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Abstract 

 

NUAK1 (aka ARK5) is a member of the AMPK-related kinase family and has been 

associated with many essential cellular processes that are often perturbed in cancer. 

Elevated NUAK1 expression has been observed in advanced stages of colorectal 

cancer (CRC) and is further enriched in liver metastasis in human patients. Therefore, 

NUAK1 is a novel tumour progression-associated factor, however, its primary 

function in this context and its use as a potential therapeutic target remains unclear.  

 

NUAK1 was previously identified as synthetic lethal in MYC-overexpressing tumour 

cells. This study shows that high NUAK1 levels correspond to poor patient survival in 

human CRC, and that increased NUAK1 RNA correlates with advanced tumour stages 

in a human TMA of CRC. Using mouse models of CRC, it is demonstrated that Nuak1 

deletion inhibits colon tumour initiation, and acute depletion of Nuak1 by shRNA in 

established tumours significantly reduces tumour burden after just 7 days of shRNA 

activation. Interrogation of tumours acutely depleted of Nuak1 showed decreased cell 

proliferation concurrent with increased ROS and cell death. Interestingly, the 

requirement for Nuak1 did not extend to healthy wildtype intestine; depletion of 

Nuak1 in mouse intestine had no impact on cell death, proliferation or differentiation, 

and wildtype 3D organoids were resistant to Nuak1 inhibition. Using human CRC cell 

lines and transformed 3D organoid cultures, the study confirms that the NRF2 

oxidative stress response is compromised in NUAK1 depleted cells, and treatment 

with a ROS scavenger can rescue the detrimental consequences of this in vitro, ex vivo 

and in vivo. Mechanistically, it was found that NUAK1 is necessary for the nuclear 

accumulation of NRF2 by counteracting negative regulation of this process by GSK3β, 

and that direct inhibition of GSK3β is able to restore NRF2 nuclear accumulation in 

NUAK1 deficient cells. Furthermore, it is shown that ROS-dependent activation of 

NUAK1 by cysteine oxidisation leads to the phosphorylation of MYPT1. Activation of 

MYPT1 results in the suppression of PP1β activity, which in turn inhibits 

dephosphorylation of GSK3β thus allowing NRF2 to accumulate in the nucleus and 

upregulate the anti-oxidant response pathway.  

 

In summary, this thesis is proposing a fascinating, new and conserved mechanism of 

redox signal transduction in which activation of NUAK1 coordinates PP1βMYPT1 

inhibition, with AKT activation in order to suppress GSK3β-dependent inhibition of 
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NRF2 nuclear import. Exploiting the heightened sensitivity of tumour cells to ROS is 

emerging as a plausible strategy for cancer therapy and is implicated in the resistance 

to chemotherapy. Therefore, inhibiting the anti-oxidant response via transient 

inhibition of NUAK1 may offer a new strategy for improving therapeutic outcomes in 

cancer.  
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Chapter 1 Introduction 

1.1 Colorectal Cancer 

Colorectal cancer (CRC), also known as bowel cancer and colon cancer, is the 

development of cancer in the colon or rectum.  It is the fourth most common cancer in the 

UK with over 40,000 new cases annually, and 110 cases diagnosed daily (CRUK, 2013). 

More worryingly, this rate is expected to increase due to the adoption of westernised diet 

and lifestyle across the world. However, since the 1970s mortality rates have decreased by 

43% in the UK and rates are projected to fall by a further 23% by 2035 due to more 

appropriate and available information, earlier diagnosis and improvements in surgical, 

adjuvant and palliative treatment (CRUK, 2013).  

 

1.2 CRC clinical manifestations 

Clinical manifestations tend to vary depending on the location of the tumour in the bowel. 

Thirty percent of patients present with sub/obstructing symptoms and are diagnosed in an 

acute stage of colorectal carcinoma; these symptoms include the passage of blood, also 

known as hematochezia, causing anaemia and fatigue and/or tenesmus, a continual or 

recurrent inclination to evacuate the bowels. Other symptoms include loss of appetite, 

nausea and vomiting. Metastasis in the liver or lung is present in 20-25% of colonic cancer 

patients and in 18% of rectal cancer at the time of first diagnosis (De Rosa et al., 2016). 

 

1.3 Clinical diagnosis and staging 

Accurate diagnosis and staging are essential to ensure an effective treatment strategy for 

the patient. The current gold standard for diagnosis is a complete colonoscopy up to the 

cecum, coupled with biopsy for histopathological examination and allows tumour 

localization and potentially the excision of polyps by endoscopy. Computed tomography-

colonography (CT or CTC) can also be used in CRC diagnosis as an alternative to 

endoscopy and has been established as a highly sensitive and specific diagnostic modality 

(De Rosa et al., 2016). 

 

Colorectal cancer can be classified using two distinct systems that will be discussed in 

detail in Sections 1.3.1 and 1.3.2; these provide a basis for prognosis and therapeutic 

decisions. 
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1.3.1 TNM Classification of Malignant Tumours (TNM) 

Pierre Denoix devised the TNM Classification of Malignant Tumours (TNM = Tumour 

Node Metastasis) between 1943 and 1952 and it is now the most commonly used staging 

system internationally (Motta et al., 1995). TNM is a cancer staging notation system that 

defines the stage of a cancer, which originates from a solid tumour, with alphanumeric 

codes. T describes the size of the primary tumour and local invasion depth, N describes the 

regional lymph node involvement, and M describes the presence of distant metastasis. 

TNM is now maintained by the Union for International Cancer Control (UICC) to achieve 

consensus on one globally recognised standard for classifying the extent of spread of 

cancer (Tobias Jeffrey S., 2013). See Table 1.1 and Figure 1.1 for stage definition, 

descriptions and visual representations.  
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Table 1. 1 - TNM stage definition and description for T stage, N stage and M stage. 

Table adapted from (ASC, 2005-2007). 

 

TNM Stage Description 

T stage 

TX The primary tumour cannot be evaluated. 

T0 No evidence of cancer in the colon or rectum. 

Tis 

Refers to carcinoma in situ (also called cancer in situ). 

Cancer cells are found only in the epithelium or lamina 

propria. 

T1 The tumour has grown into the submucosa. 

T2 The tumour has grown into the muscularis propria. 

T3 

The tumour has grown through the muscularis propria 

and into the subserosa, or it has grown into tissues 

surrounding the colon or rectum. 

T4a 

The tumour has grown into the surface of the visceral 

peritoneum. 

T4b 

The tumour has grown into or has attached to other 

organs or structures. 

      

N stage 

NX The regional lymph nodes cannot be evaluated. 

N0 (N plus zero) There is no spread to regional lymph nodes. 

N1a There are tumour cells found in 1 regional lymph node. 

N1b 

There are tumour cells found in 2 to 3 regional lymph 

nodes. 

N1c 

There are nodules made up of tumour cells found in the 

structures near the colon that do not appear to be lymph 

nodes. 

N2a 

There are tumour cells found in 4 to 6 regional lymph 

nodes. 

N2b 

There are tumour cells found in 7 or more regional 

lymph nodes. 

      

M stage 

MX Distant metastasis cannot be evaluated. 

M0 (M plus zero) The disease has not spread to a distant part of the body. 

M1a 

The cancer has spread to 1 other part of the body 

beyond the colon or rectum. 

M1b 

The cancer has spread to more than 1 part of the body 

other than the colon or rectum. 
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Figure 1. 1 - Visual representation of tumour progression in colorectal cancer using 

the TNM classification of malignant tumours system 

(A) Progression of the primary tumour from cancer in situ where the cancer cells are found only in the 

epithelium or lamina propria, to T1/2 where the tumour has grown into the submucosa and/or muscularis 

propria, to T3 when the tumour has surpassed the muscularis propria and into the subserosa, to T4a and T4b 

where the tumour has a) grown into the surface of the visceral peritoneum and b) grown into or attached to 

other organs. (B) Lymph node metastasis from N1a/b/c, where tumour cells are found in 1-3 regional lymph 

nodes, to N2a/b, where tumour cells are found in 4-7 or more regional lymph nodes. (C) Distant metastasis in 

organs such as the lungs, liver, and stomach, M1a stage is where the cancer has spread to one other organ and 

M1b stage is where the cancer has spread to more than one other organ. Figure adapted from (ASC, 2005-

2007). 
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1.3.2 The Dukes’ staging system 

In 1932, British pathologist Cuthbert Dukes devised the Dukes’ staging system specifically 

for the specification of colorectal cancer (Kyriakos, 1985). The Dukes’ staging system is 

no longer recommended for clinical use and has largely been replaced by the more detailed 

TNM system however some older patient data sets still provide this information.  See 

Table 1.2 for description. 

 

Table 1. 2 - Dukes’ staging system with descriptions. 

 

Dukes stage Description 

A The tumour is limited to muscularis propria; nodes not involved. 

B The tumour is extending beyond muscularis propria; nodes not involved. 

C There are tumour cells in the nodes but highest (apical) node spared. 

D Distant metastatic spread. 

 

 

1.4 Current treatment of CRC 

Early stage primary colon cancers with no metastatic disease can be treated effectively by 

surgery with complete mesocolic excision (CME), with veins and arteries moved and 

ligated close to the main vascular trunk in order lower the local recurrence rate and 

improve survival (Hohenberger et al., 2009, Sehgal and Coffey, 2014). A similar 

procedure, total mesorectal excision can be performed for the treatment of early stage 

rectal cancer. Both treatments have an excellent oncological outcome with 5-year cancer 

specific survival rate of 70-90% (Sagar, 2011). In more locally advanced rectal cancers, 

neoadjuvant chemoradiotherapy such as infusional 5-fluorouracil or oral capecitabine is 

used to reduce local recurrence rates (De Rosa et al., 2016).  

 

The current standard of care for unresectable metastatic disease is the combination of 

standard cytotoxic chemotherapy with biological agents. Standard chemotherapy schedules 

include 5-fluorouracil and leucovorin in combination with drugs such as oxaliplatin-

FOLFOX and irinotecan-FOLFIRI. The biological agents can be separated into three 

distinct groups, the first is monoclonal antibodies against the epidermal growth factor 

receptor (EGFR) (i.e. cetuximab and panitumumab), which have shown success with 

commonly used treatment schedules in patients with advanced, chemotherapy-refractory 

CRC, in particular in wild-type KRAS tumours (Tveit et al., 2012, Peeters et al., 2010, Van 

Cutsem et al., 2009, Au et al., 2009). The second group are anti-angiogenic inhibitors 

targeting tumour vascularisation and include vascular endothelial growth factor (VEGF)-
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A-targeted antibodies, bevacizumab and aflibercept and recombinant proteins that target 

VEGF-A, VEGF-B, and placental growth factor (PIGF) (Ciombor et al., 2015, Hurwitz et 

al., 2004, Van Cutsem et al., 2012, Tabernero et al., 2014). The third and final group is 

regorafenib, an oral small molecule inhibitor of intracellular kinases involved in many 

signalling pathways including VEGFR2/3, RET, Kit, PDGFR and Raf kinases (Seow et al., 

2016). 

 

New therapeutic approaches currently under evaluation for the treatment of metastatic 

CRC include targeting signalling pathways including those above and MET, IGF1R, MEK, 

phosphoinositide 3-kinase (PI3K), Wnt, Notch, Hedgehog, and death receptor signalling 

pathways (Seow et al., 2016). 

 

1.5 Normal Intestinal Homeostasis 

In order to understand CRC development and progression, we must first understand normal 

intestine homeostasis. The mammalian intestine consists of the large intestine, also known 

as the colon, and the small intestine, which can be further divided into the duodenum, 

jejunum and ileum. A single layer of epithelium cells (mucosa) lines the entire intestine 

and is renewed every 5 days in the human (3 days in the mouse). The epithelium of the 

small intestine can be separated into two morphologically and functionally distinct 

compartments, the crypts of Lieberkühn and the villi (see Figure 1.2). This architecture 

optimizes the absorption of nutrients by increasing the exchange interface with the 

intestinal lumen. On the other hand, the colon has much larger crypts and no villi, 

presenting a flat surface epithelium facing the lumen. The crypt is a submucosal 

invagination in which between one and six stem cells, also known as the crypt-based 

columnar (CBC) cells, reside at the bottom. These cells divide and give rise to transit 

amplifying (TA) or progenitor cells that proliferate at a high rate and expand into a non-

proliferating population that migrates up the crypt walls towards the lumen. These non-

proliferating cells then differentiate into four principal epithelial lineages: absorptive 

enterocytes, mucus-producing Goblet cells, hormone-secreting entero-endocrine cells, and 

antimicrobial and enzyme-secreting Paneth cells. Once the differentiated epithelial cells 

reach the peak of the villus, they undergo apoptosis and are shed into the lumen to make 

room for new cells migrating up from the crypt. This process of rapid renewal of the 

intestinal mucosa maintains the absorptive and barrier functions of the intestine and is the 

basis for intestinal homeostasis. In the colon, cells differentiate mainly to enterocytes and 

Goblet cells (Sancho et al., 2003, Schepers and Clevers, 2012). 
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Figure 1. 2 - Normal intestinal homeostasis in the small intestine and the colon. 
Crypt-based columnar (CBC) intestinal stem cells reside at the base of the crypts in both the small intestine and the colon. These cells divide rapidly producing progenitor or transit 

amplifying cells (TA) cells which have limited dividing capacity, and produce non-proliferating cells which differentiate into four principal epithelial lineages: enterocytes, Goblet 

cells, entero-endocrine cells, and Paneth cells. The small intestine and colon have slightly different cell type compositions; the small intestine is majorly enterocytes and fewer Goblet 

and entero-endocrine cells, the colon is majorly enterocytes and Goblet cells. The differentiated cells migrate up to the peak of the villus, undergo apoptosis and are shed into the lumen 

making room for  ‘younger’ cells migrating up from the crypt. On the right is a haematoxylin and eosin (H&E) stained examples of murine small intestine and colon tissue, with villus 

and crypts indicated, scale bar = 100μm. Figure adapted from (Bloemendaal et al., 2016). 
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1.6 Molecular characterization of CRC 

Intestinal homeostasis requires tightly controlled cell proliferation, differentiation, 

migration and cell death. If there is an imbalance of these mechanisms favouring cell 

proliferation, the resulting hyperproliferation may lead to tumourigenesis and CRC in 

patients. This process begins with epithelial hyperplasia which progresses, with increasing 

dysplasia, to aberrant crypt foci (ACF). These ACF then advance to benign tumours known 

as adenomas or adenomatous polyps that can eventually become malignant carcinoma 

(Pinto and Clevers, 2005).  

 

CRC occurrence is usually attributed to sporadic mutations, which occur in 75% of cases, 

however germline-inactivating mutations in oncogenes or tumour suppressor genes can 

cause hereditary CRC (De Rosa et al., 2016). Between 2-5% of CRC can be attributed to 

inherited syndromes such as Lynch syndrome, familial adenomatous polyposis (FAP), 

MUTYH-associated polyposis, and certain hamartomatous polyposis conditions (Jasperson 

et al., 2010). Separately, up to one third of CRCs display increased familial risk, and 

several less penetrant susceptibility genes have been identified for this level of inheritance. 

 

Familial adenomatous polyposis (FAP) is an autosomal dominant syndrome associated 

with the mutation of the tumour suppressor, adenomatous polyposis coli (APC) protein 

(Groden et al., 1991, Kinzler et al., 1991). Loss of APC leads to the onset of hundreds to 

thousands of adenomas within the large intestine and if left untreated, will progress to CRC 

by 40 years of age on average (Vasen et al., 2008). Treatment of FAP includes 

colonoscopy every 1-2 years starting from the age of 10-12 years, and in the case of 

adenomatous polyps, the patient will need annual endoscopic follow up. If polyps are 

endoscopically untreatable, surgical removal of the rectum and the entire or part of the 

colon can be considered (Jasperson et al., 2010). 

 

Subsequently, somatic mutations in the same gene have been associated with the majority 

of sporadic CRCs.  Extensive molecular characterization of CRC using both human tumour 

biopsies (Human Cancer Genome Atlas, 2012) and mouse models (Andreu et al, 2005; 

Sansom et al, 2004) has defined loss of functional APC as the initiating mutation in up to 

81% of cases. In 90% of cases, the mutation results in a non-functional truncated protein 

(Fodde and Khan, 1995) and loss of both alleles is required for loss of tumour suppressing 

activity in FAP and CRC. 
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1.6.1 Adenomatous polyposis coli (APC), β-Catenin and Wnt 
signalling 

APC is an important component of Wnt signalling. In canonical Wnt signalling (Figure 

1.3), WNT ligands bind to Frizzled and LRP5/6 co-receptors on the cell surface resulting 

in the dissociation of the multi-protein degradation complex composed of APC, AXIN, 

CKI and GSK3β (and others) which targets the transcription factor β-Catenin for 

ubiquitinylation and subsequent proteasomal degradation. This leads to β-Catenin 

accumulation and translocation to the nucleus where, by association with TCF/LEF factors, 

it transcriptionally activates Wnt target genes. In the absence of Wnt signalling, β-Catenin 

is degraded and therefore Wnt target genes are not transcribed. Loss of APC leads to loss 

of the degradation complex and uncontrolled, hyperactivated Wnt signalling resulting in 

the upregulation of proto-oncogenes, c-MYC, CDK4 and CYCLIN D1.  

 

 

Figure 1. 3 - The Wnt signalling pathway. 
In the absence of WNT ligands, the multi-protein degradation complex composed of APC, AXIN, CKI and 

GSK3β (and others) functions to target transcription factor, β-Catenin for ubiquitinylation and subsequent 

degradation by the proteasome. Without Wnt signalling, cells differentiate. In the presence of WNT ligands 

binding to the frizzled (FZD) and LRP5/6 co-receptors, the degradation complex is dissociated. This means 

that β-Catenin is free to accumulate and translocate to the nucleus where by association with TCF/LEF 

factors, it transcriptionally activates Wnt target genes. Constitutive Wnt signalling leads to continued crypt 

proliferation. 
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Activating mutations in the β-Catenin gene (CTNNB1) are also found in CRC, however, at 

a lower rate of 12.5% in adenomas and 1.4% in invasive carcinoma, and are less likely to 

progress to larger adenomas and invasive carcinoma (Inomata et al., 1996, Samowitz et al., 

1999). APC and CTNNB1 mutations are mutually exclusive (Sparks et al., 1998) and 

although they are not equivalent, evidence to date suggests that any mutation resulting in 

stabilised nuclear β-Catenin is enough to initiate neoplastic transformation in the colonic 

epithelium (Brabletz et al., 2002).  

 

Currently there is no identified clinical use for APC or CTNNB1 mutations for treatment 

selection, prognosis or early detection of cancer. The development of small molecule 

inhibitors of this pathway is underway, however most of these studies are still preclinical 

(Anastas and Moon, 2013, Fang et al., 2016, Hwang et al., 2016) and concerns have been 

raised for the predicted side effects of such drugs (Kahn, 2014). However it was recently 

shown that APC restoration in established invasive carcinomas led to rapid and wide-

spread tumour cell differentiation and sustained regression without relapse in a mouse 

model of CRC, whereby APC is conditionally suppressed (or restored) with the use of a 

doxycycline-regulated shRNA (Dow et al. 2015). Furthermore, there is evidence to suggest 

that the WNTs themselves promote the outgrowth of metastatic lesions and cancer stem 

cells in lung, pancreatic and breast cancer (Malladi et al., 2016, Nguyen et al., 2009a, Yu et 

al., 2012, Tammela et al., 2017). Compounds impacting the stability of Axin (IWR and 

XAV939) and porcupine inhibitors (IWP2, C59, and LGK974) that lower β-Catenin to 

inhibit Wnt signalling, and that block WNT secretion respectively are currently being 

investigated. A promising study showed that inhibiting Porcupine led to reduced growth of 

transplanted and even autochthonous tumours in mouse models (Madan et al., 2016, 

Tammela et al., 2017). Furthermore, there is currently a clinical trial investigating the 

Porcupine inhibitor LGK974 in patients with malignancies dependent on WNT ligands 

including BRAF mutant colorectal cancer (2017). 

 

1.6.2 MYC deregulation in CRC  

c-MYC is a basic helix-loop-helix transcription factor that is known to regulate, through 

activation or repression, almost 15% of genes in the human genome (Fernandez et al., 

2003). Subsequently, c-MYC is involved in the regulation of many central cellular 

processes including proliferation, metabolism, differentiation, apoptosis and survival 

(Nesbit et al., 1999). c-MYC is a ubiquitously expressed proto-oncogene, which can act as 

a primary oncogene via mutation, in tumours such as Burkitt’s lymphoma (Lombardi et al., 
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1987), or more commonly, as a downstream effect of other activated oncogenes leading to 

its overexpression (Dang et al., 1999, Dang et al., 2009, Eilers and Eisenman, 2008). As 

mentioned previously activation of c-MYC is a downstream consequence of uncontrolled 

Wnt signalling, and it is also essential for CRC initiation and progression (Sansom et al., 

2007). Characteristics of deregulated c-MYC include uninhibited cell proliferation and 

growth, DNA replication, protein biogenesis, angiogenesis, and a restriction of host 

immune response (Gabay et al., 2014). Furthermore, the requirement for nucleic acids, 

protein and lipids is higher in transformed cells due to rapid cellular proliferation and 

oncogenic c-MYC drives many of the required metabolic changes. At the same time, c-

MYC overexpression leads to coordinated changes in gene expression resulting in 

increased proliferation. Therefore c-MYC acts as a major contributor to the ‘transformed 

phenotype’ (Miller et al., 2012).  

 

In many studies, loss of c-MYC in c-MYC driven tumours has triggered rapid tumour 

regression by proliferative arrest, re-differentiaion of tumour cells and collapse of tumour 

microenvironment (Arvanitis and Felsher, 2005, Felsher and Bishop, 1999, Flores et al., 

2004, Sansom et al., 2007). This suggests it could be a successful therapeutic target 

however strategies to target c-MYC have been met with difficulty. Firstly, successful 

inhibitors of cancer-associated proteins have typically been developed based on their gain-

of-function mutations that distinguish them from their normal counterparts however, this 

cannot be applied to c-MYC as it is rarely mutated in cancer despite its high expression. 

Secondly, c-MYC is a fundamental requirement in all proliferating cells therefore 

inhibition of the transcription factor would likely have unacceptable toxicities. Lastly, in 

order to inhibit c-MYC activity, a small molecule inhibitor would in theory, bind to c-

MYC and block its ability to form protein-protein interactions, however, the surfaces at 

which these occur tend to be large, flat and relatively featureless. The lack of any 

recognizable motifs or clefts means that the design of small molecule inhibitors is difficult 

(Soucek et al., 2008). 

 

1.6.3 The ‘adenoma-to-carcinoma’ sequence 

Loss of APC or activating mutations in β-Catenin and the consequent upregulation of the 

Wnt pathway and downstream c-MYC is fundamental to the initiation of colorectal 

carcinogenesis, however alone neither mutation is enough for the tumour to progress past 

the adenoma stage. For this, additional genetic and epigenetic alterations are needed. Loss 

of genomic and epigenomic integrity is a distinguishing feature of CRC and at least four 
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types have been described, these include chromosomal instability, microsatellite instability 

(MSI), CpG island methylator phenotype (CIMP) and global DNA hypomethylation 

(Sideris and Papagrigoriadis, 2014, Grady and Pritchard, 2014). These characteristics 

contribute to the increased rate of mutations in the development of CRC. These mutations 

include specific genes resulting in the deregulation of important signalling pathways such 

as the transforming growth factor β (TGFβ) signalling pathway, and the 

phosphatidylinositol 3-kinase (PI3K) pathway.  Additionally, many key tumour suppressor 

genes are often mutated, including TP53. These genetic and epigenetic alterations tend to 

occur in a preferred succession, however, the total accumulation of modifications rather 

than the order is accountable for determining the biological properties of the tumour 

(Fearon and Vogelstein, 1990). This provides clones of tumour cells a selective advantage 

at the given stage, necessary for the tumour to progress (Pinto and Clevers, 2005). Fearon 

and Vogelstein (1990) were the first to define such a sequential model for CRC, this has 

been defined as the ‘adenoma-to-carcinoma’ sequence (Figure 1.4) (Fearon and 

Vogelstein, 1990).  
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Figure 1. 4 - The Adenoma to Carcinoma sequence.  
Fearon and Voglestein published the ‘adenoma-to-carcinoma’ sequence in 1990, which was a sequential model for CRC. The normal epithelium acquires mutations in APC or β-catenin 

for the transformation to early adenoma and dysplastic crypts (also known as an aberrant crypt foci), subsequent mutations in KRAS or BRAF lead to the progression to an intermediate 

adenoma. Further mutations in TGFβ pathway including SMAD4 and TGFBR2 lead to late adenoma and then carcinoma and metastatic disease develops with the loss of TP53 and 

increasing chromosomal and microsatellite instability. 
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1.6.4 KRAS  

KRAS is a proto-oncogene and is the most frequently mutated gene in all human cancer 

types with CRC being no exception. Approximately 40% of CRC patients have tumour-

associated KRAS mutations, with most mutations occurring at codons 12, 13 and 61 of the 

gene. The consequence of these mutations is the constitutive activation of KRAS 

signalling. The KRAS protein is one of three functionally distinct isoforms of the RAS 

family of small GTPases including HRAS, KRAS, and NRAS, which cycle between active 

guanosine triphosphate (GTP)-bound and inactive guanosine diphosphate (GDP)-bound 

forms (Figure 1.5). KRAS promotes proliferation and survival as a downstream effector of 

EGFR signalling, via RAS/RAF/MAPK signalling. Mutations in KRAS prevent the ability 

of GTPase activating proteins to hydrolyse KRAS-bound GTP and therefore KRAS cannot 

be ‘switched off’ (Downward, 2003). These activating mutations mean that even in the 

absence of growth factors, there is a sustained proliferation signal within the cell. Fearon 

and Vogelstein (1990) found that 50% of larger adenomas (more than 1cm in size) and 

colorectal carcinomas had KRAS mutations, however in contrast, such mutations were 

observed in less than 10% adenomas smaller than 1cm in size. Therefore, mutation of 

KRAS is considered a relatively early event in the adenoma-to-carcinoma progression 

sequence (Vogelstein et al., 1988). KRAS mutations are sustained throughout progression 

of the disease as shown by the concordance of KRAS status in primary and metastatic CRC 

(Artale et al., 2008).  
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Figure 1. 5 - The RAS signalling pathway. 
Growth factor binding to the cell-surface receptors results in activated receptor complexes, which contain 

adaptors such as growth-factor receptor bound protein 2 (GRB2). These proteins recruit SOS1 which in turn, 

increases RAS-guanosine triphosphate (RAS-GTP) levels by catalysing nucleotide exchange on RAS. The 

GTPase-activating protein (GAP) neurofibrimin (NF1) binds to RAS-GTP and aids conversion to RAS-GDP 

(guanosine diphosphate) and terminates signalling. Several RAS effector pathways have been described, and 

some are depicted here. The RAS/RAF/MAPK signalling pathway regulates proliferation. RAS also activates 

the phosphatidylinositol 3-kinase (PI3K)-3-phosphoinositide-dependent protein kinase (PDK1)-Akt pathway 

that plays a crucial role in cell survival. Other RAS effector pathways include the regulation of calcium 

signalling, cytoskeletal organisation and vesicle trafficking. Figure adapted from (Schubbert et al., 2007). 

 

The BRAF protein kinase is the direct downstream effector of KRAS in the 

RAS/RAF/MAPK signalling pathway and is mutated in 10-15% of CRC. KRAS and BRAF 

mutations are mutually exclusive suggesting that any mutation resulting in activated 

MAPK signalling is sufficient to support tumourigenesis. Mutations in EGFR ligands and 

the EGFR gene itself have also been observed in a subset of colorectal cancers (Grady and 

Pritchard, 2014). 
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Since discovery of KRAS’s role in oncogenesis, there has been great effort to exploit it as 

a therapeutic target. Unfortunately these efforts have gone unrewarded, as the RAS 

proteins do not present suitable pockets to which drugs can bind. Furthermore inhibition of 

pathways downstream of RAS within the RAS/RAF/MAPK pathway and the PI3 Kinase 

pathway, have also been ineffective in patients with RAS driven tumours. Paradoxically 

RAF kinase inhibitors activate RAF/MAPK signalling, and MEK inhibitors activate 

upstream feedback mechanisms that render the inhibitors relatively ineffective 

(McCormick, 2015). Additionally, many studies have shown that patients with KRAS 

mutations do not benefit from upstream anti-EGFR therapy, either as a single agent 

(Amado et al., 2008) or in combination with chemotherapy (Bokemeyer et al., 2011, 

Bokemeyer et al., 2009). 

 

1.6.5 Other common mutations in CRC 

Deregulation of the transforming growth factor β (TGF-β) pathway occurs in the majority 

of CRCs. The TGF-β family are ubiquitous and multi-functional cytokines that are 

essential to cellular processes such as growth, development, inflammation, tissue repair 

and host immunity (Clark and Coker, 1998). Mutations have been observed in multiple 

components of the TGF-β pathway including receptor genes, TGFBR2 and TGFBR1, post 

receptor signalling pathway genes, SMAD2 and SMAD4, and TGF-β superfamily members 

such as ACVR2 (Deacu et al., 2004, Eppert et al., 1996, Grady et al., 1999). Mutations in 

TGFBR2 occur in 30% of CRC and have been associated with the progression of late 

adenomas to carcinoma, and in line with this loss of SMAD4 has also been implicated in 

adenoma formation and the progression to carcinoma in mouse models (Takaku et al., 

1998). 

 

Fifty percent of CRCs have loss of function mutations in the TP53 tumour suppressor gene 

which is associated with the development to carcinoma from adenoma. As with APC, 

TP53 has been studied extensively as a possible therapeutic target however to date, it has 

no clinical or prognostic role in CRC patients (Walther et al., 2009). Notably, tumours 

harbouring mutations in TP53 and APC are often associated with higher rates of 

chromosomal instability (CIN) (Drost et al., 2015, Rajagopalan et al., 2003, Pino and 

Chung, 2010). 

 

The phosphatidylinositol 3-kinase pathway is mutated in up to 40% of CRC patients and 

has been associated with the progression from adenoma to carcinoma. The most common 
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mutations are found in the P10α catalytic subunit of PIK3CA (32% of CRCs) (Samuels et 

al., 2004) and are also observed in PTEN, a negative regulator of PI3K signalling 

(Danielsen et al., 2008, Razis et al., 2008). EGFR signalling also has a role in modulating 

the PI3K pathway through KRAS activation and it has been suggested that mutations in 

PI3KCA and PTEN are predictive markers of anti-EGFR therapy (Razis et al., 2008, 

Sartore-Bianchi et al., 2009). 

 

1.6.6 The consensus molecular subtypes of CRC 

CRC is a very heterogeneous disease accounting for the generation of drug resistance and 

relapse after therapy (De Rosa et al., 2016). On the other hand, as our understanding of 

CRC and the molecular alterations taking place increases, we can stratify tumours into 

subtypes and treat these differently, with a higher chance of success, making precision 

medicine a clinical reality for CRC (Guinney et al, 2015).  

 

A recent study showed that all cases of CRC can be allocated to one of four consensus 

molecular subtypes (CMSs), each with distinguishing features and disease prognosis 

(Guinney et al., 2015) (Table 1.3). CMS1 is defined as microsatellite instability (MSI) 

immune, with features including hypermutations, microsatellite instability and a strong 

immune activation. CMS2 is defined as canonical, is epithelial and features increased Wnt 

and c-MYC signalling. CMS3 is defined as metabolic, is epithelial and features evident 

metabolic dysregulation. Finally, CMS4 is defined as mesenchymal and includes features 

such as prominent TGF-β activation, stromal invasion and angiogenesis. Furthermore, the 

study found that CMS1 patients have worse survival after relapse and CMS4 patients have 

worse relapse-free and overall survival (Guinney et al., 2015). 

 

 

 

 

 



 

 35 

Table 1. 3 - The Consensus molecular subtypes for CRC 

Table adapted from (Guinney et al., 2015).  

 

CMS1 CMS2 CMS3 CMS4 

MSI immune Canonical Metabolic Mesenchymal 

14% 37% 13% 23% 

MSI, CpG island 

methylator 

phenotype (CIMP) 

high, hypermutation 

Chromosomal 

instability (CIN) 

high 

Mixed MSI status, 

CIN low, CIMP 

low 

CIN high 

BRAF mutations 
 

KRAS mutations 
 

Immune infiltration 

and activation 

WNT and MYC 

activation 

Metabolic 

deregulation 

Stromal 

infiltration, TGF-β 

activation, 

angiogenesis 

Worse survival after 

relapse   

Worse relapse-free 

and overall 

survival 

 

1.7 Approaches to modelling CRC 

In order to develop effective treatment strategies we need to understand key driver 

mutations and the cellular processes that are essential for tumourigenesis that could be 

targeted pharmacologically (Young et al., 2013).  

 

1.7.1 Human cell lines 

Cell lines that have been cultured directly from human patient tumours are used widely to 

model CRC. Advantages of using human cell lines include their direct relevance to the 

disease, and the ability to perform high-throughput experiments which are fast and 

relatively cheap.  Cell lines mimic some tumour behaviour in culture, therefore basic 

measurements including cell growth, cell death, migration and invasion in response to a 

range of genetic modifications and drugs can be investigated.   

 

The major disadvantage with human cell lines is that by culturing the cells in a monolayer 

on plastic, you remove the normal and crucial interaction of the cells and their 

environment. Time in culture also allows for genetic drift to occur resulting in the cell line 

no longer resembling the tumour from which it was generated. Furthermore, it is 

impossible to model an entire organism’s response to the tumour with 2D culture, this 
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includes the immune system or angiogenesis, both of which are known to have an impact 

on tumour development (Young et al., 2013).  

 

Taking these advantages and disadvantage into consideration, culturing CRC human cell 

lines is still an invaluable research tool that often allows the researcher to investigate 

genetic contributions to the disease and to clarify complex molecular mechanisms. 

Typically, in vitro investigation using cell lines lays the foundation for further in vivo 

work. 

 

1.7.2 Intestinal organoids 

The development of 3D culturing systems has come closer to a better representation of the 

tumour environment and behaviour. It is now accepted that intestinal stem cells (ISCs) are 

the cell of origin of CRC and that mutations within the ISC population of crypt base 

columnar (CBC) cells act as the driving force behind tumour initiation (Barker et al., 

2009). Studying this population of cells allows researchers to investigate the earliest stages 

of tumourigenesis. 

