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Abstract 

Bovine mastitis, inflammation of the mammary gland, is one of the most costly 

and prevalent diseases in the dairy industry. It is commonly caused by bacteria, 

and Streptococcus uberis is one of the most prevalent causative agents. With 

advancements in omics technologies, the analysis of system-wide changes in the 

expression of proteins and metabolites in milk has become possible, and such 

analyses have broadened the knowledge of molecular changes in bovine mastitis.  

The work presented in this thesis aims to understand the dynamics of molecular 

changes in bovine mastitis caused by Streptococcus uberis through system-wide 

profiling and integrated analysis of milk proteins and metabolites. To this end, 

archived milk samples collected at specific intervals during the course of an 

experimentally induced model of Streptococcus uberis mastitis were used. Label-

free quantitative proteomics and untargeted metabolomics data were generated 

from the archived milk samples obtained from six cows at six time-points (0, 36, 

42, 57, 81 & 312 hours post-challenge). 

A total of 570 bovine proteins and 690 putative metabolites were quantified. 

Hierarchical cluster analysis and principal component analysis showed clustering 

of samples by the stage of infection, with similarities between pre-infection and 

resolution stages (0 and 312 hours post-challenge), early infection stages (36 and 

42 hours post-challenge) and late infection stages (57 and 81 hours post-

challenge). The proteomics and metabolomics data were analysed at both 

individual omics-layer level and combined inter-layer-level.  

At individual omics layer-level, the temporal changes identified include changes 

in the expression of proteins in acute-phase response signalling, FXR/RXR 

activation, complement system, IL-6 and IL-10 pathways, and changes in the 

expression of metabolites related to amino acid, carbohydrate, lipid and 

nucleotide metabolisms.  

The combined inter-layer-level analyses revealed functional relevance of proteins 

and metabolites enriched in the co-expression modules. For example, possible 

immunomodulatory role of bile acids via the FXR/RXR activation pathways could 
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be inferred. Similarly, the actin-binding proteins could be linked to endocytic 

trafficking of signalling receptors. 

Overall, the work presented in this thesis provides deeper understanding of 

molecular changes in mastitis. On a secondary note, it also serves as a case study 

in the use of integrative polyomics analysis methods in the investigation of host-

pathogen interactions. 
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ESI_4.10_ideom_v18_eckersall_281013_allIdentifiedPeaks_Plus10_log2_from_Partek
.txt 

23 ESI_4.100_Mcode_C4_met_exp_pos_cor_network_N31_E263.pdf 

24 ESI_4.101_Mcode_C5_met_exp_pos_cor_network_N37_E281.pdf 

25 ESI_4.102_Mcode_C6_met_exp_pos_cor_network_N12_E45.pdf 

26 ESI_4.103_Mcode_C7_met_exp_pos_cor_network_N18_E64.pdf 

27 ESI_4.104_Mcode_C8_met_exp_pos_cor_network_N15_E49.pdf 

28 ESI_4.105_Mcode_C9_met_exp_pos_cor_network_N6_E14.pdf 

29 ESI_4.106_Mcode_C10_met_exp_pos_cor_network_N5_E10.pdf 

30 ESI_4.107_Mcode_C11_met_exp_pos_cor_network_N8_E16.pdf 

31 ESI_4.108_Mcode_C14_met_exp_pos_cor_network_N5_E7.pdf 

32 ESI_4.109_Mcode_C20_met_exp_pos_cor_network_N7_E9.pdf 

33 
ESI_4.11_met_exp_ideom_v18_eckersall_281013_Plus10_log2_for_integration_ed2.t
xt 

34 ESI_4.110_Mcode_C1_met_exp_pos_cor_network_N83_E2792_nodes.csv 

35 ESI_4.111_Mcode_C2_met_exp_pos_cor_network_N59_E1377_nodes.csv 

36 ESI_4.112_Mcode_C3_met_exp_pos_cor_network_N34_E400_nodes.csv 

37 ESI_4.113_Mcode_C4_met_exp_pos_cor_network_N31_E263_nodes.csv 

38 ESI_4.114_Mcode_C5_met_exp_pos_cor_network_N37_E281_nodes.csv 

39 ESI_4.115_Mcode_C7_met_exp_pos_cor_network_N18_E64_nodes.csv 

40 ESI_4.116_Mcode_C9_met_exp_pos_cor_network_N6_E14_nodes.csv 

41 ESI_4.117_Mcode_C10_met_exp_pos_cor_network_N5_E10_nodes.csv 

42 ESI_4.118_Mcode_C11_met_exp_pos_cor_network_N8_E16_nodes.csv 

43 ESI_4.119_Mcode_C14_met_exp_pos_cor_network_N5_E7_nodes.csv 
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44 ESI_4.12_metabolite_ID_lookup_table.csv 

45 ESI_4.120_Mcode_C20_met_exp_pos_cor_network_N7_E9_nodes.csv 

46 ESI_4.121_met_exp_pos_cor_network_r_0_7625257_Bos_taurus.cys 

47 
ESI_4.122_whole_network_WGCNA_Met_small_module_2017_04_08_N690_E156998.
pdf 

48 ESI_4.123_WGCNA_Met_Small_Module_Black_N25_E272.pdf 

49 ESI_4.124_WGCNA_Met_Small_Module_Blue_N265_E29394.pdf 

50 ESI_4.125_WGCNA_Met_Small_Module_Brown_N70_E2050.pdf 

51 ESI_4.126_WGCNA_Met_Small_Module_Cyan_N7_E21.pdf 

52 ESI_4.127_WGCNA_Met_Small_Module_Greenyellow_N11_E37.pdf 

53 ESI_4.128_WGCNA_Met_Small_Module_Magenta_N18_E129.pdf 

54 ESI_4.129_WGCNA_Met_Small_Module_Pink_N20_E169.pdf 

55 ESI_4.13_metabolomics_data_to_cor_matrix_2017_03_12.R 

56 ESI_4.130_WGCNA_Met_Small_Module_Purple_N17_E98.pdf 

57 ESI_4.131_WGCNA_Met_Small_Module_Red_N235_E26147.pdf 

58 ESI_4.132_WGCNA_Met_Small_Module_Salmon_N9_E24.pdf 

59 ESI_4.133_WGCNA_Met_Small_Module_Tan_N11_E51.pdf 

60 ESI_4.134_metabolites_in_module_tan_metabolite_names.txt 

61 ESI_4.135_metabolites_in_module_salmon_metabolite_names.txt 

62 ESI_4.136_metabolites_in_module_red_metabolite_names.txt 

63 ESI_4.137_metabolites_in_module_purple_metabolite_names.txt 

64 ESI_4.138_metabolites_in_module_pink_metabolite_names.txt 

65 ESI_4.139_metabolites_in_module_magenta_metabolite_names.txt 

66 ESI_4.14_make_cor_pairs_from_cor_matrix.pl 

67 ESI_4.140_metabolites_in_module_grey_metabolite_names.txt 

68 ESI_4.141_metabolites_in_module_greenyellow_metabolite_names.txt 

69 ESI_4.142_metabolites_in_module_black_metabolite_names.txt 

70 ESI_4.143_metabolites_in_module_blue_metabolite_names.txt 

71 ESI_4.144_metabolites_in_module_brown_metabolite_names.txt 

72 ESI_4.145_metabolites_in_module_cyan_metabolite_names.txt 

73 ESI_4.146_WGCNA_Met_small_module_2017_04_08.cys 

74 
ESI_4.147_whole_network_Prot_Met_exp_pos_cor_network_r_0_6185527_N1127_E5
8092.pdf 

75 ESI_4.148_Mcode_C1_Prot_Met_pos_cor_r_0_6185527_N279_E22045.pdf 

76 ESI_4.149_Mcode_C2_Prot_Met_pos_cor_r_0_6185527_N114_E5759.pdf 

77 ESI_4.15_WGCNA_met_exp_data_small_modules_2017_04_05.R 

78 ESI_4.150_Mcode_C3_Prot_Met_pos_cor_r_0_6185527_N96_E1589.pdf 

79 ESI_4.151_Mcode_C4_Prot_Met_pos_cor_r_0_6185527_N20_E98.pdf 

80 ESI_4.152_Mcode_C5_Prot_Met_pos_cor_r_0_6185527_N25_E118.pdf 

81 ESI_4.153_Mcode_C6_Prot_Met_pos_cor_r_0_6185527_N10_E43.pdf 

82 ESI_4.154_Mcode_C7_Prot_Met_pos_cor_r_0_6185527_N17_E72.pdf 

83 ESI_4.155_Mcode_C8_Prot_Met_pos_cor_r_0_6185527_N13_E54.pdf 

84 ESI_4.156_Mcode_C9_Prot_Met_pos_cor_r_0_6185527_N8_E27.pdf 

85 ESI_4.157_Mcode_C10_Prot_Met_pos_cor_r_0_6185527_N22_E75.pdf 

86 ESI_4.158_Mcode_C11_Prot_Met_pos_cor_r_0_6185527_N8_E24.pdf 

87 ESI_4.159_Mcode_C12_Prot_Met_pos_cor_r_0_6185527_N8_E22.pdf 

88 ESI_4.16_Met_WGCNA_scaleFreeAnalysis.pdf 

89 ESI_4.160_Mcode_C16_Prot_Met_pos_cor_r_0_6185527_N6_E9.pdf 

90 ESI_4.161_Mcode_C17_Prot_Met_pos_cor_r_0_6185527_N6_E9.pdf 

91 ESI_4.162_Mcode_C22_Prot_Met_pos_cor_r_0_6185527_N6_E8.pdf 
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92 ESI_4.163_Mcode_C36_Prot_Met_pos_cor_r_0_6185527_N7_E8.pdf 

93 
ESI_4.164_Mcode_clusters_Prot_Met_exp_pos_cor_network_r_0_6185527_N1127_E58
092.txt 

94 ESI_4.165_Mcode_C1_Prot_Met_pos_cor_r_0_6185527_N279_E22045_nodes.csv 

95 ESI_4.166_Mcode_C2_Prot_Met_pos_cor_r_0_6185527_N114_E5759_nodes.csv 

96 ESI_4.167_Mcode_C3_Prot_Met_pos_cor_r_0_6185527_N96_E1589_nodes.csv 

97 ESI_4.168_Mcode_C4_Prot_Met_pos_cor_r_0_6185527_N20_E98_nodes.csv 

98 ESI_4.169_Mcode_C5_Prot_Met_pos_cor_r_0_6185527_N25_E118_nodes.csv 

99 ESI_4.17_Met_WGCNA_Metabolite_dendrogram_module_eigengenes.pdf 

100 ESI_4.170_Mcode_C6_Prot_Met_pos_cor_r_0_6185527_N10_E43_nodes.csv 

101 ESI_4.171_Mcode_C7_Prot_Met_pos_cor_r_0_6185527_N17_E72_nodes.csv 

102 ESI_4.172_Mcode_C8_Prot_Met_pos_cor_r_0_6185527_N13_E54 

103 ESI_4.173_Mcode_C9_Prot_Met_pos_cor_r_0_6185527_N8_E27_nodes.csv 

104 ESI_4.174_Mcode_C10_Prot_Met_pos_cor_r_0_6185527_N22_E75_nodes.csv 

105 ESI_4.175_Mcode_C11_Prot_Met_pos_cor_r_0_6185527_N8_E24_ 

106 ESI_4.176_Mcode_C12_Prot_Met_pos_cor_r_0_6185527_N8_E22_nodes.csv 

107 ESI_4.177_Mcode_C16_Prot_Met_pos_cor_r_0_6185527_N6_E9_nodes.csv 

108 ESI_4.178_Mcode_C17_Prot_Met_pos_cor_r_0_6185527_N6_E9_nodes.csv 

109 ESI_4.179_Mcode_C22_Prot_Met_pos_cor_r_0_6185527_N6_E8_nodes.csv 

110 ESI_4.18_Met_WGCNA_Metabolite_dendrogram_TOM_dissimilarity-1.pdf 

111 ESI_4.180_Mcode_C36_Prot_Met_pos_cor_r_0_6185527_N7_E8_nodes.csv 

112 
ESI_4.181_whole_network_Prot_Met_WGCNA_small_module_2017_04_08_N1246_E39
0798.pdf 

113 ESI_4.182_Prot_Met_WGCNA_small_module_black_N167_E11719.pdf 

114 ESI_4.183_Prot_Met_WGCNA_small_module_blue_N440_E69731.pdf 

115 ESI_4.184_Prot_Met_WGCNA_small_module_cyan_N19_E113.pdf 

116 ESI_4.185_Prot_Met_WGCNA_small_module_darkgreen_N9_E36.pdf 

117 ESI_4.186_Prot_Met_WGCNA_small_module_darkgrey_N7_E10.pdf 

118 ESI_4.187_Prot_Met_WGCNA_small_module_darkorange_N7_E17.pdf 

119 ESI_4.188_Prot_Met_WGCNA_small_module_darkred_N9_E16.pdf 

120 ESI_4.189_Prot_Met_WGCNA_small_module_darkturquoise_N9_E21.pdf 

121 ESI_4.19_Met_WGCNA_Metabolite_dendrogram_TOM_dissimilarity-2.pdf 

122 ESI_4.190_Prot_Met_WGCNA_small_module_greenyellow_N27_E227.pdf 

123 ESI_4.191_Prot_Met_WGCNA_small_module_grey60_N13_E69.pdf 

124 ESI_4.192_Prot_Met_WGCNA_small_module_lightcyan_N17_E54.pdf 

125 ESI_4.193_Prot_Met_WGCNA_small_module_lightgreen_N12_E45.pdf 

126 ESI_4.194_Prot_Met_WGCNA_small_module_lightyellow_N11_E32.pdf 

127 ESI_4.195_Prot_Met_WGCNA_small_module_magenta_N302_E37587.pdf 

128 ESI_4.196_Prot_Met_WGCNA_small_module_midnightblue_N18_E129.pdf 

129 ESI_4.197_Prot_Met_WGCNA_small_module_orange_N7_E15.pdf 

130 ESI_4.198_Prot_Met_WGCNA_small_module_pink_N40_E550.pdf 

131 ESI_4.199_Prot_Met_WGCNA_small_module_red_N81_E2418.pdf 

132 ESI_4.2_proteomics_data_to_cor_matrix_2017_03_12.R 

133 ESI_4.20_Met_WGCNA_Metabolite_dendrogram_TOM_dissimilarity-3.pdf 

134 ESI_4.200_Prot_Met_WGCNA_small_module_saddlebrown_N6_E9.pdf 

135 ESI_4.201_Prot_Met_WGCNA_small_module_salmon_N24_E194.pdf 

136 ESI_4.202_Prot_Met_WGCNA_small_module_skyblue_N6_E15.pdf 

137 ESI_4.203_Prot_Met_WGCNA_small_module_white_N5_E6.pdf 

138 ESI_4.204_Prot_Met_WGCNA_small_module_black_N167_E11719_nodes.csv 

139 ESI_4.205_Prot_Met_WGCNA_small_module_blue_N440_E69731_nodes.csv 
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140 ESI_4.206_Prot_Met_WGCNA_small_module_cyan_N19_E113_nodes.csv 

141 ESI_4.207_Prot_Met_WGCNA_small_module_darkgreen_N9_E36_nodes.csv 

142 ESI_4.208_Prot_Met_WGCNA_small_module_darkgrey_N7_E10_nodes.csv 

143 ESI_4.209_Prot_Met_WGCNA_small_module_darkorange_N7_E17_nodes.csv 

144 ESI_4.21_combined_Prot_Met_dataset_2017_04_06.txt 

145 ESI_4.210_Prot_Met_WGCNA_small_module_darkred_N9_E16_nodes.csv 

146 ESI_4.211_Prot_Met_WGCNA_small_module_darkturquoise_N9_E21_nodes.csv 

147 ESI_4.212_Prot_Met_WGCNA_small_module_greenyellow_N27_E227_nodes.csv 

148 ESI_4.213_Prot_Met_WGCNA_small_module_grey60_N13_E69_nodes.csv 

149 ESI_4.214_Prot_Met_WGCNA_small_module_lightcyan_N17_E54_nodes.csv 

150 ESI_4.215_Prot_Met_WGCNA_small_module_lightgreen_N12_E45_nodes.csv 

151 ESI_4.216_Prot_Met_WGCNA_small_module_lightyellow_N11_E32_nodes.csv 

152 ESI_4.217_Prot_Met_WGCNA_small_module_magenta_N302_E37587_nodes.csv 

153 ESI_4.218_Prot_Met_WGCNA_small_module_midnightblue_N18_E129_nodes.csv 

154 ESI_4.219_Prot_Met_WGCNA_small_module_orange_N7_E15_nodes.csv 

155 ESI_4.22_prot_met_standardize_integrate_data_to_cor_matrix_2017_03_14.R 

156 ESI_4.220_Prot_Met_WGCNA_small_module_pink_N40_E550_nodes.csv 

157 ESI_4.221_Prot_Met_WGCNA_small_module_red_N81_E2418_nodes.csv 

158 ESI_4.222_Prot_Met_WGCNA_small_module_royalblue_N9_E35_nodes.csv 

159 ESI_4.223_Prot_Met_WGCNA_small_module_saddlebrown_N6_E9_nodes.csv 

160 ESI_4.224_Prot_Met_WGCNA_small_module_salmon_N24_E194_nodes.csv 

161 ESI_4.225_Prot_Met_WGCNA_small_module_skyblue_N6_E15_nodes.csv 

162 ESI_4.226_Prot_Met_WGCNA_small_module_white_N5_E6_nodes.csv 

163 ESI_4.227_Prot_Met_WGCNA_small_module_2017_04_08_N1246_E390798.cys 

164 ESI_4.228_Prot_Met_exp_pos_cor_network_r_0_6185527_N1127_E58092.cys 

165 ESI_4.23_make_cor_pairs_from_cor_matrix_integrated.pl 

166 ESI_4.24_protein_ID_lookup_table.csv 

167 ESI_4.25_prot_met_ID_combined_Node_attributes.csv 

168 ESI_4.26_WGCNA_on_prot_met_combined_data_2017_03_15.R 

169 ESI_4.27_Prot_Met_combined_WGCNA_scaleFreeAnalysis.pdf 

170 ESI_4.28_Prot_Met_combined_WGCNA_dendrogram_module_eigengenes.pdf 

171 ESI_4.29_Prot_Met_combined_WGCNA_dendrogram_TOM_dissimilarity-1.pdf 

172 ESI_4.3_make_cor_pairs_from_cor_matrix.pl 

173 ESI_4.30_Prot_Met_combined_WGCNA_dendrogram_TOM_dissimilarity-2.pdf 

174 ESI_4.31_Prot_Met_combined_WGCNA_dendrogram_TOM_dissimilarity-3.pdf 

175 ESI_4.32_whole_network_prot_r_0_7335525_02_Apr_2017.pdf 

176 ESI_4.33_Mcode_clusters_prot_exp_Bos_taurus_r_0.7335525_02_Apr_2017.txt 

177 ESI_4.34_Mcode_C1_prot_exp_Bos_taurus_r_0_7335525_02_Apr_2017.pdf 

178 ESI_4.35_Mcode_C2_prot_exp_Bos_taurus_r_0_7335525_02_Apr_2017.pdf 

179 ESI_4.36_Mcode_C3_prot_exp_Bos_taurus_r_0_7335525_02_Apr_2017.pdf 

180 ESI_4.37_Mcode_C4_prot_exp_Bos_taurus_r_0_7335525_02_Apr_2017.pdf 

181 ESI_4.38_Mcode_C5_prot_exp_Bos_taurus_r_0_7335525_02_Apr_2017.pdf 

182 ESI_4.39_Mcode_C6_prot_exp_Bos_taurus_r_0_7335525_02_Apr_2017.pdf 

183 ESI_4.4_WGCNA_prot_exp_data_small_modules_2017_04_04.R 

184 ESI_4.40_Mcode_C7_prot_exp_Bos_taurus_r_0_7335525_02_Apr_2017.pdf 

185 ESI_4.41_Mcode_C8_prot_exp_Bos_taurus_r_0_7335525_02_Apr_2017.pdf 

186 ESI_4.42_Mcode_C9_prot_exp_Bos_taurus_r_0_7335525_02_Apr_2017.pdf 

187 ESI_4.43_Mcode_C10_prot_exp_Bos_taurus_r_0_7335525_02_Apr_2017.pdf 

188 ESI_4.44_Mcode_C11_prot_exp_Bos_taurus_r_0_7335525_02_Apr_2017.pdf 
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189 ESI_4.45_Mcode_C12_prot_exp_Bos_taurus_r_0_7335525_02_Apr_2017.pdf 

190 ESI_4.46_Mcode_C15_prot_exp_Bos_taurus_r_0_7335525_02_Apr_2017.pdf 

191 ESI_4.47_Bingo_C1_prot_exp_Bos_taurus_r_0_7335525_02_Apr_2017.pdf 

192 ESI_4.48_Bingo_C2_prot_exp_Bos_taurus_r_0_7335525_02_Apr_2017.pdf 

193 ESI_4.49_Bingo_C3_prot_exp_Bos_taurus_r_0_7335525_02_Apr_2017.pdf 

194 ESI_4.5_Prot_WGCNA_scaleFreeAnalysis.pdf 

195 ESI_4.50_Bingo_C4_prot_exp_Bos_taurus_r_0_7335525_02_Apr_2017.pdf 

196 ESI_4.51_Bingo_C5_prot_exp_Bos_taurus_r_0_7335525_02_Apr_2017.pdf 

197 ESI_4.52_Bingo_C6_prot_exp_Bos_taurus_r_0_7335525_02_Apr_2017.pdf 

198 ESI_4.53_Bingo_C7_prot_exp_Bos_taurus_r_0_7335525_02_Apr_2017.pdf 

199 ESI_4.54_Bingo_C8_prot_exp_Bos_taurus_r_0_7335525_02_Apr_2017.pdf 

200 ESI_4.55_Bingo_C9_prot_exp_Bos_taurus_r_0_7335525_02_Apr_2017.pdf 

201 ESI_4.56_Bingo_C11_prot_exp_Bos_taurus_r_0_7335525_02_Apr_2017.pdf 

202 ESI_4.57_Bingo_C15_prot_exp_Bos_taurus_r_0_7335525_02_Apr_2017.pdf 

203 ESI_4.58_prot_exp_Bos_taurus_r_0.7335525_02_Apr_2017.cys 

204 
ESI_4.59_whole_network_prot_WGCNA_small_modules_N559_E57451_05_Apr_2017.
pdf 

205 ESI_4.6_Prot_WGCNA_Protein_dendrogram_module_eigengenes.pdf 

206 ESI_4.60_WGCNA_Prot_Small_Module_Brown_N46_E634.pdf 

207 ESI_4.61_WGCNA_Prot_Small_Module_Darkred_N7_E8.pdf 

208 ESI_4.62_WGCNA_Prot_Small_Module_Green_N214_E18391.pdf 

209 ESI_4.63_WGCNA_Prot_Small_Module_Greenyellow_N15_E39.pdf 

210 ESI_4.64_WGCNA_Prot_Small_Module_Grey_N2_E0.pdf 

211 ESI_4.65_WGCNA_Prot_Small_Module_Grey60_N10_E28.pdf 

212 ESI_4.66_WGCNA_Prot_Small_Module_Lightcyan_N10_E36.pdf 

213 ESI_4.67_WGCNA_Prot_Small_Module_Lightgreen_N10_E34.pdf 

214 ESI_4.68_WGCNA_Prot_Small_Module_Lightyellow_N9_E12.pdf 

215 ESI_4.69_WGCNA_Prot_Small_Module_Magenta_N18_E135.pdf 

216 ESI_4.7_Prot_WGCNA_Protein_dendrogram_TOM_dissimilarity-1.pdf 

217 ESI_4.70_WGCNA_Prot_Small_Module_Midnightblue_N10_E45.pdf 

218 ESI_4.71_WGCNA_Prot_Small_Module_Pink_N27_E252.pdf 

219 ESI_4.72_WGCNA_Prot_Small_Module_Purple_N18_E81.pdf 

220 ESI_4.73_WGCNA_Prot_Small_Module_Salmon_N14_E72.pdf 

221 ESI_4.74_WGCNA_Prot_Small_Module_Tan_N14_E27.pdf 

222 ESI_4.75_WGCNA_Prot_Small_Module_Cyan_N12_E46.pdf 

223 ESI_4.76_WGCNA_Prot_Small_Module_Black_N115_E4133.pdf 

224 ESI_4.77_WGCNA_Prot_Small_Module_Royalblue_N8_E17.pdf 

225 ESI_4.78_BiNGO_WGCNA_Prot_Small_Module_Black_N115.pdf 

226 ESI_4.79_BiNGO_WGCNA_Prot_Small_Module_Brown_N46.pdf 

227 ESI_4.8_Prot_WGCNA_Protein_dendrogram_TOM_dissimilarity-2.pdf 

228 ESI_4.80_BiNGO_WGCNA_Prot_Small_Module_Cyan_N12.pdf 

229 ESI_4.81_BiNGO_WGCNA_Prot_Small_Module_Darkred_N7.pdf 

230 ESI_4.82_BiNGO_WGCNA_Prot_Small_Module_Green_N214.pdf 

231 ESI_4.83_BiNGO_WGCNA_Prot_Small_Module_Greenyellow_N15.pdf 

232 ESI_4.84_BiNGO_WGCNA_Prot_Small_Module_Grey60_N10.pdf 

233 ESI_4.85_BiNGO_WGCNA_Prot_Small_Module_Lightcyan_N10.pdf 

234 ESI_4.86_BiNGO_WGCNA_Prot_Small_Module_Lightgreen_N10.pdf 

235 ESI_4.87_BiNGO_WGCNA_Prot_Small_Module_Magenta_N18.pdf 

236 ESI_4.88_BiNGO_WGCNA_Prot_Small_Module_Midnightblue_N10.pdf 
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237 ESI_4.89_BiNGO_WGCNA_Prot_Small_Module_Pink_N27.pdf 

238 ESI_4.9_Prot_WGCNA_Protein_dendrogram_TOM_dissimilarity-3.pdf 

239 ESI_4.90_BiNGO_WGCNA_Prot_Small_Module_Purple_N18.pdf 

240 ESI_4.91_BiNGO_WGCNA_Prot_Small_Module_Royalblue_N8.pdf 

241 ESI_4.92_BiNGO_WGCNA_Prot_Small_Module_Salmon_N14.pdf 

242 ESI_4.93_BiNGO_WGCNA_Prot_Small_Module_Tan_N14.pdf 

243 ESI_4.94_prot_exp_Bos_taurus_WGCNA_small_modules_05_Apr_2017.cys 

244 ESI_4.95_whole_network_met_exp_pos_cor_network_r_0_7625257_Bos_taurus.pdf 

245 ESI_4.96_Mcode_clusters_met_exp_pos_cor_network_r_0_7625257_Bos_taurus.txt 

246 ESI_4.97_Mcode_C1_met_exp_pos_cor_network_N83_E2792.pdf 

247 ESI_4.98_Mcode_C2_met_exp_pos_cor_network_N59_E1377.pdf 

248 ESI_4.99_Mcode_C3_met_exp_pos_cor_network_N34_E400.pdf 

249 ESI_2.10_pca_scores_proteins.csv 

250 ESI_2.11_pca_loadings_proteins.csv 
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Definitions/abbreviations 

ARACNE Algorithm for the reconstruction of accurate cellular networks 

ASE Allele-specific expression  

BiNGO Biological networks gene ontology  

bp Base pairs 

CNVs Copy number variations 

DDA Data-dependent acquisition 

DIA Data-independent acquisition  

ELISA Enzyme-linked immunosorbent assay  

emPAI Exponentially modified protein abundance index  

eQTL Expression quantitative trait loci  

FDR False discovery rate  

GO Gene ontology  

HCA Hierarchical clustering analysis 

iBAQ Intensity based absolute quantification  

indels Insertions and deletions 

iTRAQ Isobaric tag for relative and absolute quantitation 

lncRNA Long non-coding rna  

MCODE Molecular complex detection  

MFGM Milk fat globule membrane  

miRNA Microrna 

miRNA Mutual information  

mRNA Messenger rna  

MS Mass spectrometry  

MS/MS Tandem mass spectrometry  

NGS Next-generation sequencing 

PCA Principal component analysis 

PCNA Positive correlation network analysis 

piRNA Piwi-interacting rna  

PLS-DA Partial least squares discriminant analysis  

RNA-seq  Rna sequencing 

SCC Somatic cell counts  

siRNA Small interfering rna  

snoRNA Small nucleolar rna  

SNPs Single nucleotide polymorphisms 

SNVs Single nucleotide variants 

SVs Structural variations 

SWATH 
Sequential window acquisition of all theoretical fragment-ion 
spectra 

TIC Total ion current  
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TLRs Toll-like receptors 

TNF-α Tumour necrosis factor-alpha  

WGCNA Weighted correlation network analysis  
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1. Introduction 

A major challenge in biology is to untangle the complex relationships that exist 

between the different layers of biological information that capture complex 

processes such as growth, disease and host-pathogen interaction. The 

fundamental difficulty arises from the complexity of the dynamic networks and 

nonlinear interactions among diverse cell constituents, such as genes, proteins 

and metabolites. Further, biological systems exhibit robustness in terms of their 

ability to maintain performance and phenotypic stability in the face of 

perturbations arising from genetic variations, environmental changes and non-

deterministic processes (Stelling et al., 2004). While most of the components that 

change due to such perturbations can be identified and precisely quantified, 

unravelling their inter-relationships would be key to understanding the biological 

phenomena and thereby providing scope for manipulating them rationally for our 

benefit. 

Traditional molecular biological techniques used to investigate biological systems, 

while delivering valuable results, are low-throughput and therefore of limited use 

in investigating system-wide myriad processes. Recent advances in high-

throughput omics technologies used to study genome, epigenome, metagenome, 

transcriptome, proteome and metabolome, coupled with improvements in 

bioinformatics have enabled system-wide investigation of thousands of genes, 

proteins and metabolites. Such omics technologies are currently being used to 

investigate system-wide changes in biological systems in a range of conditions such 

as disease states or experimental conditions.  

While individual omics layers are valuable on their own, much stronger inferences 

might be drawn by integrating information across datasets that are collected at 

different levels of biological organization. Integrative analysis of omics datasets 

could provide a holistic perspective of the system that would allow us to discover 

patterns of interactions that change upon perturbation. Quantitatively measuring 

multiple system components simultaneously and combining the resultant data 

using integrative models provides for deeper understanding of the pluralism of 

causes and effects in biological systems (Kitano, 2002), and hence, the case for 

accurate omics data acquisition and integrating multiple omics datasets has been 
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put forth by many authors (Ge et al., 2003, Wake, 2003, Joyce and Palsson, 2006, 

Sauer et al., 2007). 

This thesis presents an integrative polyomics analysis of bovine mastitis. The 

motivation for this study is threefold. Firstly, the study offers new insights into 

the molecular pathology of bovine mastitis, a disease of considerable importance 

in dairy cows, and welfare of them has direct impact on food security. Secondly, 

the study serves as a case study to explore integrative polyomics analysis methods 

that are not limited in scope to bovine mastitis but are applicable to understanding 

molecular biology in many disease areas in veterinary and human medicine. 

Thirdly and on a more personal note, the study highlights the increasingly 

multidisciplinary nature of biomedical research and combines the author’s 

experience as both veterinary clinician and bioinformatician. 

1.1 Omics data layers 

Omics technologies currently enable data to be collected to characterize different 

levels of biological organization. The structure and complexity of the data 

describing these layers reflect the inherent complexity of the biological processes 

at work in each level1. 

1.1.1 Genomics 

Genome refers to the complete set of genetic information in an organism (Horgan 

and Kenny, 2011, Goldman and Landweber, 2016). A genome consists of genes - a 

set of DNA sequences coding either for the messenger RNA (mRNA) encoding the 

amino acid sequence in a polypeptide chain (Conner and Hartl, 2004) or for a 

functional RNA molecule (non-coding RNA); pseudogenes - DNA sequences 

resembling genes but which cannot produce functional proteins (An et al., 2017); 

transposons – mobile genetic elements (Kwon et al., 2016); and regulatory 

elements, unclassified sequences and repetitive sequences (Jasinska and 

Krzyzosiak, 2004). 

                                         
1 The complexity of biological processes described in this chapter mainly refers to higher organisms, 

specifically cows, the host organism in the context of this thesis work.  
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To date, the genomes of many organisms have been sequenced and reference 

genomes for hundreds of species are available. A reference genome is a haploid 

consensus sequence derived from sequencing the genome of multiple individuals. 

Reference genomes of individual species are at different stages of maturity, and 

are continuously being updated both to improve annotations and to reduce gaps 

and errors. For example, the bovine reference genome UMD3.1 consists of 

approximately 2.6 billion DNA base pairs (bp) encoding approximately 20,000 

protein-coding genes. Similarly, the human reference genome consists of 

approximately 3 billion bp, encoding approximately 20,000 protein-coding genes 

that constitute about 1.5% of the total nucleotides (Wang and Chang, 2011). The 

functional relevance of the remaining 98–99% of the genome (non-coding regions) 

is not yet fully determined, but at the current level of knowledge, parts of the 

non-coding regions of the genome are known to be of structural and regulatory 

importance (Khurana et al., 2016). 

Genomics is the study of the structure and function of genomes (Horgan and 

Kenny, 2011). Genomics is a large field and includes the study of the genome in 

an individual or across a population, comparative studies of structure of genomes 

in different organisms, and evolutionary changes in genomes. An individual’s 

genome is an important determinant influencing the state of health and disease, 

and therefore, identifying variations in genome structure is of great importance 

(Manzoni et al., 2016). Variants can be broadly classified into three categories: 

(1) single nucleotide variants (SNVs) – point mutations; (2) insertions and deletions 

(indels) – usually up to 100 bp in size; and (3) structural variations (SVs) – large 

rearrangements including insertions, deletions, duplications, translocations and 

inversions. There is also another type of variation termed ‘copy number variations’ 

(CNVs) that may arise from large-scale duplications or deletions (Cui et al., 2015). 

On the basis of distribution of variants in the general population, variants are 

categorized into rare variants (frequency <1%) and common variants (frequency 

>1%), and the common single nucleotide variations are generally referred to as 

‘single nucleotide polymorphisms’ (SNPs) (Manzoni et al., 2016). In addition to 

identifying the variations, assigning the variants to one of the two parental 

chromosomes, called haplotype phasing (Browning and Browning, 2011), is 

imperative to identify their lineage. Sequence variations in the genome can be 

associated with the phenotype using two approaches: (1) by identifying the 
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individual variations and associating them with disease or other phenotypes, and 

(2) by examining multiple variations together for their interaction in determining 

complex traits or causing diseases. 

Currently, genome sequencing for the purpose of identifying variants are most 

commonly sequenced using short-read sequencing platforms such as the Illumina2 

platform, and the short-reads that are generated are aligned to reference 

genomes to call variants. Even though the accuracy, read length and throughput 

of sequencing technologies have improved significantly, the identification of 

variants and interpretation of their effects remain formidable challenges (Li-Pook-

Than and Snyder, 2013). Further levels of complexity are added to the genome by 

epigenetic modifications including DNA methylation, chromatin accessibility and 

histone modifications (Morgan et al., 2005, Matzke and Mosher, 2014, Brazel and 

Vernimmen, 2016, Pande, 2016).  

Microarrays and Next-Generation Sequencing (NGS) are the two main technologies 

widely used in genomic analysis at present. Recent advancements in NGS 

technologies have been reviewed (van Dijk et al., 2014, Levy and Myers, 2016). 

Similarly, whole-genome SNV and SV analysis from NGS data have been recently 

reviewed (Bromberg, 2013, Field et al., 2015, Tattini et al., 2015, Lindor et al., 

2017). Genome-wide sampling sequencing for SNP genotyping (Jiang et al., 2016), 

exome sequencing (Bao et al., 2014, Hintzsche et al., 2016b), application of NGS 

in cancer research (Tian et al., 2015, Dimitrakopoulos and Beerenwinkel, 2017, 

Alioto et al., 2015) and clinical diagnosis (Pabinger et al., 2014, Hintzsche et al., 

2016a, McLaren et al., 2016, Butkiewicz and Bush, 2016, Field et al., 2015) have 

also recently been reviewed. 

1.1.2 Transcriptomics 

Transcriptome refers to the complete set of transcripts that are transcribed by 

the genome in a cell or population of cells under specific pathophysiological 

conditions (McGettigan, 2013). In contrast to the static nature of genes, the 

expression of transcripts, proteins and metabolites is dynamic and dependent on 

                                         
2 Illumina, Inc. is the leading provider of Next-generation sequencing solutions. Illumina sequencing 

is based on the sequencing by synthesis (SBS) technology. More details are available at 
https://www.illumina.com/techniques/sequencing.html 
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tissue, time and environmental factors. The complexities and layers of regulation 

within the transcriptome are not yet fully understood (Jacquier, 2009). 

The complexity of the transcriptome is driven to a large extent by the range of 

different types of transcript that are possible. This includes messenger RNA 

(mRNA), long non-coding RNA (lncRNA), microRNA (miRNA), piwi-interacting RNA 

(piRNA), ribosomal RNA (rRNA), small interfering RNA (siRNA), small nuclear RNA 

(snRNA), small nucleolar RNA (snoRNA), and transfer RNA (tRNA). Each of these 

vary in structure and functions (Jacquier, 2009, St Laurent et al., 2015). Further 

complexity arises from alternative splicing events producing splice variants, and 

from RNA editing producing post- or co-transcriptional modification in the RNA 

nucleotides (Ramaswami et al., 2013). Alternative splicing is “a process whereby 

multiple functionally distinct transcripts are encoded from a single gene by the 

selective removal or retention of exons and/or introns from the maturing RNA” 

(Bush et al., 2017), and over 95% of human genes give rise to splice variants (Bush 

et al., 2017). RNA editing is due to enzyme-assisted insertion or deletion of 

nucleotides, or amination or deamination of purines and pyrimidines in mRNA 

(Meier et al., 2016). While the structure and functions of mRNAs, which are 

protein-coding transcripts, have been studied in detail, the biological roles of non-

coding RNAs such as lncRNA, miRNA and piRNA are still active areas of research. 

To date, many non-coding RNAs have known associations with the regulation of 

gene expression by epigenetically modifying gene expression through binding with 

chromatin-modifying proteins (Mercer and Mattick, 2013, Matzke and Mosher, 

2014). 

Transcriptomics is the study of the transcriptome using high-throughput methods 

such as microarrays or RNA sequencing (RNA-seq; sequencing of cDNA libraries 

made from RNAs) (Horgan and Kenny, 2011, McGettigan, 2013). Developments in 

the field of transcriptomics, particularly RNA sequencing including computational 

analysis of RNA sequencing data have been recently reviewed (Han et al., 2015, 

Huang et al., 2015, Spies and Ciaudo, 2015, Stegle et al., 2015, Yang and Kim, 

2015, Conesa et al., 2016, Veneziano et al., 2016). 

Improvements in technology mean that the measurement of RNA expression levels 

using the latest sequencing technologies provides considerable advantages over 

earlier technologies such as microarrays. In particular, deep RNA-seq enables 
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detection of transcripts that are expressed at very low level giving a dynamic 

range of over five orders of magnitude (Li-Pook-Than and Snyder, 2013). NGS also 

helps in identifying allele-specific expression (ASE), that is, expression of 

heterozygous variants that arise due to heterozygous variations in the genome. 

Most importantly, RNA-seq allows discovery of novel transcripts including splice 

variants, and RNA editing sites (McGettigan, 2013, Ramaswami et al., 2013). 

Furthermore, recent advances in RNA-seq have improved spatial resolution in 

analysing gene expression to the single cell level while retaining information on 

the tissue context of the cells across entire tissue sections (Achim et al., 2015, 

Chen et al., 2015, Crosetto et al., 2015). 

Insights may be gained by analysing transcriptomics data in combination. RNA-seq, 

being an open technology, can be applied to elucidate host-pathogen interactions 

by simultaneously sequencing (dual RNA sequencing) both the host and pathogen 

RNAs (Schulze et al., 2015). For example, Westermann et al. report on a recent 

study that identified upregulation of PinT, a small regulatory RNA in Salmonella 

that modulated host immune responses (Westermann et al., 2016). 

Correspondingly, comparisons of transcriptomic data with genomic and proteomic 

data may also be used to identify RNA editing by identifying variations in the RNAs 

that were absent in the DNA from which they were transcribed and in the proteins 

into which they may be translated (Bahn et al., 2012, Wang et al., 2016a). 

However, transcriptomic data analysis is not without its challenges. Post-

transcriptional gene expression regulation by small RNAs (miRNAs and siRNAs) and 

mRNA decay can significantly alter the correlation between the transcript 

turnovers and their related protein abundances.  

1.1.3 Proteomics 

The term ‘proteome’ was first used by Wilkins et al in 1996 (Wilkins et al., 1996). 

In a broad sense, the proteome may be defined as the set of proteins produced by 

an organism during its life. But, in the narrow sense, the proteome may be defined 

as the complete set of proteins expressed by an organism at a specific time in a 

particular cell, tissue or compartment (Gubb and Matthiesen, 2010). However, the 

term proteome is also used to refer to the complete complement of proteins in an 
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organism. For example, UniProt3 defines the human proteome as “the set of 

protein sequences that can be derived by translation of all protein-coding genes 

of the human reference genome, including alternative products such as splice 

variants” (Breuza et al., 2016). This definition can, of course, be generalized to 

apply to any species. 

Proteins are the key structural and functional entities in the cell, which are 

involved in almost all cellular functions and catalyse all cellular processes 

(Aebersold and Mann, 2016). Proteins are highly complex with diverse 

physicochemical properties depending on their amino acid compositions, 

structural confirmations and post-translational modifications. Types of post-

translational modifications that are frequently studied include phosphorylation, 

ubiquitination, glycosylation, methylation and acetylation (Aebersold and Mann, 

2016). There exist thousands of post-translational modifications, and many of 

them seem to be involved in cellular regulation. For example, a study in HeLa 

cells showed that at least 75% of the proteome was phosphorylated with more 

than 50,000 distinct phosphorylated peptides (Sharma et al., 2014). Further 

complexities arise from proteins produced from alternatively spliced RNAs, single 

amino acid polymorphisms derived from non-synonymous SNPs in the genome, or 

changes resulting from diverse protein modifications and degradations. The 

different molecular forms of a protein that originate from the same gene are 

referred to as 'proteoforms' (Aebersold and Mann, 2016). It is estimated that as 

many as 100 different proteins (proteoforms) can be potentially produced from a 

single gene (Ponomarenko et al., 2016). This complexity is further increased by 

the interactions between proteins forming complexes and signalling networks that 

are highly divergent in time and space (Altelaar et al., 2013). In general, about 

50% of the dry mass of a cell is derived from proteins. There are 2–4 million protein 

molecules per cubic micrometre of cells, with the abundance of each protein 

varying from a few copies to one million copies (Aebersold and Mann, 2016).  

Surprisingly, with the exception of a few proteins that were unique to specific 

tissues, situations or phenotype, diverse tissues and organs in the human body 

have similar proteomes (Lundberg et al., 2010, Uhlen et al., 2015). Consequently, 

                                         
3 http://www.uniprot.org/; The Universal Protein Resource (UniProt) is a comprehensive resource for 

protein sequence and annotation data. 
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the distinctiveness of cells and tissues seems to be determined mainly by the 

expression level of their constituent proteins in combination with the manner in 

which the proteins are organized and modified in the proteome, rather than by 

the presence or absence of certain proteins (Aebersold and Mann, 2016). However, 

it must be noted that there exists a huge diversity in microbial proteins that 

provides distinct functional profiles to microbial communities (Muth et al., 2016). 

The UniProt Homo sapiens reference proteome currently includes 70,952 proteins, 

of which 20,165 are reviewed (manually curated) and 50,787 are unreviewed 

(computationally annotated) (UniProt, 2017b). Similarly, the UniProt Bos taurus 

reference proteome includes 24,149 proteins, of which 5,998 are reviewed and 

18,151 are unreviewed (UniProt, 2017a). Recently, two different research groups 

independently published the first drafts of the human proteome (Kim et al., 2014, 

Wilhelm et al., 2014), which showed new complexities in the human genome by 

identifying new proteins from regions of the genome that were previously thought 

to be non-coding. Of particular importance is the observation that the translation 

rate was a constant for each mRNA transcript in every tissue. At a steady state, if 

the ratio for a mRNA/protein pair was known, protein expression could be 

predicted from the expression of the specific mRNA (Wilhelm et al., 2014). 

Proteomics is the global analysis of proteins, and includes understanding the 

functions of and interactions between proteins (Altelaar et al., 2013). Although a 

variety of techniques such as enzyme-linked immunosorbent assay (ELISA), 

western blotting and protein microarray are available to study proteomes, high-

throughput proteome analysis typically involves separating intact proteins or 

digested proteins (peptides) using electrophoresis or chromatography, 

respectively, followed by identification using mass spectrometry.  In broad terms, 

two main approaches to proteomics may be distinguished, namely the ‘bottom-

up’ approach and the ‘top-down’ approach. 

In the bottom-up approach, the whole proteins (with the mass of individual 

proteins generally ranging up to 3 MDa) in the proteome are broken down into a 

peptide pool using proteolytic enzymes, usually trypsin, and the peptides in the 

pool are separated by reverse-phase chromatography, ionised by electrospray and 

analysed in a mass spectrometer. Every few seconds, the mass spectrometer scans 

the entire mass range, selects a number of peptides in the mass spectra to 
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fragment in the mass spectrometer and measures the mass spectra of the 

fragments (tandem mass spectrometry; MS/MS). Generally, there are several 

peptide precursor ions in each mass spectrum, and each mass spectrum is 

therefore usually followed by 5–20 tandem mass spectra. The peptides are 

identified by comparing the mass spectrum along with the tandem mass spectra 

of its fragments with the theoretical enzyme-specific fragmentation patterns 

derived from protein or genome sequences, and finally proteins (more accurately, 

the encoding genes) are determined from the identified peptides, usually from 

the unique peptides (Cox and Mann, 2011, Fischer et al., 2013, Schulz-Knappe et 

al., 2005, Soloviev and Finch, 2006). In addition to identification, quantification 

of proteins in complex biological samples is also possible in the bottom-up 

approach (Aebersold and Mann, 2003, Gillet et al., 2016). Although the bottom-

up approach increases the complexity of quantification by a factor of about 40 

due to cleaving the proteins into peptides and producing hundreds of thousands 

of peptides, (Lottspeich, 2011), it remains experimentally and computationally 

feasible as proteome-wide quantification using workflows that apply 

labelled/label-free approaches through digestion, separation, fragmentation, 

identification and quantification have become routinely possible for the bottom-

up approach. However, similar peptides can be derived from multiple different 

proteins and discrete proteoforms may generate almost identical peptides. Hence 

the peptides lose the context of the proteins from which they were derived. 

Importantly, information on truncation, proteoforms from splice variants and 

post-translational modifications are also lost. Usually, protein sequence coverage 

is less than 50% in the bottom-up proteomics approach. Despite these limitations, 

the bottom-up proteomics approach is the most widely used method. 

Trypsin is a serine protease. Being the most-frequently used protease in mass 

spectrometry-based proteomics studies, trypsin is regarded as the workhorse 

protease in proteomics (Vandermarliere et al., 2013). Other proteases used in 

proteomics analysis include chymotrypsin, LysC, LysN, ArgC, AspN, GluC, 

LysargiNase, Pepsin, WaLP and MaLP (Giansanti et al., 2016). Trypsin specifically 

cleaves the carboxy-terminal (C-terminal) of Arginine and Lysine. However, 

cleavage does not always happen after every Arginine and Lysine residue. 

Miscleavage may occur when Arginine or Lysine is followed by a Proline, or when 
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negatively charged residues present in close proximity to the Arginine or Lysine 

residue (Vandermarliere et al., 2013). 

There are three main approaches used in the bottom-up proteomics: (1) Data-

dependent acquisition (DDA) based shotgun proteomics, which is the dominant 

approach used in discovery studies (Michalski et al., 2011); (2) Targeted 

proteomics using selected reaction monitoring (SRM) or multiple reaction 

monitoring (MRM) used to assay a subset of known peptides of interest, which is 

typically used in the translational medicine context to analyse a large number of 

samples for validation of the discovery study results (Ebhardt, 2014); and (3) 

Multiplexed fragmentation of all peptides in a sample by data-independent 

acquisition (DIA), for generating comprehensive fragment-ion maps of the sample 

(Aebersold and Mann, 2016). In the DDA-based shotgun proteomics, a mass-

spectrometric cycle consists of acquisition of the full spectrum of the peptides at 

the MS1 level, and followed by the acquisition of as many fragmentation spectra 

at the MS2 level as possible, within a cycle time of about 1 second, to correlate 

with chromatography peak widths. In the targeted proteomics analysis, a peptide 

of known mass-to-charge ratio (m/z) at a particular retention time window is 

selected in the first quadrupole, then the peptide is fragmented by collision-

induced dissociation or higher-energy collisional dissociation, and several 

fragments are monitored over time. In the DIA method, particularly in the 

sequential window acquisition of all theoretical fragment-ion spectra (SWATH) 

mass spectrometry method, in each mass-spectrometric cycle a range of about 25 

m/z units are sequentially selected and all peptides in the range are fragmented 

to obtain fragment-ion maps comprehensively through the entire mass range, and 

this is completed within a few seconds in time. 

The classical method used for quantitative analysis of complex mixtures of 

proteins is two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), 

whereby the proteins are separated by electrophoresis, detected by protein 

staining and their quantities are visually/optically compared, followed by mass 

spectrometry (MS) analysis to identify specific proteins of interest (D'Auria et al., 

2005, Yamada et al., 2002). However, the gel-based quantitative proteomics 

techniques are semi-quantitative, laborious and suffer from an inability to analyse 

hydrophobic, very high or low molecular weight proteins (Atrih et al., 2014). To 



37 
 
overcome these shortcomings and to increase the dynamic range and quantitative 

accuracy, non-gel-based quantitative proteomics methods have been developed 

(Bantscheff et al., 2007, Latosinska et al., 2015, Mann, 2009, Megger et al., 2013, 

Patel et al., 2009, Wang et al., 2008a).  

Non-gel-based-mass-spectrometric-DDA-based quantitative proteomics 

approaches can be divided into methods using metabolic or chemical labelling and 

label-free approaches (Bantscheff et al., 2007). Some of the labelling approaches 

utilize isotope-labelled compounds (such as isotope labelled amino acids) that are 

functionally and chemically identical to the properties of their natural compounds 

except in mass, which allows for their identification in mass spectrometry. Stable 

labelling approaches include stable isotope labelling by amino acids in cell culture 

(SILAC), isotope-coded affinity tag (ICAT), isobaric tag for relative and absolute 

quantification (iTRAQ), dimethyl labelling and tandem mass tags (Bantscheff et 

al., 2007, Megger et al., 2013, Aebersold, 2003). While these labelling-based 

techniques remain critical for basic and cell-culture related research, their 

application in translational medicine research is impractical for a variety of 

reasons such as health, safety, cost and multiplexing, i.e. the ability to 

simultaneously quantify many samples in a run or a batch (Zhu et al., 2010). Label-

free relative quantification is an alternative method that can be applied to clinical 

samples, and offers better dynamic range than some of the well-known labelling 

approaches (Latosinska et al., 2015, Patel et al., 2009). Although relative 

quantification is highly useful in identifying protein expression between two or 

more states, it is dimensionless and is normally expressed in the form of ratios. 

Estimation of the absolute quantity of proteins in cells (the protein copy number 

per cell) would be highly useful in clinical settings and for inferring biological 

phenomena. With the recent advances in bioinformatics and mass spectrometry, 

new techniques for absolute quantification such as the 'Total Protein Approach'-

based absolute quantification (Wisniewski and Rakus, 2014), ‘proteomic ruler’-

based absolute quantification (Wisniewski et al., 2014) and MS-based 

Quantification By isotope-labelled Cell-free products (MS-QBiC) (Narumi et al., 

2016) have been developed. 

To overcome the limitations in the bottom-up approach, particularly to identify 

the protein diversity due to the combination of modification events for each 



38 
 
proteoform, the top-down proteomics approach has been developed (Doerr, 2008, 

Savaryn et al., 2013, Catherman et al., 2014). In the top-down proteomics 

approach, proteins are separated based on well-defined molecular properties of 

proteins such as the molecular mass and/or position in a separation space like 

isoelectric point and chromatography. The intact protein is introduced into the 

mass spectrometer where both its intact and fragment ions masses are measured. 

This allows for 100% protein sequence coverage and complete characterization of 

the actual combination of modification events for each proteoform. However, the 

top-down approach, although very attractive, is experimentally and 

computationally highly challenging for proteome-wide studies (Aebersold and 

Mann, 2016). Therefore, to characterize proteoforms, new methods (collectively 

termed proteogenomics) that utilize DNA and RNA sequencing data to generate in 

silico candidate protein sequences for mass spectrometry database searching have 

been developed (Evans et al., 2012, Nagaraj et al., 2015, Tay et al., 2015, 

Sheynkman et al., 2016). 

It must be noted that advances in the technological capabilities of mass 

spectrometry (sensitivity and resolution) and the availability of bioinformatics 

resources such as databases, spectral libraries, search engines, algorithms and 

software have played a very important role in the development of proteomics 

since inception. In particular, algorithms and software used to perform various 

analyses such as feature detection, feature alignment, label assignment, peptide-

spectrum matching, protein assignment and quantification have become mature 

and reliable (Hamzeiy and Cox, 2017). Advances and developments in proteomics 

analysis tools and databases have been recently reviewed (Perez-Riverol et al., 

2014, Perez-Riverol et al., 2015, Codrea and Nahnsen, 2016). A list of 

computational resources for proteomics data analysis is given in Table 1.1. 



39 
 

Table 1.1: Computational resources for proteomics data analysis 
 

Application 
Type / Purpose 

Resource Name  Accessibility Comments 

Search engine SEQUEST (Eng et 
al., 1994) 

Proprietary 
software 

• One of the first tools developed for matching MS⧸MS data to a sequence 
database. 

• Matches the acquired MS/MS spectra with the theoretical MS/MS spectra 
generated from the peptide sequence information in the database 

Mascot (Perkins 
et al., 1999) 

Proprietary 
software 

• High sensitivity and specificity 

• Matches the acquired MS/MS spectra with the theoretical MS/MS spectra 
generated from the peptide sequence information in the database 

PEAKS (Ma et al., 
2003) 

Proprietary 
software 

• Incorporates de novo sequencing results with the sequence database 
search thereby improving sensitivity and specificity 

X!Tandem (Craig 
and Beavis, 2004) 

Open-source 
software 

• Matches the acquired MS/MS spectra with the theoretical MS/MS spectra 
generated from the peptide sequence information in the database 

• Faster than most other search engines 
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OMSSA (Geer et 
al., 2004) 

Open-source 
software 

• Matches the acquired MS/MS spectra with the theoretical MS/MS spectra 
generated from the peptide sequence information in the database 

Andromeda (Cox 
et al., 2011) 

Open-source 
software 

• Matches the acquired MS/MS spectra with the theoretical MS/MS spectra 
generated from the peptide sequence information in the database 

• Integrated into the MaxQuant software   

Knowledge 
database 

UniProt (The 
UniProt, 2017) 

Publicly 
accessible  

• One of the most widely used databases 

• Provides protein sequence and functional annotation for a large number of 
species   

neXtProt (Gaudet 
et al., 2013) 

Publicly 
accessible  

• Exclusively for human proteins 

• Manually curated 

ProteomicsDB 
(Wilhelm et al., 
2014) 

Publicly 
accessible 

• Exclusively for human proteins 

• Includes quantitative mass spectrometry-based proteomics data from 
thousands of experiments 

Human 
Proteinpedia 
(Kandasamy et 
al., 2009) 

Publicly 
accessible 

• Exclusively for human proteins 

• Manually curated data from collaborating laboratories 
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Human Proteome 
Map (HPM) (Kim 
et al., 2014) 

Publicly 
accessible 

• MS/MS data and annotations from the draft map of the human proteome 
project 

Global Proteome 
Machine Database 
(GPMDB) (Craig et 
al., 2004) 

Publicly 
accessible 

• Database of experimental information for validation and reuse  

MaxQB (Schaab et 
al., 2012) 

Publicly 
accessible 

• Submission, storage and retrieval of large proteomics projects 

Proteomics data 
repository 

PRIDE (Vizcaino 
et al., 2016) 

Publicly 
accessible 

• Data repository for proteomics data 

• A member of the ProteomeXchange consortium 

ProteomeXchange 
(Vizcaino et al., 
2014) 

Publicly 
accessible 

• Standardized submission and retrieval of mass spectrometry proteomics 
data 

MS/MS data 
analysis 
software 
package 

MaxQuant 
(Tyanova et al., 
2016) 

Open-source 
software 

• Supports data analysis of MS/MS data acquired from labelling (for example, 
SILAC, Di-methyl, TMT and iTRAQ) and label-free quantification methods 

• Many vendor-specific (for example, Thermo Fisher Scientific, Bruker 
Daltonics, AB Sciex and Agilent Technologies) proprietary data formats can 
be used. 
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OpenMS (Rost et 
al., 2016) 

Open-source 
software 

• Provides tools and workflows to end-users and a development environment 
for software developers to build new tools 

Trans-Proteomic 
Pipeline (Deutsch 
et al., 2015) 

Open-source 
software 

• The oldest comprehensive open-source software suite for the analysis of 
LC-MS/MS data 

• Provides preconstructed workflows that are executed within the software 
environment 

mzMine (Pluskal 
et al., 2010) 

Open-source 
software 

• Supports conversion of vender specific preoperatory data formats to open-
source data formats. 

