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Abstract
The intracellular protozoan parasite Leishmania causes leishmaniasis, a disease which is 

most prevalent in tropical and sub-tropical countries where it infects some two million 

people every year and kills around 60,000 of them. For decades pentavalent antimonial 

compounds have been the standard first-line drugs used to treat the disease and this 

remains the case despite increasing reports of drug-resistance. The mode of action of these 

drugs is not entirely understood, although it is generally accepted that in vivo reduction of 

the compounds from the pentavalent to a trivalent form is required for antileishmanial 

activity. The site of antimonial conversion and whether the reaction is catalysed by an 

enzyme remain controversial points. However, it was recently reported that L. donovani 
amastigotes were capable of reducing pentavalent antimonials to the trivalent form and that 

drug-resistant parasites were deficient in this activity, suggesting that a parasite enzyme 

did mediate drug toxicity. The identity of such an enzyme was investigated in this study.

Arsenical and antimonial compounds are similar and several classes of proteins that exhibit 

arsenate reductase activity have been previously identified in other organisms. Whether 

Leishmania possessed an enzyme akin to one of these was assessed by attempting to purify 

enzymes from parasite lysates and by searching the L. major genome database for similar 

sequences to the arsenate reductases. The latter approach was successful and a gene 

fragment was identified that shared similarity with omega glutathione S-transferases 

(oGSTs), a class of glutaredoxin-like GSTs which are capable of reducing pentavalent 

methylated arsenicals in vitro. The sequence of the complete L. major gene was elucidated 

by 5’ RACE, and was found to encode a protein tvfice the expected size with similar 3’ and 

5’ halves. The protein was named thiol-dependent reductase, or TDRl. Active recombinant 

protein was successfrilly produced and its biochemical activities were found to coincide 

with oGSTs: TDRl was capable of reducing pentavalent arsenical and antimonial 
compounds to trivalent species, and possessed thioltransferase and dehydroascorbate 

reductase activities usually associated with glutaredoxins. TDRl, which was shown to 

probably reside in the parasite cytosol but may also be secreted, was found to be more 

abundant in amastigote than promastigote forms, which correlates with the antileishmanial 

stage-specificity of pentavalent antimonials. L. major TDRl knockout mutants were 

generated, and the protein was also over-expressed in parasites. Both these genetic 

manipulations resulted in mutants with enhanced inactivity.

TDRl knockout parasites were more susceptible than wild type parasites to paraquat, 

which induces the production of intracellular superoxide. As its glutaredoxin-like in vitro
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activities suggest, this implies TDRl has a role in protecting the parasites from oxidative 
stress, although re-expression of TDRl did not reinstate resistance. Whether TDRl has a 

role in susceptibility to pentavalent antimonials was investigated by studying the effect of 
the drug on L. major in macrophages. There appeared to be little difference in the effect of 

the drug on TDRl knockout, over-expressing and wild type parasites, although variation in 

inactivity to macrophages and the insensitivity of L. major to the drug complicated the 

situation.

Whether trivalent antimonials could be oxidised to non-trivalent species by hydrogen 

peroxide was assessed. This was indeed found to be the case, demonstrating that in 

principle antimonial metabolism may be more complex than straightforward reduction 

from the pentavalent to trivalent form. However, the physiological relevance of this finding 

is uncertain due to oxidation of the antimonials being inhibited by glutathione.

The dehydroascorbate reductase activity of TDRl was of interest as the presence of an 

enzyme capable of maintaining ascorbate in its reduced form may imply that this low- 
molecular weight thiol is important in the parasite. The recent identification of an 

ascorbate-dependant peroxidase in Leishmania added further credence to this hypothesis. 

Many organisms produce ascorbate de novo although, due to the loss of an important 
synthesis enzyme, humans cannot and have to scavenge ascorbate from their diet. If 

Leishmania does require ascorbate and rely on de novo production, enzymes that mediate 

synthesis could feasibly be exploitable drug targets. Whether Leishmania was capable of 
producing ascorbate and its importance in the parasite was investigated. The L  major 

genome database was searched for sequences similar to those of enzymes known to be 

involved in ascorbate synthesis in other organisms. Several candidate protein sequences 

were identified including that of one which is similar to L-gulono lactone oxidase (GLO), 

the enzyme that mediates the final step in ascorbate production in a variety of organisms 

and is the protein humans no longer possess. This L  major sequence was named LmGLO. 
L. major LmGLO knockout mutants were generated and the protein was also over

expressed in parasites. While over-expression resulted in parasites being more infective, 

loss of LmGLO resulted in decreased infectivity, both in vitro and in vivo. In addition, 

LmGLO knockout promastigotes displayed a slight growth defect. Although these results 

need extending, they suggest that Leishmania parasites do indeed synthesise ascorbate and 

that this ability is important for optimal virulence and infectivity to mammals.
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1 Introduction

1.1 The Leishmania parasite

The genus Leishmania belongs to the family Trypanosomatidae, of the order 

Kinetoplastida, a reference to the unusual kinetoplast organelle that the parasite contains in 

its single mitochondrion. Over 20 species of the protozoan parasites are known to exist, 

which cause different manifestations of the disease leishmaniasis in a variety of 

mammalian hosts, such as canids and rodents, as well as humans. Leishmania parasites are 

most closely related to trypanosomatids such as Trypanosoma brucei and Trypanosoma 

cruzi, the causative agents of African sleeping sickness and Chagas disease, respectively. 

The vector responsible for spreading the eukaryotic Leishmania parasite is the female sand 

fly of the genus Phlebotomus in the old world and Lutzomyia in the new world. Leishmania 

parasites eause the disease leishmaniasis, which is most prevalent in tropical and sub

tropical regions where the sand flies thrive, and in more than 80 countries the parasite is 
endemic.

1.1.1 The Leishmania life cycle

The parasite can exist in several different states during its life cycle, which is illustrated in 

figure 1.1. While in the sand fly vector they exist as promastigotes, transforming from 

procyclic to metacyclic forms. The motile promastigotes are an elongated oval shape with 

an anterior flagellum, approximately 10-20 pM in length, which replicate by asexual 

reproduction. The infectious metacyclic forms differ from procyclics in several ways: they 

have narrower bodies and longer flagella, are more motile, do not divide and have different 

biochemical compositions (Mallinson and Coombs 1989) and protein expression profiles 

(Nugent et al, 2004). As such, they are considered to be a distinct life-cycle stage. 

Following metacyclogenesis, the promastigotes migrate from the midgut to the proboscis 

of the insect vector, and are transmitted to the animal host when the sand fly bites. 

Thereafter the promastigotes are phagocytosed by host macrophages (and other cells 

(Bogdan et al, 2000)) where they transform to amastigote forms and proliferate, dividing 

again by binary fission, in the phagolysosome. Amastigotes are morphologically and 

biochemically distinct from promastigotes: they are much smaller (2-6 pm in diameter), 

immobile, ovoid forms lacking prominent flagella, and have very different protein 

expression profiles (Walker et al, 2006). Parasite-containing macrophages rupture and 

release the amastigotes, which then go on to infect more cells. Amastigotes are then taken 

up in a subsequent sandfly bite. Once in the vector, the amastigotes transform to procyclic
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promastigotes, recommencing the cycle. Leishmania promastigotes can be grown in 

culture, facilitating research into the parasites. In addition, amastigotes of some species can 

also be grown axenically (Gupta et al, 2001).

Intracellular amastigote

Transformation

Proliferation

Uptake

Uptake

Lysis/ \Phagolysosome bursting)

Attachment

MacrophageAttachment
Mammalian host

Sandfly bite Sandfly biteSandfly

Amastigotes

MetacycHc 
promastigotes

FYocydic 
promastigotes

Migration 
to the 
mouthparts

fransformation

FYoliferation in the midgut

Figure 1.1: Life cycle of Leishmania. The amastigote (Intracellular In mammalian host) and 
promastigote (extracellular In Insect vector) life cycle stages are depicted. This Image Is taken from 
the website www.wehl.edu.au/medla/lmages/lelshmanla_cycle.glf.

http://www.wehl.edu.au/medla/lmages/lelshmanla_cycle.glf
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1.1.2 The Leishmania genome and regulation of gene expression

The genomes of several Leishmania species, which are diploid organisms, are currently 

being sequenced and the complete, annotated genome sequence of Leishmania major 

Freidlin was recently published (Ivens et al, 2005). Z. major has a 32.8 megabase haploid 

genome divided into 36 chromosomes and is predicted to contain 8272 protein-encoding 

genes and 911 RNA genes. In addition, the kinetoplast contains its own DNA (kDNA) 

which is the equivalent of mitochondrial DNA. However, kDNA is arranged in an unusual 

structure comprising catenated minicircles of which there are several thousand per 

kinetoplast, and maxicircles of which there are several dozen. Approximately 20 proteins 

are encoded by maxicircle kDNA, most of which are thought to be mitochondrial proteins 

involved in energy transduction,

Leishmania have an unusual method of gene expression with chromosomal protein- 

encoding genes being arranged in directional gene clusters (Myler et al, 1999) which 

undergo polycistronic transcription (Worthey et al, 2003). Accordingly, mRNA 

abundance does not necessarily reflect the level of a given protein in the parasites (Holzer 

et al, 2006; McNicoll et al, 2006), meaning that analysis of the expression level of 

Leishmania proteins by northern blotting is problematic. Like in other trypanosomatids, a 

conserved RNA sequence of 39 nucleotides, which is known as the splice-leader sequence, 

is trans-spliced onto the 5’ end of all Leishmania mRNAs; the 3’ end of most mRNAs are 

polyadenylated by trans-splicing also. These events are required for successful translation. 

Gene expression and resulting protein levels in trypanosomatids are thought to be mediated 

in several non-transcriptional ways: RNA degradation, control of translation and post- 

translational events are all thought to contribute, as reviewed in Clayton, 2002.

1.1.3 Redox regulation in trypanosomatids

upon infection of an organism, parasitic protozoa encounter high levels of reactive oxygen 

species due to the oxidative burst response of the host’s immune system and it is therefore 

of interest that trypanosomatids exhibit atypical mechanisms for dealing with oxidative 

stress. Distinctive thiol-based systems for regulating the redox environment have evolved 

in many protozoan parasites (reviewed in Muller et al, 2003b). In trypanosomatids these 

differences are underpinned by the presence of two unusual thiols that have been 

identified: ovothiol and trypanothione (T(SH)2). The precise function of ovothiol is not yet 

fully understood as, despite its abundance in Leishmania^ it is not known to participate in 

any enzymatic reactions and may simply act as a scavenger of reactive oxygen species
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(ROS) (Ariyanayagani and Fairlamb 2001). Meanwhile, T(SH)2  has a pivotal role in the 

thiol-based redox metabolism of Leishmania because it is responsible for keeping other 

thiols reduced. Although trypanosomatids also contain high levels of the almost ubiquitous 

thiol glutathione (GSH), they lack glutathione reductase which in other systems reduces 

glutathione disulphide (GSSG), the oxidised form of GSH. Instead they possess 

trypanothione reductase (TR), an essential enzyme in Leishmania (Tovar et al, 1998), 

which regenerates oxidised trypanothione (TS2) to the reduced T(SH)2 , which in turn 

reduces GSSG (Fairlamb et al„ 1985). Although this reaction occurs non-enzymatically, 

the Trypanosoma cruzi enzyme Tc52 is also able to catalyse the reduction of GSSG by 

T(SH) 2  (Montiez et al„ 1995). Ovothiol is also dependant on T(SH)2  for maintenance in 
its reduced state (Ariyanayagam and Fairlamb 2001).

T(SH)2  is comprised of two molecules of GSH that are linked by a molecule of spermidine, 

the conjugation of which is catalysed by trypanothione synthetase in L. major (Oza et al, 

2005), T brucei (Oza et al, 2003) and T cruzi (Oza et al, 2002). In the non-pathogenic 

insect trypanosomatid Crithidia fasiculata, which has been used as a model organism for 

investigating T(SH)2  synthesis, two enzymes were thought to regulate the formation of 

T(SH)2 : glutathionylspermidine synthetase and trypanothione synthetase (TS) (Tetaud et 

al, 1998). However, more recent findings have shown that only the latter enzyme is 

required for T(SH)2  synthesis (Comini et al, 2005) as is the case in pathogenic 

trypanosomatids. T(SH)2  participates in many enzymatic and non-enzymatic reactions 

including the reduction of dehydroascorbate (Krauth-Siegel and Ludemann 1996) and acts 

as a co-factor with trypanothione S-transferases (which have been postulated to replace 

glutathione S-transferases in trypanosomatids) in the detoxification of xenobiotics (Vickers 

et al, 2004). In addition T(SH)2  reduces tryparedoxin, a trypanosomatid-specific 

thioredoxin-like protein which reduces peroxiredoxins which in turn enzymatically 

detoxify hydroperoxides (Nogoceke et al, 1997). Peroxidases are thought to be of 

particular importance in some parasitic protozoa due to the absence of catalase (Muller et 
al, 2003b). The reducing equivalents for DNA synthesis are also provided by T(SH) 2  as it 

reduces ribonucleotide reductase (the enzyme required to synthesise nucleotide 

precursors), either directly or via tryparedoxin (Dormeyer et al, 2001).

Reflecting the diversity of the reactions T(SH)2  is involved in and its role in regulating the 

redox environment of the parasite, enzymes known to be involved in T(SH)2  synthesis and 
regeneration -  namely TR and TS -  are thought to be essential in trypanosomes. When 

RNAi was performed on T. brucei parasites resulting in reduced levels of TS, growth 

defects and increased sensitivity to oxidative stress, together with elevated levels of TR,
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were observed (Comini et al, 2004; Ariyanayagam et al, 2005). Attempts to create L. 

donovani TR null-mutants have been unsuccessful and both L. donovani and T. brucei 

parasites engineered to have reduced levels of the protein exhibited diminished viability in 

vivo (reviewed in Krauth-Siegel and Inhoff, 2003). These findings, coupled with the 

parasite-specific nature of the thiol, has lead to T(SH)2  metabolism being considered a 

valid drug-target and inhibitors of both TR and TS being sought. Indeed trivalent 

antimonial drugs, the reduced form of the most common first-line treatment against 

leishmaniasis, have been shown to inhibit TR in vitro (Cunningham and Fairlamb, 1995) 

and both the administered pentavalent antimonials and the trivalent form exert effects 
suggestive of inhibition of TR in vivo (Wyllie et al, 2004).

1.2 Leishmaniasis

The World Health Organisation collates epidemiological information on leishmaniasis and 

much of the forthcoming information was obtained from their relevant website at 

http://www.who.int/leishmaniasis/. Disease resulting from infection with the parasite 

LeishmaniahdiS three predominant forms: visceral, cutaneous and mucocutaneous 

leishmaniasis. Visceral leishmaniasis is the most severe form: symptoms include fever, 

diarrhoea, hepatosplenomegaly, pancytopenia, epistaxis, cachexia and peripheral 

lymphodenopathy, and, if left untreated, this form of the infection is almost always fatal. 

Visceral leishmaniasis affects many different bodily organs; macrophages become infected 

with parasites throughout the reticuloendothelial system and they ultimately reach the liver, 

spleen and bone marrow. The incubation period of the disease can be months or even 

longer, with death usually occurring in untreated sufferers approximately two years later. 

Infection with several species of Leishmania causes the visceral form of the disease; these 

include the old world species L. tropica, L. donovani, and L. infantum, andZ. chagasi in 
the new world (which is very similar to Z. infantum).

The least severe form of the disease is cutaneous leishmaniasis, a form that affects the skin. 

It causes isolated ulcers on exposed parts of the body, which are often disfiguring and 

leave scars. However, given enough time, spontaneous healing can occur which can result 

in leishmaniasis immunity in the patient. Cutaneous leishmaniasis is caused by infection 

with old world species Z. major, L. tropica and Z. aethiopica; and new world species Z. 

mexicana, Z. amazonensis, L. braziliensis, L. peruviana, Z. guyanensis and Z. panamensis. 

Z. aethiopica and Z. amazonensis can also cause a more severe form of the skin disease 

known as diffuse cutaneous leishmaniasis which requires treatment. As well as a lesion

http://www.who.int/leishmaniasis/
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forming at the site of infection, chronic satellite lesions occur as the parasites metastasise 

to other areas of the skin.

The third distinct form of the disease, known as mucocutaneous leishmaniasis, also affects 

the skin but also facial mucosal tissue. A cutaneous infection can descend into the 

mucocutaneous variety months after the initial lesion has healed. Infection can lead to 

complete degradation of the nose, mouth and throat, which is both highly debilitating and 

disfiguring, and fatality can result from secondary infections. Mucocutaneous 

leishmaniasis is caused by infection with L. braziliensis and, less frequently, Z. 

panamensis', accordingly this form of the disease is only prevalent in the new world. 

Although each form of the disease is distinct, it should be noted that a cutaneous or 

mucosal infection can occasionally deteriorate into visceral leishmaniasis, and that 

sufferers of Z. donovani-màxiQQà visceral leishmaniasis can develop cutaneous lesions.

Leishmaniasis is prevalent in 88 countries worldwide and of these, declaration is 

obligatory in just 32. Infections are common in remote areas where access to medical care 

and facilities is limited. Consequently, incidence of the disease is under-reported and 

therefore it is difficult to determine the global burden and what the mortality rate is. It is 

currently estimated that there are approximately 50,0000 new cases of visceral 

leishmaniasis and 2 million new cases of cutaneous leishmaniasis each year; although in 

2001 only 600,000 cases were reported in total. Reportedly, 59,000 people died from 

visceral leishmaniasis in 2001. It was estimated that 2.4 million DALYs (disability- 

adjusted life years, the number of years lost to disability and premature mortality) were lost 

due to leishmaniasis (http://www.who.int/tdr/diseases/leish/). However, these numbers are 
subject to fluctuation due to epidemics: during an outbreak in Sudan in the early 1990s, 

Médecins sans Frontières reported that 100000 people died from leishmaniasis, which was 

more than 10% of the at-risk population.

As mentioned, leishmaniasis occurs where the sand fly vectors thrive: mainly in tropical 

and sub-tropical regions of Europe, Africa, Asia and Central and South America (figure 

1.2). Among these are 16 European countries; the remainder are developing nations, 

reflecting the nature of leishmaniasis as being a disease of the poverty-stricken. Over 90% 

of visceral infections reportedly occur in Bangladesh, Brazil, India, Nepal and Sudan and 

over 90% of reports of cutaneous disease are in Afghanistan, Brazil, Iran, Peru, Saudi 

Arabia and Syria. Unfortunately, the most recent comprehensive statistics on leishmaniasis 

epidemiology -  summarised in the 2002 World Health Report -  are from 2001, and 

therefore changes in the distribution and incidence of leishmaniasis in recent years are

http://www.who.int/tdr/diseases/leish/
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unknown. However, it is accepted that leishmaniasis is an increasing problem in many 

parts of the world (Desjeux, 2001). This is illustrated by the increase in cutaneous 

leishmaniasis cases in certain countries between the 1990s and the 2000s: in 1998 there 

were 21800 cases reported in Brazil but in 2002 the figure was 40000, while reported 

incidents of the disease in Kabul, Afghanistan rose from 14200 in 1992 to 65000 in 2002. 

The same is true of visceral leishmaniasis: the number of cases in north-eastern Brazil rose 

from 1840 in 1998 to 6000 in 2002. In recent years there has been an increase in the 

number of infections in Southern Europe, as is discussed below.

3. ^

Figure 1.2: Global distribution of leishmaniasis. Regions where the visceral form of the disease 
persists is in green and areas where the cutaneous and mucocutaneous forms exist are in red. The 
image is taken from the website http://www.wehi.edu.au/media/images/handman/world_map.jpg.

There are several reasons for the changing epidemiology of the disease (Desjeux, 2004). 

Immuno-compromised patients are at greater risk of developing clinical leishmaniasis (as 

opposed to passive infections that go undetected) than healthy individuals and this has 

resulted in HIV co-infection (Desjeux et al, 2001). This has been a particular problem 

with increasing infections of recurring visceral leishmaniasis in parts of Southern Europe

http://www.wehi.edu.au/media/images/handman/world_map.jpg
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including Spain, Italy, France and Portugal. However, improvements in HIV chemotherapy 

have led to a concomitant decrease in leishmaniasis in HIV sufferers in Europe (Lopez- 

Velez, 2003). In many developing countries HIV/leishmaniasis co-infection remains a 

growing problem. Another reason for the change in disease pattern is population migration: 

urbanisation and military unrest have both caused recent large-scale movement of people 

from uninfected areas, who lack innate immunity, to endemic regions. The challenges 

presented by the increasing prevalence and changing distribution of the disease mean that 

effective chemotherapy against leishmaniasis is imperative.

1.3 Chemotherapy and resistance

There are several Leishmania vaccine candidates currently under investigation that include 

the use of whole killed cells, live attenuated cells, recombinant Leishmania proteins and 

peptides and DNA vaccines (reviewed in Ghosh and Bandyopadhyay, 2003). However, no 

prophylactic is currently available and accordingly, effective chemotherapy is of utmost 

importance. Treatment of leishmaniasis is dependant upon several factors including the 

economic situation in the country where the infection has occurred, whether drug 

resistance is a problem in the area, and what form of leishmaniasis is present in the 

individual. Over 90% of cutaneous leishmaniasis infections heal over time and accordingly 

are often not treated (Davies et al, 2003) while visceral leishmaniasis is always treated if 

possible, due to infection being fatal. Mucocutaneous infections are usually treated as this 

form can be damaging also. There are several different chemotherapeutic options available 

to treat leishmaniasis, as well as promising new drug candidates. These are summarised in 

table 1.1, and discussed in this section. Widespread drug resistance has been reported in 

parts of Northern India to pentavalent antimonials and this has presented a finther 

challenge to leishmaniasis treatment; accordingly, issues surrounding drug resistance are 

addressed in this section. Appreciating why the drugs are toxic to the parasites is crucial in 

understanding how they develop ways to evade the toxicity and this is also discussed. 

Several promising new compounds are currently in the advanced stages of clinical trials 

and, as the potential future of leishmaniasis chemotherapy, these too are described.
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Type of 
leishmaniasis

Status of 
drug

Drugs available

visceral first-line pentavalent antimonials (sodium stibogluconate 
(Pentostam), meglumine antimoniate 
(Glucantime)); amphotericin B; pentamidine; 
miltefosine (India only)

clinical trials miltefosine; paromomycin; sitamaquine

cutaneous first-line pentavalent antimonials (sodium stibogluconate 
(Pentostam), meglumine antimoniate 
(Glucantime)); amphotericin B; pentamidine; 
miltefosine (Columbia only)

clinical trials miltefosine; paromomycin; azoles

Table 1.1: Drugs for leishmaniasis treatment. Table redrawn, with modifications, from a previous 
report (Croft et ai, 2006).

1.3.1 Pentavalent antimonials

There are two pentavalent antimonial compounds that have been used to treat leishmaniasis 

for over 60 years: sodium stibogluconate (Pentostam) and meglumine antimoniate 

(Glucantime), as well as generic varieties made in India and China. Antimonial compounds 
remain the standard first-line treatment for both visceral and cutaneous forms of 

leishmaniasis in almost all parts of the world, although emerging drug-resistance has 

resulted in the licensing of Miltefosine in some areas (see section 1.3.2). Pentavalent 

antimonials will be discussed in detail in section 1.4.

1.3.2 Miltefosine

Miltefosine (hexadecylphosphocholine) is a relatively new antileishmanial drug that has 

the major advantage of being administered orally. A member of a family of compounds 

called alkyl-lysophospholipids (ALPs), it was originally developed as an anti-cancer drug 

and was found to have an anti-proliferative effect on Leishmania in vitro and in vivo (Croft 

et at., 1987). It is active against many Leishmania species although there is variation in the 

sensitivity of these: L. donovani has been shown to be the most susceptible (Escobar et al, 

2002; Yardley et al, 2005). Currently in phase IV clinical trials, Miltefosine has been used 

successfully to treat visceral leishmaniasis with phase II clinical trial cuie rates of 95% and 

98% (Jha et al, 1999; Sundar et al, 1999) and has been licensed for use in India since 

2002. Following reports showing that Miltefosine was toxic against cutaneous 
leishmaniasis likely to be caused by L. panamensis (Soto et al, 2001), the drug has been
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recently licensed for use against this form of the disease in Columbia. A topical 

formulation of Miltefosine (Miltex) is also effective in treating cutaneous leishmaniasis 

(Schmidt-Ott et al, 1999). Miltefosine may be useful in treating infections of other 

parasites including Trypanosoma cruzi (Croft et al, 1996; Santa-Rita et al, 2000), 

Entamoeba histolytica (Seifert et al, 2001) Acanthamoeba spp. (Walochnik et al, 
2002).

The mode of action of Miltefosine has not been fully elucidated. Most work in this area has 

been carried out on cancerous mammalian cells as opposed to trypanosomatids and it is not 

known if the mechanism of toxicity in these is similar (Croft et al, 2003). It is known that 

Miltefosine induces apoptosis in cells (Konstantinov et al, 1998) and more recently this 
has been shown to occur in both L. donovani promastigotes (Paris et al, 2004) and 

amastigotes (Verma and Dey, 2004). The induction of apoptosis in mammalian cells has 

been attributed to several mechanisms. These include inhibition of phosphocholine 

biosynthesis by disrupting the translocation of CTPiphosphocholine-cytidylyltransferase 

(Geilen et al, 1992); stimulation of the stress-activated protein kinase/c-Jun NH2-terminal 

kinase (SAPK/JNK) pathway (Ruiter et al, 1999); disruption of signal transduction via 

inhibition of protein kinase C (Uberall et al, 1991) and stimulation of cellular ceramide 

formation (Wieder et al, 1998). However the role of inhibition of phosphatidylcholine 

synthesis in apoptosis has been recently questioned due to apoptosis being induced by 

Miltefosine in cells impaired in phosphatidylcholine synthesis by an alternative mechanism 

(van der Sanden et al, 2004). Significantly less research has been carried out into the 

affect of ALPs on trypanosomatids; the limited investigations that have been conducted 

were reviewed recently by Croft et al, 2003. The treatment of Trypanosoma cruzi with 

various ALPs including Miltefosine caused extensive blebbing of the flagellar membrane 

(Santa-Rita et al, 2000) and the affect of Miltefosine on parasite membrane lipids has been 

a focus of interest. It was originally shown that Miltefosine affected ether-lipid metabolism 

and glycosylphosphatidylinositol (GPI) anchor biosynthesis (Lux et al, 1996). The same 

group have since shown that the drug inhibits alkyl-specific-acyl-CoA acyltransferase, an 

enzyme involved in lipid-remodellihg (Lux et al, 2000). Recently it has been reported that 

laboratory-derived Miltefosine-resistant L. donovani promastigotes displayed altered 

membrane lipid composition (Rakotomanga et al, 2005).

Resistance to ALPs has so far only been observed in the laboratory, although this is 

expected to occur in the field in time due to several factors (Berman et al, 2006). The drug 

has a narrow therapeutic index and long half-life (Sundar, 2001b): both are factors 

considered to favour the emergence of resistance. In recent domiciliary clinical trials the
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relapse rate doubled as compared to supervised in-patient trials (Sundar and Murray,

2005), suggesting that non-supervised Miltefosine administration could result in conditions 

that would favour resistance. Moreover, the ease of generating resistance in the laboratory 

has given cause for concern (Seifert et ah, 2003). It has been suggested that in order to 

prevent Miltefosine resistance becoming problematic in the field, the drug should always 

be used in combination with a second unrelated antileishmanial compound such as 

paromomycin or amphotericin B (Bryceson 2001).

Several different mechanisms of Miltefosine resistance have been proposed in Leishmania, 

as reviewed in Croft et ah, 2006. Leishmania tropica engineered to over-express a P- 

glycoprotein-like transporter displayed more than nine times increased tolerance to 

Miltefosine than wild type parasites (Perez-Victoria et al, 2001), The engineered parasites 

showed a reduced accumulation ofbodipy-Cg-PC, a fluorescent analogue of miltefosine. 

The protein, which is a pump responsible for efflux and sequestration of compounds firom 

the cell, has also been implicated in resistance to antimonials in Leishmania (reviewed in 

Ullman 1995), However, the fact that Miltefosine has been used successfully to treat 

antimonial-resistant cases of leishmaniasis (Sundar et al, 1999) suggests resistance occurs 

via separate mechanisms. Recently it was shown that Miltefosine-resistant laboratory- 

derived L. donovani were deficient in uptake of the drug (Perez-Victoria et al, 2003a), An 
aminophospholipid translocase transporter was subsequently shown to mediate Miltefosine 

influx and different point mutations in the gene encoding the translocase, LDMT, were 

responsible for conferring resistance (Perez-Victoria et al, 2003b). Thirdly, as mentioned, 

the membrane-lipid composition and metabolism has been shown to be altered in resistant 

lines (Rakotomanga et al, 2005). The authors suggest that interactions between 

Miltefosine and the cell membrane may be important for parasite susceptibility to the drug 
at higher concentrations.

Despite the high efficacy of Miltefosine in treating leishmaniasis and the benefits of its oral 

administration, the threat of drug-resistance developing in the field cannot be ignored. 

Moreover, the drug may not be suitable for treating leishmaniasis caused by some species 

of Leishmania: an in vitro study has shown a lack of sensitivity to Miltefosine of L. 
braziliensis, L. mexicana and L. guyanensis clinical isolates (Yardley et al., 2005), while a 

cure rate of just 53% was achieved when the drug was used to treat cutaneous 

leishmaniasis (likely to be caused by L. braziliensis) in a clinical trial in Guatemala (Soto 

et al, 2004). The efficacy of Miltefosine in treating HIV-co-infected patients has also been 

questioned (Berman et al, 2006) after the majority of patients relapsed in one study 

(Sindermann et al, 2004). Although Miltefosine is well-tolerated, it is not suitable for
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treating pregnant females as it is teratogenic and must be administered with contraception 

to women of child-bearing age. These issues highlight the potential problems with 

Miltefosine, and suggest it is not necessarily the “wonder-drug” it has been hailed as.

1.3.3 Pentamidine

Pentamidine has toxic side effects but was originally extremely effective against infections 

of Leishmania and for several decades has been used as a second-line therapy for patients 

not responding to treatment with antimonials. However, pentamidine unresponsiveness has 

emerged (Giri, 1994) and in parts of India the cure-rate fell to less than 70% (Sundar, 

2001a). Accordingly, its use as an antileishmanial drug has diminished. Together with 

other diamidine compounds, pentamidine is also used to treat types of pneumonia and 

sleeping sickness as it is active against both T. brucei and Pneumocystis carinii.

The characterisation of pentamidine-resistance Leishmania strains developed in the 

laboratory has contributed to the understanding of how the drug may act on the parasite. 

Pentamidine-resistant L. donovani and L. amazonensis had lower levels of putrescine but 

higher levels of ornithine and arginine compared to wild type strains and lower levels of 

the enzyme omitliine decarboxylase. Moreover, the affinity of spermidine synthase for 

pentamidine was decreased in resistant strains and the enzyme had a higher affinity for 

putrescine (Basselin et al, 1997a). Pentamidine has also been found to inhibit arginine, 

putrescine and spermidine transport in Leishmania (Reguera et al, 1994; Kandpal et al, 

1996). Pentamidine-mediated alterations in polyamine synthesis or uptake may therefore 

be responsible for parasites’ susceptibility to the drug. Altered accumulation of 

pentamidine has been observed in drug-resistant L. mexicana, L amazonensis and L. 
donovani parasites (Basselin et al, 1997b; Basselin et al, 2002). Uptake of pentamidine is 

mediated by the P2 transporter in trypanosomes (reviewed by Bray et al, 2003) but this is 

not the case in Leishmania and the route of entry into the parasites remains unclear. 

However, increased efflux rather than decreased influx of the drug is responsible for 

reduced accumulation of pentamidine in resistant Leishmania (Basselin et al, 1997b). This 

has been attributed to resistant L. mexicana parasites not accumulating the drug in the 

mitochondrion as sensitive parasites do, therefore rendering the drug available for efflux 

(Basselin et al, 2002). This is thought to be due to reduced uptake into the organelle and 

recently a P-glycoprotein-like translocase, PRPl, has been identified that may mediate 

transport of pentamidine into the mitochondrion; part of PRPl was deleted in drug- 

resistant parasites (Coelho et al, 2003). Pentamidine is thought to adversely affect this 

organelle in Leishmania: treatment with the drug caused a decrease in the mitochondrial
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membrane potential (Basselin and Robert-Gero 1998), disintegrated the organelle (Croft 

and Brazil 1982) and altered kDNA minicircle structure (Basselin et al, 1998).

1.3.4 Amphotericin B preparations

Amphotericin B is a polyene antibiotic made by Streptomyces that interacts with sterols in 

plasma membranes, creating transmembrane channels which alter cells' permeability to 

cations, water and glucose and thus affecting the intracellular environment (Brajtburg and 

Bolard, 1996). Also an anti-fungal, it has a greater affinity for ergosterol (the predominant 

sterol in Leishmania) than cholesterol (the predominant sterol in mammalian cells) and 

therefore is more toxic to the parasite. However, dose-limiting renal toxicity in humans is a 

major problem and has resulted in the drug being a second line choice for treatment of 

leishmaniasis. In recent years, liposomal preparations of the drug have been developed in 

which the drug is delivered within a lipid bilayer (Ambisome) and these formulae are much 

less toxic to the host (Sundar et al, 2002). However, the expense of Ambisome has 

resulted in it being unavailable in poor regions where leishmaniasis is endemic.

Fungal infections have been reported that display drug resistance when treated with 

amphotericin B (Rrcmery and Barnes, 2002). However, Leishmania resistance is not a 

problem in the field: reports of multiple relapses after treatment with amphotericin B and 

Ambisome in immuno-compromised patients are likely to be due to patient immune status 
rather than acquired parasite resistance (Durand et al, 1998; Di Giorgio et al, 1999). 

Leishmania donovani promastigotes resistant to amphotericin B have been created in the 

laboratory by selection after increasing drug pressure (Mbongo et al, 1998). Analysis of 

these parasites revealed that amphotericin B uptake was decreased and efflux was 

increased, and that rather than the major sterol being the ergosterol lipid found in drug- 

sensitive parasites, an ergosterol precursor was present. However, the inability of these 

mutants to infect animals in vivo suggests that this lipid composition is not conducive to 

survival of Leishmania amastigotes and is therefore unlikely to be a problem in the field. 

The S- adenosyl-l-methionine-C24-d-sterol-methyltransferase (SCMT) enzyme which 

mediates méthylation of C-24 sterols was postulated to play a role in the phenotype and 

defective transcripts of SCMT were identified in amphotericin B-resistant parasites 
(Pourshafie et al, 2004). More recently, laboratory-derived. Amphotericin B-resistant L. 

mexicana parasites have been created that are insensitive to the drug in vitro and in vivo 

(Al-Mohammed et al, 2005). The parasites again had an altered sterol composition 

although they were infectious to animals, albeit causing attenuated disease symptoms. This 

may be cause for concern if such a situation occurs in the field.
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1.3.5 Drugs not yet licensed: paromomycin, azoles and 

sitamaquine

Paromomycin (aminosidine) is another antibiotic which has antileishmanial activity. The 

lack of published studies on mechanisms of action and resistance is perhaps surprising, 

given that it is currently in phase III clinical trials and is likely to soon be available as 

mainstream treatment for visceral leishmaniasis. Paromomycin is also useful in treating 

cutaneous leishmaniasis (el-On et al, 1992) although it is not as effective as antimonial 

treatment (Faghihi and Tavakoli-kia, 2003; Moosavi et al, 2005). The mode of action of 

the drug in parasites has not been well characterised, although in bacteria the compound 

inhibits protein synthesis by binding ribosomal RNA (Schroeder et al, 2000). 

Paromomycin has been shown to inhibit RNA and protein synthesis in L. donovani 
promastigotes and also affected lipid composition, membrane fluidity, and macromolecule 

uptake (Maarouf et al, 1998). In a separate study, the drug was reported to affect the 

Leishmania mitochondria and respiration (Maarouf et al, 1997). Parasites exhibiting drug- 

resistance to the compound have not yet been observed in the field, probably due to the 

limited use of paromomycin so far (Croft et al, 2006). However, there are reports of drug- 

resistant parasites having been created in the laboratory (el-On et al, 1991 ; Maarouf et al,

1998) which retained their inactivity. The mechanism of resistance has not been defined, 

although a decrease in the uptake of the drug was observed (Maarouf et al, 1998).

Cutaneous leislimaniasis has been treated successfully with itraconazole (Consigli et al,

2006) and ketoconazole (Salmanpour et al, 2001), oral formulations in clinical trials 

which inhibit ergosterol synthesis in the parasite. In addition, azoles may be useful in 

treating mucocutaneous leishmaniasis (Amato et al, 2000). However, the efficacy of these 

compounds is uncertain and one study showed that itraconazole was no better than the 

placebo in treating cutaneous disease caused by L. major (Nassiri-Kashani et al, 2005). No 

acquired resistance to azoles has been reported in the field although over-expression in L. 

major of squalene synthase, which has a role in mediating ergosterol biosynthesis, resulted 

in reduced sensitivity to itraconazole (Cotrim et al, 1999).

Sitamaquine (WR6026) is a second orally active drug which is currently in clinical trials 

for efficacy in treating visceral leishmaniasis (Yeates, 2002). Although the drug has the 

advantage of oral administration, the cure-rates of visceral leishmaniasis in a phase II 

clinical trial conducted in Brazil were unimpressive (Dietze et al, 2001) and toxic side- 

effects were observed. Sitamaquine was more effective at treating leishmaniasis caused by
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L. donovani in India and Kenya (Wasnnna et al, 2005). The mode of action is unknown 

and no studies have been published into sitamaquine-resistance in Leishmania.

1.4 Pentavalent antimonials

As mentioned, all forms of leishmaniasis are usually treated primarily with pentavalent 

antimonials. Herein these will be referred to as Sb(V), and when necessary the different 

drug compounds available will be referred to as SSG (sodium stibogluconate) and MGA 

(meglumine antimoniate). Meanwhile trivalent antimonials will be referred to as Sb(III) 

unless otherwise stated. Throughout this section, mechanisms which may confer resistance 

to antimonials are also discussed as resistance to antimonials is an increasing problem in 
the field (Sundar, 2001a).

Despite their prolonged use, many aspects of antimonial function -  including uptake, 

metabolism, detoxification and mechanism of action of the drug -  remain uncertain. The 

relatively low level of antimony in the environment has resulted in minimal contamination 

with this metal and subsequently antimonial poisoning is not a problem for humans. 
Therefore, little research has been carried out on the toxic effects of antimony in this aspect 

as well. On the other hand, arsenic - a metalloid (or semimetal) element similar to 

antimony - has been much more extensively characterised (probably due to its toxic effects 

often being seen in humans due to its abundance in the ground and contamination of 

drinking water) and more is known about its toxicology. Accordingly, it is often necessary 

to consider research carried out on arsenical compounds when analysing how antimonial 

compounds behave (Gebel 1997). The pentavalent form is known as arsenate (As(V)) 

while the trivalent form is arsenite (As(III)).

Promastigotes are not susceptible to Sb(V) although they are to Sb(III) (Ephros et al,

1999). As discussed in detail in section 1.4.3, it is generally accepted that Sb(V) is 

effectively a pro-drug and that reduction to a trivalent form is necessary for antileishmanial 

toxicity, although whether this reaction is carried out by the host cell or the parasite 

remains controversial. Accordingly, investigations into both Sb(V) and Sb(III) have been 

evaluated here.

The presence of the preservative chlorocresol in Sb(V) preparations has hindered research 

into the drugs, as chlorocresol itself has antileishmanial activity (Roberts and Rainey

1993). Specifically, studies into drug-resistance have been affected: unlike Sb(V), 

chlorocresol is toxic in vitro to promastigotes and therefore laboratory-derived Sb(V)-
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resistant Leishmania strains may actually be resistant to the preservative rather than the 

drug (Ephros et al, 1997). Accordingly, whether chlorocresol was present in Sb(V) 

preparations has been considered where possible when reviewing literature on antimonials.

1.4.1 Synthesis and structures

Both formulations of the pentavalent antimonials are synthesised with chelating agents 

which improve the solubility of the drugs. SSG is produced by reacting pentavalent 

antimony with gluconic acid. The result is a complex mixture of antimonial and 

carbohydrate species ranging in size and structure (Berman and Grogl, 1988). The mixture 
is assayed for its pentavalent antimony content and the drug is prepared using a standard 

amount. There has been some debate over whether the quality of each batch remains 

constant (Jackson et al, 1990) but fractionation of SSG by ion-exchange chromatography 

revealed that each fraction had similar activity against L. panamensis amastigotes. The 

antileishmanial activity of the drug is, however, probably due to several compounds in the 

preparation (Roberts and Rainey, 1993). Despite this, the main component of the 

polymeric structure has been proposed (figure 1.3A). The second antileishmanial form of 

pentavalent antimony is MGA, which is made by reacting pentavalent antimony with N- 

methyl-D-glucamine. Analysis of the drug revealed that it is composed of a number of 

compounds, although a major component was identified that had a molecular mass of 507 

atomic mass units, the structure of which was proposed by the authors (figure 1.3B) 

(Roberts et al, 1998). Despite the differing structures of the drugs and reports of 

Pentostam being used to treat Glucantime-resistant cases of leishmaniasis (Moreira et al, 

1992), few differences have been reported in their efficacy and treatment outcomes are 

similar.

1.4.2 Uptake of antimonials

How Sb(V) enters Leishmania is not well characterised. Studies using radioactive sodium 

stibogluconate showed that amastigotes accumulate the drug more quickly and to a higher 

concentration than either promastigotes or macrophages (Berman et al, 1987). The authors 

suggest that uptake of the compound could be due to non-enzyme mediated diffusion of the 

drug across the membrane due to macromolecule binding within the parasite. The 

observation that amastigotes accumulate approximately three times the amount of Sb(V) 

than promastigotes and macrophages could account for both the parasite- and stage- 

specificity of the drug. Using a more recently developed technique known as inductive 

coupled plasma mass spectrometry, similar results were obtained in L. tarentolae, L
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infantum and L. donovani’. amastigotes accumulated several times the amount of Sb(V) 

than promastigotes (Brochu et al, 2003). It was also observed in both studies that there 

was no competition between Sb(III) and Sb(V) for entry into the parasites, indicating that 

the drugs enter the cells by different mechanisms.

The uptake mechanism of Sb(V) has not been elucidated in other organisms (Tamas and 

Wysocki, 2001) although limited research has been carried out on pentavalent arsenicals. 

As(V) has a similar structure to inorganic phosphate and accordingly, they enter bacterial 

cells via the same transporters. In Escherichia coU, this is an ABC type ATPase complex 

formed by four separate proteins (reviewed in Gatti et al, 2000). Mutated phosphate 

transporters have been linked to increased arsenate tolerance in E. coli (Willsky and 

Malamy, 1980). In addition, in human cell lines, arsenate uptake is inhibited by phosphate 

(Huang and Lee 1996).

An aquaglycerolporin (AQPl) has been recently identified in Leishmania which mediates 

the uptake of Sb(III) (Gourbal et al, 2004). When AQPl was over-expressed in 

Leishmania species, the parasites became hypersensitive to Sb(III) and expression of the 

protein in resistant isolates induced sensitivity. Interestingly, over-expression of AQPl in a 
Sb(V)-resistant strain of L  donovani conferred sensitivity to Sb(V) as well as Sb(III), 

implying that reduction of the pentavalent drug to Sb(III) occurs, at least partially, in the 

macrophage (Gourbal et al, 2004). The expression of AQPl was also found to be 

decreased in Sb(V) resistant field isolates (Decuypere et al, 2005). AQPl is a member of 

the family of aquaporins -  channels which small, neutral solutes such as glycerol can pass 

through -  and similar proteins have been found in other organisms: Fpslp in S, cerevisiae 

(Wysocki et al, 2001) and GlpF in E. coli (Sanders et al, 1997) mediate Sb(III) uptake.
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Figure 1.3: Structures of pentavalent antimonial drugs used to treat leishmaniasis. A,
sodium stibogluconate. Image redrawn from previously reported image Croft etal., 2006. B, 
meglumine antimoniate. Image redrawn from previously published image Roberts et ai, 1998.
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1.4.3 Antimonial metabolism

1.4.3.1 Reduction of pentavalent antimonials

Although antimonials are administered in a pentavalent form, it is hypothesised that the 

drugs are reduced to a trivalent form, which is more toxic to Leishmania (Roberts et ah, 

1995; Sereno and Lemesre, 1997). It is not known why reduction occurs, although in other 

organisms it is the first stage in the detoxification of metalloid compounds: this will be 

discussed in section 1.4.5. Since the extra-cellular promastigote life-cycle stage of the 

parasite is not susceptible to Sb(V), two hypotheses have arisen: that reduction takes place 

in the host cell and that therefore only amastigotes are exposed to the toxic trivalent form 

(Sereno et al, 1998) or that reduction to the trivalent form is performed by the amastigotes 

parasites themselves in a stage-specific manner (Shaked-Mishan et al, 2001). Supporters 

of the concept that reduction is performed by the host point to the fact that mammalian 

Leishmania hosts are indeed able to reduce Sb(V): when pentavalent drugs were 

administered, Sb(III) was detected in both hamsters (Lugo de Yarbuh et al, 1994) and 

humans (Goodwin and Page, 1943). It was recently shown that over-expression of a Sb(III) 

transporter (AQPl) in Leishmania conferred sensitivity of the parasites to Sb(V) when 

incubated in macrophages (Gourbal et al, 2004). This suggests that at least a proportion of 

the pentavalent drug is metabolised to Sb(III) by the macrophage and that the subsequent 

uptake of the trivalent form accounts for the increased susceptibility to the drug. However, 

further investigation is required to show that that is indeed the case; in one recently 

published study Sb(V), unlike Sb(III), was not found to be toxic to macrophages and hence 

it was concluded that they are unable to mediate reduction of the drug (Wyllie and 

Fairlamb 2006). It has been shown that unlike intracellular amastigotes, axenically cultured 

Z. infantum amastigotes were not susceptible to Sb(V), suggesting that macrophages 

mediated Sb(V) reduction (Sereno et al, 1998). However, this observation has been 

challenged as several groups have shown that both L. mexicana and L. donovani axenic 

amastigotes are indeed sensitive to Sb(V) (Coombs et al, 1983; Callahan et al, 1997; 

Ephros et al, 1999; Goyard et al, 2003). Furthermore, it was recently found that the effect 

of Sb(III) on L. donovani promastigotes -  the simultaneous efflux of glutathione and 

trypanothione and the accumulation of oxidised thiols due to inhibition of trypanothione 

reductase -  was the same as the effect of Sb(V) on Z. donovani axenic amastigotes (Wyllie 

et al, 2004). These data imply that the macrophage is not required for the antileishmanial 

activity of Sb(V) and that therefore the parasites themselves can, at least in part, reduce the 

drugs. Compellingly, it has also been shown that Z. donovani parasites are indeed able to 

reduce antimonials and that amastigotes reduce Sb(V) to Sb(III) to a much greater degree
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greater degree than promastigotes (Shaked-Mishan et al, 2001). Furthermore, the reducing 

activity correlated with Sb(V) sensitivity as laboratory-derived, Sb(V)-resistant L, 

donovani amastigotes were unable to reduce the pentavalent compound.

The mechanism of Sb(V) reduction has not been fully elucidated. It is possible that the 

reaction is enzymatically controlled (Shaked-Mishan et al, 2001) but it has recently been 

shown that the reduction of pentavalent antimony can occur spontaneously in vitro upon 

reaction witli various thiols including glutathione, trypanothione and cysteine (Frezard et 
al, 2001; Ferreira Cdos et al, 2003; Yan et al, 2003a; Yan et al, 2003b). An acidic 

environment was required for these non-enzymatic reactions to occur, similar to that of the 

parasitophorous vacuoles which Leishmania amastigotes reside in in vivo. It is therefore 

possible that any reduction of Sb(V) that does occur in the macrophage is mediated non- 

enzymatically in this way. It was observed that the rate of Sb(V) reduction was greater 

upon reaction with the parasite-specific thiol trypanothione than with the ubiquitous 
glutathione (Ferreira Cdos et al, 2003) and, in theory, this could account for the greater 

toxicity of Sb(V) towards the parasites than the host cell. However it does not explain the 

stage-specificity of the drug as the levels of both trypanothione and glutathione are higher 

in promastigotes than in Sb(V)-sensitive amastigotes (Ariyanayagam and Fairlamb, 2001). 

It is also doubtful whether such reactions could proceed in the neutral intracellular parasite 

environment. Accordingly, enzymes that may have the ability to mediate the reduction of 

Sb(V) are discussed in the following section.

1.4.3.2 Arsenate reductases

Several enzymes capable of reducing arsenate have been characterised fi-om various 

prokaryotic and eukaryotic species. The number of categories of proteins known to 

mediate this reaction has doubled fi-om three to six in recent years, reflecting the relative 

lack of knowledge in the area, particularly in higher eukaryotic metalloid metabolism. It is 

possible that some or all of these enzymes are also able to reduce pentavalent antimonials 

although there are no reports of this activity being sought. Here, enzymes currently known 

to reduce arsenate -  which can therefore be thought of as potential Sb(V) reductases -  are 
described. The proteins are summarised in table 1.2,
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Enzyme Name Organisms found in In vivo evidence of 
role in arsenate 
metabolism?

ArsC (R773 plasmid) The gram-negative bacteria E. coli Yes
ArsC (pl258 plasmid) The gram-positive bacteria Suhtilis 

aureus and Bacillus subtilis.
Yes

Acr2p Yeast and plants: Saccharomyces 
cerevisiae, Arahidopsis thaliana, Pteris 
vittata.

Yes

Purine Nucleoside 
Phosphorylase (PNP)

Ubiquitous, but As(V) reducing activity 
characterised in mammalian enzymes 
(human, rat, calf, mouse, rabbit, 
hamster, guinea pig).

No

glyceraldehyde-3 - 
phosphate 
dehydrogenase 
(GAPDH)

Ubiquitous, but As(V) reducing activity 
characterised in mammalian enzymes 
(human and rat).

No

Omega GST (oGST) Variety of organisms including human, 
pig, S. mansoni, S. cerevisiae and 
Drosophila melanogaster. As(V) 
reducing activity found in human and S. 
cerevisiae enzymes.

No

Table 1.2: Arsenate reductases. All enzymes known to possess arsenate reductase activity, in 
vivo and in vitro (as indicated), are listed. Bacterial enzymes are in purple, the yeast and plant 
Acr2p is shown in blue, and mammalian enzymes are in red.

