NB component protein. Indeed, MORC3 interacts with PML isoform I in a 

SUMO-SIM dependent manner (Mimura et al. 2010).  

 

During WT HSV-1 infection, the level of MORC3 is reduced by 

approximately 5.6 fold due to ICP0-mediated degradation of both SUMO-

modified and unmodified forms (Sloan et al. 2015, Sloan et al. 2016). During 

ΔICP0 infection, MORC3 was found to asymmetrically distribute and associate 

with the incoming vDNA in newly infected cells at the edge of developing 

plaques. These data raised the hypothesis that MORC3 mediates an intrinsic 

antiviral role against HSV-1. Depletion of MORC3 influenced the recruitment of 

PML-NB proteins (PML, SP100, and Daxx) to incoming viral genomes, and 

enhanced the plaque formation of ΔICP0 (~10-15 fold) in comparison to control 

cell lines (Sloan et al. 2016). This study demonstrated that MORC3 also confers 

intrinsic antiviral immunity to HSV-1; a process that is counteracted by ICP0 

(Sloan et al. 2016). 
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1.6.1.2. Protein Inhibitor of Activated STAT (PIAS) 1 and 4 

 

SUMOylation plays a key role in the rapid recruitment of host cell 

restriction factors to infecting viral genomes. De novo SUMO conjugates 

accumulate at sites of infecting ΔICP0 HSV-1 genomes, a process that stimulates 

the recruitment of PML-NB associated restriction factors (PML, SP100, and Daxx) 

in a SUMO-SIM dependent manner (Boutell et al. 2011, Cuchet-Lourenco et al. 

2011). Recently, SUMO E3 ligases belonging to the PIAS family have been shown 

to confer intrinsic immunity during HSV-1 infection (Conn et al. 2016, Brown et 

al. 2016). There are five types of PIAS (termed PIAS1, 2α, 2β, 3, and 4) which 

share several conserved domains and motifs, including SIM (Rytinki et al. 2009, 

Jackson 2001). PIAS1 is the only family member to be a constituent PML-NB 

protein (Brown et al. 2016). However, both PIAS1 and PIAS4 play critical roles in 

mediating the intrinsic antiviral response to HSV-1 infection (Brown et al. 2016, 

Conn et al. 2016). Plaque edge assays demonstrated that both PIAS1 and PIAS4 

were recruited to the infecting ΔICP0 HSV-1 genomes at the nuclear periphery of 

newly infected cells. As in the case of PML-NB restriction factors (PML, SP100, 

and Daxx), the recruitment of PIAS1 and PIAS4 to viral genomes occurs in a SIM-

dependent manner (Brown et al. 2016, Conn et al. 2016). Depletion of either 

PIAS1 or PIAS4 enhanced the plaque formation of ΔICP0, but not WT, HSV-1. 

Simultaneous co-depletion of both proteins (PIAS1 and PIAS4) further enhanced 

the plaque formation of ΔICP0 HSV-1 to a greater level than achieved by a single 

depletion. Moreover, co-depletion of PML and either PIAS1 or PIAS4 also 

additively enhanced the plaque formation of ΔICP0 HSV-1, demonstrating that 

each protein acts independently to restrict the replication of ΔICP0 HSV-1 

(Brown et al. 2016, Conn et al. 2016). 

 

1.6.1.3. Interferon Gamma Inducible Protein 16 (IFI16) 

    

 IFI16 is a member of the PYHIN (Pyrin domain and two DNA-binding 

hematopoietic interferon-inducible nuclear proteins with 200-amino acids repeat 
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(HIN-200) domains) family of proteins (Johnstone et al. 1998). Similar to PML-NB 

associated restriction factors, IFI16 puncta were localized to the viral-induced 

foci that contain ΔICP0 HSV-1 genomes at the nuclear periphery of newly 

infected cells in a pyrin domain-dependent manner (Cuchet-Lourenco et al. 

2013). The plaque formation efficiency, viral yields, and levels of gene 

expression of HSV-1 ICP0 mutants were enhanced in the absence of IFI16 

(Cuchet-Lourenco et al. 2013, Diner et al. 2016, Orzalli et al. 2013). 

Overexpression of IFI16 in U2OS or HEK293 cells reduced viral gene expression 

and replication. Importantly, this process occurred independently of IFN-

regulatory factor 3 (IRF3) and activation of interferon (IFN) production (Orzalli 

et al. 2013, Deschamps and Kalamvoki 2017b). 

 

Some mechanisms for IFI16-mediated intrinsic immunity have been 

proposed. IFI16 depletion negatively influenced the recruitment of PML and Daxx 

to incoming viral genomes; which may explain the relief of ΔICP0 HSV-1 

restriction in IFI16-depleted cells (Cuchet-Lourenco et al. 2013). It has also been 

proposed that IFI16 mediates viral genome silencing through heterochromatin 

formation, leading to the accumulation of repressive histone H3K9me3 and 

reduction of active H3K4me3 association on viral genomes (Orzalli et al. 2013, 

Johnson et al. 2014). Chromatin immune-precipitation (ChIP) analysis indicated 

that IFI16 also prevents the accumulation of cellular transcriptional factors 

(e.g., RNA polymerase II, TBP, and Oct) at HSV-1 promoters; a process that 

interferes with the initiation of viral transcription and the onset of lytic 

replication. (Johnson et al. 2014). Collectively, these data demonstrate that in 

addition to its key role in the induction of host innate immune response (as 

described below), IFI16 confers intrinsic antiviral defenses to HSV-1 infection. 
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1.6.2. Innate immunity 

 

Innate immunity, unlike intrinsic immunity, is induced and upregulated in 

response to viral infection. IFN, a family of proinflammatory cytokines, plays a 

central role in the regulation of innate immunity during HSV-1 infection. IFNs are 

classified into three main types (type I, II, and III) depending on the type of 

receptor utilized for signaling (Kotenko et al. 2003) (Table 3). Many cell types 

can produce more than one type of IFN. However, studies showed that some 

cells are predominantly responsible for specific types of IFN expression and 

secretion. For example, (i) leucocytes, macrophages, and dendritic cells (DCs) 

for IFNα, (ii) fibroblast and epithelial cells for IFNβ, and (iii) natural killer cells 

and activated CD8+ T-lymphocytes for IFNγ. In this section, the antiviral roles of 

different types of IFNs, sensing and detection of viral components, IFN signaling 

cascades, and induction of interferon-stimulated genes (ISGs) during HSV-1 

infection are reviewed. 

 

Table 3. IFN types and receptors 

 

Type of IFN Members Receptors 

Type I IFNα, β, ε, κ, and ω 
IFNα receptor 1 and 2 

(IFNAR1/2) 

Type II IFNγ 
IFNγ receptor 

(IFNGR) 

Type III 
IFNλ1, λ2, λ3 

(IL-28A, IL28B, and IL29) 

IL 28 receptor α (IL-28Rα) and IL-10 

receptor β (IL-10Rβ) 

   

1.6.2.1. Type I IFN response 

 

Type I IFN plays a critical antiviral role against HSV-1 infection. 

Historically, the resistance and susceptibility of different mouse strains to HSV-1 
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infection were linked to their abilities to induce type I IFN response (Lopez 1975, 

Gresser et al. 1976, Ellermann-Eriksen et al. 1986, Halford et al. 2004). 

Increased viral replication, severe pathogenesis, and reduced survival rates have 

been observed in mice lacking type I IFN receptors in comparison to WT controls 

(Leib et al. 1999, Luker et al. 2003). Several in vitro studies also highlighted the 

important role of type I IFN in controlling the replication, spread, and cytopathic 

effect of HSV-1 infection (Sainz and Halford 2002, Domke-Opitz et al. 1986, 

Rosato and Leib 2014). The induction of IFN response involves two phases: (i) 

Sensing of viral particles or viral replication products by pattern recognition 

receptors (PRRs) that leads to the production of IFN. (ii) Binding of the secreted 

IFN to its cognate receptors and subsequent activation of IFN-signaling cascades 

leading to the induction of ISGs that establish an antiviral state to control the 

spread of infection. 

  

1.6.2.2. Sensing and detection of HSV-1 by PRRs 

    

 The activation of phase I of the IFN response is dependent on the ability 

of PRRs to recognize pathogen-associated molecular patterns (PAMPs) during 

viral infection. Numerous PRRs have been identified (Table 4) (Paludan et al. 

2011, Knipe 2015, Orzalli and Knipe 2014). Many of them share the same 

signaling cascades and play redundant roles to mediate a robust antiviral 

response. Studies conducted on various herpesviruses have proposed that PRRs 

can recognize and sense virion components (e.g., viral glycoprotein and vDNA) as 

well as structures shown to be accumulated during viral replication (e.g., 

cytosolic dsRNA) (Paludan et al. 2011). The interaction between PRRs and their 

viral ligands leads to activation of TANK-binding kinase 1 (TBK-1) in fibroblasts or 

inhibitor of NFκB epsilon (IKKε) in immune cells (Fitzgerald et al. 2003, Sharma 

et al. 2003). These protein kinases induce the phosphorylation and activation of 

IRF3 and IRF7, which in cooperation with other transcription factors (e.g., 

NFκB), bind to IFN gene promoters and stimulate the secretion of type I IFN 

(Honda and Taniguchi 2006) (Figure 6). 
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Table 4. PRRs and proposed PAMPs in HSV-1 induced innate immunity 

 

PRR Proposed PAMP Reference 

cGAS Cytosolic vDNA 
(Almine et al. 2017, Sun et al. 

2013, Wu et al. 2013) 

DAI Cytosolic vDNA (Takaoka et al. 2007) 

DHX9/36 Cytosolic vDNA (Kim et al. 2010) 

IFI16 Cytosolic and nuclear vDNA 

(Almine et al. 2017, Ansari et al. 

2015, Bowie et al. 2017, Diner et 

al. 2015, Orzalli et al. 2012, 

Unterholzner et al. 2010, Horan et 

al. 2013) 

MDA5 dsRNA and cytosolic vDNA 

(Melchjorsen et al. 2010, 

Melchjorsen et al. 2006, Yoneyama 

et al. 2005, Choi et al. 2009) 

Pol III / RIG-I Cytosolic vDNA (Chiu et al. 2009) 

TLR2 Glycoprotein (Kurt-Jones et al. 2004) 

TLR3 dsRNA 
(Alexopoulou et al. 2001, Weber et 

al. 2006, Zhang et al. 2007) 

TLR9 vDNA in endosome 
(Lund et al. 2003, Krug et al. 2004, 

Ahmad-Nejad et al. 2002) 

 

cGAS, Cyclic guanosine monophosphate–adenosine monophosphate (cGAMP) 

synthase; DAI, DNA-dependent activator of interferon regulatory factors; DHX, 

DExD/H-box helicase; IFI16, interferon gamma inducible-16; MDA, melanoma 

differentiation-associated gene 5; Pol III, RNA polymerase III; RIG, Retinoic acid 

inducible gene; TLR, Toll-like receptor. 
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Figure 6.The first phase of IFN response. 

Host cells are equipped with several pattern recognition receptors (PRRs) that can 

recognize virion components (e.g., glycoprotein and vDNA) and structures accumulated 

during vDNA replication (e.g., dsRNA). PRRs signal through different pathways (e.g., 

IRF3, IRF7, and NF-κB) to induce cytokine (IFNα and β) and chemokine expression.  
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1.6.2.2.1. IFI16 is a key regulator of host innate immunity 

 

vDNA is one of the most potent inducers of host innate immunity. 

Following viral entry into the target cell, HSV-1 is exposed to a number of 

cytosolic DNA sensors (e.g., cGAS, DAI, DHX9/36, and MDA5). However, vDNA is 

protected by the capsid during cytoplasmic transport to the nuclear pore where 

vDNA is ejected into the nucleus. Hence, cytosolic DNA sensors have only a 

limited access to vDNA (Miyamoto and Morgan 1971, Pasdeloup et al. 2009, 

Komatsu et al. 2016). Thus, IFI16 has attracted significant attention due its 

ability to act as both a cytosolic and nuclear vDNA sensor during HSV-1 infection 

(Diner et al. 2015, Orzalli et al. 2012, Unterholzner et al. 2010, Horan et al. 

2013). 

 

1.6.2.2.2. IFI16 as a cytosolic vDNA sensor 

 

IFI16 was initially reported as a cytosolic DNA sensor in human monocytes 

(Unterholzner et al. 2010). It was directly associated with transfected DNA 

derived from HSV-1 genome leading to IFNβ production; a process that occurred 

in a stimulator of interferon genes (STING)-, TBK1-, and IRF3-depndent manner. 

Short-hairpin mediated depletion of IFI16, or its mouse ortholog p204, 

significantly inhibited IFNβ production in response to DNA transfection. Notably, 

stimulation of IFI16-mediated sensing was dependent on foreign DNA length and 

structure, but occurred independently of nucleotide content (Unterholzner et al. 

2010). During HSV-1 infection, colocalization between IFI16 and vDNA has been 

observed in the cytoplasm of human macrophages; a process that led to IFN 

production (Horan et al. 2013). It was proposed in this study that HSV-1 capsid 

proteins are targeted for degradation in the cytoplasm exposing the vDNA to 

IFI16-mediated sensing and subsequent IFN production (Horan et al. 2013). 
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1.6.2.2.3. IFI16 as a nuclear vDNA sensor 

 

Although IFI16 can be cytoplasmic in some cell types, it is predominantly 

localized to the nucleus of fibroblast, endothelial, and epithelial cells (Veeranki 

and Choubey 2012). A bipartite NLS that includes two motifs, termed motif 1 

(residues 96–100) and motif 2 (residues 128–131), have been identified as 

essential for IFI16 nuclear distribution (Li et al. 2012). Deletion of either motif 

leads to cytoplasmic localization of IFI16 (Li et al. 2012). 

 

In HSV-1 infected fibroblasts (MOI of ≥10 PFU/cell), a dynamic subnuclear 

redistribution of IFI16 has been observed (Everett 2015, Diner et al. 2016, 

Cuchet-Lourenco et al. 2013, Diner et al. 2015). As early as 30 minutes to 1 hpi, 

IFI16 puncta are transiently formed on the nuclear periphery in a pyrin-

dependent manner (Everett 2015, Diner et al. 2016). As infection progresses 

(approximately 3-4 hpi), IFI16 puncta were observed to assemble in the 

nucleoplasm of the infected cells. Soon after, these IFI16 signals were lost in WT 

HSV-1 infected cells but remained stable during ΔICP0 and ICP0 RING mutant 

infections (Diner et al. 2015, Cuchet-Lourenco et al. 2013). Correspondingly, 

infection of human fibroblasts with HSV-1 ICP0 mutants led to the induction of 

IFNβ production and ISG expression in an IFI16-dependent manner (Diner et al. 

2015, Diner et al. 2016, Orzalli et al. 2012). Importantly, blocking of vDNA 

release into the nucleus using tosyl phenylalanyl chloromethyl ketone (TPCK), a 

serine-cysteine protease inhibitor which blocks UL36 cleavage that is required for 

vDNA release, substantially inhibited the induction of IFNβ and ISG54 following 

infection; demonstrating that accumulation of vDNA in the nucleus of fibroblasts 

is required for IFI16-mediated induction of host innate immunity (Horan et al. 

2013, Orzalli et al. 2012). 
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1.6.2.2.4. Mechanism of action of IFI16 

 

IFI16 undergoes conformational changes after binding to the vDNA. IFI16, 

through its positively charged HIN domain, interacts with the sugar-phosphate 

backbone of dsDNA which primes the pyrin domain for activation. Subsequently, 

activated IFI16 translocates to the cytoplasm to activate the STING pathway and 

inflammasome formation (Jin et al. 2012). Re-localization of IFI16 to the 

cytoplasm after vDNA sensing has been proposed to occur through acetylation of 

the NLS of IFI16 by the acetyltransferase activity of p300 (Li et al. 2012, Ansari 

et al. 2015, Dutta et al. 2015). 

 

Recent studies have also proposed an interplay and cooperation between 

IFI16 and cGAS during vDNA sensing and induction of innate immunity (Almine et 

al. 2017, Bowie et al. 2017, Orzalli et al. 2015). cGAS has been shown to 

promote IFI16-mediated vDNA sensing by interacting with and mediating the 

stability of IFI16 (Orzalli et al. 2015). IFI16 in cooperation with cGAS also plays a 

crucial role in the phosphorylation of TBK-1 and IRF-3, recruitment of TBK-1 to 

STING complex, cGAMP production, and cGAMP-induced STING activation (Almine 

et al. 2017, Bowie et al. 2017).  Activated STING translocates from the 

endoplasmic reticulum (ER) to ER-Golgi intermediate compartments. STING then 

associates with TBK1 promoting IRF3 phosphorylation and nuclear translocation 

leading to IFNβ production and secretion. 

 

1.6.2.3. Type I IFN signaling 

 

In the second phase of the IFN response, binding of secreted IFN to its 

cognate receptors (IFNAR) activates Janus-associated kinase 1 (JAK-1) and 

tyrosine kinase 2 (TYK-2) that induce the phosphorylation and activation of 

signal transducers and activators of transcription 1 (STAT-1) and STAT-2 (Watling 

et al. 1993, Shuai et al. 1993b, Silvennoinen et al. 1993). The interaction 

between STAT1, STAT2, and IRF9 leads to the formation of IFN-stimulated gene 
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factor 3 (ISGF3) complex at ISG promoters that induces the expression of ISGs 

products (Figure 6) (Kessler et al. 1990, Fu et al. 1990). This process functions in 

both an autocrine and paracrine fashion to inhibit viral replication and to 

protect neighboring cells from infection (Figure 7).  

 

1.6.2.4. ISG-mediated antiviral response 

 

Relatively few ISG products have been identified to confer an antiviral 

response to HSV-1. An in vivo study suggested that the presence of ISG15, a 

ubiquitin-like molecule, is crucial for an efficient IFN-mediated host response to 

HSV-1 infection (Lenschow et al. 2007). Compared to WT mice, ISG15–deficient 

mice showed increased susceptibility to WT HSV-1 infection and decreased 

survival rates. However, the underlying mechanism for ISG15-mediated immunity 

remains to be determined (Lenschow et al. 2007). Other ISG products (e.g., 

viperin, tetherin, and zinc finger antiviral protein (ZAP)) have been shown to 

restrict HSV-1 infection, a process that is counteracted by vhs protein encoded 

by UL41 (Shen et al. 2014, Su et al. 2015, Zenner et al. 2013). Viperin and 

tetherin inhibit the release of virions from the plasma membrane, while ZAP 

targets viral mRNA for degradation. Ectopic expression or depletion of these 

proteins reduced or enhanced, respectively, the viral yield of UL41-null mutant 

but not WT HSV-1. UL41 encodes vhs protein, a viral protein that targets cellular 

mRNAs for degradation and thereby inhibits ISG expression (Shen et al. 2014, Su 

et al. 2015, Zenner et al. 2013). 2-5 Oligoadenylate synthetase (OAS) was also 

shown to confer antiviral immunity to HSV-1 infection, a process that is 

counteracted by the viral protein Us11 (Sanchez and Mohr 2007). Although these 

studies identified effector ISG products during HSV-1 infection, this area of 

research remains understudied and requires further investigations. 
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Figure 7. The second phase of IFN response. 

IFNα and IFNβ bind to their receptors (IFNAR) on the cell surface leading to the 

activation of the JAK-STAT pathway. Phosphorylated STAT1 and STAT2 bind to IRF9 to 

form ISGF3 which translocates to the nucleus to induce the expression of ISGs (e.g., 

viperin, tetherin, ZAP, OAS, ISG15, ISG54, and Mx1. 

 

 

 

STAT-2 

STAT-2 
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1.6.2.5. Other types of IFNs 

 

The production of IFNα and IFNβ upon initial infection of peripheral 

epithelial cells upregulates ISG expression and activates several types of immune 

cells (e.g., macrophages, natural killer (NK) cells, and DCs). Activated NK cells 

in addition to CD8+ T cells are predominantly responsible for IFNγ production 

(Djeu et al. 1982, Pasternack et al. 1984). Many lymphoid and non-lymphoid 

cells express IFNGR (Anderson et al. 1982, Orchansky et al. 1984). The type II IFN 

signaling cascade is triggered when IFNγ binds to IFNGR followed by the 

assembly of IFNγ-IFNGR-JAK1-JAK2 complex (Silvennoinen et al. 1993, Igarashi et 

al. 1994). Activation of JAK1 and JAK2 induce IFNGR phosphorylation and STAT1 

docking site formation (Greenlund et al. 1995). STAT1 molecules are first 

recruited to the complex, phosphorylated, dissociated, and translocated to the 

nucleus where they act as gene transactivators (Shuai et al. 1993a). 

 

Several studies highlighted the importance of IFNγ signaling pathway in 

controlling and minimizing the pathogenesis of HSV-1 infection during both lytic 

and latent infection. Mice lacking IFNGR were more susceptible to HSV-1 

infection and showed higher mortality rate than WT mice (Cantin et al. 1995). 

IFNγ itself can independently induce an antiviral state through ISG induction. 

Moreover, IFNγ synergizes with type I IFN during HSV-1 infection leading to a 

dramatic reduction in viral replication (Vollstedt et al. 2004, Sainz and Halford 

2002, Zerial et al. 1982). Mice lacking both IFNAR and IFNGR showed increased 

susceptibility to HSV-1 infection in comparison to mice lacking either one of the 

receptors individually (Luker et al. 2003). IFNγ is also known to link host innate 

and adaptive immune responses. It stimulates the expression of major 

histocompatibility complex (MHC) class I to enhance antigen presentation to 

CD8+ T cells, and thereby playing a key role in the maintenance of viral latency 

(Shaw et al. 1985). Mice lacking IFNGR have higher levels of viral gene 

expression during reactivation than WT mice (Cantin et al. 1999). Collectively, 

these studies have demonstrated that IFNγ plays crucial roles against HSV-1 

infection during both lytic and latent stages of infection. 
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Type III IFN (IFNλ1-3), the most recently discovered member of the IFN 

family, has unique receptors but shares the same signaling cascade with type I 

IFN (Kotenko et al. 2003). Few studies have investigated the role of IFNλ during 

HSV-1 infection. Patients with recurrent herpes labialis are associated with 

marked decrease in IFNλ levels in their peripheral blood mononuclear cells (Pica 

et al. 2010). Exogenous treatment of primary human astrocytes and neurons with 

IFNλ inhibited viral gene expression and viral protein synthesis by stimulating the 

induction of endogenous type I IFN production and ISG expression (Li et al. 

2011). In support of this hypothesis, it has been shown that the subset of 

plasmacytoid dendritic cells (pDCs) that can produce IFN-λ in response to HSV-1 

infection is associated with higher levels of IFN-α production in comparison to 

cells that do not produce IFN-λ (Yin et al. 2012). Overall, the underlying 

mechanism of IFN-λ-mediated antiviral immunity is far from being understood. 

 

1.6.3. Adaptive (humoral and cellular) immunity 

 

Humoral and cellular immunity also play key roles in controlling HSV-1 

infection. An early study demonstrated that transfer of serum containing anti-

HSV antibody protects susceptible mice from viral-induced stromal keratitis 

(Raizman and Foster 1988). An independent study showed that transfer of anti-

HSV serum to pharmacologically immunosuppressed mice subjected to lethal 

HSV-1 footpad inoculation fully protects them from mortality (Mitchell and 

Stevens 1996). B cell-deficient mice also showed enhanced vulnerability to 

develop encephalitis and keratitis following ocular inoculation with HSV-1 

(Deshpande et al. 2000). This phenotype can be a direct consequence of B cell 

deficiency but can also be linked to lack of efficient Th2 response as observed by 

impaired production of IL-4 and IL-10 in these mice. In contrast to these studies, 

another study supported the hypothesis that humoral immunity does not play an 

important role in immune protection against HSV-1 infection (Kuklin et al. 1998). 

Immunized mice that are genetically incapable of producing anti-HSV-1 

antibodies could survive and resist the infection to the same extent as WT mice, 
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while immunized mice deficient in CD4+ T cell demonstrated increased 

susceptibility to the infection (Kuklin et al. 1998). These apparent contradictions 

between studies can be due to experimental design, viral dose, route of 

infection, or mice strains used for experimentation. 

 

The antiviral role of T cells during HSV-1 infection is evident. Following 

antigen presentation mediated by MHC and DCs, naïve T cells are activated and 

differentiated. CD8+ T cells produce IFNγ to induce IL-12 to promote 

differentiation (Yoshida et al. 1994). CD8+ T cells exhibit cytolytic activity on 

cells lytically-infected with HSV-1 (Lawman et al. 1980, Rouse and Lawman 

1980). In the absence of CD8+ T cells, effector CD4+ T cells are sufficient to 

clear the infection from neuronal tissues of infected mice (Johnson et al. 

2008a). Establishment and maintenance of latency is another major antiviral role 

for CD8+ T cells (Liu et al. 2000). Indeed, IFNγ-producing CD8+ T cells persist 

during viral latency to reduce viral dissemination (Sheridan et al. 2009). 

 

Together, these studies demonstrate how the host employs a multifaceted 

approach to control HSV-1 infection. These antiviral mechanisms closely interact 

with each other in order to efficiently restrict HSV-1 replication and maintain 

viral latency. 
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1.7. HSV-1 strategies to counteract host immunity 

 

 HSV-1 has evolved multiple strategies to antagonize several aspects of 

host immunity, including evasion of PRR detection, modulation or blocking of 

immune signaling cascades, and interference with effector protein functions 

(Table 5). In this section, the central role of HSV-1 ICP0 in counteracting PML-NB 

mediated intrinsic immunity and innate immunity signaling is discussed. 

Table 5. HSV-1 proteins that counteract host innate immune response. 

Viral 

proteins 
Function Reference 

ICP0 Interferes with intrinsic and innate antiviral immunity 
(Boutell and Everett 2013, 

Lanfranca et al. 2014) 

vhs 
Induces vDNA sensors (IFI16 and cGAS) and ISGs 

(viperin, tetherin, and ZAP) degradation. 

(Orzalli et al. 2016, Shen 

et al. 2014, Zenner et al. 

2013, Su et al. 2015, Su 

and Zheng 2017) 

Us3 

Reduces the expression of TLR3, impedes TLR2 

signaling, hyper-phosphorylates IRF3 and inhibits its 

activation, prevent p65 nuclear translocation and NF-

κB activity 

(Peri et al. 2008, Sen et 

al. 2013, Wang et al. 

2013b) 

Us11 

binds to MDA5 and interferes with its downstream 

signaling, blocks ISG 2.5 oligoadenylate synthetase 

(OAS) activation  

(Xing et al. 2012, Sanchez 

and Mohr 2007) 

ICP34.5 Binds to TBK1 and disrupts its interaction with IRF3 (Verpooten et al. 2009) 

VP16 
Blocks the recruitment of IRF3 trans-activator CREB 

binding protein (CBP)  
(Xing et al. 2013) 

gM Interferes with tetherin antiviral activity (Blondeau et al. 2013) 

UL24 Inhibits cGAS-STING signaling pathway 
(Zhang et al. 2016, Xue et 

al. 2003) 

ICP27 
Interacts with TBK1 and STING, and interferes with 

cGAS-STING signaling pathway 
(Christensen et al. 2016) 

UL46 
interferes with cGAMP-dependent immune signaling 

pathway 

(Deschamps and 

Kalamvoki 2017a) 
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1.7.1. An overview of ICP0 

 

ICP0 is a multifunctional IE protein that plays a key role to enhance HSV-1 

lytic infection and reactivation from latency. It is encoded by IE-0 gene (also 

called α) that is located within the inverted repeats sequence ab and b’a’ 

(Wadsworth et al. 1975). Several functional domains and interacting motifs have 

been identified within ICP0 (Figure 8). The most important functional domain for 

ICP0 is the zinc-binding RING finger domain located in the N-terminal third 

between amino acids 116 to 156 within exon 2. Indeed, HSV-1 mutants that 

express catalytically inactive RING domain have equivalent replication defects to 

that of ΔICP0 HSV-1 (section 1.6.1.) (Everett 1989, Lium and Silverstein 1997, 

Everett et al. 2004a, Boutell et al. 2002, Vanni et al. 2012). The RING finger 

domain confers E3 ubiquitin ligase activity (Boutell et al. 2002, Vanni et al. 

2012, Diao et al. 2005, Parkinson and Everett 2001). ICP0 interacts with 

components of the ubiquitin pathway to conjugate ubiquitin onto the lysine 

residues of target proteins, promoting their 26S proteasome-dependent 

degradation. Importantly, many ICP0-targeted proteins are key regulators of 

host intrinsic and innate immunity (Figure 9). Targeting these immune factors by 

ICP0, directly or indirectly, provides a favorable environment for viral 

replication. 
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Figure 8. ICP0 structure and functional domains. 

ICP0 is 775 amino acids in size, and is encoded by IE-0 gene that is located within the 

inverted repeats sequence ab and b’a’ (Wadsworth et al. 1975). ICP0 is composed of 

three exons (1-19, 20-241, and 242-775 amino acids) (yellow), and two introns (765 and 

136 nucleotides) (grey) (Perry et al. 1986). Several functional domains and interacting 

motifs have been identified within ICP0. A zinc-binding RING finger domain (RING) is 

located within the N-terminal third of ICP0 (residues 116-156) (Barlow et al. 1994, 

Everett et al. 1993a). The C-terminal third contains a nuclear localization signal (NLS; 

residues 500-506), a ubiquitin-specific protease 7 (USP7)-binding motif (residues 618-

634), and sequences required for localization at PML-NBs (residues 634-719) (Everett 

1988, Mullen et al. 1994, Meredith et al. 1995, Maul and Everett 1994). Three major 

phosphorylation sites (P; 224-234, 365- 371 and 508-518) of ICP0 have been identified 

(Davido et al. 2005). ICP0 contains several SUMO Interaction Motif (SIM)-like sequences 

(SLS-1 to SLS-7) (Boutell et al. 2011). 
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Figure 9. Cellular proteins known to be targeted directly or indirectly by HSV-1 

ubiquitin ligase ICP0 for proteasome-dependent degradation. 

ICP0 employs multiple mechanisms to induce the degradation of host proteins during 

HSV-1 infection, including high molecular weight SUMO-conjugated proteins, PML-NB 

constituent proteins (PML.I, and SUMO-modified forms of PML and SP100), DNA repair 

proteins (RNF8, RNF168, and DNA-PKcs), centromere and kinetochore proteins (CENP-A, 

B, C, I, H, and N), de-ubiquitinating enzyme (USP7), transcriptional factors (IκBα, and 

E2FBP1). Reviewed in (Boutell and Everett 2013). 
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1.7.1.1. ICP0 counteracts PML-NB mediated intrinsic immunity 

 

 Several PML-NB constituent proteins (e.g., PML, SP100, Daxx, ATRX, 

MORC3, and PIAS-1) have been shown to restrict ΔICP0 HSV-1 replication (section 

1.6.2.). However, they failed to do so during WT HSV-1 infection due to the 

presence of ICP0. During the initial stages of infection, ICP0 localizes to PML-NBs 

prior to mediating their disruption (Everett and Maul 1994, Everett et al. 1998, 

Chelbi-Alix and de The 1999). PML and SP100, core constituent proteins of PML-

NBs, are among the first proteins identified as substrates for ICP0-mediated 

degradation (Chelbi-Alix and de The 1999, Everett et al. 1998). Recently, MORC3 

was also shown to be subjected to ICP0-mediated degradation. Other PML-NB 

restriction factors (e.g., Daxx, ATRX, and PIAS-1) are not degraded during WT 

HSV-1 infection, although the presence of ICP0 blocks their recruitment to 

infecting viral genomes and efficiently counteracts their repressive antiviral 

activity (Lukashchuk and Everett 2010, Brown et al. 2016). ICP0 employs 

multiple mechanisms to counteract the intrinsic repression mediated by PML-NB 

restriction factors. 

 

1.7.1.1.1. Mechanisms of PML-NB proteins targeting by ICP0 

 

 Proteomics have identified 124 proteins that showed reduction (≥ 3 fold) 

in levels of their SUMO-modified forms during HSV-1 infection, some of which are 

target substrates of ICP0 (e.g., PML and SP100) (Sloan et al. 2015). During the 

initial stages of infection, ICP0 localizes to SUMO1 and SUMO2/3 conjugates 

(including SUMO-modified PML and SP100) and preferentially targets them for 

proteasomal degradation in a RING finger-dependent manner (Boutell et al. 

2011). Indeed, ICP0 shares many features with SUMO-targeted ubiquitin ligases 

(STUbL); a family of enzymes that contain SIMs which mediates the interaction 

with SUMO-modified proteins (Boutell et al. 2011, Perry et al. 2008). Seven SIM-

like sequences (SLS1-7) have been identified within the ICP0 open reading frame 
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(Figure 7). SLS-4 has been shown to be necessary for the ICP0 interaction with 

SUMO2/3 and targeting of SUMO-modified forms of PML for degradation (Boutell 

et al. 2011, Everett et al. 2014). Moreover, multiple mutations within ICP0 SLSs 

(4-7) rescued SUMO-conjugated proteins from degradation and influenced ICP0 

ability to complement the plaque formation of ΔICP0 HSV-1, highlighting a key 

role for ICP0 STUbL-like activity in counteracting host intrinsic immunity (Boutell 

et al. 2011). 

  

 ICP0 also employs a SUMO-independent mechanism for PML targeting 

(Cuchet-Lourenco et al. 2012). It directly interacts with PML.I and induces its 

degradation. This process occurs independently of PML.I SIM and TRIM domains 

(the RING finger, B-Boxes and coiled-coil), and does not require ICP0 SLS4-7. 

Instead, ICP0-PML.I interaction is dependent on PML.I-specific exon 9 the N-

terminal half of ICP0 (Cuchet et al. 2011, Zheng et al. 2016). Recently, MORC3 

was identified as a target substrate for ICP0 (Sloan et al. 2016, Sloan et al. 

2015). During WT HSV-1 infection, a high degree of colocalization between ICP0 

and MORC3 was observed during the initial stages of infection prior to the 

degradation of SUMO-modified and unmodified MORC3. This process occurred in 

an ICP0 RING finger-dependent manner, but independently of SLS4-7. Whether 

ICP0 directly interacts with MORC3 remains to be determined. ICP0-mediated 

degradation of MORC3 not only counteracts MORC3-mediated intrinsic 

restriction, but also interfere with the recruitment of other PML-NB restriction 

factors (PML, SP100, and Daxx) to viral genomes (Sloan et al. 2016). 

 

Collectively, HSV-1 efficiently counteracts PML-NB mediated silencing of 

the viral genomes. The viral E3 ubiquitin ligase ICP0 employs SUMO-dependent 

and independent targeting to mediate the degradation and dispersal of host 

restriction factors away from viral genomes to promote the onset of lytic 

infection. 
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1.7.1.2. ICP0 interferes with the induction of host innate immunity 

 

 Several lines of evidence demonstrated an important role for ICP0 to 

inhibit innate immune signaling. Compared to WT virus, ΔICP0 HSV-1 exhibits 

hypersensitivity to IFN pre-treatment (Mossman et al. 2000). The presence of 

ICP0 has been shown to inhibit both IFN-induced and viral-induced ISG expression 

(Eidson et al. 2002, Mossman and Smiley 2002). Indeed, robust induction of ISGs 

was only observed during infection with HSV-1 mutants that failed to express 

ICP0 (Eidson et al. 2002). Multiple mechanisms for ICP0-mediated inhibition of 

innate immunity have been proposed, although it remains controversial whether 

ICP0 is directly required and sufficient for this process (Lanfranca et al. 2014, 

Cuchet-Lourenco et al. 2013, Everett and Orr 2009). ICP0 has been shown to 

induce the degradation of the vDNA sensor IFI16 in a RING-dependent manner 

(Orzalli et al. 2016, Orzalli et al. 2012). It has also been proposed that 

cytoplasmic ICP0 binds to IRF3 and its-binding partner CBP leading to the 

formation of the ICP0/IRF3/CBP nuclear complex. This interaction inhibits the 

dimerization and activation of IRF3, accelerates turnover of IRF3, and prevents 

ISG expression (Melroe et al. 2007, Paladino et al. 2010). ICP0 also interferes 

with NF-κB signaling pathway by different mechanisms (e.g., degradation of 

TLR2, degradation of p50, and blocking of p65 nuclear import) (van Lint et al. 

