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Quantum state discrimination is a fundamental task in the field of quantum communica-

tion and quantum information theory. Unless the states to be discriminated are mutually

orthogonal, there will be some error in any attempt to determine which state was sent.

Several strategies to optimally discriminate between quantum states exist, each max-

imising some figure of merit. In this thesis we mainly investigate the minimum-error

strategy, in which the probability of correctly guessing the signal state is maximised.

We introduce a method for constructing the optimal Positive-Operator Valued Measure

(POVM) for this figure of merit, which is applicable for arbitrary states and arbitrary

prior probabilities. We then use this method to solve minimum-error state discrimi-

nation for the so-called trine states with arbitrary prior probabilities - the first such

general solution for a set of quantum states since the two-state case was solved when the

problem of state discrimination was first introduced. We also investigate the difference

between local and global measurements for a bipartite ensemble of states, and find that

in certain circumstances the local measurement is superior. We conclude by finding a

bipartite analogue to the Helstrom conditions, which indicate when a POVM satisfies

the minimum-error criteria.
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Chapter 1

Introduction

1.1 Overview

When communicating using non-orthogonal quantum states, there is an intrinsic prob-

abilistic error associated with any measurement process. This error is the result of the

superposition principle, and lies at the heart of the difference between classical and

quantum communication. The security of quantum communication is simply another

manifestation of this effect, as any eavesdropper is unlikely to be able to both measure

the message accurately and resend the message to the intended recipient without reveal-

ing his or her presence (as seen in, e.g., the BB84 protocol [3]). This intrinsic error also

means that determining which sequence of quantum states – and thus, which message

– was sent is a non-trivial problem. One can define a number of different figures of

merit, and then attempt to find a measurement which maximises (or minimises) this

for an arbitrary set of quantum states. In this thesis we focus on the minimum-error

and maximum confidence figures of merit, both already well-studied at this point [4–12].

We will begin by introducing the tools of quantum mechanics and quantum information

in this chapter, including a description of the most general form of measurement on

a quantum state. The next chapter discusses quantum state discrimination in depth,

and summarises what is currently known in this area. In Chapter 3, we discuss a new

solution to the problem of minimum-error quantum state discrimination for arbitrary

single-qubit signal states with arbitrary prior probabilities. In Chapter 4, we investigate

the so-called trine states and how to maximise various figures of merit for the discrimi-

nation of these states in the single-qubit regime. This work is continued in Chapter 5,

1



Chapter 1 2

where we extend to the multiple-photon case and discuss the effect of non-ideal detectors

on this measurement process. In Chapter 6 we introduce an analogue to the well-known

Helstrom conditions for minimum-error discrimination, adapted to the problem of bi-

partite state discrimination. The work contained herein has resulted in the following

publications (presented in the same order as above):

• G. Weir, S. M. Barnett and S. Croke, “Optimal discrimination of single-qubit

mixed states”, Physical Review A 96, 022312 (2017);

• G. Weir, C. Hughes, S. M. Barnett and S. Croke, “Optimal measurement strategies

for the trine states with arbitrary prior probabilities,” Quantum Sci. Technol.

3(3):035003 (2018);

• G. Weir, C. Hughes, S. M. Barnett and S. Croke, “Optimal measurement strategies

for multiple copies of the trine states,” In preparation;

• S. Croke, S.M. Barnett and G. Weir, “Optimal sequential measurements for bipar-

tite state discrimination,” Physical Review A 95, 052308 (2017).

1.2 Observables In Quantum Mechanics

Quantum Information Theory is concerned with storing, transmitting, manipulating and

extracting information in a quantum system. Extracting information involves measuring

the system, preferably in such a way that we maximise confidence that we are correctly

identifying which state the system was prepared in. That is, given an ensemble of

quantum states, how might one construct a physically-realisable measurement such that

we may optimally determine which state the system was prepared in, and therefore

extract information about our ensemble?

The vague language of “optimal” determination is a deliberate choice, as there are

various metrics by which one can gauge the efficacy of a measurement. The simplest

and most intuitive metric is to minimise the probability of error, Perr [5]. That is,

given only one opportunity to determine which state the system was prepared in, this

measurement will maximise the probability that we may answer correctly. Another

measurement strategy is unambiguous discrimination, which will tell the observer with
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certainty which state the system was prepared in - at the cost of occasionally producing

an inconclusive outcome [13–16]. A third strategy we might employ is that of maximum

confidence - this is a generalisation of unambiguous discrimination, in which we tailor

each measurement outcome in such a way that we maximise the probability that it is

correctly identifying the corresponding signal state [7]. This strategy also includes an

inconclusive outcome in certain circumstances. Each of these will be explained in more

detail in what follows.

The form of the measurement itself is also of interest, as there are different classes of

measurements. We will focus on only two measurement classes: LOCC (Local Oper-

ations with Classical Communication) and global measurements. These are explained

further in §2.1.

1.3 Quantum States

1.3.1 Basic definitions

In order to start our discussion of quantum states, we must first define a Hilbert space:

a Hilbert space is a complex vector space with an inner product defined on it. Hilbert

spaces may have any number of dimensions - including infinitely many - but for our

purposes we will only consider them to be finite-dimensional.

It is also useful to define several other terms. A set of basis vectors {v1,v2, . . . ,vn} for

a vector space is called linearly dependent if it is possible to define the origin in terms

of these vectors with non-zero coefficients. That is,

0 = a1v1 + a2v2 + . . .+ anvn, (1.1)

where at least some of {a1, a2, . . . , an} are not zero. A set of basis vectors is said to be

linearly independent if it is not linearly dependent - or, equivalently, if each point in the

vector space has one and only one decomposition in terms of the space’s basis vectors.

A set of basis vectors {v1,v2, . . . ,vn} is described as orthogonal if

vi · vj = 0 ∀i 6= j, (1.2)
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where we use · to describe the inner product operation. A set of basis vectors {v1,v2, . . . ,vn}

is described as orthonormal if it is both orthogonal and each basis vector has unit inner

product with itself. That is,

vi · vj = δij , (1.3)

where δij is the Kronecker delta. By definition, any orthogonal or orthonormal set of

basis vectors is linearly independent.

Unless explicitly stated otherwise, all vector spaces in this work shall have an orthonor-

mal basis.

1.3.2 State vectors

We may describe the state of a quantum system with a vector in a Hilbert space. Such

a vector is called a state vector, and may be presented in two equivalent ways. The first,

and more common, is the ket vector:

|ψ〉, (1.4)

which represents column vectors. The second way to present a state vector is the bra

vector:

〈φ|, (1.5)

which represents row vectors, or one-forms. As is usual in a vector space, these may be

multiplied by scalars. If we multiply the previous ket vector by the complex scalar λ,

this yields

λ|ψ〉, (1.6)

which has the corresponding bra vector:

〈ψ|λ∗, (1.7)

where λ∗ denotes the complex conjugate of λ.

We may also define addition of two vectors. If |ψ1〉 and |ψ2〉 are valid state vectors, then

so is any vector of the form

|Ψ〉 = a|ψ1〉+ b|ψ2〉, (1.8)
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where a and b are again complex numbers. The bra form of this vector is given by:

〈Ψ| = 〈ψ1|a∗ + 〈ψ2|b∗. (1.9)

This is the superposition principle, and is one of the fundamental characteristics of quan-

tum mechanics. It is due to this that it is impossible for two non-orthogonal quantum

states (i.e. two states with non-zero mutual inner product) to be discriminated perfectly

- we will see this in more detail in §2.2. It is this effect that gives security to quantum

communications such as the famous BB84 protocol [3], which we will discuss in §1.5.3.

The inner product (or scalar product) of two vectors |ψ〉 and |φ〉 is denoted as 〈ψ|φ〉 and

has the standard properties of being conjugate-symmetric, linear, and positive-definite.

That is,

〈ψ|φ〉 = 〈φ|ψ〉∗, (1.10)

〈ψ|(a|φ1〉+ b|φ2〉) = a〈ψ|φ1〉+ b〈ψ|φ2〉, (1.11)

〈ψ|ψ〉 ≥ 0, (1.12)

with equality in the last line if and only if |ψ〉 = 0.

1.3.2.1 Composite systems

We may also denote the presence of several quantum states at once by using the tensor

product, ⊗. A state consisting of two copies of the same state |ψ〉 may be written:

|Ψ〉 = |ψ〉 ⊗ |ψ〉. (1.13)

Three copies of the state may be written:

|Ψ′〉 = |ψ〉 ⊗ |ψ〉 ⊗ |ψ〉, (1.14)

and so on. If we wish to, say, perform the unitary operation U on the middle qubit in

the ensemble described in equation (1.14), we simply perform the operation 1⊗ U ⊗ 1

on the state vector |Ψ′〉.
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1.4 Measurements

John von Neumann is responsible for the standard textbook formalism of measurements;

we will begin with a description of this before moving on to the more general POVM

paradigm.

1.4.1 von Neumann Measurements

It is conventional to represent some observable A by the Hermitian operator Â; we let this

operator have n eigenstates {|λ0〉, |λ1〉, . . . |λn〉} with real eigenvalues {λ0, λ1, . . . , λn}.

That is,

Â|λj〉 = λj |λj〉

for some j ∈ {0, . . . , n}. The eigenvalues are the possible outcomes of a measurement of

A, hence the necessity for Â to be Hermitian - it is the most general form of operator

which still must have real eigenvalues in orthogonal eigenspaces. The eigenstates are

orthonormal and form a complete set - that is, any arbitrary ket |α〉 in the ket-space of

the observable A may be written

|α〉 =
∑
i

ci|λi〉.

We may therefore consider these eigenstates to be a basis in which to view our observ-

able A. Indeed, we may express the operator Â purely in terms of its eigenstates and

eigenvalues:

Â =
∑
i

λi|λi〉〈λi|.
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Now suppose we have an ensemble in a mixed state where each pure state |ψj〉 occurs

with a probability pj . Then the expectation value of A is given by

〈Â〉 =
∑
j

pj〈ψj |Â|ψj〉

=
∑
j

pj Tr(|ψj〉〈ψj |Â)

=
∑
j

Tr(pj |ψj〉〈ψj |Â)

= Tr(
∑
j

pj |ψj〉〈ψj |Â)

= Tr(ρ̂Â),

where we have introduced the density operator ρ̂ =
∑

j pj |ψj〉〈ψj |, which fully describes

our knowledge of the quantum ensemble.

If we also introduce the projection operator P̂j = |λj〉〈λj |, the probability that a mea-

surement of A will produce the eigenvalue λj is given by Born’s rule:

P(λj) = 〈λj |ρ̂|λj〉 = Tr(ρ̂|λj〉〈λj |) = Tr(ρ̂P̂j). (1.15)

For a pure state, pj = 1 and so this is simply the expectation value of the state. A von

Neumann measurement is defined to be one where the probability of some outcome λj is

given by the above equation. It is important to note that this can easily be extended to

the degenerate case where, for some degenerate orthonormal eigenstates |λ1j 〉, |λ2j 〉 which

produce the eigenvalue λj , we simply define P̂j = |λ1j 〉〈λ1j | + |λ2j 〉〈λ2j |. These projectors

P̂j have the following properties:

(i) P̂j = P̂ †j (Hermitian operators)

(ii) 〈ψ|P̂j |ψ〉 ≥ 0 ∀ |ψ〉 (positive operators)

(iii)
∑

j P̂j = 1 (completeness)

(iv) P̂iP̂j = P̂jδij (orthonormality)

We interpret these properties as follows: the projectors represent real quantities, and

therefore must be Hermitian; the expectation values are probabilities, and so cannot be
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negative; the sum of all probabilities for all possible measurements on any single state

must be unity. The fourth property, however, has no intuitive probabilistic interpreta-

tion, and this in fact does not hold for non-ideal von Neumann measurements [17, §4.2].

Removing this condition leads us to positive-operator valued measurements (POVMs).

von Neumann measurements are restricted to allowing only N measurement outcomes

for any N -dimensional space; POVMs remove this restriction and allow for arbitrarily

many measurement outcomes.

1.4.2 Positive-operator valued measurements

We now introduce a set of probability operators π̂j , where, analogously to the above,

the probability of outcome j on some system described by a density operator ρ̂ is given

by

Pj = Tr(ρ̂π̂j).

The set of probability operators is collectively called a positive-operator valued measure,

or POVM. The POVM elements have the below properties:

(i) π̂j = π̂†j (Hermitian)

(ii) 〈ψ|π̂j |ψ〉 ≥ 0 ∀ |ψ〉 (positive)

(iii)
∑

j π̂j = 1 (complete)

An important point to note is the fact that there is a bijection between measurements

which fulfil these criteria and physically realisable measurements: that is, any POVM

with the above properties may be experimentally realised, and any physical measurement

apparatus may be expressed in POVM form [17, §4.3], [4].

Removing the condition for orthonormality affects the number of elements that the

measurement may have: while a von Neumann measurement has the number of elements

restricted to at most the number of eigenstates of our observable, the number of POVM

elements may be smaller than or greater than the dimension of the ket-space of the

observable.

To see why this can be advantageous over a simple von Neumann measurement, we

consider unambiguous discrimination of non-orthogonal states.
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We will discuss quantum state discrimination in more detail in the next chapter. For the

purposes of this section, we will use the simplest definition possible: one communicating

party, called Alice, is sending information in the form of quantum states to Bob. Bob

may make any measurement he chooses in order to determine which quantum states

were sent; there are a number of figures of merit he may wish to maximise with this

measurement, but for now we will focus on a measurement which leads Bob to never

misidentify the signal state.

1.4.2.1 Example: Unambiguous discrimination

Consider the two (generally) non-orthogonal states

|ψ0〉 = cos θ|0〉+ sin θ|1〉

|ψ1〉 = cos θ|0〉 − sin θ|1〉,

(without loss of generality, θ ∈ (0, π2 ]) which, to simplify matters, we assume have each

been prepared with equal probability; that is, p0 = p1 = 1
2 . It is known (and shown

in §2.2) that a von Neumann measurement cannot unambiguously discriminate between

these two states for arbitrary θ; if we wish unambiguous information, the best that

we can do is form a measurement with two outcomes, one of which allows us to state

with certainty that, say, the system was not prepared in state |ψ1〉 (and therefore, by

elimination, must have been prepared in state |ψ0〉), while the other outcome will give

us no unambiguous information [13–15]. This is realised by the measurement:

π̂0 = (sin θ|0〉+ cos θ|1〉)(sin θ〈0|+ cos θ〈1|)

π̂? = |ψ1〉〈ψ1|, (1.16)

with the above probability interpretations supported by the fact that 〈ψ1|π̂0|ψ1〉 = 0

and 〈ψ0|π̂?|ψ0〉 6= 0 6= 〈ψ1|π̂?|ψ1〉. We find that the measurement described in equation

(1.16) allows us to identify the state |ψ0〉 with probability P0 = 1
4(1 − cos 4θ), while

giving the inconclusive outcome with probability P? = 1
4(3 + cos 4θ).

However, by moving to the POVM paradigm, we find that we may unambiguously

discriminate between |ψ0〉 and |ψ1〉 if we allow for an inconclusive POVM element which
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gives us no information. Consider

π̂0 = a0(sin θ|0〉+ cos θ|1〉)(sin θ〈0|+ cos θ〈1|)

π̂1 = a1(sin θ|0〉 − cos θ|1〉)(sin θ〈0| − cos θ〈1|)

for some 0 ≤ a0, a1 ≤ 1. This has the desired property that 〈ψ0|π̂1|ψ0〉 = 〈ψ1|π̂0|ψ1〉 = 0

(i.e. given outcomes 0 or 1, we can tell with absolute certainty what state the system

was prepared in), but unless our states are orthogonal, this does not form a complete

measurement. We must allow for an inconclusive outcome,

π̂? = 1− (π̂0 + π̂1) (1.17)

which occurs with probability

P? =
1

2
〈ψ0|π̂?|ψ0〉+

1

2
〈ψ1|π̂?|ψ1〉 = 1− 1

2
(a0 + a1) sin2 2θ. (1.18)

Clearly, our measurement is optimised when the probability of this outcome is minimised

(for a0, a1 ≥ 0, π̂? ≥ 0). This occurs when P? = 〈ψ0|ψ1〉 = cos 2θ [4], corresponding to

the measurement:

π̂0 =
1

2 cos2 θ
(sin θ|0〉+ cos θ|1〉)(sin θ〈0|+ cos θ〈1|)

π̂1 =
1

2 cos2 θ
(sin θ|0〉 − cos θ|1〉)(sin θ〈0| − cos θ〈1|)

π̂? = (1− tan2 θ)|0〉〈0|.

However, the minimum-error von Neumann measurement will give the incorrect answer

with probability PError = 1
2(1−

√
1− cos2 2θ) = 1

2(1− sin 2θ), as we shall see in §2.3.1.

Because unambiguous state discrimination requires more measurement outcomes than

there are dimensions in the Hilbert space, the measurement must take the form of a

POVM. This example, therefore, shows a clear advantage of the POVM approach over

the “traditional” von Neumann approach.
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1.5 Quantum Information

As we have already seen, it is possible - due to the superposition principle - for a quantum

state with basis vectors |0〉 and |1〉 to take the general form

|ψ〉 = α|0〉+ β|1〉, (1.19)

where we normalise such that |α|2 + |β|2 = 1. We may make an analogy from the |0〉

and |1〉 basis vectors to the binary 0 and 1 of classical computer bits. In this context,

we refer to the state |ψ〉 as a quantum bit - or “qubit” from here on. Any quantum

system with two quantum states may be a physical realisation of a qubit, from photon

polarisation to electron energy levels in an atom or ion to the orientation of a spin-half

particle.

As qubits allow the superposition of |0〉 and |1〉 states, it is possible to realise a provably

secure communication channel from Alice to Bob using qubits, as we will see in §1.5.3.

Part of the basis of this is the no-cloning theorem.

1.5.1 The No-Cloning Theorem

The no-cloning theorem states that, given an arbitrary unknown qubit state |ψ〉, it is

impossible to take a second, blank qubit, |B〉, and copy the state of the first qubit onto

the blank one. That is, the transformation

|ψ〉 ⊗ |B〉 → |ψ〉 ⊗ |ψ〉 (1.20)

is impossible [18, 19]. To see that this is the case, we first see what the desired outcome

is. For an arbitrary qubit of the form |ψ〉 = α|0〉+ β|1〉,

(α|0〉+β|1〉)⊗ (α|0〉+β|1〉) = α2|0〉⊗|0〉+αβ|0〉⊗|1〉+αβ|1〉⊗|0〉+β2|1〉⊗|1〉. (1.21)
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Now suppose that our hypothetical method for cloning qubits works if the original qubit

is prepared in the states |0〉 or |1〉:

|0〉 ⊗ |B〉 → |0〉 ⊗ |0〉

|1〉 ⊗ |B〉 → |1〉 ⊗ |1〉. (1.22)

From this – and the principle of linearity which governs quantum mechanics – it follows

that our arbitrary qubit state will be transformed as

(α|0〉+ β|1〉)⊗ |B〉 → α|0〉 ⊗ |0〉+ β|1〉 ⊗ |1〉, (1.23)

which does not match the desired output given in equation (1.21).

This is crucial to the security of quantum communications: if such an operation were

possible, any eavesdropper would be able to intercept Alice’s communications to Bob,

make multiple copies of the state and perform state tomography to read the message

with arbitrary accuracy, and then send an additional copy of the message to Bob without

Alice or Bob’s knowledge.

1.5.2 Bloch Sphere Representation

It is possible to represent any pure qubit state as:

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉. (1.24)

This corresponds to a point on the unit sphere with spherical polar co-ordinates φ and

θ, as seen in Figure 1.1. This sphere is called the Bloch Sphere, and is used to visually

represent the state of a pure qubit. We may also place any number of single-qubit states

on the Bloch Sphere to represent either signal states or measurement states - if Bob’s

measurement includes a POVM element of the form π0 = |0〉〈0|, we will refer to this as

him measuring along the state |0〉.

It is important to note that this is not restricted to pure states; we may place a mixed

qubit state of the form, say, |ψmixed〉 = 0.75|0〉〈0| + 0.25|1〉〈1| inside the Bloch Sphere,

with the distance from the centre determined by the difference between its two orthog-

onal components (for it is always possible to decompose any qubit mixed state in terms
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Figure 1.1: Visual representation of the pure state described in equation (1.24) as a
point on the surface of the Bloch sphere, showing how θ and φ describe the state.

of two orthogonal components): in our example, the Bloch vector for |ψmixed〉 would be

of length 0.5 and point in the |0〉〈0| direction. The maximally mixed state is simply

represented by a point in the centre of the Bloch sphere.