There are three main classes of microbial arsenate reductases known to exist which, 

although they perform the same function, are completely different enzymes 

(Mukhopadhyay and Rosen, 2002). The first of these, ArsC, is encoded for on the R773 

plasmid of E. coli and by part of the ars operon. The entire operon confers resistance to 

Sb(IIl) when over-expressed (Carlin et al, 1995), suggesting both compounds can be used 

as substrates by the encoded proteins. Unfortunately the authors did not assay 

susceptibility to Sb(V) so whether ArsC can reduce pentavalent antimonial compounds is 

unknown. ArsC uses reduced glutathione (GSH) to convert arsenate to arsenite via the 

following reaction:

H3ASO4 + 2GSH -► H3ASO3 + GS-SG + 2 H2O.

ArsC becomes oxidised when it catalyses the reaction and is reduced by E. coli 

glutaredoxin 2 (Shi et al, 1999). In turn, the oxidised glutaredoxin 2 is reduced by GSH 

which is converted to GSSG which in turn is reduced by glutathione reductase, with 

NADPH serving as the source of reducing potential (Liu and Rosen, 1997). The crystal 

structure of the complex has been elucidated and shows that the arsenate binds to the anion
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site of ArsC, which is made up of Arg60, Arg94, Argl07, and then forms a covalent 

arsenate thioester with Cysl2. After being reduced by glutathione and glutaredoxin, the 

Cysl2-S-arsenite intermediate hydrolyses and the arsenite is released (Martin et al, 2001). 

ArsC has low structural similarity to glutaredoxin and glutathione S-transferase.

Confusingly, the second class of arsenate reductases is also called ArsC, despite being 

unrelated to the type of enzymes described above. Found in several prokaryotic species, 

the protein is best characterised in Staphylococcus aureus and Bacillus subtilis and the 

crystal structures have been solved (Bennett et al, 2001; Zegers et al, 2001). Like ArsC 

arsenate reductase from E. coli, S. aureus ArsC is part of an operon encoded for on a 

plasmid, called pI258. The reaction is dependant on thioredoxin and thioredoxin reductase 

(as opposed to the former class which relies on glutaredoxin and glutaredoxin reductase)

(Ji and Silver, 1992; Ji et al, 1994). The catalysis is proposed to begin with Cys82 

attacking CyslO and forming a disulphide bond. CyslO donates its electron pair to the 

arsenate, which reduces it to arsenite. Cys89 attacks Cys82 to form a disulphide and 

regeneration of the CyslO thiolate occurs. Finally, ArsC is restored by thioredoxin and 

resumes its conformation. Similar mechanisms are present in the S. aureus and B. Subtilis 
proteins (Bennett et al, 2001; Zegers et al, 2001). As well as reducing arsenate, the pI258 

and the B. subtilis protein also function as tyrosine phosphatases and the crystal structures 

revealed that they have structural similarity to low molecular weight tyrosine phosphatases. 

The first step in the catalysis of arsenate reduction is analogous to that of tyrosine 

dephosphorylation (Bennett et al, 2001; Zegers et al, 2001).

The first eukaryotic arsenate reductase, Acr2p, was found in the yeast Saccharomyces 

cerevisiae almost a decade ago (Bobrowicz et al, 1997; Mukhopadliyay and Rosen, 1998). 

More recently, a similar enzyme has been identified in plants and A. thaliana Acr2p gene 

knockouts lacked the ability to reduce arsenate and accumulated the pentavalent metalloid 

(Duan et al, 2005; Dhankher et al, 2006). The & cerevisiae enzyme has been 

characterised (Mukhopadhyay et al, 2000; Mukhopadhyay and Rosen, 2001) although not 

to the extent of the previous two classes of prokaryotic arsenate reductases. Despite the 

fact it is not related to either of these two classes, Acr2p is related to protein tyrosine 

phosphatases albeit from a different class than that of the pI258 ArsC-related low 

molecular weight tyrosine phosphatases. One phosphatase of this class is CDC25a, which 

is involved in the human cell cycle and contains the HC(X)sR motif in its active site that is 

also present in the S. cerevisiae Acr2p. When the Acr2p site is mutated, the enzyme no 

longer has arsenate reductase activity in vitro (Mukhopadhyay and Rosen, 2001) 

suggesting they are likely to have common active sites. Conversely, Acr2p does not have
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tyrosine phosphatase activity and lacks the phosphate binding GXGXXG motif of 

CDC25a. However, when this site is introduced by the addition of glycines into Acr2p, the 

enzyme gains this activity (Mukhopadhyay et al, 2003). It is hypothesised that this class of 

arsenate reductase evolved from protein-tyrosine phosphatases. Like E. coli R773 ArsC, 

the enzyme activity is glutaredoxin- and glutathione reductase-dependant (Mukhopadhyay 

et al, 2 0 0 0 ).

Until recently, the identity of an enzyme responsible for the reduction of arsenate in higher 

eukaryotes has remained elusive. Although the mechanism is still largely unknown, the 

activity has recently been attributed to purine nucleoside phosphorylase (PNP), an enzyme 

that normally uses phosphate to cleave purine nucleosides (inosine or guanosine) into bases 

(hypoxanthine or guanine) and ribose-1 -phosphate. In the presence of inosine and the 

endogenous ditliiol, dihydrolipoic acid (DHLP), or a synthetic equivalent such as 

dithiothreitol (DTT), calf spleen PNP was shown to reduce arsenate (Radabaugh et al, 

2002). The work was supported by observations that specific PNP inhibitors also inhibit 

rat liver cytosolic arsenate reductase activity, as do phosphate, the natural substrate of the 

enzyme, and guanine and hypoxanthine, the natural products of PNP which promote the 

reverse reaction (Gregus and Nemeti, 2002). Despite encouraging results showing that the 

rate of arsenate reduction in erythrocytes could be stimulated by the addition of exogenous 

DTT and inosine or guanosine, inhibition of PNP in both erythrocytes and rats with 

blocked excretory routes (to prevent clearance of the compounds) did not alter the base rate 

of arsenate reductase activity or the relative As(V) and As(III) levels (Nemeti et al, 2003). 

This suggests that an alternative mammalian enzyme may be responsible for reducing 
arsenate in vivo.

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is the second mammalian enzyme 

purported to have a role in arsenate reduction (Gregus and Nemeti, 2005). Clearly the 

primary function of this enzyme is not to reduce metalloids: GAPDH catalyses the 

oxidative phosphorylation of D-glyceraldehyde-3-phosphate to 1,3-diphosphoglycerate 

which is a step in the glycolysis pathway. However, purified GAPDH reduced As(V) in the 

presence of GSH and NAD. Koningic acid (KA), a specific inhibitor of GAPDH, abolished 

arsenate reductase activity in erythrocytes (Gregus and Nemeti 2005). Furthermore, 

administration of (S)-alpha-cholorhydrin (ACH), which forms a GAPDH inhibitory 

metabolite, resulted in a significant reduction in arsenate reductase activity in rat liver 

(Nemeti et al, 2005). However KA failed to prevent arsenate reduction in rat liver 

cytosolic extracts and rats treated with ACH were capable of reducing arsenate despite the 

effect observed in the liver. These experiments were carried out with PNP inhibitors also
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present: the fact that arsenate reduction still occurs when both GAPDH and PNP are 

inhibited indicates that another protein is capable of mediating the reaction. Further 

analysis is clearly required to determine whether the two enzymes do have an in vivo role 
in mammalian arsenate reduction.

The sixth type of arsenate reductase, omega glutathione S-transferase (oGST), was first 

characterised as a methylated arsenical reductase (see section 1.4.3.3), Recently it has been 

reported that the protein is also able to reduce inorganic arsenate in vitro (Aposhian et al,

2004) although the details of this have not yet been published. Human oGST was the first 

to be characterised (Board et aL, 2000) and oGSTs fi*om a range of organisms including 

pig (Rouimi et al, 2001), Drosophila melanogaster (Kim et al, 2006) Schistosoma 

mansoni (Girardini et al, 2002), and S. cerevisiae (Garcera et al, 2006) have since been 

studied. The oGSTs have a molecular mass of around 27.5 kD and have 20 residue N- 

terminal extensions not present in other classes of GSTs. They are highly expressed in 

human liver, macrophage, glial and endocrine cells and were found to be localised in the 

nucleus (Yin et al, 2001). However, the pig oGST is reportedly cytosolic (Rouimi et al, 

2001). In S. mansoni, the protein was detected in all life cycle stages but expression was 

highest in the sporocysts (the parasitic stage of the intermediate host) and adult worms 

(parasitic stage in human) (Girardini et al, 2002), All of the known oGSTs share an active 

site motif of C-P-Y/F-A/V/S which resembles those of the monothiol glutaredoxins; 

moreover, oGST shares structural similarity with E. coli glutaredoxin 2 (Xia et al, 2001). 
Despite being classed as a GST, the in vitro activities of all oGSTs characterised so far 

correlate more closely with glutaredoxins: the proteins exhibit non-detectable or very low 

GSH and l-chIoro-2,4-dinitrobenzene (CDNB) conjugating activity -  the standard GST 

activity -  and liigher thioltransferase and dehydroascorbate activities -  characteristic of 

glutaredoxins (Board et al, 2000; Rouimi et al, 2001; Garcera et al, 2006). However, a 

second human oGST displays high GSH and CDNB conjugating activity (Wang et al,
2005), The role of oGST in metalloid reduction in vivo has not been unequivocally 

demonstrated, although naturally-occurring polymorphisms in oGSThsiVC been linked to 

arsenic-susceptibility in mammals (Schmuck et al, 2005) and alterations in excreted 
arsenical profiles in humans (Mamell et al, 2003).

1.4.3.3 Biomethylation

As described, the reduction of pentavalent arsenicals and antimonials creates more toxic 

trivalent forms of the metalloids. However, further metabolism of these compounds is 

possible and the in vivo transformation of arsenicals and antimonials from inorganic to
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organic molecules via the addition of methyl groups (biomethylation) is well documented. 
The biomethylation pathway involves alternating reduction and oxidative méthylation of 

arsenate (figure 1.4). A mammalian enzyme originally known as Cytl9 but more recently 

referred to as AS3MT is responsible for the methyltransferase activity (Lin et al, 2002; 

Wood et al, 2006). Although the recombinant protein is not thought to directly reduce 

pentavalent, methylated arsenicals, the reduction step was performed when either 

exogenous (DTT or tris(2-carboxyethyl)phosphine hydrochloride (TCEP)) or endogenous 

(thioredoxin, thioredoxin reductase and NADPH) reductants were present (Thomas et al, 
2004). However, at least one enzyme is capable of mediating reduction of the methylated 

arsenicals: oGST displays this activity in vitro (Zakharyan et al, 2001), along with the 

pentavalent inorganic arsenate reductase activity described in section 1.4.3.2.
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Figure 1.4: Putative pathway of biotransformation of inorganic arsenate. 1, arsenate 
reductase (ArsC (R773), ArsC (P1258), Acr2p, PNP, GAPDH, oGST); 2, arsenite methyltransferase 
(AS3MT); 3, MMA(V) reductase (oGST) 4, MMA(V) transferase. GSH, glutathione; SAM, S- 
adenosylmethionine; SAHC, S-adenosylhomocysteine. Figure redrawn from previously published 
image Zakharyan et a!., 2001.

Although many studies of biomethylation have addressed the méthylation of arsenicals in 

mammalian systems (Zakharyan et al, 1999), a similar process is known to occur in 

various microbes with antimonial species (reviewed in Bentley and Chasteen, 2002). 

However, whether the mechanism is similar for antimonials and arsenicals and if similar
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enzymes mediate the process is unknown. The purpose of the biomethylation pathway is 

not clear. Originally thought to be a detoxification pathway, this hypothesis has been 

discredited due to the greater toxicity of methylated, trivalent species than inorganic 

arsenite (reviewed in Thomas et al, 2001). The effects of methylated arsenicals include the 

inhibition of thioredoxin and glutathione reductase (Styblo et al, 1997; Lin et al, 1999), 

genotoxicity (Mass et al, 2001) and cytotoxicity (Petrick et al, 2000; Styblo et al, 2000).

The occurrence of biomethylation of antimonials may be important when investigating 

how antimonial drugs are metabolised by Leishmania. It is not known whether the 

parasites are capable of performing these reactions, or whether after reduction of the drug 

to the trivalent form no further metabolism takes place. However, the new data emerging 

concerning the toxicology of biomethylated intermediates and products suggests that if 

Leishmania can biomethylate antimonials, there could be important implications for how 
the drugs are lethal to the parasites.

1.4.3.4 Trivalent metalloid oxidation

Several species of bacteria capable of oxidising As(III) to As(V) -  effectively the reverse 

reaction to that mediated by the arsenate reductases -  have been identified including 

Alcaligenes faecalis (Philips and Taylor 1976), Thermus aquaticus (Gihring et al, 2001) 

and Agrobacterium tumefaciens (Kashyap et al, 2006). Two enzymes which mediate 

oxidation of the metalloid are the aoxA and aoxB proteins originally found in Alcaligenes 

faecalis (Anderson et al, 1992). The characteristics of these proteins, together with 

bacteria and archea which possess genes likely to encode similar enzymes, are reviewed in 

Silver and Phung, 2005. The two genes, which are part of a larger “arsenic detoxification” 

operon, encode a large subunit which contains a molybdenum-binding site and a smaller 

iron-sulphur subunit which contains a Rieske domain. Expression of the operon, which 

contains elements thought to regulate transcription of the encoded proteins, is upregulated 

m response to exposure to As(III) (Kashyap et al, 2006). When the sequence of either of 

the genes that encode aoxA or aoxB was disrupted in Cenibacterium arsenoxidans, the 

arsenite oxidase activity usually displayed by the bacteria was abolished (Muller et al, 

2003a). Reports of bacteria able to oxidise Sb(III) also exist (Lialikova 1974), although 

whether the proteins that mediate arsenate oxidation can also oxidise Sb(III) is unknown.

It was recently reported that As(III) could be oxidised to As(V) non-enzymatically upon 

reaction with hydrogen peroxide (H2O2) (Aposhian et al, 2003) and this has now also been 

shown to occur with Sb(III) (Quentel et al, 2004). It has been postulated that arsenite
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could be metabolised in such a way in vivo (Aposhian et al, 2003) although this may not 

be the case as an alkaline environment was required (Quentel et al, 2004). It is unknown 

whether non-enzymatic oxidation of trivalent metalloids can occur in vivo or whether 

enzymatic oxidation takes place in eukaryotic species. If either of these mechanisms are 

found to persist it would radically alter the field of metalloid metabolism in eukaryotes, 

which has so far been perceived as unidirectional (figure 1.4).

1.4.3.5 Arsenate metabolising-like enzymes in the trypanosomatids

Of all the different enzymes known to mediate metalloid metabolism in different 

organisms, homologues of only two -  Acr2p and oGST -  have been characterised in 

trypanosomatids: Leishmania Acr2p and the oGST-like Tc52 of 7! cruzi. In addition, an 

oGST-like enzyme, TDRl, has been identified in Leishmania, the characterisation of 

which is described in this thesis.

Leishmania major Acr2p (LmACR2) has only recently been described (Zhou et al, 2004). 

The purified protein was found to reduce both As(V) and Sb(V) to trivalent species in 

vitro. It was observed that the enzyme has a low specific activity when used in conjunction 

with glutaredoxin (required to keep LmACR2 reduced) and this observation has lead to its 

physiological relevance being questioned (Croft et al, 2006). However, Zhou et al, 2004 

propose that this may be due to tryparedoxin, a parasite-specific equivalent of 
glutaredoxin, being the enzyme that reduces LmACR2 in vivo. When the L. major gene 

was expressed in As(V)-sensitive E. coli, arsenate resistance was conferred. This was 

thought to be due to the fact that reduction is necessary for the detoxification of metalloids 

in bacteria. Moreover, when LmACR2 was over-expressed in L. infantum the transgenic 

parasites displayed slightly increased sensitivity to sodium stibogluconate. The existence 

of LmACR2 was reported during the investigation reported in tins thesis: its relevance is 
further discussed in chapter two.

The T, cruzi protein Tc52 (so called because of the species it is found in and its size, 52 

kD) is the only protein characterised from a trypanosomatid that shares significant amino 

acid identity with any GST (Schoneck et al, 1994) and is most similar to the omega GSTs. 

However, the protein has not been investigated in relation to metalloid susceptibility and so 

whether it shares the arsenate-reducing in vitro activity of oGST is unknown. Like oGST, 

Tc52 reportedly has no CDNB conjugating activity (Montiez et al„ 1995), but does 

possess dehydroascorbate reductase and thioltransferase activities which are characteristic 

of glutaredoxins (Montiez et al, 1997). These activities were strictly dependant on GSH
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and Tc52 was unable to use the parasite-specific thiol trypanothione (T(SH)2) as a 

hydrogen donor. In addition, Tc52 was found to enzymatically reduce oxidised GSH -  

glutathione disulphide (GSSG) -  using T(SH) 2  as the source of reducing potential 

(Schoneck et al, 1994; Montiez et al, 1995; Montiez et al, 1997). Trypanosomatids do 

not possess the glutathione reductase enzyme which reduces GSSG in other systems, and 

instead contain trypanothione reductase which regenerates oxidised T(SH)2 . Despite the 

similarities in activities between the two proteins, Tc52 is approximately 52 kD in size: 

double the size of omega GST. Analysis of the sequence showed that Tc52 consists of two 

similar halves which may have arisen fi-om a gene duplication event (Schoneck et al,
1994), and which both share sequence identity with oGSTs. However, the active site motifs 

in the N- and C- terminal halves of Tc52 are thought to be CPFC and SPFS, both of which 

differ from the equivalent oGST motifs (section 1.4.3.2). However, the C-terminal active 

site sequence was CPFS in T. marinkellei, a South American zoonotic parasite closely 

related to T. cruzi (Oury et al, 2005); this motif is more similar to that of oGST.

Tc52 is most highly expressed in the epimastigote and amastigote life cycle stages and has 

been localised to cytoplasmic organelles at the posterior end of the parasites, thought to be 

reservosomes (Ouaissi et al, 1995b). However, the protein has also been shown to be 

released into the culture media when the parasites are growing (Schoneck et al, 1994) and 

microscopic analysis of T. crwzz-infected heart sections showed that Tc52 localised to the 

parasite surface and aggregated in the host cell (Garzon et al, 2003). Secretion of Tc52 

from parasites correlates with another observed function of the protein: modulation of the 

host immune response. Tc52 has been shown to induce various immune responses 

including the inhibition of T-cell proliferation in which a C-terminal region is thought to be 

responsible (Borges et al, 2003), activation of macrophages characterised by increased 

expression of nitric oxide synthase and various chemokines (Fernandez-Gomez et al,

1998) and dendritic cell maturation and chemokine expression upon binding to these cells 

(Ouaissi et al, 2002). The immuno-regulatory role of Tc52 has also led to the protein 

being proposed as a vaccine candidate: immunised mice infected with T. cruzi parasites 

had significantly reduced mortality and parasitemia compared to non-immunised mice 
(Ouaissi et al, 2002).

Allaoui et al, 1999 attempted to create T. cruzi Tc52 null mutant parasites, although, 

because it proved impossible to knock out both alleles of the gene, the protein is thought to 

be essential. Parasites with only one copy of Tc52 remaining and a corresponding reduced 

level of Tc52, exhibited an impaired ability to undergo metacyclogenesis (Allaoui et al,

1999). Moreover, the intracellular trypomastigote forms did not proliferate as well as wild
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type parasites when incubated in macrophages. This effect was also apparent in vivo: 

parasitemia was lower in mice infected with the Tc52 single-copy parasites than with wild 

type parasites (Garzon et al, 2003). However, this observation has not yet been correlated 

with altered changes in the immune response of the host.

1.4.4 Modes of actions of antimonials

Although antimonials have been used for more than six decades to treat leishmaniasis, the 

mechanism of how they are toxic to cells remains unclear. Because toxicity of the drugs is 

thought to be mediated by reduction from the pentavalent to the trivalent from, it may be 

usefid to consider the effect of both forms of the drug on the parasite and accordingly both 

are discussed here.

L. infantum amastigotes exposed to the trivalent antimonial potassium antimonial tartrate 

(KAT) undergo a series of cellular changes including DNA fragmentation that result in 

apoptosis (Sereno et al, 2001) although the events that precede this remained ambiguous. 

Recently it was reported that treatment of intracellular L. donovani amastigotes with KAT 

resulted in parasite death characterised by DNA fragmentation and extrusion of 

phosphatidylserine (Sudhandiran and Shaha, 2003). High levels of reactive oxygen species 

(ROS) were produced before cell death but in the presence of an antioxidant, levels of ROS 

decreased and parasite survival increased. Following ROS production, a reduced parasite 

mitochondrial membrane potential and an elevated Ca^  ̂level was also observed, which did 

not occur when the cells were treated with an antioxidant alongside KAT. Flufenamic acid, 

a non-selective cation channel blocker, also inhibited these effects. Together, these results 

imply that oxidative stress caused by treatment with KAT causes Ca^  ̂influx through non- 

selective cation channels, and that this directly or indirectly leads to apoptosis 
(Sudhandiran and Shaha, 2003).

An additional observation regarding the activity of antimony is that Sb(V) (MGA and 

SSG) is capable of stabilising DNA-protein complexes in Leishmania promastigotes 

(Lucumi et al, 1998) and inhibits the relaxation of supercoiled DNA (Chakraborty and 

Majumder, 1988). These observations are associated with the inhibition of the enzyme 

topoisomerase I which is involved in breaking and rejoining DNA. Furthermore, much 

higher concentrations of meglumine antimoniate were required to induce the stabilisation 

of DNA-protein complexes in Sb(V)-resistant L. (viannia) panamensis parasites than in 

wild type parasites (Lucumi et al, 1998). However, whether Leishmania topoisomerase I is 

indeed an antimonial target is unclear as it was recently shown that Sb(V) but not Sb(III)
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inhibited the enzyme in L  donovani promastigotes (Walker and Saravia, 2004). However, 

given that the Leishmania topoisomerase I was inhibited to a greater extent than the human 

enzyme by Sb(V), the enzyme may yet prove to be a drug target.

Enzymes from other organisms purported to be inhibited by antimonials include protein 

tyrosine phosphatase in murine hemopoietic cells (Pathak and Yi, 2001), unspecified 
glutathione S-transferases in human erythrocytes (Poon and Chu, 2000) and S. mansoni 

phosphofructokinase (Su et al, 1996). In addition, it was shown that at least six proteins 

ranging in size from 14-68 kD were drug targets in L. mexicana amastigotes treated with 

radioactive SSG (Berman and Grogl, 1988). However, the identity of these proteins has not 

been elucidated. Glycolysis has also been proposed as a target of Sb(V) (Berman et al, 

1985) but again, clarification of how this occurs has not been forthcoming.

However, the most convincing evidence for how antimonials exert their effect on 

Leishmania concerns the modulation of the redox environment of the parasite. L. donovani 

trypanothione reductase has been shown to be inhibited in vitro by Sb(III) (Cunningham 

and Fairlamb, 1995). As mentioned, this enzyme regenerates oxidised T(SH)2 , the thiol 

found only in trypanosomatids, and the analogous human enzyme, glutathione reductase, 

was also inhibited. These experiments were performed in vitro and until recently it had not 

been shown whether trivalent antimonials have an effect in these enzymes in vivo.

However, it has recently been shown that Sb(III) effects the redox metabolism of L. 

donovani promastigotes in two distinct ways: treatment with the drug caused the rapid 

efflux of GSH and T(SH) 2  from the parasites, together with the intracellular accumulation 

of oxidised GSH and T(SH) 2  (Wyllie et al, 2004). The latter effect is thought to be due to 

continuing oxidative metabolism in the parasite coupled with inhibition of trypanothione 

reductase in vivo, which, due to the lack of glutathione reductase in parasites, effectively 

reduces both thiols. The observation that Sb(V) induces similar effects in amastigotes but 

not promastigotes adds further credence to the hypothesis that toxicity of Sb(V) is 

dependant upon amastigote-specific reduction of the drug to Sb(III). Interestingly, T(SH)2  

levels have been found to be elevated in As(III)-resistant L. tarentolae promastigotes 

(Mukhopadhyay et al, 1996), although this is thought to contribute to increased removal of 

metalloids from the parasites and will be discussed in section 1.4.5.
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1.4.5 Resistance mechanisms and exclusion of antimonials from 

Leishmania

Sb(III) and As(III) can form adducts with GSH and T(SH)z (Dey et al, 1996; Yan et al, 

2003a) and it is these forms which are thought to be extruded from cells (Dey et al, 1996; 

Legare et al, 2001). How these complexes are formed has not been completely elucidated: 

they can occur spontaneously in vitro (Dey et al, 1996; Yan et al, 2003a) although it has 

also been proposed that glutathione S-transferases (GSTs) may mediate their formation 

(Mukhopadhyay et al, 1996) and GST levels were found to be increased in As(III) 

resistant cells (Lo et al, 1992). Moreover, thiol levels, particularly T(SH)2, were also 

elevated in As(in)-resistant L. tarentolae promastigotes although the increase of T(SH)2  

alone is not sufficient to mediate resistance. Although formation and transport of the thiol 

complexes has not been directly demonstrated for pentavalent metalloids, it is hypothesised 

that this occurs upon reduction of the Sb(V) (Mukhopadhyay et al, 1996). When incubated 

with GSH, Sb(V) inhibited the transport of the trivalent metalloid-thiol adducts suggesting 

that this is indeed the case (Dey et al, 1996). Interestingly, expression of the thiol- 

synthesis genes encoding gamma-glutamylcysteine synthetase and ornithine decarboxylase 

were found to be elevated in Sb(V) resistant field isolates (Decuypere et al, 2005). These 

proteins were also more abundant than in As(III) resistant Leishmania (Grondin et al,

1997; Haimeur et al, 1999), resulting in increased levels of T(SH) 2  (Haimeur et al, 1999).

How the parasite actually eliminates the metalloid-thiol complexes has not been fully 

elucidated and, indeed, whether they are actually pumped out of the cell or sequestered in a 

parasite organelle is also uncertain. Pgpa, an ATP-dependant ABC transporter, has been 

shown to transport As(III) complexed with GSH (Legare et al, 2001). The location of 

Pgpa within the parasite was determined by expressing a GFP-fusion protein in L. 

tarentolae and rather than being plasma membrane bound, the protein was situated in an 

intracellular membrane. This lead to the hypothesis, that Pgpa transports trivalent 

metalloids bound to thiols into parasite vesicles (Legare et al, 2001). The fact that levels 

of Pgpa have been shown to be amplified in several different studies of antimonial- 

resistant Leishmania adds credence to this theory: MGA-resistant field isolates of L  

viannia were found to over-express Pgpa on an extrachromosomal amplicon (Anacleto et 

al, 2003) and Pgpa expression was increased in SSG-resistant L. donovani field isolates 

(Singh, 2006) and in L. infantum amastigotes (El Fadili et al, 2005). Moreover, in this 

latter study, L. panamensis amastigotes engineered to over-express Pgpa exhibited 

increased resistance to Sb(V) when incubated in amastigotes. However, in separate studies 

Pgpa has been show to not be the transporter responsible for transporting trivalent As(III)-
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thiol adducts from Leishmania'. amplification of Pgpa did not correlate with increased 

transport of the complexes (Dey et al, 1994) and membranes purified from a Pgpa 

knockout L. tarentolae strain were able to transport the complexes at the same level as 

those prepared from wild type cells (Dey et al, 1996).

Other transporters that may have a role in eliminating metalloids from Leishmania have 

been identified in other organisms. Acr3p, one of a cluster of three genes (one of which is 

the arsenate reductase Acr2p) found in yeast was found to be a membrane transporter 

involved in arsenite transport (Wysocki et al, 1997). Over-expression of Acr3p resulted in 

S. cerevisiae exhibiting increased tolerance to, and decreased accumulation of, arsenite. 

Accordingly, disruption of the acr3 gene resulted in increased sensitivity to arsenite and an 

increased cellular concentration of the trivalent metal was observed (Wysocki et al, 1997; 

Ghosh et al, 1999). In addition to this, expression of Acr3p is induced by arsenite 

(Wysocki et al, 2004). Another method of trivalent metalloid extrusion from cells was 

identified in E. coli and is via an ATP-dependant efflux pump called ArsAB. The ArsA 

subunit possesses the ATPase activity of the pump and is activated by arsenite or 

antimonite (Hsu and Rosen, 1989). Antimonite binding triggers a conformational change in 

ArsA and increases the activity of the ATPase 100 fold (Walmsley et al, 2001). The ArsB 

subunit is a transmembrane protein that is situated in the imier membrane of E. coli and 

translocates the substrate (Wu et al, 1992). No ArsB homologues are known in eukaryotes 

but S. cerevisiae does encode an ArsA homologue termed YdllOOp. The growth of 

mutants lacking this gene is impeded in the presence of arsenite and antimonite so it has 

been hypothesised that it may have a role in metalloid export (Tamas and Wysocki, 2001).
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Aims of this study

In this chapter it has been described that although pentavalent antimonial compounds have 

been used for decades to treat leishmaniasis, many aspects of how the drugs function are 

unknown. The principal aim of this investigation was to identify and characterise a 

Leishmania enzyme able to reduce pentavalent antimonial compounds and therefore 

mediate toxicity of the drug. Whether such a protein had an in vivo role in antimonial 

susceptibility, and therefore drug-resistance, would be assessed. The following list of 

objectives was set out in order for the aims to be met:

• Use the sequences of known arsenate reductases to search the L. major genome for 

similar genes which may encode an antimonial reductase

• Elucidate the complete open reading frames of any promising sequences

• Clone potential antimonial reductase genes found and produce soluble, active, 

recombinant protein

• Characterise the activities of the recombinant protein and raise antibodies to it

Investigate the in vivo spatial and temporal expression profile of any protein studied 
using the specific antibodies

Create Leishmania parasites that over-express the protein or lack it completely due 

to the corresponding gene being amplified or knocked out, respectively

Use the transgenic parasites to ascertain whether the protein identified has a role in 

susceptibility to pentavalent antimonial drugs and to study the physiological role of 
the protein in the cell

By using these approaches it was hoped that this investigation would yield a greater 

understanding of the Leishmania proteins involved in antimonial metabolism and their role 

in drug sensitivity. The findings are presented in chapters 3-5; chapter 6  contains an 

account of a related yet separate study, the aims of which are described in the introduction 
to the chapter.
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2 Materials and Methods

2.1 Parasites

2.1.1 Leishmania culture

L. major and L. mexicana promastigote cultures were grown and maintained in an identical 

manner. Parasites were cultured in HOMEM medium (GibcoBRL, Paisley) with 10% (v/v) 

heat inactivated foetal calf serum (HIFCS) at 25°C, with air as the gas phase and without 

shaking. L  infantum promastigotes were grown in the same way, except 20% (v/v) HIFCS 

was used and cultures were incubated at 27 °C. Cells were routinely sub-passaged after the 

parasites had existed in stationary growth phase ( ~ 2  x 1 0  ̂cells/ml) for several days, so 

approximately every two weeks. New cultures were inoculated at 10 -̂10  ̂cells/ml 

depending on the intended purpose for the parasites.

L. mexicana amastigotes were also grown axenically according to the method described 

previously (Bates et al, 1992). Parasites extracted from lesions were deposited in 

Schneider’s Drosophila Medium (GibcoBRL, Paisley) (pH altered to 5.5 with HCl) with 

20% (v/v) HIFCS and 30 pg/ml gentamicin and incubated at 32 “C, again with air as the 

gas phase and without shaking. Cultures were routinely sub-passaged approximately once a 

week.

The densities of all cultures were determined by first diluting to approximately 1-2x10^ 

parasites/ml, then counting using an improved Neubauer haemocytometer (Weber 

Scientific, Hamilton, NJ, US).

2-1.2 Preparation of Leishmania from mice

When fresh cultures that had not been previously sub-passaged were required, L  major 

parasites were extracted from mouse footpads several weeks after parasite innoculation. 

Parasites were retrieved by first dissecting and then scraping the inside of the footpad, after 

which the collected material was deposited in a flask containing HOMEM medium with 

10% (v/v) HIFCS and gentamicin (Sigma, Poole, UK) at 30 pg/ml. Fresh cultures were 

then incubated at 25°C as above.

Leishmania major amastigotes purified directly from mouse lesions (Hart et al, 1981) 

were used to determine the expression of proteins in this particular stage of the life cycle.
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Parasites were grown in Balb/c mice and purified by S. Baillie and D. Laughland of the 
University of Glasgow.

2.1.3 Isolation of metacyclic forms of Leishmania major

L  major metacyclic promastigotes were isolated from stationary phase cultures by 

exploiting the fact that procyclic but not metacyclic parasites are agglutinated in the 

presence of peanut agglutinin (da Silva and Sacks, 1987). Cultures of known densities 

were pelleted by centrifugation at 1300 ^  for 10 minutes at 4 °C, washed in PBS and 

centrifuged again. Pellets were resuspended in PBS at a density of 1 x 10̂  cells/ml and 

peanut agglutinin (Vector Laboratories, Burlingame, CA, US) was added to a final 

concentration of 100 pg/ml. After incubation for 30-60 minutes at room temperature the 

metacyclic-containing supernatant was removed and the parasite density was ascertained.

2.1.4 Leishmania harvest and lysis

Parasites were harvested by centrifugation at 1300 g for 10 minutes, washed twice in PBS 

and the resultant pellets were stored at -80 °C until required. Leishmania pellets were 

lysed by resuspending at approximately 1x10^ cells/ml in 1 x GST Bind/Wash Buffer 

(Novagen, Nottingham, UK) comprised of 4.3 mM Na2HP0 4 , 1.47 mM KH2PO4 , 137 mM 

NaCl and 2.7 mM KCl pH 7.3; with the addition of a cocktail of protease inhibitors and 

chelators: 2 mM ethylenediamine tetraacetic acid (EDTA), 10 pM (2»S',35)-3-(A-{(*S)-l-[A- 

(4-guanidinobutyl)carbamoyl]3-methylbutyl} carbamoyl)oxirane-2-carboxylie acid (E-64), 

2 mM 1,10-phenanthroline, 4 pM Pepstatin A and 1 mM phenylmethylsulfonyl fluoride 

(PMSF). The samples were kept on ice and immediately lysed by sonication at 20 pm on a 

cycle of 6  X 10 seconds on, 50 seconds off, using a Soniprep 150 MSE. Successful lysis 

was confirmed by analysing the samples microscopically and the samples were centrifuged 

at 1300 g for 20 minutes at 4 °C. The soluble fraction (supernatant) and the insoluble 

fraction (pellet, resuspended in sample buffer) were stored separately at -20 °C until 

required.

2.1.5 Leishmania mayor cryo-preservatlon

In order to preserve L. major parasite lines for long periods of time -  many years in some 

cases -  it was necessary to make stabilates of the parasites. L. major cultures in the 

stationary phase of growth were mixed in a cryotube vial (Nunc, Roskilde, Denmark) with 

a 1:1 mixture of glycerol and HIFCS in a proportion of 30% mixture and 70% parasites.
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The vials were deposited in an isopropyl alcohol bath at room temperature, which was then 

placed at -70 °C for at least 18 hours before transferring the vials to liquid nitrogen storage 

(-196°C). The isopropyl bath causes a gradual, uniform temperature decrease to occur, 

which improves parasite survival.

2.1.6 Bioassays for feishmanicidai activities

In order to determine L. major parasite viability following treatment with various 

compounds, and to calculate the resultant IC50 values of these compounds, two different 

assays were employed.

The acid phosphatase assay relies on Leishmania acid phosphatases converting the 

substrate j9-nitrophenyl phosphate to ̂ -nitrophenol, which is yellow in colour and can be 

measured using a spectrophotometer at 405 nm (Bodley et al, 1995). The level of acid 

phosphatase activity is directly proportional to the amount of parasites present in the 

sample; therefore the assay can be used to analyse the efficacy of compounds on killing 

Leishmania or inhibiting parasite growth. L. major parasites were prepared with serial 

dilutions of the desired compounds in 96-well microtitre plates at a final density of 10̂  

parasites/ml, with a volume of 200 pl/well. After incubation at 25 °C for 5-6 days, 20 pi of 

j9-nitrophenyl phosphate made up at a concentration of 40 mg/ml in 1 M sodium acetate pH 

5.5 with 1% Triton-XlOO, was added to each well and mixed by aspiration. The microtitre 

plates were subsequently incubated at 37 °C for 1-2 hours, depending on the progress of 

the assay as determined by appearance of the yellow p-nitrophenol. The absorbance of 

each sample at 405 nm as determined by reading the plates using a Titertek Multiskan 

MCC/340 spectrophotometer was used to calculate IC50 values using the Grafit (Erithacus, 

Staines, UK) IC 50 programme.

The Alamar Blue assay was also employed; this assay has the advantage of not interfering 

with the viability of the parasites, is very simple and is also easier to judge visually as the 

colour change involved is more pronounced than that seen in the acid phosphatase assay. 

Metabolically active Leishmania parasites can reduce alamar blue, of which the active 

ingredient is resazurin (O'Brien et al, 2000), to pink resofurin and the extent of reduction 

achieved is proportional to the number of parasites present (Mikus and Steverding 2000). 

Microtitre plates were seeded with Leishmania and the desired compounds as for the acid 

phosphatase assay described above. After incubation at 25 °C for 48 hours, 20 pi of alamar 

blue (Serotec, KidHngton, UK) or 5 mg/ml resazurin (Sigma, Poole, UK) was added to 

each well and mixed by aspiration. The plates were subsequently incubated for a further
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24-72 hours depending on the progress of the assay as determined by the appearance of the 

pink resofurin. The absorbencies of the samples at 550 nm, using a reference wavelength 

of 630 nm, were determined by reading the plates using a spectrophotometer and the IC50S 

were calculated as above.

2.1.7 L  mayor infectivity

Infectivity of L. major lines could be assessed by analysing how well they infected mice. 

One footpad of each mouse, in groups of up to six animals, was inoculated with either 5 x 

10̂  L. major promastigotes in stationary phase, or 10̂  L  major purified metacyclics, 

resuspended in 20 pi PBS. The thickness of each infected footpad, which was taken as a 

direct correlation of parasite burden, was measured on a weekly basis with the help of M. 

Dixon of the University of Glasgow.

Macrophages were also used to investigate the infectivity of X. major. The cells were 

extracted from the peritoneal cavity of CD-I mice by S. Baillie of the University of 

Glasgow and resuspended at a concentration of 5 x 10̂  cells/ml in RPMI medium with 

10% (v/v) HIFCS and 30 pg/ml gentamicin. 200 pi of the cell-suspension was dispensed 

into each well of a chamber slide (VWR, Lutterworth) and incubated at 37 °C in 5% CO2 , 

95% air for 24-48 hours. Thereafter, stationary-phase L. major diluted in RPMI with 10% 

(v/v) HIFCS were added to the macrophages at a ratio of 2:1 or 3:1 and incubated as 

before. After 24 hours the parasite-containing media was removed, the cells were washed 

several times with media and 200 pi of fresh RPMI with 10% (v/v) HIFCS was added to 

each chamber. If drugs were being assessed for their antileishmanial ability, they were 

added to the media at this stage. After incubation for 2-3 days as before, the cells were 

washed and the media was replaced; the slides were incubated for a total of 5 days. The 

media was subsequently removed and the cells were fixed by flooding with methanol 

before being stained with 10% Giemsa stain (Sigma, Poole, UK). The proportion of 

infected cells, and/or the average number of L. major amastigotes infecting each cell, was 

determined microscopically. At least 150 cells from each chamber were analysed.

2.2 Molecular biology techniques

2.2.1 Isolation of genomic DNA from Leishmania

A pellet of 1-2 x 10* Leishmania promastigotes was resuspended in 400 pi of TELT buffer 

(50 niM Tris-HCl pH 8.5, 62.5 mM EDTA, 2.5 M LiCl, 4% (v/v) Triton X-100) (Medina-
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Acosta and Cross 1993). Trypanosomatid DNA is soluble in this solution and this property 

is exploited to separate the DNA from unwanted proteins. After five minutes of incubation 

at room temperature, 400 pi of 1:1 phenol-chloroform (v/v) mixture was added, to give a 

1:1 ratio of parasites in TELT buffer to phenol-chloroform, and the sample was mixed by 

inversion. The sample was then centrifuged at 13000 g for five minutes before the aqueous 

phase was removed and transferred to another microfuge tube. This was then repeated with 

phenol-chloroform being added to give a 1:1 ratio of DNA-containing aqueous phase to 

phenol-chloroform. After mixing and centrifugation as before, the aqueous phase was 

again removed and transferred to a fresh tube and chloroform was added to give a 1 :1  ratio 

of DNA-containing aqueous phase to chloroform. Again, the sample was mixed and 

centrifuged as before, and the aqueous phase was removed and transferred to a fresh tube 

for the DNA to be precipitated.

2.2.2 Ethanol precipitation of DNA

Despite commercial kits being used routinely to purify and concentrate DNA, for some 

procedures ethanol precipitations were also carried out. The volume of the initial sample 

was determined and 0.1 of the volume of 3 M sodium acetate pH 5.2 was added. The 

sample was thoroughly mixed and two volumes of ice-cold ethanol were added. Again the 

samples were well mixed by inversion and incubated at -20°C for at least 15 minutes. The 

sample was then centrifuged at 13000 g for 15 minutes at 4 °C and the supernatant 

discarded. If the DNA was required for in vivo purposes, all subsequent steps were 

performed under sterile conditions. The DNA pellet was washed twice with 70% (v/v) 

ethanol; after each wash the sample was centrifuged and the supernatant discarded as 

before. Finally, after the pellet had been air-dried until no liquid was visible, the DNA was 

resuspended in the desired volume of TE buffer (10 mM Tris-HCl pH 8 , 1 mM EDTA) and 

stored at 4 °C.

2.2.3 Isolation of RNA from Leishmania

A  pellet of 1-2 X 10̂  promastigotes was resuspended in 1 ml of TRlzol® reagent 

(GibcoBRL, Paisley) and incubated at room temperature for five minutes. 200 pi of 

chloroform was added and the suspension was vigorously mixed before being incubated at 

room temperature for three minutes and then centrifuged at 12000 g for 15 minutes at 4 “C. 

The aqueous phase was then removed and transferred into a fresh microfuge tube into 

which 500 pi of isopropanol was added before mixing, and incubation at room temperature 

for 10 minutes. The sample was centrifuged at 12000 for 10 minutes at 4 °C and the
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supernatant was discarded leaving the RNA pellet intact. The pellet was washed twice with 

1 ml of 70% (v/v) ethanol; after each wash the sample was centrifuged for five minutes at 

12000 g  and the liquid discarded. The pellet was air-dried and, when no liquid remained, 

resuspended in 50 pi of double distilled water (ddHiO) which had been treated with 0.01% 

(v/v) diethylpyrocarbonate (DEPC) in order to remove any trace of RNAse activity.

2.2.4 Rapid amplification of cDNA ends (RACE)

Due to the L major genome not having been fully sequenced and, as a result, the database 

(www.genedb.org) being incomplete when this project commenced, it was necessary to 
perform 5’ RACE on the putative TDRl sequence in order to elucidate the entire gene. 5’ 

RACE was also attempted on putative genes designated LM16 and LM34 which were also 

thought to be sequences of interest.

Gene-specific cDNA was synthesised using reagents and according to the protocol from 

the kit ‘5’ RACE System for Rapid Amplification of cDNA Ends, Version2.0’ (Invitrogen, 

Paisley, UK). Briefly, (using the gene-specific primers OGSTl for TDRl, LM16 GSPl for 

LM16 and LM34 GSPl for LM34) cDNA was transcribed from total X. major RNA with 

SUPERscript II reverse transcriptase. After RNAse treatment to eliminate the RNA, the 

cDNA was purified using a Glassmax DNA Isolation Spin Cartridge. In Leishmania, 

almost all mRNAs have an identical 18 nucleotides known as the splice leader sequence 

spliced onto the 5’ end. Polymerase Chain Reaction (PCR) was performed to amplify the 

5 ’ end of the putative genes using a primer complementary to the splice leader sequence 

(SL primer) and second gene-specific primers (0GST2 for TDRl, LM16 GSP2 for LM16 

and LM34 GSP2 for LM34). For TDRl, the product of this reaction was used as a template 

in a second, semi-nested PCR using the SL primer and a third gene-specific primer, 

OGST3.

For the putative gene LM34 there was no STOP codon in the partial sequence so 3’ RACE 

was performed to elucidate the C-terminal of the gene. Total cDNA was synthesised from 

RNA, and the 3’ RACE procedure was executed using the kit ‘3’ RACE system for rapid 

amplification of cDNA ends’ (Invitrogen, Paisley, UK), according to the manufacturer’s 

instructions. Briefly, X. major RNA was incubated with AP primer (which has an oHgo-dt 

component) and total cDNA was synthesised using SUPERscript XI reverse transcriptase 

before treatment with RNAse to eliminate RNA. To amplify the 3’ end of the gene, 3’ 

RACE was performed on the cDNA using the supplied AUAP primer and the gene- 

specific primer LM34 3’ GSPl primer.

http://www.genedb.org
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PCR was frequently used to amplify regions of Leishmania DNA. All oligonucleotides 

(primers) were synthesised by MWG biotech (Ebersberg, Germany) and were all manually 

individually designed. All primers used, their sequences and predicted melting 

temperatures, are displayed in table 2.1. Different annealing temperatures, numbers of 

cycles and elongation times were utilised depending on the PCR being performed; often 

these variables were initially optimised. A PTC-200 DNA Engine Thermal Cycler (MJ 

Research (BioRad), San Francisco, CA) was used to perform all reactions. Both the Taq 

(Promega, Southampton, UK) and the Expand High Fidelity (Roche, Lewes, UK) 

polymerase systems were used according to the manufacturers’ instructions.

RACE primers SEQUENCE 5’-3’ Tm C O
OGSTl AACAATCAGÇTGCGACTCGTG 55.3
0GST2 TACAGCCTCGCCCCTCG 54.3
0GST3 AATAGCGCAGGCACCGTATC 54.4
LM16GSP1 CCGTCCAAACCACTCC 45.4
LM16 GSP2 GCGCAAACTGCCGCACAAACG 65.1
LM34 GSPl GCGCTCGATCAGCG 46
LM34 GSP2 GCGCCAGCATGTCATGCAGC 62.1
LM34 3’ GSPl CCCTGCCGGTTCTCTACTGGTTTCG 64.5
LM34 3’ GSP2 GAGCTGCGCGAAATCAACC 55.7
AUAP PRIMER GGCCACGCGTCGACTAGTAC 54.7
AP PRIMER GGCCACGCGTCGACTAGTACTTTTTTTTTTTTTTT 68.7
SL PRIMER TAACGCTATATAAGTATCAGTTTC 65
TDRl primers
JOFLOGSTl TAGCGGCCGCTTACCCGCCCTGGGCCCTCCGTTG >75
JOFLOGST2 GACATATGGCCGCGCGCGCGCTAAAGCTGTACG >75
JOFLOGST3 TTGCGGCCGCTTACATTGGCGGCCTCTCCGGAAC >75
New TDRl o/e PI GACCCGGGATGGCCGCGCGCGCGCTAAAGC >75
New TDRl o/eP2 CTGGATCCTTACCCGCCCTGGGCCCTCC 74.7
TDR13’FLANKP1 CGCCCGGGAGGCTCACCGAGTGGGTCG >75
TDR13’FLANKP2 CGAGATCTCTTCACACGGGAGAGCACAGCCG 73.3
TDRIS’FLANKPI GCAAGCTTCAGGAACTCGCTGCGCAGTGATCC 74.9
LmGLO primers
TDR15’FLANKP2 GCGTCGACCGCAGCGGGCGCACCTCTCTAACG >75
L-gulo3’flankPl GACCCGGGGGTACCTAAGATTTTGTGC 65
L-gulo3’flankP2 GCAGATCTCCTCCCCCTCCTTGAGGTG 67.4
L-gulo5’flankPl GCAAGCTTGTGGGGTGCGGAGTTGAG 68.9
L-gulo5’flankP2 GAGTCGACGGTCAAGGTACAATGCAC 61.7
New L-gulo o/e PI GACCCGGGATGTCTGCTCATTCTGCGGCCCGTC >75
New L-gulo o/e P2 CTGGATCCTTACGGCGTGCACGCGGTGCTG >75
Table 2.1: Compendium of primers used, their sequences and Tm (melting temperatures). A,
adenine: T, thymine; C, cytosine; G, guanine.
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2.2.6 DNA gel electrophoresis

DNA fragments were resolved by electrophoresis on 0,5-1.5% (w/v) agarose gels 

containing 0.5 pg/ml of ethidinm bromide in 0.5 x TBE (45 mM Tris-borate, 1 mM 

EDTA). The percentage of agarose was dependent on the expected size of the DNA being 

analysed, with higher percentages being used for smaller fragments. Gels were run in 0.5 x 

TBE buffer. The 1 kb Plus DNA ladder (Invitrogen, Paisley, UK) was used and a 

transillumnator (UVP Laboratory Products, Cambridge, UK) was used to visualise the 

DNA.

2.2.7 DNA quantification

When it was necessary to calculate the concentration of DNA in a sample, serial dilutions 

were prepared which were then subjected to DNA gel electrophoresis alongside 0.6 pg of 1 

kb Plus DNA ladder. As 8 % of the mass is contained in the 1650 base pair (bp) band, 

approximately 48 ng of DNA are present in this band. The intensities of the bands 

containing the serial dilutions of the original sample were compared to the intensity of the 

1650 bp band and the approximate amount of DNA present, and hence the concentration in 
the sample, was determined.

2.2.8 Cloning of PCR products

PCR products were generated using Taq and Expand High Fidelity polymerases which 

both add an A (adenine) nucleotide to the 3’ end of the DNA fragment being synthesised 

(known as an A-overhang). The pGEM-T Easy vector (Promega, Southampton, UK) can 

be used to clone such fragments as it contains a T- (thymine) overhang at the 3’ end. PCR 

products were either isolated using a QIAquick gel extraction kit (Qiagen, Crawley, UK) 

after DNA gel electrophoresis, or purified using a QIAquick PCR purification kit (Qiagen); 

in both cases according to the manufacturer’s instructions. Approximately 150 ng of the 

purified product was ligated into 50 ng of the pGEM-T Easy vector using the supplied T4 

ligase, usually incubating overnight at 16 “C. Subsequently about 4 pi of the ligation was 

used to transform 50 pi DH5a competent cells (Invitrogen, Paisley, UK).