2010, Zhang et al. 2013). Collectively, these studies demonstrate that ICP0 

impedes the induction of host innate immunity during HSV-1 infection in addition 

to its key role in antagonizing intrinsic antiviral immunity. 
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Figure 10.  HSV-1 evasion of host IFN response. 

The virus employs several proteins and interferes with IFN pathway at multiple stages. The expression of ICP0, vhs, Us3, ICP34.5, UL24, and VP16 

directly or indirectly antagonize the function of PRRs, block the activation of downstream signaling cascades (IRF3, IRF7, and NF-B), and inhibits the 

secretion of IFN and IFNβ. The expression of UL41, gM, and Us11 counteract the antiviral effects of IFN-stimulated genes (ISGs) such as Veprin, ZAP, 

Tetherin, and OAS. 

Ul24 

STAT-2 
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1.8. Rationale and aim of this project 

  

Intrinsic (constitutive) and innate (inducible) antiviral responses play key 

roles during the intracellular restriction of HSV-1 infection. The viral protein 

ICP0 efficiently antagonizes these immune responses. Hence, ΔICP0 HSV-1 has 

been an important tool for defining many aspects related to the regulation of 

intracellular antiviral immunity. However, several questions remain unanswered 

with regards to how intrinsic and innate immune responses are regulated. For 

example, (1) are they simultaneously or temporally induced in response to 

infection, (2) do they impair viral infection at distinct stages of replication, and 

(3) does the permissiveness of certain cell types to ΔICP0 HSV-1 infection 

correlate with the lack of ability to mount efficient intrinsic or innate immune 

response in these cells? 

 

One of the main reasons why the temporal regulation of these two 

branches of immunity remains poorly defined is that most microscopy-based 

studies utilized to examine interactions between host immune factors and HSV-1 

have used indirect methods to detect vDNA (e.g., immuno-staining or 

fluorescent-tagging of vDNA binding proteins) (Everett 2013, Komatsu et al. 

2016). As this approach necessitates the onset of viral gene expression, it limits 

our understanding of the viral-host interactions that occur immediately upon 

nuclear entry prior to the expression of viral proteins which may displace host 

factors recruited or bound to viral genomes. Some studies have utilized direct 

methods for vDNA detection (e.g., FISH and Bromodeoxyuridine (BrdU)-labeling 

of vDNA). However, these experiments were conducted under high MOI 

conditions due to the technical difficulties associated with low genome copy-

number detection (Everett et al. 2007, Glauser et al. 2007, Jensen 2014). These 

experimental settings are suboptimal to study the regulation between intrinsic 

and innate immunity given that intrinsic immunity has a threshold of MOI above 

which this arm of immunity is saturated and no longer effective (section 1.6.1.) 

(Everett et al. 2004a). FISH and BrdU-labeling also require harsh denaturation 
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conditions and substantial sample processing which can be incompatible with IF 

staining of host factors. 

 

Hence, the main objectives of this project were as follows: 

(1) Develop and optimize a minimally invasive protocol to directly visualize vDNA 

under low MOI conditions that do not saturate intrinsic host defenses. 

(2) Investigate the temporal recruitment of intrinsic (PML-NB associated 

restriction factors) and innate immune (IFI16) factors to infecting viral genomes. 

(3) Evaluate the consequence of intrinsic and innate immunity induction on viral 

replication. 

(4) Assess whether intrinsic and innate antiviral responses to ΔICP0 HSV-1 

infection occurs in a cell type-dependent manner, rendering certain cell types 

more permissive to ΔICP0 HSV-1 infection. 
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2. Materials 

 

Table 6. Types of cells used in the study. 

 

Name Type 
Growth and maintenance 

media 

Growth and 

maintenance 

condition 

BHK 
Baby hamster kidney 

cells 

Glasgow modified Eagle's 

medium (GMEM) 

supplemented with 10% 

fetal calf serum (FCS), 10% 

tryptose phosphate broth, 

100 units/ml penicillin, and 

100 μg/ml streptomycin 

All cell lines 

were 

maintained at 

37ºC with 5% 

CO2. 

HaCaT 

A spontaneously 

transformed aneuploid 

immortal keratinocyte 

cell line from adult 

human skin 

Dulbecco's Modified Eagle 

Medium (DMEM) 

supplemented with 10% 

FCS, 100 units/ml 

penicillin, and 100 μg/ml 

streptomycin 

U2OS 

Human bone 

osteosarcoma 

epithelial cells 

SAOS 
Human bone 
osteosarcoma 
epithelial cells 

HEK-293t 

Human embryonic 
kidney cells 

immortalized by 
insertion of human 
telomerase reverse 

transcriptase (hTERT) 

Dulbecco’s modified Eagle’s 

medium supplemented with 

10% FCS, 0.5 µg/ml 

hygromycin, 100 units/ml 

penicillin, and 100 μg/ml 

streptomycin 

HFt 

Human foreskin 

fibroblasts 

immortalized hTERT 

RPE 

Retinal pigmented 

epithelial cells 

immortalized hTERT 
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Table 7. Cell culture media and chemicals commonly used throughout the 

study. 

 

Reagents name and 

abbreviations 
Provider Catalog or reference 

Bovine serum albumin 

(BSA) 
Sigma-Aldrich A3294 

Dimethyl sulfoxide 

(DMSO) 
Sigma-Aldrich D2650 

Dulbecco's Modified Eagle 

Medium (DMEM) 
Life Technologies 41966-029 

Ethylene glycol-bis(β-

aminoethyl ether)-

N,N,N',N'-tetraacetic 

acid(EGTA) 

BDH 28672 

Fetal Calf serum (FCS) Life Technologies 10270-106 

Formaldehyde Sigma-Aldrich f8775 

Giemsa VWR 350864X 

Glasgow's MEM (GMEM) Life Technologies 11710035 

DAPI Sigma-Aldrich D9542 

DL-Dithiothreitol  (DTT) Sigma-Aldrich D0632 

Dulbecco’s Phosphate 

Buffered Saline (PBS) 
Sigma-Aldrich D1408 

Glycine VWR 101196X 

HEPES Sigma-Aldrich H3375 

Human serum (HS) MP Biomedicals 2931149 

Lipofectamine® LTX with 

Plus™ Reagent 
Invitrogen 15338100 

Magnesium chloride 

(MgCl2) 
Sigma-Aldrich M8266 
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NP-40 Sigma-Aldrich 9016-45-9 

NuPAGE™ MES SDS 

Running Buffer 
ThermoFisher NP0002 

NuPAGE™ MOPS SDS 

Running Buffer 
ThermoFisher NP0001 

NuPAGE™ Transfer Buffer ThermoFisher NP0006-1 

Polybrene Sigma-Aldrich H9268 

Sodium Chloride (NaCl) VWR 27810.295 

Sodium dodecyl sulfate 

(SDS) 
VWR 442444H 

Sucrose Sigma-Aldrich S7903 

Triton X-100 Promega H5142 

True blue HRP substrate KPL 50-78-02 

Trypsin Life Technologies 15090-046 

Tryptose Phosphate 

Broth (TPB) 
Life Technologies 18050-039 

Tween 20 Bio-Rad 170-6513 

Urea Sigma-Aldrich U0631 

Versene E and O laboratories BM0400 

5-Ethynyl-2′-

deoxyuridine, (EdU) 
Sigma-Aldrich T511285 
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Table 8. Commonly used drugs, preparation, and storage. 

Name and 

abbreviation 

Provider and 

Catalog number 
Preparation 

Acycloguanosine 

(ACG) 

Sigma-Aldrich 

A4669 

 Suspended in Milli-Q H2O 

 Aliquoted and store at -20° C 

Hygromycin 
Invitrogen 

10687-010 
 Stored at 4° C  

Interferon alpha 

(IFNα) 

CALBIOCHEM 

407294 
 Aliquoted and store at -70° C 

Interferon beta 

(IFNβ) 

CALBIOCHEM 

407318 

 Suspended in Milli-Q H2O  

 Aliquoted and store at -70° C 

Interferon gamma 

(IFNγ) 

CALBIOCHEM 

407306 
 Aliquoted and store at -70° C 

Interferon lambda 

(IFNλ) 

SIGMA-ALDRICH 

284270 

 Suspended in 0.1% BSA 

 Aliquoted and store at -70° C 

Penicillin/streptom

ycin (P/S) solution 

Life Technologies 

15140122 

 

 Aliquoted and store at -20° C 

Phosphonoacetic 

acid (PAA) 

SIGMA-ALDRICH 

284270 

 Suspended in Milli-Q H2O 

 Aliquoted and store at -20° C 

Puromycin 
Sigma-Aldrich 

P8833 

 Suspended in Milli-Q H2O 

 Aliquoted and store at -20° C 

 Stock concentration: 5 μg/ml 

Ruxolitinib (Rux) 
Sellechchem 

S1378 

 Suspended in DMSO 

 Aliquoted and store at -20° C 
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Table 9. Plasmids. 

 

Plasmid Description Source 

pVSV-G 
Vector used for expression of vesicular 

stomatitis virus envelope protein 
BD Biosciences 

pCMV delta 
R.8.91 

Lentivirus helper vector that contains 
reverse transcriptase polymerase (pol), 
capsid protein (gag), regulatory proteins 

(Rev), and CMV promoter 

A gift from 
Didier Trono 

(Addgene 
plasmid # 

12263) 

shCtrl 
Plasmids encoding short hairpin RNA 

against a non-targeted control sequence 
(5’-TTATCGCGCATATCACGCG-3’) 

 

pLKO-shPML 
Plasmids encoding short hairpin RNA 

against PML 
(5’-AGATGCAGCTGTATCCAAG-3’) 

(Everett et al. 
2006) 

pLKO-shIFI16 
Plasmids encoding short hairpin RNA 

against IFI16 
(5’-CCACAATCTACGAAATTCA-3’) 

(Cuchet-
Lourenco et al. 

2013) 
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Table 10. List of primary antibodies. 

 

Antibody Species Provider 
Dil. used 
in WB* 

Dil. used 
in IF* 

Actin Rabbit Sigma, A5060 1:1000 N/A 

Daxx Rabbit Upstate, 04-445 1:500 1:500 

ICP0 (11060) Mouse (Everett et al. 1993b) 1:10000 1:1000 

ICP4 (58S) Mouse (Showalter et al. 1981) 1:500 N/A 

ICP4 Mouse Abcam, ab6514 N/A 1:1000 

IFI16 Mouse Abcam, ab55328 N/A 1:1000 

IFI16 Mouse Santa Cruze, sc-8023 1:250 N/A 

ISG15 Rabbit ProteinTech, 15981-1-AP 1:1000 1:500 

ISG54 Rabbit ProtienTech, 12604-1-AP 1:1000 N/A 

Mx1 Rabbit Santa Cruze, sc-50509 1:300 N/A 

Mx1 Rabbit ProteinTech, 13750-1-AP N/A 1:500 

PML Rabbit 
Bethyl Laboratories, 

A301-167A 
1:2000 1:1000 

PML Mouse Abcam, ab96055 N/A 1:1000 

SP100 Mouse GeneTex, GTX131569 N/A 1:500 

VP5 (DM165) Mouse (McClelland et al. 2002) 1:500 N/A 

 

 * dil (dilution), WB (western blot), IF (immune-fluorescence staining). 
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Table 11. List of secondary antibodies used. 

 

Antibody Origin 
Provider, Catalog 

Number 

Assay and 

dilution 

Rabbit IgG (H+L) 

Alexa-Flour 488 
Donkey 

Life Technologies, 

A21206 

Immuno-

fluorescence (IF) 

staining 

(1/1000) 

Rabbit IgG (H+L) 

Alexa-Flour 647 
Donkey 

Life Technologies, 

A31573 

Mouse IgG (H+L) 

Alexa-Flour 488 
Donkey 

Life Technologies, 

A21202 

Mouse IgG (H+L) 

Alexa-Flour 647 
Donkey 

Life Technologies, 

A31571 

Rabbit IgG (H+L) 

DyLight 680 
Goat 

Thermo Scientific, 

35568 

Western blot 

(1/5000) 

Rabbit IgG (H+L) 

DyLight 800 
Goat 

Thermo Scientific, SA5-

35571 

Mouse IgG (H+L) 

DyLight 680 
Goat 

Thermo Scientific, 

35518 

Mouse IgG (H+L) 

DyLight 800 
Goat 

Thermo Scientific, SA5-

35521 

Anti-Mouse IgG–

Peroxidase antibody 
Goat Sigma-Aldrich, A4416 

Immuno-staining 

plaque assay 

(1/1000) 
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Table 12. List of primers/probes used. 

Primer/Probe Catalog number (assay ID) Provider 

GAPDH 4333764F 

ThermoFisher 

PML (4331182) HS00231241_m1 

ISG15 (4331182) HS01921425_s1 

Mx1 4331182 (HS00895608_m1) 

ISG54 4331182 (Hs01922738_s1) 

IFI16 4331182 (Hs00986757_m1) 
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3. Methods 

 

3.1. Cell culture 

 

3.1.1. Maintenance, growth, and passaging of cells 

 

Unless stated otherwise, cell lines were maintained and grown on T75 cell 

culture flasks (Nunc Fisher Scientific UK Ltd) in the appropriate media described 

in (Table 6) at 37ºC with 5% CO2. When cells were 80-90% confluent, they were 

washed twice with 2.5 ml versene, followed by incubation with 1.5 ml of trypsin- 

versene until the cells were detached from the flasks. Detached cells were re-

suspended in 8.5 ml of the appropriate medium before reseeding in new flasks 

for maintenance, or plating for experimentation. 

 

3.1.2. Seeding of cells 

 

The number of cells in the suspension was determined using Neubauer 

hemocytometer counting chamber under a light microscope. Cells were seeded 

in 12 or 24 well plates in a total volume of 0.5-1 ml of culture medium. For 

confocal microscopy analysis, cells were seeded onto 13 mm glass coverslips in 

24 well plates. The seeding density was dependent on the cell type, with typical 

seeding density ranging from 1 X 105 to 2 X 105 cells per well. Cells were 

incubated overnight before further manipulation.  
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3.2. Lentiviral vector-based short hairpin RNA methods for 

generating PML- or IFI16-depleted cells 

 

3.2.1. Generation of lentivirus stocks 

 

Transformation of competent bacteria and propagation of plasmid DNA 

were conducted by Steven McFarlane. For generation of lentivirus stocks, HEK-

293T cells (2 X 106 cells) were seeded onto 60 mm dishes and incubated 

overnight at 37ºC in 5% CO2. pLKO plasmid (3 µg) expressing a non-targeting 

control, PML-targeting, or IFI16-targeting short hairpin RNA (shCtrl, shPML, and 

shIFI16, respectively) plus pVSV-G (3 µg) plasmid and pCMV-DR8.91 helper 

plasmid (3 µg) were added to 250 µl of serum-free DMEM. PLUS reagent (8 µl) 

was added to the plasmid mixture and incubated for 15 minutes at room 

temperature. After incubation, serum-free DMEM (250 µl) and lipofectamine (12 

µl) were added to the plasmid-reagent plus mixture and allowed to incubate for 

15 minutes at room temperature.  

 

The culture medium of HEK-293T cells was removed and saved as 

“conditioned medium”. Serum-free medium (850 μl) was added to the prepared 

plasmid-PLUS reagent-lipofectamine mixture prior to adding the entire volume 

to the cells and incubating at 37ºC for 3 hours.  Then, 3 ml conditioned medium 

were added, and incubated at 37ºC for 4 hours. Following incubation, the 

medium was replaced by 4 ml of fresh DMEM supplemented with 30% FCS. 

Lentivirus stocks were harvested when cells showed severe cytopathic effect, 

typically 48 hrs post-transfection. Lentivirus stocks were filtered using 0.45 µm 

filter and used immediately. 
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3.2.2. Lentiviral transduction of cells 

 

HFt cells were seeded at 1 X 106 cells in 60 mm dishes and incubated 

overnight at 37ºC in 5% CO2. Cells were infected four times with lentivirus 

supernatants. For each infection, 1 ml of lentivirus supernatant containing 1 µl 

of polybrene was added to the cell monolayer. The infected plates were kept at 

37ºC in 5% CO2 incubator for 1 hour with rocking every 5-10 minutes. Following 

the third round of infection, 4 ml of lentivirus supernatant containing 4 µl of 

polybrene were added to the cells and incubated overnight at 37ºC in 5% CO2. 

On the following day, the lentivirus-containing medium was discarded and 

replaced by antibiotic selection medium (HFt media containing puromycin at 1 

μg/ml) and then passaged with continuous puromycin selection. The level of 

mRNA and protein expression was monitored by qPCR, IF and Western blotting. 

All experiments were repeated on independent batches of depleted cells. 

 

3.3. Viruses: 

 

3.3.1. Standard protocol for growing HSV-1 stocks 

 

BHK cells were seeded at 1 X 106 cells per 60 mm dish and incubated 

overnight at 37ºC with 5% CO2. Cells were infected with WT HSV-1 (17syn+) at an 

MOI of 0.001 PFU/cell, or its corresponding ΔICP0 (dl1403) at an MOI of 0.5 

PFU/cell in 500 µl of serum-free DMEM (Stow and Stow 1986). During viral 

absorption, the plates were rocked every 5-10 minutes for one hour to ensure 

equal distribution of the virus across the cell monolayer. Following the 

absorption, cells were overlaid with complete medium and incubated at 37ºC 

with 5% CO2. Infected cells were checked regularly (every 24 hrs) for cytopathic 

effect. Virus suspension was collected when a severe cytopathic effect was 

observed, typically 3 to 4 days post-infection. The cell-released virus was 

clarified by low-speed centrifugation at 1500 rpm for 10 minutes to remove cell 
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debris. Virus stocks were aliquoted, snap frozen on dry ice, and stored at - 70 º 

C. 

 

3.3.2. Growing EdU-labeled viruses 

 

EdU-labeled viruses were grown on RPE cells. Cells were infected with 

either WT HSV-1 at an MOI of 0.001 PFU/cell or ΔICP0 HSV-1 at an MOI of 0.5 

PFU/cell in a total volume of 2.5 ml DMEM containing 0.2% FCS at 33ºC with 5% 

CO2. The flasks were rocked every 5-10 minutes for one hour. Following viral 

absorption, 2.5 ml of DMEM containing 0.2% FCS were added to each flask 

making a total of 5 ml per flask. At 4 hrs post-infection, EdU was added to a 

final concentration of 0.5 μM per flask. Then, a fresh pulse of EdU (0.5 μM) was 

added every 24 hrs for three days. When cells showed an extensive cytopathic 

effect, the yields were collected and combined in a 50 ml corning tubes. In 

order to remove cell debris, the tubes were centrifuged at 1500 RPM for 10 

minutes. Supernatants containing labeled cell-released virus were filtered 

through 0.45 μm filter to remove small debris. The filtered suspensions were 

transferred into 5 ml Beckman Coulter ultra-clear centrifuge tubes (Catalog 

number 344057). Tubes were loaded into Beckman TLA100.3 rotor and ultra-

centrifuged at 25000 for 3 hrs at 4°C. Supernatants were discarded, and the 

virus pellets were resuspended in 500 μl of complete DMEM medium. The viral 

suspensions were combined and titrated in U2OS cells (described below). 

 

3.3.3. Virus stock titration 

 

All virus stocks (WT HSV-1, ΔICP0, HSV-1EdU, and ΔICP0EdU) were titrated in 

U2OS cells. Cells were seeded overnight at 2 X 105 cells per well in 24-well 

plate. The virus stocks were serially diluted (dilution factor of 10). Cells were 

infected in a total volume of 100 µl of serum-free DMEM. During viral absorption, 

the plates were rocked every 5-10 minutes for one hour to ensure equal 

distribution of the virus across the cell monolayer. Then, cells were overlaid 
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with DMEM supplemented with 10% FCS and 2% human serum (HS), and incubated 

at 37ºC with 5% CO2. The infected cells were checked regularly for viral plaques 

which were observed typically 2 to 3 days post-infection. The plates were 

Giemsa stained (described below), and the plaques were counted under a plate 

microscope. Then, viral titers were calculated using the following formula: 

𝑃𝐹𝑈/𝑚𝑙 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑙𝑎𝑞𝑢𝑒 ∗ 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 10 (𝑢𝑠𝑒𝑑 100µ𝑙 𝑖𝑛𝑜𝑐𝑢𝑙𝑢𝑚) 

 

MOI (PFU/cell) was estimated based on the virus titer and the number of 

cells. Irrespective of the cell types to be infected, the MOI was estimated based 

on the virus titer determined on U2OS cells. This is particularly important for 

ΔICP0 HSV-1 as U2OS is known to supplement for ICP0 function (Yao and Schaffer 

1995, Everett et al. 2004a). 

 

3.4. Assays 

 

3.4.1. Giemsa staining. 

 

Cells were washed twice with PBS, before adding 500 µl of Giemsa 

solution to each well. After incubation for 10 minutes at room temperature, 

Giemsa solution was removed, and the cells were washed thoroughly with water. 

The number of plaques was counted under a plate microscope. 

 

3.4.2. Immuno-staining plaque assay 

 

Cells were seeded in 24-well plates and incubated at 37°C in 5% CO2 

overnight before further manipulations. Cells were inoculated with either a 

serial dilution or fixed MOI (PFU/cell as indicated) of WT or ΔICP0 HSV-1 in a 

total volume of 100 µl serum-free DMEM. Plates were rocked every 10 min for 1 

h prior to overlay with complete medium containing 2% HS. At the indicated 
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time post-infection, the media were removed, and the cells were washed three 

times with PBS. Cells were simultaneously fixed and permeabilized in PBS 

containing 1.8% formaldehyde and 0.5% NP40, followed by blocking in PBS-tween 

(PBST) containing 5% skimmed milk for 30 minutes at room temperature. Cells 

were sequentially incubated for 60 minutes at room temperature with primary 

anti-VP5, followed by anti-Mouse IgG–peroxidase secondary antibody. Three 

washes with PBST were performed following each antibody incubation. Finally, 

True Blue Peroxidase stain was added and incubated until the color was 

developed. Plates were then washed three times with PBST, PBS, and distilled 

water. The number of plaques was counted under a plate microscope. 

 

 

3.4.3. Viral release assay 

  

Cells were seeded in 24-well plates and incubated at 37°C in 5% CO2 

overnight.  Cells were inoculated with WT (MOI of 0.001 PFU/cell) or ΔICP0 HSV-

1 (MOI of 1 PFU/cell) in a total volume of 100 µl serum-free DMEM. Plates were 

rocked every 10 minutes for 1 h prior to overlay with complete medium 

containing either DMSO or 5 μM ruxolitinib (RUX). Supernatants are collected at 

the indicated time points post-infection (shown in the figures). Viral yields were 

titrated on U2OS cells (section 3.4.3.). 

 

3.4.4. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

(SDS-PAGE) and Western blotting 

 

Cells were washed twice with PBS before whole cell lysates were 

harvested in a 1.5X boiling mix (SDS-PAGE loading buffer containing 4 M urea and 

50 mM DTT). Harvested lysates were either used immediately or snap frozen and 

stored at - 20º C. Samples were boiled for 10 minutes in a water bath prior to 

loading. Wells were loaded with 15-20 µl of whole cell lysates. PageRuler pre-

stained NIR protein ladder was used as a reference marker for molecular mass. 
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Proteins were resolved by SDS-PAGE on Novex 4-12% Bis-Tris gel (Invitrogen 

NP0322BOX) using either NuPAGE MOPs (1X) or NuPAGE MES (1X) running buffer. 

Gels were run at 120 volts until the dye front reached the bottom of the gel.  

   

Separated proteins were electro-transferred for 1 hr at 30 volts onto 

Hybond-ECL 0.2 µm nitrocellulose membranes for western blotting. Protein 

transfer was conducted using Novex NuPAGE transfer buffer (1X) containing 10% 

methanol. Membranes were blocked for 1 hour at room temperature in filtered 

PBS supplemented with 5% FCS (PBS-FCS). Primary and secondary antibody 

incubations were performed in filtered PBST–FCS (PBS-FCS supplemented with 

0.1% Tween-20) at the desired antibody dilution (Table 10 and 11). Membranes 

were washed three times in PBS supplemented with 0.1% Tween-20 (PBST) for 10 

min following each antibody incubation. Prior to scanning, membranes were 

washed two times in PBS and two times in distilled water. Membranes were 

imaged on an Odyssey Infrared Imager (LiCor) and analyzed with Odyssey Image 

Studio Lite software. 

 

3.4.5. Click chemistry, indirect IF staining, and confocal microscopy 

 

3.4.5.1. Fixation and permeabilization 

 

Coverslips were washed twice in cytoskeleton (CSK) buffer (10 mM HEPES 

(pH 7.0), 100 mM NaCl, 300 mM sucrose, 3 mM MgCl2, 5 mM EGTA) prior to 

fixation and permeabilization in CSK buffer containing 1.8% formaldehyde and 

0.5% Triton-X100 for 10 minutes at room temperature. Cells were washed twice 

in CSK buffer, and coverslips were blocked in PBS containing 2% HS (PBS-HS) for 

at least 10 minutes at 4 ºC. 
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3.4.5.2. CLICK chemistry and detection of EdU signals 

 

Detection of the EdU-labeled virus was conducted using Click-iT® Plus 

EdU Alexa Fluor 555 Imaging Kit (ThermoFisher Scientific, C10638) according to 

the manufacturers’ instructions. Each ml of reaction solution contained 880 µl of 

1X Click-iT® reaction buffer, 20 µl of copper protectant, 2.5 µl of Alexa Fluor® 

picolyl azide, and 100 µl of reaction buffer additive. Click chemistry was always 

conducted prior to indirect IF staining. 

 

3.4.5.3. Indirect IF staining protocol 

 

Primary and secondary antibody incubations were performed at room 

temperature. Following a 60-minute incubation with primary antibody at the 

desired dilution (Table 10), coverslips were washed three times with PBS prior to 

a 60-minute incubation with the secondary antibody and DAPI. The secondary 

antibodies used were Alexa 488, 555, and 647 conjugated donkey anti-rabbit, 

and anti-mouse IgG (Table 11). Coverslips were washed three times with PBS 

followed by three washes with distilled water. Coverslips were allowed to air dry 

prior to mounting on glass slides using Citifluor AF1 mounting medium. Clear nail 

varnish was used to seal the edge of coverslips to the slides. 

  

 

3.4.5.4. Confocal microscopy, image analysis, and three-

dimensional (3D) image reconstitution 

 

The samples were examined using a Zeiss LSM 710 or LSM880 confocal 

microscope using the 63x Plan-Apochromat oil immersion lens with 408, 488 nm, 

543 nm and 633 nm laser lines. Zen black software (Zeiss) was used for capturing 

Z-series images, generating cut mask channels, exporting the maximum intensity 

projection images, and determining the weighted (w.) colocalization coefficient. 

Imaris (Bitplane) software was used to generate 3D images. 
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3.4.6. Quantitative reverse-transcriptase polymerase chain reaction 

(qRT-PCR) 

 

3.4.6.1. RNA preparation 

 

RNA extraction was conducted using RNeasy Plus Mini Kit (Qiagen) 

according to manufacturer’s instructions. Cells were washed twice with PBS, 

harvested in 200 μl Buffer RLT Plus, snap frozen, and either used immediately or 

stored at -20 °C. The cell lysate was vortexed for 30 seconds, and centrifuged 

for 3 minutes at the maximum speed (17000 X g). The supernatant was carefully 

removed, transferred to a gDNA Eliminator spin column, and centrifuged for 30 

seconds at 8000 X g. The column was discarded, and 180 μl of 70% ethanol were 

added to the flow-through. The entire volume was transferred to an RNeasy spin 

column and centrifuged for 15 seconds at 8000 X g. The flow-through was 

discarded, and 700 μl of Buffer RW1 were added to the column, followed by 

centrifugation for 15 seconds at 8000 X g. The flow-through was discarded, and 

500 μl of Buffer RPE were added to the column, followed by centrifugation for 

15 seconds at 8000 X g. The last step was repeated. In order to dry the 

membrane, the RNeasy column was placed in a new 2 ml collection tube and 

centrifuged at 17000 X g for 1 minute. Finally, 30 μl of RNase-free water were 

added, and the column was centrifuged for 1 minute at 8000 X g to elute RNA. 

Extracted RNA was used immediately for complementary DNA (cDNA) synthesis 

or stored at -20 °C. 

 

3.4.6.2. cDNA synthesis 

 

Reverse transcription (RT) of cellular RNA to cDNA was performed using 

TaqMan Reverse Transcription Reagent Kit (Life Technologies, catalog number 

N808-0234). Purified RNA was reverse transcribed in a total volume of 20 µl of 

reaction mix containing 2 µl of RT buffer (1x), 4.4 µl of MgCl2 (5.5 mM), 4 µl of 

dNTPs (2mM), 1 µl of Oligo dT, 0.4 µl of RNase inhibitor (8 U), 0.5 µl of 
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multiscribe reverse transcriptase (25 U), and 6.7 µl of RNase-free water. RNA 

template was sequentially incubated at 25 °C for 10 minutes for primer 

annealing, at 37 °C for 60 minutes for extension, and at 95 °C for 5 minutes for 

RT inactivation. 

 

3.4.6.3. Quantitative real-time PCR 

 

cDNA was amplified using target and control-specific primer/probe mixes 

(Table 12). Each sample was run in duplicate or triplicate as a singleplex 

reaction in a total volume of 20 µl per reaction. Each reaction contained 1 µl of 

primer/probe mix, 10 µl of TaqMan fast universal mix (ThermoFisher Scientific, 

catalog number 4352042), 7 µl of RNase-free of H2O, and 2 µl of cDNA. RT-PCR 

cycling condition as follows: a cycle of denaturation at 95 ºC for 20 seconds, and 

40 cycles of annealing at 95 ºC for 3 seconds, and extension at 60 ºC for 30 

seconds. 

 

3.4.6.4. Analysis of qPCR data 

 

Data were analyzed using applied biosystems 7500 fast real-time PCR 

system software. The level of mRNA for host gene under investigation was 

normalized to GAPDH mRNA level, internal control, using the threshold cycle 

(ΔΔCT) method. Normalized values were expressed relative to the normalized 

level of mRNA in a control sample (as indicated in the figure legends). 

 

3.5. Data plotting and statistical analysis 

GraphPad Prism 7.02 was used for blotting the data and calculating P 

values. T-test or Mann-Whitney U-test was used to determine statistical 

significance (as indicated in the figure legends). 
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4. Host intrinsic and innate immune factors are sequentially recruited 

to viral genomes 

 

4.1. Overview 

 

HSV-1, like other nuclear-replicating DNA viruses, needs to reach the 

nucleus in order to replicate. During the journey from the cell surface to the 

nucleus, the infected cell employs several mechanisms to control HSV-1 

infection. Different parts of host cells (cell surface, cytoplasm, and nucleus) are 

equipped with immune factors which can recognize various PAMPs including 

virion components and viral replication products. vDNA is one of the most potent 

inducers of host intracellular immunity. Rapid recognition of viral nucleic acid is 

key for suppression of viral replication (Pandey et al. 2014, Orzalli and Knipe 

2014, Komatsu et al. 2016). 

 

Given that non-nuclear immune factors have limited access to vDNA due 

to the presence of the viral capsid, nuclear antiviral factors have historically 

attracted significant attention (Komatsu et al. 2016). The recruitment of host 

cell restriction factors to viral genomes and the sensing of vDNA by PRRs are very 

early cellular responses to infection. Host cell restriction factors immediately 

and directly induce viral genome silencing (intrinsic immune response). On the 

other hand, PRRs activate downstream signaling cascades leading to the 

induction of ISGs (innate immune response) (Yan and Chen 2012, Hannoun et al. 

2016, Tavalai and Stamminger 2009, Scherer and Stamminger 2016). Whether 

host cells employ recruitment of host cell restriction factors and PRRs 

simultaneously or sequentially remains unknown. 

 

Microscopy-based techniques have been widely utilized to investigate the 

relationship between nuclear immune factors and the infecting viral genomes. 

However, these studies offered limited conclusions with respect to the temporal 

regulation of intrinsic and innate immune responses. Studies, that have utilized 
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direct vDNA detection methods such as FISH or BrdU-labeling, have relied on 

high MOI conditions due to the technical challenges associated with vDNA 

detection at low MOI conditions (Everett et al. 2007, Glauser et al. 2007, Jensen 

2014). Giving that the antiviral effect of host cell restriction factors has a 

threshold of MOI above which this system is saturated (Section 1.6.1.) (Everett 

et al. 2004a), this approach has limitations for understanding the regulatory 

mechanisms between intrinsic and innate immune responses. Moreover, FISH and 

BrdU-labeling protocols require harsh denaturation conditions (e.g., heat and 

HCl treatment) and can be cytotoxic and incompatible with IF staining of host 

factors. Other studies used IF staining or fluorescent tagging of vDNA-binding 

proteins (e.g., ICP4 and ICP8) to indirectly determine the localization of viral 

genome foci. A strong colocalization has been observed between vDNA and ICP4 

detected by FISH and IF staining, respectively (Everett and Murray 2005). This 

finding validated the use of ICP4 as a proxy for viral genome localization. 

However, a subset of vDNA foci was not associated with ICP4 signals indicative of 

viral genomes that are yet to establish a productive infection (Everett and 

Murray 2005). While informative, this approach necessitates the onset of viral 

gene expression and limits our understanding of the very early viral-host 

interactions that occur immediately upon nuclear entry of vDNA prior to the 

expression of viral proteins. Recently, ethenyl-modified nucleoside labeling in 

combination with click chemistry has been utilized to directly visualize the vDNA 

of adenoviruses, herpesviruses, papillomaviruses, and retroviruses (Wang et al. 

2013a, Dembowski and DeLuca 2015, Broniarczyk et al. 2015, Peng et al. 2014, 

Johnson et al. 2014). Labeling of vDNA replication compartments with ethenyl-

modified nucleosides showed similar patterns to that observed in samples 

processed by FISH technique. Unlike FISH and BrdU, this technique is minimally 

invasive and compatible with IF staining protocols (Salic and Mitchison 2008, 

Chehrehasa et al. 2009). Click chemistry-mediated detection of DNA is based on 

the incorporation of nucleoside analogs into newly synthesized DNA followed by 

copper (I)-catalyzed reaction between alkynes on the labeled DNA and azides on 

the fluorescent dyes. Due to the small size of azide, this method does not 

involve denaturation or substantial sample processing (Salic and Mitchison 2008, 

Chehrehasa et al. 2009). Moreover, using bio-orthogonal moieties in click 

reaction enhances the specificity and sensitivity to detect the labeled DNA in 
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comparison with antibody-based detection methods. Wang et al. 2013 were first 

to label HSV-1 replication compartments with EdU, 5-Ethynyl-2’-deoxycytidine 

(EdC), or 5-Ethynyl-2’-deoxyadenosine (EdA). Although there was variation in the 

incorporation efficiency, all nucleoside analogs were successfully incorporated 

into vDNA replication compartments as demonstrated by colocalization between 

click and vDNA-binding protein ICP8 signals (Wang et al. 2013a). An independent 

study showed a similar colocalization pattern between EdU-labeled vDNA 

replication centers and vDNA-binding protein ICP4 signals (Dembowski and 

DeLuca 2015). This study also attempted to grow and purify EdU-labeled virus 

stocks in Vero cells. EdU (≤ 2.5 μM) was poorly incorporated into WT virus, but 

UL2/UL50 mutant was successfully labeled. In our lab, protocols for EdU-labeling 

of HSV-1 genomes and purification of high titer stocks of labeled WT virus (HSV-

1EdU) and ICP0-nulll mutant (∆ICP0EdU) have been optimized. This was achieved 

by infecting RPE cells with either WT (MOI of 0.001 PFU/cell) or ∆ICP0 HSV-1 

(MOI of 0.5 PFU/cell) in combination with EdU pulse labeling (0.5 μM) into 

infected cultures at 24h intervals. When cells showed extensive cytopathic 

effect, the labeled viral stocks (HSV-1EdU and ∆ICP0EdU) were collected, purified, 

and titrated (section 3.3.2.). The cell type, EdU concentration, and the MOIs 

used were crucial for this protocol. It is still unclear why RPE cells were most 

permissive to viral propagation in the presence of EdU, an observation that 

requires further investigation (Alandijany et al. 2018). 

