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Abstract 

Stem cells have potential use in tissue engineering and regenerative medicine, 

and as they underlie the development and maintenance of tissues throughout 

life, how they function is also of interest. The extracellular matrix presents a 

variety of physical and chemical signals to stem cells to regulate their behaviour 

in vivo. Recapitulation of these signals in vitro could enable the control of 

explanted stem cells to facilitate their study. Biomaterials that display 

extracellular-matrix inspired cues are one way to do this. By combining surface 

chemistry and fibronectin, an extracellular matrix protein with cell binding and 

growth factor binding domains, the conformation of fibronectin was controlled 

to create artificial extracellular matrices. Adsorbed on a film of poly(ethyl 

acrylate), fibronectin adopted a network-like conformation which ostensibly 

increased the exposure of its functional domains, whereas on poly(methyl 

acrylate) it had an unconnected organisation with more concealed domains. The 

growth factors bone morphogenetic protein 2 and vascular endothelial growth 

factor, known to bind to fibronectin, were adsorbed to the network 

conformation. Prior studies have reported that these artificial extracellular 

matrices differentially affected cell behaviour. In this work, the growth and 

differentiation of human bone marrow stromal cell surface marker-1 positive 

mesenchymal stem cells was characterised on these substrates. It was shown 

that all combinations of fibronectin conformation and growth factors supported 

cell adhesion and growth. A high-content image processing and analysis pipeline 

was developed to take advantage of automated fluorescence microscopy to show 

that cytoskeletal, nuclei, and differentiation-associated protein features 

distinguished cells cultured on the artificial extracellular matrices. Those on the 

isolated conformation and the network conformation with vascular endothelial 

growth factor were particularly distinct. Further, metabolomics revealed several 

metabolic pathways that differed in activity between the fibronectin 

conformations. To analyse the metabolomics data a Quick Results web 

application was built, which extended the existing Polyomics integrated 

Metabolomics Pipeline. The application improves the visualisation and 

interpretation of untargeted liquid chromatography—mass spectrometry 

metabolomics data. This work gives insights into how these artificial 

extracellular matrices can control stem cell behaviour, and developed and 



demonstrated several tools to improve the understanding of these biomaterials 

and the use of metabolomics data.  
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1 General Introduction 

1.1 Stem Cells, Tissue Engineering, and Regenerative 
Medicine 

Stem cells are self-renewing cells that can differentiate to produce specialised 

cells throughout life as part of tissue development and maintenance (Odorico et 

al. 2001). Types of stem cell are classified by the stage of development in which 

they exist and the cells they produce. For example, during embryogenesis there 

are totipotent stem cells, which can produce any cell type, and pluripotent stem 

cells, which can produce any cell type of the developing embryo but not extra-

embryonic tissues (Bissels et al. 2013). Gradual reductions in lineage choice 

define postnatal or adult tissue-specific multipotent stem cells, such as 

haematopoietic stem cells (HSCs), which produce blood cells (Orkin 2000), and 

mesenchymal stem cells (MSCs), which produce skeletal tissues (Pittenger et al. 

1999). Further restrictions lead to unipotent stem cells that produce only one 

cell type, such as spermatogonial stem cells (Bissels et al. 2013). Fundamental 

stem cell biology is therefore a research focus. Further, because of these 

properties, stem cells are studied for their potential to create substitutes for or 

to repair tissues that have been lost or impaired by illness, ageing, or injury, 

known as the field of tissue engineering and regenerative medicine (TERM) 

(Bianco & Robey 2001; Fisher & Mauck 2013).  

1.2 Mesenchymal Stem Cells 

MSCs are of particular interest for TERM and basic biology because they form 

bone, fat, cartilage, and reticular tissues (Pittenger et al. 1999) (Figure 1.1), 

and are part of the haematopoiesis-supporting stroma of bone marrow (Sacchetti 

et al. 2007; Pinho et al. 2013). They are believed to predominantly reside at 

perivascular sites on bone marrow sinusoids, but have reportedly been observed 

at other sites around the body (Bianco 2014). Their isolation for culture is 

prospective and relies on selecting bone marrow cells that express certain 

markers. Several markers with overlapping expression profiles have been 

proposed as truly enriching for MSCs, such as cluster of differentiation 146 

(CD146) (Sacchetti et al. 2007), neuroectodermal stem cell marker (NESTIN) 

(Méndez-Ferrer et al. 2010; Isern et al. 2013), cluster of differentiation CD271 
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(Tormin et al. 2011), vascular cell adhesion molecule 1 (VCAM1) (Gronthos et al. 