• Provides tools for visualization and statistical analysis   

Skyline (Egertson 
et al., 2015) 

Open-source 
software 

• Software suite for targeted MS/MS data analysis including selected 
reaction monitoring, multiple reaction monitoring, parallel reaction 
monitoring and data independent acquisition (DIA/SWATH) data 

• Allows development and integration of external tools 

OpenSWATH (Rost 
et al., 2014) 

Open-source 
software 

• Software suite for targeted data analysis of data-independent acquisition 
(DIA) or SWATH-MS proteomic data 

Mascot Distiller 
(Matrix Science, 
2014) 

Proprietary 
software 

• Supports analysis of MS/MS data acquired from multiple labelling methods 
and label-free quantification 
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PEAKS (Zhang et 
al., 2012a) 

Proprietary 
software 

• Supports analysis of MS/MS data acquired from multiple labelling methods 
and label-free quantification 

• Supports analysis of post-translational modifications, statistical analysis 
and visualization 

Progenesis QI 
(Progenesis, 
2017) 

Proprietary 
software 

• Supports analysis of MS/MS data acquired from multiple labelling methods 
and label-free quantification 

• Supports statistical analysis 

Qlucore Omics 
Explorer 
(Qlucore, 2017) 

Proprietary 
software 

• Supports analysis of MS/MS data acquired from multiple labelling methods 
and label-free quantification 

• Supports analysis of post-translational modifications, statistical analysis 
and visualization 

• Allows combined analysis of genomics, epigenomics, transcriptomics, 
proteomics and metabolomics data 
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Peptidome is the entire peptide content of a cell, tissue or organism with a mass 

range between 400 and 12,000 Da (Fischer et al., 2013), and could be considered 

as a subset of the proteome. Peptidomics, the study of peptidome, is one of the 

newly emerging 'omics’ technologies. It is the detection, identification and 

quantification of all peptides and their modifications within a cell, tissue organism 

or biological sample. Although peptidomics primarily focuses on the simultaneous 

identification of endogenously-derived peptides, which have diverse biological 

functions such as hormones and neurotransmitters, it can encompass peptide 

products of protein degradation, which could be useful as biomarkers of the 

pathophysiological states (Dallas et al., 2015). It can also be used to elucidate 

proteolytic regulation of bioactive peptides as a key to understanding the 

physiology and identifying possible drug targets (Kim et al., 2013). In clinical 

research, peptidomics has proven useful in identification of biomarkers including 

urinary markers of disease (Albalat et al., 2011) and neuroendocrine biomarkers 

(Menschaert et al., 2010). 

1.1.4 Metabolomics 

The term metabolome was first used in a research article by Oliver and colleagues 

in 1998 (Oliver et al., 1998). The metabolome is defined “as the entirety of 

molecules processed by the metabolism in an organism” (Fischer et al., 2013). As 

such, it encompasses a variety of chemical molecules (metabolites) such as 

carbohydrates, lipids, nucleotides, amino acids, peptides, vitamins, minerals, 

food additives, drugs, toxins, pollutants and just about any other chemical with a 

molecular weight less than 2,000 Da that an organism ingests, metabolizes or 

comes into contact with in its environment (Wishart et al., 2013). Metabolome 

includes both (1) endogenous compounds, which are synthesized by the enzymes 

encoded by the genome, and (2) exogenous compounds, which are foreign 

chemicals that are consumed as foods, drugs or in the environment as pollutants 

or toxins. Most metabolites have a mass less than 2,000 Da (Fillet and Frédérich, 

2015). However, lipids have masses that range up to 5,000 Da. Moreover, there is 

no clear demarcation between metabolome and peptidome. The shorter di-, tri- 

and tetra-peptides are considered to be part of the metabolome as well as the 

peptidome. Metabolites provide a functional readout of the cellular state and 

serve as direct signatures of biochemical activity. In principle, metabolites should 



45 
 
therefore correlate better with phenotype, compared to the correlation between 

phenotype and genotype (Tautenhahn et al., 2012). 

Owing to the physical, chemical and structural diversity of metabolites, the 

metabolome is highly complex. Furthermore, an overwhelming number of 

metabolites may be found in higher organisms. METLIN, a repository of 

metabolites and mass spectra, catalogues over 960,000 compounds (Smith et al., 

2005, Tautenhahn et al., 2012). Similarly, the Human Metabolome Database 

(HMDB), which is a manually curated database of metabolites identified in 

humans, currently contains 42,003 metabolite entries and links them with 5,701 

protein sequences (Wishart et al., 2013). In addition, many of these metabolites 

are linked to 618 small molecule pathways in the Small Molecule Pathway 

Database (SMPDB) (Wishart et al., 2013). Similarly, the Yeast Metabolome 

Database (YMDB) contains 16,042 metabolites and linked them with 909 enzymes 

(Ramirez-Gaona et al., 2017). 

Metabolomics can be defined as the comprehensive qualitative and quantitative 

analysis of all metabolites present in a cell, a tissue, an organ or an organism at a 

specific time point (Fiehn, 2001). Metabolomics includes the study of 

compositions, relative abundances, interactions and dynamics of the metabolome 

within a biological system in response to change of environment (Osorio et al., 

2012). It entails the use of sophisticated analytical techniques in unbiased 

identification and quantification of all metabolites in a biological system (Dettmer 

et al., 2007). Metabolomics is aimed at characterizing metabolic changes that 

result following presence or absence of one or more factors in order to gain 

insights into systems biology and also to identify possible biomarkers of specific 

conditions (Courant et al., 2013). Although the isolation of sucrose from beets by 

Marggraf in 18th century (Fillet and Frédérich, 2015) could be regarded as the first 

study on a metabolite, the analysis of urine vapour and breath metabolites using 

gas chromatography by Pauling et al in 1971 (Pauling et al., 1971) can be 

recognized as the first metabolomics study. The first mentions of the terms 

‘metabolome’ and ‘metabolomics’ were in 1998 and 2001 respectively (Fillet and 

Frédérich, 2015). As such, compared to genomics, transcriptomics and 

proteomics, the field of metabolomics is relatively new and is consequently still 

evolving standardized terminology. In particular, some terms used in 
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metabolomics give rise to confusion as they may be variously used inclusively or 

historically favoured by the specific scientific group performing a study. For 

example, the terms ‘metabolomics’ and ‘metabonomics’ can be used 

interchangeably, and one or the other of these two terms is typically favoured by 

individual research groups (Dona et al., 2016). 

Garcia-Perez et al (Garcia-Perez et al., 2008) group the approaches used to 

analyse metabolites into five classes: (1) Targeted analysis - a target-driven or 

hypothesis-driven analysis where one or a few specific metabolites are analysed; 

(2) Metabolic profiling - analysis of a defined group of metabolites such as amino 

acids, fatty acids or carbohydrates using selective techniques that are suited to 

the group of interest based upon their physiochemical properties or their 

association with a specific pathway (Fiehn, 2002); (3) Metabolic fingerprinting -  

global high-throughput, rapid analysis of metabolites, aiming at sample 

classification through pattern recognition without identification of individual 

metabolites (Fiehn, 2001, Fiehn, 2002); (4) Metabolomics - “a comprehensive 

analysis in which all the metabolites of a biological system are identified and 

quantified” and which “reveals the metabolome of the biological system under 

study” (Fiehn, 2002); and (5) Metabonomics - “the quantitative measurement of 

the dynamic multi-parametric metabolic response of living systems to 

physiological stimuli or genetic modification” (Lindon et al., 2000). As stated 

previously, however, the distinction between the metabolomics and 

metabonomics approaches is minimal in practice to the extent that they can be 

considered together as global, non-directed or ‘untargeted metabolomics’ 

approach (Vinayavekhin and Saghatelian, 2010, Alonso et al., 2015).  

A targeted metabolomics experiment quantifies the levels of a few specific 

metabolites, whereas an untargeted metabolomics experiment quantifies any 

metabolite in the sample that ionizes and detected by the analytical equipment 

in use within a specific range of mass values (Vinayavekhin and Saghatelian, 2010). 

Generally, targeted experiments use internal standards and specific mass-

spectrometric conditions to provide precise quantitation of the metabolites of 

interest, while untargeted experiments are simpler to perform and provide 

broader coverage of the metabolome (Vinayavekhin and Saghatelian, 2010). 

Therefore, the untargeted metabolomics approach is suitable for analysing 
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thousands of metabolites during the discovery phase of biomarker studies in 

translational medicine research, although identification of the detected 

metabolites remains a formidable challenge. 

Depending on the nature of the analyte and the goal of the analysis, a variety of 

analytical platforms are available for metabolomics analysis. The two main 

instrumentation platforms used are mass spectrometry (MS) and nuclear magnetic 

resonance (NMR) spectroscopy. Mass spectrometry can either be used with direct 

infusion (without separation), or combined with a separation technique such as 

capillary electrophoresis (CE) and one- or two-dimensional liquid or gas 

chromatography (LC or GC) (de Raad et al., 2016, Zhang et al., 2017). Similarly, 

NMR can be combined with LC or LC-MS, and either a one-dimensional NMR (1D-

NMR) or a two-dimensional NMR (2D-NMR) can be used (Bingol and Bruschweiler, 

2017). In addition, a number of platform vendors (instrument manufacturers; for 

example, Thermo Scientific, Waters Corporation, Shimadzu Scientific Instruments, 

Bruker and Hitachi Instruments) exist, and many types of columns (for example, 

HILIC, Zwitterionic HILIC and ZIC-pHILIC Polymeric) are available for use in 

chromatography. 

The multitude of analytical platforms with their unique data formats and data 

types further increases the complexity of data analysis in metabolomics and 

present a formidable challenge to the development of algorithms and software. 

Other challenges in untargeted metabolomics analysis include metabolite 

identification, batch correction, reproducibility, peak detection and peak 

alignment. To address the challenges in data format, ontology, data processing, 

data analysis and information reporting, the Metabolomics Standards Initiative 

(MSI) was conceived in 2005, and it has proposed draft standards at 4 levels (Fiehn 

et al., 2007, Sumner et al., 2007). These are:  

• Level 1: Identified metabolites (2 or more orthogonal properties of an 

authentic chemical standard analysed in the same laboratory should be 

compared to the experimental data acquired in the same laboratory with 

the same analytical methods) 
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• Level 2: Putatively annotated compounds (does not require matching with 

data from authentic chemical standards acquired within the same 

laboratory) 

• Level 3: Putatively characterized compound classes (does not require 

matching with data from authentic chemical standards acquired within the 

same laboratory) 

• Level 4: Unknown compounds 

Later, as a global effort to share metabolomics data, COSMOS (Coordination of 

Standards in Metabolomics) has brought together European metabolomics data 

providers to set and promote community standards (Salek et al., 2015, Salek et 

al., 2013).New methods for metabolite annotation using fragmentation techniques 

combined with machine learning algorithms are being developed at Glasgow 

Polyomics4, University of Glasgow (van der Hooft et al., 2016). Also, new 

algorithms have been developed for batch correction (Brunius et al., 2016), peak 

alignment and data analysis (Yamamoto et al., 2009). Recent developments in the 

identification of metabolites using NMR-based metabolomics have been reviewed 

by Everett et al (Everett, 2015, Dona et al., 2016). Recent developments in 

analytical methods and software solutions for metabolomics have also been 

reviewed (Alonso et al., 2015, Cambiaghi et al., 2016, van der Hooft et al., 2016). 

1.1.5 Glycomics 

The term metabolome was first used in a research article by Oliver and colleagues 

in The term glycome is defined as “the complete repertoire of glycans and 

glycoconjugates that cells produce under specified conditions of time, space, and 

environment” (Bertozzi and Sasisekharan, 2009). Glycans are oligosaccharides 

composed mostly of 10–15 monosaccharide residues. Glycans are highly diverse 

polymers and often have a complex structure due to variations in sugar monomer 

structures and the inter-saccharide binding (bond type, branching). Vertebrates 

produce glycans that are free glycans (for example, hyaluronan) or attached to 

                                         
4 Glasgow Polyomics is a core facility within the University of Glasgow, funded in part by the 

Wellcome Trust, that provides omics data generation and analysis services to a range of clients 
in Europe and further afield. For more information, please see http://www.polyomics.gla.ac.uk 
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proteins (glycoproteins and proteoglycans) or lipids (glycolipids). Glycans attached 

to proteins can be N-glycans (attached to the amide nitrogen atom in the side 

chain of asparagine) or O-glycans (attached to the oxygen atom in the side chain 

of serine or threonine). Production and turnover of glycans are under the control 

of glycosyltransferases, a large family of enzymes that assemble glycans, and 

glycosidases, a large family of enzymes that remove sugar moieties or degrade 

glycans. In addition, the availability of the donor and acceptor substrates in the 

cellular compartment limit the biosynthesis of glycans. 

Glycomics can be defined as the study “designed to define the complete 

repertoire of glycans that a cell or tissue produces under specified conditions of 

time, location, and environment” (Rudd et al., 2015). Glycomics includes 

identification of individual glycans, their interaction/association with proteins or 

lipids, and their expression in specific conditions such as healthy and disease 

states. Because of the structural and biosynthetic complexities, it is currently not 

possible to predict the structure of glycans that an organism can produce using 

the information from the organism’s genome or proteome (Campbell et al., 

2015a). Different methods are used to characterize different glycans. For 

example, analyses of the structures of N-glycans versus O-glycans, and 

glycoproteins versus glycolipids may require different extraction methods or 

glycan release and different methods of analysis. Techniques used in the analysis 

of glycans include high-performance liquid chromatography, mass spectrometry, 

and nuclear magnetic resonance-based methods, and imaging using glycan-

recognizing probes and matrix-assisted laser desorption/ionization mass 

spectrometric imaging methods.  

Owing to its diversity and complexity, collection, storage and retrieval of 

glycomics data is a challenge. Recently, Lisacek and colleagues reviewed the tools 

and databases available for glycomics analysis including oligosaccharide sequence 

databases, experimental databases and 3D structure databases (Lisacek et al., 

2017). UniCarbKB is a literature-based curated database of glycan structures, 

glycoprotein site/global information (Campbell et al., 2015b). SugarBindDB is a 

curated database of pathogen–glycan binding information (Mariethoz et al., 2016, 

Mariethoz et al., 2017). GlyTouCan is an international repository for glycan 

sequence and structures (Tiemeyer et al., 2017). GlycoSiteAlign is a tool that uses 
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the knowledge of glycan structure to align amino acid sequences around 

glycosylation sites (Gastaldello et al., 2016). 

1.2 Omics data integration 

1.2.1 Levels of hierarchy 

The central dogma of molecular biology propounded by Francis Crick deals with 

the sequential flow of information between DNA, RNA and protein (Crick, 1970). 

In this context, Crick put forward three groups of information flow called general 

transfers, special transfers and unknown transfers. General transfers occur in most 

of the normal cells, and include three cases of information flow in the form of 

DNA -> DNA, DNA -> RNA and RNA -> protein (Figure 1.1). However, the central 

dogma did not explain the control mechanisms that regulate gene expression. 

Subsequently, Leland Hartwell and his colleagues proposed that biological 

functions in cells are performed by multicomponent macromolecular ‘modules’ 

(Hartwell et al., 1999), and this modularity has been demonstrated in several 

studies (Khosla and Harbury, 2001, Hofmann et al., 2006, Qi and Ge, 2006). 

 

 

Figure 1.1: The central dogma of molecular biology, propounded by Crick in 
1970. 
Solid arrows show general transfers, which occur in most of the normal cells. 
Dotted arrows show special transfers, which do not occur in most cells, but may 
occur in some special circumstances such as in certain viral infections or in special 
cell free systems. Adapted from Crick (Crick, 1970). 

ProteinRNA

DNA
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The central dogma and subsequent developments in biology led to the 

propounding of the concept of biological levels of hierarchy (Figure 1.2). DNA 

occupies the lowest level in this hierarchy, and the organism as a whole occupies 

the highest level. An upward causation chain flows from genes to organism via 

various intermediate levels such as transcripts and proteins, with a downward 

causation chain, conditioned by the environment, regulating the gene expression 

(Noble, 2012). The multi-level causality with feedback cycles among the different 

levels of biological organization such as genes, transcripts, proteins, metabolites 

and other levels such as epigenome is well recognized as the fundamental 

attribute of biological systems. 

As reviewed in section 1.1, advancements in the technologies used in omics 

analysis enable us to study individual layers such as genome, transcriptome, 

proteome and metabolome in great detail. However, the intertwined molecular 

signatures from genomics, transcriptomics, proteomics, metabolomics, 

epigenetics and microbiome data should be studied using an integrated approach 

in order to both interpret the system as a whole, and capture the inter-layer 

connections. 
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Figure 1.2: Hierarchical levels of causal chain in biology. 
Following the central dogma of biology, the reductionist causal chain in biology 
showing the upward causation (arrows shown in blue) flowing from genes to the 
whole organism via transcripts and proteins, and the downward causation (arrows 
shown in green) conditioned by the environment, regulating the lower level 
components in biological systems. Adapted from Noble (Noble, 2012). 

1.2.2 Challenges for omics data integration 

Combined analysis of genomic, transcriptomic, proteomic, and metabolomic data 

has been found to be beneficial in gaining a deeper understanding of normal and 

disease states (Chen et al., 2012). However, the integrative approach of 

combining data from many omics technologies is a non-trivial task, and different 

methods have been used with varying degrees of success (Fernie and Stitt, 2012, 

Wienkoop et al., 2008, Zhang et al., 2010). Sauer et al identified four challenges 

(Figure 1.3) in using integrative biological approach (Sauer et al., 2007). They are: 

1. Component identification and quantitation (omics data generation): 

comprehensive identification of transcripts, proteins and metabolites in the 

system and their accurate quantification. 

2. Understanding physical interactions between components: experimentally 

identifying physical interactions between different components in the 

system to construct information processing networks. 

3. Inferring the qualitative and quantitative interactions of components: 

computational inference of quantity, type and structure of component 

interactions from data.  

4. Large-scale data integration: Rigorous integration of heterogeneous data 

and information from multiple datasets. 

Of these four categories of challenges, currently the integration of data from 

polyomics datasets is the rate-limiting factor, motivated in part by the fact that 

the data acquisition technologies are improving rapidly. The lack of commensurate 

growth in data analysis techniques compared to the speedy growth in omics 

technologies is often referred to as the “bioinformatics   bottleneck” (Desai et 

al., 2012, Angiuoli et al., 2011). 
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Figure 1.3: A systems road map illustrating the challenges in using integrative 
approach. 
Reproduced from Sauer et al (Sauer et al., 2007) with permission from The 
American Association for the Advancement of Science. 
 

1.2.3 Omics data integration methods 

In order to meet these challenges, multiple methods have been used in polyomics 

data integration over the last decade. These methods have been classified into 

several groups or levels by different authors. Cavill et al grouped the polyomics 

data integration methods into three levels (Cavill et al., 2016), namely (1) 

Conceptual integration, (2) Statistical integration and (3) Model-based 

integration. Conceptual integration is the simplest of the three levels, and refers 

to the analysis of multiple omics datasets separately at individual omics level, and 

then conceptually combining the individual omics analysis results without any 

further analysis of the data set as a whole. While the conceptual integration 

produces valuable insights by comparing the results from one omics layer with the 

results from other omics layers, it could miss some direct and indirect associations 

between the omics layers. In statistical integration, statistical associations 

between the elements of multiple omics datasets are identified and their 

significance analysed. Cavill et al further classify the statistical integration into 

four subgroups: (i) Correlation-based integration, (ii) Dataset concatenation-

based integration, (iii) Multivariate-based integration, and (iv) Pathway-based 

integration. Model-based integration is the most complex of the three levels of 

data integration and includes generating computational models from prior 

knowledge or from the data. The resulting computational models offer 

considerable promise in terms of predicting the system’s behaviour. 
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On the other hand, Gligorijevic and Przulj classified the methods for polyomics 

data integration into (1) early (or full), (2) intermediate (or partial) and (3) late 

(or decision) integration (Gligorijevic and Przulj, 2015). Early data integration 

combines the multiple omics datasets into a combined single dataset by 

transforming the datasets into a common representation, and then the data model 

is built on the combined single dataset. In this sense, early data integration is 

comparable with the model-based integration proposed by Cavill et al. 

Intermediate data integration combines the multiple omics datasets through 

inference of a joint model, and is similar to the statistical integration proposed 

by Cavill et al. Late data integration is akin to the conceptual integration proposed 

by Cavill et al, in which each omics dataset is analysed separately with the results 

being combined into a unified model. Likewise, Nardini et al classified the 

methods used for integrating polyomics datasets into experimental, network-

based and methodological categories (Nardini et al., 2015). 

Recently, Bersanelli et al focused on the mathematical aspects of integration and 

listed several libraries in R and Matlab programming languages in their review of 

methods for integrating polyomics data (Bersanelli et al., 2016). The review of 

modelling methods to study host-pathogen interaction by Mukherjee et al is worth 

mentioning here as most of these modelling approaches are applicable to the 

integrative analysis of polyomics data (Mukherjee et al., 2013). Figure 1.4 shows 

the methodological approaches (top-down abstract methods and bottom-up 

detailed methods) spanning multiple levels in the hierarchy of cellular 

organization in capturing the web of interactions among the various layers of 

omics. The bottom-up methods shown in the figure summarize the integration of 

polyomics data.   
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Figure 1.4: Approaches in modelling host-pathogen interactions. 
The figure shows the hierarchical levels of methodological approaches used in 
capturing the complex web of interactions in host-pathogen systems. The methods 
model the systems from a high granularity using polyomics data (bottom-up) to a 
low granularity abstraction (top-up). Reproduced from Mukherjee et al (Mukherjee 
et al., 2013) with permission from John Wiley and Sons. 

1.2.3.1 Network-based integration 

Network-based methods use graph theory and statistics to portray relationships 

between elements in the polyomics datasets. In this way, they offer an intuitive, 

versatile, and powerful approach to represent and analyse complex systems 

(Nardini et al., 2015). Networks (G) include nodes or vertices (V) that represent 

the system components such as genes, proteins, and metabolites, and edges (E) 

that represent interactions among them, and usually denoted as G = (V, E). 

Depending on the statistical measure used and the type of data they represent, 

network edges can be weighted or unweighted, and directed or undirected. The 
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connectivity pattern in a network is generally represented by an adjacency matrix 

(A). In an undirected and unweighted network G = (V, E), its adjacency matrix, A, 

is a square matrix of size |V| X |V|, where each row and column denotes a node 

and entries in the matrix are either Aij = 1, if nodes i and j are connected, or Aij = 

0, if they are not connected. If it is a weighted network, the adjacency matrix 

includes real numbers representing the strengths of associations between the 

nodes, instead of the binary 0 or 1 in the unweighted network (Gligorijevic and 

Przulj, 2015). 

Generally, network-based methods start with construction of a similarity matrix 

using a measure of similarity or relatedness between the elements in the omics 

datasets. Several measures can be used to determine the similarity between the 

pairs of elements, and each measure has its specific strengths and weaknesses. 

Usually, the Pearson product–moment correlation coefficient or Spearman’s rank 

correlation is used as a measure of similarity, and comparative studies have shown 

that these simple measures perform well compared to more sophisticated methods 

such as mutual information (MI) in terms of finding relationships and 

computational performance on very large omics datasets (Song et al., 2012, 

Ballouz et al., 2015, Serin et al., 2016). The most popular correlation measure 

used is Pearson correlation, even though it assumes normal distribution of 

transcript, protein or metabolite expression. In contrast, Spearman's rank 

correlation is more robust, but less powerful than Pearson correlation (Serin et 

al., 2016). Networks constructed using the Pearson correlation method have 

undirected edges, and causality cannot be inferred from the relationships. The 

Pearson correlation coefficient is a measure of the linear relation between two 

variables, and the coefficient value (r) ranges between -1 and 1, where r = −1 

indicates a perfectly negative linear relation, r = 1 indicates a perfectly positive 

relation, and r = 0 indicates the absence of any linear relation.  

An excellent example of the network-based integration of polyomics datasets is 

‘the integrated disease network’, which was constructed from different types of 

biological data including genomics, clinical, disease–metabolites associations, 

genome-wide associations, biological pathways, and Gene Ontology5 annotations 

                                         
5 http://www.geneontology.org/; The Gene Ontology (GO) is a framework that provides a set of 

hierarchical controlled vocabularies of defined terms representing gene product properties, and 
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data (Sun et al., 2014). A similar network-based integration approach was used to 

study the systemic impact of adverse therapeutic events in rheumatoid arthritis, 

and this study integrated polyomics datasets including genomics, transcriptomics, 

epigenetics and microbiome, and clinical datasets (Tieri et al., 2014). Gibbs et al 

used a slightly different networks-based approach to study polyomics datasets 

(Gibbs et al., 2014). Their approach involved mapping the polyomics data to a 

common identifier (Entrez ID), generating co-expression networks from individual 

omics datasets, identifying co-expression modules in them and comparing the co-

expression modules between the omics layers using multiple measures such as 

module member overlap and module summary correlation. However, mapping 

polyomics data to a common identifier is challenging, and may not be possible in 

some cases such as mapping metabolites to genes. 3Omics, a web-based tool to 

integrate transcriptomics, proteomics and metabolomics data also uses 

correlation-based networks to visualize relationships in the datasets (Kuo et al., 

2013). 

Another linear method related to multiple linear regression, but which has an 

interpretation that is similar to that of Pearson correlation coefficient is partial 

correlation (Lipsitz et al., 2001). Partial correlation can distinguish between direct 

and indirect relationships, and is useful when covariates are measured on different 

scales. Kayano et al used a partial correlation approach to construct metabolic 

networks from metabolome, proteome, and transcriptome data, and 

demonstrated that their partial correlation-based approach was superior to 

Pearson correlation-based approach (Kayano et al., 2013). 

Mutual information is a non-linear measure of dependency, and provides a natural 

generalization of the correlation (Song et al., 2012). However, MI did not perform 

better than Pearson correlation in comparative studies (Song et al., 2012). 

Nevertheless, MI is the basis used in the development of new improved 

information-theoretic methods such as relevance networks (Butte and Kohane, 

2000), the context likelihood of relatedness (CLR) algorithm (Faith et al., 2007), 

the minimum redundancy networks (MRNET) algorithm (Meyer et al., 2007) and 

Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE) 

                                         
includes 3 top level categories: (1) Biological process; (2) Molecular function; and (3) Cellular 
component 
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(Margolin et al., 2006). Of these, ARACNE is particularly notable for its 

effectiveness in the reconstruction of regulatory networks, and therefore remains 

a popular choice (Lachmann et al., 2016). The ARACNE method can distinguish 

between direct and indirect relationships, and this is achieved through pruning 

the lowest weight edge in a triplet. Regression methods can also be used to 

construct networks, and are very useful as directed graphs. 

Similarly, Bayesian methods are used in constructing omics networks, and they 

allow the inclusion of prior knowledge. A Bayesian network is a directed graph, 

where nodes represent random variables such as transcript or protein levels and 

directed edges represent the causal relationship and conditional probabilities 

between pairs of variables (Gligorijevic and Przulj, 2015). Bayesian networks are 

effective in representing the structure of the data and their sparsity provides a 

compact representation. These properties address one of the biggest challenge in 

integration of polyomics datasets, which is network inference from disparate data 

sources by constructing sparse networks where only the important associations are 

present (Gligorijevic and Przulj, 2015). Although application of Bayesian methods-

based networks is computationally challenging for large polyomics datasets (Serin 

et al., 2016), several studies have successfully used Bayesian networks in deriving 

knowledge from polyomics datasets. For example, Jansen et al used Bayesian 

networks to predict protein-protein interactions in yeast by integrating different 

types of omics data including transcriptomics and proteomics (Jansen et al., 

2003). Similarly, using Bayesian networks, Zhu et al reconstructed causal gene 

networks in yeast by integrating polyomics data including genomics, 

transcriptomics (gene expression and expression quantitative trait loci (eQTL)), 

proteomics, transcription factor binding site, and protein–protein interaction data 

(Zhu et al., 2008). Using a similar integrated Bayesian network approach, Zhang 

et al recently reconstructed causal regulatory networks in late-onset Alzheimer’s 

disease from 1,647 post-mortem human brain tissues (Zhang et al., 2013a). 

There are several tools available for network construction and analysis. Weighted 

correlation network analysis (WGCNA), a R package developed by Langfelder and 

Horvath is a popular tools for co-expression analysis (Langfelder and Horvath, 

2008). Similarly, GraphViz (Gansner and North, 2000) and Cytoscape (Shannon et 

al., 2003) are very popular for visualization and analysis of networks. In addition, 
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CFinder (Adamcsek et al., 2006), NAViGaTOR (Brown et al., 2009), Gephi 

(Cherven, 2015) and Pajek (Mrvar and Batagelj, 2016) are also notable for network 

visualization and analysis. NetworkAnalyst is a web-based tool for network analysis 

and visualization of omics datasets that provides many options to analyse omics 

datasets (Xia et al., 2015). Cytoscape is a Java-based open-source software for 

integrating and visualizing biological networks. In Cytoscape, biological entities 

such as proteins or genes are represented as nodes and their interactions are 

represented as edges connected between the nodes to construct networks. 

Attributes of nodes and edges can be overlaid in the Cytoscape networks depicting 

interactions. While the Cytoscape core provides basic visualization, annotation 

and query functionalities, available plug-ins provide several additional capabilities 

that enhance the utility of Cytoscape as an important systems biology tool. One 

of the plug-ins for Cytoscape, the Molecular Complex Detection (MCODE), finds 

highly connected regions in large networks that may represent molecular 

interactions (Bader and Hogue, 2003). The MCODE plug-in functions in three 

recursive stages: node weighting, cluster formation, and optional addition of 

nodes to the cluster using certain criteria. 

1.2.3.2 Dataset concatenation-based integration 

Dataset concatenation-based methods are conceptually simple methods for 

integrating polyomics datasets, and they use cluster analysis techniques such as 

self-organizing maps or principal component analysis (PCA) on a combined dataset 

(concatenated dataset) from polyomics studies (Cavill et al., 2016). For example, 

the MetaGeneAlyse web service takes in polyomics datasets such as 

transcriptomics and metabolomics data, combines them, and performs K-means 

clustering, PCA, and independent component analysis (ICA) after normalizing the 

combined dataset (Daub et al., 2003). Unsurprisingly, the dataset concatenation-

based methods suffer when the scales differ vastly between the polyomics 

datasets. Although the problem of difference in scale could be addressed by 

normalizing the combined dataset using scaling factors, there is a danger of 

introducing bias, particularly when combining multiple datasets with vastly 

different scales. Moreover, each individual omics data type such as RNA-seq-based 

transcriptomics and LC-MS-based metabolomics will have their own data structure 

and distributions. For example, metabolites in LC-MS-based metabolomics data 

are generally assumed to be in normal distribution (Vinaixa et al., 2012), whereas 
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gene-specific fragment counts obtained from RNA-seq data are best modelled with 

negative binomial distribution (Gierlinski et al., 2015). 

1.2.3.3 Multivariate-based integration 

In multivariate-based integration, individual omics data types are analysed using 

multivariate analysis methods, and then multiple omics datasets are associated 

by finding covariance associations between the elements of the datasets, or the 

multivariate model from one omics type is applied to other omics types to make 

predictions (Cavill et al., 2016). Several multivariate methods can be used for 

integration. For example, Forshed et al used partial least squares (PLS) and PCA 

in integrating LC-MS-based and NMR-based metabolomics datasets (Forshed et al., 

2007a). Although PCA is an unsupervised technique and PLS is a supervised 

technique, both are useful in identifying collinearity between the elements 

(genes, transcripts, proteins or metabolites) in polyomics datasets. Using PLS, 

Griffin et al integrated microarray-based transcriptomic data and NMR-based 

metabolomic data generated from liver tissues of rats induced to show fatty liver 

by feeding orotic acid (Griffin et al., 2004). They associated the changes in 

transcripts with changes in metabolites by modelling the transcriptomic data (Y) 

as the function of metabolomics data (X) using PLS regression. The PLS-based 

integration of microarray and NMR data helped them to define transcriptomic and 

metabolomic regulatory responses in liver due to orotic acid, and to identify the 

specific pathways and cellular responses in pathogenesis of fatty liver. The PLS 

method is asymmetric, and hence, does not represent the true biological 

relationships (Bouhaddani et al., 2016). In the PLS method, when the response 

variable is a discrete rather than continuous variable, then it is commonly referred 

to as partial least squares discriminant analysis (PLS-DA). 

To overcome the asymmetric nature of PLS, a two-way orthogonal partial least 

squares (O2PLS) model was used by Rantalainen et al to integrate NMR-based 

metabolomics and 2D-DIGE-based proteomics data generated from human 

prostate cancer xenograft in mice (Rantalainen et al., 2006). In this study, 

orthogonal projections to latent structures (OPLS), a supervised multivariate 

projection method similar to PLS but modified with an integrated orthogonal 

signal correction filter (OSC), was also used to integrate proteomics and 

metabolomics data. Although OPLS is also asymmetric in nature, it attempts to 
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correct for systematic variations in the design matrix before presenting the data 

to PLS, which allows easier interpretation of the model (Bouhaddani et al., 2016). 

On the other hand, being symmetric, the O2PLS models both symmetric and 

predictive variations. The O2PLS model decomposes the variation present in two 

matrices X and Y, for example two omics datasets such as proteomics and 

metabolomics datasets, into three parts: (1) the joint part wherein the underlying 

latent variables in both matrices X and Y are assumed to provide the relationship 

between X and Y, and hence this joint part could be taken as a representation of 

the integration of the two datasets X and Y; (2) the orthogonal part wherein the 

underlying latent variables, independent from those in the joint part, are assumed 

to be responsible for the unique systematic variation in X (Y), which does not 

contribute to the prediction of Y (X); (3) the noise, which captures the 

unsystematic variation in the datasets (Bouhaddani et al., 2016). From the joint 

part, it is possible to obtain the percentage of variance of each omics data set (X 

and Y) that can be modelled by the other data set, and this gives a measure of 

similarity between the two datasets. Recently, Bouhaddani et al conducted a 

simulation study to assess the performance of O2PLS models in integrating 

transcriptomic and metabolomic data, and the results showed that the estimates 

obtained from the O2PLS model were close to true parameters in both low and 

high dimensions (Bouhaddani et al., 2016). However, when there was increased 

noise (> 50%) in the datasets, there was no clear distinction between the 

orthogonal and joint parts, suggesting lack of robustness in this method. 

Boccard and Rutledge recently introduced a consensus OPLS-DA multiblock data 

modelling strategy that combines the kernel implementation of the OPLS method 

with a data fusion procedure for simultaneous evaluation of multiple data blocks 

in the OPLS-DA modelling framework (Boccard and Rutledge, 2013). This consensus 

OPLS-DA multiblock data modelling strategy can integrate more than two omics 

types, and hence is an improvement over the O2PLS method. However, the 

consensus OPLS-DA multiblock data modelling strategy regresses all the data 

against a class variable without providing information about the interrelated 

features between the datasets. To extend the O2PLS method to analyse more than 

two polyomics datasets, a new method called OnPLS was developed by Lofstedt 

and Trygg, and was used to study oxidative stress response in Populus plants by 
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integrating transcriptomic, proteomic and metabolomic data (Löfstedt and Trygg, 

2011, Löfstedt et al., 2013, Srivastava et al., 2013). 

Many other multivariate methods have been used to integrate multiple omics 

datasets. These include sparse regression models such as random forest regression 

(Acharjee et al., 2016, Acharjee et al., 2011), multiple co-inertia analysis (MCIA) 

(Meng et al., 2014), parallel factor analysis (PARAFAC) (Forshed et al., 2007b), 

canonical correlation analysis (CCA) (Jozefczuk et al., 2010), ComDim-OPLS 

(Boccard and Rutledge, 2014), least absolute shrinkage and selection operator 

(LASSO) (Cai et al., 2013, Omranian et al., 2016) and kernel-based methods such 

as support vector machine recursive feature elimination (SVM-RFE) (Smolinska et 

al., 2012). Recently, Pineda et al used LASSO and Elastic Net–based penalized 

regression methods to identify relationships between genetic variants, gene 

expression and DNA methylation data obtained from bladder tumour samples, and 

proposed a permutation-based method to correct for multiple testing (Pineda et 

al., 2015). 

1.2.3.4 Pathway-based integration 

Pathway-based integration methods use the existing biological knowledge related 

to biological entities such as genes, proteins and metabolites, and link the entities 

in the query set to derive over-representation and enrichment of pathways (Cavill 

et al., 2016). The query sets generally consist of lists of differentially expressed 

genes, transcripts, proteins and/or metabolites with their effect size (fold-

change) and statistical significance (P-value) derived from statistical analysis of 

polyomics datasets. Although most of the methods and tools providing integrative 

pathway analysis use an over-representation-based analysis or an enrichment 

analysis, results obtained from different tools might vary significantly due to the 

nature of the statistical tests (e.g., Fisher's combined probability test or Wilcoxon 

statistics) implemented in the tools, the cut-off thresholds used, and the 

composition of background lists used in the statistical analysis. The composition 

of background lists for transcriptomics or proteomics data is mostly defined by the 

number of transcripts or proteins present in the reference transcriptome or 

proteome respectively. However, as we don’t have a reference metabolome yet, 

the background list for metabolomics data might differ significantly between the 

tools according to their own implementation. In addition, the background for 
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metabolomics would also be affected by the number of unidentifiable peaks in the 

mass spectrometry data. Furthermore, the analytical method (e.g., LC-MS or NMR) 

used in the metabolomics or proteomics analysis might also affect the results of 

pathway-based integration as a particular analytical method (e.g., a particular 

type of chromatographic column) might favour identification of a certain class of 

(e.g., hydrophilic or hydrophobic) metabolites or proteins. This is further 

complicated by the storage conditions and the stability of the metabolites and 

proteins. 

Existing biological knowledge on pathways is readily available in pathway 

databases. Currently, there are several databases, tools and methods available 

for integrative analysis and interpretation of polyomics datasets. The Kyoto 

Encyclopedia of Genes and Genomes (KEGG) is a widely used integrated database 

for biological interpretation of polyomics data (Kanehisa et al., 2017, Kanehisa et 

al., 2016). It links molecular functions of genes, proteins and metabolites, and 

represents them as networks of molecular interactions, reactions and relations to 

produce pathway maps. It is continuously updated and also links the molecular 

entities with diseases and drugs. Reactome is a manually curated open-source 

pathway database providing a structured network of signal transduction, 

metabolism and other cellular processes (Croft et al., 2014, Fabregat et al., 2017). 

BioCyc database is a collection of pathway and genome databases (PGDBs) and 

software tools to interpret omics data (Caspi et al., 2016). BioCyc includes 

MetaCyc, a database of metabolites, enzymes and metabolic pathways manually 

curated from the literature. BioCyc also includes HumanCyc, which is a database 

exclusively for human metabolites and metabolic pathways. Similarly, the Small 

Molecule Pathway Database (SMPDB) is also a database of human metabolites and 

pathways as described in section 1.1.4. MetaBaseTM is a manually curated 

proprietary database, which includes gene expression, SNV, CNV, metabolic, 

proteomic, microRNA, and screening data (Reuters, 2017). MetaBaseTM should not 

be confused with a different database of the same name - MetaBase, which is a 

community-curated knowledge base of all the biological databases available on 

the internet (Bolser et al., 2012). In addition, Pathguide, a web resource, 

catalogues the publicly available pathway databases, which currently includes 

about 547 databases (Cary and Pavlovic, 2017). Apart from manually curated 

databases (for example KEGG and Reactome) where the entries are derived from 
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experimental evidence available in the literature, there are also databases 

containing interactions between biological entities that were predicted using 

computational tools. For example, STITCH is a database of metabolites and 

proteins, and includes both curated and predicted interactions (Szklarczyk et al., 

2016). 

Pathway-based integration methods generally use an enrichment analysis, and 

there are several tools available to support this. Integrated Molecular Pathway 

Level Analysis (IMPaLA) is a web-based tool that performs over-representation 

analysis or Wilcoxon pathway enrichment analysis and combines P-values from 

multiple tests of the same hypothesis using Fisher’s method (Kamburov et al., 

2011). IMPaLA takes two lists, namely expression of metabolites and either gene 

expression or protein expression, and performs pathway enrichment using 

multiple databases including KEGG, BioCyc and SMPDB. Similar to IMPaLA, the 

Marker Visualization (MarVis-Suite) toolset provides interactive ranking, 

combination, filtering, self-organizing map-based clustering, pathway analysis and 

visualization of both transcriptomics (microarray or RNA sequencing) and mass 

spectrometry-based metabolomics data (Kaever et al., 2015). Similarly, 

Integrated Analysis of Cross-platform Microarray and Pathway Data (InCroMAP) is 

a standalone Java software that can perform integrated enrichment analysis and 

pathway-based visualization of genomics, transcriptomics, proteomics and 

metabolomics data (Eichner et al., 2014). PaintOmics, a web-based tool, maps 

omics data from multiple technologies and platforms onto the KEGG pathways, 

and provides an integrative visualization of polyomics datasets (Garcia-Alcalde et 

al., 2011). On the other hand, the Integrative Meta-analysis of Expression Data 

(INMEX) web-based tool allows annotation and visualization of individual omics 

datasets, integrates multiple omics datasets based on P-values, effect sizes and 

rank orders, and provides visualization based on KEGG pathway enrichment (Xia 

et al., 2013). Furthermore, there exists proprietary software such as Ingenuity 

Pathway Analysis (IPA) (Kramer et al., 2014) and MetaCore (Schuierer et al., 2010) 

providing integrative pathway analysis of SNV, mRNA, miRNA, proteomics and 

metabolomics data. Recently, Del Boccio et al used IPA and Progenesis QI, another 

proprietary software, to identify biomarkers in multiple sclerosis using an 

integrative analysis of metabolomics and proteomics data (Del Boccio et al., 

2016). 
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1.2.3.5 Model-based integration 

Model-based integration refers to the application of computational models 

generated from prior knowledge or from the datasets studied in the experiment 

(Cavill et al., 2016). It includes the use of ordinary differential equations (ODEs), 

Boolean network modelling and constraint-based modelling (CBM). Mathematical 

equations have been used in the study of metabolism for over 100 years (Cornish-

Bowden, 2015). In 1913, Michaelis and Menten published their famous Michaelis–

Menten equation, which predicted the rate of an enzyme-catalysed reaction from 

the concentration of the enzyme–substrate complex (Michaelis et al., 2011). 

Developments in the field allowed estimation of kinetic parameters for a large 

number of enzymes so that it became possible to develop a metabolic model of a 

living cell (Othmer, 1976). Later, metabolic flux analysis (MFA) was developed to 

study the steady state metabolic fluxes inside the cell (Aiba and Matsuoka, 1979). 

MFA requires quantification of the metabolites involved in a reaction, and their 

rates of conversion known as exchange fluxes. Once the set of possible enzymatic 

conversions is known, then the internal fluxes can be fitted from the exchange 

fluxes by linear regression. Improvements in targeted metabolomic analysis, 

particularly in the isotope labelled assays, helped to measure a large number of 

enzyme kinetics and exchange fluxes. Further improvements in our ability to 

reconstruct genome-scale metabolic networks that contain complete information 

about all the metabolites and metabolic reactions in a cell led to the development 

of constraint-based models. Constraint-based modelling (Bordbar et al., 2014) is 

almost synonymous with flux balance analysis (FBA) (Orth et al., 2010). However, 

FBA is a narrow term applicable only to metabolic analysis, whereas CBM can be 

applied to study signalling and transcriptional regulation.  

Recently, Bordbar et al provided an excellent review of CBM including its historical 

perspective together with a comparison of a set of modelling and analysis methods 

for high-throughput data (Bordbar et al., 2014). In addition, the review by Lewis 

et al details the computational methods used in various constraint-based 

modelling methodologies (Lewis et al., 2012). An update on the latest methods 

used in CBM including the constraint-based reconstruction and analysis (COBRA) 

method is provided by King et al (King et al., 2015). 



66 
 
CBM involves constructing genome-scale metabolic and other biochemical reaction 

networks, converting them into a consistent mathematical format, known as a 

stoichiometric matrix that contains stoichiometric coefficients of each metabolite 

in each reaction, and then imposing constraints on the flow of metabolites through 

the network to study the solution space (Bordbar et al., 2014). In a constraint-

based model, constraints are characterized in two ways: equations and 

inequalities. While equations balance reaction inputs and outputs, inequalities 

impose bounds on the system. CBM is in practice an onerous task requiring precise 

estimation of multiple parameters, and hence was initially applied to single cell 

organisms such as bacteria (Gianchandani et al., 2009, Thiele et al., 2009). More 

recently, however, it has also been used in the study of multicellular organisms, 

tissues and whole-body systems (Bordbar et al., 2010, Lewis et al., 2010, Bordbar 

et al., 2011). Blazier and Papin have recently reviewed the application of CBM-

based approaches to integrate transcriptomics and metabolomics data (Blazier 

and Papin, 2012). This review compares five CBM-based algorithms, namely 

GIMME, iMAT, MADE, E-Flux and PROM, in terms of their use in integrating 

expression data with metabolomics data. In addition, Yizhak et al developed the 

integrative omics-metabolic analysis (IOMA) method, which is based on CBM to 

integrate proteomic and metabolomic data (Yizhak et al., 2010). The IOMA method 

was developed as a quadratic programming (QP) problem to find a steady-state 

flux distribution. 

Although CBM-based modelling approaches have been very useful in understanding 

biological systems in their steady states, no single computational method is 

sufficient to explain the complex nature of the biological system. This limitation 

can be addressed by using multiple computational models in an agent-based 

modelling (ABM) framework. Agent-based modelling is a rule-based, object-

oriented, discrete-event, computational modelling method that represents a 

system with multiple autonomous components, each interacting to exhibit the 

system’s emerging properties (An et al., 2013). Although ABM might be the ideal 

method to integrate polyomics data, its application is limited by the non-

availability of complete sets of data related to molecular interactions. Recently, 

Shi et al used an agent-based model to study the dynamic hepatic inflammatory 

response to Salmonella in a mouse (Shi et al., 2016). This study used 226 

experimental datasets to develop an integrated-mathematical-multi-agent-based 
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model (IMMABM) to simulate dynamic hepatic inflammatory response elicited 

against Salmonella infection, and demonstrated that sepsis, a serious condition 

sequel to the progression of systemic inflammation, was correlated to the initial 

Salmonella dose. This study used NetLogo software (Wilensky, 1999) to perform 

the IMMABM analysis. Other popular software platforms used for ABM include 

AnyLogic (Borshchev, 2013), MASON (Luke, 2005), Repast (North et al., 2007) and 

FLAME (Richmond et al., 2010). A recent survey compared the software platforms 

available for ABM (Kravari and Bassiliades, 2015). 

1.2.3.6 Other methods used for integration 

In a recent development, the MathIOmica package has been released as part of 

the Mathematica computational framework to provide support for analysing and 

interpreting polyomics data across multiple omics platforms including 

transcriptomics, proteomics and metabolomics platforms (Mias et al., 2016). This 

package looks very promising as it provides functionality for normalization, cluster 

analysis, classification, biological annotation, pathway analysis and visualisation 

of polyomics datasets. Similarly, computational platforms such as tranSMART 

provide support for organizing polyomics data including clinical data in a large 

database and for performing exploratory analysis (Canuel et al., 2015, Satagopam 

et al., 2016). 

1.2.3.7 Outlook for omics data integration 

In spite of the multitude of methods currently available for omics data integration, 

there is no gold standard method available yet for integrating large heterogeneous 

omics datasets, and no single method may suffice in varied circumstances. Given 

the importance of omics integration and the complexities involved in it, there are 

a number of research groups trying to find solutions to this challenge. The recently 

completed European Union funded project, STATegra (CORDIS, 2017c) resulted in 

generation of benchmark datasets, and a number of software solutions including 

the STATegra R package (STATegra Consortia, 2017b) and a plug-in for CLC 

Genomics Workbench proprietary software (STATegra Consortia, 2017a). Likewise, 

mixOmics, an ongoing international collaboration has recently released a R 

package for omics data integration (Rohart et al., 2017). Similarly, MetaOmics R 

package was developed for multi-omics analysis of cancer datasets (Wang et al., 
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2012), and was used in the integrative analysis of breast cancer data (Ma et al., 

2016). MIMOmics, an ongoing European Union funded project has an aim to 

produce methods for integrating large omics datasets (CORDIS, 2017a). Another 

international project led by the Huber lab at the European Molecular Biology 

Laboratory (EMBL) is ‘Statistical multi-Omics UNDerstanding of Patient Samples’ 

(SOUND), and its aim is to develop methods for multi-omics integration for 

application in personalized medicine (CORDIS, 2017b, EMBL, 2017). The ongoing 

developments in analysis methodologies and knowledge base will improve our 

ability to generate better models from polyomics datasets. 

1.3 Bovine mastitis 

Mastitis6 is the inflammation of the udder or mammary gland. Mastitis often 

develops as a sequel to invasion by micro-organisms, most commonly by bacteria, 

although other physical or chemical causes such as trauma or harmful 

toxins/chemicals can also lead to mastitis (Reyher and Dohoo, 2011). 

Nevertheless, the majority of mastitis cases are caused by a relatively small group 

of bacteria, including Streptococcus uberis, Escherichia coli, Staphylococcus 

aureus, and Mycoplasma spp. (Zadoks et al., 2011). The severity of inflammation 

and the treatment options depend on the causative organisms and the host 

responses (Bannerman et al., 2004, Barkema et al., 2006, Petzl et al., 2008). 

Depending on the pathogens and host responses, mastitis can manifest in clinical 

(CM) or sub-clinical (SCM) form, and present an acute or chronic course. CM is 

characterized by change in the colour of milk that ranges from pale white to dark 

red, change in the consistency of milk that ranges from watery milk to clotted 

milk with flakes, clots or pus, swelling and pain in the affected udder quarter, 

systemic symptoms like fever and anorexia, and occasionally death due to 

toxaemia (Royster and Wagner, 2015, Gomes and Henriques, 2016). SCM is 

characterized by the presence of markers of inflammation such as elevated 

somatic cell counts, changes in conductivity or expression of acute phase proteins, 

but without visible symptoms. Clinical cases can be mild, moderate, or severe, 

depending on the presence or absence of local and systemic signs (Royster and 

Wagner, 2015). Both CM and SCM are common in the periparturient period, which 

                                         
6 Mastitis is a condition that affects multiple species.  Given the focus of this thesis on bovine mastitis, 

the author may in context use the phrase ‘mastitis’ to denote ‘bovine mastitis’ in particular. 
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is defined in the case of bovine mastitis as 3 weeks before to 3 weeks after calving 

(Eckel and Ametaj, 2016). 

Bovine mastitis is one of the most costly and prevalent diseases in the dairy 

industry (Hillerton and Berry, 2005, Halasa et al., 2007, Hettinga et al., 2008b, 

Akers and Nickerson, 2011). Losses attributed to mastitis include (1) failure costs 

such as costs related to expenses due to cessation or reduction of milk production 

(accounting for up to two-thirds of total losses (Akers and Nickerson, 2011)), costs 

of treatment, culling, extra labour, wasted time and discarded milk as well as 

veterinary charges; and (2) preventive costs such as labour costs and costs related 

to consumables and investments (van Soest et al., 2016). It is often difficult to 

estimate the total costs of mastitis due to the myriad of factors that can 

contribute to losses during mastitis episodes (Halasa et al., 2007, Heikkila et al., 

2012). Nevertheless, an estimation of direct economic loss due to bovine mastitis 

in Great Britain was between £57 million and £185 million per year at 1996 values 

(Bennett et al., 1999). Similarly, an estimate of the costs of mastitis in dairy farms 

in the Netherlands showed the average total costs of mastitis to be €240 per 

lactating cow per year, and the failure costs and the preventive costs contributed 

equally (each €120 per lactating cow per year) to the total costs (van Soest et al., 

2016). Moreover, drug residues in milk, as a result of treatment, (1) adversely 

impact on the processing (yoghurt or cheese making) properties of milk, (2) pose 

the danger of inducing antibiotic resistance in pathogens and selecting antibiotic 

resistant strains of pathogens and (3) can constitute other public health hazards 

such as risk of allergies when milk and other dairy products with drug residues are 

consumed by humans (Food and Drug Administration, 2015, Beyene, 2015, Rama 

et al., 2017). 

1.3.1 Aetiology 

Many micro-organisms including bacteria, fungi, algae and viruses are capable of 

invading the mammary gland leading to mastitis (Nicholas, 2011, Tomasinsig et 

al., 2012, Wellenberg et al., 2002, Green and Bradley, 2013, Pachauri et al., 2013, 

Reyher et al., 2012a, Reyher et al., 2012b, Schukken et al., 2012, Zadoks and 

Fitzpatrick, 2009).  Although, more than 200 different pathogens have been 

reported to be able to cause mastitis in the bovine species (Zadoks et al., 2011), 

bacteria are the most prevalent cause of mastitis. 
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Pathogens causing mastitis can be generally classified as environmental or 

contagious pathogens from an epidemiological viewpoint. Among the former, 

Escherichia coli usually causes severe clinical mastitis that elicits massive 

increases in inflammatory indices, usually resulting in disease which may either 

be rapidly eliminated or may become systemic and consequently fatal (Baeker et 

al., 2002, Pyorala et al., 2011). The environmental pathogens are present in the 

cow’s environment such as bedding and transmitted to the teat by direct contact. 

On the other hand, contagious pathogens are generally considered host adapted 

to cause mastitis, and are transmitted from one cow, udder or quarter to the other 

in a herd, and include Staphylococcus aureus, Streptococcus dysgalactiae, 

Streptococcus agalactiae and Streptococcus uberis amongst others, whereby the 

potential for contagious transmission may differ between strains within the 

bacterial species. Subclinical or chronic forms of mastitis are usually associated 

with contagious pathogens, because these organisms are adapted to survive for 

long periods in the mammary gland, providing the window of opportunity for 

contagious transmission. 

Apart from the epidemiological classification, the pathogens causing bovine 

mastitis can be classified as major pathogens or minor pathogens based on their 

virulence and the severity of damage they cause to the udder. The major 

pathogens include Streptococcus agalactiae, Streptococcus dysgalactiae, 

Streptococcus uberis, Staphylococcus aureus, Escherichia coli, Klebsiella 

pneumoniae and Mycoplasma bovis, and are more virulent and their infection 

severely impacts on the milk quality and quantity. The minor pathogens, which 

are less damaging to the udder and generally cause sub-clinical mastitis, include 

coagulase-negative Staphylococcus spp. such as Staphylococcus hyicus, 

Staphylococcus chromogenes and Staphylococcus xylosus and Corynebacterium 

bovis. 