The Bloch sphere representation is useful for a number of reasons. Firstly, it gives us

a very quick intuition of how easily-distinguishable two states are: the closer the two

states appear on the Bloch sphere, the greater overlap they have. This also means that

in a measurement situation, these states will be hard to distinguish between. Secondly,

we can define a bijective map from the Bloch Sphere to the Poincaré Sphere, which

depicts different polarisations of light as points on a sphere. This allows us to easily

switch from thinking of qubit states to thinking of polarisations of light, and vice versa.

Thirdly, we may depict the action of unitary operations simply as rotations on the Bloch

sphere. For instance, the Pauli-X gate, whose operation is given by:

X̂ = σ̂x =

0 1

1 0

 (1.25)

corresponds to a rotation around the X-axis of the Bloch Sphere of π radians (i.e. |0〉

flips to |1〉 and vice versa). It is clear that by applying this operation twice in a row, we

simply rotate by 2π radians. That is, X̂2 = 1.
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1.5.3 Quantum Key Distribution

Due to the superposition principle (and the no-cloning theorem), qubits naturally form

a convenient starting point for realising a provably secure communication channel. This

is the basis of quantum key distribution.

First, we discuss how the secret key which Alice and Bob share would be used. The

simplest example is the one-time pad, which was proven to be information-theoretically

secure (i.e., the encrypted message provides no information about the original message,

apart from its maximum possible length) by Shannon [20]: in this, the message to be

conveyed (called the plaintext) is added to the key, modulo two. That is,

0 + 0 = 0 mod 2

0 + 1 = 1 mod 2

1 + 0 = 1 mod 2

1 + 1 = 0 mod 2. (1.26)

Alice adds the plaintext (P ) to the key (K) in this way, bit by bit, to form the ciphertext

(C):

P = 0101 . . . (1.27)

K = 0100 . . . (1.28)

C = P +K mod 2 = 0001 . . . (1.29)

On the other end, Bob then adds the key to the ciphertext to receive the plaintext:

C = 0001 . . . (1.30)

K = 0100 . . . (1.31)

P = C +K mod 2 = 0101 . . . . (1.32)

This works because the addition of the key with itself modulo two will always result in

the identity: K +K mod 2 = 0000 . . ..

Clearly for the purposes of security, it is optimal for the one-time pad to be as long as the

plaintext message. However, if such a long key can be distributed securely, then Alice
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and Bob could simply use this channel to exchange messages. Alice and Bob require a

way of exchanging the one-time pad over a channel which is not secure, while being able

to identify if someone is eavesdropping on them.

This process involves using a quantum channel and classical communication to generate

a secure private key, and is known as quantum key distribution, or QKD. QKD is perhaps

the most important use of quantum state discrimination; note that while the basis used

in our BB84 example below has useful properties, Alice could send any set of quantum

states {|ψ0〉, |ψ1〉, . . . , |ψn〉} with any prior probabilities {p0, p1, . . . , pn} to exchange a

key with Bob.

The much-celebrated BB84 protocol [3] was the first quantum key distribution protocol

to be developed, and is a useful example for illustrating the core concepts. Two parties,

named Alice and Bob, are trying to communicate securely; an eavesdropper, Eve, is

attempting to intercept their messages. The most important aspect of the BB84 protocol

is that it yields a way for Alice to communicate with Bob with no fear that Eve might

be able to glean any useful information - by measuring the states, Eve must introduce

errors which reveal her presence.

Alice encodes qubits as follows: light polarisations |H〉 and |D〉 (|0〉 and 1√
2
(|0〉 + |1〉),

respectively) map to 0, while |V 〉 and |A〉 (|1〉 and 1√
2
(|0〉 − |1〉), respectively) map to

1. Alice then sends a string of 0s and 1s to Bob, randomly varying her basis from

horizontal/vertical to diagonal/antidiagonal and back such that each basis is used 50%

of the time. Her output resembles the following:

Photon number: 1 2 3 4 5 6 7 8

Output: |H〉 |V 〉 |D〉 |A〉 |A〉 |A〉 |D〉 |H〉

Bit value sent: 0 1 0 1 1 1 0 0

Bob then measures this string of bits, varying his measurement basis randomly from

horizontal/vertical (H/V ) to diagonal/antidiagonal (D/A). Bob announces publicly

(i.e. assuming that Eve can intercept and read this communication) the measurement

bases he used for each photon - but, crucially, not his measurement outcomes. Alice

can then confirm to Bob on which occasions they used the same basis; the other bits

are discarded. Neglecting the impact of Eve’s actions at the moment, this looks like

the following, where an “X” demonstrates that Bob’s measurement basis did not match

Alice’s output basis:
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Photon number: 1 2 3 4 5 6 7 8

Output: |H〉 |V 〉 |D〉 |A〉 |A〉 |A〉 |D〉 |H〉

Bit value sent: 0 1 0 1 1 1 0 0

Bob’s measurement basis: H/V D/A H/V H/V D/A H/V D/A H/V

Match? X X X X

Bit received: 0 1 1 0 1 0 0 0

Same-basis bits: 0 1 0 0

At this point, Alice and Bob announce several of the bits in which they used the same

basis. In our unrealistically short example, they both share the bit string 0100; however,

they both publicly announce that the first bit in this string is 0 - as this is public, they

discard this bit. Their secret key is now 100.

Now suppose we have an eavesdropper, Eve, who is intercepting Alice’s photons, making

a measurement, and then sending on a photon matching her measurement outcome to

Bob:

Photon number: 1 2 3 4 5 6 7 8

Output: |H〉 |V 〉 |D〉 |A〉 |A〉 |A〉 |D〉 |H〉

Bit value sent: 0 1 0 1 1 1 0 0

Measurement basis (E): D/A D/A D/A H/V H/V D/A H/V H/V

Eve’s outcome: 0 1 0 1 1 1 0 0

Measurement basis (B): H/V D/A H/V H/V D/A H/V D/A H/V

Match? X X X X

Bit received: 1 1 1 0 1 0 1 0

Same-basis bits (A): 0 1 0 0

Same-basis bits (B): 1 1 1 0

Again, Alice and Bob announce several of the bits in which they know they have used

the same basis: however, Alice has the string 0100 but Bob has the string 1110. Alice

publicly announces the first shared bit to be 0; Bob publicly announces the first shared

bit to be 1. In principle, the only way for such a discrepancy to exist is that an eaves-

dropper intercepted Alice’s horizontally-polarised photon (a 0 in this basis), measured

it at be diagonally-polarised, and then sent another such photon to Bob: when Bob
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measured this |D〉 photon in the H/V basis, he received the outcome corresponding to

1. They now know that their quantum communication channel has been compromised.

Clearly a realistic scenario of this would involve the transfer of a far larger number of

bits from Alice to Bob; however, this toy example illustrates the key concept. It is also

important to note that in a real-world implementation of such a system, errors would

be inevitable as a result of noise and other real-world sources of error. Alice and Bob

would then need to decide what error-rate is acceptable for whichever quantum channel

they are using: if, after some form of error correction has been performed [21], the error

rate is below this, they may use the key to communicate; if it is above the agreed-upon

level, they assume that the channel has been compromised.

Alice and Bob might also wish to estimate the amount of information that Eve may

have obtained about each of the key bits they have shared. Therefore Alice and Bob

wish to find the maximum probability

PEve =
1

2
(1 + ε) (1.33)

that Eve has correctly identified any individual bit, and preferably wish to put an upper

bound on this. They do this by a process called privacy amplification, first mentioned

by Brassard et al. [22], with various other forms existing [23–25]. We will discuss one

method: first, Alice and Bob break their key up into m bits and use the parity of each

“chunk” as a single bit in the final key – that is, an even number of bits with value 1 in

their string of m bits will manifest as a 0 in the final key, while an odd number of bits

with value 1 will manifest as a 1 in the final key. Eve can only identify this parity if she

makes an even number of errors in identifying the m bits (including zero errors). This

will occur with probability

PEve = (
1

2
)m(1 + ε)m + (

1

2
)m

m!

2!(m− 2)!
(1 + ε)m−2(1− ε)2 + . . .

=
1

2
(1 + εm), (1.34)

which is closer to the ideal of 1
2 than the value given in equation (1.33). Alice and Bob

must choose m in order to achieve their pre-decided maximum value for PEve.

It is worth stopping to reflect on what has been done here. We have shown that it is

possible for Alice and Bob to exchange a key with which they can communicate securely,
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to an arbitrary degree of privacy. The key point is that Eve’s attempts to measure the

system will introduce errors which reveal her presence.

Note that we have not yet discussed the possible strategies Eve might take. Clearly, Eve

wishes to avoid introducing errors into Bob’s bit string, while still obtaining information

herself. In the ideal scenario described here, the only way to achieve this is for her to

measure fewer photons, which will also reduce the amount of information she receives.

The optimal strategy Eve might employ varies depending on the specific key distribu-

tion system and Alice’s choice of states; Eve’s possible choices of strategies are also an

important use of quantum state discrimination.

In what follows, we drop the “hat” for operators whenever it is not confusing to do so.

That is, the POVM element π̂i will now simply be represented by πi.
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Quantum State Discrimination

2.1 Introduction

As mentioned in the previous chapter, quantum key distribution – and quantum com-

munication in general – depends on the problem of quantum state discrimination [4, 26].

The standard formulation of this problem involves two communicating parties, Alice

and Bob: Alice communicates with Bob by sending him a quantum state ρi which has

been chosen from a set of possible states {ρj}, each with an a priori probability pj . Bob

knows these states and their probabilities, and his goal is to determine which state was

sent, thereby decoding the message which Alice wishes to communicate. Clearly, Bob

wishes to decode the message as best he can, and he may quantify this using any of a

number of different figures of merit. The two most common figures of merit he might

wish to maximise are mutual information in bits [27, 28], and the probability of correctly

identifying the state [5, 9, 11, 29] (equivalent to minimising the error given by a POVM).

He may also use the techniques of unambiguous discrimination [16, 30] – which either

gives an inconclusive outcome or identifies the signal state with certainty – or maximum

confidence, a generalisation of this which sometimes yields incorrect answers [7]. Note

that we are assuming that all errors in state identification are equally bad - there is no

merit in being “nearly right”.

This has been a popular problem for a few decades, with theoretical solutions obtained

and experiments performed for various sets of states and figures of merit [1, 6–9, 11, 13–

16, 28, 30–39]. This popularity may be attributed partially to the fundamental nature of

19
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the problem, and also to its far-reaching consequences: in addition to being crucial for

quantum key distribution, state discrimination has relevance in quantum information

processing and quantum metrology [26], and also allows us to explore the constraints on

different measurement classes such as global measurement or local measurement with

classical feed-forward [40–42].

In our work, we will focus on LOCC and global measurements. An LOCC measurement

involves Alice and Bob each being in possession of a single quantum state, with the

knowledge that these states are the same (i.e. have been prepared identically). Alice

performs a local (product) operation on her state, and classically communicates the

result of this measurement to Bob. Using this information, Bob may alter his mea-

surement; he then performs a local measurement on his copy of the state, and sends

this result to Alice. This process may be repeated many times [33] if the measure-

ments only disturb the state minimally [43]. In a global measurement, Alice and Bob’s

qubits are coupled in some way and then measured together in such a way that only one

measurement outcome is produced (i.e., as opposed to one each for Alice and Bob).

Further applications of quantum state discrimination include bounding the dimension

of a system’s Hilbert space given incomplete information [44], and sharing information

through imperfect cloning [45–47]. For minimum error and unambiguous discrimination,

the problem of optimisation may be cast as a semi-definite programme, and particular

instances may thus be solved efficiently numerically. However, despite recent progress in

analytical techniques for minimum error discrimination, explicit analytic solutions are

available only for the simplest cases.

2.2 Non-Orthogonal Signal States

One of the fundamental features of quantum mechanics is the superposition principle.

When anN -level quantum system - which by definition exists in anN -dimensional vector

space with orthogonal basis states {|i〉}, i = 0, . . . , N−1 - exists in one of its basis states,

a measurement will result in the corresponding eigenvalue with certainty. However, the

superposition principle states that any linear superposition of the eigenstates of the form

|Ψ〉 =
∑

i ai|i〉 is also an allowable state of the system, hence giving rise to the existence
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of non-orthogonal states. We show here that discrimination between non-orthogonal

states will always have some associated intrinsic error.

Suppose we have an ensemble of states {|ψi〉} from which Alice chooses one to send to

Bob. Bob then makes a measurement to determine which state was sent. Let us also

suppose that perfect discrimination is possible in this case: i.e., there exists some POVM

element πj such that we obtain a “click” at πj if and only if the signal state is |ψj〉.

That is, from the Born rule given in equation (1.15),

P(πj |ψi) = Tr(πjρi) = δij , (2.1)

where ρi = |ψi〉〈ψi|. Given that πj ≤ 1, clearly Tr(πjρj) ≤ 1, with equality if and only

if

πj = |ψj〉〈ψj |+ ξj (2.2)

where Tr(ξjρj) = 0 and, to satisfy positivity, ξj ≥ 0. Therefore

P(πj |ψi) = Tr(πjρi) = |〈ψj |ψi〉|2 + Tr(ρiξj). (2.3)

If we wish for equation (2.1) to hold, we must have Tr(ρiξj) = 0 and |〈ψj |ψi〉|2 = δij∀i, j.

We therefore arrive at the conclusion that perfect discrimination is only possible if the

states {|ψi〉} are mutually orthogonal. The corollary to this is that, clearly, if the

states {|ψi〉} are not mutually orthogonal then there will be some intrinsic error in any

attempt at state discrimination. In what follows, we attempt to mitigate this by trying

to optimise a number of different figures of merit.

2.3 Minimum-Error Discrimination

Perhaps the most natural figure of merit that Bob might wish to maximise is the prob-

ability that any individual measurement will correctly identify the signal state. From

Born’s Rule, equation 1.15, this is given by:

PCorr = Tr(
∑
i

piρiπi) (2.4)
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and it is this quantity which we wish to maximise. Necessary and sufficient conditions

that a POVM must satisfy have been known since the inception of the problem [29, 48],

and are named the Helstrom Conditions:

πi(piρi − pjρj)πj = 0 ∀i, j (2.5)

Γ− pjρj ≥ 0 ∀j, (2.6)

where Γ =
∑

i piρiπi. Note that we may also write Γ =
∑

i piπiρi as a result of equation

(2.5): by expanding the brackets and summing over all i and j, we see that
∑

i piπiρi =∑
j pjρjπj , i.e.

∑
i piπiρi =

∑
i piρiπi. Note that this also implies that Γ is Hermitian.

It is not too complicated to prove necessity and sufficiency of these conditions following

the strategies used in [4] and [49], and we shall do so here. We begin with sufficiency. If

{πi} corresponds to the minimum-error measurement strategy, then clearly:

∑
i

pi Tr(ρiπi) ≥
∑
j

pj Tr(ρjπ
′
j) (2.7)

for all other possible POVMs {π′j}. If we insert the identity
∑

j π
′
j = 1, we obtain:

∑
j

Tr((
∑
i

piρiπi − pjρj)π′j) ≥ 0. (2.8)

We know that π′j ≥ 0, and therefore the above is true if condition (2.6) holds. Therefore

(2.6) is a sufficient condition.

Note that condition (2.5) is not sufficient, as any POVM of the form πi = 1, πi 6=j = 0

satisfies this condition for any choice of i.

To prove necessity, we introduce the Hermitian operators

Gj =
∑
i

1

2
pi(ρiπi + πiρi)− pjρj , (2.9)

where the operators {πi} form a minimum-error POVM. We show that if this is the

case, then each of these Gj operators must be positive. Suppose that, without loss of

generality, for state ρ0 the operator G0 has a single negative eigenvalue −λ; that is,

G0|λ〉 = −λ|λ〉. (2.10)
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We show that if this is the case, then there exists another POVM which yields a greater

probability for correctly guessing the signal state. Thus the positivity ofG0 is a necessary

condition for a minimum-error POVM.

Now consider a new POVM with elements

π′i = (1− ε|λ〉〈λ|)πi(1− ε|λ〉〈λ|) + ε(2− ε)|λ〉〈λ|δi0, (2.11)

where 0 < ε� 1. These clearly form a POVM, as (1− ε|λ〉〈λ|)πi(1− ε|λ〉〈λ|) and |λ〉〈λ|

are clearly positive and
∑

i π
′
i = 1. The probability that this POVM will correctly

identify the signal state is given by

P′Corr =
∑
i

pi Tr(ρiπ
′
i)

=
∑
i

pi Tr[ρi(1− ε|λ〉〈λ|)πi(1− ε|λ〉〈λ|)] + ε(2− ε)p0〈λ|ρ0|λ〉

= PCorr − 2ε
∑
i

pi〈λ|
1

2
(ρiπi + πiρi)|λ〉+ 2εp0〈λ|ρ0|λ〉+O(ε2)

= PCorr + 2ελ+O(ε2), (2.12)

which is greater than PCorr, contradicting our assumption that {πi} is a minimum-error

POVM. This is clearly true for any state ρj , so if any of the operators Gj has a negative

eigenvalue then the corresponding POVM is not optimal. Therefore the positivity of each

Gj is necessary for the POVM {πi} to be optimal. As we have seen, Γ is Hermitian, so

Gj = Γ− pjρj . (2.13)

This shows the necessity of equation (2.6), but we also wish to show the necessity of

equation (2.5). To do this, note that equation (2.6) combined with

∑
i

Tr[(Γ− piρi)πi] = 0 (2.14)

yields

(Γ− pkρk)πk = 0,

πj(Γ− pjρj) = 0. (2.15)
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If we premultiply the first of these with πj , postmultiply the second with πk, and take

the difference we obtain equation (2.6).

Clearly to distinguish between n states we need a measurement with at most n outcomes.

The number of outcomes may be less than n (or equivalently, some of the operators

πi may be zero) if Bob’s measurement procedure is such that some states are never

identified.

Interestingly, it is sometimes optimal to avoid measurement and simply guess that the

signal state is the a priori most likely state [50]. In this case, we use the measurement

{πj = 1, πk 6=j = 0} for some j where pj ≥ pk ∀k. In this case, condition (2.5) clearly

holds. However, for condition (2.6) to hold we must have

pjρj − pkρk ≥ 0 ∀k. (2.16)

This is never the case when one of the signal states is a pure state. The next most simple

case to investigate is that of discriminating between two pure states.

2.3.1 Two States

The problem of minimum-error state discrimination between two states was solved by

Helstrom [5], and before the present work (discussed in Chapter 4), was the only ex-

ample of a set of states with a complete analytic, closed-form solution for the minimum

probability of error for arbitrary prior probabilities. Here we have two states ρ0, ρ1, with

respective probabilities p0 and p1 = 1 − p0. The probability of correctly guessing the

state based on the measurement outcome is given by:

PCorr = p0P (π0|ρ0) + p1P (π1|ρ1)

= p0 Tr(ρ0π0) + p1 Tr(ρ1π1). (2.17)

Substituting π0 = 1− π1 gives:

PCorr = p0 − Tr[(p0ρ0 − p1ρ1)π1]. (2.18)

This takes its maximum value when the latter term is minimised, i.e. when π1 is a

projector onto the negative eigenspace of the operator p0ρ0−p1ρ1. We can make a similar
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argument with π0 projecting onto the negative eigenspace of p1ρ1−p0ρ0 (i.e. the positive

eigenvalue of p0ρ0− p1ρ1). As such, if we write p0ρ0− p1ρ1 = λ+|λ+〉〈λ+|+λ−|λ−〉〈λ−|

we have:

PCorr = p0 + |λ−|

PCorr = p1 + |λ+|

=
1

2
(1 + Tr |p0ρ0 − p1ρ1|), (2.19)

where in the last line we have simply taken the average of the preceding two lines. As

this is a two-state minimum-error problem, the optimal measurement is simply a von

Neumann measurement of some description.