 

The first description of culturing 3D rat intestinal organoids was published in 1992 (Evans 

et al., 1992, Fukamachi, 1992) and since then organoid culture systems have revolutionised 

CRC research. In 2009, a new and improved protocol for the 3D culture of self-renewing 

intestinal organoids was published by Hans Clever’s lab (Sato et al., 2009). This technique 

was soon optimised for the generation of organoids from mouse and human colon, and 

colorectal adenoma tissue (Sato et al., 2011, Jung et al., 2011). In these protocols, 

epithelial cells are embedded within matrigel, which provides a laminin-rich 3D matrix for 

cells to grow in, and mimics the microenvironment found at the crypt base in vivo (Figure 

1.6). Additionally, the cultures require culture media supplemented with growth factors to 

sustain the ISC population and for intestinal crypt growth. These include Noggin, a bone 

morphogenetic protein (BMP) inhibitor that blocks BMP inhibition of ISC self-renewal; 

epidermal growth factor (EGF), to support proliferation; and R-spondin, an activator of the 

Wnt signalling pathway, to sustain proliferation of the ISC population and inhibit their 

differentiation. Notably, organoids cultured from human CRC samples grow efficiently 

without the addition of growth factor supplements and can depend upon the mutational 

background and activated signalling pathways of the tumours from which they are 

generated (Matano et al., 2015, Fujii et al., 2016).  
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The organoid cultures contain all epithelial cell types found in the original intestinal 

system, including a ‘crypt’ region and migration of cells along a crypt-villus axis. 

Organoid culture has been referred to as ‘the missing link for researchers between in vitro 

and in vivo studies’ and is a more relevant model compared to traditional 2D cultures for 

the study of in vivo response. It overcomes disadvantages of 2D culturing including the 

lack of 3D cell/cell interactions and cell homology and maintains the advantages of 

experiments being quick and relatively cheap (Young and Reed, 2016). 

 

As with any model system, there are limitations. It has been observed that CRC organoids 

are genetically stable, however during long-term culturing there is still the potential for 

genetic drift to occur as in 2D cell cultures. Furthermore, organoid culture does not include 

all other cell types found in a whole organism therefore differences in response between ex 

vivo and in vivo are unavoidable (Young and Reed, 2016). 

 

 

Figure 1. 6 - Murine -, small intestine - derived organoids. 
The left panel shows an organoid culture harvested from a wildtype mouse, with crypt-like and villus-like 

domains indicated. These cultures have all of the epithelial cell lineages including conserved migration of the 

differentiated cells along a crypt-villus axis. The right panel shows an organoid culture harvested from a 

intestinal tumour mouse model with deleted Apc gene and constitutively active KRas (genotype 

Apc
fl/fl

;KRas
G12D

). Due to loss of APC, these cells have high Wnt signalling. This means that they continually 

proliferate rather than differentiate, resulting in the formation of a spherical shape. Scale bar = 100μm. 

 

1.7.3 Genetically engineered mouse models (GEMMs) 

The arrival of gene targeting has enabled researchers to take a more controlled approach to 

creating models of CRC. The genetically engineered mouse model (GEMM) has become 

indispensable for the investigation of gene function, genetic contribution to disease, and 

for testing efficacy and toxicity of potential therapeutic treatments. Advantages of using 

GEMMs for the study of human disease include the availability of genomic information, 
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the ease of genetic manipulation using mutagenesis techniques and the ability to monitor 

the outcome on a whole organism (Young et al., 2013). 

 

1.7.3.1 Mutant Apc-driven CRC mouse models  

The first and still most widely used GEMM to investigate the loss of APC function and 

CRC development is derived from the FAP model, the ethylnitrosourea-induced Min 

mouse (Min for multiple intestinal neoplasia) (Moser et al., 1990). The Min mouse has a 

mutant allele of Apc, containing a nonsense mutation at codon 850 that results in a stably 

expressed truncated protein. Min homozygous mice are embryonic lethal and die in utero 

at approximately embryonic day 8 (Moser et al., 1992). Min heterozygous mice develop 

numerous (up to 100) intestinal adenomas within 3-4 months.  Interestingly, all of these 

adenomas harbour allelic loss of the wild-type copy of the Apc allele as well as the Min 

Apc allele (Levy et al., 1994). These studies provided strong evidence that tumour 

initiation in the mouse requires bi-allelic loss of the gene, as observed in human patients 

developing CRCs (Powell et al., 1992). This model has been used for a range of studies 

that have been directly translated to humans, the most notable include chemoprevention 

studies and functional testing of genes that might modify intestinal tumourigenesis 

(Jackstadt and Sansom, 2016). The chemoprevention experiments have shown therapeutic 

benefit of non-steroidal anti-inflammatory drugs (NSAIDs) for e.g. celecoxib, a 

cyclooxygenase (COX) inhibitor and aspirin in both FAP patients and CRC patients 

respectively (Baron et al., 2003, Steinbach et al., 2000). 

 

Additional Apc mutant alleles have since been constructed using homologous 

recombination including mutations at codons 1638, 716, 1309 and 474 (Fodde et al., 1994, 

Oshima et al., 1995, Quesada et al., 1998, Sasai et al., 2000). As with the Apc Min mice, 

homozygous mice all die in utero and heterozygous mice develop adenomas throughout 

the intestine, although the number varies as well as the average lifespan. Furthermore, 

these models corroborated loss of the second wild-type copy of Apc as the rate-limiting 

step in tumour development. Surprisingly, none of the tumours interrogated harboured 

KRas or p53 mutations as in the human disease (Smits et al., 1997, Oshima et al., 1997). 

 

Nevertheless, all of the above mouse models have shortcomings for studying CRC 

progression. To start with, the average lifespan of the animals is too short to permit the 

accumulation of driver mutations and progression of adenoma to advanced malignancies 

and secondly, the tumours are predominantly located within the small intestine rather than 
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the colon. These characteristics are not completely representative of human FAP or 

sporadic CRC in humans.  

 

1.7.3.2 Conditional Apc models of CRC 

In the 1990s, Cre-Lox (Cre) technologies were developed and this enabled researchers to 

delete a gene of interest in any specific tissue at a specific time (Nagy, 2000). This is 

achieved by producing GEMMs with a Cre recombinase transgene under the control of an 

inducible tissue specific promoter alongside a modified version of the gene of interest, 

where Lox P recombination sites flank a region of the gene (Figure 1.7). In order to 

produce a conditional knockout the Lox P recombination sites often flank an essential exon 

so that when excised, the gene is non-functional. For the induction of an oncogene, such as 

KRas, the Lox P sites often flank a STOP codon so that the gene is only transcribed in the 

presence of Cre recombinase. Most commonly the induction of Cre recombinase is 

achieved by coupling the Cre enzyme to the oestrogen receptor, so that tamoxifen 

administration is required for activation of the Cre recombinase (Hayashi and McMahon, 

2002). This technique also has the added benefit of overcoming the issue of homozygous 

embryonic lethal mutations. 
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Figure 1. 7 - The Cre-Lox System. 
The Cre-Lox system allows temporal and spatial control of gene expression in vivo. Two GEMMs are 

crossed, one contains the Cre recombinase transgene downstream of an inducible, tissue specific promoter, 

and the other contains the modified gene of interest, flanked by Lox P sites. In the F1 progeny, the Cre 

recombinase is expressed only in the tissue of interest and this result in the ‘floxing’ or excision of the gene 

of interest in that tissue only. In some cases only an essential exon of the gene of interest is flanked by Lox P 

sites, however this also results in a non-functional protein. Conversely, if the aim is to express a particular 

gene of interest rather than delete it, a STOP codon flanked by Lox P sites is placed upstream of the gene of 

interest. 

 

The ability to acutely delete both copies of Apc has provided valuable insight into the 

mechanisms of early tumourigenesis. In 1997, Shibata and colleagues showed that 

delivering adeno-virus directly to the colon of homozygous Apc ‘floxed’ mice (where exon 

14 is flanked by Lox P sites) was sufficient to instigate colon adenomas. Furthermore, 

homozygous deletion of Apc in the intestine using inducible AhCre, which is driven by the 

Cyp1a1 promoter and is inducible by β‐ naphthoflavone and VillinCreER
T2

, drives 

massive morphological changes in intestinal homeostasis (Sansom et al., 2004, Andreu et 

al., 2005).  Loss of Apc results in the crypt ‘progenitor’ phenotype, which is characterised 

by unrestricted proliferation and altered migration and differentiation within the intestinal 

crypt. The crypt progenitor phenotype is mediated by the Wnt target gene, c-Myc as 

additional loss of c-Myc in these mice was able to rescue this phenotype completely 

(Sansom et al., 2007). This result was repeated using Villin-Cre, which results in 
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recombination within the intestinal epithelium and requires induction by tamoxifen 

injection. In this case, mice cannot sustain homozygous deletion of Apc and need to be 

terminated at day 4-post induction (el Marjou et al., 2004, Andreu et al., 2005). Both of 

these short-term Apc models result in an increased number of undifferentiated cells within 

the intestine and so implicated a role for Apc in cancer development by dysregulation of 

the intestinal stem cells (ISCs). A fundamental study that used Cre recombinase under the 

control of stem cell specific Lgr5 promoter, to conditionally delete Apc within ISCs, 

showed that ISCs are the cells of origin of CRC (Barker et al., 2009). This has significantly 

advanced our understanding of CRC tumourigenesis and tumour homeostasis.  

 

Homozygous deletion has been crucial for our understanding of early tumourigenesis, 

however, the severe phenotype leads to a very short survival post induction and mice do 

not develop tumours. One possible method to overcome this is to use Cre recombinases 

that recombine in fewer cells, or even lower doses of induction reagent to achieve the same 

outcome. Another method is to heterozygously delete Apc and allow sporadic loss of the 

second allele to occur over the mouse’s lifetime. Only the cells in which both copies of 

Apc are lost will form adenomas.  

 

1.7.3.4 KRas-driven mouse models of CRC 

Homozygous deletion of KRas results in embryonic lethality by day 12.5 (Koera et al., 

1997) and a study investigating the whole body overexpression of activated KRas (KRas
LA

) 

observed a predisposition to a range of tumour types, particularly in the lungs, but mice 

also exhibited thymic lymphomas and skin papillomas. These mice did not develop 

adenomas in the colon but did show aberrant crypt foci (ACF), an early stage of dysplasia 

(Johnson et al., 2001). However, expression of activated KRas (KRas
V12G

) in the intestinal 

epithelium resulted in the development of lesions varying from ACF to adenocarcinoma 

(Janssen et al., 2002). 

 

Heterozygous deletion of Apc can be combined with driver mutations such as activated 

KRas to investigate the contribution to CRC in a model that is more relevant to the human 

patient. Sansom et al. combined Apc deficiency with a conditional mutant allele of 

oncogenic KRas, K-Ras (V12) which is an activating mutation resulting in the amino acid 

substitution at position 12 in KRas from a glycine (G) to a valine (V). The allele is under 

the control of a floxed STOP transcriptional cassette so that until Cre-mediated 

recombination, the oncogenic allele remains transcriptionally silent. Activation of KRas 
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alone did not have an impact on normal intestinal homeostasis, however it co-operated 

with Apc deficiency to accelerate tumourigenesis and invasion (Sansom et al., 2006). The 

only limitation with this model is that the mice develop renal carcinomas before the 

intestinal tumours can fully invade and metastasise.  

 

1.7.3.5 Chemical-induced mouse models of CRC 

Inflammation is also a known driver of CRC and therefore patients with ulcerative colitis 

and Crohn’s disease are associate with high risk of cancer development that is estimated at 

2%, 8% and 18% after 10, 20, and 30 years after diagnosis respectively. Furthermore, in a 

family with history of CRC, the condition irritable bowel syndrome (IBS) doubled the 

cumulative risk of developing dysplasia (Eaden et al., 2001).  

 

Dextran sodium sulphate (DSS) is an inflammatory agent used in animal models to study 

colitis-induced carcinogenesis. DSS has direct toxic effects on the colonic epithelium 

resulting in chronic inflammation and is usually administered in the drinking water. After 

sufficient duration of DSS treatment alone, some mice will develop tumours exclusively in 

the colon, however, mice which are predisposed to tumourigenesis can be used to hasten 

tumour development and increase tumour number. This includes mice with mutations in 

Apc, p53 and Msh2 or in mice pre-treated with genotoxic agents such as 1,2-

dimethylhydrazine (DMH) and azoxymethane (AOM) (Thaker et al., 2012). DMH is a 

metabolic precursor of methylazoxymethanol and has been reported to cause colon 

tumours in rodents that closely recapitulate the human disease (Haase et al., 1973, Martin 

et al., 1973, Shamsuddin and Phillips, 1981). AOM produces similar lesions in rodents but 

is more potent and stable than DMH (Bolt et al., 2000, Delker et al., 1999). Advantages of 

investigating CRC using chemical induced models include rapid and reproducible tumour 

initiation and the recapitulation of the adenoma-carcinoma sequences that occurs in 

humans (Rosenberg et al., 2009). Furthermore, tumours are located exclusively in the 

colon which better recapitulates the human disease compared to the models mentioned 

above. The combination of DSS with Apc mutation or AOM leads to the development of 

tumours in as little as 7-10 weeks whereas tumour development in other models usually 

requires several months (Thaker et al., 2012). 
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1.8 AMPK-Related kinases 

1.8.1 AMPK 

The AMP-activated protein kinase (AMPK) is a highly conserved serine/threonine protein 

kinase that is an essential energy sensor within cells. Many cellular functions require 

energy and most of these are driven by the hydrolysis of ATP to ADP, therefore a balance 

of ATP generation and ATP consumption in cells is required. The reversible reaction of 

2ADP = ATP + AMP leads to ATP generation and is normally maintained close to 

equilibrium. However, any rise in the ADP/ATP ratio causes the reaction to be shifted 

towards ATP and AMP production and thus falling energy status is not only associated 

with increased ADP but also AMP (Hardie and Hawley, 2001). A lower energy status is 

usually a result of cellular stresses that hinder ATP production such as hypoxia, glucose 

deprivation, and ischemia or mechanisms that increase ATP consumption such as cell 

growth or muscle contraction. Activation of AMPK results in the conservation of ATP by 

the inhibition of ATP-consuming processes such as the synthesis of lipids, carbohydrates 

and proteins, as well as the upregulation of catabolic processes for the generation of ATP 

(Hardie, 2003).  

 

AMPK exists as a heterotrimeric complex comprising of a catalytic α-subunit and 

regulatory β - and γ- subunits (Hardie et al., 2012). Regulation of AMPK is both mediated 

on allosteric and post-translational levels. ATP, ADP and AMP are all able to bind the γ- 

subunit of AMPK with similar affinity, however, allosteric activation of AMPK is only 

caused by AMP (Hardie et al., 1999). The binding of AMP and ADP to AMPK promote its 

phosphorylation and inhibit dephosphorylation of the protein by Liver kinase B1 (LKB1) 

in complex with STRAD and MO25 (Hawley et al., 2003, Shaw et al., 2004, Woods et al., 

2003). It has been suggested that this provides a graded response of AMPK activity over a 

range of stress levels in the cells. ADP is usually present at higher levels, therefore the 

binding of ADP to AMPK may elicit a moderate stress response whereas binding of AMP 

suggests that ATP levels are very low and a more amplified response is elicited (Hardie et 

al., 2012). LKB1 phosphorylates the AMPK catalytic subunit at a conserved Threonine 

residue (referred to as Thr-172 due to its position in the original rat sequence) in the 

activation loop (Hong et al., 2003, Hawley et al., 1996). Ca
2+

/calmodulin-activated protein 

kinase kinases such as CaMKKβ can also phosphorylate AMPK at Thr-172 in response to 

increases in cellular calcium independent of AMP or ADP levels (Hawley et al., 2005). 

Finally, TGF-β-activated kinase 1 (TAK1) can also phosphorylate AMPK at this site in 
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response to Tumour necrosis factor (TNF)‐ related apoptosis‐ inducing ligand (TRAIL) 

activation (Herrero‐ Martín et al., 2009). In addition to the various metabolic stresses 

mentioned above that can activate AMPK, drugs and xenobiotics which involve increases 

in AMP, ADP or Ca
2+

 can also activate AMPK. These include antidiabetic drugs such as 

metformin, phenformin and thiazolidinediones (Zhou et al., 2001) and plant products 

reputed to have health benefits, such as resveratrol from grapes and red wine (Baur et al., 

2006), which act by inhibiting mitochondrial ATP synthesis and thereby activate AMPK 

indirectly (Hawley et al., 2010). Direct AMPK activators are also available, such as 5-

aminoimidazole-4-carboxamide riboside (AICAR), which acts as an AMP-mimetic and 

binds directly to the γ- subunit (Corton et al., 1995). 

 

1.8.2 AMPK-related kinases 

The AMPK-related kinase (AMPK-RK) family was identified through their sequence 

homology with AMPK, specifically to the conserved active T loop located at the protein 

kinase domain (Manning et al., 2002). Currently twelve AMPK-related kinases (AMPK-

RKs; BRSK1, BRSK2, NUAK1, NUAK2, QIK, QSK, SIK, MARK1, MARK2, MARK3, 

MARK4, and MELK) have been identified (Sun et al, 2013). Further sequence analyses 

have discovered that the SNRK kinase family are also distant relatives of AMPK (Figure 

1.8).  
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Figure 1. 8 - The AMPK-related kinase family 
Currently, there are 12 AMPK-related kinases identified. These include BRSK1, BRSK2, NUAK1, NUAK2, 

QIK, QSK, SIK, MARK1, MARK2, MARK3, MARK4, and MELK. In complex with STRAD and MO25, 

Liver Kinase B1 (LKB1) phosphorylates all AMPK-RKs at the conserved threonine residue excluding 

MELK. LKB1 is also known to phosphorylate one member of the SNRK kinase family at the same residue. 

The SNRK family are also distant relatives of AMPK according to sequence analyses. The bottom panel 

shows the domain organization of the human AMPK-RK. The amino acid length of each protein is indicated 

on the right (amino acid length, aa). Kinase domains, ubiquitin-associate domains (UBA), domain 3, kinase-

associate domains (KA1), Pfam-B domains and conserved T-loop sites phosphorylated by LKB1 are 

indicated using key. Adapted from (Katajisto et al., 2007) 
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The AMPK-RKs have similar structural organization, comprising of an N-terminal 

catalytic domain, a C-terminal spacer sequence and in some cases, an ubiquitin-associated 

domain and a KA1 domain (Bright et al., 2009). Liver Kinase B1 (LKB1) is known to 

activate all family members (excluding MELK) at the conserved threonine residue when in 

complex with STRAD and MO25 (Lizcano et al., 2004). Evidence that other known 

activators of AMPK including AICAR, phenformin and upstream kinase, Ca
2+

 

/calmodulin-dependent PK kinase  (CaMKK) can or cannot phosphorylate and/or 

activate the AMPK-RKs are conflicting but do suggest that regulation varies for individual 

AMPK-RK subfamilies (Lizcano et al., 2004, Sakamoto et al., 2004, Bright et al., 2008, 

Lefebvre et al., 2001). Indeed, we have recently shown that NUAK1 and NUAK2 are not 

regulated directly by CaMKK but are regulated by calcium signalling in LKB1 deficient 

conditions (Monteverde, Accepted for publication). Despite the vast amount of information 

about AMPK, many of the AMPK-RKs remain uncharacterized. Generally, the literature 

has associated the MAP/microtubule affinity-regulating kinases (MARKs) with the 

regulation of cell polarity (Drewes et al., 1997). The brain-specific kinases (BRSK1 & 

BRSK2) have been found to control neuronal polarity (Kishi et al., 2005). The salt 

inducible kinases (SIKs) have been implicated in various processes; SIK1 (SIK) has been 

related to the regulation of steroidogenic gene expression in adrenocorticotropic hormone 

(ACTH) stimulation (Katoh et al., 2006), SIK2 (or QIK, Quin-induced kinase) may 

mediate insulin signal transduction (Horike et al., 2003) and inhibit CREB-mediated gene 

expression by phosphorylation of TORC2, at the same site as AMPK (Screaton et al., 

2004). Finally, SIK3 (QSK) was found to regulate cell cycle progression in Drosophila 

(Bettencourt-Dias et al., 2004).  

 

1.8.3 NUAK1 and NUAK2: structure, expression and a common 
target 

AMPK-regulated kinase novel (nua) family SNF-like kinases, NUAK1 (ARK5) and 

NUAK2 (SNARK) comprise of a serine/threonine-protein kinase domain at their N-

terminus that is conserved among AMPKα1/2 and the AMPK-RKs (Manning et al., 2002). 

Unlike the other AMPK-RKs, neither NUAK1 nor NUAK2 contain a ubiquitin-associated 

(UBA) domain, which has been associated with protein conformation and LKB1-mediated 

phosphorylation and activation (Jaleel et al., 2006). Interestingly, neither mammalian 

AMPKα1 nor AMPKα2 contain UBA domains either. The human NUAK1 gene resides at 

chromosome 12q23.3 and encodes a protein of 661 amino acids with a molecular weight of 

76kDa, whereas murine NUAK1 is 658 amino acids long. Homo sapiens NUAK1 is 91% 
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similar to Mus musculus NUAK1, 75% to Xenopus tropicalis NUAK1, and 65% similar to 

C.elegans UNC-82. NUAK2 is located at chromosome 1q32.1 and encodes a 629 amino 

acid protein with a molecular weight of 69kDa (Lefebvre et al., 2001).  The human 

NUAK1 amino acid sequence shows 58% homology to NUAK2 as a whole and 82% in the 

kinase domain (Suzuki et al., 2003a) (see Figure 1.9). 
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Figure 1. 9 – Amino acid sequence homology between human NUAK1 and NUAK2 
Alignment of the amino acid sequences of human NUAK1 and NUAK2 proteins show that they share 58% 

sequence homology. The protein kinase domain is indicated, specifically NUAK1 kinase domain can be 

found from aa55-306 and NUAK2 can be found from aa53-303. The GILK motif is highlighted in yellow. 

Figure adapted from NCBI BLASTp analysis of NUAK family SNF1-like kinase 1 [Homo sapiens], NCBI 

Reference Sequence: NP_055655.1 and NUAK family SNF1-like kinase 2 [Homo sapiens], NCBI Reference 

Sequence: NP_112214.2.  

 

NUAK1 and NUAK2 have distinct expression patterns although both are highly expressed 

in the brain. NUAK1 is mainly expressed in highly oxidative tissues including the 

cerebrum, heart, soleus muscle in both human and mouse tissues (Inazuka et al., 2012, 

Nagase et al., 1998). NUAK2 levels are greatest in the adrenal and brain tissue, however 
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expression has been detected in the thymus, spleen, kidney, stomach, liver, skin, testis, 

uterus and ovaries (Lefebvre and Rosen, 2005). However, Lefebvre and Rosen showed that 

NUAK2 activity was relatively low in most tissues and highest in the kidneys. NUAK1 

and NUAK2 have both been detected in the cytoplasm and the nucleus, however NUAK2 

is reported to be predominantly in the nucleus where it can alter gene expression as a 

transcriptional modulator in response to stress (Kuga et al., 2008, Hou et al., 2011). 

 

To date, the best characterised substrate of NUAK1 and NUAK2 is the myosin 

phosphatase target subunit (MYPT1) (Yamamoto et al., 2008, Zagorska et al., 2010). 

MYPT1 is a component of the PP1β
MYPT1

 myosin phosphatase complex required for the 

catalysing dephosphorylation of myosin light chain, which in turn regulates many 

functions including smooth muscle contraction and cell adhesion (Ito et al., 2004). NUAK1 

and NUAK2 are the only AMPK-RKs to contain a Gly-Ile-Leu-Lys (GILK) motif, which 

mediates direct binding to a regulatory pocket on the surface of PP1β. Downstream of 

LKB1 activation, NUAK1 and NUAK2 phosphorylate MYPT1 at three conserved 

residues, Ser-445, Ser-472, and Ser-910 in response to conditions that cause cell 

detachment (Banerjee et al., 2014b). Phosphorylation at these sites by NUAK1 or NUAK2 

induces MYPT1 to bind to 14-3-3 isoforms, thereby supressing phosphatase activity of 

PP1β towards the myosin light chain (Zagorska et al., 2010) (Figure 1.10).  
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Figure 1. 10 - Schematic representation of NUAK1/NUAK2’s role in the regulation of 

myosin light chain phosphorylation. 
LKB1 phosphorylates and activates the kinases NUAK1 and NUAK2, which are both able to interact with 

the MYPT1-PP1β myosin phosphatase complex through the ability to interact with the GILK-binding pocket 

on the PP1β catalytic subunit. Only one NUAK is required to bind to PP1β. In response to cell detachment, 

the NUAK1 isoforms can phosphorylate MYPT1, thereby inducing binding to 14-3-3. This inhibits 

interaction with myosin and leads to increased phosphorylation of MLC2 and activation of myosin II. Figure 

adapted from (Zagorska et al., 2010). 

 

1.8.4 NUAK2: function and regulation 

Several characteristics of NUAK2 function and regulation have been compared to AMPK 

(Egan and Zierath, 2009) as NUAK2 is also responsive to AMP and can be activated in 

response to glucose deprivation and chemical ATP production (Lefebvre et al., 2001, 

Lefebvre and Rosen, 2005, Kuga et al., 2008). It is unknown if NUAK2 can function 

heterotrimerically as AMPK does, therefore it is currently unclear how NUAK2 could be 

activated in response to AMP/ATP levels without regulatory β - and γ- subunits. LKB1 is 

also known to phosphorylate NUAK2 at Thr-208, reportedly the NUAK2 T-loop peptide is 

a better LKB1 substrate than AMPKα suggesting differential kinase binding affinity of 

LKB1 within the AMPK-RK family (Lizcano et al., 2004). NUAK2 has been implicated in 

various studies as a regulator for cancer cell viability, migration and metastatic potential 
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for example, NUAK2 has been related to cell motility associated with carcinogenesis 

(Lefebvre et al., 2001, Suzuki et al., 2003c) and separately, as a downstream kinases of the 

Epstein Barr virus (EBV) latent membrane protein 1 (LMP1), which has a role in 

resistance to cancer cell death (Kim et al., 2008). Additionally, NUAK2 appears to protect 

cells from TNF-related apoptosis and is required for the CD-95 induced motility and 

invasiveness of breast cancer MCF-FB cells (Legembre et al., 2004). More recently, 

NUAK2 has been associated with myocyte survival and the maintenance of muscle mass 

with age in vivo and in vitro by the downregulation of the Rho kinase signalling pathway 

(Lessard et al., 2016). Namiki et al. showed that the NUAK2 gene is amplified in PTEN-

deficient melanomas and that inhibition of CDK2 in this scenario was sufficient to supress 

the growth of melanomas both in vitro and in vivo (Namiki et al., 2015).  

 

1.9 NUAK1 

1.9.1 NUAK1: function and regulation  

As NUAK1 and NUAK2 share many characteristics, it is important to consider both during 

an investigation, however the focus of this thesis will be NUAK1.  

 

LKB1 is known to phosphorylate NUAK1 at Thr-211 in response to metabolic stress 

(Suzuki et al., 2006). AKT can also phosphorylate NUAK1 at Ser-600 in response to IGF 

signalling in tumour cells (Suzuki et al., 2003b). However, whether this is essential for 

kinase activity in all conditions is unclear as it was reported to be not required for a 

synthetic lethal response in combination with deregulated c-MYC (Liu et al., 2012). In 

2006, Suzuki et al reported that Nuclear Dbf2-related protein (NDR2), an AGC kinase, 

activates NUAK1 at Thr-211 upon IGF stimulation in a PDK1- and AKT-dependent 

manner (Suzuki et al., 2006).  

 

NUAK1 is stimulated in vitro by AMP, as NUAK2 and AMPK, and is also able to 

phosphorylate SAMS peptide, a synthetic substrate for AMPK-RKs (Suzuki et al., 2003a, 

Suzuki et al., 2003b, Suzuki et al., 2006). As with NUAK2, it is unknown if NUAK1 can 

function heterotrimerically as AMPK, therefore, it is unclear how it can be stimulated in a 

similar manner to AMPK. As mentioned above NUAK1 is activated downstream of 

growth factor signalling such as insulin and insulin-like growth factor 1 (IGF1) (Suzuki et 

al., 2003a, Suzuki et al., 2003b). Furthermore, Fisher et al. observed increased 
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phosphorylation of NUAK1 at Thr-211 in response to cell contraction or the AMPK 

activator AICAR in rat skeletal muscle (Fisher et al., 2005). 

 

Publications to date have associated NUAK1 with many central cell processes such as 

proliferation, adhesion, ploidy, senescence, damage response, apoptosis and tumour 

progression. NUAK1 has been reported as a regulator of cellular senescence and ploidy by 

the modulation of phosphorylation of Large Tumour Suppressor Kinase 1 (LATS1) 

(Humbert et al., 2010). NUAK1 has also been observed to phosphorylate p53/TP53 leading 

to p21 mediated cell cycle arrest (Hou et al., 2011), however, conflicting reports have 

suggested that NUAK1 positively regulates cell cycle progression (Banerjee et al., 2014b, 

Liu et al., 2012). As mentioned previously, NUAK1 is known to interact with the myosin 

phosphatase targeting-1 (MYPT1)–protein phosphatase-1β (PP1β) complex (PP1β
MYPT1

) 

and thereby regulate cell adhesion (Zagorska et al., 2010). Separately, NUAK1 has been 

associated with cellular survival under conditions of nutrient starvation by phosphorylation 

of cell survival factor AKT (Suzuki et al., 2003b).  

 

1.9.2 NUAK1 mouse models 

Nuak1 null mice are embryonic lethal; by embryonic day 18.5 homozygous null mutants 

suffer omphalocele, which is a failure to close the developing ventral body wall (Hirano et 

al., 2006). It has also been reported that Nuak2 null mice have a high mortality rate and 

that embryos frequently exhibit exencephaly (Tsuchihara et al., 2008). Nuak1 and Nuak2 

double mutants exhibit exencephaly, facial clefting, and spina bifida (Ohmura et al., 2012). 

In this study it was suggested that Nuak1 and Nuak2 showed complementarily function in 

the development of the cranial neural plate. This is indicative of some over-lap in Nuak1 

and Nuak2 function, at least during development. 

 

Due to embryonic lethality, an inducible system is required to validate the physiological 

roles of Nuak1 in adult mice in vivo.  After discovery that NUAK1 is preferentially 

expressed in highly oxidative tissues such as the brain, heart and soleus muscle, Inazuka et 

al. generated a muscle specific Nuak1 knock out (MNUAK1KO) mouse model. On a high 

fat diet it was observed that MNUAK1KO mice had a lower fasting blood glucose level, 

higher glucose tolerance, higher insulin sensitivity, and elevated concentration of muscle 

glycogen than wild type mice. Furthermore, phosphorylation of major components of the 

insulin signalling pathway, IRS1 (Tyr-608), and AKT were increased and insulin 

signalling was enhanced in MNUAK1KO mice. Consistent with this, phosphorylation of 
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IRS1 Ser-1097 (Ser-1101 in humans), which acts as an inhibitor of downstream 

insulin/AKT/mTOR signalling, was markedly decreased in the Nuak1-depleted tissues. 

They concluded that a physiological role of Nuak1 is to quash glucose uptake via negative 

regulation of insulin signal transduction in oxidative muscle.  

 

1.9.3 NUAK1 and cancer 

NUAK1 has also been associated with tumour cell survival, invasion and metastasis, and 

poor prognosis in many tumour types including hepatocellular carcinoma (HCC) (Cui et 

al., 2013), glioma (Lu et al., 2013, Chang et al., 2012), breast (Chang et al, 2011), 

melanoma (Bell et al., 2014), and non-small cell lung cancer (NSCLC) (Chen et al., 2013).  

 

The alteration frequency of NUAK1 in human cancer is relatively low, in a total of 164 

studies (45709 samples) the highest alteration frequency for NUAK1 was in 

neuroendocrine prostate cancer at 18%. All other cancers had an alteration frequency 

within 0-6.9% (cBioPortal) (Figure 1.11). However, immunohistochemistry on human 

tissue showed elevated levels of NUAK1 expression in colon (38% of patient samples), 

pancreatic (57%) and hepatocellular carcinoma (66%) compared to non-tumour tissue (Liu 

et al., 2012). The Esumi lab also published that they observed increased NUAK1 

expression in more advanced cases of CRC and much higher expression in liver metastasis 

(Kusakai et al., 2004). 
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Figure 1. 11 - NUAK1 alteration frequency across human cancer types. 
Graph generated by cBioPortal (http://www.cbioportal.org) shows the cumulative frequency of genetic alterations in the NUAK1 gene across a variety of human cancers. Green bars 

represent mutation (inclusive of activating and inactivating); red bars, represent gene amplification; blue bars represent gene deletion and grey bars represent multiple alterations at the 

same locus. Data are sourced from the TCGA, Trento/Cornell/Broad, BCCRC, MSKCC, Yale, MICH, UTSW, John Hopkins, FHCRC, JHU, Novartis/Brand, Genentech, Broad, 

Broad/DFCI, Shanghai, and SU2C. Published cohorts are indicated with a reference and date. 
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Most of the aforementioned studies have been correlative studies, however, NUAK1 has 

been linked with several tumorigenic processes, such as promotion of tumour metastasis 

and invasion by increasing expression of matrix metalloproteinases (MMP-2, MMP-9 and 

MT1-MMP) downstream of AKT. MMPs play a key role in degrading the extracellular 

matrix and basement membrane and thus promote metastasis and angiogenesis in several 

cancers (Chang et al., 2012). Furthermore, NUAK1 has a clear role in the regulation of cell 

adhesion via the phosphorylation of MYPT1 (Zagorska et al., 2010). In 2014, microRNA-

211 was identified as a mediator of an invasive gene clusters in melanoma cells, and it was 

shown to inhibit loss of adhesion by directly down-regulating NUAK1 expression (Bell et 

al., 2014). 