1.3.2 Pathogenesis 

Irrespective of whether the origin is from an environmental source or from a 

contagious source, infection of the mammary gland usually occurs via the teat 

canal. Upon transmission to the outer edge/skin of the teat, the pathogens invade 

to the milk inside the teat cystern and multiply. Depending on the nature and 

ability of the pathogen, they may further invade the mammary tissue. Once the 
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pathogens penetrate the physical barrier of the teat canal, the host innate 

immune system detects the pathogens through the pattern-recognition receptors 

(PRRs), particularly via the toll-like receptors (TLRs) (Ezzat Alnakip et al., 2014). 

Binding of microbial components with TLRs activates the TLR signalling pathway 

that mediates several intracellular signal transduction cascades triggering the 

production of pro-inflammatory chemokines such as interleukin-8 (IL-8) and 

cytokines like Tumour Necrosis Factor-Alpha (TNF-α) leading to inflammation and 

eventually elimination of the pathogens by leukocytes (Akira et al., 2006, Eckel 

and Ametaj, 2016). Migration of immune cells, particularly neutrophils, and 

desquamation of mammary epithelium accompanied with reduced milk production 

result in a several-fold increase in somatic cell counts (SCC) per unit volume of 

milk.  Bovine neutrophils migrate to the mammary epithelium by diapedesis, and 

they constitute more than 90% of the total leukocytes in mammary gland during 

inflammation. At the site of infection, the neutrophils engulf, phagocytose and 

destroy the invading pathogens via an oxygen-dependent respiratory burst system 

producing hydroxyl and oxygen radicals, and an oxygen-independent system using 

peroxidases, lysozymes, hydrolytic enzymes and lactoferrin (Ezzat Alnakip et al., 

2014). However, this mechanism only works well for Escherichia coli. 

Staphylococcus aureus survives inside the phagolysosome and Streptococcus uberis 

inactivates neutrophils so that they don’t even engulf the bacteria. If the 

pathogens are eliminated rapidly resulting in the removal of the inflammatory 

stimuli, the neutrophil recruitment ceases and the SCC return to normal levels. 

However, if the pathogens survive the immediate host defence response, then the 

infection and inflammation continue to spread to the adjacent mammary tissues. 

Following pathogen invasion and establishment in the gland, either of the two 

major forms of mastitis may result, namely CM or SCM. CM occurs showing the 

signs of inflammation, as well as physical and chemical changes in milk such as 

presence of flakes, clots or blood, increased proteolysis of milk caseins, increase 

in sodium and chloride ions, a decrease in lactose and release of intracellular 

enzymes into milk. SCM occurs with no noticeable physical signs of inflammation, 

but is commonly indicated by an increase in SCC in milk produced from affected 

quarters due to the migration of leukocytes from blood into milk. Either of these 

two forms of mastitis may occur as a peracute, acute or chronic infection. CM is 

usually peracute or acute in duration while SCM is often chronic. Both CM and SCM 
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are usually characterized by high SCC and reduction in milk production, and can 

persist for long periods from lactation to lactation. All forms of mastitis have a 

negative impact on the quality and quantity of milk produced from affected 

animals; however, SCM might be more costly overall than CM (Zhao and Lacasse, 

2008). 

1.3.3 Impact of selection and breeding on mastitis (animal 
health) 

The average milk production per cow in the UK (Figure 1.5) was continuously 

growing between 1995 and 2005, but since then, the growth has been subdued 

and inconsistent (AHDB, 2017). In 2016- 2017, the average milk yield per cow in 

the UK was 7,557 litres per year (AHDB, 2017). Selective breeding for milk 

production traits is one of the factors for the growth of milk yield. In the past 

several decades, the main emphasis of selection was on milk production and milk 

fat yield only, and the health and welfare of the cows were not included in the 

selection indices of many countries (Leitch, 1994). However, this absolute focus 

on the milk production alone resulted in increased incidences of infertility and 

metabolic diseases, and compromised udder health and animal welfare (Egger-

Danner et al., 2015). A review of 14 genetic studies on the relationship between 

milk production and cow’s health showed that there were higher incidences of 

mastitis in the following lactation period after a high milk yield in the preceding 

lactation period (Ingvartsen et al., 2003). 
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Figure 1.5: Average milk yield per cow in the UK 
This plot shows the trend in growth of annual milk yield per cow between 1995-
1996 and 2016-17. Published data from the Agriculture & Horticulture 
Development Board (AHDB, 2017). 

To improve the welfare of the cows, important non-lactational traits such as 

health have been incorporated in the selection indices. A comparison of selection 

indices of Holstein dairy cattle in 15 countries was carried out by Miglior et al. 

(2005), and it showed the average relative emphasis on production, durability and 

health and reproduction components was 59.5%, 28% and 12.5% respectively 

(Miglior et al., 2005). Of the 15 countries, Denmark had the most balanced 

breeding index having emphases of 34%, 29% and 37% on production, durability 

and health and reproduction respectively. On the other extreme was Israel, which 

placed 80% emphasis on production and 20% on health and reproduction. The trend 

of shifting selection goals to include emphasis on non-lactational traits such as 

health and welfare of cows suggests consumer and producer interest in wholesome 

food production from well looked after cows. 

Breeding strategies to reduce mastitis incidence include approaches such as direct 

selection and indirect selection. Many countries indirectly select for mastitis 
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resistance using somatic cell score while the Nordic countries have been directly 

selecting for mastitis resistance for over 30 years (Østerås et al., 2007). The recent 

developments in genomics-based selection approaches have enabled the 

incorporation of several health and welfare traits including resistance to mastitis 

in breeding objectives more attainable. 

1.3.4 Omic investigations of mastitis 

The major advances made over recent decades in omics approaches, as reviewed 

under section 1.1, have been applied to research in bovine mastitis providing a 

significant boost to our understanding.  Thus, genomic, proteomic, and to a lesser 

extent, metabolomics and microbiome investigations have provided in-depth 

insights into the molecular interactions of host and pathogen in bovine mastitis. 

1.3.4.1 Genomic investigations of mastitis 

Investigation of the genomics of mastitis was greatly enhanced by the first draft 

of the Bos taurus genome sequence completed in October 2004 (NIH, 2004, 

EnsEMBL, 2009). In 2009, the Year of the Ox, a new assembly (UMD2) of the Bos 

taurus genome (Zimin et al., 2009) was released, and reports published of an 

improved assembly and annotations of the Bos taurus Btau 4.0 genome by the 

Bovine Genome Sequencing and Analysis Consortium (BGSAC) and the Bovine 

HapMap Consortium (Tellam et al., 2009, Liu et al., 2009, Zimin et al., 2009, Reese 

et al., 2010). As of February 2017, there are two assemblies of Bos taurus genome 

available, namely (1) the Bos taurus genome ‘reference’ assembly - the University 

of Maryland assembly release 3.1.1 (UMD3.1.1); and (2) the Bos taurus genome 

‘alternate’ assembly - the Baylor College of Medicine Human Genome Sequencing 

Center assembly version Btau_5.0.1. In addition, the genome sequence of Bos 

indicus (Nellore bull, from Brazil) is also available (Canavez et al., 2012). 

Availability of the reference sequence, improvements in sequencing technologies 

and reduction in the cost of sequencing have all enhanced the pace of application 

of genomics in mastitis research. 

Even before the recent major advances in high-throughput genomic technology, 

Rupp and Boichard argued that although host genetic variability for resistance to 

mastitis had a low heritability, it was as an important factor underlying mastitis 
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resistance even in the presence of other confounding factors such as infections 

(Rupp and Boichard, 2003). The genetics of immune response in mastitis and its 

role in disease resistance has subsequently been the topic of review (Rainard and 

Riollet, 2006, Thompson-Crispi et al., 2014). Of particular interest was the 

association of chemokine CXCR1 gene polymorphism CXCR1 +735 (previously 

reported as CXCR2 +777, but later revised to CXCR1 +735 in the improved gene 

annotations) with subclinical mastitis in Holsteins (Youngerman et al., 2004, 

Galvao et al., 2011). The CXCR1 gene codes for the IL-8 receptor, which is present 

on the surface of the neutrophil and mediates migration of neutrophils to sites of 

inflammation, and is hence regarded as a potential candidate for modifying 

mastitis susceptibility. There are tens of SNPs in this gene (Pighetti et al., 2012, 

Zhou et al., 2013), and CXCR1c.−1768T>A (rs41255711) was reported to be 

associated with mastitis resistance due to its location in the transcription binding 

site of the gene (Leyva-Baca et al., 2008).  However, there are contradictory 

reports from subsequent association studies between the CXCR1 gene 

polymorphisms and susceptibility to mastitis. For instance, no statistical 

significance between two of the CXCR1 gene polymorphisms and somatic cell score 

was found in the German Holstein-Friesian population, although a large variance 

was caused by the loci (Goertz et al., 2009). By contrast, a recent study in Polish 

Holsteins found statistically significant associations between CXCR1 +472 SNP and 

test day SCC (Pawlik et al., 2015), even though this study was underpowered to 

observe associations with S. aureus mastitis. 

TLRs play an important role in detecting invading pathogens and the induction of 

host defence responses (Takeda and Akira, 2005, Mogensen, 2009). There is 

considerable evidence, at both transcript and protein levels, of increased 

expression of TLR2 and TLR4 in the udder during mastitis with gram-positive and 

gram-negative bacteria respectively (Goldammer et al., 2004, Reinhardt and 

Lippolis, 2006, Eckel and Ametaj, 2016). Using single gene PCR amplification and 

sequencing method, Russell et al identified associations between the SNPs in the 

bovine TLR1 gene and the occurrences of clinical mastitis in a British Holstein-

Friesian herd (Russell et al., 2012), although a previous study did not detect 

significant association between clinical mastitis and SNPs in TLR2 or TLR4 genes 

(Opsal et al., 2008).  
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With the improved Bos taurus genome assembly and the developments in genomics 

technologies, genome-wide association studies (GWAS) for mastitis susceptibility 

in cows have become possible, and a number of SNPs associated with mastitis or 

somatic cell score (SCS) have been reported (Wang et al., 2015, Sharma et al., 

2015, Abdel-Shafy et al., 2014, Waldmann et al., 2013, Meredith et al., 2013, 

Tiezzi et al., 2015, Sahana et al., 2014, Ibeagha-Awemu et al., 2016). The Cattle 

Quantitative Trait Locus Database (Cattle QTLdb), which archives the curated 

data from published associations and Quantitative Trait Loci (QTLs) currently has 

81,652 QTLs representing 519 different traits including 163 QTLs for clinical 

mastitis, 1,070 QTLs for SCS and 77 QTLs for SCC (Hu et al., 2016, NAGRP, 2016). 

Meredith et al conducted a GWAS for many production traits including SCC on two 

large cohorts of Holstein-Friesian cattle in Ireland and detected significant 

association of 9 SNPs with SCS in the sires using a single SNP regression method 

(Meredith et al., 2012). Similarly, Wijga et al performed a GWAS using phenotypic 

and genotypic data of 1,484 first-lactation Holstein cows from four European 

research herds (from different countries - Ireland, the Netherlands, Scotland and 

Sweden) and identified associations of 2 loci (SNPs ARS-BFGL-NGS-101491 and BTB-

02087354) with changes in the test-day SCC (Wijga et al., 2012). Recently, 

Ibeagha-Awemu et al used genotyping-by-sequencing method on an Illumina 

platform to identify SNPs in 1,246 Canadian Holstein cows, and performed GWAS 

for milk traits (Ibeagha-Awemu et al., 2016). This study identified associations of 

52 SNPs with SCC. The identified SNPs were in the genomic regions of 48 genes, 

and most of these genes have known immunity or inflammatory functions. 

In parallel with the host-centric genomics studies on mastitis, there have been 

many developments focusing on the pathogens involved in host-pathogen 

interactions. In the UK, Streptococcus uberis has emerged as the top pathogen 

responsible for CM and SCM, with a frequency of 23.5% for CM in the culture 

positive samples (Bradley et al., 2007, Zadoks and Fitzpatrick, 2009). Many 

different types of genomics-based approaches have been used to study the 

mechanisms that impart pathogenicity to S. uberis. For example, with the 

development of techniques to generate random mutations in S. uberis (Ward et 

al., 2001), the phenotypic and genotypic characteristics of a large number of 

randomly generated genome mutations in S. uberis could be studied (Leigh et al., 

2004). This was followed by the identification of gene sequence encoding for a 
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protein called 'adhesion molecule' (sua gene) in S. uberis, which was hypothesized 

to be a virulence factor in S. uberis pathogenesis (Luther et al., 2008). The sua 

gene was reported to be conserved in 12 strains of S. uberis (Luther et al., 2008). 

Later, sequencing and assembly of the whole genome of S. uberis (strain 0140J) 

and its detailed comparative genomics analysis showed niche adaptations in the 

S. uberis genome for utilizing nutritional flexibility derived from a diversity of 

metabolic options that would enable this pathogen to live in challenging and 

changing environmental conditions (Ward et al., 2009). Around the same time, a 

whole genome microarray study of S. uberis comparing the genetic variation 

between the isolated strains was published (Lang et al., 2009). With the 

availability of reference genome sequences and the advent of NGS technology, 

allelic profiles of many ovine and bovine isolates of S. uberis could be generated 

(Davies et al., 2016, Gilchrist et al., 2013). Comparisons of the allelic profiles of 

the host-specific populations identified distinct host specific allelic profiles 

including well-defined allelic profiles for virulence genes (Gilchrist et al., 2013). 

Similarly, comparisons of the allelic profiles of 494 isolates of S. uberis showed a 

small subset of sequence types causing the most infections in the study cohort 

(Davies et al., 2016). 

Recently, Tassi et al examined the pathogenicity of two S. uberis strains (host-

adapted FSL Z1–048 strain and non-adapted FSL Z1–124 strain) isolated from cows 

with mastitis in the same herd and during the same time period, and found that 

the non-adapted FSL Z1-124 was avirulent, whereas the host-adapted strain 

caused clinical mastitis (Tassi et al., 2013) in experimentally challenged cows. 

Concurring with this result, a recent study comparing four different strains of S. 

uberis has also shown strain-specific variation in pathogenicity (Notcovich et al., 

2016). In vitro study of the strain-dependent differences in virulence showed that 

the virulent strain had both increased adhesion to mammary epithelial cells and 

better abilities to evade killing by bovine monocyte derived macrophages (Tassi 

et al., 2015). As with S. uberis, other bacterial species causing bovine mastitis 

such as E. coli, S. aureus and S. epidermidis have also been studied using genomic 

approaches for subtyping, strain-specific pathogenicity and for identification of 

novel virulence genes (Blum et al., 2015, Boss et al., 2016, Kempf et al., 2016, Le 

Marechal et al., 2011, Lindsay, 2014, Savijoki et al., 2014, Goldstone et al., 2016). 
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1.3.4.2 Transcriptomic investigations of mastitis 

The transcriptome is dynamic, and it is sensitive to numerous physical, biological, 

environmental and temporal changes. Understanding transcriptomic changes can 

provide much valuable insight into the molecular mechanisms underlying 

biological processes. In addition to the quantitative reverse transcription 

polymerase chain reaction (qPCR) technology widely used in mastitis research for 

candidate gene expression studies, microarray and RNA-Seq technologies are 

currently used in global transcriptome profiling studies in mastitis. Using these 

technologies, differential gene expression studies have been undertaken to 

compare expression of genes in mammary epithelial cells and somatic cells during 

the course of experimental infections (Moyes et al., 2009, Younis et al., 2016, 

Moyes et al., 2016, Lawless et al., 2013, Wang et al., 2016b, Swanson et al., 2009). 

The immune response mounted against invading pathogens in mastitis is a complex 

process, and involves resident and recruited immune cells, mammary epithelial 

and endothelial cells. In both acute and chronic mastitis, there is a manyfold 

increase in the number of somatic cells in milk and changes in the composition of 

cell types that constitute the somatic cells in milk. The predominant cell type (66-

88%) present in the SCC of a healthy cow is macrophage; however, during 

intramammary infection (IMI), the proportion changes in favour of neutrophils, 

which would go as high as 90% of the total SCC during mastitis (Pyorala, 2003), 

and accordingly the transcriptome profile of somatic cells in milk changes during 

IMI. 

Overexpression of genes for TLRs, anti-microbial peptides, cytokines and acute 

phase proteins (APPs), particularly haptoglobin (Hp) and serum amyloid A 3 (SAA3) 

in mammary tissue during mastitis has been reported (Whelehan et al., 2011). The 

greatest up-regulation in mammary tissue at 48 hours after challenge was found 

to be for Hp and SAA3. The expression of host response genes in either teat cistern 

or mammary parenchyma over the first 3 hours after challenge has been examined 

with S. aureus and E. coli challenge (Petzl et al., 2016). The early responses were 

seen in teat cistern in the first hour and subsequently in mammary parenchyma, 

and transcripts encoding for chemokines, cytokines and anti-microbial molecules 

were over 25 times greater with E. coli than with S. aureus and a number of the 

immune mediators were only expressed in response to E. coli. Similarly, a previous 

study that compared transcript expression in somatic cells during IMIs with E. coli 
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or S. aureus showed increased expression of pro-inflammatory cytokines such as 

IL-6, IL-8, IL-12, granulocyte macrophage-colony stimulating factor (CSF2) and 

TNF-α during IMI with both bacterial species; however, the magnitude of gene 

expression was greater with E. coli (Lee et al., 2006). The differences in gene 

expression pattern between E. coli and S. aureus are also supported by a recent 

meta-analysis study (Younis et al., 2016), which showed S. aureus inducing innate 

immunity in mammary epithelia via Toll-like and NOD-like receptors, while 

suppressing acquired immune responses through suppression of cell motility and 

antigen presentation. Genes necessary for milk production including the genes 

encoding for lipid biosynthesis – Farnesyl-Diphosphate Farnesyltransferase 1 

(FDFT1) and 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT6) were down-

regulated during IMI with E. coli.  

Down-regulation of genes coding for lipid biosynthesis and metabolism such as 

Farnesyl diphosphate synthase (FDPS) and 3-Hydroxy-3-methylglutaryl-coenzyme 

A synthase 1 (HMGCS1) was also observed in mammary alveolar tissue 

experimentally infected with S. uberis (Swanson et al., 2009). In this study, one 

of the fore or hind udder quarters in each cow was infected with S. uberis while 

the non-infected quarter served as control. The same study showed up-regulation 

of genes linked to acute-phase response (APR) signalling e.g. SAA3, Hp and LPS-

binding protein (LBP), oxidative stress e.g. superoxide dismutase 2 (SOD2) and 

selenoprotein P (SEPP1), and immune response e.g. complement component 3 

(C3), IL-6, IL-8, IL-10, TLR-2 and TNF-α. The immune response to S. uberis 

challenge has also been studied with gene expression microarrays (de Greeff et 

al., 2013). This study showed upregulation of pathogen recognition genes ficolins, 

lipopolysaccharide binding protein, and toll-like receptor 2 during early 

inflammation. Inhibition of lipid biosynthesis and activation of APR signalling and 

immune response genes were further confirmed by a large study that compared 

gene expression profiles of mammary gland biopsies between non-infected and 

infected cows with S. uberis (Moyes et al., 2009). This study also showed 

enrichment of 20 canonical pathways including APR signalling, liver X receptor 

(LXR)/retinoid X receptor (RXR) activation, peroxisome proliferator-activated 

receptor (PPAR) activation, IL-10 signalling and IL-6 signalling pathways in the 

differentially expressed genes.  
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The pattern of expression of parenchymal genes for antimicrobial peptides, in 

response to coagulase-negative or -positive Staphylococci differs between the 

peptide class. The beta-defensins were up regulated in response to the bacteria 

but the cathelicidins, present in healthy tissue were not affected by the infection 

(Kosciuczuk et al., 2014). This confirms earlier reports that the cathelicidins were 

up-regulated in mastitis in neutrophils (the predominant mammary somatic cell 

type during mastitis) but not in the epithelium of the mammary gland (Tomasinsig 

et al., 2010). MicroRNAs (miRNAs) are post-transcriptional regulators of gene 

expression, and a NGS-based miRNA expression profiling in primary bovine 

mammary epithelial cells challenged with S. uberis 0140J showed 21 miRNAs were 

differentially expressed during infection with S. uberis suggesting regulatory role 

of miRNAs in IMI (Lawless et al., 2013). Similar NGS-based miRNA expression 

profiling in milk exosomes in S. aureus infection showed miRNAs bta-miR-142-5p 

and bta-miR-223 could potentially be used as biomarkers for early detection of S. 

aureus infections (Sun et al., 2015). 

1.3.4.3 Proteomic investigation of mastitis 

As the major function of milk is to provide protein for the nutrition of neonates, 

understanding the changes that occur to this important component of milk is 

fundamental to examination of the host response to mastitis. Recent advances in 

proteomics have allowed unprecedented depth of investigation into protein 

expression during disease conditions in farm animals (Almeida et al., 2015). To 

support proteomic investigations in respect of dairy cows, especially in designing 

selected reaction monitoring assays, Bovine PeptideAtlas, a database of bovine 

proteome from different tissues including milk, was created within the 

PeptideAtlas framework (Bislev et al., 2012a). Eckersall et al have emphasised the 

importance of proteomics in farm animal science (Eckersall et al., 2012), and the 

applications of proteomics technologies in bovine milk-related research have been 

reviewed (Roncada et al., 2012, Bendixen et al., 2011). One such application is 

biomarker identification to screen for mastitis, and this has received considerable 

interest (Viguier et al., 2009, Boehmer et al., 2010a, Lippolis and Reinhardt, 2010, 

Bendixen et al., 2011, Eckersall et al., 2012, Bassols et al., 2014, Mudaliar et al., 

2016). The biomarker identification studies have used samples from both field 

cases and experimental models, from mastitis caused by different pathogens, and 

from diverse clinical phases of mastitis. Apart from the identification of specific 
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protein biomarker candidates, identification of mastitis causing bacteria in milk 

using a Matrix-assisted Laser Desorption Ionisation – Mass Spectrometry (MALDI-

MS) method has also been reported (Barreiro et al., 2012). This method employs 

bacterial ribosomal proteins as fingerprinting markers to identify specific micro-

organisms from a dedicated MALDI biotype reference library. However, a high 

bacterial count is required for accuracy, and only a few species of bacteria have 

been evaluated in milk using this method. 

Milk proteins consist of insoluble caseins and soluble whey proteins. There are 

several types of caseins including α-caseins (α-CN), β-caseins (β-CN) and κ-caseins 

(κ-CN); all these constitute about 80% of the total milk proteins. Of the remaining 

20%, whey proteins constitute 16%, and are made up of β-lactoglobulin, α-

lactalbumin, immunoglobulins, bovine serum albumin, bovine lactoferrin, 

lactoperoxidase, cytokines and other low abundance proteins (Pepe et al., 2013); 

low molecular weight peptides (peptones) constitute 3%, and milk fat globule 

membrane (MFGM) proteins constitute 1%. Using proteomics approaches, many 

low abundance milk proteins have been recently identified, presenting a wide 

repertoire of functions and from which likely biomarkers of disease conditions of 

the mammary gland may be found. However, the presence of high abundance 

proteins in milk, such as caseins, impedes the proteomics identification and the 

quantification of low abundance proteins. In order to overcome the masking effect 

of the high abundance proteins in proteomics analysis of milk, protein 

fractionation is often carried out, including centrifugation, acidification, 

filtration, use of peptide ligand libraries and various precipitation methods that 

rid the samples of the high abundance proteins (D'Amato et al., 2009, Nissen et 

al., 2013).  

In addition, mass exclusion filters, one-dimensional electrophoresis and 

commercial depletion kits have also been used for the purpose of fractionating 

milk proteins prior to proteomic analysis (Boehmer, 2011). In the study by Nissen 

et al. (Nissen et al., 2013), ultra-centrifugation at a very high speed, before 

carrying out a proteomics experiment, was found to be the most reproducible and 

robust method of obtaining the low abundance milk proteome compared to other 

milk protein fractionation techniques such as acidification or filtration. 

Combinatorial peptide ligand libraries have been successfully employed for 
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fractionation of peptides, and were useful in the identification of hitherto 

undetected proteins in milk (D'Amato et al., 2009). Enrichment, for example, by 

cysteine-tagging has also been used to enhance the identification of low 

abundance caseins containing cysteine as against the high abundant α- s1 CN and 

β-CN that do not (Holland et al., 2006). In addition to protein fractionation, milk 

fractionation, that is compartmentalising milk into different fractions, (e.g., 

skimmed milk, whey, exosomes, etc.) has also been employed. The different 

fractions of milk proteins from whey and milk fat globule membrane (MFGM) have 

been examined, and new proteins not previously known to be in milk have been 

identified (Reinhardt and Lippolis, 2006, Reinhardt et al., 2013). Thus, the recent 

advances in fractionation techniques have helped to resolve the limitation posed 

by the presence of high abundance proteins (Boehmer et al., 2010a). 

Even though investigations of the bovine milk proteome in the early 2000s were 

hampered by non-availability of reference genome/proteome, attempts were 

made to identify differential protein expression in milk between normal and 

mastitic conditions. In one of the early works, caseins from bovine milk were 

depleted using ammonium sulphate salt precipitation and protein expression was 

compared in whey between healthy and mastitic conditions (Hogarth et al., 2004). 

This study used a two-dimensional gel electrophoresis (2-DE) method to separate 

and quantify whey proteins, and a MALDI-MS to identify proteins. Although 2-DE is 

a semi-quantitative method and the study was constrained by  limited availability 

of protein reference sequences, increased expression of bovine serum albumin 

(BSA) and serotransferrin and decreased expression of caseins, β-lactoglobulin and 

α-lactalbumin were observed in clinical mastitis (Hogarth et al., 2004). The rapid 

growth of protein databases following sequencing of the Bos taurus genome in 

2004, improvements in chromatography and mass spectrometry, and advances in 

computational proteomics data analysis have all enabled the identification and 

quantification of a large number of proteins in milk. 

Multiple variants of the 2-DE method along with several mass spectrometry 

techniques to identify proteins have been used to study bovine mastitis (Turk et 

al., 2012, Bian et al., 2014, Pongthaisong et al., 2016). Combined use of a Liquid 

Chromatography-tandem Mass Spectrometry (LC-MS/MS), 2-DE and MALDI-MS 

identified 95 proteins (gene products) including 15 host defence related proteins 
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such as cathelicidin, SAA and lactoferrin in bovine milk during colostrum and peak 

production stages, and in IMI with S. uberis (Smolenski et al., 2007), suggesting a 

complex nature for the milk proteome and the role of milk proteins in defence 

against IMI. Similarly, differential expression of whey proteins before and 18 hours 

after infection with E. coli was studied using 2-DE and MALDI-MS after depleting 

caseins using ultracentrifugation (Boehmer et al., 2008). This study showed 

decreased amounts of caseins and increased levels of serum albumin, α-1-acid 

glycoprotein, transthyretin, serotransferrin, complements C3 and C4, 

cathelicidins and apolipoproteins in milk collected 18 hours after infection with 

E. coli (Boehmer et al., 2008). The decrease in caseins was attributed to 

proteolysis by indigenous bovine milk proteases plasmin, elastase and cathepsin 

D, and this was confirmed by a study that induced mastitis using LPS infusion (Hinz 

et al., 2012). As with the proteomics analysis of milk, mammary tissues and blood 

serum during mastitis have been analysed using 2-DE methods (Yang et al., 2009, 

Alonso-Fauste et al., 2012). In particular, differential protein expression between 

healthy and mastitic conditions using either bovine serum or whey showed greater 

proteomic changes in whey than in serum (Alonso-Fauste et al., 2012), suggesting 

milk rather than blood could be the better body fluid to look for biomarkers for 

mastitis. 

In recent years, several new quantitative proteomics methods have been 

developed and applied to the investigation of bovine mastitis to study the 

pathophysiology of bovine mastitis and to identify biomarkers. Using a 4-plex 

isobaric tag for relative and absolute quantitation (iTRAQ) method, differential 

expression of whey proteins was compared between different time-points - 4 hours 

or 7 hours after LPS stimulation with whey samples obtained prior to LPS infusion 

(Danielsen et al., 2010). In response to LPS stimulation, there were over 3-fold 

increases in peptidoglycan recognition protein, cathelicidins, SAA, Annexin A1, 

and over 2-fold increases in Hp, ceruloplasmin, serotransferrin, fibrinogen, 

plasminogen, apolipoproteins A-1, A-2 and A-4, and complement C3 and C4 at 7 

hours post-stimulation (Danielsen et al., 2010). Likewise, an iTRAQ proteomics 

method has been used to compare protein expression in whey, MFGM and 

exosomes from milk obtained from healthy and S. aureus infected cows, and this 

study identified a total of 2,971 proteins including 94 proteins that were 

significantly differentially expressed between the healthy and infected milk 
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(Reinhardt et al., 2013). This is by far the largest number of proteins quantified 

from milk, and this could be attributed to the 2-dimensional chromatography (an 

offline first dimension and an online second dimension) and fractioning of milk 

into whey, MFGM and exosomes. Comparably, using an iTRAQ method, the 

proteomes of mammary tissues from cows with IMI due to methicillin resistant S. 

aureus and healthy cows were analysed to identify mechanisms associated with 

mammary tissue damage (Huang et al., 2014). This study identified up-regulation 

of collagens and fibrinogens, and down-regulation of caseins and apolipoprotein 

A-4 in mammary tissues obtained during mastitis. Down-regulation of caseins in 

mammary tissues during mastitis could suggest either lower production of caseins 

in mammary tissues or proteolysis of caseins as noted previously in this chapter. 

Interestingly, differences in bacterial proteome between strains of E. coli from 

persistent and transient mastitis analysed using an 8-plex iTRAQ showed increased 

expression of proteins involved in bacterial mobility in strains causing persistent 

infections (Lippolis et al., 2014). 

A label-free quantitative proteomics method was used to analyse temporal 

changes in whey proteome during E. coli mastitis (Boehmer et al., 2008, Boehmer 

et al., 2010b, Boehmer et al., 2010a, Boehmer, 2011). Ibeagha-Awemu et al 

analysed the proteome of mastitis milk from naturally occurring E. coli and S. 

aureus infections and compared them with normal milk proteome using LC-MS/MS 

method (Ibeagha-Awemu et al., 2010). They also performed an in vitro challenge 

study using inactivated E. coli strain P4 or S. aureus strain Smith CP and mammary 

alveolar cells (MAC-T cells), an immortalized mammary epithelial cell line, to 

compare their proteomics results. The authors concluded that the differences in 

the proteomics profiles could be attributed to pathogens, rather than the host, 

and identified significant enrichment of acute phase response signalling, 

coagulation system and complement system pathways in the differentially 

expressed proteins. Kim et al challenged healthy cows with three different strains 

of S. aureus bacteria, the SCV Heba 3231 strain that causes chronic SCM, the 3231 

parent strain and the Newbould 305 strain that causes acute CM and compared the 

host immune responses over a period up to 21 days post infection by cytokine 

assays and differential milk proteome analysis using the LC-MS/MS method, and 

found marked differences in the temporal expression of cytokines (Kim et al., 

2011). 
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Chapter 2 of this thesis describes a label-free quantitative proteomics analysis of 

milk obtained from the experimentally induced mastitis with a host-adapted strain 

of S. uberis (Tassi et al., 2013, Mudaliar et al., 2016). 

1.3.4.4 Peptidomic investigation of mastitis 

As stated in section 1.1.3, the peptidome is the collection of all peptides within a 

biological system at a given time. A number of investigations of peptides in milk 

have been made possible as a result of advances in the field of peptidomics. 

Several peptides exhibiting diverse properties such as immunomodulation 

including antimicrobial peptides have been identified in human milk from healthy 

mothers, and the majority of these peptides were thought be products of 

endogenous proteolysis of caseins (Dallas et al., 2013). Furthermore, several 

peptides with antimutagenic properties were obtained after hydrolysis of milk 

protein constituents such as caseins and lactalbumin (Larsen et al., 2010b).  

Peptides in milk increase during episodes of mastitis, mostly as a result of the 

action of proteases such as plasmin, elastase, cathepsins A and B (Guerrero et al., 

2015). These proteolytic enzymes, including aminopeptidases may leak into milk 

from blood through a disrupted blood-milk barrier, or be secreted into milk by 

somatic cells or mammary epithelial cells as a tool for killing bacteria, or arise 

from microorganisms’ metabolism. Proteases originating from leucocytes, which 

increase in the mammary gland during episodes of inflammation, also abound and 

may be considered as endogenous non-native proteases that could account for 

most of the proteolytic activity in high SCC milk (Napoli et al., 2007). The 

proteolytic activities of enzymes in milk ultimately result in reduction of milk 

caseins, which compromises the quality and technological properties of milk such 

as in cheese formation (Larsen et al., 2010a). In a recent study of milk from 

clinical cases of mastitis, Mansor et al identified up to 31 peptides, which 

combined in a classification panel could differentiate healthy from mastitic milk 

samples with 100% specificity and sensitivity (Mansor et al., 2013). An additional 

set of 14 peptides was able to distinguish between cases of mastitis caused by 

different pathogens (S. aureus or E. coli) responsible for infections with 100% 

sensitivity but a lower specificity of 75%.  Rapid classification of the bacterial class 

of the pathogen causing mastitis would be of great value as it could direct more 
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effective use of antimicrobial treatment (Roberson, 2012), and so a profile based 

on a peptidomic approach for this purpose would be very valuable.  

In a companion study to this thesis work, using a capillary electrophoresis-mass 

spectrometry (CE-MS) method, Thomas et al performed a time-course peptidomic 

analysis of milk samples obtained from experimentally induced mastitis with a 

host-adapted strain of S. uberis (Tassi et al., 2013), and identified 460 peptides, 

of which 77 peptides could be used to classify pre- and post-infection time points 

(Thomas et al., 2016). Most of these peptides belonged to caseins, while some 

peptides belonged to serum amyloid and Glycosylation-dependent cell adhesion 

molecule 1 (GDCAM). 

1.3.4.5 Metabolomic investigation of mastitis 

Metabolomics has been valuable in several areas of study in the bovine species, 

particularly in animal health, animal production and food safety. Many 

metabolomic studies have been conducted in cattle leading to the development 

of the Bovine Metabolome Database (BMDB), which is available at 

http://www.cowmetdb.ca/. This database comprises information on metabolites 

of dairy and beef cattle obtained by experiment on blood, meat, urine, milk and 

ruminal fluid (Hailemariam et al., 2014). Targeted evaluations of the metabolic 

profiles (of known metabolites) in bovine samples such as urine, serum, plasma 

and milk have been carried out; however untargeted approaches that aid in 

detecting new metabolites are gaining importance especially with innovations in 

bioinformatics and mass spectrometric techniques described in section 1.1.4.  

For example, Rijk et al used an UPLC-TOF MS in an untargeted metabolomic study 

to identify biomarker candidates in cattle urine for the anabolic steroid 

prohormones: dehydroepiandrosterone (DHEA) and pregnenolone (Rijk et al., 

2009). Similar studies were also conducted by Regal et al, this time using serum 

samples, for assessing two other anabolic steroids: estradiol-17β and progesterone 

(Regal et al., 2011). They used HPLC coupled to an Orbitrap mass spectrometer 

and found significant differences in the metabolome that discriminated between 

the use and non-use of these hormones. To detect the abuse of 4-

androstenedione, markers of natural steroids and 4-androstenedione in urine of 

cattle have been examined by Anizan et al (Anizan et al., 2011, Anizan et al., 
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2012). All these studies resulted in the detection of several compounds that were 

not previously recognized in the analytes, and once properly validated, could 

serve as markers for screening of animals for steroid abuse. Using GC-MS, Bender 

et al observed significant differences in metabolites in the follicular fluid of 

heifers compared to those of lactating cows, and also between dominant and 

subordinate follicles (Bender et al., 2010); these differences were suggested to 

be able to give an insight into increasing incidences of low fertility and variances 

in fertility levels in cows. Metabolomics studies have also shown that differences 

in the concentration of up to 19 metabolites in serum could potentially be able to 

distinguish dairy cows with subclinical ketosis from clinically normal controls, 

whilst up to 31 metabolites differentiated cows with clinical ketosis from clinically 

normal controls. Eight metabolites in serum were also found to vary between cows 

with subclinical ketosis and clinical ketosis. These metabolites are thus potential 

biomarkers of ketosis in dairy cows (Zhang et al., 2013b). The bovine ruminal fluid 

metabolome has been investigated by Saleem et al using a combination of NMR 

spectroscopy and GC-MS methods (Saleem et al., 2012), and the metabolites 

identified in this study were used to develop the Bovine Rumen Metabolome 

Database available at http://www.rumendb.ca. 

There are only a few metabolomics studies reported in bovine mastitis research. 

Eriksson et al compared volatile metabolites present in the headspace of milk from 

mastitic and healthy cows using GC-MS technology and demonstrated that an 

electronic nose (gas-sensor array consisting of semi-conductive metallic oxide 

sensors and metal oxide semi-conductive field effect transistors) can differentiate 

between milk from normal and mastitis conditions (Eriksson et al., 2005). Using 

GC-MS technology, Hettinga et al successfully developed a multivariate classifier 

based on an artificial neural network (ANN) to differentiate the milk samples that 

were positive for 5 different pathogens (S. aureus, coagulase-negative 

Staphylococci, Streptococcus dysgalactiae, S. uberis or E. coli) or healthy control, 

based on the volatile metabolites present in the samples (Hettinga et al., 2008a). 

They also found the sources of the volatile metabolites in the mastitis samples, 

concluding that most of the volatile metabolites were products of distinct 

pathogens (Hettinga et al., 2009a). Recently, Sundekilde et al used an NMR 

spectroscopy method to compare metabolite profiles of milk with higher and lower 

SCC and identified significant relative increase in concentrations of lactate, 
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acetate, isoleucine, butyrate and BHBA in samples with high SCC and 

corresponding significant relative decrease in lactose, hippurate and fumarate 

concentrations (Sundekilde et al., 2013c). They have also reviewed the application 

of NMR spectroscopy method in the metabolomics of milk (Sundekilde et al., 

2013a).  

Oxylipids are a diverse group of lipid mediators of inflammation that are 

biosynthesised from the oxidation of polyunsaturated fatty acids (PUFAs), such as 

arachidonic acid, docosahexaenoic acid and eicosapentaenoic acid through 

enzymatic and free radical-mediated reactions (Stables and Gilroy, 2011, Massey 

and Nicolaou, 2013). Using a LC-MS/MS-based lipidomic approach, recent studies 

investigated the role of oxylipids in bovine coliform mastitis and S. uberis mastitis 

(Mavangira et al., 2015, Ryman et al., 2015). In coliform mastitis, lipoxygenase 

and cytochrome P450 derived oxylipids were the predominant fraction of total 

oxylipids present in both milk and plasma. Similarly, higher concentration of 

arachidonic acid and linoleic acid-derived oxylipids such as 

hydroxyoctadecadienoic acid and oxooctadecadienoic acid were reported from S. 

uberis mastitis. 

Chapter 3 of this thesis includes an untargeted metabolomic analysis of milk 

obtained from the experimentally induced mastitis with a host-adapted strain of 

S. uberis (Tassi et al., 2013, Thomas et al., 2016). 

1.3.4.6 Microbiome investigations of mastitis 

The microbiome is the catalogue of microbes and their genes associated with the 

host organism (Ursell et al., 2012). There has been an increased interest in the 

characterization of the bovine microbiome during mastitis, and its comparison 

between healthy and disease states (Addis et al., 2016). It is postulated that up 

to 99% of the microbes in the environment cannot be readily cultivated (Bhatt et 

al., 2012), and culture-based tests in mastitis fail to identify pathogenic organisms 

in about 30% of cases (Oikonomou et al., 2014). With the developments in DNA 

analysis technologies, particularly with the arrival of the NGS technologies, it has 

become possible to sequence and analyse the hypervariable regions within the 16S 

rRNA gene to study microbial diversity and to identify microbes in culture negative 

milk samples. Developments in the analysis of milk microbiota from multiple host 
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species including bovines and humans have recently been reviewed (Quigley et 

al., 2013, Addis et al., 2016). Use of metagenomic sequencing of bacterial 16S 

rRNA genes from clinical and subclinical mastitis milk had resulted in the detection 

of the presence of diverse microbial communities, including hitherto unknown 

anaerobic pathogens in milk during mastitis (Bhatt et al., 2012, Oikonomou et al., 

2012, Oikonomou et al., 2014). 

1.3.4.7 Systems biology approaches to mastitis 

The term ‘systems biology’ was first introduced in 2001 (Chuang et al., 2010). 

Systems biology is a discipline that combines genome-scale multiplexed 

measurements with informatics and computational modelling methods to better 

understand biological function at various scales of organization such as cell, 

tissue, organ or organism (Germain et al., 2011). Systems biology puts a strong 

emphasis on systematic and comprehensive measurements of biological 

parameters such as expression of genes, transcripts, proteins and metabolites. 

Advances in omics technologies such as microarrays, NGS, liquid chromatography, 

mass spectrometry and bioinformatics have enabled in-depth genome-scale 

investigations in bovine mastitis. Although these omics technologies were used to 

analyse global changes in the respective ‘-ome’ and provided a broader 

understanding of host-pathogen interactions during mastitis, they have been used 

essentially in a reductionist approach. An integrative systems view would 

elucidate emerging properties in host-pathogen interactions during mastitis 

leading to better understanding of molecular events in mastitis. Furthermore, a 

system-wide approach integrating genomics, transcriptomics, proteomics, 

metabolomics from both host and pathogen systems could potentially lead to a 

better understanding of mastitis and provide improvements in diagnosing, 

managing and preventing mastitis (Ferreira et al., 2013).  

Interestingly, to understand the coordination between mammary gland and liver, 

and the transcriptional network controlling inflammation in both these tissues, 

synchronized changes in the transcriptome of mammary tissue and liver during IMI 

have been studied (Moyes et al., 2016). However, there is no systems biology study 

integrating multiple omics layers reported in bovine mastitis. While there are 

separate databases available in each omics area, there is a need to develop 

integrated systems biology resources for bovine mastitis. A notable recent 
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development in cattle systems biology knowledgebase is the genome-scale 

reconstruction of metabolic pathways from the cattle genome, which curated over 

300 metabolic pathways and over 2,400 reactions (Seo and Lewin, 2009, Kim et 

al., 2016). 

Undertaking a true systems approach would ideally involve simultaneously 

monitoring all ‘omics’ layers in the same biological system, and such an approach 

could provide maximal insight into host-pathogen interactions, and the immune 

and inflammatory responses that occur in the mammary gland during mastitis. 

Indeed, with the ready availability of milk samples from the challenge study (Tassi 

et al., 2013), the integrated polyomics study reported in this thesis could be 

described as an exemplar experimental model to examine the total response of a 

mammalian system to bacteria. Although this is a small beginning limited by the 

types of tissues studied, financial and time resources, it may herald a realisation 

that the host responses to a disease such as mastitis do not occur in isolated silos 

determined by the reductionist approach. 

1.4 Hypotheses, aims, objectives and workflow  

The work presented in this thesis addresses the following hypotheses: 

• Overall hypothesis for the work: That the dynamic changes in proteins and 

metabolites in milk in response to Streptococcus uberis challenge relate to 

signalling and metabolic pathways identifiable by integration of proteomics 

and metabolomics outputs. 

• Hypotheses for the proteomics study: (a) That whey proteins have distinct 

abundance profiles over time in response to S. uberis challenge, and (b) 

That pathways can be identified which are associated with changes in whey 

protein levels. 

• Hypotheses for the metabolomics study: (a) That skimmed milk 

metabolites have distinct abundance profiles over time in response to S. 

uberis challenge, and (b) That pathways can be identified which are 

associated with changes in skimmed milk metabolite levels. 
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• Hypothesis for the integrative analysis: That S. uberis challenge of bovine 

mammary gland leads to interconnected pathophysiology affecting multiple 

pathways of host response and homeostasis demonstrable by integration of 

proteomic and metabolomics datasets. 

In addressing these hypotheses, the overall aim of this thesis was to understand 

the dynamics of molecular changes in bovine mastitis caused by Streptococcus 

uberis through system-wide profiling and integrated analysis of milk proteins and 

metabolites. This was achieved by investigating a range of proteins and 

metabolites based on abundance through the following objectives: 

1. System-wide identification and quantification of whey proteins during an 

experimental S. uberis induced mastitis  

2. System-wide identification and quantification of metabolites in skimmed 

milk during the same experimental S. uberis induced mastitis, and 

3. Integrated analysis of the proteomics and metabolomics data obtained in 

the previous two steps for deeper understanding of the system. 

A clearly defined workflow, as outlined in Figure 1.6, was designed to test the 

hypotheses and achieve the aims and objectives of this study. The study presented 

in this thesis was performed on milk samples collected at specific intervals during 

the course of an experimental model of Streptococcus uberis mastitis (Tassi et al., 

2013), and the author is grateful for the availability of the milk samples and the 

associated data from that challenge study. 



92 
 

 

Figure 1.6: Flowchart showing the overall workflow 
The flowchart shows the workflow from the collection of milk samples from the 
S. uberis challenge study through proteomic analysis (colour coded in brown) and 
metabolomic analysis (colour coded in blue) to the integrative data (colour coded 
in combined brown and blue). 
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2. Proteomic study of the whey samples 

2.1 Introduction 

Proteins are important components of body and perform myriads of functions. 

They provide structural support as structural constituents, catalyse diverse 

biochemical reactions as enzymes, and transport signals and molecules as 

messengers. So, it is important to study proteins and their functions. A key aspect 

of proteomics study is the determination of dynamic changes in protein 

expression. Identification of changes in the abundance of proteins between 

biological states can be used to understand the underlying biological phenomena. 

It also helps in the elucidation of disease states on a cellular or a tissue level. The 

four cornerstones of proteomics include protein identification that determines the 

identity of proteins, protein characterization that elucidates the bio-

physiochemical properties of proteins, protein quantification that determines the 

abundance of proteins, and comparison that measures the similarity or 

dissimilarity of proteins between samples, conditions or time-points (Eidhammer, 

2007). 

Bovine milk is a complex physiological secretion and contains protein at an 

average concentration of 32 g/L. Caseins form 80% of the total milk protein while 

whey proteins constitute about 16% of the total milk protein. The remaining 4% is 

made up of peptones/low molecular weight peptides constituting 3% of the total 

milk proteins and milk fat globule membrane (MFGM) proteins constituting 1% 

(D'Alessandro et al., 2011). Whey proteins are mostly water-soluble and comprise 

several hundred distinct proteins including beta-lactoglobulin, alpha-lactalbumin, 

blood serum albumin and immunoglobulins (IgG, IgA, IgM and IgE). These proteins 

have a number of functions such as ion binding, protein binding, carbohydrate 

binding, pattern binding, cell surface binding, lipid binding, enzyme regulating, 

cell-to-cell signalling and cell cycle regulating activities (Yang et al., 2013, 

D'Alessandro et al., 2011). Interestingly, there are substantial changes in whey 

proteome during mastitis. The pathogenesis of mastitis due to intra-mammary 

infections includes an inflammatory reaction involving the release of acute-phase 

proteins (APP) and cytokines (Turk et al., 2012). The change in the milieu of 

mammary gland, whether physiological or pathological, is reflected in the milk. 

There are a number of studies that showed changes in the milk proteome due to 
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mastitis (Akerstedt et al., 2012, Boehmer, 2011, Boehmer et al., 2008, Boehmer 

et al., 2010a, Boehmer et al., 2010b, Reinhardt et al., 2013, Tassi et al., 2013). 

This chapter details the results of temporal changes in whey proteome due to an 

experimentally introduced Streptococcus uberis infection, which was performed 

at the Moredun Research Institute and described by (Tassi et al., 2013). Label-

free quantitative proteomics analysis was performed on the milk samples 

collected during this study (Tassi et al., 2013) and the results are presented in this 

chapter. The research work reported in this chapter has been published in the 

article “Mastitomics, the integrated omics of bovine milk in an experimental 

model of Streptococcus uberis mastitis: 2. Label-free relative quantitative 

proteomics” (Mudaliar et al., 2016), which is licensed under a ‘Creative Commons 

Attribution 3.0 Unported Licence’ that allows copying and redistribution in any 

medium or format. The materials in this chapter draw heavily on the author’s 

published article (Mudaliar et al., 2016). 

2.2 Hypotheses, aims and objectives 

2.2.1 Hypotheses 

Work presented in this chapter addresses the following hypotheses:  

(a) That whey proteins have distinct abundance profiles over time in response to 

S. uberis challenge, and  

(b) That pathways can be identified which are associated with changes in whey 

protein levels. 

2.2.2 Aims 

The aim of the work described in this chapter was to quantify temporal changes 

in whey proteome over the course of the experimentally induced mastitis with S. 

uberis. The whey proteome includes proteins produced by the cow (host proteins), 

soluble bacterial proteins produced and exuded by S. uberis, and proteins present 

in the S. uberis cells. Dynamic changes in the host proteins present in whey could 

be attributed to the immune response mounted against the invading bacteria, and 

the resulting inflammation of the mammary gland (mastitis). Similarly, there could 

be changes in the S. uberis (pathogen) proteins during multiplication of and in 
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response to the mounted host immune response that led to the reduction of 

bacterial load. 

2.2.3 Objectives 

1. To identify and quantify the proteins of cow origin (host proteins) and the 

proteins of S. uberis bacterial origin (pathogen proteins) in the whey; 

2. To perform exploratory analysis of the whey proteomics data; 

3. To identify the differentially expressed proteins over the time course 

compared with the pre-infection time-point; 

4. To identify dynamic changes in the signalling pathways over the course of 

mastitis due to S. uberis. 

The area highlighted in brown in Figure 2.1 shows the work presented in this 

chapter and how it fits with the overall workflow. 
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Figure 2.1: Flowchart showing the work presented in chapter 2 and how it fits 
with the overall workflow 
Proteomics Study, the area shaded in brown is presented in this chapter. 
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2.3 Materials and methods 

2.3.1 Challenge study design and milk sample collection 

Milk samples that were collected in a previous intra-mammary challenge study 

with a putatively host-adapted strain (FSL Z1–048) of S. uberis (Tassi et al., 2013) 

were used for proteomics and metabolomics (chapter 3) analyses. Briefly, six non-

pregnant, clinically healthy Holstein cows with no history of clinical mastitis were 

intra-mammarily challenged in mid-lactation with an inoculum containing S. 

uberis strain (FSL Z1–048) at a target amount of 200 cfu. For the first 48 hours 

post-challenge, clinical data and milk samples were collected every 6 hours. 

Between the second and eleventh day post-challenge, clinical data and milk 

samples were collected twice a day (at 06:00 and 15:00 hours). On the twelfth 

and thirteenth day post-challenge, the clinical data and milk samples were 

collected once a day (15:00 hours). Qualitative and quantitative bacteriological 

analysis, molecular typing using polymerase chain reaction and pulsed-field gel 

electrophoresis, somatic cell counting and cytokine measurements were 

performed by Tassi et al. (Tassi et al., 2013), and the data were made available 

for this study. Figure 2.1 shows the mean rectal temperature and bacterial count 

of the cows during the course of the challenge study (Thomas et al., 2016). Body 

temperature of the cows and bacterial counts in milk from challenged quarters 

peaked from 24 hours (bacteria) or 30 hours (temperature) post-challenge (PC) up 

to 57 hours PC and had decreased to a plateau by 81 hours PC, whereby body 

temperature had returned to normal and bacterial counts in culture positive 

quarters stayed constant until the end of the study at 312 hours PC. 
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Figure 2.2: Rectal temperature of the cows and bacteria count in milk of 
quarters excreting S. uberis during the course of the intra-mammary challenge 
with S. uberis. 
Six cows were intra-mammarily challenged with an inoculum containing 200 cfu of 
S. uberis. Rectal temperature and bacteria count in milk (in inoculated quarter, 
one each per cow) were recorded for time-points 0 to 312 hours post-challenge 
(time-points shown on the X-axis). On the Y-axis, red and blue data points show 
the mean rectal temperature and the mean bacteria count in ºC and Log10 cfu/mL 
respectively. The error bars show the standard error of the mean. Milk samples 
from six selected time-points (0, 36, 42, 57, 81 & 312 hours post-challenge) were 
used in the proteomic and metabolomics analyses. Based on data from Tassi et al 
(2013). 

On collection, the milk samples were transported to the lab on ice. The aliquots 

that were subsequently used for proteomics and metabolomics data generation 

were centrifuged at 10,000 x g for 15 min at 4º C and the resulting skimmed milk 

samples were stored at -20º C until they were used for further processing. The 

challenge experiments were conducted at the Moredun Research Institute 

(Penicuik, UK) with the approval of the Institute’s Experiments and Ethical Review 

Committee in accordance with the Animals (Scientific Procedures) Act 1986. 

Aliquots of milk samples collected from six selected time-points (0, 36, 42, 57, 81 

& 312 hours PC) were used to generate quantitative label-free proteomics data 

for the study described in this chapter and to generate quantitative untargeted 

metabolomics data for the study presented in chapter 3. The time-points were 

selected on the basis of clinical manifestation, bacterial counts (Figure 2.2) and 

somatic cell counts (Tassi et al., 2013, Thomas et al., 2016). The proteomics and 

metabolomics mass spectrometry data generation were performed by Stefan 

Weidt and Suzanne McGill respectively at Glasgow Polyomics, College of Medical, 

Veterinary and Life Sciences, University of Glasgow, UK. 
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2.3.2 Label-free quantitative proteomic data generation 

The label-free quantitative proteomic data generation workflow is given in 

Figure 2.3. 

 

Figure 2.3: Label-free quantitative proteomic data generation workflow 
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2.3.2.1 Method optimization 

Prior to analysing the milk samples from the challenge study, a label-free 

quantitative proteomics method was optimized using milk samples collected from 

cows. Eight milk samples (sample no. 1 to 8) were aseptically collected from 

different quarters of four cows that were referred to the Scottish Centre for 

Production Animal Health & Food Safety, School of Veterinary Medicine, University 

of Glasgow, UK and used for method optimization. 

1-D electrophoresis 

In high-throughput proteomics analysis using LC-MS/MS, a few high-abundant 

proteins in skimmed milk mask the quantitation of low-abundant proteins so it is 

necessary to deplete caseins in skimmed milk that constitute approximately 80% 

of total proteins in skimmed milk and lactoglobulins in whey that constitute 

approximately 50% of the total whey protein to accurately quantitate low-

abundant proteins (Alonso-Fauste et al., 2012, Baeker et al., 2002, Boehmer et 

al., 2008, Hogarth et al., 2004, Smolenski et al., 2007, Smolenski et al., 2014). 

Skimmed milk is the milk fraction that is obtained after removing cream (fat 

pellet) from milk while whey is the fluid milk fraction that is left from milk 

following the precipitation of caseins (Hogarth et al., 2004, Reinhardt et al., 

2013). In order to obtain whey for this study, caseins but not lactoglobulins were 

depleted in skimmed milk as globulins were considered to be an important family 

of proteins in this study. While there are multiple methods available for caseins 

depletion, ultracentrifugation was used for this purpose (Alonso-Fauste et al., 

2012, Baeker et al., 2002, Boehmer et al., 2008, Hogarth et al., 2004, Smolenski 

et al., 2007, Smolenski et al., 2014, Yamada et al., 2002) in this study. To test 

the efficiency of ultracentrifugation and the addition of calcium chloride (CaCl2) 

to skimmed milk in depleting caseins, a 1-D gel electrophoresis of samples was 

performed on a gel (Criterion Precast Gels, Bio-Rad Laboratories) before and after 

ultracentrifugation of skimmed milk, and of skimmed milk samples to which 

various amounts of CaCl2 had been added (Figure 2.2). Similarly, to examine the 

effects of dilution of skimmed milk samples with PBS, 1-D electrophoresis was 

performed on a gel using whey obtained from the skimmed milk samples that were 

either undiluted or diluted with PBS at 1:2 and 1:4 concentrations prior to the 

separation of whey. 
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Figure 2.4: Gel showing 1-D electrophoresis of milk samples used in the method 
optimization before and after ultracentrifugation, with various amount of 
addition of CaCl2 and with different amounts of dilution with PBS. 
For 1-D electrophoresis, two milk samples (sample 1 and 4) were used as biological 
replicates. Bands labelled as kappa-casein and alpha-S2-casein (subsequently 
identified by LC-MS/MS) show darker bands before ultracentrifugation. Visually, 
there are small differences with the addition of CaCl2 or dilution with PBS. Lane 1 
- protein molecular weight reference markers, lane 2 and 7 (labels 1 and 4) – milk 
samples before ultracentrifugation, lane 3 and 8 (labels 1A and 4A) – after 
ultracentrifugation without the addition of CaCl2, lane 4 and 9 (labels 1B and 4B) 
- after ultracentrifugation with 20 mM CaCl2, lane 5 and 10 (labels 1C and 4C) - 
after ultracentrifugation with 40 mM CaCl2, lane 6 and 11 (labels 1D and 4D) - 
after ultracentrifugation with 60 mM CaCl2, lane 12 and 14 (labels 1A(1:2) and 
4A(1:2)) - after diluting skimmed milk with PBS at 1:2 ratio and then 
ultracentrifugation without the addition of CaCl2, and lane 13 and 15 (labels 
1A(1:4) and 4A(1:4)) - after diluting skimmed milk with PBS at 1:4 ratio and then 
ultracentrifugation without the addition of CaCl2. 