We can go further if we restrict to the pure-state case, and find the negative eigenvalue

of p0|ψ0〉〈ψ0| − p1|ψ1〉〈ψ1|; if we now restrict to the qubit case and express (without loss

of qubit generality) the states |ψ0〉 and |ψ1〉 as

|ψ0〉 = cos θ|0〉+ sin θ|1〉

|ψ1〉 = cos θ|0〉 − sin θ|1〉, (2.20)

then the eigenvalues of p0|ψ0〉〈ψ0| − p1|ψ1〉〈ψ1| may be readily found:

λ± =
1

2
(p0 − p1 ±

√
1− 4p0p1 cos2 2θ). (2.21)

This gives us our optimal probability for guessing the signal state:

PCorr =
1

2
(1 +

√
1− 4p0p1 cos2 2θ)

=
1

2
(1 +

√
1− 4p0p1|〈ψ0|ψ1〉|2). (2.22)

For p0 = p1 = 1
2 , the optimal measurement is to measure along the states

|φ0〉 =
1√
2

(|0〉+ |1〉)

|φ1〉 =
1√
2

(|0〉 − |1〉), (2.23)

where π0,1 = |φ0,1〉〈φ0,1|. However, as p0 is increased, the measurement state |φ0〉 moves

closer to the signal state |ψ0〉 - see Figure 2.1 for an illustration of this.
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Figure 2.1: Two minimum-error measurements for the two states given in Equation
(2.20), shown on the equator of the Bloch sphere. The image on the left shows the
POVM given by π0,1 = |φ0,1〉〈φ0,1|, which is optimal for p0 = p1 = 1

2 . As p0 is increased,
however, correctly identifying state ρ0 becomes more important than identifying state
ρ1. In this situation, the optimal measurement more closely resembles that shown in
the image on the right, given by π′

0,1 = |φ′0,1〉〈φ′0,1|. For some probability distribution
p0 > p1, this POVM is optimal.

2.3.2 Square-Root Measurement

Another way to investigate the problem of minimum-error measurements is to start with

a “standard” POVM and find a set of states which will combine with this POVM to

satisfy the Helstrom conditions. To this end, we define the square-root measurement,

sometimes also called the “pretty-good” measurement [51–55]. In this case, we have

πj = pjρ
− 1

2 ρjρ
− 1

2 , (2.24)

where ρ =
∑

i piρi. It is clear that these operators are positive and collectively sum to

the identity, thus forming a POVM.

The square-root measurement is known to be the optimal minimum-error measurement

for a number of cases: e.g., a set of symmetric pure states such that |ψi〉 = U i|ψ0〉 with

Un = 1 [34] - this was later generalised to mixed states [56] and sets of states with larger

symmetries [8] (this is further explained in §2.6).

A necessary and sufficient condition for the square-root measurement to be optimal for

linearly independent pure states was derived by Sasaki et al. [57]; this condition states

that the probability of correctly identifying the signal state must be independent of

which state was sent.
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Mochon generalised the concept of the square-root measurement to allow different weight-

ings of POVM elements [55], which may be tweaked in order to find optimal solutions

different discrimination problems involving a consistent set of states with varying prior

probabilities.

2.3.3 Other cases

The problem of minimum-error quantum state discrimination has been the subject of

research for over forty years; as such, an overview of the current state of affairs is appro-

priate. As we saw in §2.3.1, the problem of discriminating between two states (whether

pure or mixed) was solved by Helstrom over 40 years ago [5]. For a set of equiprobable

pure states in which a subset sums to the identity, Yuen et al. [29] found the optimal

measurement - if, for some ai ≥ 0, we have
∑

i ai|ψi〉〈ψi| = 1, then πi = ai|ψi〉〈ψi| is

an optimal measurement. Hunter later gave a solution for any set of equiprobable pure

qubit states [58]. Andersson et al. [6] found the minimum-error measurement for the

mirror-symmetric set of states |ψ0〉 = |0〉, |ψ1,2〉 = cos θ|0〉 ± sin θ|1〉 with probabilities

p0 = 1− 2p, p1,2 = p - this is explained further in §2.6.

Hunter showed [50] that sometimes it is optimal to not even measure, and to simply

guess the a priori most likely state; this only occurs when the signal states are highly

mixed.

A general solution for minimum-error quantum state discrimination - of some form

- was found by applying the theory of semidefinite programming in order to find an

efficient algorithm for solving such problems [59]. However, such an approach only yields

numerical results, which is not ideal when - for instance - a quantum state discrimination

problem arises as part of a larger problem, as seen in Chapters 5 & 6.

The first truly general solution for minimum-error qubit state discrimination (i.e. for

arbitrary states – which need not be pure – with arbitrary prior probabilities) was given

by Deconinck and Terhal [12], in which the dual problem is used to find a geometric

solution. This was later generalised to qudit states by Tyson [60].

Later, Bae rewrote the Helstrom conditions in the form of the so-called KKT (Karush-

Kuhn-Tucker) conditions [10, 61, 62], which also pointed towards a geometric solution

for quantum state discrimination. Ha and Kwon later used this method to give a general



Chapter 2 28

qubit solution [11], which was also later extended to the qudit case [63]. Both of these

had geometric components, and were fairly computationally complex.

As we will show in Chapter 3, it is possible to construct a relatively simple analytic

solution for arbitrary qubit states with arbitrary prior probabilities; in this case, the

problem simplifies to that of solving a series of linear equations.

2.4 Unambiguous Discrimination

We have already discussed unambiguous discrimination for qubits in §1.4.2.1, where we

examined the advantages of POVM measurements over simple von Neumann measure-

ments.

In this section, we simply note that this can be extended beyond the qubit case. However,

as was shown by Chefles [16], the signal states must be linearly independent for this to

be a viable option: the key idea here is that, for N signal states, each POVM element

which identifies a state must make a measurement orthogonal to N − 1 of the signal

states, with the remaining one being the signal state which is identified. This means

that, for instance, in the case where there are three qubit signal states, unambiguous

discrimination is impossible.

It is also possible to perform unambiguous discrimination on mixed states, provided

that the set of states to be discriminated have non-overlapping supports (i.e. the space

spanned by the eigenvectors with non-zero eigenvalues for each state must not overlap

with that of any other state in the ensemble). This was first proposed by Rudolph et al.

[64], and performed experimentally soon after [37].

2.5 Maximum Confidence Measurements

While unambiguous discrimination is only viable for sets of states which are linearly

independent, we may define an analogue for linearly dependent sets of states. Instead of

identifying states with 100% certainty, as is the case with unambiguous discrimination,

we can instead try to maximise the confidence that the measurement outcome we received



Chapter 2 29

correctly corresponds to the signal state [7]. That is, we wish to maximise

Confidence = P(ρj |πj) =
P(ρj)P(πj |ρj)

P(πj)
=
pj Tr(ρjπj)

Tr(ρπj)
(2.25)

for each j, where we have used Bayes’ theorem and the Born Rule – equation (1.15) –

to simplify, and ρ =
∑

i piρi as before. Note that this, like unambiguous discrimination,

may necessitate the use of an inconclusive measurement outcome. This is in opposition

to the minimum-error measurement strategy, where the goal is to correctly identify

the signal state as often as possible; in this case an inconclusive outcome is clearly

detrimental, as the probability of correctly identifying the signal state could always be

increased by simply guessing state at random.

Note that, as the operator πj appears in both the numerator and denominator of equation

(2.25), we can only determine the POVM elements up to a constant of proportionality.

We define πj = cjMj with cj ≥ 0 such that

∑
πj ≤ 1, (2.26)

and define π? = 1 −
∑

i πi to form a complete measurement. When formulating the

POVM elements for this measurement, therefore, we do not concern ourselves with

the completeness condition, and instead consider each POVM element separately. This

simplifies the problem to that of maximising equation (2.25) for each state in the set {ρi};

the inconclusive outcome described above then completes the set of POVM elements, if

necessary.

We maximise the confidence P(ρj |πj) by defining πj = cjρ
− 1

2Qjρ
− 1

2 , where Qj is a

positive, trace-one operator, the exact form of which we will discuss soon; this means

that the probability of obtaining outcome πj is simply given by cj . Therefore

P(ρj |πj) = pj Tr(ρ−
1
2 ρjρ

− 1
2Qj)

= pj Tr(ρjρ
−1) Tr(ρ′jQj), (2.27)

where ρ′j = ρ−
1
2 ρjρ

− 1
2 /Tr(ρjρ

−1). As Qj and ρ′j are both trace-one positive operators,

they can be thought of as density operators. Thus, we can maximise P(ψj |πj) by defining

Qj to be a projector onto the pure state which has the largest overlap with ρ′j . That is,

if ρ′j has λ′max as its largest eigenvalue, corresponding to the eigenket |λ′max〉, then we
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have

Qj = |λ′max〉〈λ′max|, (2.28)

and the maximum possible value for P(ψj |πj) is pj Tr(ρjρ
−1), given by the POVM

element

πj = cjρ
− 1

2 |λ′max〉〈λ′max|ρ−
1
2 , (2.29)

which simplifies to

πj ∝ ρ−1ρjρ−1 (2.30)

if the state ρj is pure.

The precise measurement which will take place is dependent on the choice of constants

cj - depending on the set of signal states, it is sometimes possible to choose our constants

in such a way that no inconclusive outcome is necessary. In cases where the inclusion

of an inconclusive outcome is inevitable, we may choose to minimise the probability of

obtaining such an outcome.

This has been realised experimentally for a set of three symmetric states, with the

results matching what was predicted [32]; these states and the associated maximum

confidence measurement are shown in Figure 2.2. An overview of maximum confidence

measurements may be found in [65].

2.6 Symmetries

In certain state discrimination problems, symmetry proves to be useful: if the signal

states have a certain symmetry, the optimal POVM may also have the same symmetry.

This is best shown with an example.

Consider the trine states, which may be represented by three equidistant points on any

great circle of the Bloch sphere. We will place them on the equator, like so:

|ψ0〉 =
1√
2

(|0〉+ |1〉)

|ψ1〉 =
1√
2

(|0〉+ ei
2π
3 |1〉)

|ψ2〉 =
1√
2

(|0〉+ ei
4π
3 |1〉).
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Figure 2.2: The Bloch sphere representation of states used in the first experiment
demonstrating maximum confidence measurements. The red lines in the upper hemi-
sphere show the three signal states. The blue lines on the equator show the minimum
error POVM elements for this set of states, while the green lines in the lower hemisphere

show the maximum confidence POVM elements for these signal states.

These will feature prominently in the work that follows. Note that these states are

highly symmetrical: the unitary matrix U = |0〉〈0| + ei
2π
3 |1〉〈1| has the property that

U |ψi〉 = |ψi+1〉 for all i mod 3. If these states are sent, each with probability 1
3 , then

our probability of making an error in identifying the signal state is given by:

PError =
∑
i

∑
j 6=i

pi〈ψi|πj |ψi〉 (2.31)

= 1− 1

3

∑
i

〈ψi|πi|ψi〉,

where we have used the completeness of POVM elements to simplify the final line.

Now note that we may define two new sets of POVM elements, {π′i} and {π′′i }, with

π′i = U †πi+1U and π′′i = (U †)2πi+2U
2 (i mod 3 in both cases). Note that these still
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satisfy the POVM condition because U is unitary. Clearly, these two sets of probability

operators {π′i} and {π′′i } are at least as good at discriminating the signal states as the

original set {πi}, as they must have the same probability of error:

PError = 1− 1

3

∑
i

〈ψi|πi|ψi〉 = 1− 1

3

∑
i

〈ψi|π′i|ψi〉 = 1− 1

3

∑
i

〈ψi|π′′i |ψi〉. (2.32)

Hence any linear combination of these will produce another measurement of the same

efficacy. Our final set of probability operators will take this form: let π̃i = 1
3(πi+π

′
i+π

′′
i ),

which has the property that Uπ̃iU
† = π̃i+1 (i mod 3), indicative of a cyclic symmetry

of order 3 - similar to that of the trine states themselves (note that, as described in

[33], we may always fine-grain this measurement so that it is rank one). Therefore the

minimum-error measurement for such a system must measure three equidistant points on

the equator of the Bloch sphere, i.e. π̃i = |φi〉〈φi|, where |φi〉 = 1√
2
(|0〉+ ei(

2π
3
+φ)|1〉) for

some angle φ. Note that this only works in the case where pi = 1
3 - otherwise, equations

(2.31) and (2.32) do not hold. This type of simplification of the problem only works,

therefore, in cases where the states and their probabilities are in some way symmetric.

The symmetry also does not need to be cyclic in nature: a mirror-symmetric set of three

signal states with probabilities p0 = p, p1 = p, p2 = 1− 2p is investigated in a paper by

Andersson, et. al. [6], and the minimum-error POVM is found to have a similar mirror

symmetry. Such a collection of states S - where S = {|ψi〉 = Ui|ψ〉, Ui ∈ G}, where G is a

finite abelian group of unitary matrices Ui - are called geometrically uniform [66]. This

can be extended to the case of multiply symmetric states, where two unitary matrices,

U and V , are necessary to describe the symmetries of the signal states, for instance an

entangled two-qubit state [8]. The difference between these and geometrically uniform

state sets is that U and V need not commute.

2.7 Experiments

Quantum state discrimination has been performed in laboratories in a number of ways.

Here we detail a few implementations of the strategies we have discussed. While it is

possible for a qubit to be realised in a number of ways, in all of the examples discussed

here the qubit will manifest itself in the polarisation of light. That is, e.g., using the

transformation |0〉 → |H〉, |1〉 → |V 〉, |i〉 → |L〉, | − i〉 → |R〉, |+〉 → |D〉, |−〉 → |A〉.
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PBSGTP

PD0

PD1

Figure 2.3: The set-up for the first experimental demonstration of the Helstrom
bound. The Glan-Thompson polariser (GTP) selectively transmits/reflects the incom-
ing beam to create the states described in equation (2.20). The polarising beam-splitter
(PBS) then separates these states in the ±π4 basis, so a |+〉 photon is reflected and de-
tected at photon detector 1 (PD1), while a |−〉 photon is detected at photon detector

0 (PD0).

2.7.1 Minimum-error discrimination

2.7.1.1 Helstrom bound

In [67], Barnett and Riis demonstrated the optimal measurement to discriminate between

two equiprobable qubit states of the form shown in equation (2.20) for various values of

θ.

This measurement was implemented using a polarising beam splitter at an angle of π
4 to

the horizontal. This measurement is shown in Figure 2.3. The source was an attenuated

pulsed laser which on average produced 0.1 photons/pulse. These photons then passed

through a Glan-Thompson polariser to produce the input states. The polarising beam

splitter then transmitted photons in the |+〉 basis, while reflecting those in the |−〉 basis,

meaning photons of the form |ψ0,1〉 had a probability |〈ψ0,1|+〉|2 of being transmitted

and hitting the photon detector which represented π0. This set-up therefore realises

the Helstrom measurement detailed in equation (2.23). If the input state |ψ0〉 reached

the photon detector representing π0, then the state was identified correctly. If not, the

measurement was incorrect. The reverse is true for input state |ψ1〉. In the referenced

experiment, the probability of correctly identifying the signal state given by equation

(2.22) was verified to within a few percent.
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HWP1

HWP2

PD?

PBS1 PBS2

PBS3

PBS4

PD0

PD1

Figure 2.4: Schematic detailing the experimental set-up used by Clarke et al. [1]
for unambiguous state discrimination of the equiprobable states |ψ0〉, |ψ1〉. Here, PD0
corresponds to the POVM element π0, PD1 corresponds to π1, and PD? corresponds to
π? - however, in the analogous experiment where a similar set-up is used for minimum-

error discrimination of the trine states, PD? instead corresponds to π2.

2.7.1.2 Trine and tetrad states

Minimum-error discrimination of the trine states with equal prior probabilities has also

been demonstrated, in [36]. In this example, the experimental set-up was identical

to that described in Figure 2.4, but with the outcome corresponding to π? (PD? in

Figure 2.4) instead corresponding to π2. This measurement corresponds to the trine

measurement, discussed more in §4.1.

In the same experiment (with some minor changes to the waveplates), the minimum-

error discrimination strategy for the so-called tetrad states was demonstrated. This set

of states was also prepared with equal prior probabilities. In this ensemble, the states

are represented by

|ψ0〉 = |0〉

|ψ1〉 =
1√
3

(−|0〉+
√

2ei
2π
3 |1〉)

|ψ2〉 =
1√
3

(−|0〉+
√

2ei
4π
3 |1〉)

|ψ3〉 =
1√
3

(−|0〉+
√

2|1〉). (2.33)
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2.7.2 Unambiguous state discrimination

The first experimental demonstration of unambiguous discrimination of two pure states

was given by Huttner et al. [38], in which an optical fibre with polarisation-dependent

absorption was used to selectively absorb the horizontal polarisation of input states.

The length of fibre was chosen so that this horizontal component was reduced by a

factor of tan θ. As a result, the state |ψ0,1〉 will be absorbed with probability (1 −

tan2 θ|〈H|ψ0,1〉|2); hence the input states are transformed such that |ψ0,1〉 → sin θ(|0〉 ±

|1〉). These states are orthogonal and may be perfectly discriminated using a properly-

oriented polarising beam splitter. The downside of this approach is that the lost photons

– which correspond to the inconclusive result π? – are not registered, and so the number

of inconclusive outcomes cannot be measured. However, the surviving photons were

shown to give unambiguous results to within 1.7% accuracy.

Huttner et al also suggested an alternative implementation which was realised by Clarke

et al [1]. In this implementation – shown in Figure 2.4 – a polarising beam splitter

separates the input states into horizontal and vertical component. A half wave plate

(HWP1) is then used to rotate the horizontal polarisation component in such a way that

(1− tan2 θ)
1
2 of the transmitted photons pass through PBS2 and end up at the photon

detector representing π?. The remaining horizontal component – which is now vertically

polarised due to the actions of HWP1 and PBS2 – recombine with the photons which

were transmitted at PBS1 in such a way that PBS4 may perfectly discriminate between

them. These photons are therefore detected at the photon detectors corresponding to π0

and π1 with – in principle – perfect efficiency. In reality, the experiment performed to

within 1% accuracy of the IDP limit for a variety of values of θ. The central machinations

of this experiment were identical to those of Huttner et al in [38], but with the key

difference that π? was physically realised, instead of simply corresponding to losses in

optical fibre.

Unambiguous state discrimination has also been shown between three linearly indepen-

dent pure states, as shown in [37]. This uses the set-up proposed by Sun et al [68], in

which a multi-rail optical system is used. Note that one of the input states for this was

also a mixed state, verifying the proposal put forward in [64].
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2.7.3 Maximum confidence measurement

Maximum confidence measurement has been demonstrated for a set of three states which

are a generalisation of the trine states, of the form

|ψ0〉 = cos θ|0〉+ sin θ|1〉

|ψ1〉 = cos θ|0〉+ ei
2π
3 sin θ|1〉

|ψ2〉 = cos θ|0〉+ ei
4π
3 sin θ|1〉. (2.34)

The experiment, detailed in [32] and [65], was performed for ten values of θ, equally

spaced between 0 and π
4 . The results varied with θ, with the inconclusive outcome

occurring with high frequency for θ < 10◦ due to the high overlap between the signal

states. However, the experiment demonstrated a clear advantage over the minimum-

error strategy in the confidence given by measurement outcomes for the range 10◦ ≤

θ ≤ 30◦. For θ above this range, the two strategies offer very similar levels of confidence.
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Minimum-error discrimination of

arbitrary single-qubit mixed

states

3.1 Introduction

As we have seen in §2.3.3, geometric solutions to the problem of minimum-error dis-

crimination for arbitrary qubit states with arbitrary prior probabilities have been found.

However, a concise analytic solution is missing in the literature.

In this chapter, we give an alternative method of constructing optimal measurements

from the minimum error conditions. Previous work [10] has demonstrated that finding

a single operator Γ, sometimes referred to as the Lagrange operator, is equivalent to

solving the minimum error discrimination problem: the trace of this operator gives the

optimum probability of success, and optimal measurements may be readily constructed

once it is known. We construct linear constraints on this operator and its inverse, which

in the qubit case may be readily solved for Γ and thereby the optimal measurement [39].

Our algebraic approach is complementary to the geometric approach already discussed.

37
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3.2 The minimum-error conditions

Recall that the Born rule, expressing the probability of obtaining outcome j in a mea-

surement on a system prepared in state ρ is given by:

P(j|ρ) = Tr(ρπj). (3.1)

For a minimum-error detection strategy, a “click” at the detector corresponding to ele-

ment πj is taken to indicate that the state ρj was sent. Bob’s probability of correctly

guessing the state Alice sent is then given by PCorr =
∑n−1

i=0 pi Tr(πiρi), and it is this

that we wish to maximise in the minimum error problem (Bob’s probability of error, of

course, is given by 1− PCorr).