2.2.9 Subcloning of DNA fragments

Approximately 1-2 pg of donor and recipient plasmid DNA was digested with up to 50 U 

of the appropriate restriction enzymes in 100 pi. If digesting with more than one enzyme 

the most compatible buffer was used, as ascertained by the Promega restriction enzymes
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resource (www.promega.com/guides/re_guide/RESearch.asp?search=buffer). If there was 

no compatible buffer, after the first digest the DNA was recovered using a PCR 

purification kit (Qiagen) and the second digest was performed on the purified sample. The 

digested DNA Jftagments required were recovered by band extraction using a QIAquick gel 

extraction kit (Qiagen) after separation on an agarose gel. Ligations of the donor and 

recipient DNA were performed as described, before transformation into DH5a competent 

cells (Invitrogen).

2.2.10 Restriction digests

All restriction digests were performed using enzymes from Promega, Southampton, UK, 

according to the manufacturer’s instructions. For diagnostic digests approximately 250 ng 

of DNA was digested with 10-20 U of one or two enzymes in a total reaction volume of 20 

pi, usually for two hours at the temperature recommended by the manufacturer. Restriction 

digests of DNA intended for cloning were performed in larger volumes with additional 

enzyme and DNA (see section 2.2.9). These digests were performed overnight at the 

appropriate temperature. Typically the buffer supplied with the enzyme by the 

manufacturer was used; however, for digests with more than one enzyme a compatible 

buffer was sought (see section 2.2.9).

2.2.11 Ligations

Ligations of PCR products into the pGEM-T Easy vector (Promega) were performed using 

the supplied T4 ligase. For all other ligations the T4 DNA ligase from Roche Diagnostics, 

Lewes, UK, was used. Ligations were performed at a 3:1 (w/w) ratio of donor (insert) to 

recipient (plasmid) DNA using 2 U of ligase in a 20 pi volume. The reactions were usually 

incubated overnight at 16 "C although occasionally ligations were performed at room 

temperature for two hours. For a summary of vectors used, see table 2.2.

http://www.promega.com/guides/re_guide/RESearch.asp?search=buffer
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Vector Origin Information and Application

pGEM-T Easy Promega, 

Southampton, UK
A commercially available vector that contains T- 

nucleotide overhangs for cloning PCR products.
pET28a(+) Novagen, 

Nottingham, UK

A commercially available E. coli expression 

vector used to express recombinant TDRl.
pGL345 Derivative of pXG 

vector (Ha et al, 

1996)

Contains cassette that can be used to create gene 

knockouts in Leishmania by homologous 

recombination. Hygromycin resistance marker.
pGL842 Derivative of pXG 

vector

As pGL345 but with blasticidin resistance 

marker.
pGL1033 Derivative of pXG 

vector
As pGL345 but with phleomycin resistance 

marker.
pGL102 Derivative of pXG 

vector
A Leishmania expression vector containing a 

neomycin resistance marker.
Table 2.2: Summary of vectors used, their origins and applications

2.2.12 Plasmid DNA extraction

Plasmid DNA was extracted from E. coli using Qiaprep Spin Miniprep and midiprep 

(when several micrograms of DNA were required) kits (Qiagen) according to the 

manufacturer’s instructions. The volumes of the bacterial cultures used were 3 ml and 35 

ml, respectively. The DNA obtained was stored at 4 °C for periods of up to several days, or 

-20 “C for longer-term storage.

2.2.13 DNA sequencing

DNA sequencing reactions were carried out both by the Molecular Biology Support Unit 

(University of Glasgow), and by GRI Genomics (Braintree, UK). Sequences were analysed 

using the Vector NTI programme, version 6.0 (Informax, Bethedsa, MA, US).

2.2.14 Competent cells

For routine cloning, ready-made Library Efficiency DH5a competent cells (Invitrogen) 

were used according to the manufacturer’s instructions.

For recombinant protein expression in E. coli, BL21(DE3) cells were made competent 

manually, being freshly prepared prior to use. 5 ml LB broth was inoculated with a single 

colony picked from a drug-free LB agar plate and was grown overnight at 37 °C. 

Thereafter 500 pi of this culture was used to inoculate 50 ml LB broth which was then
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grown again at 37 “C. The optical density (OD) of the culture at 600 nm was monitored 

until the value was between 0 . 6  and 0 .8 ; the culture was then cooled on ice for 1 0  minutes 

before being centrifuged at 2500 g for a further 10 minutes. The cells were resuspended in 

25 ml of ice-cold 0.1 M CaCL, chilled on ice for an additional 20 minutes and centrifuged 

at 2500 g for 10 minutes. The cells were finally resuspended in 2.5 ml of ice-cold CaCL 

and stored on ice (or overnight at 4 °C) until required.

2.2.15 Transformation of competent ceils

The antibiotics used for selection purposes when transforming bacterial cells were 

ampicillin, used at 100 pg/ml and kanamycin, used at 50 pg/ml. Both drugs were made up 

in water at lOOOx the working concentration, and stored at -20 “C. Transformations were 

spread onto LB agar (Sigma, Poole, UK) plates, which were made at 3.5% (w/v). Bacteria 

were grown in LB broth (1% (w/v) NaCl, 1% (w/v) Tryptone (Sigma), 0.5% (w/v) yeast 

extract (Sigma).

DH5a cells (Invitrogen) were transformed according to the manufacturer’s instructions, 

with 50 pi cells being used per transformation, 300 pi of the supplied SOC media being 

added after heat-shock and 140 pi of each reaction being spread on a LB agar plate 

containing the appropriate antibiotic. When pGEM-T Easy was the plasmid used for the 

transformation, a blue/white selection procedure was employed. 40 pg/ml isopropylthiol-p- 

D galactoside (IPTG) and 40 pg/ml 5-bromo-4-chloro-3-indolyl- isopropylthiol-p-D 

galactoside (X-gal) were added to the LB agar: resulting white colonies correspond to 

positive clones containing a DNA insert.

When BL21(DE3) cells were being transformed, just 1 pi of a DNA miniprep which had 

been diluted 1/10 was added to 100 pi of the competent cells. After being incubated for 30 

minutes on ice, the samples were heat-shocked at 42 “C for 90 seconds before being cooled 

on ice for two minutes. 900 pi of LB broth was added to each transformation and mixed, 

before being transferred to a universal tube so better aeration would be achieved when the 

samples were incubated at 37 °C for one hour while shaking at 250 rpm. Finally 100 pi of 

each was spread on a LB agar plate that contained the appropriate antibiotic drug.

2.2.16 Cryo-preservation of bacterial cultures

In order for cloned genes and constructs to be preserved, glycerol stocks of bacterial 

cultures carrying plasmids, which contained the DNA of interest, were made. A sterile
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solution of 40% (v/v) glycerol, 60% LB broth was made. Bacterial cultures, grown 

overnight in LB broth containing the necessary antibiotics, were mixed with this solution 

in a 1:1 ratio (v/v) in 1.5 ml screw-cap tubes (Greiner Bio-one, Stonehouse, UK) and 

stored at -80 'C for up to three years.

2.2.17 Creation of transgenic L. mayor promastigotes

The method used to transfect and generate L  major parasites was broadly the same as the 

high-voltage protocol developed by Steve Beverley and colleagues (Robinson and 

Beverley, 2003).

For creating lines overexpressing a gene, the parasites were transfected with at least 2 pg 

of plasmid DNA that contained the gene of interest. However, to knock out a gene from 

Leishmania, linear DNA is used, comprising the 5* frank of the target gene, the 5’ frank of 

the DHFR gene, a drug resistance gene, the 3’ frank of the DHFR gene and the 3’ frank of 

the target gene (see figure 2.1). The gene-specific franks were cloned into the appropriate 

vector and the total construct excised from the plasmid by restriction digest. The digested 

sample was then subjected to gel electrophoresis and the desired DNA construct was 

purified by gel extraction. At least 5 pg of the purified DNA was used for each 

transfection. In both cases, the DNA to be used for transfecting the parasites was ethanol 

precipitated before use and resuspended in sterile TE buffer (10 mM Tris-HCl pH 8, 1 mM 

EDTA).

foreign DNA 5’ flank | DHFR [ OtHB  ̂ I DHFR 3' flank

host DNA
f 5’ flank Target gene ] 3‘ flank

t 5’ flank Target gene 3’ flank

foreign DNAt 5’ flank | DHFR | Drug» I DHFR | 3 ' t e K

Figure 2.1 : Schematic diagram of target locus and constructs introduced when generating 
a gene knockout in Leishmania major. The diagram shows the two copies of the native locus 
from this diploid parasite and the constructs which replace the genes after two rounds of 
homologous recombination. The DHFR flanks are included in the constructs as the correct 
upstream and downstream elements for successful expression of the drug resistance gene.

When the transfections were to be performed, L. major promastigotes from the late 

log/early stationary phase of growth were centrifuged at 1300 g for 10 minutes at 4 °C, 

washed in ice-cold elecroporation buffer (120 mM KCL, 0.15 mM CaCL, 10 mM K2HPO 4 ,
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25 mM HEPES, 2 mM EDTA, 5 mM MgCL; pH 7.6) and centrifuged again under the 

same conditions. The parasites were then resuspended in the chilled electroporation buffer 

at a concentration of about 2x10^ cells/ml and kept on ice until required. The prepared 

DNA was deposited into a 4 mm Gene Pulse cuvette (BioRad, Hemel Hempstead, UK) and 

0.5 ml of the parasite was added; the sample was briefly aspirated to mix. The cuvette 
containing the mixture was electroporated twice at 25 pF, 1500 V (3.75 kV/cm) on the 

BioRad Gene Puiser II apparatus, with a 10 second interval between each pulse. The cells 

were then removed from the cuvette, transferred into 5 ml of HOMEM medium with 10% 

(v/v) HIFCS and incubated overnight at 25 “C. The following day the parasites were 

passaged into the medium containing the appropriate drug(s) (see table 2.3) for selection of 

successful transformants. 1 ml of the original culture was passaged into 5-10 ml of the 

fresh, drug-containing medium and the drug(s) were also added to the remainder of the 

original culture. In all cases, the passaged rather than the original culture contained 

transformants and was used for subsequent analysis.

For gene knockouts, it was desirable to obtain clones of successfully transformed parasites 

so a monoclonal culture could be created. This allowed the ensuing parasitic culture to be 

grown without the selection drugs, and ensured that all parasites within any culture were 

missing the gene. Clonal populations were obtained by both serial dilution of the original 

overnight culture from 1/2 to 1/1024 (v/v) in 24-well plates, and by dilution of the 

successfully transformed passaged culture so that 0 . 1  parasite was added to each well of a 
96-well plate. In both cases, the parasites were added to the plates with the appropriate 

antibiotic drugs and wells containing growing populations of parasites were accepted as 

clonal. When serial dilutions of the parasites were made, populations were accepted as 

clonal when the previous two wells did not contain growing populations.

Drug Working concentration Supplier
Blasticidin S Hydrochloride 1 0 - 2 0  pg/ml Invitrogen, Paisley, UK
Hygromycin B 50-100 pg/ml Roche, Lewes, UK
Neomycin 50 pg/ml Calbiochem, Nottingham, UK
Bleomycin 1 0  pg/ml Calbiochem, Nottingham, UK

Table 2.3: Antibiotic drugs used for selection of transgenic parasites.

2.2.18 Southern biot analysis

Southern blotting allows detection of specific sequences witliin genomic DNA and was 

employed to verify whether the LmGLO gene had been successfully knocked out of 

transgenic L. major parasites. Using a combination of Artemis and Vector NTI software, 

restriction enzymes were chosen that would generate different DNA fragment sizes
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depending on whether the intact WT locus was present, or whether homologous 

recombination had taken place and replaced the gene with DHFR flanking regions and a 

drug resistance marker. Parasite genomic DNA was extracted and digested to completion 

using the specific restriction enzymes and DNA fragments were separated on a 1% (w/v) 

agarose gel in 0.5 x TBE buffer. After electrophoresis for 6  hours at 70 V, the gel was 

incubated in 125 mM HCl for 20 minutes under gentle agitation, which results in the 

depurination of the DNA. Subsequently the gel was incubated for 30 minutes in 1.5 M 

NaCl, 0.5 M NaOH (for dénaturation of the DNA) and 30 minutes in 1.5 M NaCl, IM Tris, 

pH 7.5 (for neutralisation). These incubations were interspersed by 10 minute washes in 

ddH^O, and followed by a 20 minute pre-incubation in 20 x SSC (300 mM tri-sodium 

citrate, 3 M NaCl, pH 7.0). The DNA was then transferred overnight by capillary action 

onto Flybond N+ nylon membrane (Amersham) in 20 x SSC, using standard methods 

(Sambrook et al, 1989). The DNA was fixed onto the membrane by UV cross-linking 

(Spectrolinker XL-1000 UV linker, Spectronics Corporation, Westbury, NY, US). Until 

this point, all procedures were performed at room temperature.

The membrane was then pre-incubated at 65 °C for 4 hours in 20 ml Church Gilbert 

hybridisation solution (340 mM Na2HP0 4 , 158 mM NaH2P0 4 , 240 mM SDS, 1 mM 

EDTA) supplemented with 0.2 mg/ml salmon sperm DNA (Invitrogen, Paisley, UK) for 

the final 2 hours of the incubation. 30 ng of nucleic acid probe was prepared firom gel- 

purified restriction fragments using the Prime-It II Random Primer Labelling Kit 

(Stratagene, La Jolla, CA, US) according to the manufacturer’s instructions. With the 

dATP buffer firom the kit, 50 pCi of a32dATP (Perkin Elmer, Beaconsfield, UK) was used 

to label the A nucleotides of the probe. It was then purified using a Microspin S-200 HR 

column (Amersham, Chalfont St. Giles, UK) and boiled for 5 minutes before incubation on 

ice for 2 minutes. The membrane was hybridised by incubation with the labelled probe in 

20 ml of Church-Gilbert solution at 65 '’C overnight. The membrane was then washed 

twice under high stringency conditions in 2 x SSC, 0.1% (w/v) SDS, followed by 15 

minutes in 1 x SSC, 0.1% SDS and finally twice for 10 minutes in 0.1 x SSC, 0.1% SDS. 

All washes were performed at 65 °C, using pre-heated solutions. The membrane was then 

sealed in polythene and exposed to X-ray film for 1-14 days. Hybridisation signals were 

detected with an automatic film processor (X-Ograph imaging system Compact X4).
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2.3 Biochemical methods

2.3.1 Recombinant protein expression in E. coli

As mentioned, the bacterial expression plasmid pET28a(+) (Invitrogen) was used to 

express recombinant proteins; this vector adds an N-terminal His-tag to the expressed 

polypeptide. The proteins were expressed in the E. coli strain BL21(DE3).

The primers FLOGSTl and FLOGST2 were used to amplify the complete TDRl gene 

while the primers FLOGST2 and FLOGST3 were used to amplify the 5’ half of the gene. 

These constructs were cloned into pET28a(+) and the BL21(DE3) cells were transformed 

with the plasmids as described. Successfully transformed colonies were grown up 

overnight with kanamycin at 50 pg/ml and 500 pi of each was used to inoculate 50 ml of 

LB broth containing kanamycin as before. These were shaken at 37 “C and the ODgoo of 

the growing cultures was monitored. When the ODeoo had reached 0.6-0.9, the cultures 

were cooled on ice for several minutes before IPTG was added to a final concentration of 2 

mM. These cultures were grown overnight at 15 "C before being centrifuged at 3000 g for 

20 minutes at 4 “C. The pellets were resuspended in 5 ml of 20 mM Tris-HCl with 100 mM 

NaCl and lysed by sonication at 22 pm, on a cycle of 5 x 10 seconds on, 30 seconds off, 

using a Soniprep 150 MSE. 1 ml of each sample was then centrifuged at 13000 g for 20 

minutes at 4 °C and the supernatant (soluble fraction) was separated from the pellet 

(insoluble fraction). The pellet was resuspended in 0.5 ml of 1% SDS and both fractions 

were analysed by SDS-PAGE for protein expression. In order to achieve optimal 

expression of the proteins, trials were also conducted with different concentrations of IPTG 

and growth times.

2.3.2 Recombinant protein purification

Purification of recombinant TDRl from E. coli cells was performed by Alan Scott and Dr. 

Helen Denton, both University of Glasgow. Expression of TDRl was induced with 2 mM 

IPTG and cells were grown overnight and harvested as before, prior to resuspending in 

buffer A (20 mM Tris-HCl, 500 mM NaCl) containing 5 mM imidazole. The cells were 

lysed by sonication (a cycle of 10 x 30s at 22 pm) before centrifugation at 13000 g  for 30 

minutes at 4 “C and the soluble supernatant was collected. The soluble fraction was applied 

onto a 13 ml Ni^^-nitrilotriacetate BioCAD 700E workstation (PE Biosystems, Foster City, 

CA, US) that had been pre-equilibrated in buffer A containing 5 mM hnidazole. The 

column was washed with 100 ml containing 5 mM imidazole before washing again with 20
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ml of buffer A containing 50 mM imidazole. The His-tagged recombinant TDRl was 

eluted with 500 mM imidazole in buffer A. The fractions containing the majority of the 

eluted proteins were pooled and buffer-exchanged into buffer B (25 mM Tris-HCl, pH 7.9) 

using a PDIO column (Amersham, Chalfont St. Giles, UK) and applied to POROS 20 HQ 

column (4.6 mm x 100 mm) pre-equilibrated in buffer B. The column was washed with 5 

column volumes of buffer B and bound protein was eluted with 10 volumes of buffer B 

containing a 0-100% gradient of 2 M NaCl. Fractions containing protein were stored at -80 

“C.

2.3.3 His-tag cleavage

The pET28a(+) plasmid, used for expressing recombinant TDRl, adds an N-terminal His- 

tag and tlirombin cleavage site to the protein produced. The His-tag can be removed by 

incubating the purified recombinant protein with biotinylated thrombin, which can in turn 

be removed by adding streptavidin agarose to the sample and isolating the supernatant after 

centrifugation. This procedure was carried out using a Thrombin Cleavage Capture Kit 

(Novagen, Nottingham, UK) according to the manufacturer’s instructions. Briefly, 8  U of 

thrombin was added to 5 mg of TDRl in 1 x Thrombin Cleavage/Capture Buffer and 

incubated for 18 hours at room temperature. 16 pi of streptavldin-coated beads were added 

to the sample, incubated with gentle shaking for 30 minutes at room temperature and 

centrifuged for 5 minutes at 500 g. The supernatant was collected and buffer-exchanged 

into 25 mM Tris-HCl, pH 7.9 using a PDIO column (Amersham, Chalfont St. Giles, UK). 

The successful removal of the His-tag was confirmed by a decrease in size of the 

recombinant protein visible after SDS-PAGE.

2.3.4 SDS-PAGE

Proteins were separated according to their molecular masses under reducing conditions by 

SDS-PAGE. The protein samples were mixed with 25% volume of 5 x protein sample 
buffer (60 mM Tris-HCl pH 6 .8 , 12% (v/v) glycerol, 2% (w/v) SDS, 5% (v/v) (3- 

mercaptoethariol, 0,25% (w/v) bromophenol blue) and boiled for three minutes. The 

samples were resolved by electrophoresis on 8 -1 2 % polyacrylamide resolving minigels 

with 5% polyacrylamide stacking gels using the Mini-Protean II slab system (BioRad, 

Hemel Hempstead, UK), according to the manufacturer’s instructions. The proteins were 

then either detected by staining or transferred onto membranes for specific protein 
detection by western blotting.
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2.3.5 Detection of proteins on polyacrylamide gels

In order to observe proteins that had been resolved by SDS-PAGE, gels were routinely 

stained with 0.25% (w/v) Coomassie Brilliant Blue R250 in 10% (v/v) methanol and 

12.5% (v/v) isopropanol, usually overnight although occasionally for just 1-2 hours. Gels 

were destained with 1 0 % (v/v) acetic acid, 1 0 % (v/v) methanol, for several hours, usually 

with several changes of destain. Destained gels were visualised with a light-box 

(Hancocks, UK).

When increased detection of proteins was required, silver staining was employed. Gels 

were initially fixed in 40% (v/v) methanol and 10% (v/v) acetic acid for 30 minutes at 

room temperature, followed by two incubations for 15 minutes at room temperature in 1 0 % 

(v/v) ethanol and 5% (v/v) acetic acid. To oxidise the proteins, the gels were incubated in 

5% (v/v) glutaraldehyde solution, for five minutes at room temperature. The gels were 

washed twice in distilled water for five minutes at room temperature before reducing in 

0.4% (w/v) AgNOs for 20 minutes at room temperature. Gels were briefly washed in 

distilled water and developed in 0.02% (v/v) formaldehyde and 2.5% (w/v) NaiCOs. When 

the proteins became sufficiently visible the development was terminated in 5% (v/v) acetic 

acid; the gels were also stored in this solution.

2.3.6 Protein concentration determination

Protein concentrations in both cell lysates and purified recombinant protein samples were 

determined using the BioRad protein assay, based on the Bradford method (Bradford 

1976). Bovine serum albumin (Promega, Southampton, UK) was used as the protein 

standard; graphs and protein concentration calculations were made using Grafit software 

(Erithacus, Staines, UK).

2.3.7 Confirmation of axenic amastigotes by protease expression 

profile

Although it is possible to grow axenic amastigote-like forms of L. mexicana, it is necessary 

to confirm their similarity to amastigotes obtained from animals, rather than promastigotes 

grown in culture. This can be achieved by comparing the protease expression of the 

different parasite forms profile by gelatin SDS-PAGE (Bates et al, 1992).

SDS-PAGE was performed as described in section 2.3.4, except in addition the gels 

contained 0.2% (w/v) gelatin. Following electrophoresis, the gels were incubated for one
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hour at room temperature in 2.5% (v/v) Triton X-100 and then in 0.1 M sodium acetate pH 

5.0 with 10 mM DTT at 37 °C for 1.5 hours. The gels were stained in coomassie blue, as 

described in section 2.3.5.

2.3.8 Antibody production

Before the complete TDRl gene had been identified, the 3’ half of the gene was assumed 

to be the whole coding region and was cloned and expressed. The resulting N-terminal 

His-tagged, purified recombinant protein was unstable, but was used as an antigen to 

obtain antiserum from rabbit. This procedure was performed by the Scottish Antibody 

Production Unit (Carluke, UK), using standard methods. The antibody obtained was 

subsequently purified (see section 2.3.6).

Herein after it was decided a second anti-TDRl antibody should be generated, this time 

using the recombinant protein obtained upon expression of the whole gene. Again, N- 

terminal His-tagged, purified recombinant protein was used as the antigen, this time to 

produce antiserum in sheep. This procedure was performed by Diagnostics Scotland 
(Edinburgh, UK), using standard methods.

For production of an antibody raised against the putative LmGLO protein, the facility used 

was Biological Services, University of Glasgow. N-terminal His-tagged recombinant 

protein was produced and purified by Dr. Helen Denton and Dr. Gareth Westrop (both 

University of Glasgow); 50 pg protein diluted 1:1 (v/v) in Freund’s adjuvant (Sigma,

Poole, UK) in a final volume of 100 pi was inoculated into a rat. After one month, this was 

followed by two more similar booster inoculations.

2.3.9 Antibody purification

As described in the previous section two different anti-TDRl antibodies were raised, both 

of which were provided as crude serum. The first (rabbit) anti-serum did not recognise 

TDRl from Leishmania lysates on western blots although it did recognise many other 

Leishmania lysate proteins along with purified recombinant TDRl protein. These 

observations suggested that the anti-serum was not specific to TDRl but that it did contain 

anti-TDRl antibodies albeit at a low titre. Therefore, it was decided to purify and 

concentrate the anti-TDRl antibodies using recombinant TDRl.

The protocol for purifying the anti-TDRl antibody was optimised, so here only the 

optimised procedure involving an acidic column equilibration and final elution are
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described. 10 mg of purified recombinant TDRl in 2 ml 20 mM MOPS, pH 8.0, was 

incubated with 2 ml of Affi-gel 15 (BioRad, Hemel Hempstead, UK) overnight at 4 °C.

The incubation was centrifuged for one minute at 50 g and the supernatant (containing 

unbound protein) was removed before resuspending the gel in 3 ml of 20 mM MOPS, pH 

8.0.150 pi of 1 M ethanolamine, pH 8 . 0  was added (this blocks any uncoupled sites) and 

incubated for a further 1 hour at 4 °C. The sample was applied to a PD 10 column 

(Amersham, Chalfont St. Giles, UK) which was then washed with 10 ml each of; Tris-HCl, 

pH 7.5; Tris-HCl, pH 7.5 with 500mM NaCl; and glycine, pH 2.5, all at 100 mM. The 

column was then washed with Tris-HCl, pH 7.5, until the run-through was also pH 7.5, 

before 5 ml of heat-inactivated antiserum (heated to 65 "C for 20 minutes) was applied to 

the column; the run-through was re-applied twice to ensure optimal binding. The column 

was washed with 20 ml of 10 mM Tris-HCl, pH 7.5 with and without 500 mM NaCl. 

Finally, the bound antibodies were eluted in 6  ml of 100 mM glycine, pH 2.5.

2.3.10 Western blot analysis

Following separation by SDS-PAGE, proteins were transferred to Hybond-C nitrocellulose 

membrane (Amersham, Chalfont St. Giles, UK) by electroblotting in transfer buffer (20 

mM Tris, 15 mM glycine, 20% (v/v) methanol that had been pre-chilled to 4 °C. The 

transfer was performed using a mini transblot cell (BioRad, Hemel Hempstead, UK) for 45 
minutes at 100 V. A Seeblue protein standard (Invitrogen, Paisley, UK) was run alongside 

the protein samples; this can be visualised without staining. However, the membrane was 

stained with Ponceau S as this allowed observation of any air bubbles which could be 

marked, and confirmation of equal protein content between lanes when required. The 

membrane was blocked at 37 “C for 1 hour in 1 x TBS (20 mM Tris-HCl, pH 7.6, 13.7 mM 

NaCl) with 0.1% (v/v) Tween-20 and 5% (w/v) dried milk, before incubating overnight at 

4 °C with the appropriate primary antibody or antibodies in 1 x TBS with 0.1% (v/v) 

Tween-20 and 1% (w/v) dried milk. The following day the membrane was washed for 20 

minutes four times at room temperature with 1 x TBS with 1% (w/v) dried milk, before 

application of the secondary antibody in 10 x TBS with 1% (w/v) dried milk for two hours 

at room temperature. The membrane was further washed for 20 minutes three times in 1 x 
TBS with 1% (w/v) dried milk before rinsing briefly in lOx TBS and developing the blot. 

All secondary antibodies were HRP-conjugated so blots were developed manually by 

applying Supersignal West Pico substrate (Pierce, Cramlington, UK) and using Hyperfihn 

ECL (Amersham, Chalfont St. Giles, UK) to expose them, according to the manufacturers’ 

instructions. Films were developed and fixed using Kodak GBX developer/replenisher and 

fixer/replenisher (Sigma, Poole, UK), respectively.
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Antibody Source Type Dilution

rabbit anti-TDRl (1) Scottish Antibody Production 

Unit, Carluke, UK)

primary 1 / 2 0  (purified)

sheep anti-TDRl (2) Diagnostics Scotland, 

Edinburgh, UK

primary 1/4000

rat anti-L-GULO Biological services. University 

of Glasgow, UK

primary 1 / 1 0 0 0 -1 / 1 0 0 0 0

rabbit anti- 

Transketolase

Gifted by Dr. Mike Barrett, 

University of Glasgow, UK

primary 1 /2 0 0 0 - 1 / 1 0 0 0 0

rabbit anti-Cysteine 

Synthase
Gifted by Dr. Rod Williams, 

University of Glasgow, UK
primary 1/5000

anti-sheep IgG HRP 

conjugated
Santa Cruz Biotechnologies, 
CA, US)

secondary 1/5000

anti-rat IgG HRP 

conjugated

Pierce, Cramlington, UK secondary 1 / 2 0 0 0

anti-rabbit IgG HRP 

conjugated

Pierce, Cramlington, UK secondary 1 / 1 0 0 0 0

Table 2.4; Antibodies

2.3.11 Immuno-

used in Western Blots

-localisation of cellular protein

In order to analyse the distribution of TDRl in L. major, immuno-fluorescence was 

performed using the anti-TDRl antiserum produced in sheep, using an adapted method 

from one previously described (Field et al, 2004). Parasites were harvested by 

centrifugation at 1300 g for 10 minutes at 4 “C, washed in vPBS (Voorheis’ PBS: 137 mM 

NaCl, 3 mM KCl, 16 mM Na2HP0 4 , 3 mM KH2PO4 , 46 mM sucrose, 10 mM Glucose; 

pH7.6 (Nolan et al, 2000)), and resuspended at -2x10^ cells/ml in vPBS. An equal 

volume of 6 % (w/v) paraformaldehyde in vPBS was added and the mixture was incubated 

on ice for one hour. Five volumes of PBS was added and the parasites were harvested and 

washed as above, before resuspending at -2x10^ cells/ml in PBS. 200 pi of the parasite 

suspension was applied to a glass slide that had been pre-treated with 1 ml of 0 . 0 1  (w/v) 

poly-L-lysine solution (Sigma, Poole, UK) for five minutes and allowed to dry for > one 

hour at room temperature. The parasites were incubated for 15 minutes on the slide before 

the cells were permeabilised in 0.1% (v/v) Triton X-100 in PBS for 10 minutes at room 

temperature. Slides were washed at room temperature three times for five minutes in PBS, 

then blocked for one hour with 20% (v/v) HIFCS in PBS. The sheep anti-TDRl primary 

antibody was applied at various dilutions in PBS with 20% (v/v) HIFCS for one hour at 

room temperature before being washed three times in PBS as before. The secondary 

antibody (Alexa Fluor 488 donkey anti-sheep IgG, Molecular Probes, Paisley, UK) was
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applied at room temperature for one hour at a dilution of 1/500 in PBS with 20% (v/v) 

HIFCS along with 5 pg/ml 4’,6-diamidino-2-phenylindole (DAPI) stain. Slides were 

washed three times in PBS as before, dried and mounted with 1:1 (v/v) glycerol in PBS. 

Nail varnish was used to seal the edges of coverslips and slides were stored in the dark 

before analysis using an Axioplan Fluorescence microscope (Zeiss, Welwyn Garden City, 

UK) and Hamamstsu digital camera with Openlab software (Improvision, University of 

Warwick, UK).

2.3.12 Isolation of protein using S-hexyl-GSH agarose

It is possible to pull TDRl and other proteins out of Leishmania lysates by exploiting the 

fact they bind to hexyl-glutathione. Leishmania parasites were harvested, resuspended at 

-1 X 10̂  cells/ml, lysed and centrifuged as before. The resultant soluble fraction was 

incubated with 100 pl/ml S-hexyl-glutathione sepharose (Sigma, Poole, UK) for two hours 

at room temperature with gentle mixing before centrifugation at 2500 g for one minute to 

sediment the sepharose. The sepharose pellet was vortexed and washed three times in 1 ml 

of 1 x GST Bind/Wash Buffer (composition as before, Novagen, Nottingham, UK), once in 

50 pi of 1 X GST Bind/Wash Buffer and once in 50 pi of 50 mM Tris-HCl, pH 8.0; the 

latter two washes were retained for analysis. Finally, bound proteins were eluted by adding 

50 pi of 10 mM S-hexyl-glutathione (Sigma, Poole, UK) in 50 mM Tris-HCl, pH 8.0, 

vortexing briefly, centrifuging as before and isolating the supernatant.

A similar method was also used to isolate TDRl from spent culture media. The method 

was broadly the same as described above except: 9 ml of spent media was filtered and 

mixed with 1 ml of 10 x GSH Bind/Wash Buffer and used rather than lysate; incubation 

with 100 pi of S-hexyl-glutathione sepharose was performed overnight at 4 “C and the final 

washing step was omitted.

2.3.13 BPR assay for measuring trivalent antimonials

The BPR assay can be used to detect trivalent antimonial species (Sblll). This method used 

was based on a procedure described previously (Frezard et al, 2001) and was employed to 

analyse whether H2O2 reacted with trivalent antimonials. Briefly, 200 pi of analyte solution 

comprising 20 mM sodium phosphate, pH 6 .8 , 0.1% (w/v) tartaric acid and 70 pM 

Bromopyrogallol Red (Sigma, Poole, UK) was added to 20 pi of sample in a microtitre 

plate. The absorbance was read at 540 nm using a Titertek Multiskan MCC/340 

spectrophotometer. Potassium antimonyl tartrate (0-0.5 mM in 20 pi), made up in the same
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buffer as the samples, was used to construct a calibration curve for each experiment 

performed and tests were conducted to confirm that none of the sample components 

interfered with the assay. Under the conditions used, this assay was shown to be specific 

for trivalent antimonial compounds and gave no reaction with sodium stibogluconate,

GSH, GSSG or H2O2 . The standard reaction mixture contained, in a volume of 1 ml, 100 

mM Tris-HCl, pH 8.0 (unless otherwise stated) and 1 mM Sblll in the form of potassium 

antimonyl tartrate (Sigma, Poole, UK). Potential inhibitors along with TDRl were also 

tested for their effect on the reaction; these were also present in the reaction mixture. The 

reaction, performed at room temperature, was initiated by tlie addition of H2O2, and 2 0  pi 

aliquots were removed at time-points between 2-180 minutes so the Sb(lII) content could 

be calculated using the BPR assay. Potassium antimonyl tartrate (0-0.5 mM in 20 pi), 

made up in the same buffer as the samples, was used to construct a calibration curve for 

each experiment performed.

2.4 Statistical analysis

Values were expressed either as mean ± standard deviation (SD) when the number of 

repetitions was more than two, or mean ± standard error (SE) when the number of 

repetitions was two. Significance levels were calculated by unpaired t-tests using the t-test 

function in the Microsoft Excel programme. Differences were considered significant when 
the p  value was <0.05.

2.5 Bioinformatic anaiyses

For trypanosomatid database mining and subsequent analysis, the website 

www.genedb.org was used extensively. The website www.ncbi.nlm.nih.gov and 

particularly the tblastn and tblastx BLAST search facilities were used for additional 

database mining and analysis. Examination of Leishmania DNA loci, generally of gene 
flanking regions, was performed using the Artemis programme.

The SignalP (version 3.0) programme (http://www.cbs.dtu.dk/services/SignalP/) was used 

to determine if genes of interest included any target signalling regions. The related targetP 

programme (version 1.1) was (www.cbs.dtu.dk/sevices/TargetP) was used to predict the 

subcellular localisation of proteins deemed to possess a signalling tag.

Vector NTI (version 6,0) software was used to organise, edit and analyse DNA and protein 

sequences as well as to facilitate the design of oligonucleotides. All sequence alignments

http://www.genedb.org
http://www.ncbi.nlm.nih.gov
http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/sevices/TargetP
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and sequence similarity comparisons were made with alignX. Sequenced DNA was viewed 

and analysed using ContigExpress.
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3 Pursuit of Leishmania genes and proteins 
involved in pentavalent antimonial activation

As discussed in chapter one, the toxicity of pentavalent antimonials, the standard first-line 

treatment against visceral leishmaniasis, is thought to be dependent on their reduction to 

trivalent forms. The site of the reduction remains controversial; the amastigote itself has 

been reported to reduce the drug (Ephros et al, 1999) although conflicting accounts 

regarding the lack of sensitivity that axenically grown amastigotes display to the drugs has 

lead to speculation that the host macrophage mediates reduction (Sereno et al, 1998). 

Whether reduction is enzymatically controlled is another contentious issue as pentavalent 

antimonials can be directly reduced to trivalent forms upon reaction with low molecular 

weight thiols such as trypanothione and glutathione in vitro (Frezard et al, 2001; Ferreira 

Cdos et al, 2003; Yan et al, 2003b). However, shortly before this work was initiated it 

was reported that L. donovani amastigotes possess antimonial-reducing activity which 

coincides with sensitivity to sodium stibogluconate (Shaked-Mishan et al, 2001). Drug- 

resistant parasites no longer had the capacity to reduce the pentavalent compound. 

Although providing no direct proof that the observed activity was enzymatic, the stage- 

specific nature of it combined with the apparent ability of the resistant parasites to dispense 

with drug-reducing activity suggested that that may well be the case.

No reports exist of proteins that specifically reduce or methylate antimonials; for this 

reason homologues of genes encoding proteins known to metabolise arsenate were 

pursued. Arsenate reductase (ars) opérons can confer resistance to antimonite when over

expressed (Carlin et al, 1995) suggesting that both compounds can be used as substrates 

by the encoded proteins. The metabolism of arsenic, which is adjacent to and belongs to 

the same group as antimony in the periodic table, has been much more extensively studied 

(probably due to its toxic effects often being seen in humans) and more is known about its 

toxicology. Accordingly, it is often necessary to consider research carried out on arsenical 

compounds when investigating antimonials (Gebel, 1997). In addition to the reduction of 

inorganic, pentavalent metalloids, biomethylation has also been considered as a potential 

route of pentavalent antimonial drug metabolism. As reviewed in chapter one, the pathway 

is known to occur in a range of organisms and also involves reduction, albeit of methylated 

intermediates. Like arsenate reduction, biomethylation of metalloids yields more toxic 

products and may be considered as an activation pathway. As discussed, mammalian 

enzymes able to mediate biomethylation have recently been elucidated and, in addition, 

several different classes of arsenate reductases have been identified and characterised in
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eukaryotes and prokaryotes. This chapter details an investigation into whether genes 

encoding similar proteins to these, potentially involved in antimonial activation, are 

present in the L. major genome.

Sequencing of the Leishmania major genome has recently been completed (Ivens et al,
2005) but, together with those of other Leishmania species, the genomes have been 

elucidated over several years with more data being made gradually available. The 

databases -  all found at www.genedb.org -  have been frequently searched for sequences 

similar to the known arsenate-metabolising proteins; results of the most recent searches are 

summarised in this chapter. Moreover, genes and proteins potentially involved in 

antimonial reduction have been pursued by additional methods. These, along with the 

identification of one gene in particular, which is interesting because of both its significant 

homology to the inorganic arsenical and methylated arsenical reductase omega glutathione 

S-transferase (oGST) and its unusual sequence features, are also described.

3.1 Arsenate reductase homologues in L. major

Through frequent reviewing of available literature, several categories of proteins capable 

of reducing pentavalent arsenicals were identified. Three separate classes of microbial (two 

in bacteria and one in yeast) arsenate reductases had been previously characterised and 

during this investigation two mammalian proteins were found to be capable of reducing 

arsenate: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and purine nucleoside 

phosphorylase (PNP). In order to determine whether Leishmania may possess a protein 

capable of reducing pentavalent antimonials, the amino acid sequences of these arsenate 

reductase enzymes were used as enquiry sequences to search the L. major predicted protein 

database. Searches for L. major sequences were conducted using the omniblast feature at 

www.genedb.org and identified proteins were used as enquiry sequences to search known 

proteins of the original organism using the blastp facility found at 

http://www.ncbi.nlm.nih.gov/BLAST/. Alignments were performed using the alignX 

feature of vector NTI. The results of these blast searches and the ensuing analysis of the 

sequences identified are presented in this section and summarised in table 3.1.

http://www.genedb.org
http://www.genedb.org
http://www.ncbi.nlm.nih.gov/BLAST/
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Enquiry sequence: 
organism, enzyme 
name, and amino 
acid length

Leishmania 
homologues, p/n 
scores and amino 
acid length

% identity, % 
conservation and 
observations on 
alignments

Single organism 
back BLAST results

E. coli R773 ArsC 
(1I9DA), 141 
amino acids

LmjF05.0150 0.94,
441 amino acids

11%, 33%. L. maj 
seq 240 amino 
acid N-term ext 
and small C-term 
ext.

Enq seq not 
significantly similar.

1. S. aureus pI258 
ArsC (AAA25638), 
131 amino acids
2. B. subtilis pI258 
ArsC (NP390455), 
139 amino acids

LmjFOl.0200
1.0.017, 2. O.Oe"* 
300 amino acids

1. 21%, 37%. 2. 
22%, 37%. L  maj 
seq has small N- 
term and larger 
C-term ext, plus 
insertion.

1. N/A 2. Best hit to 
enq seq.

S. cerevisiae Acr2p 
(NPO15526) 130 
amino acids

LmjF32.2740
0.011, 229 amino 
acids

16%, 31%. L. maj 
seq 99 amino acid 
N-term ext.

Best hit to enq seq.

Human PNP 
(NP000261)289 
amino acids

LmjF05.0830
7.1e‘*, 306 amino 
acids

21%, 42%. L. maj 
seq small C-term 
ext & small N- 
term deletion.

10“ hit to enq seq. 
Best is
methylthioadenosine
phosphorylase
(MTAP).

Human GAPDH 
(NP002037) 335 
amino acids

a. LnriF30.2970
2.3e'* , 361 amino 
acids
b. LmjF30.2980

5.3e‘*̂ , 361 amino 
acids
c. LmjF36.2350
5.7e'  ̂ ,215 amino 
acids
d. LmjF35.4750
9.3e'^\ 349 amino 
acids

a & b. 51%, 70%. 
Good similarity, 
c. 68%, 80%. L. 
maj seq 120 
amino acid N- 
term deletion, d. 
26%, 45%. Good 
similarity.

a & b. 2"̂  hit to enq 
seq. Best is 
spermatogenic 
GAPDH.
c. Best hit to enq seq.
d. Best hit to enq seq.

Table 3.1: L. mayor sequences similar to arsenate reductases. Bacterial proteins are coloured 
in purple, yeast and plant Acr2p is shown in grey-blue, and mammalian sequences are in red. 
Abbreviations used are PNP -  purine nucleoside phosphorylase, GAPDH -  glyceraldehydes-3- 
phosphate dehydrogenase, L. maj -  L. major, seq -  sequence, ext -  extension, N-term -  N- 
terminal, C-term -  C terminal, enq -  enquiry.

3.1.1 Microbial Arsenate Reductases

The two unrelated classes of bacterial ArsC proteins are both encoded on extra- 

chromosomal plasmids, the most extensively investigated of each being the Gram-positive 

S. aureus pI258 ArsC and Gram-negative E. coli R773 ArsC. For clarification purposes 

these proteins will be herein referred to as pI258 ArsC and R773 ArsC. Together with 

Acr2p, first found in S. cerevisiae and for some time the only known eukaryotic arsenate 

reductase, these proteins comprise the group designated here as microbial arsenate
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reductases. It should be noted that recently Acr2p was identified in plants (Duan et al, 

2005; DhanJkher et al, 2006) and therefore can no-longer be thought of as purely a 

microbial enzyme. Although all three proteins have similarities with other enzymes, they 

have no other identified enzymatic capabilities and are classified specifically as arsenate 

reductases. This may be of importance when considering similar Leishmania sequences.

3,1.1.1 R773ArsC

The L. major genome was searched for sequences similar to the 141 amino acid E. coli 

R773 ArsC protein. The most similar (p/n value -  0.94) predicted protein, LmjF05.0150, 

was annotated as a hypothetical protein. Comprising 441 amino acids, it was predicted to 

be more than three times the length of R773 ArsC and have a 240 amino acid N-terminal 

extension as well as a smaller C-terminal extension, when the two sequences were aligned 

(figure 3.1). The regions of the sequences that did align shared just 11% identity and 33% 

conservation. When the amino acid sequence of LmjF05.0150 was used as an enquiry 

sequence in a blastp search of E. coli proteins, the original ArsC sequence was not found to 

be significantly similar. Other than trypanosomatid proteins, LmjF05.0150 is most similar 

to N0D3, a caterpillar protein involved in T-cell activation. The crystal structure of E. coli 
R773 ArsC has been previously solved (Martin et al, 2001); Arg60, Arg94, and Argl07 

are required to bind arsenate and the actual reduction is dependant on Cysl2. Of these 

residues, none were conserved when the sequence was aligned with that of LmjF05.0150 

although Arg60 and Argl07 aligned with the similarly basic amino acids Lys300 and 

Lys347, respectively. The low percentage similarity together with the high p/n value score 

given for the two proteins being related, imply that LmjF05.0150 is an unlikely R773 ArsC 
arsenate reductase, an observation supported by the lack of conservation between 

important residues and the large difference in predicted protein size. Other sequences 

identified in the search were less similar to R773 ArsC than LmjF05.0150 and 

unconvincing matches; these have not been detailed here.
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Figure 3.1: Alignment of E. coli R773 ArsC with the most similar L. mayor sequence, 
LmjFOS.OSIO. E. coli R773 -  E coli R773 ArsC. The residues known to be essential for arsenate 
binding and reduction in £. coli R773 ArsC are underlined in red; none of these residues are 
present in the L mayor sequence. Dashes indicate gaps in the alignment. Identical residues are 
printed in white on a black background and similar residues are printed in black on a grey 
background.
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3.1.1.2 pl258ArsC

Using the amino acid sequence of the S, aureus pI258 ArsC as the inquiry sequence, the L  

major genome was searched as above for similar proteins to this second class of ArsC 

reductases. Again the most alike (p/n = 0.017) protein, LmjFO1.0200, was annotated as 

being a hypothetical protein but was listed as exhibiting sequence similarities to low 

molecular weight phosphotyrosine protein (LMW PTPs) phosphatases. This was of interest 

as pI258 ArsC proteins are thought to have evolved horn genes encoding these enzymes 

(Zegers et al, 2001) and the B, subtilis pI258 ArsC displays low-level PTP phosphatase 

activity (Bennett et al, 2001). In order to determine whether LmjFO1.0200 was more 

similar to pI258 ArsC or LMW PTPs, the amino acid sequence was used to search the
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protein database at www.ncbi.nlm.nih.gov. Unfortunately the resultant list of alike proteins 

was divided between predicted arsenate reductases and LMW PTPs. One of these was the 

Bacillus subtilis pI258 ArsC, another experimentally confirmed pI258 ArsC (Sato and 

Kobayashi, 1998). This amino acid sequence was used to search for similar L. major 

predicted proteins and once again LmjFO1.0200 was the most alike. However, the p/n 

value was given as 9.0e’°̂ , considerably smaller than when the S. aureus protein was used 

as the inquiry sequence. The sequence of LmjFO1.0200 was used as an enquiry sequence in 

a blastp search of B. subtilis proteins and the most similar was the pI258 ArsC. It is not 

possible to perform a single-organism search on the S. aureus genome at present.

Despite the improved p/n value, several factors suggested that the LmjFO 1.0200 protein 

may not necessarily be a pI258 ArsC. The L  major protein was predicted to contain 300 

amino acids, more than twice the number of the S, aureus pI258 ArsC (130) or the B. 

subtilis enzyme (139). Accordingly, when the three protein sequences were aligned (figure 

3.2), LmjFOl.0200 contained a small N-terminal extension and mid-sequence insertion as 

well as a C-terminal extension of almost 100 amino acids compared to the bacterial protein 

sequences. Of the areas that align, LmjFO 1.0200 shares identity with the S. aureus and B. 

subtilis pI258 ArsC proteins of 21% and 22% respectively, and conservation of 37% with 

both proteins. Several residues have been previously identified as being important for 

activity in both LMW PTP and pI258 ArsC enzymes: all known LMW PTPs contain a 

CXXXXXRS/T motif (Fauman et al, 1996) while a comparable CTGNSCRS motif is 

conserved between pI258 ArsC arsenate reductases (Bennett et al, 2001). In addition, 

Cys82, Cys89 and Asp 105 are all required for the B. subtilis pI258 arsenate reductase 

catalytic mechanism (Messens et al, 1999; Bennett et al, 2001). Although Cys82 and 

Cys89 are conserved in LmjFOl.0200 (Cysl55 and Cysl63, respectively), there is no 

corresponding aspartic acid. Furthermore, there is no intact CTGNSCRS or even 

CXXXXXRS/T motif: although the penultimate and final residues are conserved in Arg51 

and Thr52, the essential cysteine is absent. Due to the fact LmjFO1.0200 lacks the 

necessary amino acid requirements for both arsenate reductase and PTPase activity, it is 

unlikely to possess either of these enzymatic capabilities unless a modified or previously 

unidentified catalytic mechanism is involved.

http://www.ncbi.nlm.nih.gov
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Figure 3.2; Alignment of S. aureus and B. subtilis ArsC with the m ost similar L. major 
sequence, Lmj FOI .0200. S. aur pl258 -  S. aureus pl258 ArsC, B. sub pi258 -  B. subtilis pl258 
ArsC. The residues known to be essential in the S. aureus and B. subtilis sequences are 
underlined in blue and the essential motif is underlined in red. Although the L mayor sequence 
contains a cysteine residue which aligns with the Cys89 of the known pl258 ArsC sequences and 
contains another which aligns adjacent to the Gys82 residue, it lacks an aspartic acid residue that 
aligns with Asp 105 and the essential CTGNSCRS motif. Dashes indicate gaps in the alignment. 
Identical residues are printed in white on a black background, conserved residues are printed in 
white on a grey background and similar residues are printed in black on a grey background.

3.1.1.3 Acr2p

Acr2p -  the third category of microbial arsenate reductases -  was first identified in S. 

cerevisiae, and the 130 amino acid sequence of the yeast protein was used here to search 

the L major genome for similar predicted proteins. Once more the most similar sequence 

was that of a hypothetical protein, LmjF32.2740, and the p/n score given was 0.011. 

Predicted to comprise 229 amino acids, it was again a considerably larger protein than its 

microbial counterpart, S. cerevisiae Acr2p, and when the two sequences were aligned 

(figure 3.3) LmjF32.2740 was expected to have a 100 amino acid N-terminal extension.
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The sections of the two proteins that did align shared 16% identity and 31% conservation. 

When LmjF32.2740 was used as an enquiry sequence to search the S. cerevisiae database, 

the most similar protein was Acr2p. As discussed in chapter 1, Acr2p proteins share 

sequence similarities (including the essential HCXXXXXR motif) with Cdc25a protein 

tyrosine phosphatases, a separate class of phosphatases from the pI258 ArsC-related low 

molecular weight tyrosine phosphatases. This motif was also found in LmjF32.2740:

His 176, Cysl77 and Argl83, respectively. Meanwhile the Cdc25a protein GXGXXG 

motif required for phosphatase activity is absent in both the Z. major and S. cerevisiae 

Acr2p proteins.

LmjF32.2740 has recently been characterised and exhibits arsenate reductase activity in 

vitro (Zhou et al, 2004); the protein has been designated LmACR2. In addition when 

LmACR2 was over-expressed in L. infantum the transgenic parasites displayed increased 

sensitivity to Pentostam; a similar phenotype was also observed when the Leishmania gene 

was expressed in E. coli. Although it appears that LmACR2 is the first example of an 

arsenate reductase in Leishmania, the protein that has been characterised is significantly 

shorter than LmjF32.2740. The possible reasons for this, and the potential implications, are 

discussed in section 1.5 of this chapter.