 

In this chapter, click chemistry-mediated detection of HSV-1EdU and 

∆ICP0EdU DNA in combination with indirect IF staining protocol were used to 

examine the recruitment of PML-NB associated restriction factors and PRR IFI16 

to infecting viral genomes during the initial stages of nuclear infection (within 

30-90 minutes post-addition of virus; 30-90 mpi). Importantly, these experiments 

were conducted under low MOI conditions (MOI 0.1-3 PFU/cell) providing 

temporal resolution for this study. Our microscopy observations demonstrate 

that the recruitment of PML-NB constituent proteins occurs rapidly upon genome 

delivery into the nucleus. These recruitment events correlated with induction of 

viral genome silencing. Sensing of vDNA by IFI16 and subsequent induction of ISG 

expression only occur when infecting genomes escape from PML-NB mediated 
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silencing and initiate a productive infection. These findings, for the first time, 

put a clear temporal context in the sequential induction of intrinsic and innate 

immune responses during HSV-1 infection. However, HSV-1 counteracts these 

host antiviral defenses by expressing ICP0 which targets PML and IFI16 for 

proteasome-dependent degradation. 
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4.2. Results 

 

4.2.1. Direct visualization of infecting EdU-labeled HSV-1 genomes 

and quantitation of their nuclear entry 

 

EdU-labeled viruses in combination with click chemistry enabled the 

detection of input viral genomes at the early stages of infection prior to the 

expression of viral proteins. HFt cells were seeded onto coverslips and infected 

with HSV-1EdU or ICP0EdU at an MOI of 3 PFU/cell. Coverslips were fixed at 

different time points after addition of the virus (30, 60 and 120 mpi), and click 

chemistry was utilized to detect the viral genomes. To examine the specificity of 

the click signals detected, HFt cells were mock or infected with unlabeled HSV-1 

as negative controls. 

 

The detection of click signals was specific for EdU vDNA labeling as they 

were not detected in mock or unlabeled HSV-1 infected samples (figure 11A). 

Viral genome foci could be detected in the nuclei of HSV-1EdU and ΔICP0EdU-

infected cells within 30 mpi with a gradual increase over time in the number of 

nuclei containing vDNA. Viral genome foci could be detected in more than 60% of 

the infected cells by 120 mpi. The number of nuclei containing vDNA during 

ΔICP0EdU infection was slightly lower in comparison with HSV-1EdU infection 

(figure 1B). The reason for this is not clear, but it might be linked to variations 

in the labeling efficiency of vDNA in RPE cells that are restrictive for ΔICP0 HSV-

1 replication (Alandijany et al. 2018). Of note, encapsidated viral genomes in 

the cytoplasm could not be detected.  
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Figure 11. Sensitive visualization of infecting viral genomes using EdU-labeling of 

vDNA in combination with click chemistry. 

HFt cells were mock, or infected with either unlabeled WT HSV-1, EdU-labeled WT virus 

(HSV-1EdU) or EdU-labeled ICP0-null mutant (ΔICP0EdU) at an MOI of 3 PFU/cell. Cell 

monolayers were fixed and permeabilized at the indicated minutes after addition of the 

virus (mpi). vDNA (white; highlighted by white arrows) was detected by click chemistry, 

and nuclei (blue) were visualized by DAPI. (A) Representative confocal microscopy 

images showing nuclei containing viral genomes over a time course of infection. Click 

signals were specific for infection with HSV-1EdU and ΔICP0EdU, as they were not observed 

in mock or unlabeled HSV-1 infected samples. (B) Quantitation of nuclei containing viral 

genomes over a time course of infection. Boxes represent 25th to 75th percentile range; 

black lines represent medians; whiskers represent Min to Max range of samples. n ≥ 300 

genomes. Results derived from 3 independent experiments. 
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4.2.1. PML-NB associated restriction factors are rapidly recruited to 

vDNA immdetialy upon nuclear entry 

  

One of the main advantages of click chemistry detection of EdU-labeled 

vDNA is its compatibility with indirect IF staining protocols. It allowed 

investigation of the recruitment of host restriction factors and PRRs to vDNA 

over a very short time-course of infection (30-90 mpi) under low MOI conditions 

(MOI of ≤ 3 PFU/cell). The use of Zen software allowed measurement of the 

weighted (w.) colocalization coefficient between these host immune regulators 

and vDNA. The results are presented on a scale of 0 (no localization) to 1 

(perfect localization). The use of this software offered quantitative analyses for 

our microscopy observations.  The focus of this work was to assess and 

characterize the recruitment of PML-NB constituent proteins and IFI16 to vDNA 

because of their well-reported roles in conferring intrinsic and innate antiviral 

responses, respectively (Everett et al. 2006, Everett et al. 2008, Veeranki and 

Choubey 2012, Orzalli et al. 2012, Diner et al. 2016).  

 

HFt cells were mock or infected with HSV-1EdU or ICP0EdU at an MOI of 3 

PFU/cell. Coverslips were fixed and processed at 90 mpi. Click and IF labeling 

were utilized to detect vDNA and host immune factors (PML and Daxx), 

respectively. In mock-infected cells, click signal was not detected. These cells 

exhibited a high degree of colocalization efficiency (> 0.7) between PML and 

Daxx (Figure 12A). In HSV-1EdU and ICP0EdU-infected cells, both PML and Daxx 

showed a high degree of colocalization to the viral genome foci (Figure 12B, and 

12C). 3D Z-series image analysis revealed that viral genome was entrapped 

within PML-NBs (Figure 12D). Quantitative analysis of these microscopy 

observations demonstrated that PML-NB associated restriction factors were 

efficiently recruited to the viral genome foci rapidly upon genome delivery to 

the nucleus and independently of ICP0 (Figure 12E). Moreover, the nuclear 

distribution of PML-NBs and the high colocalization efficiency between PML and 

Daxx was not affected at these time points post-infection; demonstrating that 

PML-NBs that contained vDNA were relatively equivalent in compositions and 



  
 

92 
 

post-translational modification to PML-NBs which did not contain vDNA (Figure 

12E). 
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Figure 12. PML and Daxx are efficiently recruited to infecting viral genomes. 

HFt cells were mock or infected with HSV-1EdU or ICP0EdU at an MOI of 3 PFU/cell. 

Monolayers fixed and permeabilized at 90 mpi. Viral genomes and host factors were 

labeled by click chemistry and indirect IF staining protocols, respectively. (A-C) 

Representative confocal microscopy images showing the nuclear localization of PML 

(green) and Daxx (cyan) to viral genomes (red; highlighted by white arrows). Cut mask 

highlights regions of colocalization between PML, Daxx, and vDNA (as indicated). 

Weighted (w.) colocalization coefficients are shown. (D) 3D image generated by imaris 

software. Insets show regions of interest (dashed boxes) highlighting infecting HSV-1EdU 

genomes entrapped within PML-NBs at 90 mpi. (E) Quantitation of host factor 

colocalization with each other and with infecting viral genomes. Boxes: 25th to 75th 

percentile range of samples; black line: median weighted colocalization coefficient; 

whiskers: Min and Max range. n ≥ 25 viral genomes from two independent experiments.  

*** P = < 0.0001, and ns= non-significant; Mann-Whitney U-test. 
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4.2.2. The presence of PML is required for the stable recruitment of 

Daxx to vDNA 

 

PML is the major scaffolding protein of PML-NBs (Ishov et al. 1999). 

Previous plaque-edge recruitment studies have demonstrated that Daxx 

recruitment to incoming ΔICP0 genomes in newly infected cells occurs in a PML-

independent manner (Everett et al. 2006). Herein the importance of PML for the 

early recruitment of Daxx (within first 90 mpi) to vDNA under low MOI condition 

was assessed. 

 

PML was depleted in HFt cells using lentivirus vectors expressing PML-

targeting short hairpin RNA (shPML) (Everett et al. 2006). To exclude any non-

specific effect of lentivirus transduction, parallel HFt cells were transduced with 

lentivirus vectors expressing non-targeting control short-hairpin RNA (shCtrl). 

The level of PML depletion was evaluated by IF confocal microscopy, WB, and 

qPCR. The mRNA and protein expression levels of Daxx and IFI16 were also 

assessed to evaluate the effect of PML depletion on their expression and ensure 

the specificity of shRNA. PML was successfully depleted in shPML-transduced 

cells without affecting Daxx or IFI16 expression (Figure 13). Consistent with 

previous reports, PML depletion did not affect the nuclear distribution of IFI16 

(Figure 14A) (Everett 2015). However, localization of Daxx to PML-NBs was 

abolished in PML-depleted cells. Daxx staining in the absence of PML showed a 

diffuse nuclear signal concentrated into distinct speckles (Figure 14B) (Everett et 

al. 2006, Ishov et al. 1999). Next, the recruitment efficiency of Daxx to HSV-1EdU 

vDNA was assessed. PML and Daxx were efficiently recruited to vDNA in shCtrl-

transduced cells, which recapitulated the data obtained from parental HFt cells. 

In PML-depleted cells, however, there was a high degree of variation in the 

recruitment efficiency of Daxx to vDNA (Figure 15A). Quantitative analysis 

indicated that the colocalization coefficient of Daxx recruitment to vDNA was 

significantly reduced in the absence of PML (Figure 15B). To exclude any effect 

ICP0 may have on Daxx localization, a similar experiment was conducted on 

ΔICP0EdU-infected cells and similar results were obtained (C. Boutell; (Alandijany 
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et al. 2018)). These data demonstrate that stable Daxx recruitment to vDNA 

under low MOI conditions occurs in a PML-dependent and ICP0-independent 

manner. 

 

Figure 13. Successful knock-down of PML.  

HFT cells were transduced using lentivirus vectors expressing non-targeting control 

short-hairpin RNA (shCtrl) or PML-targeting short hairpin RNA (shPML). (A) Western blots 

show the levels of PML, IFI16, Daxx, and actin in whole cell lysates. Membranes were 

probed for PML to determine the level of knock-down, IFI16 and Daxx to investigate the 

influence of PML depletion on their expression and to assess shRNA off-target effects, or 

actin (loading control). (B) Bar graphs show the mRNA levels of PML and IFI16 in shCtrl 

and shPML cells. The levels of mRNA were determined using the TaqMan system of 

quantitative RT-PCR. Values were normalized to GAPDH mRNA levels, internal control, 

using the threshold cycle (ΔΔCT) method, and expressed relative to the normalized level 

of mRNA in shCtrl sample. Results represent relative quantitation (RQ) of three RTs. (C) 

Confocal images demonstrate the level of PML depletion. PML and IFI16 were labeled by 

indirect IF staining protocol. Nuclei were visualized by DAPI. 
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Figure 14. PML depletion influences the nuclear distribution of Daxx, but not IFI16. 

HFT Cells were transduced using lentivirus vectors expressing non-targeting control 

short-hairpin RNA (shCtrl) or PML-targeting short hairpin RNA (shPML). The effect of PML 

depletion on the nuclear distribution of IFI16 and Daxx was assessed by confocal 

microscopy. PML, IFI16, and Daxx were labeled by indirect IF staining protocol. Nuclei 

were visualized by DAPI. (A and B) Representative images show that PML depletion did 

not affect the nuclear distribution of IFI16, but abolished the localization of Daxx to 

PML-NBs. Daxx exhibited nuclear diffuse signal in shPML-transduced cells. 
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Figure 15. Stable Daxx recruitment to infecting viral genomes occurs in a PML-

dependent manner. 

shCtrl and shPML cells were mock or infected with HSV-1EdU at an MOI 3 PFU/cell. 

Monolayers were fixed and permeabilized at 90 mpi. Viral genomes were labeled by 

click chemistry. Host factors were labeled by indirect IF staining protocol. Nuclei were 

visualized by DAPI. (A) Confocal microscopy images showing the nuclear localization of 

PML (green) and Daxx (cyan) to vDNA (red, highlighted by white arrows). Cut mask 

highlights regions of colocalization between host factors and vDNA (as indicated). 

Weighted (w.) colocalization coefficients are shown. (B) Quantitation of host factor 

recruitment to infecting viral genomes. Boxes: 25th to 75th percentile range; black line: 

median weighted colocalization coefficient; whiskers: Min and Max range of samples. n 

≥ 25 viral genomes from two independent experiments. *** P = < 0.0001; Mann-Whitney 

U-test. 
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4.2.3. Recruitment of PML to vDNA induces viral genome silencing; 

a process that is counteracted by ICP0 

 

It is well reported that PML confers intrinsic antiviral immunity against 

HSV-1 infection. However, HSV-1 expresses ICP0 to counteract this process by 

targeting PML for proteasome-dependent degradation (Everett et al. 2006, 

Everett et al. 2008, Chelbi-Alix and de The 1999, Maul and Everett 1994). ICP0 

was observed to initially localize to PML-NBs prior to PML degradation (figure 

16A and 16B). This process should release vDNA from PML-NBs to permit the 

onset of viral gene expression and replication. In order to demonstrate the 

importance of ICP0 to de-repress viral genomes, the plaque-forming efficiency 

(PFE) of both WT virus and ΔICP0 was determined in HFt cells. Cells were seeded 

and infected with the same input MOI, and immuno-staining plaque assay was 

conducted at 24 hrs post-infection (as described in 3.5.2. Immuno-staining 

plaque assay). Of note, virus input doses were calculated based on viral titers 

determined on U2OS cells, which complements the growth defect of ΔICP0 HSV-1 

(Yao and Schaffer 1995, Everett et al. 2004a). Clearly, the PFE of WT HSV-1 was 

greater than that of ΔICP0 HSV-1 in HFt cells (figure 17) (Everett et al. 2004a, 

Sacks and Schaffer 1987). PML depletion significantly enhanced the PFE of ΔICP0 

mutant, but not that of WT virus (Everett et al. 2006) (figure 18). The relief of 

restriction of ΔICP0 HSV-1 in PML-depleted cells was not sufficient to 

complement the plaque formation of ΔICP0 to WT HSV-1 level; indicative of the 

presence of other cellular restriction factors (e.g., Sp100, Daxx, PIAS1, and 

PIAS4) that act independently of PML (Lukashchuk and Everett 2010, Everett et 

al. 2008, Brown et al. 2016). Collectively, PML-NB associated restriction factors 

are rapidly recruited to viral genome upon delivery to the nucleus. Entrapment 

of vDNA within PML-NBs induces viral genome silencing. Expression of HSV-1 

protein ICP0 is necessary to release the viral genomes entrapped within PML-NBs 

and initiate viral replication. 
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Figure 16. ICP0 colocalizes with PML-NBs and induces PML degradation. 

(A) Confocal microscopy images showing the nuclear localization of ICP0 (white) to PML 

(green) in a vDNA (red)-positive cell. HFt cells were mock, or infected with HSV-1EdU at 

an MOI of 3 PFU/cell. Monolayers fixed and permeabilized at 90 mpi. Viral genomes 

were labeled by click chemistry. ICP0 and PML were labeled by indirect IF staining 

protocol. Nuclei were visualized by DAPI. (B) Western blot demonstrates the induction 

of PML degradation during WT, but not ΔICP0, HSV-1 infection. HFt cells were mock, or 

infected with WT (MOI of 1 PFU/cell) or ΔICP0 HSV-1 (MOI of 10 PFU/cell). Whole cell 

lysates were harvested at 6 hrs post-infection. Membranes were probed for viral 

proteins (ICP0 and ICP4) to monitor the progress of infection, PML to monitor the effect 

of viral infections, and actin (loading control). 
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Figure 17. The presence of ICP0 is crucial for efficient plaque formation of HSV-1 

infection in HFt cells. 

HFt and U2OS cells were seeded overnight before infected with either WT or ΔICP0 HSV-

1 at the indicated MOIs.  Virus input doses were calculated based on viral titers 

determined on U2OS cells which complement ICP0 function. After an hour of viral 

adsorption, cells were overlaid with media containing 2% HS. At 24 hours post-infection, 

cells were fixed and permeabilized, and immunostaining plaque assay was conducted. 

The number of plaques (blue) was counted manually under a plate microscope. Bar 

graphs show the defect of PFE in HFt cells relative to U2OS cells. Results represent 

relative mean ± SD; n = 3. ns= non-significant, *** P = < 0.001; unpaired T-test. 
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Figure 18. PML depletion enhances the PFE of ΔICP0, but not WT HSV-1. 

shCtrl and shPML cells were seeded overnight and infected with either WT or ΔICP0 HSV-

1 at the indicated MOIs. After an hour of viral adsorption, cells were overlaid with 

media containing 2% HS. At 24 hours post-infection, cells were fixed and permeabilized, 

and immunostaining plaque assay was conducted. The number of plaques was counted 

manually under a plate microscope. Bar graphs represent the fold increase in plaque 

number in infected shPML relative to infected shCtrl cells (as indicated). Results 

represent relative mean + SD; (n= 3).  Similar results were obtained from independent 

batches of depleted cells. * P= < 0.05, and ns= non-significant; paired T-test. 
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4.2.4. PRR IFI16, unlike PML-NB proteins, does not stably localize to 

vDNA upon nuclear entry 

 

PRR IFI16 is a vDNA sensor and key regulator of the host innate immune 

response. Upon recognition of vDNA, IFI16 signals through STING/TBK1/IRF3 

pathway leading to the induction of ISG expression (Unterholzner et al. 2010, 

Orzalli et al. 2012, Diner et al. 2016). Live-cell microscopy-based studies have 

proposed a transient localization between IFI16 and viral genome foci under high 

MOI condition (MOI of ≥10 PFU/cell) upon nuclear infection (within 60 minutes of 

infection) (Everett 2015, Diner et al. 2016). Importantly, however, neither direct 

nor indirect detection of vDNA was applied in these studies. Instead, it was 

based on the observation that IFI16 puncta were detected at the nuclear rim of 

infected samples, but not in the uninfected controls. Herein, a direct 

comparison between the recruitment efficiency of PML-NB constituent proteins 

(PML, SP100, and Daxx) and PRR IFI16 to vDNA was conducted in HSV-1EdU-

infected cells. Unlike previous studies, our experiments utilized direct detection 

of vDNA to investigate the recruitment efficiency of host factors under low MOI 

conditions (MOI of ≤ 3 PFU/cell). Interestingly, the colocalization between IFI16 

and vDNA was completely absent at 90 mpi. This was in direct contrast to PML-

NB-associated restriction factors (PML, Daxx, and SP100), which showed almost 

perfect localization to vDNA (figure 19). Given that ICP0 has been shown to 

induce IFI6 degradation, the same experiment was conducted on ΔICP0EdU-

infected cells to exclude any potential effect ICP0 may have on IFI16 

recruitment (Orzalli et al. 2012). The same conclusion was drawn that IFI16 does 

not stably localize to vDNA at 90 mpi. Moreover, PML depletion did not enhance 

the colocalization between IFI16 and vDNA, demonstrating that entrapment of 

vDNA within PML-NBs does not eliminate IFI16 recruitment to vDNA  (Alandijany 

et al. 2018). However, we cannot rule out the potential of transient interaction 

between IFI16 and vDNA because our data were obtained at fixed time points 

post-infection. Collectively, we concluded that PML-NB restriction factors, but 

not IFI16, stably localize to HSV-1 genomes rapidly upon genome delivery to the 

nucleus. 
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Figure 19. PML-NB constituent proteins, but not IFI16, are efficiently recruited to 

infecting viral genomes. 

HFt cells were mock or infected with HSV-1EdU at an MOI of 3 PFU/cell. Monolayers were 

fixed and permeabilized at 90 mpi. Viral genomes and host factors were labeled by click 

chemistry and IF staining protocols, respectively. Nuclei were visualized by DAPI. (A) 

Confocal microscopy images showing the nuclear localization of PML (green) and either 

Daxx, SP100, or IFI16 (cyan) to viral genomes (red; highlighted by white arrows). Cut 

mask highlights regions of colocalization between host factors and vDNA (as indicated. 

Weighted (w.) colocalization coefficients are shown. (B) Quantitation of host factor 

recruitment to infecting viral genomes. Boxes: 25th to 75th percentile range; black line: 

median weighted colocalization coefficient; whiskers: Min and Max range of samples. n 

≥ 25 viral genomes from a minimum of two independent experiments. 
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4.2.5. The presence of IFI16 is not necessary for PML recruitment to 

vDNA 

 

Previous plaque-edge recruitment studies have shown that IFI16, similar 

to PML-NB constituent proteins, is recruited to incoming viral genomes in newly 

infected cells (Cuchet-Lourenco et al. 2013, Orzalli et al. 2013). Depletion of 

IFI16 negatively influenced the frequency of PML and Daxx recruitment to vDNA, 

although this issue remains to be controversial (Cuchet-Lourenco et al. 2013, 

Orzalli et al. 2013). We did not observe any stable localization between IFI16 

and EdU-labeled vDNA at 90 mpi under low MOI conditions (Figure 19). However, 

we cannot rule out the possibility of transient IFI16-vDNA interactions that may 

occur prior to PML-NB entrapment. We sought to assess whether the presence of 

IFI16 is crucial for PML-NB-mediated entrapment of vDNA. IFI16 was depleted in 

HFt cells using lentivirus vectors expressing IFI16-targeting shRNA (shIFI16). 

Parallel HFt cells were transduced with lentivirus vectors expressing non-

targeting control short-hairpin RNA (shCtrl). The level of IFI16 depletion was 

evaluated by IF confocal microscopy, WB, and qPCR. The mRNA and protein 

expression levels of PML and Daxx were also assessed in order to evaluate the 

effect of IFI16 depletion on their expression and ensure the specificity of 

shIFI16. IFI16 was successfully depleted in shIFI16-transduced cells without 

affecting PML or Daxx expression (Figure 20). Depletion of IFI16 also did not 

affect the nuclear distribution and localization of PML to PML-NBs (Figure 21). 

PML was efficiently recruited to HSV-1EdU genome foci  in both shCtrl and 

shIFI16-transduced cells (Figure 22). A similar conclusion was drawn when the 

recruitment of Daxx to vDNA was examined (Alandijany et al. 2018). These data 

demonstrate that IFI16 is not necessary for entrapment of vDNA within PML-NBs. 
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Figure 20. Successful knock-down of IFI16. 

HFt cells were transduced using lentivirus vectors expressing non-targeting control 

short-hairpin RNA (shCtrl) or IFI16-targeting short-hairpin RNA (shIFI16). (A) Western 

blots show the levels of PML, IFI16, Daxx, and actin in whole cell lysates. Membranes 

were probed for IFI16 to determine the level of knock-down, PML and Daxx to evaluate 

the influence of IFI16 depletion on their expression and assess shRNA off-target effects, 

or actin (loading control). (B) Bar graphs show the mRNA levels of PML and IFI16 in 

shCtrl and shIFI16 cells. The levels of mRNA were determined using the TaqMan system 

of quantitative RT-PCR. Values were normalized to GAPDH mRNA levels, internal 

control, using the threshold cycle (ΔΔCT) method, and expressed relative to the 

normalized level of mRNA in shCtrl sample. Results represent relative quantitation (RQ) 

of three RTs. (C) Confocal images show the level of IFI16 depletion. PML and IFI16 were 

visualized by indirect IF staining protocol. Nuclei were visualized by DAPI. 
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Figure 21.IFI16 depletion did not affect the nuclear distribution of PML. 

HFT Cells were transduced using lentivirus vectors expressing non-targeting control 

short-hairpin RNA (shCtrl) or IFI16-targeting short-hairpin RNA (shIFI16). The effect of 

IFI16 depletion on PML was assessed by confocal microscopy. PML and IFI16 were 

visualized by IF staining protocol. Nuclei were visualized by DAPI. Representative 

confocal microscopy images show that IFI16 depletion did not affect the localization of 

PML to PML-NBs. 
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Figure 22. PML is efficiently recruited to infecting viral genomes independently of 

the presence of IFI16. 

shCtrl and shIFI16 cells were mock or infected with HSV-1EdU at an MOI of 3 PFU/cell. 

Monolayers were fixed and permeabilized at 90 mpi. Viral genomes were labeled by 

click chemistry. Host factors were labeled by indirect IF staining protocol. Nuclei were 

visualized by DAPI. (A) Confocal microscopy images showing the nuclear localization of 

PML (green) and IFI16 (cyan) to vDNA (red; highlighted by white arrows). Cut mask 

highlights regions of colocalization between host factors and vDNA (as indicated). 

Weighted (w.) colocalization coefficients are shown. (B) Quantitation of host factor 

recruitment to infecting viral genomes. Boxes: 25th to 75th percentile range; black line: 

median weighted (w.) colocalization coefficient; whiskers: Min and Max range of 

samples. n ≥ 25 viral genomes from a minimum of two independent experiments.  ns= 

non-significant; Mann-Whitney U-test. 
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4.2.6. IFI16 is stably localized to vDNA expressing viral proteins 

 

In previous plaque-edge recruitment studies which have suggested that 

IFI16 is recruited to incoming viral genomes at the nuclear periphery of newly 

infected cells, ICP4 was used as a proxy for genome localization (Diner et al. 

2016, Everett 2015). Although it was previously shown that ICP4 dot-like 

complexes contain viral genomes, some viral genome foci detected by FISH were 

not associated with ICP4 signals (Everett and Murray 2005). Hence, the use of 

ICP4 signal to determine the viral genome localization by proxy is valid but 

suboptimal for reproducible genome detection (Everett and Murray 2005). These 

findings together with the absence of localization between IFI16 and vDNA at 90 

mpi raised the hypothesis that IFI16 only localizes to the viral genomes that 

establish productive infection and express viral proteins. To test this hypothesis, 

a modified plaque-edge recruitment assay was conducted (Data obtained by C. 

Boutell). Cells were infected with ICP0 expressing eYFP-tagged ICP4 at an MOI 

of 2. At 24 h post-infection, 1 µM of EdU was added for 6 hours to label vDNA. 

This experimental condition allowed visualization of the following: (1) EdU-

labeled vDNA replication compartments within the body of developing plaques; 

and (2) EdU-positive viral genomes in newly infected cells, with many of them 

detected prior to the expression of ICP4. The recruitment of PML and IFI16 to 

EdU-positive ICP0 genomes in newly infected cells was assessed. PML was 

efficiently recruited to vDNA irrespective of ICP4 expression, whereas IFI16 was 

only localized to vDNA in cells containing genomes actively expressing the viral 

protein (Figure 23) (Alandijany et al. 2018). These data put a clear temporal 

context in the recruitment of PML and IFI16 to infecting HSV-1 genomes that are 

dependent on nuclear entry of the viral genomes and the onset of lytic gene 

expression, respectively. 
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Figure 23. Initiation of productive infection is required for IFI16-mediated sensing of 

viral genomes. 

Plaque-edge recruitment assays of HFt cells that were infected with ΔICP0 expressing 

eYFP-tagged ICP4. At 24 h post-infection, 1 µM of EdU was added for 6 hours to label 

the vDNA. The recruitment efficiency of eYFP.ICP4 (green) and PML or IFI16 (cyan; as 

indicated) to vDNA (red) in newly infected cells at the edge of developing plaque was 

assessed. Viral genomes were labeled by click chemistry. Host factors were labeled by 

indirect IF staining protocol. Nuclei were visualized by DAPI. (A, C) Confocal microscopy 

images showing the nuclear localization of host factors to vDNA. Cut mask highlights 

regions of colocalization between host factors and vDNA (as indicated). Weighted (w.) 

colocalization coefficients are shown. (B, D) Quantitation of host factor recruitment to 

vDNA that express or do not express eYFP.ICP4 (ICP4 nuclear rim (ICP4 NR) and ICP4 -ve, 

respectively). Boxes: 25th to 75th percentile range; black line: median; whiskers: 5th to 

95th percentile range. n = 100 plaque-edge cells positive for DNA per sample 

population. Results were obtained from 4 independent experiments. *** P < 0.001, ns = 

not significant; Mann-Whitney U-test. (Alandijany et al. 2018). 
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4.2.7. Viral genome nuclear entry alone is not sufficient to induce 

host innate immunity 

 

The lack of localization between vDNA sensor IFI16 and HSV-1 vDNA prior 

to the onset of viral gene expression raised the question of whether induction of 

innate immunity occurs directly following the nuclear entry of viral genomes. To 

address this question, the input MOI of ΔICP0 HSV-1 which either restricts or 

permits the initiation of plaque formation was determined, and the induction of 

ISG expression under these MOI conditions was investigated. HFt cells were 

infected with ΔICP0 HSV-1 across a range of MOI and assessed for plaque 

formation efficiency at 24 hrs post-infection. At low MOI condition (MOI of 0.1 

PFU/cell; genome copy/cell ≈ 2.6), the plaque formation of ΔICP0 HSV-1 was 

fully blocked due to the intrinsic repression of viral genomes and the lack of 

viral countermeasure ICP0. However, increasing the input MOI level (MOI of 1 

PFU/cell; genome copy/cell ≈ 26) overcame intrinsic repression and permitted 

the initiation of plaque formation (Figure 24).The induction of innate immunity 

following ICP0-nullEdU infection was assessed under these two MOI conditions. 

Cells were infected with ΔICP0EdU either at an MOI of 1 or MOI of 0.1 for 24 h, 

and the stimulation of ISG product Mx1 expression was assessed by confocal 

microscopy. Mock-treated and IFNβ-treated cells were included as a negative 

and positive control, respectively. Cells infected with ΔICP0EdU at an MOI of 1.0, 

but not those infected at an MOI of 0.1, induced the expression of Mx1 (Figure 

25A and 25B). In cells infected at MOI of 0.1, viral genomes were stably 

entrapped within PML-NBs even after 24 h post-infection without induction of 

MX1 expression (Figure 25A and 25B). These data demonstrate that under low 

MOI conditions, the nuclear entry of viral genome alone is not enough to induce 

innate immunity. Escape or saturation of intrinsic immunity is a prerequisite for 

innate immunity induction during HSV-1 infection. The number of viral genomes 

detected within the nuclei of cells infected at MOI of 0.1 PFU/cell correlated 

with the input multiplicity (1-2 genomes/cell; Figure 15C). However, the number 

of gnomes detected in cells infected at an MOI of 1 was lower (1-5 

genomes/cell) than the expected ≈20 genomes/cell. This is due to the ≈60% 

labeling efficiency of our viral stocks as demonstrated by in vitro viral genome 
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release (Alandijany et al., 2018). It also indicates that ΔICP0EdUgenome signal is 

lost under infection conditions that permit the initiation of vDNA replication. 

 

 

 

Figure 24. ΔICP0 HSV-1 overcomes intrinsic repression and initiates plaque 

formation at increased input multiplicities. 

HFt cells were mock or infected with ΔICP0 HSV-1 at the indicated MOIs. Immuno-

staining plaque assay was conducted at 24 hrs post-infection. The numbers of plaques 

were counted manually under a plate microscope. Results represent the means of 

plaque number + SD; (n=3). 

 

MOI (ΔICP0 HSV-1) 
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Figure 25.  Viral genome entry into the nucleus alone is not sufficient to induce MX1 

expression. 

HFt cells were mock, treated with IFNβ (100 IU/ml), or infected with ΔICP0EdU at an MOI 

of 0.1 or 1 PFU/cell. The induction of MX1 expression was assessed by confocal 

microscopy at 24 hrs post-infection. MX1 (green) and PML (cyan) were labeled by 

indirect IF staining protocol. vDNA (red; highlighted by white arrows) was labeled by 

click chemistry. Nuclei (blue) were visualized by DAPI. (A) Representative images show 

MX1 expression. Insets show regions of interest (dashed boxes) highlighting the 

recruitment of PML to infecting ΔICP0EdU genome under an MOI of 0.1. (B) Bar graph 

shows the percentage of the number of Mx1 positive cells relative to the total number 

of cells. n ≥ 250 cells derived from 3 independent experiments. (C) Quantitation of 

nuclear ΔICP0EdU foci. Boxes: 25th to 75th percentile range; black line: median; 

whiskers: Min and Max range of samples. 
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4.3. Summary 

 

Rapid recruitment of host immune regulators to vDNA upon nuclear entry 

is crucial for the efficient induction of host immunity and suppression of viral 

replication. Pre-existing restriction factors, as part of the intrinsic immune 

response, directly induce viral genome silencing (Yan and Chen 2012, Tavalai 

and Stamminger 2009). PRRs, as part of the innate immune response, activate 

IFN-signaling cascades leading to the expression of ISGs (Orzalli and Knipe 2014, 

Hannoun et al. 2016). It remains unclear whether recruitment of the intrinsic 

and innate immune factors to vDNA occurs simultaneously or sequentially 

because of the technical difficulties associated with viral genome detection 

under low MOI conditions. Utilizing click chemistry (Salic and Mitchison 2008, 

Chehrehasa et al. 2009), we provided a non-invasive assay to quantitatively 

assess the recruitment efficiency of host immune factors to EdU-labeled vDNA 

under low MOI conditions (MOI of ≤ 3 PFU/cell within 90 mpi). This protocol 

allowed direct visualization of vDNA (Figure 11) and enabled detailed 

investigation into the temporal recruitment of intrinsic and innate immune 

factors to infecting viral genomes. 

 

PML-NB constituent proteins (PML, SP100, Daxx, ATRX, PIAS-1, and 

MORC3) are the most prominent examples of host cell restriction factors (Everett 

et al. 2008, Everett et al. 2006, Lukashchuk and Everett 2010, Brown et al. 2016, 

Sloan et al. 2016). It was initially reported that PML-NBs disappear during HSV-1 

infection as a consequence of ICP0 expression (Maul and Everett 1994). ΔICP0 

HSV-1 was very valuable to understand the relationship between PML-NBs and 

HSV-1 during lytic and latent infections (Stow and Stow 1986, Sacks and Schaffer 

1987). Plaque-edge recruitment assays have shown that PML-NB proteins are 

recruited to sites associated with incoming viral genomes (Everett et al. 2004a). 