 

1.9.4 NUAK1 and synthetic lethality 

As previously mentioned, c-MYC is notoriously difficult to target therefore many labs, 

including ours, have adopted the synthetic lethality approach to alternatively target c-

MYC. Here, genome-wide interrogation using RNA interference has begun to identify 

genes that are specifically required for the fitness and survival of cells with overexpression 

of c-MYC (Kessler et al., 2012, Toyoshima et al., 2012, Liu et al., 2012). One such gene is 

NUAK1 and our lab demonstrated that both human and mouse cell lines with high 

oncogenic levels of c-MYC require NUAK1 specifically to maintain metabolic 

homeostasis. Initially it was observed that NUAK1 restricts cell growth, and as AMPK is a 

negative regulator of cell growth via inhibition of the mammalian target of rapamycin 

(mTOR) pathway this caused speculation for a potential relationship of NUAK1 with this 

signalling cascade.  

 

mTOR is a protein serine/threonine kinase that regulates cell growth, proliferation, motility 

and survival in response to extracellular hormones, growth factors and nutrients 

(Zarogoulidis et al., 2014, Sabatini, 2006) (Figure 1.12). There are two known complexes 

of mTOR, termed mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which 

are both structurally and functionally distinct (Zoncu et al 2011). mTORC1 includes 

mTOR, mLST8/Gbl, PRAS40, and the WD40 repeat-containing subunit raptor (Sancak et 

al., 2007, Sabatini, 2006) and is known to stimulate cellular growth, translation, 

transcription and autophagy. Amino acids, growth factors and energy are all potent stimuli 

for mTORC1 activity (Polak et al, 2009). Activation leads to an increase in p70S6 kinase 

activity and protein synthesis via phosphorylation of eukaryotic initiation factor 4E 
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(eIF4E) and ribosomal S6 protein (Polak et al, 2009). mTORC2 contains Rictor, mSin1, 

PRR5, and PRR5L and is less well characterised. Known functions include regulation of 

the actin cytoskeleton and phosphorylation of AKT on Ser-473 for complete activation 

(Courtney et al, 2010). mTORC1 signalling is regulated by inhibitory phosphorylation of 

the upstream kinases TSC1 and TSC2 by mitogen-activated kinases including AKT, ERK 

and RSK. Furthermore, PRAS40 is also a direct target of AKT and phosphorylation 

activates mTORC1 (Sancak et al., 2007, Vander Haar et al., 2007). mTOR signalling is 

active under nutrient-rich conditions and inactive under nutrient-poor conditions in 

contrast to AMPK, which is active in the inverse pattern. Upon LKB1 and AMP-dependent 

activation, AMPK phosphorylates TSC2 at Ser-1387 and Thr-1271 and inhibits 

downstream mTOR signalling to regain ATP homeostasis. 

 

Oncogenic levels of c-MYC result in the activation of AMPK due to the increased 

consumption of cellular resources for cell growth, however Liu et al. showed that in the 

case of loss of NUAK1, this response is diminished. Proteomic analysis suggested that 

NUAK1 is required for the activation of AMPK as it protects the regulatory β1 subunit of 

AMPK from proteasomal degradation. However, further analyses have failed to confirm 

this effect and recent data suggests that NUAK1 can regulate mTOR independently of 

AMPK by phosphorylating the mTORC1 subunit RAPTOR (Monteverde, Accepted for 

publication).  

 

Liu et al. concluded that raised energy consumption through unrestrained mTORC1 

activity in cells expressing deregulated c-MYC led to a dependency on NUAK1, which 

appears to restrict mTORC1 activity. Additionally, Liu et al. showed that NUAK1 

preserves high respiratory capacity via the stability of mitochondrial subunits that are 

necessary for the generation of ATP. It was unclear whether these two phenotypes are a 

direct influence of loss of NUAK1 or that one is a consequence of the other, however in 

combination this led to a complete collapse in ATP levels preceding cell death (Liu et al., 

2012). Loss of AMPK or an equivalent metabolic checkpoint has fatal consequences 

within a cell, as there is no mechanism to prevent the depletion of energy resources. This 

evidence suggests that NUAK1 acts as a metabolic checkpoint in cells overexpressing c-

MYC, however it is still unclear whether this mechanism is mediated via AMPK.  

 

In the previous study, depletion of NUAK1 by siRNA led to suppression of human tumour 

cell growth in 5/14 cases, two of which were CRC cell lines LS174T and Colo 320. 

Further interrogation of LS174T cells showed that cell death was accompanied by loss of 
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ATP and could be prevented by Rapamycin. LS174T colon carcinoma cells harbour a β-

Catenin mutation that drives constitutive c-MYC expression (van de Wetering et al., 2002). 

Importantly, co-depletion of c-MYC also prevented cell death, confirming that the levels 

of c-MYC in LS174T are high enough for cells to establish a dependence of NUAK1 that 

can be exploited. This was confirmed in vivo when the study showed that depletion of 

NUAK1 suppresses LS174T xenograft growth. Finally, using an orthotopic model, 

NUAK1 depleted murine p53
-/- 

hepatoma cells failed to develop hepatocellular carcinoma. 

In a separate intervention study where tumours were allowed to develop before NUAK1 

was lost, cells that retained NUAK1 had a survival advantage relative to NUAK1 wildtype 

controls (Liu et al., 2012).  This data suggests that MYC-driven tumours might be 

particularly vulnerable to the disruption of metabolic checkpoints, such as NUAK1, and 

provides the basis for this thesis. 
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Figure 1. 12 - The TOR signalling pathway 
A schematic showing a simplified version of the main components of the TOR signalling pathway. mTORC1 

is activated in the presence of hormones, growth factors and nutrients via AKT phosphorylation of upstream 

inhibitory proteins, TSC1/TSC2. mTORC1 is then free to phosphorylate downstream proteins including 

p70S6 kinase and 4E-BP1 which leads to an increase in protein synthesis and other cellular processes such as 

glucose homeostasis, autophagy, stress response, and mitochondrial function. mTORC2 is activated by 

PI3kinase and is necessary for full activation of AKT, downstream cellular processes affected by mTORC1 

include cytoskeletal organization and metabolism. 
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1.10 Aims of the project 

Based on the current literature discussed in this introduction (summarised in Figure 1.13) 

and the lab’s latest findings that tumour cells overexpressing c-MYC depend upon 

NUAK1 for survival, the main aim of this project is to investigate NUAK1 in the context 

of a c-MYC dependent tumour such as CRC. The hypothesis is that targeting NUAK1 in c-

MYC dependent tumour cells may have therapeutic implications. 

 

The first aim is to validate NUAK1’s role as a tumour-associated protein in human CRC. 

To address this NUAK1 was investigated as a prognostic marker in human CRC using 

online patient data sets. Furthermore NUAK1 expression levels and patient outcome in 

different stages of CRC was examined using NUAK1 RNA scope on a Tissue Microarray 

(TMA) of human CRC. Next, NUAK1 levels were assessed in human CRC cell lines and 

the requirement for NUAK1 measured using small molecule inhibitors. These 

investigations are outlined in Chapter 3. 

 

The second aim is to model Nuak1 in mouse models of CRC in order to investigate its role 

throughout tumourigenesis. Initially Nuak1’s role in tumour development was addressed, 

therefore Nuak1 floxed mice (Inazuka et al., 2012) were bred onto a model for sporadic 

intestinal cancer, Villin-CreER
T2

;Apc
fl/+

;LSL-KRas
G12D/+

. Additionally, Nuak1’s role in 

established colorectal tumours was addressed, therefore two independent doxycycline-

inducible shRNA specific for Nuak1 were used in a carcinogen-induced mouse model for 

colorectal cancer. Importantly, the requirement for Nuak1 in normal healthy intestine was 

also investigated using the Nuak1 floxed allele under the control of VillinCreER
T2

. These 

investigations are outlined in Chapter 4. 

 

The final aim is to investigate the molecular signalling pathways that require NUAK1 for 

tumour cell growth and survival using various in vitro approaches, including RNA 

sequencing and phospho-proteomic analysis, after NUAK1 depletion or inhibition in both 

U2OS and human CRC cell lines. These investigations are outlined in Chapter 5.
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Figure 1. 13 – A summary of NUAK1 activators, downstream effects and pathways 
A schematic summary of NUAK1 activators, downstream effects and pathways based on the current literature discussed in this introduction. 
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Chapter 2  Materials & Methods 

2.1 Mouse experiments and analyses 

All experiments involving mice were approved by the local ethics committee and 

conducted in accordance with UK Home Office license numbers 70/7950 & 70/8646, and 

PIL I83E608A7 (CRUK BICR, UK).  

 

2.1.1 Colony Maintenance 

In order to generate experimental mice, breedings to generate the correct genotypes were 

set up between one male and one or two female mice. Pups were weaned at approximately 

4 weeks of age and ear notched for identification and DNA genotyping. All transgenic 

mice were maintained in individually ventilated cages (IVCs) and handled in a laminar 

flow changing station. Experimental mice were moved to non-barrier cages once identified 

from genotyping. Mice were housed in a constant 12hr light/dark cycle, fed irradiated 

standard diet CRM (E) expanded diet from Special Diet Services; Cat 801730) and watered 

ad libitum.  

 

2.1.2 Genotyping 

Mice were ear-notched at 4 weeks of age and the tissue sent to Transnetyx (Cordova, TN, 

USA). Transnetyx currently uses a combination of quantitative PCR and DNA 

hybridization to determine the presence of specific alleles in the tissue samples provided.  

 

2.1.3 Experimental Cohorts 

The Villin-CreER
T2

 (el Marjou et al., 2004); floxed Apc (Shibata et al., 1997); LSL-

KRas
G12D

 (Jackson et al., 2001); floxed Nuak1 (Inazuka et al., 2012); and Rosa26-CAAGS-

lsl-rtTA
3
 (Premsrirut et al., 2011) allelic mice have been described previously however 

they are summarised briefly below. The doxycycline-inducible shRNA alleles (DI-

shNUAK1) targeting Nuak1, were generated by Mirimus Inc. This is the first description of 

these alleles to be published. All mice in these experiments were maintained on a mixed 

(FVBN x C57Bl/6 x 129/SV) background. All inductions were performed at 6-12 weeks 

when the mice reached a body weight of at least 20g.  Mice were monitored at least 3 times 

weekly and sacrificed using a schedule 1 procedure by exposure to rising concentrations of 

carbon-dioxide gas followed by cervical dislocation. Mice were monitored for symptoms 
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including  >15% weight loss, pale feet, lethargy, hunching, and/or bloody stool. 

Presentation of two or more symptoms was defined as a humane end point and mice were 

sacrificed immediately.   

 

2.1.3.1 Villin-CreERT2; Nuak1fl/fl experiments 

Villin-CreER
T2

 allows spatial-temporal control of transgenes downstream so that following 

recombination by tamoxifen induction, stable and homogenous expression is seen in the 

small intestine and colon, along the crypt villus axis, in both differentiated enterocytes and 

undifferentiated cells of the crypt (el Marjou et al., 2004). The Nuak1 fl/fl allele contains 

lox P sites at exon 3 at the endogenous locus and results in a non-functional protein after 

Cre recombinase excision. 

 

Experimental mice used were all homozygous for the Nuak1 floxed allele and controls 

were wildtype littermates. Mice were induced by once daily intraperitoneal (IP) injections 

of tamoxifen (Sigma) at 80mg/kg for four consecutive days and harvested on day 6-post 

induction. Experimental mice presented no symptoms in this time frame.  

 

Experimental procedures were performed by Dr. Meera Raja, images taken by thesis 

author, Jennifer Port. 

 

2.1.3.2 Villin-CreERT2;Apcfl/fl;Nuak1fl/fl experiments 

The floxed Apc allele (first described in Shibata et al, 1997) contains lox P sites on either 

side of exon 14 at the endogenous locus, so that Cre recombination results in a non-

functional allele after excision. 

 

Experimental mice used were all homozygous for both the floxed Apc and floxed Nuak1 

alleles and controls were wildtype littermates. Mice were induced by once daily IP 

injection of tamoxifen at 80mg/kg for two consecutive days and harvested on day 4-post 

induction. Mice were monitored for symptoms including  >15% weight loss, pale feet, 

lethargy, hunching, and/or bloody stool. 

 

Experimental procedures were performed by Dr. Meera Raja, images taken by thesis 

author, Jennifer Port. 
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2.1.3.3 Villin-CreERT2;Apcfl/+;LSL-KRasG12D/+;Nuak1fl/fl experiments 

The LSL-KRas
G12D 

allele lies at the endogenous KRas locus and carries a LOX-STOP-LOX 

(LSL) termination sequence preceding the first exon and the KRas G12D point mutation in 

exon 1. Cre recombination allows the allele to be expressed constitutively (Jackson et al., 

2001). Experimental mice used were all heterozygous for the floxed Apc allele, 

heterozygous for mutant KRas, and homozygous for the floxed Nuak1 allele. Controls 

were wildtype littermates. Low tamoxifen dose survival cohorts were induced by one IP of 

tamoxifen at 50mg/kg and harvested at endpoint as above. High tamoxifen dose cohorts 

were induced with one day of 120mg/kg, then three consecutive days of 80mg/kg (high) 

and harvested as above.  

 

Low tamoxifen dose experimental procedures were performed by Dr. Meera Raja, high 

tamoxifen dose experimental procedures were performed by Jennifer Port. 

 

2.1.3.4 Zp3-Cre;Rosa26-CAAGS-LSL-rtTA3; DI-shNUAK1 experiments 

Expression of the Zp3-Cre allele is expressed exclusively in the oocyte prior to the first 

meiotic division; therefore following recombination all cells in the developed mouse 

should express downstream alleles, in this case the Rosa26-CAAGS-rtTA
3 

(rtTA3).  

 

The doxycycline-inducible shRNA alleles (DI-shNUAK1) targeting Nuak1 were generated 

by Mirimus Inc., as described previously (Dow et al., 2012). In brief, shRNA candidates 

were selected using the sensor assay (Fellmann et al., 2011).  Two shRNAs were chosen 

that scored >5 and produced knockdown >90%. The selected shRNA sequences were 

subsequently cloned in the miR-E backbone (Fellmann et al., 2013) within the 3’UTR of a 

turboGFP cDNA downstream of a tetracycline-responsive element (TRE) in the Col1a1 

TtGM vector and targeted to the Col1a1 locus using standard protocols (Premsrirut et al., 

2011). Targeted embryonic stem (ES) cells were injected using blastocyst injection 

technique. Resulting shRNA mice were of mixed C57BL/6 × 129/SV background.  

 

The DI-shNUAK1 alleles were induced by daily gavage of 2mg doxycycline (Sigma; in 

H2O; 200ul at 10mg/ml). Mice were harvested at various time points including 3, and 7 

days and 6 months of shRNA activation. Mice were always harvested 4 hours post the final 

treatment. Experimental mice used were all homozygous for both the rtTA3 and shNUAK1 

alleles, controls were littermates that were wildtype for either allele. 
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2.1.3.5 Villin-CreERT2;Apcfl/+;DI-shNUAK1 mice experiments:  

To induce allele recombination, transient activation of CreER
T2

 in the intestine was 

performed on mice by one IP injection of 80mg/kg tamoxifen. Experimental mice used 

were always heterozygous for the floxed Apc allele and included both heterozygous and 

homozygous genotypes for the rtTA3 and shRNA alleles. Where indicated, 1.75 or 2.0% 

dextran sodium sulphate (DSS), m.w. 35k-50kDa (M.P. Biochemicals 0216011090/Sigma 

42867) was administered in drinking water for five days, commencing four days post allele 

induction, followed by sterile water for one week, then tap water.  Doxycycline was 

administered as above by oral gavage in 2mg daily boluses, from day 64 to day 70 post-

induction.  N-Acetyl-Cysteine or NAC (Sigma; 4% w/v) was administered in drinking 

water, starting three days before shRNA induction, and replaced every 3-4 days until 

sacrifice. The Licor ROSstar
TM 

800cW probe, a near-infrared hydrocyanine probe for 

imaging of extracellular ROS, was injected, via tail vein injection, 16 hours prior to 

harvest. Mice were then harvested, and the colon dissected and imaged using a Pearl 

Trilogy Small Animal Imaging System. 
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2.1.4 Tissue preparation and scoring 

2.1.4.1 Tumour enumeration 

Small intestines and colons were flushed with PBS, cut open longitudinally in 10cm 

sections and tumours scored visually from fresh tissue.  Tumour area was measured as 

width by length, omitting depth as negligible/immeasurable in many instances and the 

location of each tumour was noted.  

 

2.1.4.2 Flash-frozen fresh tissue 

Prior to fixation and immediately upon harvest, a small number of representative tumours 

and adjacent normal tissue were dissected and flash-frozen in liquid nitrogen for RNA 

analysis or for visualization of fluorescence.  

 

2.1.4.3 Tissue processing and sectioning 

Tissues were mounted ‘en face’ and fixed overnight in formalin at room temperature (RT). 

After this period, fixed tissue was rolled (‘swiss roll method’) and dehydrated in 70% Et 

OH. The tissues were then further processed by the BICR histology team using an 

automated processor (Thermo Scientific Excelsior ES). Finally tissues were embedded in 

paraffin and then cut into 4μM sections using a microtome. Sections were placed on poly-

L-Lysine (PLL) coated slides and incubated at 58°C for 24 hours. 

 

2.1.5 Tissue stains and immunohistochemistry  

Formalin fixed paraffin embedded (FFPE) tissue sections were deparaffinized in 3 changes 

of xylene (5 mins each) and rehydrated in graded ethanol solutions (100%, 100%, 95%, 

95%, 70%, 70%; 2 mins each). Sections were then incubated in dH2O in preparation for 

immunohistochemistry (IHC) or cell specific staining. 

 

2.1.5.1 Hematoxylin and Eosin (H&E) staining  

The properties of H&E staining make it possible to visualize any morphological changes in 

tissue sections both at the level of tissue and cells. Hematoxylin is used to stain cell nuclei 

and Eosin to stain cell cytoplasm. Sections were stained with Gli1Haematoxyline (Sigma) 

for 13 mins, washed in running tap water for 5 mins, dipped 20 times in differentiation 

solution (Sigma), washed again for 30 secs, dipped 20 times in Scotts tap water substitute 
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(MgSO4+
 
sodium bicarbonate), washed for 30 secs, stained with 1% Eosin for 5 mins, and 

finally washed again for 2 mins. Slides were then dehydrated, incubated with xylene for 2x 

5 mins and mounted. 

 

2.1.5.2 Alcian blue/PAS staining 

Together, Alcian blue/Pas staining differentiates between neutral and acidic proteoglycans 

such as mucins. Alcian blue stains the acidic mucins present in the tissue a blue colour 

while PAS (periodic acid Schiff) is then used to stain basement membranes, glycogen and 

neutral mucins pink. In this study Alcian blue/PAS staining was used to identify goblet 

cells in the intestine. Sections were stained with Alcian blue solution (1% alcian blue in 

3% acetic acid) for 30 mins, washed in running tap water, incubated with periodic acid for 

10 mins, washed, incubated with Schiffs reagent for 20 mins and washed and dehydrated 

as before. Slides were then dehydrated, incubated with xylene for 2x 5 mins and mounted. 

 

2.1.5.3 Immunohistochemistry 

IHC was used to visualise the distribution and localisation of specific proteins. FFPE 

tissues were sectioned, de-waxed and dehydrated as discussed in Section 2.1.5. Antigen 

retrieval was performed by microwaving the sections in 10mM Sodium Citrate, pH 6.0, at 

full power for 10 mins.  Endogenous peroxidases were quenched in 3% H2O2 for 15 mins, 

washed in dH2O and non-specific binding was blocked with 1 or 3% BSA solution.  

Sections were then incubated with the primary antibody (diluted in blocking solution) at an 

optimized concentration and duration (Table 2.1) and then washed 3x 5 mins in PBS or 

TBST before being incubated with the appropriate secondary antibody conjugated with 

HRP for 30-60 mins in blocking solution. The sections were then washed in PBS or TBST 

(3x 5 mins) and a signal amplification step was performed using the Vectastain Avidin-

Biotin Complex (ABC) kit (Vector labs). This involved incubation with the A/B reagent 

(1:100 in PBS) for 30 mins and a further wash. In order to visualise the signal, sections 

were then incubated with 3,3’-diaminobenzidine (DAB) reagent until adequate staining 

was achieved. Excess DAB was removed and the slides washed with dH2O. For 

counterstaining, the sections were dipped in hematoxylin 5 times, washed in running tap 

water for 5 mins, dipped 20 times in differentiation solution, washed for 30 secs, dipped 20 

times in Scotts tap water substitute and washed for 30 secs. The sections were then 

dehydrated with an alcohol gradient as above (70%, 70%, 95%, 95%, 100%, 100% EtOH 
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for 2 mins each) and then cleared in xylene (2x 5 mins). Sections were then mounted and 

sealed. 

 

For manual quantification of IHC, used only in Chapter 4, Section 4.2.1: 50 crypt/villi 

sections were scored on representative sections from at least 3 mice of each genotype.  

Quantification was performed by undergraduate student Silvija Svambaryte.  

 

For automatic quantification of IHC, HALO image analysis software (Indica Labs) was 

used. Only tumour regions were scored and comparisons made between control and 

experimental tumours.  
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Table 2. 1 - Immunohistochemistry (IHC) antibodies and conditions 

Primary 

Antibody 
Code/Clone Supplier Retrevial 

Primary 

antibidy 

dilution 

Secondar

y 

antibody 

Caspase 3 

ASP-175 
9661 

Cell 

Signalling 

Sodium 

Citrate pH6, 

water bath @ 

98°C, 25 

mins 

1/50 @ 

RT, 35 

mins 

Rabbit 

Envision 

@ RT, 35  

mins 

Lysosome A099 Dako 
Proteinase K, 

10 mins 

1/1000 @ 

RT, 35 

mins 

Rabbit 

Envision 

@ RT, 35 

mins 

8-oxo-dG AB10802 Abcam 

TRIS-EDTA-

Tween buffer 

pH9 

1/50 @ 

4°C, O.N. 

Mouse 

Envision+ 

system @ 

RT, 30 

mins 

NUAK1  

NUAK1 

T211-

1613187-

KLH-

GLUTA 

UNMODIFI

ED PEPTIDE 

Eurogentec 

Sodium 

Citrate pH6, 

microwave 

method, 10 

mins 

1/1000 @ 

4°C, O.N. 

Vector 

Labs, 

Anti-

rabbit 

(1:1000) 

@ RT, 1hr  

Phospho-

ERK 
sc-7383 Santa Cruz 

Sodium 

Citrate pH6, 

microwave 

method, 10  

mins 

1/5000 @ 

4°C, O.N. 

Vector 

Labs, 

Anti-

rabbit 

(1:1000) 

@ RT, 1hr  

B-Catenin 610154 
BD 

Biosciences 

Sodium 

Citrate pH6, 

microwave 

method, 10 

mins 

1/50 @ 

RT, 2 

hours 

Mouse 

Envision+ 

system @ 

RT, 1hr 

BrdU MCA2060P 
AbD 

Serotec 

Sodium 

Citrate pH6, 

water bath @ 

98°C, 25     

mins 

1/200 @ 

RT, 35 

mins 

Mouse 

Envision+ 

system @ 

RT, 30 

mins 

 

2.1.5.4 TUNEL staining 

TUNEL staining was performed on paraffin-embedded sections using the ApopTag 

peroxidase labeling kit (Millipore; S7100). The kit labels apoptotic cells by modifying 

DNA fragments using terminal deoxynucleotidyl transferase (TdT) for the detection of 

apoptotic cells. Digioxygenin-conjugated nulceotides are enzymatically added to free 

3’OH DNA termini by TdT in a template free manner. The incorporated nulceotides form 
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an oligomer composed of digoxigenin-conjugated nucleotides. DNA fragments labelled 

with the digoxigenin-nucleotide are then allowed to bind an anti-digoxigenin antibody that 

is conjugated to a peroxidase reporter molecule. Signal was detected using DAB as a 

substrate as previously. Protocol was carried out according to manufacturers instructions 

and an additional blocking step (1% BSA for 1 hour at room temperature) was 

incorporated prior to the addition of peroxidase-conjugated anti-digoxigenin. Tissues were 

counterstained as described previously. 

 

2.1.5.5 BrdU incorporation  

BrdU is incorporated into replicating DNA and can be detected using anti-BrdU antibodies 

using conditions shown above. Animals were injected with BrdU (Sigma) at a 

concentration of 100mg/kg and harvested at least 2 hours later. Tissues were fixed and 

processed as above and BrdU IHC performed to visualize BrdU incorporated cells (Table 

2.1). 

 

2.2 Crypt culture 

2.2.1 Organoid/spheroid preparation 

Primary organoid cultures of intestinal crypts were established as previously described 

(Sato et al., 2009) from the small intestine and colon of Villin-CreER
T2

;Apc
fl/fl

;LSL-

KRas
G12D/+

, Villin-CreER
T2

;Apc
fl/fl

;LSL-KRas
G12D/+

;Nuak1
fl/fl

, Vil-CreER
T2

;Apc
fl/fl

;LSL-

KRas
G12D/+

;DI-shNUAK1 mice and from the small intestine of wildtype mice. Cultures 

from tumour models will be referred to as spheroids due to their spherical shape and 

deficiency in cell differentiation. This distinguishes them from wildtype organoids. 

 

Adult mice were induced with one IP injection of tamoxifen at 80mg/kg and tissues 

harvested four days later. Intestines were flushed with ice-cold PBS, opened longitudinally 

and villi were removed using a glass coverslip.  Intestines were incubated in EDTA/PBS 

(2mM for SI; 25mM for colon) for 30 min at 4
o
C.  Excess solution was discarded and 

loose intestine fragments were collected by manual trituration in 3x PBS washes.  The 

crypt-

for 2 min in a tabletop centrifuge.  Re-suspended crypts were counted by haemocytometer, 

then seeded in Matrigel (BD Bioscience) with Advanced DMEM/F12 media (Invitrogen), 

supplemented with 10mM HEPES, 2mM Glutamine, 0.1% FBS, Pen/Strep, 1% N-2 & 2% 

B-27 supplements (1X, Invitrogen).  
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Alternatively, for quantification of primary spheroid formation, isolated crypts were 

further incubated in Cell Dissociation solution (Thermo; 5-15 mins) until a single cell 

suspension was achieved. Cells were then counted and seeded at normalised density as 

above.   

 

Growth factors Noggin (100ng/ml; Peprotech) and EGF (50ng/ml; Peprotech) were added 

to primary cultures but removed from subsequent passages.   

 

Wildtype organoid cultures were prepared using the same protocol but additionally 

supplemented with R-Spondin (500ng/ml; R&D systems) and all growth factors were re-

added every 2-3 days in order to sustain cultures 

 

2.2.2 Passaging spheroids/organoids in culture 

Established crypt cultures were split 1-2 times per week by manual disruption followed by 

incubation in Cell Dissociation solution (Thermo) until a single cell suspension was 

achieved (5-15 mins).  Cells were diluted 1:5 and re-suspended in matrigel. Wildtype 

organoids required addition of growth factors every 2-3 days. 

 

2.2.3 Cryopreservation of spheroids/organoids 

Established crypt cultures were disrupted manually and pelleted by centrifugation in a 

tabletop centrifuge for 3 mins, this was then repeated to disrupt the spheres further. The 

cells were then re-suspended in 500μl Advanced DMEM/F12 media, supplemented with 

10mM HEPES, 2mM Glutamine, 0.1% FBS, Pen/Strep, 1% N-2 & 2% B-27 supplements 

plus 10μl R-spondin, 10μl Noggin and 25μl EGF growth factors and incubated for 30 mins 

at 37°C in 1ml cryovials. DMSO was then added to a final concentration of 10% and the 

vials transferred to a freezing container (Mr.Frosty
TM

) to be stored at -80°C. The cells were 

moved to liquid nitrogen cold storage for long-term storage. 

 

2.2.4 Thawing spheroids/organoids 

Organoids/spheroids were thawed in a 37°C waterbath and then transferred to warm 

Advanced DMEM/F12 media supplemented as above.  The cells were mixed and then 

pelleted by centrifugation at 1200rpm for 5 mins. The cells were then re-suspended in 

matrigel and plated. Transformed cells were fed EGF and Noggin after thawing for a 
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couple of passages until robust, wildtype cells also required R-spondin (all concentrations 

as above).  

 

2.2.5 Quantification of spheroids 

The total number of spheroids was counted manually every 24 hours at 4x objective.  In 

each experiment technical triplicates were used and each experiment was performed in 

biological triplicates using spheroids isolated from 3 independent animals unless otherwise 

stated.  

 

2.2.6 Treatments 

NUAK1 inhibitors, HTH-01-015 (Apex Biotech) or WZ4003 (Medchem Express) in 

DMSO, were added to single cell suspensions at the indicated concentrations. Trolox [(±)-

6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid] (Sigma) was added to single 

cell suspensions at a final concentration of 500μM for 16 hours prior to HTH-01-015 and 

replenished daily for three days. Doxycycline (Sigma) was added to single cell suspensions 

at various final concentrations (0.1, 0.5 & 1.0μg/ml) for 24 hours minimum. Other time 

points specified.  

 

2.2.7 Cre recombination in vitro 

Ad-Cre (Cre Recombinase Adenovirus) was used to recombine the floxed alleles in Villin-

CreER
T2

;Apc
fl/fl

;Kras
G12D/+;

DI-shNUAK1.1533
  

spheroids in culture. Formed spheroids 

were incubated for 6hours with the virus (Uni. Iowa; MOI 300) and Polybrene (4mg/ml; 

Sigma).  

 

2.2.8 ROS detection 

Reactive Oxygen species (ROS) detection was performed on live spheroids by confocal 

fluorescent microscopy wit  hours @ 37°C; Thermo) after 

overnight treatment of pre-formed spheroids with HTH-01-015. Quantification was 

performed using ImageJ to calculate the corrected total cell fluorescence (CTCF) = 

integrated density – (area of selected cell*mean fluorescence of background). 
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2.2.9 Cell Viability 

Cell viability was measured using the CellTiter-Blue® Cell Viability Assay (Promega). 

The assay measures the ability of viable cells to reduce resazurin dye (7-hydroxy-3H-

phenoxazin-3-one-10-oxide) into resorufin. It is believed that mitochondrial enzymes are 

responsible for the transference of electrons from NADPH + H
+ 

to resazurin to form 

resoflurin (O’Brien et al, 2000). The level of reduction can be quantified by 

spectrophotometer as resazurin has an absorption peak at 600nm and resoflurin at 570nm 

wavelengths. Resazurin was added directly to organoids/spheroids at 20μl reagent per 

100μl media and incubated for 6 hours, after which the fluorescence could be measured 

using a Tecan Safire fluorometer.  

 

2.3 Cell culture  

U2OS, HCT-116, SW620, LS174T and SW480 cells were obtained from the ATCC and 

maintained in DMEM (Invitrogen; 25mM Glucose) supplemented with 1% glutamine, 

Penicillin (50,000units), Streptomycin (50,000μg) and 10% FBS (full culture media). All 

cells were cultured at 37°C at 5% CO2. All cell lines were validated using an approved in-

house validation service (CRUK-BICR) and tested periodically for mycoplasma.  

 

2.3.1 Passaging cells in culture 

Confluent cells were passaged using standard techniques. Media was removed and cells 

washed with PBS, cells were then incubated with 10% trypsin (1ml for 10cm dish) for 5-

15 mins at 37°C. Once cells were detached, trypsin was neutralised with full culture media 

and then cells split into the desired dilution factor. Alternatively, to seed a specific number 

of cells, cells were counted using an automated cell counter and seeded accordingly. Cell 

cultures were refreshed every 3-4 months. 

 

2.3.2 Cryopreservation of cell lines 

Cells were trypsinised as above until detached and then re-suspended in full culture media. 

Cells were then pelleted by centrifugation at 1000rpm for 3mins, trypsin and media 

removed and then suspended in freezing media (90% FBS; 10% DMSO) and transferred to 

1ml cryovials. These were then stored at -80°C in an Mr.Frosty and transferred to liquid 

nitrogen stores for long-term storage after 24 hours.  
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2.3.3 Thawing cells in culture 

Cells were thawed quickly at 37°C and then suspended in full culture medium and 

transferred to a 10cm culture dish. Medium was changed 24 hours later and culture 

established.  

 

2.3.4 Mouse Embryonic Fibroblast culture 

Primary mouse embryonic firbroblasts (MEFs) were isolated from embryos at E13.5. The 

uterine horn was removed from the pregnant female and each embryo removed from the 

amniotic sac and placed in an individual dish. The embryo was then decapitated and the 

liver tissue removed. A small portion of the tissue from the head was sent to Transnetyx 

(USA) for genotyping. The embryo was then minced using a scalpel and suspended in 1ml 

sterile PBS, mixed and transferred to a 15ml falcon. 1ml of trypsin (1x) was then added to 

the embryo and incubated for 15 mins, with mixing every 5 mins. Trypsin was neutralized 

by adding (up to) 10mls full culture medium, then the solution was moved to a 10cm 

culture dish. Medium was changed after 24 hours. MEFs were cultured using the standard 

3T3 protocol; 1.3x10
6 

cells were passaged every 3 days and cells were not passaged past 

P5. 

 

NUAK1 depleted MEFs were generated by interbreeding Zp3 positive, heterozygous 

rtTA3; shNuak1 mice, generating a variety of genotypes including those shown in Figure 

13D. To induce the shNuak1 alleles, MEFs were treated with Doxycycline (Sigma; 

1μg/ml) for 72 hours. Fluorescence was then observed and cells harvested.  

 

2.3.5 Drug treatments 

Cells were treated with the indicated concentrations of NUAK1 inhibitors (HTH-01-015 

and WZ4003).  Hydrogen peroxide (H2O2) solution [30 % (w/w) in H2O, stock solution], 

containing stabilizer (Sigma) was used at 500μM or 1mM for 30 mins to induce ROS 

response.  Cells were pre-incubated with 500μM of Trolox for 8 hours prior to treatment 

with Nuak1 inhibitor.  Equivalent volumes of DMSO were used as vehicle controls.  Cells 

were incubated with GSK3β inhibitors BIO-acetoxime (Tochris; 1μM) or CHIR99021 

(Tochris; 5μM) for 6 hours prior to H2O2 treatment. 
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2.3.6 Transfection 

Cells were seeded at the following seeding densities: U2OS 1x10
6
, SW480 1.5x10

6
, 

SW620 3x10
6
, HCT116 and LS174T 2x10

6
 in a 10cm plate and transfected the following 

day. Cells were transfected with the following siRNAs: siNUAK1 ♯1 (40μM; 

Hs_ARK5_1) and siNUAK1 ♯2 (20 μM;Hs_ARK5_3) specific for NUAK1 using Opti-

MEM medium and transfection agent, Lipfectamine iMAX (Qiagen) according to 

manufacturers directions. Cells were incubated with transfection mix, in antibiotic free 

DMEM supplemented with 1% glutamine and 10% serum only, overnight and then 

medium was changed to full culture medium. A scrambled control (referred to as siCon) 

was used in all experiments. All siRNAs were purchased from Qiagen.  