1 5 0
L m j F 3 2 . 2 7 4 0  ( 1 )  M H R S P F S C E G I A I L A R V L L C H L T A F F F F V V L T V L L F E H S D G R R A L Y F A L R

S .  c e v  A c r 2 p  ( 1 )  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C o n s e n s u s  ( 1 )

5 1  1 0 0
L m j F 3 2 . 2 7 4  0 ( 5 1 )  R L S A S L G G G H D V L L T R E A V C T L W L R V V R E C V P F T G A A S Y A T L L L Y P L L G C

S .  c e v  A c r 2 p  ( 1 )  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C o n s e n s u s  ( 5 1 )

1 0 1  1 5 0
L m j F 3 2 . 2 7 4 0  ( 1 0 1 )  V A i | | N Y | Y I K P E E | a L L D N P D S | p | K A A V l | C R D S D R D C g l | N S l N M P |

S .  c e v  A c r 2 p  ( 1 )  - i y i M F l | s R Q L K G ^ « N Q R K D F Q t a D L R R E | F A R D H I T N k ' 4 H | P V T A Q l |
C o n s e n s u s  ( 1 0 1 )  MS T L I E  L V D A F  V T

1 5 1  2 0 0
L m j  F 3 2 .  2 7 4 0  ( 1 5 1 )  I S C T E E ^ Y E K g K g L F E E K K E L A l g g A Q g L V g g g G g N g A L A Q K K L G Y

S .  c e v  A c r 2 p  ( 5 0 )  E K Q L N Q g l K G g D j | | F S S S Q F V K V 0 g @ r G g K N g g v 0 A 0 | E T Y L Q E E D I
C o n s e n s u s  ( 1 5 1 )  L  L A T I F H C  S R AP K A  KF

2 0 1  2 3 1
L m j F 3 2 . 2 7 4 0  ( 2 0 1 )  V L P A V Y V | R G i W E A F | H M i G D V R P D L | Y | - -

S .  c e v  A c r 2 p  ( 1 0 0 )  T S K F E S C | L v | g FYa | e t | c r E S N L K | i | s G
C o n s e n s u s  ( 2 0 1 )  I  G W H L V

Figure 3.3: Alignment of 5. cerevisiae Acr2p with the m ost similar L. ma/or sequence, 
LmjF32.2740. S. cev Acr2p S. cerevisiae Acr2p. The motif known to be Important in the S. 
cerevisiae protein which Is also preset In the L mayor sequence is underlined in red. The residue 
that has previously been reported as the start methionine of the Leishmania protein (Zhou et al. 
2004) Is underlined in blue. Dashes Indicate gaps in the alignment. Identical residues are printed in 
white on a black background and similar residues are printed In black on a grey background.
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3.1.2 Mammalian arsenate reductases

As detailed in chapter one, the two recently identified mammalian enzymes capable of 

reducing arsenate in vitro -  purine nucleoside phosphorylase (PNP) and glyceraldehyde-3- 

phosphate dehydrogenase (GAPDH) -  may not be responsible for in vivo arsenate 

reductase activity. It is therefore within this context that Leishmania proteins with similar 

sequences to the mammalian arsenate reductases are evaluated: even very similar proteins, 

likely to be present due to the highly conserved sequences of these enzymes due to their 

important cellular roles, are treated with caution.

3.1.2.1 PNP

The sequence of the 289 amino acid human PNP was used to search the L. major genome 

for similar predicted proteins. The most significant homologue -  with a p/n score of 7.1e'^ 

-  was that of LmjF05.0830, a predicted protein annotated as a methylthioadenosine 

phosphorylase (MTAP) although this is inferred from homology rather than experimental 

evidence. At 306 amino acids LmjF05.0830 is similar in size to human PNP and the 

proteins share 21% identity and 42% conservation. When LmjF05.0830 was used as an 

enquiry sequence in a blastp search of human proteins, nine sequences were more similar 

to the Leishmania protein than the PNP, with the most alike being a MTAP. LmjF05.0830 

is considerably more similar to this class of phosphorylase than to PNP (figure 3.4): the 

identity between the human protein (identification number NP002442) and the L. major 

sequence is 34%. Accordingly, the annotation in the database describing LmjF05.0830 as a 

MTAP can probably be regarded as accurate as the amino acid sequences are so closely 

related. It is interesting to note that there are no predicted proteins annotated as, or 

displaying significant homology to, mammalian PNP included in the L major genome.
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Figure 3.4: Alignment of Human PNP and MTAP sequences with the m ost similar L  major 
sequence, LmjF05.0830. The L mayor sequence is more similar to human MTAP (identification 
number NP002442) than to PNP. Dashes indicate gaps in the alignment. Identical residues are 
printed in white on a black background, conserved residues are printed In white on a grey 
background and similar residues are printed In black on a grey background.

3.1.2.2 GAPDH

Using the sequence of the 335 amino acid human GAPDH protein as the inquiry sequence, 

the L. major genome was searched for similar proteins to this second class of mammalian 

putative arsenate reductases. Four Z. major protein sequences were found to share 

significant similarity with human GAPDH and are all annotated as such. The first two of 

these four homologues, LmjF30.2970 and LmjF30.2980, will be considered together as 

they are tandemly arrayed and their sequences differ by just one amino acid. Both 361 

amino acid proteins, which are similar in size to the human homologue, share 51% identity 

and 70% conservation with human GAPDH; these high values are reflected in the p/n 

scores which are 2.3e"̂  ̂for LmjF30.2970 and 5.3e'^  ̂for LmjF30.2980. The predicted 

proteins are annotated as glycosomal GAPDHs and are >95% similar to an experimentally
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characterised L. mexicana glycosomal GAPDH (Hannaert et al., 1994). The glycosomal 

location of both these proteins together with the cytosolic location of the third L  major 

GAPDH has also been experimentally proven (Hannaert et al, 1992).The third L. major 

GAPDH, LmjF36.2350, is just 215 amino acids long: over 120 amino acids present at the 

N-terminus of the human and other L. major GAPDH proteins are absent. However the p/n 

score is highly significant -  -  and the identity and conservation between the

aligning regions of LmjF36.2350 and human GAPDH are 6 8 % and 80%, respectively. The 

predicted protein, which is annotated as a cytosolic GAPDH, appears to be a partial 

GAPDH. However when the upstream DNA sequence was retrieved and translated, it too 

aligned with human GAPDH and proved to be the missing N-terminal part of the protein,

A putative start methionine codon at the point in the sequence that would result in the 

missing portion being translated was also in frame, although a downstream stop codon 

prevented this sequence from being included in the LmjF36.2350 open reading frame. 

Whether a mutation has caused a stop codon to appear and for either a truncated protein to 

be translated or for LmjF36.2350 to have effectively become a pseudo-gene (perhaps 

possible due to degeneracy between the L  major GAPDH enzymes), or whether this is a 

straightforward error in the sequencing, is unclear. If the latter is true LmjF36.2350 is a 

strong contender to be a third L. major GAPDH and possible arsenate reductase. The 

fourth L  major GAPDH-like protein, the 349 amino acid Lmj35.4750, is less similar to the 

human enzyme with a p/n score of 9.3e'^\ However this is a relatively significant value 

and the Leishmania sequence, which is annotated as a GAPDH, shares 26% identity and 

45% conservation with the human protein. When each of the sequences of the L. major 

proteins similar to GAPDH were used as enquiry sequences in blastp searches of the 

human protein database, the most similar to each was GAPDH. All four L. major predicted 

GAPDH sequences aligned with the human GAPDH sequence are shown in figure 3.5.
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Figure 3,5: Alignment of human GAPDH with the most similar L. mayor, sequences, 
LmjP30.2970, LmjF30.2980, LmjF35.4750 and LmjF36.2350. LmjF30.2970 and LmjF30.2980 are 
almost identical in sequence. Dashes indicate gaps In the alignment. Identical residues are printed 
In white on a black background, conserved residues are printed in white on a grey background and 
similar residues are printed in black on a grey background.
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3.2 Analysis of omega glutathione S-transferase-iike 

genes in L. major

In section 3.1, the presence in L. major of amino acid sequences similar to known arsenate 

reductase proteins was investigated. However, as is discussed in chapter one, reduction is 

not the only form of metalloid metabolism known to occur in vivo: biomethylation of 

arsenicals, and indeed antimonials, is also possible. Although most studies of 

biomethylation have focused on the méthylation of arsenicals in mammalian systems 

(Zakharyan et al, 1999), a similar process is known to occur in various microbes with 

antimonial species (reviewed in Bentley and Chasteen, 2002). The mammalian enzyme 

AS3MT is responsible for the methyltransferase activity (Lin et al, 2002; Wood et al,

2006). A search for similar enzymes to AS3MT in the L. major predicted proteins database 

yielded one significant (p/n score ~ 7.1e‘̂ )̂ homologue, LmjF35.4250, although the protein 

sequence is much more similar to, and is annotated as, 3-demethyIubiquinone-9,3- 

methyltransferase, a methyltransferase involved in the synthesis of ubiquinone.

Meanwhile human enzyme MMA(V) reductase (which enzymatically reduces methylated 

pentavalent arsenicals as opposed to inorganic arsenate) has recently been identified as 

oGST (Zakharyan et al, 2001). oGST sequences have since been identified in a wide range 

of organisms and have a conserved C-P-Y/F-A/V/S motif at their predicted active sites 

(figure 3.6). The role of oGST in arsenic metabolism in vivo remains unclear although 

naturally-occurring polymorphisms in oGSThmc been linked to arsenic-susceptibility in 

mammals (Schmuck et al, 2005) and alterations in excreted arsenical profiles in humans 

(Mamell et al, 2003). More recently oGST has been reported to reduce arsenate, as well as 
MMA(V), in vitro (Zakharyan et al, 2005) -  an observation that effectively adds a new 

class of proteins to the rapidly increasing number of arsenate reductases described earlier 

in this chapter. In this section an investigation of L. major genes and proteins similar to 

oGST is presented.
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Figure 3.6; Alignment of various oGST amino acid sequences. oGST-llke sequences have now 
been discovered In a diverse range of organisms. The sequences all share the predicted active site 
motif of C“P“Y/F"A/SA/ situated at position 31-33 of human oGSTI (underlined in red). The 
Identification numbers for the oGST sequences are as follows: chicken, XP421747; human 1, 
NP004823; human 2, NP899062; mosquito, AAP13482; mouse, NP034492; pufferflsh, AAL08414; 
schistosome, AA049385. Dashes Indicate gaps In the alignment. Identical residues are printed in 
white on a black background, conserved residues are printed in white on a grey background and 
similar residues are printed in black on a grey background.
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3.3 Omega GST-like sequences in the L. major genome

In order to identify Leishmania genes or proteins similar to oGST, the amino acid sequence 

of human oGST 1 (identification number NP004823) was used as an inquiry sequence to 

search the L. major databases available at www.genedb.org. This search was initially 

performed in 2003 when the L. major genome had not been fully sequenced. Several 

sequences, deemed 1ml 6, lm33 and lm34 based on the Leishmania chromosomes they 

mapped to, displayed significant similarity to oGST, including in the active site motif 
(figure 3.7). As stated the sequencing of the genome at this time was incomplete and the 

databases not yet annotated; for each fi*agmentary oGST-like sequence the specific codon 

that translated to the start methionine was ambiguous. Furthermore lm34 lacked an in- 

firame stop codon. Unfortunately analysis of the surrounding sequences in silico to 

elucidate the open reading frames was impossible due to the non-assembled condition of 

the genome. Consequently it was necessary to perform rapid amplification of cDNA ends 

(RACE) on the sequences -  5’ RACE on all three sequences and 3’RACE on lm34 - in  an 

attempt to reveal the complete genes. This was successful for the sequence lm33, as 
detailed later in this chapter.

http://www.genedb.org
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Figure 3.7: Alignment of L. mayor oGST-like sequences with human 0GSTI. All sequences are 
fragmentary; Im33 has a putative start methionine at position 8 but tm16 and lm34 do not, while 
Im34 also lacks an in-frame stop codon. However all sequences contain the conserved C-P-Y/F- 
AA//S active site motif present in oGSTs (underlined in red). Dashes indicate gaps in the alignment. 
Identical residues are printed in white on a black background, conserved residues are printed in 
white on a grey background and similar residues are printed in black on a grey background.

3.3.1 !m16 and Im34: analysis of two oGST-like sequence 

fragments

As mentioned, RACE was performed on the fragmentary 1ml 6 and lm34 sequences to 

discover the positions of the relevant start and stop codons and hence elucidate the 

complete open reading frames. Frustratingly, despite repeated attempts, the reactions did 

not yield any products of the expected size; accordingly the DNA that was sequenced was 

found to be non-specific and unrelated to the sequences being analysed. Furthermore, 

attempts to amplify 1ml 6 and lm34 by standard PCR also proved to be unsuccessful. At 

this point the sequences were used as inquiry sequences in tblastx searches of the translated
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database at www.ncbi.nlm.nih.gov. Both sequences, particularly 1ml 6, were found to share 

very high similarity with proteins from rod-forming, gram-negative bacteria 

Photobacterium profundum and Pseudomonas fluorescens (figure 3.8). This was 

unexpected as the sequences of oGST-like sequences are not particularly highly conserved 

between species (figure 3.6). The high level of similarity between the Leishmania and 

bacterial sequences, together with the experimental difficulties encountered when trying to 

amplify the genes, lead to the hypothesis that 1ml 6 and lm34 may not be L. major genes 

and may have been included in the genome database due to bacterial contamination in the 

sequencing material. Therefore no further analysis of 1ml6 and lm34 was attempted at this 

time. Due to the fact that neither sequence appears in the now completed L. major genome, 

the hypothesis was likely to have been correct and the decision to terminate investigation 
into these sequences justified.
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Figure 3.8: Alignment of Im16 and Im34 with bacterial amino acid sequences. A -  im34 
aligned with Photobacterium profundum sequence. B -  Im16 aligned with Pseudomonas 
fluorescens sequence. The high level of similarity coupled with the failure to amplify the supposed 
Leishmania sequences from parasite DNA suggested the Im16 and Im34 may be bacterial. The 
sequences no longer appear in the L. major genome database. Dashes indicate gaps in the 
alignment. Identical residues are printed in white on a black background and similar residues are 
printed In black on a grey background.

http://www.ncbi.nlm.nih.gov
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Genes annotated as glutaredoxins and thioredoxins in the L  

mayor genome

Previously oGST has been shown to share amino acid sequence similarity (including the 

proposed active site motif), and enzymatic activities with glutaredoxins and thioredoxins 

(Board et al, 2000) and structural identity with E. coli glutaredoxin 2 (Xia et al, 2001). 

Indeed recombinant oGST is more similar to glutaredoxins in activity than to other classes 

of GSTs. Whether glutaredoxins or thioredoxins are also capable of directly reducing 

pentavalent metalloids -  either inorganic or methylated -  has never been explored. Such an 

activity could explain the previous observation that the transformation of arsenite to 

dimethylarsinate, which involves the reduction of methylarsonate, was possible in vitro 

with just the arsenical-methylating protein AS3MT, thioredoxin, thioredoxin reductase and 

NADPH present (Thomas et al, 2004). The likenesses between methylarsonate-reducing 

oGST and these proteins, coupled with the possibility that they may directly reduce 

arsenicals, was the basis for analysing the L  major predicted proteins database for 

glutaredoxins and thioredoxins.

There are five L .major predicted proteins annotated as being putative glutaredoxins 

although in all cases the function has been inferred from homology rather than being based 

on experimental analysis. They are LmjF14.1480 (311 amino acids), LmjF20.1010 (107 

amino acids), LmjF05.0310 (180 amino acids), LmjF27.0810 (109 amino acids), and 

LmjFO 1.0110 (195 amino acids). The largest of these predicted proteins, LmjF14.1480 is 

annotated as being a putative glutathione S-transferase or glutaredoxin. Two L. major 

predicted proteins, LmjFO1.0270 and LmjF35.1250, are also annotated as being putative 

thioredoxins (again, function inferred from homology). When the amino acid sequences of 

these predicted proteins were used as inquiry sequences for blastx (translated sequence 

versus protein database) searches at www.ncbi.nlm.nih.gov, all were most similar to 

predicted or experimentally characterised glutaredoxins or thioredoxins, again with the 

exception of LmjF14.1480 which was most similar to prostaglandin E synthase 2. These 

proteins have been previously found to possess glutathione S-transferase activity; 

accordingly LmjF14.1480 is treated as such here and is discussed in section 3.4 of this 
chapter.

The L  major amino acid sequences were compared to those of glutaredoxins 1-5 (grxl-5) 

and thioredoxins 1 and 2 (trxl and trx2) of the fission yeast Schizosaccharomyces pombe, 

and aligned using alignX (figures 3.9 and 3.10). The thioredoxin-specific motif WCGPCK 
is present in just one of the L. major predicted thioredoxins, LmjFO1.0270, and this protein

http://www.ncbi.nlm.nih.gov
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also shares the highest level of sequence identity with trxl and trx2 of S. pombe. Even 

more strikingly, LmjFO1.0270 is 56% identical to T. brucei brucei thioredoxin which has 

been experimentally characterised (Reckenfelderbaumer et al, 2000). However, the second 

predicted thioredoxin, LmjF35.1250, does not contain the aforementioned motif but does 

possess a comparable N-terminal WCEFCT sequence (figure 3.9). In addition the predicted 

protein has a CGFT motif which is similar to, and aligns with, the CGFS active site motif 

of the S. pombe glutaredoxins grx4 and grx5 (figure 3.10). X pombe grx4 also contains an 

N-terminal thioredoxin-like motif, WAAPCK, potentially responsible for cellular nuclear 

localisation rather than thioredoxin or glutaredoxin-like activities (Molina et al, 2004). 

LmjF35.1250 shares considerably liigher levels of identity with grx4 and grx5 -  20% and 

28%, respectively -  than with trxl (11%) and trx2 (8%). It is reasonable to conclude that 

LmjF35.1250 is a monothiol glutaredoxin tliat contains a thioredoxin-like motif, rather 
than an actual thioredoxin protein.
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Figure 3.9; Alignment of S. pombe trx1 and tnc2 with the annotated L. major irx sequences, 
LmjFOI.0270 and LmjF35.1250. The trx-specifio motif is present in LmjF01.0270 but not 
LmjF35.1250 (underlined in red). The grx-like motif in LmjF35.1250 Is underlined in blue. Dashes 
Indicate gaps in the alignment. Identical residues are printed in white on a black background, 
conserved residues are printed in white on a grey background and similar residues are printed in 
black on a grey background.
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Of the annotated glutaredoxins (with the exception of LmjF14.1480), all aligned with S. 

pombe glutaredoxins and had similar active site motifs to them (figure 3.10). Only one, 

LmjF27.0810, had a conventional glutaredoxin dithiol active site (C-P-Y-C). This protein 

also shared highest levels of identity, in both cases 35%, with the S. pombe dithiol 

glutaredoxins grxl and grx2. The predicted active sites of the remaining L. major putative 

glutaredoxins contain just one cysteine: C-A-F-S (LmjFOl.OllO), C-R-F-T (LmjF05.0310) 

and C-Q-F-S (LmjF20.1010). LmjF20.1010 shares 24% sequence identity with both grx4 

and grx5 but the aligned sequence is 28% identical to grxl. However, because of the single 

cysteine residue in the active site motif of these L. major predicted proteins, all three of 

them are likely to be monothiol glutaredoxins. Two of them, LmjFO 1.0110 and 

LmjF05.0310, are predicted to have N-terminal signalling tags and when the amino acid 

sequences were entered into targetP they were both predicted to be mitochondrial proteins.

In summary, L. major is likely to contain one thioredoxin, one dithiol glutaredoxin and 

four monothiol glutaredoxins, up to three of which may localise to cellular organelles, such 

as the mitochondria, or be secretory proteins. Although their primary role is unlikely to be 

metabolising metalloids in the parasite, investigation into whether any of these predicted 

proteins are capable of reducing and hence activating pentavalent antimonial drugs would 

be worthwhile. However, these have not been analysed in this study due, in part, to the 

presence of sequences sharing considerable similarity to those of the verified mammalian 

arsenical reductase oGST in the L. major genome, as described previously.
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Figure 3.10: Alignment of S. pombe grxl, grx2, grx3, grx4 and grx5 with the annotated L. 
mayor grx sequences, LmjF27.0810, LmjF20.1010, LmjFOI.0110 and LmjFG5.0310; plus 
LmjF35.12S0. The trx-like motif present in S. pombe grx4 is underlined in red. The predicted grx 
active sites, including monothiol and dithiol motifs, are underlined in blue. Dashes indicate gaps in 
the alignment. Identical residues are printed in white on a black background, conserved residues 
are printed in white on a grey background and similar residues are printed in black on a grey 
background.
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3.4 Analysis of S-hexyi-GSH-binding proteins in 

Leishmania

Glutathione S-transferases (GSTs) are a diverse family of detoxification enzymes present 

in most life forms that catalyse the conjugation of glutathione (GSH) to both endogenous 

and exogenous electrophillic compounds. They have been implicated in a wide range of 

cellular reactions (Hayes et al, 2005) including drug-resistance, notably to anti-cancer 

compounds (Townsend and Tew, 2003). It is thus possible that GSTs could be involved in 

directly detoxifying antimonial compounds. However, the recently discovered involvement 

of mammalian oGST in arsenical reduction (Zakharyan et al, 2001) was the most 

compelling reason to look for GSTs in Leishmania.

In 2002 several known GST sequences were used as inquiry sequences in searches of the 

various Z. major genome and proteome databases. With the exception of the oGST-like 

sequences described previously, and with LmjF14.1480 being more similar to 

prostaglandin E2 synthase, there were no highly significant similar sequences to any of the 

classes of GST used in the searches. Prostaglandin E2 synthases are members of the 

MAPEG (Membrane Associated Proteins in Eicosanoid and Glutathione metabolism) 

family which include microsomal, membrane-bound GSTs. Many of these proteins 

catalyse the conjugation of l-chloro-2,4-dinitrobenzene with GSH (Bresell et al, 2005), 

generally considered as being the standard GST activity. Therefore it is plausible that 

LmjF14.1480 could function as a cellular GST and, despite the associated problems in 

analysing membrane-bound proteins, could be an interesting candidate for investigation. 

Flowever, Z major sequences encoding cytosolic GSTs (like oGST) remained elusive. The 

abundance of cytosolic GSTs in most life-forms suggested that GST-encoding genes would 

be present in the Z. major genome; the lack of them found at this time was explained by 

the difficulty in identifying GSTs due to the highly divergent nature of proteins belonging 

to this large, diverse super-family (Sheehan et al, 2001), Therefore attempts were made to 

isolate GST proteins directly fi*om Leishmania parasites using biochemical methods.

3.4.1 Isolating Leishmania proteins using S-hexyi-GSH sepharose

It has been reported that pig oGST binds to S-hexyl-glutathione (S-hexyl-GSH) and that 

this property can be exploited to purify the protein from cellular extracts (Rouimi et al, 

2001). This approach, together with mass-spectrometric analysis of the recovered proteins, 

was used here in an attempt to find novel Leishmania GSTs. S-hexyl-GSH sepharose was 

used as oGSTS were of specific interest due to their in vitro arsenate reductase activities.
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Briefly, Leishmania parasites were harvested and lysed and the soluble fraction was 

incubated with S-hexyl-GSH. Bound proteins were subsequently eluted from the sepharose 

and analysed by SDS-PAGE; consistently appearing bands were analysed by mass- 
spectrometry so their identity could be ascertained.

3.4.2 The range of Leishmania proteins isolated using S-hexyl- 

GSH sepharose is reproducible

Before pursuing the identity of S-hexyl-GSH binding-proteins by mass spectrometric 

analysis it was important to optimise the elution conditions to enhance yield and 

reproducibility. Large cultures of Leishmania promastigotes were harvested so that each 

sample contained at least 1x10^ parasites, a volume sufficient for the resultant eluted 

proteins analysed by SDS-PAGE to be visible following silver-staining. Both the amount 

of S-hexyl-GSH used in the elution buffer and the pH of the elution buffer were varied in 

order to determine whether bound proteins could be eluted gradually from the sepharose 

(figure 3.11 A and 3.1 IB). However, it was found that this approach yielded similar protein 

compositions in each elution and therefore the number of elutions performed in subsequent 

experiments was limited. Using large volumes of parasites and silver-staining the SDS- 

PAGE gels did, however, provide confirmation that reproducibility in proteins eluted 

between different samples could be achieved (figure 3.11 A). Several proteins were eluted 

in the range of 20-30 kD (figure 3.1 IB): these were of particular interest as cytosolic GSTs 
from other organisms are around this size.
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Figure 3.11: Silver-stained SDS-PAGE gels of Leishmania proteins eluted from S-hexyl-GSH 
sepharose. A1 and A2 -  L. infantum proteins eluted with increasing concentrations of S-hexyl- 
GSH as lat)elled above the gel images. hex-GSH = S-hexyl-GSH. A1, 1.8 x 10® parasites used; A2, 
2.6 X 10® parasites used. All elutions were performed in 50 mM Tris-HCI, pH 8.0. Protein molecular 
masses are indicated to the left of the gel image in kD (kilodaltons). B -  L. major proteins eluted 
with different S-hexyl-GSH concentrations and high pH buffer, as lat>elled above as before. Final 
wash performed in bind/wash buffer pH 7.3. All elutions performed in Tris-HCI pH 8.0 except for 
final elution performed in same buffer but at pH 9.5 as indicated. Ladder shown is benchmark 
protein ladder; protein sizes are shown as t>efore. Proteins eluted from the S-hexyl-GSH sepharose 
are indicated with red arrows.
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3.4.3 Similar proteins are isolated from different species of 

Leishmania with S-hexyl-GSH sepharose

As well as achieving reproducibility between S-hexyl-GSH binding-proteins recovered 

from different L. major samples, it was desirable to ascertain whether similar proteins 

could be detected from different Leishmania species. A final wash with elution buffer 

without S-hexyl-GSH was introduced that was performed with the same volume as the 

elutions. This was to ensure that the proteins detected were being eluted specifically by the 

S-hexyl-GSH in the buffer, rather than by a non-specific effect due to the change in buffer 

and pH: proteins that were either only present or were more abundant in the elution 

samples were of interest as they were being specifically eluted by the S-hexyl-GSH. In 

each species -  L. major, L. infantum and L. mexicana -  one or two proteins were identified 

that met these criteria (figure 3.12). Moreover the proteins detected were of comparable 

sizes suggesting that the same proteins could be isolated from different Leishmania species 

using S-hexyl-GSH sepharose. A protein of approximately 30 kD, similar in size to oGST, 

was isolated from both L. major and L. infantum.

kD

50

36

22

L. major L. Infantum L. mexicana
Figure 3.12: SDS-PAGE analysis of S-hexyl-GSH binding-proteins in different species of 
Leishmania. For each different species (as labelled below the gel images) the proteins in the final, 
low-volume wash and either one or two different elutions have been subjected to SDS-PAGE; the 
proteins have been visualised by silver-staining. Protein molecular weights are indicated to the left 
of each gel image in kD (kilodaltons). Proteins more abundant in the eluted fractions than in the 
washes have been identified and marked with arrows: L major, green arrows, L infantum, blue 
arrows, L mexicana, red arrow. Similarly sized proteins were detected in each species.
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3.4.4 Identification of proteins isolated from Leishmania with S- 

hexyl-GSH sepharose

Using L  infantum parasites the experiment was repeated, again using low-volume washes 

with the different buffers so that proteins eluted by specifically by S-hexyl-GSH could be 

recognised. This time the gel was stained with coomassie rather than silver nitrate as the 

former is compatible with mass spectrometry while the latter is not. Following resolution 

by SDS-PAGE, three proteins were visible that were significantly more abundant in the 

eluate as compared to the final wash (figure 3.13). These protein bands were excised and 

the contents of the approximately 30 kD protein band were analysed by mass spectrometry. 

Unfortunately the proteins identified did not correspond to any of the putative GST 

sequences already identified by searching the Leishmania genome databases. The most 

significant match was to pyroline-5-carboxylate reductase which at 28.7 kD is similar in 

size to the band excised for analysis. Alpha-tubulin, a commonly found contaminant due to 

its abundance in the cell, was also detected. The failure of this technique to identify any 

GSTs in Leishmania was, with hindsight not entirely unexpected: aside from those 

predicted proteins mentioned elsewhere in this chapter, no GSTs exist within the now 

fully-sequenced L. major genome.

. 4

20
1

y

‘■I *

Figure 3.13: Coomassie-stained gel of L. infantum S-hexyl-GSH-blnding proteins. The
different fractions, as labelled at>ove the gel image, have been subjected to SDS-PAGE analysis. 
Wash 3, low-volume wash at pH 7.5; wash 4, low-volume wash at pH 9.5; eluate, proteins eluted 
with 10 mM S-hexyl-GSH, pH 9.5. Protein molecular weights are indicated to the left of the gel 
image in kD (kilodaltons). Proteins that were more abundant in the eluate are marked with arrows. 
The red arrow indicates the -30 kD band that was excised and analysed by mass spectrometry.
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3.5 Identification and analysis of TDR1 {Êm33)

In section 3.3, the discovery of three oGST-like sequences in the L. major genome was 

described. Two of these -  1ml 6 and lm34 -  were shown to be probable bacterial sequences 

and no longer appear in the genome. Like 1ml 6 and lm34 the third sequence -  called lm33 

after the chromosome the sequence was consigned to -  was fragmentary and molecular 

analysis was required to elucidate the complete coding sequence. That investigation and 

subsequent identification of the gene is described in this section.

3.5.1 Identification of the complete TDR1 gene

5’RACE was performed on the lm33 in order to locate the position of the start methionine. 

The sequence had originally been identified due to its similarity to human oGST and the 

complete gene was predicted to be of a similar size to the human sequence: approximately 

723 nucleotides. The position of the internal primer determined that the 5’RACE reaction 

should yield a product of 200 base pairs plus the unknown 5’ untranslated region, likely to 

be about another 100-200 base pairs. Unexpectedly, gel electrophoresis revealed four 

distinct products of approximately 450 base pairs, 950 base pairs, 1100 base pairs and 2200 

base pairs (figure 3.14A). Although the smallest was most likely to be the desired product, 

all four bands were excised and ligated into the pGEM T-easy vector. Clones of the vector 

containing each of the three smallest products were obtained and the DNA was harvested 

and sequenced.

Surprisingly, sequencing revealed that the smallest product in the reaction was non-specific 

(did not contain any of the lm33 sequence) while both the 950 and 1100 base pair products 

contained the known sequence of lm33. Indeed, these two products transpired to be almost 

identical, differing only in the lengths of their untranslated N-terminal regions 

corresponding to two different transcripts. Both products contained approximately a further 

625 base pairs of additional coding sequence as well as the 200 base pairs previously 

predicted. As a result the lm33 coding sequence contained a large N-terminal extension 

when compared to those of mammalian oGSTs; the complete gene was 1353 base pairs 

long as opposed to the 723 base pairs of human oGSTl. The entire lm33 gene, including 
the variant 5’ untranslated regions, and resultant amino acid sequence is shown in figure 

3.14B. The gene was named TDRI, an acronym for thiol-dependant reductase 1, alluding 

to the activity of the protein it encodes. Analysis of the TDRl amino acid sequence showed 

that the newly-revealed N-terminal half of the protein was also similar to oGST and 

consequently the two halves of TDRl were similar to each other (figure 3.15).
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B
1 AACTAACGCT ATATAAGTAT CAGTTTCTGT ACTTTATTGC CGAGCACCAC AGCAAGGAGG TCCCCTGCAG

71 CCCTTTAGTG TCCGCTCCCC CTCGTCCACC TTCTTTTCCG TCTCGACTTG TTTTTCTGCT CTCCCACACG
141 GGCTCTCACC GTCTGTGGCT CTCCCCCGTT AGAGAGGTGC GCCCGCTGCG TGTGTGTGTG TGCGTGTGTG
2 11 TGTGTGTGTG TTGCTGCTGA AGCTTTCCGC TTATCTTGGC ACCGTTGGCC CACCACTGAA CCACTGAGTG

M A A R A L K L 'ï  V S A T C P F C H R
2 81 CCTGGCGTGT CGGGGATGGC CGCGCGCGCG CTAAAGCTGT ACGTGTCGGC GACGTGCCCG TTCTGTCACC

• V E I V A R E K Q V S Y D R V A V G L Fl E E M
351 GCGTGGAGAT CGTTGCGCGG GAGAAGCAGG TCTCCTACGA TCGGGTTGCT GTTGGGCTTC GCGAGGAGAT

• P Q W Y K Q I N P R E T V P T L 1S V G N A E K
421 GCCGCAATGG TACAAGCAGA TCAACCCGCG TGAGACAGTG CCGACGCTGG AGGTCGGCAA TGCGGAGAAG

R F V E E S M L I A Q Y L I3 N S G A P A G A L M
491 CGGTTTGTGT TCGAGTCGAT GCTGATCGCG CAGTACCTGG ACAACAGTGG CGCGCGCGCG GGTGCGCTGA

• G A S S A G R H Q I E F F L A Q V G D E I  A A
561 TGGGTGCCTC GTCGGCGCAA CGACACCAGA TTGAGTTCTT CCTCGCCCAG GTCGGCGATT TCATTGCTGC

• A H G L L R D P L S G E K R K A ^ D D N A A Y
631 TGCGCACGGG CTACTCCGCG ACCCGCTGAG TGGTGAGAAG CGCAAGGCCG TGGATGACAA CGCGGCGTAC

V D G Ij L A A N O T T G P 't  Y C D G E F T M A D
701 GTGGACGGGC TGCTCGCGGC GAACCAGACG ACGGGGCCAT ACTACTGCGA CGGCGAGTTC ACGATGGCGG

• V A L V P F L V R L K P A L M Y Y A G Y D V F
771 ACGTTGCGCT TGTGCCGTTC CTGGTGCGAC TGAAACCTGC TCTGATGTAC TACGCCGGGT ACGACGTGTT

• C K A P R M K V L W A A A A Q R 'r S V R E T S
841 CTGCAAGGCG CCACGAATGA AGGTGCTGTG GGCœCTGCT GCTCAACGCA CATCTGTGCG TGAGACGTCG

P T A ; L Q C I E N Y R H L /  P E S A P M M G A N
911 CCGACGGCGG CACAGTGCAT CGAGAACTAC CGCCACCTGG TTCCGGAGAG CGCGCCAATG ATGGGCGCCA

• G G H V L Y S N L E C P F V D R A R L A C E L
981 ATGGCGGGCA CGTGCTGTAC AGCAATCTTT TCTGTCCTTT TGTGGACCGC GCACGCCTCG CGTGTGAGCT

• R K F Q V H 1 V E V P L H P E P ]E W Y K Y I  N
105 1 GCGCAAGTTC CAGGTGCACA CGGTGGAGGT GCCGCTGCAT CCAGAGCCQG AGTGGTACAA ATATATCAAT

P R D 1? V P A L F T P S G ] E A V H E S Q L I  V Q
112 1 CCCCGCGATA CGGTGCCTGC GCTATTTACG CCGAGCGGCG AGGCTGTACA CGAGTCGCAG CTGATTGTTC

• Y I  D C V A T E G I A L V P R G D A E K E Y E '
1191 AGTACATCGA CTGCGTGGCG ACGGAGGGTA CTGCGCTGGT GCCGCGTGGG GACGCGGAGA AGGAGTACGA

• V G F F V E N A G Y F V G G L M :S W I  I R G G
126 1 GGTGGGTTTC TTCGTGGAAA ACGCTGGGTA TTTCGTTGGA GGACTGATGT CGTGGATCAT CCGTGGTGGC

E D A K A E L Q W A A G E ] L E Q Q L A K H P F G
1 3 3 1 GAGGATGCGA AGGCTGAGCT TCAGTGGGCT GCTGGCGAGC TCGAGCAGCA GCTGGCGAAA CACCCGTTTG

• E G P F F G G K R M N A G D V A I  L P F L V R
1401 GTGAGGGCCC CTTCTTCGGC GGCAAGAGGA TGAACGCTGG CGATGTGGCC ATTCTACCTT TCCTGGTCCG

• A K A F M P E F S G G Y D L F A 1H F P L L N V
1 4 7 1 TGCAAAGGCG TTTATGCCGG AGTTTAGTGG CGGGTACGAT CTCTTCGCCC ACTTTCCGCT GCTGAATGTG

L A E A G M A A P E A K A '/  F R T L E E Y K E H
1541 CTGGCAGAGG CTGGCATGGC GGCACCGGAG GCGAAGGCGG TGTTTCGTAC ACTCGAGGAG TACAAGGAGC

• I R Q R Q R R A Q G; G *
1 611 ACATCCGTCA GCGTCAACGG AGGGCCCAGG GCGGGTAA

Figure 3.14: Elucidation of the complete TDR1 (im33) open reading frame. A -  the amplified 
products of the 5’ RACE reaction subjected to gel electrophoresis. Sizes in bp (base pairs) are 
indicated to the left of the image. Four distinct bands were visible, labelled 1-4, which were excised, 
cloned and sequenced. Bands 2 and 3 were the amplified Im33 transcripts. 8 -  the Im33 (now 
called TDR1) open reading frame. The spliced-leader sequence is shown in red and the N-terminal 
untranslated sequence exclusive to the longer transcript (band 2 in part A of this figure) is shown in 
blue. The three letter amino acid codes are shown for the translated part of the sequence which 
encodes 450 amino acids rather than the 241 predicted. Where codons extend over two lines, dots 
are shown at the end and beginning of lines to represent this.
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Figure 3.15: The N- and 0- terminal halves of TDR1 are both similar to human oGST and to 
each other. Dashes indicate gaps in the alignment and the predicted active site motifs in both the 
N- and C- terminals are underlined in red. Identical residues are printed in white on a black 
background, conserved residues are printed in white on a grey background and similar residues 
are printed in black on a grey background.

Comparisons of the amino acid sequences using the vector NTI alignX function showed 

that human oGST shares 19% identity with the N-terminal half of TDRl and 22% identity 

with the C-terminal half, while the halves are 28% identical to each other. It is interesting 

that despite their similarity, the two halves contain different predicted active site motifs: C- 

P-F-C in the N-terminal, and C-P-F-V in the C-terminal.

3.5,2 Tc52: Identification of a TDR1 homologue in T. cruzi

Using TDRl as an inquiry sequence allowed detection of a similar sequence of comparable 

length in the Trypanosoma cruzi database (TcOO. 1047053503419.30) and more recently in 

that of T. infantum (LinJ33.0270) (figure 3.16). When aligned as before, these sequences 

were shown to share 45% and 96% identity with TDRl, respectively. Die predicted active 

site motifs are conserved in the N-terminal halves but the T .cruzi motif differs in the C- 

terminal: the cysteine residue at position 240 and the valine residue at position 243 in 

TDRl are both replaced by serine residues in the T. cruzi protein. The Leishmania 

sequences are identical in these regions. Interestingly, no full-length sequences
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homologous to TDRl appear in the T. brucei, T. vivax, T. congolense, or T. gamhiense 

predicted protein databases.
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Figure 3.16: Alignment of TDRl with similar sequences from L. infantum and T. cruzi.
Dashes indicate gaps in the alignment and the predicted active site motifs in both the N- and 0- 
terminals are underlined in red. Identical residues are printed in white on a black background, 
conserved residues are printed in white on a grey background and similar residues are printed in 
black on a grey background. L. inf. TDR1, L  infantum sequence (LlnJ33.0270): L. maj. TDR1, L 
major sequence {LmjF33.0240); T. cru. TC52, T. cruzi sequence (TcOO. 1047053503419.30).



Joanne C. McGregor, 2006

3.5.3 Amplification and cloning of TDRl
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Before the complete TDRl open reading frame (ORF) was elucidated. Dr. Helen Denton 

of the University of Glasgow had cloned the 3’ half of the coding sequence into the 

pET28a(+) vector which allowed expression of the C-terminal region of TDRl with an N- 

terminal His-tag. Therefore, following the discovery of the remainder of the gene, it was 

decided to clone both the 5’ half of the coding sequence (5’TDRl) as well as the full- 

length TDRl ORF. Both sequences were amplified from L major genomic DNA (figure 

3.17A) and sub-cloned into pGEM T-Easy before being cloned into pET28a(+) 

(represented in figure 3.17B). The production of recombinant TDRl and 5’TDRl is 

presented in chapter four.

B f1 origin Vo/I (167) f1 origin NoA (167)

6HIS-N-TDR1
6HIS-TDR1

Kan Kan Ndd (853)

pET28a+TDR1
6655 bp

pET28a+N-TDR1
5985 bp

lad

lad

Figure 3.17: Amplification of TDRl and 5TDR1, and expression constructs for production of 
recombinant protein. A -  ethidium bromide-stained gel showing the products of PCR amplification 
using primers JOFLOGST1 and JOFLOGST2 to amplify TDR1 and JOFLOGST1 and JOFLOGST3 
to amplify N-TDR1, as latielled above the image. Sizes in kb (kilo bases) are indicted to the left of 
the image. B -  schematic representation of the pET28a(+) plasmids constructed for the expression 
of TDR1 and N-TDR1. 6-HIS-TDR1/6-HIS-N-TDR1, the cloned ORFs with N-terminal His-tags; the 
restriction sites used to clone these into the vector are also shown. Lad, lac repressor gene; f1 
origin, origin of replication of the f1 phage; kan, kanamycin resistance gene.
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3.6 Discussion

In this chapter the most similar Leishmania proteins to different classes of known arsenical 

reductases have been elucidated and described. The three types of microbial arsenate 

reductases, which are well characterised in other organisms (Rosen, 2002), are not well 

represented in Leishmania; the most similar predicted proteins to both S. aureus pI258 

ArsC and E. coli R773 ArsC are poor homologues of these proteins and lack residues 

essential for arsenate reductase activity. A more convincing potential arsenate reductase is 

LmjF32.2740, a Leishmania enzyme similar to S. cerevisiae Acr2p. This enzyme, which 

has been characterised and designated LmACR2, has been shown to reduce metalloids in 

vitro and increase sensitivity to pentavalent antimony when over-expressed in L. infantum 

(Zhou et al, 2004). As described, the protein designated LmjF32.2740 in the geneDB 

database comprises 229 amino acids, 99 amino acids more than S. cerevisiae Acr2p; 

accordingly only 130 amino acids of the two proteins are similar and align. However Zhou 

et al, reported that LmjF32.2740 (LmACR2) is just 128 amino acids long, ignoring the 

non-aligned 101 amino acid N-terminal extension. There is no published account of 

experimental evidence (5’ RACE, western blots) that would confirm an error in the 

database of the size of the predicted protein. Furthermore, residues 13-35 of the complete 

229 amino acid sequence of LmjF32,2740 are predicted to be a transmembrane targeting 

sequence and a possible cleavage site exists between residues 35 and 36. When the 

LmJFS2.2740 amino acid sequence was entered into a protein localisation prediction 

programme, target?, it was predicted to be a secretory protein. Clearly the predicted size of 

the LmjF32.2740 protein may be wrong: this could simply be an inaccuracy in the database 

and the protein may indeed comprise just 128 amino acids. However, the existence of the 

signal peptide near the beginning of the predicted 229 amino acid sequence suggests 

otherwise. Zhou et al also found that LmACR2 is monomeric. This is in contrast to S. 
cerevisiae Acr2p which fonns a homodimer and is suggestive of either a different catalytic 

mechanism or, as discussed, a discrepancy in the amino acid sequence of the recombinant 

protein.

If the complete LmACR2 protein does include an additional 101 amino acids at its N- 

terminal, there could be resulting implications for the published activities of LmACR2. It 

is possible that the full-length protein is more active and stable, possibly adopting a 

different quaternary structure from that of the monomeric formation found previously 

(Zhou et al, 2004); indeed like S. cerevisiae Acr2p it may prove to be a dimer. In this case 

both the in vitro metalloid reductase activity of the recombinant protein and the degree of 

increased sensitivity to Pentostam achieved when the protein was over-expressed in L.
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infantum may be improved by the inclusion of the additional residues. Conversely, if the 

wild-type protein is targeted to a particular organelle, is a membrane-embedded protein or, 

as predicted by target?, secreted from the cell, it may be entirely unable to reduce 
pentavalent metalloids in vivo. Further experimental evidence is required to clarify the 

situation.

The absence of proteins significantly similar to bacterial arsenate reductases in Leishmania 

is perhaps unsurprising. These proteins, together with eukaryotic Acr2p, apparently arose 

separately by convergent evolution as a detoxification response to being exposed to arsenic 

(Mukhopadhyay and Rosen, 2002) and have no other known functions other than reducing 

arsenate. This is not the situation with recently identified mammalian proteins capable of 

reducing arsenate; oGST, PNP and GAPDH all display other enzymatic activities and their 

ability to reduce arsenate may be incidental.

For this reason the fact L. major does not appear to possess a protein likely to be a PNP 

was unexpected. PNPs catalyze the cleavage of ribonucleosides and deoxyribonucleosides, 

in the presence of inorganic orthophosphate (Pi) to generate the purine base and 

ribose(deoxyribose)-1 -phosphate and in many organisms have a key role in the purine 

salvage pathway (Bzowska et al, 2000). This pathway is essential in trypanosomatids as 

they are incapable of synthesising purines and instead salvage nucleosides and nucleobases 

from their host (reviewed in Landfear et al, 2004). Despite blast searches not detecting 

any sequences similar to mammalian PNPs in Leishmania, a sequence annotated as a 

nucleoside phosphorylase-like protein is present in the L  major genome (LmjFlO.lOlO). 

Analysis of this sequence showed that it was similar to the hexameric bacterial PNPs, 

which share function and topology with the trimeric PNPs found mainly in mammals, but 

are otherwise unrelated (Pugmire and Ealick, 2002). It is as yet unknown if bacterial PNPs 

can reduce arsenate in vitro; therefore whether LmjFlO.lOlO could potentially reduce and 

activate pentavalent antimonials drugs is also unclear.

As explained, the role of PNP and GAPDFI in arsenate metabolism remains unclear. The 

situation is complicated by the fact that most of the in vivo work in regard to these 

enzymes as arsenate reductases has been performed on rats, the suitability of which has 

been questioned (Aposhian and Aposhian, 2006). However, the differences between 

arsenic metabolism in rats and humans are not necessarily relevant when assessing the role, 

if any, of these enzymes in unicellular Leishmania. If PNP does reduces metalloids in vivo 

it may contribute to their detoxification; therefore the absence of a similar protein in 

Leishmania could be related to their susceptibility to pentavalent antimonials. However
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this is not in keeping with the findings of Shaked-Mishan et a l,, in which parasites 

incapable of reducing Pentostam were less, rather than more, sensitive to the drug. 

Likewise, if the arsenate reducing activity of GAPDH is shown to be relevant in vivo, 
antimonial susceptibility could be explained by the presence of several Leishmania 

GAPDH proteins metabolising pentavalent antimonials into more toxic trivalent forms.

The situation will remain unclear until more is known about both the role of these proteins 

and how antimonials are toxic to Leishmania. Although the arsenate-reducing capacity of 

these mammalian enzymes observed in vitro has been described as ‘fortuitous’ (meaning 

the proteins have other functions and that the reducing activity may be coincidental and 

thus not relevant in vivo) (Waalkes and Liu, 2002) it is intriguing that potential metalloid 

reductases continue to be identified. Presumably the dynamic nature of the field of 

metalloid metabolism in other organisms reflects the situation in Leishmania: additional, as 

yet unidentified proteins may well be involved in antimonial reduction together with the 

ones examined here.

The most similar L. major proteins to all known classes of arsenate reductases have been 

described and the sequences analysed. Most of the proteins presented here are unlikely to 

function as arsenate reductases due to their low similarity to the enzymes including lack of 

essential residues or because they are more like other classes of proteins. Whether 
LmACR2, the Leishmania Acr2p capable of reducing pentavalent antimonials, has an N- 

terminal region previously unreported must be established for its in vivo role to be 

clarified. Of all the remaining predicted and known proteins described here the GAPDH 

homologues are perhaps the most promising as potential novel Leishmania arsenate 

reductases; the high level of conservation between their amino acid sequences and those of 

the mammalian enzymes may be indicative of a common function. However it is important 

that the arsenate reductase activity exhibited by mammalian GAPDH be verified in vivo. 

The fact that GAPDH was not implicated in metalloid metabolism until very recently, 

together with the continued uncertainty surrounding the true role of this enzyme in the 

reduction of arsenate, are the foremost reasons why the L. major enzymes were not 

investigated as part of this study.

At one time thioredoxins were thought to be absent from trypanosomatids due to their lack 

of thioredoxin reductase, required to reduce thioredoxin in other organisms. However the 

discovery and characterisation of a classical thioredoxin in T. brucei brucei 

(Reckenfelderbaumer et al, 2000) which can be reduced directly by trypanothione 

(Krauth-Siegel and Schmidt, 2002) disproved this theory. The presence of glutaredoxin- 

like sequences in Leishmania is of interest as no typical glutaredoxins have been
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previously described in any trypanosomatid. As described, Leishmania are likely to 

possess just one thioredoxin; this is probably the situation in other trypanosomatids. 

Thioredoxin is not essential in T. brucei brucei (Schmidt et al, 2002) ^vhich has led to the 

authors’ speculation that tryparedoxin, another small dithiol protein found in parasites with 

similar activities to thioredoxin, could be able to perform the cellular functions of 

thioredoxin. Certainly, degeneracy between glutaredoxins and thioredoxins is known to 

exist in other organisms (Potamitou et al, 2002). The discovery of thioredoxin and 

putative glutaredoxins, as well as there being several proteins annotated as tryparedoxins, 

suggest degeneracy could also occur between these proteins in Leishmania. Indeed the 

similarities between glutaredoxins and oGSTs mean that degeneracy between these and 

TDRl may occur in Leishmania; this may be important for analysis of TDRl knock out 

parasites, as detailed in chapter five.