2003), and stromal cell surface marker 1 (STRO-1) (Gronthos et al. 1999; 

Gronthos et al. 1994; Simmons & Torok-Storb 1991; Kulterer et al. 2007). The 

relative merits of each marker are not clear but they can be used to enrich for a 

cell population displaying stem cell phenotypes (Lv et al. 2014). After isolation 

from bone marrow they readily adhere to tissue culture plastic and proliferate in 

standard culture conditions (serum-containing media) (Williams et al. 2013). 

There is as yet no consensus on whether the proliferative and differentiation 

capacity of MSCs vary with age or donor (Zhou et al. 2008; Stenderup et al. 

2001; Surdo & Bauer 2012; Siddappa et al. 2007), but it is generally believed 

they cannot be cultured indefinitely in standard conditions and still remain 

multipotent (Javazon et al. 2004). 

 

Figure 1.1 MSCs can self-renew and differentiate into bone, fat, cartilage and other reticular 
cell types. 

1.2.1 MSC Osteogenesis 

Bone marrow MSCs have been used to produce bone in vitro and in vivo 

(Sacchetti et al. 2007; Lian & Stein 1992). The differentiation of MSCs into 

terminal osteoblasts that produce mineralized bone matrix can be followed by 

monitoring the ordered expression of various osteogenesis-related markers (Stein 

& Lian 1993). Runt-related transcription factor 2 (Runx2), also commonly known 

as core-binding factor alpha 1, is a transcriptional activator of osteogenic 

differentiation (Ducy 2000; Stein et al. 2004). The presence of the 

phosphorylated form of Runx2 in the nucleus is a hallmark of early osteogenesis 
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(Stein et al. 2004; Vimalraj et al. 2015; Komori 2010). During the initial stages of 

differentiation MSCs proliferate and form nodule-like features, at which point 

proliferation reduces (Stein & Lian 1993). Alkaline phosphatase (ALP) is an 

enzyme expressed at the cell surface and is used as a mid-to-late stage 

osteogenesis marker (Sharma et al. 2014; Pittenger et al. 1999; Štefková et al. 

2015; Stein & Lian 1993). It is required to initiate bone matrix mineralisation at 

these nodule-like features. (Wennberg et al. 2000; Bellows et al. 1991). The 

expression and secretion of osteopontin (OPN) and osteocalcin (OCN) into the 

extracellular environment is used as an indicator of terminal differentiation 

(Pittenger et al. 1999; Kulterer et al. 2007; Lian & Stein 1992; Stein & Lian 

1993). The whole process is believed to occur over 3-4 weeks (Stein & Lian 

1993). 

1.3 Control of Stem Cell Behaviour 

Stem cell behaviour can be guided by signals from the extracellular environment 

— the surrounding chemical and physical cues — that influence internal cellular 

state (Scadden 2006; Huang 2010) leading to changes in, for example, shape, 

proliferation, and differentiation (Burridge & Chrzanowska-Wodnicka 1996) 

(Figure 1.2). Different spatiotemporal combinations of cell state and 

extracellular signals lead to the variety of behaviours necessary to develop, 

sustain, and repair the body. This, together with the means to generate 

variations of a cell’s culture environment (provided by advances in engineering 

and molecular biology (Murphy et al. 2014)), suggests that for every in vivo stem 

cell function there is a corresponding combination of biomaterials, 

biomolecules, and cells for achieving that same behaviour in vitro. Indeed, the 

use of biomaterials to control stem cell fate is a focus of TERM and stem cell 

biology research (Discher et al. 2009; Lutolf et al. 2009). 
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Figure 1.2 Extracellular signals can regulate cell behaviour. Soluble signals (free star) or 
their bound counterparts (star bound to orange star receptor that is substrate bound) and 
innate extracellular ligands (orange flat ligand) can be sensed by cells. Adhesion or binding 
to these ligands (red circular receptor, purple flat receptor) modify downstream signalling 
cascades (arrows) to affect cell behaviour. Specific combinations of ligand-receptor 
pairings have different effects on cell behaviours. Substrate, blue and black. 

1.3.1 The Extracellular Matrix, Cell Adhesion, and Bidirectional 
Signalling 

The extracellular matrix (ECM) provides anchorage and signals to cells, which, in 

turn, can rearrange, breakdown, or synthesise new ECM (Humphrey et al. 2014; 

Geiger et al. 2009). It is mainly composed of water, proteins — predominantly 

fibrillar proteins like collagen and proteoglycans like fibronectin (FN) — and 

polysaccharides (Mouw et al. 2014). Cells sense, respond to, and manipulate 

their local ECM via adhesion molecules on their periphery (Geiger et al. 2009). 