For 1-D electrophoresis, two milk samples (sample no. 1 and 4) were used as 

biological replicates. 1-D electrophoresis results showed separation of milk 

proteins on the gel (Figure 2.4). Bands that were subsequently identified using LC-

MS/MS as caseins were highly dense before ultracentrifugation and very light after 

ultracentrifugation that showed depletion of caseins.  Visually, there were little 

differences with the addition of CaCl2 for depletion of caseins or bias due to 

dilution with PBS. In order to identify proteins, the protein bands in the 1-D 

electrophoresis gel were excised and subjected to trypsin digestion, and the 

proteins in these bands were identified using LC-MS/MS at Glasgow Polyomics, 

College of Medical, Veterinary and Life Sciences, University of Glasgow, UK. 
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Mascot Exponentially Modified Protein Abundance Index (emPAI) scores (Ishihama 

et al., 2005) for the proteins identified from the excised bands were compared 

between the samples that underwent ultracentrifugation with or without the 

addition of CaCl2, and with or without dilution with PBS. The results showed no 

significant difference in depletion of caseins in samples either with the addition 

of CaCl2 or those samples without the addition of CaCl2, and no significant 

difference between the samples that were either diluted with PBS or those 

samples not diluted with PBS. So, as informed by the 1-D electrophoresis results 

and to keep the pre-processing of the milk samples to as minimum as possible to 

avoid any technical bias, ultracentrifugation without the addition of CaCl2 was 

selected as the preferred method to obtain whey in this study and used in 

subsequent analyses. 

Label-free quantitative LC-MS/MS optimization 

LC-MS/MS data was generated from the samples described in this section (2.3.2.1) 

to which various amounts of CaCl2 had been added (samples 1B, 1C, 1D, 4B, 4C 

and 4D), and the skimmed milk samples diluted with PBS (samples 1A(1:2), 

1A(1:4), 4A(1:2), 4A(1:4)) as previously described in this section. Separation of 

whey, Bradford protein assay, whey protein extraction and salt removal, protein 

quantity normalization and trypsin digestion were performed as described in 

sections 2.3.2.2, 2.3.2.3, 2.3.2.4, 2.3.2.5 and 2.3.2.6 respectively. The LC-MS/MS 

analysis was performed in Bruker Amazon mass spectrometer using two different 

gradients (60-minutes and 120-minutes gradients) for optimization. The data were 

pre-processed using MZmine (Pluskal et al., 2010). The Bruker Amazon files in the 

proprietary ‘.yep’ file format were converted to ‘.mzXML’, an open data format 

files, and  the quality of the raw data was visually assessed for consistency 

between the samples and chromatographic shifts by generating 2D and 3D plots 

from MS1 spectra using MZmine. Performance of software for identification and 

quantitation of proteins were compared to optimize data analysis. The 

quantitation and identification software used for optimization include MaxQuant 

(Cox and Mann, 2008), ProteoWizard (Chambers et al., 2012), Trans-Proteomic 

Pipeline (Deutsch et al., 2010), OpenMS (Sturm et al., 2008) and Mascot Distiller 

(Matrix Science, 2014). 
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Compared with a previous published method (Reinhardt et al., 2013), many 

refinements that might improve the data generation and data analysis were made 

and are described in detail in the following sections. While precipitation of 

proteins with acetone is a common method to extract proteins (especially water-

soluble proteins), the efficiency with which different proteins precipitate might 

differ. For example, proteins with high hydrophilicity, more acidic pH or larger 

size (higher molecular weight) are readily precipitated by acetone (Crowell et al., 

2013, Thongboonkerd et al., 2002). To overcome bias in total protein quantity 

introduced in extraction of proteins using acetone that could be propagated 

downstream, normalization of total proteins after acetone precipitation was 

performed by use of the Bradford protein assay. In the preparation of trypsin 

digests, sodium deoxycholate (C24H39NaO4) was used in addition to acetonitrile to 

improve complete digestion of proteins. Sodium deoxycholate (SDC) is an ionic 

detergent surfactant, and is compatible with tryptic digestion up to 5% 

concentration (Lin et al., 2008). SDC is acid insoluble and its aqueous solutions 

tend to precipitate as the pH is lowered to 6.5. This property is being used in 

removing SDC after trypsin digestion from the protein digest potentially without 

detrimental loss of peptides. Previous studies comparing the use of SDC with other 

compounds that are used for enhancing protein denaturation for trypsin digestion 

showed SDC at 1% concentration improved trypsin digestion efficiency by almost 

5-fold (Leon et al., 2013, Masuda et al., 2008, Proc et al., 2010, Zhou et al., 2006). 

2.3.2.2 Separation of whey 

The aliquots of frozen skimmed milk samples described at 2.3.1, ranging between 

0.5 mL and 1.5 mL in volume per sample, were transferred for sample processing 

in micro test tubes on dry ice and thawed to 4º C. The volume of every sample 

was brought to 1.5 mL by adding the required amount of phosphate buffered saline 

(PBS). To remove residual milk fat globules and cell pellets, the samples were 

centrifuged at 13,000 x g for 30 min at 4º C in an Eppendorf centrifuge (model 

5804 R) with a fixed-angle rotor (FA-45-30-11). Using a pipette, the middle clear 

portion (1 mL) was carefully drawn from each sample and transferred into an 

ultracentrifuge tube (Beckman Coulter Thickwall polycarbonate, part no. 343778) 

and centrifuged in a Beckman Coulter bench top ultracentrifuge (model TL-100) 

with a fixed-angle rotor (TLA-100.2) at 150,000 x g (59,000 rpm) for 60 minutes at 

4º C. Most of the caseins in the samples sedimented to the bottom of the 
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ultracentrifuge tubes, and above them exosomes formed a loose pellet layer with 

crude whey forming the supernatant. This crude whey was transferred to a clean 

ultracentrifuge tube and again centrifuged in the ultracentrifuge at 150,000 x g 

(59,000 rpm) for 60 minutes at 4º C to remove the residual caseins (Reinhardt et 

al., 2013). 

2.3.2.3 Bradford protein assay 

Total protein quantity in the whey was measured by Bradford protein assay in 250 

μL microplate assay format using Bio-Rad protein assay dye reagent concentrate 

(Sigma-Aldrich, product no. 500-0006) and bovine serum albumin (BSA) fraction V 

(Roche, product no. 10735086001) as the standard. The assay was performed in 

triplicate and absorbance at 595 nm was measured in a spectrophotometer (Tecan 

GENios, XFLUOR4 Version: V 4.51). Standard curves, both linear and 2nd order 

polynomial (Figure 2.5) for BSA standards were plotted in Excel (Microsoft Excel 

for Mac 2011, Version 14.3.5). Total protein concentration in the whey was 

estimated from the absorbance values within the linear range of the assay by 

substituting the absorbance values in the equation for the standard curves. The 

average of the triplicate measurements was taken as the estimated total protein 

concentration and noted in mg/mL. 

 

Figure 2.5: Bradford protein assay standard curves using the bovine serum 
albumin (BSA) as the standard reference. 
BSA concentration is plotted on the X-axis and the net absorbance at 595 nm is 
plotted on the Y-axis. The data points show the BSA concentration for the mean 
of the triplicate measurements of net absorbance. Two standard curves, a linear 
line (blue) and a 2nd order polynomial curve (red) are plotted to fit the data points. 
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The text boxes blue and red show the equation and coefficient of determination 
(R2) for the linear line and the polynomial curve respectively. 

2.3.2.4 Whey protein extraction and salt removal 

Protein samples for LC-MS/MS analysis should ideally contain purified proteins free 

of any interfering substances, and one of the methods for purifying proteins is to 

extract them after precipitation with organic solvents. For extraction of proteins 

from milk samples, precipitation of proteins with acetone has been used in 

previous studies (Crowell et al., 2013, Reinhardt et al., 2013, Thongboonkerd et 

al., 2002), and in this study proteins in whey were also extracted by precipitating 

them with absolute acetone. Using the measured total protein concentration in 

the Bradford assay, the whey samples were diluted with HPLC grade water to have 

2 mg/mL total protein. For every diluted whey sample, an aliquot of 100 µL whey 

(estimated to contain 2 mg/mL total protein) was transferred into a 1.5 mL micro 

test tube and six volumes (600 μL) of ice-cold 100% acetone (VWR International, 

product no. 20066.330) was added and kept at -80º C for 12 hours. This resulted 

in the precipitation of proteins, and the samples were centrifuged at 20,000 x g 

for 40 minutes at -4º C in an Eppendorf centrifuge (model 5804 R). The supernatant 

was discarded, and the pellets (precipitated proteins) were washed three times 

with 400 μL of 80% (v/v) acetone to remove salts and then dried under a fume 

hood for 10 minutes. 

2.3.2.5 Protein quantity normalization 

The dried pelleted proteins from each sample were re-suspended in 50 μL of 50 

mM ammonium bicarbonate (Sigma-Aldrich, product no. A6141) buffer (NH4CO3 

buffer) and the extracted protein quantity was estimated by Bradford protein 

assay using BSA fraction V as the standard as described at section 2.3.2.3. The re-

suspended proteins in each sample were normalized by diluting them with the 

required volume of NH4CO3 buffer to arrive at 2.5 mg/mL total protein 

concentration. 

2.3.2.6 Preparation of trypsin digests 

For every sample, an aliquot of 40 μL of the normalized re-suspended proteins, 

containing 100 μg (calculated) of total proteins in buffer was transferred into a 

1.5 mL micro test tube. For each aliquot, 12 μL of 10% (w/v) sodium deoxycholate 
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(SDC) solution in buffer (Sigma-Aldrich, product no. D6750), 8 μL of 80% (v/v) 

acetonitrile (Fisher Scientific, product no. 10660131) in buffer and 50 μL of 10 % 

(w/v) modified trypsin (Promega, product no. V5111) in trypsin re-suspension 

buffer were added. The digest was incubated for 18 hours at 37º C in a heating 

block (Leon et al., 2013, Lin et al., 2008, Masuda et al., 2008, Proc et al., 2010, 

Reinhardt et al., 2013, Zhou et al., 2006). Then, 12 μL of 1% (v/v) formic acid 

(Sigma-Aldrich, product no. 94318) was added to the digest (final formic acid 

concentration 0.1%) to precipitate SDC, and the digests were centrifuged at 16,000 

x g for 10 minutes at 4º C. For every sample, supernatant containing 2 μg 

(calculated) of digested proteins was transferred into a well of a conical bottom 

microplate and dried in a SpeedVac (Thermo Fisher Scientific, model no. 

SPD1010). 

2.3.2.7 On-line liquid chromatography and tandem mass spectrometry 

For on-line reversed-phase liquid chromatography and mass spectrometry, a 

Dionex UltiMate 3000 RSLCnano (liquid chromatography) system coupled to a 

Thermo Scientific Orbitrap Elite mass spectrometer was used. A stainless-steel 

Nano-Trap column with 300 µm inside diameter, 5 mm length, particle size 5 µm 

and pore size 10 nm, packed with stationary phase Acclaim PepMap C18 (Thermo 

Scientific, part no. 160454) and a resolving Nano LC column with 75 µm inside 

diameter, 15 cm length, particle size 2 µm and pore diameter 10 nm with 

stationary phase Acclaim PepMap RSLC C18 (Thermo Fisher Scientific, part no. 

164534) were used in the HPLC. The dried protein digests in the microplate were 

loaded on the Rapid Separation LC (RSLC) Autosampler connected to the C18 trap 

column equilibrated in 96% solution A (0.1% formic acid in HPLC grade water (v/v)) 

and 4 % solution B (80% acetonitrile and 0.08% formic acid in HPLC grade water 

(v/v)) with a flow rate of 25 μL/min. The trap column was washed for 12 minutes 

at the same flow rate and then switched to the in-line resolving C18 column. A 

constant flow rate of 300 nL/min was maintained with a linear gradient from 4% 

solution B to 40% solution B in 108 minutes, then to 100% solution B by the 124th 

minute. Then the column was washed with 100% solution B for 5 minutes followed 

by recalibration with 96% solution A for 6 minutes. In the mass spectrometer, one 

scan cycle comprised MS1 scan (m/z range from 400-2000) in the Orbitrap Elite 

followed by up to 20 data-dependant MS2 scans (threshold value 1000 and the 
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maximum injection time 200 ms) in the Velos LTQ in collision-induced dissociation 

(CID) mode. 

Sample loading order randomisation 

To account for any retention time drift, carryover or other types of errors that 

might occur during the run, the sample loading order was randomized using 

Microsoft Excel and the samples were run in the random order. After every six 

samples, one blank sample was analysed to monitor carryover. All the samples 

were run consecutively in the randomised order without breaks, which took about 

4 days of mass spectrometer time. 

2.3.3 Label-free quantitative proteomic data analysis 

The label-free quantitative proteomics data analysis workflow is given in Figure 
2.6. 
 

 

Figure 2.6: Workflow diagram showing the performed processes in 
proteomics data analysis presented in chapter 2 
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2.3.3.1 Exploration of the raw data 

A mass spectrum is a plot representing intensity (abundance) as a function of mass-

to-charge ratio (m/z), “a dimension-less quantity obtained by dividing the mass 

number of an ion by its charge number” (Murray et al., 2013). “A mass spectrum 

is obtained when a beam of ions is separated according to the mass-to-charge 

ratios of the ionic species contained within it” (Todd, 1995). The IUPAC defines 

mass spectrum as “a plot of the relative abundances of ions forming a beam or 

other collection as a function of their m/z values” (Murray et al., 2013). A mass 

chromatogram is a plot generated by connecting the spectral points in a mass 

spectrometric data for a given specific mass, representing time on the x-axis and 

the signal intensity on the y-axis (Hites and Biemann, 1970, Krishnan et al., 2013). 

It is synonymous with ‘extracted ion chromatogram’, and the IUPAC defines it as 

“chromatogram created by plotting the intensity of the signal observed at a 

chosen m/z value or set of values in a series of mass spectra recorded as a function 

of retention time” (Murray et al., 2013). A total ion current (TIC) chromatogram 

is a chromatogram generated by summing up the intensities of all the separate ion 

currents carried by the ions of different m/z contributing to a complete mass 

spectrum. The TIC is defined as “sum of all the separate ion currents carried by 

the ions of different m/z contributing to a complete mass spectrum or in a 

specified m/z range of a mass spectrum” by IUPAC (Murray et al., 2013). A base 

peak is the peak in a mass spectrum that has the greatest intensity. A base peak 

chromatogram is defined as “chromatogram obtained by plotting the signal of the 

ions represented by the base peak detected in each of a series of mass spectra 

recorded as a function of retention time” (Murray et al., 2013). 

Good quality raw MS/MS data is sine qua non for reproducible results and obtaining 

reliable identification and quantification. So, it is essential to analyse the quality 

of the raw data. The raw MS/MS data obtained from each sample (described in 

2.3.2.7) were visually examined by generating a variety of plots using MZmine 

(version 2.10) software (Pluskal et al., 2010). To examine sample loading and peak 

resolution, total ion current (TIC) chromatograms and base peak (BP) 

chromatograms were generated from the MS1 data obtained from each sample. 

TIC chromatograms and BP chromatograms also help to examine satisfactory 

injection and ionization of the sample, and to compare the patterns between the 

samples in an experiment (Oveland et al., 2015).To detect chromatographic shifts 
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in retention time, MS1 spectra were visualized by generating 2D and 3D plots using 

the 2D and 3D plot functions in MZmine software. Additionally, 2D plots and TIC 

chromatograms of the MS1 spectra were also generated using the integrated 

viewer (Tyanova et al., 2015) in the MaxQuant software (version 1.5.2.8). 

Examination of 2D plots of MS/MS raw data showing the m/z, retention time (RT) 

and intensity of the MS1 would help to identify overall consistency of the raw data 

in the dataset and to identify chromatographic shifts in RT that could be 

introduced by poor chromatography. 

2.3.3.2 Peptide identification and protein quantification 

After initial quality control, the MS/MS raw data from all samples including the 

raw data from the blanks were imported into MaxQuant software (version 1.5.2.8) 

for label-free relative quantification analysis (Cox and Mann, 2008). Feature 

detection and mass recalibration were automatically performed in MaxQuant, and 

peptides were identified using the integrated Andromeda (Cox et al., 2011) search 

engine within MaxQuant. Reporter quantification, retention time alignment, 

protein assembly, label-free quantification and MaxLFQ normalization (Cox et al., 

2014) were also performed in MaxQuant software. For identification and 

quantification, N-terminal acetylation, oxidation of methionine and deamidation 

of asparagine or glutamine were set as variable modifications, and 

carbamidomethylation of cysteines was set as a fixed modification (Electronic 

Supplementary Information (ESI) 2.1 and ESI 2.2). For in silico digestion, Trypsin/P 

was used and a maximum of 2 missed cleavages were allowed. Up to 6 ppm peptide 

mass tolerance was allowed during the main search. A false discovery rate (FDR) 

up to 1% was allowed for peptide spectrum match and protein assembly, and the 

FDR was estimated using the reversed peptide sequences. At least one unique or 

‘razor’ peptide was required for identification. For label-free quantification, the 

‘Fast LFQ’ option was turned off and a minimum of one quantified peptide pair 

was required for reporting the pair-wise comparisons of a protein between two 

samples. As retention time drift of about 2 minutes was found across the sample 

runs, the 'match-between-runs' option with a match time window of 2 minutes was 

used to transfer identifications across the replicate experiments, whereby the 6 

individual cows were treated as biological replicates for each time-point. In 

addition, an estimated absolute protein quantitation was also performed using 

intensity based absolute quantification (iBAQ) method. 
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Proteins from Bos taurus proteome and S. uberis proteome were identified in two 

separate analyses using the same MS/MS raw data. Bos taurus and S. uberis 

reference proteomes were downloaded from the UniProt Knowledgebase (UniProt, 

2014) and imported into the Andromeda search engine. The Bos taurus reference 

proteome (UniProt Proteome ID: UP000009136) had 23,868 proteins, and was last 

modified on 10th May, 2015 (UniProt, 2015a) while the S. uberis reference 

proteome (Strain ATCC BAA-854/0140J; UniProt Proteome ID: UP000000449; last 

modified 4 June 2015) had 1,760 proteins, and was last modified on 04th June, 

2015 (UniProt, 2015b). Conflicts of multiple protein assignments (conflicts arise 

where the same peptide is shared between multiple proteins) were manually 

resolved taking into account the peptide counts, the razor and/or unique peptide 

counts, and the evidence status of the protein annotation (annotation score) in 

the UniProt database. Where a protein was identified based on comparison with 

both the Bos taurus reference proteome and the MaxQuant contaminant list, they 

were assigned to Bos taurus, because many proteins on this list, e.g. keratin or 

bovine serum proteins, are of bovine origin. 

2.3.3.3 Statistical analysis 

Statistical analysis was performed using Perseus (version 1.5.2.6) (Cox, 2015), 

Partek® Genomics Suite® (version 6.6) (Partek, 2015) and R (version 3.1.2) (Team, 

2014) software. The normalized protein intensities from the MaxQuant analysis 

were imported into Perseus software. Protein intensities (abundances) in the 

linear scale were transformed into logarithmic scale with base two. The missing 

values were replaced with a constant value of 10 to simulate signals from low 

abundant proteins. For exploratory analysis, histograms were generated to 

examine the dataset. Hierarchical clustering analysis and principal component 

analysis (PCA) were performed using Perseus and Partek® Genomics Suite® 

software. In addition, the PCA loadings analysis was performed in the R software 

environment (version 3.2.3) using the “stats” and “ggfortify” packages (Team, 

2014, Tang et al., 2016). The binary logarithmic transformed and the missing 

values imputed, normalized protein intensities from the MaxQuant analysis were 

used in the PCA. The dataset was a 570 X 36 matrix consisting of the 570 protein 

ids (variables) on the rows and the sample ids – 6 cows at 6 time-points 

(observations) on the columns. The elements of the matrix were the binary 

logarithmic transformed and the missing values imputed, normalized protein 
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intensities corresponding to the proteins in the rows and the observation in the 

columns. The scatter plots of PCA scores and loadings and the biplot were 

generated using the scores and loadings for principal components 1 & 2.  To 

identify differentially expressed proteins one-way analysis of variance (ANOVA) 

was performed with time as factor. From the ANOVA results, protein lists were 

created by comparing each time-point PC to the pre-challenge results (0-hours 

PC). Proteins with an absolute fold change > 2 and FDR-adjusted p-value < 0.05 

were considered differentially expressed and included in the protein lists. 

Magnitude of fold-change and the extent of statistical significance (p-value) of 

differentially expressed proteins obtained in the one-way ANOVA test were 

visualized by generating volcano plots using ‘ggplot2’ package (Wickham, 2009) in 

R software. The volcano plot is useful to compare the biological impact (fold-

change between two time-points) and the statistical reliability (p-value) of the 

change. The X-axis shows the fold change on logarithmic scale with base 2 so that 

the up- and down-regulated proteins appear symmetric, and the Y-axis show the 

p-value on a negative logarithmic scale with base 10 (so that the highly significant 

p-values are placed in the top). 

2.3.3.4 Pathway analysis 

The differentially expressed proteins were analysed for enrichment of signalling 

and metabolic pathways using Ingenuity® Pathway Analysis (IPA) software (IPA, 

2015). IPA computes an enrichment score for the overlap between the observed 

and the predicted regulated gene sets using a Fisher’s exact test (FET). A cut-off 

threshold of FET p-value 0.05 was applied on the pathways enrichment score. The 

directions of regulation, that is the up- or down-regulation, was inferred from the 

activation Z-score in the IPA (Kramer et al., 2014). The Ingenuity Knowledge Base 

(genes + endogenous chemicals) was used as the reference set, and both direct 

and indirect relationships were considered for network analysis. The confidence 

level was set as high confidence, which includes experimentally observed 

relationships and predicted relationships with high confidence. While most of the 

proteins (UniProt identifiers) in the differentially expressed protein lists of the 

bovine proteome could be mapped with Ingenuity Knowledge Base, none of the 

proteins (UniProt identifiers) from S. uberis proteome could be mapped. 
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2.4 Results  

2.4.1 Quality analysis of the raw data 

TIC chromatograms, base peak chromatograms and 2D plots were generated for 

each sample and showed overall consistency with a retention time drift of about 

2 minutes. Figure 2.7 shows, TIC chromatograms from each whey sample (6 times 

points from 6 cows) and the blank runs used to monitor carry over. A zoomed two-

minute section between 52 and 54 minutes retention time shown in the inset 

represents TIC chromatograms of whey samples from all the 6 cows at 81 hours 

post-challenge time-point. This zoomed section indicates retention time drift of 

about 2 minutes between peaks from different samples. Tiny differences in mass-

to-charge ratio can also be noticed in the inset diagram. Figure 2.8 shows an 

example of a 2D plot generated from the MS/MS raw data obtained from a milk 

sample of cow 2071 at 81 hour PC. 2D plots were generated from all the 36 whey 

samples in the challenge study plus the blanks and visually examined for 

consistency. The figure shows a 2D plot from the whey sample of cow 2071 at 81 

hours PC. The vertical lines across retention time in the figure show constant 

background noise, and present in all 2D plots in the dataset. 
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Figure 2.7: Total ion current (TIC) chromatograms for all 36 milk samples in 
the challenge study plus the blank samples. 
TIC chromatograms show the complexity of the samples, events occurring during 
the timescale of the runs, peptide elution profiles and efficiency in the use of 
instrument time. Superimposed peaks from all the runs show comparison between 
the runs. Chromatogram from each individual sample (6 times points from 6 cows 
and blanks) is plotted using a different colour. Legends for the colours are given 
at the bottom of the plot. The inset diagram (a zoomed two-minute section) shows 
TIC chromatograms for milk samples from all 6 cows at 81 hours post-challenge 
time-point between 52 and 54 minutes retention time. Some of the peaks shown 
in the inset diagram are annotated with mass-to-charge ratio (m/z), and they show 
retention time drift of about 2 minutes between peaks from different samples. 
Minuscule differences in mass-to-charge ratio (mass accuracy) can also be noticed 
in the inset diagram. 
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Figure 2.8: A 2D plot of MS/MS raw data from the whey sample of cow 2071 at 
81 hour post-challenge. 
The 2D plot shows the m/z values on the X-axis, and the retention time (RT) on 
the Y-axis. The intensity of the MS1 peaks at the data points is shown in green 
colour with different shades (the darker the shade, the higher intense is the peak). 
2D plots were generated from all the 36 whey samples in the challenge study plus 
the blanks and visually examined for consistency. The vertical lines across 
retention time show constant background noise, and present in all 2D plots. 

2.4.2 Quantification and analysis of the cow proteome 

Using the method described at 2.3.3.2, a total of 2,552 non-redundant bovine 

peptides were quantified, and 570 proteins were assembled from the quantified 

peptides (ESI 2.3). Exploratory data analysis such as histograms, hierarchical 

clustering analysis (HCA) and principal components analysis (PCA) were performed 

on the quantified protein data as described in 2.3.3.3. 

2.4.2.1 Hierarchical clustering analysis 

To explore the dataset, a hierarchical clustering analysis (HCA) using Euclidean 

distance as distance metric and average linkage as agglomeration method was 

performed on the 570 bovine proteins. The hierarchical clustering analysis (Figure 

2.9) shows three major clusters in the column dendrogram, corresponding to 

different phases of the infection process. Cluster C includes samples from pre-

challenge (0 hours PC) time-point and at late resolution stage (312 hours PC) time-

point, by which time 5 of 6 cows had cleared the infection (Tassi et al., 2013). It 

also includes 36 hours and 42 hours PC samples from cow 5, which was previously 

identified as a late responder based on clinical signs and cytokine profiling (Tassi 

et al., 2013). Cluster B includes samples from 36 and 42 hours PC, corresponding 

to the early stage of infection, which is characterized by bacterial growth and 

neutrophil influx (Tassi et al., 2013). Cluster A predominantly contains samples 

from 57 hours and 81 hours PC, during which time bacterial numbers had started 

to decrease (Tassi et al., 2013). 

 



117 
 

 

Figure 2.9: Heat map of bovine proteins in whey showing hierarchical 
clustering of samples. 
This heat map was generated using Partek® Genomics Suite® software from the 
570 proteins that were quantified using the bovine proteome. Hierarchical 
clustering analysis was performed using Euclidean distance as distance metric and 
average linkage as agglomeration method. The dendrogram shows three top-level 
clusters and they are identified by letters (C = pre-challenge and resolution stage; 
B = early to peak infection based on bacterial numbers; A = post peak infection). 
The time-points by colour, with hours post-challenge shown in the inset legends, 
and the individual cows are identified by numbers. Scale bar indicates 
standardized (mean of zero and scale to standard deviation of one) protein 
expression. The plot shows clustering of samples based on time. 

2.4.2.2 Principal component analysis 

To further examine the set of 570 bovine proteins that were quantified using the 

cow proteome, a principal component analysis (PCA) was performed as described 

in 2.3.3.3, and the samples were plotted (Figure 2.10) using their scores in 

principal component 1 (PC1) and principal component 2 (PC2). The PCA shows 

clustering of samples by time-point with a few exceptions. Overall, the clusters 

are separated on the PC1, which embodies the highest proportion of variance in 

the dataset and is depicted along the X-axis. As in the HCA, results are similar for 

the pre-challenge (0 hours PC) and resolution (312 hours PC) time-points. Samples 

collected at 81 hours PC were the most divergent. Outliers at 36 and 42 hours PC, 
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which cluster with samples from 0 hours, correspond to the slow responder (cow 

5) that is also visible in Figure 2.9 and in clinical, bacteriologic and inflammatory 

parameters (Tassi et al., 2013).  

The scatter plot of the loadings for principal components 1 and 2 (Figure 2.11) 

shows the proteins that contribute largest to PC1 and PC2 in the same directions 

(either positive or negative directions along the X- and Y-axis for PC1 and PC2 

respectively). The biplot (Figure 2.12) shows the observations (samples in solid 

dots with cow numbers and coloured by time-point post challenge) and the 

variables (proteins in red arrows). The arrows that are close together in the same 

direction are the proteins that are highly correlated. There are a number of arrows 

that are parallel to X- or Y-axis, which means these are the proteins that are highly 

correlated (negatively or positively depending on the direction of the arrows along 

the axis) with PC1 and PC2 respectively. Scrutiny of the scores and loadings (Table 

2.1 - Table 2.4) for PC1 and PC2 shows the samples (cows and time-points post-

challenge) and proteins that contribute the largest to PC1 and PC2. For PC1, 0 and 

81 hours post-challenge time-points are the largest contributors, although in the 

opposite directions. The complete tables of scores and loadings for all the 36 

principal components are given in the supplementary information.              
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Figure 2.10: Scatter plot of the scores for principal components 1 and 2 
generated from the principal component analysis of bovine proteins in whey.  
The PCA plot was generated using Partek® Genomics Suite® software from the 570 
proteins that were quantified using the bovine proteome. The data points are the 
scores for the observations in principal components 1 and 2, and refer to milk 
samples obtained from 6 cows at 6 time points post-challenge. Cows are identified 
by number and time-points by colour, with hours post-challenge shown in the inset 
legends. The X-axis shows principal component 1 (PC1) and the Y-axis shows 
principal component 2 (PC2), and embodies 27.5% and 10.9% of the total variance 
respectively. 

 

-24 -19.7 -15.4 -11.1 -6.8 -2.5 1.8 6.1 10.4 14.7 19

-15

-12

-9

-6

-3

0

3

6

9

12

15

PC1   27.5%

P
C

2
  
 1

0
.9

%

3

3

3

3

3

3

6

6

6

6 6

6
4

44

4

4

4

1

1
1

1

1
1

2

2

2

2

2

2

5

5

5

5

5

5

Principal Component Analysis

Time

H0
H312
H36
H42
H57
H81



120 
 

 

Figure 2.11: Scatter plot of the loadings for principal components 1 and 2 
generated from the principal component analysis of bovine proteins in whey 
The data points in this scatter plot are the loadings for proteins (variables). The 
extreme 5 proteins in the top right - bottom left diagonal are highlighted in red 
circles and labelled with their UniProt KB ids. 
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Figure 2.12: Biplot of the scores and loadings for principal components 1 and 
2 generated from the principal component analysis of bovine proteins in whey 
The protein (variable) markers are displayed as arrows and the sample 
(observation) markers are displayed as coloured dots with numbers (cows are 
identified by number and time-points by colour, with hours post-challenge as in 
the previous scatter plot generated from the scores). Principal components 1 and 
2 on the X- and Y-axis respectively are in the standardized unit scale. 
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Table 2.1: Table showing the scores of the top 10 observations for principal 
component 1 in the principal component analysis of bovine proteins in whey 
This table shows the top 10 samples (observations; ranked on squared scores) that 
contribute largest to the principal component 1, and their corresponding scores 
and squared scores. Each observation shows the cow number denoted as C1:6, and 
the post-challenge time-points denoted as H0:312.  

Observations - 
Cow nos. (1:6), 

and time 
points PC 
(H0:H312) 

Scores for 
principal 

component 
1 

Squared 
scores for 
principal 

component 1 

C6H57 23.37948 546.60010 

C5H81 20.74230 430.24300 

C6H81 20.33337 413.44608 

C3H81 19.39554 376.18679 

C2H81 18.71872 350.39052 

C3H0 -18.15210 329.49855 

C5H36 -17.51886 306.91034 

C5H0 -17.17420 294.95319 

C2H0 -16.40480 269.11746 

C4H81 16.30962 266.00376 

 

Table 2.2: Table showing the scores of the top 10 observations for principal 
component 2 in the principal component analysis of bovine proteins in whey 
This table shows the top 10 samples (observations; ranked on squared scores) that 
contribute largest to the principal component 2, and their corresponding scores 
and squared scores. Each observation shows the cow number denoted as C1:6, and 
the post-challenge time-points denoted as H0:312. 

Observations - 
Cow nos. (1:6), 
and time points 
PC (H0:H312) 

Scores for 
principal 

component 2 

Squared scores 
for principal 
component 2 

C5H81 14.81629 219.52231 

C2H42 -14.09655 198.71260 

C2H36 -12.41262 154.07319 

C6H36 -12.36631 152.92562 

C3H42 -12.02843 144.68308 

C5H36 10.08245 101.65583 

C2H81 9.41203 88.58638 

C3H81 9.33415 87.12641 

C1H42 -8.79912 77.42455 

C5H0 8.66939 75.15827 
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Table 2.3: Table showing the loadings of the top 10 variables for principal 
component 1 in the principal component analysis of bovine proteins in whey 
This table shows the top 10 proteins (variables; ranked on squared loadings) that 
contribute largest to the principal component 1, and their corresponding loadings 
and squared loadings. 

UniProtKB 
ID 

Protein name 
Loadings for 

principal 
component 1 

Squared 
loadings for 

principal 
component 1 

P02754 Beta-lactoglobulin -0.07438 0.00553 

P80195 
Glycosylation-dependent cell adhesion 
molecule 1 

-0.07236 0.00524 

E1BLI9 Protein S100-A9 0.07192 0.00517 

P10790 Fatty acid-binding protein, heart -0.07153 0.00512 

Q9BGI1 Peroxiredoxin-5, mitochondrial 0.07142 0.00510 

P81187 Complement factor B 0.07110 0.00506 

P10096 
Glyceraldehyde-3-phosphate 
dehydrogenase 

0.07073 0.00500 

A5D7A0 EF-hand domain-containing protein D2 0.07018 0.00493 

P68250 14-3-3 protein beta/alpha 0.07013 0.00492 

Q5E9F7 Cofilin-1 0.06982 0.00487 

 

Table 2.4: Table showing the loadings of the top 10 variables for principal 
component 2 in the principal component analysis of bovine proteins in whey 
This table shows the top 10 proteins (variables; ranked on squared loadings) that 
contribute largest to the principal component 2, and their corresponding loadings 
and squared loadings. 

UniProtKB 
ID 

Protein name 
Loadings for 

principal 
component 2 

Squared 
loadings for 

principal 
component 2 

Q2KJ62 Kininogen-1 -0.09545 0.00911 

F6QEL0 Cystatin 0.09361 0.00876 

P02769 Serum albumin -0.09062 0.00821 

Q2KJF1 Alpha-1B-glycoprotein -0.08929 0.00797 

F1N5M2 Vitamin D-binding protein -0.08790 0.00773 

P15497 Apolipoprotein A-I -0.08746 0.00765 

P84081 ADP-ribosylation factor 2 0.08522 0.00726 

Q2KIT0 Protein HP-20 homolog -0.08484 0.00720 

A6H7J6 Protein disulfide-isomerase 0.08461 0.00716 

P25417 Cystatin-B 0.08203 0.00673 
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2.4.2.3 Differential expression analysis 

One-way ANOVA test was performed, as described in 2.3.3.3, with time as factor 

to identify proteins that were differentially expressed between pre- and post-

challenge time points. As noted in the methods, proteins that were not detected 

in any of the samples or time-points were considered as missing values and their 

quantities were imputed with a constant value of 10 to simulate the intensities 

from very low abundant proteins (Albrecht et al., 2010, Smaczniak et al., 2012, 

Cox et al., 2014, Webb-Robertson et al., 2015, Ramus et al., 2016, Valikangas et 

al., 2017). For differential expression analysis, no distinction was made between 

proteins that were detected in all samples and those that were detected in a 

subset of samples only. Differentially expressed protein lists were created for each 

PC time-point compared with the pre-challenge (0 hours PC) time-point, and 

proteins with an absolute fold change more than 2 and FDR-adjusted p-value less 

than 0.05 were included in the protein lists. Compared with 0 hours PC, for time-

points 36, 42, 57, 81 and 312 hours PC, there were 76 (54 up-regulated, 22 down-

regulated), 126 (96 up-regulated, 30 down-regulated), 237 (186 up-regulated, 51 

down-regulated), 292 (248 up-regulated, 44 down-regulated) and 56 (49 up-

regulated, 7 down-regulated) differentially expressed proteins, respectively (ESI 

2.4 – ESI 2.8). The top-15 most up-regulated and most down-regulated bovine 

proteins for each time-point as compared to 0 hours PC, are given in Table 2.5 

through Table 2.9. Patterns of up- and down-regulation differed both qualitatively 

(proteins) and quantitatively (fold change) between time points, with strongest 

up- and down-regulation observed at 57 and 81 hours PC.  Up-regulated proteins 

include acute-phase proteins (AP), e.g. haptoglobin and serum amyloid A (SAA); 

antimicrobial proteins, e.g. the cathelicidin family and peptidoglycan recognition 

protein; and APP with antimicrobial function, e.g. histidine-rich glycoprotein 

(HRG) and lipopolysaccharide-binding protein (LBP). Down-regulated proteins 

included cystatin-B, dystroglycan, and mucin-1 in the early stage of the infection 

(36 and 42 hours PC; Table 2.5 and Table 2.6), and myozenin-1 and alpha-

lactalbumin at the subsequent stage (57 and 81 hours PC; Table 2.7 and Table 

2.8). During the resolution phase (312 hours PC), both the number of differentially 

expressed proteins and the fold change were smaller than at earlier infection 

stages, with only 7 proteins still significantly down-regulated (Table 2.9), and in 

agreement with results from HCA and PCA, which also showed a return to normal 

levels at 312 hours PC.
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Table 2.5: Top 15 most up- and down-regulated bovine proteins at 36 hours after intramammary challenge with S. uberis. 
One-way ANOVA test was performed on the 570 quantified bovine proteins, and the top 15 most up-regulated and down-regulated proteins 
at 36 hours after intramammary challenge compared with 0 hours post-challenge are given in the table. Q-value is the ratio of reverse to 
forward protein groups. 

UniProt ID Protein Name Fold 
Change 

P-value 
(ANOVA test) 

Total 
number 
peptides 
identified 

Number of unique or 
razor peptides used 
in identification and 

quantification 

Q-value 
(target-
decoy 

reverse 
search) 

Q8SPP7 Peptidoglycan recognition protein 1 3,305  4.50E-10 3 3 0 

P54229 Cathelicidin-5  1,444  1.90E-08 6 6 0 

P56425 Cathelicidin-7 1,217  1.60E-06 2 1 0 

P22226 Cathelicidin-1 1,026  2.80E-08 4 4 0 

Q2TBU0 Haptoglobin 997 3.80E-08 14 14 0 

F1N465 Kelch repeat and BTB domain containing 8 527 1.50E-03 1 1 0.0099404 

E1BCU6 Transcobalamin 1 401 1.50E-06 4 4 0 

Q9TU03 Rho GDP-dissociation inhibitor 2 313 1.60E-04 7 7 0 

P52176 Matrix metalloproteinase-9 219 1.10E-04 7 7 0 

P33046 Cathelicidin-4 208 2.70E-04 3 2 0 

Q0VCG9 Pentraxin-related protein PTX3 194 1.50E-08 5 5 0 

Q58CQ9 Pantetheinase 189 8.50E-04 6 6 0 

G3MXK8 Proteinase 3 167 1.20E-03 1 1 0 

Q28085 Complement factor H 134 1.60E-03 8 8 0 
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Q3SZV7 Hemopexin 131 4.90E-06 9 9 0 

P81265 Polymeric immunoglobulin receptor -6 2.00E-04 10 10 0 

Q3MHX6 Protein OS-9 -6 4.90E-03 10 10 0 

P10790 Fatty acid-binding protein, heart -7 3.20E-04 8 8 0 

Q8WML4 Mucin-1 -38 2.70E-03 1 1 0.0045351 

P13696 Phosphatidylethanolamine-binding protein 1 -39 1.80E-03 3 3 0 

Q9XSG3 Isocitrate dehydrogenase [NADP] cytoplasmic -50 5.00E-05 8 8 0 

Q9TUM6 Perilipin-2 -61 2.00E-03 4 4 0 

E1BLC6 Tetratricopeptide repeat domain 17 -67 4.30E-03 1 1 1 

F1N1D2 DNA meiotic recombinase 1 -77 4.60E-03 2 2 0.0042194 

O18738 Dystroglycan -77 1.20E-03 3 3 0 

P26201 Platelet glycoprotein 4 -87 1.00E-04 2 2 0 

E1B9W6 Adenylate cyclase 10 -145 2.50E-03 2 2 0.0049628 

F6PZ29 Multiple coagulation factor deficiency 2 -191 3.10E-03 3 3 0 

F6QEL0 Cystatin-B -204 1.80E-04 2 2 0 

E1BN90 Zinc finger with KRAB and SCAN domains 2 -214 4.60E-03 2 2 0.00998 
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Table 2.6: Top 15 most up- and down-regulated bovine proteins at 42 hours after intramammary challenge with S. uberis. 
One-way ANOVA test was performed on the 570 quantified bovine proteins, and the top 15 most up-regulated and down-regulated proteins 
at 42 hours after intramammary challenge compared with 0 hours post-challenge are given in the table. Q-value is the ratio of reverse to 
forward protein groups. 

UniProt ID Protein Name 
Fold 

Change 
P-value 

(ANOVA test) 

Total 
number 
peptides 
identified 

Number of unique or 
razor peptides used 
in identification and 

quantification 

Q-value 
(target-
decoy 

reverse 
search) 

P54229 Cathelicidin-5 9,209 1.50E-10 6 6 0 

P56425 Cathelicidin-7 8,922  1.70E-08 2 1 0 

Q8SPP7 Peptidoglycan recognition protein 1 8,453  3.70E-11 3 3 0 

Q2TBU0 Haptoglobin 4,794  5.20E-10 14 14 0 

P22226 Cathelicidin-1 3,812  7.60E-10 4 4 0 

P33046 Cathelicidin-4 2,619  1.10E-06 3 2 0 

E1BCU6 Transcobalamin 1 1,292  6.10E-08 4 4 0 

P19660 Cathelicidin-2 1,159  3.90E-05 3 2 0 

F1MCC8 NACHT and WD repeat domain containing 1 1,144  5.30E-04 2 2 0.01004 

Q0VCG9 Pentraxin-related protein PTX3 963 4.70E-11 5 5 0 

F1N465 Kelch repeat and BTB domain containing 8 961 6.00E-04 1 1 0.0099404 

F1MKS5 Histidine-rich glycoprotein 775 6.30E-06 8 8 0 

P52176 Matrix metalloproteinase-9 708 7.10E-06 7 7 0 

F1N1F8 Centromere protein F 661 5.70E-03 3 3 0 
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Q9TU03 Rho GDP-dissociation inhibitor 2 614 3.80E-05 7 7 0 

P80457 Xanthine dehydrogenase/oxidase -15 1.10E-02 28 28 0 

P02702 Folate receptor alpha -35 5.60E-03 2 2 0 

P29392 Spermadhesin-1 -42 8.10E-03 2 2 0 

Q8WML4 Mucin-1 -44 1.80E-03 1 1 0.0045351 

P08037 Beta-1,4-galactosyltransferase 1 -51 1.90E-03 6 6 0 

F1MNS0 
HECT and RLD domain containing E3 ubiquitin 
protein ligase family member 1 

-58 2.60E-03 2 2 
0 

P63048 Ubiquitin-60S ribosomal protein L40 -70 3.20E-03 3 3 0 

Q0VCX2 78 kDa glucose-regulated protein -73 2.10E-03 6 5 0 

F1N1D2 DNA meiotic recombinase 1 -77 4.60E-03 2 2 0.0042194 

O18738 Dystroglycan -78 1.20E-03 3 3 0 

P13696 Phosphatidylethanolamine-binding protein 1 -87 2.30E-04 3 3 0 

P26201 Platelet glycoprotein 4 -87 1.00E-04 2 2 0 

F6QEL0 Cystatin-B -97 9.30E-04 2 2 0 

F6PZ29 Multiple coagulation factor deficiency 2 -201 2.80E-03 3 3 0 

E1BN90 Zinc finger with KRAB and SCAN domains 2 -230 4.10E-03 2 2 0.00998 
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Table 2.7: Top 15 most up- and down-regulated bovine proteins at 57 hours after intramammary challenge with S. uberis. 
One-way ANOVA test was performed on the 570 quantified bovine proteins, and the top 15 most up-regulated and down-regulated proteins 
at 57 hours after intramammary challenge compared with 0 hours post-challenge are given in the table. Q-value is the ratio of reverse to 
forward protein groups. 

UniProt ID Protein Name 
Fold 

Change 
P-value 

(ANOVA test) 

Total 
number 
peptides 
identified 

Number of unique or 
razor peptides used 
in identification and 

quantification 

Q-value 
(target-
decoy 

reverse 
search) 

Q8SPP7 Peptidoglycan recognition protein 1 27,479  2.00E-12 3 3 0 

P54229 Cathelicidin-5 16,618  3.40E-11 6 6 0 

Q2TBU0 Haptoglobin 14,937  3.00E-11 14 14 0 

P56425 Cathelicidin-7 11,877  9.10E-09 2 1 0 

P22226 Cathelicidin-1 7,281  1.40E-10 4 4 0 

P33046 Cathelicidin-4 4,753  3.00E-07 3 2 0 

Q9TU03 Rho GDP-dissociation inhibitor 2 4,748  5.00E-07 7 7 0 

F1N1F8 Centromere protein F 4,312  5.90E-04 3 3 0 

F1MYX5 Lymphocyte cytosolic protein 1 2,578  3.90E-07 22 22 0 

Q3ZCJ8 Dipeptidyl peptidase 1 2,530  7.00E-06 8 8 0 

P02584 Profilin-1 2,404  1.00E-06 6 6 0 

P48616 Vimentin 2,155  8.20E-11 19 19 0 

P19660 Cathelicidin-2 2,104  1.20E-05 3 2 0 

E1BI67 Interleukin 18 binding protein 2,095  9.90E-07 2 2 0 
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A5PJH7 LOC788112 protein 1,967  1.90E-07 3 3 0 

P80457 Xanthine dehydrogenase/oxidase -172 1.40E-05 28 28 0 

P79345 Epididymal secretory protein E1 -215 4.80E-03 3 3 0 

O18738 Dystroglycan -222 1.10E-04 3 3 0 

Q32KV6 Nucleotide exchange factor SIL1 -294 8.80E-04 6 6 0 

P29392 Spermadhesin-1 -327 1.30E-04 2 2 0 

E1BGZ9 PHD finger protein 20-like protein 1 -337 2.80E-03 1 1 1 

P41541 General vesicular transport factor p115 -472 1.20E-03 3 3 0.0050505 

E1BN90 Zinc finger with KRAB and SCAN domains 2 -585 1.00E-03 2 2 0.00998 

F6PZ29 Multiple coagulation factor deficiency 2 -675 3.90E-04 3 3 0 

Q58DJ3 Coiled-coil domain containing 183 -824 2.10E-03 1 1 1 

P00711 Alpha-lactalbumin -1,022  4.70E-06 3 3 0 

F1MV51 APC, WNT signalling pathway regulator -1,217  1.00E-03 2 2 0.0047059 

Q8SQ24 Myozenin-1 -3,030  7.20E-04 1 1 0.0045977 

E1BNS8 Salt inducible kinase 1 -4,741  3.00E-03 2 2 0 

Q3ZC66 Cysteine-rich PDZ-binding protein -6,094  1.50E-03 1 1 0.0082816 
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Table 2.8: Top 15 most up- and down-regulated bovine proteins at 81 hours after intramammary challenge with S. uberis. 
One-way ANOVA test was performed on the 570 quantified bovine proteins, and the top 15 most up-regulated and down-regulated proteins 
at 81 hours after intramammary challenge compared with 0 hours post-challenge are given in the table. Q-value is the ratio of reverse to 
forward protein groups. 

UniProt ID Protein Name 
Fold 

Change 
P-value 

(ANOVA test) 

Total 
number 
peptides 
identified 

Number of unique or 
razor peptides used 
in identification and 

quantification 

Q-value 
(target-
decoy 

reverse 
search) 

Q2TBU0 Haptoglobin 28,858  6.10E-12 14 14 0 

Q8SPP7 Peptidoglycan recognition protein 1 17,090  6.30E-12 3 3 0 

P54229 Cathelicidin-5 11,722  8.00E-11 6 6 0 

Q9TU03 Rho GDP-dissociation inhibitor 2 7,794  1.80E-07 7 7 0 

P48616 Vimentin 7,549  2.20E-12 19 19 0 

P56425 Cathelicidin-7 7,316  2.60E-08 2 1 0 

F1MYX5 Lymphocyte cytosolic protein 1 5,417  7.30E-08 22 22 0 

A6QLL8 Fructose-bisphosphate aldolase 4,918  8.90E-10 9 9 0 

E1BLI9 Protein S100-A9 4,847  7.60E-13 8 8 0 

P22226 Cathelicidin-1 4,743  4.30E-10 4 4 0 

Q5E9F7 Cofilin-1 4,636  8.60E-08 5 5 0 

Q9XSJ4 Alpha-enolase 4,619  3.90E-11 14 14 0 

Q3ZBD7 Glucose-6-phosphate isomerase 4,533  5.70E-08 13 13 0 

Q3ZCJ8 Dipeptidyl peptidase 1 3,839  3.10E-06 8 8 0 
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P02584 Profilin-1 3,799  3.70E-07 6 6 0 

Q8WML4 Mucin-1 -102 2.30E-04 1 1 0.0045351 

F1MIR2 Exocyst complex component -119 7.50E-04 1 1 1 

A8YXY3 15 kDa selenoprotein GN=SEP15 -123 1.40E-03 1 1 1 

Q9TUM6 Perilipin-2 -166 2.20E-04 4 4 0 

E1BN90 Zinc finger with KRAB and SCAN domains 2 -221 4.30E-03 2 2 0.00998 

P29392 Spermadhesin-1 -327 1.30E-04 2 2 0 

E1BGZ9 PHD finger protein 20-like protein 1 -337 2.80E-03 1 1 1 

F1MMF2 
BLAST Predicted: Zinc finger protein 239-like 
isoform X2 

-359 4.10E-03 1 1 
1 

Q3ZC66 Cysteine-rich PDZ-binding protein -475 1.90E-02 1 1 0.0082816 

F6PZ29 Multiple coagulation factor deficiency 2 -799 2.90E-04 3 3 0 

Q58DJ3 Coiled-coil domain containing 183 -824 2.10E-03 1 1 1 

E1B9W6 Adenylate cyclase 10 -2,764  1.20E-05 2 2 0.0049628 

Q8SQ24 Myozenin-1 -3,030  7.20E-04 1 1 0.0045977 

F1MV51 APC, WNT signalling pathway regulator -3,282  2.50E-04 2 2 0.0047059 

P00711 Alpha-lactalbumin -7,360  5.80E-08 3 3 0 
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Table 2.9: Top 15 most up-regulated and all 7 down-regulated bovine proteins at 312 hours after intramammary challenge with S. 
uberis. 
One-way ANOVA test was performed on the 570 quantified bovine proteins, and the top 15 most up-regulated and all 7 down-regulated 
proteins at 312 hours after intramammary challenge compared with 0 hours post-challenge are given in the table. Q-value is the ratio of 
reverse to forward protein groups. 

UniProt ID Protein Name 
Fold 

Change 

P-value 
(ANOVA 

test) 

Total 
number 
peptides 
identified 

Number of unique or 
razor peptides used 
in identification and 

quantification 

Q-value 
(target-
decoy 

reverse 
search) 

Q2TBU0 Haptoglobin 4,191  7.40E-10 14 14 0 

G3MZ19 HRPE773-like 1,254  2.60E-06 5 5 0 

P48616 Vimentin 672 3.10E-09 19 19 0 

P30922 Chitinase-3-like protein 1 444 2.30E-07 13 13 0 

E1BKS1 Syndecan 403 8.70E-06 3 3 0 

P54229 Cathelicidin-5 387 7.80E-07 6 6 0 

F1N1Z8 
BLAST Predicted: Zymogen granule protein 16 
homolog B-like 

348 2.60E-05 4 4 
0 

Q8SPP7 Peptidoglycan recognition protein 1 291 5.50E-07 3 3 0 

F1MYX5 Lymphocyte cytosolic protein 1 246 8.70E-05 22 22 0 

P22226 Cathelicidin-1 226 2.40E-06 4 4 0 

Q8SQ28 Serum amyloid A protein 220 2.60E-06 10 10 0 

Q2HJF0 Similar to Serotransferrin 210 3.10E-05 7 6 0 

Q9XSJ4 Alpha-enolase 190 6.70E-07 14 14 0 
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G3X746 Calcineurin binding protein 1 183 4.60E-03 1 1 0 

P33046 Cathelicidin-4 175 3.90E-04 3 2 0 

E1BAU6 Inositol polyphosphate-5-phosphatase E -2 2.10E-03 1 1 0.0043573 

P02192 Myoglobin -2 6.30E-04 4 4 0 

P80195 
Glycosylation-dependent cell adhesion 
molecule 1 

-3 3.80E-03 8 8 
0 

Q0IIH5 Nucleobindin 2 -4 3.90E-05 7 7 0 

E1BLC6 Tetratricopeptide repeat domain 17 -67 4.30E-03 1 1 1 

P13696 Phosphatidylethanolamine-binding protein 1 -87 2.30E-04 3 3 0 

Q8SQ24 Myozenin-1 -642 4.90E-03 1 1 0.0045977 
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The volcano plots (Figure 2.13) visualize the results of the one-way ANOVA test 

for each time-point PC compared with 0 hours PC. The figures show increasing 

number of differentially expressed proteins up to 81 hours PC. They also show the 

change in magnitude increasing up to 81 hours PC. 
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Figure 2.13: Volcano plots showing the magnitude of fold change and statistical 
significance of change in the expression of bovine proteins at the study time-
points in the S. uberis challenge study. 
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Volcano plots showing log2 fold-change of proteins in each contrast (every time-
point compared with 0-hour post-challenge) computed from the one-way ANOVA 
test on the X-axis, and the corresponding p-values in negative log10 scale on the 
Y-axis. The vertical and the horizontal dashed lines respectively mark the fold-
change (>|2|) and p-value (<0.05) threshold applied in creating the differentially 
expressed protein lists. 
 

The expression of 38 proteins in the acute-phase response signalling pathway 

changed over the course of the infection (Table 2.10), with maximum up-

regulation observed from as early as 42 hours, e.g. for HRG and alpha-2-

macroglobulin, to as late as 312 hours for complement C1 subcomponent and 

retinol-binding protein. Less than half of these proteins (n = 16) were significantly 

up-regulated at all time points PC. Of proteins with more than 10-fold up-

regulation, 5 were most strongly up-regulated at 42 hours, 6 at 57 hours, 11 at 81 

hours, and 2 at 312 hours PC. Haptoglobin was the most strongly up-regulated 

protein at all time points PC. SAA was also strongly up-regulated but differences 

were observed between different isoforms, whereby SAA4 showed a modest peak 

at 42 hours PC whilst SAA1 and SAA3 showed much stronger and later peaks in up-

regulation, that is over a 1,000-fold at 81 hours PC. Interleukin-1 receptor agonist 

was the only protein that was up-regulated at 36 through 81 hours PC and had 

return to the pre-challenge value during the resolution phase at 312 hours. Unlike 

APP, the antimicrobial proteins showed strong up-regulation at all time points and 

all reached peak expression increases of several 1,000 or 10,000 fold at 57 hours 

PC. By 312 hours PC, their up-regulation levels had decreased to several 100 fold 

or less.
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Table 2.10: Temporal changes in acute-phase proteins and antimicrobial proteins in the bovine whey proteome in the S. uberis 
challenge study. 