No canonical, cytosolic GSTs have been found in Leishmania by either biochemical 

methods or by searching the genome. This is perplexing as GSTs are found throughout 

nature in a wide range of organisms (for review see Hayes et al, 2005). The recent 

discovery that elongation factor IB from a variety of trypanosomatids display 

trypanothione S-transferase activity (Vickers and Fairlamb, 2004; Vickers et al, 2004) 

may help explain the apparent absence of GSTs in Leishmania: trypanothione S- 

transferases could, in part, carry-out the functions usually performed by GSTs. However, 

given the range of GSTs found in most organisms, with their different sub-cellular 

localisations and subtrate specificities, it seems unlikely that just one protein could replace 

them. The absence of GSTs in Leishmania and the other trypanosomatids remains 
intriguing. Although oGSTs are functionally more similar to glutaredoxins than to other 

GSTs, they do exhibit low-level CDNB-conjugating activity typical of GSTs (Board et al, 

2000); TDRl is therefore a candidate for fimctioning as a cellular GST.

The elucidation of the complete sequence of TDRl revealed several interesting features. 

TDRl has two halves that are similar to each other and it is therefore possible that the 

TDRl gene is a product of a smaller, ancestral gene that became duplicated. The 

differences between the two putative active sites of the protein are also intriguing as that in 

the C-terminal half contains just one cysteine (like GSTs and monothiol glutaredoxins) 

while the equivalent motif in the N-terminal half is has two cysteines (as glutaredoxins and 

thioredoxins do). Furthermore, these also differ from the predicted active site motifs from 

T. cruzi Tc52, the only known full-length homologue of TDRl and may be suggestive of 

different functions. Although TDRl was originally discovered because of its similarity to 

mammalian oGST which reduces methylated arsenicals, the biomethylation pathway is
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probably not present in Leishmania. There are no reports of biomethylated species having 

been detected in parasites treated with antimonial compounds and no AS3MT homologue 

(the methyltransferase implicit in this pathway) was detected in the L major genome. 

However the recent observation that human oGST can reduce pentavalent inorganic 

arsenate as well as methylated forms (Aposhian and Aposhian, 2006) suggests that TDRl 

could be capable of reducing antimonial drugs. The role of TDRl as a metalloid reductase 

and in antimonial susceptibility will be investigated in the forthcoming chapters.
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4 Analysis of TDRl : characterisation of 
recombinant protein and expression profile in 
Leishmania

It chapter three it was demonstrated that the Leishmania major genome contains an 

unusual gene, TDRl, which comprises two similar halves. When translated, both the 5’ and 

3’ halves of TDRl share sequence similarity with omega GSTs but also with other classes 

of GSTs, glutaredoxins and thioredoxins, as well as the only known full-length homologue, 

Trypanosoma cruzi Tc52. Although the sequences of translated TDRl and Tc52 protein 

(which has been characterised to some extent (Montiez et al, 1995; Femandez-Gomez et 
al, 1998; Ouaissi et al, 2002)) are considerably similar, it is notable that the predicted 

active site regions are not identical.

As discussed in chapter one, the effectiveness of pentavalent antimonials drugs used to 

treat leishmaniasis is likely to be dependent upon their reduction to a trivalent form 

(Shaked-Mishan et al, 2001), a process which could be mediated by an arsenate reductase

like protein in Leishmania, However it seems likely that, with the exception of the recently 

identified L. major ACR2-like protein (Zhou et al, 2004) and GAPDH, other known 

classes of arsenate reductases are not represented in the Leishmania genome. TDRl was 

originally of interest due to its resemblance to omega GST (oGST), a recently discovered 

protein capable of reducing methylated arsenical compounds (Zakharyan et al, 2001), and 

thus we hypothesised that it may be involved in the activation of pentavalent antimonials.

The work detailed in this chapter includes the production of recombinant TDRl so that its 

in vitro functions, including whether it was able to reduce pentavalent metalloids, could be 

analysed. In addition the protein was assayed for its ability to mediate the oxidation of 

Sb(lll). Furthermore, production of recombinant TDRl would allow other interesting 

information to be gathered. There is no known quaternary structure data on Tc52, whereas 

human oGST forms a dimer (Board et al, 2000) and glutaredoxins can be monomeric or 

dimeric (Kelley et al, 1997; Noguera et al, 2005). Other important considerations 

included the expression profile and sub-cellular localisation of TDRl. Pentavalent 

antimonials are toxic solely to the amastigote form o ïLeishmania (Ephros et al, 1999); 

temporal variations in the level of a potential antimonial reductase could help explain this 

phenomenon. Insight into the position of TDRl within the cell or the knowledge of 

whether it is released -  as is proposed to be the case with Tc52 (Ouaissi et al, 1995a; 

Ouaissi et al, 1995b) -  would also help establish a role for the protein.



Joanne C. McGregor, 2006 Chapter 4 93

4.1 Production of TDRl

4.1.1 Expression of TDRl and 5’ TORI in E. coli

Following the elucidation of the entire TDRl open reading frame by database mining and 

3’ RACE, the gene had been cloned into the pET28a(+) expression plasmid. In addition, 

the 5’ half of the gene (5 ’TDRl) was cloned into the same vector. The 3’ half of the gene 

( i  ’TDRl) had already been cloned into the expression vector by Dr. Helen Denton. The 

intention was to express the full-length TDRl together with the 3’ and 5’ truncated 

proteins in order to analyse the individual halves of TDRl and so clarify whether they had 

separate functions or if they were both required for a functioning protein Thereafter the 

plasmids were transformed into E. coli BL21(DE3) cells which were grown up to the 

appropriate density and treated with 2 mM IPTG to initiate protein expression. The cells 

were grown overnight at 15 'C before harvesting and lysing the cells, separating the 

soluble and insoluble cellular fractions in the process. SDS-PAGE analysis confirmed that 

the transformed cells were expressing proteins of 52 kD and 27 kD corresponding to the 

translated sizes of TDRl and 5’TDRl, respectively. However, although approximately 

50% of TDRl being expressed was present in the soluble fraction, it appeared that all of 

the 5’TDRl was insoluble (Figure 4.1). 3’TDRl had been previously expressed and 

purified under similar conditions by Dr. Helen Denton and although it was partially 

soluble, the recombinant protein was highly unstable end therefore unsuitable for analysis.

kD
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30

Pellet Supernatant
Figure 4.1: SDS-PAGE analysis of TDRl and 5’TDRl expression in £. coli soluble and 
Insoluble fractions. Protein expression was induced and the cells were grown overnight at 15 °C. 
1 ml of each was harvested and the insoluble and soluble fractions were separated by 
centrifugation following lysis by sonication. The insoluble pellet fractions were resuspended in a 
volume of 0.5 ml; 10 pi of each sample was mixed with 2 pi of 5 x protein sample buffer and loaded 
onto the 10% polyacrylamide gel for SDS-PAGE analysis. The gel was subsequently stained with 
coomassie blue. The 52 kD full length TDRl is indicated with the uppermost red arrow and is 
present in both the soluble (supernatant) and insoluble (pellet) fractions while the 27 kD 5TDR1 
indicated with the lower red arrow is completely insoluble. In the left hand lane the Benchmark 
molecular weight marker is visible and sizes are indicated to the left in kD (kiloDaltons).
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In order to obtain soluble 5’TDRl, a range of induction conditions and expression times 

were attempted by varying the IPTG concentration and bacteria growth period, 

respectively. The insoluble nature of the expressed protein may be due to inclusion bodies 

forming; a less vigorous production rate or a decrease in the amount of protein being made 

by the bacteria could prevent this. Unfortunately, none of the modified conditions yielded 

any soluble matter (Figure 4.2) and the decision was made to continue working solely on 

the full-length TDRl.

Supernatant Pellet

Time(h) 1 4 16 1 4 16 1 4 16 1 4 16 1 4 16 1 4 16
kD

50

30

IPTG 0 O.ImM 2mM 0 0.1 mM 2mM
Figure 4.2: Varying expression conditions in an attempt to obtain soluble 5TDR1. Protein 
expression was not induced or induced with 0.1 mM or 2 mM IPTG and the cells were grown at 15 
“C for 1, 4 or 16 hours. 1 ml of each sample was harvested, resuspended in 250 pi and the 
insoluble and soluble fractions were separated by centrifugation following lysis by sonication. The 
insoluble pellet fractions were resuspended in a volume of 100 pi; 16 pi of each sample was mixed 
with 4 pi of 5 X protein sample buffer and loaded onto the 10% polyacrylamide gel for SDS-PAGE 
analysis. The gels were subsequently stained with Coomassie blue. Although more protein was 
produced with increased cell growth time and IPTG, the 27 kD 5TDR1, indicated with the red 
arrow, is only present in the insoluble pellet fractions. In the left hand lane of each gel the 
Benchmark molecular weight marker is visible and sizes of the standards are indicated to the left of 
the figure in kD (kiloDaltons).
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TDRl was purified from cellular lysates by Alan Scott and Dr. Helen Denton of University 

of Glasgow. The His-tagged recombinant protein was primarily purified from soluble E. 

coli lysates using a 13 ml -nitrilotriacetate affinity column and a BioCAD 700E 

workstation. Although only His-tagged proteins should be eluted, small quantities of 

contaminants can persist in the eluate from nickel-agarose columns and for this reason 

further purification was deemed necessary. E. coli glutaredoxin 2 is known to possess 

similar activities to oGST (Vlamis-Gardikas et al., 1997); its presence in the purified 

TDRl samples could obscure subsequent analysis. Following buffer exchange into 25 mM 

Tris-HCl, pH 7.9, the pooled TDRl-containing fractions were applied to a HQ column. At 

this pH, E. coli glutaredoxin 2 (pi 9.17), but not TDRl (pi 6.3), was excluded from 

binding; TDRl was eluted with a NaCl gradient and collected.

A yield of approximately 20 mg of protein was obtained from one litre of original bacterial 

culture. Recombinant TDRl was found to be >95% pure as determined by SDS-PAGE and 

could be stored in elution buffer for periods of at least six months without deterioration. 

Unlike the truncated forms of TDRl that were produced, full-length TDRl was moderately 

soluble, stable and, as was later demonstrated, active (figure 4.3).

TDR1 
Full length CPFC

MTçmmwwmpar 'i'T*; w WWW
CPFV ] Soluble

Active
Stable

TDR1
C-terminal CPFV

Soluble
Active
Unstable

TDR1
N-terminal CPFC Insoluble

Figure 4.3: Schematic diagram representing the forms of recombinant protein produced and 
their properties. The predicted active site motifs are included on each similar half of the TDR1 
protein. Only full-length recombinant TDR1 was soluble and stable.
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4.1.3 Cleavage of the His-tag from recombinant TDRl

To facilitate purification, the pET28a(+) plasmid confers an N-terminal His-tag, 

comprising six histidine residues to the protein being expressed. Between the His-tag and 

the open reading frame lies a thrombin cleavage site, included so the His-tag can be 

removed from the recombinant protein after it has been successfully purified. The His-tag 

of recombinant TDRl was cleaved off in this way (Figure 4.4). The absence of the His-tag 

results in a slight reduction in size of the protein, which corresponds to the loss of the 2 kD 

His-tag and can be visualised following SDS-PAGE. Successful cleavage was achieved 

after just two hours although subsequent reactions were performed for 18 hours as there 

was no protein degradation apparent and this incubation time would ensure complete His- 

tag removal. The loss of the His-tag did not affect the enzymatic characteristics of TDRl 

and it was useful for ensuring that findings regarding the native molecular mass were due 

to interacting protein subunits rather than an effect of the tag.

kD
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Figure 4.4: Cleavage of His-tag from recombinant TDR1. Thrombin cleavages were carried out 
at room temperature with 2 U of thrombin for every mg of recombinant TDR1. At different time- 
points (indicated above the lanes, h -  hours) samples were taken to ensure there was no protein 
degradation and that successful cleavage (judged by slight band shift reflecting the loss of the His- 
tag). 2 pg of protein was loaded per lane onto a 12% acrylamide gel which was subsequently 
stained with Coomassie blue.



Joanne C. McGregor, 2006 Chapter 4 97

4.1.4 Isolation of TDRl from Leishmania using S-hexyl-GSH 

Sepharose

In addition to producing recombinant TDRl it was found that the native protein could be 

separated from Leishmania lysates with S-hexyl-GSH, using a similar technique to that 

employed in chapter three in an attempt to isolate Leishmania GSTs. A protein of 50 kD 

could be detected as a distinct band following SDS-PAGE analysis of the eluate; 

confirmation of its identity as TDRl was achieved by western blotting (figure 4.5). This 

technique would prove useful as a means of effectively concentrating TDRl from large 

volumes.

y  y  y

Coomassie Western
Figure 4.5: Isolation of TDRl from Leishmania mq/or using S-hexyl-GSH. In the first panel, 
fractions from a S-hexyl-GSH isolation of TDR1 from L major (as indicated) were loaded onto a 
10% acrylamide gel and subjected to SDS-PAGE analysis. The eluate contains a clear band similar 
in size to the 50 kD recombinant TDRl. The panel labelled western' is a western blot of the eluate 
sample present on the coomassie-stained gel using rabbit anti-TDR1, confirming the identity of the 
50 kD band as TDRl
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4.2 Biochemical characterisation of recombinant TDR1

Recombinant protein produced, purified and stored as described above was used for all 

investigations into the catalytic properties of TDRl of L  major. For studies on the native 

molecular mass of TDRl, protein that had had the His-tag removed was also used. The 

biochemical characterisation of recombinant TDRl is presented and discussed in Denton et 

al, 2004 and was carried out by Dr. Helen Denton of Glasgow University; accordingly it 

has not been summarised here.

4.3 Crystailsation of recombinant TDR1

In collaboration with Professor Bill Hunter and Dr. Karen McLuskey (both University of 

Dundee), TDRl crystalisation trials were attempted. This was in an effort to obtain TDRl 

crystals suitable for X-ray diffi-action, so that structural information could be gathered. The 

trials were set up with TDRl with and witliout GSH as well as with and without the His- 

tag but crystals were obtained with the His-tagged form only. The crystals formed were 

highly reproducible and measured approximately 0.15 mm x 0.15 mm x 0.05 mm in the 

absence of GSH, and 0.15 mm x 0.15 mm x 0.15 mm with GSH. Unfortunately, both sizes 

of crystals were not of particularly good quality, diffracting to just 8 Â. In order for 

structural information to be obtained, the crystals have to diffract to 3 Â and so this 

approach did not yield any information about regarding the native configuration of TDRl.

4.4 Temporal Expression of TDR1

Characterisation of when in the parasite life cycle TDRl was expressed would help clarify 

whether the enzyme contributed to the amastigote-specific toxicity of pentavalent 

antimonials. TDRl expression was analysed in several Leishmania species by western 

blotting using purified anti-TDRl anti-serum from rabbit and anti-TDRl anti serum from 

sheep. Both sera had been shown to recognise recombinant TDRl on dot-blots.

4.4.1 L  mex/cana Axenic Amastigote-like Forms Display a Similar 

Protease Expression Profile as Lesion Amastigotes

L. mexicana can be grown axenically as amastigote-like forms as well as promastigotes 

(Bates et al, 1992). However, before using them in experiments it was considered 

necessary to confirm the status of the forms as amastigotes by a means other than 

microscopic analysis. The protease expression between L. mexicana amastigotes and
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promastigotes differs substantially and is therefore a good indicator of life-cycle stage 

(Bates et al, 1992). Using gelatine SDS-PAGE, the protease activities of the putative L. 

mexicana axenic amastigotes were compared to those of L. mexicana promastigotes and 

amastigotes purified from animals (figure 4.6). It is clear that the protease activities of the 

axenic amastigotes resemble those of the animal amastigotes much more closely than those 

of the promastigotes. Together with the amastigote-like morphology of these cells, this 

result indicates these axenic parasites can be viewed as amastigotes with some degree of 

confidence.

1 2 3
Figure 4.6: Gelatin gel showing protease activities in different L. mexicana life-cycle stages.
Axenic amastigotes were grown in SDM pH 5.5 at 32 °C. Protein samples were separated on a 
12% acrylamide gel containing 0.2% gelatin by SDS-PAGE. The gel was incubated at 37X  for 1.5 
hours in sodium acetate pH 5.5 before staining with Coomassie blue. Lane 1, 12 pg axenic 
amastigote total protein; lane 2, 12 pg lesion amastigote total protein; lane 3, 60 pg promastigote 
total protein.

4.4.2 Detection of TDR1 in the Soluble Fraction of Leishmania

L. major, L  mexicana and L infantum promastigotes harvested in the stationary growth 

phase were all examined for TDRl expression. As described in chapter two, harvested 

parasites were separated into soluble and insoluble fi-actions following lysis by sonication. 

Western blotting revealed that the sheep anti-serum recognised a protein of approximately 

50 kD in L major and L mexicana (Figures 4.7A and 4.7B), which corresponds to the 

predicted size of TDRl. The protein was slightly smaller than recombinant TDRl, a 

difference in size that was attributed to the His-tag being absent in the native form of the
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protein, and was present in the soluble fractions only. Similar amounts of TDRl were {

present in L mexicana promastigotes and axenic amastigotes. j
]
I

C p ' ^  C p ' \C f
A

50 kD

30 kD

or a protein present in trace amounts in the original recombinant TDRl antigen sample. 

The possibility of it being a truncated or processed version of TDRl has also been 

considered.

4.4.3 TDR1 is uniformly expressed in L. major promastigotes

Although the L. major life-cycle has primarily two distinct stages, promastigote and 

amastigote, several different naturally occurring developmental forms of promastigotes are 

recognised that could potentially exhibit vaiying levels of protein expression. These can be 

broadly divided into early log (when the parasites are dividing but remain at a relatively 

low concentration of up to -4  x 10̂  cells/ml), late log (when the parasites are dividing but 

are becoming more concentrated in the media at up to ~2 x 10̂  cells/ml) and stationary 

phase (the parasites have ceased to divide and remain concentrated; metacyclic parasites 

appear). Western blotting of L. major lysates obtained during these different promastigote

Promastigotes Axenic amastigotes Promastigotes Promastigotes i
Figure 4.7: TDR1 expression in Leishmania. Westem blot analysis of TDR1 expression in ]
different Leishmania lysates following protein separation by SDS-PAGE. In each case at 10-20 pg j
of total protein was loaded per lane. (A) L mexicana soluble and insoluble extracts of both ]
promastigotes and axenic amastigotes alongside 100 ng of recombinant TDR1 protein. (B) L. major ;
soluble and insoluble promastigote extracts. (C) L. infantum soluble extract. j

1

I
The anti-sera also recognised a protein of a similar size in L  infantum lysates (Figure j

1
4.7C). Following SDS-PAGE, the L. infantum protein ran slightly smaller than that of L  j

major: this could be due to subtle differences between the protein amino acid sequences. j

The sheep anti-sera also recognised a protein of approximately 30 kD in the L. infantum i

lysates that was absent on the westem blots from the other Leishmania species. This \

unknown protein is probably recognised due to it having a similar epitope to either TDRl i
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life cycle stages revealed that TDRl expression appeared to remain at a similar level 

(Figures 4.8A). There was either no fluctuation in expression in promastigotes, or any 

changes were too minor to detect using this method.

1

Figure 4.8: Westem blot analysis off TDRl expression in difffferent L major iiffe-cycle stages.
(A) Different growth phases of L. major promastigotes. The densities of the parasites when they 
were harvested are indicated and after lysis and isolation of the soluble fraction approximately 10 
pg of total protein was loaded per lane. (B) Comparison of TDRl expression between L. major 
promastigotes and amastigotes. Lane 1, 200 ng of recombinant TDR1; lane 2,100 ng of 
recombinant TDR1; lane 3, 50 ng of recombinant TDRl; lane 4, S-hexyl-GSH binding fraction 
recovered from 0.23 mg of protein from the amastigote lysate; lane 5, S-hexyl-GSH binding fraction 
recovered from 0.23 mg of protein from the promastigote lysate.

4.4.4 Increased expression of TDR1 in L. mayor amastigotes

As stated, only leishmania amastigotes are susceptible to pentavalent antimonials and this 

phenomenon has been attributed to a life cycle-specific ability to reduce the drug to the 

more toxic trivalent form (Shaked-Mishan et al, 2001). L major amastigotes were 

extracted and purified fi’om animals and so TDRl expression could be compared between 

these and promastigotes grown in culture. The lysates were equalised for initial protein 

concentration before incubation with S-hexyl-GSH-agarose so the TDRl present in each 

sample could be isolated. The eluate from each was subjected to SDS-PAGE and westem 

blotting using the purified rabbit anti-serum revealed bands corresponding to the molecular 

mass of TDRl (Figure 4.8B), although interestingly it was apparent that more TDRl was 

present in the amastigote sample. It was estimated that approximately ten times more 

TDRl was recovered from the amastigote lysate than from the equivalent promastigote 

lysate.
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4.5 Spatial Expression of TDR1

Analysis of whether TDRl is secreted and the cellular distribution of the protein were of 

interest both to help identify a possible site of antimonial accumulation and reduction, and 

to further clarify the endogenous role of TDRl. In addition, it was of interest to ascertain 

whether the location of TDRl in the cell was similar to that of Tc52 or oGST, although 

investigation into the spatial expression of the latter has mainly focused on tissue-level 

rather than sub-cellular localisation. The sheep anti-TDRl serum was used for these 

investigations

4.5.1 Analysis of Secretion of TDRl from L. major

Investigations into whether a protein is released from a cell can be problematic due to the 

difficulty in detecting a given protein when it is dilute in large volumes. Here the fact that 

TDRl binds to S-hexyl-GSH was exploited so that spent culture media could be analysed 

for the presence of the protein. Westem blot analysis showed that TDRl could be detected 

in samples eluted from the S-hexyl-GSH, when it had been initially incubated with 10 ml 

of filtered, spent, L. major promastigote culture media (Figure 4.9). As a control, 10 ml of 

fresh culture media was ‘spiked’ with 160 ng of recombinant TDRl, and subjected to the 

same incubation with S-hexyl-GSH and elution conditions as the other sample. The 

amount of TDRl used in the control was approximately the total amount of TDRl present 

in 2 X 10̂  T. major promastigotes harvested while in the stationary phase of growth, as 

determined by previous westem blot experiments. Several times more recombinant TDRl 

was detected in the control sample than from the spent media, suggesting that the amount 

of TDRl secreted by the cells is considerably less than that retained in the parasite. 

However, this may not be die case as secreted protein may be subjected to proteolysis or 

bound to other proteins, therefore hampering the recovery of the protein. The finding that 

TDRl is secreted could implicate the protein as being potentially involved in host-parasite 

interactions. As mentioned, Tc52 is also thought to be released from cells (Schoneck et ah, 

1994) and has been attributed such a role.
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50 kD —

Figure 4.9: Westem blot analysis of secretion of TDR1 from L. major. Seven-day old spent 
media and fresh, pH-adjusted media that had been ‘spiked’ with 160 ng of recombinant TDRl 
(necessary as a positive control) were filtered before incubating with S-hexyl-GSH (as previously 
described). The eluted fractions were subjected to SDS-PAGE and westem blot analysis using 
sheep anti-TDR1. A 50 kD was detected in both the L mayor spent media sample (labelled wild 
type) and the TDR1-spiked positive control sample (labelled rTDR1).

4.5.2 Immuno-localisation of TDR1 in L  major Promastigotes

Immuno-localisation studies were performed on wild-type L. major promastigotes, as well 

as on a TDRl KO L. major line that had been generated (see chapter five). The staining 

was not solely associated with the cell nucleus or kinetoplast but was dispersed throughout 

the cell (Figure 4.10 A). In some images there seemed to be some concentration of signal 

occurring, particularly around the kinetoplast and between the nucleus and kinetoplast, 

suggesting that the enzyme may be to some extent located in an as yet unidentified 

organelle. However, the fluorescence was observed throughout the parasites and was quite 

diffuse which is more indicative of TDRl being cytosolic. The vast reduction in intensity 

of a signal from the TDRl KO line under the same experimental conditions provided 

evidence that fluorescence visible in the wild-type line was largely TDRl-specific (Figure 

4.1 OB). Previous reports have shown that Tc52 is localised in reservomeres (Ouaissi et ai, 

1995b) but is also deemed to be a secreted protein (Ouaissi et al, 1995a). Meanwhile 

human oGST2 has been found to be both cytosolic and nuclear (Wang et al, 2005).
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Figure 4.10: Immunolocalisatlon of TDRl In L. ma/or promastigotes. (A) Distribution of TDR1 
within wild-type promastigotes. The blue staining shows DAPI, highlighting the nucleus and 
kinetoplast; the green stain shows the secondary antibody, Alexa-Fluor 488, and corresponds to 
TDR1 distribution. Merged images are shown alone and within the context of the DIG parasite 
image. (B) Comparison of TDR1 immunolocalisatlon signals between wild type (WT) and TDR1 
knock-out (KO) L major parasite lines. The Alexa-Fluor 488 secondary antibody signals (green 
staining) are comparable between panels, as experimental and image-processing conditions were 
equivalent. In all images the primary antibody (sheep anti-TDR1) was applied at a dilution of 1/100 
and the secondary antibody (as above) was applied at a dilution of 1/500. The white scale bar 
shown on each image represents a distance of 10 pM.
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4.6 Analysis of oxidation of trivalent antimonials by 
hydrogen peroxide

Although it is well established that pentavalent arsenicals and antimonials can be reduced, 

both enzymatically and directly upon reaction with thiols, little is known about whether the 
reverse reaction also persists. If oxidation of trivalent metalloids was possible in cells this 

could alter the perception of antimonial sensitivity: an increase in trivalent species 
oxidation rather than a decrease in pentavalent species reduction could result in drug 

resistance. Recently it was reported that trivalent arsenite could be oxidised to pentavalent 

arsenate by hydrogen peroxide (H2O2) (Aposhian et al, 2003). This was the first published 

account that alluded to the potential importance of this mechanism in the detoxification of 
trivalent metalloids in a biological system. However, there are accounts of bacteria and 

archaea that are capable of oxidising arsenite (and indeed antimonite (Lialikova, 1974)) 
and are deemed to possess arsenite oxidase enzyme activity. Several proteins have been 

implicated in oxidising arsenite and the best characterised are the aoxA and aoxB proteins 
originally found in Alcaligenes faecalis (Anderson et al, 1992). However, the L  major 

genome does not contain sequences with significant homology to either of these genes and 

accordingly, investigations into whether metalloid oxidation is possible in Leishmania 

have focused on the role of H2O2 . As described, the BPR assay was used to detect trivalent 
antimonial species present. For each experiment, a standard curve of potassium antimonial 

tartrate (KAT) versus the absorbance at 540 nm was constructed, and the amount of 
trivalent KAT remaining at each time point was calculated from that.
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4.6.1 Trivalent potassium antimony! tartrate is oxidised by H2O2

In the presence of H2O2, the amount of trivalent antimony present in the sample decreased 

over time (Figure 4.11). The elimination of the trivalent species was dependant on the 

amount of H2O2 present in the reaction and when there were equal concentrations of KAT 

and H2O2 present >90% of the KAT was removed after 130 minutes. However, the molar 

relationship between H2O2 present and KAT oxidised does not appear to be 1:1. For 

example, when the concentration of KAT is 1 mM and H2O2 is 0.5 mM, the percentage of 

KAT oxidised is -70%. The elimination of KAT was rapid and when higher concentrations 

of H2O2 were present much of the KAT had already been oxidised when the first time point 

was taken. The BPR assay can only be used to determine trivalent antimonials species 

present and so the identity of the product is unknown. However the analogous reaction 

with trivalent arsenite yields a pentavalent product (Aposhian et al, 2003).
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Figure 4.11: Trivalent KAT is depleted by H2O2 . 1 mM KAT was incubated at room temperature 
with 0, 0.1 mM, 0.5 mM, 1 mM or 2 mM H2O2 in 0.1 M Tris pH 8.0 in a final volume of 1 ml. Sb(lll) 
depletion was followed discontinuously by the BPR assay in which the samples were diluted 1/10. 
Points represent an average of two experiments.
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4.6.2 The effect of pH and recombinant TDR1 on oxidation of KAT 

by H2O2

In order to determine the optimal conditions for the oxidation of KAT by H2O2 the reaction 

was set up at a range of pH values. It was found that the oxidation did not occur when the 

pH was below 7.0 and as the pH was raised the reaction rate increased. It is worth noting 

that a basic environment was also required for the oxidation of trivalent antimonials by 

hydrogen peroxide in other studies (Quentel et al, 2004). In order to keep the experiments 

as physiologically relevant as possible, all subsequent investigations were carried out at pH 

8.0 .

It has been shown previously that some glutaredoxins can act as peroxidases in the cell by 

detoxifying H2O2 (Collinson et al, 2002). Due to the sequence similarities that exist 

between these proteins and TDRl, recombinant TDRl was added to the reactions at this 

stage so any affect its presence caused could be observed. If TDRl could detoxify H2O2 

then this may prevent any oxidation of trivalent antimony while it was also possible that 

TDRl could act as an oxidase and catalyse the antimonial oxidation. The effect of adding 
GSH and GSSG as well as TDRl was also monitored (see below). However, the addition 

of recombinant TDRl neither catalysed nor inhibited the oxidation of KAT (Figure 4.12); 

this was also the case at lower pH values.
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Figure 4.12: Recombinant TDRl has no effect on the oxidation of KAT by H2 O2 1 mM KAT 
was incubated at room temperature with 1 mM H2O2 , 4 pg TDRl or both, in 0.1 M Tris pH 8.0 in a 
final volume of 1 ml. Sb(lll) depletion was followed discontinuously by the BPR assay in which the 
samples were diluted 1/10. Points represent an average of two experiments.
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4.6.3 The trivalent product formed upon reaction of TDR1 with 

sodium stibogluconate is oxidised by H2O2

KAT is a trivalent antimonial compound that is not used as an antileishmanial drug and 

therefore it was desirable to establish whether H2O2 could oxidise additional trivalent 
antimonials that may be more relevant. As described, the product of the reaction between 

sodium stibogluconate and TDRl is a trivalent species and is likely to actually be 

encountered by the parasite. Therefore the product of TDRl activity on stibogluconate was 

quantified (using the BPR assay) and added to the reaction rather than KAT. H2 O2 was also 

found to be capable of oxidising this trivalent antimonial (Figure 4.13), indeed the rate of 
oxidation was faster than that achieved when KAT was the trivalent substrate. Again, 

without more in depth analysis it is impossible to be certain of the identity of the species 

formed but it is not unreasonable to speculate that it may have converted back to sodium 

stibogluconate. This is the first evidence that the parasitic metabolism of antimonial drugs 

does not necessarily consist of straightforward reduction from a pentavalent to a trivalent 

form. If it is possible for more toxic, trivalent antimonials, formed by reduction of the 
pentavalent drugs administered, to be converted back to the less toxic pentavalent form this 

has clear implications for the anti-parasitic activity of the drugs. Intracellular H2O2 

concentration could be a factor in antimonial toxicity, as is discussed in section 4.7.
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Figure 4.13: The trivalent antimonial formed upon reaction of TDRl and sodium 
stibogluconate is oxidised by H2O2 . Sodium stibogluconate was incubated overnight with TDRl 
and GSH and the trivalent product was quantified using the BPR assay. 1 mM of the product was 
incubated at room temperature with or without 1 mM H2O2 in 0.1 M Tris pH 9.0 in a final volume of 
340 pi. The resulting pH of the assay was pH -8.0. Sb(lll) depletion was followed discontinuously 
by the BPR assay in which the samples were diluted 1/10. Points represent an average of two 
experiments.
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4.6.4 GSH Inhibits Oxidation of KAT by H2 O2 while GSSG has no 

effect on the reaction

GSH is known to behave as a cellular anti-oxidant and react with H2O2 to form 2 H2O. 

Therefore its presence may prevent the oxidation of trivalent antimonials from proceeding, 

especially when it exists at a high level as reported by Ariyanayagam and Fairlamb 2001. 

GSH was added to the reactions and was found to decrease the amount of KAT oxidised 

(Figure 4.14). This is probably due to H2O2 reacting with the two molecules of GSH to 

form GSSG and H2O and therefore depleting the amount of H2O2 available to react with 

the antimonial. Curiously, the initial speed of the reaction appeared to be increased in the 

presence of GSH as in the first time point there is significantly less KAT remaining in the 

sample with GSH added than in that without (figure 4.14), although the overall level of 

oxidation was reduced. Due to the high intra-cellular concentrations of GSH, this result has 

significant implications for whether the feasibility of cellular oxidation of trivalent 

antimonials.
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Figure 4.14: GSH reduces the amount of oxidation of KAT by H2O2. 1 mM KAT was incubated 
at room temperature with 1 mM H2O2 , 1 mM GSH or both, in 0.1 M Tris pH 8.0 in a final volume of 
1 ml. Sb(lll) depletion was followed discontinuously by the BPR assay in which the samples were 
diluted 1/10. Points represent an average of two experiments.
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Due to the ability of the reduced from of glutathione -  GSH -  being capable of directly 

reducing pentavalent antimonials, the possibility that the oxidised form -  GSSG -  could be 

involved in oxidising trivalent antimonials was considered. It was also possible that GSSG 

could affect the oxidation by H2O2 . However, GSSG appeared to have no effect on the 

trivalent nature of KAT, or on the oxidation reaction (figure 4.15). However the rapid 

oxidation of KAT by H2O2 resulted in much of the KAT being eliminated before the initial 

rime point was taken, so any effect by GSSG on the reaction during this period cannot be 

monitored. As mentioned, the presence of TDRl in these reactions resulted in no 

significant further effect.
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Figure 4.15: GSSG has no effect on the oxidation of KAT by H2O2. 1 mM KAT was incubated at 
room temperature with 1 mM H2O2 , 1 mM GSSG or both, with or without 3 pg TDRl. The reaction 
was in 0.1 M Tris pH 8.0 in a final volume of 1 ml. Sb(lll) depletion was followed discontinuously by 
the BPR assay in which the samples were diluted 1/10. Points represent an average of two 
experiments.
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4.6.5 Analysis of KAT and Sodium Stibogiuconate upon 

incubation with Leishmania

It was decided to employ the BPR assay to monitor whether any changes in the state 

antimonials could be detected upon incubation with Leishmania. L. mexicana amastigote 

and L. major promastigote cultures were grown as standard, except that either KAT or 

sodium stibogluconate (or extra media as a negative control) were added to a final 

concentration of 200 pM. Every day for 10 days a sample was removed from each culture, 

the parasites were removed by centrifugation, and 50 pi of the spent media was subjected 

to analysis in a final volume of 200 pi using the BPR assay. The assay only detects 
trivalent species and so any decrease in trivalent antimonial level detected could be 

interpreted as either oxidation or as uptake by the parasites. However there was no detected 

decrease in the level of trivalent antimonial species when KAT was administered or 

formation of trivalent species when sodium stibogluconate was administered, when 

incubated with amastigotes or promastigotes. However, it is likely that the assay is too 

insensitive to detect any changes in the state of the drugs or uptake that was occurring.
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4.7 Discussion

L. major TDRl was originally discovered -  and was of interest -  due to its similarity to 
omega GSTs, which was suggestive that the protein could be involved in reducing 

antileishmanial antimonials and therefore mediating drug-susceptibility. Upon analysis of 

the TDRl ORF it became clear that TDRl encoded a highly unusual protein containing 

two omega GST-like domains with different predicted active sites. Together with the 

observation that no other GSTs have been identified in Leishmania, these factors indicate 

the potentially fascinating activities of TDRl. Characterisation of recombinant TDRl and 

analysis of its cellular expression profile were intended to help elucidate which of the 

proteins many inferred functions were accurate.

Due to the nature of the two-domain structure of TDRl, it was desirable to obtain separate 

C- and N- terminal half-length proteins, as well as the full-length recombinant protein. It 

was hoped that this approach would provide an insight into whether the protein functioned 

as a whole or if each half was capable of acting independently. However, despite varying 

the expression-inducing XPTG concentrations and growth times of the E. coli expression 

cells, acquiring soluble and stable versions of these truncated proteins was problematic. At 

this point it was considered whether further attempts could have been made to obtain the 

half-length proteins. For example, re-cloning the gene fragments in expression vectors that 

add differently placed expression tags or alternative types of tag; or expressing the protein 

in a eukaryotic system. However, it was decided that these approaches could have been 

time-consuming and were without guarantee of a successful outcome; therefore they were 
discounted.

Meanwhile, satisfactory levels of active full-length TDRl were produced quite easily with 

approximately 20 mg of protein being recovered from one litre of bacterial culture. This 

relatively high yield was achieved despite the additional purification steps taken to 

eliminate any potentially contaminating proteins from the sample, specifically E. coli 
glutaredoxin 2. It is interesting to note that there is no published account of enzymatically 

active recombinant Tc52 - the most similar known protein to TDRl - being produced. In 

all reports native protein was characterised after purification from T. cruzi lysates with S- 
hexyl-GSH (Montiez et al, 1995) suggesting that production of recombinant Tc52 is not 

straightforward. Analysis of the recombinant protein revealed several enzymatic 

capabilities of TDRl, summarised in Denton et al, 2004.
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All the species analysed by western blot -  L  major, L. mexicana and L. infantum -  

expressed TDRl and the protein was detected in all life-cycle stages of L  major. This 

apparently ubiquitous expression, together with the highly conserved amino acid sequence 

between the proteins, could indicate that TDRl has a vital role in the parasite. Indeed Tc52 

has been reported to be essential (Allaoui et ah, 1999) with the authors being unable to 

obtain Tc52 knock out T. cruzi strains. However, as will be shown in chapter five this is 

not the case with TDRl, providing further evidence that TDRl and Tc52 have divergent 

roles.

Another area in which the two proteins differ is in their cellular localisation. Within T, 

cruzi epimastigotes, Tc52 is reported to reside in vesicles resembling the reservomere 

(Ouaissi et al, 1995b), large acidic organelles found towards the posterior end of the 

parasite. This contrasts with the distribution of TDRl in promastigotes, which was quite 

diffuse and may be cytosolic, and certainly was more concentrated at the anterior end of 

the parasite. However, the authors did not perform any co-localisation studies, using 

antibodies to characterised marker proteins to directly compare the distribution signals, and 

therefore the inferred localisation of Tc52 is not certain. This is also the case with the 

TDRl localisation study, although the comparative lack of staining detected in the TDRl 

knock out line at least indicates that the distribution pattern is specific to TDRl. Analysis 

of TDRl localisation in amastigotes -  either axenic or isolated from animals -  would also 

have been desirable as the protein may behave differently between life-cycle stages. For 

example the protein may be secreted from metacyclics and amastigotes but not procyclics. 

TDRl was detected by western blot in spent media from a stationary phase L. major 

promastigote culture. Although the media was filtered prior to analysis, the possibility that 

dead parasites may release TDRl upon degradation, rather than it being actively secreted, 

cannot be ruled out. Analysis of secretion from L mexicana axenic amastigotes -  spent 

media from L. major lesion amastigotes would be difficult to obtain -  would be potentially 

interesting. Tc52 is reportedly secreted (Schoneck et al, 1994) from epimastigotes, having 

an important role in aiding the parasite to modulate the mammalian host’s immune 

response to infection (Garzon et al, 2003). Whether TDRl has a similar role in 

Leishmania has not been investigated as part of this study, though if it is secreted by 

intracellular stages of the parasite this could help explain it’s involvement in parasite 

infectivity, discussed in chapter five.

The temporal expression pattern of TDRl is another area that potentially differs from that 

of Tc52. TDRl expression is uniform throughout the various growth phases of T. major 

promastigotes while an increase in expression was detected in lesion amastigotes relative
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to the promastigotes. In T. cruzi, Tc52 is most highly expressed in the epimastigote and

amastigote stages, and is less so in trypomastigotes (Ouaissi et al, 1995b). In L  mexicana

axenic amastigotes the same increase in TDRl expression was not observed: this could be

due to the axenic nature of the culture not entirely reflecting the natural environment

encountered by amastigotes and therefore affecting gene expression. However the lesion

amastigote-like protease expression profile of the axenic amastigotes suggested otherwise.

Equally, the differences in TDRl amastigote expression levels may be due to variations

between species. The implications of this apparent up-regulation may be significant.lt is

generally accepted that pentavalent antimonial drugs are toxic specifically to amastigotes
.yet it is not known if this is due to increased parasite susceptibility or stage-specific 

reduction -  and hence activation -  of the pentavalent compounds. Controversy also persists 

over whether activation occurs in the macrophage or the parasite (Ephros et al, 1999,

Sereno et al, 1998). It has been reported that only amastigotes and not promastigotes are
■f

capable of reducing pentavalent antimonials and that Pentostam-resistant L  donovani 

parasites were deficient in this activity (Shaked-Mishan et al, 2001). Although it has been 

demonstrated that some thiols are capable of directly reducing pentavalent antimonials 

(Frezard et al, 2001), the rate is very low. In chapter five, investigations on L. major 

lacking or expressing an increased amount of TDRl are presented, which help clarify 

whether TDRl is involved in mediating toxicity of pentavalent antimonial drugs.

Finally, the revelation that H2O2 can oxidise KAT and even more intriguingly, the trivalent 

product formed upon reaction between TDRl and sodium stibogluconate, shows that the 

metabolism of pentavalent antimonials may not be as straightforward as once thought. It is 

clearly possible for trivalent antimonials. Therefore reduction of the pentavalent drug 

administered could occur, but whether the product remains in the more toxic trivalent form 

or is oxidised back to a pentavalent species may be dependant upon the concentration of 

H2O2 present. Indeed it is possible that other reactive oxygen species found in Leishmania 

could also be capable of causing any trivalent antimonial species formed to be oxidised.

However, the observation that GSH inhibits the oxidation of KAT brings in to question the 

physiological relevance of the oxidation of trivalent antimonials. The concentration of 

GSH in L. donovani promastigotes is approximately 4 mM while T(SH)2 , which also reacts 

with H2O2  and is therefore likely to inhibit KAT oxidation in a similar way, is 

approximately 5.2 mM (Ariyanayagam and Fairlamb 2001). Although no accounts of H2O2  

concentration in Leishmania could be found, in T. brucei H2O2 is reportedly at a 

intracellular concentration of 70 pM (Meshnick et al, 1977). However H2O2 exists 

transiently in the cell: due to the reactive nature of the molecule it is constantly being 

synthesised and removed. Assuming that the concentration of H2O2 in Leishmania is
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of H2O2 in Leishmania is similar, the abundance of thiols means that newly produced 

molecules will be rapidly reduced and therefore not available to oxidise Sb(III). Moreover 

enzymes able to mediate the reduction of H2O2 have a similar effect: the oxidation of 

As(III) by H2O2 is inhibited when catalase is added to the reaction (Aposhian et at., 2004). 

Although Leishmania lack catalase, they do possess several peroxidases (Vickers et al, 

2004; Adak and Datta, 2005) which perform the same function as catalase and are 

therefore also likely to inhibit Sb(III) oxidation. However, this does not take into account 

the possibility that Sb(III) could be localised in an area of the parasite that contains higher 

levels of H2O2 . Indeed it has recently been shown that when X. donovani are treated with 

Sb(III), intracellular GSH and T(SH)2  are depleted due to efflux of the molecules and 

inhibition of trypanothione reductase, the enzyme responsible for maintaining the thiols in 

their reduced state (WylUe et al, 2004). Similar effects were observed when human 

macrophages were treated with Sb(III), as were increased level of reactive oxygen species 

(Wyllie and Fairlamb, 2006), creating conditions favouring the oxidation of Sb(III). The 

same effects also occurred in L. donovani amastigotes when treated with Sb(V). Although 

these observations certainly do not provide evidence of Sb(III) oxidation in Leishmania, it 

may be the case that conditions can arise within the parasites that enable some oxidation to 

occur. Therefore, in vitro evidence provided in this chapter that under the right conditions 

Sb(III) can be oxidised is potentially of great importance, although clearly in vivo studies 

are required to ascertain whether it is indeed a factor in antimonial metabolism.
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5 Functional study of L. ma/or TDR1

5.1 Introduction

In the previous chapter the expression of TDRl was described, although the analysis of the 

recombinant protein (rTDRl), which was carried out by Dr. Helen Denton, was not 

presented. The biochemical characterisation of rTDRl in vitro was an important step 

towards understanding the functions of TDRl, including whether the protein is capable of 

reducing pentavalent antimonials, and if, like the proteins it is similar to, it can catalyse 

thioltransferase reactions and hence may have a role in protection against oxidative stress. 

The properties of rTDRl are summarised below, while a full description is provided in 

Denton et al, 2004.

Recombinant TDRl, shown by gel filtration analysis to be trimeric, exhibited several 

interesting activities in vitro. In contrast to Tc52 which displays no GSH-conjugation 

activity (Montiez et aï., 1995), but like human oGSTl (Board et al, 2000), rTDRl 

exhibited low-rate conjugation of GSH with l-chloro-2,4-dinitrobenzene (CDNB), with a 

specific activity of 1.9 nmol/min/mg/protein. However, no reaction could be detected vdth 

the other conjugation substrates ethacrynic acid and l,2-epoxy-3(4-nitrophenoxy)propane. 

Like glutaredoxin (GRX), dehydroascorbate reductase (DHAR) and thioltransferase 

activities were evident, with TDRl capable of using GSH as an electron donor to reduce 

both dehydroascorbate and the synthetic disulphide 2-hydroxyethyldisulphide. The specific 

activities for these two substrates -  11.9 pmol/min/mg/protein and 11.2 

pmol/min/mg/protein -  were similar, and were significantly higher than those reported for 

the human oGST protein when assayed under similar conditions (Board et al, 2000).

Taken together, these results indicate that the enzymatic capabilities of TDRl are more 

similar to oGST and GRX than to other GSTs that typically have high GSH-conjugation 

activity. The result that TDRl acts more like GRXs, proteins that share predicted active 

site sequences with TDRl but are otherwise much smaller and rather dissimilar, than GSTs 

was also observed to be the case for human omega GST (Board et al, 2000).

In addition to these activities, TDRl was also found to be capable of reducing sodium 

stibogluconate and Glucantime, giving specific activities (pmol/min/mg/protein) of 6.3 and 

1.4, respectively. Significantly higher specific activities were recorded with the pentavalent 

arsenicals sodium arsenate and methylarsonate (MMA^). The BPR assay (Frezard et al, 
2001), which detects trivalent antimonial species, was employed to analyse the product(s) 

formed in the reactions with pentavalent antimonials. hi addition, using the BPR assay, it
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was shown that a trivalent antimonial compound was produced in the reaction between 

TDRl and the pentavalent antimonial drug, sodium stibogluconate. This was instrumental 

in determining the relevance of the findings reported above, as it is the reduction of sodium 

stibogluconate to a trivalent form that reportedly mediates toxicity (Shaked-Mishan et al., 

2001).

The fact that rTDRl is capable of reducing pentavalent antimonials to a trivalent form was 

clearly of great interest. It is generally accepted tliat pentavalent antimonial drugs are toxic 

specifically to amastigotes, yet it is not known if this is due to increased parasite 

susceptibility or stage-specific reduction -  and hence activation -  of the pentavalent 

compounds. Controversy also persists over whether activation occurs in the macrophage or 

the parasite (Ephros et at., 1999, Sereno et al., 1998). It has been reported that only 

amastigotes and not promastigotes are capable of reducing pentavalent antimonials and 

that Pentostam-resistant L. donovani parasites were deficient in this activity Shaked- 

Mishan et al, 2001. Although it has been demonstrated that some thiols are capable of 

directly reducing pentavalent antimonials (Frezard et al, 2001), the rate is very low and 

accordingly is unlikely to be as physiologic^ly relevant as the faster, enzyme-mediated 

reaction reported here. As TDRl is the first Leishmania protein reported to be able of 

reducing antimonials enzymatically, together with its increased abundance in amastigotes 

demonstrated in the previous chapter, it is tempting to speculate that TDRl could play a 

key role in antimonial susceptibility. However, further analysis is required. These studies 

have not provided any in vivo evidence of the antimonial-reducing capability of TDRl, and 

the affect this has on the parasite. For example, although reduction is thought to mediate 

toxicity, it may be possible that upon reduction by TDRl antimonials are more easily 

cleared by die cell, making them more quickly detoxified and therefore effectively less 

toxic. In this chapter, investigations on L. major lacking or expressing an increased amount 

of TDRl are presented, in an attempt to address whether TDRl has a bearing on 

antimonial susceptibility in vivo.

There are implications of TDRl potentially behaving as a GRX in the parasite. 

Glutaredoxins help maintain the redox balance of the cell by reducing protein and GSH 

disulphides and have a role in stress-response in the cell (Potamitou et al, 2002). This may 

point towards the natural role of TDRl in Leishmania'. after all, the protein is unlikely to 

have evolved to improve the efficacy of antileishmanial chemotherapy; that aspect of the 

protein’s function is more likely to be an unhappy coincidence for the parasite. In this 

chapter, the production and analysis of TDRl knockout and over-expressing L. major 

parasites is described. One of the important purposes of this was to investigate the cellular
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role of TDRl, to elucidate what the protein does regardless of its potential as an antimonial 

reductase.

5.2 Over-expression of TDR1 in Leishmania

It was hoped that manipulating the normal expression levels of TDRl in L major would 

result in alterations in the parasites that could be detected. This would enable the 

importance of TDRl in vivo to be assessed and help establish the protein’s functions. The 

first approach was to increase the expression of TDRl, achieved by over-expressing the 

protein from an episomal vector.

5.2.1 Creation of TDRl over-expressing L. mayor promastigotes

The sequence encoding TDRl was amplified from L major genomic DNA, sub-cloned 

into the pGEM T-easy and then cloned into the pGL102 plasmid. The plasmid with the 

TDRl gene was named pGL102TDRl ; maps of this and the empty vector are shown in 

figure 5.1. The pGL102 plasmid is a Leishmania episomal expression vector and contains 

the neomycin resistance gene as a selectable marker. Uncut pGL102 and pGL102TDRl 

were transfected into L. major promastigotes which were subsequently incubated in culture 

with neomycin so that only successful transformed parasites would grow. The transformed 

parasite lines will be herein referred to by the names of the vectors they were transformed 

with (pGL102 and pGL102TDRl).

neo

313K

PGL102TDR1
8147 b p

amp

5’DST
Sma1(1366)

TDR1

BamHl (2723)

B neo

PGL102
67 94 bp

amp

5‘DST

Smal ( 1366) 
BanéU (1370)

Figure 5.1: Plasmids for the over-expression of TDRl in L. major promastigotes. Schematic 
representation of the pGL102 plasmid for the over-expresslon of TDRl In Leishmania. A -  pGL102 
+ TDRl (pGL102TDR1) for the over-expresslon of TDRl. amp, amplclllln resistance gene; neo, 
neomycin resistance gene. The restriction sites used to clone TDRl Into the vector are shown In 
dark red. B -  empty pGL102 vector, for use as a negative control.
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5.2.2 Analysis of over-expression

Whether pGL102TDRl parasites that grew in the presence of the selective drug had been 

successfully transformed, resulting in increased levels of TDRl, was assessed by western 

blot analysis. pGL102 and pGL102TDRl parasites grown with neomycin and in the 

stationary phase of growth were harvested and lysed and the soluble fractions were 

retained. The protein concentration of each sample was determined, and equal quantities 

were separated by SDS-PAGE before western blotting. The sheep ani-TDRl antibody was 

used to detect TDRl expression. To ensure equal loading of the samples, cysteine synthase 

(CS) expression was examined in parallel with TDRl, using a rabbit anti-CS antibody 

donated by Dr R. Williams of the University of Glasgow. While the expression of CS 

remained constant, TDRl was significantly more highly expressed in pGL102TDRl than 

in pGL102 L  major promastigotes (figure 5.2); at least a four-fold increase in TDRl 

expression was observed.