As we have seen, the solution to the problem of minimum-error quantum state discrim-

ination is equivalent to finding a POVM satisfying the conditions [5, 29, 69]:

Γ− pjρj ≥ 0 ∀j, (3.2)

πi(piρi − pjρj)πj = 0 ∀i, j, (3.3)

where Γ =
∑

i piρiπi. The first condition is both necessary and sufficient for {πi} to

describe an optimal measurement procedure, and we note that the conditions are not

independent: the second, which is necessary but not sufficient, follows from the first. It

is useful however to give both conditions, as often the second is more convenient to use

in practice. Note that Γ is a Hermitian operator Γ = Γ† =
∑

i piπiρi, which follows from

condition (3.2), and may be seen explicitly by summing over both i and j in condition

(3.3). An alternative condition is obtained by summing over i in equation (3.3), giving:

(Γ− pjρj)πj = 0. (3.4)

This is a necessary (but not sufficient) condition on any optimal measurement {πj},

and is central to our and other methods [9, 11], allowing us to construct operators πj

satisfying Γ =
∑

i piρiπi once a candidate Γ is given. Indeed, both πj and Γ − pjρj

(according to inequality (3.2)) are positive operators, and thus equation (3.4) can hold

only if they are orthogonal, that is πj is entirely within the kernel (or the eigensubspace

corresponding to zero eigenvalue) of Γ− pjρj . It follows that πj can be non-zero only if
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Γ− pjρj has at least one zero eigenvalue. We further note that

Tr(Γ) =

n−1∑
i=0

pi Tr(πiρi) = PCorr. (3.5)

Therefore if we can find Γ, we find both the optimal probability of success, and a way of

constructing the optimal measurement operators. The problem of finding the optimal

measurement {πi}, a set of n operators, is thus equivalent to finding a single positive

operator Γ satisfying the condition (3.2) and from which operators {πj} satisfying (3.4)

and forming a POVM can be constructed. Indeed the so-called dual problem in the

semi-definite programming approach consists of finding the operator Γ with minimum

trace that satisfies condition (3.2) for all j. Further, as is stressed by Bae [10], the

operator Γ is unique for a given set of states, while the optimal measurement may not

be - for example, in the case of N ≥ 4 symmetric states [28, 55, 58].

3.3 Qubit state discrimination

There has recently been much progress in using the Helstrom conditions constructively,

detailed in §2.3.3. Most pertinent to our work is recent work by Bae [10] which used

the (so-called) Karush-Kuhn-Tucker, or KKT, conditions [61, 62] from semi-definite

programming. These KKT conditions are necessary conditions which are used in opti-

misation problems, and may be used to define complementary states {σj} with weights

rj such that

Γ = piρi + riσi = pjρj + rjσj . (3.6)

This may be seen from equation (3.4), which must be true for all values of j. σj lies in

the kernel of πj , and so Γ− pjρj = rjσj for some weighting rj . The geometric structure

of the complementary states σj may be deduced from the conditions and the geometric

structure of the signal states ρj , and in turn used to construct Γ. Bae discusses the

qubit case, in which the Bloch sphere provides a convenient geometric picture, and the

full details for three mixed qubit states were later calculated by Ha and Kwon [11].

We begin with some general considerations concerning the qubit state discrimination

problem, and then discuss our method, which constructs Γ directly, without reference

to complementary states [39]. Firstly, we note that for each j the operator Γ− pjρj can
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have two, one, or no zero eigenvalues, corresponding to the zero operator, a rank-one

operator, and a positive-definite operator respectively:

1. If Γ−pjρj = 0 for some j, then Γ = pjρj , which can only hold if pjρj−pkρk ≥ 0 for

all k. The no measurement strategy is then an optimal measurement, πk = Iδjk

[50].

2. Γ − pjρj has a single zero eigenvalue. If πj is non-zero, it is a weighted projector

onto the corresponding eigenstate.

3. If Γ − pjρj is positive definite (all eigenvalues strictly greater than zero), then

according to condition (3.4) it follows that πj = 0 for every optimal measurement,

and the corresponding state is never identified.

Given a set of qubit states {ρj} with a priori probabilities pj , it is easily checked whether

for some j

pjρj − pkρk ≥ 0, ∀k. (3.7)

If this does hold for some j, the optimal strategy is not to measure at all and simply

guess ρj . For all other ensembles, it follows that the optimal measurement is made up

of rank-one weighted projectors,

πj = cj |φj〉〈φj | (3.8)

for some cj satisfying 0 ≤ cj ≤ 1, and where |φj〉 is the eigenstate of Γ−pjρj correspond-

ing to the zero eigenvalue. Note that this is completely general for qubits, and holds

whether ρj are pure or mixed states. Thus, for an optimal measurement each operator

πj is uniquely defined, up to a multiplying factor. There may however be more than one

way of choosing the coefficients cj such that the πj thus found sum to the identity.

Secondly, we note that for minimum error discrimination of an arbitrary set of qubit

states there always exists an optimal measurement with at most four outcomes. Intu-

itively, the constraint
∑

i πi = 1 contains only d2 independent linear constraints, where

d is the dimension of our space: if a set of N > d2 elements {πj} satisfies this, there is

always a subset of these which, when appropriately weighted, also forms a resolution of

the identity. A measurement with more than d2 outcomes can always be decomposed
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as a probabilistic mixture of measurements with at most d2 outcomes. If the mixture

results in an optimal procedure, then any of the component measurements must also be

optimal [12, 58].

Finally, note that the number of outcomes in our optimal measurement corresponds to

the number of states that are identified with non-zero probability by the measurement:

additional states are never identified. Denoting the number of outcomes k, the cases

k = 1 and k = 2 are well-known, as these correspond to the no-measurement strategy

and the Helstrom two-state discrimination measurement respectively [4, 5]. In the cases

k = 3 and k = 4 it is more difficult to find optimal measurements although, as discussed

above, strategies for these cases have been recently suggested.

For qubits, the Pauli operators together with the identity form a convenient basis in

which to express any operator on the space. Thus, for example, we can write

Γ =
1

2
(a1+~b · ~σ), (3.9)

where a > 0, ~b is a real three-dimensional vector, and ~σ is the vector of Pauli operators:

~σ = (σx, σy, σz). It will be convenient in what follows to also use such a representation

for the inverse Γ−1, and it is easily verified that:

Γ−1 =
2

a2 − |b|2
(a1−~b · ~σ). (3.10)

This may be seen with the aid of the identity

(~x · ~σ)(~y · ~σ) = (~x · ~y)1 + i(~x× ~y) · σ, (3.11)

as

Γ · Γ−1 =
1

a2 − |b|2
(a1 +~b · ~σ)(a1−~b · ~σ)

=
1

a2 − |b|2
[a21 + a~b · ~σ − a~b · ~σ − (~b · ~σ)(~b · ~σ)]

=
1

a2 − |b|2
(a2 − |b|2)1

= 1. (3.12)
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Note that Γ is a strictly positive operator in the space spanned by the states to be

discriminated, and so the inverse is always well-defined, as is its square-root, which we

will use later. We thus need 4 parameters to completely specify Γ, and we discuss now

how to construct 4 constraints, which are readily inverted to construct Γ.

3.4 Constructing Γ

We begin by proving a result found in the exercises of [70]. Suppose we have a positive

Hermitian operator A of rank n with some decomposition A =
∑n

i=1 ai|αi〉〈αi|, where

{|αi〉} are linearly independent and {ai} are real. We may therefore write

1 = A−
1
2AA−

1
2

=

n∑
i=1

aiA
− 1

2 |αi〉〈αi|A−
1
2

=

n∑
i=1

|φi〉〈φi|

which can only hold if {|φi〉} are an orthonormal set. Hence, for some choice of indices,

|φi〉 =
√
aiA

− 1
2 |αi〉. This gives the result

〈φi|φi〉
ai

= 〈αi|A−1|αi〉 =
1

ai
, (3.13)

which we will use to impose constraints on Γ.

Suppose there is an optimal measurement which identifies k > 2 states: we will show

that for each of these we may obtain one constraint on the parameters of Γ. It is of

course not obvious a priori which states will be identified by an optimal measurement,

however we can construct a candidate Γ, under the assumption that a particular subset

of our states are identified in an optimal measurement, and then verify that this results

in a physically allowed measurement procedure. We will return to this later. According

to the discussion above therefore, for each of these k states the operator Γ − pjρj has

a single zero eigenvalue. Let us consider first the pure state case: ρj = |ψj〉〈ψj |. The
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KKT conditions (3.6) show that

Γ = pj |ψj〉〈ψj |+ rj |φ⊥j 〉〈φ⊥j |, (3.14)

where |φ⊥j 〉〈φ⊥j | = σj , the complementary state from the KKT conditions. As |ψj〉 and

|φ⊥j 〉 are linearly independent, equation (3.13) is applicable, giving:

pj〈ψj |Γ−1|ψj〉 = 1. (3.15)

A similar relation was pointed out by Mochon [55], who discussed the inverse problem

of characterising the sets of states and corresponding probabilities for which a given

measurement procedure was optimal, although it does not seem to have been used

constructively in the literature. Thus we find

2pj〈ψj |(a1−~b · ~σ)|ψj〉 = a2 − |b|2. (3.16)

Alternatively, if ρj = |ψj〉〈ψj | has Bloch vector r̂j (a unit vector as ρj is a pure state):

ρj = 1
2 (1 + r̂j · ~σ), we may write:

2pj

(
a− r̂j ·~b

)
= a2 − |b|2. (3.17)

Each state gives rise to one such constraint, resulting in k independent constraints on

Γ.

It is not obvious how to extend this result to the case of mixed qubit states; however,

a little trick leads to a nice result which allows us to do so. Note that for qubit states,

every mixed state can be written as a mixture of a pure state and the identity: ρj =

αj |ψj〉〈ψj |+ βj
1
21, where αj + βj = 1. Condition (3.14) then becomes:

Γ− 1

2
pjβj1 = pjαj |ψj〉〈ψj |+ rj |φ⊥j 〉〈φ⊥j |, (3.18)

and using the same reasoning as previously, we obtain:

pjαj〈ψj |
(

Γ− 1

2
pjβj1

)−1
|ψj〉 = 1. (3.19)
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Explicitly, this gives:

2pjαj〈ψj |[(a− pjβj)1−~b · ~σ]|ψj〉 = (a− pjβj)2 − |b|2, (3.20)

and after a litte rearranging, again writing |ψj〉〈ψj | = 1
2 (1+ r̂j · ~σ), we find

2pj

[
a− αj r̂j ·~b− pjβj(αj +

1

2
βj)

]
= a2 − |b|2. (3.21)

If there are k states identified by the optimal measurement this procedure, in both the

pure state and mixed state case, gives k equations for the parameters of Γ. Clearly

if k = 4 this is enough to construct Γ. We further note that in equations (3.17) and

(3.21) the non-linear right hand side is independent of j, thus we can easily take linear

combinations to obtain k−1 linear equations. For k = 4 these are readily solved to write

all parameters in terms of a single one, e.g. a, which is finally determined by solving

one quadratic equation.

Thus we can construct optimal measurements with k = 1, 2, or 4 outcomes. For k = 3

we don’t yet have enough constraints to determine Γ; a further constraint however, is

readily constructed, as we now discuss. We first note that for the special case in which

three signal states lie in an equatorial plane of the Bloch sphere (as in [6]), we know from

symmetry that the POVM elements, and therefore also Γ, must lie in the same plane

as the signal states, thus giving us our final constraint. More generally, for the case of

three equiprobable pure qubit states it is always possible to choose a representation in

which the states sit at the same latitude of the Bloch sphere. The optimal measurement

operators πj then lie in the equator of the sphere, and Γ has the same latitude as the

signal states [58].

We can generalize this idea to both pure and mixed states, and to non-equal prior

probabilities. We first note that for a three outcome measurement, all three elements of

the POVM must lie on a great circle of the Bloch sphere in order to form a resolution of

the identity. Without loss of generality we choose our axes so that this is the z = 0 plane.

That is, we can always choose our axes so that πj = 1
2

(
cj1 + ~dj · ~σ

)
, with djz = 0, ∀j.

Referring now to condition (3.4), it follows that

Γ− pjρj ∝
1

2

(
cj1− ~dj · ~σ

)
,
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and thus 〈Γσz〉 − pj〈ρjσz〉 = 0. Finally we therefore require

bz = pj〈ρjσz〉 = pjαj r̂jz, ∀ j,

where as before ρj = 1
2 (1 + αj r̂j · ~σ). Thus if we define our z-axis to be such that the

z-component of pjρj is the same for each of the three signal states identified, then Γ also

has the same z-component, and the optimal measurement operators lie in the equatorial

plane. Note that a similar discussion may be found in [71].

Thus for a given set of qubit states {ρi} with arbitrary priors {pi}, if there exists an

optimal minimum error measurement which identifies a subset of k = 1, 2, 3, 4 of these

states, we have shown how to construct Γ, which in turn allows us to construct the

optimal measurement. We illustrate below in an example how this may be employed

in practice to find optimal measurements, and discuss later the problem of how we can

know in general which states are identified by an optimal measurement.

3.5 Examples

3.5.1 Pure state example

To illustrate our method, we consider the problem of discriminating between three pure

states which are mirror-symmetrically arranged on the equator of the Bloch sphere,

previously investigated by Andersson, et. al. [6]. The states are:

|ψ0〉 = |+〉 =
1√
2

(|0〉+ |1〉),

|ψ1〉 =
1√
2

(|0〉+ eiθ|1〉),

|ψ2〉 =
1√
2

(|0〉+ e−iθ|1〉),

and these occur with a priori probabilities p0 = 1− 2p, p1 = p2 = p, with p ∈ [0, 12 ].

The so-called trine ensemble occurs at θ = 2π
3 [34, 72].

We begin by noting that as the states are all pure it is not possible to satisfy conditions

(3.7) and the no-measurement solution is never optimal. We next check to see when a

two-outcome measurement is optimal. Note that, due to the symmetry (as discussed
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in §2.6), the only sensible two-outcome measurement is one distinguishing |ψ1〉 and

|ψ2〉: the optimal such measurement is a projective measurement in the eigenbasis of

σy; πi = |φi〉〈φi|, where |φ1〉 = 1√
2
(|0〉 + i|1〉) and |φ2〉 = 1√

2
(|0〉 − i|1〉). It is straight-

forward to calculate Γ 2-element, and we note that condition (3.2) is satisfied for j = 1, 2

by construction. In order to check this condition for j = 0, it is enough to verify that

det (Γ 2-element − p0ρ0) ≥ 0, as demonstrated by the proof of necessity of the Helstrom

conditions in §2.3. We find, as in [6], that this holds when

p ≥ 1

2 + cos( θ2)[cos( θ2) + sin( θ2)]
. (3.22)

The corresponding optimal probability of correctly identifying the state is given by

Tr(Γ2-element) = p(1 + sin θ).

When condition (3.22) does not hold, we know that a three outcome measurement is

optimal, and can use the method outlined above to find this. We first note that r̂z = 0

for each of our signal states. Thus, as discussed above, Γ must also have bz = 0, and lies

in the equatorial plane. Further, using equation (3.17), we obtain the following three

constraints on a, bx, and by:

a2 − |b|2 = 2(1− 2p)(a+ bx)

a2 − |b|2 = 2p(a+ bx cos θ + by sin θ)

a2 − |b|2 = 2p(a+ bx cos θ − by sin θ)

It is clear from the latter two that by = 0. The remaining equations are readily solved

for a and bx, giving:

a = bx
p sin2 θ

2 + 1− 2p− p cos2 θ2
3p− 1

bx =
(3p− 1)(1− 2p)

1− 2p− p cos2 θ2
(3.23)

The corresponding probability of correctly identifying the state PCorr is then given by:

PCorr = Tr(Γ3-element) = a

=
(1− 2p)(p sin2 θ

2 + 1− 2p− p cos2 θ2)

1− 2p− p cos2 θ2
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Figure 3.1: The two functions we obtained for PCorr plotted against p for the optimal
two-element (solid line) and three-element (dotted line) POVMs - we can see that for
p > 0.373, the three-element POVM appears to be superior to the two-element POVM.
However, this turns out to no longer be physically realisable, and fails to satisfy the
condition in equation (3.2). Note that the function we find for Tr(Γ3-element) is not
strictly positive - at no point have we assumed that Γ must be positive. This plot is
designed to illustrate the limitations of our method by showing that the functions we
obtain for PCorr do not always give sensible answers; if we are in a region of parameter
space where a two-element POVM is optimal, Tr(Γ3-element) may be greater than 1,
or may even be negative. This is shown on the right-hand side of the graph, where

p > 0.373.

which agrees with the solution provided in [6].

We finally note that we found the region in which a three outcome measurement was

necessary by first finding the region in which a two-outcome measurement was optimal.

If we use our method to find a candidate Γ in the region where in fact the optimal

measurement has only two outcomes, we find that even though it is possible to construct

Γ, it is not possible to construct a physically allowed measurement from the conditions

(3.4), and the method fails. Further, it can sometimes return probabilities that are

greater than 1, clearly indicating that something has gone wrong. This is illustrated in

Figure 3.1. As we will see in §4.2.2, this is a result of the optimal three-element POVM

including an element of the form π0 = [1−(
√
3p

4−9p)2]|ψ0〉〈ψ0|, which is a negative operator

for p > 4
9+
√
3
, breaking the condition of positivity we require for POVM elements.
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3.5.2 Mixed state example

Consider an ensemble consisting of the trine states, each with the same probability and

degree of “mixedness” α. That is,

ρ0 =
1

2

1 α

α 1


ρ1 =

1

2

 1 αei
4π
3

αei
2π
3 1


ρ2 =

1

2

 1 αei
2π
3

αei
4π
3 1

 ,
where we have used α + β = 1 and we have pj = 1

3 for all j. If we insert these states

into equation (3.21), we once again obtain three constraints on a, bx, and by (note that,

using the reasoning from the previous example, we already know that bz = 0 for this

ensemble):

a2 − |b|2 =
2

3
[a+ αbx −

1

6
(1− α2)]

a2 − |b|2 =
2

3
[a+

α

2
bx +

α
√

3

2
by −

1

6
(1− α2)]

a2 − |b|2 =
2

3
[a+

α

2
bx −

α
√

3

2
by −

1

6
(1− α2)].

Once again, it is clear that by = 0. Furthermore, it is simple to show that bx = 0 too

- note that this is consistent with equation (3.23) for p = 1
3 . This gives us a quadratic

equation in a, which has two roots:

a =
1± α

3

We know that the optimal measurement will result in a probability of correctness which

is at least as good as guessing. That is, PCorr ≥ 1
3 . We therefore end up with the result

that

PCorr = Tr(Γ) = a (3.24)

=
1 + α

3
. (3.25)
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We can compare this to known results. Firstly, we know that for pure states (i.e. α = 1),

we should obtain PCorr = 2
3 ; this agrees with our result. Furthermore, for α = 0 (i.e. the

maximally-mixed case), the states are indistinguishable, and therefore we will simply

end up guessing, with the probability of guessing correctly being 1
3 . This also agrees

with our result.

3.6 Discussion

We have presented a method to construct optimal minimum-error measurements from

the known necessary and sufficient conditions. If we know which of a set of states are

identified by an optimal measurement, the method presented here allows us to construct

four linear conditions on either Γ or Γ−1, from which we have enough information to

reconstruct Γ. The remaining problem we have not addressed, and which is common to

other methods in the literature [11, 71], is how to find which states our measurement

should identify. We finish with some comments on this problem.

In the worst case, we can find the optimal measurement by exhaustive search: we first

check if the no-measurement solution is optimal. If yes then we are done, and if not

then we know that k > 1. We then check whether any measurement identifying just 2 of

the states is optimal. This consists of constructing optimal measurements for each pair

of states, and checking the condition (3.2) for the remaining N − 2 states in each case.

There are
(
N
2

)
such measurements. If none of these are optimal, then we know k > 2,

and so on. This requires constructing
∑4

k=1

(
N
k

)
(i.e. O(N4)) candidate Γ operators,

and for each one checking O(N) conditions, thus we require O(N5) operations, in the

worst case. Our detailed results for the case of three symmetric states with arbitrary

priors, which we discuss in Chapter 4, indicate that for almost all prior probabilities the

optimal measurement has only two outcomes. Thus we expect that in many cases an

optimal measurement will be found faster than O(N5) operations.

For a given set of states, the method we present here allows us to characterise the en-

tire parameter space of prior probabilities, beginning with the no-measurement solution,

through those regions in which a two-outcome measurement is optimal, and construct-

ing three- and then four-outcome solutions for the remaining regions, as shown in the

example above. We note also that for specific cases numerical methods can also be used
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to determine which states are identified by an optimal measurement, and once this is

known our method may be used to find an exact analytical solution for the optimal

probability of correctly identifying the state and to find optimal measurements.

We have introduced a new analytical method, complementary to the geometric approach

in the literature, for constructing optimal measurements for minimum error state dis-

crimination problems [39]. Our method constructs linear constraints on the so-called

Lagrange operator Γ, and its inverse Γ−1, from which the optimal Γ may readily be

found for any qubit state discrimination problem. Although the constraints we present

appear elsewhere in the literature in a different context, it seems not to have been recog-

nised that these together give enough information to construct optimal measurements.