Foremost of these are integrins, which are transmembrane proteins that allow 

bidirectional signalling between cells and the ECM. They bind extracellular 

ligands, and their intracellular tails are nucleation points for cytoskeletal and 

signalling protein attachment and organisation (Parsons et al. 2010; Hynes 2002). 

The best understood integrin-based signal transduction hubs are called focal 

adhesions, which form when cytoskeletal tension pulls the ECM-connected 

integrins into a cluster (Burridge et al. 1988; Geiger et al. 2009; Geiger et al. 

2001; Burridge & Chrzanowska-Wodnicka 1996). They are micron-sized, 

elongated, flat complexes found at the cell periphery (Geiger et al. 2001). The 

degree of focal adhesion formation and signal protein recruitment can be 

affected by the distribution of ligands in the ECM, namely the density and 
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average distance between them (Coyer et al. 2012; Cavalcanti-Adam et al. 2007; 

Cavalcanti-Adam et al. 2008). Cells can also control the activation of integrins 

(Hynes 2002). 

Integrins recognise specific ECM domains as one of 24 known heterodimers 

composed of an alpha (α) and beta (β) subunit (Barczyk et al. 2010). Ligands 

include the arginine-glycine-aspartic acid (RGD) tripeptide found on ECM 

proteoglycans like laminin and FN, and the leucine-aspartic acid-valine 

tripeptide also found in ECM proteoglycans and growth factor receptors like 

VCAM1 (Humphries et al. 2006). Ligand binding induces conformational changes 

in integrins, initiating the formation of adhesion complexes at the intracellular 

integrin domains (Hynes 2002). Many proteins are purported to be involved in 

these intracellular signalling complexes (Geiger et al. 2001). Some of these 

interact directly with the intracellular domains of integrins; others are platforms 

for the recruitment of signalling molecules; enzymes are also present, such as 

phosphatases and kinases; and yet others form the linkage between the complex 

and cytoskeleton (Wozniak et al. 2004). They can be roughly grouped into 

functional layers: from outside the cell to within are the extracellular and 

intracellular integrin domains, an integrin-associated signalling complex layer, a 

force transduction layer, an actin regulatory layer, and then the cytoskeleton 

itself (Kanchanawong et al. 2010). The complexity of focal adhesions was 

embodied in an analysis that assembled a consensus integrin adhesome complex 

from several focal adhesion proteomics datasets of mammalian cells cultured on 

FN, comprised of 41 proteins involved in 92 interactions (Horton et al. 2015).  

Vinculin is a central protein in focal adhesion formation and signalling, recruited 

to focal adhesion complexes after initial integrin binding events (Geiger et al. 

2001). It is a prominent adaptor protein, binding to both the actin cytoskeleton 

and signalling enzymes (Carisey & Ballestrem 2011). Its roles in 

mechanotransduction can be divided into the transmission of intracellular 

actomyosin-generated tension to the linked ECM (Parsons et al. 2010), and 

mechanically responding to ECM resistance to this tension to mediate 

intracellular signalling pathways (Atherton et al. 2016).  

Actin is the main structural cytoskeletal protein with roles in cell motility, 

shape, and signal transduction. It polymerises from a globular to fibrous 
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structure (F-actin) (Dominguez & Holmes 2011). Actin fibres transmit tension 

from and to the ECM via focal adhesions to sustain isometric tension between 

cell and ECM (Geiger et al. 2001). As well as for the assembly of focal adhesions, 

which regulates intracellular signalling cascades (Burridge & Chrzanowska-

Wodnicka 1996), tension is part of several cellular functions such as traction-

based motility using myosin-generated forces (Li et al. 2005), assembling ECM 

(Singh et al. 2010; Mouw et al. 2014), and regulating gene expression (Wang et 

al. 2009; Swift et al. 2013). Microtubules, for example β-tubulin, are another 

cytoskeletal protein associated with focal adhesions, contributing to their 

turnover and associated ECM remodelling (Stehbens & Wittmann 2012; Ng et al. 

2014). They also have a role in general cell metabolism, for example in 

controlling glucose transport and enzymes (Cassimeris et al. 2012). The integrity 

of microtubules and the actin cytoskeleton have been reported as necessary for 

MSC differentiation (Rodríguez et al. 2004; Yourek et al. 2007; Sonowal et al. 