 

2.3.7 ROS detection 

ROS were measured after 8 hours NUAK1 inhibition with 10μM HTH-01-015 using 

CellROX deep-red reagent (Thermo) according to the manufacturers directions, followed 

by FACS analysis.  Cells were seeded at the following concentrations in a 6-well plate; 

U2OS and SW480 8x10
4
, SW620 1.6x10

5
, HCT116 and LS174T 1.2x10

5
. Cells were 

treated with inhibitor 16 hours later, Cell ROX reagent was added to a final concentration 

of 5μM 10 mins before the measurement and incubated in dark at 37°C. The cells were 

then washed with PBS and trypsinised until cells were successfully detached. Trypsin was 

neutralised by 1% FCS, cells transferred to a FACs tube and pelleted by centrifugation at 

300g for 5 mins. The pellet was then resuspended in PBS and analysed for fluorescence 

(Ex: 644nm, Em: 665nm) using the FACs Calibur. Background was corrected using 

unstained samples and 10,000 events were counted for each sample in technical triplicate, 

each experiment was performed at least three times for each cell line.  

 

ROS experiments were performed by Dr. Nathiya Muthalagu. 

 

2.3.8 Annexin V/PI staining 

Annexin V/PI staining was used to measure apoptosis. Cells were seeded at the following 

concentrations in a 6-well plate; U2OS and SW480 8x10
4
, SW620 1.6x10

5
, HCT116 and 

LS174T 1.2x10
5
 cells/well. After treatment incubation, cells were trypsinised until 

detached, quenched with 1% FCS, transferred to FACs tube with original supernatant, and 

centrifuged at 300 x G for 5 mins to pellet all cells. Annexin binding buffer (200μl; 10mM 

HEPES PH 7.40, 140mM NaCl, 2.5mM CaCl2) and Annexin V-APC (2μl, Biolegend 
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640920) were added to the pellet and incubated for 15 mins in the dark.  Propidium iodide 

(PI, 10µg/ml) was added immediately prior to FACS analysis. FACS Calibur was used for 

analysis, Annexin V-APC was excited at 633nm and PI has excitation/emission maxima of 

493/636 nm. As above, background was corrected using unstained samples and 10,000 

events were counted for each sample in technical triplicate, each experiment was 

performed at least three times for each cell line. 

 

2.3.9 Protein isolation and Immunoblotting 

2.3.9.1 Protein isolation 

Cells were seeded as following; U2OS 1x10
6
, SW480 1.5x10

6
, SW620 3x10

6
, HCT116 

and LS174T 2x10
6
 in a 10cm plate and treated according to the respective experimental set 

up. Cells were washed with ice-cold PBS and whole cell lysates were prepared in RIPA 

buffer (150mM NaCl, 50mM Tris, pH 7.5, 1% NP-40, 0.5% sodium deoxycholic acid, 1% 

SDS, plus complete protease and phosphatase inhibitor cocktails [Roche]) followed by 

sonication (40% Amp for 10 secs) and then incubated on ice for 15 mins.   

 

Cytoplasmic and Nuclear fractions were prepared in low salt buffer (20mM KCL, 10mM 

HEPES, pH 7.5, 1mM MgCl2, 1mM CaCl2, 0.1% Triton X-100) followed by centrifugation 

at 3300 rpm for 3 mins.  Cytoplasmic supernatant was removed and the nuclear pellet was 

re-suspended in RIPA buffer and incubated for 15 mins on ice. Separation was followed by 

sonication of both fractions as above. 

 

2.3.9.2 Protein quantification 

Protein quantification was performed using the Bicinchoninic acid (BCA) method with the 

Pierce BCA protein assay kit in a clear 96-well plate. Protein samples were measured in 

duplicate in PBS at a 1:50 dilution. Bovine serum albumin (BSA; Sigma) was used as a 

standard and diluted from stock in PBS to generate a concentration range of 5-25μg/ml. 

Lysis buffer was added to the standard at 1:50 dilution to account for background effect. 

BCA reagents were prepared according to manufacturer’s instructions and added to each 

sample. Following a 1 hour incubation at 37°C the absorbance of each sample was read 

using a spectrometer at 562nm. The concentration of each sample was calculated using the 

standard curve.  
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2.3.9.3 Sample preparation and SDS-PAGE 

Samples (50μg) were denatured with 5X Laemlli buffer (30mM Tris [pH 6.8], 50% 

glycerol, 10% SDS, 4% β-mercapthoethanol, 0.5% Bromophenol blue) to a final 

concentration of 1X and heating for 5 mins at 95°C.  

 

The samples were then resolved by SDS-PAGE, using polyacrylamide gels of varying 

acrylamide percentage (Table 2.2), and 1X SDS PAGE running buffer (1% SDS, 25mM 

Tris, 0.192M Glycine). A PageRuler Prestained Protein Ladder (Thermo) was used and the 

gels were run at 100V continuously until sufficient separation had occurred.  

 

Table 2. 2 - Acrylamide gel composition 

 

 

 

2.3.9.4 Immunoblotting 

Proteins were then transferred to nitrocellulose membrane (Protran) using the Hoefer 

transfer module (TE22) as per manufacturer’s instructions with transfer buffer (0.1% SDS, 

25mM Tris, 0.192M Glycine, 20% methanol). Transfer was ran at 230mA for 2hours at 

4°C. To visualize proteins, the membrane was incubated in Ponceau S solution (0.1% 

Ponceau S in 5% acetic acid). The membrane was then washed in 1X TBST (20mM Tris, 

0.137M Sodium Chloride, 0.1% Tween20, pH7.5), and incubated in 5% milk (Marvel Milk 

Powder) in 1X TBST for 30mins. Following this, the membrane was incubated in primary 

antibody in 5% BSA in 1X TBST overnight at 4°C.  

 

Primary antibodies used: NUAK1 (CST 4458, 1:750); NRF2 (Novus NB100-80011, 

1:1000); pMYPT1 Ser-445 (MRC S5087, 1:400); MYPT1 (BD 612164, 1:1000); β-

ACTIN (Sigma A5441, 1:5000); LAMIN A/C (Santa Cruz 6215, 1:5000); pAKT Ser-473 

(Cell Signaling 4060S, 1:500), pAKT Thr-308 (Cell Signaling 13038, 1:500), pan AKT 

(Cell Signaling 4685S, 1:1000), pGSK3β Ser-9 (Cell Signaling 9322s, 1:1000), GSK3β 

 

Separating gel Stacking 

gel 
 

8.50% 10% 12.50% 

Acrylamide 4.3ml 5.1ml 6.35ml 650μl 

Tris 1M pH8.9 5.6ml 5.6ml 5.6ml - 

Tris 1M pH6.8 - - - 600μl 

Water 5.0ml 4.2ml 2.95ml 3.6ml 

SDS 10% 150μl 150μl 150μl 50μl 

APS 20% 75μl 75μl 75μl 25μl 

TEMED 15μl 15μl 15μl 5μl 
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(Cell Signaling 9832S, 1:10,000), MYC (Abcam, ab32072, 1:1000); NUAK2 (MRC PPU 

S225B, 1:1000) and β-CATENIN (BD Biosciences, 1:1000).  

The next day, the membrane was washed 3x with 1X TBST and incubated with the 

appropriate HRP- - -rabbit 

N -goat IgG, Vector Labs PI-9500, 1:5000) in 5% milk in 

1X TBST for 1hour at room temperature. After washing, the protein signal was detected by 

chemiluminescence (Pierce ECL western blotting substrate 32106) using X-ray films (Fuji 

film super RX) and developed with an automated X-ray processor (AGFA, Classic EOS).   

 

2.3.10 Immunoprecipitation 

For immunoprecipitations (IPs), 2.5x10
6
 cells were seeded per 15cm dish. The next day, 5 

μg of NUAK1-Flag or empty vector was transfected using Lipofectamine 3000 reagent 

(1:1.8 ratio for Lipofectamine, 1:2 for p3000 reagent). Forty eight hours post transfection, 

cells were trypsinized and 5x10
6
 cells were seeded per 15cm dish. The following day, cells 

were washed with ice cold PBS and scraped in 400 -40 lysis buffer (150mM NaCl, 

50mM Tris Ph7.5, 1mM EDTA, 1mM EGTA, 1% NP-40, plus complete protease and 

phosphatase inhibitor cocktail).  Lysates were incubated on ice for 10min and centrifuged 

at 12,000 rpm for 10 mins and the supernatant was used for IP. 1.5mg of total protein was 

used per condition. Lysates were incubated with Flag-M2 resin (20µl /µg of protein) 

overnight. Beads were pelleted at 3000rpm/5 minutes and washed 3X with the lysis buffer 

(3000 rpm/5mins/4
o
C). IP’ed proteins were eluted in 60  

 

2.3.11 Dimedone detection of cysteine oxidation 

USOS cells transiently overexpressing FLAG-tagged NUAK1 were treated with H2O2 for 

5 minutes, then lysed in RIPA buffer containing 1mM dimedone (Sigma, D153303) 

followed by a-FLAG IP. Dimedone incorporation was detecting using a-dimedone 

antibody (Millipore, 07-2139).  

 

2.3.12 Iodoacetamide labelling 

Iodo-acetamide labelling was performed similarly by addition of 55mM labelled 

(
13

C2D2H2INO; Sigma-Aldrich/ Merck KGaA, 721328) or unlabelled (C2H4INO; Sigma-

Aldrich/ Merck KGaA, I6125) iodoacetamide in RIPA buffer, followed by anti-FLAG IP.  

IPs were washed twice in lysis buffer, followed by H2O, prior to combining H2O2 treated 

and untreated samples for mass spectrometry analysis (explained in detail in Section 2.7.3). 
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Label incorporation was normalized to the level of IP’ed NUAK1, measured by 

immunoblotting of 10% of each IP. 

 

2.3.13 RNA isolation and analysis 

2.3.13.1 RNA isolation 

Snap-frozen intestinal epithelial tissue or human cells were homogenized and RNA was 

isolated using TRIZOL (Invitrogen). Transfected cells were seeded as following; U2OS 

0.5x10
6
, SW480 0.5x10

6
, SW620 1x10

6
, HCT116 and LS174T 0.75x10

6
 in a 6cm plate. 

The following day, cells were washed once with ice-cold PBS and harvested in 1ml Trizol, 

mixed gently with 200μl Chloroform (Sigma) and then centrifuged at 14,000RPM for 

15mins at 4°C. RNA isolation from tissue followed the same protocol with an additional 

centrifugation step of 14,000RPM for 10mins at 4°C prior to adding chloroform. The 

aqueous upper phase was then transferred to a new vial and incubated with an equal 

volume of isopropanol for 20mins on ice. The samples were then centrifuged at 

14,000RPM for 15mins at 4°C and the supernatant aspirated to expose the RNA pellet. The 

pellet was washed twice with 70% Ethanol with a centrifugation step, 8000RPM for 5mins. 

The pellet was air-dried and then suspended in Nuclease free H2O (Thermo) and incubated 

for 10mins at 56°C.  

 

2.3.13.2 cDNA synthesis 

RNA quantity and quality was measured using Nanodrop (Thermo Scientific) and 100-

500ng of RNA was used to synthesize cDNA using the Quantitect reverse transcription kit 

(Qiagen 205313). Firstly, genomic DNA contamination was removed in each sample by 

incubation with gDNA wipeout buffer for 2mins at 42°C. Following this, the RNA 

samples were incubated with reverse transcription reaction components including 

Quantiscript Reverse Transcriptase, Quantiscript RT buffer and RT primer mix for 15 mins 

at 42°C, then 3 mins at 95°C in order to synthesize cDNA. 

 

2.3.13.3 Primer design 

Intron-spanning primers were designed using Universal Probe Library Assay Design 

Centre (Roche). The following primer sets were used to detect indicated mRNA 

transcripts: 
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Human  

GCLC F: 5’atgccatgggatttggaat; R: 5’gatcataaaggtatctggcctca 

GCLM F: 5’gttggaacagctgtatcagtgg; R: 5’gttggaacagctgtatcagtgg 

GSHR F: 5’atgatcagcaccaactgcac; R: 5’cttccaagcccgacaaagt 

MGST F: 5’accacaccattgcatatttgac; R: 5’gccatggaaagagtaactcca 

TXN F: 5’ttacagccgctcgtcaga; R: 5’ggcttcctgaaaagcagtctt 

β-ACTIN F, 5’ccaaccgcgagaagatga; R: 5’ccagaggcgtacagggatag 

NUAK1 F: 5’acatgatctcaatctctcgtctg; R: 5’acctacggcaaagtcaagc 

 

Mouse 

Gclc L: 5’agatgatagaacacgggaggag; R: 5’tgatcctaaagcgattgttcttc 

Gclm L: 5’tgactcacaatgacccgaaa; R: 5’tcaatgtcagggatgctttct 

Gshr L: 5’ctatgacaacatccctactgtggt; R: 5’cccatacttatgaacagcttcgt 

Mgst L: 5’gcccttctccctggattc; R: 5’ggccatcaacacctcattgt 

Txn L: 5’tgaagctgatcgagagcaag; R: 5’agaagtccaccacgacaagc 

B2m F: 5’agccgaacatactgaactgctacg; R: 5’cggccatactgtcatgcttaactc 

Nuak1 F: 5’gagcccacacaaccctca; R: 5’tctgcgatcgggattcac 

 

2.3.13.4 Realtime qPCR  

Realtime qPCR was performed using the SYBR Green method (VWR QUNT95072) as per 

manufacturer’s instructions. 200μM primers were used with 0.5μl cDNA per 10μl reaction. 

The following cycling conditions were used: 95°C for 5 mins, 95°C for 30 secs, 60°C for 

20 secs, go to step 2x 35 cycles, 72°C for 10 mins, 65°C for 10 secs, 95°C for 30 secs.  

 

2.4 NUAK1 shRNA gene expression analysis 

U2OS cells were depleted of Nuak1 by shRNA-4977 as previously described (Liu et al., 

2012) and selected on puromycin for 48 hours.  Control cells were similarly selected after 

infection with non-targeting shRNA expressing retrovirus.  24 hours after re-seeding in the 

absence of selection, total RNA was isolated using the RNEasy Mini Kit (Qiagen) 

according to manufacturer’s instructions and DNA was depleted with the RNase-Free 

DNase Set (Qiagen). RNA-integrity was checked using the RNA ScreenTape assay 

(Agilent Technologies) and cDNA was synthesized with the TruSeq Stranded mRNA 

Library Prep Kit (Illumina). Following library quantification (D1000 ScreenTape, Agilent 
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Technologies), libraries were standardized to 10nM, denatured, diluted to 10pM and 

analyzed by paired-end sequencing using an Illumina NextSeq500 platform. RNA-

Sequencing reads were aligned to the GRCh37 version of the human genome and 

differential expression determined using DESeq2 (Love et al., 2014).  Pathway modulation 

analysis was performed using Metacore GeneGO (Thompson Reuters).  

  

The NUAK1 shRNA gene expression analysis was performed by Dr. Nathiya Muthalagu. 

 

2.5 Human TMA analysis 

A human CRC tissue micro-array comprising 650 tissue cores was stained for NUAK1 

mRNA expression by RNA-Scope (as described above) and scored blindly using HALO 

image analysis software (Indicalab). The tissue microarray contained primary colorectal 

cancer (Dukes A = 53, Dukes B = 104, Dukes C = 111), lymph node metastasis (from 

corresponding Dukes C cases = 111) and normal colonic mucosal samples (52). An 

exclusion criteria was adhered to and included partial or over-stained samples as well as 

samples in which less than 1% of cells were positive for PP1B RNA. Based on this, 47 

samples were omitted. Results were subdivided into equal quartiles from low to high 

NUAK1 expression and P values were determined by Chi-Square test according to patient 

clinico-pathological data including age, gender, site of primary tumour, degree of tumour 

differentiation and tumour stage.   

 

This work was done in collaboration with Professor Graeme Murray, Department of 

Pathology, University of Aberdeen. 

 

2.6 In situ hybridization (RNA Scope) 

In situ hybridization (RNA-Scope) was performed according to the manufacturers 

directions (Advanced Cell Diagnostics; ACD) by the Histology Team at the Beatson 

Institute for Cancer R
o
C for 1 

hour, then de-paraffinized and rehydrated.  Endogenous peroxidases were blocked in H2O2, 

followed by antigen retrieval (100
o
C for 8 mins.) and protease digestion (H2O2 & Protease 

Plus kit, ACD).  Sections were hybridized with ACD-designed probes for human NUAK1 

(458101), mouse Nuak1 (434281), positive ctrl PP1β (313911) or negative ctrl DapB 

(322330) for 2 hours at 40
o
C.  Probe detection was performed using RNA-Scope kit 

reagents (ACD 322310) and counterstained with Hematoxylin.  
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For quantification of ISH from mouse tissue, HALO image analysis software (Indica Labs) 

was used. Only tumour regions were scored and comparisons made between control and 

experimental tumours.  

 

This work was done with Masters student, Amy Bryson.  

 

2.7 Proteomic analysis 

2.7.1 SILAC labelling 

U2OS cells were cultured in light (
12

C61
4
N4 L-arginine and 

12
C61

4
N2 L-lysine, Sigma) and 

heavy (
13

C61
5
N4 L-arginine and 

13
C61

5
N2 L-lysine, Cambridge Isotope Laboratories) 

SILAC medium (SILAC DMEM, Life Technologies) supplemented with 10 kDa dialysed 

serum (Sigma) until full labeling (>98%) of the proteome was reached.  For “forward 

analysis” heavy labeled cells were treated for 1 hour with 10 μM HTH-01-015, and light 

labeled cells were vehicle treated. Cells were then harvested and lysates mixed in equal 

amounts. For the reverse replicate experiment, light labeled cells were treated for 1 hour 

with 10μM HTH-01-015, and heavy labeled cells were vehicle treated.   

 

2.7.2 Sample Preparation 

1.5mg of each cell lysate from light and heavy SILAC labeled cells were mixed 1:1, light 

Ctl : heavy HTH in the forward experiment and light HTH and heavy Ctl in the reverse 

experiment. Proteins were precipitated overnight at -20°C in acetone, re-dissolved in 8M 

Urea, 0.1M TrisHCl pH 8.5 buffer with phosphatase inhibitors (Halt phosphatase cocktail, 

Thermo Scientific) and digested with Lys-C (Alpha Laboratories) and Trypsin (Promega) 

using Filter-Aided Sample Preparation (FASP) (Wiśniewski et al., 2009). To remove salts, 

peptides were loaded onto C18 Sep-Pak column (Waters) and eluted with increasing 

concentration of acetonitrile (ACN, 10%, 15%, 20%, 25%, 30%, 40%, 60%) in 0.1% 

trifluoroacetic acid. ACN was removed using a speed vacuum centrifuge and peptides were 

resuspended in MOPS 50 mM, sodium phosphate 10 mM, sodium chloride 50 mM pH 7.2. 

Fresh ACN was added to 30% final concentration and TFA to pH down to 2.5. The 

enrichment for phosphorylated peptides was performed incubating the peptide solution 

with TiO2 beads, 5:1, peptide:TiO2, as previously described (van den Biggelaar et al., 

2014). Four subsequent incubations with TiO2 were performed. Peptides were eluted from 

the TiO2 beads using a solution 15% ammonium hydroxide 40% ACN and loaded onto a 
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C18 StageTip (Rappsilber et al., 2007). Peptides were eluted from StageTip with 80% 

ACN, speed vac and resuspended in 1% ACN, 0.05% TFA for MS analysis. Peptides 

recovered from the four incubations were run separately at the MS.   

 

SILAC labeling and sample preparation were performed by Tiziana Monteverde.  

 

2.7.3 MS analysis 

This protocol was performed according to (Reid et al., 2017). Digested peptides were 

injected on an EASY-nLC system coupled on line to a LTQ-Orbitrap Elite via a 

nanoelectrospray ion source (Thermo Fisher Scientific). Peptides were separated using a 

20cm fused silica emitter (New Objective) packed in house with reversed-phase Reprosil 

Pur Basic 1.9µm (Dr. Maisch GmbH) and eluted with a flow of 200nl/min from 5% to 

25% of buffer containing 80% ACN in 0.5% acetic acid, in a 190 min linear gradient. The 

top ten most intense peaks in the full MS were isolated for fragmentation with high 

collision energy dissociation. MS data were acquired using the XCalibur software (Thermo 

Fisher Scientific) and .RAW files processed with the MaxQuant computational platform 

(Cox and Mann, 2008) version 1.5.0.36 and searched with the Andromeda search engine 

(Cox et al., 2011) against the human UniProt database (2010) (release-2012 01, 88,847 

entries). MaxQuant was run with the following settings: To search the parent mass and 

fragment ions a mass deviation of 4.5ppm and 20ppm was required. The minimum peptide 

length was 7 amino acids and maximum of two missed cleavages and strict specificity for 

trypsin cleavage were required. Carbamidomethylation (Cys) was set as fixed 

modification, and oxidation (Met), N-acetylation and phosphoSTY as variable 

modifications. For peptide and phosphorylation site identification, a false discovery rate 

(FDR) of 1% was required. The re-quantification and match between runs features were 

enabled and the relative quantification of the peptides against their SILAC-labeled 

counterparts was performed by MaxQuant. For phosphorylation sites to be quantified, at 

least two ratio counts were required. The MaxQuant output file Phospho (STY) Sites was 

analyzed with the Perseus software (Tyanova et al., 2016), the reverse and contaminant 

hits were excluded and only class I phosphorylation sites (localization probability = 

probability that the phosphorylation site has been accurately localized > 0.75 and score 

difference > 5) used for the analysis. 

 

Proteomic analysis was performed in collaboration with Dr. Sara Zanivan and the 

proteomics core facility at the Beatson Institute, Glasgow. 
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2.8 Data Analysis 

All experiments were performed at least 3 times except where noted in the legends.  Raw 

data were copied into Prism (Graphpad) spreadsheets. All Mean & SEM values of 

biological replicates were calculated using the calculator function.  Graphical 

representation of such data was also produced in Prism.  Box & spider plots were 

generated using Prism.  Statistical significance for pairwise data was determined by the 

Student’s (Unpaired) or Paired T test, as indicated. For multiple comparisons, ANOVA 

was used with a post-hoc Tukey test.  * denotes P<0.05; ** denotes P<0.01; *** denotes 

P<0.001.  For Kaplan-Meier plots, Mantel Cox logrank P values are presented.   
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Chapter 3 The relevance of NUAK1 in human CRC 

3.1 Introduction 

The 5-year survival rate of colorectal cancer (CRC) is currently 59% with 10-year survival 

at 57% (CRUK, 2010-2011). Survival rate has doubled in the last 40 years of cancer 

research. This can be attributed to our better understanding of the disease and its subtypes, 

and consequently, advancements in new treatments and earlier diagnosis. However, there 

were still 15,903 deaths from colorectal cancer in 2014 alone, and it is currently the fourth 

most common cancer in the UK and third most common cancer worldwide (CRUK, 2014).  

 

CRC can be classified using two distinct systems; these provide a basis for prognosis and 

therapeutic decisions. The TNM Classification of Malignant Tumours (TNM = Tumour 

Node Metastasis) is a general cancer staging notation system that defines the stage of a 

variety of different cancers, with alphanumeric codes in ascending order to represent how 

progressed the disease is. T1-4 describes the size of the primary tumour and local invasion 

depth, N0-2 describes the number of regional lymph nodes involved, and M0-1 describes 

the presence of distant metastasis (Tobias & Hochhauser, 2013). The Dukes’ staging 

system is specifically for the classification of colorectal cancer (Kyriakos, 1985). Dukes’ A 

describes an in situ cancer, Dukes’ B describes the invasion beyond the muscalaris 

propria, Dukes’ C describes the involvement of the regional lymph nodes and Dukes’ D 

describes a cancer with distant metastasis (see Chapter 1, Section 1.3 for further detail). 

 

The identification of therapeutic targets is crucial for the discovery of drug targets and 

allocation of appropriate personalised treatment strategies. Therefore, the aim was to assess 

whether or not NUAK1 could indeed be a therapeutic target for colorectal cancer. 

 

In 2004, Hiroysai Esumi’s lab proposed that NUAK1 overexpression is involved in tumour 

progression of colorectal cancer clinically. They utilised a DNA array constructed of 241 

paired cDNAs from 13 different types of tumour and corresponding normal tissue biopsied 

from various cancer patients including breast, uterus, lung, colon and rectum. Higher levels 

of NUAK1 mRNA were observed in colon and rectal cancers when compared to 

corresponding normal tissues. Furthermore, surgically resected, flash frozen samples taken 

from colorectal cancers and their liver metastases were analysed for NUAK1 mRNA by 

qPCR, and showed that elevated NUAK1 levels were associated with tumour progression. 

Liver metastasis had higher NUAK1 mRNA expression than the CRC samples and these 
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had higher levels than the normal mucosa samples. This result was corroborated by in situ 

hybridisation performed on frozen sections of colorectal cancers, their liver metastases, 

and normal colon tissue. They did not observe a clear progressive Duke’s stage dependent 

increase in NUAK1 mRNA by qPCR however they did state a significant difference 

between Dukes’ B and C/D stages (Kusakai et al., 2004).  

 

In order to validate the specificity of NUAK1 expression and further elucidate the function 

of NUAK1, Esumi and colleagues investigated NUAK1 in the context of six human colon 

cancer cell lines; DLD-1, WiDr, HCT15, SW620, LoVo and SW480. LoVo and SW480 

cell lines showed high NUAK1 expression at both the mRNA and protein level and the 

NUAK1 gene was not amplified in any of the lines. They associated these higher levels 

with their invasion abilities in vitro and confirmed this by overexpressing NUAK1 in the 

low expressing cell line DLD-1 (D/NUAK1). The parental cell line displayed very low 

ability to invade however the D/NUAK1 cells showed high invasive capability. Transient 

expression of constitutively active AKT in the D/NUAK1 cell line further accelerated 

invasion while it was abrogated with PI3K inhibitor, LY294002 suggesting a dependence 

on the AKT pathway.  

 

In this chapter, the aim is to assess the suitability of NUAK1 for a prognostic marker in 

human CRC using online patient data sets, and NUAK1 RNA scope in a Tissue Microarray 

(TMA) of human CRC.  Additionally the sensitivity of human CRC cell lines to NUAK1 

inhibition is assessed. 
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3.2 Results 

3.2.1 NUAK1 is a prognostic factor for survival in CRC  

With the arrival of new high-throughput technologies, such as genome-wide next 

generation sequencing, immense amounts of data are now being generated, making the 

systematic study of the cancer genome possible. Novel computational algorithms have 

been established to manage the large volume of information and make analysis 

increasingly efficient and online databases have been developed to store and disseminate 

these results allowing researchers to share and mine data from all over the world. These 

developments have shed new light on the cancer genome providing an unprecedented 

global view of cancer subtypes. 

 

The web-based tool, SurvExpress was used to investigate NUAK1 expression levels in 

relation to CRC patient outcome. SurvExpress is a cancer-wide gene expression database 

that documents clinical outcomes and allows the researcher to look at survival analysis and 

‘risk’ assessments of cancer datasets in relation to specific genes (Aguirre-Gamboa et al., 

2013).  

 

SurvExpress assigns each sample with a score based on the expression levels of the gene of 

interest, and this is then used to generate ‘risk groups’. The word risk is used with the 

assumption that either low or high expression of a certain gene comes with a risk for the 

patient.  

 

SurvExpress was used to generate two ‘risk groups’ based on ‘High NUAK1’ expression 

and ‘Low NUAK1’ expression by splitting the samples, ordered low to high score, at the 

median so that there were equal sample numbers in each group.  

 

The first analysis performed was a meta-analysis of 17 independent cohorts comprising of 

947 human CRC samples (Aguirre-Gamboa et al., 2013) and revealed that high NUAK1 

expression was associated with poor overall patient survival (Figure 3.1A). Further 

analysis of two large individual datasets, (290 patients; Figure 3.1B) (Jorissen et al., 2009) 

and Smith Beauchamp Lu Colon (177 patients; Figure 3.1C) (Smith et al., 2008) also 

corroborated this result. Expression levels for NUAK1 are plotted for each of the 

corresponding analysis, separated into the high and low groups used (Figure 3.1D, E & F). 

This data clearly suggests that NUAK1 is a prognostic biomarker for CRC.  
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The Cancer Genome Atlas (TCGA) project is another web-based platform in which users 

can access, query and download the TCGA datasets (Weinstein et al., 2013).  This large-

scale, US-based project is a collaboration between the National Cancer Institute (NCI) and 

the National Human Genome Research Institute (NHGRI) and aims to characterise the 

spectrum of genomic alterations associated with the initiation and progression of cancer 

(Weinstein et al., 2013). These alterations include DNA sequence changes, copy number 

alterations, chromosomal aberrations and epigenetic modifications and will all be 

collected, stored, analysed and distributed by the TCGA.  

 

TCGA analysis confirmed that NUAK1 levels are higher in more aggressive disease, 

specifically TNM stage, T3 & 4 when compared with 1 & 2 and furthermore, in patients 

with lymph node involvement (N1 & 2) when compared with none (Figure 3.1G).  

 

This data suggests that high NUAK1 levels correspond to poor patient survival in human 

CRC; it is therefore a prerequisite to further investigate NUAK1’s contribution to the 

disease and to extrapolate any therapeutic value. 
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Figure 3. 1 - NUAK1 overexpression correlates with tumour progression, lymph 

node infiltrates, and reduced overall survival in human CRC 
(A-C) Overall survival of human CRC patients separated by high (red) versus low (blue) NUAK1 

expression.  Logrank P value, hazard ratio (HR) and 95% confidence interval (CI) shown.  Data were mined 

from Metabase SurvExpress (A), Jorissen et al, 2009 (B), and Smith et al, 2008 (C). All were then analysed 

and adapted using SurvExpress.  (D-F) Box & whisker plots of NUAK1 mRNA levels in human CRC 

separated by expression group.  Blue = low, Red = high.  T-test P value shown. These graphs correspond to 

survival datasets (A&D), (B&E), (C&F). (G) Left panel: Mean ± SEM values of NUAK1 mRNA 

expression in stage 1 or 2 (black bar, N=127) versus stage 3 or 4 (red bar, N=86) human CRC.  Right panel: 

Mean ± SEM values of NUAK1 mRNA expression in tumours of patients with (red bar, N=35) or without 

(black bar, N=178) lymph node infiltrates. T-test P values shown.  Data are from the TCGA colorectal 

adenocarcinoma cohort accessed via Oncomine.   
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3.2.2 High NUAK1 mRNA levels are associated with more 
advanced CRC  

Genetically engineered mouse models (GEMMs) are essential to the understanding of 

basic biology and experiments investigating a whole-organism prior to human clinical 

trials, however patient-derived tissue samples allow researchers to corroborate their 

findings in the relevant disease and species ex vivo with no risk to the patient. Patient-

derived samples can include tumour cell lines or organoids, blood/serum, and formalin-

fixed paraffin-embedded (FFPE) tissue samples.  

 

To further determine whether NUAK1 levels are clinically relevant to tumourigenesis in 

CRC, RNAscope in situ hybridisation (ISH) for NUAK1 was used on a human Tissue 

Microarray (TMA) of CRC (provided by Graeme Murray) (Duncan et al., 2008).   

 

The tissue microarray is a novel advancement in the field of pathology, and contains 

hundreds of small representative FFPE tissue samples from different patient cases 

assembled on a single histologic slide. TMAs are constructed by isolating cylindrical tissue 

cores from different patient donor blocks and re-embedding these into a single block. This 

allows high throughput analysis of molecular targets such as DNA, mRNA and protein 

levels in multiple samples simultaneously using identical, standardised conditions thereby 

reducing variation and also allowing for maximal preservation of valuable and limited 

archival tissue samples (Jawhar, 2009).  

 

The TMA was comprised of samples taken from 268 patients who were diagnosed with 

primary CRC and underwent elective surgery between 1994 and 2003. Clinico-

pathological data was collected including age, gender, site of primary tumour, degree of 

tumour differentiation and tumour stage, and follow-up was available up to 144 months for 

all patients. The tissue microarray contained primary colorectal cancer (Dukes A = 53, 

Dukes B = 104, Dukes C = 111), lymph node metastasis (from corresponding Dukes C 

cases = 111) and normal colonic mucosal samples (52). 

 

After RNA scope hybridisation, NUAK1 expression level was scored using Halo image 

analysis software (Indicalab). Intestinal polyps or adenomas originate from epithelial cells 

however a tumour not only consists of neoplastic cells but also depends on an active 

stromal infrastructure and together these determine the behaviour of the tumour (Bosman 

et al., 1993). Therefore, each patient sample was analysed for the percentage of epithelial 
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or stromal cells expressing NUAK1 mRNA. Interestingly, stromal cells had significantly 

higher levels of NUAK1 (Figure 3.2A). In this context, when normal tissue was compared 

to tumour tissue there was no significant difference in NUAK1 levels in either epithelium 

or stroma. Esumi and colleagues showed that NUAK1 was overexpressed in more 

advanced colorectal disease (Kusakai et al., 2004) therefore it was hypothesised that any 

effect was being obscured by comparing all cancer stages with normal tissue and that 

separation into specific stages was necessary for a more detailed analysis.  

 

Patients were split into four equal quartiles based on NUAK1 expression level (Q1, Q2, 

Q3, Q4: low to high respectively) (Figure 3.2B) and then analysed against the clinico-

pathological characteristics mentioned above.  

 

Importantly, these results showed that increased NUAK1 levels significantly correlated 

with advanced tumour stages using both the TNM and Dukes staging system in both 

epithelial cells and stromal cells (Figure 3.2C-F). Furthermore, increased lymph node 

metastasis (specifically N2) also correlated with higher NUAK1 levels (Figure 3.2G & H). 