These recruitment phenotypes correlated with suppression of viral gene 

transcription. The presence of PML, the major scaffolding protein of PML-NBs, is 

not necessary for recruitment of other PML-NB proteins (e.g., SP100 and Daxx) 

to vDNA. Consistently, PML-NB proteins (SP100 and Daxx) independently and 

additively promote transcriptional repression of viral genes as demonstrated by 
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co-depletion and triple-depletion studies (Lukashchuk and Everett 2010, Everett 

et al. 2006, Everett et al. 2008, Brown et al. 2016, Glass and Everett 2013). The 

antiviral role of PML-NBs against HSV-1 extends to latent infection. Indeed, the 

viral genomes were shown to be stably entrapped within PML-NBs in latently-

infected mouse neurons and quiescently-infected cell culture (Catez et al. 2012, 

Maroui et al. 2016, Everett et al. 2007). The microscopy observations in this 

study demonstrated for the first time that the viral genomes are rapidly and 

stably entrapped within PML-NBs immediately upon genome delivery to the 

nucleus during lytic infection (Figure 12). HSV-1 expresses ICP0 which localizes 

to PML-NBs to induce PML degradation leading to the dispersal of PML-NBs. This 

process disrupts the spatial recruitment of PML-NB restriction factors to vDNA, 

and allows the virus to counteract PML-NB mediated viral genome silencing and 

initiate lytic replication (Figure 15, 16, 17, and 18) (Maul and Everett 1994, 

Chelbi-Alix and de The 1999, Boutell et al. 2002, Boutell et al. 2011). In the 

absence of ICP0 and under MOI conditions that do not saturate intrinsic 

immunity, the viral genomes remained stably silenced and entrapped within 

PML-NBs. Importantly, this process occurred in the absence of ISG expression, 

demonstrating that vDNA entry into the nucleus alone is not sufficient for 

induction of innate immune response (Figure 24 and 25). In support of this 

conclusion, no stable localization between PRR IFI16 (a key regulator of host 

innate immunity) and vDNA was observed prior to the expression of viral genes 

(Figure 19) (Unterholzner et al. 2010, Orzalli et al. 2012). Live cell microscopy 

demonstrated that IFI16 puncta were transiently formed on the nuclear 

periphery of infected cells (Everett 2015, Diner et al. 2016). This observation 

raised the speculation that IFI16 is rapidly recruited to vDNA upon nuclear entry 

leading to the induction of ISG expression (Orzalli et al. 2012, Orzalli et al. 

2016). Yet, no direct or indirect detection of vDNA was demonstrated in these 

studies (Everett 2015, Diner et al. 2016). Moreover, the number of IFI16 puncta 

observed did not correlate with the viral genome copy number expected to be 

delivered to the nucleus at high MOI (MOI of ≥ 10 PFU/cell) (Everett 2015, Diner 

et al. 2016). Although the interaction between IFI16 and vDNA have been 

previously demonstrated by ChIP (Johnson et al. 2014),  direct detection of EdU-

labeled vDNA did not reveal any significant colocalization between IFI16 and 

vDNA under low MOI conditions (Figure 19). However, this experiment was 
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conducted at fixed time points post-infection and does not exclude the 

possibility of transient interactions between IFI16 and vDNA.  

 

Previous plaque-edge recruitment studies suggested that IFI16, similar to 

PML-NB proteins, is stably recruited to infecting ICP4 dot-like complexes that 

contain vDNA (Cuchet-Lourenco et al. 2013, Orzalli et al. 2013). Although 

controversial, IFI16 depletion has been shown to negatively influence the 

frequency of PML-NB protein recruitment to incoming viral genomes (Orzalli et 

al. 2013, Cuchet-Lourenco et al. 2013). Importantly, these studies have relied on 

the use of ICP4 signals as a proxy for viral genome localization; a suboptimal 

approach giving that ICP4 signals are only localized to a subset of 

transcriptionally active viral genome foci (Everett and Murray 2005). Consistence 

with these reports, we observed stable recruitment of IFI16 and PML to vDNA in 

newly infected cells next to developing plaques. However, IFI16 recruitment was 

observed only at the viral genomes expressing ICP4 while PML was recruited to 

vDNA irrespective of ICP4 expression (Figure 23) (Alandijany et al. 2018). These 

data demonstrate that the onset of viral gene expression or initiation of vDNA 

replication is required for IFI16-mediated sensing of HSV-1 DNA. Collectively, our 

data put a clear temporal context for the stable recruitment of PML and IFI16 to 

vDNA which correlates with the nuclear delivery of viral genome and expression 

of viral proteins, respectively. 

 

In summary, the data presented in this chapter shed light on the temporal 

regulation of intrinsic and innate immune responses during intracellular 

restriction of HSV-1 infection. PML-NB associated restriction factors are rapidly 

recruited to vDNA upon nuclear entry leading to viral genome silencing. 

Saturation of or escape from this intrinsic immune response is required to induce 

innate immunity. Induction of viral gene transcription and/or initiation of vDNA 

replication triggers the stable recruitment of PRR IFI16 to viral genome foci and 

robust induction of ISG expression. However, HSV-1 expresses ICP0 which 

counteracts both intrinsic and innate immune responses by targeting PML and 

IFI16 for proteasome-dependent degradation. 
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5. Intrinsic and innate antiviral responses are temporally and 

functionally distinct arms of host intracellular immunity 

 

5.1. Overview 

 

Innate immunity plays a pivotal role in restricting HSV-1 infection both in 

vivo and in vitro (Gresser et al. 1976, Zawatzky et al. 1982, Pedersen et al. 

1983). Central to this arm of immunity is IFN type I, that  signals through the 

JAK/STAT/IRF pathway leading to the induction of ISGs (Stark et al. 1998). 

Induction of IFN production is dependent on the ability of host PRRs (table 4) to 

recognize virion components (e.g., viral proteins or nucleic acids) or structures 

accumulated during vDNA replication (e.g., dsRNA) (Paludan et al. 2011). 

However, HSV-1 evolved multiple strategies (e.g., including expression of ICP0) 

to interfere with the induction of innate immunity (table 5 and section 1.7.1.2.). 

Indeed, ICP0 has been shown to induce the degradation of IFI16, inhibits the 

activation of IRF3, and impedes NF-κB signaling (Melroe et al. 2007, Paladino et 

al. 2010, Orzalli et al. 2012, Zhang et al. 2013). 

 

Hence, ΔICP0 HSV-1 was very valuable for advancing our understanding of 

host innate immunity during HSV-1 infection. Previous reports demonstrated that 

the induction of ISGs in the absence of ICP0 occurred in a dose-dependent 

manner with the most pronounced effect detected at high MOI of ≥10 PFU/cell 

between 6 and 24 h post-infection (Eidson et al. 2002, Orzalli et al. 2012, Diner 

et al. 2015). Utilizing such high MOI conditions, while informative, provides a 

limited characterization of the regulation of innate immunity during HSV-1 

infection. In this chapter, we used ΔICP0 HSV-1 infected HFt cells (MOI of ≤ 1 

PFU/cell) as a model to (i) explore the kinetics of viral replication that leads to 

the induction of host innate immunity; (ii) explore the effect of innate immunity 

induction on viral infection; and (iii) assess whether PML plays a key role in the 

regulation of this arm of immunity. 
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Our microscopy observations, presented in the previous chapter, 

demonstrated ISG expression during ΔICP0 HSV-1 infection to be induced only at 

MOIs that enable plaque formation (MOI of ≥ 1 PFU/cell). We concluded that the 

escape from intrinsic immunity and initiation of productive infection are 

required for innate immunity induction. In this chapter, we show that ΔICP0 

HSV-1 infection induces ISG expression in a time-, dose-, and JAK-dependent 

manner. Treatment of the infected monolayers with a vDNA polymerase inhibitor 

phosphonoacetic acid (PAA) could block ISG induction in a dose-dependent 

manner, demonstrating that the initiation of vDNA replication is required for the 

induction of innate immunity. Unlike depletion of intrinsic restriction factors, 

blocking of ISG induction by ruxolitinib (a JAK pathway inhibitor) did not 

enhance the PFE of ΔICP0 HSV-1. Instead, it enhanced viral yields in a PML- and 

IFI16-dependent manner. Similar to IFI16 depletion, depletion of PML 

significantly inhibited ISG induction, identifying a key role for PML in regulating 

innate immunity to HSV-1 infection. These findings, along with the data 

presented on the first chapter, demonstrate that intrinsic and innate antiviral 

responses are temporally and functionally distinct arms of intracellular host 

immunity during HSV-1 infection. 
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5.2. Results 

 

5.2.1. Induction of ISG expression during ΔICP0 HSV-1 infection 

occurs in a time-, and dose-dependent manner 

 

Several reports have demonstrated that HSV-1 infection induces ISG 

expression. However, this process is antagonized by the expression of ICP0 

(Eidson et al. 2002, Orzalli et al. 2012, Diner et al. 2015). We, therefore, 

assessed the induction of ISG expression during HSV-1 infection. HFt cells were 

seeded overnight before infection with either WT (MOI of 1 PFU/cell) or ΔICP0 

HSV-1 (MOI of 0.1 to 1 PFU/cell). Samples were collected at the indicated time 

points post-infection (1 to 16 hours post-infection), and the induction of ISG was 

assessed by western blotting and qPCR. Consistent with the previous reports 

(Eidson et al. 2002, Orzalli et al. 2012, Diner et al. 2015), ΔICP0 but not WT HSV-

1 markedly upregulated mRNA and protein expression levels of ISGs in a time- 

and MOI-dependent manner (figure 26 and 27). Robust induction of innate 

immunity during ΔICP0 was observed at increased MOI (≥ 1 PFU/cell) and only at 

a late stage post-infection (8–9 hours post-infection for mRNA levels and 16 

hours post-infection for protein expression). These findings correlate with our 

microscopy observations which suggested that viral genome delivery to the 

nucleus alone was not sufficient to induce Mx1 ISG expression under low MOI 

conditions that failed to initiate plaque formation (figure 25).  
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Figure 26. ΔICP0 HSV-1 infection induced ISG mRNA and protein levels in an MOI-

dependent manner. 

HFt cells were infected with WT (MOI of 1 PFU/cell) or ΔICP0 HSV-1 (at the indicated 

MOIs). Mock or IFN (100 IU/ml)-treated cells were included as a negative and positive 

control for ISG induction, respectively. Samples were collected at 9 hrs post-infection 

for qPCR and 16 hrs post-infection for western blotting. (A) Bar graphs show the mRNA 

levels of ISG15 and Mx1. The levels of mRNA were determined using the TaqMan system 

of quantitative RT-PCR. Values were normalized to GAPDH mRNA level, internal control, 

using the threshold cycle (ΔΔCT) method and expressed relative to the normalized level 

of mRNA in mock samples. Results represent means of relative quantitation (RQ) and RQ 

max; n=2. (B) Western blot membranes were probed for the viral proteins (ICP0, and 

ICP4) to track the progress of viral infection, the ISG products (MX1 and ISG15) to 

monitor the effect of the infection on the induction of ISGs, or actin (as a loading 

control). Molecular mass markers are shown. 
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Figure 27. ΔICP0 HSV-1 infection induced ISG mRNA and protein levels in a time-

dependent manner. 

HFt cells were infected with WT or ΔICP0 HSV-1 at an MOI of 1 PFU/cell. Mock or IFN 

(100 IU/ml)-treated cells were included as a negative and positive control for ISG 

induction, respectively. Samples were collected at the indicated time point post-

infection. (A) Bar graphs show the mRNA levels of ISG15, Mx1, and ISG54. The levels of 

mRNA were determined using the TaqMan system of quantitative RT-PCR. Values were 

normalized to GAPDH mRNA level, internal control, using the threshold cycle (ΔΔCT) 

method and expressed relative to the normalized level of mRNA in mock samples. 

Results represent means of relative quantitation (RQ) and RQ max; n=2. (B) Western 

blot membranes were probed for the viral proteins (ICP0, ICP4, and VP5) to track the 

progress of viral infection, the ISG products (ISG15, Mx1, and ISG54) to monitor the 

effect of infection on the induction of ISGs, or actin (as a loading control). Molecular 

mass markers are shown. 
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5.2.2. Initiation of vDNA replication is required for ISG induction. 

 

Robust induction of ISG mRNA and protein levels was detected only at MOI 

conditions that enable plaque formation. Our microscopy observations also 

indicated that PRR IFI16 is only localized to vDNA in cells expressing ICP4  

(Figure 23). Reports suggested that IFI16 preferably binds to higher order DNA 

structures (e.g., G quadruplex), which are shown to be accumulated during vDNA 

replication (Artusi et al. 2016, Haronikova et al. 2016).  These findings suggest 

that the initiation of vDNA replication may play an important role in the 

induction of host innate immune response. 

 

We assessed whether ISG induction during HSV-1 infection is linked to 

vDNA replication by monitoring ISG transcription in the presence of vDNA 

replication inhibitors acyclovir (ACG) and PAA (Schang et al. 2000, Honess and 

Watson 1977, Elion et al. 1977, Crumpacker et al. 1979). All qPCR experiments 

were conducted at an MOI of 1 PFU/cell, and samples were collected at 9 h post-

infection. Following an hour of viral absorption, cells were overlaid with 

treatment-free media or media containing ACG or PAA (Figure 28). The 

concentrations of ACG and PAA used in this study are known to effectively block 

viral replication (Alandijany et al., 2018). ISG induction was inhibited in PAA-

treated samples in a dose-dependent manner while only a moderate decrease 

was observed in ACG-treated cells (Figure 28). The differences in the inhibitory 

effect between PAA and ACG on ISG induction might be linked to their distinct 

mechanisms of action. The differential effects of these two vDNA replication 

inhibitors can be linked to their distinct mechanisms of action. PAA specifically 

targets the vDNA polymerase and inhibits the initiation of vDNA replication, 

whereas ACG is a synthetic purine nucleoside analog that acts as a premature 

DNA chain terminator and interferes with nascent vDNA synthesis (Honess and 

Watson 1977, Schang et al. 2000, Crumpacker et al. 1979, Elion et al. 1977). 

Hence, ACG treatment likely leads to the accumulation of prematurely 

terminated vDNA replication intermediates that still can be sensed by IFI16 

which may account for the inefficient inhibition of ISG induction in ACG-treated 

cells. Importantly, the inhibitory effect of PAA was specific to the viral-

mediated induction of ISGs, as PAA had no effect on Mx1 and ISG15 induction in 
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IFN-treated cells (Figure 29). Collectively, these data demonstrate that 

initiation of vDNA replication is a prerequisite for induction of host innate 

immune response to HSV-1 infection. 

 

 

Figure 28. Initiation of vDNA replication is required for ISG induction during ΔICP0 

HSV-1 infection. 

HFt cells were mock or infected with ΔICP0 at an MOI of 1. Following an hour of viral 

absorption, cells were overlaid with treatment-free media or media containing acyclovir 

(ACG) or phosphonoacetic acid (PAA) at the indicated concentrations. Samples were 

collected at 9 hrs post-infection. Bar graphs show the mRNA levels of MX1 and ISG15. 

The levels of mRNA were determined using the TaqMan system of quantitative RT-PCR. 

Values were normalized to GAPDH mRNA level, internal control, using the threshold 

cycle (ΔΔCT) method and expressed relative to the normalized level of mRNA in ΔICP0-

infected samples with no treatment. Results represent means of relative quantitation 

(RQ) and standard deviation; n=3. * P < 0.05, ** P < 0.01, *** p < 0.001, and ns= non-

significant; paired T-test. 
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Figure 29. PAA does not affect ISG induction in IFNβ-treated cells. 

HFt cells were untreated or treated with IFNβ (100 IU/ml) and PAA (1.6 mg/ml) as 

indicated. Samples were collected at 9 hrs post-treatment. Bar graphs show the mRNA 

levels of MX1 and ISG15. The levels of mRNA were determined using the TaqMan system 

of quantitative RT-PCR. Values were normalized to GAPDH mRNA level, internal control, 

using the threshold cycle (ΔΔCT) method and expressed relative to the normalized level 

of mRNA in IFNβ-treated samples. Results represent means of relative quantitation (RQ) 

and SD; n=2. 
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5.2.3. JAK signaling plays a key role in the induction of ISGs during 

HSV-1 infection 

 

JAK1 and TYK2 play a central role in the IFN signaling cascade. 

Interactions between secreted IFNs and their receptors activate JAK-1 and TYK2 

that induce the phosphorylation of STAT1 and STAT2. Phosphorylated STAT1/2 

associates with IRF9 leading to ISGF3 complex formation. Upon nuclear 

translocation of ISGF3, the expression of ISGs is upregulated (Stark et al. 1998). 

Consistent with the key role of JAK in the IFN signaling pathway, we found that 

JAK1/2 inhibitor ruxolitinib (Rux) blocked the induction of Mx1 and ISG15 in 

IFN-treated cells (Figure 30) (Shuai et al. 1993b, Quintas-Cardama et al. 2010). 

Ruxolitinib also blocked ISG expression in ΔICP0 HSV-1 infected cells, 

demonstrating that JAK activity is key for innate immunity induction during HSV-

1 infection (Figure 31) (Yokota et al. 2001, Johnson et al. 2008b). Then, we 

asked whether JAK is required for ISG induction during the initial cycle of vDNA 

replication, or it requires multiple cycles of viral replication to be activated. 

ACG at 50 µM did not affect ISG induction during ΔICP0 infection, but completely 

blocked the plaque formation and stalled the infection at the first cycle of 

replication (Alandijany et al. 2018). Combined ACG and ruxolitinib efficiently 

blocked ISG induction, demonstrating that JAK activity is specifically required 

during the initial cycles of ΔICP0 infection to stimulate ISG induction (Figure 32).  
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Figure 30. Ruxolitinib, a JAK1/2 inhibitor, blocked ISG induction in IFNβ-treated 

cells. 

HFt cells were untreated or treated with IFNβ (100 IU/ml) and Ruxolitinib (Rux; 5 μM) as 

indicated. Samples were collected at 9 hrs post-treatment. Bar graphs show the mRNA 

levels of MX1 and ISG15. The levels of mRNA were determined using the TaqMan system 

of quantitative RT-PCR. Values were normalized to GAPDH mRNA level, internal control, 

using the threshold cycle (ΔΔCT) method and expressed relative to the normalized level 

of mRNA in IFNβ-treated samples. Results represent means of relative quantitation (RQ) 

and SD; n=2. 
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Figure 31. Ruxolitinib inhibited the induction of ISGs during ΔICP0 HSV-1 infection. 

HFt cells were mock or infected with ΔICP0 at an MOI of 1 PFU/cell. Following an hour 

of viral absorption, cells were overlaid with media containing either DMSO or Rux (at 

the indicated concentrations). Samples were collected at 9 hrs post-infection. Bar 

graphs show the mRNA levels of MX1, and ISG15. The levels of mRNA were determined 

using the TaqMan system of quantitative RT-PCR. Values were normalized to GAPDH 

mRNA, internal control, using the threshold cycle (ΔΔCT) method, and expressed 

relative to the normalized level of mRNA in ΔICP0 HSV-1 infected samples with DMSO 

treatment. Results represent means of relative quantitation (RQ) and SD; n=2.  
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Figure 32.  JAK activity is required for ISG induction during the initiating cycle of 

ΔICP0 HSV-1 infection. 

HFt cells were mock or infected with ΔICP0 at an MOI of 1 PFU/cell. Following an hour 

of viral absorption, cells were overlaid with media containing DMSO, ACG (50 μM), and 

Rux (at the indicated concentration).  Samples were collected at 9 hrs post-treatment. 

Bar graphs show the mRNA levels of MX1 and ISG15. The levels of mRNA were 

determined using the TaqMan system of quantitative RT-PCR. Values were normalized to 

GAPDH mRNA level, internal control, using the threshold cycle (ΔΔCT) method and 

expressed relative to the normalized level of mRNA in ΔICP0 HSV-1 infected samples 

with DMSO treatment. Results represent means of relative quantitation (RQ) and SD; 

n=2. 
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5.2.4. Innate immunity constricts viral propagation over multiple 

cycles of replication 

 

As the inhibition of JAK pathway effectively blocked ISG induction in 

ΔICP0 HSV-1 infected cells, we investigated the effect of ruxolitinib on WT and 

ΔICP0 HSV-1 replication. First, PFE of both WT and ΔICP0 HSV-1 in HFt cells was 

assessed at 24 h post-infection in the presence of either ruxolitinib (5 μM) or 

DMSO (a carrier control). Given that WT virus did not robustly induce ISG 

expression, it was unsurprising that JAK inhibition did not affect the PFE of WT 

HSV-1 (Figure 33). Interestingly, the PFE of ΔICP0 HSV-1 was also not 

significantly influenced by ruxolitinib treatment, indicating that ISG induction 

does not significantly contribute to the plaque-formation defect of ΔICP0 HSV-1 

observed in HFt cells (figure 33 and 17). However, a substantial increase in the 

size of ΔICP0 plaques in ruxolitinib-treated cells versus DMSO-treated cells was 

observed when PFE was assessed at 48 h post-infection (Figure 34). These 

findings encouraged us to assess the effect of blocking ISG induction on viral 

propagation. HFt cells were seeded and infected with either WT (MOI of 0.001 

PFU/cell) or ΔICP0 HSV-1 (MOI of 1 PFU/cell). Following an hour of viral 

absorption, infected cells were overlaid with media containing either ruxolitinib 

(5 μM) or DMSO. Supernatants were collected at 24 hours intervals for three days 

(24, 48, and 72 hours post-infection), and viral yields were determined in U2OS 

cells. The viral yields of ΔICP0, but not WT, HSV-1 were substantially increased 

in ruxolitinib-treated cells in comparison to DMSO-treated controls (Figure 35). 

Collectively, these findings suggested that innate immunity does not restrict the 

initiation of viral infection, but rather constricts viral propagation over multiple 

cycles of replication. These results demonstrate that intrinsic and innate 

immunity are functionally distinct arms of host response that impair viral 

replication at different stages of infection. 
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Figure 33. Inhibition of JAK signaling does not enhance PFE of HSV-1 at 24 hours 

post-infection. 

HFt cells were infected with serial dilutions of either WT (dilution factor of 10) or ΔICP0 

HSV-1 (dilution factor of 2). Following an hour viral absorption, cells were overlaid with 

media containing 2% HS and either DMSO or ruxolitinib (Rux; 5 µM). At 24 hrs post-

infection, plaques were visualized by immune-staining plaque assay. Bar graphs show 

the number of plaques in Rux-treated cells relative to DMSO-treated cells. Results 

represent mean + SD; n=3. ns=non-significant; paired T-test. 
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Figure 34. Inhibition of JAK signaling enhanced the plaque size of ΔICP0 at 48 hours 

post-infection. 

HFt cells were infected with serial dilutions of ΔICP0 HSV-1. Following an hour viral 

absorption, cells were overlaid with media containing 2% HS and either DMSO or 

ruxolitinib (Rux; 5 µM). Plaques were visualized by immune-staining plaque assay at 24 

and 48 hrs post-infection. 
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Figure 35. Inhibition of JAK signaling enhanced the viral yields of ΔICP0, but not, 

HSV-1. 

HFt cells were infected with either WT (MOI of 0.001 PFU/cell) or ΔICP0 HSV-1 (MOI of 1 

PFU/cell). Following an hour viral absorption, cells were overlaid with media containing 

either DMSO or ruxolitinib (Rux; 5 µM). Supernatants were collected at 24, 48, and 72 

hrs post-infection, and viral yields were determined on U2OS cells. Results represent 

mean ± SD; n=3. 
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5.2.5. IFI16 and PML play key roles in the induction of innate 

immunity during ΔICP0 HSV-1 infection 

 

Unlike JAK inhibition, a single depletion of PML or IFI16 enhanced the PFE 

and viral yields of ΔICP0, but not WT, HSV-1 (Figure 18, 36 and 37). These data 

correlate with the intrinsic antiviral roles of PML and IFI16 that are antagonized 

by the viral protein ICP0 (Everett et al. 2006, Cuchet-Lourenco et al. 2013, 

Orzalli et al. 2013). Importantly, ruxolitinib treatment did not lead to any 

further increase of ΔICP0 HSV-1 yields in IFI16- or PML-depleted cells (Figure 37). 

These findings were unsurprising in IFI16-depleted cells, as IFI16 is known to play 

a key role in the induction of innate immunity during HSV-1 infection (Diner et 

al. 2015, Orzalli et al. 2012, Unterholzner et al. 2010). However, they raised the 

hypothesis that PML is crucial for efficient induction of ISGs. The mRNA levels of 

ISGs during ΔICP0 HSV-1 infection in IFI16-, PML-depleted cells and their relative 

controls were assessed. Consistent with previous reports (Diner et al. 2015, 

Orzalli et al. 2012, Unterholzner et al. 2010), the induction of ISGs in IFI16-

depleted cells was significantly reduced in comparison to the control cell lines 

(Figure 38). Interestingly, the induction of ISGs in PML-depleted was also 

significantly impaired, demonstrating a key role for PML in innate immunity 

induction during ΔICP0 HSV-1 infection (Figure 39). 
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Figure 36. IFI16 depletion enhances the PFE of ΔICP0, but not, HSV-1. 

shCtrl and shIFI16 cells were seeded overnight and infected with serial dilutions of 

either WT (dilution factor of 10) or ΔICP0 HSV-1 (dilution factor of 2). Plaques were 

visualized at 24 hrs by immuno-staining plaque assay. Bar graphs represent the fold 

increase in plaque number in the infected shIFI16 relative to infected shCtrl cells (as 

indicated). Results represent relative mean + SD; (n= 3).  Similar results were obtained 

from independent batches of depleted cells. ** P= < 0.01, and ns= non-significant; 

paired T-test. 
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Figure 37. Inhibition of JAK signaling failed to enhance the viral yields of WT and 

ΔICP0 HSV-1 in IFI16- and PML-depleted cells. 

Cells were seeded overnight and infected with either WT (MOI of 0.001 PFU/cell) or 

ΔICP0 HSV-1 (MOI of 1 PFU/cell) (A and B, respectively). Cells were overlaid with media 

containing either DMSO or ruxolitinib (Rux; 5 µM). Supernatants were collected at 24, 

48, and 72 hours post-infection (hpi), and viral yields were determined on U2OS cells. 

Results represent mean and SD; n=3. 
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Figure 38. ΔICP0 HSV-1 infection induced ISG transcription in an IFI16-dependent 

manner. 

shCtrl or shIFI16 cells were mock or infected with ΔICP0 HSV-1 at an MOI of 1 PFU/cell. 

Samples were collected at 9 hours post-infection. Bar graphs show the mRNA levels of 

MX1, ISG15, and ISG54. The levels of mRNA were determined using the TaqMan system 

of quantitative RT-PCR. Values were normalized to GAPDH mRNA level, internal control, 

using the threshold cycle (ΔΔCT) method and expressed relative to the normalized level 

of mRNA in ΔICP0 HSV-1 infected shCtrl samples. Results represent means of relative 

quantitation (RQ) and SD; n=3. *** P < 0.001; paired T-test. 
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Figure 39. ΔICP0 infection induced ISG transcription in a PML-dependent manner. 

shCtrl or shPML cells were mock or infected with ΔICP0 HSV-1 at an MOI of 1 PFU/cell. 

Samples were collected at 9 hours post-infection. Bar graphs show the mRNA levels of 

MX1, ISG15, and ISG54. The levels of mRNA were determined using the TaqMan system 

of quantitative RT-PCR. Values were normalized to GAPDH mRNA level, internal control, 

using the threshold cycle (ΔΔCT) method and expressed relative to the normalized level 

of mRNA in ΔICP0 HSV-1 infected shCtrl samples. Results represent means of relative 

quantitation (RQ) and SD; n=3. *** P < 0.001; paired T-test. 
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5.3. Summary 

 

Intrinsic and innate immunity play key roles in the intracellular restriction 

of HSV-1 infection. However, the regulation of these two arms of immunity 

remains unclear. We showed in the previous chapter that induction of intrinsic 

and innate immune responses are temporally distinct processes. Entry of vDNA 

into the nucleus of infected cells triggers intrinsic antiviral response which leads 

to viral genome silencing. Escape from silencing is required to induce host innate 

immune response. In this chapter, further investigations were carried out to 

assess the kinetics of viral infection that leads to the induction of host innate 

immunity as well as exploring the consequences of this induction on viral 

replication.  

 

It is well reported that HSV-1 infection induces ISG expression. However, 

HSV-1 expresses ICP0 which impairs several cellular pathways to interfere with 

the induction of innate immunity (Chew et al. 2009, Lanfranca et al. 2014, 

Orzalli and Knipe 2014). Although controversial, ICP0 has been shown to induce 

proteasome-dependent degradation of PRR IFI16 (Orzalli et al. 2012, Diner et al. 

2015, Orzalli et al. 2016, Cuchet-Lourenco et al. 2013). ICP0 is, then, 

translocated to the cytoplasm of infected cells where it binds to IRF3 and 

sequesters it away from ISG promoters (Melroe et al. 2007, Paladino et al. 2010). 

Consistent with these reports, ΔICP0 but not WT HSV-1 induced ISG mRNA and 

protein levels (Figure 26 and 27). Importantly, robust induction of ISGs during 

ΔICP0 HSV-1 infection was observed only at MOI conditions that enabled plaque 

formation (MOI of ≥1,~26 genome copies/nuclei) to occur (Figure 24 and 25) 

(Alandijnay et al., 2018), and at a late stage of viral infection (≥ 8h post-

infection for mRNA level and ≥16 hrs post-infection for protein level) (Figure 26, 

and 27). Our microscopy observations indicate that PRR IFI16 is recruited only to 

viral genomes in cells that successfully established the onset of viral gene 

expression (Figure 24). IFI16 has a high affinity to bind to higher-order DNA 

structures (e.g., G quadruplex DNA), which are predominantly accumulated 

during vDNA replication (Haronikova et al. 2016, Artusi et al. 2016). These 

findings suggested that vDNA replication is required for robust induction of 
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innate immunity. Correspondingly, PAA inhibited the induction of ISGs in a dose-

dependent manner, although ACG only moderately influenced this host response 

(Figure 28). The differential effects of these two vDNA replication inhibitors can 

be linked to their distinct mechanisms of action. PAA specifically targets the 

vDNA polymerase and inhibits the initiation of vDNA replication, whereas ACG is 

a synthetic purine nucleoside analog that acts as a premature DNA chain 

terminator and interferes with nascent vDNA synthesis (Honess and Watson 1977, 

Schang et al. 2000, Crumpacker et al. 1979, Elion et al. 1977). Hence, ACG 

treatment likely leads to the accumulation of prematurely terminated vDNA 

replication intermediates that still can be sensed by IFI16 which may account for 

the inefficient inhibition of ISG induction in ACG-treated cells. Collectively, 

these data demonstrate that the onset of vDNA replication plays a critical role in 

stimulating ISG induction during HSV-1 infection. In agreement with our findings, 

previous reports demonstrated that HSV-1 induced cytokine expression is 

dependent on viral replication, as UV-inactivated virus failed to induce this 

immune response (Melchjorsen et al. 2006, Rasmussen et al. 2007). 

Nevertheless, other reports suggested that ISGs induction requires viral particle 

entry but not viral replication (Collins et al. 2004, Eidson et al. 2002). The 

discrepancies in findings can be due to differences between studies in terms of 

experimental design, cell types, virus strain or mutants, particle to PFU ratio of 

viral stocks, and MOI used. Here we provided evidence that nuclear entry of viral 

genomes alone is not sufficient to induce host innate immunity but requires the 

initiation of vDNA replication. Our data put a clear temporal context for the 

induction of intrinsic and innate immunity during HSV-1 infection; likely to be 

relevant for other viral systems. 

 

JAK inhibition studies demonstrated that intrinsic and innate antiviral 

responses are functionally distinct from one another. A previous report showed 

that depletion of STAT, unlike depletion of PML-NB associated restriction factor, 

did not enhance the PFE of ΔICP0 HSV-1 (Everett et al. 2008) (Figure 18). 

Consistent with this report (Everett et al. 2008, the viral plaque numbers were 

not affected upon inhibition of JAK activity with ruxolitinib (Figure 33). 

However, a substantial increase in the plaque size and virus yield of ΔICP0 HSV-1 
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was observed in the presence of ruxolitinib, phenotypes not observed during WT 

HSV-1 infection (Figure 34 and 35). Our data demonstrate that induction of ISG 

expression does not repress the onset of viral replication, but instead constricts 

viral propagation. Collectively, our data demonstrate that intrinsic and innate 

immunity are temporally and functionally distinct arms of intracellular immunity 

during HSV-1 infection. 

 

It is clear that IFI16 is one of the key innate immune regulators and its 

action is antagonized by ICP0 expression (Diner et al. 2015, Orzalli et al. 2016, 

Orzalli et al. 2012, Unterholzner et al. 2010). Consistent with these reports, the 

presence of IFI16 was crucial for efficient induction of ISGs during ΔICP0 HSV-1 

infection (Figure 38). Hence, ruxolitinib treatment failed to enhance ΔICP0 HSV-

1 yields in the absence of IFI16 (Figure 37). Our microscopy observations 

demonstrated that IFI16 and PML are recruited to vDNA expressing ICP4 in a 

similar fashion (Figure 23). Moreover, ISG induction in ΔICP0 HSV-1 infected cells 

was impaired in the absence of PML (Figure 39). Correspondingly, the yield of 

ΔICP0 HSV-1 was not enhanced upon JAK inhibition in PML-depleted cells (Figure 

37). These findings identify PML as a key innate immune regulator during HSV-1 

infection. PML-mediated ISG induction during DNA virus infections (e.g., HCMV 

and VSV) and exogenous IFN treatment has been previously reported (Kim and 

Ahn 2015, Scherer et al. 2015, El Asmi et al. 2014, Chee et al. 2003, El Bougrini 

et al. 2011). Although the underlying mechanism for this process remains to be 

fully established, some mechanisms have been proposed (section 7.2.). The 

current knowledge supports a conserved role for PML in the regulation of innate 

immunity to viral infection. 
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In summary, our data identify dual and temporal roles for PML in the 

sequential induction of intrinsic and innate immunity to HSV-1 infection. PML 

acts immediately upon viral genome delivery to the nucleus in order to suppress 

the onset of viral gene expression. Escape from this intrinsic immune defense 

and initiation of vDNA replication trigger the induction of innate immunity which 

constricts the viral propagation and limits the spread of infection in a PML-

dependent manner. However, both arms of host defense are counteracted by the 

viral ubiquitin ligase ICP0 which targets PML and other immune factors for 

proteasome-dependent degradation during the course of HSV-1 infection 
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6. Defects in intrinsic and innate immunity correlate with the cell line 

permissiveness to ΔICP0 HSV-1 replication  

 

6.1. Overview 

 

Although ICP0 is not essential for HSV-1 replication, the growth of ΔICP0 is 

impaired in a cell type-dependent manner (Stow and Stow 1986, Yao and 

Schaffer 1995, Everett et al. 2004a). Cells have been described as either 

permissive (e.g., U2OS and SAOS-2) or restrictive (e.g., fibroblasts) based on 

their ability to support ΔICP0 HSV-1 replication. In HFt cells, the PFE defect of 

ΔICP0 HSV-1 was about 1000-fold in comparison to that in U2OS cells (Figure 17). 

The data presented in the first two result chapters demonstrate that HFt cells 

possess functional and effective intrinsic and immune responses to ΔICP0 HSV-1 

infection that account for the replication defects in these cells. However, both 

arms of host intracellular immunity are efficiently counteracted by ICP0. These 

findings raised the question of whether permissive cell lines are unable to mount 

efficient immune responses to ΔICP0 HSV-1 infection which renders them more 

susceptible to infection. Alternatively, permissive cell lines may exhibit a 

cellular ICP0-like activity that complements the lack of ICP0. In this study, the 

first hypothesis was considered. The ability of restrictive (RPE and HaCaT) and 

permissive (U2OS and SAOS-2) cells to confer efficient intrinsic and innate 

immune responses during HSV-1 infection were assessed. HFt cells were included 

as a positive control for these studies. We mainly focused on the following: (i) 

comparing the viral replication efficiency in these cells; (ii) assessing the ability 

of these cells to recruit PML-NB associated restriction factors to infecting viral 

genomes upon nuclear entry; and (iii) investigating the efficiency of ISG 

induction in response to infection. 