2013) 

1.3.1.1 Fibronectin 

FN is a major ECM protein that is involved in ECM assembly, cell binding, and 

soluble signal sequestration, which is in part due to a variety of binding domains 

(Zollinger & M. L. Smith 2017). It is also found in a soluble form in plasma (To & 

Midwood 2011). FN has three types of repeating domains, named I-III, of which 

the 9th and 10th type III repeats contain the proline-histidine-serine-arginine-

asparagine (PHSRN) synergy and RGD peptides critical for FN matrix assembly. 

They are also cell-binding domains, so are referred to as the main integrin 

binding site (Singh et al. 2010). The 12-14th type III repeats bind several growth 

factors including bone morphogenetic protein 2 (BMP2) and vascular endothelial 

growth factor (VEGF) (Martino & Hubbell 2010). FN matrix deposition, known as 

FN fibrillogenesis, is the process whereby FN is secreted, dimerised, and 

assembled into insoluble fibres by cells (Singh et al. 2010). Cell-mediated 

tension of FN is believed to unfold FN domains, particularly the type III repeats, 

to expose cryptic binding sites necessary for matrix formation and binding 

activity (Smith et al. 2007; Baneyx et al. 2002). 
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1.3.2 Biomaterial Control of Stem Cell Fate 

Various substrate properties can be changed with the aim of controlling cultured 

cell behaviour. Adjusting the cell-substrate interface is a common approach to 

controlling stem cell fate (Lutolf et al. 2009; Murphy et al. 2014). 

Changing the elasticity of a substrate by varying the crosslinking in 

polyacrylamide gels was shown to influence MSC differentiation: a stiffer 

substrate (34 kPa) increased the expression of osteogenic markers compared to 

softer substrates (Engler et al. 2006). In addition, when the elasticity of 

subcellular-sized regions was varied, instead of the entire substrate, MSC 

osteogenesis was also greater on stiffer patterns and there was a higher 

expression of multipotency markers on the softer counterparts (Yang et al. 

2016). Altering substrate topography by printing different symmetries of 

nanoscale pit arrays into poly(methyl methacrylate) also influenced MSC fate; on 

a disordered topography MSCs differentiated to the osteoblastic lineage (Dalby 

et al. 2007), whereas a symmetric topography maintained MSCs (McMurray et al. 

2011). Cell-adhesive islands surrounded by a non-adhesive substrate can be used 

to control cell shape and spreading. Using this approach, it was shown that MSCs 

cultured on large or star-shaped islands underwent osteogenesis whereas those 

on small or flower-shaped islands underwent adipogenesis (McBeath et al. 2004; 

Kilian et al. 2010).  

The modification of substrates to affect MSC differentiation is not limited to 

physical changes; the display of different chemical groups can affect MSC 

behaviour as well. Substrates comprised of methyl-terminated chemicals were 

reported to maintain stem cell phenotype, whereas those made of amino- or 

silane-terminated molecules induced osteogenesis, and hydroxyl- and carboxyl-

groups promoted chondrogenesis (Curran et al. 2005; Curran et al. 2006). 

Further, creating an array of submicron dots of the methyl-terminated chemicals 

were reported to maintain MSC phenotype in comparison to those made from 

amino-terminated molecules (Curran et al. 2010). The effects of these tail 

groups may not result from direct interaction with MSCs but instead through a 

layer of adsorbed protein. Proteins from the culture medium can adsorb rapidly 

to a substrate before cell attachment, and substrate properties can affect 



8 
 
protein adhesion and conformation (Steiner et al. 2007; Baujard-Lamotte, et al. 

2008). 

Another approach to controlling cell behaviour is by presenting ECM-inspired 

ligands, such as protein domains or growth factors, in a cell culture system 

(Lutolf & Hubbell 2005; Hettiaratchi et al. 2016). These systems can use 

chemical and physical approaches to control ligand tethering and function, or 

allow passive adsorption to a culture substrate (Kinney & McDevitt 2013). Using 

proteins inspired by the bone marrow ECM, MSC osteogenic differentiation was 

reported to be greater on passively adsorbed vitronectin and collagen compared 

to FN or control plain tissue culture plastic (Salasznyk et al. 2004). Instead of 

whole proteins, only the domains of interest can be presented. MSCs cultured on 

substrates displaying the cell-binding RGD and PHSRN peptides of FN at a fixed 

distance were shown to have undergone an equal or greater degree of 

osteogenesis compared to a random arrangement of these domains or passively 

adsorbed FN itself (Fraioli et al. 2016).  