TDRl

CS

Figure 5.2: Western blot analysis of TDRl expression In pGL102 and pGL102TDR1 L. major 
promastigotes. 20 pg of soluble parasite lysate was loaded per lane. CS, cysteine synthase 
protein, used as a control to ensure equal loading. The relative positions of the proteins are 
indicated to the left of the image.

5.2.3 Phenotypic analysis of TDRl over-expressing L. major

Western blot analysis confirmed that pGL102TDRl parasites were over-expressing TDRl 

as compared to pGL102 parasites, and therefore phenotypic tests could be conducted with 

confidence that TDRl was at increased levels. In some experiments the TDRl over

expressing parasites were compared to WT as well as pGL102 parasites to help corroborate 

any differences between data sets.
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5.2.3.1 Morphology and growth
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Parasites over-expressing TDRl were examined microscopically and no morphological 

differences could be seen between them and the parasites containing the empty pGL102 

vector or WT parasites. After several passages with neomycin present in the culture media, 

the pGL102 and pGL102TDRl lines were counted and diluted to the same concentration. 

Thereafter their growth was monitored by daily counting (figure 5.3). The parasite lines 

were found to grow at similar rates.
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Figure 5.3: Growth curve of pGL102 and pGL102TDR1 L. major promastigotes. Cultures were 
seeded at a concentration of 2 x 10® parasites/ml and were counted daily. Both lines were grown 
with 50 pg/ml neomycin.
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5.2.3 2 In vitro infectivity to macrophages
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The ability of WT, pGL102 and pGL102TDRl stationary phase promastigote parasite lines 

to infect peritoneal macrophages was assessed (figure 5.4). pGL102TDRl infected a 

higher percentage of macrophages than either the pGL102 or WT lines: approximately 4 

times and twice as many, respectively. This suggests that the over-expression of TDRl in 

parasites aids infection. However, the differences were not significant which reflects the 

low number of replicates of this experiment that were performed: further analysis is 

required to conclude whether over-expression of TDRl impacts upon the infectivity of the 

parasites to macrophages. The variation between the infection rates between the WT and 

pGL102 lines was also of concern as they would be expected to infect at a similar rate. It is 

possible that the pGL102 line have been adversely affected by the transformation 

procedure, causing them to be less infective in vitro.
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Figure 5.4: Infectivity of WT, pGL102 and pGL102TDR1 L. mayor promastigotes to 
macrophages. Stationary phase promastigotes were used to infect peritoneal macrophages at a 
rate of 2:1 and the slides were incubated for 5 days post-infection. Results are the means ± SE 
from at least two experiments. The infection rates of the different parasite lines were not 
significantly different (p > 0.05)
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5.2.3 3 In vivo infectivity to mice
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To assess the in vivo infectivity, metacyclic pGL102 and pGL102TDRl parasites were 

purified from stationary phase cultures and inoculated into mouse footpads, the thicknesses 

of which were then measured over time (figure 5.5). pGL102TDRl parasites were 

responsible for significantly more rapid footpad growths than those that were induced by 

pGL102. However, footpad infectivity experiments described elsewhere in this chapter 

suggest that the infectivity of pGL102 parasites may be compromised: footpads infected 

with WT parasites reach an average of 4 mm after 6 weeks (figure 5.16), while here 

footpads infected with pGL102 parasites are an average of just 3.5 mm after 10 weeks. 

However, although the experimental conditions are the same between these two 

experiments, some parameters may be subject to change e.g. the amount of time between 

metacyclic promastigote purification and inoculation. Therefore the differences observed 

between the two experiments may not be due to the pGL102 line being defective. 

Regardless of whether pGL102 parasites are infectious as WT, the footpad infections 

caused by pGL102TDRl are particularly virulent as after just five weeks the footpads had 

reached an average width of 4.9 mm. The difference between the footpad infections caused 

by the pGL102TDRl parasites in this experiment and the WT parasites in the experiment 

described in section 5.3.3.4 and demonstrated in figure 5.16 is significant (p < 0.02). As 

described in the previous section, pGL102TDRl parasites were also more infective to 

macrophages than both WT and pGL102 parasites.

i
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pGL102TDR1
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Figure 5.5: Infectivity of pGL102 and pGL102TDR1, L. mayor metacyclic promastigotes to 
mice. 1x10® metacyclic promastigotes were resuspended in 20 pi PBS and inoculated into one 
footpad of each BALB/C mouse. The footpad thicknesses were subsequently measured weekly, 
and the results are the means ± SD from five mice. The footpad thicknesses of mice infected with 
pGL102TDR1 parasites were significantly greater than those of mice infected with pGL102 five 
weeks post-infection (p < 0.0006).
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The effect of sodium stibogluconate (Sb(V)) on macrophages infected with pGL102 and 

pGL102TDRl parasites was assessed (figure 5.6). The parasites and macrophages were 

incubated overnight, the excess parasites were washed off and dilutions of Sb(V) in media, 

or drug-free media, were applied. The parasites were incubated with the drug for a total of 

five days, with the drug being refreshed once during that time. At the highest drug 

concentration (250 pg/ml) the percentage of macrophages infected by the pGL102 and 

pGL102TDRl parasites had fallen to around 30% of the percentage of cells infected when 

no drug was applied. There was no significant difference in the effect of Sb(V) between the 

different parasite lines.
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Figure 5.6: Effect of sodium stibogiuconate on the infectivity of pGL102 and pGL102TDR1 L. 
major promastigotes to macrophages. Stationary phase promastigotes were used to infect 
peritoneal macrophages at a rate of 3:1 at 37 °C. After the parasites and macrophages had been 
incubated together overnight, the parasites were washed off and doubling dilutions of sodium 
stitx)gluconate (Sb(V)) were applied. Results are the means ± SE from at least two experiments. 
There is no significant difference between the effect of Sb(V) on the infectivity of pGL102 and 
pGL102TDR1 promastigotes to macrophages (p > 0.5). The results are expressed as the 
percentage of cells infected when no drug was present in order to normalize varying levels of 
infection.

5.2.3 5 ICso values when incubated with agents that induce oxidative stress

IC50 values -  the concentration of a substance that causes half of the maximum inhibitory 

effect it exerts to occur -  were obtained for H2O2 and paraquat, against WT and 

pGL102TDRl parasites, and are presented in table 5.1. These were obtained by incubating 

parasites with doubling dilutions of the compounds in 96-well plates, and adding Alamar 

Blue to indicate living parasites. H2O2 itself is a reactive oxygen species (ROS) while
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paraquat can diffuse across cell membranes and react with dioxygen, resulting in the 

intracellular production of superoxide (O2 ) (Hassan and Fridovich, 1978). As described in 

the introduction to this chapter, TDRl displays glutaredoxin-like activities in vitro, 

functioning as a thioltransferase and dehydroascorbate reductase. Therefore increasing the 

abundance of TDRl in vivo may be expected to protect the parasites against oxidative 

stress, and increase their tolerance to agents that induce it. However, the IC50 values 

obtained for H2O2 and paraquat were similar for both WT and pGL102TDRl parasites.

The pGL102TDRl parasites are slightly more tolerant to H2O2 than WT, although 

paradoxically they are slightly more sensitive to paraquat.

WT PGL102TDR1
H2 0 2 253.3 ±2.9 301.7 ±7.6
paraquat 5500 ±1004 2200 ±130

Table 5.1:10» values of paraquat and H2O2 against WT and pGL102TDR1 L. major 
promastigotes. All values were obtained using the Alamar Blue test; parasites were incubated 
with doubling dilutions of the compounds for a total of four days. The values and standard 
deviations were calculated using the Graft software I C 5 0  programme. All values are in pM.

5.2.3 6 Growth of promastigotes with paraquat

To further assess the effect of paraquat on pGL102TDRl parasites compared to L. major 

promastigotes with normal TDRl levels, parasite cultures were grown with the compound 

(figure 5.7). WT, pGL102 and pGL102TDRl promastigotes were seeded at 1 x 10̂  and in 

standard media containing 5 mM paraquat. Over the course of seven days, the parasite 

lines grew at similar rates, although between day 3 and day 6 the pGL102TDRl were at a 

slightly lower concentration than the WT and pGL102 parasites.
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Figure 5.7: Effect of paraquat on the growth of WT. pGL102 and pGL102TDR1 L. major 
promastigotes. The parasites were seeded at 1 x 10 /ml with 50 pg/ml neomycin and 5 mM 
paraquat and were counted daily.
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5.3 Knocking-out of TDR1 in L. major

It was anticipated that removing the TDRl gene from L. major by two rounds of 

homologous recombination would affect the parasites and result in a phenotype that would 

clarify the role of TDRl in vivo. Analysis of the knockout parasites’ susceptibility to Sb(V) 

would also elucidate the role, if any, of TDRl in pentavalent antimonial activation.

5.3.1 Creation of L  major TDRl knock-out parasite lines

The 3’ and 5’ flanking regions of TDRl were amplified from L. major genomic DNA, sub

cloned into pET28a(+) and cloned into vectors pGL345, pGL1033 and pGL842 which 

contain hygromycin, bleomycin and blasticidin resistance genes, respectively (figure 5.8). 

The constructs containing the flanking regions and drug resistance markers were cut out 

and purified and the linear DNA was used to transform L  major promastigotes. Following 

the two independent second-round transfections and overnight recovery period, the 

appropriate selective drugs were added and the cultures were divided: 1 ml of each was 

used to set up serial dilutions in an attempt to derive clonal lines. Two independent lines, 

KOTDRl 1 and KOTDR18, were generated, both having undergone transformation with 

two constructs sequentially and grown up in the presence of the selection drugs.

KOTDRl 1 was transformed with DNA obtained from the pGL345 (hygromycin) and 

pGL1033 (bleomycin) plasmids, while KOTDRl 8 was generated with DNA from the 

pGL345 and pGL842 (blasticidin) plasmids. In addition, a clonal line was derived from the 

initial serial dilutions of the KOTDRl population; it was named KOTDRl 1 A. After 

several passages in the selective drugs, three further clonal lines were derived by setting up 

KOTDRl 1 and KOTDRl 8 in 96-well plates at a concentration of approximately 0.1 

parasites per well. One clone, KOTDRl IB, was isolated from KOTDRl 1 and two clones 

were isolated from KOTDRl 8: KOTDRl 8A and KOTDRl 8B. The clones were derived in 

the presence of selective drugs, but these were omitted from the media following the 

isolation of the clones.
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Figure 5.8: Construct for the gene knock-out of TDRl in L. major promastigotes. Schematic 
representation of the pGL345 plasmid containing the TDRl 3’ and 5’ flanking regions. The second 
plasmids used for the construction of the TDRl knock-out lines were pGL842 and pGLIOSS, which 
are exactly the same as pGL345 except that they contain blasticidin and bleomycin resistance 
genes respectively, rather than hygromycin resistance gene. Hyg, hygromycin resistance gene; 
amp, ampicillin resistance gene; DHFR flanks, flanking regions of the dihydrofolate reductase 
gene. The restriction sites used to clone the TDRl flanks and hygromycin resistance gene into the 
vector are shown in dark red. Hindlll and Bglll were used to cut out the flank-containing linear 
construct for transfection into L major.

5.3.2 Analysis of knock-out lines

Whether the TDRl gene had successfully been knocked out of KOTDRl lA, KOTDRl IB, 

KOTDRl 8 A and KOTDRl 8B, resulting in the absence of TDRl, was assessed by western 

blot analysis. WT and TDRl knockout parasites in the stationary phase of growth were 

harvested and lysed and the soluble fractions were retained. The protein concentration of 

each sample was determined, and equal quantities were separated by SDS-PAGE before 

western blotting. The sheep ani-TDRl antibody was used to detect TDRl expression. To 

ensure equal loading of the samples and as a positive control, CS expression was examined 

in parallel with TDRl, using the rabbit anti-CS antibody as before. While CS expression 

was apparent in all lines tested, TDRl was solely expressed in WT parasites (figure 5.9). 

Therefore KOTDRl lA, KOTDRl IB, KOTDRl 8A and KOTDRl 8B were judged as being 

successful TDRl knockouts.
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Figure 5.9: Western blot analysis of TDR1 expression in WT, KOTDR18A, KOTDR18B, 
KOTDR11A and KOTDRl IB L. ma/or promastigotes. 15 pg of soluble parasite lysate was 
loaded per lane. CS, cysteine synthase protein, was used as a control to ensure equal loading. The 
relative positions of the proteins are indicated to the left of the image.

5.3.3 Phenotypic analysis of TDR1 knock-out lines 

5.3.3.1 Morphology and growth

TDRl knockout parasites were examined microscopically and no morphological 

differences could be seen between them and WT. The KOTDRl 1 A, KOTDRl IB,

KOTDRl 8A and KOTDRl 8B clonal lines were counted and diluted to the same 

concentration. Thereafter their growth was monitored by counting at regular intervals 

(figure 5.10). The KOTDRl8A and KOTDRl IB lines took slightly longer to reach 

stationary phase than the other lines. KOTDRl 8A did not reach a density greater than 1.2 x 

10̂  parasites/ml, while all other lines reached 2x10^ parasites/ml. Moreover, after 30 days 

in culture, the KOTDRl 8A parasites began to die while the other lines did not. After the 

KOTDRl lA, KOTDRl IB and KOTDRl8B lines had been passed through mice, the 

growth curves were repeated and all three grew at similar rates to, and reached similar 

densities in the stationary growth phase as WT parasites.
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Figure 5.10: Growth curve of WT, KOTDR11A, KOTDRl IB, KOTDR18A and KOTDRl8B L  
ma/or promastigotes. Cultures were seeded at a concentration of 1 x 10® parasites/ml and were 
counted at regular intervals. All parasite lines were grown without any selective drugs added.
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The percentage of WT, KOTDRl 1 A, KOTDRl IB, KOTDRl 8 A and KOTDRl 8B 

promastigotes that differentiated to metacyclic forms was monitored over time (figure 

5.11). Parasite cultures were seeded at equal concentrations and, after they had reached the 

stationary phase of growth, aliquots were removed and the percentage of metacyclic forms 

in each sample was assessed. The percentage of metacyclic forms in each of the parasite 

lines tested increased over time. The percentage of metacyclic forms in each culture was 

similar at each time interval, although the highest percentage was consistently in the 

KOTDRl 1A line. At 16 days after the cultures were initiated, a lower percentage of 

metacyclogenesis was observed in the KOTDRl 8A sample, as compared to the other lines.
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Figure 5.11: Metacyciic formation in WT, KOTDRl 1 A, KOTDRl IB, KOTDRl 8A and 
KOTDRl8B L  major promastigotes over time. Parasite cultures were seeded at 1 x 10®/ml and 
metacyclogenesis was assessed after they had reached the stationary phase of growth. The 
parasites in each culture were counted, incubated with peanut agglutinin and re-counted. 
Metacyclogenesis was also assessed by analysis of parasite morphology. Number of days refers to 
the time since the cultures were initiated.

5.3.3 3 In vitro infectivity to macrophages

The ability of WT, KOTDRl 8B, KOTDRl 1A and KOTDRl 1B stationary phase 

promastigote parasite lines to infect peritoneal macrophages was assessed (figure 5.12). 

The KOTDRl 8A line was not used here, or in any other macrophage infectivity 

experiments because, as discussed in section 5.3.3.4, this line was not infective to mice. 

While the KOTDRl8B, KOTDRl lA and KOTDRl IB parasite infected macrophages at 

similar levels, the WT parasites infected a significantly lower number of cells. This 

suggests that the loss of TDRl enhances the macrophage infectivity of L major. This was
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an unexpected result, as the over-expression o f TDRl in L. major promastigotes had a 

similar effect (section 5.2.3.2).
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Figure 5.12: Infectivity of WT, KOTDRl 1 A, KOTDRl IB, KOTDRl8A and KOTDRl8B L. major 
promastigotes to macrophages. Stationary phase promastigotes were used to infect peritoneal 
macrophages at a rate of 2:1 and the slides were incubated for 6 days at 37 “C post-infection. 
Results are the means ± SE from at least two experiments. All three TDRl knockout lines are 
significantly more infectious to macrophages than WT parasites (p < 0.05).

In the previous experiment the macrophages were incubated at 37 °C. Whether the 

incubation temperature affected the infectivity of WT, KOTDRl 8B, KOTDRl lA and 

KOTDRl IB promastigotes was assessed (figure 5.13A). At both 35 °C and 35 °C, the WT 

parasites infected a lower percentage of macrophages than the TDRl knockout lines. 

However, this effect was much more pronounced at 37 °C: while the percentage of infected 

macrophages for the three TDRl knockout lines remained constant between the two 

temperatures, the WT parasites infected less than half the percentage of macrophages at 37 

°C than they did at 35 °C. The effect of the different temperatures on the average number 

of parasites in each infected cell was also determined (figure 5.13B). When incubated at 35 

°C the average number of parasites in each infected cell varied between the KOTDRl 8B, 

KOTDRl lA and KOTDRl IB lines (approximately 11, 14 and 17, respectively). However 

these were all higher than the average of 8 parasites per cell observed in macrophages 

infected with WT parasites. At 37 °C there was a decrease in the average number of 

parasites per cell in all the lines tested. At the higher temperature the average number of 

parasites was similar in cells infected by the three TDRl knockout lines, and once again 

the number of WT parasites per cell was considerably less.
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Figure 5.13: Infectivity of WT, KOTDRl 1 A, KOTDRl IB, KOTDRl 8A and KOTDRl 8B L. major 
promastigotes to macrophages and the number of parasites per infected cell, when 
incubated at different temperatures. Stationary phase promastigotes were used to infect 
peritoneal macrophages at a rate of 3:1 and the slides were incubated for 6 days post-infection. A -  
the percentage of macrophages infected after 6 days. B -  the average number of parasites present 
in each in infected cell. The number of parasites present in at least 20 infected cells was counted, 
and the average number calculated.

A second experiment was conducted to analyse the affect of temperature, but also the 

infection ratio of parasites to cells, on the infectivity of WT, KOTDRl 1 A, KOTDRl IB, 

KOTDRl 8A and KOTDRl 8B to macrophages (figure 5.14). A second L. major WT line 

with a higher passage number was also used, to corroborate the observation in the previous 

experiments that the WT parasites were less infective to macrophages than the TDRl 

knockout lines. Parasites with a higher passage number were used as these had not been so 

recently harvested from animals and had had longer to adjust to growing in vitro. The 

percentage of infected macrophages by the WT lines were highly similar when infection 

ratios of 2:1 and 3:1 parasites to macrophages were used, and at both 35 °C and 37 °C. 

Both WT lines infected a lower percentage of macrophages than the three TDRl knockout 

lines, which infected similar levels of cells. In all the parasite lines used in these 

experiments and at both temperatures, a significantly higher percentage of macrophages
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were infected when the infection ratio of parasites to cells was 3:1 as opposed to 2:1. Once 

again, the percentage of macrophages infected by WT parasites was significantly lower at 

37 °C than 35 °C; this effect was apparent with both WT lines used, and was regardless of 

the infection ratio used. The percentages of macrophages infected with the three TDRl 

knockout lines at each of the infection ratios used were not significantly different between 

the two temperatures.
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Figure 5.14: infectivity of two independent WT lines and KOTDRl 1 A, KOTDRl IB,
KOTDRl 8A and KOTDRl8B L. ma/or promastigotes to macrophages using different 
infection ratios and when incubated at different temperatures. Stationary phase promastigotes 
were used to infect peritoneal macrophages at a rate of 2:1 or 3:1 as indicated, and the slides were 
incubated for 6 days post-infection. A -  incubated at 35 °C. B -  incubated at 37 “C. Results are the 
means ± SE from at least two experiments. For both WT and TDRl knockout parasites and at both 
temperatures, the percentage of cells infected when an infection ratio of 3:1 was used was 
significantly higher than when an infection ratio of 2:1 was used (p < 0.05). For each infection ratio 
the percentage of macrophages infected with WT parasites when the cells were incubated at 35 °C 
was significantly higher than when incubated at 37 °C (p < 0.05). This was not the case for the 
TDRl knockout parasites (p > 0.1).
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Finally, the effect of time on macrophage infections by both WT lines and the three TDRl 

knockout lines was examined. The parasites were removed after being incubated with the 

macrophages overnight, and the cells were incubated for a further one, three or five days 

before the percentage of infected cells was assessed (figure 5.15). After one day, all the 

parasite lines resulted in a similar percentage of infected macrophages. However, by the 

fifth day both the WT lines infected significantly less cells than the three TDRl knockout 

lines, which again infected very similar levels of macrophages.

90 
80 
70 
60 

w 50
I  40

30 
20 
10 
0

I

□ WT
□ WT2
■ KOTDRl 8B
■ KOTDRl 1A
■ KOTDRl IB

1 day 3 days
Time post infection

5 days

Figure 5.15: infectivity of two independent WT iines and KOTDRl 1 A, KOTDRl IB,
KOTDRl BA and KOTDRl 8B L. mayor promastigotes to macrophages over time. Stationary 
phase promastigotes were used to infect peritoneal macrophages at a rate or 3:1 and the slides 
were incubated for 1, 3 or 5 days post-infection as indicated. Results are the means ± SD from at 
least three experiments. After five days the percentage of macrophages infected by the WT 
parasites was significantly less than the percentage infected by the TDRl knockout lines (p < 
0.05).

Taken together, these experiments show that all three TDRl knockout lines consistently 

infect a significantly higher percentage of macrophages than WT parasites do, and also 

produce infections with a higher number of parasites per infected cell than WT. The WT 

cell lines infected a lower percentage of cells when incubated at 37 °C as compared to 35 

°C; this effect was not apparent in infections by the TDRl knockout lines. A similar 

phenomenon was observed when the macrophages were incubated for varying amounts of 

time post-infection: while all lines produced similar levels of infected macrophages after 

one day, after five days the percentage of macrophages infected with the WT parasites was 

significantly less than the percentage infected with the TDRl knockout lines. The three 

TDRl knockout lines behaved similarly, causing comparable levels of cells to be infected 

under all the conditions tested here. The two WT lines used also produced similar results.
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For all the lines tested and at both 35 °C and 37 °C, a 3:1 infection ratio resulted in a 

higher percentage of infected macrophages that when a 2:1 infection ratio was used.

5.3 3.4 In vivo infectivity to mice

To assess the in vivo infectivity of the TDRl knockout parasites, metacyclic promastigotes 

were purified from stationary phase cultures and inoculated into mouse footpads, the 

thicknesses of which were then measured over time. Initially only the KOTDRl 1A and 

K0TDR18A lines were used, together with WT parasites (figure 5.16). Both the WT and 

KOTDRl 1A parasites infected the mice footpads, with the KOTDRl 1A parasites causing 

slightly more rapid footpad growths to occur than the WT parasites. However, the 

KOTDRl 8A line was found to be completely non-infective to the mice; the footpad widths 

did not increase in any of the mice. The same result was obtained in a second experiment 

using this line. This was an unexpected result given the infectivity of the KOTDRl 1A line. 

However, previous experiments described in section 5.3.3.1 show that KOTDRl 8A 

promastigotes did not grow to as high densities as WT and the other TDRl knockout lines, 

and expired before them. Metacyclogenesis was also reduced in the KOTDRl 8A line, 

albeit only at the latest time point (section 5.3.3.2). Therefore the KOTDRl 8A line was 

judged to have been damaged in some way -  possibly during the transformation procedure 

-  and was therefore not used for subsequent phenotypic analysis.
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Figure 5.16: Infectivity of WT, KOTDRl8A and KOTDR11A L. mayor metacyciic 
promastigotes to mice. 1x10^ metacyclic promastigotes were resuspended in 20 pi PBS and 
inoculated into one footpad of each BALB/C mouse. The footpad thicknesses were subsequently 
measured weekly, and the results are the means ± SO from three mice. The footpad thicknesses of 
mice infected with KOTDRl 1A parasites were significantly greater than those of mice infected with 
WT parasites five weeks post-infection (p < 0.025).
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The infectivity of WT parasites and the remaining TDRl knockout lines KOTDRl 1 A, 

KOTDRl IB and KOTDRl83 to mice footpads was investigated (figure 5.17). All the 

lines infected the mice, although the three TDRl knockout lines caused significantly more 

rapid footpad width increases to occur than the WT parasites did. This reflects the in vitro 

data, with the TDRl knockout lines being consistently being more infective to 

macrophages than the WT parasites. Following the experiment, parasites were recovered 

from the footpads and cultured as normal for use in further investigations.

0
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KOTDRl 8B 
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Number of weeks
Figure 5.17: infectivity of WT, KOTDR18B, KOTDRl 1A and KOTDRl IB L. mayor metacyclic 
promastigotes to mice. 1x10^ metacyclic promastigotes were resuspended in 20 pi PBS and 
inoculated into one footpad of each BALB/C mouse. The footpad thicknesses were subsequently 
measured weekly, and the results are the means ± SD from five mice. The footpad thicknesses of 
mice infected with all three TDRl knockout lines were significantly greater than those of mice 
infected with WT parasites five weeks post-infection (p < 0.05).

5.3.3 5 Effect of Sb(V) on infectivity to macrophages

The effect of Sb(V) on macrophages infected with WT, KOTDRl 1 A, KOTDRl IB and 

KOTDRl 8B parasites was assessed, as before. Initially only the WT and KOTDRl 1A 

lines were used (figure 5.18). The results are presented as both the percentage of infected 

macrophages at the varying drug concentrations, and as of the percentage of the level of 

infection achieved when no drug was applied; this is to normalise the data for the 

anomalies in the infection levels between the lines. At the second-highest drug 

concentration (250 pg/ml) the percentage of macrophages infected with WT parasites had 

fallen to around 50% of the percentage of cells infected when no drug was applied, while 

the infection level of macrophages infected with the KOTDRl 1A line remained 

unchanged. This was the only drug concentration at which a significant difference was 

observed and suggests that macrophage infections of KOTDRl 1A may be less susceptible
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to Sb(V) than WT infections. This is in accordance with the hypothesis that TDRl is able 

to reduce pentavalent antimonials to a more harmful trivalent form in vivo, effectively 

mediating toxicity of the drug. However, the large standard errors obtained from the data, 

caused by inconsistency between duplicate experiments, meant that further analysis was 

required.
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Figure 5.18: Effect of sodium stibogluconate on the infectivity of WT and KOTDRl 1A L. 
major promastigotes to macrophages. Stationary phase promastigotes were used to Infect 
peritoneal macrophages at a ratio of 3:1. Doubling dilutions of sodium stibogluconate (Sb(V)) were 
applied as before and cells were Incubated for 5 days with the drug. A - % Infected macrophages. 
B -  results expressed as the percentage of cells Infected when no drug was present In order to 
normalize varying levels of Infection. Results are the means ± SE from two experiments. When the 
drug concentration was 250 pg/ml, the percentage of macrophages Infected with WT parasites 
relative to the no drug control was significantly less than the percentage Infected with KOTDRl 1A 
parasites (p < 0.04). At all other drug concentrations there was no significant difference (p > 0.05).
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In a second experiment the effect of Sb(V) on macrophages infected with WT,

KOTDRl 1 A, KOTDRl IB and KOTDRl 8 was investigated (figure 5.19). Again, the raw 

data together with the normalised results are presented. In this experiment, the percentage 

of macrophages infected with WT parasites was very low: only around 15% of cells were 

infected when no drug was present. Meanwhile the infection levels achieved with the 
TDRl knockout lines was consistently around 50%. At the highest drug concentration (1 

mg/ml) the percentage of macrophages infected with WT and KOTDRl 8B parasites had 

fallen to around 50% and 55%, respectively, of the percentage of cells infected when no 

drug was applied, while the level of macrophages infected with KOTDRl 1A and 

KOTDRl IB were approximately 80%. However, there was no consistent significant 

differences between the effect of Sb(V) on WT infections compared to TDRl knockout 

infections. The low infection rate observed for the WT line when no drug was present is 

problematic when analysing the data: the effect of Sb(V) on WT infection levels may be 

far more dramatic if the initial infection rates were higher.

The effect of the incubation temperature on macrophages infected with WT, KOTDRl 1 A, 

KOTDRl IB and KOTDRl 8 parasites, and treated with Sb(V) was assessed. Both the 

percentage of infected macrophages (figure 5.20) and the average number of parasites per 

cell (figure 5.21) were analysed. Only the normalised data is presented here (the 

percentage of the infection levels and parasites/cell observed with no drug present); the 

results correlate with the data presented in figure 5.13 as they are part of the same 

experiment. Only two concentrations of Sb(V) were used in these experiments: 0.5 mg/ml 

and 2.5 mg/ml and at the latter Sb(V) may also be slightly toxic to the macrophages. This 

high concentration was used to assess whether improved toxicity to L. major could be 

achieved. With all the parasite lines tested, Sb(V) was much more effective at reducing the 

percentage of infected macrophages at 37 °C than at 35 °C, However, the effect of the drug 

on the number of parasites per cell did not differ between the two temperatures (although, 

as described in section 5.3.3.3, the average number of parasites per cell is less at 37 °C 

than at 35 °C for all the lines tested). No macrophages infected with WT parasites could be 

detected when the cells had been incubated at 37 °C, although cells were infected with all 

three TDRl knockout lines at this temperature. With the exception of this observation, 

there were no noticeable differences in the effect of Sb(V) on the infections between the 

cell lines; this applies to both the percentage of infected macrophages and to the average 

number of parasites per cell. As before, much higher levels of infection were achieved with 

the TDRl knockout lines than the WT parasites and this may have affected this inference.
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Figure 5.19: Effect of sodium stibogluconate on the infectivity of WT, KOTDR18B,
KOTDRl 1A and KOTDRl IB  L. mayor promastigotes to macrophages. Stationary phase 
promastigotes were used to infect peritoneal macrophages at a rate of 2:1. Doubling dilutions of 
sodium stibogluconate (Sb(V)) were applied as before and cells were Incubated for 7 days at 37 “0 
with the drug. Results are the means ± SE from two experiments. A - % Infected macrophages B - 
results expressed as the percentage of cells infected when no drug was present in order to 
normalize varying levels of Infection. At all drug concentrations used, there were no significant 
differences In the effect of Sb(V) on the percentage of macrophages Infected with the WT and 
TDRl knockout lines relative to the no drug control (p > 0.05).
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Figure 5.20: Effect of sodium stibogluconate on the infectivity of WT, KOTDR18B, 
K0TDR11A and KOTDR11B L. mayor promastigotes to macrophages at varying 
temperatures. Stationary phase promastigotes were used to infect peritoneal macrophages at a 
rate of 3:1. Sodium stibogluconate (Sb(V)) at one of two concentrations, or no drug, was applied 
and cells were incubated for 5 days. The results are expressed as the percentage of cells infected 
when no drug was present In order to normalize varying levels of Infection. A -  Incubated at 35 ®C. 
B -  Incubated at 37 “C.
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Figure 5.21: Effect of sodium stibogluconate on the average number of parasites per 
infected macrophage of infections with WT, KOTDRl SB, KOTDRl 1A and KOTDRl IB L. 
major promastigotes at varying temperatures. Stationary phase promastigotes were used to 
Infect peritoneal macrophages at a rate of 3:1. Sodium stibogluconate (Sb(V)) at one of two 
concentrations, or no drug was applied and cells were Incubated for 5 days. The number of 
parasites present In at least 20 Infected cells was counted, and the average number calculated. 
The results are expressed as the percentage parasites per cell that were present when no drug 
was applied. In order to normalize the data. A -  Incubated at 35 ®C. B -  Incubated at 37 °C.
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5.3 3.6 IC50 values when incubated with toxic substances
■■i

I
Using both the acid phosphatase and Alamar Blue assays, IC50 values were obtained for 

various substances against WT and TDRl knockout parasites. Three different 

hydroperoxides -  H2 O2, cumene hydroperoxide and tert-butyl hydroperoxide -  were tested

against the KOTDRl 1 and KOTDRl 8 parasite populations (table 5.2). Because of the 

glutaredoxin-like in vitro activities of rTDRl, it was hypothesised that parasites lacking 

TDRl may be more sensitive to these oxidising agents. However, the IC50 values obtained 

were broadly similar for each substance between the WT and TDRl knockout parasites.

ÏC50 values were also calculated for several compounds against WT, KOTDRl 1 A,

KOTDRl IB and KOTDRl8B parasites (table 5.3). The substances tested were the 

trivalent antimonial compound potassium antimonial tartrate (Sb(III)), which is toxic to 

Leishmania and affects the redox balance of the parasites (Wyllie et al, 2004); juglone, 

which is toxic to trypanosomes (Akerman and Muller 2005) and produces intracellular 

ROS (Kampkotter et al, 2003); N-methylphenazinium methyl sulphate, which is toxic to 

trypanosomes (Akerman and Muller 2005) and generates intracellular O2’ (Maridonneau et 
al, 1983) and p-mercaptoethanol, a chemical that reduces disulphide bonds and affects the 

expression levels of& coli glutaredoxins (Potamitou et al, 2002). Both the KOTDRl 1A 

and KOTDRl IB lines were considerably more sensitive to paraquat (IC50 values of 1.2 and *

1.4 mM, respectively) than WT parasites (IC50 value of 5.5 mM). Therefore the effect of 

paraquat on the different parasite lines was investigated further.
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WT KOTDRl 1 KOTDRl 8
H2 0 2 234.5 ±10.7 328.7 ±29.9 227.8 ±13.8
Cumene hydroperoxide 9.4 ±1.2 9.4 ±1.3 9.0 ±0.6
Tert-butyl hydroperoxide 27.3 ±1.7 14.4 ±6.5 27.2 ±2.6

Table 5.2: IC50 values of H2O2, cumene hydroperoxide and tert-butyl hydroperoxide against 
WT, KOTDR11 and KOTDR18 L. mayor promastigotes. All values were obtained using the acid 
phosphatase assay. The values and standard deviations were calculated using the Grafit software 
IC5 0 programme. All values are in pM.

WT KOTDRl 1A KOTDRl IB KOTDRl 8B
Sb(III) 23.2 ±2.7 16.7 ±3.0 N/D N/D
P-me 330.8 ±21.9 301.4 ±36.3 N/D N/D
juglone 2.3 ±0.7 2.4 ±0.3 N/D N/D
H2O2 253.3 ±2.9 264.4 ±6.8 266.6 ±7.6 290.6 ±8.1
paraquat 5500 ±1004 1200 ±100 1400 ±500 N/D
NMPMS 10.1 ±0.4 7.8 ±0.54 N/D N/D

Table 5.3: IC50 values of different com pounds against WT, KOTDRl 1 and KOTDR18 L. major 
promastigotes. All values were obtained using the Alamar Blue assay. The values and standard 
deviations were calculated using the Grafit software I C 5 0  programme. All values are In pM. Sb(lll), 
potassium antimonial tartrate; |3-me, p-mercaptoethanol; NMPMS, N-methylphenazinium methyl 
sulphate; N/D, not determined.

5 3.3.7 Effect of agents that induce oxidative stress on TDR1 expression in 

L  major promastigotes

In chapter four the varying expression of TDRl between different life-cycle stages was 

demonstrated. Given that TDRl displays thioltransferase and DHAR activities in vitro, it 
may have a role in protecting the parasite from oxidative stress and therefore TDRl 

expression may be modulated by fluctuations in the intracellular redox environment of the 

parasite. In order to determine whether exposure to oxidative stress could stimulate TDRl 

expression in WT L, major promastigotes, parasites were incubated for varying times with 

different concentrations of H2O2 or paraquat and western blots were performed on the 

resultant parasite lysates (figure 5.22). The protein concentrations of the samples were 

determined and normalised, but to ensure equal loading of the samples CS and/or 

transketolase (TK) expression was examined in parallel with TDRl, using the rabbit anti- 

CS and anti-TK antibodies. TDRl expression did not change in L  major parasites 

incubated with 125 pM H2O2 at any of the time-points tested, nor in parasites incubated 

with 500 pM H2O2 after 4 hours (at later time-points the parasites were mostly dead so the 

TDRl expression could not be determined) (figure 5.22A), It is possible any changes in 

expression would take place before the initial four hour time-point when the parasites were
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harvested. Accordingly, L major parasites were incubated with paraquat for less time, with 

the parasites being harvested at three time-points within 24 hours of initial exposure to the 

oxidant. However, no variations in TDRl expression were visible at any of these time- 

points with the different paraquat concentrations (figure 5.22B). TDRl may have a role in 

protecting the parasite against oxidative stress; however, its expression is not affected by 

exposure to these oxidants under the conditions tested.

A H A  (pM) 125 500

TDRl

Time (h) 4 24 72

B Paraquat (mM) 0 0.1 1 0.1 1 0.1

TK

TDRl mm 

CS «—

Time (h) 0 1 4 24
Figure 5.22: Western blot analysis of the effect of H2O2 and paraquat on TDRl expression in 
L. major promastigotes. A -  parasites inbubated with H2O2 . 12 pg of soluble parasite lysate 
loaded per lane. B -  parasites incubated with paraquat. 16 pg of soluble parasite lysate loaded per 
lane. The concentrations of the reagents are shown above each figure and the length of exposure 
time is shown below In h (hours). TK (transketolase) and CS (cysteine synthase) were used as 
loading control proteins. The Identities of the different proteins are Indicated to the left of the Image. 
There was no noticeable change In TDRl expression under the conditions tested.

5.3 3.8 Growth of promastigotes with paraquat

The IC50 data presented in section 5.3.3.6 showed that the TDRl knockout lines 

KOTDRl 1A and KOTDRl IB are approximately four times more sensitive to paraquat 

than WT parasites. To further investigate the effect of paraquat on these lines, WT, 

KOTDRl 1 A, KOTDRl IB and KOTDRl8 parasite cultures were seeded at 1 x lOVml and 

grown with 5 mM paraquat, and the growth of the parasites’ was monitored by counting 

(figure 5.23). While the parasite density of the WT culture increased to approximately 2 x 
10̂  after six days, over the same time period the parasite density of the three TDRl 

knockout lines fell to 1.4-2.6 x 10̂ . This result reflects the IC50 data presented previously
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and demonstrates a clear difference in the sensitivity of the TDRl knockout lines to 

paraquat as compared to WT parasites.
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Figure 5.23: Effect of paraquat on the growth of WT, KOTDR18B, KOTDRl 1A and 
KOTDR11B L. major promastigotes. The parasites were seeded at 1 xIO* with 5 mM paraquat 
and were counted daily.

5.4 Re-expressing TDR1 In TDRl knock-out parasite lines

In order to clarify whether any phenotype observed in the TDRl knockout lines was due to 

the loss of TDRl as opposed to any secondary mutation or damage the parasites may have 

accumulated, TDRl was re-expressed in the knockout lines. This was achieved by 

transforming the KOTDRl lA, KOTDRl IB and KOTDRl8 parasites with the 

pGL102TDRl plasmid used to over-express TDRl in WT L major, as described in section

5.2.1. In addition the same lines were transformed with the pGL102 plasmid so they could 

be used as negative control samples. These plasmids were previously presented in figure

5.1. Using the names of the original lines and plasmids used to transform them, the new 

lines were named KOTDRl 1A + pGL102, KOTDRl 1A + pGL102TDRl, KOTDRl IB + 

pGL102, KOTDRl IB + pGL102TDRl, KOTDRl8B + pGL102 and KOTDRl8B + 

pGL102TDRl.



Joanne C. McGregor, 2006 Chapter 5 144

5.4.1 Analysis of re-expression

Whether the TDRl knockout parasites transformed with pGL102TDRl that grew in the 

presence of the selective drug had been successfully transformed, resulting in TDRl being 

re-expressed, was assessed by western blot analysis. WT, KOTDRl 1A + pGL102TDRl, 

KOTDRl IB + pGL102TDRl and KOTDRl8B + pGL102TDRl promastigotes grown 

with neomycin were harvested and lysed, and the soluble fractions were separated by SDS- 

PAGE before western blotting. The sheep ani-TDRl antibody was used to detect TDRl 

expression. As a positive control, CS expression was examined in parallel with TDRl, 

using the rabbit anti-CS antibody as before. TDRl was expressed in all three re-expressing 

lines (figure 5.24)

TDRl

CS

Figure 5.24: Western blot analysis of TDRl expression In pGL102 L  mayor promastigotes 
and KOTDRl L. mayor promastigotes transformed with pGL102TDR1.10-20 pg of soluble 
parasite lysate was loaded per lane. CS, cysteine synthase protein, was used as a positive control. 
The identities of the different proteins are indicated to the left of the image. TDRl was re
expressed in each of the lines tested.

5.4.2 Growth of parasites re-expressing TDRl, with paraquat

The IC50 data presented in section 5.3.3.6, together with the growth curves presented in 

section 5.3.3.8, show that the TDRl knockout lines KOTDRl 1A and KOTDRl IB are 

more sensitive to paraquat than WT parasites. To investigate whether the loss of TDRl 

was responsible for this phenotype, the parasite lines re-expressing TDRl were grown with 

paraquat. WT, KOTDRl 1 A, KOTDRl IB, KOTDRl 1A + pGL102, KOTDRl 1A + 

pGL102TDRl, KOTDRl IB + pGL102, KOTDRl IB + pGL102TDRl parasite cultures 

were seeded at 1 x lOVml and grown with 5 mM paraquat, and growth was monitored by
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counting (figure 5.25). While the parasite density of the WT culture increased as before, 

the density of all the other lines decreased in a similar rate to the TDRl knockout parasites. 

Clearly, the re-expression of TDRl, which was confirmed by western blot analysis, does 

not complement the paraquat-sensitive phenotype of the TDRl knockout cultures. Whether 

this is due to the original phenotype being caused by a factor other than the loss of TDRl, 

or whether TDRl re-expression does not reinstate the parasites’ relative insensitivity to 

paraquat for some other reason, is currently unknown.
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Figure 5.25: Effect of paraquat on the growth of WT L. major promastigotes and KOTDR1 L. 
major promastigotes transformed with pGL102 or pGL102TDR1. The parasites were seeded at 
1 X 10®/ml with 5 mM paraquat and were counted daily. With the exception of WT, KOTDR11A and 
KOTDR11B, the parasites were also grown with 50 pg/ml neomycin.
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5.5 Discussion

The in vitro characteristics of rTDRl described in the introduction to this chapter are 

consistent with the observed activities of oGST. rTDRl exhibited GSH-CDNB conjugating 

activity which is characteristic of other types of GSTs, but as for human oGST, it was at a 

very low level. However, this activity should not be ignored as although an elongation IB 

complex displaying trypanothione S-transferase activities was recently identified in L. 

major (Vickers et al, 2004), no known GSTs have ever been found in Leishmania. 
Therefore TDRl is the first protein with GST activity to be identified in the parasite.

However, the more notable functions displayed by rTDRl were DHAR and 

thioltransferase activities. Whether the DHAR activity displayed by TDRl is of relevance 

is an interesting question. Although ascorbate has been detected in T. cruzi (Clark et al, 

1994), it has never been detected in Leishmania although an ascorbate-dependant 

peroxidase has also been identified (Adak and Datta, 2005). However, trypanothione is 

able to reduce dehydroascorbate (Krauth-Siegel and Ludemann, 1996) and may be 

sufficient to maintain ascorbate levels without the need for an enzymatic reductase. The 

issue of ascorbate being necessary in Leishmania, and therefore whether TDRl may have a 

role in maintaining it in the reduced from, is addressed in chapter six. The high 

thioltransferase activity exhibited by TDRl is the only in vitro enzymatic capability that 

was also displayed by the most closely related protein to TDRl, Tc52. CDNB-GSH 

conjugating activity was not detected in tlie T. cruzi protein (Montiez et al, 1995) and it 

was not assessed for DHAR (or indeed metal-reducing) activities. It is possible that the 

active site differences between TDRl and Tc52 described in chapter three account for 

these differences. As mentioned, DHAR and thioltransferase activities are commonly 

exhibited by glutaredoxins, a class of proteins that share predicted active site sequences 

with TDRl but are otherwise much smaller and rather dissimilar. As described in chapter 

three, L. major contains several proteins that are annotated as, and share sequence 

similarity to, glutaredoxins. Organisms often possess several GRXs that may display 

redundancy towards each other due to their overlapping functions (Draculic et al, 2000). 

Therefore the possibility of redundancy between TDRl and other Leishmania proteins 

must be taken into account when considering the glutaredoxin-like role of TDRl in vivo.

To investigate the role of TDRl in vivo, parasites over-expressing TDRl (figure 5.2) and 
clonal TDRl knockout lines (figure 5.9) were created. The growth rates of all these lines 

were assessed and were found to be similar to that of WT promastigotes (figures 5.3 and 

5.10) with the exception of one of knockout lines, KOTDRl 8A, The grovyth rate of this
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line, together with the parasite density in stationary-phase cultures, was slightly impaired 

and analysis of the line was discontinued. The metacyclogenesis of the TDRl knockout 

lines was assessed and was shown to be broadly similar to that of WT parasites in all the 

lines tested. These findings contrast with the observations of T. cruzi parasites that had 

reduced levels of Tc52: epimastigotes did not grow well in culture and were impaired in 

their ability to differentiate into metacyclic forms (Allaoui et ah, 1999). Moreover, only a 

mono-allelic Tc52 knockout line was obtained; knocking out both copies of Tc52 is 

thought to be lethal.

The IC50 values of several compounds against WT TDRl knockout, and TDRl over

expressing lines were calculated in order to determine if the level of TDRl affected the 

sensitivity of parasites to different types of stress (tables 5.1, 5.2 and 5.3). There was no 

consistent significant difference in the IC50 values of most of the compounds tested 
between the different lines, including the hydroperoxides, potassium antimonial tartrate 

and p-mercaptoethanol. However, several agents that induce the production of intracellular 

ROS were tested and a significant difference in the IC50 value of one of these -  paraquat -  

was apparent between WT parasites and those lacking TDRl. This finding was reinforced 

by the observation that WT cells were much more tolerant to paraquat than TDRl 

knockout parasites were, when the lines were grown in the presence of the chemical (figure 

5.23).

Glutaredoxins (GRXs) have been previously linked with protecting cells against paraquat- 

induced oxidative stress. Knocking out the WT and expressing a mutated version of GRX5 

in Schizosaccharomyces pombe resulted in increased sensitivity to paraquat (Chung et ah, 
2005) and a similar phenotype was observed in S. pombe GRX2 null mutants (Chung et al, 
2004). These reports reflect the increased sensitivity of TDRl knockout parasites to 

paraquat that are described in this chapter, and support the hypothesis based on the in vitro 

activities of the protein that TDRl functions as a glutaredoxin in Leishmania.

A possible reason for the increase in paraquat sensitivity of the GRX mutants could be that 

they have depleted ascorbate levels (due to a lack of DHAR activity). Ascorbate is a low- 

molecular weight antioxidant which can react directly with ROS, and is the essential co

factor for ascorbate-dependant peroxidases, proteins that enzymatically reduce H2O2 . 
Paraquat treatment caused dehydroascorbate reductase activity to increase in Conyza 

bonariensis plants (Ye and Gressel, 2000) and TRXl levels to increase in mouse liver and 

lung tissues (Jurado et al, 2003). Although the expression of TDRl in L. major was not 

affected by exposure to sub-lethal concentrations of paraquat (figure 5.22), this was also
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found to be the case elsewhere; although exposure to the chemical did not result in 

increased GRX2 levels in S. pombe (Chung et al, 2004), or GRXl or GRX2 levels in 

mouse liver or lung tissues (Jurado et al, 2003). Meanwhile, the expression of a human 

DHAR gene in tobacco plants caused them to be less susceptible to paraquat-induced 

damage (Kwon et al, 2003). Over-expression of TDRl did not cause the parasites to 

become more tolerant to the compound (table 5.1 and figure 5.7). This would be the 

expected result if ascorbate recycling is not the rate-limiting step in ROS detoxification in 

Leishmania.

If the loss of TDRl is responsible for the increased sensitivity to paraquat of the TDRl 

knockout lines, re-expressing TDRl in these lines should restore resistance to the chemical 

as displayed by WT parasites. Despite confirmation that TDRl was being re-expressed by 

parasites transformed with pGL102TDRl, the susceptibility of these lines to paraquat did 

not decrease (figure 5.25). There are several possible reasons for this. It may be the case 

that some other mutation or damage to the TDRl knockout lines is responsible for their 

increased sensitivity to paraquat. However, this seems unlikely given that all three 

independently derived knockout lines exhibit the same phenotype. Another possibility is 

that an aspect of the TDRl re-expression does not comply with WT expression and that 

this effectively inactivates the protein. For example, the expression level or the localisation 

of TDRl may differ in the re-expressing lines. Further analysis is required to determine 

which of these scenarios is correct. Re-expressing TDRl from the original gene locus or 

fi*om another chromosomal location may also be a helpful approach.

L. major parasites over-expressing TDRl were more infective to macrophages than WT 

and pGL102 control parasites (figure 5.4), and were also more infective to mice than the 

control line (figure 5.5). Paradoxically, the TDRl knockout lines were also more infective 

to macrophages (section 5.3.3.3) and, to a lesser extent, mice, than WT parasites (section 

5.3.3.4). It was also notable that the percentage of macrophages with WT parasites 

appeared to be more susceptible to a prolonged incubation time and an increase in 

incubation temperature than the TDRl knockout parasites (figures 5.13-5.15). The reasons 

for the apparent contradictions between the TDRl over-expressing and knockout infection 

data are unclear. The pGL102 line which acted as a control for the TDRl over-expressing 

line appears to be in some way damaged: the parasites were less infective than WT 

parasites to both macrophages and mice. However, misinterpretation of the TDRl over

expressing line infection data due to it being compared to a faulty control is not to blame, 

as the TDRl over-expressing line was also more infective than WT. Whether the WT line 
itself could also be impaired was considered. However, the utilisation of a second WT line
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which was of a different passage number gave very similar macrophage infection data to 

the original WT line (figures 5.14 and 5.15), suggesting that this was not the case. One 

possibility is that when TDRl is knocked out, the levels of other proteins -  possibly the 

glutaredoxin-like proteins described in chapter three -  are modulated to compensate for the 

loss. This in turn could have a positive effect on the TDRl knockout parasites, improving 

their viability in vivo. Meanwhile, given the glutaredoxin-like properties of TDRl, over

expression of the protein could have a more straightforward beneficial effect on L. major, 

the increased infectivity may be due to them being better equipped to cope with the 

oxidative stress encountered upon invasion of a cell.