 

Consistent with the previous reports (Everett et al. 2004a, Stow and Stow 

1986), our data demonstrated that HFt, RPE, and HaCaT cells restrict the onset 

of plaque formation of ΔICP0 but not WT HSV-1. U2OS cells fully complement 

ΔICP0 HSV-1 while SAOS-2 cells partially do so (Yao and Schaffer 1995). The 
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recruitment efficiency of PML-NB constituent proteins to vDNA was significantly 

impaired in permissive cell lines in comparison to restrictive cell types, 

demonstrating that entrapment of vDNA by PML-NBs correlates with the ability 

of infected cells to induce genome silencing. In agreement with a very recent 

report, U2OS and SAOS cells failed to induce robust ISG response to ΔICP0 HSV-1 

infection (Deschamps and Kalamvoki 2017b). Interestingly, restrictive RPE and 

HaCaT cells also failed to robustly induce the expression of ISGs in response to 

ΔICP0 HSV-1 infection. These findings may explain the significant increase in 

ΔICP0 HSV-1 yields in RPE and HaCaT cells in comparison to HFt cells, although 

all three cell lines exhibited similar PFE. Importantly, the data highlight that 

nuclear entry of vDNA and its entrapment within PML-NBs is not enough to 

induce host innate immune response. The inability of RPE and HaCaT cells to 

induce ISG expression was not due to a defect in IFN-signaling, as they 

efficiently responded to different types of exogenous IFN treatment. More 

investigations are required to reveal the defects in RPE, HaCaT, U2OS, and SAOS 

cells that prevent them from inducing robust ISG expression in response to ΔICP0 

HSV-1 infection. Collectively, these data demonstrate that the inability to mount 

efficient intrinsic or innate responses correlates with the cell line permissiveness 

to ΔICP0 HSV-1 infection. 
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6.2. Results 

 

6.2.1.  Host cells restrict ΔICP0 HSV-1 replication in a cell type-

dependent manner 

 

The PFE of both WT and ΔICP0 HSV-1 was assessed in five cell lines (HFt, 

RPE, HaCaT, U2OS, and SAOS). Of these, U2OS and SAOS-2 cells have been 

described historically as permissive to ΔICP0 HSV-1 infection (Yao and Schaffer 

1995, Everett et al. 2004a). Cells were seeded overnight and infected with 

either WT or ΔICP0 HSV-1. Following an hour of viral absorption, cells were 

overlaid with the appropriate media containing 2% HS (Table 6). Infected cells 

were fixed and permeabilized at 24 hours post-infection, and immune-staining 

plaque assay was conducted. WT HSV-1 showed relatively equivalent PFE in the 

different cell types (Figure 40). However, the plaque formation of ΔICP0 HSV-1 

was significantly restricted in HFt, RPE, and HaCaT cells versus U2OS and SAOS 

(Figure 40). Although the PFE of ΔICP0 HSV-1 was comparable in restrictive cell 

lines (approximately 1000-fold less than U2OS cells), the viral yields at 48 hours 

post-infection were significantly higher in RPE and HaCaT cells in comparison to 

HFt cells (Figure 41). These results raised the hypothesis that some cell types 

may not confer equally effective intrinsic and innate immune responses to ΔICP0 

HSV-1 infection that render them more permissive to infection. 
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Figure 40. Host cells restrict the PFE of ΔICP0 HSV-1 infection in a cell type-

dependent manner. 

Cells were seeded overnight and infected with serial dilutions of either WT or ΔICP0 

HSV-1. Following an hour of viral absorption, cells were overlaid with complete media 

containing 2% HS. At 24 hrs post-infection, cells were fixed and permeabilized and 

immune-staining plaque assay was conducted.  Plaque numbers were counted under a 

plate microscope. Bar graphs show the numbers of plaques relative to U2OS cells. 

Results represent relative mean and SD (n=3).  *** P = < 0.001; unpaired T-test. 

 

 

 

 

 



  
 

145 
 

 

 

 

H
F

t

R
P

E

H
a
C

a
T

1 0 4

1 0 5

1 0 6

1 0 7

1 0 8


IC
P

0
 v

ir
u

s
 r

e
le

a
s

e

(l
o

g
1

0
 P

F
U

/m
l)

***

***

 

Figure 41. Enhanced viral yields of ΔICP0 HSV-1 in RPE and HaCaT cells in 

comparison to HFt cells. 

Cells were seeded overnight and infected with ΔICP0 HSV-1 at MOI of 1 PFU/cell. 

Following an hour of viral absorption, cells were overlaid with complete media. 

Supernatants were collected at 48 hrs post-infection, and viral titers were determined 

on U2OS cells. Bar graphs represent mean and SD; n=3. *** P = < 0.001; unpaired T-test.  
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6.2.2. The efficient recruitment of PML-NB associated restriction 

factors to vDNA occur in a cell type-dependent manner 

 

In order to investigate the ability of restrictive and permissive cell types 

to confer efficient intrinsic immunity to HSV-1 infection, the recruitment of PML 

and Daxx to EdU-labeled vDNA was assessed. Cells were seeded overnight onto 

coverslips and infected with HSV-1EdU at an MOI of 3 PFU/cell. The coverslips 

were fixed and permeabilized at 90 mpi. vDNA was detected by click chemistry, 

host factors (PML and Daxx) were detected by indirect IF staining, and nuclei 

were visualized by DAPI. Both PML and Daxx were efficiently recruited to vDNA 

in HFt cells demonstrated by high weighted colocalization coefficient (> 0.7) 

between host factors and vDNA. Similarly, RPE and HaCaT cells exhibited a 

strong colocalization coefficient between host factors (PML and Daxx) and vDNA. 

However, the recruitment efficiency of PML and Daxx to vDNA was significantly 

impaired in U2OS and SAOS cells. We also noted that the weighted colocalization 

coefficient between PML and Daxx was significantly lower in permissive cell lines 

in comparison to restrictive cell types (Figure 42). These data identify a 

correlation between recruitment PML-NB proteins to vDNA and the ability of 

infected cells to restrict ΔICP0 HSV-1 plaque formation. 

 

It was previously reported that both U2OS and SAOS lack ATRX, a PML-NB 

associated restriction factor (Lovejoy et al. 2012, McFarlane and Preston 2011). 

To determine the importance of ATRX in the entrapment of vDNA within PML-

NBs, the recruitment of PML to vDNA was investigated in ATRX-depleted HFt 

cells and their relative controls. ATRX depletion significantly influenced the 

recruitment of PML to vDNA, demonstrating a key role for ATRX in the 

entrapment of vDNA within PML-NBs (Alandijany et al. 2018). 
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Figure 42. PML-NB constituent proteins (PML and Daxx) are efficiently recruited to 

infecting viral genomes in a cell type-dependent manner. 

Cells were infected with HSV-1EdU at an MOI 3 of PFU/cell. Infected monolayers were 

fixed and permeabilized at 90 mpi. Viral genomes and host factors were labeled by click 

chemistry and indirect IF staining protocols, respectively. Nuclei were visualized by 

DAPI. (A) Representative confocal microscopy images showing the nuclear localization of 

PML (green) and Daxx (cyan) to vDNA (red; highlighted by the white arrows). The cut 

mask highlights regions of colocalization between host factors and vDNA (as indicated). 

Weighted (w.) colocalization coefficients are shown. (B) Quantitation of host factor 

colocalization with each other and with infecting viral genomes. Boxes: 25th to 75th 

percentile range of sample; black line: median; whiskers: Min and Max range of 

samples. n ≥ 25 viral genomes from two independent experiments.  *** P = < 0.0001; 

Mann-Whitney U-test. 
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6.2.3. The induction of ISG expression in response to ΔICP0 HSV-1 

infection occurs in a cell type-dependent manner 

 

ΔICP0 HSV-1 infection leads to robust induction of ISGs in HFt cells (Figure 

26 and 27). This induction of innate immune response subsequently constricts 

the viral propagation (Figure 35). Previous reports demonstrated enhanced viral 

yields of ΔICP0 HSV-1 in U2OS and SAOS cells in comparison to Vero cells (Yao 

and Schaffer 1995, Deschamps and Kalamvoki 2017b). In this study, the viral 

yields of ΔICP0 HSV-1 in RPE and HaCaT cells were significantly greater than HFt 

cells (Figure 41). Thus, we asked whether permissive (U2OS and SAOS) and other 

restrictive (RPE and HaCaT) cell lines can or cannot stimulate efficient ISG 

induction in response to ΔICP0 HSV-1 infection.  

 

Cells were seeded overnight and infected with either WT or ΔICP0 HSV-1 

at an MOI of 1 PFU/cell. Mock and IFNβ (100 IU/ml)-treated cells were included 

as a negative and positive control for ISG induction, respectively. The induction 

of ISG mRNA and protein levels was assessed at 9 hrs and 16 hrs post-infection, 

respectively. ΔICP0 HSV-1 stimulated robust induction of ISG mRNA and protein 

levels in HFt cells while WT HSV-1 impaired this host response. Interestingly, all 

other cell lines (RPE, HaCaT, U2OS, and SAOS) failed to prompt the induction of 

ISGs in response to both WT and ΔICP0 HSV-1 infection, although responded to 

exogenous IFNβ treatment (Figure 43 and 44). Correspondingly, ruxolitinib 

treatment of the infected cell monolayers enhanced the viral yields of ΔICP0 

HSV-1 in HFt cells, but failed to do so in the other cell types (Figure 45). 

 

Collectively, these data demonstrate that although RPE and HaCaT cells 

efficiently recruited PML-NB associated restriction factors to vDNA and restricted 

the onset of ΔICP0 HSV-1 replication, they fail to induce ISG expression in 

response to ΔICP0 HSV-1 infection under MOI conditions that saturate host 

intrinsic immunity. U2OS and SAOS cells are defective in both intrinsic and 

innate arms of host immunity which renders them highly permissive to ΔICP0 

HSV-1 infection. 
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Figure 43. ΔICP0 but not WT HSV-1 infection induces ISG transcription in a cell type-

dependent manner. 

Cells were mock, treated with IFN (100 IU/ml), or infected with either WT or ΔICP0 

HSV-1 (MOI of 1 PFU/cell). Samples were collected at 9 hrs post-infection. Bar graphs 

show the mRNA levels of MX1, ISG15, and ISG54. The levels of mRNA were determined 

using the TaqMan system of quantitative RT-PCR. Values were normalized to GAPDH 

mRNA level, internal control, using the threshold cycle (ΔΔCT) method and expressed 

relative to the normalized level of mRNA in the mock sample. Results represent means 

of relative quantitation (RQ) and SD; n ≥ 2.  

 

 



  
 

151 
 

 

Figure 44. ΔICP0 but not WT HSV-1 infection induces ISG protein levels in a cell 

type-dependent manner. 

Cells were infected with WT or ΔICP0 HSV-1 (MOI of 1 PFU/cell). Mock cells and IFN 

(100 IU/ml)-treated cells were included as a negative and positive control, respectively.  

Samples were collected at 16 hrs post-infection. Membranes were probed for the viral 

proteins (ICP0 and ICP4) to track the progress of infection, MX1 and ISG15 were used to 

monitor the effect of infection on ISG induction, or actin (as a loading control). 

Molecular mass markers are shown. 
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Figure 45. Inhibition of JAK signaling, using ruxolitinib, enhanced ΔICP0 HSV-1 yields 

in a cell type-dependent manner. 

Cells were seeded overnight and infected with ΔICP0 HSV-1 (MOI of 1 PFU/cell). 

Following an hour of viral absorption, cells were overlaid with media containing either 

DMSO or ruxolitinib (Rux; 5 µM). Supernatants were collected at 48 hrs post-infection, 

and viral titers were determined on U2OS cells. Results represent relative mean and SD; 

n=3. * P ≤ 0.05, ** P ≤ 0.01, ns = non-significant; paired T-test. 
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6.2.4. The inability of RPE and HaCaT to induce ISGs expression was 

not due to a defect in IFN signaling pathway 

 

The induction of innate immunity during HSV-1 infection occurred in an 

ICP0- and cell type-dependent manner. Although HFt, RPE, and HaCaT cells were 

restrictive to ΔICP0 HSV-1 infection, only HFt cells were capable of inducing ISG 

expression in response to ΔICP0 HSV-1 infection. All three cell types, however, 

responded to the exogenous IFNβ treatment indicating that these cells are not 

defective in IFN signaling pathway. It is known that IFN functions in both 

autocrine and paracrine fashions. Hence, cells that are unable to induce innate 

immunity themselves might still be protected and armed against infection via 

cytokine secretion mediated by adjacent cells. To test this hypothesis, we 

assessed the effect of pre-immune stimulation by exogenous IFN (type I, type II, 

or type III) treatment on the viral PFE in all three cell lines (HFt, RPE, and 

HaCaT). Cells were seeded and treated with different types and concentrations 

of IFN for 24 hours before infection with WT (MOI of 0.002 PFU/cell) or ΔICP0 

HSV-1 (MOI of 1 PFU/cell). Following an hour of viral absorption, cells were 

overlaid with media containing IFN and 2% HS. Immuno-staining plaque assay was 

conducted at 24 hrs post-infection. 

 

In HFt cells, both WT and ΔICP0 HSV-1 were sensitive to IFN type I (IFNα 

and IFNβ) treatment. Consistent with the previous reports (Eidson et al. 2002, 

Mossman et al. 2000), ΔICP0 was more sensitive than WT HSV-1 to IFN-mediated 

restriction at equivalent concentrations of IFN treatment (Figure 46 and 47). 

Indeed, the PFE of ΔICP0 HSV-1 was substantially reduced in response to both 

type I and type II IFN treatments, even at very low concentrations (0.003 and 

0.05 ng/ml, respectively). WT HSV-1 was sensitive to type I IFN but only at 

higher concentration (≥ 0.3 ng/ml). The PFE of WT virus was only moderately 

inhibited in IFNγ-treated cells even at very high concentration (50 ng/ml). These 

data support previous findings (Harle et al. 2002, Klotzbucher et al. 1990, 

Mossman and Smiley 2002), and suggest that HSV-1 directly or indirectly 

antagonizes IFNγ- and, to a lesser extent, IFNα- and β-mediated antiviral 
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responses through the expression of ICP0. Notably, neither WT nor ΔICP0 HSV-1 

was influenced by IFNλ pre-treatment (Figure 46 and 47).  

 

Next, we assessed the PFE of WT HSV-1 in IFN-treated RPE and HaCaT 

cells. RPE cells recapitulated the data obtained from HFt cells (Figure 48). IFNα 

and IFNβ reduced the plaque numbers in a dose-dependent manner. IFNγ 

moderately inhibited HSV-1 plaque formation. IFNλ also failed to induce an 

effective antiviral response in RPE cells. 

 

In HaCaT cells, a dose-dependent reduction in plaque numbers was 

observed in response to all types of IFN treatment (IFNα, β, γ, and λ) (Figure 

49). WT HSV-1 was remarkably sensitive to IFNγ treatment in HaCaT cells even at 

a very low concentration (0.005 ng/ml), a phenotype that was not observed in 

HFt and RPE cells. However, as previously reported, substantial cell death in 

HaCaT cells treated with IFNγ at a concentration of > 0.5 ng/ml was observed 

(Henseleit et al. 1996). This phenotype was not observed with other IFN 

treatments or cell types. Interestingly, HaCaT cells were responsive to IFNλ 

treatment, and the PFE of HSV-1 was inhibited in a dose-dependent manner. 

 

Collectively, these data demonstrate that cells which lack the ability to 

induce innate immunity in response to infection (HaCaT and RPE cells) are not 

defective in IFN signaling in response to exogenous IFN stimulation. Hence, these 

cells can be armed against HSV-1 infection via cytokine secretion mediated by 

neighboring immune cells. 
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Figure 46. IFN type I and type II, but not type III, inhibited the PFE of WT HSV-1 in 

HFt cells. 

Cells were untreated or treated with the indicated concentrations of IFNα, IFNβ, IFNγ, 

or IFNλ for 24 hrs. The following day, treated cells were infected with WT HSV-1 (MOI of 

0.002 PFU/cell). After an hour of viral adsorption, cells were overlaid with media 

containing IFN and 2% HS. At 24 hours post-infection, cells were fixed and 

permeabilized, and immune-staining plaque assay was conducted. Bar graph shows fold 

inhibition in plaque numbers in IFN-treated cells relative to untreated control. Results 

represent mean + SD; n= 3. * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, ns = non-significant; 

paired T-test. 
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Figure 47. IFN type I and type II, but not type III, inhibited the PFE of ΔICP0 HSV-1 in 

HFt cells. 

Cells were untreated or treated overnight with the indicated concentrations of IFNα, 

IFNβ, IFNγ, or IFNλ for 24 hrs. The following day, treated cells were infected with ΔICP0 

HSV-1 (MOI of 1 PFU/cell). After an hour of viral adsorption, cells were overlaid with 

media containing IFN and 2% HS. At 24 hours post-infection, cells were fixed and 

permeabilized, and immune-staining plaque assay was conducted. Bar graph shows fold 

inhibition in plaque numbers in IFN-treated cells relative to untreated control. Results 

represent mean + SD; n= 3. * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, ns = non-significant; 

paired T-test. 
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Figure 48.IFN type I and type II, but not type III, inhibited the PFE of WT HSV-1 in 

RPE cells. 

Cells were untreated or treated with the indicated concentrations of IFNα, IFNβ, IFNγ, 

or IFNλ for 24 hrs. The following day, treated cells were infected with WT HSV-1 (MOI of 

0.002 PFU/cell). After an hour of viral adsorption, cells were overlaid with media 

containing IFN and 2% HS. At 24 hours post-infection, cells were fixed and 

permeabilized, and immune-staining plaque assay was conducted. Bar graph shows fold 

inhibition in plaque numbers in IFN-treated cells relative to untreated control. Results 

represent mean + SD; n= 3. * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, ns = non-significant; 

paired T-test. 
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Figure 49. IFN type I, type II, and type III inhibited the PFE of WT HSV-1 in HaCaT 

cells. 

Cells were untreated or treated with the indicated concentrations of IFNα, IFNβ, IFNγ, 

or IFNλ for 24 hrs. The following day, treated cells were infected with WT HSV-1 (MOI of 

0.002 PFU/cell). After an hour of viral adsorption, cells were overlaid with media 

containing IFN and 2% HS. At 24 hours post-infection, cells were fixed and 

permeabilized, and immune-staining plaque assay was conducted. Bar graph shows fold 

inhibition in plaque numbers in IFN-treated cells relative to untreated control. Results 

represent relative mean + SD; n= 3. * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, ns = non-

significant; paired T-test. 
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6.3. Summary  

 

Intrinsic and innate immunity play key roles in the intracellular restriction 

of HSV-1 infection. These two arms of host immunity confer temporally and 

functionally distinct responses, but both are required to effectively control 

infection. As shown in the previous chapters, host cell restriction factors are 

recruited to vDNA upon nuclear entry leading to viral genome silencing. 

Following saturation of these intrinsic host factors, the innate immune response 

is triggered by the initiation of vDNA replication. ISG expression constricts viral 

propagation and limits the spread of infection. However, HSV-1 expresses ICP0 

which counteracts both aspects of host antiviral immunity (Boutell and Everett 

2013, Lanfranca et al. 2014, Gu 2016). Importantly, these conclusions were 

derived from works carried out on HFt cells, a cell type that is known to be 

highly restrictive to ΔICP0 HSV-1 infection (Everett et al. 2004a). Over two 

decades ago, it was shown that human osteosarcoma cells (U2OS and SAOS) are 

highly permissive to ΔICP0 HSV-1 infection. However, the mechanism(s) of how 

these cells support ΔICP0 HSV-1 infection has remained unclear (Yao and 

Schaffer 1995). Given that ICP0 is a major host immunity antagonist, we 

proposed that permissive cells might be defective in aspects related to 

intracellular immunity rendering them permissive to HSV-1 infection in the 

absence of ICP0.  

 

We tested this hypothesis and found that permissive cells were defective 

in both intrinsic and innate antiviral responses (Figure 42-44). In comparison 

with restrictive cell lines (HFt, RPE and HaCaT), both U2OS and SAOS cells failed 

to efficiently recruit PML and Daxx to infecting vDNA (Figure 42). These 

observations were not due to defects in PML and Daxx expression, as all cell 

lines expressed similar protein levels (Alandijany et al. 2018). However, we 

visually noted that U2OS and SAOS cells might possess irregular PML-NBs, 

demonstrated by the poor colocalization between PML and Daxx (Figure 42). 

Moreover, permissive U2OS and SAOS cells lack ATRX, a chromatin-remodeling 

protein and a PML-NB associated restriction factor (Lukashchuk and Everett 
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2010). Depletion of ATRX in HFt cells not only enhanced the PFE of ΔICP0 HSV-1, 

but also significantly influenced the recruitment of PML to vDNA (Alandijany et 

al. 2018, Lukashchuk and Everett 2010). These findings demonstrated that 

efficient recruitment of PML is dependent on ATRX, and partially explained the 

defect in PML recruitment in permissive cell lines. The effect of ATRX ectopic 

expression on PML recruitment to vDNA in permissive cells was not investigated 

due to time constraints, but it remains an attractive experiment to consider. 

 

U2OS and SAOS were not only defective in recruiting restriction factors to 

the viral genome foci, but also unable to efficiently induce innate immunity in 

response to ΔICP0 HSV-1 infection. Neither U2OS nor SAOS could induce ISG 

expression during ΔICP0 HSV-1 infection, although both cell lines responded to 

IFN treatment (Figure 43 and 44). During our study, a research article was 

published supporting these findings that U2OS and SAOS cells fail to induce ISG 

expression in response to ΔICP0 HSV-1 infection (Deschamps and Kalamvoki 

2017b). This process was linked to the low expression level of STING in these 

cells. Ectopic expression of STING partially restored innate immunity in U2OS 

cells. On the other hand, overexpression of IFI16 failed to so, although it 

conferred intrinsic repression to viral infection (Deschamps and Kalamvoki 

2017b). It is likely that permissive cell lines are defective in multiple aspects 

related to host immunity and further investigations are required to reveal them. 

 

Interestingly, our data identified cell types to be restrictive for ΔICP0 

HSV-1 plaque formation but defective in inducing ISG expression in response to 

infection. Both RPE and HaCaT cells efficiently recruited restriction factors (PML 

and Daxx) to the infecting viral genomes, and this recruitment correlated with 

restriction in plaque formation of ΔICP0 HSV-1 (Figure 40 and 42). Unlike HFt 

cells, they failed to substantially induce ISGs expression in response to ΔICP0 

HSV-1 infection (Figure 43 and 44). These observations may explain the 

enhanced viral yields in these cells in comparison to HFt cells, although all three 

cell lines exhibit similar PFE (Figure 40 and 41). The entrapment of vDNA within 

PML-NBs and restriction of plaque formation without induction of ISG expression 
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demonstrates that intrinsic and innate immune responses are distinct from one 

another. 

 

Although RPE and HaCaT cells were unable to induce ISG expression in 

response to ΔICP0 HSV-1 infection, they exhibited a strong response to IFNβ 

treatment (Figure 43 and 44). Moreover, exogenous IFN treatment established 

effective antiviral responses in RPE and HaCaT cells similar to that observed in 

IFN-treated HFt cells (Figure 46-49). These findings demonstrate that cells 

unable to induce innate immunity themselves might still be protected and armed 

against viral infection via cytokine secretion mediated by neighboring immune 

cells (e.g., macrophages, NK cells, neutrophils, and DCs). Although RPE and 

HaCaT cells are not defective in IFN signaling pathways, they are still defective 

in aspects related to inducing innate immunity in response to infection. Failure 

of these cells to recognize PAMPs, or the inability to produce IFN are some 

hypotheses to consider for future research. 

 

Host cells differentially express different types of IFN receptors. HFt, 

RPE, and HaCaT responded to IFN type I (α and β) and type II (γ) treatment, as 

demonstrated by the significant inhibition of viral PFE in comparison to 

untreated controls (Figure 46-49). Fibroblast cells do not express IFNλ receptors 

which explains the lack of IFNλ-mediated antiviral effect in HFt cells (Figure 46 

and 47) (Sommereyns et al. 2008, Palma-Ocampo et al. 2015). Epithelial cells 

derived from different organs (e.g., lung and gastrointestinal tracts) were 

previously shown to strongly respond to IFN-λ treatment (Sommereyns et al. 

2008, Palma-Ocampo et al. 2015, Pott et al. 2011, Mordstein et al. 2010). 

Although we did not directly assess the ISG induction in RPE cells following IFNλ 

treatment, these epithelial cells failed to confer effective IFNλ-mediated 

antiviral response (Figure 48). This can be due to lack of IFNλ receptors or 

failure to induce the expression of effective ISG products. Unlike HFt and RPE, 

HaCaT cells were responsive to all types of IFN treatment, including IFNλ which 

provides an attractive model to directly compare the biological properties of 

different types of IFN (Figure 49). We noted cell death upon IFNγ treatment of 

HaCaT cells at concentration of ≥ 0.5 ng/ml. This is believed to be due to IFNγ-
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induced DNA cleavage at the linker regions leading to apoptotic cell death 

(Henseleit et al. 1996, Maher et al. 2008). The effect of exogenous IFN 

treatment on viral PFE in U2OS and SAOS was not assessed due to time 

constraints. However, previous reports suggest that IFNα treatment substantially 

reduced ΔICP0 HSV-1 plaque formation in Vero cells but not U2OS cells. These 

findings demonstrated that U2OS lack the IFN-mediated antiviral effector(s) 

(Eidson et al. 2002). We noted that U2OS failed to induce Mx1 expression 

following IFNβ treatment (Figure 43 and 44). Mx1 is a well-established ISG 

product that is shown to confer antiviral response to many viral infections 

(Arnheiter and Haller 1988, Fernandez et al. 1997, Frese et al. 1996, Haller et 

al. 1995, Schneider-Schaulies et al. 1994, Staeheli et al. 1988). Mx1 is also one 

of the most highly upregulated ISG products in response to HSV-1 infection 

(Eidson et al. 2002). Hence, it is plausible to explore the role of Mx1 during HSV-

1 infection and the effect of ICP0 expression on Mx1 function. 

 

The fact that ΔICP0 HSV-1 was sensitive to exogenous IFN treatment was 

not surprising as this mutant lacks a major host immunity antagonist. However, 

WT HSV-1 was also sensitive to increased concentration of IFNs. Although these 

observations are not novel and have been reported a long time ago, this area of 

research is understudied (Gloger and Panet 1984, Oberman and Panet 1988). It 

remains unknown which ISG products are responsible for mediating antiviral 

response in the presence of ICP0 during WT HSV-1 infection. It is also unclear 

whether these effective ISG products are novel to HSV-1 or previously identified 

for other viruses. An alternative hypothesis is that IFN treatment possibly 

influences the biochemical activity of ICP0 directly, rendering WT HSV-1 

sensitive to cellular immune factors that are usually targeted by ICP0. 

Considering these hypotheses should advance our understanding of the role of 

IFN and innate immunity during WT HSV-1 infection.   

  

Collectively, these findings support our conclusions that intrinsic and 

innate immunity are separate branches of host intracellular immunity. The 

infected host requires intrinsic and innate immunity to efficiently restrict the 

onset of viral replication and limit the spread of the viral infection, respectively. 



  
 

163 
 

Cells that lack one or both aspects of these host antiviral responses are more 

permissive to infection. The expression of ICP0 can antagonize both aspects of 

host immunity. However, an IFN-mediated pre-induced antiviral state can 

protect host cells from WT HSV-1 infection. The underlying mechanism for this 

process is not clear, and requires further investigation. 
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7. Discussion 

 

Host immunity plays a crucial role in controlling HSV-1 replication at 

primary sites of infection and in blocking genome reactivation from latency 

(Egan et al. 2013). During lytic infection, intrinsic and innate antiviral responses 

represent the first lines of host defense to infection (Komatsu et al. 2016, 

Lanfranca et al. 2014). The key finding of this study is that intrinsic and innate 

immune responses are separable by virtue of temporal induction at different 

stages of infection, and kinetically distinct effects on viral replication. The 

intrinsic response is mediated by pre-existing host cell restriction factors (e.g., 

PML-NB constituent proteins) which immediately recognize vDNA upon nuclear 

entry, and directly repress the onset of viral replication through the suppression 

of viral gene expression (Tavalai and Stamminger 2009, Boutell and Everett 

2013, Geoffroy and Chelbi-Alix 2011). On the other hand, the induction of innate 

immune response (PRR-mediated IFN production and ISG expression) is triggered 

following the escape of viral genome from intrinsic silencing, and initiation of 

vDNA replication. The induction of ISG expression in the infected and 

neighboring uninfected cells inhibits viral propagation and limits the spread of 

infection (Paludan et al. 2011, Knipe 2015, Chew et al. 2009). The secretion of 

type I IFN is also known to activate and recruit immune cells (e.g., macrophages, 

NK cells, neutrophils, and DCs) to the site of infection (Pollara et al. 2004). 

Activated immune cells can directly restrict viral replication, induce apoptosis of 

infected cells, phagocytose apoptotic infected cells, produce type II IFN, and 

stimulate the adaptive immune response (Djeu et al. 1982, Cheng et al. 2000, 

Bosnjak et al. 2005, Kassim et al. 2006, Grubor-Bauk et al. 2008). Indeed, one of 

the main functions of DCs is to present viral antigens to CD4+ and CD8+ T cells 

which play a central role in maintaining the viral genomes in a latent state (Liu 

et al. 2000, Knickelbein et al. 2008, Pereira et al. 2000).  

 

Our study advanced our understanding of the very early events in cellular 

response to HSV-1 infection prior to the initiation of viral gene expression 

(Alandijany et al. 2018). This sequential regulation of intracellular immunity 
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likely applies to other viral systems, particularly other herpesviruses susceptible 

to PML-NB repression, and worthy of investigation. 

 

7.1. Click chemistry-mediated detection of vDNA as a tool to 

investigate key aspects and early events of viral replication  

 

Microscopy and vDNA detection assays have had a great impact on 

advancing our understanding of many aspects related to viral infections (e.g., 

viral entry into host cells, host antiviral responses, and viral immune-evasion 

strategies). These methods provide analysis, dissection, and elucidation of virus-

cell interaction pathways at a single-cell resolution. However, direct detection 

of vDNA under low MOI conditions with FISH and BrdU-labeling is technically 

challenging (Jensen 2014). Additionally, these assays can be incompatible with IF 

staining due to substantial sample processing and harsh treatment conditions 

(Greber et al. 1997, Nguyen et al. 2010, Wang et al. 2013a). These problems left 

many questions unanswered, particularly with regards to the temporal regulation 

of intrinsic and innate immune responses to infection. Click chemistry-mediated 

detection of ethynyl-tagged deoxynucleotide-labeled vDNA has solved this issue. 

This protocol allowed specific detection of EdU-labeled vDNA under low MOI and 

as early as 30 minutes post-addition of virus (Figure 11). Importantly, the 

protocol described in this study was associated with high labeling efficiency 

(more than 60% of genomes were labeled), and was not detrimental for viral 

infection (Alandijany et al. 2018). Moreover, it was compatible with indirect IF 

staining protocols and allowed investigation of host immune factor recruitment 

to infecting vDNA. We collected evidence that demonstrates sequential 

recruitment of host restriction factors (PML-NB constituent proteins) and PRRs 

(IFI16) to vDNA (Figure 12, 19, and 23). These findings inspired additional work 

which collectively allowed us to conclude that intrinsic and innate arms of 

intracellular immunity are temporally and functionally distinct from one 

another. It also allowed us to conclude that defect(s) in the recruitment of PML-

NB constituent proteins to vDNA in some cell types correlates with their 

enhanced permissiveness to infection.  
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Bio-orthogonal chemistry detection of vDNA has many other applications 

that fall beyond the scope of this project (Sekine et al. 2017, Dembowski and 

DeLuca 2015). It provides a valuable tracking tool that allows detailed 

investigation and quantitative analysis of aspects related to early viral genome 

dynamics during lytic infection. Indeed, this technique has been recently utilized 

to investigate uncoating events of HSV-1 genomes, where temporal shifts in HSV-

1 genome condensation have been observed upon viral genome delivery to the 

nucleus (Sekine et al. 2017). Viral genomes remained in a condensed state in the 

absence of active transcription. Active transcription induced “genome 

congregation” followed by de-condensation that was enhanced over time as the 

infection progressed (Sekine et al. 2017). Parallel analysis of alpha-, beta, and 

gamma-herpesviruses using click chemistry may provide a qualified comparison, 

with insight into the similarities and differences among different types of human 

herpesviruses in terms of nuclear uptake of viral genomes, intracellular 

trafficking, uncoating, and organization. 

 

The utility of click chemistry-mediated detection of vDNA extends to 

tracing the fate of viral genomes and association with cellular proteins in 

latently/quiescently-infected cells which remain technically challenging at a 

molecular and single-cell level. This is key, as the establishment of latency and 

periodic reactivation represent important aspects in the life cycle of HSV-1 

infection.  

 

The major limitation of click chemistry-mediated detection of vDNA is the 

incompatibility with live cell microscopy. This is particularly important giving 

that virus-cell interactions are very rapid, often transient, and asynchronous. 

Developing a method to detect vDNA entry into the nucleus under conditions of 

synchronous delivery would be useful for this purpose. Overall, further 

development of minimally invasive labeling techniques of viral components, and 

advancement in microscopic imaging technology will provide valuable means for 

obtaining detailed mechanistic insights about the earliest stages of infection 

that have a significant bearing on the outcome of infection. 
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7.2. Multi-roles for PML in host immunity 

 

PML-NBs play key roles in many vital cellular processes, such as tumor 

suppression, DNA repair, gene regulation, apoptosis, and antiviral response 

(Guan and Kao 2015, Geoffroy and Chelbi-Alix 2011, Tavalai and Stamminger 

2009). In plaque-edge assays, PML-NB constituent proteins (PML, SP100, Daxx, 

ATRX, PIAS-1, and MORC3) have been shown to alter their nuclear distribution 

and become recruited to sites in close proximity of incoming ΔICP0 HSV-1 

genomes. These recruitment phenotypes correlated with intrinsic antiviral 

activity and repression of viral replication (Brown et al. 2016, Everett et al. 

2008, Everett et al. 2006, Glass and Everett 2013, Lukashchuk and Everett 2010). 

Although intrinsic repression has been shown to occur independently of IFN 

pathway, these recruitment phenotypes were reported under experimental 

setting that is now known to induce host innate immune response (Figure 25-27) 

(Everett et al. 2008). Click chemistry-mediated detection of vDNA enabled 

recruitment studies of host restriction factors to viral genomes under infection 

conditions that have not triggered the induction of innate immunity. PML-NB 

proteins are rapidly recruited to viral genomes as soon as they are delivered to 

the nucleus (90 mpi). 3D image reconstruction has demonstrated that vDNA is 

entrapped within PML-NBs in a similar fashion to that observed in quiescently or 

latently-infected cells (Figure 12) (Catez et al. 2012, Maroui et al. 2016, Everett 

et al. 2007). Importantly, this phenotype was observed during both WT and 

ΔICP0 HSV-1 infection. In order to release viral genomes entrapped within PML-

NBs, HSV-1 expresses ICP0 which employs both SUMO-dependent and 

independent mechanisms to induce PML degradation leading to the dispersal of 

PML-NBs (Figure 16) (Chelbi-Alix and de The 1999, Everett et al. 1998, Everett 

and Maul 1994). This process is dependent on the ICP0 RING finger domain and 

attributable to its ubiquitin ligase activity (Boutell et al. 2002, Maul and Everett 

1994). 

 

It remains to be determined how HSV-1 genomes can express ICP0 if they 

are entrapped within PML-NBs upon nuclear entry (Figure 12). We have noticed 
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that PML localization to vDNA is less efficient at very early time points (15-60 

minutes post-addition of virus) (Alandijany et al. 2018). Given that the tegument 

protein VP16 that drives ICP0 expression and vDNA are simultaneously delivered 

to the nucleus, one may expect that initiation of ICP0 expression occurs prior to 

PML-NB mediated entrapment (Gerster and Roeder 1988, Triezenberg et al. 

1988). It is also known that PML-NBs are highly dynamic, with many transient 

proteins actively associating and dissociating from these bodies (Jensen et al. 