We have further shown that these are applicable to both pure and mixed states in the

qubit case.

In this chapter we have discussed the qubit case in detail. We expect that the linear

constraints given on Γ may also be applied in higher dimensions. The constraints on

Γ−1 may be applied to pure states in higher dimensions, although the mixed state case

appears less straight-forward, as it is no longer obvious how to decompose a general

mixed state into a combination of the identity and rank-one components, as in equation

(3.19).



Chapter 4

Optimal measurement strategies

for the trine states with arbitrary

prior probabilities

4.1 Introduction

In this chapter, we give a complete analysis of the problem of state discrimination for the

trine states with arbitrary prior probabilities, for both the minimum error and maximum

confidence figures of merit [73]. Each of these are amenable to analytic solutions; in the

minimum error case, which we begin with, this is made possible by recent developments

[11, 12, 39], including the work of the previous chapter. We continue by investigating

the maximum confidence measurement [7] for the trine states with arbitrary prior prob-

abilities and obtain an expression for the probability of correctly identifying each signal

state using this measurement scheme.

In this chapter we are concerned with the trine states, qubit states associated with three

equidistant points on any great circle of the Bloch sphere [17]. We will place the trine

states on the equator of the Bloch sphere, so that:

51
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Figure 4.1: The trine states on the equator of the Bloch sphere. The dotted lines
show the anti-trine measurement basis - each POVM element is aligned so that it is
orthogonal to one of the potential states. For instance, if we get a “click” at the POVM
element at |ψ⊥

0 〉, we know with certainty that state |ψ0〉 was not prepared. This is the
basis for a system of quantum cryptography described in [2]

|ψ0〉 =
1√
2

(|0〉+ |1〉),

|ψ1〉 =
1√
2

(|0〉+ ei
2π
3 |1〉),

|ψ2〉 =
1√
2

(|0〉+ ei
4π
3 |1〉),

where the states |0〉 and |1〉 correspond to the poles on the Bloch sphere. These trine

states can be visualised on the Bloch sphere as shown in figure 4.1. For equal prior

probabilities (p0 = p1 = p2 = 1
3), it is known that the optimal measurement of the trine

states for minimising the probability of error is to measure along the states themselves

[34], that is, making a measurement of the form πj = 2
3 |ψj〉〈ψj |. This is known as the

trine measurement.

In contrast to a two-state system, intriguingly, if we wish to maximise the mutual in-

formation gained by our measurement, we must use a different POVM: in this case, we

perform the so-called anti-trine measurement [36], as shown in Figure 4.1. This involves

three measurement outcomes, each of which is perpendicular to one of the trine states;

this is therefore an eliminatory measurement, as it tells us with certainty that the system

was not prepared in a particular state, with the other two possible states equally likely

to be the signal state.

Throughout this chapter, and without loss of generality, we assume p0 ≥ p1 ≥ p2.
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4.2 Minimum-error measurement

In the case of the trine states, the minimum-error measurement must have either two or

three elements: a one-element measurement, that is πk = 1 for some k, corresponding

to the “no-measurement” strategy, can never be optimal for pure state ensembles [50],

as condition (2.6) cannot be satisfied for j 6= k. Furthermore, as each measurement

outcome corresponds to identifying one of the potential states, the number of outcomes

cannot exceed the number of states: any extra elements will be redundant.

In light of this, we split the problem into two parts: we ask when a two-element POVM is

optimal, as this is a relatively easy problem to solve, and then we consider the remaining

parameter space. In the region where the two-outcome measurement does not give the

minimum error, we know that a three-element POVM of some form will be optimal. In

this region, we construct the optimal measurement by applying the strategy outlined

in Chapter 3. Surprisingly, the two-element POVM is optimal for almost the whole

parameter space. We show, explicitly, that all optimal measurements on the trine states

are unique - that is, for any choice of initial probabilities {pi}, there is one and only one

measurement which is optimal.

4.2.1 Conditions for a two-element POVM to be optimal

We know that when p2 = 0, a two-element POVM must be optimal. This problem has a

well-known solution, with the optimal probability of correctness given by the Helstrom

bound [4, 5]:

P 2-el =
1

2
(1 +

√
1− 4p0p1|〈ψ0|ψ1〉|2), (4.1)

where “2-el” is short for two-element. It is readily shown that this is achieved by a

measurement of the form π0,1 = |Θ0,1〉〈Θ0,1|, π2 = 0, where

|Θ0〉 =
1√
2

(|0〉+ eiθ|1〉),

|Θ1〉 =
1√
2

(|0〉 − eiθ|1〉),

with

tan θ =
−
√

3p1
2p0 + p1

. (4.2)
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Figure 4.2: The two signal states we are trying to discriminate between (|ψ0〉 and
|ψ1〉, solid lines) and the optimal measurement for doing so (dotted lines), where θ is
as defined in equation (4.2). Note that the signal states need not be symmetrical with
respect to the measurement states - if one state is a priori more likely, the optimal
measurement will be biased towards it. In this example, |ψ0〉, is more likely to be sent

than |ψ1〉.

Figure 4.2 shows the measurement states on the Bloch sphere. Writing the probability

of correctly guessing the state in terms of only p0 and p1 gives:

P 2-el =
1

2
(p0 + p1 +

√
p20 + p0p1 + p21) (4.3)

As described in [11, 12, 39], we know that if state ρ2 is added to this ensemble with

a small enough probability, the number of POVM elements necessary for minimum-

error measurement remains unchanged. Intuitively, if p2 is small enough, we do not gain

anything by identifying ρ2, and the minimum-error measurement favours the more likely

states. We can use the Helstrom conditions to define precisely what “small enough”

means in this context, and put conditions on p0, p1 and p2 which state when a two-

element POVM is sufficient and when a three-element POVM is required.

To find the values for p0 and p1 for which a two-element POVM is the optimal mea-

surement, we investigate the other Helstrom condition, shown in equation (2.6). This

is trivial for j = 0, 1, as we already know this must be the optimal measurement when

these are the only signal states. Therefore, it suffices to check the positivity of the matrix

M =
∑
i

piρiπi − p2ρ2. (4.4)
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It follows from the conditions for j = 0, 1 that
∑

i piρiπi is a positive operator. Further,

as ρ2 is a pure state, M has at most one negative eigenvalue, and to check positivity of M

we can calculate the sign of the determinant: when det(M) is positive, the two-element

POVM described above is optimal. This is straightforward, and the determinant of the

matrix is found to be

det(M) =− 3p40 − 3p41 − 10p30p1 − 10p0p
3
1 + 6p30 + 6p31

− 13p20p
2
1 + 12p20p1 + 12p0p

2
1 − 3p20 − 3p21 − 2p0p1.

(4.5)

To find the boundary of the region where the two-element measurement is optimal, it is

useful to parameterise the probabilities as follows: p0 = p + δ, p1 = p − δ, p2 = 1 − 2p,

where the ordering p0 ≥ p1 ≥ p2 implies δ ≥ 0, δ ≤ 3p− 1, δ ≤ p.

After a little algebra, we find that the determinant is simply a quadratic in δ2, with

roots ±δc±, where

δ2c± = 2− 6p+ 5p2 ± 2
√

1− 6p+ 16p2 − 24p3 + 16p4 (4.6)

There are four roots for δ, only two of which give physically-realisable probability distri-

butions; these two simply swap p0 for p1 and vice-versa (the other two roots correspond

to unphysical distributions with, e.g., p0 > 1). Imposing our condition that p0 ≥ p1 ≥ p2,

we find that det(M) ≥ 0 for δ ≤ δc−. That is, a two-element POVM is optimal when

δ < (2 − 6p + 5p2 − 2
√

1− 6p+ 16p2 − 24p3 + 16p4)
1
2 . Otherwise some three-element

POVM (discussed in the next section) is optimal. The parameter regions for which the

optimal measurement has two or three outcomes are shown in Figure 4.3.

It is apparent that a three-element POVM is only optimal when close to a symmetric

ensemble, i.e. p1 very close to p2. For p1 = p0 ∈ [13 ,
4

9+
√
3
) and for all p1 = p2, the

symmetric three-element measurement outlined in [6] is optimal.

An interesting consequence of equation (4.2) is that there is not a one-to-one correspon-

dence between ensembles and optimal measurements. As we can increase p2 from zero

without changing the optimal measurement, there are many different ensembles with the

same optimal measurement strategy. In this region, where the two-element POVM is

optimal, the optimal measurement depends only on the relative frequency of occurrence

of p0 and p1 (i.e. the ratio between p0 and p1). For fixed measurement angle θ, the
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Figure 4.3: Graph showing the sign of the determinant of matrix M in equation (4.4)
as a function of p and δ. The dark region corresponds to a negative determinant, and
hence shows the region where a 3-element POVM is optimal. The light area displays the
rest of the allowable parameter space, where the 2-element POVM we have discussed
is optimal. The three dashed vertical lines A, B and C correspond to the three plots
A, B and C shown in Figure 4.4. Note that the diagonal line δ = 3p − 1 corresponds
to p1 = p2. It is also important to note that as p increases, the threefold symmetry of
the weightings of the states breaks down, resulting in the shift from a three-elements

POVM being optimal to a two-element POVM being optimal.

probability of correctness increases linearly with p0 + p1. We also note that this effect

does not happen in the two-state discrimination case, where, given two states and a

measurement which is known to be optimal, there is only one p0 – and hence only one

complementary p1 – which will satisfy the Helstrom conditions.

4.2.2 Optimal three-element POVM

We now turn our attention to the region in which we know a three-element POVM must

be optimal. This region is hard to analyse due to its lack of symmetry, but the problem

can be solved analytically by using the Helstrom conditions constructively, following the
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approach developed in Chapter 3. Recall that:

〈ψj |Γ−1|ψj〉 =
1

pj
. (4.7)

By writing Γ−1 in the form 1
2(a1+~b·σ̂), we find three linear equations in three unknowns.

As described in Chapter 3 and [71], we may assume from symmetry that the optimal

POVM will be in the same plane as the states, so bz = 0, and hence find a, bx, by. Thus

we can find Γ and hence PCorr, the optimal probability of correctly identifying the state

which was sent, as PCorr =
∑

k pk Tr(ρkπk) = Tr(Γ) = 4a
a2−|b|2 . In fact, because we know

that Γ − pjρj = cj |φ⊥j 〉〈φ⊥j |, we can also explicitly find the POVM elements and hence

extract the optimal measurement directly from the Helstrom conditions. Furthermore,

as Γ is known to be unique for a given set of states [9], this POVM will be unique for

this ensemble of {pj} and {ρj}, as the vector solution |φ⊥j 〉 is unique.

It is sufficient for our purposes to simply calculate P3-el. From the above, we obtain

a =
2

3

(
1

p0
+

1

p1
+

1

p2

)
bx =

2

3

(
2

p0
− 1

p1
− 1

p2

)
by =

2√
3

(
1

p1
− 1

p2

)
,

which yields:

P3-el =
2(p0p1 + p0p2 + p1p2)

2− (p0p1p2
+ p0p2

p1
+ p1p2

p0
)
. (4.8)

If we compare this to the expression for P2-el given by the optimal two-element POVM

then we find that they meet at the boundary when the two-element POVM stops being

optimal, as we would expect.

Our expression for P3-el has the interesting property that, in parts of the region where we

know the two-element POVM to be optimal, the expression for P3-el yields a greater value

than P2-el. We also obtain some values for P3-el which are greater than 1, which is clearly

incorrect. These anomalies are due to the fact that our method of obtaining Γ does not

strictly impose the conditions for POVM elements; specifically, not every POVM element

πi is a positive semi-definite operator. This may be seen by comparing our measurement

to the analogous measurement detailed in [6]. This is not a problem, of course, as these
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regions in the parameter space are readily determined. At δ = 0, we have p0 = p1 and

the optimal measurement includes a POVM element of the form (1− a2)|ψ2〉〈ψ2|, with

a =
√
3p

4−9p . Clearly the factor of (1 − a2) becomes negative for p > 4
9+
√
3
, and so our

attempted measurement no longer fulfils the POVM criteria, giving spurious results. It

is at this point that the two-element POVM becomes optimal. Thus we can conclude

that our optimal three-element POVM does indeed become invalid in the region where

we know a two-element POVM must be optimal.

To summarise, this gives us the following functions for the probability of correctly guess-

ing the signal state using the minimum-error measurement scheme. In the case where

δ < (2− 6p+ 5p2 −2
√

1− 6p+ 16p2 − 24p3 + 16p4)
1
2 , we have:

P2-el =
1

2
(p0 + p1 +

√
p20 + p0p1 + p21) (4.9)

= p+
1

2

√
3p2 + δ2.

Otherwise:

P3-el =
2(p0p1 + p0p2 + p1p2)

2− (p0p1p2
+ p0p2

p1
+ p1p2

p0
)

(4.10)

=
2(1− 2p)(p2 − δ2)(3p2 + δ2 − 2p)

9p4 − 4p3 + 6p2δ2 − 12pδ2 + 4δ2 + δ4
.

We can therefore plot the optimal probability of correctness for discriminating between

the trine states for arbitrary prior probabilities. These results are shown in Figure 4.4

and Figure 4.5, for various values of p and δ.

This solves the problem of minimum-error state discrimination between the trine states

for all possible probability distributions, and highlights some differences between two-

state and three-state discrimination. Firstly, for the two-state case we always require

two POVM elements and, indeed, these are both simple projectors. In this case each

signal state has a measurement outcome associated with it. This is not the case for the

three-state problem, for which it is sometimes beneficial to simply never measure one of

the signal states. Indeed, for most of the parameter space, a two-outcome measurement

is optimal. Our solution also shows that, for three states, there is not a one-to-one

correspondence between ensembles and optimal measurements; a certain measurement

strategy may be optimal for multiple probability distributions of the trine states, whereas
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in the two-state case each optimal measurement strategy is unique to its corresponding

probability distribution.

For δ = 0 our results agree with previous work [6, 39]. As we have produced an analytic

solution, it is also possible to use this to solve problems where state discrimination arises

as a smaller part of a problem, as occurs when multiple copies are available. We shall

see this in Chapter 5

4.3 Maximum confidence measurement

Maximum confidence measurements, as described in §2.5, may be viewed as a general-

isation of unambiguous discrimination [7, 32]: whereas the latter is only possible when

the states to be measured are linearly independent [16], maximum confidence is a viable

strategy for linearly dependent states. While the maximum confidence measurement

does not have the advantage of giving an answer which is guaranteed to be correct (as

unambiguous discrimination does), it offers a “middle ground” where, if a given state

is identified, it is with the lowest possible probability of error for that state; otherwise

the output is an inconclusive outcome, similarly to unambiguous discrimination. It has

the advantage of an analytic solution for the elements of the optimal POVM in general,

and is also related in certain cases to the minimum-error strategy. Understanding the

maximum confidence measurement for the trines with arbitrary priors provides insight

into the form of our minimum-error results.

The maximum confidence measurement scheme has already been described for three

equiprobable symmetric states on the Bloch sphere [7, 65], and we extend this to the

case with arbitrary prior probabilities.

In this measurement scheme, we have πi ∝ ρ−1ρiρ
−1, where ρ =

∑
j pj |ψj〉〈ψj |. Note

that the figure of merit for this strategy is the probability of outcome πi correctly

identifying the state ρi, given by Bayes:

P(ρi|πi) =
piP(πi|ρi)

P(πi)
=

P(πi, ρi)

P(πi, ρi) +
∑

j 6=i P(πi, ρj)
. (4.11)

This is independent of the constant of proportionality multiplying πi, which may there-

fore be chosen arbitrarily. It is always possible to choose the constants of proportionality
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such that
∑

j πj ≤ 1. If necessary, a complete measurement may then be formed by

adding an inconclusive outcome π? = 1−
∑

j πj . The probability that each measurement

outcome accurately reflects the state of the system is, however, independent of how we
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Figure 4.4: Comparisons of PCorr given by the optimal two-element POVM (bold
line) and the results given by our method for finding the optimal three-element POVM
(dotted line) for fixed values of p. In graphs A, B and C, respectively, p has values
0.374, 0.394, and 0.414, corresponding to the lines A, B and C shown in Figure 4.3.
The dot-dashed grey vertical lines show when the determinant in equation (4.5) becomes
negative and thus a three-element POVM becomes physically realisable. That is, the
three-element POVM is only viable to the right of the dot-dashed grey line. Note that,
when physically viable, the three-element POVM does not significantly outperform the

two-element POVM.
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Figure 4.5: Graph showing the probability of correctly identifying the signal state
using the optimal measurement strategy for p ∈ [ 13 ,

1
2 ]. The lines, in increasing amounts

of dashing - and lowest to highest - correspond to δ = 0, δ = 0.1, δ = 0.2, δ = 0.3 and
δ = 0.4.

choose to complete the measurement.

It is convenient to note that, for qubits, ρ−1 ∝
∑

j pj |ψ⊥j 〉〈ψ⊥j |. This may be seen by

considering ρ as a point within the Bloch sphere; ρ−1 must therefore correspond to the

antipodal point in the Bloch sphere - this antipodal point is given by
∑

j pj |ψ⊥j 〉〈ψ⊥j |. It

is perhaps useful to think of the decompositions of ρ = 1
2(1+~b·σ̂) and ρ−1 ∝ (1−~b·σ̂). In

fact, we can go further by noting that ρ−1 = [1−Tr(ρ2)]−1(1−~b · σ̂): this means ρ must

be a mixed state, otherwise ρ−1 has no physical meaning. Using ρ−1 ∝
∑

j pj |ψ⊥j 〉〈ψ⊥j |,

therefore, we may write

πi ∝
∑
j,k

pjpk|ψ⊥j 〉〈ψ⊥j |ψi〉〈ψi|ψ⊥k 〉〈ψ⊥k |. (4.12)

The numerator of equation (4.11) in the general case is pi〈ψi|πi|ψi〉 ∝ pi(
∑

m pm|〈ψ⊥m|ψi〉|2)2.

Due to the symmetry of the trine ensemble, it is readily verified that |〈ψ⊥j |ψi〉|2 =

3
4(1 − δij). The numerator, in this instance, is therefore 9

16pi(1 − pi)
2. The other piece

of this expression takes the following form, where the last two lines are dependent on
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the number of states we are discriminating between and their overlaps:

∑
j 6=i

P(πi, ρj) =
∑
j 6=i

pj〈ψj |πi|ψj〉

∝
∑
j 6=i

pj

∣∣∣∣∣∑
m

pm〈ψj |ψ⊥m〉〈ψ⊥m|ψi〉

∣∣∣∣∣
2

=
9

16

∑
j 6=i

pj
∑
m6=i,j

p2m

=
9

16
(1− pi)

∏
j 6=i

pj .

The final line may not be obvious at first, but can be verified by setting, e.g., i = 0 and

noting that m can only take one value - if j = 1, m = 2 and vice versa. We therefore

obtain

P(i)Corr =

(
1 +

∏
j 6=i pj

pi
∑

j 6=i pj

)−1
, (4.13)

which has some attributes we might expect: when any individual pj is set equal to zero,

the probability of correctly identifying the state ρi (i 6= j) becomes unity, as the set of

possible states is now linearly independent, allowing unambiguous discrimination to be

performed. When pi is zero, there is zero chance of that state being correctly identified,

as one might anticipate.

We plot the confidence of correctly identifying each state using this measurement scheme,

and compare this to the confidence using the minimum-error strategy. These can be seen

in Figures 4.6 and 4.7 (note that Figure 4.7 only uses the two-outcome measurement,

for simplicity). In both cases, the minimum-error measurement is close to optimal for

ρ0 and ρ1. Also note how low the confidence for ρ2 gets as p increases - this indicates

why this state is not identified in the minimum-error measurement.