Acute-phase proteins were identified using the Ingenuity Pathway Analysis database and fold-changes compared to 0 hours post-challenge and p-values (showed 
in italics if not <0.05) were based on one-way ANOVA. Antimicrobial proteins were included for comparison. For proteins with a fold change >10, the time-
point with strongest up- or down regulation is highlighted. Values >10 are rounded to the nearest integer. 

UniProt 
ID 

Protein Name 

Fold change at specified time-points PC 
(hours) 

P-value at specified time-points PC (hours) 

36 42 57 81 312 36 42 57 81 312 

Acute-phase Proteins 

Q3SZR3 Alpha-1-acid glycoprotein 1.6 1.8 1.8 1.8 1.2 1.00E-01 6.00E-02 5.00E-02 5.00E-02 5.00E-01 

P28800 Alpha-2-antiplasmin 4.9 5.9 4.6 3.1 1.4 4.00E-05 8.00E-06 7.00E-05 2.00E-03 4.00E-01 

P12763 Alpha-2-HS-glycoprotein 1.4 1.8 1.7 1.2 -1.4 6.00E-02 3.00E-03 6.00E-03 4.00E-01 6.00E-02 

Q7SIH1 Alpha-2-macroglobulin 68 170 128 102 33 2.00E-04 2.00E-05 4.00E-05 7.00E-05 2.00E-03 

P15497 Apolipoprotein A-I 6.3 8 6.8 4.1 1.5 3.00E-05 5.00E-06 2.00E-05 7.00E-04 3.00E-01 

P81644 Apolipoprotein A-II 11 22 14 5.1 -1.4 4.00E-02 1.00E-02 3.00E-02 2.00E-01 8.00E-01 

Q0VCX1 Complement C1s subcomponent 1 1 2.2 20 31 1.00E+00 1.00E+00 4.00E-01 4.00E-03 1.00E-03 

Q3SYW2 Complement C2 11 8.7 19 84 81 2.00E-02 4.00E-02 6.00E-03 1.00E-04 1.00E-04 

Q2UVX4 Complement C3 1.3 1.3 1.3 1.4 2 1.00E-01 1.00E-01 1.00E-01 6.00E-02 4.00E-04 

F1MY85 Complement C5a anaphylatoxin 32 32 210 129 21 2.00E-02 2.00E-02 4.00E-04 1.00E-03 3.00E-02 

P81187 Complement factor B 3.2 4.1 7.4 8.2 2.8 1.00E-04 6.00E-06 1.00E-08 4.00E-09 4.00E-04 

F1N076 CP Protein 3.5 4.2 4.4 3.7 2.9 3.00E-05 4.00E-06 3.00E-06 2.00E-05 3.00E-04 

P50448 Factor XIIa inhibitor -2.5 -2.4 -3 -3.2 -1.2 6.00E-03 7.00E-03 1.00E-03 6.00E-04 6.00E-01 

P02676 Fibrinogen beta chain 1.2 1.9 13 9.9 7.5 8.00E-01 2.00E-01 2.00E-05 1.00E-06 5.00E-04 

F1MGU7 Fibrinogen gamma-B chain -1.7 1.1 3.4 2.9 3.1 2.00E-01 9.00E-01 3.00E-03 7.00E-03 5.00E-03 

Q2TBU0 Haptoglobin 997 4,794 14,937 28,858 4,191 4.00E-08 5.00E-10 3.00E-11 6.00E-12 7.00E-10 

Q3SZV7 Hemopexin 131 153 170 158 73 5.00E-06 3.00E-06 2.00E-06 3.00E-06 3.00E-05 

Q3T0D0 Heterogeneous nuclear ribonucleoprotein K 1 4.7 2.5 66 1 1.00E+00 1.00E-01 3.00E-01 8.00E-05 1.00E+00 
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F1MKS5 Histidine-rich glycoprotein 106 775 760 451 30 6.00E-04 6.00E-06 7.00E-06 2.00E-05 9.00E-03 

F1MNW4 Inter-alpha-trypsin inhibitor HC2 51 143 78 52 38 3.00E-03 3.00E-04 1.00E-03 3.00E-03 5.00E-03 

Q3T052 Inter-alpha-trypsin inhibitor HC4 14 21 34 38 16 5.00E-03 1.00E-03 3.00E-04 2.00E-04 3.00E-03 

Q0VC51 Interleukin 1 receptor accessory 2.4 2.4 213 267 1 3.00E-01 2.00E-01 5.00E-08 2.00E-08 1.00E+00 

O77482 Interleukin-1 receptor antagonist 30 80 325 176 1 2.00E-04 8.00E-06 7.00E-08 5.00E-07 1.00E+00 

Q2TBI0 Lipopolysaccharide-binding protein 28 84 395 693 113 2.00E-04 5.00E-06 2.00E-08 4.00E-09 2.00E-06 

C4T8B4 Pentaxin 13 7.2 45 82 1 6.00E-02 2.00E-01 8.00E-03 3.00E-03 1.00E+00 

P06868 Plasminogen 31 33 76 71 13 2.00E-02 2.00E-02 4.00E-03 4.00E-03 7.00E-02 

P00978 Protein AMBP 16 5.1 26 16 1.2 4.00E-02 2.00E-01 2.00E-02 4.00E-02 9.00E-01 

P18902 Retinol-binding protein 4 2.3 2.2 -1.4 2.4 23 4.00E-01 4.00E-01 7.00E-01 4.00E-01 2.00E-03 

Q29443 Serotransferrin 4.3 5.4 5.1 4 2.2 2.00E-04 3.00E-05 5.00E-05 4.00E-04 3.00E-02 

A6QPQ2 Serpin A3-8 20 158 246 283 37 3.00E-02 5.00E-04 2.00E-04 2.00E-04 1.00E-02 

G8JKW7 SERPINA3 Protein 2.7 3 2.9 4 2.8 2.00E-03 1.00E-03 1.00E-03 8.00E-05 2.00E-03 

P02769 Serum albumin 1.9 2.2 2.1 1.4 -1.4 6.00E-03 1.00E-03 2.00E-03 2.00E-01 1.00E-01 

F1MMW8 Serum amyloid A protein - M-SAA3.2 20 58 107 358 73 5.00E-04 1.00E-07 1.00E-06 1.00E-08 4.00E-06 

P35541 Serum amyloid A protein - SAA1 5 49 1,178 1,926 6.5 1.00E-01 2.00E-03 6.00E-07 2.00E-07 1.00E-01 

Q8SQ28 Serum amyloid A protein  - SAA3 93 201 556 1,585 220 4.00E-05 3.00E-06 2.00E-07 8.00E-09 3.00E-06 

Q32L76 Serum amyloid A protein - SAA4 17 66 27 10 2 4.00E-02 3.00E-03 2.00E-02 9.00E-02 6.00E-01 

O46375 Transthyretin 2.4 2.2 1.9 1.3 -1.2 3.00E-03 7.00E-03 3.00E-02 3.00E-01 5.00E-01 

Antimicrobial proteins 

P22226 Cathelicidin-1 1,026 3,812 7,281 4,743 226 3.00E-08 8.00E-10 1.00E-10 4.00E-10 2.00E-06 

P19660 Cathelicidin-2 78 1,159 2,104 1,683 38 6.00E-03 4.00E-05 1.00E-05 2.00E-05 2.00E-02 

P33046 Cathelicidin-4 208 2,619 4,753 2,963 175 3.00E-04 1.00E-06 3.00E-07 8.00E-07 4.00E-04 

P54229 Cathelicidin-5 1,444 9,209 16,618 11,722 387 2.00E-08 2.00E-10 3.00E-11 8.00E-11 8.00E-07 

P56425 Cathelicidin-7 1,217 8,922 11,877 7,316 178 2.00E-06 2.00E-08 9.00E-09 3.00E-08 3.00E-02 

Q8SPP7 Peptidoglycan recognition protein 1 3,305 8,453 27,479 17,090 291 5.00E-10 4.00E-11 2.00E-12 6.00E-12 6.00E-07 
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2.4.2.4 Pathway analysis 

To find enriched signalling and metabolic pathways in the differentially expressed 

bovine proteins, IPA was used as described at 2.3.3.4. Figures 2.10 – 2.14 show 

the enriched pathways in the differentially expressed proteins at different time-

points in the study. The acute-phase response signalling pathway was the most 

enriched pathway at each time point, with a positive Z-score indicating 

upregulation. The liver X receptor (LXR), retinoid X receptor (LXR) and Farnesoid 

X receptor (FXR) activation pathways were also enriched following intramammary 

challenge.  The complement system pathway showed a change from down-

regulation at 36 hours PC (Figure 2.14) to up-regulation at 81 hours PC (Figure 

2.17). Interleukin (IL) 6 signalling is significantly up-regulated at 57 and 81 hours 

PC only (Figure 2.16 & Figure 2.17). Other pathways are also up-regulated at those 

time-points, including Rho signalling, integrin signalling and leucocyte 

extravasation signalling, whilst an additional pathway is up-regulated at 81 hours 

PC only, i.e. Cdc42 signalling (Figure 2.17). 
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Figure 2.14: Signalling pathways enriched in the differentially expressed 
bovine proteins at 36 hours post-challenge (PC) compared with 0 hours PC. 
Signalling pathways enriched in the differentially expressed bovine proteins (n = 
76) at 36 hours PC were analysed in Ingenuity® Pathway Analysis software, and 
the pathways significantly enriched are shown in the figure. The length of the bar 
against each pathway shows the negative log of the p-value obtained by a Fisher’s 
exact test (the significance of enrichment; the longer the better), and the colour 
of the bar indicates the direction and strength of regulation inferred from the 
activation Z-score (red: upregulation, grey: no activity pattern available; blue: 
downregulated; white: z-score = 0, indicating upregulation of some proteins and 
downregulation of others resulting in zero sum), with intensity of colour indicating 
the strength of the effect. Ratio indicates the proportion of proteins out of the 
entire pathway that were identified in the query set, e.g. for ratio = 0.10, 10% of 
proteins from the pathway were identified in the differentially expressed proteins. 
LXR = liver X receptor, RXR = retinoid X receptor, FXR = Farnesoid X receptor, LPS 
= lipopolysaccharide, IL = interleukin. 
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Figure 2.15: Signalling pathways enriched in the differentially expressed 
bovine proteins at 42 hours post-challenge (PC) compared with 0 hours PC. 
Signalling pathways enriched in the differentially expressed bovine proteins (n = 
126) at 42 hours PC were analysed in Ingenuity® Pathway Analysis software, and 
the pathways significantly enriched are shown in the figure. The length of the bar 
against each pathway shows the negative log of the p-value obtained by a Fisher’s 
exact test (the significance of enrichment; the longer the better), and the colour 
of the bar indicates the direction and strength of regulation inferred from the 
activation Z-score (red: upregulation, grey: no activity pattern available; blue: 
downregulated; white: z-score = 0, indicating upregulation of some proteins and 
downregulation of others resulting in zero sum), with intensity of colour indicating 
the strength of the effect. Ratio indicates the proportion of proteins out of the 
entire pathway that were identified in the query set, e.g. for ratio = 0.10, 10% of 
proteins from the pathway were identified in the differentially expressed 
proteins. LXR = liver X receptor, RXR = retinoid X receptor, FXR = Farnesoid X 
receptor, LPS = lipopolysaccharide, IL = interleukin, TR =  thyroid receptor. 
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Figure 2.16: Signalling pathways enriched in the differentially expressed 
bovine proteins at 57 hours post-challenge (PC) compared with 0 hours PC. 
Signalling pathways enriched in the differentially expressed bovine proteins (n = 
237) at 57 hours PC were analysed in Ingenuity® Pathway Analysis software, and 
the pathways significantly enriched are shown in the figure. The length of the bar 
against each pathway shows the negative log of the p-value obtained by a Fisher’s 
exact test (the significance of enrichment; the longer the better), and the colour 
of the bar indicates the direction and strength of regulation inferred from the 
activation Z-score (red: upregulation, grey: no activity pattern available; blue: 
downregulated; white: z-score = 0, indicating upregulation of some proteins and 
downregulation of others resulting in zero sum), with intensity of colour indicating 
the strength of the effect. Ratio indicates the proportion of proteins out of the 
entire pathway that were identified in the query set, e.g. for ratio = 0.10, 10% of 
proteins from the pathway were identified in the differentially expressed 
proteins. LXR = liver X receptor, RXR = retinoid X receptor, FXR = Farnesoid X 
receptor, IL = interleukin, PPAR = peroxisome proliferator-activated receptor. 
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Figure 2.17: Signalling pathways enriched in the differentially expressed 
bovine proteins at 81 hours post-challenge (PC) compared with 0 hours PC. 
Signalling pathways enriched in the differentially expressed bovine proteins (n = 
292) at 81 hours PC were analysed in Ingenuity® Pathway Analysis software, and 
the pathways significantly enriched are shown in the figure. The length of the bar 
against each pathway shows the negative log of the p-value obtained by a Fisher’s 
exact test (the significance of enrichment; the longer the better), and the colour 
of the bar indicates the direction and strength of regulation inferred from the 
activation Z-score (red: upregulation, grey: no activity pattern available; blue: 
downregulated; white: z-score = 0, indicating upregulation of some proteins and 
downregulation of others resulting in zero sum), with intensity of colour indicating 
the strength of the effect. Ratio indicates the proportion of proteins out of the 
entire pathway that were identified in the query set, e.g. for ratio = 0.10, 10% of 
proteins from the pathway were identified in the differentially expressed 
proteins. LXR = liver X receptor, RXR = retinoid X receptor, FXR = Farnesoid X 
receptor, IL = interleukin, Cdc42 = cell division cycle protein 42. 
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Figure 2.18: Signalling pathways enriched in the differentially expressed 
bovine proteins at 312 hours post-challenge (PC) compared with 0 hours PC. 
Signalling pathways enriched in the differentially expressed bovine proteins (n = 
56) at 312 hours PC were analysed in Ingenuity® Pathway Analysis software, and 
the pathways significantly enriched are shown in the figure. The length of the bar 
against each pathway shows the negative log of the p-value obtained by a Fisher’s 
exact test (the significance of enrichment; the longer the better), and the colour 
of the bar indicates the direction and strength of regulation inferred from the 
activation Z-score (red: upregulation, grey: no activity pattern available; blue: 
downregulated; white: z-score = 0, indicating upregulation of some proteins and 
downregulation of others resulting in zero sum), with intensity of colour indicating 
the strength of the effect. Ratio indicates the proportion of proteins out of the 
entire pathway that were identified in the query set, e.g. for ratio = 0.10, 10% of 
proteins from the pathway were identified in the differentially expressed 
proteins. LXR = liver X receptor, RXR = retinoid X receptor, FXR = Farnesoid X 
receptor, IL = interleukin. 

 

2.4.3 Quantification and analysis of the bacterial proteome 

Using the Streptococcus uberis reference proteome described at section 2.3.3.2, 

a total of 1,289 non-redundant peptides were identified in the analysis from all 

the 36 samples, and from which 183 S. uberis bacterial proteins were quantified 

(ESI 2.9: Bacterial_peptides_and_proteins.xlsx). As with the bovine proteins, 

exploratory data analysis such as hierarchical clustering analysis and principal 

components analysis were performed on the quantified S. uberis proteins. 
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2.4.3.1 Hierarchical clustering analysis 

A hierarchical clustering analysis using Euclidean distance as distance metric and 

average linkage as agglomeration method was performed on the 183 quantified S. 

uberis proteins. The hierarchical clustering analysis (Figure 2.19) shows clustering 

of pre-challenge (time-point 0 hours PC) samples. Samples from 312 hours PC 

time-point are present close to the 0 hours PC samples. 

 

Figure 2.19: Heat map of S. uberis proteins in whey showing hierarchical 
clustering of milk samples. 
This heat map was generated using Partek® Genomics Suite® software from the 
183 proteins that were quantified using the S. uberis proteome. Hierarchical 
clustering analysis was performed using Euclidean distance as distance metric and 
average linkage as agglomeration method. The column dendrogram shows 
clustering of the milk samples. The time-points by colour, with hours post-
challenge shown in the inset legends, and the individual cows are identified by 
numbers. Scale bar indicates standardized (mean of zero and scale to standard 
deviation of one) protein expression. 

Hierarchical Clustering

-2.00 0.00 2.00

Time H0 H36 H42 H57 H81 H312 Co... 1 2 3 4 5 6

6 1 4 2 1 6 3 6 1 3 4 1 3 4 3 4 2 5 1 5 2 6 3 4 5 6 5 2 5
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2.4.3.2 Principal component analysis 

As with the bovine proteins, to further examine the 183 bacterial proteins in the 

dataset, a principal component analysis (PCA) was performed as described in 

2.3.3.3, and the samples were plotted using principal component 1 (PC1), and 

principal component 2 (PC2) (Figure 2.20). Although the samples are not distinctly 

clustered as in the bovine proteins, the PCA shows separation of samples based on 

the time-points on PC1. Milk samples from cow 5 which showed delayed response 

in the bovine proteins dataset can be seen as outliers at 36 and 42 hours PC. 

 

Figure 2.20: Principal component analysis of S. uberis proteins in whey. 
The PCA plot was generated using Partek® Genomics Suite® software from the 183 
proteins that were quantified using the S. uberis proteome. The data points refer 
to milk samples obtained from 6 cows at 6 time points post-challenge. Cows are 
identified by number and time-points by colour, with hours post-challenge shown 
in the inset legends. The X-axis shows principal component 1 (PC1) and the Y-axis 
shows principal component 2 (PC2), and embodies 14.4% and 8.56% of the total 
variance respectively. 

 

 

-10 -8.2 -6.4 -4.6 -2.8 -1 0.8 2.6 4.4 6.2 8

-12

-10.3

-8.6

-6.9

-5.2

-3.5

-1.8

0

1.6

3.3

5

PC1    14.4%

P
C

2
  

  
  

8
.5

6
%

1
2

5

3

6

4

1

25 3

6

4

1

2

5

3

6

4 1

2
5

3

6

4
1

2

5

3

6
4

1

2

5

3

6

4

Principal Component Analysis (S. uberis Proteins)

Time

H0
H312
H36
H42
H57
H81



148 
 
2.4.3.3 Differential expression analysis 

To identify differentially expressed proteins between the pre-challenge (0 hours 

PC) and the rest of the time-points, a one-way ANOVA test with time as factor was 

performed. As for the bovine proteins, differentially expressed protein lists were 

created for each contrast, and proteins with an absolute fold change more than 2 

and FDR-adjusted p-value less than 0.05 were included in the protein lists. There 

were 5, 18, 25, 39 and 9 differentially expressed proteins in the lists from 

contrasts comparing 36 hours, 42 hours, 57 hours, 81 hours and 312 hours PC with 

0 hours PC respectively. Of the differentially expressed proteins in these lists, 1 

protein was up-regulated and 4 proteins were down-regulated at 36 hours PC, 5 

were up-regulated and 13 were down-regulated at 42 hours PC, 11 were up-

regulated and 14 were down-regulated at 57 hours PC, 21 were up-regulated and 

18 were down-regulated at 81 hours PC, and 5 were up-regulated and 4 were 

down-regulated at 312 hours PC compared with 0 hours PC. The differentially 

expressed bacterial proteins in each contrast are given in Table 2.11 – Table 2.15.
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Table 2.11: List of differentially expressed bacterial proteins at 36 hours PC. 
One-way ANOVA test was performed on the 183 S. uberis proteins, and 5 proteins were differentially expressed (cut-off threshold: fold-
change > |2| and FDR-adjusted p-value > 0.05) at 36 hours compared with 0 hours PC. Q-value is the ratio of reverse to forward protein 
groups. 

UniProt ID Protein Name 
Fold 

Change 

P-value 
(ANOVA 

test)  

Total 
number 
peptides 
identified 

Number of unique 
or razor peptides 

used in 
identification and 

quantification 

Q-value 
(target-
decoy 

reverse 
search) 

B9DUC0 Putative phage repressor-like protein 49 6.97E-06 1 1 1 

B9DRS9 Glycogen phosphorylase -89 7.38E-06 3 3 0.0076923 

B9DTK6 Putative glutamine ABC transporter, ATP-binding protein 2 -171 3.98E-04 1 1 1 

B9DRY9 Homoserine dehydrogenase -173 6.40E-04 1 1 1 

B9DTW3 CutC family protein -223 6.53E-07 1 1 0 
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Table 2.12: List of differentially expressed bacterial proteins at 42 hours PC. 
One-way ANOVA test was performed on the 183 S. uberis proteins, and 18 proteins were differentially expressed (cut-off threshold: fold-
change > |2| and FDR-adjusted p-value > 0.05) at 42 hours compared with 0 hours PC. Q-value is the ratio of reverse to forward protein 
groups. 

UniProt ID Protein Name 
Fold 

Change 

P-value 
(ANOVA 

test)  

Total 
number 
peptides 
identified 

Number of unique 
or razor peptides 

used in 
identification and 

quantification 

Q-value 
(target-
decoy 

reverse 
search) 

B9DSB5 Putative membrane protein 299 2.41E-03 1 1 
0 

B9DTB8 GTP pyrophosphokinase 176 7.78E-04 3 3 
0 

B9DUC0 Putative phage repressor-like protein 89 6.83E-07 1 1 
1 

B9DRT7 ATP synthase epsilon chain 40 8.47E-04 1 1 
1 

B9DRU4 Phenylalanine-tRNA ligase beta subunit 30 4.48E-03 1 1 
1 

B9DRY5 Peptide deformylase -29 6.97E-04 1 1 
1 

B9DRS9 Glycogen phosphorylase -42 9.28E-05 3 3 
0.0076923 

B9DUM5 Fibronectin/fibrinogen-binding protein -49 2.32E-03 3 3 
0 

B9DUI0 BLAST Predicted: Hypothetical protein WP_012658523.1 -57 2.18E-03 2 2 
1 

B9DU65 Mevalonate diphosphate decarboxylase -71 6.00E-04 1 1 
1 

B9DTW3 CutC family protein -80 1.84E-05 1 1 
0 

B9DTC7 Putative preprotein translocase subunit -150 2.85E-03 2 2 
0.0075758 

B9DS33 Haloacid dehalogenase-like hydrolase -157 2.76E-03 1 1 
0 

B9DTK6 Putative glutamine ABC transporter, ATP-binding protein 2 -164 4.40E-04 1 1 
1 
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B9DRY0 ABC transporter ATP-binding protein -176 3.19E-03 2 2 
1 

B9DT15 Putative fructan beta-fructosidase -464 1.12E-04 3 3 
0 

B9DUL8 ABC transporter ATP-binding protein -1079 2.36E-03 1 1 
0 

B9DRY9 Homoserine dehydrogenase -2578 2.37E-06 1 1 
1 
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Table 2.13: List of differentially expressed bacterial proteins at 57 hours PC. 
One-way ANOVA test was performed on the 183 S. uberis proteins, and 25 proteins were differentially expressed (cut-off threshold: fold-
change > |2| and FDR-adjusted p-value > 0.05) at 57 hours compared with 0 hours PC. Q-value is the ratio of reverse to forward protein 
groups. 

UniProt ID Protein Name 
Fold 

Change 

P-value 
(ANOVA 

test)  

Total 
number 
peptides 
identified 

Number of unique 
or razor peptides 

used in 
identification and 

quantification 

Q-value 
(target-
decoy 

reverse 
search) 

B9DWE9 Tryptophanyl-tRNA synthetase 342 1.62E-06 1 1 1 

B9DSS6 Putative beta-galactosidase 307 1.03E-03 1 1 1 

B9DUC0 Putative phage repressor-like protein 192 3.71E-08 1 1 1 

B9DTB8 GTP pyrophosphokinase 190 6.75E-04 3 3 0 

B9DRT7 ATP synthase epsilon chain 185 1.17E-05 1 1 1 

B9DU62 Aspartate carbamoyltransferase 170 5.41E-04 1 1 1 

B9DUQ4 Putative lipoprotein 136 3.83E-03 3 3 0 

B9DVB7 Translation initiation factor IF-2 120 4.76E-05 1 1 1 

B9DRU4 Phenylalanine-tRNA ligase beta subunit 117 1.64E-04 1 1 1 

B9DWD2 
tRNA uridine 5-carboxymethylaminomethyl modification 
enzyme MnmG 

83 1.11E-03 3 3 
0 

B9DSY6 ABC transporter ATP-binding membrane protein 55 1.61E-04 1 1 0 

B9DS38 Putative 6-phospho-beta-glucosidase -10 4.33E-03 5 5 0 

B9DSZ4 Putative penicillin-binding protein 1B -29 2.22E-03 1 1 1 

B9DRY5 Peptide deformylase -54 1.07E-04 1 1 1 
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B9DRS9 Glycogen phosphorylase -89 7.38E-06 3 3 0.0076923 

B9DUM5 Fibronectin/fibrinogen-binding protein -104 4.11E-04 3 3 0 

B9DTW3 CutC family protein -223 6.53E-07 1 1 0 

B9DS33 Haloacid dehalogenase-like hydrolase -255 1.22E-03 1 1 1 

B9DUI0 BLAST Predicted: Hypothetical protein WP_012658523.1 -298 5.20E-05 2 2 1 

B9DTC7 Putative preprotein translocase subunit -503 3.51E-04 2 2 0.0075758 

B9DRY0 ABC transporter ATP-binding protein -604 4.17E-04 2 2 1 

B9DT15 Putative fructan beta-fructosidase -1414 1.15E-05 3 3 0 

B9DTK6 Putative glutamine ABC transporter, ATP-binding protein 2 -1424 3.99E-06 1 1 1 

B9DRY9 Homoserine dehydrogenase -2578 2.37E-06 1 1 1 

B9DUL8 ABC transporter ATP-binding protein -5696 2.79E-04 1 1 0 
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Table 2.14: Top 30 differentially expressed bacterial proteins at 81 hours PC. 
One-way ANOVA test was performed on the 183 S. uberis proteins, and 39 proteins were differentially expressed (cut-off threshold: fold-
change > |2| and FDR-adjusted p-value > 0.05) at 81 hours compared with 0 hours PC. Q-value is the ratio of reverse to forward protein 
groups. 

UniProt ID Protein Name 
Fold 

Change 

P-value 
(ANOVA 

test)  

Total 
number 
peptides 
identified 

Number of unique 
or razor peptides 

used in 
identification and 

quantification 

Q-value 
(target-
decoy 

reverse 
search) 

B9DTQ2 Putative primosomal protein 242 2.22E-03 2 2 1 

B9DTW4 Phosphoserine aminotransferase 215 1.07E-03 1 1 1 

B9DSS6 Putative beta-galactosidase 179 2.56E-03 1 1 1 

B9DUC0 Putative phage repressor-like protein 145 1.07E-07 1 1 1 

B9DWE9 Tryptophanyl-tRNA synthetase 138 2.20E-05 1 1 1 

B9DWD2 
tRNA uridine 5-carboxymethylaminomethyl modification 
enzyme MnmG 

109 6.18E-04 3 3 
0 

B9DUQ4 Putative lipoprotein 108 5.53E-03 3 3 0 

B9DRU4 Phenylalanine-tRNA ligase beta subunit 107 2.08E-04 1 1 1 

B9DSY6 ABC transporter ATP-binding membrane protein 89 3.90E-05 1 1 0 

B9DW71 Putative exported protein 81 1.07E-03 1 1 1 

B9DS93 Deoxyribose-phosphate aldolase 76 4.94E-03 1 1 1 

B9DTB8 GTP pyrophosphokinase 70 4.46E-03 3 3 0 

B9DWE4 Uncharacterized protein GN=SUB1858 70 5.43E-04 3 3 0.0081967 

B9DV74 DEAD-box ATP-dependent RNA helicase CshB 51 4.66E-03 1 1 1 
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B9DRT7 ATP synthase epsilon chain 46 5.99E-04 1 1 1 

B9DRY5 Peptide deformylase -54 1.07E-04 1 1 1 

B9DU65 Mevalonate diphosphate decarboxylase -55 1.11E-03 1 1 1 

B9DRS9 Glycogen phosphorylase -89 7.38E-06 3 3 0.0076923 

B9DTC7 Putative preprotein translocase subunit -91 6.58E-03 2 2 0.0075758 

B9DUM5 Fibronectin/fibrinogen-binding protein -104 4.11E-04 3 3 0 

B9DWF1 ABC transporter, ATP-binding protein -113 1.02E-02 1 1 1 

B9DTR0 Putative aminodeoxychorismate lyase -115 4.93E-03 2 2 1 

B9DUI0 BLAST Predicted: Hypothetical protein WP_012658523.1 -140 2.99E-04 2 2 1 

B9DTW3 CutC family protein -223 6.53E-07 1 1 0 

B9DS33 Haloacid dehalogenase-like hydrolase -469 4.18E-04 1 1 1 

B9DRY0 ABC transporter ATP-binding protein -604 4.17E-04 2 2 1 

B9DT15 Putative fructan beta-fructosidase -631 5.98E-05 3 3 0 

B9DTK6 Putative glutamine ABC transporter, ATP-binding protein 2 -1424 3.99E-06 1 1 1 

B9DRY9 Homoserine dehydrogenase -2578 2.37E-06 1 1 1 

B9DUL8 ABC transporter ATP-binding protein -5696 2.79E-04 1 1 0 
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Table 2.15: List of differentially expressed bacterial proteins at 312 hours PC. 
One-way ANOVA test was performed on the 183 S. uberis proteins, and 9 proteins were differentially expressed (cut-off threshold: fold-
change > |2| and FDR-adjusted p-value > 0.05) at 312 hours compared with 0 hours PC. Q-value is the ratio of reverse to forward protein 
groups. 

UniProt ID Protein Name 
Fold 

Change 

P-value 
(ANOVA 

test) 

Total 
number 
peptides 
identified 

Number of unique 
or razor peptides 

used in 
identification and 

quantification 

Q-value 
(target-
decoy 

reverse 
search) 

B9DUQ4 Putative lipoprotein 706 2.28E-04 3 3 0 

B9DTB8 GTP pyrophosphokinase 676 5.28E-05 3 3 0 

B9DW71 Putative exported protein 70 1.49E-03 1 1 1 

B9DUG8 Cation efflux family protein 66 2.65E-04 2 2 1 

B9DTF2 50S ribosomal protein L13 10 5.46E-04 1 1 1 

B9DRS9 Glycogen phosphorylase -39 1.20E-04 3 3 0.0076923 

B9DT15 Putative fructan beta-fructosidase -163 9.03E-04 3 3 0 

B9DTW3 CutC family protein -223 6.53E-07 1 1 0 

B9DRY9 Homoserine dehydrogenase -2578 2.37E-06 1 1 1 
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2.5 Discussion 

This chapter presents a label-free quantitative proteomics study used for profiling 

the bovine whey proteome during experimentally induced S. uberis mastitis 

(Mudaliar et al., 2016, Tassi et al., 2013). This study quantified 570 bovine 

proteins in the whey proteome over the course of the experimentally induced S. 

uberis mastitis (Tassi et al., 2013), and allowed quantification of the relative 

change in multiple proteins over the course of the infection. This dynamic change 

in the expression of whey proteins was studied to reveal for the first time the 

differential expression of individual proteins in milk during the course of S. uberis 

mastitis. Aliquots of the milk samples collected in the same challenge study (Tassi 

et al., 2013) were used in generating metabolites profiles (Thomas et al., 2016), 

which are included in Chapter 3. These studies enabled integrative analysis of 

dynamic change in proteins and metabolites in milk during the course of mastitis 

in synchronisation with the clinical and bacteriological manifestations of infection 

(Tassi et al., 2013) which is described in Chapter 4. Furthermore, by examining 

sequential time points following bacterial challenge, the temporal changes in 

important host response pathways were revealed. Thus at 36 hours post-challenge 

(PC), the first time-point examined, peptidoglycan recognition protein 1 and the 

cathelicidins, which are antimicrobial proteins (AMP) show the highest fold 

increase, reaching a peak at 57 hours PC. In contrast, APP such as haptoglobin, 

LBP and SAA increased at a slower rate and reached a peak by 81 hours PC. 

2.5.1 Label-free quantitative proteomics 

Changes in the milk proteome during mastitis due to infection with S. uberis, 

Streptococcus agalactiae, Staphylococcus aureus or Escherichia coli have been 

studied previously using proteomics techniques (Smolenski et al., 2007, Ibeagha-

Awemu et al., 2010, Turk et al., 2012, Bian et al., 2014, Pongthaisong et al., 

2016). Many of these proteomics studies used gel-based techniques, which are 

semi-quantitative in nature. Recently more precise quantification of proteins 

using different approaches such as iTRAQ or QconCAT have been described 

(Hettinga et al., 2011, Bislev et al., 2012b, Reinhardt et al., 2013, Zhang et al., 

2015) and reviewed (Mudaliar et al., 2017). Compared with the previous studies, 

the method used in this study was able to yield relative quantification of 570 

proteins, which is among the highest number that have been determined, being 
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exceeded only in the study of Reinhardt and co-workers (Reinhardt et al., 2013), 

which used a 2-dimensional liquid chromatography.  While the 2-dimensional 

liquid chromatography hugely increases the depth of coverage, it increases the 

mass spectrometry analysis time by about 10-fold, and is not suitable for label-

free quantitative analysis. In addition, they also depleted both caseins and 

lactoglobins in skimmed milk in order to enhance detection of low abundance 

proteins (Reinhardt et al., 2013). 

Biological complexity of cows’ milk, particularly the extreme dynamic range, 

which covers low abundance whey proteins and highly abundant caseins, presents 

a challenge for proteomic analysis. In LC-MS/MS-based analysis, a few highly 

abundant proteins in milk mask the quantitation of low abundance proteins. 

Therefore, in order to accurately quantitate low-abundant proteins, it is necessary 

to deplete the caseins that constitute approximately 82% of total proteins in 

skimmed milk and lactoglobulins in whey that constitute approximately 50% of the 

total whey protein (Alonso-Fauste et al., 2012, Baeker et al., 2002, Boehmer et 

al., 2008, Hogarth et al., 2004, Smolenski et al., 2007, Smolenski et al., 2014). 

Failure to deplete high abundance proteins may affect the number of proteins that 

can be identified, as was the case in a label free quantification based study of 

temporal changes during coliform mastitis (Boehmer et al., 2010b). In order to 

obtain whey for this study, caseins but not lactoglobulins were depleted in 

skimmed milk as globulins were considered to be an important family of proteins 

in this study. This high abundance lactoglobulins might have reduced the protein 

coverage in this study. While there are several established methods available for 

casein depletion, ultracentrifugation was used in this study for depleting caseins 

(Alonso-Fauste et al., 2012, Baeker et al., 2002, Boehmer et al., 2008, Hogarth et 

al., 2004, Smolenski et al., 2007, Smolenski et al., 2014, Yamada et al., 2002) 

after verification of its effectiveness by 1 dimensional electrophoresis (Figure 

2.2). 

Compared with a previously published method for preparation of trypsin digests 

from milk samples (Reinhardt et al., 2013), several refinements that might 

improve data generation were introduced in the methods used in this study. To 

avoid bias in total protein quantity that could be introduced during extraction of 

proteins, normalization of total protein concentration after acetone precipitation 
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was performed. In the preparation of trypsin digests, sodium deoxycholate (SDC) 

was used in addition to acetonitrile to improve complete digestion of proteins. 

SDC is an ionic detergent surfactant, and is compatible with tryptic digestion up 

to 5% concentration (Lin et al., 2008). SDC is acid insoluble, and this property was 

used in removing SDC from the protein digest after trypsin digestion. Previous 

studies comparing the use of SDC with other compounds for enhancing protein 

denaturation for trypsin digestion showed that the use of 1% SDC improved trypsin 

digestion efficiency by almost 5-fold (Leon et al., 2013, Masuda et al., 2008, Proc 

et al., 2010, Zhou et al., 2006). 

Caution should be exercised in the use of differential expression, as it may give a 

misleading impression of the change taking place when the level of the protein in 

the control (0 hours PC) is not-detectable in the LC-MS/MS analysis. This should 

be noted for fold change comparisons in all proteins when they were not detected 

at a particular time-point in comparison. Absolute quantification using a 

calibration standard in quantitative proteomics is needed to determine the change 

in the absolute concentration of proteins (Bennett et al., 2017, Bundgaard et al., 

2014, Pratt et al., 2006). 

2.5.1.1 Proteomics data quality evaluation and protein inference   

One of the critical steps in shot-gun proteomics is assembling the identified 

peptides into a list of proteins, a process called as ‘protein inference’ (Huang et 

al., 2012). Difficulty arises in protein inference due to the existence of 

‘degenerate peptides’ (peptides identified from the MS/MS data that are shared 

by multiple proteins in the protein sequence database) and ‘one-hit wonders’ 

(proteins that have only one identified peptide) (Huang et al., 2012). Due to the 

possibility of false-positive identifications, protein inference based on a single 

identified peptide is not reliable. However, if the single identified peptide used 

for protein inference is an ‘unique peptide’ (unique throughout the sequence 

database and that can be assigned to only one protein in the database), the 

probability of such protein identifications to be true is very high, although the 

identifications are not certain. Filtering out protein identifications inferred from 

one unique peptide will likely remove true positive identifications along with the 

possible false positive identifications. Therefore, we face a dilemma whether to 

retain protein identifications inferred from one unique peptides or to filter them 
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out at the cost of losing the true positive identifications, thereby losing valuable 

biological information.  

In this work, the author chose to retain protein identifications inferred from one 

unique peptides, following the footsteps of leading researchers in this field (such 

as Professor Matthias Mann and Professor Kasper Hettinga) who have used at least 

one unique or razor peptide as threshold to infer proteins (Cox and Mann, 2008, 

Cox et al., 2014, Krey et al., 2015, Zhang et al., 2015, Zhang et al., 2016, 

Abdelmegid et al., 2017). Indeed, the threshold of one unique or razor peptide is 

the default option in the MaxQuant software. Although, a minimum of one unique 

or razor peptide was used as a threshold, as can be seen in Tables 2.1-2.5, many 

bovine proteins including majority of the proteins (such as cathelicidins and 

haptoglobin) present in the enriched signalling pathways have been identified with 

two or more unique or razor peptides. In addition, the reliability of protein 

identifications in this work was compared against publicly available information 

on the number of unique peptides observed in identified proteins in published 

datasets that are available in proteomics repositories. For example, Tables (Table 

2.16 - Table 2.21)   show the frequency of unique peptides observed and the 

empirical observability scores (EOS; the likelihood that if the peptide is detectable 

so that it can be used for identification of the protein in a sample) for cathelicidins 

(cathelicidin-1, cathelicidin-2, cathelicidin-4, cathelicidin-5 and cathelicidin-7) 

and vimentin currently available in PeptideAtlas (Bislev et al., 2012a, Kusebauch 

et al., 2014). You can see the total sequence coverage in hundreds of experiments 

range between 25 and 55% for cathelicidins and 66% for vimentin. Out of the 9 

distinct peptides in cathelicidin-1, only 2 were observed in more than 20% of 

observations. Similarly, 3, 2, 1 and 2 distinct peptides were seen more than 20% 

of observations in Cathelicidin-4, Cathelicidin-7, Cathelicidin-2, Cathelicidin-5 

respectively. Tables 2.5-2.9 show that Cathelicidin-1, Cathelicidin-4, Cathelicidin-

7, Cathelicidin-2, Cathelicidin-5 were identified with 4, 2, 1, 2 and 5 unique or 

razor peptides respectively in this work.  Please note that the number of unique 

peptides for each protein might differ with the change of the sequence database 

and the species used. The tables (Table 2.16-Table 2.21) show “Distinct Peptides” 

in PeptideAtlas. The distinct peptides are not necessarily unique peptides. Please 

refer to the ‘number of discrete genome locations which encode the peptide’ 
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column in the tables. If the value is 1, then the peptide is a unique peptide, if it 

is more than one, it may not be a unique peptide. 

Moreover, completeness of genome sequences and annotations used in the 

sequence database for peptide identifications is critical for peptide identifications 

and protein assembly (Lippolis and Reinhardt, 2010). Although the current version 

of the bovine genome sequence is nearly complete, there are still gaps. Compared 

to the human genome annotations, the bovine genome annotation lags. Recently, 

Almeida et al noted lack of good genomic data for farm animals as one of the 

limiting factors in the application of proteomics in the veterinary sciences 

(Almeida et al., 2015). Complexity and dynamic range of proteins present in a 

sample also limit the observation of low abundance peptides in the sample in mass 

spectrometry analysis. For example, high abundance proteins in milk mask the 

identification of peptides from low abundance proteins (Lippolis and Reinhardt, 

2010). Therefore, the complexity and dynamic range of proteins in milk is also one 

of the reasons for low sequence coverage of identified proteins in milk. In this 

study, most of the bacterial proteins (Table 2.11 - Table 2.15) were identified 

with one unique or razor peptide only. Possible reasons for this low sequence 

coverage include 1. Masking effect of high abundance bovine proteins, and 2. 

Sedimentation of bacteria during ultracentrifugation. As discussed in section 

2.5.2.5, an attempt was made to quantify the bacterial proteins in whey, but the 

results remain inconclusive. Most of the bacterial proteins identified were one-hit 

wonders. Although the S. uberis proteins identified were from the unique (or 

razor) peptides in the S. uberis proteome, these peptides may well be from 

different bacteria in the milk microbiome. As the quality of the bacterial protein 

identifications seems poor, no conclusions were drawn from the bacterial protein 

analysis. As the primary goal of this thesis was to study the bovine proteins, the 

proteomics experiments were designed to achieve this goal. 

To limit false-positive identifications, 1% false discovery rate (FDR) threshold was 

employed at both peptide identification and protein inference stages. The 

Andromeda search engine incorporated within the MaxQuant software, utilizes a 

target-decoy-based FDR approach (Elias and Gygi, 2010, Cox et al., 2011) in that 

search was performed against the concatenated target-decoy (reversed) 

sequences. Only the results that passed the threshold were returned. Proteins 
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with peptides derived from the reversed part of the decoy database were marked 

‘+’ in the column named ‘Reverse’ in the results output from the MaxQaunt 

software, and such proteins were removed from further analysis and reporting. 

The ratio of reverse to forward protein groups identified in the target-decoy 

search is reported in the column ‘Q-value’ (Tables 2.5-2.9 and Tables 2.11-2.15). 

A protein that has only one identified peptide has a high chance of random match 

in the decoy database. However, if that protein was identified from a unique 

peptide, the chance of that identification to be true remains high, although 

caution should be exercised in interpreting such results.  

Table 2.16: Table showing MS/MS observation data for distinct peptides in 
Cathelicidin-1 
Data obtained from PeptideAtlas database (Bislev et al., 2012a, Kusebauch et 
al., 2014). 

PeptideAtlas 
Build 

Cow milk 2011-12     

Protein Name Cathelicidin-1     

Distinct 
Peptides 

9     

Total number 
of 
observations 

716 
    

Total 
Sequence 
Coverage in all 
observations 

53.50% 
    

Details of the distinct peptides mapping to Cathelicidin-1 

PeptideAtlas 
Accession 

Peptide Sequence 
Number of 
observations 

Frequency 
of 
observation 
(%) 

Empirical 
observability 
score 

Number of 
discrete 
genome 
locations 
which encode 
the peptide 

PAp01181109 GNFDITCNNHQSIR 38 5.31 0.09 1 

PAp01103411 AVDQLNEQSSEPNIYR 136 18.99 0.73 2 

PAp01174221 LLELDQPPQDDEDPDSPK 201 28.07 0.55 2 

PAp01179812 CEGTVTLDQVR 180 25.14 0.32 2 

PAp01176738 QPWAPPQAAR 53 7.40 0.27 2 

PAp01103712 LLELDQPPQDDEDPDSPKR 68 9.50 0.27 2 

PAp01178786 TTQQPPEQCDFK 20 2.79 0.14 2 

PAp01181416 RCEGTVTLDQVR 18 2.51 0.23 2 

PAp01182877 ELDQPPQDDEDPDSPKR 2 0.28 0.05 2 
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Table 2.17: Table showing MS/MS observation data for distinct peptides in 
Cathelicidin-4 
Data obtained from PeptideAtlas database (Bislev et al., 2012a, Kusebauch et 
al., 2014). 

PeptideAtlas 
Build 

Cow milk 2011-12     

Protein Name Cathelicidin-4     

Distinct 
Peptides 

5     

Total number of 
observations 

166     

Total Sequence 
Coverage in all 
observations 

31.20% 
    

Details of the distinct peptides mapping to Cathelicidin-4 

PeptideAtlas 
Accession 

Peptide Sequence 
Number of 
observations 

Frequency of 
observation 
(%) 

Empirical 
observability 
score 

Number of 
discrete 
genome 
locations 
which 
encode the 
peptide 

PAp01103499 AVDQLNELSSEANLYR 36 21.69 0.91 1 

PAp01176456 TIQQPAEQCDFK 39 23.49 0.64 1 

PAp01174327 LLELDPPPKDNEDLGTR 75 45.18 0.27 1 

PAp01182386 LLELDPPPK 12 7.23 1 5 

PAp01178950 SSEANLYR 4 2.41 1 7 
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Table 2.18: Table showing MS/MS observation data for distinct peptides in 
Cathelicidin-7  
Data obtained from PeptideAtlas database (Bislev et al., 2012a, Kusebauch et 
al., 2014). 

PeptideAtlas 
Build 

Cow milk 2011-12     

Protein Name Cathelicidin-7     

Distinct 
Peptides 

6     

Total number 
of observations 

52     

Total Sequence 
Coverage in all 
observations 

38.10% 
    

Details of the distinct peptides mapping to Cathelicidin-7 

PeptideAtlas 
Accession 

Peptide Sequence 
Number of 
observations 

Frequency 
of 
observation 
(%) 

Empirical 
observability 
score 

Number of 
discrete 
genome 
locations 
which 
encode the 
peptide 

PAp01174329 LLELDPPPEQDVEHPGAR 35 67.31 0.5 1 

PAp01181274 GDFDITCNNIQSAGLFR 3 5.77 0.33 1 

PAp01178538 TTPQPPEQCDFK 1 7.00 0.17 1 

PAp01178984 PPPEQDVEHPGAR 3 5.77 0.17 1 

PAp01178950 SSEANLYR 4 7.69 1 7 

PAp01179656 AVDQFNER 6 11.54 0.67 3 
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Table 2.19: Table showing MS/MS observation data for distinct peptides in 
Cathelicidin-2 
Data obtained from PeptideAtlas database (Bislev et al., 2012a, Kusebauch et 
al., 2014). 

PeptideAtlas 
Build 

Cow milk 2011-12     

Protein Name Cathelicidin-2     

Distinct 
Peptides 

4     

Total number of 
observations 

182     

Total Sequence 
Coverage in all 
observations 

25.50% 
    

Details of the distinct peptides mapping to Cathelicidin-2 

PeptideAtlas 
Accession 

Peptide Sequence 
Number of 
observations 

Frequency 
of 
observation 
(%) 

Empirical 
observability 
score 

Number of 
discrete 
genome 
locations 
which 
encode the 
peptide 

PAp01174258 LLELDPTPNDDLDPGTR 149 81.87 0.88 1 

PAp01177407 TSQQPLEQCDFK 23 12.64 0.44 1 

PAp01178950 SSEANLYR 4 2.20 1 7 

PAp01179656 AVDQFNER 6 3.30 0.67 3 
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Table 2.20: Table showing MS/MS observation data for distinct peptides in 
Cathelicidin-5. 
Data obtained from PeptideAtlas database (Bislev et al., 2012a, Kusebauch et 
al., 2014). 

PeptideAtlas 
Build 

Cow milk 2011-12     

Protein Name Cathelicidin-5     

Distinct Peptides 4     

Total number of 
observations 

34     

Total Sequence 
Coverage in all 
observations 

24.50% 
    

Details of the distinct peptides mapping to Cathelicidin-5 

PeptideAtlas 
Accession 

Peptide Sequence 
Number of 
observations 

Frequency 
of 
observation 
(%) 

Empirical 
observability 
score 

Number of 
discrete 
genome 
locations 
which 
encode the 
peptide 

PAp01182326 YGPIIVPIIR 17 50.00 0.67 1 

PAp01179958 TSQQSPEQCDFK 1 2.94 0.33 1 

PAp01182386 LLELDPPPK 12 35.29 1 5 

PAp01178950 SSEANLYR 4 11.76 1 7 
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Table 2.21: Table showing MS/MS observation data for distinct peptides in 
Vimentin. 

Data obtained from PeptideAtlas database (Bislev et al., 2012a, Kusebauch et 
al., 2014). 

PeptideAtlas 
Build 

Cow milk 2011-12     

Protein Name Vimentin     

Distinct 
Peptides 

35     

Total number 
of 
observations 

1125 
    

Total 
Sequence 
Coverage in 
all 
observations 

65.80% 
    

Details of the distinct peptides mapping to Vimentin 

PeptideAtlas 
Accession 

Peptide Sequence 
Number of 
observations 

Frequency 
of 
observation 
(%) 

Empirical 
observabilit
y score 

Number of 
discrete 
genome 
locations 
which 
encode the 
peptide 

PAp00070613 ILLAELEQLK 102 9.07 0.36 1 

PAp00033725 ETNLDSLPLVDTHSK 87 7.73 0.42 1 

PAp00035475 KVESLQEEIAFLK 183 16.27 0.7 1 

PAp00394445 QQYESVAAK 70 6.22 0.42 1 

PAp00033777 FADLSEAANR 72 6.40 0.39 1 

PAp00072912 LGDLYEEEMR 68 6.04 0.33 1 

PAp01103882 TLYTSSPGGVYATR 39 3.47 0.39 1 

PAp00352470 EEAESTLQSFR 41 3.64 0.27 1 

PAp00352582 DNLAEDIMR 33 2.93 0.24 1 

PAp01177017 EMEENFSVEAANYQDTIGR 32 2.84 0.18 1 

PAp00076029 QDVDNASLAR 16 1.42 0.24 1 

PAp00389030 LLQDSVDFSLADAINTEFK 46 4.09 0.06 1 

PAp00035065 ISLPLPNFSSLNLR 26 2.31 0.15 1 

PAp00032962 DGQVINETSQHHDDLE 13 1.16 0.18 1 

PAp00413583 QVDQLTNDK 11 0.98 0.18 1 

PAp00394656 LQDEIQNMK 8 0.71 0.12 1 

PAp01176114 QVQTLTCEVDALK 15 1.33 0.09 1 

PAp00380790 FANYIDK 3 0.27 0.09 1 
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PAp00034935 ILLAELEQLKGQGK 22 1.96 0.21 1 

PAp00035476 KVESLQEEIAFLKK 8 0.71 0.12 1 

PAp00038620 VEVERDNLAEDIMR 11 0.98 0.09 1 

PAp00384634 LQEEMLQREEAESTLQSFR 7 0.62 0.06 1 

PAp00381584 TNEKVELQELNDRFANYID 

KVR 

4 0.36 0.03 1 

PAp02112768 EKLQEEMLQREEAESTLQS 

FRQDVDNASLAR 

3 0.27 0.03 1 

PAp00035969 LQDEIQNMKEEMAR 1 0.09 0.03 1 

PAp00381610 RQVDQLTNDK 1 0.09 0.03 1 

PAp00383155 EKLQEEMLQREEAESTLQ 

SFR 

1 0.09 0.03 1 

PAp01183772 QVQTLTCEVDALKGTNES 

LER 

1 0.09 0.03 1 

PAp00380463 EYQDLLNVK 92 8.18 1 7 

PAp00384230 LLEGEESR 3 0.27 1 9 

PAp00036500 NLQEAEEWYK 48 4.27 0.91 2 

PAp00352429 VELQELNDR 40 3.56 0.47 2 

PAp00041742 MALDIEIATYR 3 0.27 0.09 2 

PAp00038314 TNEKVELQELNDR 14 1.24 0.27 2 

PAp00003437 HLREYQDLLNVK 1 0.09 0.08 4 

 

2.5.2 Dynamic changes in the whey proteome 

Examination of the overall changes taking place in the whey proteome 

demonstrate that maximal responses occurred at 57 and 81 hours PC, time points 

that clustered by HCA. PCA demonstrated that milk samples from 81 hours PC 

were the most divergent from the pre-challenge samples while samples from 312 

hours PC, i.e. the resolution phase, were being restored towards, but were still 

distinct from the pre-challenge clusters, even though 5 cows had cleared the 

infection at that point (Tassi et al., 2013). The scores and loadings of principal 

components were examined (Figure 2.11, Figure 2.12 and Table 2.1 - Table 2.4). 

Principal component analysis allows to examine the relationship between the 

variables (proteins) and the observations in each time point without assuming any 

dependence between the variables and observations (Cserhati, 2010, David and 

Jacobs, 2014). The first two principal components together explain over 38% of 

the variances in the dataset. The contribution of samples (cows and time-points; 

the observations) to each principal component can be examined from their scores 

(Abdi and Williams, 2010, Jolliffe and Cadima, 2016). Similarly, the contribution 
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of proteins (the variables) to each principal component can be analyzed from their 

loadings. The observations with high scores but with differing signs (positive vs 

negative) are in the opposite directions in the same axis, and so they mean 

different end-points (Abdi and Williams, 2010). Samples from time-points 0 hours 

and 81 hours post-challenge contribute the largest to the PC1 (Table 2.1), but 

they are in the opposite ends, which can be seen from their signs.   

The analysis of differential protein expression profiles identified APP as being 

central to the pathophysiological changes following S. uberis challenge. In 

addition, several AMP featured in the lists of proteins with the highest fold 

increase in expression.  

2.5.2.1 Antimicrobial proteins 

The AMP are a diverse group of proteins that show antimicrobial activity. AMP 

show microbicidal activity against a wide range of microbes such as bacteria, 

fungi, viruses and protozoa. They are primarily secreted by polymorphonuclear 

leukocytes (PMNL), present in milk during mastitis by transfer from blood and 

contributing to the increase in SCC, and function as primary effectors of innate 

immunity in several tissues including mammary gland (Smolenski et al., 2007, 

Dziarski and Gupta, 2010, Wang, 2014). Even though AMP might lack specific 

antigen recognition sites, AMP contain a positive charge that allows them to 

interact with negatively charged phospholipids of microbial membranes resulting 

in pore formation, which facilitates microbicidal activity (Batycka-Baran et al., 

2014). Among the AMP, cathelicidins and peptidoglycan recognition protein 1 were 

strongly upregulated from 36 hours PC onwards, with expression levels 1000s of 

times higher than before challenge (Table 2.6). Indeed, cathelecidin-5 and 

peptidoglycan recognition protein showed the largest fold increase of any of the 

proteins quantified by LC-MS/MS up to and including 57 hours PC.   

Previous studies also reported up-regulation of AMP, particularly cathelicidins, in 

mastitic milk (Smolenski et al., 2007, Boehmer, 2011, Reinhardt et al., 2013). In 

the case of cathelecidin-5, it has been reported that its gene CATHL5 is 

constitutively expressed in mammary tissue, but its transcription was not up-

regulated 48 hours after IMI (Whelehan et al., 2014). However, in the present 

study, cathelecidin-5 shows more than a 1000-fold increase at 36 hours post-



170 
 
infection, which is contrary to the results obtained by Whelehan et al. (2014). This 

might suggest that the source of the high abundance of cathelecidin-5 could be 

from the infiltrating neutrophils, rather than the local synthesis in the mammary 

tissue. Interestingly, the highest levels of cathelicidins were detected from 42 to 

81 hours, a period that coincides with a massive decrease in bacterial numbers 

(Tassi et al., 2013) from an average of 108 cfu/ml down to 104 cfu/ml, and 

cathelicidin expression decreased after this reduction in cfu count. Unlike some 

other mastitis pathogens, S. uberis is resistant to phagocytosis and killing by 

neutrophils (Leigh, 1999). The massive increase in cathelicidin levels, which 

followed PMNL influx and preceded or coincided with bacterial clearance, may 

provide an alternative mechanism by which PMNL contribute to resolution of IMI 

caused by S. uberis. Other AMP, e.g. lactoperoxidase and mucin, which is thought 

to be an inducible innate immune effector (Sando et al., 2009), were detected at 

lower level after challenge, which could indicate decreased expression, or 

increased use without replenishment. 