2001, Chen et al. 2008). It is plausible, thereby, to speculate that vDNA has a 

chance to stimulate the transcription of ICP0 prior to silencing. Another 

hypothesis is that the release of entrapped viral genomes is mediated by ICP0 

tegument-associated protein, although this is unlikely because de novo ICP0 is 

required for PML degradation (Delboy et al. 2010, Maul et al. 1996). 

 

Under low MOI conditions, ΔICP0 HSV-1 remained entrapped in PML-NBs 

and failed to initiate plaque formation (Figure 17, 24, and 25). PML depletion 

enhanced the plaque formation of ΔICP0 (Figure 18). However, it did not fully 

complement for ICP0 function, demonstrating the presence of other host 

restriction factors which repress viral gene expression independently of PML 

(Glass and Everett 2013, Everett et al. 2008, Everett et al. 2006). Interestingly, 

the efficient recruitment of PML to vDNA was significantly influenced by ATRX 

depletion (Alandijany et al. 2018). This finding was important giving that 

permissive cell lines (U2OS and SAOS) lack ATRX protein, and the recruitment of 

PML to vDNA is impaired in these cells (Figure 42) (McFarlane and Preston 2011, 

Lukashchuk and Everett 2010, Alandijany et al. 2018). Collectively, our data 

identify a correlation between the stable entrapment of vDNA within PML-NBs 

and cell line permissiveness to ΔICP0 HSV-1 infection. 

 

Importantly, entrapment of ΔICP0 HSV-1 vDNA within PML-NBs in 

restrictive cells occurred in the absence of PRR IFI16 recruitment and ISG 

induction (Figure 19 and 25). These findings reveal that vDNA entry into the 

nucleus alone is not sufficient to induce host innate immunity. Saturation of 

intrinsic immunity at a high MOI, which enables plaque formation, stimulated 

IFI16 recruitment and ISG expression (Figure 23-25). Notably, the nuclear 
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distribution of PML is altered under these conditions. PML forms string-like 

structures at vDNA replication compartments within the body of a developing 

plaque, while localizes to sites of incoming viral genomes in newly infected cells 

(Figure 23) (Everett et al. 2004b). Cytoplasmic translocation of PML has also 

been reported (Burkham et al. 2001). Such findings raise the possibility of other 

antiviral roles mediated by PML during HSV-1 infection. Indeed, the efficient 

induction of ISGs during HSV-1 infection was dependent on the presence of PML 

(Figure 39). Correspondingly, JAK inhibition failed to enhance ΔICP0 HSV-1 yields 

in the absence of PML (Figure 37). These data identify PML as a key regulator of 

innate immunity during HSV-1 infection. Previous studies have demonstrated an 

important role for PML in the induction of ISG expression in response to 

exogenous IFN treatment and other viral infections (Atwan et al. 2016, Chen et 

al. 2015, Scherer and Stamminger 2016, Scherer et al. 2015, Kim and Ahn 2015, 

El Asmi et al. 2014). PML.IV has been shown to interact with peptidyl-prolyl 

isomerase Pin1 and recruit it to PML-NBs in order to inhibit the degradation of 

activated IRF-3 and sustain ISG induction (El Asmi et al. 2014). Another study 

suggested that PML.II stimulates the recruitment of IRF3 to type I IFN promoter 

and enhances IFN production. It also enhances the binding of NF-B/STAT1/CBP 

transcriptional complex to ISG promoters (Chen et al. 2015). The key role of PML 

in regulating host innate immunity extends to type II IFN-mediated response, as 

PML has been shown to enhance STAT1 phosphorylation and binding to gamma-

activated receptors on IRF1 (El Bougrini et al. 2011, Scherer et al. 2015). The 

fact that IFN plays a critical role in modulating adaptive immunity suggests that 

PML might also have a role in regulating adaptive immune factors. In support of 

this hypothesis, it has been shown that PML.II interact with class II transactivator 

(CIITA) and recruits it to PML-NBs. This process prevents CIITA from proteasome-

dependent degradation, induces IFN-mediated expression of MHC class II, and 

enhances antigen presentation to T cells (Gialitakis et al. 2010). The presence of 

PML also seems important for efficient activation and differentiation of T cells 

and B cells (Lai et al. 2016). 

 

Collectively, these reports demonstrated the emerging multi-roles of PML 

in modulating different factors of host immunity, particularly with regards to the 
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regulation of IFN signaling cascade. However, it is unclear how post-translational 

modifications of PML can affect PML-mediated ISG induction. It is also unclear 

whether infected host cells induce alternative splicing to favor expression of 

specific isoforms. These hypotheses are important given that PML clearly alters 

its subcellular localization and PML-NB organization under infection conditions 

that stimulate host innate immune response (Figure 23) (Everett et al. 2004b, 

Burkham et al. 2001). Another potential mechanism by how PML mediates IFN 

production and ISG expression is through the epigenetic regulation of ISG 

promoters taking into consideration that many PML-NB proteins (e.g., Daxx, 

ATRX, and HIRA) have major roles in histone deposition (Rai et al. 2017, Delbarre 

et al. 2017, Salomoni 2013). 

 

To sum up, PML is not just an intrinsic repressor. Instead, it is a regulator 

that facilitates the coordination of all three branches of host immunity 

(intrinsic, innate, and adaptive). Further investigations are required to fully 

understand the underlying mechanisms for these processes. The viral ubiquitin 

ligase ICP0 disrupts PML-NBs not only to overcome intrinsic immunity, but also to 

interfere with IFN- and other cell-mediated immune responses. 

 

7.3. ISG products play a key role in the intracellular restriction of 

HSV-1 replication 

 

Innate immunity, unlike intrinsic immunity, is induced in response to 

infection. Central to this arm of immunity are PRRs which collectively contribute 

to the induction of IFN production and ISG expression (Knipe 2015, Paludan et al. 

2011). vDNA is one of the most potent inducers of innate immunity. Several 

cytosolic vDNA sensors (e.g., DHX9, DHX36, and cGAS) have been identified. 

(Kim et al. 2010, Sun et al. 2013). However, these sensors have limited access to 

vDNA in the cytoplasm of most cell types due to the presence of viral capsids 

(Miyamoto and Morgan 1971, Pasdeloup et al. 2009, Sodeik et al. 1997, Wolfstein 

et al. 2006). In recent years, the PYHIN protein IFI16 has received significant 
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attention due to its ability to sense nuclear and cytosolic vDNA (Cuchet-Lourenco 

et al. 2013, Diner et al. 2016, Orzalli et al. 2012, Unterholzner et al. 2010). IFI16 

acts as a cytosolic sensor in macrophages where the viral capsid is targeted for 

proteasome-dependent degradation in the cytoplasm exposing the vDNA for 

recognition (Horan et al. 2013). In fibroblasts, however, the nuclear import of 

viral genomes is necessary for IFI16-mediated sensing (Orzalli et al. 2012). IFI16 

is nuclear diffuse in human fibroblasts (Figure 19 and 21). ChIP analyses 

demonstrate a direct interaction between vDNA and IFI16 (Johnson et al.) 

(Johnson et al. 2014). Microscopy studies showed transient IFI16 puncta which 

were formed at the nuclear periphery of infected cells (Diner et al. 2016, 

Everett 2015). It was proposed that these IFI16 puncta were localized to 

infecting viral genomes as soon as they are delivered to the nucleus. However, 

no direct evidence of vDNA was shown in these studies, and the number of IFI16 

puncta observed did not correlate with the MOI (MOI of 10 to 50 PFU/cell) used. 

Regardless, applying such high MOI conditions is known to saturate intrinsic 

immunity and, thus, is suboptimal to study the temporal regulation of intrinsic 

and innate immunity (Everett et al. 2004a). One of the main advantages of our 

study is the direct detection of vDNA under low MOI conditions. Under these 

experimental settings, we have collected evidence that IFI16 is not stably 

recruited to infecting viral genomes upon their delivery to the nucleus (Figure 

19) (Alandijany et al. 2018). Instead, IFI16 is only stably localized to vDNA that 

initiated productive infection, as demonstrated by ICP4 protein expression 

(Figure 23). Previous plaque-edge recruitment studies showed that IFI16 is 

localized to ICP4 dot-like complexes that are known to contain vDNA (Cuchet-

Lourenco et al. 2013, Orzalli et al. 2013). Our modified plaque-edge recruitment 

assay agreed with these findings, but also showed that IFI16 failed to recognize 

viral genomes that are yet to initiate viral gene expression (Figure 23) 

(Alandijany et al. 2018). Length and structure, but not nucleotide content, of 

vDNA are crucial for IFI16-mediated sensing and ISG induction (Unterholzner et 

al. 2010). Indeed, IFI16 has high affinity to high order DNA structures (e.g., DNA 

Quadruplex) which are accumulated in abundance during vDNA replication 

(Artusi et al. 2016, Haronikova et al. 2016). PAA treatment blocks the production 

of high order DNA structures, and inhibited ISG induction in a dose-dependent 

manner (Figure 28) (Artusi et al. 2016). Collectively, these findings demonstrate 
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a clear temporal context in the recruitment of host cell restriction factors and 

PRRs to infecting viral genomes. Delivery of viral genomes into the nucleus and 

initiation of vDNA replication triggers host intrinsic and innate immune 

responses, respectively. 

 

The HIN domain of IFI16 mediates its interaction with sugar-phosphate 

backbone of vDNA. This process activates the pyrin domain, and induces 

acetylation of the NLS leading to cytoplasmic translocation of IFI16 (Ansari et al. 

2015, Jin et al. 2012, Li et al. 2012). IFI16 interacts with cGAS and other adaptor 

proteins leading to STING activation, IFN production, and ISG expression (Almine 

et al. 2017, Bowie et al. 2017, Dutta et al. 2015, Orzalli et al. 2015). Apart from 

few studies (section 1.6.2.4.), It remains largely unknown which ISG products 

confer effective antiviral response. Mx1, ISG54, ISG56, and ISG15 have been 

shown to mediate host defense against several viruses (Staeheli et al. 1988, 

Schnorr et al. 1993, Lenschow et al. 2007, Frese et al. 1996, Fernandez et al. 

1997, Perwitasari et al. 2011, Fensterl et al. 2012, Cho et al. 2013, Terenzi et 

al. 2008). In addition, they are the most robustly induced during ΔICP0 HSV-1 

infection (Mossman et al. 2001), but it remains to be determined if these ISGs 

directly restrict HSV-1 replication. 

 

The inability of some normal (RPE and HaCaT) and tumor-derived (U2OS 

and SAOS) cell lines to induce robust ISG expression in response to infection is 

worthy of further investigation (Figure 43 and 44). It is likely that these cells are 

defective in signaling pathways upstream of IFN production (e.g., recognition of 

PAMPs) as they were responsive to exogenous IFN treatment. In support of this 

hypothesis, U2OS cells have been shown to express a low level of STING, and 

overexpression of STING in these cells partially recovered their ability to induce 

IFN-mediated antiviral response to ΔICP0 HSV-1 infection (Deschamps and 

Kalamvoki 2017b). 

 

Both WT and ΔICP0 HSV-1 are sensitive to exogenous IFN treatment 

(Figure 46, 47, 48, and 49). In type I IFN-treated cells, HSV-1 replication is 
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restricted prior to the expression of IE proteins (Oberman and Panet 1988, 

Gloger and Panet 1984). To our knowledge, it is not entirely clear whether viral 

genomes remain in the cytoplasm during transport, the capsid fails to eject 

vDNA into the nucleus, or vDNA is imported but fails to initiate active 

transcription/translation. The use of click-chemistry detection of vDNA in 

combination with indirect IF staining protocols may provide insight into these 

aspects. Type II IFN appears to act downstream of ICP0 expression (Klotzbucher 

et al. 1990), which raises the question whether type II IFN treatment influences 

the subcellular localization and biochemical activity of ICP0 rending the virus 

vulnerable to host immune factors. Indeed, IFNγ induces PML.Ib expression; a 

cytoplasmic PMl isoform has been shown to sequester ICP0 within the cytoplasm 

and restrict HSV-1 infection (McNally et al. 2008)). Lastly, little information is 

available with regards to IFNλ-mediated immune response to HSV-1 infection. 

Finding a model cell line (e.g., HaCaT cells; Figure 49) that is responsive to all 

three types of IFN is valuable for direct comparison between these distinct IFN 

responses (Li et al. 2011, Lopusna et al. 2014). 

 

8. Conclusion remarks 

  

 Intrinsic and innate immunity are two distinct arms of host response to 

HSV-1 infection by virtue of their temporal induction and effects on viral 

replication. Intrinsic immunity is the first line of defense that acts almost 

instantly following nuclear entry of viral genomes. It is mainly mediated by PML-

NB constituent proteins which are stably recruited to infecting viral genomes to 

prevent the onset of viral gene expression. Saturation of this intrinsic immune 

response leads to the induction of ISGs; a process that is dependent on the 

initiation of vDNA replication. This innate immune response constricts viral 

propagation and limits the spread of infection. PML plays dual roles in the 

temporal regulation of intrinsic and innate immunity to HSV-1 infection. 

However, both arms of intracellular immunity are counteracted by the viral 

ubiquitin ligase ICP0 which targets many intrinsic and innate factors (e.g., PML 

and IFI16) for degradation. 
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Abstract

Detection of viral nucleic acids plays a critical role in the induction of intracellular host

immune defences. However, the temporal recruitment of immune regulators to infecting

viral genomes remains poorly defined due to the technical difficulties associated with low

genome copy-number detection. Here we utilize 5-Ethynyl-2’-deoxyuridine (EdU) labelling

of herpes simplex virus 1 (HSV-1) DNA in combination with click chemistry to examine the

sequential recruitment of host immune regulators to infecting viral genomes under low multi-

plicity of infection conditions. Following viral genome entry into the nucleus, PML-nuclear

bodies (PML-NBs) rapidly entrapped viral DNA (vDNA) leading to a block in viral replication

in the absence of the viral PML-NB antagonist ICP0. This pre-existing intrinsic host defence

to infection occurred independently of the vDNA pathogen sensor IFI16 (Interferon Gamma

Inducible Protein 16) and the induction of interferon stimulated gene (ISG) expression, dem-

onstrating that vDNA entry into the nucleus alone is not sufficient to induce a robust innate

immune response. Saturation of this pre-existing intrinsic host defence during HSV-1 ICP0-

null mutant infection led to the stable recruitment of PML and IFI16 into vDNA complexes

associated with ICP4, and led to the induction of ISG expression. This induced innate

immune response occurred in a PML-, IFI16-, and Janus-Associated Kinase (JAK)-depen-

dent manner and was restricted by phosphonoacetic acid, demonstrating that vDNA poly-

merase activity is required for the robust induction of ISG expression during HSV-1

infection. Our data identifies dual roles for PML in the sequential regulation of intrinsic and

innate immunity to HSV-1 infection that are dependent on viral genome delivery to the

nucleus and the onset of vDNA replication, respectively. These intracellular host defences

are counteracted by ICP0, which targets PML for degradation from the outset of nuclear

infection to promote vDNA release from PML-NBs and the onset of HSV-1 lytic replication.
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Author summary

Intrinsic and innate immunity act to restrict the replication of many clinically important

viral pathogens. However, the temporal regulation of these two arms of host immunity

during virus infection remains poorly defined. A key aspect in the regulation of these

intracellular immune defences during herpesvirus infection is the rapid recruitment of

constitutively expressed immune regulators to infecting viral genomes. Here we show that

at physiologically low multiplicities of infection, PML-NBs rapidly entrap HSV-1 genomes

upon nuclear entry. Saturation of this pre-existing intrinsic host defence led to the stable

recruitment of the vDNA pathogen sensor IFI16 to HSV-1 vDNA and the induction of

ISG expression, an induced innate immune response dependent on the initiation of

vDNA replication. Importantly, both intrinsic and innate arms of host immunity required

PML, the principle scaffolding protein of PML-NBs. Our research identifies dual roles for

PML in the sequential regulation of intracellular host immunity during HSV-1 infection,

and highlights distinct phases in host immune factor recruitment to infecting viral

genomes required for the temporal regulation of intracellular host immune defences dur-

ing herpesvirus infection.

Introduction

Intrinsic, innate, and adaptive arms of host immunity cooperatively supress the replication

and spread of invading viral pathogens. Conferred by constitutively expressed host-cell restric-

tion factors, intrinsic immunity is the first line of intracellular defence against infection

(reviewed in [1–3]). In contrast, innate immune defences are upregulated following the activa-

tion of Pattern Recognition Receptors (PRRs) that detect Pathogen-Associated Molecular Pat-

terns (PAMPs) unique to microbial pathogens, including foreign viral nucleic acids. PRR

activation induces downstream signalling events that culminate in the expression of antiviral

host genes, principally cytokines (including interferons) and interferon stimulated gene (ISG)

products (reviewed in [4–6]). This induced innate immune response confers a broadly refrac-

tory antiviral state that limits virus propagation and stimulates adaptive immune responses.

Consequently, many viruses have evolved counter measures to antagonize intrinsic and innate

immune defences to promote their efficient propagation and transmission to new hosts.

A key event in the regulation of intracellular immune defences during herpesvirus infection

is the rapid recruitment of constitutively expressed host factors to sites in close proximity to

infecting viral genomes upon nuclear entry (reviewed in [1, 7]). These factors include core

constituent proteins of Promyelocytic Leukaemia Nuclear Bodies (PML-NBs; notably PML,

Sp100, Daxx and ATRX; [8–10]), innate immune regulators (IFI16, cGAS, and STING; [11–

14]), DNA Damage Response (DDR) proteins (γH2AX, Mdc1, 53BP1, and BRCA1; [15]), and

core component proteins of the SUMOylation pathway (SUMO-1, SUMO-2/3, PIAS1, and

PIAS4 [16–19]). The recruitment of these host factors represents the earliest detectable nuclear

responses to infection, and have been linked to the repression of viral gene expression and

PRR activation in the regulation of intrinsic and innate immune defences, respectively. The

importance of PML-NB constituent proteins and IFI16 in the regulation of intracellular

immunity is highlighted by the fact that many viruses have evolved strategies to antagonise

these key immune regulators (reviewed in [1, 4, 6, 20, 21]). One of the first viral proteins to be

expressed during Herpes Simplex Virus 1 (HSV-1) infection is ICP0, a viral RING-finger ubi-

quitin ligase that promotes the degradation and dispersal of host factors, including PML and

IFI16 [11, 22–31], away from infecting viral genomes (reviewed in [7, 32]). This activity
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inhibits viral genome silencing and the induction of ISG expression, thereby promoting the

efficient onset of HSV-1 gene expression and replication. Viral mutants that do not express

ICP0, or carry mutations that impair its ubiquitin ligase activity, are highly susceptible to host-

cell restriction at low multiplicities of infection (MOI) and are hypersensitive to interferon

(IFN) treatment [33–38]. The use of such mutants has been critical in defining many aspects

relating to the regulation of intrinsic and innate immunity during herpesvirus infection. Stud-

ies analysing the recruitment of host immune regulators to infecting viral genomes have typi-

cally relied on high MOI conditions due to the technical challenges associated with low

genome copy-number detection. A defining hallmark of intrinsic immunity, however, is that

this host defence is readily saturated under high MOI conditions due to limiting levels of pre-

existing host factors. Thus, much of the mechanistic detail of immune regulator recruitment to

infecting HSV-1 genomes has been established using viral mutants at input genome levels that

saturate intrinsic host defences. Consequently, the temporal recruitment of intrinsic and

innate immune regulators to infecting viral genomes remains poorly defined, specifically

under low MOI conditions pertinent to wild-type (WT) herpesvirus infections observed in a

clinical setting.

Here we use fluorophore conjugation by click chemistry to investigate the temporal recruit-

ment of intrinsic and innate immune regulators to 5-Ethynyl-2’-deoxyuridine (EdU) labelled

HSV-1 genomes under physiologically low MOI conditions (0.1 to 3 PFU/cell). HSV-1

genomes were readily detected in the nucleus within 30 minutes of infection (post-addition of

virus) and to be stably entrapped within PML-NBs in restrictive cell types prior to PML-NB

disruption and genome release by ICP0. PML-NB entrapment of vDNA occurred indepen-

dently of the PRR sensor IFI16 and ISG expression, demonstrating that this intrinsic host

response does not directly contribute to the induction of innate immunity. Saturation of this

host defence during HSV-1 ICP0-null mutant infection led to the stable recruitment of PML

and IFI16 into vDNA complexes associated with ICP4, and the subsequent induction of ISGs.

This induced innate immune response occurred in a PML-, IFI16-, and Janus associated kinase

(JAK) dependent manner, which could be suppressed by the vDNA polymerase inhibitor

phosphonoacetic acid (PAA). These data demonstrate that vDNA entry into the nucleus alone

under low MOI conditions is not sufficient to stimulate a robust innate immune response to

HSV-1 nuclear infection, which only occurs after the onset of vDNA replication. We show that

intrinsic and innate arms of intracellular host immunity act sequentially, as inhibition of

innate immune signalling could not relieve the intrinsic cellular restriction of an HSV-1

ICP0-null mutant, but instead led to significantly enhanced virus yields under infection condi-

tions that enabled the onset of vDNA replication. Collectively, our data demonstrate that

intrinsic and innate arms of host immunity are temporally distinct immune events activated in

response to vDNA nuclear entry and the onset of vDNA replication, respectively. Our data

identifies distinct roles for PML in the sequential regulation of these intracellular immune

defences to HSV-1 infection, findings that are likely to be highly pertinent in the cellular

restriction of many nuclear replicating viral pathogens.

Results

Direct visualization of bio-orthogonally labelled input HSV-1 genomes at

low MOI

Microscopy studies have played pivotal roles in the identification of host factors and signalling

pathways that contribute to the intracellular regulation of intrinsic and innate immunity dur-

ing herpesvirus infection (reviewed in [1, 4, 7, 32, 39]). However, the detection of viral

genomes under low MOI conditions, which do not saturate intrinsic host defences, remains a
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significant technical challenge. To date, viral genome localization studies have relied on the

indirect detection of vDNA through immunolabelling or fluorescent tagging of vDNA binding

proteins, for example the viral immediate early (IE) transcription factor ICP4 or the early (E)

single-stranded vDNA binding protein ICP8 [8–10, 13, 14, 40]. The use of vDNA binding pro-

teins limits temporal resolution of host factor recruitment to infecting viral genomes, as

genome detection requires the successful expression of viral gene products that may compete

with, or displace, host factors bound to vDNA. Consequently, this strategy is suboptimal for

the examination of early intrinsic host immune defences that influence the cellular restriction

of viral gene expression. While direct vDNA labelling strategies have been employed, most

notably fluorescent in situ hybridization (FISH; [8, 10]), such approaches require harsh dena-

turing conditions which impair host antigen detection ([41], personal communication J.

Brown), and have not been widely adopted. Recent advances in direct bio-orthogonal nucleic

acid labelling, using Ethynyl-tagged deoxynucleotides in combination with fluorescent label-

ling by click chemistry techniques, have enabled the direct visualization of vDNA during both

Adeno- and Herpesvirus infection ([42–46]). We sought to apply this technique by purifying

either EdU or EdC labelled HSV-1 virions (HSV-1EdU or HSV-1EdC, respectively) and infect-

ing cells at low MOI (� 3 PFU/cell) to examine the temporal recruitment of intrinsic and

innate immune regulators to input viral genomes following nuclear entry.

Successful labelling of vDNA and the purification of high titre WT or ICP0-null mutant

HSV-1EdU or HSV-1EdC stocks was achieved by infecting Retinal Pigmented Epithelial (RPE)

cells (see Materials and methods; S1A–S1C Fig). Notably, many laboratory cell lines were

unable to support efficient viral propagation at nucleotide concentrations exceeding 1 μM in

an Ethynyl-tag dependent manner (S1 Table, S1D–S1F Fig). As RPE cells were restrictive to

HSV-1 ICP0-null mutant replication (see below) and sensitive to Ethynyl-tagged deoxynucleo-

tide labelling in the absence of ICP0 (S1G–S1I Fig), we selected the lowest dose of 0.5 μM EdU

or EdC for genome labelling to enable comparative recruitment studies to input viral genomes

in the presence or absence of ICP0. In vitro genome release assays demonstrated that� 60% of

virions contained EdU or EdC labelled viral genomes detectable by click chemistry following

partial denaturation of the HSV-1 capsid by 2M guanidine hydrochloride (GuHCl, Fig 1A–1C,

S2 Fig; [47]). Particle to plaque forming unit (PFU) analysis of virus preparations grown in the

presence of EdU demonstrated that HSV-1EdU labelled virions had a roughly equivalent ratio

to that of unlabelled control virus preparations (within 3-fold; S2 Table). These data demon-

strate that EdU labelling of vDNA was not significantly detrimental to virion production or

infectivity under these labelling conditions.

A time course of infection of human foreskin fibroblast (HFt) cells with WT (HSV-1EdU) or

ICP0-null (ΔICP0EdU) mutant HSV-1 demonstrated that vDNA could be readily detected

within the nuclei of infected cells as early as 30 minutes post-infection (mpi; post-addition of

virus), with> 70% of nuclei containing at least 1 (median average of 2) HSV-1EdU genome

foci by 120 mpi (Fig 1D, 1F and 1G). Signal detection was dependent on both HSV-1 infection

and EdU vDNA labelling, demonstrating that fluorescent click signal(s) were specific to input

EdU labelled vDNA (Fig 1E), with the majority of genome signals (� 70%) observed within

the nucleus (Fig 1H). Notably, qPCR analysis (S2 Table) revealed that the majority of particles

(> 50%) had yet to release their genomes by 120 mpi (post-addition of virus). As vDNA is

undetectable within native capsids (S2 Fig), these data suggest that the process of nuclear infec-

tion is still ongoing at 120 mpi. We note that under equivalent MOI conditions, ΔICP0EdU

infected cells had a reduced number of vDNA positive nuclei at each time point (Fig 1F–1H), a

phenotype that likely reflects the efficiency of ICP0-null mutant EdU vDNA labelling in

restrictive RPE cells (S1G–S1I Fig).
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PML-NBs entrap WT HSV-1 genomes upon nuclear entry

With the ability to detect input vDNA within the nuclei of infected cells as early as 30 mpi

(post-addition of virus), we next assessed the utility of this approach to investigate the recruit-

ment of intrinsic immune factors to infecting WT HSV-1EdU genomes over a short time-

course of infection (30 to 90 mpi; Fig 2). Using a combination of click chemistry to detect

vDNA and immuno-labelling to detect PML-NB intrinsic host factors, PML (the main scaf-

folding protein of PML-NBs; [48]) and Daxx (a core constituent protein of PML-NBs; [48])

were observed to stably colocalize with vDNA over the time course of infection (30–90 mpi;

Fig 1. Direct visualization of bio-orthogonally labelled HSV-1 genomes. Quantitation of bio-orthogonally labelled vDNA in HSV-1 virions. HSV-1EdU

or HSV-1EdC virions were subjected to partial denaturation with 2M GuHCl at 4˚C for 60 mins to release vDNA [47]. vDNA (red) was detected by click

chemistry and capsid (green) by indirect immunofluorescence staining. (A) Representative confocal images showing vDNA release and expansion from

partially denatured HSV-1EdU virions following GuHCl treatment. (B,C) Stack plots showing the relative population of EdU or EdC positive vDNA

labelled HSV-1 virions. n� 3000 particles per population derived from 3 independent experiments. Minimum estimates for viral genome labelling

efficiency are shown (%). (D,E) HFt cells were mock or HSV-1 infected with either unlabelled or EdU labelled WT (HSV-1EdU) or ICP0-null mutant HSV-

1 (ΔICP0EdU) at an MOI of 3 PFU/cell. Cells were fixed and permeabilized at the indicated times minutes post-infection (mpi; post-addition of virus).

vDNA was detected by click chemistry (white arrows) and nuclei stained with DAPI (blue). Representative confocal images showing the nuclear

accumulation of HSV-1EdU and ΔICP0EdU genomes over time (30–120 mpi; as indicated), with genome detection specific to input EdU labelled virus. (F)

Quantitation of HSV-1EdU or ΔICP0EdU genome positive nuclei over time (as in D). Boxes: 25th to 75th percentile range; black line: median; whiskers: 5th to

95th percentile range. n� 300 cells per sample population derived from a minimum of 3 independent experiments. (G) Number of genomes detected

within infected nuclei at 120 mpi. Boxes: 25th to 75th percentile range; black line: median; whiskers: minimum and maximum range of sample. n� 200

cells per sample population derived from a minimum of 3 independent experiments. (H) Nuclear (Nuc.) and cytoplasmic (Cyto.) distribution of genome

foci detected at 120 mpi. n� 300 cells per sample population derived from a minimum of 3 independent experiments. Percentage of total genomes

detected within the nucleus is shown (%).

https://doi.org/10.1371/journal.ppat.1006769.g001
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Fig 2. PML-NBs stably entrap vDNA upon nuclear entry. HFt cells were mock or HSV-1EdU infected at an MOI of 3 PFU/cell. Cells were fixed and

permeabilized at the indicated times (mpi; post-addition of virus). vDNA, or PML-NB host factors and ICP0, were detected by click chemistry and indirect

immunofluorescence staining, respectively. (A) Localization of PML (green) and Daxx (cyan) to HSV-1 vDNA (red, white arrows) at 30–90 mpi (as

indicated). Insets show magnified regions of interest (dashed boxes) highlighting PML-NB colocalization with vDNA. Cut mask (yellow) highlights regions

of colocalization between PML, Daxx, and vDNA (as indicated). Weighted colocalization coefficients are shown. (B) 3D reconstruction of high-resolution

confocal Z-series images showing PML (green) entrapment of vDNA (red, white arrow) at 90 mpi. Single channel maximum intensity projections (left-
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Fig 2A). High-resolution Z-series imaging revealed input vDNA to be encased in PML follow-

ing nuclear infection (Fig 2B). At 90 mpi, ICP0 could be observed to colocalize with PML-NBs

prior to PML degradation and PML-NB disruption (Fig 2C and 2D; [22, 25–27]). ICP0 locali-

zation at multiple PML-NBs demonstrates that vDNA entrapment within any single PML-NB

is not sufficient to target ICP0 to that specific body (Fig 2C). Western blotting of infected cell

lysates demonstrated that EdU labelling of vDNA was not detrimental to the initiation of IE

gene expression (ICP0, ICP4) or the degradation of PML (Fig 2D). Collectively, these data that

demonstrate infecting WT HSV-1 genomes are rapidly encased by PML-NB intrinsic host fac-

tors from the outset of nuclear infection prior to the onset of lytic replication. Our data con-

trast with previous recruitment studies, which have reported PML-NB constituent proteins to

localize to sites in close proximity to infecting viral genomes [8–10, 40]. However, we note that

these studies have typically relied on higher MOI conditions (� 10 PFU/cell; [10]), the use of

vDNA binding proteins to enable genome detection by proxy, or time points post-infection

where vDNA replication proteins are readily detectable. We conclude that PML-NB host fac-

tors rapidly entrap viral genomes shortly after nuclear entry prior to the robust onset of viral

gene expression (Fig 2D).

Asynchronous plaque-edge recruitment studies have shown that PML-NB host factors are

independently recruited to infecting viral genomes [49, 50] in an IFI16-dependent manner

[11, 12, 14], where de novo PML-NB like foci are reformed [10]. We therefore assessed the

composition of vDNA containing PML-NBs, as well as the localization of the PRR IFI16, to

infecting WT HSV-1EdU or HSV-1EdC genomes (Fig 3, S3 Fig). High colocalization frequencies

(weighted colocalization coefficients > 0.7) were observed for all PML-NB component pro-

teins examined (PML, Daxx, Sp100, ATRX, and SUMO2/3) to infecting viral genomes irre-

spective of genome label, with equivalent paired colocalization frequencies observed for

resident PML-NB proteins in mock-infected cells (Fig 3A–3D and 3F, S3 Fig). These data dem-

onstrate that PML-NBs that contained vDNA were indistinguishable in composition from

other PML-NBs within the same infected cell or in mock-infected cells at 90 mpi. Surprisingly,

the colocalization frequency between IFI16 and input viral genomes was below coincident

threshold levels (weighted colocalization coefficients < 0.2; solid line), demonstrating that

IFI16 does not stably localize with viral genomes entrapped within PML-NBs at 90 mpi (Fig

3E and 3F, S3 Fig). These data again contrast with published asynchronous plaque-edge

recruitment studies that have used vDNA binding proteins for genome detection, which have

shown IFI16 and PML to both localize to infecting HSV-1 ICP0-null mutant genomes [11, 13,

14]. As ICP0 has been reported to promote the degradation of IFI16 [11, 28–31], we examined

the recruitment of IFI16 to ΔICP0EdU genomes to investigate the potential effect of ICP0

expression on IFI16 localization to vDNA. No stable localization of IFI16 could be observed to

infecting ΔICP0EdU genomes (S4 Fig), demonstrating that a lack of stable IFI16 recruitment to

viral genomes was not due to low levels of ICP0 expression at 90 mpi (Fig 2C). We note that

IFI16 localization to viral genomes has been reported to be highly dynamic [12, 14], which

could potentially be inhibited by PML-NB entrapment of vDNA. We therefore investigated

the influence of MOI (1, 10, and 50 PFU/cell) and time (15 or 30 mpi) on the recruitment of

hand panels) and 3D rendered image (right-hand panel). Pearson coefficient for PML-vDNA colocalization is shown. Scale bar 2 μm. (C) Nuclear

localization of ICP0 (green) to vDNA (red, white arrow) and PML (cyan) in HSV-1EdU infected cells at 90 mpi. Cut mask (yellow) highlights regions of

colocalization between ICP0, PML, and vDNA (as indicated). Weighted colocalization coefficients are shown. Nuclei stained with DAPI (blue). (D) EdU

labelling of viral genomes does not affect the initiation of infection. HFt cells were mock or HSV-1 infected with unlabelled (HSV-1) or EdU labelled (HSV-

1EdU) HSV-1 at an MOI of 3 PFU/cell. Whole cell lysates were collected at the indicated times (hours post-infection; hpi) for western blot analysis to

monitor the rate of PML degradation and the accumulation of the viral immediate early (IE) gene products (ICP0, ICP4). Actin is shown as a loading

control. Molecular mass markers are shown,< denotes the detection of a non-specific background band.

https://doi.org/10.1371/journal.ppat.1006769.g002
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IFI16 and PML to nuclear infecting HSV-1EdU genomes (S5 Fig). While vDNA-IFI16 colocali-

zation could be observed under very high MOI conditions (50 PFU/cell; S5A Fig), quantitation

(n� 250 genomes) revealed the frequency of these colocalization events was not significantly

altered by MOI or time (S5B–S5E Fig). In contrast, PML colocalization with vDNA was

Fig 3. Core PML-NB proteins, but not IFI16, associate with infecting HSV-1 genomes. HFt cells were mock or infected with either HSV-1EdU or HSV-

1EdC at an MOI of 3 PFU/cell. Cells were fixed and permeabilized at the indicated times (mpi; post-addition of virus). vDNA and PML-NB host factors were

detected by click chemistry and indirect immunofluorescence staining, respectively. (A-E) Localization of PML (green), and either Daxx, Sp100, ATRX,

SUMO2/3 (SUMO), or IFI16 (cyan; as indicated) to infecting HSV-1EdU vDNA (red, white arrows). Insets show magnified regions of interest (dashed

boxes) highlighting host protein localization with vDNA. Cut mask (yellow) highlights regions of colocalization between host proteins and vDNA (as

indicated). Weighted colocalization coefficients are shown. Individual channel images shown in S3 Fig. Nuclei were stained with DAPI (blue). (F)

Quantitation of host protein recruitment to infecting viral genomes labelled with EdU (as shown in A-E) or EdC. Boxes: 25th to 75th percentile range; black

line: median weighted (w.) colocalization coefficient; whiskers: 5th to 95th percentile range. Solid line indicates coincident threshold level (weighted

colocalization coefficients< 0.2). n� 50 vDNA foci per sample population from a minimum of three independent infections.

https://doi.org/10.1371/journal.ppat.1006769.g003
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significantly reduced in a MOI dependent manner (1–50 PFU/cell), indicative of PML-NB sat-

uration by viral genomes or disruption by ICP0 under these high MOI conditions. PML

recruitment to vDNA also occurred in a time dependent manner, with a significant increase in

colocalization frequency between 15 and 30 mpi (MOI of 10 PFU/cell). As bio-orthogonal

nucleic acid labelling is incompatible with live-cell kinetic studies, we conclude that IFI16 does

not form a stable association with input vDNA following genome entry into the nucleus.