Once again, the results do not correspond with the Tc52 knockout and over-expresser data. 

Although there was no difference between the infectivity of WT T. cruzi and parasites 

over-expressing Tc52, parasites with decreased Tc52 levels were significantly less 

infective to both macrophages and mice than WT parasites (Allaoui et al, 1999). Moreover 

Tc52 knockout parasites that do infect animals result in an attenuated form of Chagas’ 

disease with reduced parasitemia compared to WT infections (Garzon et al, 2003). Tc52 is 

secreted and is thought to have a role in modulating the immune response of the host 

(Fernandez-Gomez et al, 1998; Borges et al, 2001; Ouaissi et al, 2002; Garzon et al, 

2003), which is hypothesised to be the reason behind the reduced infectivity displayed by 

parasites with decreased levels of Tc52 (Garzon et al, 2003). It was shown in chapter four 

that TDRl is also released from promastigote parasites but the increased infectivity of 

parasites lacking TDRl suggests that the protein does not perform the same function as 

Tc52.

As described in the introduction to this chapter, rTDRl was able to reduce pentavalent 

antimonials to the more toxic trivalent forms in vitro. This was in keeping with the ability 

of mammalian oGST to reduce pentavalent arsenicals (Zakharyan et al, 2001), and 

supported the hypothesis that TDRl may be involved in mediating antimonial 

susceptibility in Leishmania. To resolve whether TDRl did indeed perform this fimction in 

vivo, macrophages infected with WT, TDRl over-expressing and TDRl knockout L. major 

parasites were incubated with sodium stibogluconate (Sb(V)) and the impact of the drug on 

the infections was assessed. The effect of Sb(V) on L. major promastigotes could not be 

tested as they are not sensitive to the trivalent drug. However, it proved to be extremely 

difficult to assess the impact of Sb(V) on L. major macrophage infections for two main 

reasons: the difference in the basal macrophage infection rates of the various lines, and the 

insensitivity of all the lines tested to the drug.
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There appeared to be no significant difference between the susceptibility of TDRl over- 

expressing and control parasites to the drug (figure 5.6). When considering the raw data on 

the effect of Sb(V) on the macrophage infections of the WT and TDRl knockout, it looks 

like the knockout parasites are highly insensitive to the drug, consistent with the idea that 

TDRl mediates antimonial toxicity. Even at tlie highest concentrations of Sb(V), 
approximately 30-40% of macrophages were infected with the TDRl knockout parasites, 

compared to only 5% infected with WT parasites (figure 5.19). Similar results were 

achieved in other experiments (section 5.3.3.5). However, due to the different infectivity of 

WT and TDRl knockout parasites to macrophages when no drug was present, in order to 

directly compare the effect of Sb(V) between the lines, it was necessary to consider the 

effect of the drug on the reduction of the initial infection level. Therefore, the data for the 

infection levels achieved with the varying drug concentrations was converted to the 

percentage of the infection levels achieved with no drug was present. This makes the data 

look very different and shows that despite the impressive infection levels of the knockout 

lines achieved with high concentrations of the drugs, the reduction in the infection level is 

similar to that of the WT parasites. However, manipulating the data in this way is not an 

ideal solution; similar basal infection levels between the lines would allow a proper 

comparison of the effect of Sb(V). A useful approach may be to analyse the effect of Sb(V) 

on in vivo infections of the different lines, as these were at a more similar basal level than 

the macrophage infections. This would also circumvent the problem of the apparent 

insensitivity of L. major parasites in macrophages to Sb(V).

While this study was in progress, another arsenate reductase-like protein that could reduce 
pentavalent metalloids in vitro was identified, LmACR2 (Zhou et al, 2004). Although 

LmACR2 knockout parasites were not constructed, the protein was over-expressed in L. 

infantum and this resulted in an increase in sensitivity to Sb(V). The effect of Sb(V) was 

assessed using a similar macrophage infection assay to the one used in this investigation. 

The approximate Sb(V) IC50 value, as calculated from their findings, was 120 pg/ml 

against parasites over-expressing LmACR2, and 180 pg/ml against WT parasites. Clearly 

this is a much lower value than in the experiments detailed in this chapter. Although there 

was variation between experiments and the incubation temperature affected the Sb(V) 

efficacy, the IC50 was approximately 500-1000 pg/ml, a concentration that also appeared 

to be toxic to tlie macrophages. Therefore, manipulating the expression of TDRl in a 

Leishmania strain that is more susceptible to Sb(V) may help to ascertain whether the 

protein does indeed mediated antimonial sensitivity in vivo.
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The TDRl over-expressing and knockout L. major lines generated were useful tools in 

analysing the role of TDRl in vivo. The unexpected ease in constructing null mutants -  

which could not be achieved for Tc52 in T. cruzi -  together with the observations that the 

resultant parasites proliferated well in vitro and were infectious to aimais and cells showed 

that TDRl was non-essential in L. major. The protein is likely to function similar to a 

glutaredoxin and may protect parasites from oxidative stress. The fact that L. major 

contains several glutaredoxin-like sequences and that redundancy is known to occui- 

between glutaredoxins may explain why the parasites were able to lose TDRl so easily. 

Another reason could be that the protein is only essential when the parasites are residing in 

the sandfly vector. Whether TDRl affects the Leishmania susceptibility to antimonials 

remains unresolved. A recent study has shown that the expression of TDRl was not 

modulated in antimonial resistant field-isolates (Decuypere et al, 2005), suggesting that 

the protein is not responsible for drug-resistance. However, in this study protein expression 

was interpreted from the RNA transcript levels; because DNA transcription in Leishmania 

is polycistronic the relevance of this observation is unclear. However, in order to determine 

whether the protein is able to reduce the pentavalent dugs in vivo, further experimentation 

is required. Analysis of the effect of Sb(V) on animals infected with the different lines 

generated here may help to clarify the impact of the protein.
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6 Functional study of L-gulono lactone oxidase in 
L. major

6.1 Introduction

6.1.1 The role of ascorbate in the cell

Like GSH, ascorbate -  commonly known as vitamin C -  is a low-molecular weight 

antioxidant which can react directly with ROS, donating an electron which stabilises the 

free radical (Rose and Bode, 1993). In turn the ascorbate is oxidised and forms 

monodehydroascorbate which can then be recycled back to the reduced form -  directly or 

via dehydroascorbate by enzymes that display dehydroascorbate reductase activity -  as 

discussed in section 6.1.4. The highly reactive hydroxyl radical, which is not thought to be 

detoxified enzymatically, can be neutralised in this way. Ascorbate is present in high 

concentrations in many types of both mammal (Rose and Bode, 1993) and plant (Agius et 

al, 2003; Chen et al, 2003) tissues and is therefore an important antioxidant. As well as 

participating in reactions with free radicals directly, ascorbate has a further role in 

counteracting oxidative stress by acting as the electron donor in reactions mediated by 

ascorbate-dependant peroxidases (APXs) which are involved in the detoxification of H2O2 . 
While the antioxidant enzyme catalase, which has a high turnover rate, is important in 

removing H2O2 , it has a low affinity for the compound and is not suitable for managing 

low concentrations of it. On the contrary, peroxidases -  including APXs -  have a high 

affinity for H2O2 and can scavenge it even at low concentrations. The control of H2O2 

levels is of the utmost importance, given its emerging role in the control of signal 

transduction and gene expression (Noctor et al, 2000). Many APX isoenzymes with 

differing sub-cellular localisations are known to exist (reviewed in Shigeoka et al, 2002) 

and have been especially well characterised in plants. However APX has also been found 

in bovine eye tissue (Wada et al, 1998) and several types of eukaryotic algae including 

Euglena gracilis (Ishikawa et al, 1996) which, like the trypanosomatids, lacks catalase. 

The absence of catalase m these organisms is interesting as it may be indicative of 

peroxidases having even greater importance in the elimination of oxidative stress. As 

discussed in section 6.1.5, APX has also been found in both T. cruzi and L  major.

Ascorbate has a clear role in protecting cells from oxidative stress and this is demonstrated 

by the phenotypes of various mutants of different organisms that have abnormal levels of 

ascorbate. The lack of reports of plant lines that are completely deficient in ascorbate
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suggests that it is an essential compound in plants. However, various A. thaliana lines 

which have low levels of ascorbate -  deemed vtc mutants -  are hypersensitive to ozone 

(Conklin et al, 2000) and salt stress (Huang et al, 2005), and have growth deficiencies 

(Pavet et al, 2005). Plants engineered to over-express an ascorbate peroxidase were less 

sensitive to various types of oxidative stress (Murgia et al, 2004). Meanwhile S. cerevisiae 

engineered to lack D-arabinono-1,4-lactone oxidase (ALO) -  one of the proteins required 

for ascorbate biosynthesis in yeast -  exhibited increased sensitivity to both H2O2 and 

menadione, while yeast over-expressing the protein were less sensitive to these oxidants 

(Huh et al, 1998). Ascorbate synthesis was enhanced in rat cells treated with oxidative- 

stress-inducing agents; when this was prevented by simultaneous treatment with sorbinil 

(which inhibits ascorbate synthesis) greater levels of ROS were found in the cells (Chan et 

al, 2005).

Although ascorbate has an unequivocal role as an antioxidant, it is also involved in many 

other cellular processes (reviewed in Arrigoni and De Tullio, 2002; De Tullio and 

Arrigoni, 2004). These include synthesis of various cell compounds and cell-wall synthesis 

(Smirnoff, 2000), cell division (Liso et al, 1984) and elongation (Smirnoff and Wheeler, 

2000). The part ascorbate plays in many of these processes is explained by its role in 

reactions mediated by dioxygenases, a large group of enzymes that catalyse the 

incorporation of O2 into an organic substrate and are themselves responsible for a wide 

range of reactions. Ascorbate-dependant dioxygenases (AADs) are a sub-group of these 

proteins which can use ascorbate as a co-substrate: indeed some specifically require it 

(Dong et al, 1992). An important reaction catalysed by an AAD called P4H is the 

hydroxylation at carbon 4 of proline residues to be incorporated into polypeptide chains 

such as collagen and the transcription factor HIFa (Myllyharju, 2003). Depletion of 

ascorbate affects proline hydroxylation in guinea pigs and results in reduced collagen 

synthesis, in turn leading to scurvy-like symptoms (Peterkofsky, 1991). In tobacco plants, 

inhibition of P4H alters cell-wall synthesis and cell division (Cooper et al, 1994). Other 

AADs include N-trimethyl-L-lysine hydroxylase and gamma-buytro-betaine hydroxylase 

which together are essential for the synthesis of carnitine, an amino acid derivative 

involved in fatty acid metabolism. Carnitine synthesis is affected by ascorbate levels (Ha et 

al, 1991) and its depletion is responsible for several phenotypes including muscle 

weakness in humans (http://www.emedicine.com/PED/topic321.htm). AADs are also 

implicated in hormone and fiavonoid synthesis in plants (Arrigoni and De Tullio, 2002) 

and in the control of the cell cycle (De Tullio and Arrigoni, 2004). Although this account 

of the processes ascorbate is involved in is not exhaustive, the diverse range of activities 

dependant on ascorbate and its resultant significance in the cell is clear.

http://www.emedicine.com/PED/topic321.htm
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6.1.2 Ascorbate synthesis

Ascorbate or the similar compound erythroascorbate are produced in a wide variety of 

eukaryotic organisms albeit by several different biosynthetic pathways (see figure 6.1). In 

most mammals ascorbate is synthesised from glucose via the uronic acid pathway, first 
proposed in the 1950s (Isherwood et al, 1954). Interestingly humans (along with other 

primates and guinea pigs) lack the L-gulonolactone oxidase enzyme required for the final 

step in ascorbate synthesis (Sato and Udenfriend, 1978). Instead, they obtain ascorbate 

from plants, which contain high levels of ascorbate. Indeed plants employ several different 

biosynthetic pathways to convert D-glucose-6-Phosphate, D-fructose-6-phosphate or D- 

marmose-6-phosphate to ascorbate (Wheeler et al, 1998; Valpuesta and Botella, 2004). 

Meanwhile, some fungi and yeast species synthesise D-erythroascorbate rather than 

ascorbate (Smirnoff, 2001). These two compounds are very similar and are tliought to have 

similar functions within the cell; indeed the characterised enzymes that mediate D- 

erythroascorbate synthesis are similar to enzymes involved in ascorbate synthesis from 

other organisms. The various known ascorbate (and D-erythroascorbate) synthesis 
pathways are diagrammatically shown in figure 6.1, and characterised enzymes known to 

be involved in ascorbate synthesis are discussed below and summarised in table 6.1.



Joanne C. McGregor, 2006 Chapter 6 155

Glucose

OHhtN

COOH myo-lnositol

HO] f  O-P  
OH OH 

D-mannose-1-P

H O ] f  O-GDP
OH OH 

GDP-D-mannose

Cell wall 
polymers

;t)H
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Figure 6.1: The biosynthesis of ascorbate in mammals, plants and fungi. The proposed 
mammalian synthesis pathway is shown in red, the proposed plant pathways are shown in green 
and the proposed fungi pathway is shown in blue. The steps in the pathways are numbered where 
an enzyme able to catalyse the reaction has been identified and the numbers correspond with 
those in tables 6.1 and 6.2. 1, D-arabinose dehydrogenase; 2, D-arabinono-1,4-lactone oxidase 
(ALO); 3, Aldono-lactonase; 4. L-gulonolactone oxidase (GLO); 5, GDP-mannose 
pyrophosphorylase; 6, GDP-mannose-3’,5’-epimerase; 7, L-galactose-1-phosphate phosphatase; 
8, L-galactose dehydrogenase; 9, L-galactono-1,4-lactone dehydrogenase (GALDH); 10, Inositol 
oxygenase; 11, D-galacturonic reductase.
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6.1.2.1 Biosynthesis in mammals

Although the mammalian ascorbate synthesis pathway is well established, only two of the 

enzymes involved have been purified and characterised to date: a very recently identified 

aldono-lactonase, thought to catalyse the formation of L-gulono-1,4-lactone fi*om L- 

gulonic acid, and L-gulonolactone oxidase (GLO), which catalyses the formation of 
ascorbate from L-gulono-1,4-lactone. These are the penultimate and final reactions in 

ascorbate biosynthesis, respectively. It has been suggested that the recently identified 

mouse aldono-lactonase is responsible for L-gulono-1,4-lactone formation (Kondo et al, 
2006). However only the reverse reaction -  hydrolysis of L-gulono-1,4-lactone -  has been 

detected and characterised. However, mice lacking this enzyme and fed an ascorbate-fiee 

diet developed symptoms of scurvy and had greatly reduced ascorbate levels compared to 

wild-type mice, showing that the protein is critical for normal ascorbate production. GLO, 

which is absent in humans (the reason for susceptibility to scurvy), is expressed primarily 

in liver and kidneys and is localised to the microsomes of cells (Kiuchi et al, 1982; Puskas 

et al, 1998). Naturally occurring disruptions of the gene that encodes GLO in both pigs 

and mouse cause ascorbate deficiency (Hasan et al, 2004; Mohan et al, 2005). 

Surprisingly few reports have been recently published on this protein: there is no account 

of a gene encoding mammalian L-gulonolactone oxidase being cloned.

6.1.2.2 Biosynthesis in plants

The production of ascorbate in plants is complicated by the apparent existence of several 

different biosynthesis pathways (Valpuesta and Botella, 2004) that have not yet been 

firmly established. Currently three different pathways are proposed to exist (see figure 

6.1): the first, with L-galactose as an intermediate; the second, where ascorbate is 

synthesised fi'om mj^o-inositol; and thirdly with galacturonic acid as a precursor.

The L-galactose pathway is the most extensively characterised pathway of the three and 

most steps have been experimentally confirmed (Wheeler et al, 1998). Arabidopsis 

thaliana leaves were shown to synthesise ascorbate from both glucose and mannose 

(Wheeler et al, 1998), although a higher percentage of mannose is converted to ascorbate 

as it participates in fewer additional cellular reactions. It is well established that GDP-D- 

mannose and GDP-L-galactose are synthesised from D-glucose-6-phosphate via several 

intermediates for participation in polysaccharide synthesis (Smirnoff, 2000). L-galactose is 

thought to be formed by a two-step hydrolysis of GDP-L-galactose, the second step of 

which has been recently found to be catalysed in kiwifruit and A. thaliana by L-galactose-



Joanne c . McGregor, 2006 Chapter 6 157

1-phosphate phosphatase (Laing et al, 2004). Thereafter L-galactose is converted to L- 

galactono-1,4-lactone by L-galactose dehydrogenase (Gatzek et al, 2002) before ascorbate 

is finally produced after catalysis by the mitochondrial L-galactono-1,4-lactone 
dehydrogenase (GALDH) (Ostergaard et al, 1997). GALDH performs an analogous 

function to, and shares amino acid sequence similarity with, mammalian GLO: cauliflower 

GALDH shares 27% amino acid identity with GLO from rat, although GALDH has a large 

N-terminal extension relative to GLO. Meanwhile L-galactose dehydrogenase is not 

particularly similar to mouse aldono-lactonase, the enzyme thought to catalyse the 

penultimate step in ascorbate production in mammals: they share just 10% identity at the 

amino acid level. The L-galactose pathway has been further complicated by the finding 

that GDP-mannose-3 ’,5 ’-epimerase can catalyse the formation of GDP-L-gulose as well as 

GDP-L-galactose (Wolucka and Van Montagu, 2003). It has also been proposed that L- 

gulonic acid could be formed fi'om GDP-L-gulose, and that this is converted to ascorbate 

via the same pathway that occurs in mammals (Valpuesta and Botella, 2004). This will be 

discussed in more detail in relation to the wjo-inositol pathway below.

The conversion of GDP-L-galactose to L-galactose is considered to be the first reaction in 

the pathway specific to ascorbate synthesis (Wheeler et al, 1998). However, both GDP- 

mannose pyrophosphorylase and GDP-mannose-3’,5’-epimerase, which catalyse the 

previous two steps in the pathway, have been postulated to have an important role in 

ascorbate synthesis as they are inhibited and down-regulated, respectively, upon addition 

of exogenous ascorbate in vivo (Tabata et al, 2002; Wolucka and Van Montagu, 2003). 

Furthermore, mutations in.̂ 4. thaliana lines defective in ascorbate synthesis mapped to the 

GDP-mannose pyrophosphorylase gene (Conklin et al, 1999). Evidence also exists for 

both L-galactose dehydrogenase and GALDH directly affecting in vivo ascorbate levels: 

ascorbate levels decrease when antisense L-galactose dehydrogenase (Gatzek et al, 2002) 

or GALDH (Tabata et al, 2001) RNA transcripts are expressed in A. thaliana.

The formation of ascorbate firom myo-inositol is a less well-characterised route of 

biosynthesis. It was previously known that plants can derive mj/o-inositol from glucose-6- 

phosphate (Naccarato et al, 1974) and that /Mj/o-inosftol could be in turn converted to D- 

glucuronic acid by inositol oxygenase (Reddy et al, 1981). Recently this enzyme was 

found in A. thaliana and when over-expressed was shown to significantly increase the 

amount of ascorbate in the plant (Lorence et al, 2004). Because D-glucuronic acid is an 

intermediate in the ascorbate biosynthesis pathway found in mammals (see figure 6.1), 

there has been speculation that the mammalian pathway may be operating in plants, albeit 

mediated by different enzymes. Indeed, over-expression of rat GLO in A. thaliana plants
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deficient in ascorbate synthesis complemented the mutant phenotype (Radzio et al, 2003). 

This is in accordance with the hypothesis that L-gulose, formed from GDP-D-mannose due 

to GDP-mannose-3 % 5 ' -epimerase activity (see above), can be converted to L-gulonic acid 

and then to ascorbate via the mammalian pathway. There is evidence to support the idea 

that the mammalian ascorbate biosynthetic pathway is operating in plants: when L-gulose 

and D-glucuronic acid were administered to A. thaliana cell culture, the rate of ascorbate 

synthesis increased (Davey et al, 1999). In addition, L-gulonic acid has been detected in 

plants (Wagner et al, 2003), and GLO activity has been detected in A thaliana (Wolucka 

and Van Montagu, 2003). Clearly additional investigation is required to clarify whether 

part or the entire ascorbate biosynthetic pathway is also present in plants.

The third putative pathway of ascorbate synthesis in plants is from D-galacturonic acid, 

which is released in plants upon hydrolysis of cell wall breakdown products. It had been 

previously shown that pea extracts could catalyse the formation of ascorbate firom methyl- 

D-galacuronate and galacturonic acid (Mapson and Isherwood, 1954) and more recently 

ascorbate synthesis was shown to be increased when these compounds were added to A. 
thaliana cell culture (Davey et al, 1999). Enzymatic confirmation of this third pathway 

was provided when a D-galacturonic reductase cloned fi'om strawberry was shown to 

convert D-galacturonic to L-galactonic acid, which is spontaneously converted to L- 

galactono-1,4-lactone, the substrate for GALDH (which is also synthesised in the L- 

galactose pathway) (Agius etal, 2003). Moreover, over-expression of the ̂ 4. thaliana 

version of the gene resulted in a significant increase in ascorbate levels within the plants. 

The authors of this paper have also suggested that the various pathways responsible for 

ascorbate synthesis within the cell may be developmentally regulated (Agius et al, 2003), 

perhaps providing in part an explanation for the presence of more than one ascorbate 

biosynthetic pathway in the organism: perhaps different pathways operate at different 

points in the plant life-cycle or in different tissue-specific localisations.

6.1.2.3 Biosynthesis in yeast

As mentioned, yeast and other lower eukaryotes have been shown to synthesise the 

ascorbate analogue D-erythroascorbate from D-arabinose (see figure 6.1). However, when 

given the alternative substrates L-galactono-1,4-lactone and L-gulono-1,4-lactone 

(intermediate compounds from the plant and mammalian ascorbate biosynthetic pathways 

respectively), S. cerevisiae could also produce ascorbate, although L-gulono-1,4-lactone 

was a poor substrate (Spickett et al, 2000). These observations show that the enzymes that 
mediate the pathway can use various substrates, either because they have evolved from a



Joanne c . McGregor, 2006 Chapter 6 159

common ancestor to similar proteins in plants and mammals, or because ascorbate or 

erythroascorbate are synthesised from whatever substrates are available,

D-arabinose is first converted to D-arabinono-1,4-lactone, possibly via D-arabinono-1,5- 

lactone, by D-arabinose dehydrogenase (ARAl), which has been purified and characterised 

from several organisms: Candida albicans (Kim et al, 1996), Neurospora crassa 

(Carrasco et al, 1981) and S. cerevisiae (Kim et al, 1998). The C albicans and S. 
cerevisiae enzymes can also use L-galactose as substrates, showing that this step in the 

biosynthetic pathway is similar to that in plants. However, when compared to the 

analogous A. thaliana L-galactose dehydrogenase enzyme, the amino acid sequences were 

just 17% identical. Moreover, S. cerevisiae ARAl shares just 11% identity with the 

recently identified mouse aldono-lactonase. S. cerevisiae ARAl is more similar to glycerol 

dehydrogenases and is 38% identical to glycerol dehydrogenase from Aspergillus nidulans. 
Whether plant L-galactose dehydrogenase displays similar substrate specificities as the 

fungal enzymes and can convert D-arabinose has not yet been investigated.

The final step in D-erythroascorbate synthesis is the conversion of D-arabinono-1,4- 

lactone, a reaction catalysed by D-arabinono-1,4-lactone oxidase (ALO). This has been 

purified and characterised from S. cerevisiae (Huh et al, 1998) and C. albicans (Huh et al, 

1994). Both reported ALO proteins can catalyse the production of ascorbate from L- 

gulono-1,4-lactone and L-galactono-1,4-lactone (the penultimate compounds in the 

mammalian and plant ascorbate biosynthesis pathways, respectively), as well as D- 

erythroascorbate from D-arabmono-1,4-lactone. Indeed, ALO is similar to GLO and 

GALDH: the amino acid sequence of S. cerevisiae ALO shares 32% and 21% identity with 

those of rat GLO and cauliflower GALDH, respectively (Huh et al, 1998). Therefore, at 

least at the amino acid level, ALO is significantly more similar to mammalian GLO than to 

plant GALDH. This is perhaps surprising given that yeast ARAl is more similar to A. 

thaliana L-galactose dehydrogenase than to the mouse aldono-lactonase thought to 
catalyse the penultimate reaction in ascorbate biosynthesis. Elucidation of which substrates 

these plant and mammalian enzymes are capable of acting on will clarify which pathway 

D-erythroascorbate synthesis resembles more.
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Enzyme Name Organisms found in Reaction catalysed
1. D-arabinose 
dehydrogenase (ARAl )

Yeast and fungi: N. crassa, 
C. albicans, S. cerevisiae

D-arabinose to D-arabinono- 
1,4-lactone

2. D-arabinono-1,4- 
lactone oxidase (ALO)

Yeast and fungi:
C. albicans, S. cerevisiae

D-arabinono-1,4-lactone to 
erythroascorbate

3. Aldono-lactonase Mammals: mouse, human, 
rat

L-gulonic acid to L-gulono- 
1,4-lactone

4. L-gulonolactone 
oxidase (GLO)

Mammals: pig, mouse, rat. 
Also chicken.

L-gulono-1,4-lactone to 
ascorbate

5. GDP-mannose 
pyrophosphorylase

Plants: A. thaliana. 
Tobacco

D-mannose-1 -Phosphate to 
GDP-D-mannose

6. GDP-mannose-3%5'- 
epimerase

Plants: A. thaliana GDP-D-mannose to GDP-L- 
gulose OR GDP-L-galactose

7. L-galactose-1- 
phosphate phosphatase

Plants: A. thaliana, 
kiwi fruit

L-galactose-1-phosphate to 
L-galactose

8. L-galactose 
dehydrogenase

Plants: A. thaliana, pea L-galactose to L-galactono- 
1,4-lactone

9. L-galactono-1,4- 
lactone dehydrogenase 
(GALDH)

Plants: Cauliflower, sweet 
potato, tobacco

L-galactono-1,4-lactone to 
ascorbate

10. Inositol oxygenase Plants: A. thaliana wyo-inositol to D-glucuronic 
acid

11. D-galacturonic 
reductase

Plants: A. thaliana, 
strawberry

D-galacturonic to L- 
galactonic acid

Table 6.1: Enzymes involved in ascorbate biosynthesis. Enzymes identified from fungi are 
coloured in blue, from mammals are coloured in red, and from plants are coloured in green.

6.1.3 Uptake of ascorbate

Cellular uptake of ascorbate is clearly of importance in humans and other species which 

cannot synthesise ascorbate de novo. However, a wide variety of organisms, including 

plants and mammals able to produce their own ascorbate, can also obtain ascorbate from 

their surroundings. Specific transporters able to mediate uptake in plants are yet to be 
identified (Horemans et al, 2000). In addition to the mammalian ascorbate transporters 

described below, a bacterial operon that encodes several proteins that regulate ascorbate 

uptake and metabolism in E. coli has recently been identified (Yew and Gerlt, 2002; Zhang 

et al., 2003). Although sgaT (UlaA), sgaA (UlaC) and sgaB (UlaB) are all required for 

ascorbate uptake (Zhang et al., 2003), sgaT is thought be the actual transporter, which is 

predicted to include 12 transmembrane regions. In mammalian cells, two known routes of 

transport have been characterised: facilitated diffusion of dehydroascorbate primarily via 

glucose transporters (followed by reduction to ascorbate upon entry to the cell), and active 

transport of ascorbate itself, mediated by sodium-dependant transporters. These two 

mechanisms have been reviewed in detail elsewhere (Wilson, 2005).
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Three separate glucose transporters have been shown to mediate dehydroascorbate uptake: 

GLUTl and GLUT3 (Rumsey et al, 1997) (from rat and human respectively, characterised 

in hamster and xenopus cells) and rat GLUT4 (characterised in rat and xenopus cells) 

(Rumsey et al, 2000). Dehydroascorbate was completely reduced to ascorbate following 

uptake by GLUTl and GLUT3 (Rumsey etal, 1997). Intracellular ascorbate levels 

increased when either of these transporters was over-expressed and transport was inhibited 

by glucose. However, it should be noted that glucose does not completely inhibit 

dehydroascorbate uptake in all cell types (Himmelreich et al, 1998; Daskalopoulos et al, 
2002), leading to speculation that other, as yet unidentified, transporters can also transport 

oxidised ascorbate (Wilson, 2005).

The second route of ascorbate uptake by mammalian cells is mediated by the sodium- 

dependant transporters SVCTl and SVCT2, which exhibit high affinity transport of 

ascorbate (Daruwala et al, 1999; Tsukaguclii et al, 1999). The amino acid sequences of 

the two transporters, as well as the activities, are very similar, although the mammalian 

expression profiles differ. Both transporters are highly specific for ascorbate and were 

found not to significantly mediate the uptake of several compounds including 

dehydroascorbate and L-gulono-1,4-lactone (Tsukaguchi et al, 1999). When SVCT2 

expression was decreased by antisense RNA expression, ascorbate uptake decreased (Seno 
et al, 2004). These sodium-dependant channels are thought to be more important than the 

GLUT channels for ascorbate uptake in vivo, as extracellular ascorbate is primarily in the 

reduced from, and because uptake by GLUT transporters is inhibited by glucose 

(Tsukaguchi et al, 1999; Liang et al, 2001).

6,1.4 Ascorbate recycling

As discussed, ascorbate molecules participate in a wide variety of cellular reactions, many 

of which involve counteracting oxidative stress. When ascorbate is oxidised -  for example 

as a result of ascorbate peroxidase or oxidase activity -  monodehydroascorbate (MDHA) is 

formed. MDHA is an unstable free radical which can be enzymatically reduced by MDHA 

reductase (MDHAR) to form ascorbate, or disproportionates to ascorbate and 

dehydroascorbate (DHA). In turn DHA can be reduced by DHA reductase (DHAR) 

enzymatically to ascorbate. These mechanisms, described in more detail below, have been 

previously summarised (Arrigoni and De Tullio, 2002) and are represented 

diagrammatically in figure 6.2. The reactions are often referred to as the ascorbate- 

glutathione cycle as DHARs use GSH. If DHA is not reduced it is degraded, although the 
exact degradation pathway and products are not yet clear.
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NADP NADPH + H'

GR
>  GSSG2GSH

DHAR

ascorbateDHA
MDHAR

Non-enzymatic
disproportionation

NADPH + H'
MDHA

APX

HA

Figure 6.2: Ascorbate recycling via the ascorbate-glutathione cycle. Enzymes are shown in 
red: GR, glutathione reductase; DHAR, dehydroascorbate reductase; MDHAR, 
monodehydroascorbate reductase; APX, ascorbate peroxidase. Not all reactions are depicted 
stoichiometrically. Figure redrawn from Noctor and Foyer 1998.

MDHAR is a relatively uncharacterised enzyme despite its important role in maintaining 

reduced ascorbate in the cell. NADH/NADPH-dependant MDHAR activity was first 

detected in plant chloroplast extracts (Marre and Arrigoni 1958) and has since been found 

in a wide range of organisms. The enzyme responsible for the activity has been purified 

from several species including soybean (Dalton et al, 1992) and cucumber (Hossain and 

Asada 1985) and is a FAD-binding protein. More recently the gene encoding MDHAR has 

been cloned (Murthy and Zilinskas 1994, Sano et ai, 2005) and analysed: the amino acid 

sequences, especially those of plant MDHARs, share similarity with some prokaryotic 

flavoenzymes (Murthy and Zilinskas 1994). Both N- and C- terminal targeting regions 

have been found in the various sequences which explain the diverse range of sub-cellular 

localisation attributed to the protein (Lisenbee et al, 2005; Sano et al, 2005). Treatment 
with various different sources of oxidative stress (including paraquat) was shown to up- 

regulate the expression of cabbage MDHAR protein (Yoon et al, 2004), suggesting that 

the protein may be important for maintaining optimal ascorbate levels.
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DHAR activity has been attributed to several different categories of proteins, including 

glutaredoxins and omega GSTs, as described in chapter one. In addition to these, the 

activity has been reported in protein disulphide isomerase (Wells et al, 1990), thioredoxin 
(Tromper et al, 1994), 3 alpha-hydroxysteroid dehydrogenase (Del Bello et al, 1994), 

GSH-peroxidase (Washbum and Wells, 1999), and a trypsin-inhibitor (Trumper et al, 

1994). Interestingly, the CXXC motif found in dithiol glutaredoxins is present in the 

majority of these proteins; however, their amino acid sequences are otherwise diverse. 

Studies have shown that DHAR activity impacts intracellular ascorbate levels: when 

DHAR (an omega-GST like enzyme) was over-expressed in tobacco and maize, ascorbate 

levels rose accordingly (Chen et al, 2003). A similar result was obtained in a study in 

which human omega GST was over-expressed in tobacco, and the plants also displayed 

increased tolerance to H2O2 and paraquat-induced oxidative stress (Kwon et al, 2003).

6.1.5 Ascorbate in the trypanosomatids

The presence of both ascorbate and dehydroascorbate has been previously reported in T. 

cruzi epimastigotes. Furthermore, in both trypanosomes and L. major^ ascorbate 

peroxidases have been previously identified and characterised (Wilkinson et al, 2002a; 

Adak and Datta, 2005), the presence of which may be suggestive of ascorbate having an 

important role in the parasite. Indeed it was shown that the T. cruzi protein used ascorbate 

as an electron donor and reacted with H2O2 but not t-butyl hydroperoxide or cumene 

hydroperoxide in vitro. Wliether the recombinant protein could also use the ascorbate 

analogue erythroascorbate, which is found in fungi, was not investigated. When the T. 
cruzi ascorbate peroxidase was over-expressed in the parasite, resistance was conferred to 

exogenous H2O2 with the parasites displaying a two-fold increase in resistance. Despite 

their exposure to high levels of oxidative stress due to the oxidative burst during invasion, 

trypanosomatids do not possess catalase (Boveris et al, 1980), an important enzyme for 

the detoxification of H2O2 in many organisms. Thus an important role in protection against 

exogenous oxidative stress has been postulated for peroxidases, including this ascorbate- 

dependant protein (Adak and Datta, 2005). However, the localisation of the T. cruzi 
ascorbate peroxidase - and possibly the similar Leishmania enzyme due to the presence of 

a targeting sequence and transmembrane domain in the protein - to the endoplasmic 

reticulum (ER), may also implicate the protein in protection against endogenous H2O2 . In 

r. cruzU a second peroxidase has been localised to the ER (Wilkinson et al, 2002b) and it 

has been postulated that it could protect the cell against reactive oxidant species generated 

here.
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As mentioned, the dehydroascorbate reductase activity of TDRl was one reason for 

investigating ascorbate in Leishmania. Over-expressing or knocking out TDRl may have a 

knock-on affect on cellular ascorbate levels therefore ascorbate-dependant processes. 
Moreover if TDRl was necessary for ascorbate recycling in Leishmania then loss of TDRl 

could result in ascorbate biosynthesis being up-regulated to compensate for the lack of 
recycled material. However, it has previously been reported that the recycling of ascorbate 

from dehydroascorbate in T. cruzi is not mediated enzymatically and instead occurs 

spontaneously upon interaction of the oxidised compound with trypanothione (Krauth- 

Siegel and Ludemann, 1996). The authors were imable to detect any increase in ascorbate 

formation in vitro upon addition of crude parasite extract to the reaction mix which 

contained glutathione and dehydroascorbate. Regardless of whether TDRl has a role in 

ascorbate recycling, the relative lack of published research on this interesting molecule in 

parasites was intriguing. Investigation into whether the parasites contained the machinery 

for, and were capable of, synthesising ascorbate would be the first step in elucidating the 

role of ascorbate in Leishmania, and is detailed in this chapter.

A very reeently published report details an investigation into ascorbate synthesis in T. 
brucei (Wilkinson et ah, 2005). A sequence similar to L-gulonolactone oxidase, L- 

galactono-1,4-lactone dehydrogenase and D-arabinono-1,4-lactone oxidase, the final 

enzymes in the ascorbate biosynthetic pathways of mammals, plants and fimgi 
respectively, was found in the parasite and designated TbALO. Recombinant TbALO was 

produced which was able to synthesise ascorbate from both L-galactono-1,4-lactone and 

D-arabinono-1,4-lactone, the plant and fungi substrates respectively. T. brucei bloodstream 

form parasites engineered to lack TbALO were viable and able to differentiate and infect 

mice, although they displayed a slight growth defect when cultured which was enhanced 

when ascorbate was depleted from the serum.

6.1.6 Aims of this study

In chapters three, four and five the discovery and characterisation of L  major TDRl was 

described. Like oGST and glutaredoxins, with which TDRl shares sequence similarity and 

active site motifs respectively, recombinant TDRl displayed dehydroascorbate reductase 

activity in vitro. L. major TDRl knockout parasites were hyper-sensitive to paraquat; a 

possible reason for this could be depleted ascorbate levels due to inefficient recycling of 

the oxidised form, caused by the absence of TDRl. As described, the maintenance of 

reduced ascorbate in trypanosomatids has been previously attributed to non-enzymatic
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reduction by trypanothione; however, the possibility that TDRl was capable of ascorbate 

recycling in vivo was intriguing.

Unlike many organisms, humans cannot synthesise ascorbate and instead scavenge it from 

their diet. Whether Leishmania also scavenge ascorbate, or whether they contain one of the 

several ascorbate biosynthetic pathways known to function in other life forms, was 

unknown. In order to clarify the situation we aimed to determine whether proteins similar 

to known ascorbate synthesis enzymes were present in L. major. In all ascorbate 

production pathways reported, a similar enzyme catalyses the final step; GLO in mammals, 

ALO in yeast and GALDH in plants. Therefore this protein in particular was of interest and 

it was our aim to ascertain whether Leishmania possessed such a protein and if so, to help 

determine its role in the parasite by altering its expression levels by genetic manipulation 

and analysing any resultant phenotype of the resultant mutants.

6.2 Results

6.2.1 Analysis of ascorbate biosynthesis homologues in L. major

As discussed in section 6.1.2 and illustrated in figure 6.1, several ascorbate and 

erythroascorbate biosynthetic pathways have been identified and various enzymes able to 

mediate reactions in the synthesis of ascorbate have been characterised; these are 

summarised in table 6.1. In order to determine whether Leishmania may possess such 

pathways, the amino acid sequences of these enzymes were used as enquiry sequences to 

search the L. major predicted protein database for putative ascorbate biosynthesis enzymes. 
As in chapter three, searches for L. major sequences were conducted using the omniblast 

feature at www.genedb.org and identified proteins were used as enquiry sequences to 

search known proteins of the original organism using the blastp facility found at 

http://www.ncbi.nlm.nih.gov/BLAST/. For each search the most significantly similar 

predicted protein to that of the enquiry sequence is described; less similar sequences are 

not described unless they displayed particularly high similarity. Alignments were 
performed using the alignX feature of vector NTI. The results of these blast searches and 

the ensuing analysis of the sequences identified are presented in this section and 
summarised in tables 6.2, 6.3 and 6.4.

6.2.1.1 GDP-mannose pyrophosphorylase

In the plant L-galactose pathway, the first enzyme known to be involved in ascorbate 

synthesis is GDP-mannose pyrophosphorylase which is responsible for the production of

http://www.genedb.org
http://www.ncbi.nlm.nih.gov/BLAST/
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GDP-D-mannose. As well as being involved in ascorbate synthesis (Conklin et al, 1999; 

Keller et al, 1999; Tabata et al, 2002), the protein has an important role in the 

glycosyiation of proteins and lipids and polysaccharide synthesis as GDP-D-mannose is 

required for these reactions. The L. major predicted protein database was searched for 

similar proteins using the 361 amino acid .4. thaliana GDP-mannose pyrophosphorylase as 

an enquiry sequence. The most similar protein (p/n value = 1.2e’̂ '̂ ) was the 379 amino acid 

LmjF23.0110, a previously characterised GDP-mannose pyrophosphorylase (Garami and 

Ilg 2001; Davis et al, 2004). The protein sequence shares 50% identity and 70% 

conservation with that of the A. thaliana GDP-mannose pyrophosphorylase which was also 

the most alike A. thaliana protein to LmjF23.0110. Despite clear evidence that 

LmjF23.0110 is a GDP-mannose pyrophosphorylase, this is not implicit with it being 

involved in ascorbate synthesis due to its other known functions and published reports of 

LmjF23.0110 do not link it to ascorbate synthesis.

6.2.1.2 GDP-mannose-3%5-epimerase

The plant enzyme which catalyses the subsequent reaction in ascorbate biosynthesis in this 

pathway -  the conversion of GDP-D-mannose to GDP-L-galactose (or GDP-L-gulose) -  is 

GDP-mannose-3’,5’-epimerase. Again the activity of this protein may not be restricted to 

catalysing ascorbate synthesis (Wolucka et al, 2001): GDP-L-galactose is a component of 

N-glycans and xyloglucans in plants and polysaccharides in invertebrates. The A, thaliana 

GDP-mannose-3 ’,5 ’-epimerase 337 amino acid sequence was used as the enquiry sequence 
in the blast search. The most similar L. major protein (p/n value = 9.9e’̂ ) was 

LmjF26.2230, an uncharacterised predicted protein 446 amino acids in length which is 

more than 100 amino acids longer than the A. thaliana protein. When the two sequences 

were aligned LmjF26.2230 had an N-terminal extension and several small N-terminal 

insertions as compared to the other protein. The protein sequence shares just 22% identity 

and 40% conservation with that of A thaliana GDP-mannose-3 ’ ,5 ’ -epimerase. Moreover 

when LmjF26.2230 was used as an inquiry sequence for a blastp search of A. thaliana 

proteins, 41 sequences were more similar than the GDP-mannose-3’,5’-epimerase with the 

most similar protein to LmjF26.2230 being annotated as a NADPH-dependant epimerase. 

Considering the low identity and conservation scores together with the results of the blastp 

search, it seems likely that LmjF26.2230 encodes a protein other than the GDP-mannose- 
3’,5’-epimerase involved in ascorbate synthesis.
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6.2.1.3 L-galactoôe-1-phosphate phosphatase

In this same plant pathway, the enzyme that converts GDP-L-galactose to L-galactose-1- 

phosphate has not yet been elucidated. However, the recently identified L-galactose-1- 

phosphate phosphatase catalyses the subsequent step: the dephosphorylation of L- 

galactose-1-phosphate to L-galactose (Laing et al, 2004). As the authors allude to, this 

step is thought to be specific to ascorbate synthesis as L-galactose is not known to 

participate in any other cellular processes. The 279 amino acid A. thaliana sequence was 

used to search the L. major predicted protein database. Two sequences were highly similar 

to the enquiry protein: the 288 amino acid LmjF17.1390 (p/n value = 1.8e‘̂ )̂ and the 466 

amino acid LmjF15.0880 (p/n value = 2.1e’̂ )̂. LmjF17.1390 shares 35% identity and 55% 

conservation withv4. thaliana L-galactose-1-phosphate phosphatase while Lmj F15.0880 

shares 32% identity and 49% conservation. Alignments between the amino acid sequences 

and that of the A thaliana protein showed that while LmjF17.1390 was similar to the plant 

protein, LmjF15.0880 displayed both N- and C-terminal extensions as well as several large 

insertions, explaining the differences in amino acid lengths. Like the A, thaliana (and 

kiwifruit) enzyme, the L. major sequences are both annotated as being putative myo

inositol-1-phosphate phosphatases although the plant enzymes have now been shown to 

have much higher activity to L-galactose-1-phosphate than to myo-inositol-1-phosphate 

(Laing et al, 2004). Given the high similarity between LmjF17.1390 and the A. thaliana 

protein, together with the fact that the L. major protein is more similar to it than any other 

A. thaliana protein, it is likely that LmjF17.1390 protein is a L-galactose-1-phosphate 

phosphatase. Due to the differences in size between the plant protein and LmjF 15.0880 and 

the large insertions that appear to be present in the L. major protein based on the alignment 

with the A. thaliana sequence, it is unclear whether LmjF15.0880 may also act as a L- 

galactose-1-phosphate phosphatase. Interestingly, a blast search of the mouse protein 

database revealed there to be a very similar protein to the A. thaliana L-galactose-1- 

phosphate phosphatase (identification number NP061352) and this will be discussed in 

section 6.3 of this chapter. An alignment of this mouse sequence, together with A thaliana 

L-galactose-1-phosphate phosphatase and LmjF17.1390 is shown in figure 6.3.
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Figure 6,3: Alignment of A. thaliana L-galactose-1-phosphate phosphatase with the most 
similar L. major sequence, LmjF17.1390, and a putative mouse L-galactose-1-phosphate 
phosphatase. A. thal LG1PP and mouse LG1PP-A. thaliana and putative Mus musculus L- 
galactose-l-phosphate phosphatase (identification number NP061352)i respectively. Dashes 
indicate gaps in the alignment. Identical residues are printed in white on a black background, 
conserved residues are printed in white on a grey background and similar residues are printed in 
black on a grey background.
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6.2.1.4 L-galactose dehydrogenase and D-arabinose dehydrogenase

The plant enzyme that catalyses the next step in ascorbate synthesis via the L-galactose 

pathway is L-galactose dehydrogenase, which is similar in both sequence and function to 

the yeast erythroascorbate synthesis protein D-arabinose dehydrogenase. These enzymes 
catalyse the conversion of L-galactose to L-galactono-1,4-lactone and of D-arabinose to D- 

arabinono-1,4-lactone, respectively, although the yeast enzyme can use also L-galactose as 

a substrate. The amino acid sequences of A thaliana L-galactose dehydrogenase and the S. 
cerevisiae D-arabinose dehydrogenase were used as enquiry sequences in blastp searches: 

the two most similar proteins to the plant sequence were the 286 amino acid LmjFB 1.2880 

(p/n value -  1.5e'^ )̂ and the 279 amino acid LmjF32.0460 (p/n value = 3.1e‘̂ )̂ and the two 

most similar to the yeast sequence were LmjF32.0460 (p/n value = 1.2e"̂ )̂ together with 

the 285 amino acid LmjF31,2150 (p/n value -  1.5e"̂ )̂. LmjF31.2880 and LmjF32.0460
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share 20% and 23% identity, respectively, and 40% and 41% conservation, respectively, 

with A. thaliana L-galactose dehydrogenase. Reflecting these relatively low scores, when 

the L. major sequences were used as enquiry sequences to search the A. thaliana protein 

database, there were 35 more similar proteins to LmjF32.0460 and 28 more similar 

proteins to LmjF31.2150 than the L-galactose dehydrogenase. Meanwhile LmjF32.0460 
and LmjF31,2150 share 37% and 35% identity, respectively, and both share 54% 

conservation with S. cerevisiae D-arabinose dehydrogenase. However, again the single 

organism blast searches show that these predicted proteins are more similar to S. cerevisiae 

proteins other than D-arabinose dehydrogenase: 4 other proteins were more similar to 

LmjF32.0460 and 3 were more alike LmjF31.2150. LmjF32.0460 is similar to both the 

yeast and plant sequences; this was expected due to the similarity between the two proteins 

although the p/n scores together with the identity and conservation percentages clearly 

show that LmjF32,0460 is most similar to the yeast enzyme. LmjF31.2150 is also much 

more like D-arabinose dehydrogenase than LmjF31.2880 is to L-galactose dehydrogenase. 

However, the results of the single organism blast searches suggest that none of these four 

L  major sequences actually encode proteins involved in ascorbate biosynthesis as they are 

all more similar to proteins with different fimctions.

6.2,1.5 D-galacturonic acid reductase

Interestingly, a blast search using strawberry D-galacturonic acid reductase as the enquiry 

sequence identified the same L. major proteins as the searches using the A thaliana L- 

galactose dehydrogenase and S. cerevisiae D-arabinose dehydrogenase sequences. D- 

galacturonic reductase operates in a separate plant ascorbate synthesis pathway catalysing 

the conversion of D-galacturonic to L-galactonic acid, which is then converted to L- 

galactono-1,4-lactone, and has not previously been shown to be similar to these other 

ascorbate synthesis proteins. The most similar proteins to the 319 amino acid strawberry 

D-galacturonic reductase were LmjF31.2150 (p/n value = 2.0e'^^) and LmjF32.0460 (p/n 

value = 9.5e'^^). LmjF31.2150 shares 37% identity and 56% conservation with strawberry 

D-galacturonic reductase while LmjF32.0460 shares 38% identity and 59% conservation. 

Alignments between the amino acid sequences and that of the strawberry protein showed 

that the L. major sequences both contained small deletions as compared to the other 

sequence, reflecting the 35/40 residue size difference. When the sequences were used to 

blast search the A. thaliana protein database there were two proteins more similar to the L. 

major sequences than the D-galacturonic reductase with the most alike protein in each case 

being annotated as a putative oxidoreductase. Therefore, despite the fact that LmjF31.2150 

and LmjF32.0460 are both more similar to D-galacturonic reductase than to L-galactose
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dehydrogenase or D-arabinose dehydrogenase, they may encode proteins that are not 

involved in ascorbate biosynthesis. This seems even more likely for LmF31.2150, which 

has been experimentally shown to possess prostaglandin f2-alpha synthase activity 

(Kabututu et al, 2003).

6.2.1.6 Aldono-lactonase

The enzyme that catalyses the penultimate step in ascorbate synthesis in mouse -  and 

presumably therefore in other mammals that synthesise ascorbate via the uronic acid 

pathway -  was recently identified as an aldono-lactonase which is not similar to the 

proteins performing this step in other organisms described in the previous two paragraphs. 