2.5.2.2 Acute-phase proteins 

As the acute-phase response is a swift systemic inflammatory reaction in response 

to infections, tissue injury or trauma that provides protection using non-specific 

defence mechanisms (Ceciliani et al., 2012, O'Reilly and Eckersall, 2014), it is no 

surprise that changes were found among the APP in this investigation. However, 

the profile of changes in multiple APP, in response to the S. uberis challenge, was 

shown here in much more detail than has been previously possible and within the 

APP, differing profiles were found.  A number of the APP showed their highest fold 

increase at 42 hours PC (Table 2.10). Thus, alpha-2-macroglobulin and histidine-

rich glycoprotein (HRG) had fold changes of 170x and 775x respectively at this 

time point.  In contrast, a number of APP showed continuing elevation in their 

fold increase up to 81 hours PC with haptoglobin, SAA1 and LBP having fold 

increases of 28,858x, 1,926x and 693x respectively. However, interleukin-1 

receptor agonist was significantly increased at 36 hours PC and returned to pre-

challenge levels in the resolution phase.  The differences found in the profile of 

responses of the APP are likely to be due to cellular mechanisms in the control of 

their synthesis and release, dependent on the cytokine cocktail developed in 

response to infection (Moshage, 1997, Bode et al., 2012). Cytokine profiles differ 

between bacterial species (Bannerman, 2009) and strains (Roussel et al., 2017), 
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and hence differing profiles of both the APP and AMP responses can be expected 

for different mastitis pathogens. 

Haptoglobin (Hp) 

Increased expression of haptoglobin is known to occur during mastitis caused by 

different species of bacteria, and has been quantified previously in proteomic 

investigations (Eckersall et al., 2001, Boehmer, 2011, Alonso-Fauste et al., 2012, 

Ceciliani et al., 2012). For example, Hp increases have been detected in E. coli 

and S. aureus mastitis, albeit at lower levels (ca. 10-fold) (Ibeagha-Awemu et al., 

2010). Moreover, Hp could be detected in the exosome, MFGM and whey fractions 

of milk and in the mammary tissue (Reinhardt et al., 2013, Huang et al., 2014). 

Convincingly, the results from this study compare well with the report by 

Smolenski and colleagues, who showed a 74-fold increase in Hp in whey during 

experimentally induced mastitis with S. uberis (Smolenski et al., 2014). It was 

apparent that Hp detection by quantitative proteomic analysis was more sensitive 

than detection by ELISA, as substantial increases in Hp levels were detected at 36 

hours PC by the label-free quantitative proteomic approach (Table 2.10), but not 

by Thomas and colleagues where ELISA was used (Thomas et al., 2016). The high 

fold increase of Hp which was still present at 312 hours PC at 4191x indicates that 

haptoglobin may be useful as an indicator of high SCC, which was still high at that 

time, but may have limited value as indicator of the IMI, which had been resolved 

in 5 of 6 animals (Tassi et al., 2013). 

Serum amyloid A (SAA) 

Serum amyloid A (SAA) is a family of apolipoproteins that are associated with high 

density lipoprotein, and are classified into acute-phase SAA and constitutive-phase 

SAA (Ceciliani et al., 2012). The acute-phase SAA includes SAA1, SAA2, and SAA3, 

of which SAA1 and SAA2 are produced in the liver during the acute-phase while 

SAA3 is produced extra-hepatic tissues. In bovines, a mammary associated SAA3 

(M-SAA3) is produced locally in the mammary tissues (Ceciliani et al., 2012). SAA 

is also one of the first acute-phase proteins reported to increase during mastitis 

(Eckersall et al., 2001, Eckersall et al., 2006), and several studies have shown up-

regulation of SAA in milk, serum and mammary tissue during mastitis caused by 

both gram-negative and gram-positive bacteria (Boehmer, 2011, Boehmer et al., 
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2010a, Ceciliani et al., 2012, Huang et al., 2014, Reinhardt et al., 2013). SAA, in 

the isoforms found here, also reached a maximum at 81 hours PC (Table 2.10). As 

for Hp, proteomic analysis identified the increase in SAA levels earlier than ELISA-

based analysis (Thomas et al., 2016) demonstrating further that quantitative 

proteomics may be more sensitive than the forms of ELISA used previously. 

Alpha-2-macroglobulin (A2M) 

Among the APP with an early maximum fold increase at 42 hours PC (Table 2.10), 

alpha-2-macroglobulin (A2M) is a protease inhibitor that can inhibit all four classes 

of proteases (serine, cysteine, aspartyl and metalloproteases). A2M is also a part 

of the complement system and regulates macrophage proliferation, mitogen- and 

antigen-driven T-cell responses and cytokine-binding functions (Wang et al., 2014, 

Bonacci et al., 2007). A2M is present in milk in its native, active state and its 

concentration is known to increase during S. aureus mastitis, indicating that the 

response is not pathogen specific (Reinhardt et al., 2013). Increased expression of 

A2M, due to a mutation in the regulatory region of the A2M gene, is associated 

with higher resistance to clinical mastitis and reduced somatic cell counts in milk 

(Wang et al., 2014). 

Histidine-rich glycoprotein (HRG) 

Histidine-rich glycoprotein (HRG) was also identified as an early elevated APP in 

this study showing the highest expression at 42 hours PC (Table 2.10). HRG is a 

major plasma protein in a range of mammals, including cattle, and has potential 

to bind multiple ligands in a variety of cells such as fibroblasts, endothelial cells, 

T-cells and macrophages. Although HRG is involved in various functions including 

coagulation of blood, clearance of apoptotic phagocytes, cell adhesion, cell 

migration and polarization of macrophages towards pro-inflammatory M1 subtype 

(Bartneck et al., 2015, Jones et al., 2005), serum HRG levels are not elevated 

during subclinical or clinical mastitis (Turk et al., 2012). There is no previous 

report of HRG expression in bovine milk, particularly during mastitis. HRG was up-

regulated as early as 36 hours PC and returned to normal levels towards the end 

of the experiment, suggesting that it may have good sensitivity and specificity as 

diagnostic marker for S. uberis mastitis. However, further confirmation of its 
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occurrence is required, including cases of naturally occurring mastitis and 

pathogens other than S. uberis. 

Alpha-1-acid glycoprotein (AGP) 

Presence of Alpha-1-acid glycoprotein (AGP) in milk and serum during healthy 

state and in mastitis have been demonstrated (Alonso-Fauste et al., 2012, Nissen 

et al., 2013, Reinhardt et al., 2013). AGP increased 2 to 3 folds during mastitis in 

both serum and milk (Eckersall et al., 2001, Reinhardt et al., 2013). Recently, 2 

to 3 fold increase in AGP was also reported in milk collected from Murrah buffaloes 

(Bubalus bubalis) diagnosed with subclinical mastitis caused by Staphylococcus, 

Streptococcus, Escherichia coli or mixed infections (Guha et al., 2013). In this 

temporal study, AGP increased moderately in agreement with the previous 

studies, and it did so until 81-hour PC (Table 2.10). AGP is highly glycosylated with 

45% of its mass made up of five oligosaccharide chains, and exhibits heterogeneity 

due to structural differences in monosaccharide sequences (Behan et al., 2013, 

Ceciliani and Pocacqua, 2007, Ceciliani et al., 2007). While its specific biological 

function remains to be fully understood, AGP has been associated with acute-

phase reaction and immunomodulatory events (Behan et al., 2013, Ceciliani and 

Pocacqua, 2007, Ceciliani et al., 2007, Lecchi et al., 2008). 

Alpha-2-antiplasmin (Alpha-2-AP) 

Alpha-2-antiplasmin (Alpha-2-AP) detection increased until 42 hours PC, with the 

peak expression 6-fold that of pre-infection levels, and then decreased to almost 

pre-infection level at 312 hours (Table 2.10). Alpha-2-AP is a serine protease 

inhibitor, and an important inhibitor of plasmin in vivo. Its presence in milk has 

previously been studied and it was thought to be the major plasmin inhibitor 

system in milk (Precetti et al., 1997). Interestingly, plasminogen, the inactive 

zymogen of plasmin plays an important role in the pathogenicity of bacteria in 

general (Lahteenmaki et al., 2005, Lahteenmaki et al., 2001, Knaust et al., 2007) 

and has been implicated in the pathogenicity of S. uberis in particular (Lincoln 

and Leigh, 1998, Ward et al., 2003, Egan et al., 2012). 
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Apolipoprotein A (Apo-A) 

Apolipoprotein A-I (Apo-AI) and apolipoprotein A-II (Apo-AII) are structural 

components of high density lipoproteins (HDL). Their concentration increased up 

to 42 hours PC and returned to pre-infection levels by 312 hours PC (Table 2.6). 

Apo-I levels in milk are known to increase during mastitis caused by S. uberis and 

other bacteria (Ceciliani et al., 2012, Reinhardt et al., 2013, Smolenski et al., 

2014). Reinhardt et al. reported 3.1-fold increase of Apo-AI in whey during S. 

aureus mastitis, but did not find Apo-AII in whey (Reinhardt et al., 2013). 

Similarly, Smolenski et al. (2014) reported and 8-fold increase in Apo-AI in the 

milk fat globule membrane (MFGM) fraction of bovine milk during experimentally 

induced mastitis with S. uberis. However, Huang et al (Huang et al., 2014) 

reported 1.35-fold decrease of Apo-AII in mammary tissues during clinical mastitis 

caused by S. aureus. The role of Apo-AI in inflammation is an active field of study, 

and it has been linked to both pro- and anti-inflammatory roles (Vuilleumier et 

al., 2013, Namiri-Kalantari et al., 2015). 

Hemopexin (Hx) 

Hx is an iron (heme) binding glycoprotein regulated by cytokines during the acute-

phase reaction (Tolosano et al., 2010). Hx is present in colostrum and its 

expression levels changes significantly during the first 9 days of lactation (Zhang 

et al., 2015). The expression of Hx was increased by at least 100-fold at most time 

points, and was still significantly elevated at 312 hours PC (Table 2.10). 

Comparable increase in whey Hx has been reported during mastitis caused by E. 

coli and S. aureus (Boehmer, 2011, Boehmer et al., 2010a, Ibeagha-Awemu et al., 

2010, Reinhardt et al., 2013). Although Hx was significantly elevated as early as 

36 hours PC, suggesting a potential use as diagnostic marker with good sensitivity, 

it was still elevated at 312 hours PC, implying that it would have a limited 

biomarker potential for diagnosis, as has been for Hp in this study. 

Lipopolysaccharide-binding protein (LBP) 

LBP plays an important role in the innate immune response by binding to bacterial 

lipopolysaccharides (LPS), which are glycolipids present in the outer membrane of 

all gram-negative bacteria, and by promoting the release of cytokines (Ceciliani 



175 
 
et al., 2012, de Greeff et al., 2013, Munford, 2007, Alexander and Rietschel, 

2001). However, S. uberis is a gram-positive bacterium that lacks LPS. Instead, S. 

uberis has cell surface lipoteichoic acid (LTA) as target for LBP (Mueller et al., 

2006). The binding of LBP with LTA triggers a pro-inflammatory cascade via Toll-

like receptor 2 (TLR2) activation (Schroder et al., 2003, de Greeff et al., 2013). 

Previous reports showed up-regulation of LBP in milk during mastitis due to gram-

positive or gram-negative bacteria (Boehmer et al., 2010a, Ceciliani et al., 2012, 

Reinhardt et al., 2013). In this study, LBP showed 28-fold up-regulation at 36 hours 

PC and the peak expression of LBP occurred at 81 hours PC (693-fold increase) 

with significant increase over 100-fold still at 312 hours PC (Table 2.10). This 

shows high expression of LBP in the resolution phase of inflammation. This is 

particularly interesting as LBP is also thought to be involved in the resolution of 

inflammation (Fierer et al., 2002, Ceciliani et al., 2012) in infections caused by 

gram-negative bacteria (LPS-mediated inflammatory response), and the 

expression pattern of LBP in this study suggests its role in the resolution of mastitis 

caused by S.uberis, which is gram-positive. 

2.5.2.3 Resolution-phase proteins 

The results from proteomic analysis of the resolution phase in mastitis are shown 

and discussed here for the first time (has not been reported previously). There is 

increasing evidence that the resolution of inflammation is an active process 

involving a number of key mediators rather than a passive event where the acute 

inflammatory response would simply taper off (Gilroy and De Maeyer, 2015). The 

quantitative proteomics data from this study showed up-regulation of a number 

of acute-phase proteins during the acute inflammatory phase. Some of the acute-

phase proteins are known to switch from pro-inflammatory to anti-inflammatory 

function during the course of the inflammatory process. For example, high 

expression of LBP down-regulates cytokine expression that contributes to the 

resolution of inflammation (Ceciliani et al., 2012). Similarly, Hp shows anti-

inflammatory activity in the Hp-CD163-HO-1 pathway where Hp and haemoglobin 

(Hb) form a Hp-Hb complex, which binds to CD163 receptors of macrophages or 

monocytes resulting in the up-regulation of anti-inflammatory mediators 

(Thomsen et al., 2013, Schaer et al., 2006). During the resolution phase of IMI (57 

to 312 hours PC), increased levels of vimentin were detected. Vimentin is a 

fibroblast marker, whilst there are conflicting reports on its presence in 
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myoepithelial cells (Zavizion et al., 1992, Cravero et al., 2014). Its elevated 

expression in milk would appear to indicate damage or repair of the sub-alveolar 

tissue of the mammary gland. High expression of Annexin A1 (AnxA1) found at 57 

and 81 hours PC might contribute to the resolution of mastitis, as AnxA1 is known 

to inhibit neutrophil recruitment, stimulate neutrophil apoptosis and 

efferocytosis, and induce macrophage reprogramming towards the pro-resolving 

M2 phenotype (Ortega-Gómez et al., 2013, Sugimoto et al., 2016). Up-regulation 

of AnxA1 in milk during mastitis has previously been reported for S. uberis and E. 

coli, although AnxA1 appeared to be concentrated in MFGM and milk exosome 

fractions rather than in whey in those studies (Reinhardt et al., 2013, Smolenski 

et al., 2014). Similarly, Galectin-1 (Gal-1) contributes to the resolution of 

inflammation by supressing neutrophil recruitment and promoting tissue repair 

(Ortega-Gómez et al., 2013), and in this study, Gal-1 concentration showed a 

strong peak at 81 hours PC only, with limited up-regulation at 57 and 312 hours 

PC and no expression at earlier time points. The transient nature of the Gal-1 peak 

may explain why presence of Gal-1 in milk during mastitis has not been reported 

before. 

2.5.2.4 Signalling pathways 

Pathway analysis using IPA identified the acute phase response signalling   pathway 

as having the largest change of any pathway at all time points (Figure 2.14 - Figure 

2.18). The acute phase response is a swift innate inflammatory response that gives 

protection against pathogens through non-specific defence mechanisms. As part 

of the response, the positive acute-phase proteins are up-regulated and the 

negative acute phase response proteins are down-regulated (Cray et al., 2009, 

Ceciliani et al., 2012). The acute-phase proteins discussed in section 2.5.2.2 are 

from the positive acute-phase proteins subgroup, and are known to be up-

regulated within 4-5 hours after a single inflammatory stimulus. The second and 

third most affected pathways were the LXR/RXR activation and FXR/RXR 

activation pathways, incorporating liver (LXR), retinoid (RXR) and farnesoid (FXR) 

receptor related proteins.  However, a number of APP are also components of 

these pathways and lead to identified up-regulation by IPA due to this cross-

recognition. The IPA also showed that although the PMNL influx increases rapidly 

between 24 and 42 hours post-challenge (Tassi et al., 2013), the leucocyte 

extravasation signalling pathway was only enriched at 57 and 81 hours PC, 
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indicating that there may be a lag between initial influx and detectable levels of 

protein up-regulation in this pathway. Similarly, IL-6 levels were significantly 

elevated at 36 and 42 hours PC based on ELISA assays (Tassi et al., 2013), but 

enrichment of the IL-6 pathway was not detected until 57 hours PC by proteomic 

analysis. 

2.5.2.5  Bacterial proteins in whey quantified from S. uberis proteome 

In addition to quantifying host proteins in whey, an attempt was made to quantify 

bacterial proteins using the S. uberis reference proteome (UniProt, 2015b). 

Although 1,289 peptides were identified and quantified in the analysis, there were 

only 183 proteins in total that belonged to S. uberis reference proteome as several 

identified peptides were from the MaxQuant contaminants proteins list (Cox and 

Mann, 2008), which included bovine milk proteins. Differential expression analysis 

was performed comparing each time-point with 0 hours PC time-point. Despite 

marked increase in bacterial numbers over the course of infection with peak 

concentrations around 108 colony forming units per ml of milk (Tassi et al., 2013), 

differential expression analysis showed much lower fold increases than for bovine 

proteins (maximum of 706 fold increase for a bacterial putative lipoprotein versus 

maximum of 28,858 fold change for haptoglobin). Surprisingly, many 

downregulated bacterial proteins were identified in comparison with the pre-

challenge samples (0 hours PC), which were demonstrated to be culture negative 

for S. uberis. However, milk might contain proteins of bacterial origin in a normal 

course, which could share homology with S. uberis proteins. For example, the 

down-regulated proteins such as homoserine dehydrogenase, CutC family protein 

and peptide deformylase could be found on most bacteria. Bacterial proteins are 

generally found inside the bacterial cell. The methods (ultracentrifugation) used 

to separate whey in this study should have removed all the bacterial cells in the 

whey, and consequently, there is less chance of finding bacterial proteins that are 

not exuded into whey. Separation of bacteria from whey or other modifications to 

the sample processing methods may be needed for better characterisation of the 

bacterial proteome during IMI. 
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2.5.3 Variation in protein expression in individual cows 

While the expression of proteins in response to S. uberis challenge followed the 

time pattern as evidenced in the principal component analysis and the differential 

expression analysis, individual cow variations in the expression pattern were also 

observed. Particularly, the variations were observed in the initiation of acute-

phase response. Expressions of some of the acute-phase proteins and antimicrobial 

proteins in cow 5 were delayed, and by 57 hours PC, the expression profiles 

became similar to the other cows (Figure 2.21 - Figure 2.26). It is pertinent to 

note that the cow 5 showed delayed onset of clinical manifestations in the 

challenge study (Tassi et al., 2013). Bacteriological and inflammatory parameters 

of cow 5 also showed a delayed response compared to the rest of the cows. Hughes 

et. al. studied natural variations in acute phase responses of cattle and reported 

that breed, gender and temperament as the factors that modulate acute phase 

responses in cattle (Hughes et al., 2014). While gender and breed were identical 

in all the cows, it is possible that the temperament of cow 5 might have been 

different from others. Occurrence of variations in single nucleotide polymorphisms 

in the genes associated with the antigen processing and presentation pathway 

have been shown to modulate host defence response to pathogens in cattle 

(Thompson-Crispi et al., 2014). It is possible that cow 5 might have variations in 

the genes associated with the antigen processing and presentation pathway and 

other immunological pathways that are different from the other cows in the 

challenge study.        
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Figure 2.21: Expression profile of cathelicidin-5 (P54229) in individual cows. 
The profiles show a delayed response in cow 5. 

 

Figure 2.22: Expression profile of cathelicidin-7 (P56425) in individual cows. 
The profiles show a delayed response in cow 5 and early resolution in cows 1,2 
and 6. 
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Figure 2.23: Expression profile of peptidoglycan recognition protein 1 
(Q8SPP7) in individual cows. 
Cow 5 has a distinctly different expression profile up to 57 hours. 

 

Figure 2.24: Expression profile of haptoglobin (Q2TBU0) in individual cows. 
The profiles show a delayed response in cow 5. 
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Figure 2.25: Expression profile of alpha-2-macroglobulin (Q7SIH1) in 
individual cows. 
The figure shows variations in the expression pattern in cows 1 and 5. 

 

Figure 2.26: Expression profile of alpha-1-acid glycoprotein (Q3SZR3) in 
individual cows. 
The expression profiles show cow 6 has a higher expression profile overall. 
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2.6 Conclusions 

High quality data generation is fundamental to understanding molecular biology, 

and hence a very high quality quantitative proteomics dataset was generated in 

this study from the milk collected in the S. uberis challenge experiment. Using a 

label-free relative quantification method, bovine and S. uberis proteins were 

identified and quantified. The number of proteins identified in this study was one 

of the highest in quantitative whey proteomics literature, and this study is the 

first to examine in detail the temporal dynamic changes in whey proteome.  

Using a variety of statistical methods, the dataset was explored and differentially 

expressed proteins at each post-challenge time-point compared to pre-infection 

were identified. The exploratory analyses, especially the results of principal 

components analysis showed proteome-wide changes in protein abundances over 

the time course of S. uberis challenge. Large numbers of proteins were 

differentially expressed over the course of the infection. Changes in the 

expression of acute-phase proteins and antimicrobial proteins were identified and 

studied. This provides support for the hypothesis that whey proteins have distinct 

abundance profiles over time in response to S. uberis challenge. 

Similarly, dynamic changes in signalling pathways were identified. Particularly, 

there were changes in acute-phase response signalling, LXR/RXR activation and 

FXR/RXR activation pathways over the course of the infection. This provides 

support for the hypothesis that pathways can be identified which are associated 

with changes in whey protein levels.  

The results from this proteomics analysis and the metabolomic analysis reported 

in the next chapter will help to devise an integrative analysis to better understand 

the molecular changes in whey due to S.uberis mastitis and will be described in 

Chapter 4. 
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3. Untargeted metabolomics study of the 
skimmed milk samples 

3.1 Introduction 

Metabolites are small molecule chemicals, which are generally of less than 1,500 

Da in molecular weight (except for lipids that are up to 5,000 Da) and are 

chemically transformed during metabolism (Patti et al., 2012, Fischer et al., 2013, 

Mudaliar et al., 2016). As the metabolites participate in metabolism and are in 

turn transformed by biochemical activity, the metabolites provide a functional 

readout of cellular state as direct signatures of biochemical activity, and correlate 

with phenotype (Patti et al., 2012). Metabolomics is the study of metabolome, 

which is defined as the collection of metabolites produced by cells or contained 

in a biological fluid (Patti et al., 2012). Metabolites are analysed using analytical 

chemistry techniques such as nuclear magnetic resonance (NMR) spectroscopy or 

hyphenated mass spectrometry combined with advanced computational and 

informatics methods (Fillet and Frédérich, 2015, Roessner and Bowne, 2009, 

Wishart, 2016). As has been detailed in chapter 1, metabolomics has previously 

been applied to milk in relation to physiology and composition (Boudonck et al., 

2009, Klein et al., 2010, Lamanna et al., 2011, Sundekilde, 2012, Sundekilde et 

al., 2013a). There have also been investigations of mastitis using Gas 

Chromatography-Mass Spectrometry (GC-MS) and NMR spectroscopy based 

metabolomics approaches. In a series of reports, Hettinga et al., employed two 

different GC-MS approaches for quantification of volatile metabolites in milk 

during clinical mastitis caused by one of the five principal causative organisms, 

and demonstrated the specificity of distinct volatile metabolite profiles in milk 

for intramammary infections (Hettinga et al., 2009b, Hettinga et al., 2008b, 

Hettinga et al., 2009c, Hettinga et al., 2015). Hettinga et al., hypothesized that 

classification of mastitis causing microorganisms could be possible from the 

volatile metabolites they might produce as microorganisms have their distinct 

group of enzymes that produce a range of volatile metabolites. Using a NMR 

spectroscopy approach, Sundekilde et al., identified differentially expressed 

metabolites in skimmed milk that differed between samples with low or high 

somatic cell count (SCC) (Sundekilde et al., 2013c). They reported increased 

amounts of lactate, butyrate, isoleucine, acetate and β-hydroxybutyrate, and 

decreased amounts of hippurate and fumarate in milk samples with high SCC.  
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However, there has been no previous report of metabolomics profiling of milk 

during mastitis using a Liquid Chromatography Mass Spectrometry (LC-MS) 

approach. Compared with NMR spectroscopy or GC-MS, LC-MS has the potential to 

analyse a larger proportion of the metabolome due to its high sensitivity (Wishart, 

2016). Hence this study used a LC-MS method to quantify metabolite 

concentrations in skimmed milk during mastitis in the experimental model of the 

disease described at section 2.3.1. Temporal changes in metabolome of skimmed 

milk due to the experimentally introduced Streptococcus uberis infection (Tassi 

et al., 2013) were analysed using a LC-MS based untargeted metabolomics 

approach and the work is presented in this chapter. The research reported in this 

chapter has been published in the article “Mastitomics, the integrated omics of 

bovine milk in an experimental model of Streptococcus uberis mastitis: 3. 

Untargeted metabolomics” (Thomas et al., 2016), which is licensed under a 

‘Creative Commons Attribution 3.0 Unported Licence’ that allows copying and 

redistribution in any medium or format. The materials in this chapter draws 

heavily on the author’s published article (Thomas et al., 2016) which shared first 

authorship between Thomas, FC and Mudaliar M. 

3.2 Hypotheses, aims and objectives 

3.2.1 Hypotheses 

Work presented in this chapter addresses the following hypotheses:  

(a) That skimmed milk metabolites have distinct abundance profiles over time in 

response to S. uberis challenge, and  

(b) That pathways can be identified which are associated with changes in skimmed 

milk metabolite levels. 

3.2.2 Aims 

The aim of the work described in this chapter was to assess the variation in the 

metabolome in bovine milk samples following progression of the experimental 

intra-mammary challenge with the host-adapted strain of Streptococcus uberis 

(FSL Z1–048) (Tassi et al., 2013). The metabolome of skimmed milk in this study 

includes metabolites produced by the cow (host metabolites), metabolites 



185 
 
produced and exuded by S. uberis, and metabolites present in the S. uberis cells 

(although most of the bacterial cells would have been removed during 

centrifugation of the milk samples). 

3.2.3 Objectives 

1. To identify and quantify the metabolites in the skimmed milk samples; 

2. To perform exploratory analysis of the untargeted metabolomics data; 

3. To identify the differentially expressed metabolites - the metabolites that 

demonstrated either an increase or decrease in skimmed milk from infected 

udder quarters over the time course from pre-infection to resolution; 

4. To identify dynamic changes in the signalling/metabolic pathways over the 

course of mastitis due to S. uberis infection. 

The area highlighted in blue in Figure 3.1 shows the work presented in this chapter 

and how it fits with the overall workflow. 
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Figure 3.1: Flowchart showing the work presented in chapter 3 and how it fits 
with the overall workflow 
The area shaded in blue is presented in this chapter. 
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3.3 Materials and methods 

3.3.1 Challenge study design and milk sample collection 

In the intra-mammary challenge study, six cows were challenged with S. uberis 

strain FSL Z1-048 in a single bacteriologically negative udder quarter per cow 

(Tassi et al., 2013) as previously described in section 2.3.1.  Aliquots of milk 

samples collected from six selected time points (0, 36, 42, 57, 81 & 312 hours 

post-challenge) of the challenge study were used to generate untargeted 

metabolomics data, with a similar approach as in the proteomic study (chapter 

2). 

3.3.2 Untargeted metabolomic data generation 

The aliquots of milk samples that were stored at -20 °C at the Moredun Research 

Institute, Edinburgh and were transported frozen to Garscube campus of the 

University of Glasgow for proteomic as well as for metabolomic data generation 

and analysis. Dr FC Thomas extracted the metabolites in the skimmed milk 

samples. Thereafter the LC-MS metabolomics data generation was carried out by 

Mrs Suzanne McGill at Glasgow Polyomics, College of Medical, Veterinary and Life 

Sciences, University of Glasgow, UK. The bioinformatics analysis and the 

interpretation of the LC-MS metabolomics data were performed by M Mudaliar. 

The untargeted metabolomic data generation workflow is given in Figure 3.2. 

 

Figure 3.2: Untargeted metabolomic data generation workflow 
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The samples were thawed at 4 °C and metabolites extracted using chloroform and 

methanol (1:3 v/v) mixture (Beltran et al., 2012, Canelas et al., 2009) at Professor 

David Eckersall’s laboratory.  A 400 µl volume of the 1:3 (v/v) chloroform and 

methanol mixture was added to 100 µl of skimmed milk sample, and vigorously 

extracted on a vortex mixer for two hours at 4 °C. The mixture was centrifuged 

at 13,000 g for 5 minutes at 4 °C, and then the supernatant was separated and 

stored at -80 °C until used for LC-MS analysis. The extracted metabolites were 

transferred to Glasgow Polyomics for untargeted metabolomic data generation. 

For LC-MS analysis, a Dionex UltiMate 3,000 RSLCnano (liquid chromatography) 

system coupled to a Thermo Scientific Exactive Orbitrap mass spectrometer was 

used. Glass vials containing 200 µl of the extracted analyte from the samples were 

loaded on the RSLC Autosampler connected to a 4.6 x 150 mm SeQuant ZIC-pHILIC 

(Merck KGaA, 6427 Darmstadt, Germany) column. 10 μL of the analyte was 

injected in every run. Separation of the analyte was achieved by a mobile phase 

composed of a two solvent system consisting of solvent A: 20 mM ammonium 

acetate (pH 9) and solvent B: acetonitrile (ACN) with a flow rate of 300 μl/min. 

Chromatographic conditions for LC-MS included a gradient of 80 % ACN to 5 % ACN 

(solvent B) in 15 minutes, then held at 5 % for 3 minutes, returned to 80 % in 1 

minute, equilibrated for 6 minutes. The total run time was 25 minutes per sample. 

The mass spectrum acquisition was performed in full scan acquisition mode on 

both negative and positive polarities using ESI ionization mode. The mass 

spectrometer was set at 50,000 resolutions with the scan range from 70-1,400 

amu. 12 pooled samples were prepared by pooling the metabolites from all 36 

samples, and one pooled sample was run after every 3 samples. 

3.3.3 Untargeted metabolomic data analysis 

The untargeted metabolomic data analysis workflow is given in Figure 3.3. 
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Figure 3.3: Workflow diagram showing the performed processes in 
metabolomic data analysis presented in chapter 3 
 

The metabolomic data analysis and biological interpretation was performed 

entirely by M. Mudaliar. The raw LC-MS data obtained from each sample were 

visually examined by generating a number of plots using MZmine (version 2.10) 

software (Pluskal et al., 2010). To examine sample loading and peak resolution, 

total ion current (TIC) chromatograms and base peak chromatograms were 

generated from data obtained from each sample. The raw LC-MS data from the 

quality control passed samples were imported into the IDEOM (Creek et al., 2012) 

software package (version 18).  Raw data was converted from the Thermo 

Scientific ‘RAW’ file format to an open-source ‘mzXML’ file format, centroided 

and split into positive and negative polarities using MSConvert tool (Holman et al., 

2014). Chromatographic peak detection was performed using XCMS (Tautenhahn 

et al., 2008) using the centWave algorithm and saved in the peakML format, peak 

matching and annotation of related peaks were achieved using mzMatch.R 

(Scheltema et al., 2011). Artefacts and noise were filtered out using IDEOM 

software using the default parameters. Metabolite identification was performed 
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in IDEOM software package by matching retention times and accurate masses of 

detected peaks with either the authentic standards (MSI confidence level 1) or the 

predicted retention times and masses from a previously validated model (MSI 

confidence level 2) (Salek et al., 2013, Sumner et al., 2007, Creek et al., 2011). 

For improved annotation of metabolites, a mixture of 148 authentic standards was 

run in the same LC-MS system to predict retention times using the IDEOM software. 

Where there are multiple metabolite names associated with a given mass and 

retention time, the metabolite names were selected automatically in the IDEOM 

software as the best match to the database entries of the given mass and formula, 

and then reviewed manually. In the absence of additional information, these 

metabolite names must be considered as putatively-annotated hits. Using the 

Partek® Genomics Suite® (version 6.6) (Partek, 2015) software, principal 

components analysis (PCA) and hierarchical clustering analysis (Euclidian distance 

and average linkage) were performed on the combined peak intensities from 

positive and negative polarities that were processed using IDEOM. To identify 

differentially expressed metabolites, a t-test with time as factor, comparing each 

time-point with time-point 0 hours post-challenge (PC) was performed using the 

IDEOM software. In addition, one-way analysis of variance (ANOVA) test with time 

as factor was performed on the putatively identified metabolites data, and using 

a threshold of an absolute fold-change more than 2 and FDR-adjusted p-value less 

than 0.05, differentially expressed metabolites lists were generated by comparing 

each time-point with 0 hours PC time-point. Further, the list of the identified 

metabolites were exported from IDEOM to Pathos (Leader et al., 2011) and iPath 

(Yamada et al., 2011) web-based metabolomics tools to identify the represented 

metabolic pathways and to visualize the metabolic pathways in which the 

metabolites are generally present. 

3.4 Results 

3.4.1 Quantification of metabolites 

Out of the 36 samples (milk from six cows at six selected time points) analysed, 

the raw LC-MS data from only 32 samples passed the initial quality control and 

were subsequently included in the downstream analysis. The base peak 

chromatograms showed overall consistency between the replicates in each time-

point. Figure 3.4 shows base peak chromatograms generated from the raw LC-MS 
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data from all 32 samples that passed the initial quality control and 11 pooled 

samples that were run after every 3 samples. Base peak chromatograms from each 

time-point are provided in the electronic supplementary data (ESI 3.1) 

accompanying this dissertation. 

A total of 3,828 different peaks were detected from all 32 samples analysed, 1,027 

peaks were in the positive ionisation mode while 2,801 were in the negative 

ionisation mode. Out of the peaks detected, after resolving adducts and charged 

states, 1,043 features (potential metabolites) were deduced, and from that 740 

metabolites were identified by IDEOM (ESI 3.2), and then they were reviewed to 

remove multiple identities, thus reducing the number to 690 putatively identified 

metabolites (ESI 3.3). Overall, the mass of metabolites identified ranged between 

69 and 888 Da. Exploratory data analysis such as hierarchical clustering analysis 

and principal components analysis were performed on the combined 

chromatographic peak intensities from positive and negative polarities after 

removing the noisy peaks. 

 

 

Figure 3.4: Base peak chromatograms generated from the LC-MS raw data from 
all 32 skimmed milk samples that passed QC in the challenge study. 
Base peak chromatograms show the most intense peak in each mass spectrum and 
thus free of background noise. Chromatogram from each individual sample and 
the pooled samples are plotted using a different colour. Legends for the colours 
are given at the bottom of the plot. 
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3.4.1.1 Hierarchical clustering analysis 

To explore the milk metabolome dataset, a hierarchical clustering analysis (HCA) 

using Euclidean distance and average linkage agglomeration method was 

performed on the peak intensity data from the 3,828 chromatographic peaks 

combined from both negative and positive polarities. The hierarchical clustering 

analysis (Figure 3.5) shows three top-level clusters in the column dendrogram. 

Cluster A on the top right hand side includes milk samples from 36 hours PC (shown 

in grey) and 42 hours PC (shown in violet), corresponding to the early stages of 

the infection and inflammation, which is characterized by bacterial growth and 

cytokine release (Tassi et al., 2013). It also has milk samples from 57 hours PC 

(shown in orange) and 81 hours PC (shown in red) post-challenge of cow 5, which 

was previously identified as a late responder based on clinical manifestations and 

cytokine profiling (Tassi et al., 2013), and 57 hours PC samples from cows 1 and 

4. Cluster B, which is in the middle, includes samples exclusively from 57 hours 

and 81 hours PC, and corresponds to the decreasing bacterial load (Tassi et al., 

2013). Cluster C is the farthest from right, and includes all the samples from 0 

hours (shown in green) and 312 hours (shown in blue) post-challenge, which 

reflects the similarity between the pre-infection and the late resolution (mostly 

cleared of infection) stages. It also includes 36 hours PC samples from cow 5 and 

1, and 42 hours PC sample from cow 5. 
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Figure 3.5: Hierarchical clustering analysis of the detected peaks showing 
column dendrogram. 
Hierarchical clustering analysis was performed on the 3,828 detected peaks 
intensities using Euclidean distance and average linkage agglomeration method. 
The column dendrogram show the clustering of the skimmed milk samples. The 
column dendrogram show three top-level clusters, and identified by letters (A = 
early to peak infection based on bacterial numbers; B = post peak infection; C = 
pre-challenge and resolution stage), time points by colours (see inset), and 
individual cows by numbers. The scale bar shows the intensities in log2 scale. 
There are only 32 samples in the plot as data from 4 cows were not included after 
initial quality analysis at raw data level. 

3.4.1.2 Principal component analysis 

To further explore the dataset, a principal component analysis (PCA) was 

performed on the combined peak intensities (3,828 chromatographic peaks) data. 

The PCA plot (Figure 3.6) shows the plotting of samples using principal component 

1 (PC1) and principal component 2 (PC2). The clustering pattern of samples in the 

PCA is similar to the HCA, and also reflects the time course of the experimental 

S. uberis infection. Overall, the clusters are separated on the PC1, which has 
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captured 40.4 % of variance in the dataset. The samples at time points 0 hours PC 

and 312 hours PC formed distinctive clusters, and are shown in Figure 3.3 indicated 

by green and blue respectively, are closer compared to the samples from other 

time points. The clusters formed by time-points 0 hours and 81 hours PC samples 

has the greatest distance on PC1, and the clusters formed by samples from other 

time-points are located between these two extremes. As in the HCA, samples from 

cow 5 are seen as outliers showing slow response evidenced by the clinical, 

bacteriological and biochemical parameters (Tassi et al., 2013). 

 

Figure 3.6: Principal component analysis of the skimmed milk metabolome 
after intra-mammary challenge with S. uberis. 
The PCA was based on the intensities from 3,828 detected peaks, and the plot was 
generated using the Partek Genomic suite. The data points refer to milk samples 
obtained from 6 cows at 6 time points post challenge (PC). Cows are identified by 
number and time points by colour, with hours PC shown in the legend. There are 
only 32 samples in the plot as data from 4 cows were not included after initial 
quality analysis at raw data level. 

3.4.1.3 Differential expression analysis 

To identify the metabolites that were differentially expressed over the time 

course, particularly between pre- and post-challenge, a one-way ANOVA test was 
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performed with time as factor. The lists of differentially expressed metabolites 

(ESI 3.3) were created for each comparison using a threshold of an absolute fold-

change more than 2 and FDR-adjusted p-value less than 0.05. Compared with the 

pre-challenge time-point, there were 222 (156 up & 66 down), 310 (193 up & 117 

down), 476 (277 up & 199 down), 490 (303 up & 187 down) and 133 (104 up & 29 

down) putative metabolites differentially expressed respectively at 36 hours, 42 

hours, 57 hours, 81 hours and 312 hours PC. The top 15 most up- and down-

regulated metabolites at 36, 42, 57, 81 and 312 hours PC compared with 0 hours 

PC are given in Table 3.1 – Table 3.5. 
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Table 3.1: Top 15 most up- and down-regulated metabolites at 36 hours after 
intra-mammary challenge with S. uberis. 
One-way ANOVA test was performed on the 690 putatively identified and 
quantified metabolites, and the top 15 most up-regulated and down-regulated 
metabolites at 36 hours after intra-mammary challenge compared with 0 hours 
post-challenge are given in the table. 

Chemical 
Formula 

Putative Metabolites 
Fold 

Change 

FDR-
adjusted 
p-value 

Confidence 
score for 
the 
identificatio
n quality 

Mass 
accurac
y (ppm 
error) 

Retentio
n time 
error (%) 

MSI 
classificatio
n 

C6H9NO5 N-Acetyl-L-aspartate 18,419 1.13E-08 8 -0.50 1.94 Annotated 

C18H32N4O5 Ile-Val-Gly-Pro 13,053 4.52E-05 7 1.00 12.43 Annotated 

C15H28N4O7 Ala-Leu-Ser-Ser 2,095 1.21E-07 7 0.80 12.82 Annotated 

C18H32N4O5 Ala-Val-Val-Pro 1,882 3.11E-03 7 0.52 -3.81 Annotated 

C18H20N2O4 Phe-Tyr 1,842 8.26E-05 7 0.19 -16.86 Annotated 

C18H20N2O3 Phe-Phe 1,546 2.47E-04 5 0.60 -32.83 Annotated 

C13H25N3O4 Leu-Val-Gly 1,163 1.89E-04 7 0.11 -35.21 Annotated 

C15H29N3O5 Leu-Leu-Ser 961 1.82E-04 7 0.12 -30.00 Annotated 

C14H18N2O3 Methohexital 957 1.39E-05 3 0.12 35.91 Annotated 

C5H10O3S 
2-hydroxy-4-
methylthiobutanoate 

890 7.32E-05 5 0.11 -4.68 Annotated 

C12H16N2O3 Carbetamide 827 1.17E-03 7 0.84 29.88 Annotated 

C20H34N6O9 Asp-Leu-Gln-Gln 792 1.89E-04 7 0.82 10.72 Annotated 

C11H23N5O3 Val-Arg 603 3.90E-05 7 -0.71 25.20 Annotated 

C12H16N2O3 Phe-Ala 544 6.93E-05 7 -0.14 -42.07 Annotated 

C18H28O4 5-O-Methylembelin 508 1.71E-03 7 -0.54 -5.59 Annotated 

C4H4N2O2 Orotate (Fragment) -15 6.78E-02 8 0.30 -13.09 Annotated 

C17H18O4 (-)-Sativan -15 6.46E-02 5 -0.60 -2.48 Annotated 

C7H10O 
[FA (7:2)] 2,4-
heptadienal 

-23 4.36E-02 5 0.69 -38.50 Annotated 

C5H7N3O 2-O-Methylcytosine -25 3.93E-02 7 1.13 37.73 Annotated 

C6H6N4O 1-Methylhypoxanthine -27 3.69E-02 7 -0.82 16.55 Annotated 

C5H7N3O 5-Methylcytosine -28 3.55E-02 7 1.13 37.73 Annotated 

C8H7NO3 4-Pyridoxolactone -29 3.43E-02 6 -0.57 -41.39 Annotated 

C16H20N4O4 Trp-Ala-Gly -40 2.52E-02 7 -0.24 23.17 Annotated 

C10H14N2O5 Thymidine -40 2.51E-02 8 0.14 3.49 Identified 

C5H7N3O 3-Methylcytosine -47 2.11E-02 8 1.07 10.10 Annotated 

C9H12N2O6 Uridine -88 1.13E-02 10 0.82 0.24 Identified 

C4H10N3O5P Phosphocreatine -240 4.18E-03 6 -0.46 -19.58 Annotated 

C9H12N2O5 Deoxyuridine -346 2.89E-03 8 0.92 0.42 Identified 

C10H12N5O6P 3',5'-Cyclic AMP -547 1.83E-03 10 0.77 -0.53 Identified 

C9H13N3O4 Deoxycytidine -1,155 8.66E-04 8 0.71 18.65 Annotated 
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Table 3.2: Top 15 most up- and down-regulated metabolites at 42 hours after 
intra-mammary challenge with S. uberis. 
One-way ANOVA test was performed on the 690 putatively identified and 
quantified metabolites, and the top 15 most up-regulated and down-regulated 
metabolites at 42 hours after intra-mammary challenge compared with 0 hours 
post-challenge are given in the table. 

Chemical 
Formula 

Putative Metabolites 
Fold 

Chang
e 

FDR-
adjusted 
p-value 

Confidenc
e score 
for the 
identificat
ion quality 

Mass 
accuracy 
(ppm 
error) 

Retention 
time 
error (%) 

MSI 
classificat
ion 

C18H32N4O5 Ile-Val-Gly-Pro 22,754 1.60E-05 7 1.00 12.43 Annotated 

C6H9NO5 N-Acetyl-L-aspartate 16,827 3.48E-08 8 -0.50 1.94 Annotated 

C18H20N2O3 Phe-Phe 9,783 1.61E-05 5 0.60 -32.83 Annotated 

C15H29N3O5 Leu-Leu-Ser 8,512 6.80E-06 7 0.12 -30.00 Annotated 

C18H20N2O4 Phe-Tyr 8,420 8.15E-06 7 0.19 -16.86 Annotated 

C14H18N2O3 Methohexital 4,946 8.76E-07 3 0.12 35.91 Annotated 

C18H32N4O5 Ala-Val-Val-Pro 4,484 1.19E-03 7 0.52 -3.81 Annotated 

C15H28N4O7 Ala-Leu-Ser-Ser 3,921 5.84E-08 7 0.80 12.82 Annotated 

C13H25N3O4 Leu-Val-Gly 3,899 2.39E-05 7 0.11 -35.21 Annotated 

C12H16N2O3 Carbetamide 3,877 1.38E-04 7 0.84 29.88 Annotated 

C5H10O3S 
2-hydroxy-4-
methylthiobutanoate 

3,814 5.99E-06 5 0.11 -4.68 Annotated 

C51H82O23 Avenacoside A 2,221 1.38E-05 7 -1.68 0.00 Annotated 

C20H34N6O9 Asp-Leu-Gln-Gln 1,893 3.57E-05 7 0.82 10.72 Annotated 

C25H29N5O6 Trp-Gln-Tyr 1,458 2.60E-05 7 0.48 -13.82 Annotated 

C12H16N2O3 Phe-Ala 1,245 1.09E-05 7 -0.14 -42.07 Annotated 

C5H7N3O 3-Methylcytosine -45 6.61E-04 8 1.07 10.10 Annotated 

C5H6N2O4 (S)-Dihydroorotate -66 1.27E-02 8 -0.31 -5.53 Annotated 

C7H6N2O3 
4-Hydroxy-3-
nitrosobenzamide 

-69 2.82E-03 5 -0.59 14.30 Annotated 

C10H14N2O5 Thymidine -71 3.39E-03 8 0.14 3.49 Identified 

C12H14N2O4 3-Oxohexobarbital -92 9.58E-04 5 -0.58 12.21 Annotated 

C9H14O2 
[FA (9:2)] 2,6-nonadienoic 
acid 

-93 4.84E-03 7 -0.28 -26.46 Annotated 

C6H6N4O 1-Methylhypoxanthine -99 1.19E-03 7 -0.82 16.55 Annotated 

C8H16NO9P 
N-Acetyl-D-glucosamine 6-
phosphate 

-143 5.31E-03 8 -0.35 -17.31 Annotated 

C5H9O7P P-DPD -175 1.30E-03 7 -0.07 18.07 Annotated 

C5H7N3O 5-Methylcytosine -178 2.43E-04 7 1.13 37.73 Annotated 

C8H8O2 
4-
Hydroxyphenylacetaldehyde 

-234 5.82E-03 6 0.22 -44.59 Annotated 

C9H12N2O5 Deoxyuridine -270 1.09E-03 8 0.92 0.42 Identified 

C10H12N5O6P 3',5'-Cyclic AMP -623 2.99E-04 10 0.77 -0.53 Identified 

C4H10N3O5P Phosphocreatine -654 3.16E-03 6 -0.46 -19.58 Annotated 

C9H13N3O4 Deoxycytidine -1,155 2.71E-08 8 0.71 18.65 Annotated 
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Table 3.3: Top 15 most up- and down-regulated metabolites at 57 hours after 
intra-mammary challenge with S. uberis. 
One-way ANOVA test was performed on the 690 putatively identified and 
quantified metabolites, and the top 15 most up-regulated and down-regulated 
metabolites at 57 hours after intra-mammary challenge compared with 0 hours 
post-challenge are given in the table. 

Chemical 
Formula 

Putative Metabolites 
Fold 

Change 

FDR-
adjusted 
p-value 

Confidenc
e score 
for the 
identificat
ion 
quality 

Mass 
accuracy 
(ppm 
error) 

Retention 
time 
error (%) 

MSI 
classificat
ion 

C13H25N3O4 Leu-Val-Gly 30,720 5.45E-07 7 0.11 -35.21 Annotated 

C6H9NO5 N-Acetyl-L-aspartate 23,323 5.75E-09 8 -0.50 1.94 Annotated 

C14H18N2O3 Methohexital 18,951 3.19E-08 7 0.80 12.82 Annotated 

C18H32N4O5 Ile-Val-Gly-Pro 16,633 6.83E-06 7 1.00 12.43 Annotated 

C15H28N4O7 Ala-Leu-Ser-Ser 15,950 2.06E-09 7 0.80 12.82 Annotated 

C13H25N3O4 Val-Val-Ala 11,460 2.09E-06 7 0.44 4.96 Annotated 

C20H27N3O6 Myxochlin B 9,257 1.56E-06 7 -0.10 17.41 Annotated 

C25H29N5O6 Trp-Gln-Tyr 7,093 8.30E-07 7 0.48 -13.82 Annotated 

C12H21N3O4 Val-Gly-Pro 6,823 1.88E-06 7 0.76 10.35 Annotated 

C24H30N6O8 Asn-Trp-Asp-Pro 6,700 4.25E-06 7 0.00 -19.79 Annotated 

C20H30N4O8 Ala-Thr-Thr-Tyr 5,353 2.87E-06 7 1.22 1.56 Annotated 

C15H29N3O5 Leu-Leu-Ser 5,323 3.35E-06 7 0.12 -30.00 Annotated 

C20H34N6O9 Asp-Leu-Gln-Gln 4,540 3.20E-06 7 0.82 10.72 Annotated 

C7H13NO3S N-Acetylmethionine 3,813 3.19E-08 5 -0.11 -46.42 Annotated 

C18H32N4O5 Ala-Val-Val-Pro 3,778 6.80E-04 7 0.52 -3.81 Annotated 

C4H6N2O3 3-ureidoacrylate -315 2.65E-04 7 0.90 -14.10 Annotated 

C2H8NO4P Ethanolamine phosphate -349 3.41E-03 6 -0.75 29.96 Annotated 

C5H7N3O 5-Methylcytosine -406 1.74E-05 8 1.07 10.10 Annotated 

C14H26NO14P 
Lysosomal-enzyme N-
acetyl-D-glucosaminyl-
phospho-D-mannose 

-537 3.99E-06 5 0.19 0.00 Annotated 

C7H6N2O3 
4-Hydroxy-3-
nitrosobenzamide 

-591 1.96E-05 5 -0.59 14.30 Annotated 

C3H7O5P Propanoyl phosphate -602 1.28E-05 8 -0.20 10.86 Annotated 

C10H13N Actinidine -635 3.55E-07 7 -1.25 46.33 Annotated 

C9H13N3O4 Deoxycytidine -1,155 5.68E-09 8 0.71 18.65 Annotated 

C5H9O7P P-DPD -2,162 7.38E-06 7 -0.07 18.07 Annotated 

C10H12N5O6P 3',5'-Cyclic AMP -2,323 1.40E-05 10 0.77 -0.53 Identified 

C4H10N3O5P Phosphocreatine -2,950 2.28E-04 6 -0.46 -19.58 Annotated 

C16H20N4O4 Trp-Ala-Gly -2,956 2.57E-06 7 -0.24 23.17 Annotated 

C12H23O14P 
alpha,alpha'-Trehalose 6-
phosphate 

-4,606 4.60E-16 8 0.30 0.00 Annotated 

C5H6N2O4 (S)-Dihydroorotate -9,641 2.95E-06 8 -0.31 -5.53 Annotated 

C8H16NO9P 
N-Acetyl-D-glucosamine 6-
phosphate 

-92,488 3.43E-07 8 -0.35 -17.31 Annotated 
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Table 3.4: Top 15 most up- and down-regulated metabolites at 81 hours after 
intra-mammary challenge with S. uberis. 
One-way ANOVA test was performed on the 690 putatively identified and 
quantified metabolites, and the top 15 most up-regulated and down-regulated 
metabolites at 81 hours after intra-mammary challenge compared with 0 hours 
post-challenge are given in the table. 

Chemical 
Formula 

Putative Metabolites 
Fold 

Chang
e 

FDR-
adjusted 
p-value 

Confiden
ce score 
for the 
identifica
tion 
quality 

Mass 
accuracy 
(ppm 
error) 

Retentio
n time 
error (%) 

MSI 
classificati
on 

C13H25N3O4 Leu-Val-Gly 32,223 1.32E-07 7 0.11 -35.21 Annotated 

C24H30N6O8 Asn-Trp-Asp-Pro 21,100 3.12E-07 7 0.00 -19.79 Annotated 

C15H28N4O7 Ala-Leu-Ser-Ser 17,333 3.90E-10 7 0.80 12.82 Annotated 

C14H18N2O3 Methohexital 12,421 1.47E-08 7 0.80 12.82 Annotated 

C13H25N3O4 Val-Val-Ala 10,355 9.02E-07 7 0.44 4.96 Annotated 

C41H80NO7P 

[PE (18:1/18:1)] 1-(1Z-
octadecenyl)-2-(9Z-
octadecenoyl)-sn-glycero-3-
phosphoethanolamine 

10,202 9.32E-09 7 0.17 -3.89 Annotated 

C7H13NO3S N-Acetylmethionine 4,725 5.57E-09 5 -0.11 -46.42 Annotated 

C26H45NO6S 
[ST hydrox] N-
(3alpha,7alpha-dihydroxy-
5beta-cholan-24-oyl)-taurine 

4,374 1.21E-06 8 0.29 0.80 Annotated 

C18H28O4 5-O-Methylembelin 3,304 2.38E-05 7 -0.54 -5.59 Annotated 

C14H23N3O6 Val-Asp-Pro 3,239 7.87E-06 5 0.31 -34.84 Annotated 

C20H27N3O6 Myxochlin B 3,148 2.90E-06 7 -0.10 17.41 Annotated 

C6H9NO5 N-Acetyl-L-aspartate 3,084 4.62E-08 8 -0.50 1.94 Annotated 

C22H29N7O5 Puromycin 3,061 3.90E-10 7 0.27 0.00 Annotated 

C26H38N6O7S Asp-Lys-Met-Trp 3,033 1.71E-07 7 0.96 -43.15 Annotated 

C6H12N2O4 Ala-Ser 2,922 1.13E-06 7 -0.56 4.41 Annotated 

C12H22O11 Lactose -677 1.13E-09 6 -0.34 17.37 Annotated 

C7H6N2O3 
4-Hydroxy-3-
nitrosobenzamide 

-685 6.97E-06 5 -0.59 14.30 Annotated 

C13H21NO10 
N-Acetyl-4-O-
acetylneuraminate 

-738 5.45E-06 7 0.75 -3.49 Annotated 

C3H7O5P Propanoyl phosphate -771 3.64E-06 8 -0.20 10.86 Annotated 

C20H35NO16 
alpha-D-Galactosyl-1,3-beta-
D-galactosyl-1,4-N-acetyl-D-
glucosamine 

-855 3.20E-06 5 -0.36 0.00 Annotated 

C2H8NO4P Ethanolamine phosphate -943 4.89E-04 6 -0.75 29.96 Annotated 

C5H9O7P P-DPD -2,162 3.32E-06 7 -0.07 18.07 Annotated 

C9H19O11P 
sn-glycero-3-Phospho-1-
inositol 

-2,178 8.72E-06 7 -0.01 -8.43 Annotated 

C10H12N5O6P 3',5'-Cyclic AMP -2,323 6.41E-06 10 0.77 -0.53 Identified 

C4H10N3O5P Phosphocreatine -2,950 1.20E-04 6 -0.46 -19.58 Annotated 

C16H20N4O4 Trp-Ala-Gly -2,956 9.80E-07 7 -0.24 23.17 Annotated 

C14H26NO14P 
Lysosomal-enzyme N-acetyl-
D-glucosaminyl-phospho-D-
mannose 

-3,192 4.69E-08 5 0.19 0.00 Annotated 

C12H23O14P 
alpha,alpha'-Trehalose 6-
phosphate 

-4,606 7.78E-17 8 0.30 0.00 Annotated 
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C5H6N2O4 (S)-Dihydroorotate 
-

29,542 
2.03E-07 8 -0.31 -5.53 Annotated 

C8H16NO9P 
N-Acetyl-D-glucosamine 6-
phosphate 

-
2,2435

9 
3.44E-08 8 -0.35 -17.31 Annotated 

 

Table 3.5: Top 15 most up- and down-regulated metabolites at 312 hours after 
intra-mammary challenge with S. uberis. 
One-way ANOVA test was performed on the 690 putatively identified and 
quantified metabolites, and the top 15 most up-regulated and down-regulated 
metabolites at 312 hours after intra-mammary challenge compared with 0 hours 
post-challenge are given in the table. 