No correlations were made between NUAK1 expression and patients’ age, gender, site of 

primary tumour, or degree of tumour differentiation (data not shown).  

 

In this context, it does not appear that the different levels of NUAK1 in epithelial and 

stromal cells are having an impact on the overall outcome of the patient. Furthermore, it 

was assessed if high NUAK1 levels affected the outcome of patient survival in this TMA 

cohort however it did not appear to correlate with lifespan (Figure 3.3).  

 

Overall these results demonstrate an important role of NUAK1 in late stage CRC and 

provide strong grounds for further analysis of the role of NUAK1 in human CRC.  
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Figure 3. 2 - High NUAK1 RNA correlates with increased tumour stage and lymph 

node metastasis in a human CRC TMA 
(A) Quantification (Mean±SEM) of cell types positive for NUAK1 RNA based on the % of cells in each 

sample. One-way ANOVA followed by Tukey’s multiple comparison test was used to calculate statistical 

significance, **** p<0.0001. (B) Representative examples of NUAK1 RNA levels detected by RNA scope 

ISH in each of the assigned quartiles (red dots [false colour], highlighted by arrowheads) counterstained 

with hematoxylin. Scale bar = 10μM.  (C-H) Summary of NUAK1 expression in both epithelial (C,E&G) 

and stromal (D,F&H) cells of a human CRC TMA. Data were divided into equal quartiles from lowest (Q1) 

to highest (Q4) expression and graphed by Tumour stage (C&D), Dukes’ stage (E&F) and by Lymph node 

stage (G&H).  Pearson Chi-Square P values shown.  
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Figure 3. 3 - NUAK1 level does not correlate with survival in human TMA 
(A&B) Overall survival of patients from human TMA plotted by NUAK1 expression level (Q1 = blue, Q2 = 

green, Q3 = yellow, Q4 = purple) in epithelial cells (A) and stromal cells (B). Log rank (Mantel Cox) 

statistics performed showing no significance.   This work was performed with undergraduate student Amy 

Bryson. 
 

3.2.3 NUAK1 is required for the survival of human CRC lines 

NUAK1, NUAK2 and c-MYC protein levels were measured by western blot in four human 

CRC cell lines, SW480, SW620, LS174T and HCT116 and additionally in the 

A 

B 
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osteosarcoma tumour cell line, U2OS (Figure 3.4A).  SW480 and U2OS had relatively 

high levels of NUAK1, whereas HCT116 cells showed only low and SW620 and LS174T 

cell lines barely detectable NUAK1 protein levels. Interestingly, SW480 and U2OS cells 

had the lowest NUAK2 levels, HCT116 had moderate levels and SW620 and LS174T cells 

had the highest levels of NUAK2. This may suggest that cells depend on one or the other 

NUAK isoforms.  

 

c-MYC levels were consistent across all of the cell lines however according to ATCC, 

each of the CRC cell lines used are positive for c-MYC overexpression, therefore it was 

hypothesised that these cell lines would likely be sensitive to loss of NUAK1 activity 

based on NUAK1’s role in mediating MYC-driven tumourigenesis (Liu et al., 2012). The 

viability of these cells under pharmacological inhibition of NUAK1 was investigated using 

two validated inhibitors; HTH-01-015 (HTH; Figure 3.4B) and WZ 4003 (WZ; Figure 

3.4C) utilizing the Annexin V FITC/Propidium Iodide apoptosis assay and flow cytometry. 

Described as ‘the first highly specific protein kinase inhibitors of NUAK kinases’, 

WZ4003 inhibits both NUAK isoforms while HTH-01-015 is specific for NUAK1 

(Banerjee et al., 2014a). In a previous study, these compounds have demonstrated strong 

selectivity and did not inhibit the activity of 139 other kinases screened, including ten 

related members of the AMPK family. WZ4003 and HTH-01-015 were reported to inhibit 

the phosphorylation of the NUAK1 and NUAK2 substrate, MYPT1. NUAK1 and NUAK2 

phosphorylate MYPT1 at three conserved residues, Ser-445, Ser-472, and Ser-910 in 

response to conditions that cause cell detachment, and it was shown that both inhibitors 

block phosphorylation at Ser-445 (Banerjee et al., 2014a). Additionally, Banerjee et al. 

reported that both HTH-01-015 and WZ4003 demonstrated in vitro efficacy against tumour 

cell proliferation and migratory potential of U2OS cells, making NUAK1 an attractive 

therapeutic target for investigation in other tumour types.  

 

The results of this study showed that a threshold of 10μM for HTH-01-015 was necessary 

to cause 50-70% of cell death in the CRC lines. WZ4003 showed a higher potency to 

induce apoptosis with 10μM causing 70-100% cell death in all three CRC cell lines with 

SW480 being the most sensitive. SW480 also had significant levels of cell death with 5μM 

WZ4003. This suggests that cells require NUAK1 for survival however they are more 

sensitive to the loss of both NUAK1 isoforms. Interestingly, HCT 116 were the least 

sensitive to WZ4003 although it was comparable with HTH-01-015 suggesting that they 

may be more dependent on NUAK1. There does not appear to be any correlation between 
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sensitivity to the compounds and NUAK1/NUAK2 protein levels therefore specific 

dependency on either NUAK isoform cannot be inferred from this data. 

 

Western blot analysis of the phosphorylation status of MYPT1 confirmed that the 

concentrations of inhibitors used blocked NUAK1 activity (Figure 3.4D & E). The 

phosphorylation of MYPT1 is further reduced in WZ4003 treated samples due to the 

additive effect of dual inhibition of NUAK1 and NUAK2.  

 

Overall, this data suggests that NUAK1 is essential for the survival of these cell lines and 

that NUAK1 protein level does not necessarily predict NUAK1 activity or dependence.  

 

HTH-01-015 and WZ4003 have been shown to inhibit proliferation and migration in 

wildtype mouse embryonic fibroblasts (MEFs) and U2OS cells at 10M therefore it was 

assessed if treatment with the two small molecule inhibitors would result in similar levels 

of cell death in the CRC cell lines. Figure 3.4F (left panel) shows that MEFs were not 

sensitive to HTH-01-015, and WZ4003 only led to 20-40% cell death. In U2OS cells a 

similar result was observed; HTH-01-015 had no effect on viability and WZ4003 treatment 

led to under 20% of cell death (Figure 3.4F, right panel). Inhibition of NUAK1 activity 

was confirmed by western blot analysis of MYPT1 phosphorylation. Although the 

mechanism is not currently clear this data suggests that CRC cell lines are more dependent 

on active NUAK1 for survival and that total protein levels do not correlate with this effect. 
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Figure 3. 4 - Human CRC cell lines are sensitive to loss of NUAK1 activity 
(A) Immunoblot of NUAK1 (top panel = low exposure, bottom panel = high exposure), NUAK2 and c-MYC 

protein levels in human U2OS, LS174T, SW480, HCT116 and SW620 cells, n≥2. (B) CRC cell lines 

cultured in full serum conditions were treated with HTH-01-015 (vc, 5 & 10μM) (B) or WZ4003 (vc, 2,5, 5 

& 10μM) (C) and apoptosis was measured at 48 hours post treatment. The graphs represent percentage of 

cells stained for Annexin V only (black bars) and for Annexin V/PI (red bars). Mean±SEM of three 

independent experiments, asterisks show significance (2-way ANOVA & post-hoc Tukey test, relative to vc 

controls) (D) Immunoblots of lysates from human CRC cell lines show reduction in MYPT1 Ser445 

phosphorylation upon inhibition of NUAK1 (8hr) with HTH-01-015 (D) and WZ4003 (E). The asterisk 

indicates a non-specific band. (F) Apoptosis was measured at 48 hours as in B&C in immortalized MEFs and 

U2OS cells. Mean±SEM of three independent experiments, asterisks show significance (2-way ANOVA & 

post-hoc Tukey test, relative to vehicle controls). Figure 4A was performed with Master’s student Martina 

Brucoli. Figure 4B-E was performed by Dr. Nathiya Muthalagu. 
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3.3 Discussion  

NUAK1 has been associated with tumour cell survival, invasion and metastasis in many 

tumour types such as hepatocellular carcinoma (HCC) (Cui et al., 2013), Glioma (Lu et al., 

2013), Breast (Chang et al., 2012), Multiple Myeloma (Bell et al., 2014), and Non-Small 

Cell Lung Cancer (NSCLC) (Chen et al., 2013) making it an attractive therapeutic target 

for investigation. Furthermore, elevated NUAK1 was associated with poor survival as well 

as advanced stage in high-grade serous ovarian cancer (HGSOC) (Phippen et al., 2016), 

non-small cell lung cancer (NSCLC) (Chen et al., 2013) and gastric cancer (Ye et al., 

2014). In gastric cancer, NUAK1 was positively correlated with depth of invasion, lymph 

node metastasis, pathological stage, surgical resection and histological differentiation. 

Here it is shown that NUAK1 is also a prognostic factor in human colorectal cancer using 

the online database SurvExpress. Patients with high NUAK1 expression had significantly 

reduced overall survival in three independent cohorts. Furthermore, TCGA analysis 

confirmed that NUAK1 levels are higher in more aggressive disease, and in patients with 

lymph node involvement. This suggests that this study has identified a valuable molecular 

biomarker for progressed CRC that may be used in the future as a diagnostic tool. 

 

NUAK1 is rarely mutated in CRC (cBioPortal), however immunohistochemical analysis of 

NUAK1 protein expression in human CRC revealed elevated NUAK1 protein in 11/29 

cases and detectable expression in 24/29 samples (Liu et al., 2012). In a separate study, 

NUAK1 expression was detected at higher levels in tumour cells than in adjacent normal 

epithelial cells in gastric cancer (Ye et al., 2014). Using RNAscope in situ hybridisation 

(ISH) for NUAK1 on a human Tissue Microarray (TMA) of CRC, this study has shown 

that NUAK1 expression is present in human CRC and strongly correlates with advanced 

tumour stage and increased lymph node metastasis. Surprisingly, NUAK1 expression level 

did not have an impact on overall patient survival in this patient cohort, which is in 

contrast to the three cohorts analysed by SurvExpress. This may suggest that there is 

variation between cohorts and that subtyping of patients is required to use NUAK1 

expression as an indicator of outcome. Another point to make is that a large number of 

these patients are still alive, many patients will live 10-25 years post diagnosis, and 

additionally, none of the patients in the TMA had distant metastasis suggesting that there is 

a group of patients with very advanced disease that have not been included in this analysis, 

therefore it would be very interesting to follow with these patient groups.   
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A recent study suggested that the predictive power for prognostic outcome in CRC arises 

from the genes expressed by stromal cells rather than epithelial tumour cells (Calon et al., 

2015). Here it is shown that NUAK1 expression is at least 2-fold higher in stromal cells 

than epithelial cells within CRC tumours. Activation of the host stromal microenvironment 

is often referred to as ‘reactive stroma’ and has been shown to play a critical role in the 

progression of carcinoma in many tumour types. This ‘reactive stroma’ has been compared 

to the wound-healing process in normal tissue as stromal cells exhibit elevated production 

of extracellular matrix (ECM) components, growth factors and matrix-remodelling 

enzymes to create a tumour microenvironment that supports cancer cell survival, 

proliferation and invasion (Kalluri and Zeisberg, 2006). This is the first time NUAK1 

expression level has been shown to be elevated in the stroma compared to epithelial cells 

and might suggest an important NUAK1-specific function in these cells. Interestingly, a 

recent study reported a distinct ‘reactive stroma’ gene signature that was specifically 

associated with primary chemoresistant tumours and was further upregulated in post-

treatment recurrent tumours in ovarian cancer; NUAK1 expression was strongly 

upregulated in these tumours (Ryner et al., 2015).  

 

Multiple CRC cell lines demonstrated a dependence on NUAK1 for survival when 

inhibition of NUAK1, using inhibitors HTH-01-015 and WZ4003, led to substantial cell 

death that was not observed in normal fibroblasts or U2OS cells. This suggests that 

NUAK1 is co-operating with specific characteristics of the CRC lines for the survival of 

these cells. CRC is dependent on the proto-oncogene c-MYC (Sansom et al., 2006) and 

according to ATCC, all three CRC cell lines investigated are positive for c-MYC 

overexpression. Despite this, similar total c-MYC protein levels were seen across all of the 

cells lines looked at, however this cannot always be used as a direct measure of protein 

activity. It has been demonstrated that tumour cells with elevated levels of c-MYC 

establish a dependence on NUAK1 for maintaining metabolic homeostasis and for cell 

survival (Liu et al., 2012). Inhibition of NUAK1 led to an mTOR dependent collapse in 

ATP levels followed by apoptosis that was also seen in an orthotopic mouse model of 

hepatocellular carcinoma. The study used U2OS cells expressing c-MYC fused to the 

oestrogen receptor ligand binding domain (MYC–ER) so that upon 4-hydroxytamoxifen 

(OHT) treatment, MYC-ER was activated resulting in a moderate increase in MYC 

activity. Only under these conditions, did the authors observe synthetic lethality. 

Furthermore, no correlation between absolute c-MYC levels and sensitivity to NUAK1 

was observed (unpublished). Therefore, CRC cell lines may depend on NUAK1 for 

survival based on their high MYC activity however in order to investigate this further 
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acute perturbation of c-MYC levels would be required. This could be performed by using 

siRNA to target c-MYC or inducible c-MYC overexpression as was used by Liu et al. 

Notably, treatment of healthy fibroblasts with HTH-01-015 and WZ4003 led to very little 

cell death suggesting that it may be possible to target colorectal tumour cells with NUAK1 

inhibitors and not have a detrimental effect on healthy cells.   

 

Furthermore, an additive effect on cell death was observed when cells were treated with 

the dual NUAK1 and NUAK2 inhibitor, WZ4003, compared to HTH-01-015, suggesting 

that both proteins have important functions in these cell lines and/or they are able to 

function at least partially redundantly. It has been suggested that the AMPK-related 

kinases share similar regulatory roles in the regulation of cellular physiology such as cell 

polarity and cell motility (Sun et al., 2013). The fact that both proteins are able to 

phosphorylate MYPT1 at Ser445 suggests that there may be some overlap in their 

functions. Furthermore, despite having differential functions, it is still possible that these 

proteins can complement one another in times of cellular stress if necessary. Ohmura et al. 

showed that NUAK1 and NUAK2 have complimentary functions in apical constriction and 

apico-basal elongation of the cranial neural plate during neural tube developments in mice 

(Ohmura et al., 2012).  

 

In conclusion, this study has shown that NUAK1 is a potential prognostic marker in human 

CRC that requires further investigation in order to extrapolate NUAK1’s effect on 

tumourigenesis and function in healthy and tumour cells. In the coming chapters, this 

investigation will strive to answer some of these questions. 
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Chapter 4 Investigating the role of NUAK1 using 
mouse models of CRC 

4.1 Introduction 

In 1998, Nagase et al. characterised KIAA0537, a clone obtained from a human brain 

cDNA library which was later established to be NUAK1 (Nagase et al., 1998, Suzuki et al., 

2003b). They showed that NUAK1 was predominantly expressed in the human heart and 

brain, followed by skeletal muscle, kidney, ovary, placenta, lung, and liver. This was later 

corroborated in the mouse by Inazuka et al. (Inazuka et al., 2012). Notably, normal small 

intestine and colonic tissue has very low basal levels of NUAK1 raising the question about 

the importance of NUAK1 in these tissues. 

 

On the other hand, NUAK1 expression has been detected at higher levels in tumour cells 

than in adjacent normal epithelial cells in gastric cancer (Ye et al., 2014). Furthermore, in 

the previous chapter it was shown that NUAK1 is enriched in later stage colorectal 

tumours; consequently, this suggests that NUAK1 has an important role to play in CRC 

tumourigenesis. Publications to date have associated NUAK1 with many central cellular 

processes that are often perturbed in cancer such as proliferation and DNA damage 

response (Hou et al., 2011), adhesion (Zagorska et al., 2010), senescence (Humbert et al., 

2010), apoptosis (Suzuki et al., 2003a, Suzuki et al., 2003b) and tumour progression. These 

observations have predominantly been made in vitro, whereas in vivo data on the 

physiological role of NUAK1 are lacking.  

 

NUAK1 was first investigated in a mouse model in 2006, when Hirano et al. reported that 

Nuak1 (aka Omphk1) homozygous mutants were non-viable, and presented omphalocele 

by E14.5 and died by E18.5 (Hirano et al., 2006). The first report of a conditional Nuak1 

knockout was made by Inazuka et al. in 2012. They generated the Nuak1 floxed allele, 

which contains lox P sites at exon 3 at the endogenous locus and results in a non-functional 

protein after Cre recombinase-mediated excision. In this study, they investigated Nuak1 

function using a muscle specific knock out mouse model and reported that knock out mice 

were apparently normal but exhibited improved glucose homeostasis under high fat diet 

(HFD) conditions.  

 

As discussed in depth previously, our lab published a study showing that Nuak1 was 

required for both the initiation and survival of tumours in an orthotopic mouse model of 
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hepatocellular carcinoma (Liu et al., 2012).  Using two doxycycline inducible shRNAs to 

target Nuak1, the study demonstrated that tumours did not develop in Nuak1 depleted 

mice. Furthermore, in an intervention study in which tumours were allowed to develop 

before doxycycline was added, shRNA expression (via fluorescent marker) could not be 

detected in the tumours of the treated cohort suggesting that Nuak1 retaining cells have a 

survival advantage and can out-compete Nuak1 depleted cells. Tumour relapse was 

accompanied by re-expression of Nuak1 mRNA. This effect was attributed to Nuak1 being 

an essential survival factor in Myc-driven tumours and loss of Nuak1 resulted in cell death 

and proliferative arrest in vivo. 

 

Sansom et el. showed that loss of Apc in the small intestine leads to a “crypt progenitor’” 

phenotype, which describes the unrestricted proliferation within the intestinal crypt and 

can only be sustained for 5 days in the mouse. Additional loss of c-Myc in these mice was 

able to rescue this phenotype completely therefore suggesting that c-MYC protein is a 

critical mediator in the early stages of intestinal neoplasia following Apc loss (Sansom et 

al., 2007). Due to the synthetic lethal relationship between c-Myc and Nuak1, it was 

speculated whether or not c-Myc-dependent cells in the intestine could be targeted by loss 

of Nuak1. 

 

Based on these previous observations, the aim is to model loss of Nuak1 in a tumour 

mouse model of colorectal cancer (CRC) and address the following main questions: 

 

1) Is Nuak1 necessary for normal intestinal homeostasis? 

2) Is Nuak1 required for the process of tumourigenesis in the intestine? 

3) Is Nuak1 required for the survival of established intestinal tumours? 

 

4.1.1 Nuak1 Mouse models  

In order to investigate the physiological role of Nuak1 in the intestine in vivo, the 

previously described conditional Nuak1 floxed allele (Nuak1 fl/fl) was utilized (Inazuka et 

al., 2012). The Nuak1 fl/fl allele contains lox P sites at exon 3 at the endogenous locus and 

results in a non-functional protein after Cre recombinase-mediated excision (Figure 5A). 

In order to target our conditional transgenes to the intestine, Villin-CreER
T2

 was used.  

 

To investigate Nuak1’s contribution to tumourigenesis in the intestine two GEMMs for 

intestinal cancer were used: 
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In the first model, Nuak1’s role in tumour development was investigated. To do this, 

Nuak1 floxed mice were bred onto a mouse model for sporadic intestinal cancer: Villin-

CreER
T2

;Apc
fl/+;

LSL-KRas
G12D/+

 (VAK). The mice generated will be referred to as Villin-

CreER
T2

;Apc
fl/+;

LSL-KRas
G12D/+

;Nuak1
fl/fl  

(VAKN) (Figure 4.1). Here, transient 

tamoxifen-dependent activation of CreER
T2

 in the intestines of adult mice drives 

widespread deletion of one copy of Apc, constitutive expression of oncogenic KRas
G12D

 

and deletion of Nuak1 simultaneously. The floxed Apc allele contains lox P sites on either 

side of exon 14 at the endogenous locus, so that Cre recombination results in a non-

functional allele after excision (Shibata et al., 1997). Tumour formation requires stochastic 

loss of the second copy of Apc during the lifespan of the mouse.  The LSL-KRas
G12D

 allele 

lies at the endogenous KRas locus and carries a LOX-STOP-LOX (LSL) termination 

sequence preceding the first exon and the KRas G12D point mutation in exon 1. Cre 

recombination allows the allele to be expressed constitutively (Jackson et al., 2001).  

CreER
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14 15

14 15
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0 1 2 3
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Figure 4. 1 - The Villin-CreER
T2

; Apc
fl/+;

LSL-KRas
G12D

;Nuak1
fl/fl  

mouse model for 

sporadic intestinal cancer 
Schematic of alleles present in our Villin-CreER

T2
; Apc

fl/+;
LSL-KRas

G12D/+
;Nuak1

fl/fl  
mouse model of 

sporadic intestinal cancer. (A) represents the Villin-CreER
T2

 allele, (B) represents the Nuak1
fl/fl  

allele, (C) 

represents Apc
fl/+ 

 allele and (D) represents the LSL-KRas
G12D

 allele . Boxed numbers represent exons and 

black arrows represent lox p sites where recombination will occur, stop sign indicates a LSL termination 

sequence and an asterisk indicates the KRasG12D point mutation. Over time, loss of the wildtype Apc allele 

allows sporadic tumour development. 
 

In the second model, Nuak1’s role in established intestinal tumours was addressed. To 

achieve this, two independent doxycycline-inducible shRNA (DI-shNuak1) were used 

(purchased from MirimusTM) within a ‘TET-ON’ expression system. Analysis with two 

independent sequences specific for Nuak1 (shNUAK1.612 and shNUAK1.1533) can control 
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for potential off-target effects. The ‘TET-ON’ expression system delivers tissue-specific 

and robust expression of the reverse tet-transactivator (rtTA3) and thereby, reversible, 

tissue-restricted induction of tetracycline-responsive element (TRE)-controlled transgenes 

(Gossen and Bujard, 1992). The rtTA3 includes a tetracycline repressor protein (TetR) and 

the VP16 protein by Herpes Simplex Virus and is placed under the control of the Rosa 

promoter, a locus used for constitutive and ubiquitous gene expression. The expressed 

rtTA3 protein can bind to its target tetracycline operator (TetO) sequence within the TRE 

preceding the DI-shNUAK1 allele as indicated, and allow expression. Expression of the 

TRE-regulated cassette is further controlled by the presence of a tetracycline derivative 

such as doxycycline. In order to trace expression of the rtTA3 and shNUAK1 transgenes, 

each is followed by an mKate and GFP cassette respectively (Figure 4.2).  

 

 

 

Figure 4. 2 - The TET-ON DI-shNuak1.612/1533 mouse model 
A schematic of the ‘TET-ON’ expression system used to deliver expression of the reverse tet-transactivator 

(rtTA3) and thereby, reversible induction of the tetracycline-responsive element (TRE)-controlled transgene, 

shRNA specific for Nuak1 (DI-shNuak1.612/1533). 1) After Cre-dependent activation, the rtTA3 protein can 

bind to its target tetracycline operator sequence within the TRE preceding the DI-shNuak1 allele as indicated, 

and allow expression. 2) The presence of a tetracycline derivative such as doxycycline is then required for 

the expression of the DI-shNuak1 alleles. In order to trace expression of the rtTA3 and shNUAK1 transgenes, 

each is followed by an mKate and GFP cassette respectively.  

 

The DI-shNuak1 alleles were crossed onto Villin-CreER
T2

;Apc
fl/fl

 mice so that the 

expression of the shRNA would be restricted to the epithelial cells of the intestine (see 

Figure 4.1 for Villin-CreER
T2

 and Apc
fl/+ 

allele schematics). Transgene induction was 

initiated in adult Villin-CreER
T2

;Apc
fl/+;

DI-shNUAK1 mice and tumours accelerated with 

dextran sodium sulphate (DSS) in the absence of shRNA expression. DSS is a chemical 

colitogen that induces colitis in the mice. Damage to the epithelial monolayer of the colon 

causes intestinal inflammation and increased bacterial invasion increasing the chance for 

neoplastic transformation and proliferation of dysplastic epithelium as the tissue 

regenerates. As a result sporadic loss of the second copy of Apc occurs and colonic 

tumours form within 10 weeks of induction (Thaker et al., 2012). Depletion of Nuak1 by 
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DI-shNuak1 was induced by doxycycline treatment for various timepoints (3 days, 7 days), 

immediately prior to harvest at 70 days post induction. 

 

Separately, in order to investigate the effect of loss of Nuak1 in a whole organism, the DI-

shNUAK1 alleles were used under control of the ZP3 cre recombinase allele. ZP3 cre is 

controlled by regulatory sequences from the mouse zona pellucida 3 (ZP3), which is 

expressed exclusively in the oocyte prior to the first meiotic division (Lewandoski et al., 

1997). Therefore, following recombination, all cells in the developed mouse express the 

reverse tet-transactivator allele and the DI-shNuak1 alleles. 

 

4.2 Results 

4.2.1 Nuak1 is dispensable in normal gut epithelium 

To investigate the in vivo requirement for Nuak1 in the normal intestine, adult mice 

bearing the floxed Nuak1 allele (Nuak1 fl/fl) under the control of Villin-CreER
T2

 were 

induced. Induction involved four daily intraperitoneal injections (I.P) of tamoxifen 

(80mg/kg) and the mice were harvested 6 days post induction. Mice showed no visible 

symptoms of distress or discomfort due to Nuak1 knockout in the intestine. According to 

Haematoxylin and Eosin (H&E) staining there was no difference in morphology between 

Nuak1 knockout tissues and wildtype controls. Cell proliferation (measured by BrdU IHC) 

and death (measured by Cleaved Caspase 3 IHC) were also unchanged (Figure 4.3).  

Finally, no differences in differentiation were observed in regards to Paneth (measured by 

Lysozyme IHC) and Goblet cells (measured by PAS stain). Representative images can be 

seen in Figure 4.3. This data implies that, in the context of investigations performed here, 

Nuak1 is not necessary for normal intestinal homeostasis in the mouse.  
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Figure 4. 3 - Nuak1 is dispensable in normal gut epithelium  
(A&B) Representative images of small intestine (SI) (A) and colon (B) from wildtype (top panels) or 

homozygous floxed NUAK1 (lower panels), stained for histology (H&E); proliferation (BrdU); apoptosis 

(Cleaved caspase 3); and differentiation (Lysozyme and PAS). N=3 Nuak1 wt/wt and 3 Nuak1 fl/fl. Scale bar 

= 100μM. (C) Quantification of staining from (A&B), SI: 50 villi-cypts regions counted per mouse, Colon: 

50 crypt regions counted per mouse. Black bars = Nuak1 wt/wt; red bars = Nuak1 fl/fl. Mean±SEM shown; 

One-way ANOVA used followed by Tukey’s multiple comparison test, ns = not significant. Figure 5A-C 

experimental procedures and quantification was performed by Dr. Meera Raja and undergraduate student, 

Silvija Svambaryte. 

 

4.2.2 Nuak1 is dispensable in wildtype organoid cultures 

In vitro the use of three-dimensional ‘Organoid’ culture was adopted. This is a protocol 

established by Hans Clevers in which it is possible to grow stem cell containing crypts in a 

laminin-rich matrigel with essential growth factors and replicate the structure of cells 

lining the intestine. The wildtype crypts are able to form villus-like epithelial domains that 
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contain all differentiated cells of the normal intestine (Sato et al., 2009). Using this 

experimental system, pre-formed small intestine-derived wildtype organoids were treated 

with the NUAK1 inhibitor, HTH-01-015 (Banerjee et al., 2014a) for 48 hours and 

performed a CellTiter-Blue® Cell Viability Assay (Promega). In this assay, viable cells 

reduce resazurin to resorufin, which is highly fluorescent. Nonviable cells cannot 

metabolise the indicator dye therefore do not generate a fluorescent signal. Wildtype 

organoid cell viability was unaffected by acute Nuak1 inhibition (Figure 4.4A & B). 

 

Figure 4. 4 - Nuak1 is dispensable in wildtype organoid cultures 
(A) Organoid cultures from wildtype intestines treated with vehicle (i), 2.5μM (ii), 5μM (iii) and 10μM (iv) 

NUAK1 inhibitor HTH-01-015 for 48 hours. Scale bar = 100μm. (B) CellTiter-Blue® Cell Viability Assay 

performed at 48 hours post drug treatment, resazurin treatment for 6 hours, mean±SEM of 3 independent 

experiments shown. 

 

4.2.3 Nuak1 has no impact on c-MYC-dependent progenitor 
phenotype 

The phenotype that results from loss of Apc in the small intestine is known as the 

‘progenitor’ phenotype. This leads to an increase in BrdU incorporation, Minichromosome 

maintenance (MCM) staining and a dramatic enlargement of crypts by four days post Apc 

loss (Sansom et al., 2007). Additional loss of c-Myc in these mice could rescue this 

phenotype completely; therefore it was assessed whether c-Myc-dependent cells could be 

targeted with loss of Nuak1. In order to test this, adult Villin-CreER
T2

;Apc
fl/fl

;Nuak1
fl/fl 

 

(VAN) mice were induced with a daily IP injection for two consecutive days of tamoxifen 

(80mg/kg) and harvested at four days post induction. Villin-CreER
T2

;Apc
fl/fl

 mice were 

used as controls and will be referred to as VA. In this scenario, Nuak1 loss did not alter the 

Apc fl/fl progenitor phenotype (Figure 4.5). As before, cell proliferation (measured by 

BrdU IHC), death (measured by Cleaved Caspase 3 IHC) and cell differentiation, 
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specifically in Paneth cells (measured by Lysozyme IHC) and Goblet cells (measured by 

PAS stain) were investigated and no differences were observed. 

 

 

Figure 4. 5 - Nuak1 has no impact on c-MYC-dependent progenitor phenotype 
Representative images of small intestine from Villin-CreER

T2
;Apc

fl/fl
; (VA; top panels) or Villin-

CreER
T2

;Apc
fl/fl

;Nuak
fl/fl 

(VAN; lower panels), stained for histology (H&E); proliferation (BrdU); apoptosis 

(Cleaved caspase 3); and differentiation (Lysozyme and PAS). N=3 VA wt/wt and 3 VAN. Scale bar = 

100μM. 

 

4.2.4 Nuak1 is necessary for tumourigenesis in a GEMM of CRC 

This study has shown that Nuak1 is not necessary for normal intestinal homeostasis. In 

order to investigate whether Nuak1 is necessary for tumourigenesis within the intestine, 

Villin-CreER
T2

;Apc
fl/+

;LSL-KRas
G12D/+

;Nuak1
fl/fl  

(VAKN) adult mice were induced with 

one IP injection of tamoxifen (50mg/kg) and harvested at a defined endpoint of the 

presentation of two symptoms (defined in Section 2.1.3). Interestingly, dramatic 

suppression in colon tumour number (Figure 4.6A), burden (Figure 4.6B) and tumour size 
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(Figure 4.6C) was observed in Nuak1 floxed mice (VAKN). Representative images can be 

seen in Figure 4.6D. 

 

Figure 4. 6 - Deletion of Nuak1 suppresses colorectal tumour formation 
(A) Number of colon tumours per mouse in VAK (N=12) and VAKN (N=16) mice, harvested at end-point.  

Black bar indicates Mean tumour number while red bars indicate SEM. (B) Total tumour burden (area) per 

mouse of the indicated genotypes. Mean & SEM shown.  (C) Size of individual tumours in mice of the 

indicated genotypes. Box plots depict the median (red bar) and interquartile range of individual tumour area; 

whiskers reflect maximum observed tumour size. N=192 (VAK) & 119 (VAKN). (B-D) P values from 

unpaired T-tests shown.  (D) Representative H&E stained images of tumours from VAK (top panels) and 

VAKN (lower panels) mice.  Panels i-iii: scale bar =500μm.  Panel iv: zoom of inset from iii, scale bar 

=200μm, T=tumour, N=normal tissue. This work was performed by Dr. Meera Raja. 

 

 

Surprisingly however, there was no overall survival benefit in these mice compared to 

controls (Figure 4.7A). This is likely due to there being no significant difference in small 

intestine tumour number (Figure 4.7B), burden (Figure 4.7C) or tumour size (Figure 4.7D) 

between VAK and VAKN mice. Upon further investigation, Nuak1 expression was still 

retained in the tumours of the Nuak1 floxed (VAKN) small intestine tumours (Figure 4.7E) 

but not in the colonic tumours (Figure 4.7F). Firstly, this suggests that the Cre 

recombinase has not been completely efficient or that access to the Nuak1 locus is limited, 
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and secondly that Nuak1 retaining tumour cells have a survival advantage over Nuak1 

depleted cells.  

 

Figure 4. 7 - Inefficient deletion of Nuak1 in the small intestine 
(A) Kaplan Meier survival plot of VAK (n=14) and VAKN (n=22) mice measured from day of tamoxifen 

injection. P value shown for Logrank Test. (B) Number of small intestine (SI) tumours per mouse in VAK 

(n=12) and VAKN (n=16) mice harvested at end point. (C) Total SI tumour burden in mice of the indicated 

genotypes. (D) Size of individual tumours in mice of the indicated genotypes. Box plots depict the median 

(red bar) and interquartile range of individual tumour area; whiskers reflect maximum observed tumour size. 

N=176 (VAK) & 102 (VAKN). (E) Nuak1 mRNA in individual SI tumours and adjacent normal SI tissue 

taken from individual VAK and VAKN mice, as indicated. Error bars represent SEM of technical triplicates. 

(F) Nuak1 mRNA in individual Colonic tumours as in (E). This work was performed by Dr. Meera Raja. 

 

Small intestinal normal tissue analysed had very low levels of Nuak1 RNA when 

compared to tumours (Figure 4.7E) and interestingly, control colonic tumours had much 

higher Nuak1 mRNA expression than small intestine tumours. Therefore, Nuak1 

expression in the colon was investigated further. Nuak1 RNA in situ hybridisation (ISH) 



 

 108 

and Nuak1 immunohistochemistry (IHC) was used (Figure 4.8). The Nuak1 IHC was 

inconclusive as background levels were high, there was signal in the wildtype tissue and no 

apparent depletion in the Nuak1 floxed tissues was observed. However, the Nuak1 ISH 

corroborated the previous RT q-PCR data to suggest that there are very low levels of 

Nuak1 present in normal colon epithelium, and that expression is enriched in tumour 

epithelium. Thus, there is a requirement for Nuak1 in tumour cells that is not present in 

wildtype tissue. Notably, Nuak1 floxed VAKN tumours had considerably less Nuak1 ISH 

staining than wildtype Nuak1 VAK tumours. 