4.4 Conclusion

We have investigated the optimal measurement strategies for the minimum-error and

maximum confidence figures of merit for three equidistant states on the equator of the

Bloch sphere with arbitrary prior probabilities, providing values for the optimal proba-

bility of correctly identifying the state in each case. The most surprising result is that,



Chapter 4 63

0.35 0.40 0.45 0.50
p

0.2

0.4

0.6

0.8

1.0
Confidence

0

Figure 4.6: Graph showing the confidence in correctly identifying the signal state
given the outcome of the minimum-error strategy (black dotted line) and the maximum
confidence measurement for p ∈ [ 13 ,

1
2 ] and δ = 0. The lighter lines (from darkest to

lightest and top to bottom) represent the maximum confidence strategy on states ρ0, ρ1
and ρ2 - note that as δ = 0, the states ρ0 and ρ1 are equally likely, and so their values for
confidence completely overlap. Also, the minimum-error measurement and maximum
confidence measurement are identical for ρ2, so give the same confidence value, resulting
in only 3 lines being visible. The dotted vertical line corresponds to the crossover point
at which the minimum-error measurement stops being a three-outcome measurement

and starts being a two-outcome measurement.

for much of the parameter space of probabilities, the optimal minimum-error measure-

ment is a simple von Neumann measurement, and this allows optimal discrimination

between these states with a minimum of resources. However, this is in keeping with

previous results: for a completely unknown qubit state, the best measurement to esti-

mate the state is simply a von Neumann measurement in any basis [74]; furthermore,

the optimal intercept-resend strategy for an eavesdropper in the BB84 quantum key

distribution protocol - which has four signal states - is a von Neumann measurement in

the so-called Breidbart basis [75]. This was also noted by Andersson et. al., in a case

with restricted symmetry [6]. We have shown that the region of parameter space for

which a POVM measurement is needed is rather small. This indicates that cases requir-

ing POVM measurements are perhaps rather special, which might have implications for

quantum key distribution, scalability in quantum computing, and quantum sensing.

This chapter solves the problem of optimal state discrimination between the trine states

for arbitrary prior probabilities analytically; we have also shown that, for given proba-

bilities p0, p1, p2, there is one and only one optimal measurement - when a two-outcome
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Figure 4.7: Graph showing the confidence in correctly identifying the signal state
given the outcome of the two-element minimum-error strategy (black dotted lines, ME0

and ME1) and the maximum confidence measurement for p ∈ [ 13 ,
1
2 ] and δ = 0.1. The

lighter lines (from darkest to lightest and top to bottom) represent the maximum confi-
dence measurement (MCM) strategy on states ρ0, ρ1 and ρ2 (labelled MCM0, MCM1,
and MCM2). The higher dotted line corresponds to the minimum-error strategy on ρ0
(i.e., ME0), while the lower one corresponds to the same minimum-error measurement
on ρ1 (ME1). The dotted vertical line corresponds to the crossover point at which
the minimum-error measurement stops being a three-outcome measurement and starts
being a two-outcome measurement. Note that, as predicted, the most likely states
are the easiest to detect in this measurement scheme. We ignore the three-outcome
minimum-error measurement, as it is only optimal for a small region of the space (c.f.

Figure 4.3.)

measurement is optimal we know it is unique, as the measurement angle is fixed by

equation (4.2), and, as already discussed, equation (3.14) shows that the three-element

POVM must also be a unique solution. This also shows that there is no region where

two- and three-outcome measurements are simultaneously optimal. This work provides

a complement to that of Hunter [58, 76], which found the minimum-error strategy for ar-

bitrary equiprobable signal states. Subsequent work presented analytical and geometric

methods for arbitrary priors [10–12, 39]; what is surprising about the results presented

here is the simplicity of the expressions for the optimal probability of success given in

equations (4.9) and (4.10).

This chapter also gives the maximum confidence that it is possible for a measurement

to achieve on each of the trine states with arbitrary prior probabilities. This helps to

identify situations in which it is sub-optimal for the minimum-error strategy to identify

every signal state, as the maximum confidence possible for the least likely state tends

to zero.
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We hope that this work leads to new and interesting results, and we look forward to see-

ing other ways in which our method for tackling minimum-error discrimination problems

is used.



Chapter 5

Optimal measurement strategies

for multiple copies of the trine

states

5.1 Introduction

In this chapter, we investigate the difference between local and global measurement

schemes when more than one copy of the state is provided [77]. Understanding when

joint control is really necessary for optimal – or close-to-optimal – performance is of

considerable practical interest. We investigate the dependence of the optimal minimum-

error strategy for two copies of the trine states on the measurement efficiency for non-

ideal measurements. In doing so, we find that the gap in efficacy between the optimal

global and local measurement schemes is small – given that global measurements are

hard to implement, this suggests that it is hard to motivate an experiment using such

a measurement. For particularly low efficiencies, the optimal local measurement in fact

outperforms the optimal joint measurement.

We conclude by examining local and global measurements in the context of the maximum

confidence measurement strategy (which in this case is also unambiguous discrimination)

of multiple copies of the trine states, in a natural extension of the work of Chefles [30].

Here we also account for measurements with non-unit efficiency.

66
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5.2 Minimum-error discrimination of the double-trine en-

semble

Until this point, all of our work has assumed that we have an ideal photon detector (or

other measurement device). In reality, detectors and other measurements are not 100%

efficient. This particularly affects the problem of multi-partite state discrimination,

where the optimal measurement may depend on the outcomes of previous rounds of

measurement. An analytic solution for minimum-error state discrimination, such as that

described in Chapter 3, allows us to investigate how the optimal measurement changes

based on which outcome occurs. Note that we are discussing measurement efficiency

and not detector efficiency.

For the sake of simplicity, we consider the case where Alice sends Bob two copies of the

signal state ρj (one of the trine states) with a priori probability 1
3 . Bob then makes two

rounds of measurements to determine which state was sent, with the second measurement

allowed to depend on the result of the first. If both measurements fail, Bob has to guess

with accuracy 1
3 . We show that the optimal measurement strategy varies depending on

the measurement efficiency η. This process is shown schematically in Figure 5.1. The

probability of Bob correctly guessing the state based on this measurement scheme is

therefore

PCorr = η2PBCorr + η(1− η)(PACorr + PCCorr) +
1

3
(1− η)2. (5.1)

It follows that there is a tradeoff between the η2 and η(1−η) terms - for high η, we wish

to maximise PBCorr, whereas for low η the (PCCorr + PACorr) term dominates.

Measurement A

Measurement B Measurement C

Figure 5.1: Decision tree showing the general form of Bob’s measurements. Moving
to the left indicates that the measurement was successful, while moving to the right
indicates failure. These events occur with probability η and 1 − η, respectively. Note

that measurements B and C are, in general, different.
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5.2.1 Efficient measurements, i.e., η → 1

We begin by reviewing known cases, and then discuss the general case. For perfect

efficiency, the optimal sequential measurement is known [33, 39]. On the first copy of

the state, the best choice of initial measurement is the antitrine measurement, shown in

Figure 4.1. Measurement operators for the antitrine measurement A have form π
(A)
j =

2
3 |φj〉〈φj |, where

|φj〉 =
1√
2

(|0〉 − ei
2π
3
j |1〉) (5.2)

and j = 0, 1, 2. The antitrine measurement, if successful, rules out one possible state,

leaving the other two states equally probable. We will denote this with j̄. For example,

if outcome 0̄ is given, our updated probabilities become p0 = 0, p1 = 1
2 , p2 = 1

2 .

On the second copy, as the two remaining states are equally probable, the probability

of the Helstrom measurement correctly identifying the state is

PH
Corr =

1

2
(1 +

√
1− |〈ψ0|ψ1〉|2)

=
1

2

(
1 +

√
3

2

)
. (5.3)

This is therefore the overall probability of success for measurements of perfect efficiency.

For η close to 1, therefore, it is a reasonable strategy to attempt this optimal measure-

ment. In the case in which the first measurement fails, with probability 1−η, we simply

perform the trine measurement on the second copy, which identifies the state correctly

with probability 2
3 , i.e.

PT
Corr =

2

3
. (5.4)

This also succeeds with probability η (close to 1). If, on the other hand, the first

measurement succeeds but the Helstrom measurement fails, then we are simply guessing

between two equally probable states, i.e.

PA
Corr =

1

2
. (5.5)

This measurement scheme is portrayed in the decision tree depicted in Figure 5.2. Com-

bining this information with equation (5.1) gives us a probability of correctly guessing
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the state of

Pη→1
Corr =

1

12

{
4 + η[6 + η(−4 + 3

√
3)]
}
. (5.6)

Anti-trine

Helstrom Trine

Figure 5.2: Decision tree showing the optimal measurement strategy when η → 1.
Moving to the left indicates that the measurement was successful, while moving to the

right indicates failure.

5.2.2 Inefficient measurements, i.e., η → 0

In the case in which the measurement efficiency is low, measurements fail most of the

time; it is therefore clearly a better strategy to optimise the single-copy measurement.

Thus, we perform the trine measurement, which is correct with probability 2
3 , on the

first copy. That is,

PT
Corr =

2

3
. (5.7)

In the (rare) case where the initial measurement is a success, we again perform the

minimum-error measurement, but with our priors updated based on the outcome of the

previous measurement. The priors are updated according to the Bayesian update rule

pi|j =
2
3 |〈ψi|ψj〉|

2

2
3

∑
k |〈ψj |ψk〉|2

, (5.8)

which yields an updated prior of 2
3 if i = j, and 1

6 otherwise. This new weighting

describes a mirror symmetric set of states [6], discussed earlier. Using [6], or our results

from Chapter 4, we find:

PSymm
Corr =

∑
k

pk〈ψk|π
(Symm)
k |ψk〉 (5.9)

=
4

5
. (5.10)
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In the (much more likely) event of the first measurement failing, the optimal second

measurement is simply to repeat the trine measurement (i.e. the minimum error mea-

surement for the equally weighted trine states). As before, this gives

PT
Corr =

2

3
. (5.11)

Combining these probabilities in the same manner as in the high efficiency case, the

total success probability is

Pη→0
Corr = η2P

(Symm)
Corr + 2η(1− η)P

(T)
Corr +

1

3
(1− η)2

=
4

5
η2 +

4

3
(1− η)η +

1

3
(1− η)2. (5.12)

5.2.3 General case

It is clear from the above discussion that the best measurement strategy to employ

depends on the efficiency η. We now consider the general case, and show how our results

from the previous sections may be used to understand how the optimal measurement

changes with η. To this end, we define a general POVM as

πk(φ) =
2

3
|Φk〉〈Φk|, (5.13)

where

|Φk〉 =
1√
2

(
|0〉+ ei(

2π
3
k+φ)|1〉

)
. (5.14)

This is a general form of the trine measurement: for φ = 0 we have the trine measure-

ment, and for φ = π
3 we have the antitrine measurement. To avoid degeneracies, we

limit φ ∈ [0, 2π3 ]. We know that such a POVM must be optimal for the measurement on

the first copy, as it shares the same symmetry as the states, as discussed in §2.6.
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If the first measurement using this general POVM is successful, which occurs with prob-

ability η, our updated priors are

p0 =
1

3

(
1 + cosφ

)
p1 =

1

3

(
1 + cos(φ− 2π

3
)
)

(5.15)

p2 =
1

3

(
1 + cos(φ+

2π

3
)
)
.

Assuming, without loss of generality, p0 ≥ p1 ≥ p2 means we only need consider φ ∈

[0, π3 ]. An example of the states with updated priors is shown in Figure 5.3. If the first

measurement is unsuccessful, we continue with the trine measurement in the same way

we did with for the low efficiency case – in both cases, our prior probabilities are p = 1
3 ,

and this is the minimum-error measurement. When the first measurement is successful,

however, we must determine the optimal new measurement given the dependence of the

priors on arbitrary angle φ.

Figure 5.3: Depiction of the trine states with updated priors, as described in equation
(5.15), where the length of the line is indicative of the probability of that state being

sent. In this example, φ = 0.2, giving p0 = 0.66, p1 = 0.23, and p2 = 0.11.

Using the results from Chapter 4, we can determine the values of φ for which a 2-

element POVM is optimal. We ultimately find that the conditions for choosing the

optimal POVM are:

φ < 0.0121351 =⇒ 3− element POVM optimal

φ > 0.0121351 =⇒ 2− element POVM optimal.
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The probability of correctly identifying the signal state using the 2- and 3-element

POVMs is given by equations (4.9) and (4.10), given here in terms of φ:

P2-el(φ) =
1

12

(
4 + cosφ+

√
3 sinφ+

√
15 + 6 cosφ+ 6

√
3 sinφ

)
=

1

12

[
4 + 2 sin(φ+

π

6
) +

√
15 + 12 sin(φ+

π

6
)

]
P3-el(φ) =

1

8− 27
4 sec2 3φ

2

.

These probabilities correspond to the success probability for two sequential measure-

ments on the trine states, where the first measurement (i.e., Measurement A in Figure

5.1) is a rotated trine measurement given by πφk and the second measurement (Measure-

ment B in Figure 5.1) is the minimum-error measurement given the subsequent updated

priors. These expressions are plotted in Figure 5.4. All that remains is simply to com-

bine these probabilities with the probability that the second φ-dependent measurement

fails, in which case we guess the most likely state based on the updated priors from the

first round of measurement.

0.0 0.2 0.4 0.6 0.8 1.0
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PCorr

Figure 5.4: The expressions P2-el(φ) (solid line) and P3-el(φ) (dashed line) plotted
against the angle φ from equation (5.14). P3-el(φ) is only viable, i.e. corresponds to
a physically-realisable measurement scheme, for φ < 0.0121351. See the discussion in
§4.2.2 for more details. It is important to note that the dotted line on the right is
a continuation of the dotted line on the right: the unphysical nature of this curve –
tending to infinity – is a result of “forcing” a three-element solution where a two-element

measurement is optimal.
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The full expression for the probability of correctness of this strategy is therefore:

PCorr = η2Pn-el(φ) +
1

3
η(1− η)(3 + cosφ) +

1

3
(1− η)2 (5.16)

where n may be 2 or 3, depending on the value of φ.

From Figure 5.4, we note that even in the very small region in which the three-outcome

measurement is optimal, the performance of the best two-outcome measurement is al-

most indistinguishable from the optimal strategy. For this reason we are justified in

the remaining in only considering the two-outcome measurement on the second copy.

Therefore we arrive at:

PCorr =
η2

12

[
4 + 2 sin(φ+

π

6
) +

√
15 + 12 sin(φ+

π

6
)

]
+
η

3
(1− η)(3 + cosφ) +

1

3
(1− η)2. (5.17)

Using this expression, we can differentiate to find the optimal angle φ to use for any

given efficiency η. This is not analytically solvable for φ as a function of η. However, it

is readily solved for η as a function of the corresponding optimal φ, and this turns out

to be sufficient for our needs. We find:

η

2(1− η)
=

sinφ

cos(φ+ π
6 )

[
1 +

3√
15 + 12 sin(φ+ π

6 )

]−1
. (5.18)

This gives us a plot of optimal angle φ for a given efficiency η, shown in Figure 5.5.

For any given η we can thus find the corresponding φ which defines the optimal strategy.

Using this relationship, we can further plot (as a parametric plot) the overall optimal

probability of success as a function of η, shown in Figure 5.6. Also shown in Figure

5.6 is the performance of various strategies for fixed φ as a function of η. We see

that the performance is not very sensitive to φ, which is encouraging for experimental

applications, and that the optimal measurement is well-approximated by choosing φ to

be 0, π6 and π
3 at low, medium and high measurement efficiencies, respectively.
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Figure 5.5: Optimal angle φ for a given efficiency η. Note that there is a one-to-
one correspondence between the two; every value for efficiency η has a corresponding

optimal φ, which is unique.
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Figure 5.6: The probability of correctly guessing the signal state using the optimal
sequential measurement (solid black line) plotted against that for various fixed-φ mea-
surement schemes. These measurements have had φ fixed at 0 (orange line), π6 (purple
line), and π

3 (blue line). These are the optimal measurements for low, medium, and high
efficiencies, respectively. Note that by using only these three measurement schemes, one
can effectively coarse-grain the optimal measurement for any efficiency η. In fact, fixing
φ = π

6 is a very good approximation over the whole parameter space. Figure 5.7 below
shows the same information in more detail.
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Figure 5.7: Detailed close-up of Figure 5.6. The probability of correctly guessing
the signal state using the optimal sequential measurement (solid black line) has been
plotted against that for various fixed-φ measurement schemes. These measurements
have had φ fixed at 0 (orange line), π

6 (purple line), and π
3 (blue line). These are the

optimal measurements for low, medium, and high efficiencies, respectively – this can
be seen by how close in efficacy they are to the optimal sequential measurement.
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5.2.4 Joint Measurement

With this information, it is also possible to compare the optimal local measurement strat-

egy to the optimal global strategy. We consider the simplest possible way of introducing

inefficiencies to the joint measurement: the measurement succeeds with probability η

and fails with probability 1 − η. Note that the optimal global strategy will not change

with η, as there is only one round of measurement and therefore we cannot update

our prior probabilities. As was shown by Chitambar and Hsieh [33], the optimal joint

measurement on the double trine ensemble is πJointk = |Ωk〉〈Ωk|, where

|Ωk〉 =
1√
3

[|00〉+
1√
2
ei

2π
3
k(|01〉+ |10〉) + ei

4π
3
k|11〉]. (5.19)

Similar to the single-state measurements, we then consider the cases where this mea-

surement succeeds and fails in order to determine the total success probability. In the

case where the joint measurement is successful, the probability of correctly guessing the

state is

Pπ
Joint

Corr =
1

3

∑
k

〈ψk|πJointk |ψk〉

=
1

3

(
1 +

1√
2

)2

. (5.20)

If this joint measurement fails, we then guess the outcome of the measurement, which

will be correct with probability

PGuess
Corr =

1

3
. (5.21)

Thus the total probability of correctly identifying the state using the joint measurement

is

PJoint
Corr = ηPπ

Joint

Corr + (1− η)PGuess
Corr

=
1

6
[2 + (1 + 2

√
2)η)]. (5.22)

The optimal sequential measurement is compared to the joint measurement over all ef-

ficiencies η in Figure 5.8 and Figure 5.9. Note that this is not strictly a like-for-like

comparison, as joint measurements are more technically challenging and thus generally
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have a low efficiency and lower fidelities. However, given the technical challenges as-

sociated with joint measurements and the relatively small gap between the efficacies of

global and local measurements, this suggests that a local measurement is, in practice,

sufficient for optimal measurement in this case. For very low efficiencies we even find

that the local scheme outperforms the global scheme. This of course may be expected: it

is well known that quantum information protocols requiring entanglement are sensitive

to loss [78].
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Figure 5.8: The probability of correctly guessing the signal state using the optimal
joint measurement (bold) plotted against that for the optimal sequential measurement
(dotted) for all values of η. Note that the sequential measurement is, for low efficiencies,

better than the joint measurement. This may be more clearly seen in Figure 5.9.

5.3 Maximum confidence measurement of multiple trine

copies

It is also possible to compare the effectiveness of local and global measurements for

Maximum Confidence Measurement of the double trine ensemble – and indeed extend

this to general n copies. As the states are linearly independent, a global measurement

will simply take the form of unambiguous state discrimination [16, 30] and therefore will

give the correct answer with 100% confidence - although, for the double-trine ensemble,

such an outcome will only be given with probability 0.75 [30]. Taking into account

the efficiency of the detection apparatus, η, we therefore have an expression for the
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Figure 5.9: The difference between the probability of correctly guessing the signal
state using the optimal joint measurement and the optimal sequential measurement.
The small negative region corresponds to the values of η for which it is better to make

the sequential measurement.

maximum probability of unambiguous discrimination globally, PGlobal
Max :

PGlobal
Max = 0.75η. (5.23)

The local measurement scheme is also conceptually simple - if both sets of measurements

are in the anti-trine basis, we simply need to calculate the probability that we obtain

two different measurement results. For instance, if the first measurement tells us that

the state ρ0 was not sent (which we denote with 0̄), and the second tells us that ρ1 was

not sent (i.e., outcome 1̄), we know with certainty that ρ2 was the signal state. Thus

the local measurement scheme may also reach 100% confidence.

If both rounds of measurement are successful – which occurs with probability η2 – there

is a probability of 1
2 that they will give different measurement outcomes. Any other set

of outcomes will give an inconclusive result. We therefore have:

PLocal
Max =

1

2
η2. (5.24)

We may extend this further to n copies of the trine states. As shown by Chefles [30],
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the global probability of unambiguous discrimination with measurement efficiency η is

given by

PGlobal
Max (n) =


η(1− 2−n) if n is even

η(1− 2−(n−1)) if n is odd,

(5.25)

which has the curious property that, e.g., 3 copies are no more likely to be discriminated

than 2 copies.

Extending the expression for local measurements to n copies requires a little more work.

Suppose our first measurement is unsuccessful, with probability 1−η. Our discrimination

problem from this point on is now identical to the discrimination of n− 1 copies of the

signal state. We therefore expect the expression for PLocal
Max (n) to contain a term of the

form (1− η)PLocal
Max (n− 1).

Now suppose that state ρ2 was sent, and that the first measurement is successful - i.e.,

we obtained outcome 0̄ or 1̄. This will occur with probability η. We now wish to find

the probability that, after n− 1 subsequent measurement rounds, we will obtain 1̄ or 0̄,

respectively. In the second measurement round, only a successful measurement with a

different outcome will suffice - this will occur with probability η
2 . We may also obtain the

same outcome, with probability η
2 , or the measurement may fail with probability 1− η.