IFI16 recruitment to input viral genomes is not enhanced in the absence of

PML

To test if PML-NBs competitively exclude IFI16 from binding vDNA following nuclear entry,

we investigated the recruitment of IFI16 and Daxx (as a positive control; [49]) to input HSV-

1EdU and ΔICP0EdU genomes in cells depleted of PML (Fig 4, S6 Fig). HFt cells were stably

transduced with lentiviral vectors expressing non-targeting control or PML-targeting short

hairpin RNAs (shCtrl and shPML, respectively; [49]). qRT-PCR and western blotting con-

firmed PML depletion without influencing Daxx or IFI16 expression (Fig 4A and 4B). HSV-

1EdU or ΔICP0EdU infection of shCtrl cells recapitulated observations made in parental HFt

cells (Fig 3, S3 Fig, S4 Fig), demonstrating that lentiviral transduction, shRNA expression, or

puromycin selection did not affect PML-NB entrapment of vDNA or alter IFI16 localization

(Fig 4C–4E). PML depletion did not increase the frequency of IFI16 colocalization with vDNA

during either HSV-1EdU or ΔICP0EdU infection (Fig 4D and 4E, S6 Fig), demonstrating that

PML-NBs do not competitively exclude IFI16 from binding vDNA. In contrast, while Daxx

colocalized with vDNA in a subset of PML depleted cells (Fig 4C, S6A Fig), quantitation

(n� 100 genomes) revealed that the frequency of this colocalization was significantly reduced

compared to control cells irrespective of ICP0 expression (Fig 4E). These data contrast with

asynchronous plaque-edge recruitment studies, where Daxx recruitment to infecting viral

genomes occurs in a PML independent manner under high MOI conditions [49]. We con-

clude that under infection conditions that do not saturate or disrupt PML-NBs by 90 mpi

(MOI < 10 PFU/cell; S5 Fig), Daxx colocalization with vDNA is stabilized by PML at

PML-NBs where Daxx is a resident protein (Figs 2–4, S3 Fig; [48]).

Live cell microscopy studies and asynchronous plaque-edge recruitment assays have

reported that IFI16 is required for PML and Daxx recruitment to infecting viral genomes [11,

12, 14], although no direct evidence of IFI16 colocalization with vDNA or deposition within

PML-NBs was reported to support this hypothesis. We therefore investigated if IFI16 played a

role in PML-NB entrapment of vDNA (Fig 5). HFt cells were stably transduced with lentiviral

vectors expressing non-targeting control or IFI16-targeting short hairpin RNAs (shCtrl and

shIFI16, respectively; [11]). qRT-PCR and western blotting confirmed IFI16 depletion without

influencing PML or Daxx expression (Fig 5A and 5B). HSV-1EdU infection of shCtrl or

shIFI16 cells demonstrated that both PML and Daxx strongly colocalized with vDNA indepen-

dently of IFI16 (Fig 5C–5E). We conclude that IFI16 does not play an essential role in the

entrapment of vDNA within PML-NBs. As we failed to observe any significant recruitment of

IFI16 to infecting HSV-1 genomes under a range of infection conditions, our data suggest that

the stable recruitment of PML and IFI16 to infecting viral genomes occurs with temporally dis-

tinct kinetics.

vDNA entry into the nucleus is not sufficient to induce ISG expression

As asynchronous plaque-edge recruitment assays have played a key role in defining the

recruitment of IFI16 to infecting HSV-1 genomes [11, 13, 14], we conducted analogous assays

to assess the temporal recruitment of PML and IFI16 to both vDNA and ICP4, an IE vDNA
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Fig 4. Depletion of PML does not enhance the recruitment of IFI16 to infecting viral genomes. HFt cells were stably transduced with lentiviruses

expressing PML-targeting (shPML) or non-targeting control (shCtrl) shRNAs. (A) qRT-PCR quantitation of PML or IFI16 mRNA levels in HFt shCtrl and

shPML cells. Mean (RQ) and standard deviation (RQmin/max) shown and expressed relative to HFt shCtrl cells (1). (B) Western blot analysis of the

expression levels of PML, Daxx and IFI16 in whole cell lysates derived from HFt shCtrl and shPML cells. Actin is shown as a loading control. Molecular

mass markers are shown. (C, D) Localization of PML (green), and either Daxx or IFI16 (cyan; as indicated), to infecting HSV-1EdU vDNA (red, white

arrows) in HFt shCtrl and shPML cells at 90 mpi (post-addition of virus). Cells were infected with HSV-1EdU or ΔICP0EdU at an MOI of 3 PFU/cell. Insets

show magnified regions of interest (dashed boxes) highlighting host protein localization with vDNA. Cut mask (yellow) highlights regions of colocalization

between PML, IFI16, Daxx, and vDNA (as indicated). Weighted colocalization coefficients are shown. Nuclei were stained with DAPI (blue). Images for

ΔICP0EdU infected cells are shown in S6 Fig. (E) Quantitation of host protein recruitment to infecting viral genomes (as shown in C, D, S6). Boxes: 25th to

75th percentile range; black line: median weighted (w.) colocalization coefficient; whiskers: 5th to 95th percentile range. Solid line indicates coincident

threshold level (weighted colocalization coefficients< 0.2). n� 50 vDNA foci per sample population from a minimum of four independent infections. ���

P< 0.001, Mann-Whitney U-test.

https://doi.org/10.1371/journal.ppat.1006769.g004
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binding protein commonly utilized as a proxy for vDNA in genome recruitment studies [9–11,

14, 40]. Viral DNA labelling was achieved by pulse labelling HSV-1 ICP0-null mutant infected

Fig 5. IFI16 does not influence the recruitment of PML or Daxx to infecting viral genomes. HFt cells were stably transduced with lentiviruses expressing

IFI16-targeting (shIFI16) or non-targeting control (shCtrl) shRNAs. (A) qRT-PCR quantitation of IFI16 or PML mRNA levels in HFt shCtrl and shIFI16

cells. Mean (RQ) and standard deviation (RQmin/max) shown and expressed relative to HFt shCtrl cells (1). (B) Western blot analysis of the expression

levels of IFI16, PML, and Daxx in whole cell lysates from HFt shCtrl and shIFI16 cells. Actin is shown as a loading control. Molecular mass markers are

shown. (C, D) Localization of PML (green), and either IFI16 or Daxx (cyan; as indicated) to infecting HSV-1EdU vDNA (red, white arrows) in HFt shCtrl

and shIFI16 cells at 90 mpi (post-addition of virus). Cells were infected with HSV-1EdU at an MOI of 3 PFU/cell. Insets show magnified regions of interest

(dashed boxes) highlighting host protein localization with vDNA. Cut mask (yellow) highlights regions of colocalization between IFI16, PML, Daxx, and

vDNA (as indicated). Weighted colocalization coefficients are shown. Nuclei were stained with DAPI (blue). (E) Quantitation of host protein recruitment

to infecting viral genomes (as shown in C, D). Boxes: 25th to 75th percentile range; black line: median weighted (w.) colocalization coefficient; whiskers: 5th

to 95th percentile range. Solid line indicates coincident threshold level (weighted colocalization coefficients< 0.2). n� 50 vDNA foci per sample

population from a minimum of four independent infections. ns (not significant), Mann-Whitney U-test.

https://doi.org/10.1371/journal.ppat.1006769.g005
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cell monolayers at 24 hours post-infection (hpi) with 1 μM EdU for 6 h. Under these condi-

tions, DNA replication compartments within the body of a developing plaque were clearly

detected (S7 Fig). Cells on the periphery of the plaque-edge were readily observed to contain

EdU positive vDNA foci asymmetrically distributed around the nuclear rim prior to ICP4

detection (Figs 6A, 6C top panels, S7), indicative of input EdU labelled viral genomes that have

yet to initiate a productive gene expression programme. The recruitment of PML to infecting

viral genomes occurred independently of ICP4 expression, with many genome foci observed

to localise in close proximity to PML foci (Fig 6A and 6B). In contrast, IFI16 recruitment only

occurred in cells that expressed ICP4 localized to vDNA at the nuclear rim (ICP4 NR; Fig 6C

and 6D, S7 Fig). These data support previous asynchronous recruitment studies that have used

ICP4 as a proxy for genome detection [11, 14] and demonstrate that PML and IFI16 are

recruited to infecting viral genomes with temporally distinct kinetics, which in the case of

IFI16 correlates with the expression and localization of viral gene products with vDNA (Fig

6D). Importantly, these data suggest that vDNA entry into the nucleus alone may not be suffi-

cient to stimulate the induction of an IFI16-dependent innate immune response, but instead

require the expression of specific viral gene products or the initiation of vDNA replication.

To test this hypothesis, we examined the induction of Mx1, a well-characterized ISG prod-

uct [51], during HSV-1 ICP0-null mutant infection by confocal microscopy. HFt cells were

mock treated, stimulated with IFN-β (as a positive control), or infected with ΔICP0EdU at

input levels which either restrict or permit the initiation of HSV-1 ICP0-null mutant replica-

tion and plaque formation at 24 hpi (MOI 0.1 and 1.0 PFU/cell, respectively; Fig 6E). vDNA

was readily detectible within the nuclei of infected cells under restrictive MOI conditions (0.1

PFU/cell) with a frequency close its expected input genome ratio (Fig 6F) and copy number

(1–2 genomes/infected cell; Fig 6G, S2 Table). Notably, the number of genomes per infected

cell nuclei under permissive conditions (MOI 1 PFU/cell) was lower than expected based on

our input qPCR analysis (~ 25 genomes/cell; Fig 6G, S2 Table). These data indicate that under

MOI conditions that begin to saturate intrinsic host defences (~ 10–20 genome copies/nuclei),

ΔICP0EdU genome detection is lost following the onset of vDNA replication by 24 hpi.

As expected, IFN-β stimulation efficiently induced Mx1 expression 24 h post-treatment

(Fig 6H and 6I). In contrast, infection with ICP0-null mutant HSV-1 only stimulated Mx1

expression at genome input levels sufficient to stimulate the onset of viral replication and pla-

que formation (MOI 1.0 PFU/cell; Fig 6E, 6H and 6I). High-resolution Z-series imaging

revealed that viral genomes remained stably entrapped within PML-NBs under restrictive

MOI conditions (0.1 PFU/cell) at 24 hpi (Fig 6J). These data demonstrate that under infection

conditions that restrict the initiation of ICP0-null mutant HSV-1 replication, viral genome

entry into the nucleus alone is not sufficient to stimulate the induction Mx1 ISG expression.

vDNA replication is required for the induction of innate immunity

As PML-NB entrapped HSV-1 ICP0-null mutant genomes failed to stimulate the induction of

Mx1 expression, we next examined the kinetics of ISG induction during HSV-1 infection

under MOI conditions that enabled the onset of viral replication (MOI 1 PFU/cell; Fig 7). As

expected, HSV-1 ICP0-null mutant infection efficiently induced the transcription (by 8–9 hpi)

and expression (by 16 hpi) of three independent ISG products (Mx1, ISG15, and ISG54), a host

response that was significantly impaired during WT HSV-1 infection (Fig 7A–7C). Impor-

tantly, the induction of ISGs only occurred under infection conditions that enabled the onset

of ICP0-null mutant HSV-1 replication and plaque-formation (� 1.0 PFU/cell; Figs 6E and

7D). Consistent with our microscopy observations (Fig 6H and 6I), these data demonstrate

that saturation of intrinsic host defences is required for the robust induction of ISGs during
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Fig 6. Nuclear entry of vDNA is not sufficient to induce robust Mx1 ISG expression. (A-D) Recruitment of PML, IFI16, and eYFP.ICP4 to ΔICP0

infecting viral genomes in an asynchronous plaque-edge recruitment assay (as described in [10]). HFt cells were infected with ΔICP0 expressing eYFP.ICP4

under conditions (MOI 2 PFU/cell) that enable plaque-formation to occur. Cells were pulse labelled at 24 hpi with 1 μM EdU for 6h to label vDNA. (A, C)

Localization of eYFP.ICP4 (green), PML or IFI16 (cyan; as indicated) to vDNA (red) in newly infected cells on the periphery of a developing plaque-edge.
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HSV-1 ICP0-null mutant infection. As IFI16 binds to a range of DNA structures that may be

produced during vDNA replication [52], we next investigated the role of vDNA replication

in the induction of ISGs. ISG transcript levels were monitored in the presence of the vDNA

replication inhibitors PAA (phosphonoacetic acid) and ACG (acycloguanosine), two well-

characterized herpesvirus DNA replication inhibitors [53–57]. PAA efficiently inhibited the

induction of both Mx1 and ISG15 transcript levels in a dose-dependent manner (Fig 7E), while

ACG treatment had only a modest inhibitory effect at concentrations sufficient to restrict

HSV-1 plaque formation (� 50 μM; Fig 7F, S1 Table). Inhibition of ISG induction by PAA was

virus-specific, as ISG transcript levels were readily induced by IFN-β stimulation in the pres-

ence of PAA (Fig 7G). By way of contrast, JAK inhibition by Ruxolitinib (Ruxo) effectively

blocked ISG induction following IFN-β stimulation (Fig 7G; [58, 59]), consistent with a key

role for JAK in IFN-mediated innate immune signalling [60]. JAK inhibition also effectively

blocked ISG induction during HSV-1 ICP0-null mutant infection (Fig 7H). Importantly, this

inhibition occurred in the presence 50 μM ACG (Fig 7I), demonstrating that JAK activity is

specifically required to induce ISG expression during the initiating cycle(s) of HSV-1 ICP0--

null mutant vDNA replication by 9 hpi. Together with our microscopy observations (Fig 6),

these data demonstrate that the onset of vDNA replication is required for the robust induction

of ISG expression during HSV-1 ICP0-null mutant infection.

Dual roles for both PML and IFI16 in the regulation of intrinsic and innate

immunity to HSV-1 infection

As the induction of innate immunity during HSV-1 ICP0-null mutant infection was inhibited

by Ruxolitinib, we next examined the effect of JAK inhibition on WT and ICP0-null mutant

HSV-1 replication (Fig 8). At a concentration sufficient to inhibit ISG induction (5 μM; Fig

7G–7I), Ruxolitinib treatment had no effect on the relative plaque formation efficiency (PFE)

of either WT or ICP0-null mutant HSV-1 (Fig 8A). These data indicate that innate immune

signalling and the induction of ISGs does not directly contribute to the cellular restriction and

plaque-formation defect of an HSV-1 ICP0-null mutant observed in restrictive cell types

(� 1000 fold; [33, 35, 61]). In contrast, virus yield assays demonstrated that Ruxolitinib treat-

ment enhanced the levels of ICP0-null mutant, but not WT, HSV-1 propagation (Fig 8B).

Thus, under infection conditions that saturate intrinsic host defences and enable the onset of

HSV-1 ICP0-null mutant replication (MOI of� 1 PFU/cell; Fig 6E), innate immune defences

act to restrict virus propagation. By way of contrast, depletion of IFI16 or PML enhanced both

the PFE and virus yield of an HSV-1 ICP0-null mutant (Fig 8C and 8D; [11, 49]). Importantly,

Cut mask (yellow) highlights regions of colocalization between either PML or IFI16 and vDNA (as indicated). Weighted (w.) colocalization coefficients

shown. (B, D) Quantitation of PML and IFI16 recruitment to infecting vDNA in the presence or absence of eYFP.ICP4 at the nuclear rim (ICP4 NR and

ICP4 -ve, respectively; as shown in A and C). Boxes: 25th to 75th percentile range; black line: median weighted (w.) colocalization coefficient; whiskers: 5th to

95th percentile range. Solid line indicates coincident threshold level (weighted colocalization coefficients< 0.2). n = 100 plaque-edge cells +ve for vDNA

per PML or IFI16 sample population from 4 independent infections. ��� P< 0.001, ns (not significant), Mann-Whitney U-test. (E-I) Mx1 expression is only

induced under infection conditions that permit ΔICP0 plaque formation. (E) Number of plaques detected at 24 hpi following ΔICP0 infection of HFt cells

at an input MOI of 0.1 or 1 PFU/cell (as indicated). n = 3, means and standard deviations shown. (F) Quantitation of ΔICP0EdU nuclear genomes in HFt

cells (as infected in E). Boxes: 25th to 75th percentile range; black line: median; whiskers: 5th to 95th percentile range. n� 250 cells derived from 3

independent experiments per condition. (G) Frequency of ΔICP0EdU genomes detected within infected cell nuclei (as described in E/F). Boxes: 25th to 75th

percentile range; black line: median; whiskers: minimum and maximum range of sample. (H) HFt cells were mock treated, IFN-β stimulated (100 IU/ml),

or infected with ΔICP0 at a MOI of 0.1 or 1 PFU/cell. Samples were fixed at 24 post-treatment and analysed by confocal microscopy for Mx1 (green) ISG

expression. (I) Quantitation of Mx1 positive cells (as shown in H). n� 250 cells derived from 3 independent experiments per condition. (J) PML-NB

entrapment of vDNA is maintained under low MOI conditions (0.1 PFU/cell) that restrict ΔICP0EdU replication and plaque formation at 24 hpi. 3D

reconstruction of high-resolution Z-series confocal images showing PML entrapment of ΔICP0EdU vDNA. Single channel maximum intensity projection

images (left), 3D rendered images of the whole nucleus showing PML (green) and vDNA (red), with a single vDNA focus entrapped by PML (dashed box;

right). Scale bar 2 μm. Enlargement of PML entrapped vDNA (centre-right). Scale bar 0.5 μm. Cut mask (yellow) highlights colocalization between PML

and vDNA (far-right). Pearson coefficient for PML-vDNA colocalization shown. Nuclei were stained with DAPI (blue).

https://doi.org/10.1371/journal.ppat.1006769.g006
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Fig 7. Inhibition of vDNA replication impairs the induction of innate immunity during HSV-1 infection. HFt cells were mock, WT, or ΔICP0 HSV-1

infected at an MOI of 1 PFU/cell (unless stated otherwise). Samples were collected at the indicated times (hours; h) post-treatment or infection. (A) Relative
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no additional increase in virus yield was observed on Ruxolitinib treatment of IFI16 or PML

depleted cells (Fig 8D), indicative of an impaired innate immune response in these cells during

HSV-1 ICP0-null mutant infection. Correspondingly, qRT-PCR demonstrated that the induc-

tion of ISGs (Mx1, ISG15, ISG54) was significantly impaired in both IFI16 or PML depleted

cells in response to HSV-1 ICP0-null mutant infection at 9 hpi (Fig 8E and 8F). These data

identify a novel role for PML in the induction of ISGs and the regulation of innate immunity

during HSV-1 infection. Collectively, our data demonstrate that PML plays dual roles in the

temporal regulation of intrinsic and innate immune defences that are dependent on viral

genome delivery to the nucleus and the onset of vDNA replication, respectively.

As intrinsic and innate immune defences to HSV-1 infection are known to be cell-type

dependent [34, 35, 62], we next investigated if there was a correlation between cell line permis-

siveness to HSV-1 ICP0-null mutant replication and the entrapment of viral genomes by

PML-NB host factors (Fig 9). Relative to permissive osteosarcoma cells (U2OS, SAOS), which

do not require ICP0 to stimulate the onset of HSV-1 replication [34], RPE cells demonstrated

equivalent levels of HSV-1 ICP0-null mutant restriction to HFt cells (� 1000-fold reduction in

PFE, Fig 9A). Western blot analysis revealed that all these cell lines expressed similar levels of

PML, Daxx, and IFI16 (Fig 9B). However, infection with HSV-1EdU demonstrated a significant

reduction in the colocalization frequency of PML and Daxx to infecting viral genomes between

permissive (U2OS, SAOS) and restrictive (HFt, RPE) cell-types (Fig 9C and 9D). Importantly,

in many instances neither PML nor Daxx was observed to localize with infecting viral genomes

in permissive cell types (Fig 9C, bottom panels). Thus, we have identified a correlation between

the stable entrapment of vDNA by PML-NBs and the requirement for ICP0 to stimulate the

efficient onset of HSV-1 infection in restrictive (HFt, RPE), but not permissive (U2OS, SAOS),

cell-types. As U2OS and SAOS cells do not express ATRX (Fig 9B; [63, 64]), a known core con-

stituent protein of PML-NBs and an intrinsic antiviral regulator to HSV-1 infection [64–66],

we investigated the requirement for ATRX to mediate PML-NB entrapment of vDNA. HFt

cells were stably transduced with lentiviral vectors expressing non-targeting control or ATRX-

targeting short hairpin RNAs (shCtrl and shATRX, respectively; [65]). qRT-PCR and western

blotting confirmed ATRX depletion, which had a modest effect on PML mRNA transcript lev-

els without influencing PML or Daxx expression levels (Fig 9E and 9F). HSV-1EdU infection of

shCtrl or shATRX cells demonstrated that depletion of ATRX led to a distinct population of

viral genomes with a reduced colocalization frequency with PML (left-hand dotted box; Fig

9G). Notably, low levels of ATRX colocalization were still observed with vDNA in a significant

proportion of ATRX depleted cells (right-hand dotted box; Fig 9G). Quantitation (n� 200

genomes per condition) revealed that there was a significant difference in PML recruitment to

vDNA in ATRX depleted cells (Fig 9H). We conclude that ATRX, either directly or indirectly,

contributes to the entrapment of vDNA within PML-NBs following nuclear entry.

mRNA levels of Mx1, ISG15, and ISG54 during WT or ΔICP0 HSV-1 infection. n = 2, means (RQ) and standard deviations (RQmin/max) are shown and

expressed relative to mock (1). (B) Western blot analysis of the expression levels of ISGs (ISG15, Mx1, ISG54), viral proteins (ICP0, ICP4, VP5), and actin

(as a loading control), from whole cell lysates of mock, IFN-β stimulated (100 IU/ml), WT or ΔICP0 HSV-1 infected HFt cells at the indicated times.

Molecular mass markers are shown. (C) Quantitation of ISG expression levels (as shown in B). n = 3, means and standard deviations shown expressed

relative to mock (1). �� P< 0.01, ��� P< 0.001, ns (not significant); two-tailed t-test. (D) Relative mRNA levels of Mx1 and ISG15 in mock or ΔICP0

infected HFt cells (MOI of 0.01 to 1 PFU/cell, as indicated). n = 3, means (RQ) and standard deviations (RQmin/max) are shown and expressed relative to

ΔICP0 MOI 1 (1). (E, F) Relative mRNA levels of Mx1 and ISG15 in mock or ΔICP0 infected HFt cells in the presence of phosphonoacetic acid (PAA) or

acycloguanosine (ACG) at the indicated concentrations. n = 3, means (RQ) and standard deviations (RQmin/max) are shown and expressed relative to

ΔICP0 (1). � P< 0.05, �� P< 0.01, ��� P< 0.001, ns (not significant); two-tailed t-test. (G) Relative mRNA levels of Mx1 and ISG15 in mock or IFN-β
stimulated (100 IU/ml) HFt cells co-incubated in the presence Ruxolitinib (5 μM; Ruxo) or PAA (1.6 mg/ml), as indicated. n = 2, means (RQ) and standard

deviations (RQmin/max) are shown and expressed relative to IFN-β treatment (1). (H, I) Relative Mx1 and ISG15 mRNA levels in mock or ΔICP0 infected

HFt cells treated with Ruxo (2.5–10 μM, as indicated) or Ruxo (5 μM) and ACG (50 μM), as indicated. n = 2, means (RQ) and standard deviations (RQmin/

max) are shown and expressed relative to ΔICP0 infection (1).

https://doi.org/10.1371/journal.ppat.1006769.g007
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Finally, we compared restrictive (HFt, RPE) and permissive (U2OS, SAOS; [62]) cell types

to mount an innate immune response to HSV-1 ICP0-null mutant infection under infection

conditions that permitted the onset of viral replication (MOI 1 PFU/cell). Surprisingly,

qRT-PCR analysis demonstrated that only HFt cells induced ISG (Mx1, ISG15, ISG54) expres-

sion during HSV-1 ICP0-null mutant infection (Fig 10A, top panels; [62]). This was not due to

a defect in IFN pathway signalling, as all four cell-types were responsive to exogenous IFN-β
stimulation (Fig 10A, bottom panels). Correspondingly, only HFt cells showed enhanced levels

of HSV-1 ICP0-null mutant propagation following JAK inhibition by Ruxolitinib (Fig 10B).

We conclude that RPE cells, which are highly restrictive to HSV-1 ICP0-null mutant

Fig 8. Dual roles for PML and IFI16 in the regulation of intrinsic and innate immunity to HSV-1 infection. (A) HFt cells were DMSO or Ruxolitinib

(5μM; Ruxo) treated and infected with serial dilutions of WT or ΔICP0 HSV-1 for 24 h prior to immuno-staining for plaque formation. Plaque counts

expressed relative to control cell monolayers (# of plaques treated / # of plaques DMSO control) at equivalent serial dilutions of virus and presented as

relative plaque formation efficiency (PFE). n� 3, means and standard deviations shown. (B) HFt cells were DMSO or Ruxo treated and infected with WT

(MOI 0.001 PFU/cell) or ΔICP0 (MOI 1 PFU/cell) HSV-1. Cell released virus (CRV) was harvested at the indicated times (hpi) and CRV titres determined

on U2OS cells. n = 3, means and standard deviations shown. (C) Stably transduced HFt cells expressing non-targeting control (shCtrl), or targeting IFI16

(shIFI16) or PML (shPML) shRNAs, were infected with WT or ΔICP0 HSV-1 (as in A). Plaque counts expressed relative to infected shCtrl cell monolayer

plaque counts (1) and presented as relative PFE. n = 3, means and standard deviations shown. (D) shCtrl, shIFI16, or shPML HFt cells were treated with

DMSO or Ruxo and infected with either WT or ΔICP0 HSV-1 (as in B). CRV was collected at the indicated times (hpi) and titres determined on U2OS

cells. n = 3, means and standard deviations shown. (E, F) Relative Mx1, ISG15, and ISG54 mRNA levels in HFt shCtrl, shIFI16, or shPML cells mock or

ΔICP0 infected (MOI 1 PFU/cell) at 9 hpi. n = 3, means (RQ) and standard deviations (RQmin/max) shown and expressed relative to ΔICP0 infected shCtrl

(1). ��� P< 0.001; two-tailed t-test.

https://doi.org/10.1371/journal.ppat.1006769.g008
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Fig 9. PML-NB entrapment of infecting HSV-1 vDNA occurs in a cell type and ATRX dependent manner. (A) U2OS, SAOS, RPE, and HFt cells were

infected with serial dilutions of WT or ΔICP0 HSV-1 for 24 h. Plaque counts expressed relative to U2OS, a cell line permissive to ΔICP0 replication [34], (#

of plaques / # of plaques U2OS control) at equivalent serial dilutions of virus and presented as relative plaque formation efficiency (PFE). n� 3, means and

standard deviations shown. (B) Western blot analysis of the relative expression levels of PML, Daxx, ATRX, and IFI16 in whole cell lysates derived from

HFt, RPE, U2OS and SAOS cells. Actin is shown as a loading control. Molecular mass markers are indicated. (C) Localization of PML (green) and Daxx

(cyan) to HSV-1EdU vDNA (red, white arrows) in restrictive (HFt, RPE) and permissive (U2OS, SAOS) cell types at 30 mpi (post-addition of virus; MOI of

3 PFU/cell). Insets show magnified regions of interest (dashed boxes) highlighting host protein localization with vDNA. Cut mask (yellow) highlights

regions of colocalization between PML, Daxx, and vDNA (as indicated). Weighted (w.) colocalization coefficients shown. (D) Quantitation of PML and

Daxx recruitment to infecting vDNA in restrictive (HFt, RPE) and permissive (U2OS, SAOS) cell lines (as shown in C). Boxes: 25th to 75th percentile range;

black line: median weighted (w.) colocalization coefficient; whiskers: 5th to 95th percentile range. Solid line indicates coincident threshold level (weighted

colocalization coefficients< 0.2). n� 50 vDNA foci per sample population from 4 independent infections. (E-H) ATRX is required for efficient PML-NB
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replication (Fig 9A), are defective in aspects relating to intracellular innate signalling in

response to HSV-1 infection. These data support our microscopy observations (Fig 6) and

inhibitor studies (Figs 7 and 8), and collectively demonstrate that intrinsic and innate host

immune responses to HSV-1 infection are temporally distinct and functionally separable arms

of host immunity.

In summary, we show that the temporal recruitment of host immune regulators to infecting

viral genomes plays an important role in the sequential regulation of intrinsic and innate

immunity during HSV-1 infection. We identify PML-NBs to entrap vDNA shortly after

nuclear entry in an ATRX-dependent and IFI16-independent manner. We identify a novel

role for PML in the induction of innate immunity in response to HSV-1 infection that corre-

lates with the recruitment of IFI16 into vDNA complexes associated with ICP4 and the onset

of vDNA replication. These intracellular host defences are counteracted by ICP0, which

entrapment of vDNA. HFt cells were stably transduced with lentiviruses expressing ATRX-targeting (shATRX) or non-targeting control (shCtrl) shRNAs.

(E) qRT-PCR quantitation of ATRX or PML mRNA levels in HFt shCtrl and shATRX cells. Mean (RQ) and standard deviation (RQmin/max) shown and

expressed relative to HFt shCtrl cells (1). (F) Western blot analysis of the relative expression levels of ATRX, PML, and Daxx in whole cell lysates from HFt

shCtrl and shATRX cells. Actin is shown as a loading control. Molecular mass markers are shown. (G) Scatter plot showing paired w. colocalization

coefficients of ATRX and PML to individual nuclear infecting viral genomes in shCtrl (blue) and shATRX (red) cells infected with HSV-1EdU at an MOI of

3 PFU/cell at 90 mpi (post-addition of virus). n� 200 genomes per sample population. Dotted boxes highlight genome populations identified to have

altered distribution of colocalization frequency in comparison to infected shCtrl cells. (H) Quantitation of PML and ATRX recruitment to infecting viral

genomes (as shown in G). Boxes: 25th to 75th percentile range; black line: median weighted (w.) colocalization coefficient; whiskers: 5th to 95th percentile

range. Solid line indicates coincident threshold level (weighted colocalization coefficients< 0.2). � P< 0.05, ��� P< 0.001; Mann-Whitney U-test.

https://doi.org/10.1371/journal.ppat.1006769.g009

Fig 10. PML-NB entrapment of vDNA does not lead to the induction of innate immunity. (A) Relative Mx1, ISG15, and ISG54 mRNA levels in cell lines

restrictive (HFt, RPE) or permissive (U2OS, SAOS) to HSV-1 ICP0-null mutant (ΔICP0) infection. Cells were mock treated, IFN-β (100 IU/ml) stimulated,

or infected with ΔICP0 at an MOI of 1 PFU/cell for 9 h. n = 3, means (RQ) and standard deviations (RQmin/max) are shown and expressed relative to

mock for each cell line (1). (B) Restrictive (HFt, RPE) or permissive (U2OS, SAOS) cell lines were infected with ΔICP0 at an MOI of 1 PFU/cell and treated

with either DMSO or Ruxolitinib (Ruxo, 5μM). CRV was harvested at 48 hpi and titres determined on U2OS cells. n = 3, means and standard deviations

shown and expressed as relative fold-change to DMSO titres (1) for each cell line. � P< 0.05, ��� P< 0.001, ns (not significant); two-tailed t-test.

https://doi.org/10.1371/journal.ppat.1006769.g010
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induces the degradation of PML from the outset of infection to release viral genomes

entrapped within PML-NBs to stimulate the onset of HSV-1 lytic replication.

Discussion

A key aspect in the regulation of intracellular host immunity during herpesvirus infection is

the rapid recruitment of host immune factors to infecting viral genomes. This nuclear response

to infection has been linked to viral genome silencing, as part of a pre-existing intrinsic

immune defence, and the activation of innate immune signalling pathways (reviewed in [1, 4,

32]). However, the temporal recruitment of these host immune regulators to infecting viral

genomes upon vDNA entry into the nucleus has remained poorly defined due to the technical

challenges associated with low genome copy-number detection.

Microscopy studies have historically relied on the use of viral mutants, high MOI condi-

tions, and vDNA binding proteins to investigate the recruitment of host immune regulators to

infecting viral genomes. Whilst informative, such approaches can readily saturate intrinsic

host defences that restrict the initiation of viral gene expression due to high input genome

loads [35]. Consequently, the temporal sequence of events that influence the sequential regula-

tion of intracellular host immunity upon vDNA entry into the nucleus has remained poorly

defined, specifically during WT herpesvirus infections that express a full complement of

immune antagonists. Here we quantitatively examine the recruitment of intrinsic and innate

immune regulators to infecting WT and ICP0-null mutant HSV-1 genomes under a range of

relatively low MOI conditions (� 3 PFU/cell) within the first 15–90 mpi (post-addition of

virus). We show that PML, the principle scaffolding protein of PML-NBs [48], plays tempo-

rally distinct and functionally separable roles in the regulation of intrinsic and innate immune

defences activated in response to HSV-1 infection through the entrapment of viral genomes

(Figs 2 and 6) and the induction of ISG expression following the onset of vDNA replication

(Fig 7), respectively. These observations reconcile many longstanding issues within the field as

to the importance of PML and PML-NBs during primary herpesvirus infection and the

requirement for ICP0 to stimulate the onset of HSV-1 lytic replication, as discussed below.