 

Figure 4. 8 - Interrogation of Nuak1 levels in VAK and VAKN colon normal tissue 

and tumour 
Representative images of normal epithelium from VAK (top, left panels) and VAKN (top, right panels) and 

tumour epithelium from VAK (bottom, left panels) and VAKN (bottom, right panels) for H&E staining, 

Nuak1 IHC (in house antibody) and Nuak1 ISH. In Nuak1 RNA ISH, each red dot represents the probe 

binding to one copy of target Nuak1 mRNA. On the left side of each panel scale bar = 100μm, on the right 

side of each panel scale bar = 10μm.  
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Next Apc and KRas status was characterised in Nuak1 wildtype (VAK) and depleted 

(VAKN) tumours. To achieve this, nuclear β-Catenin was used as a readout for loss of Apc 

and phosphorylation of ERK1 at Tyr-204 was used as a readout for KRas activation 

(Figure 4.9). This is one of two phosphorylation sites necessary for the full enzymatic 

activation of ERK, which is phosphorylated by MEK, as part of the RAS-RAF-MEK-ERK 

pathway (Downward, 2003). See Chapter 1, Section 1.6.1 (Figure 1.3) for Apc and β-

Catenin relationship and 1.6.3 (Figure 1.5) for RAS-RAF-MEK-ERK pathway. IHC was 

performed on both cohorts, however, Nuak1 did not appear to modulate either nuclear β-

Catenin or phosphorylation of ERK1 in this context. 

 
 

 

Figure 4. 9 - Nuak1 depletion does not alter Kras or Apc status in colonic tumours. 
Representative images of VAK (left panels) and VAKN (right panels) tumour stained for H&E, p-Erk IHC, 

β-Catenin IHC, and Nuak1 in situ hybridisation (ISH). On the left side of each panel scale bar = 100μm, on 

the right side of each panel scale bar = 10μm. Phospho-ERK and β-Catenin IHCs were performed by 

Katarína Gyurászová. 

 

4.2.5 Nuak1 is necessary for ‘stemness’ in GEMM generated 
spheroid cultures 

It is possible to generate organoids from Apc transformed (null) mouse crypts which are 

often referred to as ‘spheroids’. This describes the cystic organoid structures that result 

from high Wnt signalling, a consequence of loss of Apc. Wnt signalling has a central role 

in the maintenance of the undifferentiated crypt progenitor state (Sato et al., 2009), and as 
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a result, spheroids are composed primarily of stem cells. Unlike most cells in the human 

body, which are inherently limited in their proliferative capacity, stem cells have a long 

life span coupled with extensive proliferation potential. It has also been reported that 

organoids, including spheroids, undergo a considerably higher number of cell division than 

reported for other adult human epithelial culture systems (Dey et al., 2009, Garraway et al., 

2010).  

 

This study has shown that Nuak1 is required for the formation of colonic tumours in vivo 

therefore it was necessary to confirm this result ex vivo using both a genetic and 

pharmacological approach. Initially, spheroids were generated from both the small 

intestine and the colon from Villin-CreER
T2

;Apc
fl/fl

;LSL-Kras
G12D/+

 mice (VAK), which 

had been induced with 80mg/kg tamoxifen, four days prior. In order to investigate whether 

or not Nuak1 is necessary for the ‘stemness’ of spheroids, the formation of spheroids from 

single cell suspension was analysed in the presence of NUAK1 inhibitors, WZ4003 and 

HTH-01-015 (Banerjee et al, 2014). Compared to controls, spheroid formation was 

severely compromised in both the small intestine (Figure 4.10A) and colon (Figure 4.10B) 

spheroids in a dose dependent manner. As seen in the CRC cell lines, WZ4003 had a 

greater effect and significantly reduced spheroid growth at 2.5μM in both small intestine 

and colon-derived spheroids. HTH-01-015 was also effective in both, however only 5μM 

and 10μM significantly reduced spheroid numbers. Consistent with this, inhibition of 

Nuak1 markedly reduced cell viability as measured by the Resazurin assay (Figure 4.10C).  

 

In order to investigate this using an alternative genetic approach, spheroids from Villin-

CreER
T2

;Apc
fl/fl

;LSL-KRas
G12D/+

;Nuak1
fl/fl 

mice were generated. Mice were induced in vivo 

by tamoxifen injection and then harvested four days later as above. Compared to controls, 

Nuak1 floxed spheroids from both small intestine and colon were compromised (Figure 

4.10D&E). At least 50% Nuak1 depletion was confirmed by mRNA analysis (Figure 

4.10F).  

 

This data proposes that transformed stem cells depend on Nuak1 for cell viability and the 

‘stemness’ properties characteristic of spheroids. This is in contrast to wildtype organoids 

where Nuak1 appears to be dispensable. 
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Figure 4. 10 - Nuak1 is necessary for ‘stemness’ in GEMM generated spheroid 

cultures.  
(A) Numbers of VAK small intestine-derived spheroids after treatment with Nuak1 inhibitors HTH-01-015 

(HTH) or WZ4003 (WZ) for 48 hours, normalized to vehicle treated control (vc). Mean ± SEM of 3 

independent experiments shown; asterisks show significance (1-way ANOVA & post-hoc Tukey test, 

relative to vc controls).  (B) Numbers of VAK large intestine-derived spheroids treated and graphed as per 

(A).  (C) Representative experiment of CellTiter-Blue® Cell Viability Assay performed at 72 hours post 

drug treatment, n=3, resuzurin treatment 6 hours normalised to vc controls. (D) Number of spheroids arising 

from freshly isolated VAKN small and large intestine, normalized to VAK controls seeded on the same day, 

cells counted 72 hours post harvest. Mean ± SEM from VAK (N=4) and VAKN (N=6) mice shown. *** 

denotes significance (Unpaired T-test). (E) Representative images of spheroids from (D). Scale bar =500μm.  

(F) Detection of Nuak1 mRNA in SI and colonic spheroids from VAKN mice relative to Nuak1 transcript 

levels in VAK spheroids.  SI: Mean of 2 VAK and 2 VAKN mice shown. Colon: Mean of 4 VAK and 6 

VAKN mice shown. Error bar indicates SEM. Figure 4.10D-F experimental procedures were performed by 

Dr. Fatih Ceceti.  
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4.2.6 Nuak1 is necessary for the survival of established intestinal 
tumours in a GEMM model of CRC 

From this study, it is clear that wildtype tissue is unaffected by the loss of Nuak1 and 

furthermore, it has been shown that colonic tumours require Nuak1 to form. Next, the loss 

of Nuak1 in pre-existing colonic tumours was investigated. Additionally, a model in which 

tumours are located exclusively in the colon was utilised as this better recapitulates the 

human disease and excludes variation caused by the small intestine in the previous 

investigation. 

 

4.2.6.1 Acute Nuak1 depletion significantly reduces colonic tumour burden  

Villin-CreER
T2

;Apc
fl/fl

;DI-shNuak1 adult mice were induced by tamoxifen injection 

(80mg/kg) and tumours accelerated by dextran sodium sulphate (DSS) treatment, in the 

absence of shRNA expression. Induction of the DI-shNuak1 was performed by 

doxycycline treatment of the mice, for either three or seven days, immediately prior to 

harvest at 70 days post induction (Figure 4.11A). As mentioned previously, the rtTA3 and 

DI-shNuak1 transgenes are followed by an mKate and GFP cassette respectively, and 

allows easy visualisation of transgene expression. Frozen sections were harvested at both 

time points and both the mKate2 and GFP reporter proteins could be visualised (Figure 

4.11B). This confirmed dual expression of the rtTA3 and the DI-shNuak1 alleles. 

Additionally, mouse embryonic fibroblasts (MEFs) were isolated from DI-shNUAK1 mice 

where Cre recombinase was driven by regulatory sequences from the mouse zona 

pellucida 3 (ZP3), which is expressed exclusively in the oocyte prior to the first meiotic 

division (Lewandoski et al., 1997). Induction of each DI-shNuak1 allele was performed in 

vitro by doxycycline treatment (1μg/ml, 72 hours). Figure 4.11C shows successful 

depletion of Nuak1 protein in the MEFs compared to a wildtype littermate, where 

doxycycline has no effect on Nuak1 expression. NUAK2 protein levels were also 

unaffected by doxycycline-mediated activation of the DI-shNuak1 alleles. 
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Figure 4. 11 - The DSS/DI-shNuak1 model experimental plan and validation 

(A) Schematic of the experimental setup: 1) transient activation of CreER by tamoxifen injection (80mg/kg) 

at 6-12 weeks deletes the floxed Apc alleles and initiates gut restricted expression of rtTA3. 2) Four days post 

induction mice are administered 1.75 or 2% dextran sodium sulphate (DSS) in drinking water for 5 days to 

aggravate the colonic epithelium leading to the sporadic mutation of the remaining wildtype Apc allele and 

tumour initiation. 3) Mice were administered doxycycline (2mg by daily gavage) to induce expression of 

shNUAK1 at various timepoints preceding harvest. 4) Mice were harvested for examination after 3-7 days of 

Nuak1 depletion (70 days post induction). (B) Frozen sections of Villin-CreER
T2

; Apc
fl/+;

DI-shNUAK1 

intestine after 3 days of doxycycline treatment. Visualisation of both mKate2 and GFP reported proteins. 

Scale bars; upper = 500μm, middle (villi) = 200μm, middle (crypt) = 50μm. The lower panels show a Villin-

CreER
T2

; Apc
fl/+

 control intestine for comparison. (C) Nuak1 and NUAK2 immunoblot of MEFs carrying the 

shNuak1.612, shNuak1.1533 or wildtype alleles (genotypes specified) after treatment with doxycycline 

(1μg/ml) for 72 hours.  

 

Remarkably, after only seven days of DI-shNuak1 activation, there was a significant 

reduction in colon tumour number, burden and tumour size per mouse in the cohorts of 

both DI-shNuak1 alleles (Figure 4.12).  
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Figure 4. 12 - Acute Nuak1 depletion reduces colonic tumour number, burden and 

size. 
(A) Colonic tumour number per mouse (left panel), total tumour burden (centre panel) and individual tumour 

size (right panel), in DSS-treated VA mice after 7 days of Nuak1 depletion in the gut using either of 2 

doxycycline-inducible shRNAs (1533, N=10; or 612, N=7), compared with doxycycline treated controls 

lacking either shRNA or the rtTA3 allele (-, N=7). Graphs depict Mean (blue lines) and SEM (red bars).  Red 

asterisks indicate significance (1-way ANOVA & post-hoc Tukey test). (B) Representative images of 

dissected colon tissue from mice in (A).  Arrowheads indicate individual tumours; the dashed line denotes a 

continuous string of tumours. Scale bar =1cm.   
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In the same experimental context, tumours were also harvested after three days of 

doxycycline treatment to investigate acute Nuak1 loss. Confirming data from seven days of 

treatment, mice had lower colon tumour burden than the controls although it was not 

significant (Figure 4.13). 

 

Figure 4. 13 - Three days of Nuak1 depletion reduces colonic tumour number, burden 

and size. 
Colonic tumour number per mouse (left panel), total tumour burden (centre panel) and individual tumour size 

(right panel), in DSS-treated VA mice after 3 days of Nuak1 depletion in the gut using either of 2 

doxycycline-inducible shRNAs (1533, N=6; or 612, N=6), compared with doxycycline treated controls 

lacking either shRNA or the rtTA3 allele (-, N=8). Graphs depict Mean (blue lines) and SEM (red bars). 

One-way ANOVA & post-hoc Tukey test were performed and no significance was observed. 
 

Despite low tumour numbers in the DI-shNuak1 mice, tumours present at both three and 

seven days doxycycline treatment were interrogated for Nuak1 mRNA using RNA Scope 

in situ hybridisation (ISH). NUAK1 RNA Scope ISH revealed a range of Nuak1 mRNA 

levels within the tumours present at three days. When quantified, there appeared to be a 

slight reduction in Nuak1 mRNA levels overall, however, it was not significant due to low 

cohort numbers. This suggests that activation of the DI-shNuak1 alleles has indeed 

occurred, although it is not complete (Figure 4.14A&B).  

 

On investigation of the tumours still present in the DI-shNuak1 mice at seven days, Nuak1 

mRNA was elevated (Figure 4.14C & D). There was significantly more Nuak1 mRNA in 

both DI-shNuak1 alleles than control tumours. This is a surprising result and provides 

further evidence to support that colonic tumours require Nuak1 to survive and that tumours 

Nuak1 retaining tumour cells have the survival advantage. 

 

Notably, Nuak1 mRNA levels were very low in both wildtype controls and DI-

shNuak1.1533 normal colon tissue. In the wildtype controls, it was evident that the 
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tumours were enriched as in Figure 4.7 & 4.8, suggesting once again, that Nuak1 is 

upregulated during tumourigenesis.  
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Figure 4. 14 - Tumours are enriched with Nuak1 mRNA and Nuak1 depletion is 

observed at 3 days but not 7 days 
(A) Representative images of Nuak1 RNA scope ISH (red stain, indicated by black arrows in top panels) in 

(i) normal colon tissue in control mice, (ii) normal colon tissue in shNuak1.1533 mice. (iii) colon tumour in 

control mice, (iv) colon tumour in shNuak1.1533 mice, (v) zoom of inset from (iii), and (vi) zoom of inset 

from (iv). All harvested at 3 days post shRNA induction. Scale bars; i & ii = 200μm, iii & iv = 500μm, v & 

vi = 50μm. (B) Quantification of the average Nuak1 ISH probe copies per cell in individual tumours 

harvested at 3 days for controls (n=23 tumours), shNuak1.1533 (n=3 tumours) and shNuak1.612 (n=2 

tumours). Each point on the graph represents a tumour that was scored individually for Nuak1 RNA. (C) As 

in (A) but with tumours harvested at 7 days post shRNA induction. Scale bars; i & ii = 200μm, iii & iv = 

500μm, v & vi = 50μm.  (D) As in (B), quantification of the average Nuak1 ISH probe copies per cell in 

individual tumours harvested at 7 days for controls (n=23 tumours), shNuak1.1533 (n=5 tumours) and 

shNuak1.612 (n=6 tumours). 
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Next, tumours present in DI-shNuak1 mice at three days post shRNA induction were 

characterised for markers of cell death (TUNEL IHC) and proliferation (BrdU IHC) in 

order to understand the mechanism by which loss of Nuak1 is leading to such a significant 

reduction in tumour number by  seven days post shRNA induction. Total quantification of 

BrdU incorporation and TUNEL positive cells in individual tumours showed a significant 

decrease in BrdU positive cells and a significant increase in TUNEL positive cells in DI-

shNuak1 tumours compared to controls (Figure 4.15A & B). Notably, tumours retaining 

Nuak1 mRNA appeared to have visually higher levels of BrdU incorporation and lower 

levels of TUNEL positive cells (see figure 4.15B DI-shNuak1.1533 tumour 3 compared to 

tumour 1 & 2). Intriguingly, this data suggests that acute loss of Nuak1 results in increased 

cell death and reduced proliferation in intestinal tumours. 
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Figure 4. 15 – Nuak1 depletion leads to reduced cell proliferation and increase cell 

death 
(A) Representative images of H&E staining, Nuak1 RNA in situ hybridisation (ISH), BrdU incorporation and 

TUNEL IHC for an shControl tumour (top panel) and DI-shNuak1.1533 tumours 1-3 (middle and bottom 

panels). All tumours were harvested 3 days post shRNA induction, 70 days post tamoxifen induction. Scale 

bars from left to right = 100μm, 5μm, 10μm, 10μm.  (B) Quantification of % positive BrdU and TUNEL cells 

by IHC in individual tumours harvested at 3 days for controls (n=22 tumours), shNuak1 (combined alleles; 

n=18 tumours). Each point on the graph represents a tumour that was scored individually, errors bars show 

SEM. Red asterisks indicate significance (Mann Whitney Test).   
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4.2.7 Nuak1 is required for the survival of pre-formed spheroids 

In this chapter it has been shown that Nuak1 is required for the survival of established 

tumours in vivo therefore this result was further investigated ex vivo using both a genetic 

and pharmacological approach. Firstly, pre-formed Villin-CreER
T2

;Apc
fl/fl

;LSL-KRas
G12D/+

 

spheroids were treated with the NUAK1 inhibitors, HTH-01-015 and WZ4003, and 

spheroid number analysed over 48 hours. In the small intestine, pre-formed spheroids were 

sensitive to Nuak1 inhibition at 10μM HTH-01-015 and at both 5 and 10 μM WZ4003 in 

which there was more than 50% loss of spheroid number (Figure 4.16A). In comparison, 

the effect was reduced in colonic spheroids, however, there was still a significant reduction 

in spheroid number by 48 hours in 10μM HTH-01-015 and 5 and 10μM WZ4003 (Figure 

4.16B).  

 

In order to validate this result using a genetic approach, spheroids were generated from 

Villin-CreER
T2

;Apc
fl/fl

;LSL-Kras
G12D/+;

DI-shNuak1.1533
 

mice, which were induced by 

tamoxifen (80mg/kg) three days prior, from both the small intestine and the colon. Initially 

spheroids were allowed to form in culture and then treated with doxycycline to induce 

activation of the DI-shNUAK1.1533 allele. However, very few cells expressed the GFP 

reporter and after days in culture, these green fluorescent spheres disappeared (data not 

shown). Therefore, this suggested that the Cre recombinase was not 100% effective within 

the mouse, and that the escaping stem cell population were able to colonise more 

effectively than Nuak1 depleted spheroids. To maximise the activation of the DI-shNuak1 

in vivo, adeno-viral induction of Cre recombinase was utilised, with GFP visualisation as a 

measure of success. In order to investigate the survival advantage of Nuak1 wildtype 

versus Nuak1 depleted stem cells, pre-formed spheroids were cultured in the presence of 

1μg/ml doxycycline, to induce expression of the GFP-linked DI-shNuak1 allele, and both 

fluorescent and non-fluorescent spheroids were counted daily up to 72 hours for both small 

intestine and colon-derived spheroids. Doxycycline treated small intestine-derived 

spheroids had reduced total spheroid numbers compared to untreated controls and 

furthermore, over 72 hours the number of GFP fluorescing spheroids was also reduced 

suggesting that Nuak1 depleted spheroids indeed have a survival disadvantage (Figure 

4.16C). In the colon-derived spheroids there were no GFP positive spheroids until 48 hours 

suggesting that this was the time frame necessary for the doxycycline induction of the 

shRNA (Figure 4.16D). Pre-formed spheroids treated with HTH-01-015 and WZ4003 

shown previously also displayed a delayed effect suggesting that it takes longer for 

reagents to penetrate the spheroid structure.  There was also a reduction in spheroid 
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number at 48 and 72 hours, although the number of GFP positive spheroids remained 

constant. Figure 4.16E shows representative images of fluorescent spheroids after a 

doxycycline titration. 

 
 

Figure 4. 16 - Spheroids require Nuak1 for survival ex vivo 
(A) Numbers of VAK small intestine-derived spheroids after treatment of pre-formed spheroids with Nuak1 

inhibitors HTH-01-015 (HTH) or WZ4003 (WZ), normalized to vehicle treated control (vc). Mean ± SEM of 

3 independent experiments shown with spheroids isolated from 3 mice; asterisks show significance (1-way 

ANOVA & post-hoc Tukey test, relative to vc controls).  (B) Numbers of VAK colon-derived spheroids 

treated and graphed as per (A).  (C) Number of VAKshNuak1 small intestine-derived spheroids after 

shNuak1.1533 induction by 1μg/ml doxycycline treatment (+) for 24, 48 and 72 hours compared to untreated 

controls (-). Black bars represent the total number of spheroids counted; green bars represent the number of 

GFP positive spheroids counted. Representative experiment shown, N=2. (D) Number of VAKshNuak1 

colon-derived spheroids treated and graphed as per (C). (E) Representative images of brightfield and GFP in 

small intestine-derived spheroids treated for 24 hours with doxycycline as indicated. Scale bars = 500μm. 
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4.3 Discussion 

In the investigations of this chapter, it has been shown that Nuak1 has a minimal role in 

mouse normal intestinal homeostasis. No alterations in proliferation, cell death, or 

differentiation and cell lineage composition were observed in either the small intestine, or 

the colon by acute loss of Nuak1. To corroborate this data, wildtype organoid cultures 

were resistant to inhibition of Nuak1 by small molecule inhibitor, HTH-01-015 up to 48 

hours and furthermore, both short term and long term whole body induction of DI-

shNuak1 in vivo presented no obvious detrimental phenotypes. Together, this data 

strengthens Nuak1’s position as a targeted therapy, suggesting that inhibition of NUAK1 in 

cancer patients would have limited side effects. 

 

On the other hand, NUAK1 expression has been detected at higher levels in tumour cells 

than in adjacent normal epithelial cells in gastric cancer (Ye et al., 2014). The data in this 

chapter supports this finding as a drastic upregulation of Nuak1 mRNA was observed in 

intestinal tumour epithelium compared to normal intestinal epithelium.  

 

It is now well accepted that the changes following loss of APC during the initiation of 

tumourigensis are entirely dependent on functional c-MYC (Sansom et al., 2007), therefore 

this study aimed to investigate Nuak1’s role in this context considering previous findings 

that NUAK1 is synthetic lethal with overexpressed c-MYC (Liu et al., 2012). Surprisingly, 

no morphological changes were observed in VillinCreER
T2

;Apc
fl/fl

;Nuak1
fl/fl

 compared to 

VillinCreER
T2

;Apc
fl/fl 

controls after acute activation of transgenes. However, it is important 

to note that synthetic lethality may be a context dependent phenomenon that relies heavily 

on the level of c-Myc overexpression. For example, Liu et al. did not observe synthetic 

lethality in osteosarcoma sarcoma cell line, U2OS until c-Myc levels were acutely 

deregulated by activation of c-MYC fused to the oestrogen receptor ligand binding domain 

(MYC–ER). It may be that a threshold of c-Myc overexpression is required for dependence 

upon Nuak1, which is not reached in the Apc null conditions. It would be very interesting 

to add an additional method of c-Myc activation to investigate the effect of increasing 

levels of c-Myc expression in this experimental context.  

 

MYC can regulate up to 15% of all human genes and therefore is involved in a complex 

network of cellular processes including proliferation, apoptosis, cell cycle regulation, 

protein synthesis, metabolism and differentiation (Fernandez et al., 2003, Orian et al., 

2003). Therefore, c-MYC is required to function in many different contexts and it is 
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possible that the requirement for Nuak1 is not present in the context of acute loss of Apc in 

the mouse small intestine. Moreover, Liu et al. found that AMPK was also synthetic lethal 

with deregulated c-MYC, so it may be that AMPK or another member of the AMPK-RKs 

such as NUAK2, is able to compensate for NUAK1’s role here. This seems plausible due 

to the very low basal levels of Nuak1 expression in wildtype small intestine, however the 

effect of acute loss of APC on NUAK1, AMPK and NUAK2 expression has not yet been 

investigated.  

 

Importantly, Nuak1 is necessary for the formation of colonic tumours in the Villin-

CreER
T2

;Apc
fl/+

;LSL-KRas
G12D/+

 (VAK) mouse model for sporadic intestinal cancer. 

Nuak1 depletion in these mice caused dramatic suppression in the development of colon 

tumours as measured by tumour number, total burden and individual tumour size.  

However, this did not convey a survival benefit as Nuak1 depleted mice were harvested at 

a clinical endpoint due to their small intestine tumour burden, which remained unchanged 

from controls. Interestingly, all tumours isolated from the small intestine of the Nuak1 

depleted cohort retained Nuak1 mRNA suggesting that Cre-mediated recombination had 

not been completely efficient. Additionally, this study has presented strong evidence in 

multiple experimental settings to suggest that there is a selective pressure for cells to retain 

Nuak1, which then conveys a survival advantage in tumour development where these cells 

can out-compete Nuak1 depleted cells. This is not the first time it has been shown that 

Nuak1 conveys a survival advantage; as previously mentioned Liu et al. showed in an 

intervention study where tumours were allowed to develop before Nuak1 was targeted by 

shRNA, the tumours that survived retained Nuak1. Furthermore, tumour relapse was 

accompanied by re-expression of Nuak1 mRNA (Liu et al.2012). 

 

In order to overcome cells ‘escaping’ Cre recombinase-mediated excision in the intestine, 

an increased tamoxifen induction of one day of 120mg/kg, and then 3 consecutive days of 

80mg/kg injections was performed. As expected, the increased tamoxifen induction 

initiated Apc loss in a higher number of epithelial cells than with the low tamoxifen dose. 

However, this led to increased hyperplasia throughout the intestine that the mouse could 

not sustain and resulted in a reduced median survival from 110 days post induction (dpi) to 

69 dpi in VAK controls and 127 dpi to 116 dpi for VAKN Nuak1 floxed mice. 

Additionally, this reduced the number of developed tumours observed, as the mice needed 

to be sacrificed at an earlier stage. Therefore, it was not possible to recapitulate the 

previous data due to technical issues, however, this data does imply that the Cre 

recombinase is efficient in the induction of at least the Apc and KRas alleles as the related 
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phenotype escalated with the increased tamoxifen dose. It cannot confirm however, 

whether Cre recombinase, expressed from the Villin promoter, has sufficient access to the 

Nuak1 floxed allele locus for efficient and high frequency recombination and this may be 

an explanation for the presence of Nuak1 retaining cells after excision. It has been reported 

that the efficiency of Cre recombinase to recombine different alleles varies depending on 

several factors including the distance between Lox P sites, target gene expression levels, 

and the chromatin structure of target genes (Vooijs et al., 2001). 

 

Measurable Nuak1 mRNA levels were observed in VAKN mouse tissues by RT q-PCR 

analysis, however, due to the nature of this experiment, the analysis is performed on a 

piece of tissue that includes a mixture of many cell types for example, epithelial, stromal, 

muscle etc. As Villin-CreER
T2

 is only expressed in epithelial cells, Nuak1 depletion will 

only occur in these cells. All other cell types in the intestine will retain Nuak1 resulting in 

increased variation, the possibility of data distortion and an inaccurate representation of 

Nuak1 depletion in epithelial cells. Therefore, Nuak1 immunohistochemistry (IHC) and 

Nuak1 RNA in situ hybridization (ISH) was performed on paraffin embedded tissue 

samples. Unfortunately, the Nuak1 IHC appeared inconclusive, as background levels were 

high, there was signal in the wildtype tissue and no apparent depletion in the Nuak1 floxed 

tissues was observed. However, the Nuak1 ISH (Figure 4.8) corroborated with the previous 

realtime Q-PCR data (Figure 4.7E and F) to suggest that there are very low levels of 

Nuak1 present in normal colon epithelium and expression is enriched drastically in tumour 

epithelium. Although some Nuak1 ISH was observed in the Nuak1 floxed VAKN tumours 

it was considerably lower than the wildtype VAK tumours suggesting that depletion has 

occurred. Similarly, reduced levels of Nuak1 mRNA were observed in the Villin-

CreER
T2

;Apc
fl/fl

;DI-shNuak1 after 72 hours of shRNA activation. The principle of in situ 

hybridization (ISH) is the specific annealing of a labelled probe to complementary 

sequences of a target nucleic acid (DNA or mRNA), followed by detection and 

visualization (Carter et al., 2010). The Nuak1 fl/fl allele contains lox P sites at exon 3 at the 

endogenous locus and results in a non-functional protein after Cre recombinase excision 

however it is possible that some mRNA is still transcribed. Additionally, shRNA targets 

complementary mRNA for degradation as it is transcribed, therefore ‘knockdown’ is never 

100% complete. It is important in these cases to have multiple methods of Nuak1 detection 

to measure depletion. For example, in the Villin-CreER
T2

;Apc
fl/fl

;DI-shNuak1 cohorts it 

was possible to trace shRNA expression via fluorescent markers and observe efficient 

depletion of Nuak1 in MEFs derived from these mice confirming that the shRNA is on 

target. Nuak1 ISH in the mouse tissues also confirmed that Nuak1 mRNA is present in the 
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epithelium as well as the stroma corroborating the human TMA data in Chapter 1 (see 

Section 3.2.2). 

 

The data in this chapter confirms that Nuak1 is necessary for the survival of established 

colorectal tumours and downregulation of Nuak1 by doxycycline inducible-shRNA in the 

Villin-CreER
T2

;Apc
fl/+

;DI-shNuak1, DSS model for colon carcinogenesis worked 

therapeutically to reduce tumour number, burden, and tumour size within 72 hours. This is 

a crucial result as cancer patients always present with established tumours and this 

strengthens the argument that NUAK1 could be a therapeutic target for colorectal cancer. 

The analysis of tumours harvested 72 hours post shRNA induction suggests that loss of 

Nuak1 leads to increased cell death and decreased cell proliferation. Once again, tumours 

retaining Nuak1 expression were identified and these appeared to have a survival 

advantage over Nuak1 depleted tumours.  Furthermore, spheroids generated from Villin-

CreER
T2

;Apc
fl/fl

;KRas
G12D/+

;
 
DI-shNuak1 provided additional evidence that Nuak1 depleted 

spheroids are selected against over 72 hours.  

 

Despite increased apoptosis and reduced proliferation, the mechanism by which Nuak1 is 

required by tumour cells remains unclear. Nuak1 clearly has an important role in the 

regulation of cell proliferation. Liu et al. showed that depletion of NUAK1 by siRNA led 

to suppression of human tumour cell proliferation in 5/14 cell lines, two of which were 

CRC cell lines LS174T and Colo 320. Additionally, depletion of NUAK1 delayed 

progression through all phases of the cell cycle demonstrating that NUAK1 regulates cell 

growth (Liu et al., 2012). Another study revealed that NUAK1 inhibitors, WZ4003 and 

HTH-01-015, NUAK1 knockout and NUAK1 shRNA knockdown are able to inhibit 

proliferation of MEFs and U2OS cells in vitro (Banerjee et al., 2014a). In conclusion, these 

studies demonstrate that NUAK1 is required for the positive regulation of cell 

proliferation. Hou et al. also suggested that NUAK1 regulates cell proliferation in tumour 

cells however the proposed mechanism was that NUAK1 exerts tumour suppression 

through direct interaction with p53. This is contradictory to the phenotype presented in this 

study, however, this was dependent upon tumour suppressor, LKB1 activation and may be 

context dependent (Hou et al., 2011).  

 

Interestingly, it appears that healthy wildtype stem cells both in vivo and ex vivo do not 

require Nuak1 for cell proliferation. Therefore it is clear that there is a requirement for 

Nuak1 in transformed tumour cells that is not present in healthy wildtype cells. This data 

suggests that tumour cells are able to upregulate NUAK1 expression during 
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tumourigenesis in order to maintain a survival advantage. During the process of 

carcinogenesis, cancer cells acquire many traits that differentiate them from normal 

healthy cells. Some of these hallmarks include sustained proliferation, deregulated 

metabolism, the ability to resist cell death, and activation of invasion and metastasis, many 

of which NUAK1 has previously been associated with. Solid tumours develop hostile 

microenvironments characterised by poor oxygen, low nutrient supply and irregular 

vascularization. Healthy cells can modulate anabolic and catabolic pathways in response to 

changes in nutrient availability. Cancer cells, on the other hand, upregulate growth even 

under nutrient scarcity and constitutive activation of growth-promoting pathways often 

results in the dependence on certain pathways or proteins (Ackerman and Simon, 2014). 

Only cancer cells that have acquired the ability to survive in this unfavourable 

microenvironment will persist. AMPK is activated under various stress conditions where 

the cellular ATP concentration decreases and plays a key role in cellular adaptive 

responses to maintain energy balance; it may be that NUAK1 is activated in a similar 

manner within a tumour environment only. Previous studies have observed NUAK1 

activation in response to increased AMP levels and nutrient starvation (Suzuki et al., 

2003b). NUAK1, AKT, and AMPK appear to be required for the mechanism of tolerance 

to nutrient starvation (Izuishi et al., 2000, Esumi et al., 2002, Hashimoto et al., 2002). AKT 

is well-known as a cell survival factor, and is activated by several growth factors via 

phosphatidylinositol-3 kinase, PDK1, or Rac/Cdc42 (Kennedy et al., 1997, Delcommenne 

et al., 1998, Datta et al., 1997, Higuchi et al., 2001, Brazil et al., 2002). Activated AKT 

subsequently inhibits cell death-promoting factors, including Bad, Forkhead, caspase 9, 

and Mdm2 (Brazil et al., 2002). Additionally, AMPK also acts as a cell survival factor, 

however, it is unclear how activation confers tolerance to nutrient starvation (Izuishi et al., 

2000, Esumi et al., 2002, Hashimoto et al., 2002, Kato et al., 2002). Suzuki et al., (2003) 

reported that AKT phosphorylates NUAK1 in response to nutrient starvation 

independently of AMPK. Activated NUAK1 resulted in induction of cell survival via 

inhibition of cell-death-associated factor, caspase 8 suggesting that NUAK1 itself is also a 

cell survival factor in conditions of nutrient starvation. This mechanism may also play a 

role in tumour cells requirement for Nuak1 during tumourigenesis, however, further 

analysis is required to prove or disprove this hypothesis. 

 

In the next chapter this study will address the mechanism by which intestinal tumour cells 

depend upon NUAK1 for survival. 
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Chapter 5 NUAK1 is required for the detoxification 
of ROS 

5.1 Introduction 

In normal cells, reactive oxidants are produced in a controlled manner and some serve as 

signalling molecules to regulate functions such as cell division, inflammation, immune 

function, autophagy, and stress response. Reactive oxidants include reactive oxygen 

species or ROS (i.e. O2•−, H2O2, •OH, RO2•, RO•, 
1
O2, and O3) and reactive nitrogen 

species or RNS (i.e. •NO, •NO2, and ONOO−). ROS is predominantly produced in the 

mitochondria as a consequence of aerobic respiration and in addition to this, most enzymes 

produce ROS as a by-product when they use molecular oxygen as a substrate. RNS are 

formed during the reaction of nitric oxide synthesis (NO) by NO synthase. NO can then 

react with other molecules to generate other RNS with stronger oxidant properties (Ma, 

2013). Uncontrolled production of ROS results in oxidative stress that disrupts cellular 

processes and contributes to tumourigenesis, chronic disease and toxicity. Therefore in 

order to maintain the redox homeostasis, cells depend on the activation of the NRF2-

antioxidant response pathway to detoxify and eliminate ROS and electrophilic agents 

(Nguyen et al., 2009b). 