From here the problem takes on a recursive quality, with each subsequent measurement

round having an η
2 chance of unambiguously identifying the signal state, and a 1 − η

2

chance of providing no new information (either by giving us the same outcome as before

or by failing entirely). This may be seen in Figure 5.10.

Suppose our first measurement is successful, and we obtain our desired outcome after

m ≤ n rounds of measurement. This means that there were exactly m− 2 instances of

the measurement giving no new information (with probability 1 − η
2 ). The probability

of this happening is η2

2 (1− η
2 )m−2. Bringing this together with the possibility of the first

measurement failing, we obtain the following expression:

PLocal
Max (n) =

n−2∑
m=0

η2

2

(
1− η

2

)m
+ (1− η)PLocal

Max (n− 1) (5.26)
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with PLocal
Max (2) = 1

2η
2. We can simplify this further:

PLocal
Max (n) =

n∑
j=1

η(1− η)j−1
[
1− (1− η

2
)n−j

]
. (5.27)

This may be seen by realising that the term η(1−η)j−1 gives the probability of receiving

any answer (i.e. i) after j rounds of measurement, while the term 1−(1− η
2 )n−j gives the

probability of receiving the other answer necessary for a definitive outcome (i.e. i+ 1)

after n− j rounds of measurement.

Figure 5.10: The probability tree for three copies of signal state ρ2. Addition involving
the index i is modulo 2, and the question mark denotes an inconclusive outcome (i.e.
receiving outcome ī again or the measurement failing). The dashed box represents the
probability tree for two copies of the signal state. Note that the “fork” below ī is
repeated beneath the question mark - the tree has started recursing. This tree could
therefore be extended to n copies of the signal state, with the dashed box representing

the tree for n− 1 copies.

It is worth noting that, in the case of the first n − 1 measurement attempts failing,

the maximum confidence measurement reverts to being the trine measurement, as it is

simply the case of a single copy of one of the trine states [7]. However, we have neglected

this from our analysis as we are only concerned with measurement outcomes which yield

100% confidence.
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5.4 Conclusion

We have investigated bi-partite minimum-error discrimination and multi-partite maxi-

mum confidence measurement, and the effect of measurement efficiencies on these; this

was made possible by the results of the previous chapter, further demonstrating the

utility of an analytical solution to quantum state discrimination problems. We found

that, for minimum-error measurement, the optimal strategy does not vary considerably

with measurement efficiency η (in fact, one measurement is very close to optimal for

all values of η), and that the joint measurement, while almost always better than the

local measurement, is not sufficiently effective to justify the extra difficulty in perform-

ing experimentally. It is also interesting to note that, for low efficiencies, the sequential

measurement actually outperforms the joint measurement. In the case of maximum

confidence measurement, the probability of obtaining an unambiguous answer with lo-

cal measurements increases each time we increase the number of copies of the states

we possess, in contrast to the global measurement where it increases with every even

number of copies possessed.
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Optimal sequential measurements

for bi-partite state discrimination

6.1 Introduction

The work in this chapter is a useful illustration of the necessity and power of an analytical

solution to the problem of single-qubit state discrimination, and how this utility can

extend into the realm of bi-partite state discrimination [42]. As we will see, solving

a bi-partite state discrimination problem will sometimes necessitate the solution of a

single-qubit discrimination problem. In such instances, a simple analytical solution is

very useful. The work in this chapter will also use the measurement trees first used in

the previous chapter. In fact, this chapter may be seen as an extension of the work

in the previous chapter: instead of looking at arbitrary detector efficiencies, we now

investigate how to characterise the allowed measurements in the completely general case

with arbitrary signal states.

State discrimination is a useful test problem with which to clarify the power and lim-

itations of different classes of measurement. For information encoded across multiple

quantum systems, the ability to measure jointly is strictly more powerful (but in general

technologically more challenging) than the ability to measure each subsystem indepen-

dently, even if many rounds of classical communication between systems are allowed.

Intuitively, one might expect the difference in performance to be more pronounced when

information is encoded in entangled states. That this is not necessarily the case was

82
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first revealed through two state discrimination problems. The first, so-called “nonlocal-

ity without entanglement,” gave a set of multipartite orthogonal product states between

which perfect discrimination is not possible using only local measurements and classical

communication [41]. The second, complementary and no less surprising, showed that

any two orthogonal pure states, regardless of entanglement or multipartite structure,

may be perfectly discriminated using only sequential measurement, i.e., local measure-

ment on each system, with classical feed-forward [40]. This was later extended to show

that any two generally non-orthogonal pure states may be discriminated optimally by

sequential measurement of the subsystems, according to the commonly used minimum

error [79] and unambiguous discrimination strategies [80–82].

Beyond the two-state examples, the situation becomes much less clear: for the next

simplest example of discriminating three possible qubit states given two copies, it was

postulated by Peres and Wootters in 1991 that local measurement was strictly weaker

than joint measurement on both copies [83], and only 20 years later was it finally proved

that such a gap exists for this problem, for the minimum error strategy [33].

In this chapter we consider sequential measurements on a bipartite system; i.e. sub-

system A and B are measured in turn, and the choice of measurement performed on

subsystem B is allowed to depend in general on the result of measurement of A. This is

often a physically relevant class of measurement; for example, if A and B are in different

laboratories it is easy to imagine that feed-forward of measurement results from labora-

tory A to laboratory B would be practical, but many rounds of classical communication

could become unfeasible. Alternatively, if A and B interact only weakly or not at all

(e.g., photons), joint measurements are difficult to perform, while classical feed-forward

from one detector to another apparatus is relatively easily achieved with current tech-

nology (see, e.g., Ref. [84] for such an experiment in the state discrimination context).

It is natural then to ask how well information can be retrieved with this restriction

on the measurement strategy that may be employed. Furthermore, implementations

of joint measurement strategies for extracting information may provide applications for

small quantum processors [85], and it is useful to understand when the additional ex-

perimental challenge of joint measurement may provide a significant advantage over

local measurement strategies. For simplicity, we restrict to bipartite instead of the more

general multipartite state discrimination.
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We begin with the case where the bipartite state is simply a two-copy state. We construct

necessary conditions that a given sequential measurement must satisfy to be optimal in

the sense of minimising the error in determining the state, analogous to the well-known

Helstrom conditions, equations (2.5) and (2.6) [29, 48]. We further find a condition

which is both necessary and sufficient, but which requires optimisation over an arbitrary

measurement on one subsystem. We illustrate the two-copy case through the example of

the trine states considered in [33, 83], and give the probabilities of correctly identifying

the state for sequential and global strategies, as well as discussing features of the optimal

measurements in each case.

We extend the discussion to arbitrary bipartite states, and as an example give the

optimal sequential strategies for discriminating three Bell states.

6.2 Two-copy state discrimination with sequential mea-

surement

6.2.1 Necessary conditions

Let us consider the two-copy case, with sequential measurement. Suppose therefore we

are provided with two copies of a state drawn from a known set {ρi} with associated

probabilities {pi}. As we saw in the previous chapter, the allowed measurement proce-

dures are as follows: make a measurement described by some POVM {MA
j } on system

A; given outcome j, make a measurement on system B. This is shown in the tree in

Figure 6.1. As the choice of measurement on system B can in general depend on the

outcome of measurement on A, we denote the associated POVM {NB
i|j}, where for all i

and j, NB
i|j ≥ 0, and for each j, ∑

i

NB
i|j = 1

B.

The measurement on the joint AB system is thus of the form {πi =
∑

jM
A
j ⊗ NB

i|j},

with the probability of correctly identifying the state given by

PCorr =
∑
ij

pi TrAB

(
ρAi ⊗ ρBi MA

j ⊗NB
i|j

)
=

∑
ij

pi TrA
(
ρAi M

A
j

)
TrB

(
ρBi N

B
i|j

)
. (6.1)
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Figure 6.1: Probability tree showing sequential measurement notation. The mea-
surement described by POVM {Mj} is performed on system A. Given outcome j, the

measurement described by POVM {Ni|j} is performed on system B.

In the following we drop the superscripts A, B, whenever it is not confusing to do so.

We begin by pointing out that each of {Mj}, {Ni|j} may be interpreted as an optimal

measurement for an appropriately defined discrimination problem, as follows. We first

note that, given measurement result j on system A, we can update the probabilities as

follows, using Bayes’ rule:

P(i|Mj) =
P(i,Mj)

P(Mj)
=

pi TrA(ρiMj)∑
k pk TrA(ρkMj)

= pi|j . (6.2)

Thus given result j on system A, the possible states {ρi} of system B occur with prob-

abilities pi|j . Clearly {Ni|j} should thus be optimal for discriminating the states ρi with

the updated priors pi|j , and thus a necessary condition is

∑
i

pi|jρiNi|j − pk|jρk ≥ 0, ∀k,

or equivalently, using equation (6.2),

∑
i

pi TrA(ρiMj)ρiNi|j − pk TrA(ρkMj)ρk ≥ 0, ∀k, (6.3)

which must hold for each j. This set of conditions is necessary, but not sufficient (we

have not done any optimisation over Mj). Finally, summing over j gives

TrA

∑
i,j

pi(ρi ⊗ ρi)(Mj ⊗Ni|j)− pkρk ⊗ ρk

 ≥ 0, ∀k, (6.4)
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which is rather similar to the Helstrom condition (2.6), but with a partial trace over

system A.

Conversely, we can rewrite equation (6.1) as follows:

PCorr =
∑
j

TrA

[∑
i

pi TrB

(
ρBi N

B
i|j

)
ρAi M

A
j

]
=

∑
j

cj TrA
(
σAj M

A
j

)
,

where we have defined

σAj =

∑
i pi TrB

(
ρBi N

B
i|j

)
ρAi∑

k pk TrB

(
ρBk N

B
k|j

) , (6.5)

cj =
∑
i

pi TrB

(
ρBi N

B
i|j

)
. (6.6)

We can interpret the trace one operators {σj} as density operators, and if we further

define probabilities qj = cj/ (
∑

i ci), it follows that {MA
j } must be optimal for discrimi-

nating the states {σAj } with probabilities {qj}. The Helstrom condition (2.6) then gives

∑
j

qjσ
A
j M

A
j − qkσAk ≥ 0,

which may be rewritten as

∑
j

[∑
i

pi TrB

(
ρBi N

B
i|j

)
ρAi

]
MA
j −

∑
i

pi TrB

(
ρBi N

B
i|k

)
ρAi ≥ 0. (6.7)

Finally, we obtain

TrB

∑
ij

pi(ρ
A
i ⊗ ρBi )(MA

j ⊗NB
i|j)−

∑
i

pi(ρ
A
i ⊗ ρBi )(1A ⊗NB

i|k)

 ≥ 0. (6.8)

Again, this is necessary, but not sufficient (this time we have not done any optimisation

over Ni|j). One might hope that the conditions (6.3) and (6.8) when taken together are

also sufficient, and could then imagine that it may be possible to construct an iterative

procedure for numerical solution of the optimization problem. However, this turns out

not to be the case; we will return to this point later. Each of conditions (6.3) and (6.8),

however, have a clear interpretation. Note that it might have been expected that {NB
i|j}
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should be optimal for the updated priors given measurement of A; that MA
j plays a

complementary role for a different discrimination problem is less obvious a priori.

6.2.2 A necessary and sufficient condition

We now turn to the problem of simultaneously optimising both the measurement on A

and that on system B. We find that the condition

∑
i,j

pi TrB(ρiNi|j)ρiMj −
∑
k

pk TrB(ρkÑk)ρk ≥ 0, (6.9)

where {Ñk} is any physically allowed measurement on system B, is both necessary and

sufficient for optimality of {πi =
∑

jMj ⊗ Ni|j}. Unfortunately, this still contains an

arbitrary measurement on system B, and thus is not as readily applicable as the original

Helstrom conditions to verify optimality of a candidate measurement. Nevertheless we

will give examples in which it can be used to prove optimality analytically. We also note

that the inclusion of an arbitrary measurement on one subsystem means that analysis

beyond the bipartite case becomes complicated and our method is not readily extended

to multipartite discrimination.

We will prove the necessity and sufficiency of this condition in a way which closely follows

the proof of its single-qubit analogue, shown in §2.3.

We begin by proving the sufficiency of condition (6.9). If {πi =
∑

jMj⊗Ni|j} is optimal

among sequential measurements, we require

TrAB

∑
i,j

pi(ρi ⊗ ρi)(Mj ⊗Ni|j)

 ≥ TrAB

∑
k,l

pk(ρk ⊗ ρk)(M ′l ⊗N ′k|l)

 ,

for all {π′k =
∑

lM
′
l ⊗N ′k|l}. Inserting the identity

∑
lM
′
l ⊗ 1 and rearranging gives

∑
l

TrAB

∑
i,j

pi(ρi ⊗ ρi)(Mj ⊗Ni|j)−
∑
k

pk(ρk ⊗ ρk)(1⊗N ′k|l)

M ′l

 ≥ 0,

∑
l

TrA

∑
i,j

pi TrB(ρiNi|j)ρiMj −
∑
k

pk TrB(ρkN
′
k|l)ρk

M ′l

 ≥ 0.

Condition (6.9) is therefore sufficient, if {Ñk} is any allowed measurement on B.



Chapter 6 88

That condition (6.9) is also necessary may be seen as follows: as in the unrestricted

case, we introduce the manifestly Hermitian operator

ΓAsym =
∑
i,j

pi TrB
(
ρiNi|j

) 1

2
{ρi,Mj}.

Suppose now that there exists some |λ〉 and some {Ñk} such that

〈λ|ΓAsym −
∑
k

pk TrB(ρkÑk)ρk|λ〉 < 0.

We can construct a variation of {πi =
∑

jMj ⊗Ni|j} as follows:

M ′j = (1− ε|λ〉〈λ|)Mj(1− ε|λ〉〈λ|), 0 ≤ j < n

N ′i|j = Ni|j , 0 ≤ j < n

Mn = ε(2 + ε)|λ〉〈λ|,

Ni|n = Ñi,

where 0 < ε � 1. Note that if {MA
j } has n outcomes, the primed measurement on

system A has n+ 1 outcomes. Now note that

PCorr

(
{M ′j ⊗N ′i|j}

)
= PCorr

(
{Mj ⊗Ni|j}

)
−εTrAB

∑
i,j

piρi ⊗ ρi (|λ〉〈λ|Mj +Mj |λ〉〈λ|)⊗Ni|j


+2εTrAB

(∑
i

piρi ⊗ ρi(|λ〉〈λ| ⊗ Ñi)

)
+O(ε2)

= PCorr

(
{Mj ⊗Ni|j}

)
− 2ε〈λ|ΓAsym −

∑
i

pi TrB(ρiÑi)ρi|λ〉+O(ε2)

> PCorr

(
{Mj ⊗Ni|j}

)
.

Finally, we note that, by virtue of the fact that {Mj} is an optimal measurement for

discriminating the states σj , it follows that ΓAsym = ΓA, where ΓA is defined as

ΓA =
∑
i,j

pi TrB
(
ρiNi|j

)
ρiMj .
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Thus we require

ΓA −
∑
k

pk TrB

(
ρkÑk

)
ρk ≥ 0,

which completes our proof.

6.3 Example: The double trine ensemble

As an example we consider the so-called double trine ensemble discussed in Chapter 5:

two copies of the trine states, for which ρj = |ψj〉〈ψj |, and

|ψj〉 =
1√
2

(
|0〉+ e2πji/3|1〉

)
.

These each occur with prior probabilities pj = 1
3 and have the symmetry property

|ψj〉 = U j |ψ0〉

where U is a rotation of 2π
3 around the z axis in the Bloch sphere.

6.3.1 Optimal sequential measurement

For the two-copy case, Chitambar and Hsieh [33] showed that – as we saw in §5.2.1 –

the optimal sequential measurement rules out one state of the three in the first step,

and corresponds to the Helstrom measurement to distinguish between the remaining two

states in the second step. We first briefly present this optimal measurement and then

use it to demonstrate our conditions.

The optimal sequential measurement thus makes the antitrine measurement, described

previously in §4.1 and Figure 4.1. Following this measurement, the updated priors

become pi|j = 1
2(1 − δij), and {Ni|j} is then the optimal measurement to distinguish

the two remaining equiprobable pure states {|ψi〉, |ψk〉, i 6= j 6= k}. This is a case of the

well-known Helstrom measurement and is a projective measurement in a basis located

symmetrically around the signal states (see, e.g., §4.2.1, §5.2.1, and [4]). Thus for i = j,
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Ni|j = 0, and for i 6= j we denote Ni|j = |φi|j〉〈φi|j |, where

|φ1|0〉 =
1√
2

(|0〉+ i|1〉) ,

|φ2|0〉 =
1√
2

(|0〉 − i|1〉) ,

|φ0|1〉 =
1√
2

(
|0〉+ eiπ/6|1〉

)
= U |φ2|0〉,

|φ2|1〉 =
1√
2

(
|0〉 − eiπ/6|1〉

)
= U |φ1|0〉,

|φ0|2〉 =
1√
2

(
|0〉+ e−iπ/6|1〉

)
= U2|φ1|0〉,

|φ1|2〉 =
1√
2

(
|0〉 − e−iπ/6|1〉

)
= U2|φ2|0〉.

These states, along with the trine and antitrine states, are shown in the Bloch sphere

picture in Fig. 6.2.

Figure 6.2: Trine and antitrine states shown on the equator of the Bloch sphere
(left). Bases defined by the optimal Helstrom measurements in step two of the opti-
mal sequential measurement procedure for discriminating the two-copy trine ensemble

(right).

6.3.2 Necessary and sufficient conditions

We now use this strategy to illustrate the conditions presented in the previous section.

From the symmetry we find that Tr(ρiNi|j) = pH(1 − δij), for all i, j, where pH is

the probability of success of the Helstrom measurement distinguishing between two

equiprobable states with overlap |〈ψi|ψk〉| = |〈ψ0|ψ1〉| = 1/2, i.e., from [5]:

pH =
1

2

(
1 +

√
1− |〈ψ0|ψ1〉|2

)
=

1

2

(
1 +

√
3

2

)
.
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By construction, this measurement strategy satisfies condition (6.3). To evaluate (6.8)

and the necessary and sufficient condition (6.9), we first calculate ΓA:

ΓA =
∑
i,j

pi Tr
(
ρiNi|j

)
ρiMj

=
∑
i,j

1

3
pH(1− δij) (|ψi〉〈ψi|)

(
2

3
|ψ⊥j 〉〈ψ⊥j |

)

=
1

3
pH

(∑
i

|ψi〉〈ψi|

)∑
j

2

3
|ψ⊥j 〉〈ψ⊥j |


=

1

2
pH1 =

1

4

(
1 +

√
3

2

)
1,

where in the last line we have used
∑

j
2
3 |ψ
⊥
j 〉〈ψ⊥j | =

∑
j
2
3 |ψj〉〈ψj | = 1. We first show

that the strategy satisfies condition (6.8). We obtain

∑
i

pi Tr
(
ρiNi|j

)
ρAi =

1

3

∑
i

pH(1− δij)ρi

=
1

2
pH

(
1− 2

3
ρj

)
,

from which it is clear that condition (6.8) is satisfied for each j. Finally, to prove that

this is indeed the optimal strategy, we must show that it satisfies the necessary and

sufficient condition (6.9). As we have shown that ΓA is proportional to the identity, this

amounts to showing that for any allowed measurement {Ñk} on system B, the largest

eigenvalue of the operator ∑
k

pk Tr
(
ρkÑk

)
ρk

is bounded by 1
2pH = 1

4

(
1 +

√
3
2

)
. The proof that this holds is straight-forward using

results from previous chapters, but needs a few steps; the details are given in Appendix

6.6.1.

The probability of correctly identifying the state using the optimal sequential measure-

ment is given by

PseqCorr = Tr(ΓA) = pH =
1

2

(
1 +

√
3

2

)
' 0.933.
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6.3.3 Comparison of global and sequential schemes

For comparison we recall the globally optimal measurement strategy, also discussed in

[33]. Recall that the double-trine ensemble satisfies |ψi〉|ψi〉 = (U⊗U)i|ψ0〉|ψ0〉, where U

is a rotation of 2π
3 around the z axis in the Bloch sphere. For sets with such symmetry

the optimal measurement was shown by Ban et al [34] to be given by the so-called

square-root measurement (also known as the “pretty-good measurement” [52]), seen in

§2.3.2. In this case, the optimal measurement corresponds to a projective measurement,

with operators {Πj = |Φj〉〈Φj |}, where

|Φj〉 =
1√
3

(
|0〉|0〉+ e2πji/3

1√
2

(|01〉+ |10〉) + e4πji/3|1〉|1〉
)
. (6.10)

The probability of correctly identifying the state is

PglobCorr =
1

2
+

√
2

3
' 0.971.