Immuno-FISH experiments conducted by Gerd Maul and colleagues over 20 years ago

originally identified that infecting HSV-1 genomes localize in close proximity to PML-NBs

under infection conditions that enabled detection of ICP8 [8], an essential component of the

vDNA replication complex [67]. These pioneering observations have stimulated a field of

research that has uncovered fundamental roles for many PML-NB associated proteins in the

regulation of intracellular host immunity against a range of DNA and RNA viral pathogens

(reviewed in [1, 20, 21, 68]). PML-NBs are highly dynamic nuclear sub-domains, with resident

proteins (PML, Sp100, and Daxx) in constant exchange with the surrounding nucleoplasm

[10]. Correspondingly, asynchronous plaque-edge recruitment assays (examples of which are

shown in Fig 6, S7 Fig; [9]) have shown that many PML-NB component proteins re-localize to

sites in close proximity to infecting HSV-1 genomes under high MOI conditions, where de
novo PML-NB like foci are reformed [10]. These observations have set the paradigm for intrin-

sic immunity during herpesvirus infection, where pre-existing PML-NB host factors re-localize

to infecting viral genomes to mediate the transcriptional repression of viral gene expression

[19, 49, 50, 69]. However, recent live-cell microscopy studies have proposed an alternate mech-

anism, whereby vDNA becomes transiently associated with host factor(s) within the nucleo-

plasm (notably Daxx and IFI16; [12, 14]) prior to deposition at PML-NBs, although no

evidence for Daxx or IFI16 colocalization with vDNA or deposition within PML-NBs was

reported. Using click chemistry, we demonstrate for the first time that infecting WT and

ICP0-null mutant HSV-1 genomes are rapidly entrapped within PML-NBs following nuclear
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entry (30–90 mpi; Figs 2 and 6J). While we cannot rule out a recruitment model of genome

entrapment, specifically the re-localization of PML-NB host factors that are in immediate

proximity to nuclear infecting viral genomes, our data support a deposition model as: (i)

PML-NBs that contained vDNA were indistinguishable in composition from other PML-NBs

within the same infected nucleus or mock-infected cells (Fig 3A–3D, S3 Fig); (ii) Depletion of

PML reduced Daxx colocalization with vDNA, indicative of a transient association stabilized

by PML at PML-NBs where Daxx is a resident protein (Fig 4E; [48, 49]); (iii) Depletion of

ATRX, a binding partner of Daxx [70], reduced the frequency of PML colocalization with

vDNA in a significant subset of infected cells (Fig 9E–9H). These observations support a depo-

sition model of vDNA entrapment at pre-existing PML-NBs that contain a core complement

of PML-NB host factors and implicate the Daxx/ATRX complex in this process, consistent

with live-cell microscopy observations [12]. These observations are consistent with co-deple-

tion experiments [19, 50, 69], which have shown PML-NB proteins to act cooperatively to

restrict the initiation of HSV-1 ICP0-null mutant replication under low MOI conditions (� 1

PFU/cell, 6E; < 25 genome copies/cell, S2 Table). We therefore provide spatial context to these

studies, as repressed viral genomes remain stably entrapped within PML-NBs at 24 hpi (Fig

6J), a host response that is impaired in cell types permissive to HSV-1 ICP0-null mutant repli-

cation which lack ATRX (U2OS, SAOS; Fig 9A–9D; [34, 63, 64]). Thus, we identify PML-NB

entrapment of vDNA as a key intrinsic antiviral host defence to WT herpesvirus nuclear infec-

tion, a conclusion consistent with genome localization studies in HSV-1 latently infected cells

by immuno-FISH [71–73]. We demonstrate that this intrinsic PML-NB host defence occurs in

a range of restrictive cell types relevant to primary HSV-1 infection (Figs 2 and 9) and inde-

pendently of the induction of ISG expression (Figs 6H–6J, 7D and 10A), demonstrating that

this host response does not directly contribute to the sensing of viral nucleic acids that leads to

the induction of innate immunity.

Our data highlights the importance of ICP0 to promote the onset of WT HSV-1 infection

under low MOI conditions [33–35]. ICP0 is known to localize to PML-NBs from the outset of

infection in a PML isoform and SUMO-dependent manner [17, 22, 74, 75], where it targets

PML and other SUMO-modified component proteins for ubiquitination and proteasome-

dependent degradation [17, 25–27, 74, 75]. As ICP0 does not preferentially localize to PML-

NBs that contain vDNA (Fig 2C), our data indicate that these vDNA containing nuclear bodies

are likely to be equivalent in their respective PML isoform composition and SUMO modi-

fication status at this extremely early stage of nuclear infection. Thus, cell-wide PML-NB dis-

ruption through ICP0 mediated degradation of PML ensures viral genome release and the

dispersal of associated PML-NB host factors that repress the onset of viral gene expression [19,

49, 50, 66, 69]. This hypothesis is supported by our depletion experiments that show reduced

Daxx localization with vDNA in PML depleted cells (Fig 4E), and accounts for why many

PML-NB resident host factors known to restrict HSV-1 ICP0-null mutant replication (includ-

ing Daxx, ATRX, and PIAS1) are not directly targeted for degradation by ICP0 [19, 66]. Thus,

the correct complement of host factors within pre-existing PML-NBs is likely to play an

important role in mediating the cellular restriction of viral gene expression from the outset of

nuclear infection. These observations account for why many herpesviruses encode IE gene

products that disrupt the structural organization of PML-NBs (reviewed in [1, 68]), and the

respective abilities of these proteins to complement the replication and plaque-forming defect

of an HSV-1 ICP0-null mutant in restrictive cell types [76–79].

Our observation that repressed HSV-1 ICP0-null mutant genomes remain stably entrapped

within PML-NBs without inducing ISG expression (Figs 6E–6J and 7D) has significant impli-

cations with respect to host PRR sensing of vDNA and the regulation of innate immunity dur-

ing herpesvirus infection. The sensing of foreign DNA and the activation of innate immune
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signalling pathways can occur through multiple pathways and PRRs, including TLR9, RIG-I,

MAVS, AIM2, DNA-PK, cGAS, and IFI16 (reviewed in [4–6]). Of these, IFI16 has received

significant attention due to its role as a vDNA PRR in the induction of ISG expression and

type-I IFN production during herpesvirus infection [28, 29, 80–84]. Correspondingly, micros-

copy assays have shown IFI16 to be recruited to infecting HSV-1 genomes in a pyrin domain-

dependent manner in association with PML-NB host factors [11, 12, 14]. This host response

was initially reported to be antagonized by the ubiquitin ligase activity of ICP0 [28, 29],

although subsequent studies have shown other viral and cellular factors are likely to be

involved [11, 30, 31]. IFI16 recruitment studies have relied on the use of vDNA binding pro-

teins to enable viral genome detection by proxy, or on extrapolation of altered patterns in

IFI16 nuclear localization to infer IFI16-vDNA association in restrictive cell types. Thus, the

temporal kinetics of IFI16 recruitment to vDNA and its subsequent association with PML-NB

host factors has remained poorly defined, specifically under MOI conditions relevant to WT

herpesvirus infections. In contrast to PML-NB host factors, we failed to observe any significant

frequency of stable colocalization between IFI16 and vDNA up to 90 mpi (post-addition of

virus; Figs 3 and 5, S5 Fig), even in the absence of PML or ICP0 (Fig 4E). While we cannot

exclude the possibility of highly transient IFI16 interactions with vDNA (S5A Fig; [12, 14]),

our data indicates that IFI16 does not play an essential role in the entrapment of viral genomes

by PML-NBs (Fig 5; [11, 14]). Importantly, under infection conditions that do not saturate or

antagonize intrinsic PML-NB host defences (HSV-1 ICP0-null mutant MOI < 1 PFU/cell, Fig

6E; < 25 genome copies/cell, S2 Table), we demonstrate vDNA entry into the nucleus alone is

not sufficient to stimulate a robust innate immune response (Figs 6E–6J and 7D). Induction of

innate immunity only occurred under MOI conditions sufficient to saturate intrinsic host

defences leading to the onset of HSV-1 ICP0-null mutant replication and plaque-formation

(MOI� 1 PFU/cell; Figs 6E and 7D). Under such conditions, we identified a clear kinetic dif-

ference in the stable recruitment of PML and IFI16 to infecting viral genomes, which in the

case of IFI16 correlated with the recruitment of ICP4 (the major IE viral transcription factor)

to vDNA and the onset of viral gene expression (Fig 6A–6D). Thus, we have identified a tem-

poral boundary in the recruitment of intrinsic and innate immune regulators to infecting viral

genomes that could represent a shift in host response; from an intrinsic defence centred on the

repression of viral gene expression to the induction of innate immune signalling that promotes

an antiviral state to restrict virus propagation. This hypothesis is supported by our observation

that the induction of innate immunity requires the onset of vDNA replication (Fig 7E and 7I).

IFI16 is reported to recognise nucleosome free DNA in a sequence independent manner [85–

87], with high binding affinity for G quadraplex, branched or cruciform DNA structures [52].

Thus, it likely that the recruitment of IFI16 to infecting viral genomes is stabilised following

the onset of vDNA replication that produces an abundance of such DNA structures [57]. This

hypothesis may account for why PAA, but not ACG, is capable of inhibiting the induction of

ISG expression (Fig 7E and 7F). As inactivation of the vDNA polymerase by PAA would be

expected to impair the initiation of vDNA replication [53, 57], while ACG treatment would

lead to the accumulation of stalled vDNA replication products [54]. Thus, we hypothesize that

the topology of replicating vDNA is important for the stable recruitment of IFI16 on to vDNA

that leads to the induction of ISG expression and type-I IFN production during herpesvirus

infection. We note that other viral and cellular factors are likely to contribute to the induction

of innate immunity under alternative infection conditions, for example excessively high MOI,

UV inactivation, or the use of viral mutants defective in multiple genes, which may deliver or

generate PAMPs for PRR detection at different stages of infection.

While it is clear that IFI16 plays a key role in the induction of ISG expression during her-

pesvirus infection, we have also identified an important and novel role for PML in this host
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response to HSV-1 infection (Fig 8). Depletion of PML significantly reduced the levels of ISG

transcript accumulation observed at 9 hpi during HSV-1 ICP0-null mutant infection (Fig 8F),

a time point which proceeds ISG expression (16 hpi; Fig 7B). Thus, under infection conditions

that saturate intrinsic PML-NB host defences during HSV-1 ICP0-null mutant infection

(MOI� 1 PFU/cell, ~ 25 genome copies/cell), PML plays a significant role in mediating the

induction of ISG transcription. Correspondingly, pharmacological inhibition of JAK signalling

by Ruxolitinib [58, 59] did not enhance HSV-1 ICP0-null mutant propagation in either IFI16

or PML depleted cells (Fig 8D). Collectively, these data demonstrate that PML plays an impor-

tant role in the induction of innate immunity in response to HSV-1 infection that restricts the

propagation of HSV-1 following the successful saturation of PML-NB intrinsic host defences.

These observations are consistent with reports highlighting a role for PML to mediate the

induction of innate immunity in response to other human herpesviruses [88–90], and a grow-

ing body of literature suggesting that specific PML isoforms play an important role in mediat-

ing the transcriptional regulation of cytokine signalling (reviewed in [91]). Notably, PML has

been reported to mediate the recruitment of activated STAT1 and 2, along with HDAC1 and

2, onto ISG promoters (ISG54, CXCL10) during human cytomegalovirus (HCMV) infection

[90]. This host response is antagonized by the HCMV IE gene product IE1 [88, 90], a viral pro-

tein known to disrupt PML-NBs and to relieve the intrinsic cellular restriction of an HSV-1

ICP0-null mutant [78]. As JAK activity is well known to be required for STAT phosphoryla-

tion [60], these observations are consistent with our inhibitor studies (Figs 7H, 7I, 8B and 8D),

which show JAK activity to play an important role in the induction of ISGs during HSV-1

ICP0-null mutant vDNA replication at 9 hpi. Consistent with STAT1 depletion studies [61],

JAK inhibition did not influence the intrinsic restriction of an HSV-1 ICP0-null mutant (Fig

8A). These data contrast with depletion studies, which show a clear cooperative role for

PML-NB host factors to restrict the initiation of HSV-1 ICP0-null replication [19, 50, 69].

Taken together with our observations in RPE cells (Figs 9A and 10), which are restrictive to

ICP0-null HSV-1 replication but defective in innate immune signalling, these data show that

PML plays dual roles in the temporal regulation of both intrinsic and innate immunity in

response to HSV-1 infection. Host defences that are counteracted by ICP0 through the degra-

dation of PML and disruption of PML-NBs from the outset of infection.

In conclusion, we have shown for the first time that the differential recruitment of host

immune regulators to infecting viral genomes plays a fundamental role in the sequential regu-

lation of intrinsic and innate immune defences following HSV-1 nuclear infection. We have

identified dual roles for PML in the regulation of these intracellular defences to HSV-1 infec-

tion that are dependent on vDNA entry into the nucleus and the onset of vDNA replication,

respectively. Our analysis reconciles many long-standing questions as to the importance of

PML and PML-NBs in the regulation of intracellular host immunity during HSV-1 infection.

Our data highlights the importance of viral antagonists that disrupt PML-NBs to inactivate

and evade key intracellular immune defences from the outset of infection, thereby promoting

the onset of replication, propagation, and ultimately transmission to new hosts. Moreover, we

demonstrate the versatility and sensitivity of bio-orthogonal labelling of viral nucleic acid to

investigate the temporal recruitment of host immune regulators to infecting viral genomes

during infection.

Materials and methods

Cells and drugs

Primary human foreskin fibroblast cells (HFs) were obtained from Thomas Stamminger

(Department of Urology, University of Erlangen; [49]) and immortalized (HFt) by retrovirus
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transduction to express the catalytic subunit of human telomerase, as previously described

[18]. HFt, retinal pigmented epithelial (RPE-1; ATCC, CRL-4000), Human osteosarcoma

(U2OS and SAOS; ECACC, 92022711 and 89050205), primary human foetal lung fibroblast

(MRC-5; ATCC, CCL-171), and adult human keratinocyte (HaCat; a gift of F. Rixon,

MRC-UoG CVR) cells were grown in Dulbecco’s Modified Eagle Medium (DMEM; Life Tech-

nologies, 41966). HFt cells were cultured in the presence of 5 μg/ml of Hygromycin (Invitro-

gen, 10687–010) to maintain hTERT expression. Transduced HFt cells expressing shRNAs

were cultured in the presence of Puromycin (Sigma-Aldrich, P8833; 1 μg/ml or 0.5 μg/ml for

selection or maintenance, respectively). Primary human embryonic lung fibroblast (HEL 299;

ECACC, 87042207) cells were maintained in Minimum Essential Medium Eagle (MEM;

Sigma-Aldrich M5650) supplemented with 2 mM L-Glutamine (Life Technologies, 25030–

024) and 1 mM Sodium Pyruvate (Life Technologies, 11360–039). Baby hamster kidney fibro-

blast (BHK-21 C13; a gift of R. Everett, MRC-UoG CVR) cells were grown in Glasgow Mini-

mum Essential Medium (GMEM; Life Technologies, 21710–025) supplemented with 10%

Tryptose Phosphate Broth (TPB; Life Technologies, 18050–039). Medium for all cell lines was

supplemented with 10% foetal bovine serum (FBS; Life Technologies, 10270), 100 units/ml

penicillin, and 100 μg/ml streptomycin (Life Technologies, 15140–122). All cell lines were

maintained at 37˚C in 5% CO2. 5-Ethynyl-2’-deoxyuridine (EdU; Sigma-Aldrich, T511285),

5-Ethynyl-2’-deoxycytidine (EdC; Sigma-Aldrich, T511307), 2’-deoxyruridine (dU; Sigma-

Aldrich, D5412), and Ruxolitinib (Ruxo; Sellechchem, S1378) were prepared in DMSO and

used at the indicated concentrations. Acycloguanosine (ACG, Sigma-Aldrich, A4669), Phos-

phonoacetic acid (PAA, Sigma-Aldrich, 284270), and Interferon beta (IFN-β; Calbiochem,

407318) were prepared in Milli-Q H2O and used at the indicated concentrations.

Viruses

Wild-type HSV-1 strain 17syn+ (HSV-1), its ICP0-null mutant derivative dl1403 (ΔICP0;

[33]), and their respective variants that express eYFP.ICP4 [40] were propagated and titrated

as described [35]. For EdU labelling of viral genomes, RPE cells were infected with either

HSV-1 (MOI 0.001 PFU/cell) or ΔICP0 (MOI 0.5 PFU/cell). At 24 h post-infection (hpi), EdU

or EdC was added at a final concentration of 0.5 μM, unless otherwise indicated. Fresh EdU/

EdC was pulsed into infected cultures at 24 h intervals until extensive cytopathic effect was

observed, typically 3 to 4 days post-infection. Supernatants containing labelled cell released

virus (CRV) were clarified by centrifugation (423 xg for 10 min) and filtered through a

0.45 μm sterile filter and pelleted using a Beckman TLA100 Ultracentrifuge (33,800 xg for 3h

at 4˚C). Virion pellets were resuspended and pooled in 500 μl complete DMEM medium, and

titrated in U2OS cells as described [35].

Plasmids and lentiviral transduction

Plasmids encoding short hairpin (sh) RNAs against a non-targeted control sequence (shCtrl;

5’-TTATCGCGCATATCACGCG-3’), PML (shPML; 5’-AGATGCAGCTGTATCCAAG-3’),

ATRX (shATRX; 5’- CGACAGAAACTAACCCTGTAA-3’), or IFI16 (shIFI16; 5’-CCAC

AATCTACGAAATTCA-3’) were used to generate lentiviral supernatant stocks for transduc-

tion of HFt cells as described [11, 49, 65]. Pooled and stably transduced cells were used for

experimentation.

Antibodies

The following antibodies were used for immunofluorescence or western blotting: Primary rab-

bit polyclonal: anti-actin (Sigma-Aldrich, A5060), anti-Daxx (Upstate, 07–471), anti-ATRX
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(Santa Cruz, H300), anti-PML (Bethyl Laboratories, A301-167A; Jena Biosciences, ABD-030),

anti-Sp100 (GeneTex, GTX131569), anti-SUMO2/3 (Abcam, ab22654), anti-Mx1 (Santa Cruz,

sc-50509;ProteinTech, 13750-1-AP), anti-ISG15 (ProteinTech, 15981-1-AP), and anti-ISG54

(IFIT2, proteinTech, 12604-1-AP). Primary mouse monoclonal: anti-ICP0 (11060, [92]), anti-

ICP4 (58s, [93]), anti-VP5 (DM165, [94]), anti-SUMO2/3 (Abcam, ab81371), anti-PML

(abcam, ab96051), anti-IFI16 (abcam, ab55328; Santa Cruz, sc-8023). Primary antibodies were

detected using the following secondary antibodies: DyLight-680 or -800 conjugated anti-rabbit

or -mouse (Thermo; 35568 and SA5-35571), Alexa -488, -555, or -647 conjugated anti-rabbit,

or -mouse (Invitrogen; A21206, A21202, A31572, A31570, A31573, A31571), HRP conjugated

anti-mouse (Sigma-Aldrich, A4416).

Plaque Forming Efficiency (PFE)

Unless otherwise stated, cells were infected with serial dilutions of HSV-1 or ΔICP0 and

rocked every 10 min for 1 h prior to overlay with medium supplemented with 2% Human

Serum (HS; MP Biomedicals, 2931149). 24 to 36 hpi, cells were washed twice in PBS (Sigma-

Aldrich, D1408), simultaneously fixed and permeabilized in 1.8% formaldehyde (Sigma-

Aldrich, F8775) and 0.5% NP40 (BDH, 56009) in PBS for 10 min, then washed twice in 0.1%

Tween in PBS (PBST). Cells were blocked with 5% skimmed milk powder (SMP; Marvel) in

PBST (blocking buffer) for 30 min before incubation with an anti-VP5 monoclonal antibody

diluted in blocking buffer for 90 min. Cells were washed three times with PBST, incubated

with HRP conjugated anti-mouse IgG diluted in blocking buffer for 60 min, then washed with

PBST three times. Plaques were visualized with True Blue peroxidase developing solution

(Insight, 50-78-02) according to the manufacturer’s instructions, and washed with Milli-Q

H2O prior to plaque counting or imaging using an Axio Observer Z.1 microscope (Zeiss) with

differential interference contrast. For plaque formation efficiency (PFE) assays, plaque counts

are expressed relative to the number of plaques on control HFt or U2OS infected cell monolay-

ers (as indicated) at the equivalent dilution of input virus. Results presented as relative fold

change (number of plaques sample/number of plaques sample control). Plaque diameters were

measured using Zen blue (Zeiss) imaging software.

Viral yield assays

Cells were infected with either HSV-1 (MOI 0.001 PFU/cell), or ΔICP0 (MOI 1 or 2 PFU/cell,

as indicated) and rocked every 10 min for 1 h prior to overlay with complete medium contain-

ing either 5 μM Ruxolitinib or DMSO as a carrier control. Supernatants containing cell

released virus (CRV) were collected at the indicated times post-infection. Virus titres were cal-

culated by titration on U2OS cells as described [35].

Particle counting

Equal volumes of virus suspension and polystyrene latex spheres (Agar Scientific, AGS130-02)

at a known concentration per ml were mixed in 2 volumes of TNE buffer (20 mM Tris [pH

7.5], 0.5 M NaCl, and 1 mM EDTA). 5 μl of suspension was then added to a glow discharged

EM grid (Agar Scientific, S162-4), allowed to rest for 1 min, washed three times in deionised

water, and stained with Ammonium Molybdate (2% (w/v) pH 7.2). Dry grids were examined

using a JEM2200 FS electron microscope (JEOL) and images captured using an Ultrascan

4000 charge-coupled-device (CCD) camera (Gatan). Multiple images (n� 6) per sample were

used for virus particle and latex bead enumeration and used to calculate the number of parti-

cles per ml of virus stock inoculum.
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Western blotting

Treated or infected cells were washed twice with PBS. Whole cell lysates were collected in

SDS-PAGE loading buffer containing 4 M Urea (Sigma-Aldrich, U0631) and 50 mM Dithio-

threitol (DTT; Sigma-Aldrich, D0632). Proteins were resolved on NuPAGE 4–12% Bis-Tris

Protein gels (Invitrogen, NP0322BOX) in MES (Invitrogen; NP0002) or MOPS buffer (Invi-

trogen, NP0001) and transferred onto 0.2 μm nitrocellulose membrane (Amersham,

15249794) for 90 min at 30 volts in Novex transfer buffer (Invitrogen, NP0006-1) according to

the manufacturer’s instructions. Membranes were blocked in PBS with 5% FBS (Block) for a

minimum of 1 h at room temperature. Membranes were incubated in primary antibody

diluted in Block for a minimum of 1 h, washed three times with PBST for 5 min each, then

incubated in secondary antibody diluted in Block for 1 h. Following three 5 min washes in

PBST, one 5 min wash in PBS, and one rinse in Milli-Q H2O, membranes were imaged on an

Odyssey Infrared Imager (LiCor). The intensity of protein bands was quantified with Odyssey

Image Studio Software.

Immunofluorescence and confocal microscopy

Cells were seeded overnight on to 13 mm coverslips prior to treatment or infection at the indi-

cated MOI and time points at 37˚C. For click chemistry assays, cells were washed in serum

free DMEM prior to overlay in complete medium or fixation. At indicated time points, cells

were washed twice in CSK buffer (10 mM HEPES, 100 mM NaCl, 300 mM Sucrose, 3 mM

MgCl2, 5 mM EGTA), simultaneously fixed and permeabilized in 1.8% formaldehyde and

0.5% Triton-X100 (Sigma-Aldrich, T-9284) in CSK buffer for 10 min, and washed twice in

CSK. Coverslips were then blocked with 2% HS in PBS for 30 min prior to click chemistry fol-

lowed by immunostaining. Where applicable, EdU-labelled vDNA was detected using the

Click-iT Plus EdU Alexa Fluor 555 Imaging Kit (ThermoFisher scientific, C10638) according

to the manufacturer’s instructions. For host and viral protein labelling, cells were incubated

with primary antibodies diluted in 2% HS in PBS for 60 min, then washed in PBS three times,

before incubation with secondary antibodies and DAPI (Sigma-Aldrich, D9542) in 2% HS in

PBS for 60 min. Coverslips were then washed in PBS three times, and twice in Milli-Q H2O

prior to mounting on Citiflour AF1 (Agar Scientific, R1320). Coverslips were examined using

a Zeiss LSM 880 confocal microscope using the 63x Plan-Apochromat oil immersion lens

(numerical aperture 1.4) using 405 nm, 488 nm, 543 nm, 594 nm, and 633 nm laser lines. Zen

black software (Zeiss) was used for image capture, generating cut mask channels, and calculat-

ing weighted colocalization coefficients. High-resolution Z-series images were captured under

LSM 880 Airy scan deconvolution settings using 1:1:1 capture conditions at 0.035 μm intervals.

Images were processed using Imaris (Bitplane) software to produce rendered 3D image recon-

structions and to calculate Pearson colocalization coefficients. Exported images were processed

with minimal adjustment using Adobe Photoshop and assembled for presentation using

Adobe Illustrator.

Virion genome release assay

In vitro virion DNA release assays were conducted as essentially described in [47]. Briefly,

1x108 PFU of virus preparation was diluted in ice-cold TNE buffer in the presence or absence

of GuHCl (2M final concentration; Sigma-Aldrich, G3272). Samples were incubated on ice for

60 mins prior to the addition of ice-cold Methanol (final concentration 60%). Samples were

dried onto poly-D-lysine (Sigma-Aldrich, P7405) treated coverslips for 60–90 mins at 4˚C

prior to fixation in PBS containing 1.8% formaldehyde and 0.5% Triton-X100 for 10 mins at

RT. Samples were washed twice in PBS and blocked in PBS containing 2% FBS for 10 mins at
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RT. Samples were processed for click chemistry to detect EdU or EdC labelled vDNA and

immuno-stained for VP5 to detect viral capsids (as described above). High-resolution Z-series

images were captured under LSM 880 Airy scan deconvolution settings at 0.2 μm intervals (as

described above) and the number of capsids and EdU or EdC labelled viral genomes were

quantified in Zen blue (Zeiss) from maximum intensity projection images.

Plaque-edge recruitment assays

HFt cells were infected with ΔICP0 EYFP.ICP4 at an MOI of 2 PFU/cell to enable the initiation

of viral replication and plaque formation, as previously described [9]. At 24 hpi, infected cell

monolayers were pulsed with 1 μM EdU for 6h prior to fixation and immunostaining, as

described above.

Quantitative RT-PCR

Cells were mock, HSV-1, or ΔICP0-infected at the indicated MOI, and total RNA collected at

9 hrs post-infection unless otherwise stated. Where applicable, all drug treatments were added

at the indicated concentration 1 h after inoculum adsorption. Total RNA was isolated using

the RNAeasy Plus Kit (Qiagen, 74134) according to the manufacturer’s instructions. Reverse

transcription (RT) was performed using the TaqMan Reverse Transcription Reagents kit (Life

Technologies, N8080234) with oligo(dT) primers. cDNA samples were analyzed in triplicate

using TaqMan Fast Universal PCR Master Mix (Life Technologies, 4352042) with the follow-

ing TaqMan gene specific primer-(FAM/MGB) probe mixes (Life Technologies): PML (assay

ID Hs00231241_m1), IFI16 (assay ID Hs00986757_m1), ATRX (assay ID HS00997529_m1),

Mx1 (assay ID HS00895608_m1) ISG15 (assay ID HS01921425_s1), ISG54 (assay ID Hs0192

2738_s1), or GAPDH (4333764F) on a 7500 Fast Real time PCR system (Applied Biosystems).

Relative mRNA levels were determined using the ΔΔCt method, normalized to GAPDH, and

expressed relative to indicated treatments. Data presented is from a minimum of two indepen-

dent biological replicates, each analysed in triplicate (RQ/RQmin/max). Means (RQ) and stan-

dard deviations (RQmin/max) are presented. For input viral genome quantitation, vDNA was

extracted from infected HFt cells harvested at 90 mpi. Cells were trypsinised, pelleted by cen-

trifugation (500 xg, 10 min), washed twice in PBS, and resuspended in PBS containing 1% SDS

and 300mM Sodium acetate (pH 5.2). Total DNA was isolated by phenol chloroform extrac-

tion and ethanol precipitation, and resuspended in Tris buffer (10mM Tris-HCl pH 8.5).

qPCR was performed using two virus specific (UL30 and UL36) primer-probe sets with dis-

tinct fluorophores (Sigma-Aldrich; S3 Table) in duplex reactions performed in triplicate per

biological replicate. Quantitation was performed against standards of known concentration

derived from a purified infectious HSV-1 17syn+ BAC clone (SR27 DNA, [95]; a kind gift

from Andrew Davison MRC-UoG CVR).

Supporting information

S1 Fig. HSV-1 replication is sensitive to EdU or EdC labelling in a cell type and ICP0-de-

pendent manner. (A, D, G) RPE or HEL cells (as indicated) were infected with 100 PFU of

either WT or ΔICP0 HSV-1 and incubated in the presence of DMSO, ACG (50 μM), EdU or

EdC (0.5–10 μM, as indicated) for 24 h. Plaque counts were determined and expressed relative

to DMSO control (1) and presented as relative PFE. n� 3, means and standard deviations

shown. (B, E, H) RPE or HEL cells (as indicated) were infected (as in A) and plaque diameters

measured at 24 hpi. Boxes: 25th to 75th percentile range; black line: median plaque size; whis-

kers: 5th to 95th percentile range. n� 100 plaque measurements from 4 independent infections.

(C, F, I) RPE or HEL cells (as indicated) were infected with either WT (MOI 0.001 PFU/cell)
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or ΔICP0 (MOI 2 PFU/cell) HSV-1 in the presence of EdU or dU at the indicate concentra-

tions. CRV was collected at 48 hpi and titres determined on U2OS cells. n� 3, means and

standard deviations are shown.

(EPS)

S2 Fig. Detection of viral genomes within HSV-1EdC virions requires permeabilization of

the capsid by GuHCl treatment. 1x108 PFU of HSV-1EdC virions were incubated in TNE

buffer or TNE buffer containing 2M GuHCl at 4˚C for 60 mins, as described in [47]. EdC

labelled vDNA (red) and capsids (green) were detected by click chemistry and indirect immu-

nofluorescence staining for VP5 (the major capsid protein), respectively.

(EPS)

S3 Fig. PML-NB proteins entrap vDNA upon nuclear entry. Individual channel images

for data presented in Fig 3. Localization of PML (green) with HSV-1EdU vDNA (red, white

arrows), and PML-NB constituent proteins (Daxx, Sp100, ATRX, SUMO2/3) or IFI16 (cyan,

as indicated) at 90 mpi (post-addition of virus; MOI of 3 PFU/cell) or equivalent mock infected

cells (as indicated). Insets show magnified regions of interest (dashed boxes) highlighting host

protein localization with vDNA. Cut mask (yellow) highlights regions of colocalization

between host proteins and vDNA (as indicated). Weighted colocalization coefficients are

shown.

(EPS)

S4 Fig. PML-NBs entrap HSV-1 vDNA in an ICP0-independent manner. Confocal micros-

copy images as for data presented in Fig 3 for ΔICP0EdU infection. Localization of PML

(green) with infecting ΔICP0EdU vDNA (red, white arrows) and PML-NB constituent proteins

(Daxx, Sp100, ATRX, SUMO2/3) or IFI16 (cyan, as indicated) at 90 mpi (post-addition of

virus; MOI of 3 PFU/cell). Insets show magnified regions of interest (dashed boxes) highlight-

ing host protein localization with vDNA. Cut mask (yellow) highlights regions of colocaliza-

tion between host proteins and vDNA (as indicated). Weighted colocalization coefficients are

shown.

(EPS)

S5 Fig. IFI16 and PML colocalization with vDNA over a range of MOI. (A,B) HFt cells were

infected with HSV-1EdU over a range of MOIs (1–50 PFU/cell, as indicated). Cells were fixed

and permeabilized at 90 mpi (post-addition of virus). vDNA, IFI16 and PML, were detected by

click chemistry and indirect immunofluorescence staining, respectively. (A) Confocal micros-

copy images showing IFI16 (green) dots at the nuclear rim in association with PML (cyan) and

vDNA (red) at an MOI of 50. White arrow highlights vDNA colocalization with IFI16 and

PML. Yellow arrow highlights vDNA colocalization with PML only. Correspondingly coloured

insets show magnified regions of interest (dashed boxes). Cut mask (yellow) highlights regions

of colocalization between IFI16, PML, and vDNA (as indicated). Weighted (w.) colocalization

coefficients shown. (B) Scatter plot showing paired w. colocalization coefficients of IFI16 and

PML to individual nuclear infecting viral genomes (as described above). n� 250 genomes

per sample population derived from a minimum of two independent infections. (C) Quantita-

tion of host protein recruitment to infecting viral genomes (as in B). Boxes: 25th to 75th percen-

tile range; black line: median weighted (w.) colocalization coefficient; whiskers: 5th to 95th

percentile range. Solid line indicates coincident threshold level (weighted colocalization

coefficients < 0.2). (D) HFt cells were HSV-1EdU infected at an MOI 10 PFU/cell. Cells were

fixed and permeabilized at either 15 or 30 mpi (post-addition of virus). Scatter plot showing

paired w. colocalization coefficients of IFI16 and PML to individual nuclear infecting viral

genomes. n� 60 genomes per sample population derived from a minimum of two
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independent infections. (E) Quantitation of host protein recruitment to infecting viral

genomes (as shown in D). Boxes: 25th to 75th percentile range; black line: median weighted

(w.) colocalization coefficient; whiskers: 5th to 95th percentile range. Solid line indicates coinci-

dent threshold level (weighted colocalization coefficients < 0.2). �� P< 0.01, ��� P< 0.001, ns

(not significant); Mann-Whitney U-test.

(EPS)

S6 Fig. Depletion of PML does not enhance IFI16 recruitment to ΔICP0EdU infecting viral

genomes. Individual channel images for data presented in Fig 4 for ΔICP0EdU infection. Local-

ization of PML (green), and either Daxx or IFI16 (cyan; as indicated) to infecting ΔICP0EdU

vDNA (red, white arrows) in HFt shCtrl and shPML cells at 90 mpi (post-addition of virus;

MOI of 3 PFU/cell). Insets show magnified regions of interest (dashed boxes) highlighting

host protein localization with vDNA. Cut mask (yellow) highlights regions of colocalization

between PML, IFI16, Daxx, and vDNA (as indicated). Weighted colocalization coefficients are

shown.

(EPS)

S7 Fig. Recruitment of IFI16 and eYFP.ICP4 to ΔICP0EdU vDNA in an asynchronous pla-

que-edge recruitment assay. HFt cells were infected with ΔICP0.eYFP.ICP4 at an MOI of 2

PFU/cell for 24h prior to pulse labelling with EdU for 6h. Representative images show the cel-

lular localization of eYFP.ICP4 (green), vDNA (red), and IFI16 (cyan) in cells associated with

a developing ΔICP0.eYFP.ICP4 plaque. (Left) Wide-field view of the plaque-body with newly

infected cells on the periphery of the plaque-edge highlighted (dashed boxes; regions of inter-

est 1–3). (Right) Single cell images of regions of interest (dashed boxes 1–3, respectively) show-

ing nuclei at different stages of infection. Box 1: Infected nucleus with robust vDNA

replication compartments. Box 2: Asymmetrically infected nucleus with early stage vDNA rep-

lication compartments. Box 3: Asymmetrically distributed EdU labelled nuclear infecting viral

genomes that have yet to initiate viral IE (eYFP.ICP4) gene expression. IFI16 is only detected

in association with vDNA that has initiated IE gene expression.

(EPS)

S8 Fig. PML-NB entrapment of vDNA occurs in a cell type dependent manner. Individual

channel images from data presented in Fig 10. Localization of PML (green) and Daxx (cyan)

with vDNA (red, white arrows) in HSV-1EdU infected HFt, RPE, U2OS, or SAOS cells at 30

mpi (post-addition of virus; MOI 3 PFU/cell). Insets show magnified regions of interest

(dashed boxes) highlighting PML and Daxx localization with vDNA. Cut mask (yellow) high-

lights regions of colocalization between PML or Daxx and vDNA (as indicated). Weighted

colocalization coefficients are shown.

(EPS)

S1 Table. EdU or EdC treatment of infected cell monolayers inhibits wild-type (strain

17syn+) and ICP0-null mutant (dl1403/ΔICP0) HSV-1 plaque formation efficiency (PFE)

in a cell-type and dose-dependent manner. Plaque counts expressed relative to DMSO con-

trol monolayers, (# of plaques treated / # of plaques DMSO control) at equivalent serial dilu-

tions of virus and presented as relative plaque formation efficiency (PFE). n� 3, means and

standard deviations (in brackets) shown. Small plaque phenotypes at 24–36 hpi highlighted.

(DOCX)

S2 Table. Particle to PFU and genome to PFU ratios of EdU labelled wild-type and ICP0--

null mutant (dl1403/ΔICP0) HSV-1 stock preparations in permissive (U2OS) and restric-

tive (HFt) cell types. Mean particles/ml determined from a minimum of 6 independent fields
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of view. Mean PFU/ml determined from 3 independent titrations on either U2OS or HFt (as

indicated). Mean genome copy number/U2OS PFU determined from triplicate qPCR reac-

tions from 2 independent experiments. PS, plate stock (no ultracentrifugation).

(DOCX)

S3 Table. Primer-probe sets used for HSV-1 vDNA quantitation by qPCR.

(DOCX)
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