Chemical 
Formula 

Putative Metabolites 
Fold 

Change 

FDR-
adjusted 
p-value 

Confidenc
e score 
for the 
identifica
tion 
quality 

Mass 
accuracy 
(ppm 
error) 

Retention 
time 
error (%) 

MSI 
classificat
ion 

C14H18N2O3 Methohexital 3,242 5.34E-06 7 0.80 12.82 Annotated 

C10H20N2O4 Leu-Thr 977 2.16E-04 5 0.05 -6.41 Annotated 

C41H80NO7P 

[PE (18:1/18:1)] 1-(1Z-
octadecenyl)-2-(9Z-
octadecenoyl)-sn-glycero-3-
phosphoethanolamine 

892 2.12E-05 7 0.17 -3.89 Annotated 

C20H27N3O6 Myxochlin B 699 5.48E-04 7 -0.10 17.41 Annotated 

C11H23N5O3 Val-Arg 453 1.19E-04 7 -0.71 25.20 Annotated 

C22H29N7O5 Puromycin 439 1.49E-06 7 0.27 0.00 Annotated 

C26H45NO6S 

[ST hydrox] N-
(3alpha,7alpha-dihydroxy-
5beta-cholan-24-oyl)-
taurine 

408 9.72E-04 8 0.29 0.80 Annotated 

C21H16O6 Justicidin B 283 3.10E-03 5 -0.76 47.24 Annotated 

C12H16N2O3 Phe-Ala 254 5.03E-04 7 -0.14 -42.07 Annotated 

C8H15N3O4 N-Acetyl-L-citrulline 216 4.61E-05 6 -0.26 19.03 Annotated 

C13H16N2O Girgensonine 174 4.86E-05 7 0.28 27.37 Annotated 

C14H19N3O5 Ala-Gly-Tyr 172 4.09E-03 7 1.56 22.90 Annotated 

C6H12N2O4 Ala-Ser 121 4.20E-03 7 -0.56 4.41 Annotated 

C6H12N2O5 Ser-Ser 113 6.29E-04 7 0.06 -3.36 Annotated 

C9H16N2O5S Met-Asp 112 9.89E-06 5 0.06 16.66 Annotated 

C4H7N3O Creatinine -5 5.34E-06 10 0.98 -0.05 Identified 

C6H14N2O N-Acetylputrescine -5 4.09E-03 8 1.33 2.15 Annotated 

C9H12N2O6 Pseudouridine -5 1.24E-02 8 -0.04 12.06 Annotated 

C5H5NO 2-Hydroxypyridine -5 5.48E-04 7 -0.02 -20.69 Annotated 

C10H17N2O14
P3 

dTTP -5 1.63E-03 8 1.31 0.00 Annotated 

C4H4N2O2 Orotate (Fragment) -7 9.39E-05 8 0.30 -13.09 Annotated 

C6H7NO2 N-Ethylmaleimide -7 3.48E-03 5 1.07 -33.31 Annotated 

HI hydrogen iodide -7 1.42E-02 7 0.81 46.81 Annotated 

C6H7N5O 3-Methylguanine -8 8.45E-04 5 -0.59 16.56 Annotated 

C5H6O4 citraconate -8 4.02E-03 8 0.45 -2.27 Annotated 

C6H7O6 Monodehydroascorbate -9 4.58E-02 6 -0.52 -24.58 Annotated 
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C4H5NO3 Maleamate -12 5.03E-04 7 0.30 6.95 Annotated 

C8H7NO2 5,6-Dihydroxyindole -16 1.22E-03 6 -0.96 29.63 Annotated 

C5H5N5 Adenine -28 1.36E-05 10 -0.54 -4.21 Identified 

C10H12N5O6P 3',5'-Cyclic AMP -1,027 4.58E-04 10 0.77 -0.53 Identified 

 

3.4.1.4 Perturbations in the metabolic pathways 

Most of the annotated metabolites were mapped to KEGG reference pathways 

(Kanehisa et al., 2016), and the results showed alterations to a number of mapped 

pathways including amino acid metabolism such as alanine, aspartate and 

glutamate metabolism, nucleotide metabolism such as purine and pyrimidine 

metabolism, carbohydrate metabolism such as ascorbate and aldarate 

metabolism, lipid metabolism such as the Eicosanoids pathway. There were 

significant changes in the di-, tri- and tetra-peptides concentrations in milk over 

the time course of the experimental challenge. A heat map (Figure 3.7) plotting 

the fold-changes compared with 0 hours PC of metabolite concentrations mapped 

to amino acid metabolism, carbohydrate metabolism, lipid metabolism, 

nucleotide metabolism and di-, tri- and tetra-peptides shows increasing trends in 

lipid metabolism and di-, tri- and tetra-peptides up to 81 hours PC. Conversely, 

the majority of the metabolites mapped to carbohydrate metabolism and 

nucleotide metabolism show a decreasing trend in concentration up to 81 hours 

PC. The observations were further corroborated by the results from Pathos web-

based tool that showed the intensity of changes in KEGG metabolic pathways at 

each post-challenge time-point compared to the pre-challenge metabolite levels 

(ESI 3.4 – 3.8). In addition, the mapping of metabolites on the KEGG metabolic, 

regulatory and biosynthesis pathways were visually examined using iPath web-

based tool (ESI 3.9 – 3.11). 
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Figure 3.7: Heat map showing the fold-changes of putative metabolites mapped 
to KEGG metabolic pathways. 
Fold-change of putative metabolites in each contrast (each time-point compared 
with 0 hours post-challenge) was computed from the one-way ANOVA test. The 
metabolites were mapped to KEGG metabolic pathways using IDEOM software, and 
then the heat map was plotted using the Partek Genomic suite. 

3.5 Discussion 

This study was an untargeted global metabolomics investigation of skimmed milk, 

carried out to characterize the metabolite profile of skimmed milk and its changes 

with time during the course of an intra-mammary challenge with a host-adapted 

strain of S. uberis, an important environmental pathogen of mastitis. Of particular 

importance is the ability to relate the findings of this metabolomic investigation 

with the pathophysiological, immunological and peptidomic changes described in 

the previous reports (Tassi et al., 2013, Thomas et al., 2016) and with the 

proteomics analysis presented in chapter 2. All data obtained from post infection 

time-points were statistically compared with values at 0 hours. It is expected that 

metabolomic investigation of milk would yield a high number of metabolites 
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(Sundekilde et al., 2013c) and in this analysis over 3,000 chromatographic peaks 

were detected, of which 690 were putatively annotated with a definitive 

metabolite. The number of compounds identified in this study is by far the largest 

in any previous metabolomics study using bovine milk (Boudonck et al., 2009, 

Hettinga et al., 2009c, Sundekilde et al., 2013b). This may be due to the 

methodology used, LC-MS, which is known to be of higher sensitivity than other 

metabolomics techniques such as H-NMR spectroscopy, although having its own 

disadvantages such as lower reproducibility and difficulty in identifying spectral 

features (Wishart, 2016). While many methods exist for extraction of metabolites, 

this study used chloroform and methanol (1:3 v/v) mixture, based on its 

complementarity with the LC-MS system in the in-house experience at Glasgow 

polyomics (Creek et al., 2011). This method is based on the original Folch method 

(Folch et al., 1957) and is known to be effective for the extraction of a broad 

range of metabolites including lipids (Beltran et al., 2012, Canelas et al., 2009, 

Reis et al., 2013). 

A notable finding of this study is the change in metabolite composition of skimmed 

milk over the course of mastitis caused by the host-adapted strain of S. uberis. 

The time-points used in the omics analyses include a pre-infection (0 hours PC), 

peak bacterial load and peak body temperature of cows (36 hours PC), rapidly 

declining bacterial load and body temperature of cows (42, 57 and 81 hours PC) 

and spontaneous clearing of infection with one cow being an exception (312 hours 

PC). The number of differentially expressed metabolites increased over the course 

of infection, and peaked at 81 hours PC. The number of modulated metabolites as 

well as the amplitude of change peaked at 81 hours PC. These patterns were 

similar to those found by the proteomic analysis described in chapter 2, although 

in the proteomic analysis expression level of a number of proteins peaked at 57 

hours PC. Nevertheless, principal component analysis and hierarchical clustering 

analysis of both the metabolomic and proteomics datasets showed comparable 

patterns in that the samples from 57 hours and 81 hours are divergent from 0, 36 

and 42 hours PC. However, these patterns are contradictory to the clinical and 

bacteriological profiles where the largest change occurred at 36 hours PC. 

An interesting and novel finding in this study was the demonstration of increasing 

concentrations of bile acids such as taurochenodeoxycholic acid (C26H45NO6S), 
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taurocholic acid (C26H45NO7S), glycocholate (C26H43NO6), glycodeoxycholate 

(C26H43NO5) and cholate (C24H40O5) over the time course until 81 hours PC (Figure 

3.8). Bile acids are produced by liver and are well known as natural detergents 

involved in lipid digestion in the intestine.  However, the bile acids have been 

shown to also have antimicrobial activity through their detergent property in the 

intestinal tract (Hofmann and Eckmann, 2006, Sung et al., 1993). Furthermore, an 

immunomodulatory role has been proposed  mediated through the farnesoid X 

receptor (FXR) pathway (Calmus and Poupon, 2014), which was one of the 

pathways enriched in the proteomics dataset (chapter 2). As there is evidence in 

both metabolomic and proteomics analysis, the involvement of the FXR pathway 

and bile acid activity in bovine mastitis should be studied in more detail in the 

future.  

In addition to FXR, 3 other nuclear receptors involved in immunomodulatory 

activities (pregnane X receptor (PXR), constitutive androstane receptor (CAR) and 

vitamin D receptor (VDR)) are known to be activated by specific bile acids (Chiang, 

2013, Sipka and Bruckner, 2014). Increased intracellular bile acids concentration 

results in the transcriptional activation of these nuclear receptors. Activated FXR 

ligands exert anti-inflammatory activity through their interaction with other 

transcription factors including activator protein 1 and nuclear factor-κB (NF-κB) 

(Wang et al., 2008b). Similarly, PXR exhibits anti-inflammatory role by inhibiting 

the expression of NF-κB target genes, and the production of interleukins and 

chemokines (Sipka and Bruckner, 2014, Zhang et al., 2008). Likewise, vitamin D3 

plays an inhibitory role in the production of pro-inflammatory cytokines (Sipka and 

Bruckner, 2014, Zhang et al., 2012b). Furthermore, immunomodulatory role of 

bile acids can be linked to TGR5, a bile acid activated G-protein-coupled receptor 

which increases the production of cAMP in innate immune cells leading to down-

regulation of inflammatory cytokines such as tumour necrosis factor alpha (TNF-

α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and interleukin-8 (IL-8) 

(Hogenauer et al., 2014, Duboc et al., 2014). Interestingly, profiles of pro-

inflammatory cytokines in milk over the time course in this challenge study 

reported by Tassi et al. (Tassi et al., 2013) were comparable with the 

concentrations of bile acids in skimmed milk quantified in this metabolomic 

analysis. Peak concentrations of TNF-α, IL-1β, IL-6 and IL-8 in milk were found 

between 36 and 48 hours PC (Tassi et al., 2013), and as the concentrations of bile 
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acids increased, the concentration of pro-inflammatory cytokines decreased. 

Furthermore, peroxisome proliferator-activated receptors (PPAR) signalling, 

retinoid X receptor (RXR) activation and liver X receptor (LXR) activation signalling 

pathways, which are known to be associated with bile acids metabolism and 

signalling (Chiang, 2013) were found to be enriched in the proteomic analysis 

(chapter 2). 

 

Figure 3.8: Changes in the concentration of bile acids and lactate in milk after 
intramammary challenge with S. uberis. 
Fold-changes for each metabolite at 36, 42, 57, 81 and 312 hours post-challenge 
compared with 0 hours post-challenge were analysed using a one-way ANOVA. The 
time course profile of fold-changes shows the increasing concentration of bile 
acids and lactate over the course of the infection, reaching highest levels at 81 
hours post-challenge, and then dropping down to pre-infection levels at 312 hours. 
This figure shows fold-change in log10 scale. 

This study also showed hippurate (C9H9NO3) concentration decreasing over time, 

with its lowest level reached at 57 hours PC. Similarly, lactose (C12H22O11) 

concentration decreased over time (Ogola et al., 2007, Malek dos Reis et al., 

2013), and could not be detected at 81 hours PC. The decreasing trend of lactose 

concentration in milk is supported by the proteomics analysis in which alpha-

lactalbumin, a regulatory subunit of lactose synthase involved in the lactose 

synthesis, was down-regulated over the time course. Previous studies showed 

decreased concentration of hippurate and lactose in milk associated with CM, SCM 

and elevated SCC (Sundekilde et al., 2013c, Pyorala, 2003), and these studies 

suggested that the decreased concentration of lactose could be to maintain 

osmotic pressure of milk to compensate the flow of blood constituents into milk. 
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Increased concentration of lactate (C3H6O3) over the time course with highest 

concentration at 42 hours PC was also observed. Lactate is an end product of 

bacterial metabolism (Hettinga et al., 2009c, Sundekilde et al., 2013c) and 

correlates with the high bacterial load in milk, but it could also be due to an 

increase in anaerobic metabolism in the host. Using a NMR spectroscopy based 

metabolomics approach, Sundekilde et al., reported increased concentration of 

isoleucine in milk with the elevated SCC (Sundekilde et al., 2013c). This study 

showed up-regulation of leucine (C6H13NO2) over the time course, with its highest 

concentration at 81 hours PC. Identification of isomers such as leucine and 

isoleucine is a limitation in the LC-MS based methodology compared with the NMR 

spectroscopy, and this might well be isoleucine instead of leucine in this case. 

Mapping the metabolites to KEGG pathways, perturbations in amino acid 

metabolism, carbohydrate metabolism, lipid metabolism, nucleotide metabolism 

and metabolism of di-, tri- and tetra-peptides were identified. This is further 

supported by the peptidomic study conducted using the aliquots of the same milk 

samples (Thomas et al., 2016). The increasing trend in the metabolism of di-, tri- 

and tetra-peptides over the time course post-challenge (Figure 3.4) could be 

attributed to the lysis of milk proteins. Most of these compounds were not 

detected at 0 hours, but their concentration increased at 36, 42, 57 and 81 hours 

PC, and then decreased (or not detected) at 312 hours PC, by which time the 

infection was resolved in all but one cow. It is possible that the increase in small 

molecular weight peptides is due to the activities of plasma proteases such as 

plasmin, leukocyte associated proteases and cathepsins, as well as bacterial 

proteases (Larsen et al., 2010b, Haddadi et al., 2005). There is a decreasing trend 

in carbohydrate metabolism over the time course (Figure 3.4), and this could be 

due to the utilization of carbohydrates by bacteria or their production may be 

inhibited as part of host response to deprive the bacteria of readily available 

energy substrates. This study showed down-regulation of lipid metabolism over 

the time course (Figure 3.4) corresponding with the increase of inflammation. The 

sample extraction method and the chromatographic separation might significantly 

affect the discovery of the lipid compounds, and a specialised lipidomic method 

should be used to study the lipid compounds in their own right. Allowing for this 

limitation, this metabolomics study found that most lipids were eluted in the first 

5 minutes of the LC-MS run. There was a mixed trend in the Eicosanoids pathway, 
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which is an important metabolic pathway for arachidonic acid metabolism. 18-

acetoxy-PGF2alpha-11-acetate (C24H38O8), a prostaglandin in the Eicosanoids 

pathway was not detected at 0 hours and 312 hours PC, but present in the rest of 

the time-points, while 2,3-Dinor-8-iso-PGF2alpha (C18H30O5) another compound in 

the Eicosanoids pathway and a product of prostaglandin metabolism showed 

increasing trend, peaking at 81 hours PC. However, PGF2-alpha Methyl Ether 

(C21H38O4) was significantly down-regulated over the course with its lowest level 

at 81 hours PC (fold-change = -4.3375, FDR-adjusted p-value = 0.0421). 

Eicosanoids, particularly PGF2-alpha is an important mediator in the acute 

inflammatory process, and prostaglandins are known to be up-regulated in milk 

during mastitis (Atroshi et al., 1986). 

3.6 Conclusions 

This chapter described the LC-MS-based untargeted metabolomic study used to 

profile the changes in metabolite concentration in skimmed milk during the course 

of the experimental S. uberis mastitis infection. Several hundred metabolites in 

skimmed milk were identified/annotated and quantified. 

Changes in the metabolite profiles over the course of the infection were 

identified. Exploratory analysis performed on the metabolites data showed the 

metabolites profiles changed over the time course on a time-dependent manner. 

This study found changes in the quantity of many metabolites over the time course 

of the infection, and significantly, changes in the concentration of bile acids in 

skimmed milk were identified. This provides support for the hypothesis that 

skimmed milk metabolites have distinct abundance profiles over time in response 

to S. uberis challenge. 

 Changes in the concentration of bile acids along with the changes in the 

concentration of cytokines suggested possible anti-inflammatory role of the bile 

acid receptor pathway in bovine mastitis. Involvement of bile acids in the 

resolution of mastitis through activation of nuclear receptors could potentially a 

novel discovery in this study. Changes in the metabolites profiles were compared 

with the changes in the proteins (chapter 2) to infer changes in signalling 

pathways, and also with the clinical manifestations and the associated peptidomic 

study. Particularly, enrichment of FXR pathway in the proteomics data and the 
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increased concentration of bile acids in the metabolomic data could be linked with 

changes in the clinical manifestations of inflammation. Similarly, the down-

regulation of lactose over the course of mastitis could be associated with the 

down-regulation of alpha-lactalbumin. This provides support for the hypothesis 

that pathways can be identified which are associated with changes in skimmed 

milk metabolite levels.  

The next chapter will focus on an integrative analysis of the proteomics and the 

metabolomics data using a novel modelling approach. 
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4. Integrative analysis of the proteomics and 
the metabolomics datasets 

4.1 Introduction 

System-wide omics data were obtained at two levels of biological organization 

(namely, protein and metabolite levels) from milk samples collected during the 

course of the experimental model of S. uberis mastitis, and the dynamic changes 

in these were studied in chapters 2 and 3 respectively. In particular, expression 

changes in proteins and metabolites during the course of the infection were 

studied with reference to the pre-infection state, and the analyses were limited 

to one biological level (either protein or metabolite) only. As reviewed in chapter 

1, integrative analysis of omics data collected at different levels of biological 

organization can be beneficial in understanding the biological process underlying 

experimental conditions or disease states. Therefore, to gain deeper 

understanding of the molecular changes in bovine mastitis, the proteomics and 

the metabolomics data were further analysed using network-based integrative 

analysis methods. The results of this integrative analysis are presented in this 

chapter. 

4.2 Hypothesis, aims and objectives 

4.2.1 Hypothesis 

Work presented in this chapter addresses the following hypothesis:  

That S. uberis challenge of bovine mammary gland leads to interconnected 

pathophysiology affecting multiple pathways of host response and homeostasis 

demonstrable by integration of proteomic and metabolomics datasets. 

4.2.2 Aims 

The aim of the work described in this chapter was to derive greater understanding 

of the disease processes in S. uberis mastitis from an integrative analysis of the 

proteomics and metabolomic data described in chapters 2 and 3 respectively. 
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4.2.3 Objectives 

Specific objectives of the work described in this chapter are: 

1. To identify modules7 of co-expressed proteins in the proteomics data using 

a positive correlation network analysis; 

2. To identify modules of co-expressed proteins in the proteomics data using 

a weighted correlation network analysis; 

3. To identify modules of co-expressed metabolites in the metabolomics data 

using a positive correlation network analysis; 

4. To identify modules of co-expressed metabolites in the metabolomics data 

using a weighted correlation network analysis; 

5. To identify modules of co-expressed proteins and metabolites in the 

combined proteomics and metabolomics datasets using an integrative 

positive correlation network analysis;  

6. To identify modules of co-expressed proteins and metabolites in the 

combined proteomics and metabolomics datasets using an integrative 

weighted correlation network analysis. 

The area highlighted in combined brown and blue in Figure 4.1 shows the work 

presented in this chapter and how it fits with the overall workflow. 

                                         
7 Modules, in this context, are groups of proteins, metabolites or both with highly correlated 

expression patterns. 
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Figure 4.1: Flowchart showing the work presented in chapter 4 and how it fits 
with the overall workflow 
Integrative analysis, the area highlighted in combined brown and blue, is 
presented in this chapter. 
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4.3 Materials and methods 

4.3.1 Analysis workflow 

The integrative analysis workflow is given in Figure 4.2. 

 

Figure 4.2: Workflow diagram showing the performed processes in the 
integrative data analysis presented in chapter 4 

 

4.3.2 Network construction and analysis 

4.3.2.1 Positive correlation network analysis (PCNA) 

For positive correlation network analysis (PCNA), a method previously developed 

by the author (Mudaliar et al., 2013) was implemented and executed in the R 

(version 3.2.2) programming environment (Team, 2014). In this method, the 

degree of linear relationship between every pair of proteins, pair of metabolites, 

or protein and metabolite pair in the dataset was identified using the Pearson 

product–moment correlation coefficient. Positively correlated pairs were selected 

by applying a statistical significance-based threshold (known as the ‘hard 

threshold’), and an adjacency matrix was constructed by dichotomizing the 
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relationships as either connected (1) or not connected (0), thereby constructing 

an undirected and unweighted correlation network. The network was visualized 

using Cytoscape (version 3.5.0). The highly connected clusters were identified 

using the MCODE plug-in (version 1.4.2), and the GO enrichment in each cluster 

was analysed using the BiNGO plug-in (version 3.0.3). 

4.3.2.2 Weighted correlation network analysis (WGCNA) 

For weighted correlation network analysis (WGCNA), the ‘WGCNA’ package 

(version 1.5.1) (Langfelder and Horvath, 2008, Zhao et al., 2010) was used in the 

R (version 3.2.2) programming environment (Team, 2014). Similar to the PCNA 

(section 4.3.2.1), co-expression similarity was assessed using the Pearson product–

moment correlation coefficient between the pairs of proteins, pairs of 

metabolites, or protein and metabolite pairs in the dataset. However, the 

absolute value of co-expression similarity was raised to a power (β) to construct 

a weighted adjacency, thereby constructing an undirected and weighted 

correlation network (Zhang and Horvath, 2005). The value of β (≥ 1), also called 

a ‘soft threshold’, was selected by examining the approximate scale-free topology 

of the network. Modules8 were identified based on the topological overlap 

measure (Yip and Horvath, 2007) using an unsupervised hierarchical clustering 

method. The identified modules are named with dynamically-assigned colour 

names according to the size of the module. For example, turquoise denotes the 

largest module, the next is blue, followed by brown, green, yellow, and so on in 

that order. The weighted correlation network (WGCN), and the identified modules 

were exported to Cytoscape (version 3.5.0) for visualization and further processing 

that included GO enrichment analysis using the BiNGO plug-in (version 3.0.3). 

4.3.3 Network visualization 

4.3.3.1 Cytoscape 

Visualization and analysis of networks was performed using Cytoscape (Shannon 

et al., 2003), a Java-based open-source software for visualization and analysis of 

networks. Although it is a general-purpose visualization tool, it is highly suited to 

                                         
8  Following the conventions used in the MCODE and WGCNA software, the author uses the terms 

‘module’ and ‘cluster’ specifically as defined in the context of the software being used. It is 
noted, however, that these terms may be used interchangeably in general usage.  
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the integration and visualization of biological networks (Cline et al., 2007). 

Biological networks are constructed in Cytoscape by representing biological 

entities such as proteins or genes as nodes, and by representing the interactions 

between these biological entities as edges connecting between the respective 

nodes. Attributes of nodes and edges can be included in the Cytoscape networks. 

While the Cytoscape core software provides basic visualization, annotation and 

query functionalities, plug-ins are available that provide several additional 

capabilities to enhance the utility of Cytoscape as an important systems biology 

tool. 

4.3.4 Network clustering 

4.3.4.1 Molecular complex detection plug-in 

The Molecular Complex Detection (MCODE) plug-in for Cytoscape is a Java-based 

software that finds highly connected regions in large networks that may represent 

functional interactions (Bader and Hogue, 2003). The MCODE plug-in functions in 

three recursive stages: node weighting, cluster formation, and optional addition 

of nodes to the cluster using specific criteria. In the first stage, node weighting, 

MCODE identifies the most connected central node (seed node) of sub-graphs by 

computing the core-clustering coefficient of every node. Core-clustering 

coefficient of a node is the density of the highest k-core of its immediate 

neighbourhood, where density of a node is the ratio of its existing edges to 

possible edges. For a graph G, a ‘k-core’ is a subgraph of minimum degree k (for 

all nodes v in graph G, deg(v) >= k). In the second stage, MCODE recursively 

searches outward from this seed node to include all those nodes with a weight 

that deviates from the weight of the seed node by less than a given threshold 

percentage. While moving outwards, whenever a new node is included in the 

cluster, its neighbours are recursively checked to find if they can become a part 

of the cluster. In the third stage, the clusters that have a minimum degree less 

than 2 are filtered and removed. Further, optional parameters such as ‘fluff’ and 

‘haircut’ can be included to either add or remove some peripheral nodes according 

to their neighbourhood density and node degree respectively. A score for each 

cluster is computed by multiplying the number of nodes in the cluster by the 

density of the cluster, which is defined as the number of edges divided by the 

theoretical maximum number of edges. The clusters identified by MCODE are 
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ranked based on their scores, and numbered from 1 to n; cluster 1 is the highest 

ranked cluster. For the positive correlation network analysis reported in this thesis 

(sections 4.3.6, 4.3.8 and 4.3.10), the parameters listed in Table 4.1 were used 

in MCODE to identify clusters. The parameters used were the defaults set in the 

tool, and were deemed appropriate as the number of nodes in the networks varied 

between 550 and 1250. 

Table 4.1: MCODE parameter settings used for positive correlation network 
analysis. 
Scoring parameters are used in computing node weights; finding parameters are 
used in cluster formation. Further description of each parameter is available in 
the MCODE plug-in documentation available at 
http://baderlab.org/Software/MCODE  

Parameter Type Setting 

Include Loops Scoring false 

Degree Cutoff Scoring 2 

Node Score Cutoff Finding 0.2 

Haircut Finding true 

Fluff Finding false 

K-Core Finding 2 

Maximum Depth from Seed Finding 100 

 

4.3.5 Network - semantic analysis 

4.3.5.1 Biological networks gene ontology plug-in 

The Biological Networks Gene Ontology (BiNGO) plug-in for Cytoscape is a Java-

based software to discover enrichment of Gene Ontology (GO) terms in a cluster 

of genes or proteins (Maere et al., 2005). BiNGO is compatible with the clusters 

identified by the MCODE plug-in. Cluster of genes or proteins delineated by MCODE 

in Cytoscape can be used as input to BiNGO to compute GO enrichment in that 

particular cluster. BiNGO retrieves GO annotations including GO hierarchy 

associated with all the genes (or proteins) in a cluster to find significantly enriched 

terms. To assess overrepresentation of a GO term, BiNGO offers two options: (1) 

The hypergeometric test, in which sampling occurs without replacement; (2) The 

binomial test, in which sampling occurs with replacement. To correct for the 

multiple tests performed in identifying GO enrichment, BiNGO offers two options: 
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(1) The Bonferroni family-wise error rate correction; (2) The Benjamini & 

Hochberg false discovery rate correction. The results of the GO enrichment 

analysis can be visualized in Cytoscape. 

4.3.6 PCNA of the proteomics dataset 

The normalized protein expression data described in section 2.4.2 were used in 

constructing a positive correlation network (PCN). Protein intensities in the linear 

scale were transformed into binary logarithmic scale, and the missing values were 

replaced with a constant value of 10 to simulate signals from low abundance 

proteins (ESI 4.1). To select a threshold for co-expression similarity, the Pearson 

product–moment correlation coefficient corresponding to p-value 0.00001 at 80% 

power in the dataset was identified using the R package ‘pwr’ (Champely, 2017). 

With this threshold (r = 0.7335525), an adjacency matrix was generated from the 

logarithmic-transformed dataset using the script 

‘proteomics_data_to_cor_matrix_2017_03_12.R’ (ESI 4.2) in the R programming 

environment. The adjacency matrix was transformed into a tabular format using 

the Perl script ‘make_cor_pairs_from_cor_matrix.pl’ (ESI 4.3), and imported into 

Cytoscape (version 3.5.0). To identify clusters, the MCODE plug-in was run with 

the parameters shown in Table 4.1. The proteins in the identified clusters were 

analysed using BiNGO for GO enrichment, and visualized in Cytoscape. The 

following parameters (Table 4.2) were used for GO enrichment analysis in BiNGO: 

Table 4.2: BiNGO parameter settings used for Gene Ontology enrichment 
analysis. 
Further description of each parameter is available in the BiNGO plug-in 
documentation and user guide available at 
http://psb.ugent.be/cbd/papers/BiNGO/User_Guide.html  

Parameter Setting 

Annotation Bos taurus 

Statistical Test Hypergeometric  

Multiple Test Correction 
Benjamini & Hochberg False Discovery 
Rate (FDR) Correction 

Significance Level 0.05 

Testing Option Use whole annotation as reference set 
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The proteins in the identified clusters were searched for protein-protein 

interactions for Bovine taurus species in the STRING-DB (https://string-db.org) 

version 10.5.  

4.3.7 WGCNA of the proteomics dataset 

The same normalized and logarithmic-transformed protein expression data (ESI 

4.1) described in section 4.3.6 were used for WGCNA. The R package ‘WGCNA’ 

was used in the R programming environment. The R script 

‘WGCNA_prot_exp_data_small_modules_2017_04_04.R’ (ESI 4.4) was used to 

process the data, including selecting a soft threshold, identifying modules, and 

exporting the network and modules to Cytoscape for visualization. Using the 

‘pickSoftThreshold’ function, a soft threshold of 5 was selected (Figure 4.3 and 

ESI 4.5). 

 

Figure 4.3: Analysis of network topology for various soft thresholds in the 
proteomics dataset. 
The plots respectively show four summary network indices (y-axes) as the 
functions of soft threshold expressed as power (x-axes). Numbers in the plots 
indicate the corresponding soft thresholds. The horizontal line on the plot shown 
in the top-left indicates that the approximate scale-free topology is attained 
around the soft threshold of 5. 

https://string-db.org/
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The minimum module size, ‘minModuleSize’, was set at 6 for finding modules, and 

network clustering using topological overlap matrix (TOM)-based dissimilarity was 

examined. Based on the TOM−based dissimilarity and module dendrogram (ESI 4.6 

– 4.9), the ‘MEDissThres’ parameter was set at 0.20 (Figure 4.4) to apply a cutoff 

height. The WGCNA network and the modules were visualized in Cytoscape. The 

proteins in the identified modules were analysed using BiNGO for GO enrichment, 

and visualized in Cytoscape. The same parameters shown in Table 4.2 were used 

for GO enrichment analysis in BiNGO. As with the PCNA, the proteins in the 

identified modules were searched for protein-protein interactions in the STRING-

DB (https://string-db.org) version 10.5. 

 

Figure 4.4: Clustering dendrogram of proteins showing the assigned merged 
module colours and the original module colours. 
The horizontal redline shows the ‘MEDissThres’ parameter set at a cutoff height 
of 0.2 to merge modules whose expression profiles are similar.  

4.3.8 PCNA of the metabolomics dataset 

The metabolite expression data described at section 3.4.1 were used in 

constructing a PCN. Metabolite intensities in the linear scale were transformed 

into binary logarithmic scale, and the missing values were replaced with a 

constant value of 10 to simulate signals from low abundance metabolites (ESI 

4.10). As the metabolite names were long and included some characters 

incompatible with the R programming language, the metabolite names were 

https://string-db.org/
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substituted with custom identifiers and a cross-reference table linking the original 

metabolite names and these custom identifiers was created (ESI 4.11 and ESI 

4.12). To select a threshold for co-expression similarity, the Pearson product–

moment correlation coefficient corresponding to p-value 0.00001 at 80% power in 

the dataset was identified using the R package ‘pwr’ (Champely, 2017). With this 

threshold, an adjacency matrix was generated from the logarithmic-transformed 

dataset using the script ‘metabolomics_data_to_cor_matrix_2017_03_12.R’ (ESI 

4.13) in the R programming environment. The adjacency matrix was transformed 

into a tabular format using the Perl script ‘make_cor_pairs_from_cor_matrix.pl’ 

(ESI 4.14), and imported into Cytoscape. To identify clusters, the MCODE plug-in 

was run with the parameters shown in Table 4.1. 

4.3.9 WGCNA of the metabolomics dataset 

The same logarithmic-transformed metabolite expression data (ESI 4.11 and ESI 

4.12) described in section 4.3.8 were used for WGCNA. The R package ‘WGCNA’ 

(version 1.51) was used in the R programming environment. The R script 

‘WGCNA_met_exp_data_small_modules_2017_04_05.R’ (ESI 4.15) was used to 

process the data, including selecting a soft threshold, identifying modules, and 

exporting the network and modules to Cytoscape for visualization. Using the 

‘pickSoftThreshold’ function, a soft threshold of 6 was selected (Figure 4.5 and 

ESI 4.16). The minimum module size, ‘minModuleSize’ was set at 6 for finding 

modules, and network clustering using topological overlap matrix (TOM)-based 

dissimilarity was examined. Based on the TOM−based dissimilarity and module 

dendrogram (ESI 4.17 – 4.20), the ‘MEDissThres’ parameter was set at 0.20 (Figure 

4.4). The WGCNA network and the modules were visualized in Cytoscape. 
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Figure 4.5: Analysis of network topology for various soft thresholds in the 
metabolomics dataset. 
The plots respectively show four summary network indices (y-axes) as the 
functions of soft threshold expressed as power (x-axes). Numbers in the plots 
indicate the corresponding soft thresholds. The horizontal lines on the plots 
indicate that the approximate scale-free topology is attained around the soft 
threshold of 6. 

 

Figure 4.6: Clustering dendrogram of metabolites showing the assigned merged 
module colours and the original module colours. 
The horizontal redline shows the ‘MEDissThres’ parameter set at a cutoff height 
0.2 to merge modules whose expression profiles are similar. 
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4.3.10 Integrative PCNA of the combined proteomics and 
metabolomics datasets 

The same logarithmic-transformed protein expression and metabolite expression 

data described in sections 4.3.6 and 4.3.8 respectively (ESI 4.1, ESI 4.11 and ESI 

4.12) were used to generate an integrated PCN of the combined proteomics and 

metabolomics data. Both the proteomics data and the metabolomics data from 

each sample were combined (the data were organized in a way that the samples 

formed the rows, and the proteins and metabolites expression formed the 

columns) to form a single dataset (ESI 4.21). To select a threshold for co-

expression similarity, the Pearson product–moment correlation coefficient 

corresponding to p-value 0.000001 at 80% power in the dataset was identified 

using the R package ‘pwr’ (Champely, 2017). With this threshold, an adjacency 

matrix was generated from the combined protein and metabolite expression data 

using ‘prot_met_standardize_integrate_data_to_cor_matrix_2017_03_14.R’ (ESI 

4.22), a script running in the R programming environment. The adjacency matrix 

was transformed into a tabular format using the Perl script 

‘make_cor_pairs_from_cor_matrix_integrated.pl’ (ESI 4.23), and imported into 

Cytoscape (version 3.5.0). Node attribute files were generated for customizing 

node colours for proteins and metabolites (ESI 4.24 and ESI 4.25), and used for 

customizing network visualization in Cytoscape. To identify clusters, the MCODE 

plug-in was run with parameters shown in Table 4.1. 

4.3.11 Integrative WGCNA of the combined proteomics and 
metabolomics datasets 

The same combined protein and metabolite expression data (ESI 4.21) described 

in section 4.3.10 were used for WGCNA. The R package ‘WGCNA’ (version 1.51) 

was run in the R programming environment. The R script 

‘WGCNA_on_prot_met_combined_data_2017_03_15.R’ (ESI 4.26) was used to 

process the data, including selecting a soft threshold, identifying modules, and 

exporting the network and modules to Cytoscape for visualization. Using the 

‘pickSoftThreshold’ function, a soft threshold of 6 was selected (Figure 4.7 and 

ESI 4.27). 
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Figure 4.7: Analysis of network topology for various soft thresholds in the 
combined proteomics and metabolomics dataset. 
The plots respectively show four summary network indices (y-axes) as the 
functions of soft threshold expressed as power (x-axes). Numbers in the plots 
indicate the corresponding soft thresholds. The horizontal lines on the plots 
indicate that the approximate scale-free topology is attained around the soft-
threshold of 6. 

The minimum module size, ‘minModuleSize’ was set at 6 for finding modules, and 

network clustering using topological overlap matrix (TOM)-based dissimilarity was 

examined. Based on the TOM−based dissimilarity and module dendrogram (ESI 4.28 

– 4.31), the parameter ‘MEDissThres’ was set at 0.20 (Figure 4.8). The WGCNA 

network and the modules were visualized in Cytoscape. 
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Figure 4.8: Clustering dendrogram of proteins and metabolites showing the 
assigned merged module colours and the original module colours. 
The horizontal redline shows the parameter ‘MEDissThres’ set at a cutoff height 
of 0.2 to merge modules whose expression profiles are similar. 

4.4 Results 

4.4.1 PCNA of the proteomics dataset 

Using the methods described in section 4.3.6, a PCN was constructed from the 

proteomics dataset. This dataset contained 570 proteins quantified from 36 

samples. The PCN was composed of 322 nodes (proteins) and 3,129 edges after 

the application of the co-expression similarity threshold 0.7335525 (p-value = 

0.00001 and power = 80%), and was visualized in Cytoscape (Figure 4.9; ESI 4.32).  
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Figure 4.9: Positive correlation network constructed from the proteomics 
dataset. 
This network was constructed from 570 proteins quantified from 36 samples. A co-
expression similarity threshold 0.7335525 (p-value = 0.00001 and power = 80%) 
was applied in the construction of the network. This network is comprised of 322 
nodes (proteins; visualized as light brown circles) and 3,129 edges (interactions; 
visualized as green lines). 

4.4.1.1 Protein modules identified in the PCN 

Clustering the network using MCODE identified 18 clusters (highly interconnected 

nodes) in total (ESI 4.33 – 4.46), and the number of proteins in these clusters 

ranged from 3 to 41. The results of GO enrichment analysis performed using BiNGO 

on the list of proteins in each cluster were visualized in Cytoscape (ESI 4.47 – 

4.57). The PCN, the clusters, and the GO enrichment networks can be visualized 

in Cytoscape (version 3.5.0) using the saved Cytoscape session file (ESI 4.58). Due 

to space constraints, only selected clusters/modules are included in the results 

section. Complete information on all the clusters including figures are provided in 

the ESI.    

Cluster 1, the highest-ranking cluster with a score 34.15, comprised 41 nodes and 

683 edges (Figure 4.10; ESI 4.34). Protein S100-A9 (E1BLI9) was identified as the 

seed node of the cluster. This cluster included proteins involved in immune 

response, actin-binding and carbohydrate metabolism. The proteins with immune 

response function included interleukin 1 receptor accessory protein (Q0VC51), 

apoptosis-associated speck-like protein containing a CARD (Q8HXK9) and 

proteasome activator complex subunit 2 (Q5E9G3). The actin-binding proteins 

included alpha-actinin-1 (Q3B7N2), alpha-actinin-4 (A5D7D1), moesin (Q2HJ49), 
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vasodilator-stimulated phosphoprotein (Q2TA49), F-actin-capping protein subunit 

alpha-1 (A4FUA8), actin-related protein 3 (P61157), actin-related protein 2/3 

complex subunit 2 (Q3MHR7), actin-related protein 2/3 complex subunit 5 

(Q3SYX9), adenylyl cyclase-associated protein 1 (Q3SYV4) and CapZ-interacting 

protein (Q3ZBT0).  The proteins involved in carbohydrate metabolism included 

pyruvate kinase (A5D984), glyceraldehyde-3-phosphate dehydrogenase (P10096), 

L-lactate dehydrogenase A chain (P19858), glycogen phosphorylase, liver form 

(Q0VCM4) and ribose-5-phosphate isomerase (Q3T186). BiNGO analysis (ESI 4.47) 

showed enrichment of many GO terms including regulation of actin filament 

polymerization (GO:0030833), regulation of biological process (GO:0050789), 

carbohydrate metabolic process (GO:0005975) and glucose metabolic process 

(GO:0006006). 

 

Figure 4.10: Cluster 1 identified by MCODE in the positive correlation network 
constructed from the proteomics dataset. 
This cluster is comprised of 41 nodes (proteins; visualized as light brown circles) 
and 683 edges (interactions; visualized as green lines). The seed node E1BLI9 
(protein S100-A9) is highlighted in yellow. 
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Figure 4.11: Protein-protein interaction network generated from cluster 1 of 
the PCN constructed from the proteomics dataset 
All the proteins in the cluster were used to search protein-protein interactions in 
the STRING-DB. Nodes in the figure represent proteins and the edges represent 
protein-protein associations. The colour of the edge denotes if the association is 
from known or predicted interactions.  

Cluster 2, the second highest ranking cluster with a score 15.043, comprised 24 

nodes and 173 edges (Figure 4.12; ESI 4.35). Protein phosphoglucomutase-1 

(Q08DP0) was identified as the seed node of the cluster. This cluster also included 

actin-binding proteins such as WD repeat-containing protein 1 (Q2KJH4), actin-

related protein 2/3 complex subunit 4 (Q148J6), F-actin-capping protein subunit 

beta (P79136) and coactosin-like protein (Q2HJ57). The BiNGO analysis (ESI 4.48) 
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showed enrichment of GO terms including actin-binding (GO:0003779) and 

cytoskeletal protein-binding (GO:0008092). 

 

Figure 4.12: Cluster 2 identified by MCODE in the positive correlation network 
constructed from the proteomics dataset. 
This cluster is comprised of 24 nodes (proteins; visualized as light brown circles) 
and 173 edges (interactions; visualized as green lines). The seed node Q08DP0 
(phosphoglucomutase-1) is highlighted in yellow. 

 

Figure 4.13: Protein-protein interaction network generated from cluster 2 of 
the PCN constructed from the proteomics dataset 
All the proteins in the cluster were used to search protein-protein interactions in 
the STRING-DB. Nodes in the figure represent proteins and the edges represent 
protein-protein associations. The colour of the edge denotes if the association is 
from known or predicted interactions. 
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Cluster 3 (score 9.6) consisted of 11 nodes and 48 edges (Figure 4.14; ESI 4.36). 

Protein fructose-bisphosphate aldolase (A6QLL8) was identified as the seed node 

of the cluster. This cluster included proteins involved in carbohydrate metabolism 

such as alpha-enolase (Q9XSJ4), transaldolase (Q2TBL6), glucose-6-phosphate 

isomerase (Q3ZBD7) and L-serine dehydratase/L-threonine deaminase (Q0VCW4) 

in addition to the seed node fructose-bisphosphate aldolase (A6QLL8), which is 

involved in glycolysis. The BiNGO analysis (ESI 4.49) showed enrichment of GO 

terms including cellular carbohydrate metabolic process (GO:0044262), glucose 

metabolic process (GO:0006006), hexose metabolic process (GO:0019318) and 

monosaccharide metabolic process (GO:0005996). 

 

Figure 4.14: Cluster 3 identified by MCODE in the positive correlation network 
constructed from the proteomics dataset. 
This cluster is comprised of 11 nodes (proteins; visualized as light brown circles) 
and 48 edges (interactions; visualized as green lines). The seed node A6QLL8 
(fructose-bisphosphate aldolase) is highlighted in yellow. 

 

Figure 4.15: Protein-protein interaction network generated from cluster 3 of 
the PCN constructed from the proteomics dataset 
All the proteins in the cluster were used to search protein-protein interactions in 
the STRING-DB. Nodes in the figure represent proteins and the edges represent 
protein-protein associations. The colour of the edge denotes if the association is 
from known or predicted interactions. 
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Cluster 4 (score 9.053) comprised 20 nodes and 86 edges (Figure 4.16; ESI 4.37). 

Protein primary amine oxidase, liver isozyme (Q29437) was identified as the seed 

node of this cluster. This cluster included antimicrobial proteins such as 

cathelicidin-1 (P22226), cathelicidin-2 (P19660), cathelicidin-4 (P33046), 

cathelicidin-5 (P54229), cathelicidin-7 (P56425) and alpha-2-antiplasmin 

(P28800). The BiNGO analysis (ESI 4.50) showed enrichment of GO terms that 

included defense response (GO:0006952), defense response to bacterium 

(GO:0042742) and response to stress (GO:0006950).  

 

Figure 4.16: Cluster 4 identified by MCODE in the positive correlation network 
constructed from the proteomics dataset. 
This cluster is comprised of 20 nodes (proteins; visualized as light brown circles) 
and 86 edges (interactions; visualized as green lines). The seed node Q29437 
(primary amine oxidase, liver isozyme) is highlighted in yellow. 
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Figure 4.17: Protein-protein interaction network generated from cluster 4 of 
the PCN constructed from the proteomics dataset 
All the proteins in the cluster were used to search protein-protein interactions in 
the STRING-DB. Nodes in the figure represent proteins and the edges represent 
protein-protein associations. The colour of the edge denotes if the association is 
from known or predicted interactions. 

Cluster 5 (score 6.833) comprised 13 nodes and 41 edges (Figure 4.18; ESI 4.38). 

An uncharacterized protein with serine-type endopeptidase inhibitor activity 

(F1MMS7) was identified as the seed node of the cluster. Proteins in this cluster 

included aspartate aminotransferase, cytoplasmic (P33097), nascent polypeptide-

associated complex subunit alpha (Q5E9A1) and non-histone chromosomal protein 

HMG-14 (P02316). The BiNGO analysis (ESI 4.51) showed enrichment of GO terms 

including phosphatidylserine decarboxylase activity (GO:0004609), TATA-binding 

protein-binding (GO:0017025) and pyrimidine dimer repair by nucleotide-excision 

repair (GO:0000720). 
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Figure 4.18: Cluster 5 identified by MCODE in the positive correlation network 
constructed from the proteomics dataset. 
This cluster is comprised of 13 nodes (proteins; visualized as light brown circles) 
and 41 edges (interactions; visualized as green lines). The seed node F1MMS7 (an 
uncharacterized protein with serine-type endopeptidase inhibitor activity) is 
highlighted in yellow. 

 

Figure 4.19: Protein-protein interaction network generated from cluster 5 of 
the PCN constructed from the proteomics dataset 
All the proteins in the cluster were used to search protein-protein interactions in 
the STRING-DB. Nodes in the figure represent proteins and the edges represent 
protein-protein associations. Please note that there is no edge between the nodes 
meaning there is no known association between the proteins in the database. 

Cluster 8 (score 5.4) comprised 11 nodes and 27 edges (Figure 4.20; ESI 4.41). An 

uncharacterized protein with serine-type endopeptidase inhibitor activity 

(G3N0Q8) was identified as the seed node of the cluster. This cluster included 

secretary proteins such as alpha-1-B-glycoprotein (Q2KJF1), alpha-2-

macroglobulin (Q7SIH1), apolipoprotein A-I (P15497), hemopexin (Q3SZV7), 

peptidoglycan recognition protein 1 (Q8SPP7) and serotransferrin (Q29443). The 
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BiNGO analysis (ESI 4.54) showed regulation of immune effector process 

(GO:0002697) as the most enriched GO term. 

 

Figure 4.20: Cluster 8 identified by MCODE in the positive correlation network 
constructed from the proteomics dataset. 
This cluster is comprised of 11 nodes (proteins; visualized as light brown circles) 
and 27 edges (interactions; visualized as green lines). The seed node G3N0Q8 (an 
uncharacterized protein with serine-type endopeptidase inhibitor activity) is 
highlighted in yellow. 

 

Figure 4.21: Protein-protein interaction network generated from cluster 8 of 
the PCN constructed from the proteomics dataset 
All the proteins in the cluster were used to search protein-protein interactions in 
the STRING-DB. Nodes in the figure represent proteins and the edges represent 
protein-protein associations. The colour of the edge denotes if the association is 
from known or predicted interactions. 
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Cluster 11 (score 5.4) comprised 8 nodes and 12 edges (Figure 4.22; ESI 4.44). 

Complement factor B (P81187) was identified as the seed node of the cluster. 

Apart from the seed node, this cluster comprised serpin A3-8 (A6QPQ2), 

lipopolysaccharide-binding protein (Q2TBI0), mammary serum amyloid A protein 

(F1MMW8), serum amyloid A protein (Q8SQ28), inter-alpha-trypsin inhibitor heavy 

chain H1 (Q0VCM5), inter-alpha-trypsin inhibitor heavy chain H2 (F1MNW4) and 

Complement C4 (P01030). The BiNGO analysis (ESI 4.56) showed acute 

inflammatory response (GO:0002526) as the most enriched GO term. 

 

 

Figure 4.22: Cluster 11 identified by MCODE in the positive correlation network 
constructed from the proteomics dataset. 
This cluster is comprised of 8 nodes (proteins; visualized as light brown circles) 
and 12 edges (interactions; visualized as green lines). The seed node P81187 
(complement factor B) is highlighted in yellow. 

 

Figure 4.23: Protein-protein interaction network generated from cluster 11 of 
the PCN constructed from the proteomics dataset 
All the proteins in the cluster were used to search protein-protein interactions in 
the STRING-DB. Nodes in the figure represent proteins and the edges represent 
protein-protein associations. The colour of the edge denotes if the association is 
from known or predicted interactions. 
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4.4.2 WGCNA of the proteomics dataset 

Using the methods described in section 4.3.7, a WGCN was constructed from the 

proteomics dataset, and modules consisting of proteins with high absolute 

correlations were identified. The WGCN consisted of 559 nodes (proteins) and 

57,451 edges, and was visualized in Cytoscape (Figure 4.24; ESI 4.59). 

 

Figure 4.24: Weighted correlation network constructed from the proteomics 
dataset. 
This network was constructed from 570 proteins quantified from 36 samples. This 
network is comprised of 559 (proteins; visualized as light brown circles) and 57,451 
edges (interactions; visualized as green lines). Application of various thresholds 
including power and adjacency thresholds reduced the number of possible nodes 
and edges in the network. 
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4.4.2.1 Protein modules identified in WGCNA 

In total 18 modules were identified from the WGCN (ESI 4.60 – 4.77), and the 

number of proteins in the modules ranged from 7 to 216. The results of GO term 

enrichment analysis performed on the list of proteins in each module using BiNGO 

were visualized in Cytoscape (ESI 4.78 – 4.93). The WGCN, the identified modules, 

and the BiNGO GO term enrichment networks can be visualized in Cytoscape using 

the saved Cytoscape session file (ESI 4.94). 

The module named ‘green’ comprised 214 nodes and 18,391 edges (ESI 4.62). This 

module included proteins involved in actin-binding and carbohydrate metabolism. 

The actin-binding proteins found in this module included alpha-actinin-1 

(Q3B7N2), alpha-actinin-4 (A5D7D1), profilin-1 (P02584), ezrin (P31976), F-actin-

capping protein subunit beta (P79136), F-actin-capping protein subunit alpha-1 

(A4FUA8), calponin-2 (Q3SYU6), actin-related protein 3 (P61157), actin-related 

protein 2/3 complex subunit 2 (Q3MHR7), actin-related protein 2/3 complex 

subunit 3 (Q3T035), actin-related protein 2/3 complex subunit 4 (Q148J6), actin-

related protein 2/3 complex subunit 5 (Q3SYX9), adenylyl cyclase-associated 

protein 1 (Q3SYV4), cofilin-1 (Q5E9F7), drebrin-like protein (A6H7G2), 

myristoylated alanine-rich C-kinase substrate (P12624), WD repeat-containing 

protein 1 (Q2KJH4), vasodilator-stimulated phosphoprotein (Q2TA49), coronin-1A 

(Q92176) and coactosin-like protein (Q2HJ57). 

Proteins involved in carbohydrate metabolism included L-lactate dehydrogenase 

A chain (P19858), L-lactate dehydrogenase B chain (Q5E9B1), 6-phosphogluconate 

dehydrogenase, decarboxylating (Q3ZCI4), alpha-enolase (Q9XSJ4), 

phosphoglycerate kinase 1 (Q3T0P6), phosphoglycerate mutase 1 (Q3SZ62), 

phosphoglucomutase-1 (Q08DP0), L-serine dehydratase/L-threonine deaminase 

(Q0VCW4), glucose-6-phosphate isomerase (Q3ZBD7), glyceraldehyde-3-

phosphate dehydrogenase (P10096), ribose-5-phosphate isomerase (Q3T186), 

glycogen phosphorylase, liver form (Q0VCM4), transaldolase (Q2TBL6) and 

triosephosphate isomerase (Q5E956). The BiNGO analysis (ESI 4.82) showed 

enrichment of many GO terms including actin-binding (GO:0003779) and glucose 

metabolic process (GO:0006006). 
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The module ‘black’ comprised 115 nodes and 4,133 edges (ESI 4.76). This module 

included antimicrobial proteins and proteins involved in immune response, such 

as cathelicidin-1 (P22226), cathelicidin-2 (P19660), cathelicidin-4 (P33046), 

cathelicidin-5 (P54229), cathelicidin-7 (P56425), alpha-1-acid glycoprotein 

(Q3SZR3), lactoperoxidase (P80025), complement C3 (Q2UVX4), complement 

component C6 (Q29RU4), complement factor B (P81187), complement factor H 

(Q28085), pantetheinase (Q58CQ9), peptidoglycan recognition protein 1 (Q8SPP7) 

and kininogen-2 (P01045). The BiNGO analysis (ESI 4.82) showed defense response 

(GO:0006952) as the most enriched GO term. 

The module ‘pink’ comprised 27 nodes and 252 edges (Figure 4.25; ESI 4.71). This 

module included protease inhibitors such as serpin A3-8 (A6QPQ2), alpha-2-

macroglobulin (Q7SIH1), inter-alpha-trypsin inhibitor heavy chain H1 (Q0VCM5), 

inter-alpha-trypsin inhibitor heavy chain H2 (F1MNW4) and antithrombin-III 

(P41361). The BiNGO analysis (ESI 4.89) showed serine-type endopeptidase 

inhibitor activity (GO:0004867) as the most enriched GO term. 

 

Figure 4.25: Module ‘pink’ identified in the weighted correlation network 
constructed from the proteomics dataset. 
This module is comprised of 27 nodes (proteins; visualized as light brown circles) 
and 252 edges (interactions; visualized as green lines). 
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Figure 4.26: Protein-protein interaction network generated from module 
‘pink’ of the WGCN constructed from the proteomics dataset 
All the proteins in the cluster were used to search protein-protein interactions in 
the STRING-DB. Nodes in the figure represent proteins and the edges represent 
protein-protein associations. The colour of the edge denotes if the association is 
from known or predicted interactions. 

4.4.3 PCNA of the metabolomics dataset 

Using the methods described in section 4.3.8, a PCN was constructed from the 

metabolomics dataset. This dataset contained 690 metabolites quantified from 32 

samples. With the application of the co-expression similarity threshold described 

at section 4.3.8, the PCN comprised 569 nodes (metabolites) and 10,810 edges, 

and was visualized in Cytoscape (Figure 4.27; ESI 4.95). 
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Figure 4.27: Positive correlation network constructed from the metabolomics 
dataset. 
This network was constructed from 690 metabolites quantified from 32 samples 
after applying a co-expression similarity threshold 0.7625257 (p-value = 0.00001 
and power = 80%). This network is comprised of 569 nodes (metabolites; visualized 
as blue circles) and 10,810 edges (interactions; visualized as green lines). 