Note that the probability of identifying the state correctly achieved by the optimal

sequential measurement is greater than 96% of that achieved by the optimal global

measurement. In systems where joint measurement is technologically challenging it is

thus perhaps difficult to argue that the additional experimental effort is merited by the

improvement in performance in this case.

We comment finally on the optimal sequential measurement as an approximation to the

optimal global measurement. For the optimal sequential measurement, given above, we

obtain

π0 =
2

3

(
|ψ⊥1 〉〈ψ⊥1 | ⊗ |φ0|1〉〈φ0|1|+ |ψ⊥2 〉〈ψ⊥2 | ⊗ |φ0|2〉〈φ0|2|

)
π1 = (U ⊗ U)π0(U ⊗ U)† (6.11)

π2 = (U ⊗ U)2π0((U ⊗ U)†)2.

Considering π0, after a little algebra we find

|ψ⊥1 〉 ⊗ |φ0|1〉 =
1

2
e−πi/12

[√
1 + 2 cos2

π

12
|α0〉+ i

√
1 + 2 sin2 π

12
|β0〉

]
,

|ψ⊥2 〉 ⊗ |φ0|2〉 =
1

2
eπi/12

[√
1 + 2 cos2

π

12
|α0〉 − i

√
1 + 2 sin2 π

12
|β0〉

]
,
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where

|α0〉 =
(

1 + 2 cos2
π

12

)−1/2(
cos

π

12
|00〉+

1√
2

(|01〉+ |10〉) + cos
π

12
|11〉

)
,

|β0〉 =
(

1 + 2 sin2 π

12

)−1/2(
sin

π

12
|00〉+

1√
2

(|01〉 − |10〉)− sin
π

12
|11〉

)
.

Thus we can write

π0 =
1

3

(
1 + 2 cos2

π

12

)
|α0〉〈α0|+

1

3

(
1 + 2 sin2 π

12

)
|β0〉〈β0|

=
1

3

(
2 +

√
3

2

)
|α0〉〈α0|+

1

3

(
2−
√

3

2

)
|β0〉〈β0|.

Note that 〈α0|β0〉 = 0, and hence this is the eigendecomposition of the operator. We fur-

ther note that |β0〉 is orthogonal to the signal state |ψ0〉|ψ0〉 and thus does not contribute

to the probability of identifying the state. The remaining eigenvector |α0〉 is an approxi-

mation to |Φ0〉, the state onto which the optimal global measurement projects, which is,

in fact, an amazingly good one: it turns out |〈α0|Φ0〉|2 = 0.9997. Due to the weighting

factor, the overlap between |Φ0〉 and π0 is given by 〈Φ0|π0|Φ0〉 = 1
3

(
2 +

√
3
2

)
|〈α0|Φ0〉|2 =

0.9551.

The state |Φ0〉 is thus very close to a superposition of |ψ⊥1 〉 ⊗ |φ0|1〉 and |ψ⊥2 〉 ⊗ |φ0|2〉,

with appropriate normalisation:

|Φ0〉 ' |α0〉 =
(

1 + 2 cos2
π

12

)−1/2 (
eπi/12|ψ⊥1 〉 ⊗ |φ0|1〉+ e−πi/12|ψ⊥2 〉 ⊗ |φ0|2〉

)
.

The optimal sequential measurement, on the other hand, is formed from a mixture of

projectors onto these same states. It gives additional information — one state is ruled

out with certainty — at the expense of a slightly lower probability of success.

6.3.4 A non-optimal sequential measurement

The example of the trine states is further illuminating, as there exists another measure-

ment strategy which satisfies both necessary conditions (6.3) and (6.8) but which is not

an optimal strategy, thus demonstrating that these two conditions, when taken together,

are not sufficient to define the optimal measurement. This strategy is to perform the
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optimal minimum error measurement at each step, with Bayesian update of the prob-

abilities in between measurements. Note that such a strategy is known to be optimal

(and in fact performs as well as the best joint measurement) for a different set of states

— the case of just two pure states [86, 87]. For the trine states, the measurement is as

follows: {Mj} is the optimal one-copy minimum error measurement, which consists of

weighted projectors onto the trine states themselves [5, 34], Mj = 2
3 |ψj〉〈ψj |. Note that

for the trine states |〈ψi|ψj〉|2 = 1
4 (1 + 3δij), and thus the updated priors upon obtaining

outcome j are, using equation (6.2),

pi|j =
2
3 |〈ψi|ψj〉|

2

2
3

∑
k |〈ψk|ψj〉|2

=
1

6
+

1

2
δij .

For each j, the states with these probabilities have so-called mirror symmetry — the

set is invariant under reflection about |ψj〉. For such a set, the minimum error problem

was considered by Andersson et al. [6]. Using their results we find for j = 0 the optimal

measurement is of the form:

N0|0 = (1− a2)|ψ0〉〈ψ0|,

N1|0 =
1

2

(
a|ψ0〉 − i|ψ⊥0 〉

)(
a〈ψ0|+ i〈ψ⊥0 |

)
,

N2|0 =
1

2

(
a|ψ0〉+ i|ψ⊥0 〉

)(
a〈ψ0| − i〈ψ⊥0 |

)
,

where a depends on the geometry of the set and the prior probabilities [6].This is also

discussed in §4.2.2. For our case we find a = 1
5
√
3
. The optimal measurements for j = 1, 2

are obtained by symmetry {Ni|j = U jNi|0(U
j)†}. Note that condition (6.3) is satisfied

by construction. Turning to condition (6.8), we find

Tr
(
ρ0N0|0

)
=

74

75
,

Tr
(
ρ1N1|0

)
= Tr

(
ρ2N2|0

)
=

32

75
,
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with analogous results for j = 1, 2. Concisely, Tr
(
ρiNi|j

)
= 32

75 + 42
75δij . Finally, we can

calculate ΓA:

ΓA =
∑
i,j

pi Tr
(
ρiNi|j

)
ρiMj

=
∑
i,j

1

3

(
32

75
+

42

75
δij

)
(|ψi〉〈ψi|)

(
2

3
|ψj〉〈ψj |

)
=

30

75
1 =

2

5
1.

For cjσj we obtain

∑
i

pi Tr
(
ρiNi|j

)
ρAi =

1

3

∑
i

(
32

75
+

42

75
δij

)
ρi

=
16

75
1 +

14

75
ρj

=
2

5
|ψj〉〈ψj |+

16

75
|ψ⊥j 〉〈ψ⊥j |

from which it is clear that condition (6.8) is satisfied for each j.

An analogous situation arises in state discrimination maximising the mutual information

between sender and receiver. A necessary but not sufficient condition is known, and for

the example of the trine states, is satisfied by both the trine measurement, which is

not optimal [34], and the antitrine measurement, which is optimal [28]. We finally note

that the probability of correctly identifying the state using this scheme, Tr(ΓA) = 4
5 , is

considerably worse than that given by the optimal sequential measurement shown above.

6.4 General bi-partite case

6.4.1 Necessary and sufficient conditions

Above, for simplicity, we confined our discussion of optimal sequential measurement

strategies to the case of two-copy state discrimination. The conditions obtained, how-

ever, are easily extended to the general bipartite case. Suppose, therefore, we are pro-

vided with a bi-partite state drawn from a known set {ρABi }, with known a priori

probabilities {pi}. If our measurement strategy is restricted to sequential measurements
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on each subsystem, with feed-forward, what is the best measurement to make? The al-

lowed measurements on the joint AB system are again described by POVMs of the form

{πi =
∑

jM
A
j ⊗NB

i|j}, and the probability of correctly identifying the state is expressed:

PCorr =
∑
ij

pi TrAB

(
ρABi MA

j ⊗NB
i|j

)
.

Following the same reasoning as in Sec. III, the necessary conditions, given in equations

(6.3) and (6.8), become

∑
i

pi TrA
(
ρABi Mj

)
Ni|j − pk TrA

(
ρABk Mj

)
≥ 0,∑

i,j

pi TrB
(
ρABi Ni|j

)
Mj −

∑
i

pi TrB
(
ρABi Ni|k

)
≥ 0,

with the following interpretation. Given a measurement MA
j on system A, {NB

i|j} must

be optimal for discriminating the updated states σBi|j , occurring with probabilities pi|j :

σBi|j =
TrA

(
ρABi MA

j

)
TrAB

(
ρABi MA

j

) ,
pi|j =

pi TrAB

(
ρABi MA

j

)
∑

k pk TrAB

(
ρABk MA

j

) .

Similarly, given measurements {{NB
i|j}} on system B, {MA

j } must be optimal for dis-

criminating the states σAj , occurring with probabilities qj :

σBj =

∑
i pi TrB

(
ρABi NB

i|j

)
∑

k pk TrAB

(
ρABk NB

k|j

) ,
qj =

∑
i pi TrAB

(
ρABi NB

i|j

)
∑

l

∑
k pk TrAB

(
ρABk NB

k|l

) .

Finally, following the same argument as in Sec. III, the necessary and sufficient condition

for optimality of {πj =
∑

jMj ⊗ Ni|j} for discriminating the general bipartite states

{ρABi } becomes

∑
i,j

pi TrB
(
ρABi Ni|j

)
Mj −

∑
k

pk TrB

(
ρABk Ñk

)
≥ 0, (6.12)
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where {Ñk} is any physically allowed measurement on system B.

6.4.2 Example: Three Bell states

As an example of the general case, we consider the simple case of discriminating between

three Bell states ρABi = |Ψi〉〈Ψi|:

|Ψ0〉 =
1√
2

(|0〉|0〉+ |1〉|1〉) ,

|Ψ1〉 =
1√
2

(|0〉|1〉+ |1〉|0〉) ,

|Ψ2〉 =
1√
2

(|0〉|0〉 − |1〉|1〉) ,

occurring with equal probabilities pi = 1
3 . Although perfect discrimination between any

two Bell states is possible by only local measurements and feed-forward (for example, to

distinguish between |Ψ0〉 and |Ψ1〉 one need only measure both systems in the {|0〉, |1〉}

basis and look at the correlations between outcomes) it is known that for more than

two states this is no longer possible [88, 89]. To distinguish between all three states,

one strategy is to simply perform the measurement that perfectly distinguishes any two

states and never identify the third. We show that this strategy is optimal in terms of

minimising the probability of error.

Consider, therefore, the measurement

M0 = |0〉〈0|, M1 = |1〉〈1|,

N0|0 = |0〉〈0|, N1|0 = |1〉〈1|, N2|0 = 0,

N0|1 = |1〉〈1|, N1|1 = |0〉〈0|, N2|1 = 0,

that is, both Alice and Bob measure in the {|0〉, |1〉} basis. Bob takes outcome 0 to

indicate state |Ψ0〉, and outcome 1 to indicate state |Ψ1〉. State |Ψ2〉 is never identified.

It is useful to rewrite equation (6.12) as follows:

ΓA − c̃ σ̃ ≥ 0,
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where

ΓA =
∑
i,j

pi TrB
(
ρABi Ni|j

)
Mj ,

c̃ =
∑
k

pk TrAB

(
ρABk Ñk

)
,

σ̃ =
1

c̃

∑
k

pk TrB

(
ρABk Ñk

)
.

Note that σ̃ is a density operator. Furthermore, it is straight-forward to show that

ΓA =
∑
i,j

pi TrB
(
ρABi Ni|j

)
Mj =

1

3
1
A

while

c̃ =
1

3

∑
k

TrB

(
TrA(ρABk )Ñk

)
=

1

3

∑
k

TrB

[(
1

2
1
B

)
Ñk

]
=

1

3
,

where the second line follows as the reduced density operator for system B in all cases

is proportional to the identity 1
B, and the last line follows from the POVM condition∑

Ñk = 1
B. Thus the condition (6.12) becomes

1− σ̃ ≥ 0,

which is true for any arbitrary density operator σ̃. Thus {Mj ⊗ Ni|j} is an optimal

measurement among sequential strategies for discrimination of the three Bell states. A

similar approach could be taken to the problem of discriminating all four Bell states,

but this complicates the analysis without changing the basic conclusions.

6.5 Discussion

We have discussed the problem of extracting classical information from a set of bipartite

states, when the measurement strategy is restricted to sequential measurements of each
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subsystem, with feed-forward of classical information in between measurements. As this

is a physically well-motivated class, it is useful to understand how well it performs com-

pared to the ability to perform arbitrary joint measurements, which in many physical

systems is still technologically challenging. We have constructed an analogue of the

Helstrom conditions for sequential measurement strategies. It is not obvious how to use

this condition to construct an optimal measurement, but we show how for certain exam-

ples it is possible to use the condition to prove optimality of a candidate measurement

procedure.

Our necessary and sufficient condition for optimality of a given sequential measurement

still contains an arbitrary measurement on one subsystem. We have been unable to find

a condition which is both necessary and sufficient and requires only the set of states and

a candidate measurement. It would certainly be useful to find one, but in the absence

of such, given a candidate optimal measurement our condition reduces the complexity

of checking optimality from optimising over both systems to optimising over just one. It

would also be interesting in the future to extend this analysis to other figures of merit,

such as those which interpolate between minimum-error and unambiguous discrimination

[90], or which maximise the success rate of discrimination while allowing for inconclusive

results [71, 91].

For the two-copy trine case, the probability of success of the optimal sequential mea-

surement is 96 % of the value achieved by the optimal global measurement [33]. The

optimal sequential measurement sometimes rules out one of the states with certainty,

thus providing information not given by the optimal global strategy, at the expense of

a slightly higher probability of failure. Nonetheless, the difference in performance is

arguably too small to motivate experimental implementation of the joint measurement.
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6.6 Appendix

6.6.1 Proof of optimality for the double trine ensemble

To prove optimality of the sequential measurement scheme given in the text, we wish to

show that the largest eigenvalue of

σ̃ =
1

3

∑
k

Tr(ρkÑk)ρk

is less than or equal to 1
2pH = 1

4

(
1 +

√
3
2

)
for any physically allowed measurement {Ñk}.

We begin by writing the trine states ρj in the Bloch sphere representation:

ρj =
1

2

[
I + cos

(
2πj

3

)
σx + sin

(
2πj

3

)
σy

]
.

Writing sk = 1
3 Tr

(
ρkÑk

)
we thus obtain

σ̃ =
1

2

{
(s0 + s1 + s2)I +

[
s0 −

1

2
(s1 + s2)

]
σx +

√
3

2
(s1 − s2)σy

}

with eigenvalues

λ± =
1

2
(s0 + s1 + s2)±

1

2


√√√√[s0 − 1

2
(s1 + s2)

]2
+

[√
3

2
(s1 − s2)

]2
=

1

2
(s0 + s1 + s2)±

1

2
|s0 + e

2πi
3 s1 + e−

2πi
3 s2|.

Thus it follows that there exists some θ such that the largest eigenvalue λ+ may be

written

λ+ =
1

2
(s0 + s1 + s2)

+
1

2
eiθ
(
s0 + e

2πi
3 s1 + e−

2πi
3 s2

)
,

=
1

2
(1 + cos θ)s0 +

1

2

[
1 + cos

(
θ +

2π

3

)]
s1 +

1

2

[
1 + cos

(
θ − 2π

3

)]
s2

=
1

2

[∑
k

qk Tr
(
ρkÑk

)]
,
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where in the second equality we use the fact that λ+ is real, and in the last line we have

substituted for sk, and defined qk = 1
3

[
1 + cos

(
θ + 2πk

3

)]
. Each strategy {Ñk} thus

defines a θ such that the above equalities hold. For each such θ, we can find an upper

bound for λ+ by considering the optimisation problem of discriminating the states {ρk}

occurring with priors qk:

λ+ ≤
1

2
PCorr ({qkρk}) .

We thus wish to find the optimal strategy {πk} for discriminating the trine states with

a priori probabilities 1
3

[
1 + cos

(
θ + 2πk

3

)]
, ultimately maximising the probability of

correctness also over θ. Finally, if this maximum is achievable then we have succeeded

in finding the optimal λ+.

Thankfully we have already solved this problem, as these probabilities are exactly those

given in equation (5.15), up to reordering. We find, as shown in Figure 5.4, that the

maximum value of this function corresponds to (in this example) θ = −π
3 , corresponding

to

PCorr({qkρk}) ≤
1

2

(
1 +

√
3

2

)
.

Thus we obtain λ+ ≤ 1
4

(
1 +

√
3
2

)
, as desired.
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Conclusions

In this thesis we have investigated quantum state discrimination in a number of forms.

We have primarily focussed on the problem of minimum-error state discrimination, find-

ing a simple, closed-form general analytic solution for arbitrary single-qubit states [39].

We then used this solution to aid our understanding of related problems; for instance,

in the problem of bi-partite state discrimination, where the prior probabilities of each

signal state get updated depending on the measurement outcomes that have previously

been received [42, 77] We also used our work to give the first full analytic solution to

the problem of discriminating between the trine states with minimum error [73]. This is

the first ensemble for which such a solution has been given since the two-state solution

given by the Helstrom bound. We shall now briefly review the findings of each chapter in

turn. In Chapter 3, we found a simple solution to the problem of minimum-error single-

qubit state discrimination for arbitrary states (including mixed states) and arbitrary

prior probabilities. This solution takes the form of a simple one-line equation – equation

(3.19) – in contrast to the geometric approaches in the literature. This method produces

a series of linear equations from which one can construct the Lagrange operator Γ and

therefore the optimal POVM to use for minimum-error discrimination. This also has

uses beyond the single-qubit case as, as we demonstrated in Chapter 5, we may use this

to help solve multi-qubit state discrimination problems. This method has some element

of trial-and-error attached to it, as it does not tell us which subset of states it is optimal

to measure. However, if the wrong subset of states is inserted into equation (3.19), we

expect that the candidate Γ may be seen to be erroneous by, e.g., giving a value for

PCorr which is greater than 1, or yielding a negative operator as a POVM element.

102
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In Chapter 4, we used the method detailed in Chapter 3 to perform an in-depth study of

the minimum-error measurement strategy for the trine states with arbitrary prior prob-

abilities, yielding the first such complete analysis for a set of states since the Helstrom

bound was introduced. We found, somewhat surprisingly, that for most of the parameter

space, the optimal POVM need not identify every signal state. We then investigated the

maximum confidence measurement for the trine states with arbitrary prior probabilities,

and compared this to the minimum-error strategy. This showed that the minimum-error

measurement is very close in confidence to the maximum confidence measurement.

In Chapter 5, we extended the work from Chapter 4 to the double-trine ensemble, finding

the optimal bipartite measurement for arbitrary detector efficiency, then comparing this

to the optimal global measurement. In this, we found that one bipartite measurement

strategy is close to optimal for all values of efficiency η. In this scheme, we first perform

the measurement described in equation (5.14) with φ = π
6 , then follow this with the op-

timal two-element POVM, described in equation (4.2) with p0 and p1 given by equation

(5.15). This measurement scheme is close in efficacy to the optimal global measurement

described in equation (5.19) for all values of η. Given the additional difficulty in per-

forming joint measurements, it is therefore questionable as to whether the additional

effort exerted to perform a joint measurement is justifiable in this case. In fact, in a

surprising result, we found that for certain small values of η, the optimal measurement

is the sequential measurement. Also in Chapter 5, we investigated the maximum con-

fidence measurement of multiple trine copies and again compared the local and global

strategies for arbitrary detector efficiency η. In the local measurement, the probability

of obtaining an unambiguous outcome increases with each copy of the states sent; how-

ever, in the global case, this probability only increases with each even number of copies

possessed. In Chapter 6, we introduced a generalised version of the Helstrom conditions

which can be used to test for optimality of bipartite sequential measurements. We then

tested these conditions on the double-trine ensemble, for which we had already found

the optimal measurement, and an ensemble of three of the four Bell states. However, we

also showed that a non-optimal measurement can satisfy these conditions, showing that,

when taken together, these conditions are not sufficient to identify the optimal measure-

ment. Nevertheless, we did find a necessary and sufficient condition. We hope that a

solution to this condition may further pave the way for future problems in multipartite

state discrimination.
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In the future, it would be interesting to see if our simple closed-form solution has any

qudit analogue. Furthermore, the implications of our work beyond the bi-partite regime

(i.e. into tri-partite state discrimination and beyond) could further augment our under-

standing of the process of quantum state discrimination. We hope such results will be

found, and prove useful in the world of quantum computing and quantum information.
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Erika Andersson. Results in optimal discrimination. In AIP Conference Proceedings,

volume 734, pages 83–86. AIP, 2004.
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