Accordingly, the L major sequence most similar to the 299 amino acid mouse sequence 

was the 413 amino acid LmjF28.1230 (p/n value = 1.4e'^ )̂, not a protein identified in a 

previous blast search. LmjF28.1230 shares 24% identity and 43% conservation with the 

amino acid sequence of the mouse aldono-lactonase; an alignment of the two sequences is 

shown in figure 6.4. Alignment of the two proteins showed that the L major sequence had 

several small insertions, together with a small C-terminal extension in comparison to the 

mouse sequence. However when LmjF28.1230 was used as an inquiry sequence in a blastp 

search of mouse proteins, the most similar was the aldono-lactonase. This is intriguing, as 

despite the relatively low identity and conservation scores, and the discrepancies between 

the alignments of the two sequences, LmjF28.1230 is not more similar to any other mouse 

protein. It is also annotated as a sequence orphan in the L, major database. Therefore it 

remains possible that LmjF28.1230 does encode an aldono-lactonase involved in ascorbate 

biosynthesis.
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Figure 6.4: Alignment of mouse aldono lactonase with the most similar L. major sequence, 
LmjF28.1230. Mouse A-lac -  Mus musculus aldono lactonase. Dashes Indicate gaps In the 
alignment Identical residues are printed In white on a black background and similar residues are 
printed In black on a grey background.
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6.2.1.7 GLO, ALO and GALDH

The final step in ascorbate production in the mammalian, yeast and the plant L-galactose 

and D-galacturonic acid pathways is catalysed by a similar enzyme: GLO in mammals, 

ALO in yeast and GALDH in plants. Representative sequences of all three proteins -  the 

440 amino acid pig GLO, the 526 amino acid S. cerevisiae ALO and the 610 amino acid A. 
thaliana GALDH - were used in blast searches of L. major predicted proteins and the same 

sequence was identified in each: Lmj*F17.1360 (p/n values = 9.6e‘̂ ,̂ 3.2e"̂  ̂and 6.7e"̂ ,̂ 

respectively). LmjF17.1360, which is 502 amino acids in length, shares 28% identity and 

54% conservation with pig GLO, 19% identity and 38% conservation with S. cerevisiae 

ALO, and 20% identity and 42% conservation with A thaliana GALDH. Alignments 

between the sequences, shown in figure 6.5, reveal that LmjF 17.1360 has a small C-



Joanne C. McGregor, 2006 Chapter 6 172

terminal extension and a 55 amino acid insertion in comparison to the pig GLO, is lacking 

a 100 amino acid N-terminal extension when compared to the A. thaliana GALDH and 

aligns poorly with 6". cerevisiae ALO in the middle of the sequences. When LmjF 17.1360 
was used as an enquiry sequence to search the protein databases of pig, A. thaliana and S. 

cerevisiae, the L. major sequence was most like the GLO, GALDH and ALO respectively. 

This suggests that LmjF17.1360 is likely to encode a protein capable of mediating the final 

step in ascorbate biosynthesis in Leishmania, Given the much higher p/n value and identity 

and conservation scores between it and the pig sequence rather than those of plant or yeast, 

it appears that LmjF17.1360 is most closely related to GLO and will be herein referred to 

as LmGLO. This sequence shares 45% identity and 64% conservation with the recently 

identified T. brucei enzyme TbALO (Wilkinson et al, 2005) described in section 6.1.5 of 

this chapter. However, based on substrate preference, the authors concluded that the 

enzyme is most similar to ALO or GALDH rather than GLO, which contrasts with which 

enzyme it is most closely related to based on amino acid sequence similarity alone.

6.2.1.8 Inositol oxygenase

Inositol oxygenase is the only other protein involved in ascorbate synthesis to have been 

identified and characterised to date. The protein is thought to participate in an alternative 

pathway in plants, converting myo-inositol to D-glucuronic acid. The L, major predicted 

protein database was searched with the 317 amino acid sequence ofW. thaliana inositol 

oxygenase and the most similar protein (p/n value 0.51) was the 378 amino acid 

LmjF18.1380. LmjF18.1380 shares just 14% identity and 32% conservation with the A, 

thaliana protein, poorly aligns with the sequence and has N- and C- terminal extensions 

compared to it. When the L, major sequence was used to search the A, thaliana protein 

database there were 38 more similar proteins to it than the inositol oxygenase; the most 

alike was a pyruvate dehydrogenase which was also what Lmj F18.1380 was annotated as 

in the L. major database. Taking all this information together, it is highly unlikely that 

LmjF 18.1380 encodes an inositol oxygenase involved in ascorbate synthesis.
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Figure 6.6: Alignment of A. thaliana GALDH, S. cerevisiae ALO and pig GLO with the most 
similar L. mayor sequence, LmjF17.1360, and the similar trypanosome enzyme, T. brucei 
ALO. A. thal GALDH -  A. thaliana GALDH, S. cev ALO -  S. cerevisiae ALO, pig GLO -  Sus scrofa 
GLO. The putative T. brucei ALO C-terminal SHL signalling tag which Is absent In the L major 
sequence is underlined In red. Dashes Indicate gaps In the alignment. Identical residues are printed 
In white on a black background, conserved residues are printed in white on a grey background and 
similar residues are printed in black on a grey background.
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This analysis does not provide any definitive proof of which ascorbate pathways, if any, 

are present in L. major. However, it seems reasonable to conclude that some of the 

sequences identified may have a role. LmjF 17.1390 is very like the A. thaliana L- 

galactose-1-phosphate phosphatase. Meanwhile LmjF28.1320 and LmjF 17.1360 are 

similar to the only known enzymes that mediate the mammalian ascorbate biosynthesis 

pathway: the recently identified mouse aldono-lactonase and pig GLO. Crucially, these L  

major sequences were more similar to ascorbate biosynthesis enzymes, which have no 

other known function, than any other proteins in the species the original enquiry sequences 

were derived from. Thus, they were judged to be the most likely to be involved in 

ascorbate synthesis in Leishmania. The importance of GLO in ascorbate synthesis in 

mammals is paramount: humans lack this enzyme and therefore have to derive ascorbate 

from their diet. Whether LmGLO has a similar role in the parasite was investigated, and is 

discussed herein.

Enquiry sequence: 
organism, enzyme 
name, and amino acid 
length

Leishmania 
homologues, p/n 
scores and 
number of 
amino acids

% identity, % 
conservation and 
observations on 
alignments

Single organism 
back BLAST 
results

1. S. cerevisiae D- 
arabinonose 
dehydrogenase 
(NP009707), 344 
amino acids

a. LmjF32.0460
1.2e"̂  , 279 amino 
acids
b. LmjF31.2150
1.5e"̂ ,̂ 285 amino 
acids

a. 37%, 53%. N- 
term more alike.
b. 35%, 54%. L. 
maj seq 30 amino 
acid gap 137-167.

a. 5“* hit to enq seq. 
Best is glycerol 
dehydrogenase.
b. 4* hit to enq seq. 
Best is as above.

2. S. cerevisiae D- 
arabinono-1,4-lactone 
oxidase (NPO13624), 
526 amino acids

LmjF17.1360
3.2e'̂ ,̂ 502 amino 
acids

19%, 38%.
Middle of 
sequences display 
poor similarity.

Best hit to enq seq.

Table 6.2: L. major sequences similar to ascorbate biosynthesis enzymes in fungi.
Abbreviations used are L. maj -  L major, seq -  sequence, ext -  extension, N-term -  N-terminal, C- 
term -  C terminal, enq -  enquiry. Numbers in first column correlate with those in figure 6.1.
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Enquiry sequence: 
organism, enzyme 
name, and amino acid 
length

Leishmania 
homologues, p/n 
scores and 
number of 
amino acids

% identity, % 
conservation and 
observations on 
alignments

Single organism 
back BLAST 
results

3. Mouse aldono 
lactonase (NP033086), 
299 amino acids

LmjF28.1230
1.4e'*̂ , 413 amino 
acids

24%, 43%. Six 
small gaps in 
mouse seq. L. maj 
seq also has small 
C-term ext.

Best hit to enq seq.

4. Pig L-gulonolactone 
oxidase (Q8HXW0), 
440 amino acids

LmjF17.1360
9.6e'̂ ,̂ 502 amino 
acids

28%, 54%. Pig 
seq. contains a 55 
amino acid gap. 
235-290. L. maj 
seq has small C- 
term ext.

Best hit to enq seq.

Table 6.3: L. mayor sequences similar to ascorbate biosynthesis enzymes in animals.
Abbreviations used are L. maj -  L major, seq -  sequence, ext -  extension, N-term -  N-terminal, 0- 
term -  C terminal, enq -  enquiry. Numbers in first column correlate with those in figure 6.1.
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Enquiry sequence: 
organism, enzyme 
name, and amino acid 
length

Leishmania 
homologues, p/n 
scores and 
number of 
amino acids

% identity, % 
conservation and 
observations on 
alignments

Single organism 
back BLAST 
results

5. A. thaliana GDP-6- 
mannose
pyrophosphorylase 
(AAC78474), 361 
amino acids

LmjF23.0110
1.2e'̂ ' ,̂ 379 amino 
acids

50%, 70%. 
Region between 
250-270 displays 
poor similarity.

Best hit to enq seq.

6. A. thaliana GDP- 
mannose-3’,5’- 
epimerase 
(CAD70055), 377 
amino acids

Lmj26.2230
9.9e'*, 446 amino 
acids

22%, 40%. L. maj 
seq has N-term 
ext. Also, gaps in 
A. thaliana N- 
term

42"  ̂hit to enq seq. 
Best is NADPH- 
dependant 
epimerase/dehydro 
genase.

7. A. thaliana L- 
galactose-1 -phosphate 
phosphatase 
(NPOO1030626), 269 
amino acids

a. LmiF17.1390
1.8e"̂  , 288 amino 
acids
b. LnijF15.0880
2.1e'^ , 466 amino 
acids

a. 35%, 55%. 
Good similarity.
b. 32%, 49%. 
Large gaps in A. 
thaliana seq. N- 
and C- term ext. 
in L. maj seq.

a. Best hit to enq 
seq.
b. Best hit to enq 
seq.

8. A. thaliana L- 
galactose 
dehydrogenase 
(CAD10386),319 
amino acids

a. LmiF31.2880
1.5e*’ , 286 amino 
acids
b. LmjF32.0460
3.1e‘‘̂  279 amino 
acids

a. 20%, 40%. 
Better similarity 
in N-term.
b. 23%, 41%. 
Quite poor 
overall.

a. 36^ hit to enq 
seq. Best is 
oxidoreductase.
b. 29^ hit to enq 
seq. Best is as 
above.

9. A. thaliana L- 
galactono-1,4-lactone 
dehydrogenase 
(NP190376),610 
amino acids

LmjF17.1360
6.7e’̂ ,̂ 502 amino 
acids

20%, 42%. L. maj 
seq lacks first 100 
amino acids.

Best hit to enq seq.

10. A. thaliana inositol 
oxygenase 
(AAP59548), 317 
amino acids

LmjF18.1380
0.51, 378 amino 
acids

14%, 32%. L. maj 
seq N- and C- 
term ext. Also 
small gaps in A. 
thaliana seq.

39“* hit to enq. seq. 
Best is pyruvate 
dehydrogenase.

11. Strawberry D- 
galacturonic reductase 
(AAT76306), 319 
amino acids

a. LnnF31.2150
2.0e'^ , 284 amino 
acids
b. LmjF32.0460
9.5e'^ ,̂ 279 amino 
acids

a. 37%, 56%. 
Small gaps in L. 
maj seq.
b. 38%, 59%. 
Small gaps in L. 
maj seq.

a. 3*̂  ̂hit to enq seq. 
Best is
oxidoreductase
b. 3*̂“ hit to enq seq. 
Best is
oxidoreductase.

Table 6.4: L. mayor sequences similar to ascorbate biosynthesis enzymes in plants.
Abbreviations used are L. maj -  L major, seq -  sequence, ext -  extension, N-term -  N-terminal, C- 
term -  C terminal, enq -  enquiry. Numbers in first column correlate with those in figure 6.1.
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6.2.2 LmGLO expression in Leishmania

In order to clarify whether LmGLO expression could be detected, western blots were 

performed on various Leishmania species promastigote lysates, using rat anti-sera that had 

been raised to recombinant LmGLO (figure 6.6). As well as L. major, L. infantum and L 

mexicana lysates were also used as sequences with 94% and 81% identity to LmGLO are 

present in the L. infantum and L. braziliensis protein databases, respectively. Both the first 

and final bleed batches of antisera were used for western blotting (figure 6.6A and 6.6B, 

respectively) but unfortunately both antibodies detected several different proteins. The first 

bleed antiserum detected the 57 kD 6-His LmGLO recombinant protein and in the L. major 

promastigote lysate a slightly smaller band that may be LmGLO (untagged LmGLO is 

predicted to be 56 kD). Unfortunately this could not be further investigated as all of the 

antiserum obtained from the first bleed was used in this experiment and when re-used did 

not detect either the recombinant protein or any proteins from Leishmania lysates. In 

addition to the ~56 kD band the first bleed antibody detected several larger proteins, which 

were presumed to be due to non-specific cross-reactivity of the anti-sera. The final bleed 

antiserum detected many proteins, both in the recombinant protein fraction and in the 

parasite lysates. One of the proteins detected appeared to be of around the expected size of 

LmGLO, however, despite repeated attempts to optimise the conditions of the western blot 

when using the antiserum, it was impossible to distinguish the band and discern any useful 

information regarding endogenous LmGLO expression.

B

LmGLO

CS

1-bleed 2"" bleed
Figure 6.6: Western blot analysis of LmGLO expression in the soluble fraction of 
Leishmania. A -  first bleed antiserum. A protein of a slightly smaller size than the annotated 
LmGLO recombinant protein is visible in the L  mayor lysates. B -  second bleed antiserum. 10 pg- 
30 pg of parasite lysate was loaded per lane. CS, cysteine synthase, (control).
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6.2.3 Creation of LmGLO over-expressing L. major promastigotes

The sequence encoding LmGLO was amplified from L major genomic DNA, sub-cloned 

into the pGEM T-easy and then cloned into the pGL102 plasmid. The plasmid with the 

LmGLO gene was named pGL102LmGLO; maps of this and the empty vector are shown in 

figure 6.7. The pGL102 plasmid is a Leishmania episomal expression vector and contains 

the neomycin resistance gene as a selectable marker. Uncut pGL102 and pGL102LmGLO 

were transfected into L. major promastigotes which were subsequently incubated in culture 

with neomycin so that only successful transformed parasites would grow. The transformed 

parasite lines will be herein referred to by the names of the vectors they were transformed 

with.

pGL102
6794 bp3’13K

amp

5'DST 
Sma \ (1366)

3*13K

pGL102LmGLO
8303 bp LmGLO

amp

Figure 6.7: Plasmids for the over-expression of LmGLO in L. major promastigotes.
Schematic representation of the pGL102 plasmid for the over-expresslon of LmGLO In Leishmania. 
A -  empty pGL102 vector, for use as a negative control. B -  pGL102 + LmGLO (pGL102LmGLO) 
for the over-expresslon of LmGLO. amp, amplclllln resistance gene; neo, neomycin resistance 
gene. The restriction sites used to clone LmGLO Into the vector are shown In dark red.
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6.2.4 Phenotype analysis of L. major putative LmGLO over
expressing lines

Due to the failure of the anti-LmGLO antiserum to detect LmGLO specifically, it was not 

possible to confirm the over-expression of LmGLO in the parasites and the phenotypic 

analysis presented in this section must be regarded in this context.

6.2.4.1 Morphology and growth of promastigotes

Parasites putatively over-expressing LmGLO were examined microscopically and no 

morphological differences could be seen between them and the parasites containing the 

empty pGL102 vector. After several passages with neomycin present in the culture media, 

the pGL102 and pGL102LmGLO lines were counted and diluted to the same 

concentration. Thereafter their growth was monitored by daily counting (figure 6.8). The 

parasite lines were found to grow at similar rates.

1.00E+08

E 1.00E+07

.1
2 
& 1.00E+06

1.00E+05 1

PGL102
pGL102LmGLO

0 2 4 6 8
Number of days

Figure 6.8: Growth curves of pGL102 and pGL102LmGLO L. mayor promastigotes. Cultures 
were seeded at a concentration of 2 x 10® parasites/ml and were counted daily. Both lines were 
grown with 50 pg/ml neomycin.
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The ability of the different stationary phase promastigote parasite lines to infect peritoneal 

macrophages was assessed (figure 6.9). pGL102LmGLO infected a higher percentage of 

macrophages than either the pGL102 or WT lines: approximately 4 times and twice as 

many, respectively. This suggests that if pGL102LmGLO parasites are indeed over

expressing LmGLO then this aids infection. However, the differences observed were not 

found to be significant, likely to be due to the lack of repetitions of this experiment: further 

investigation is required. The variation between the infection rates between the WT and 

pGL102 lines was also of concern as they would be expected to infect at a similar rate. It is 

possible that the pGL102 line have been adversely affected by the transformation 

procedure, causing them to be less infective in vitro.

60

I  40

I 30
"S
o 20 0)

10

WT pGL102 pGL102LmGLO

Figure 6.9: Infectivity of WT, pGL102 and pGL102LmGLO L. mayor promastigotes to 
macrophages. Stationary phase promastigotes were used to infect peritoneal macrophages at a 
rate of 2:1 and the slides were incubated for 5 days post-infection. Results are the means ± SE 
from two experiments. The WT and pGL102LmGLO lines did not infect the macrophages at 
significantly different rates (p > 0.05).
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To assess in vivo infectivity, pGL102LmGLO, pGL102 and WT stationary growth-phase 

promastigotes were inoculated into mouse footpads, the thicknesses of which were then 

measured over time (figure 6.10). The results broadly reflected those of the in vitro 

infectivity experiments: pGL102LmGLO parasites were responsible for the most rapid 

footpad growths which were slightly, but not significantly, faster than those infected with 

the WT parasites, while footpads infected with pGL102 parasites took approximately 2 

weeks longer to reach similar thicknesses. Over-expression of LmGLO is from an 

episomal expression vector, the presence of which is assured by keeping the parasites 

under neomycin pressure. This is not possible during in vivo work and the number of 

episomes, and therefore the level of LmGLO expression, is likely decrease over time. This 

may explain why the increased infectivity of pGL102LmGLO parasites as compared to the 

WT and pGL102 lines is not as marked as in the macrophage infectivity experiment, where 

infections are monitored over days as opposed to weeks. Once more the pGL102 parasites 

caused less virulent infections than the WT parasites, which again may be indicative of 

them being compromised in some way by the transformation procedure. This will be 

discussed in more detail in section 1.3.

5.5

4.5

2  3.5

"O

2.5
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1 !

WT

pGL102

pGL102LmGLO
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Number of weeks

Figure 6.10: Infectivity of WT, pGL102 and pGL102LmGLO, L. mayor promastigotes to mice.
5x10® stationary-phase promastigotes were resuspended in 20 pi PBS and inoculated into one 
footpad of each BALB/C mouse. The footpad thicknesses were subsequently measured weekly, 
and the results are the means ± from five mice. The WT and pGL102LmGLO infections were not 
significantly different (p > 0.05).
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6.2.5 Creation of L. major LmGLO knock-out parasite lines

The 3’ and 5’ flanking regions of LmGLO were amplified from L major genomic DNA, 

sub-cloned into pET28a(+) and cloned into vectors pGL345 and pGL842 which contain 

hygromycin and blasticidin resistance genes, respectively (figure 6.11). The constructs 

containing the flanking regions and drug resistance markers were cut out and purified and 

the linear DNA was used to transform L  major promastigotes. Two independent lines, 

K0LmGL03 and K0LmGL08, were generated, both having undergone transformation 

with each of the constructs sequentially and grown up in the presence of the selection 

drugs. In addition, following the second transfection and overnight recovery period, the 

two independent cultures were divided and ascorbate was added to one of each to a final 

concentration of 10 mM. This was to ensure that it would be available if the loss of 

LmGLO resulted in the parasites having to exogenously source their ascorbate. 

K0LmGL08 grew up to stationary phase regardless of whether ascorbate had been added 

to the media, while only the K0LmGL03 culture that contained ascorbate grew up 

quickly. After several passages in the selective drugs, K0LmGL03 and K0LmGL08 

clones were derived by setting up the cultures with ascorbate in 96-well plates at a 

concentration of approximately 0.1 parasites/well. Two clones were isolated from 

K0LmGL03 -  deemed KOLmGLOAl and KOLmGLOA2 -  and one clone was derived 

from K0LmGL08: KOLmGLOB. All three clones took several weeks to grow up.

LmGLO 5 'flank Sail {I)

HindWl (6808) DHFR flank
I (944)

Hyg

amp
pGL345 LmGLO 
3' and S' flanks

7301 bp
fiomHI(l997)

DHFR flank

gg/H (4005) Sma\(3367)
LmGLO 3' flank

Figure 6.11 : Construct for the gene knock-out of LmGLO in L  major promastigotes.
Schematic representation of the pGL345 plasmid containing the LmGLO 3' and 5" flanking regions. 
The second plasmid used for the construction of the LmGLO knock-out was the pGL842 plasmid, 
which is exactly the same except that it contains a blasticidin rather than hygromycin resistance 
gene. Hyg, hygromycin resistance gene; amp, ampicillin resistance gene; DHFR flanks, flanking 
regions of the dihydrofolate reductase gene. The restriction sites used to clone the LmGLO flanks 
and hygromycin resistance gene into the vector are shown in dark red. Hindlll and Bglll were used 
to cut out the flank-containing linear construct for transfection into L. major.



Joanne C. McGregor, 2006 Chapter 6 183

Because it was not possible to ascertain whether LmGLO had been successfully knocked 

out by western blotting, a southern blot was performed on genomic DNA derived from 

KOLmGLOAl and KOLmGLOA2 and KOLmGLOB, together with WT parasites. The 

DNA was digested with restriction enzymes that, depending on whether the WT or 

replacement allele was present, would yield fragments of different lengths containing the 

LmGLO 3’ flanking region (figure 6.12A). The 3’ flanking region was used as a probe and 

would hybridise to a fragment of approximately 1.4 kb if the WT allele was present, 2.4 kb 

if the blasticidin resistance gene was present and 3.7 kb if the hygromycin resistance gene 

was present. Unfortunately no fragments were detected in the WT and KOLmGLOAl and 

KOLmGLOA2 digested DNA samples. However, fragments of approximately 2.4 kb and

3.7 kb were detected in the KOLmGLOB sample (figure 6.12B), corresponding to both 

resistance markers that would be present in a bona fide LmGLO knockout. Therefore it 

was concluded that KOLmGLOB lacks LmGLO. The absence of fragments detected in 

KOLmGLOAl and KOLmGLOA2 suggest it is unlikely that they are genuine LmGLO 

knockouts although the experiment was inconclusive.

6.2.6 Phenotype analysis of L  major LmGLO knock-out parasite 

lines

The parent lines of the clones, K0LmGL03 (which KOLmGLOAl and K0LmGL0A2 

were derived from) and KOLmGLOB (which KOLmGLOB was derived from) were 

analysed in some experiments as the clones took a long time to obtain. As well as 

examining the phenotype of KOLmGLOB -  deemed to be a genuine LmGLO knockout -  
KOLmGLOAl and KOLmGLOA2 and their parent lines were also included in 

experiments. This was because, although unlikely to lack LmGLO, they would act as 

useful controls due to them having undergone the same transformation procedure and 

exposure to drugs as KOLmGLOB.
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Figure 6.12: Southern blot analysis of the LmGLO locus of L  major KOLmGLO lines. A -
Southern blot analysis of genomic DNA extracted from the different parasite lines as indicated 
above the gel image. The 2.4 kb and 3.7 kb bands visible in the lane containing DNA from the 
KOLmGLOB clone are indicated with red arrows. The blot was exposed to the film for 7 days. The 
positions and sizes of the molecular size markers are indicated to the left of the gel image; kb, kilo 
base pairs. B -  schematic representation of the LmGLO locus on chromosome 17 (LmGLO shown 
in blue), and the altered locus following successful gene replacement with either the hyg 
(hygromycin) or bsd (blasticidin) resistance markers (shown in red). The expected sizes of the 
fragments following digestion of the genomic DNA with Xhol and Sa//, to be detected by southern 
blot using the 3’ flanking region as a probe, are indicated below each diagram and represented with 
a black line. The restriction sites and their relative positions are also shown.
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6.2.6.1 Growth of promastigotes grown with and without exogenous 

ascorbate

As described, K0LmGL03 and KOLmGLOS were originally divided and grown with and 
without ascorbate (+asc and -asc) added to the culture media although only KOLmGLOS 

with exogenous ascorbate thrived. After several passages, the growth rates of the 

remaining three cultures — K0LmGL03+asc, K0LmGL08-asc and K0LmGL08+asc -  

were monitored as before (figure 6.13). The three parasite lines grew at similar rates 
although K0LmGL03+asc grew slightly faster than K0LmGL08+asc which grew faster 

than K0LmGL08-asc. However the most marked difference between the cultures was in 

the concentrations the parasites reached when in the stationary phase of growth. After 
several days K0LmGL03+asc grew to and remained at a density of ~2 x 10̂  parasites/ml, 

as WT parasites do under similar conditions. Meanwhile K0LmGL08-asc and 

K0LmGL08+asc reached concentrations of just -0.7 x lOVml and 0.9 x 10̂ /ml 

respectively, even after 10 days in culture. KOLmGLOB, derived from K0LmGL08+asc, 
was the only clone found to lack the LmGLO gene while the clones derived from 

K0LmGL03+asc were shown to be unlikely to lack the gene. Therefore it is possible that 
the loss of LmGLO causes a growth defect in L. major promastigotes, causing the parasites 

to grow more slowly than usual and to fail to reach high densities. This is in accordance 

with the growth defect observed in bloodstream form T. brucei lacking the homologous 

gene to LmGLO (Wilkinson et ai, 2005). Also, the observation that K0LmGL08-asc 

grows at a slightly slower rate and reaches lower parasite densities in culture than 

K0LmGL08+asc suggests that the presence of exogenous ascorbate may have had a 

beneficial effect in the early stages of transformation.
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Figure 6.13: Growth curve of WT, K0LmGL03+asc, KOLmGLOB+asc and KOLmGLOS-asc L. 
major promastigotes. Cultures were seeded at a concentration of 2 x 10  ̂parasites/ml and were 
counted daily. All lines except WT parasites were grown with 15 pg/ml blasticidin and 100 pg/ml 
hygromycin. K0LmGL03+asc and K0LmGL08+asc were also grown with 1 mM ascorbate 
present.
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The three cultures were also grown with and without added ascorbate to ascertain if its 
inclusion in the culture media affected the growth rates of the parasites after they had been 

in culture for several passages (figure 6.14). Exogenous ascorbate had no affect on the 
growth of any of the cultures at this stage and was subsequently omitted from the culture 

media.
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Figure 6.14: Growth curves showing K0LmGL03+asc, KOLmGLOB+asc and KOLmGLOS- 
asc with and without exogenous ascorbate. Cultures were seeded at a concentration of 2 x 10  ̂
parasites/ml and were counted daily. All lines were lines were grown with 15 pg/ml blasticidin and 
100 pg/ml hygromycin. Ascorbate was added to cultures as indicated to a final concentration of 10 
mM. Exogenous ascorbate had no effect on the growth rates of these L  mayor lines.
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The ability of KOLmGLOS and KOLmGLOS stationary phase promastigote parasite lines 

to infect peritoneal macrophages was assessed (figure 6.15). Both these lines had 

previously been grown with ascorbate, as described. KOLmGLOS infected a similar 

percentage of macrophages as WT parasites: approximately 20%. However KOLmGLOS 

parasites infected a lower number of cells: approximately just 5%. Once again, the 

difference in phenotype is observed in the parent line of the clone found to be genuine 

LmGLO knockouts. Therefore the loss of LmGLO may also cause reduced infectivity in L. 

major in vitro. However, despite the variation in infection levels observed between the WT 

and KOLmGLOS lines, the difference was not found to be significant. This is likely to be 

due to the high standard errors and the low number of replicates performed and further 

investigation is required to show conclusively that the LmGLO knockout parasites are 

defective in their ability to infect macrophages.
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Figure 6.15: Infectivity of WT, KOLmGLOS and KOLmGLOB L. ma/or promastigotes to 
macrophages. Stationary phase promastigotes were used to infect peritoneal macrophages at a 
rate of 2:1 and the slides were incubated for 5 days post-infection Results are the means ± SE 
from at least two experiments. The WT and KOLmGLOB lines did not infect the macrophages at 
significantly different rates (p > 0.05).
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In vivo infectivity of the clones KOLmGLOAl and KOLmGLOB were assessed. Parasites 

in the stationary phase of growth were inoculated into mouse footpads, the thicknesses of 

which were then measured over time (figure 6.16). Relative to the infections caused by WT 

parasites, infections caused by KOLmGLOB were significantly much less rapid in growth, 

as determined by the increase in footpad thicknesses. After five weeks the footpads 

infected with WT parasites had increased from an average of 1.8 mm to 4.3 mm while 

those infected with KOLmGLOB parasites had reached an average of just 2.1 mm. Similar 

results were obtained with KOLmGLOAl parasites. After 10 weeks the KOLmGLOB 

infected footpads were on average 4 mm thick while those infected with KOLmGLOAl 

were on average just 2.5 mm although did continue to increase thereafter. So both clones 

caused attenuated infections to occur as compared to WT parasites. Given that 

KOLmGLOB was shown to lack LmGLO while KOLmGLOAl is unlikely to, this was an 

unexpected result. In order to grow in the presence of the selective drugs, the 

KOLmGLOAl parasites must either be supporting one or more extra-chromosomal 

plasmids or have one or more constructs, intended for integration at the LmGLO locus, 

integrated elsewhere in their genome. It is reasonable to consider that either of these 

scenarios could be detrimental to the parasites, explaining their decreased infectivity to 

mice, but that the reduced infectivity of the KOLmGLOB parasites may be due to the loss 

of the LmGLO gene. However, it is also possible that both clones were damaged during 

the transformation procedure, hence the similar phenotype observed.
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Figure 6.16: Infectivity of WT, KOLmGLOAl and KOLmGLOB L. mayor promastigotes to 
mice. 5x10^ stationary-phase promastigotes were resuspended in 20 pi PBS and inoculated into 
one footpad of each BALB/C mouse. The footpad thicknesses were subsequently measured 
weekly, and the results are the means ± SD from five mice. The footpad thicknesses of mice 
infected with WT parasites were significantly greater than those of mice infected with KOLmGLOB 
five weeks post-infection (p < 0.0004).
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6.3 Discussion
;:’ï

Ascorbate synthesis was originally of interest due to the ability of TDRl to reduce oxidised 

ascorbate in vitro. Whether TDRl also functions as a dehydroascorbate reductase in I

Leishmania remains controversial. As detailed in the introduction to this chapter, reduction 

of dehydroascorbate is thought to occur non-enzymatically by trypanothione (Krauth- 

Siegel and Ludemann, 1996) as parasite lysates failed to increase ascorbate being formed 

in in vitro experiments. However, in order to minimise spontaneous reaction the assay was 

performed at pH 6.5 although the optimal pH for DEAR activity in vitro has previously 

been reported to be -8.0 (Maellaro et al, 1997; Girardini et al, 2002). Therefore the pH 
may have prevented GSH-dependant DEAR activity being detected in the assay; the 

absence of a positive control being performed means this cannot be ruled out.

Trypanosomatids do not possess glutathione reductase, which, as detailed in section 6.1.4, 

is important for dehydroascorbate reduction by glutathione-dependant enzymes, as it in 

turn recycles glutathione. As trypanosomatids instead possess trypanothione reductase, it 

may be the case that trypanothione-dependant proteins would be responsible for any 
enzymatically mediated recycling of ascorbate. This would be analogous to Leishmania 

containing trypanothione S-transferases rather than glutathione S-transferases, as has 

recently been shown (Vickers et al, 2004). However, glutathione can be reduced by 

trypanothione and glutathione-dependant enzymes do prevail in trypanosomatids 

(Wilkinson et al, 2002b). Whether any enzymatic DEAR present in T. cruzi could have 

been dependant on trypanothione rather than glutathione has not been investigated.

The recently published account of TbALO (Wilkinson et al, 2005), an ALO-like T. brucei 

enzyme capable of converting L-galactono-1,4-lactone to ascorbate and D-arabinono-1,4- 

lactone to erythroascorbate, to an extent addresses the initial questions postulated here of 

whether trypanosomatids were capable of synthesising ascorbate and whether it was 

important for viability. LmGLO shares 45% identity with TbALO although the region 

between amino acid 235 and amino acid 320 poorly aligns and is of very low similarity. It 

may be significant that LmGLO lacks the C-terminal SHL motif thought to target the T. 
brucei protein to the glycosome as differences in localisation of ascorbate synthesis 

between the parasite species could be indicative of diverse roles for ascorbate.

TbALO is so called because it is most like yeast ALO in terms of substrate specificity 

although investigation into the TbALO amino acid sequence revealed that, like LmGLO, it 

is most similar to mammalian GLOs. However TbALO was unable to utilise the 

mammalian substrate L-gulono-1,4-lactone, therefore diminishing the likelihood of the
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mammalian synthesis pathway operating in trypanosomatids. Indeed the authors of the 
TbALO paper propose that it is the plant L-galactose pathway that is most likely to be 

responsible for ascorbate synthesis in T. brucei, based on unnamed sequences that they 

have identified in the genome. Several sequences similar to those of plant ascorbate 

synthesis enzymes were identified in Leishmania (section 6.2.1). Due to the role of GDP-6- 

mannose pyrophosphorylase in a range of cellular processes, the presence in Leishmania of 

the similar sequence LmjF23.0110 may not be relevant to ascorbate synthesis and as such 

has not been considered here.

Conversely, the activity of the plant L-galactose-1-phosphate phosphatase protein is 

thought to be exclusive to the ascorbate synthesis pathway and therefore the discovery of 

the similar Leishmania sequence LmjF17.1390 was intriguing. However, analysis of the 

mouse -  and indeed human- protein databases revealed that they too possess similar 

sequences to L-galactose-1-phosphate phosphatase which were not more similar to any 

other A, thaliana protein. Clearly experimental characterisation is required to ascertain 

whether these mammalian proteins are involved in a different cellular process or whether 

they too have a role in ascorbate synthesis. For example it is feasible that they could 

dephosphorylate D-glucuronic acid-1 -phosphate (figure 6.1). The existence of the 

mammalian sequences certainly cast doubt on whether LmjF17.1390 is indeed a dedicated 

ascorbate synthesis protein exclusive to the plant L-galactose pathway. A set of proteins 

similar to yeast and plant enzymes that mediate the penultimate ascorbate synthesis steps - 

arabinose dehydrogenase, L-galactose dehydrogenase and galacturonic reductase were - 

also identified in Leishmania. However, these were all more similar to other yeast and 

plant proteins and one of them -  LmjF31.2150 -  has been experimentally characterised as 

a prostaglandin f2 alpha synthase (Kabututu et al, 2003). Meanwhile LmjF28.1230, which 

is similar to the mammalian aldono-lactonase which mediates the penultimate step in 

ascorbate synthesis in mouse, is more similar to the aldono-lactonase than any other mouse 

protein. Therefore the substrate specificity of TbALO is the only evidence of the plant 

pathway being operational in trypanosomatids. Controversy already exists over whether 

plant GALDH can utilise L-gulono-1,4-lactone as a substrate; A. thaliana cells used it as a 

precursor for ascorbate synthesis (Wolucka and Van Montagu, 2003) while purified sweet 

potato GALDH could only metabolise L-galactono-1,4-lactone (Oba et al, 1995). It is 

possible that activity with L-gulono-1,4-lactone is difficult to reproduce in vitro. It is clear 

that experimental characterisations of several enzymes - including LmGLO and the 

putative ascorbate synthesis proteins identified and described in this chapter - are required 

before any conclusions regarding which pathway(s) is responsible for ascorbate
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biosynthesis in the trypanosomatids. In addition the potential for Leishmania to scavenge 

different intermediates in the synthesis pathways should be addressed.

Indeed, the ability to scavenge ascorbate is the reason postulated to explain the exacerbated 

growth defect of T. brucei TbALO null mutants in ascorbate-Ifee media compared to 

normal media (Wilkinson et al, 2005). Serum is reported as having an ascorbate 

concentration of 40 pM but it is not stated what percentage of the final media is comprised 

by serum. Standard media is often 10% (v/v) serum, which would give a final 

concentration of 4 pM ascorbate, much lower than the reported Kms for known ascorbate 

and dehydroascorbate transporters (Rumsey et al, 1997; Daruwala et al, 1999; Rumsey et 

al, 2000). Although not described in detail here, searches of the L. major genome for 
possible transporters were conducted using enquiry sequences of known ascorbate 

transporters (as detailed in section 6.1.3). There were no significantly similar proteins to 

the sodium-dependant transporters SVCTl and SVCT2, or to the E. coli sgaT transporter. 

There was, however, a similar protein to the GLUT transporters, which was most like 

GLUTS. The GLUT transporters are only known to transport oxidised ascorbate 

(dehydroascorbate), and the method used by Wilkinson et al, to eliminate ascorbate fi-om 

the medium was to treat it with ascorbate oxidase, meaning that only dehydroascorbate 

would remain. Depleting the ascorbate in this way contributed to the growth defects of the 

TbALO knockout mutants, suggesting that they could accumulate ascorbate but not 

dehydroascorbate. Therefore, if trypanosomatids are able to uptake ascorbate from their 

surrounding environment, it is unlikely to be via GLUT-like transporters and may occur by 

a novel mechanism.

Ascorbate was added to a final concentration of 10 mM to L. major parasites that had just 

undergone the second transfection to knockout the LmGLO gene. This at first seemed to be 

beneficial as cultures that contained the added ascorbate grew better than those without. 

However there was no noticeable effect on growth when ascorbate was withdrawn from 

the cultures that had previously contained it, or added to the cultures that were previously 

without it. There was also no correlation between the presence of ascorbate in the media 

and successful LmGLO knockouts: all three clones were derived fi*om cultures that had 

contained ascorbate and of these only one, KOLmGLOB, proved to be a genuine LmGLO 

knockout.

The parent strain of KOLmGLOB exhibited several defects: promastigotes grew slowly in 
culture, did not reach high densities at the stationary phase of growth and were poorly 

infective to peritoneal macrophages. Moreover KOLmGLOB parasites were poorly
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infective to mice, taking several weeks longer than WT parasites to cause lesions of 4 mm 

to develop. The inability to synthesise ascorbate in these lines appears to adversely affect 

the parasites although further experimentation is required to address why the 

KOLmGLOAl clone also exhibits an in vivo infection defect. A more in-depth phenotypic 

analysis of the clones rather than the parent knockout lines, together with the creation and 

analysis of KOLmGLO parasites engineered to re-express LmGLO, will help clarify the 

role of GLO in L  major. It is also of interest that parasites over-expressing LmGLO appear 

to be more infective to both macrophages and mice than WT and control parasites. 

However, until a method can be developed to prove that the parasites do indeed over

express LmGLO, these results must be treated with caution.
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7 Discussion

This study aimed to identify and characterise a Leishmania protein capable of reducing 

pentavalent antimonial compounds to the toxic trivalent form, and to ascertain whether any 

protein identified was involved in antimonial susceptibility in vivo. L. major TDRl was 

found and investigated due to its similarity to oGST and like this mammalian protein, 

recombinant TDRl was capable of reducing pentavalent metalloids, including antimonial 

drugs, in vitro (Denton et al, 2004). To elucidate the role of TDRl in antimonial 

metabolism in vivo, L. major TDRl knockout and over-expressing lines were generated, 

infected into macrophages and treated with pentavalent antimonials, and the effects of the 

drugs on the parasites were assessed. Due to the different macrophage infection rates 

displayed by the different parasites lines it proved difficult to compare the effects of the 

pentavalent antimonials on the different parasites. However despite being inconclusive, the 

studies suggested that altering the level of TDRl in L. major had little or no effect on the 

parasites' sensitivity to pentavalent antimonial drugs.

If the TDRl does not have an impact upon the susceptibility of L. major to pentavalent 

antimonials in vivo it is interesting to postulate why that may be. Since it is already well 

established that toxicity is dependant on reduction of the drugs to the trivalent form, the 

most obvious explanation is that in vivo the protein does not reduce pentavalent 

antimonials and there could be several reasons for this. Firstly, as discussed in the 

introductory chapter to this investigation, the site of reduction remains controversial. If 

reduction occurs in the macrophage, which could be mediated enzymatically by one of the 

classes of mammalian arsenate reductases discussed or by an as yet unidentified protein, 

TDRl may only encounter the trivalent form of the drug. It has also been demonstrated 

that pentavalent antimonials are reduced upon reaction with small thiols such as 

glutathione and cysteine (Frezard et al, 2001; Ferreira Cdos et al, 2003); this could also 

occur in the macrophage. Indeed the acidic environment of the phagolysosome where the 

parasites reside promotes this reaction (Alexander and Russell, 1992). Reduction could 

also be mediated in the macrophage by a secreted Leishmania protein and indeed, it was 

shown as part of this investigation (chapter four) that TDRl is likely to be released. This 

could also be the case for the recently identified Leishmania ACR2 protein which reduces 

pentavalent antimonials (Zhou et al, 2004): although the published account of this protein 

describes it as comprising 130 amino acids it is possible that it contains a further 100 

amino acid N-terminal region which includes a signalling peptide that is predicted to direct 

the protein to the extracellular space, as outlined in chapter three. In this situation the
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macrophage or parasitophorous vacuole could act as a reservoir for the secreted parasite 

protein meaning that although a Leishmania protein would mediate the reaction, reduction 

and therefore toxicity would be dependant on the amastigote parasites being situated in 

macrophages. This could help explain some of the controversy surromiding the site of 

reduction, specifically the observation that axenic amastigotes are not susceptible to 

pentavalent antimonials (Sereno et al, 1998). However, conflicting reports that axenic 

amastigotes are indeed sensitive to these drugs (Ephros et al, 1999) imply that the 

presence of macrophages is not necessary for reduction to occur, and that therefore this 

happens within the parasites.

The second reason that would explain TDRl not reducing pentavalent antimonials in vivo 

is that the drugs may be reduced by a different route inside the parasite. Given that there is 

scant information on the localisation of antimonials within Leishmania, it may be that 

TDRl and the pentavalent drugs do not co-localise in vivo, therefore explaining why the 

protein is not able to reduce the compounds. This would be particularly likely if the 

pentavalent antimonials were sequestered inside a parasite organelle given the likely 

cytosolic distribution of TDRl described in chapter four. In this case, pentavalent 

antimonials must be reduced by an alternative mechanism. Again, this could be mediated 

by a protein other than TDRl -  such as LmACR2 -  or could occur non-enzymatically 

upon reaction with thiols. As well as pentavalent antimonials being reduced by the thiols 

mentioned, the trypanosomatid-specific thiol trypanothione is also capable of reducing 

antimonials non-enzymatically (Ferreira Cdos et al, 2003). Indeed, reduction rates were 

greater in the presence of trypanothione than glutathione, which may go some way to 

explain why pentavalent antimonials are more toxic to parasites than the host. However, 

the rates of reduction of antimonials achieved with thiols are a fraction of those achieved 

with TDRl in vitro (Denton et al, 2004) so non-enzymatic, thiol-based reduction alone is 

unlikely to account for why TDRl does not reduce the drugs in vivo. Therefore enzymatic 

reduction by another Leishmania protein or several proteins may be a more likely 

explanation. As well as LmACR2, other arsenate reductase-like sequences are present in 

the parasite that may be capable of reducing antimonials, the most alike being similar to 

GAPDH as explained in chapter three. However, the in vivo relevance of GAPDH in 

metalloid reduction remains unclear. Three new classes of proteins with arsenate reductase 

activity have been identified in the last five years and it is likely more will be elucidated. A 

candidate could be the glutaredoxins, of which there are predicted to be several of in L. 
major. Despite the low-level sequence similarity that the proteins share, oGSTs and 

glutaredoxins exhibit comparable activities in vitro including thioltransferase and 

dehydroascorbate reductase activities. It is therefore pertinent to consider that the
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glutaredoxins may display the pentavalent arsenical reducing ability of oGST: there are no 

published accounts of these activities being looked for in glutaredoxins. It would be 

interesting to look for this activity in the predicted L. major glutaredoxins that are 

described in chapter three.

As well as the possibility that TDRl does not reduce pentavalent antimonials in vivo, it is 

possible that the protein does indeed carry out this reaction but that the experiments 

described in this investigation failed to detect this. Although knockout and over-expressing 

lines are useful tools that have been used to analyse the roles of other Leishmania proteins, 

the approach may not have been successful here. If several proteins, including TDRl, are 

able to reduce the drugs in vivo then knocking out or over-expressing TDRl may not result 

in a big difference in the parasites’ ability to reduce the pentavalent compounds and 

therefore render any changes in susceptibility to the drugs undetectable. This effect would 

be particularly pronounced if the L. major parasites were able to up- or down-regulate the 

expression of these proteins in response to the altered level of TDRl. As discussed in 

chapter three, L. major parasites are thought to possess several glutaredoxins and 

thioredoxins and degeneracy between these proteins has been reported in yeast (Potamitou 

et al, 2002): it could be the case that degeneracy between these proteins and TDRl occurs 

in Leishmania given the common activities of the proteins in vitro. It would be interesting 

to test this hypothesis by comparing the levels of glutaredoxins and thioredoxins in 

Leishmania wild type with the lines with altered TDRl levels. This could be achieved by 
individually by western blotting if the specific anti-sera to these proteins were available, or 

by a more global proteomic approach.

There are other reasons why the approach used to elucidate the role of TDRl in antimonial 

reduction and sensitivity in vivo may have failed. One possibility could be that the 

peritoneal macrophages used in the experiments may have been unsuitable for assaying the 

effects of the drug, for example if there expression profile was altered due to their artificial 

growth conditions leaving them unable to accumulate the pentavalent antimonials. This 

would also explain the lack of sensitivity to the drugs displayed by all the parasite lines 

used in the study. A problem of this nature could be circumvented by infecting live animals 

with the parasite lines and testing the efficacy of the drugs in treating the L, major 

infections in a true in vivo setting. Another potential problem could be that L  major 

parasites that were used in this study: L, major causes cutaneous leishmaniasis whereas 

visceral leishmaniasis, commonly caused by L. donovani or L. infantum, is more likely to 

be treated with pentavalent antimonials. Indeed, several studies have shown that intrinsic 

differences in species sensitivity to these drugs is common and cutaneous leishmaniasis
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isolates are generally less susceptible to these drugs than those causing visceral disease 

(reviewed in Croft et al, 2006). Creating and analysing TDRl knockout and over- 

expressing forms of a different species of Leishmania, such as L. infantum, may be 

worthwhile.

Very little is known about the enzyme(s) that mediate the reduction of pentavalent 

metalloids in mammals. There are three classes of enzymes known to display this activity 

in vitro -  GAPDH, oGSTs and PNP -  and yet evidence of the involvement of any of these 

proteins in vivo remains elusive. Construction of a knockout mouse model of any of these 

proteins may facilitate this area of investigation and help clarify whether the protein does 

mediate reduction in vivo, although this may be impossible for GAPDH and PNP due to 
their ubiquity in cells. A greater understanding of mammalian reduction of metalloids is 

required before the impact, if any, of the host metabolism on the sensitivity of Leishmania 

to pentavalent antimonials can be assessed. It is important to identify the proteins that 

regulate the reduction of pentavalent metalloids in higher eukaryotes for reasons other than 

their potential involvement in leishmaniasis chemotherapy: Arsenical compounds continue 

to contaminate drinking water in many parts of the world and are considered to be a serious 

health risk. It is distressing to think that how the body metabolises and detoxifies these 

compounds and how they exert their toxicity is still unknown. With arsenical- and 

antimonial-based drugs being proposed for the treatment of cancer (Murgo, 2001; Wyllie 

and Fairlamb, 2006), it is even more imperative that a greater insight into their metabolism 

is reached. Elucidation of how pentavalent metalloids enter cells -  both mammalian and 

parasitic -  is also required.

The recent licensing of the oral antileishmanial drug miltefosine together vrith the 

impressive cure rates quoted in several clinical studies of the drug may have prompted 

speculation that the days of antimonials in leishmaniasis chemotherapy are numbered. 

However this is a controversial view. It was outlined in the introduction to this 
investigation that miltefosine, despite its obvious advantages of being orally administrated, 

has several potential shortcomings: resistance to the drug has been easily generated in 

Leishmania in the laboratory; it may not be effective in treating some South American 

Leishmania species; patients co-infected with HIV tend to relapse when treated with 

miltefosine; and the drug is teratogenic. Although resistance to pentavalent antimonials is 

now a problem in some parts of India, these drugs have been used for decades successfully. 

Although miltefosine is no doubt a welcome addition to the arsenal of antileishmanial 

drugs, it has not stood the test of time. This, coupled with the infrastructure needed to treat 
leishmaniasis sufferers with pentavalent antimonials aheady being in place, m e^s that
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antimonials are very much still required and that research into its reduction and activation 

are valid and important. This research may also aid the understanding of additional 

metalloid-based chemotherapies.

What the endogenous role is of TDRl in the parasite is an interesting point. Unlike its T. 

cruzi homologue Tc52, TDRl was knocked out of L. major with relative ease showing that 

is it is not an essential protein. This is an intriguing difference between the two proteins. 

The different predicted active sites between TDRl and Tc52 could be indicative of 

differing functions which may explain why Tc52 is essential while TDRl is not. Whatever 

the reason, the fact that L. major can survive well without the protein implies that, as 

discussed, degeneracy between proteins may be occurring. The in vitro activities of TDRl 

coupled with the observation that the TDRl knockout lines were more susceptible to 

paraquat stress suggest that the protein has a role in protecting the parasite ffom oxidative 

stress. Maintaining the correct redox environment is of utmost importance in the cell and 

this is particularly true of parasites that have to withstand high levels of reactive oxygen 

species (ROS) generated during the oxidative burst. It would therefore make sense that the 

parasites have evolved to possess several proteins that are capable of regulating levels of 

ROS, and that partial degeneracy exists between them.

One of the potential roles of TDRl in L  major is to maintain levels of ascorbate by 
reducing dehydroascorbate which occurs in vitro. This is controversial: it has been 

described how tiypanothione alone is thought to be sufficient for performing this function 

and that an enzyme is not required (Krauth-Siegel and Ludemann, 1996). However, this 

observed activity prompted us to look for enzymes that could have a role in ascorbate 

biosynthesis in L  major and the discovery of LmGLO which, as explained in chapter six, 

is likely to have such a role. The potential involvement of TDRl in reducing ascorbate 

remains unresolved although it would be interesting to analyse this. For example, in the 

TDRl knockout lines LmGLO could be up-regulated: if the ability to recycle ascorbate 

was lost or reduced, a solution could be to produce more ascorbate. The reciprocal is true: 

in the LmGLO line TDRl could be up-regulated to promote recycling of any available 

ascorbate. This hypothesis could be tested by western blotting. Furthermore, it would be of 

interest to attempt to generate a double mutant lacking both proteins: if the hypothesis was 

correct this mutant may not be viable. Certainly, what both thèse proteins do have in 

common is that directly or indirectly they are likely to impact upon the intracellular redox 

environment of the parasite.
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