 

The transcription factor nuclear factor erythroid 2 (NF-E2)-related factor 2 (NRF2) is a 

member of the Cap ‘N’ Collar (CNC) family that contains a conserved basic leucine zipper 

(bZIP) structure. Studies investigating Nrf2 knockout mice have demonstrated that loss of 

Nrf2 increases susceptibility to a broad range of chemical toxicity and disease conditions 

related to oxidative pathology (Ma, 2013). The primary role of NRF2 is to induce the 

transcription of a wide array of genes that are able to detoxify ROS and thereby prevent the 

harmful effects of extrinsic and intrinsic insults (Moi et al., 1994). NRF2 binds to a 

common DNA sequence called antioxidant response element (ARE) in its transcriptional 

targets, and a genomic-scale search for NRF2 target genes identified many ARE-

containing genes with known roles in oxidant homeostasis in addition to drug metabolism 

(Hayes et al., 2010). The ARE-regulated genes can be divided into three distinct groups: 1) 

drug metabolising enzymes (DMEs) by which NRF2 is able to control the metabolic fate 

of numerous pro-oxidants and electrophiles in an organism, 2) anti-oxidant defence genes 

which allow NRF2 to maintain homeostasis of ROS and RNS via several defence 

mechanisms, and 3) oxidant signalling proteins that influence a number of programmed 
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cellular functions such as autophagy, apoptosis and inflammation (See Table 5.1 for more 

information).   

 

Under basal conditions, NRF2 has a rapid half-life of ~20 min, which results in low protein 

abundance in many cell types (Zhang et al., 2004). The canonical NRF2 regulator is 

KEAP1 (Figure 5.1A). NRF2 is sequestered in the cytoplasm by KEAP1, which results in 

its continuous ubiquitinyation and subsequent degradation by the proteasome (Itoh et al., 

1999). KEAP1 contains cysteine residues that are targeted for oxidation in the presence of 

ROS or electrophilic cell stress, resulting in the release of NRF2 and its translocation to the 

nucleus. Here it can activate its transcriptional targets, which are mentioned above 

(Dinkova-Kostova et al., 2002). 

 

In the KEAP1/NRF2 system, GSK3β is known to be a major regulator in the export of 

NRF2 from the nucleus (Figure 5.1B). GSK3β activates Fyn, which subsequently 

phosphorylates NRF2 at Y568, a prerequisite for nuclear export of NRF2 (Salazar et al., 

2006, Rojo et al., 2008). Independently, GSK3β has also been shown to phosphorylate 

NRF2 directly at a cluster of serines. This allows the ubiquitin E3 ligase complex SCF/β-

TrCP to associate with NRF2 and present it for KEAP1-independent proteasomal 

degradation (Chowdhry et al., 2013, Rada et al., 2011) (Figure 1A). In both mechanisms, 

either by supporting nuclear export or degradation in the cytosol, active GSK3β turns off 

NRF2 signalling.  
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Table 5. 1 - Genes regulated by NRF2 involved in oxidant response 

and redox signalling. Figure adapted from Ma, 2013, supplementary table 1. 
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Figure 5. 1 - NRF2 regulation 
(A) Schematic of β-TrCP dependent (left) and KEAP1 dependent (right) degradation of NRF2. In β-TrCP 

dependent degradation, GSK3β phosphorylates NRF2 at a cluster of serines within the Neh 6 domain of 

NRF2 that overlaps with an SCF/β-TrCP destruction motif and promotes its degradation by the proteosome 

in a KEAP1-independent manner. Without GSK3β phosphorylation, NRF2 is free to localise to the nucleus 

and upregulate the oxidative response. In KEAP1 dependent degradation, in the absence of ROS or 

electrophiles KEAP1 associates with NRF2 and targets it for proteasomal degradation. In the presence of 

ROS or electrophiles, three cysteine residues on KEAP1 are modified leading to altered conformation of 

KEAP1 so that it can no longer associate with NRF2, NRF2 is then free to localise to the nucleus. (B) 

Schematic of another GSK3β mechanism in NRF2 control. In the KEAP1/NRF2 system, GSK3β is known to 

be a major regulator in the export of NRF2 from the nucleus. GSK3β phosphorylates and activtes Fyn, which 

subsequently phosphorylates NRF2 at Tyr-568, a prerequisite for NRF2 export from the nucleus. After 

export, NRF2 is targeted for proteasomal degradation by KEAP1 as above. 
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NRF2 can act as both a tumour suppressor and an oncogene in tumourigenesis. This can be 

attributed to the pro-tumourigenic effects of low levels of ROS, for example the induction 

of sporadic mutations, and the anti-tumourigenic effects of high levels of ROS, which 

become cytotoxic if uncontrolled. 

 

Several studies have demonstrated that Nrf2 prevents the formation of tumours in the 

stomach, bladder and skin in homozygous Nrf2 knockout mice treated with a chemical 

carcinogen (Ramos-Gomez et al., 2001, Osburn et al., 2007b, Khor et al., 2008, Fahey et 

al., 2002). It has been hypothesised that NRF2-mediated protection is due to the control of 

ROS and DNA damage in cells (Hirayama et al., 2003, Morito et al., 2003). Interestingly, a 

single nucleotide polymorphism (SNP) has been identified in the human NRF2 gene that 

predisposes the patient to developing non-cell lung cancer (NSCLC) (Suzuki et al., 2013). 

 

On the other hand, prolonged activation of NRF2 has been demonstrated in several types 

of cancer such as lung, breast, head and neck, ovarian and endometrial carcinomas (Singh 

et al., 2006, Shibata et al., 2011, Shibata et al., 2008b, Wang et al., 2008a, Jiang et al., 

2010, Kim et al., 2010, Solis et al., 2010a, Zhang et al., 2010). Furthermore, high levels of 

NRF2 in tumours have been correlated with poor prognosis in cancer patients partly due to 

an increase in NRF2 dependent cell proliferation and resistance to chemotherapy and 

radiotherapy (Shibata et al., 2008a, Solis et al., 2010b, Sasaki et al., 2013).  

 

It is also known that oncogene transformation is able to direct an increased activation of 

NRF2 and thereby suppress high ROS within tumours. NRF2 modulation was shown to 

impede K-Ras
G12D

 – induced proliferation and tumourigenesis in a mouse model of 

Pancreatic Ductal Adenocarcinoma (DeNicola et al., 2011). 

 

In the previous chapter it was demonstrated that Nuak1 is essential for the formation and 

survival of colorectal tumours and that acute loss of Nuak1 results in reduced proliferation 

and increased cell death. Based on these findings, the investigations of this chapter will 

strive to address the mechanism by which tumour cells depend upon NUAK1. 
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5.2 Results 

5.2.1 NUAK1 suppression impairs the NRF2 antioxidant program 

RNA-SEQ analysis showed that on suppression of NUAK1 by shRNA in U2OS cells, 

multiple NRF2 transcriptional targets are downregulated. This included a sub-set of anti-

oxidant enzymes such as PRDX1, TXRND1, Thioredoxin, glutamate–cysteine ligase 

complex modifier subunit (GCLM) and GCL catalytic subunit (GCLC) and a sub-set of 

Phase II detoxifying enzymes such as NQO1 (Figure 5.2A). Metacore GeneGO pathway 

analysis revealed regulation of cholesterol synthesis, cell adhesion, NRF2 regulation of the 

oxidative stress response and glutathione metabolism were amongst the topmost pathways 

modulated upon NUAK1 depletion (Figure 5.2B). Encouragingly, NUAK1’s role in the 

regulation of cell adhesion via PP1β
MYPT1

 has been described previously (Zagorska et al., 

2010), however modulation of NRF2 regulation of the oxidative stress response and 

glutathione metabolism suggested a novel role for NUAK1 in the oxidative stress response 

pathway. Figure 5.2C shows the downregulation of specific NRF2 transcriptional targets, 

GLCL, GCLM, GSHR, MGST and TXN.  

 

Based on the finding above, the relationship between NUAK1 and NRF2 regulation was 

investigated using in vitro analysis of human colorectal cancer (CRC) cell lines, ex vivo 

mouse intestine-derived crypt cultures and in vivo analysis of our doxycycline inducible 

shNUAK1 colon tumour model introduced in Chapter 4.  
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Figure 5. 2 - NUAK1 suppression impairs the NRF2 anti-oxidant program 
(A) Schematic from MetaCore GeneGO analysis from Thomson Reuters of RNA-Seq data to show 

modulation of targets downstream of Nrf2 in U2OS cells after depletion of NUAK1 by shRNA. (B) Top 10 

pathways modulated in U2OS cells after depletion of NUAK1 by shRNA, identified by Metacore GeneGO 

analysis of RNA-Seq data. FDR = False discovery rate. Genes with corresponding Entrez ID’s were entered 

into MetaCore and tested for enrichment in Maps, Diseases, GO processes, and GeneGO processes. Metacore 

uses a hypergeometric model to determine the significance of enrichment. (C) RNA-Seq read counts of select 

NRF2 targets from (A&B) Mean & SEM of 3 biological replicates shown; asterisks denote significance, 

unpaired T-test used. This work was performed by Dr. Nathiya Muthalagu. 

 

5.2.1.1 NUAK1 suppression leads to increased cellular ROS  

Transcriptional analysis of NUAK1 knockdown in U2OS cells revealed that NUAK1 has a 

role in the regulation of NRF2 and it’s downstream transcriptional targets, therefore it was 

hypothesised that increased cellular ROS levels would result as a consequence. Thus, using 

CellROX® Deep Red Reagent, ROS levels were measured in U2OS and the CRC cell 

lines after 8 hours of treatment with NUAK1 inhibitor, HTH-01-015 (10μM) by flow 
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cytometry. The CellROX® Deep Red reagent is a cell-permeant dye that does not 

fluoresce while in a reduced state and becomes fluorescent upon oxidation by ROS. HTH-

01-015 caused a significant increase in oxidative stress in all cell lines suggesting that 8 

hours of acute NUAK1 inhibition is enough to compromise the oxidative stress response 

(Figure 5.3A). In addition to this, Villin-CreER
T2

;Apc
fl/fl

;Kras
G12D/+  

(VAK) small intestine-

derived spheroids were incubated with HTH-01-015 (5μM) for 16 hours and oxidative 

stress measured using CellROX® green. It was necessary to change reagent as CellROX® 

green signal is stable for up to 24 hours, contrary to CellROX® deep red which is stable 

for up to 2 hours. While staining with 2D cells is instant, it takes longer for the stain to 

penetrate the matrigel in 3D cultures.  Treatment with HTH-01-015 induced significantly 

more ROS than vehicle treated spheroids (Figure 5.3B & C). 

 

 

Figure 5. 3 - NUAK1 suppression leads to increased cellular ROS 
(A) ROS levels in U2OS and CRC cell lines, HCT116, SW620, LS174T, and SW480 measured by FACs 

analysis of CellRox staining intensity upon acute inhibition of NUAK1 with HTH-01-015 10μM for 8 hours. 

Mean±SEM from 3 independent experiments shown, asterisks denote significance, unpaired t-tests used. (B) 

Representative images of CellRox fluorescence of VAK spheroids after treatment with HTH-01-015 5μM for 

16 hours. Scale bars = 200μm. (C) Quantification of spheroid fluorescence using ImageJ, corrected total cell 

fluorescence (CTCF) = Integrated density–(area of selected cell*mean fluorescence of background). 

Representative experiment shown, N=41 spheroids counted per group from 3 technical triplicates, N=2. 

Figure 3 A was performed by Dr. Nathiya Muthalagu. 
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5.2.1.2 NUAK1 suppression sensitises cells to hydrogen peroxide 

Throughout this study two small interfering RNA (siRNA) sequences have been utilised 

for inducing silencing of NUAK1 by RNA interference (RNAi). Initially both were 

investigated for on-target silencing of NUAK1 protein as well as off-target silencing of 

fellow AMPK-RKs, AMPK and NUAK2 proteins in SW480 cells. Both induced efficient 

silencing of NUAK1 and did not affect AMPK or NUAK2 at protein level (Figure 5.4). 

 

 

Figure 5. 4 - Small interfering RNA (siRNA) for the silencing of NUAK1 are on target 

Immunoblot showing NUAK1 protein silencing by two siRNA sequences, ♯1 and ♯2 in SW480 cells. Neither 

siRNA showed silencing of NUAK2 or AMPKα1/ α2.  siRNA ♯1 was used at 40nM and siRNA ♯2 was used 

routinely at 10nM, samples were harvested 48 hours post transfection.  

 

Oxidative stress is a consequence of the imbalance between rising ROS levels and the cells 

ability to scavenge them. Uncontrolled ROS will eventually result in cell death. To 

investigate whether the cells requirement for NUAK1 is related to the inability to scavenge 

ROS, U2OS and the CRC cell lines were challenged with H2O2 (1mM, 24 hours), 48 hours 

post transfection with siRNA for NUAK1 (siNUAK1 ♯2) (Figure 5.5A-E). siNUAK1 ♯2 

was used in this analysis as NUAK1 depletion was more effective than siNUAK1 ♯1. 

Depletion of NUAK1 alone did not lead to the substantial levels of cell death seen 

previously with the pharmacological inhibitors in Chapter 3, Section 3.2.3. However, 

NUAK1 depleted cells were more sensitive to H2O2 challenge resulting in at least a two-

fold increase in cell death. This effect was observed in all cell lines and was measured by 

Annexin V FITC/Propidium Iodide apotosis assay with flow cytometry. 

 

As previously shown in Chapter 3, NUAK1 can be detected easily at protein level only 

U2OS and SW480 cell lines, therefore NUAK1 silencing was confirmed in U2OS cells by 

immunoblot (Figure 5.5B) and in the CRC cell lines by realtime qPCR analysis (Figure 

5.5F). RNAi-mediated knockdown in U2OS and SW480 was successful, however, there 
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was only a two-fold reduction in SW620 and LS174T cells. Despite this, NUAK1 

depletion was sufficient to result in a sensitisation to H2O2 none the less.  

 

 
Figure 5. 5 - NUAK1 suppression sensitises cells to peroxide 
(A) Apoptosis induced by treatment of U2OS cells with 500μM H2O2, with and without prior depletion of 

NUAK1, measured at 24 hours.  Mean±SEM of 3 independent experiments shown. (B) The immunoblot 

confirms depletion of NUAK1 by siNUAK1 ♯2.  (C-E) Apoptosis induced by treatment of human CRC lines, 

SW620 (C), LS174T (D) and SW480 (E) with 1mM H2O2, with and without prior depletion of NUAK1, 

measured at 24 hours.  Mean & SEM of a representative result from 1 of 3 independent experiments are 

shown for each cell line. Asterisks denote significance, significance, 1-way ANOVA & post-hoc Tukey test 

used. (F) Real time qPCR analysis of NUAK1 expression after siRNA transfection in each of the CRC cell 

lines used above, β2-microglobulin (B2M) was used as the housekeeping gene control, one representative 

experiment of n>3 shown. Figures (5A+B) were performed by Dr. Nathiya Muthalagu. 

 

5.2.1.3 HTH–induced cell death is rescued by addition of exogenous anti-
oxidant in vitro 

In order to confirm that suppression of ROS defences is the leading cause for cell death 

upon NUAK1 inhibition using HTH-01-015 in the CRC cell lines and spheroids, cells were 

pre-treated with an exogenous anti-oxidant.  
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Thus, SW620 and SW480 cells were pre-treated with Trolox (6-hydroxy-2,5,7,8-

tetramethylchromane-2-carboxylic acid) for 8 hours and then treated with HTH-01-15 (48 

hours; 10μM). Trolox is a derivative of vitamin E and is known to scavenge intracellular 

ROS (Hamad et al., 2010).  Cell death was measured as before by Annexin V 

FITC/Propidium Iodide apotosis assay with flow cytometry at 48 hours post drug addition. 

HTH-01-015 alone led to 80% cell death in SW620, and 60% cell death in SW480, 

corresponding to data in Chapter 3, Section 3.2.3, and combination with Trolox 

significantly reduced cell death to 40% in both cell lines  (Figure 5.6A & B). 

 

In addition to the 2D cell cultures, single cell suspensions of small intestine and colon-

derived VAK stem cells were pre-treated with Trolox (500μM) for 16 hours, followed by 

treatment with 5μM HTH-01-015 (in the presence of Trolox or vehicle control) and 

analysed spheroid formation over 72 hours. Trolox was able to rescue spheroid number by 

more than two fold in both small intestine- and colon-derived spheroids. Interestingly, no 

HTH-01-015 effect was observed on the size of small intestine-derived spheroids, as 

measured by spheroid diameter, however the drug severely compromise colon-derived 

spheroid size as well as number. This was not rescued by the provision of Trolox 

indicating that there may be other Nuak1 functions contributing to this phenotype. 

Representative images show all experimental conditions (Figure 5.6C & D). 

 

Overall this demonstrates that cytotoxic levels of ROS are the major reason for the cell 

death observed under suppression of NUAK1. 
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Figure 5. 6 - HTH–induced cell death is rescued by addition of exogenous anti-

oxidant 
Provision of exogenous antioxidant Trolox attenuates HTH-01-015-induced killing in human CRC lines 

SW620 (A) and SW480 (B). Mean±SEM of 3 independent experiments shown.  Asterisks denote 

significance (1-way ANOVA & post-hoc Tukey test).  (C) Representative images showing Trolox rescues 

growth of Small Intestine-derived VAK spheroids from Nuak1 inhibition (72 hours). Scale bar =100μm. Left 

panel shows quantification of spheroids after Nuak1 inhibition in the presence and absence of Trolox 

(500μM). Asterisks denote significance (1-way ANOVA & post-hoc Tukey test). Right panel shows average 

spheroid diameter, mean±SEM of 3 independent experiments, normalized to vehicle treated controls are 

shown. Right panel shows average spheroid diameter (μm), mean±SEM of control, Trolox, Trolox + HTH-

01-015 n>50, HTH-01-05 n=24 from one representative experiment, one-way ANOVA & post-hoc Tukey 

test found no significance. (D) Same as in (C) but for Colon-derived spheroids, control, Trolox, Trolox + 

HTH-01-015 n>100, HTH-01-05 n=53, astericks denote significance, 1-way ANOVA &post-hoc Tukey test 

performed. Figures (6A+B) were performed by Dr. Nathiya Muthalagu. 
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5.2.2 Tumour suppressive effect of Nuak1 depletion is a 
consequence of increased ROS, which can be reversed by 
exogenous provision of NAC in vivo 

In the previous chapter, Nuak1 depletion by DI-shNuak1 resulted in reduced proliferation 

and increased cell death in tumours. The data within this chapter strongly suggests that 

NUAK1 is promoting the NRF2 anti-oxidant defence system in tumours cells in vitro and 

ex vivo therefore it was assessed whether this mechanism was responsible for the reduced 

tumour burden after acute Nuak1 suppression in vivo (see Chapter 4, Section 4.2.6.2). 

 

Initially, tumours were assessed for 8-Oxo-2'-deoxyguanosine (8-oxo-dG), which is an 

oxidized derivative of deoxyguanosine. 8-Oxo-dG is one of the major products of DNA 

oxidation and can be used as a measurement of oxidative stress (de Souza-Pinto et al., 

2001). Total quantification of individual tumours for 8-oxo-dG staining showed that there 

was a significant increase in 8-oxo-dG positive cells in tumours derived from shNuak1 

mice compared to controls (Figure 5.7A & B).  Visually it was also apparent that Nuak1 

retaining DI-shNuak1 tumours had levels of 8-oxo-dG staining comparable to controls. 

 

In order to investigate ROS in a more physiologically relevant context, tumours were 

investigated for ROS immediately prior to harvest (ex vivo) using the Licor ROSstar
TM 

800cW probe, a near-infrared hydrocyanine probe for imaging of extracellular ROS. In its 

reduced state, the probe is cell-impermeable and non-fluorescent, however upon 

oxidisation by ROS, produces fluorescence making it suitable for in vivo imaging. Villin-

CreER
T2

;Apc
fl/+;

DI-shNUAK1.1533 mice were induced as before, with one 80mg/kg 

tamoxifen, followed by DSS treatment. At 68 days post induction, mice were treated with 

Doxycycline to activate the shRNA specific for Nuak1 for two days preceding harvest. 

Sixteen hours prior to harvest, mice were injected with the Licor ROSstar
TM 

800cW probe. 

Mice were then harvested, and the colon dissected and imaged using a Pearl Trilogy Small 

Animal Imaging System. Imaging of tumour bearing shNuak1 and control mice revealed 

elevated ROS levels in colonic tumours in situ after just two days of NUAK1 depletion 

compared to controls (Figure 5.7C). 
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Figure 5. 7 - Acute loss of Nuak1 results in increased ROS in tumours 
(A) Representative images of H&E staining, Nuak1 RNA in situ hybridisation (ISH) with inset zoom (200%)  

highlighted in red, and 8-Oxo-2'-deoxyguanosine (8-oxo-dG) IHC for an shControl tumour (top panel) and 

DI-shNuak1.1533 tumours 1-3 (middle and bottom panels). All tumours were harvested 3 days post shRNA 

induction, 70 days post tamoxifen induction. Scale bars from left to right =100μm, 20μm, 10μm. (B) 

Quantification of % positive 8-oxo-dG cells by IHC in individual tumours harvested at 3 days for controls 

(n=22 tumours), and shNuak1 (combined alleles; n=18 tumours). Each point on the graph represents a 

tumour that was scored individually, errors bars show SEM. Red asterisks indicate significance (Mann 

Whitney Test). (C) Licor ROSStarTM ex vivo detection of ROS in colonic tumours induced to express 

shNuak1.1533 for 2 days, compared with non-induced controls. 
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Finally, Villin-CreER
T2

;Apc
fl/+;

DI-shNUAK1.1533 mice, induced as above, were pre-

treated with antioxidant N-Acetyl-Cysteine (NAC) in drinking water (4%) at 60 days post 

induction. At 63 dpi, the shRNA was induced by doxycyline treatment for 1 week 

preceding harvest. NAC exhibits direct and indirect antioxidant properties as it can 

detoxify ROS itself, as well as act as a precursor for Glutathione (GSH), another crucial 

antioxidant for the protection of cells against toxic agents (Dekhuijzen, 2004). Mice were 

harvested at 70 days post induction and tumours analysed. Results showed that exogenous 

provision of NAC reversed the tumour suppressive effect of Nuak1 depletion (Figure 5.8A 

& B) and had no effect on Nuak1 wildtype controls (Figure 5.8C). 

 

These results suggest that impairment of the cellular anti-oxidant defence pathway is the 

underlying mechanism of tumour loss after acute Nuak1 suppression in the colon, and that 

current findings in vitro, translate in vivo. 
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Figure 5. 8 - NUAK1 addicted tumours are rescued by addition of exogenous anti-

oxidant 
(A) Tumour number, total tumour burden and individual tumour size in DSS-treated Vil-CreER;Apc

fl/+ 
(VA) 

mice after 7 days of Nuak1 depletion in the gut using DI-shNuak1.1533, in mice given N-Acetyl-Cysteine 

(NAC, N=8) compared with no exogenous anti-oxidant (nt).  Note that the nt data are the same used in 

Section 4.2.6.2, Figure 16. Red asterisks indicate significance (1-way ANOVA & post-hoc Tukey test).  (B) 

Representative images of dissected colons from NAC treated DI-shNuak1.1533 expressing mice.  

Arrowheads indicate tumours. Scale bar =1cm. (C) As in (A) but with control mice (WT for rtTA3 or DI-

shNUAK1 allele). 

 

 

5.2.3 NUAK1 is required for the nuclear localisation of NRF2 
protein 

The previous data suggests that NUAK1 is a key mediator in the upstream regulation of 

NRF2 targets and the anti-oxidant response pathway within a tumour environment; 

however the underlying mechanism by which NUAK1 regulates NRF2 remains elusive.  
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5.2.3.1 NUAK1 does not modulate NRF2 at protein level 

One level of NRF2 regulation is targeted proteosomal degradation. Firstly, it was 

investigated if NUAK1 depletion modulates basal NRF2 protein levels however, no 

change at protein level was observed after knockdown by siNUAK1 ♯2 at 48 hours post 

transfection (Figure 5.9). This suggests that regulation of NRF2 by NUAK1 is not via 

protein stabilisation or inhibition of degradation. 

 

Figure 5. 9 - NUAK1 does not regulate NRF2 at protein level 
Immunoblots showing NRF2 protein level in whole cell extract after NUAK1 depletion using siRNA 

sequence ♯2 in U2OS (left panel), and SW480, SW620 and HCT116 (right panels). The asterisk indicates the 

correct NRF2 band. 

 

5.2.3.2 NUAK1 is required for the nuclear localisation of NRF2 protein 

Next, NRF2 accumulation in the nucleus was examined after acute hydrogen peroxide 

treatment in NUAK1 depleted U2OS and CRC cell lines, SW480, SW620, HCT116 and 

LS174T (Figure 5.10). Depletion of NUAK1 strongly suppressed translocation of NRF2 

into the nucleus when compared to non-targeting controls in all cell lines. This result was 

further confirmed in U2OS with NUAK1 inhibitor, HTH-01-015 for 8 hours at 10μM 

(Figure 5.10B) and in CRC cell line, SW480, using two independent siRNA sequences 

(referred to as ♯1 and ♯2 in figure 5.10C). Basal levels of nuclear NRF2 protein also 

appeared to be modulated by NUAK1 depletion before peroxide stimulation (see SW620 

and HCT116 cells), thus NUAK1 is necessary for NRF2’s localisation to the nucleus even 

under basal conditions. Finally, a H2O2 time course was performed to assess the temporal 

dynamics of NRF2 localisation to the nucleus upon NUAK1 depletion. This showed that 

the response is reduced at all time points rather than delayed (Figure 5.10E).  



 

 144 

 

Figure 5. 10 - NUAK1 is required for NRF2 localisation to the nucleus 
(A) Left panel: Immunoblot of NRF2 protein levels in nuclear extracts from U2OS cells after acute (30 mins) 

treatment of cells with 500μM H2O2, with and without prior depletion of NUAK1 with siRNA ♯2. Right 

panel: confirmation of NUAK1 depletion by siRNA ♯2. Nuclear protein LAMIN A/C is used as a loading 

control. (B) Immunoblot of NRF2 protein levels in nuclear extracts from U2OS cells after acute (30 mins) 

treatment of cells with 500μM H2O2, with and without 8 hours pre-treatment with 10μM HTH-01-015. (C) 

Left panel: As in (A) but with SW480 cells and siRNA sequence ♯1. Middle panel: As in (A) with S480 cells 

and siRNA sequence ♯2. Right panel: Nuclear extracts show confirmation of NUAK1 knockdown with each 

siRNA sequence. (D) As in (A) but with SW620 (left panel), HCT116 (middle panel) and LS174T (right 

panel). (E) Immunoblot of NRF2 protein levels in nuclear extracts from SW480 cells after indicated 

timepoints of 500μM H2O2 treatment with and without prior deletion of NUAK1 with siNUAK1 ♯2. Below 

shows the densitometry of the immunoblot using ImageJ.  All blots (A-E) are representative of at least 3 

independent experiments. Figures (10A+B) were performed by Dr. Nathiya Muthalagu. 



 

 145 

5.2.4 NUAK1 promotes nuclear translocation of NRF2 by 
antagonizing GSK3β 

5.2.4.1 NUAK1 is necessary for the phosphorylation of GSK3β Ser-9 

Unbiased, SILAC-based phospho-proteomics was utilised to recognise mediators of NRF2 

regulation upon NUAK1 inhibition with HTH-01-015 in U2OS cells. Phosphorylation of 

MYPT1 at Ser-445, the most validated target of NUAK1 was reduced in HTH-01-015 

treated samples as expected. Interestingly, this was the only site resident within an AMPK-

related kinase consensus motif that was consistently down regulated in this analysis. 

Importantly, the inhibitory phosphorylation site on GSK3β Ser-9 was also reduced upon 

HTH-01-015 and there was a corresponding increase in the phosphorylation of numerous 

GSK3β targets (Figure 5.11).  

 

 

Figure 5. 11 - NUAK1 is necessary for the inhibitory phosphorylation of GSK3β Ser-9 
Summary of phospho-proteomic changes induced in U2OS cells upon treatment with 10μM HTH-01-015 for 

1hr.  Left panel depicts the comparison of “forward”  (X-axis) with “reverse” (Y-axis) SILAC labeled cells.  

Phosphorylation sites in the lower left quadrant thus show consistent reduction in levels while those in the 

upper right quadrant show consistently higher phosphorylation levels detected by mass spectrometry. The 

previously validated NUAK1 substrate MYPT1 was used to set a threshold for acceptance/rejection of 

modulated phosphorylations.  Right panel shows zoom of the inset from left panel, with known (red) and 

predicted (orange) GSK3β substrates highlighted.  This analysis was performed by Tiziana Monteverde in 

collaboration with Dr. Sara Zanivan and the Beatson Proteomics Facility. 

 

5.2.4.2 NUAK1’s effect on GSK3β is conserved to SW480 cells and is 
independent of upstream AKT signalling 

Activation of AKT at Thr-308 and Ser-473 leads to AKT-mediated phosphorylation of 

GSK3β and its subsequent inhibition in many cellular settings including that of NRF2 

regulation. In the presence of oxidative stress, cytoplasmic GSK3β must be 
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phosphorylated, and thereby inactivated, in order to release NRF2 from negative regulation 

and allow it to accumulate in the nucleus and consequently upregulate the anti-oxidant 

response pathway (Rojo et al., 2008).  

 

To examine this mechanism in the context of NUAK1 depletion in SW480 cells, nuclear 

and cytoplasmic fractions were investigated once again with and without acute H2O2 

treatment. As expected, cytoplasmic AKT was activated and GSK3β phosphorylated at 

Ser-9 in response to peroxide (Figure 5.12, right panel). Upon depletion of NUAK1 

however, cytoplasmic GSK3β Ser-9 was strongly reduced, corroborating the phospho-

proteomics analysis, while AKT phosphorylation was unaffected. This data confirms that 

NUAK1 has a conserved regulatory role in the phosphorylation of GSK3β Ser-9 and 

consequently, releases NRF2 from negative regulation, to upregulate the oxidative 

response pathway. 

 

Interestingly both AKT and GSK3β protein appeared to increase in the nuclear fraction 

upon H2O2, and this effect was reduced in NUAK1 depleted conditions (Figure 5.12, left 

panel). It is currently unclear what NUAK1’s role is in nuclear accumulation of these 

proteins and how this effects their functions there. 

 

Figure 5. 12 - NUAK1’s regulation of GSK3β is conserved to SW480 cells and is 

independent of upstream AKT signalling 
Immunoblots of Nuclear (left panel) versus Cytoplasmic (right panel) fractions isolated from SW480 cells 

with or without NUAK1 depletion and treatment with 500μM H2O2 (30 mins), cytoplasmic densitometry (far 

right panel) calculated by ImageJ, N=3. siNUAK1 sequence ♯2  used. 
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5.2.4.4 Pharmacological or genetic abrogation of GSK3β rescues nuclear 
accumulation of NRF2  

These investigations have shown that the inhibitory phosphorylation of GSK3β is impaired 

in NUAK1 depleted cells; therefore it was assessed whether GSK3β inhibition by small 

molecule inhibitor could rescue nuclear accumulation of NRF2. Conclusively, inhibition of 

GSK3β with either BIO-acetoxime or CHIR99021 was able to rescue nuclear accumulation 

of NRF2 in NUAK1 deficient SW480 cells (Figure 5.13).  

 

Figure 5. 13 - Pharmacological or genetic abrogation of GSK3β rescues nuclear 

accumulation of NRF2 
(A) Immunoblots showing 6 hours pre-treatment of NUAK1 depleted SW480 cells with GSK3β inhibitors 

BIO-acetoxime (BIO; 1μM) or CHIR99021 (dCHIR; 5μM) restores H2O2-induced NRF2 nuclear 

translocation (H2O2 - 500μM, 30 mins) in nuclear extracts. (B) Immunoblots showing the accumulation of β-

Catenin as a result of GSK3β inhibition with each inhibitor in whole cell extracts. siNUAK1 sequence ♯2  

used.  

 
 

5.2.5 MYPT1 responds to ROS in a NUAK1 dependent manner 

NUAK1-mediated phosphorylation of MYPT1 at Ser-445 inhibits PP1β activity as 

reported by Zagorska et al, 2010. Furthermore, PP1β has been linked to GSK3β activity; 

specifically PP1β can dephosphorylate and subsequently activate GSK3β (Hernández et 

al., 2010, Mobasher et al., 2013). This suggests that ROS co-ordinately activates AKT and 

inactivates PP1β via NUAK1 to suppress GSK3β. Interestingly, phosphorylation of 

MYPT1 Ser-445 responded to H2O2 treatment in U2OS and SW480 cells (Figure 5.14). 

When NUAK1 was depleted in these cells, the activation was almost completely abrogated 

in U2OS suggesting that NUAK1 is the upstream kinase responding to increasing ROS. 
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This effect was present, however less evident in SW480 cells suggesting that there may be 

another kinase compensating for NUAK1 depletion.  

 

Figure 5. 14 - MYPT1 responds to peroxide treatment in a NUAK1 dependent 

manner 
Immunoblots showing MYPT1 Ser-445 phosphorylation in response to H2O2 treatment (500μM, 10, 30 mins) 

after depletion of NUAK1 by siRNA sequence ♯2 in whole cell extracts from U2OS (left panel) and SW480 

(right panel) cells.  

 

5.2.6 NUAK1 is activated by ROS oxidisation of cysteine residues 

NRF2 regulator, KEAP1, contains cysteine residues which are targeted for oxidisation in 

the presence of ROS leading to the dissociation of KEAP1 to NRF2 (Dinkova-Kostova et 

al., 2002). Therefore one possible way that NUAK1 is responsive to ROS is that it contains 

similar cysteine residues. Dimedone is a chemical reagent which forms adducts with 

oxidised groups in proteins (Rudyk & Eton, 2014). In order to detect possible cysteine 

oxidation by ROS, dimedone was used as a labelling agent in SW480 cells expressing 

FLAG-tagged NUAK1 after acute H2O2 treatment. Treatment with increasing doses of 

H2O2 resulted in increased dimedone labelling of FLAG-immunoprecipitated (IP) NUAK1 

as well as increased phosphorylation of NUAK1 (Figure 5.15A).  