4.4.3.1 Metabolite modules identified in the PCN 

Clustering the network using MCODE identified 27 clusters in total (ESI 4.96 – 

4.109), and the number of metabolites in each cluster ranged from 3 to 83. Since, 

custom identifiers were used in the analysis, the metabolite names corresponding 

to the identifiers in each cluster were retrieved (ESI 4.110 – 4.120). The PCN and 

the MCODE clusters can be visualized in Cytoscape using the saved Cytoscape 

session file (ESI 4.121). 

Cluster 1 (score 68.098) identified by MCODE in the PCN of the metabolomics 

dataset comprised 83 nodes (metabolites), and 2,792 edges (ESI 4.97). Metabolite 

Leu-Gln-Ser, a tripeptide, was identified as the seed node of the cluster. This 

cluster included metabolites D-alanine, L-asparagine, L-phenylalanine, L-leucine 

and L-tryptophan, which are involved in amino acid metabolism. 

Cluster 2 (score 47.483) identified by MCODE in the PCN of the metabolomics 

dataset comprised 59 nodes (metabolites), and 1,377 edges (ESI 4.98). Metabolite 

sn-glycero-3-phosphocholine was identified as the seed node of the cluster. This 
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cluster included metabolites lactose, D-glucosamine 6-phosphate, xylitol, D-

glycerate, 2-deoxy-D-ribose 5-phosphate, D-erythrose, D-xylulose and 

maltotriose, which are involved in carbohydrate metabolism. 

Cluster 3 (score 24.242) identified by MCODE in the PCN of the metabolomics 

dataset comprised 34 nodes (metabolites), and 400 edges (Figure 4.28; ESI 4.99). 

Metabolite L-arabinose was identified as the seed node of the cluster. This cluster 

included metabolites glycerol, (9Z)-hexadecenoic acid, decanoic acid, dodecanoic 

acid, tetradecanoic acid, hexanoic acid, and linoleate, which are involved in β-

oxidation and fatty acid biosynthesis. 

 

Figure 4.28: Cluster 3 identified by MCODE in the positive correlation network 
constructed from the metabolomics dataset. 
This cluster is comprised of 34 nodes (metabolites; visualized as blue circles) and 
400 edges (interactions; visualized as green lines). The seed node M402 (L-
arabinose) is highlighted in yellow.  

Cluster 4 (score 17.533) identified by MCODE in the PCN of the metabolomics 

dataset comprised 31 nodes (metabolites), and 263 edges (Figure 4.29; ESI 4.100). 

Metabolite glycocholate was identified as the seed node of the cluster. This cluster 
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included metabolites cholate and glycocholate (seed node), which are involved in 

bile acid biosynthesis. 

 

Figure 4.29: Cluster 4 identified by MCODE in the positive correlation network 
constructed from the metabolomics dataset. 
This cluster is comprised of 31 nodes (metabolites; visualized as blue circles) and 
263 edges (interactions; visualized as green lines). The seed node M284 
(glycocholate) is highlighted in yellow. 

Cluster 5 (score 15.611) identified by MCODE in the PCN of the metabolomics 

dataset comprised 37 nodes (metabolites), and 281 edges (Figure 4.30; ESI 4.101). 

Metabolite N-acetyllactosamine was identified as the seed node of the cluster. 

This cluster included metabolites L-glutamine, beta-alanine, D-glucose 6-

phosphate, 2-oxobutanoate, pantothenate and betaine aldehyde. 
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Figure 4.30: Cluster 5 identified by MCODE in the positive correlation network 
constructed from the metabolomics dataset. 
This cluster is comprised of 37 nodes (metabolites; visualized as blue circles) and 
281 edges (interactions; visualized as green lines). The seed node M118 (N-
acetyllactosamine) is highlighted in yellow. 

4.4.4 WGCNA of the metabolomics dataset 

Using the methods described in section 4.3.9, a WGCN was constructed from the 

metabolomics dataset, and modules consisting of metabolites with high absolute 

correlations were identified. The WGCN comprised 690 nodes (metabolites) and 

156,998 edges, and was visualized in Cytoscape (Figure 4.31; ESI 4.122). 
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Figure 4.31: Weighted correlation network constructed from the metabolomics 
dataset. 
This network was constructed from 690 metabolites quantified from 32 samples. 
This network is comprised of 690 nodes (metabolites; visualized as blue circles) 
and 156,998 edges (interactions; visualized as green lines). 

4.4.4.1 Metabolite modules identified in WGCNA 

In total 12 modules were identified from the WGCN (ESI 4.60 – 4.77), and the 

number of metabolites in the modules ranged from 7 to 265. The names of the 

metabolites in each cluster are given in ESI 4.134 – 4.145. The WGCN and the 

modules can be visualized in Cytoscape using the saved Cytoscape session file (ESI 

4.146). 

The module named ‘blue’ identified in the WGCN of the metabolomics dataset 

comprised 265 nodes (metabolites), and 29,394 edges (ESI 4.124). This module 

included metabolites involved in the metabolism of amino acids and derivatives 
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such as L-ornithine, L-asparagine, carnosine, L-phenylalanine, L-tryptophan and 

L-proline. 

The module ‘red’ identified in the WGCN of the metabolomics dataset comprised 

235 nodes (metabolites), and 26,147 edges (ESI 4.131). This module included 

metabolites involved in transmembrane transport of small molecules such as beta-

alanine, lactosamine, inosine and uridine. 

The module ‘brown’ identified in the WGCN of the metabolomics dataset 

comprised 70 nodes (metabolites), and 2,050 edges (ESI 4.125). This module 

included metabolites involved in β-oxidation and fatty acid biosynthesis such as 

glycerol, decanoic acid, dodecanoic acid, tetradecanoic acid, hexanoic acid, 

hexadecanoic acid and linoleate. 

The module ‘black’ identified in the WGCN of the metabolomics dataset 

comprised 25 nodes (metabolites), and 272 edges (Figure 4.32; ESI 4.123). This 

module included metabolites ribothymidine, dopaquinone, fasoracetam and 5-

methoxyindoleacetate. 

 

Figure 4.32: Module ‘black’ identified in the weighted correlation network 
constructed from the metabolomics dataset. 
This module is comprised of 25 nodes (metabolites; visualized as blue circles) and 
272 edges (interactions; visualized as green lines). 
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The module ‘pink’ identified in the WGCN of the metabolomics dataset comprised 

20 nodes (metabolites), and 169 edges (Figure 4.33; ESI 4.129). This module 

included metabolites 2-oxo-heneicosanoic acid, 5-oxopentanoate and 1-

pentadecanoyl-sn-glycero-3-phosphocholine. 

 

Figure 4.33: Module pink identified in the weighted correlation network 
constructed from the metabolomics dataset. 
This module is comprised of 20 nodes (metabolites; visualized as blue circles) and 
169 edges (interactions; visualized as green lines). 

4.4.5 Integrative PCNA of the combined proteomics and 
metabolomics datasets 

Using the methods described in section 4.3.10, a PCN was constructed from the 

combined proteomics and metabolomics dataset, which comprised 570 proteins 

and 690 metabolites. With the application of the co-expression similarity 

threshold described in section 4.3.10, the constructed PCN comprised 1,127 nodes 

(proteins and metabolites) and 58,092 edges, and was visualized in Cytoscape 

(Figure 4.34 and ESI 4.147). 
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Figure 4.34: Positive correlation network constructed from the combined 
proteomics and metabolomics dataset. 
This network was constructed from 570 proteins and 690 metabolites after 
applying a co-expression similarity threshold 0.6185527 (p-value = 0.00001 and 
power = 80%). This network is comprised of 1,127 nodes (proteins and metabolites; 
the proteins are shown as light brown circles and the metabolites are shown as 
blue circles) and 58,092 edges (interactions; visualized as green lines). 

4.4.5.1 Modules having both proteins and metabolites identified in the 
PCN 

Clustering the network using MCODE identified 36 clusters in total (ESI 4.148 – 

4.164), and the number of proteins and/or metabolites in the clusters ranged from 

3 to 279. Since, custom identifiers were used for metabolites in the analysis, the 

metabolite names corresponding to the identifiers in each cluster were retrieved 

(ESI 4.165 – 4.180). The PCN and the identified clusters can be visualized in 

Cytoscape using the saved Cytoscape session file (ESI 4.228). 

Cluster 1, the highest-ranking cluster (score 158.597) identified by MCODE in the 

PCN of the combined proteomics and metabolomics dataset comprised 279 nodes 
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(109 proteins and 170 metabolites), and 22,045 edges (Figure 4.35; ESI 4.148). 

Metabolite Trp-Gln-Tyr, a tripeptide was identified as the seed node of the 

cluster. This cluster included proteins involved in immune response, actin-binding 

and carbohydrate metabolism. The proteins involved in immune response included 

the antimicrobial proteins including cathelicidin-1 (P22226), cathelicidin-2 

(P19660), cathelicidin-4 (P33046), cathelicidin-5 (P54229), cathelicidin-7 

(P56425), protein S100-A12 (P79105), complement factor B (P81187), complement 

factor H (Q28085), lipopolysaccharide-binding protein (Q2TBI0), lymphocyte-

specific protein 1 (Q0P5E0), peptidoglycan recognition protein 1 (Q8SPP7) and 

apoptosis-associated speck-like protein containing a CARD (Q8HXK9).  

The actin-binding proteins included F-actin-capping protein subunit alpha-1 

(A4FUA8), vasodilator-stimulated phosphoprotein (Q2TA49), actin-related protein 

2/3 complex subunit 4 (Q148J6), actin-related protein 2/3 complex subunit 2 

(Q3MHR7), actin-related protein 2/3 complex subunit 5 (Q3SYX9) and adenylyl 

cyclase-associated protein 1 (Q3SYV4).   

The proteins involved in carbohydrate metabolism included glyceraldehyde-3-

phosphate dehydrogenase (P10096), 6-phosphogluconate dehydrogenase, 

decarboxylating (Q3ZCI4), L-serine dehydratase/L-threonine deaminase 

(Q0VCW4), L-lactate dehydrogenase A chain (P19858), ribose-5-phosphate 

isomerase (Q3T186), glycogen phosphorylase, liver form (Q0VCM4), transaldolase 

(Q2TBL6), triosephosphate isomerase (Q5E956) and glucose-6-phosphate 

isomerase (Q3ZBD7).  

Of the 170 metabolites in the cluster, 79 were di-, tri-, and tetra-peptides. This 

cluster included L-proline, L-arginine, L-phenylalanine, L-tryptophan, D-alanine, 

1H-imidazole-4-ethanamine, and L-leucine, which are in both the amino acid 

transport across the plasma membrane pathway and the transport of glucose and 

other sugars, bile salts and organic acids, metal ions and amine compounds 

pathway (Reactome, 2017a, Reactome, 2017c). Metabolites (R)-3-

hydroxybutanoate, L-methionine, hypoxanthine, L-phenylalanine and L-arginine 

were also present in this cluster, and are known to be involved in glucose 

homeostasis (van Iersel et al., 2017). 
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Figure 4.35: Cluster 1 identified by MCODE in the positive correlation network 
constructed from the combined proteomics and metabolomics dataset. 
This cluster is comprised of 279 nodes (109 proteins and 170 metabolites; proteins 
visualized as light brown circles and metabolites visualized as blue circles) and 
22,045 edges (interactions; visualized as green lines). 

Cluster 2 (score 101.929) identified by MCODE in the PCN of the combined 

proteomics and metabolomics dataset comprised 114 nodes (10 proteins and 104 

metabolites), and 5,759 edges (ESI 4.149). Protein DBF4 homolog (Q1LZB8) was 

identified as the seed node of the cluster. Of the 10 proteins in this cluster, 6 

were glycoproteins. They were: alpha-lactalbumin (P00711), protein OS-9 

(Q3MHX6), butyrophilin subfamily 1 member A1 (P18892), glycosylation-

dependent cell adhesion molecule 1 (P80195), polymeric immunoglobulin receptor 

(P81265) and xanthine dehydrogenase/oxidase (P80457). The other four proteins 

were myoglobin (P02192), beta-lactoglobulin (P02754), fatty acid-binding protein, 

heart (P10790) and DBF4 homolog (Q1LZB8). Metabolites in this cluster included 

constituents of pentose phosphate pathway such as D-Erythrose, L-Glutamine, 

Orotate and 2-Deoxy-D-ribose 5-phosphate. In addition, metabolites of 

carbohydrate metabolism such as (S)-malate, lactose, D-glucosamine 6-

phosphate, xylitol, D-glycerate, D-xylulose, maltotriose were also present in this 

cluster. 

Cluster 3 (score 33.453) identified by MCODE in the PCN of the combined 

proteomics and metabolomics dataset comprised 96 nodes (45 proteins and 51 
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metabolites), and 1,589 edges (ESI 4.150). Metabolite Asp-Asp-Pro-Tyr, a 

tetrapeptide, was identified as the seed node. Actin-binding proteins such as WD 

repeat-containing protein 1 (Q2KJH4), ezrin (P31976), gelsolin (Q3SX14), coronin-

1A (Q92176), F-actin-capping protein subunit beta (P79136), cofilin-1 (Q5E9F7), 

actin-related protein 2/3 complex subunit 3 (Q3T035) were included in this 

cluster. Acute-phase response proteins such as serum amyloid A protein (P35541) 

and alpha-2-antiplasmin (P28800) were also present in this cluster. This cluster 

included metabolites taurocholate, cholate and glycocholate. 

Cluster 4 (score 10.316) identified by MCODE in the PCN of the combined 

proteomics and metabolomics dataset comprised 20 nodes (5 proteins and 15 

metabolites), and 98 edges (Figure 4.36; ESI 4.151). Metabolite [FA (20:4)] 

5Z,8Z,11Z,14Z-eicosatetraenoic acid was identified as the seed node of the 

cluster. The proteins in the cluster included pentaxin (C4T8B4), diacylglycerol 

kinase (F1MCG9), uncharacterized protein (G8JKW7), fibrinogen alpha chain 

(P02672) and chitinase-3-like protein 1 (P30922). This cluster included metabolites 

such as hexanoic acid, tetradecanoic acid and [FA (20:4)] 5Z,8Z,11Z,14Z-

eicosatetraenoic acid. 

 

Figure 4.36: Cluster 4 identified by MCODE in the positive correlation network 
constructed from the combined proteomics and metabolomics dataset. 
This cluster is comprised of 20 nodes (5 proteins and 15 metabolites; proteins 
visualized as light brown circles and metabolites visualized as blue circles) and 98 
edges (interactions; visualized as green lines). 

Cluster 5 (score 9.833) identified by MCODE in the PCN of the combined proteomics 

and metabolomics dataset comprised 25 nodes (13 proteins and 12 metabolites), 
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and 118 edges (Figure 4.37; ESI 4.152). Protein coactosin-like protein (Q2HJ57) 

was identified as the seed node of the cluster. 

 

Figure 4.37: Cluster 5 identified by MCODE in the positive correlation network 
constructed from the combined proteomics and metabolomics dataset. 
This cluster is comprised of 25 nodes (13 proteins and 12 metabolites; proteins 
visualized as light brown circles and metabolites visualized as blue circles) and 
118 edges (interactions; visualized as green lines). 

4.4.6 Integrative WGCNA of the combined proteomics and 
metabolomics datasets 

Using the methods described in section 4.3.11, a WGCN was constructed from the 

combined proteomics and metabolomics dataset, and the modules consisting of 

both proteins and metabolites with high absolute correlations were identified. The 

WGCN comprised 1,246 nodes (proteins and metabolites) and 390,798 edges, and 

was visualized in Cytoscape (Figure 4.38; ESI 4.181). 
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Figure 4.38: Weighted correlation network constructed from the combined 
proteomics and metabolomics dataset. 
This network was constructed from 570 proteins and 690 metabolites combined 
into a single dataset. This network is comprised of 1,246 nodes (proteins and 
metabolites; the proteins are shown as light brown circles and the metabolites are 
shown as blue circles) and 390,798 edges (interactions; visualized as green lines). 

4.4.6.1 Modules having both proteins and metabolites identified in 
WGCNA 

In total 24 modules were identified from the WGCN (ESI 4.182 – 4.203), and the 

number of proteins and/or metabolites in each module ranged from 6 to 441. 

Names of the proteins and metabolites in each module are given in ESI 4.204 – 

4.226. The WGCN and the identified modules can be visualized in Cytoscape using 

the saved Cytoscape session file (ESI 4.227). 
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The module named ‘blue’ identified from the WGCN of the combined proteomics 

and metabolomics dataset comprised 440 nodes (183 proteins and 257 

metabolites), and 69,731 edges (Figure 4.39; ESI 4.183). This module included 

proteins involved in acute-phase response, antimicrobial activity and regulation 

of actin filament polymerization. The acute-phase response proteins included 

haptoglobin (Q2TBU0), mammary serum amyloid A protein (F1MMW8), serum 

amyloid A protein (Q8SQ28), Serum amyloid A-4 protein (Q32L76), 

lipopolysaccharide-binding protein (Q2TBI0), prothrombin (P00735) and 

fibronectin (P07589). The antimicrobial proteins included cathelicidin-1 (P22226), 

cathelicidin-2 (P19660), cathelicidin-4 (P33046), cathelicidin-5 (P54229), 

cathelicidin-7 (P56425), peptidoglycan recognition protein 1 (Q8SPP7), 

lipopolysaccharide-binding protein (Q2TBI0), protein S100-A8 (P28782), 

apolipoprotein A-II (P81644), alpha-S2-casein (P02663), haptoglobin (Q2TBU0) and 

lactoperoxidase (P80025). Proteins involved in the regulation of actin filament 

polymerization included profilin-1 (P02584), gelsolin (Q3SX14), thymosin beta-10 

(P21752) and thymosin beta-4 (P62326). Of the 257 metabolites in the cluster, 67 

were di-, tri-, and tetra-peptides. This module also included the metabolites 

involved in amino acid metabolism and its derivatives given in Table 4.3 and the 

metabolites involved in transmembrane transport of small molecules given in 

Table 4.4. 
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Table 4.3: Metabolites of amino acid metabolism and its derivatives 
Metabolites of amino acid metabolism and its derivatives included in module 
named ‘blue’ identified in the weighted correlation network constructed from the 
combined proteomics and metabolomic dataset (Reactome, 2017b) 

Name of the metabolite 

L-Ornithine 

1H-Imidazole-4-ethanamine 

L-2-Amino-3-oxobutanoic acid 

L-Asparagine 

Carnosine 

L-Phenylalanine 

L-Tryptophan 

N-Acetyl-L-glutamate 

Taurine 

Beta-Aminopropion aldehyde 

Phosphocreatine 

L-2-Aminoadipate 

Creatinine 

Succinate 

L-Lysine 

L-Leucine 

N,N-Dimethylglycine 

L-Proline 

Orthophosphate 

Carbamoyl phosphate 

Adenine 

L-Glutamate 

Betaine 

2-Oxoglutaramate 

N-Acetyl-L-aspartate 

Hydrogen iodide 

Sulfate 

5,6-Dihydroxyindole 

Urocanate 
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Table 4.4: Metabolites involved in transmembrane transport of small molecules 
Metabolites involved in transmembrane transport of small molecules included in 
module ‘blue’ identified in the weighted correlation network constructed from 
the combined proteomics and metabolomic dataset (Reactome, 2017d) 

Name of the metabolite 

L-Ornithine 

1H-Imidazole-4-ethanamine 

Thymine 

L-Asparagine 

Cytosine 

L-Phenylalanine 

L-Tryptophan 

Taurine 

Creatinine 

3,5-Cyclic AMP 

Succinate 

Thymidine 

L-Lysine 

L-Leucine 

L-Proline 

Orthophosphate 

Adenine 

L-Glutamate 

Betaine 

Cytidine 

Sulfate 

D-Alanine 
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Figure 4.39: Module ‘blue’ identified in the weighted correlation network 
constructed from the combined proteomics and metabolomic dataset. 
This module is comprised of 440 nodes (183 proteins and 257 metabolites; proteins 
visualized as light brown circles and metabolites visualized as blue circles) and 
69,731 edges (interactions; visualized as green lines). 

The module ‘magenta’ identified from the WGCN of the combined proteomics and 

metabolomics dataset comprised 302 nodes (184 proteins and 118 metabolites), 

and 37,587 edges (ESI 4.195). This module included proteins involved in actin-

binding given in Table 4.5 and carbohydrate metabolism given in Table 4.6. Of the 

118 metabolites in this cluster, 36 were di-, tri-, and tetra-peptides. Metabolites 

(S)-malate, hypoxanthine, L-arginine and L-histidine included in this cluster could 

be involved in glucose homeostasis (van Iersel et al., 2017), and thus could be 

functionally associated with the proteins involved in the carbohydrate metabolism 

(Table 4.6). Similarly, the actin-binding proteins included in this module (Table 

4.5) could be functionally associated with the metabolites present in module 

‘blue’ that are involved in transmembrane transport of small molecules (Table 

4.4). 
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Table 4.5: Actin-binding proteins 
Actin-binding proteins included in module ‘magenta’ identified in the weighted 
correlation network constructed from the combined proteomics and metabolomic 
dataset 

UniProtKB 
AC/ID 

Protein names 

A5D7D1 Alpha-actinin-4 

P31976 Ezrin 

P79136 F-actin-capping protein subunit beta 

Q3SYX9 Actin-related protein 2/3 complex subunit 5 

Q3SYV4 Adenylyl cyclase-associated protein 1 

Q3MHR7 Actin-related protein 2/3 complex subunit 2 

Q5E9F7 Cofilin-1 

P12624 
Myristoylated alanine-rich C-kinase 
substrate  

Q3T035 Actin-related protein 2/3 complex subunit 3  

Q2KJH4 WD repeat-containing protein 1 

A4FUA8 F-actin-capping protein subunit alpha-1 

Q2TA49 Vasodilator-stimulated phosphoprotein 

Q148J6 Actin-related protein 2/3 complex subunit 4 

Q92176 Coronin-1A 

P61157 Actin-related protein 3 

Q3B7N2 Alpha-actinin-1 

Q2HJ57 Coactosin-like protein 
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Table 4.6: Proteins involved in carbohydrate metabolism 
Proteins involved in carbohydrate metabolism included in module magenta 
identified in the weighted correlation network constructed from the combined 
proteomics and metabolomic dataset 

UniProtKB 
AC/ID 

Protein Names 

Q5E9B1 L-lactate dehydrogenase B chain 

P30922 Chitinase-3-like protein 1 

Q3ZCI4 
6-phosphogluconate dehydrogenase, 
decarboxylating 

Q9XSJ4 Alpha-enolase 

Q3T0P6 Phosphoglycerate kinase 1 

Q3SZ62 Phosphoglycerate mutase 1 

Q0VCW4 L-serine dehydratase/L-threonine deaminase 

Q3ZBD7 Glucose-6-phosphate isomerase 

P10096 Glyceraldehyde-3-phosphate dehydrogenase 

Q3T186 Ribose-5-phosphate isomerase  

P19858 L-lactate dehydrogenase A chain 

Q0VCM4 Glycogen phosphorylase, liver form 

Q2TBL6 Transaldolase 

Q5E956 Triosephosphate isomerase 

Q08DP0 Phosphoglucomutase-1 

 

The module ‘black’ identified from the WGCN of the combined proteomics and 

metabolomics dataset comprised 167 nodes (39 proteins and 128 metabolites), 

and 11,719 edges (ESI 4.182). Proteins in this module included lipoprotein lipase 

(P11151), alkaline phosphatase, tissue-nonspecific isozyme (P09487), eukaryotic 

translation initiation factor 5A-1 (Q6EWQ7) and xanthine dehydrogenase/oxidase 

(P80457). Of the 128 metabolites in this cluster, 15 were di-, tri-, and tetra-

peptides. Metabolites in this module included metabolites involved in 

carbohydrate metabolism, such as D-sorbitol, D-glucosamine 6-phosphate, 2-

deoxy-D-ribose 5-phosphate, D-erythrose, D-xylulose and maltotriose, and 

phospholipid metabolism such as choline, choline phosphate, sn-glycero-3-

phosphocholine, sn-glycerol 3-phosphate, myo-Inositol, betaine aldehyde and sn-

glycero-3-phosphoethanolamine. 

The module ‘red’ identified from the WGCN of the combined proteomics and 

metabolomics dataset comprised 81 nodes (12 proteins and 69 metabolites), and 
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2,418 edges (ESI 4.199). This module included alpha-1-acid glycoprotein (Q3SZR3), 

an acute-phase reaction protein, and complement component C9 (Q3MHN2) and 

complement C3 (Q2UVX4), which are involved in humoral immune response. The 

metabolites in this module included hexadecanoic acid, decanoic acid, dodecanoic 

acid, tetradecanoic acid, hexanoic acid, nonanoic acid and octanoic acid, which 

are involved in β-oxidation and fatty acid biosynthesis. 

The module ‘pink’ identified from the WGCN of the combined proteomics and 

metabolomics dataset included 40 nodes (10 proteins and 30 metabolites), and 

550 edges (ESI 4.198). This module included proteins prostaglandin-H2 D-

isomerase (O02853), clusterin (P17697) and 78 kDa glucose-regulated protein 

(Q0VCX2). The metabolites in this module included dopaquinone, (S)-1-pyrroline-

5-carboxylate, nicotinamide, L-adrenaline, 2-carboxy-2,3-dihydro-5,6-

dihydroxyindole and N-formimino-L-glutamate, which are involved in the 

metabolism of amino acids and derivatives. 

The module ‘salmon’ identified from the WGCN of the combined proteomics and 

metabolomics dataset included 24 nodes (6 proteins and 18 metabolites), and 194 

edges (Figure 4.40; ESI 4.201). This module included proteins complement 

component C7 (Q29RQ1) and mannose-binding protein C (O02659), which are 

involved in complement activation. The metabolites in this module included 5-

oxopentanoate and 1-pentadecanoyl-sn-glycero-3-phosphocholine. 
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Figure 4.40: Module ‘salmon’ identified in the weighted correlation network 
constructed from the combined proteomics and metabolomic dataset. 
This module is comprised of 24 nodes (6 proteins and 18 metabolites; proteins 
visualized as light brown circles and metabolites visualized as blue circles) and 
194 edges (interactions; visualized as green lines). 

4.5 Discussion 

4.5.1 Correlation network analysis 

The expression pattern of individual elements such as genes, proteins and 

metabolites in different omics layers is the outcome of the collective behaviour 

of highly interconnected molecular signalling among the elements in the system. 

By analysing the observed relationships between the individual elements in the 

system, the collective behaviour of the system can be explained. The Pearson 

product–moment correlation is a simple, yet powerful measure of relationship, 

and thus has been used to study biological networks (Gibbs et al., 2013, Serin et 

al., 2016). 

In this chapter, two different network approaches, namely (1) PCNA and (2) 

WGCNA, both based on the Pearson product–moment correlation were used to 

study the collective behaviour of proteins and metabolites in milk during the 

course of mastitis. The PCNA approach and the WGCNA approach differ 

significantly in multiple respects. Firstly, there is a difference in the application 

of co-expression similarity. Both the PCNA and the WGCNA use the Pearson 
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product–moment correlation as the measure of co-expression similarity. However, 

the WGCNA considers the absolute value of co-expression similarity thereby using 

both the positive and the negative correlations, whereas the PCNA considers the 

positive correlations only. This is one of the reasons behind the substantially high 

number of edges found in WGCNA compared to PCNA. 

Secondly, there is a difference in the construction of the adjacency matrix. To 

transform the co-expression similarity into adjacency, both methods use a 

threshold. However, the selection of the threshold and the application of the 

threshold differ between the methods. In the PCNA, a hard threshold is used, and 

it is selected from a given statistical significance (p-value) taking into 

consideration the number of samples and statistical power. The hard thresholding 

is applied to the co-expression similarity to dichotomize the relationship into 

either connected (1) or not connected (0). In the WGCNA, a soft threshold is 

selected from the approximate scale-free topology of the network, and applied to 

raise the power of the co-expression similarity, giving continuous values between 

0 and 1. Although the selection of thresholds for co-expression similarity is based 

on certain measures (statistical significance or scale-free topology), there is 

arbitrariness in both the methods, and a change in threshold can lead to profound 

differences in the network characteristics. However, as WGCNA is using 

continuous values, it is more robust to changes in the threshold than is PCNA.   

Thirdly, there is a difference in module detection. Although both methods use an 

unsupervised clustering procedure to find modules in the network, the techniques 

employed differ significantly. In the PCNA, the MCODE identifies the clusters in 

three recursive stages, namely node weighting, cluster formation, and cluster 

expansion. With PCN being unweighted in nature, the MCODE is highly suitable as 

it finds the locally dense regions of the graph, and does not require edge 

attributes. Whereas the WGCNA uses a hierarchical clustering algorithm to cluster 

the network, which uses the edge weight to compute Euclidean distance. Although 

both the methods use arbitrary threshold to expand the clusters (including the 

neighbours in a cluster), the procedures differ considerably. While the MCODE uses 

fluff and haircut parameters to optimize the size of the clusters, the WGCNA uses 

the Dynamic Tree Cut method to estimate the height to cut the dendrogram 

produced by the hierarchical clustering analysis. 
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Fourthly, there is a difference in module ranking. Clusters identified by MCODE 

are ranked by their score, which is based on the density of the subgraph, but the 

modules identified in WGCNA are not ranked by such measures. 

Lastly, the approaches differ in the exclusiveness of module members. As the 

modules are identified by hierarchical clustering of the nodes (proteins and/or 

metabolites) in the WGCNA, each module comprises an exclusive set of co-

expressed nodes (proteins and/or metabolites). This means that proteins or 

metabolites in one module cannot be a part of another module. However, in 

reality, many proteins and metabolites have multiple functions, and can be a part 

of different functional modules. The clusters identified by MCODE are not mutually 

exclusive, and can include the same nodes (proteins/metabolites) in different 

clusters. 

The correlation network analyses were performed at two levels: (1) individual 

omics layer-level, that is either proteomics or metabolomics level; (2) combined 

inter-layer-level, that is combined proteomics and metabolomics level. While 

individual omics layer-level correlation network analysis is an established practice 

(Ballouz et al., 2015, Serin et al., 2016), the author is not aware of any inter-

layer-level correlation network analysis in the literature, and thus this could be 

the first such study. Similarly, there is no report of correlation network analysis 

at individual omics layer-level in bovine mastitis, and hence this could be the first 

study in that respect as well. One could argue that significant correlations can be 

found between unrelated elements / events. Thus, the context of correlation 

analysis is very important. In this study, global expression of proteins and 

metabolites were quantified from the same milk samples, for the same time-

points, and therefore, correlation between protein and metabolite expression is 

appropriate. Similarly, for comparison between omics-layers, the difference in 

the scale of expression (protein or metabolite expressions) between the layers 

could be an issue, and one possible solution is to standardize the datasets 

(subtracting the mean from each element and dividing by the standard deviation) 

being compared. However, the Pearson correlation does not require 

standardization, as the Pearson correlation is the covariance of the z-scores: 

correlation coefficient of numeric matrices x and y, cor(x, y) = cov(Zx, Zy), where 

Zx and Zy are standardized numeric matrices. 
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4.5.2 Selection of Cytoscape plug-ins 

Cytoscape, an open-source software for visualizing and analysing networks, was 

developed primarily to visualize and analyse networks constructed from biological 

datasets (Cline et al., 2007, Lotia et al., 2013). While the Cytoscape provides core 

functionalities for network visualization and analysis, it also provides an open 

architecture for independent programmers and research labs to develop plug-ins 

that can be installed on Cytoscape to extend its functionalities (Lotia et al., 2013). 

This is very useful as a lab that specialises in a particular research area can 

disseminate its expertise via specialised plug-ins that can be used by any 

researcher. There are more than 150 Cytoscape pug-ins available for various 

applications (Lotia et al., 2013), including over 30 Cytoscape plug-ins in the 

network clustering category (Saito et al., 2012). In this work, I used the Molecular 

Complex Detection (MCODE) plug-in for network clustering, and the Biological 

Networks Gene Ontology (BiNGO) plug-in for discovering enrichment of Gene 

Ontology (GO) terms in the clusters. There were many reasons for selecting these 

two plug-ins. They are: (1) Familiarity: These two plugins have been used by the 

author for many years (since 2008), and hence I developed familiarity with these 

plug-ins. (2) Suitability for the latest version of Cytoscape: Both MCODE and BiNGO 

are continuously developed (upgraded) to use in the newer versions of Cytoscape. 

(3) Reputation of the developers: Both MCODE and BiNGO were developed by 

reputed research labs. The MCODE plug-in was developed by the Bader lab at the 

University of Toronto (http://baderlab.org/), whereas the BiNGO plug-in was 

developed by the Maere lab at the Ghent University 

(http://www.vib.be/en/research/scientists/Pages/Steven-Maere-Lab.aspx). (4) 

Popularity: Both MCODE and BiNGO plug-ins have been downloaded more than 

15,000 times. Saito et al., ranked them as the top 2 most downloaded Cytoscape 

plug-ins (Saito et al., 2012). 

4.5.3 Protein-protein interactions 

Proteins (and/or metabolites) in the co-expression clusters are generally thought 

to be functionally related, and hence potentially there could be interactions 

among the proteins in the co-expression clusters. To examine the associations 

between the proteins in co-expression clusters, the proteins in the clusters were 

used to search protein-protein interactions (PPIs) in the STRING-DB. The 

http://baderlab.org/
http://www.vib.be/en/research/scientists/Pages/Steven-Maere-Lab.aspx
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proportion of PPIs identified in each cluster vary widely. Cluster 1 and 3 of the 

PCN show very high proportion of the proteins involved in interactions. PPI 

network for cluster 1 (Figure 4.11) shows proteins alpha-actinin-4, alpha-actinin-

1, actin-related protein 3, actin-related protein 2/3 complex subunits – 2, 3, 4 and 

5, and glyceraldehyde-3-phosphate dehydrogenase have high interactions. It is 

possible that these proteins are involved in immune related functions, especially 

phagocytosis (Pollard, 2007, Bompard and Caron, 2004, Niedergang and Chavrier, 

2005). In the context of this work, it is possible that the proteins in this cluster 

are from neutrophils. Upon receptor binding, neutrophils initiate phagocytic 

activity by polymerization of actin filaments (Niedergang and Chavrier, 2005). The 

actin-related protein 2/3 complex produces branches on the sides of existing 

filaments, and growth of these filaments produces force to protrude the 

membrane outwards. The PPI network for cluster 3 (Figure 4.15) shows densely 

connected proteins. The highly connected proteins in the PPI generated from this 

cluster include glucose-6-phosphate isomerase, fructose-bisphosphate aldolase A 

and alpha-enolase. These proteins are involved in glycolysis, and hence the 

functional role of this cluster may be carbohydrate metabolism (Dervishi et al., 

2015). 

4.5.4 Correlation network analysis of the proteomics and 
metabolomics datasets 

Although procedurally and conceptually differ, both PCNA and WGCNA can be used 

in a complementary manner to each other. The results of the correlation network 

analyses using either PCNA or WGCNA showed co-expression of almost the same 

proteins and/or metabolites. In addition, the co-expressed proteins or metabolites 

in the individual omics layer-level analyses were found to be consistently co-

expressed in the combined inter-layer-level analyses. This assures reproducibility 

of the analytical results, the robustness of the correlation network analysis and 

the applicability of the combined inter-layer-level analysis. However, it must be 

noted, that although co-expression may be robust, changes in the module 

detection thresholds might place the nodes in different modules. 

The co-expressed proteins (and/or metabolites) are the proteins (and/or 

metabolites) that exhibit coordinated behaviour in a similar fashion during the 

time course of the infection. These proteins (and/or metabolites) might be 
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interacting partners (as can be seen in the protein-protein interaction networks 

in Figure 4.11, Figure 4.13, Figure 4.15, Figure 4.17, Figure 4.19, Figure 4.21, 

Figure 4.23 and Figure 4.26) and could be involved in a particular biological 

process or a pathway. Ideally, each module should contain such functionally 

relevant proteins (and/or metabolites) only; however, in practice, depending on 

the size of the modules, they may contain proteins (and/or metabolites) involved 

in different functions. Similarly, the proteins (and/or metabolites) involved in the 

same function (or pathway) could be separated into two or more modules 

depending on the thresholds used for module detection, and hence two or more 

modules could be merged together based on certain metrics. This option to merge 

modules is implemented in WGCNA. However, it is important that the 

coordinated/cooperative functions of all the members of each cluster should be 

studied, and hence GO term enrichment analysis was performed using the list of 

proteins in each cluster. 

The network analyses identified many functionally enriched co-expression 

modules in both the proteomics and metabolomics datasets. This rich information 

showed molecular processes in milk during mastitis. The molecular 

functions/biological processes enriched in the co-expression modules identified in 

this study included innate immune response, humoral immune response, actin-

binding, carbohydrate metabolism, amino acid metabolism, fatty acid metabolism 

and bile acid biosynthesis. It is interesting to find the antimicrobial proteins and 

acute-phase response proteins were co-expressed and clustered together. While 

identifying enrichment of molecular functions/biological processes that were 

previously observed in the differential expression analyses in chapter 2 and 3 is 

more of confirmatory importance, the new additional information from this 

chapter includes the deeper understanding of the mechanism of these molecular 

processes underway during mastitis.  

For example, many actin-binding proteins were enriched in the identified 

modules, and similarly many metabolites involved in transmembrane transport of 

small molecules were found be enriched as well. By binding to actin, these actin-

binding proteins can modulate the properties and/or functions of the actin 

filament, which ranges from cell motility, endocytic trafficking and the 

maintenance of cell shape to the regulation of transcription (Dominguez and 
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Holmes, 2011). However, in the context of these proteins being present in milk 

during mastitis, and with the enrichment of metabolites involved in 

transmembrane transport of small molecules, it could be hypothesized that these 

proteins may be involved in endocytosis, which is the process by which 

extracellular materials and plasma membrane-associated surface proteins are 

collected by cells and packaged into vesicles for onward trafficking into cytosol 

(Goode et al., 2015). PPI network generated from cluster 1 of the PCN from the 

proteomics dataset also contains actin-binding proteins giving rise to a possibility 

that phagocytosis could be the functional role for this cluster.  subset of this actin-

binding proteins including alpha-actinin-1 (Q3B7N2), alpha-actinin-4 (A5D7D1), 

moesin (Q2HJ49) and vasodilator-stimulated phosphoprotein (Q2TA49) are also 

part of the leukocyte trans-endothelial migration pathway (KEGG PATHWAY: 

bta04670), and along with the metabolites involved in transmembrane transport, 

the mechanistic model of neutrophil recruitment during mastitis could be 

constructed and studied. 

Cluster 1 from the PCN of the combined proteomics and metabolomics datasets 

was enriched with antimicrobial proteins such as cathelicidins, proteins associated 

with innate immunity such as peptidoglycan recognition protein 1 and 

lipopolysaccharide-binding protein, and proteins associated with phagocytosis 

such as actin-related protein 2/3 complex subunits. This gives rise to a possibility 

that the functional role of this cluster could be immune response against the s. 

uberis challenge. This cluster also included proteins involved in carbohydrate 

metabolism such as glyceraldehyde-3-phosphate dehydrogenase and glucose-6-

phosphate isomerase. In addition, this cluster contained metabolites (R)-3-

hydroxybutanoate, L-methionine, hypoxanthine, L-phenylalanine which are known 

to be involved in  glucose homeostasis (van Iersel et al., 2017). Taken together, 

the proteins and metabolites in this cluster embody the immune response mounted 

by the cow against the invading bacteria, where both immune factors and energy 

metabolism (particularly glycolysis) go hand in hand (Wolowczuk et al., 2008, 

Loftus and Finlay, 2016). Similarly, the ‘blue’ module identified in the WGCNA of 

the combined proteomics and metabolomics datasets included acute-phase 

response proteins such as haptoglobin and M-SAA, antimicrobial proteins such as 

cathelicidins, and metabolites involved in carbohydrate metabolism and 

transmembrane transport of small molecules. 
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Enrichment analysis is possible where annotations for proteins/metabolites are 

available. However, annotations for most metabolites and some proteins are 

either not available or not complete. As noted in chapter 2, there are still 

considerable amount of gap in the bovine genome assembly and annotations. For 

functional enrichment analysis, BiNGO Cytoscape plug-in was used. BiNGO uses 

the Gene Ontology database for analysing functional enrichment. Gene Ontology 

database provides Gene Ontology terms, Gene Ontology hierarchy and annotations 

to link genes with Gene Ontology terms. Gene Ontology database is widely used 

as it is comprehensive and implements an unified approach for annotating genes 

in different species to the same basic set of underlying functions (Glass and 

Girvan, 2014). Although genome annotations continue to evolve, and so does the 

Gene Ontology database (Huntley et al., 2014), there is a need for better genome 

annotation in non-human organisms (Clark and Greenwood, 2016). It is possible 

that the shortcomings in the bovine genome annotations could potentially affect 

functional enrichment analysis. Especially, changes in the number of genes 

annotated with a particular function (changes in the reference set) will affect the 

p-values obtained in a hypergeometric test. On the other hand, as the nodes 

(proteins and/or metabolites) in the co-expression modules are functionally 

relevant, the proteins and metabolites with unknown functions could be 

potentially annotated with the enriched functions of the module. However, the 

analysis results are as good as the original data used in the first place. It must be 

borne in mind that the identifications for metabolites in the metabolomics dataset 

were of putative nature only. This means further targeted experiments should be 

conducted to confirm the results. Time delay between protein expressions and 

changes in the metabolite concentrations is possible, and could be a reason behind 

the functional proteins and metabolites clustered in different modules. However, 

analysis of this kind is highly useful to identify functional modules of proteins and 

metabolites even though they may be in different clusters. 

The analyses described in this chapter resulted in a large quantity of information 

that is given in the ESI. The correlation networks are best viewed using Cytoscape, 

and hence the Cytoscape session files are also provided in the ESI.    
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4.6 Conclusions 

In this chapter, modules of co-expressed proteins in the proteomics data and 

modules of co-expressed metabolites in the metabolomics data were identified 

using two approaches, namely PCNA and WGCNA.  

Similarly, modules of co-expressed proteins and metabolites in the combined 

proteomics and metabolomics dataset were identified using the PCNA and the 

WGCNA approaches. The results showed high concordance between the co-

expression clusters identified in the single omics only correlation networks and 

the combined proteomics and metabolomics correlation networks indicating that 

combined inter-layer-level omics analysis can be performed using correlation 

network approaches demonstrated in this work. This is a novel methodological 

improvement that has not been reported previously. This new approach will help 

researchers to perform integrative multi-layer polyomics analysis. The integrative 

analysis demonstrated possible interrelationships between the proteins and 

metabolites in the identified co-expression clusters. For example, the proteins 

and metabolites involved in carbohydrate metabolism were clustered along with 

proteins involved in immune functions.          

The analysis results presented in this chapter identified possible functional 

relevance of the proteins and metabolites identified in milk during mastitis, and 

thus provided greater understanding of the disease processes at molecular level 

in S. uberis mastitis. Particularly, identification of co-expressed clusters of 

proteins and metabolites involved in immune response, glycolysis and acute-phase 

response signalling and transmembrane transport of small molecules support the 

hypothesis that S. uberis challenge of bovine mammary gland leads to 

interconnected pathophysiology affecting multiple pathways of host response and 

homeostasis demonstrable by integration of proteomic and metabolomics 

datasets.    
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5. General Discussion 

5.1 Introduction 

The overall hypothesis for this thesis was that the dynamic changes in proteins 

and metabolites in milk in response to S. uberis challenge relate to signalling and 

metabolic pathways identifiable by integration of proteomics and metabolomics 

outputs. In addressing this overall hypothesis, the aim of this study was to 

understand the system-wide dynamics of molecular changes in bovine mastitis 

during the course of an intramammary infection with S. uberis. To this end, 

system-wide expression quantification of proteins (chapter 2) and metabolites 

(chapter 3) in the milk samples collected at specific intervals during the course of 

an experimental model of S. uberis mastitis (Tassi et al., 2013) was performed, 

and integrative analyses of the proteomics and the metabolomics datasets were 

carried out (chapter 4). The results of the study showed temporal changes in 

proteins and metabolites in milk in response to S. uberis challenge. Many proteins 

and metabolites were differentially expressed over the time course, and the 

changes in the expression profiles could be linked to the stages of the infection 

and inflammation. Global changes in the whey proteome and the metabolome 

were identified in the exploratory analyses (HCA and PCA). Pathways, particularly 

immune and inflammation related pathways, were enriched in the differentially 

expressed proteins and also in the co-expression clusters. The integrative analyses 

of the proteomics and metabolomics datasets showed possible interrelationships 

between metabolites and proteins in regulating immune pathways and energy 

metabolism. Thus, the results of this work support the overall hypothesis that the 

dynamic changes in proteins and metabolites in milk in response to S. uberis 

challenge relate to signalling and metabolic pathways identifiable by integration 

of proteomics and metabolomics outputs. 

In this chapter, a consolidated summary of the results from the proteomics and 

the metabolomics studies (the individual omics layers) is provided, and the 

emergent properties of the system deduced from the integrative study of these 

two omics layers are discussed. 
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5.2 Temporal changes in the milk proteome during the 
course of mastitis caused by S. uberis 

In total, 570 bovine proteins and 183 S. uberis proteins were quantified from the 

label-free quantitative proteomics data generated from aliquots of milk samples 

collected at six selected time-points (0, 36, 42, 57, 81 & 312 hours PC). 

Exploratory data analysis including hierarchical clustering analysis and principal 

components analysis performed on the quantified bovine proteins showed 

clustering of samples in line with their time of origin, implying significant variance 

due to the temporal changes in the expression of proteins, and supporting the 

hypothesis that whey proteins have distinct abundance profiles over time in 

response to S. uberis challenge. On the other hand, exploratory data analysis 

performed on the bacterial proteins did not show tight clustering of samples on a 

temporal basis. As the milk samples were subjected to ultracentrifugation, almost 

all of the bacteria would have been removed, leaving the soluble bacterial 

proteins that may have seeped into milk. One-way ANOVA testing between the 

pre-challenge time-point (0 hours PC) and each of the post-challenge time-points 

showed proteins that were differentially expressed (fold change > |2| and FDR-

adjusted p-value < 0.05), including several acute-phase proteins and anti-

microbial proteins. The differentially expressed acute-phase proteins included 

haptoglobin, serum amyloid A protein - M-SAA3.2, serpin A3-8 and alpha-2-

macroglobulin. The differentially expressed anti-microbial proteins included 

cathelicidin family of proteins and peptidoglycan recognition protein 1. Pathway 

enrichment analysis showed enrichment of signalling pathways including acute-

phase response signalling, LXR/RXR activation, FXR/RXR activation, complement 

system, leukocyte extravasation, IL-6 and IL-10 pathways in the differentially 

expressed bovine proteins, supporting the hypothesis that pathways can be 

identified which are associated with changes in whey protein levels 

5.3 Temporal changes in the milk metabolome during 
the course of mastitis caused by S. uberis 

In total, 690 putatively identified metabolites were quantified from 3,828 peaks 

detected from the untargeted metabolomics data generated from aliquots of the 

same milk samples as were used for the proteomics analysis. Exploratory data 

analysis including hierarchical clustering analysis and principal components 
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analysis performed on the quantified metabolite intensities showed clustering of 

samples in line with their time of origin, implying significant variance due to the 

temporal changes in the concentration of metabolites in milk. One-way ANOVA 

testing between the pre-challenge time-point (0 hours PC) and each of the post-

challenge time-points showed metabolites that were differentially expressed (fold 

change > |2| and FDR-adjusted p-value < 0.05), including several di-, tri-, and 

tetra-peptides. This supports the hypothesis that skimmed milk metabolites have 

distinct abundance profiles over time in response to S. uberis challenge. The 

differentially expressed metabolites were mapped to metabolic pathways 

including amino acid metabolism, carbohydrate metabolism, lipid metabolism and 

nucleotide metabolism. The results showed increasing trends in lipid metabolism 

up to 81 hours PC, and decreasing trends in carbohydrate metabolism and 

nucleotide metabolism up to 81 hours PC. Thus, the results support the hypothesis 

that pathways can be identified which are associated with changes in skimmed 

milk metabolite levels. 

5.4 Comparison of molecular changes identified by 
proteomics and metabolomics at individual omics 
layer-level 

Exploratory analysis of the proteomics and the metabolomics datasets showed 

comparable patterns in clustering of the samples. For example, in both the 

proteomics and metabolomics datasets, the samples from 57 hours and 81 hours 

were divergent from those at 0, 36 and 42 hours PC, showing overall congruence 

between the proteomics and the metabolomics data. However, the largest 

changes shown in the clinical and bacteriological profiles occurred at 36 hours PC, 

which contradicted the patterns observed in the omics datasets. The reasons for 

this contradiction could include (1) high stability of acute-phase proteins - half-

lives more than 24 hours (Gruys et al., 2005, Jacobsen et al., 2005, Kuribayashi et 

al., 2015), and (2) delay between the production/transfer of proteins and 

metabolites in/into milk and sampling of them in milk (interval between milking). 

Analysing milk samples from more time-points with closer time intervals might 

identify the reasons for this difference observed between the clinical and omics 

data. 
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At individual omics layer-level, the proteomics data showed changes in the 

expression of proteins in acute-phase response signalling, LXR/RXR activation, 

FXR/RXR activation, complement system, leukocyte extravasation, IL-6 and IL-10 

pathways. In comparison, the metabolomics data showed changes in the 

concentrations of metabolites related to amino acid, carbohydrate, lipid and 

nucleotide metabolisms including di-, tri-, and tetra-peptides, bile acids and 

lactose. 

5.5 Integrative study of the milk proteome and 
metabolome during the course of mastitis caused 
by S. uberis 

5.5.1 Conceptual integration 

Conceptually combining the results (as reviewed in section 1.2.3) of the 

proteomics and metabolomics data showed possible immunomodulatory role of 

bile acids identified in the metabolomics data via the FXR/RXR activation and 

LXR/RXR activation pathways identified in the proteomics data. Similarly, down-

regulation of lactose was observed in the metabolomics analysis, and for the 

comparable time-points, down-regulation of alpha-lactalbumin, a regulatory 

subunit of lactose synthase, was observed in the proteomics analysis, indicating 

the decreased production of lactose. 

5.5.2 Correlation network-based integration 

Correlation network-based analyses of the proteomics and the metabolomics 

datasets identified many functionally enriched co-expression modules in both the 

proteomics and metabolomics datasets. Although co-expression modules could be 

identified from the individual omics datasets, the functional relevance of some of 

these modules could be better explained when combined together. For example, 

the possible functional role of actin-binding proteins enriched in the modules 

identified from the proteomics dataset could be better understood when 

combined with the information that metabolites involved in transmembrane 

transport of small molecules were enriched in modules identified from the 

metabolite dataset. The enriched actin-binding proteins and the metabolites 

involved in transmembrane transport of small molecules can function together, 

and could be involved in endocytic trafficking of signalling receptors including 
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chemokine receptors (Marchese, 2014). This supports the hypothesis that S. uberis 

challenge of bovine mammary gland leads to interconnected pathophysiology 

affecting multiple pathways of host response and homeostasis demonstrable by 

integration of proteomic and metabolomics datasets. 

It is plain that changes occur in all layers of omics simultaneously during mastitis. 

Investigations utilizing a single omics layer may be highly informative. However, 

a system-wide approach integrating polyomics data from both host and pathogen 

systems can potentially give better understanding of mastitis and provide better 

ways to diagnose, manage and prevent mastitis (Ferreira et al., 2013). 

5.6 Contribution to the field 

The work presented in this thesis has advanced the state of three fields. Firstly, 

this work has contributed to the understanding of the system-wide dynamics of 

molecular changes in bovine mastitis. This work could be the first report of the 

global changes in proteomics and metabolomics over the course of S. uberis 

mastitis from infection to spontaneous resolution. Recently, Xi et al (Xi et al., 

2017) performed an untargeted metabolomics analysis of milk during clinical and 

subclinical mastitis, and compared their results with work published from this 

thesis (Thomas et al., 2016); their results agreed with the results reported in this 

thesis. Identification of increasing concentration of bile acids in milk until 81 hours 

PC and a possible immunomodulatory role of these bile acids via the FXR/RXR 

activation and LXR/RXR activation pathways in mastitis is a novel discovery. The 

importance of bile acids in immunomodulation could be appreciated from the 

recent approval of obeticholic acid, a bile acid derivative and a potent FXR ligand 

for treatment of primary biliary cholangitis in humans (Bowlus, 2016). It is 

pertinent to note that Abdelmegid et al. (Abdelmegid et al., 2017), followed a 

similar approach as that of the proteomics study presented in this thesis and 

published in a journal (Mudaliar et al., 2016). They performed label-free 

quantitative proteomic analysis of whey collected from cows with naturally 

occurring Staphylococcus aureus subclinical mastitis in field conditions, and 

reported up-regulation of many proteins including haptoglobin, cathelicidin-4, and 

peptidoglycan recognition protein1 in mastitis. Interestingly, they also reported 

LXR/RXR activation pathway as one of the topmost enriched pathways in the 

differentially expressed proteins.  
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Secondly, an improved label-free quantitative proteomics methodology producing 

a high-quality dataset was developed for and demonstrated in this work. This 

methodology has now been adopted by Glasgow Polyomics for service delivery.  

Thirdly, the review of omics integration methods presented in chapter 1, and the 

integrative analysis of proteomics and metabolomics data demonstrated in 

chapter 4 will contribute to the field of omics data analysis. 

5.7 Limitations of the study 

An awareness of the limitations in any research study informs the analysis that can 

be made, and helps to shape plans for future work. Limitations of the work 

presented in this thesis include: 

(1) This work used the whey fraction of milk for proteomics analysis and the 

skimmed milk for metabolomics analysis. For complete understanding of the 

system-wide molecular changes, proteomics analysis of all other milk fractions 

such as milk fat globule membrane and the high-abundance proteins could be 

considered. Similarly, a lipidomics analysis of milk could be used to study the lipid 

mediators of inflammation, which might complement the metabolomic analysis. 

(2) The time-points selected for the omics data analyses of milk were based on 

the analysis results of the clinical and bacteriological data obtained in the 

challenge study. However, there were discordances of peak changes observed 

between the results obtained in the omics data and the clinical and bacteriological 

data. In retrospect, inclusion of more time-points, especially between 81 hours 

and 312 hours could have been more informative to the understanding of the 

resolution phase of mastitis. 

(3) Inclusion of technical replicates, that is running aliquots of the same samples 

multiple times in mass spectrometry analysis for proteomics and metabolomics to 

achieve greater coverage would have been useful in imputing missing values in the 

proteomics and metabolomics datasets. 

(4) To undertake a true systems approach it would be ideal to simultaneously 

monitor all omics layers in the same samples, and sampling of all the associated 
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tissues that may be involved in the system-wide interactions. In addition to the 

proteomics and metabolomics analysis of milk described in this work, 

transcriptomics analysis of mammary tissue biopsies, liver biopsies, blood samples 

and different immune cell types (T cells, macrophages and neutrophils) during the 

time course could prove more informative for the understanding of the complete 

molecular picture in bovine mastitis. 

5.8 Opportunities for future work 

The work presented in this thesis is a small beginning, but it may herald a 

realization that system-wide analysis is needed for full understanding of host-

pathogen interactions. Opportunities arising from this work include: 

(1) Publishing a review of the omics data integration approaches presented in 

chapter 1, and a report of the integrative analysis presented in chapter 4.     

(2) Undertaking a large-scale experiment to study system-wide molecular 

interactions in milk, mammary gland, liver and blood during mastitis by means of 

polyomics profiling and integration.  

(3) Developing an integrated systems biology resource database linking the omics 

data with clinical and other metadata for bovine mastitis.  

(4) As data from more omics layers and more studies become available, 

undertaking a formalized comparison of the approaches for omics data integration 

that provide greater effect in understanding the system. 

(5) Designing and developing complex integrative models such as agent-based 

models that enable reasoning over incomplete information, potentially 

contradictory information, and static and temporal dynamic information. 

Decisions on whether to treat or not treat in mastitis could be obtained from these 

in silico models. 

(6) The experience gained in this work has wider transferability, and can be 

applied to different disease contexts (especially complex diseases) in both 

veterinary and human medicine.  
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