 

According to the NCBI reference sequence there are nine possible cysteine residues 

present in NUAK1 (NP_055655.1). A less crude and more accurate method of measuring 

cysteine oxidization is Mass Spectrometry analysis of iodoacetamide labelled proteins. 

Iodoacetamide differentially labels cysteine residues under both normal and oxidative 

stress conditions; cysteines that become oxidized exhibit a decreased iodoacetmide 

labeling due to the lessened nucleophilicity of the sulfur atom. Iodoacetmide labelling of 

FLAG-NUAK1 IPs from cells treated for 5 minutes with H2O2 similarly revealed increased 

oxidation of all nine NUAK1 cysteine’s, as compared with untreated controls (Figure 

5.15B & C). Collectively, this data suggests a model wherein ROS-dependent activation of 
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NUAK1 coordinates inhibition of PP1β with activation of AKT in order to counteract 

suppression of nuclear NRF2 by GSK3. 

 

Figure 5. 15 - NUAK1 is activated by ROS oxidisation of cysteine residues 
(A) Oxidation of NUAK1 protein detected by dimedone labeling of U2OS cells expressing FLAG-tagged 

NUAK1 and treated for 5 minutes with H2O2 (0.25, 0.5, and 1.0mM).  (B) Identification of oxidised cysteines 

in FLAG-tagged NUAK1 by mass spectrometry analysis of Iodoacetamide labelling of U2OS-FLAG-

NUAK1 cells treated with/without H2O2 for 5 minutes. Lysates were labelled with heavy (13C) or light 

(12C) iodoacetamide, followed by immunoprecipitation of FLAG-NUAK1. Plot shows analysis of 

reciprocally labeled samples from 2 independent experiments. Mean and SD indicated. 
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5.3 Discussion 

The primary role of NRF2 is to induce the transcription of a wide array of genes that are 

involved in the detoxification of cellular ROS and thereby prevent the harmful effects of 

extrinsic and intrinsic insults (Moi et al., 1994). GSK3β is known to negatively regulate 

NRF2 by two independent mechanisms, 1) GSK3β is a major regulator in the export of 

NRF2 from the nucleus (Salazar et al., 2006, Rojo et al., 2008) and 2) GSK3β can 

phosphorylate NRF2 directly to target it for proteosomal degradation via SCF/β-TrCP 

(Chowdhry et al., 2013, Rada et al., 2011).  

 

The investigations of this chapter have demonstrated that NUAK1 regulates nuclear 

accumulation of NRF2. Interestingly, recent unpublished data from the lab suggests that 

NUAK2 can also regulate NRF2’s localisation to the nucleus. This is not entirely 

surprising as NUAK2 can also regulate the PP1β
MYPT1 

complex, however what is 

surprising is that NUAK1 and NUAK2 cannot compensate for loss of the other in this 

context. It should be noted that all siRNAs used were analysed for on-target silencing and 

did not silence the other NUAK isoform. Furthermore, H2O2 stimulated phosphorylation of 

MYPT1 in U2OS cells, is almost completely abrogated after NUAK1 depletion suggesting 

that NUAK1 is the dominant NUAK isoform in these cells in this context. On the other 

hand, although markedly reduced, the effect was not so dramatic in SW480 cells 

suggesting that indeed NUAK2 or another AMPK-RK may also able to phosphorylate 

MYPT1 in response to H2O2 however not as efficiently as NUAK1. According to the 

literature, NUAK1 and NUAK2 are the only AMPK-RKs to bind to PP1β and 

phosphorylate MYPT1 via the conserved GILK motif (Banerjee et al., 2014b). As 

mentioned previously, the NUAK phosphorylation sites on MYPT1 lie within an optimal 

AMPK consensus motif LX(R/K)(S/T)X(pS)XXX(L/I) (Dale et al., 1995). Indeed, there is 

some evidence to suggest that AMPK is also able to phosphorylate MYPT1 at these 

residues (Murphy lab; unpublished). Therefore, further analysis would be required to 

investigate whether or not other AMPK-RKs can also take part in NRF2 regulation in the 

absence of the NUAK isoforms, and whether or not there is a biochemical difference in the 

NUAK isoforms that prevents them from compensating either in vitro or in vivo. 

 

NUAK1 is necessary for the nuclear accumulation of NRF2 by counteracting negative 

regulation of this process by GSK3β, and direct inhibition of GSK3β can restore NRF2 

nuclear accumulation in NUAK1 deficient cells. GSK3β is a constitutively activated 

kinase, which is controlled by inhibitory phosphorylation at Ser-9. AKT is the major 
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upstream kinase of this phosphorylation site and thereby mediates GSK3β activity (Beurel 

et al., 2015). In the context of oxidative stress, ROS activates phosphoinositide-3-kinase 

(PI3K) to amplify downstream AKT signalling, and simultaneously inactivates the 

phosphatase and tensin homolog (PTEN), which inhibits activation of AKT, by the 

oxidation of cysteine residues within PTEN (Lee et al., 2002, Zhang and Yang, 2013). This 

leads to inhibition of GSK3β by phosphorylation at Ser-9 and the consequent release of 

NRF2 from GSK3β-dependent negative regulation (Rojo et al., 2008) (Lee et al., 2002). It 

has been shown here that activation of AKT by ROS is unaffected by NUAK1 deficiency 

therefore modulation must occur at GSK3β, either by the interruption of AKT’s ability to 

phosphorylate GSK3β or by the regulation of dephosphorylation of GSK3β.  

 

Interestingly, PP1β was previously shown to promote GSK3β-dependent regulation of 

NRF2 by dephosphorylating GSK3β (Mobasher et al., 2013). Here, NUAK1 dependent 

phosphorylation of MYPT1 was activated in response to H2O2 providing evidence that 

activated NUAK1 leads to the suppression of PP1β activity via MYPT1 phosphorylation in 

response to ROS. This in turn can inhibit dephosphorylation of GSK3β by PP1β thus 

allowing NRF2 to accumulate in the nucleus and upregulate the anti-oxidant response 

pathway. As NRF2 controls anti-oxidant transcription in order to detoxify ROS, and 

AMPK functions as a sensor for cellular stress, it seems plausible that the two mechanisms 

are linked. Indeed AMPK participates in the anti-oxidant defence indirectly by conserving 

NADPH levels via inhibition of lipid biosynthesis (Jeon et al., 2012). Additionally, AMPK 

is able to phosphorylate NRF2 directly at Ser-558, which is located in the canonical 

nuclear export signal (NES) sequence and is also a consensus AMPK motif and AMPK is 

able to concurrently phosphorylate GSK3β and inhibit its activity at Ser-9, thereby 

inhibiting negative regulation of NRF2 in times of oxidative stress (Joo et al., 2016). It is 

known that both AMPK and NUAK1 can be activated by increased AMP levels therefore 

it is not unlikely that both AMPK and NUAK1 are activated by an increase in AMP/ATP 

ratio in this context, which frequently occurs prior to oxidative stress (Joo et al., 2016, 

Suzuki et al., 2003b). On the other hand, redox signalling is more direct and involves 

H2O2-mediated oxidation of cysteine residues within proteins such as NRF2 regulator, 

KEAP1 (Rhee, 2006). Exposure to H2O2 has been reported to induce the oxidation of 

cysteine residues on AMPK, which subsequently results in AMPK activation through auto-

phosphorylation (Zmijewski et al., 2010). Therefore, another possible mechanism of 

activation would be that NUAK1 contains cysteine residues susceptible to oxidation. 

Indeed in this study, NUAK1 is activated by ROS-dependent oxidisation of cysteine 

residues.  
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This study has accumulated evidence to suggest that the NRF2 anti-oxidant response 

pathway is compromised upon loss of NUAK1. Firstly, loss of NUAK1 leads to elevated 

ROS levels in U2OS and the CRC cell lines, in transformed spheroids and acute loss of 

Nuak1 in vivo results in ROS within tumours. Secondly, hypersensitisation to oxidative 

stress-induced apoptosis was demonstrated in the CRC cell lines. Thirdly, NUAK1 

inhibitor, HTH-01-015-mediated cell death was rescued by the exogenous addition of anti-

oxidant 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) in both U2OS 

and CRC cell lines and transformed small intestine- and colon-derived spheroids.  This 

was confirmed in vivo as provision of NAC was able to rescue loss of tumour burden in 

mice after acute Nuak1 loss. This confirms that cytotoxic levels of ROS are responsible for 

cell death. However, it must be noted that in no case was the rescue 100%. This implies 

that inhibition of NUAK1 may be compromising other essential cellular processes. Once 

again, this is not surprising as NUAK1 has been implicated in proliferation and DNA 

damage response (Hou et al., 2011), adhesion (Zagorska et al., 2010), senescence 

(Humbert et al., 2010), and apoptosis (Suzuki et al,, 2003) as mentioned previously. 

However it is unclear how these would result in cell death. On the other hand, phospho-

proteomic analysis indicated modulation of multiple GSK3β targets in addition to NRF2, 

therefore NUAK1’s regulation of GSK3β may be pleiotropic and undiscovered functions 

are likely to exist. This has enormous implications as GSK3β has been reported to 

phosphorylate about 100 proteins so far (Sutherland, 2011) and this study has only 

investigated one downstream consequence of NUAK1 modulation. Investigation of the 

nuclear population of GSK3β and AKT showed that NUAK1 mediates both at protein 

level in the nuclear fraction and therefore may indicate an additional NUAK1 mediated 

function. GSK3β is considered a cytosolic protein however it has been reported to be 

present in the nucleus and mitochondria (Bijur & Jope, 2003). Translocation and specific 

localisation of GSK3β govern its participation in signalling pathways, control its 

interaction with substrates and involvement in protein complex formation and impact gene 

expression and transcription (Thotala and Yazlovitskaya, 2011). GSK3β localises to the 

nucleus via an intrinsic nuclear localization sequence in GSK3β (Meares and Jope, 2007), 

and nuclear levels of GSK3β have been reported to rapidly increase in response to some 

apoptotic stimuli (Bijur and Jope, 2001). In the nucleus, GSK3β can affect gene 

expression, nuclear functions, as well as regulate the epigenetics of the cell (Beurel et al., 

2015). Therefore this data reiterates NUAK1’s role in the regulation of multiple 

downstream GSK3β targets and suggests that loss of NUAK1 has far-reaching 
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implications for a cell or tumour. It would be interesting to delve deeper into the subset of 

GSK3B targets that were modulated upon NUAK1 inhibition. 

 

Depletion of NUAK1 by siRNA in all cell lines leads to significant sensitisation to 

peroxide challenge, resulting in increased levels of cell death in U2OS and the CRC cell 

lines. However, the levels of cell death in NUAK1 depleted cells (not treated with H2O2) 

was not consistent with the levels of cell death observed when the same cell lines were 

treated with small molecule inhibitor HTH-01-015 in Chapter 1 (Section 3.2.3, Figure 3.4). 

It could be reasoned that this might be due to insufficient depletion, as shown in Figure 

5.5. Another possibility is that the pharmacodynamics of the small molecule inhibitor are 

immediate and synchronous; therefore cells do not have time to adapt to inhibition of 

NUAK1 resulting in pro-apoptotic pathways being induced. Whereas depletion by siRNA 

takes much longer and depletion in every cell is varied suggesting that non-synchronicity 

results in investigation of a mixed population of NUAK1 replete and deplete cells. Finally, 

it must be considered that the inhibitor is having a NUAK1 independent, toxic off-target 

effect at the dose used, however cell death was observed in tumours acutely depleted of 

NUAK1 in vivo in the previous chapter (Section 4.2.6.1, Figure 4.15) and this correlated 

with elevated ROS in this chapter, therefore drug toxicity seems unlikely. Further analysis 

is required to eliminate these possibilities and emphasises the importance of investigation 

using both pharmacological and genetic approaches as has been done in this study.  

 

The osteosarcoma cell line, U2OS has been used extensively in this analysis in addition to 

the colorectal cell lines SW480, SW620, HCT116 and LS174T and NUAK1-dependent 

perturbation of NRF2 function in each case. The mechanism of NRF2 regulation and the 

proteins involved are highly conserved across mammalian cell types and species, therefore 

NUAK1 regulation of NRF2 is likely to be broadly applicable and not restricted to 

colorectal cancer. The U2OS cell line has the advantage of not expressing the closely 

related NUAK2, which has exhibited similar functions with NUAK1, the most relevant 

being in the regulation of PP1β activity via MYPT1 (Banerjee et al., 2014b) and more 

recently, the regulation of NRF2 accumulation in the nucleus. NUAK2 levels in U2OS 

cells have been confirmed both at protein level (Section 3.2.3, Figure 3.4) and at RNA 

level in our RNA sequencing analysis. The absence of NUAK2 allows the investigator to 

focus primarily on NUAK1 function providing cleaner data and easier interpretation of 

results than is the case in the CRC cell lines due to their varying levels of NUAK2. On the 

other hand, suppression of NUAK1 leads to an increase in cellular ROS and interestingly 

in NUAK1 high cell lines, U2OS and SW480 had greater fold increase in ROS than 
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NUAK1 low cell lines SW620, and LS174T. However, NUAK1 levels did not appear to 

correlate with sensitivity to inhibition of NUAK1 by inhibitor (Section 3.2.3, Figure 3.4) or 

sensitivity to peroxide treatment under NUAK1 depleted conditions. Furthermore, all cell 

lines were dependent upon NUAK1 for the translocation of NRF2 to the nucleus after 

peroxide stimulation suggesting that basal NUAK1 levels have no effect on NUAK1’s role 

here. Therefore in this context, it is unlikely that NUAK1 and NUAK2 levels correlate 

with activity and further investigation of kinase activity is required. 

 

In conclusion, this data proposes a new mechanism of redox signal transduction in which 

ROS-dependent activation of NUAK1 coordinates PP1β
MYPT1

 inhibition, with AKT 

activation in order to suppress GSK3β-dependent inhibition of NRF2 nuclear import 

(Figure 5.15). Loss of NUAK1, both in vitro and in vivo, leads to a compromised NRF2-

dependent oxidative stress response, resulting in an increase in cytotoxic ROS levels that 

cells cannot sustain. 

 

 

 

Figure 5. 16 - NUAK1 regulation of the anti-oxidant response pathway 
(A) Schematic of basal conditions, where ROS levels are low, NUAK1 is inactive, therefore PP1β is able to 

dephosphorylate GSK3β and consequently target NRF2 for degradation by the proteasome. (B) ROS 

activation of NUAK1 and AKT simultaneously results in phosphorylation of AKT and downstream 

inhibitory phosphorylation of GSK3β. This prevents NRF degradation and allows NRF2 to localise to the 

nucleus where it upregulates the anti-oxidant response pathway to detoxify the ROS. In tandem, activated 

NUAK1 in complex with PP1β and MYPT1, phosphorylates MYPT1 and consequently inhibits GSK3β 

dephosphorylation by PP1β. 



 

 155 

Chapter 6 Discussion, Conclusions and Future 
work 

Colorectal cancer (CRC) is the fourth most common cancer in the UK with over 40,000 

new cases annually, and 110 cases diagnosed daily (CRUK, 2013). Worldwide, CRC is the 

third most commonly occurring cancer in men and the second most commonly occurring 

cancer in women (World Cancer Research Fund International, 2012). About two-thirds of 

CRC cases occur in the developed world, however incidence rates are expected to increase 

due to the adoption of westernised diet and lifestyle globally. Promisingly, since the 1970s 

mortality rates have decreased by 43% in the UK and rates are projected to fall by a further 

23% by 2035 due to more appropriate and available information, earlier diagnosis and 

improvements in surgical, adjuvant and palliative treatment (CRUK, 2013). Our improved 

understanding of CRC has uncovered a number of novel CRC-associated proteins, and 

genomic-based technologies have demonstrated that CRC can be a very heterogeneous 

disease (Johnston, 2014). Therefore, there is still a requirement to apply molecule-based 

therapeutic approaches in addition to the combination of targeted therapies with 

chemotherapy in the treatment of CRC (Van Schaeybroeck et al., 2011).  

 

NUAK1 is a member of the AMPK-related kinase (AMPK-RK) family based on its 

sequence homology to essential cellular energy sensor, AMPK (Bright et al., 2009). 

NUAK1 shares 47 and 45.8% homology to AMPK-α1 and AMPK-α2 respectively (Suzuki 

et al., 2003b). AMPK is activated by rising AMP:ATP ratio and acts to inhibit anabolic 

processes and promote catabolic processes in order to maintain cellular energy homeostasis 

(Hardie et al., 2012). NUAK1 has been reported to share many characteristics in common 

with AMPK including its phosphorylation and activation by upstream kinase, LKB1, its 

activation by rising AMP levels, as well as its ability to phosphorylate SAMs peptide, a 

synthetic substrate for AMPK-RKs (Suzuki et al., 2003a, Suzuki et al., 2003b, Suzuki et 

al., 2006). Notably, it is unknown if NUAK1 can function heterotrimerically similar to 

AMPK, therefore it is currently unclear how AMP can stimulate NUAK1 in a similar 

manner to AMPK. On the other hand, NUAK1 has also been implicated in the regulation 

of energy homeostasis in the context of overexpressed MYC, where both AMPK and 

NUAK1 were discovered to be synthetic lethal with MYC overexpression (Liu et al., 

2012). NUAK1 can phosphorylate MYPT1 at residues that lie within a conserved AMPK 

consensus motif (Zagorska et al., 2010) indeed, the Murphy lab has evidence to suggest the 

AMPK can also phosphorylate this site. This indicates possible similarity or over-lap in 

NUAK1 and AMPK function. In relation to the findings in this study, both NUAK1 and 
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AMPK can release NRF2 from negative regulation, albeit by different mechanism, in 

response to rising cellular ROS. Together, this data suggests that like AMPK, NUAK1 has 

an important role in the regulation of cellular metabolic plasticity by acting as a metabolic 

checkpoint. Thereby NUAK1 confers tumour cells a growth advantage by providing the 

ability to adapt to metabolic stress.  

 

By definition, a metabolic checkpoint is a cellular mechanism that ensures the accurate 

response based on a cell’s metabolic status and is composed of a metabolic signal, sensors, 

transducers and effectors (Wang and Green, 2012). Metabolic signals indicate fluctuations 

in the extracellular nutrient environment or intracellular metabolic status and include ATP, 

NADP+-NADPH, acetyl-CoA as well as ROS. The sensors of a metabolic checkpoint are 

proteins that can physically interact with and respond to metabolic signals, and can 

subsequently initiate the appropriate downstream signalling cascades (Wang and Green, 

2012). AMPK is a well-established metabolic checkpoint sensor of bioenergetic status, and 

the Murphy lab previously showed that NUAK1 can also function as a sensor of 

bioenergetic status via the mTOR pathway (Liu et al., 2012) (Monteverde, Accepted for 

publication). In this study, new evidence suggests that NUAK1 is also a sensor of 

oxidative stress status. The final stage of the metabolic checkpoint includes the activation 

of signal transduction pathways and their downstream effectors that prompt appropriate 

cellular responses. This often involves metabolic ‘rewiring’, cell differentiation, 

proliferation, and death (Wang and Green, 2012). Concurrently, NUAK1 expression is 

normally highest in more oxidative tissues (Inazuka et al., 2010). Overall this suggests that 

protecting cells from oxidative stress is a major physiological role of NUAK1.  

 

However, this presents an important question: why do two or more proteins exist when 

they appear to have very similar functions? Throughout evolution, genes that do not confer 

a survival advantage and are thereby redundant are often lost. Therefore, NUAK1 must 

have a unique function that neither AMPK, nor any other AMPK-RK including NUAK2, 

can compensate for.  

 

NUAK1 has also been associated with cell survival, invasion and metastasis and poor 

prognosis in many tumour types. Interestingly, the alteration frequency of NUAK1 in 

cancer is relatively low, however elevated expression has been observed in multiple 

tumour types including CRC (Liu et al., 2012). Furthermore, NUAK1 expression level 

correlates with more advanced stages of CRC and is enriched in liver metastasis (Kusakai 

et al., 2004). Taken together, NUAK1 is a novel tumour progression-associated factor in 
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cancer, however prior to this study, its primary functions in this context and its use as a 

potential therapeutic target in human CRC remained unclear. This study shows that 

NUAK1 is a prognostic factor in human CRC. Patients with high NUAK1 expression had 

significantly reduced overall survival in three independent cohorts.  Furthermore, TCGA 

analysis confirmed that NUAK1 levels are higher in more aggressive disease, and in 

patients with lymph node involvement. This suggests that NUAK1 is a valuable molecular 

biomarker for progressed CRC that may be used as a diagnostic tool. In agreement with 

analysis performed on online datasets, it has been shown that NUAK1 expression is 

elevated in human CRC using a human TMA and NUAK1 RNA in situ hybridisation, and 

expression strongly correlates with advanced tumour stage and increased lymph node 

metastasis. 

 

In this study, a mouse model for sporadic intestinal cancer has shown that Nuak1 is 

essential for tumour initiation. Additionally, Nuak1 is essential for the survival of 

established colorectal tumours. Tumours depleted of Nuak1 demonstrated increased levels 

of cell death and ROS damage, concurrent with reduced cell proliferation. In both contexts, 

there appeared to be a selective pressure for cells to retain Nuak1, which then conveys a 

survival advantage. This was corroborated in 3D organoid culture, where Nuak1 was 

required for the formation and viability of transformed spheroids, and that Nuak1 retaining 

cells could out-compete Nuak1 deficient cells. 

 

Importantly, the requirement for Nuak1 does not extend to healthy wildtype cells of the 

intestine. In this study, loss of Nuak1 did not appear to affect normal intestine homeostasis; 

mice could sustain Nuak1 depletion over a long period without any apparent detrimental 

side effects; and wildtype organoids were resistant to Nuak1 inhibition. This data 

strengthens NUAK1’s position as a candidate for targeted therapy, suggesting that 

inhibition of NUAK1 in cancer patients would have limited side effects. 

 

The requirement for NUAK1 in cancer cells in this investigation was attributed to the 

regulation of NRF2 and the anti-oxidant response pathway. It has been demonstrated that 

NUAK1 is necessary for the nuclear accumulation of NRF2 by counteracting negative 

regulation of this process by GSK3β, and that direct inhibition of GSK3β is able to restore 

NRF2 nuclear accumulation in NUAK1 deficient cells. Furthermore, direct activation of 

NUAK1, by cysteine oxidisation, in response to ROS led to activation of MYPT1 and the 

consequent suppression of PP1β activity. This in turn inhibits dephosphorylation of 
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GSK3β by PP1β thus allowing NRF2 to accumulate in the nucleus and upregulate the anti-

oxidant response pathway (Figure 6.1A & B).  

 

 

Figure 6. 1 - NUAK1 and the anti-oxidant stress response 

 (A) Schematic of basal conditions, where ROS levels are low, NUAK1 is inactive, therefore PP1β is able to 

dephosphorylate GSK3β and consequently target NRF2 for degradation by the proteasome. (B) ROS 

activation of NUAK1 and AKT simultaneously results in phosphorylation of AKT and downstream 

inhibitory phosphorylation of GSK3β. This prevents NRF degradation and allows NRF2 to localise to the 

nucleus where it upregulates the anti-oxidant response pathway to detoxify the ROS. In tandem, activated 

NUAK1 in complex with PP1β and MYPT1, phosphorylates MYPT1 and consequently inhibits GSK3β 
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dephosphorylation by PP1β. (C) A schematic of the generation, regulation and effects of cellular ROS. ROS 

are produced in normal cellular processes, and cells express anti-oxidants to detoxify the free radical. 

Tumourigenic events including oncogene activation can increase intracellular ROS and promote tumour 

initiation and progression. These pro-tumourigenic ROS levels can result in cell cycle progression, increased 

proliferation and survival signalling, however these can be targeted therapeutically by anti-oxidants. 

Excessive increases in ROS can be cytotoxic by inducing cell cycle arrest, senescence or cell death of tumour 

cells, however it is possible that the tumour cells are able to upregulate expression of endogenous anti-

oxidant to combat cytotoxity. NUAK1 is activated in response to rising ROS levels and maintains redox 

homeostasis within the pro-tumourigenic bracket by stabilisation of NRF2. Loss of NUAK1 can be 

therapeutic as it removes this regulation and ROS levels become cytotoxic. Figure adapted from (Liou and 

Storz, 2010).  
 

NRF2 is known to be a major defence mechanism and regulator of cell survival (Jaramillo 

and Zhang, 2013). In healthy cells, NRF2 protects against tumour initiation and 

progression by reducing genotoxic compounds that arise both intrinsically and 

extrinsically. On the other hand, activation of the NRF2-dependent anti-oxidant response 

pathway can promote the survival of both healthy and cancer cells by generating optimal 

conditions for cell growth. Elevated levels of oxidative stress have been detected in almost 

all cancers as a consequence of the altered characteristics of tumour cells and their 

environment. These include increased metabolic activity, mitochondrial dysfunction, 

peroxisome activity, increased cellular receptor signalling, oncogene activity, increased 

activity of oxidase, cyclooxygenases, lipoxigenases and thymidine phosphorylase or 

through cross talk with infiltrating immune cells (Storz, 2005, Szatrowski and Nathan, 

1991, Liou and Storz, 2010, Babior, 1999). Indeed, cancer cells often show elevated 

expression of NRF2 and anti-oxidant defence to counteract the potentially lethal increases 

in ROS that accompany tumour progression (D'Autreaux and Toledano, 2007, 

Trachootham et al., 2009, DeNicola et al., 2015, Comerford et al., 2016, Menegon et al., 

2016). Interestingly, differential expression and activity of NRF2 has been observed in 

healthy intestinal cells when compared to CRC tumour cells (Chang et al., 2013, Hayes 

and McMahon, 2009). Thus, colorectal cancer is no exception to NRF2’s protective nature. 

Overexpression of NRF2 in response to excessive ROS was shown to result in 

inflammation of the colon tissue and promote tumourigenesis (Stachel et al., 2014). 

Additionally, following APC loss, c-MYC has been shown to promote ROS (Cheung et al., 

2016). Therefore, the evidence presented here suggests that transformed cells can 

upregulate NUAK1 expression and consequently, activate NRF2 transcriptional activity to 

protect tumour cells from rising oxidative stress. This facilitates tumour genesis and 

progression. Thus NUAK1 is not a classical oncogene, its function facilitates, rather than 

drives tumourigenesis. Loss of Nuak1 in established tumours led to an increase in ROS 

levels that were concurrent with reduced proliferation and increased cell death. This 

suggests that tumour cells cannot sustain the rising levels of ROS without Nuak1-mediated 
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regulation of Nrf2 (summarised in Figure 6.1C). Low levels of ROS are pro-tumourigenic 

and high levels of ROS are cytotoxic, therefore a fine balance of NRF2 regulation is 

required (Liou and Storz, 2010). This is reflected in this study demonstrating that NUAK1 

expression increases with progressing tumour stage; it is likely that as the requirement for 

the anti-oxidant response increases so does the selective pressure for tumour cells to 

overexpress NUAK1.  

 

Furthermore, high expression of NRF2 in tumours have been correlated with poor 

prognosis in cancer patients partly due to an increase in NRF2 dependent cell proliferation 

and resistance to chemotherapy and radiotherapy (Shibata et al., 2008a, Solis et al., 2010b, 

Sasaki et al., 2013, Kang et al., 2014, Kang et al., 2016). Using online datasets, high 

NUAK1 expression also significantly reduced overall survival in three independent cohorts 

of human CRC patients. In agreement, high NRF2 expression also correlated with a 

significant reduction in patient survival in two out of the three of these datasets. Therefore, 

patients with high NUAK1 may have poor prognosis due to consequential NRF2 activity. 

 

Exploiting the heightened sensitivity of tumour cells to ROS is emerging as a plausible 

strategy for cancer therapy. Many chemotherapeutic and radiotherapeutic strategies are 

designed to excessively increase ROS levels to induce irreparable damages consequently 

resulting in tumour cell death (Liou and Storz, 2010, Alexandre et al., 2006, Bairati et al., 

2005, Llobet et al., 2008). Additionally, Sulindac is an FDA approved, non-steroidal and 

anti-inflammatory drug currently being investigated for its potential use in tumour therapy. 

Sulindac modulates ROS levels and renders colon and lung cancers more sensitive to 

H2O2-triggered apoptosis (Marchetti et al., 2009). More recently, intravenous injection of 

high doses of di-hydro-Ascorbate was revealed to suppress colorectal tumour formation by 

saturating ROS scavengers (Yun et al., 2015), and further work by Schoenfeld et al. 

confirms that this therapeutic strategy may have clinical benefit (Schoenfeld et al., 2017). 

Furthermore, Wang et al. found that the downregulation of NRF2 makes cancer cells more 

sensitive to chemotherapeutic drugs such as cisplatin, doxorubicin and etoposide (Wang et 

al., 2008b). Based on these studies and the data within this thesis, inhibiting the anti-

oxidant response via transient inhibition of NUAK1 may offer a new strategy for reducing 

acquired resistance to chemotherapeutic drugs and improve therapeutic outcomes in CRC.  

 

It must be considered that NRF2 has a very complex role in tumourigenesis, and the 

literature suggests that NRF2 can be both pro-tumourigenic and anti-tumourigenic 

depending on the tumour type and stage (Menegon et al., 2016). This suggests that 
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therapeutic inhibition of NRF2 via NUAK1 may not be as straightforward as the data 

above suggests. As alluded to earlier, regulation of NRF2 requires a fine balance during 

tumourigenesis, and to use it therapeutically, temporal consideration is required. In CRC, 

inhibition of NRF2 has also been linked to increased risk of CRC (Li et al., 2008). 

Recently, silencing of Nrf2 was shown to increase the number of aberrant crypts, resulting 

in the formation of adenoma and the progression of CRC (Yokoo et al., 2016). 

Additionally, other studies have demonstrated that Nrf2 knockout mice are more 

susceptible to treatments that cause inflammation and ulcerative colitis including DSS and, 

as in the previous study, form more aberrant crypts (Khor et al., 2006, Osburn et al., 

2007a). Notably, this effect was not observed in the model presented in this study as 

Nuak1 depletion was induced post DSS treatment and tumour formation. Arlt et al. 

observed that NRF2 expression is beneficial in preventing early stage tumourigenesis, 

however can contribute to progression in the colon at later stages (Arlt et al., 2009), and as 

such NRF2 is now considered both a tumour suppressor gene and an oncogene (Menegon 

et al., 2016, Sporn and Liby, 2012). Therefore, in order to be effective, therapeutic 

inhibition of NRF2 via NUAK1 must occur in progressed tumours where NRF2 is 

oncogenic. Importantly, most patients present at the clinic with symptoms associated with 

developed colorectal tumours therefore in most cases, inhibition of NUAK1 could indeed 

improve current CRC treatments. 

 

c-MYC is a proto-oncogene that has been implicated in the pathogenesis of the majority of 

human cancers. In healthy cells activation of c-MYC is usually restrained by controlled 

checkpoint mechanisms, however when c-MYC activation occurs via epigenetic and/or 

genetic alterations, c-MYC contributes to many hallmarks of cancer. These include 

uninhibited cell proliferation and growth, DNA replication, protein biogenesis, altered 

global metabolism, angiogenesis, and a restriction of host immune response (Gabay et al., 

2014). As mentioned previously, MYC has been shown to also promote ROS in the gut 

(Cheung et al., 2016). Solid tumours rapidly outgrow existing vasculature and despite 

angiogenesis, experience depletion of nutrients and hypoxia leading to further cellular 

ROS and endoplasmic reticulum (ER) stress. The metabolic challenges of malignant 

growth result in cancer cell vulnerabilities related to irregular nutrient supply and incessant 

growth. Taking together that c-MYC is essential for CRC formation (Sansom et al., 2007), 

and that CRC cell lines demonstrated increased susceptibility to inhibition of NUAK1 

when compared to U2OS and wildtype mouse embryonic fibroblasts (MEFs), it appears 

that requirement for NUAK1 remains associated with MYC-dependent phenotypes. 

Therefore, this data strongly suggests that NUAK1 is one of the aforementioned 
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vulnerabilities and that cells with overexpressed c-MYC become addicted to NUAK1 for 

its tumour protective roles in a changing metabolic environment, not only for ATP 

homeostasis, but also for the oxidative stress response.  

 

The data presented in this thesis has confirmed that NUAK1 is involved in redox 

regulation and tumour survival. However, there are many further questions to be answered. 

Currently, no NUAK1 small molecule inhibitors have been validated in vivo. The 

development of a NUAK1 inhibitor that is potent in vivo will be the next step in this 

investigation to assess Nuak1 inhibition in GEMMs of CRC and other tumour models. 

Additionally, there are drawbacks to the models used in this study. The ultimate goal when 

utilising a mouse model for cancer research is that the model recapitulates the human 

disease. Thus, to predict CRC patient response accurately, a mouse model that forms 

metastasis is required . Furthermore, the current literature suggests that NUAK1 is 

enriched in liver metastasis (Kusakai et al., 2004). Therefore, future plans for this project 

include the investigation of Nuak1 in a metastatic CRC GEMM, VillinCreER; 

KRas
G12D/+

;P53
fl/fl

;Nicd1
LSL/+.

. This model develops metastatic disease with 100% 

penetrance in the lymph nodes, liver and/or lungs, and have a median survival of about 180 

days. It would also be interesting and important to investigate NUAK1-dependent 

regulation of NRF2 in other tumour types as there is evidence of a conserved mechanism 

between osteosarcoma-derived cell line, U2OS and colorectal adenocarcinoma-derived cell 

lines. Finally, the contribution of other AMPK-RKs including NUAK2, to this mechanism 

is still unclear and will require further investigation. 

 

In conclusion, this study has established a new and exciting role for NUAK1 in the 

regulation of the NRF2-dependent oxidative stress response, which appears to leave 

tumours vulnerable to therapeutic intervention. Thereby, inhibition of NUAK1 may offer a 

new strategy to improve therapeutic outcomes in colorectal cancer patients. 
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