As well as using fibrillar or proteoglycan ECM proteins, growth factors that are 

known to influence MSC phenotype can be used; BMP2, believed to induce 

osteogenesis in MSCs (Carreira et al. 2014), directly coupled to silk fibroin 

polymers attached to a solid substrate induced greater osteogenesis in MSCs in 

comparison to that passively adsorbed onto the silk substrate (Karageorgiou et 

al. 2004). The use of ligands has also been coupled more directly with feature 

geometry. Compared to displaying BMP2-mimetic and RGD peptides randomly or 

as ordered alternating micron-sized rectangles, those patterned into squares or 

triangles appeared to induce cultured MSCs to undergo osteogenesis to a greater 

extent (Bilem et al. 2017a). Displaying the same BMP2-mimetic peptides alone in 

the square or triangle shapes was also reported to increase MSC osteogenesis 

over the rectangle or random presentations, and this phenomenon was not 

observed with shapes displaying solely RGD peptides (Bilem et al. 2017b). 

1.3.2.1 Fibronectin Based Biomaterials 

The work in this thesis focuses on the control of FN and growth factor 

presentation to control MSC behaviour. Various approaches have been used to 

alter the conformation of adsorbed FN to explore changes in domain 
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arrangement and availability and their influence on cell behaviour (Zollinger & 

Smith 2017). For example, FN appeared to have a more extended conformation 

on hydrophobic surfaces in comparison to hydrophilic surfaces (Klotzsch et al. 

2014). Further, by adsorbing FN on substrates displaying different chemical 

functional groups (hydroxyl, carboxyl, methyl/alkyl, amino), it was suggested 

that there was differential availability of cell-binding domains as determined by 

the degree of antibody binding to FN domains (Keselowsky et al. 2003), and that 

MSCs underwent osteogenesis on FN-coated amino-terminated substrates but not 

on others (Phillips et al. 2010).  

The presence of certain ECM molecules, such as heparin or its functional groups, 

which interact with FN in vivo (Zollinger & Smith 2017), were shown to change 

FN conformation in vitro to alter its growth factor binding activity (Mitsi et al. 

2006) and subsequent focal adhesion formation in adipose tissue-derived 

mesenchymal stem cells (Araújo et al. 2016). The spreading and migration of 

endothelial cells on FN fibres was altered by changing the strain applied to the 

fibres, presumably because the strain affected the unfolding of cryptic FN 

functional domains (Hubbard et al. 2016). FN conformational changes induced by 

adsorption to bacterial, tissue, or collagen-coated culture plastics, as indicated 

by exposure of cell-binding domains using antibodies that targeted specific FN 

domains, altered C2C12 muscle myoblast proliferation and differentiation 

(García et al. 1999). 

Several studies have suggested that there is cooperation between integrins and 

growth factor receptors in response to bound growth factors and protein ligands 

in the ECM — particularly to FN — referred to as synergistic signalling (Salmerón-

Sánchez & Dalby 2016; Kim et al. 2011; Dingal & Discher 2014). Studies of the 

presentation of growth factors on ECM proteins indicate that this collaboration 

enhances growth factor signalling beyond its effect as a soluble molecule. The 

presence of both the FN RGD cell binding domain and growth factor binding 

domains was reported to be necessary for mouse FN-null fibroblasts adhesion 

and survival on tissue culture plastic (Lin et al. 2011). By exposing cultured 

human bone marrow MSCs to a recombinant protein containing both the FN 

integrin binding site and growth factor binding region together with BMP2, MSC 

proliferation, migration, and expression of osteogenic markers in vitro were 
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enhanced in comparison to the recombinant protein alone; the same model was 

shown to improve repair of an in vivo bone defect (Martino et al. 2011). It was 

reported that VEGF bound to FN caused VEGF-receptor and α5β1 integrin 

heterodimer — which recognises the RGD peptide in the FN cell binding domain 

(Hynes 2002) — clustering and potentiated endothelial cell migration (Wijelath 

et al. 2002). A recombinant protein comprised of FN integrin and growth factor 

binding sites in conjunction with VEGF was shown to increase endothelial cell 

migration and proliferation relative to VEGF or the recombinant protein alone 

(Wijelath et al. 2006). Improved healing of in vivo bone and skin wound models 

was shown using bound growth factors compared to that free in solution (Martino 

et al. 2014; Martino et al. 2015).   

1.3.2.2 Poly(methyl acrylate) and poly(ethyl acrylate)-driven FN and Growth 
Factor-Based Biomaterials 

The systems used in this thesis to control FN and growth factor presentation are 

based on the use of two polymers, poly(methyl acrylate) and poly(ethyl acrylate) 

(PMA and PEA, respectively). These polymers differ in their constituents by the 

length of the alkyl chain that makes up the acrylate monomer: where methyl 

acrylate contains only a single carbon (a methyl group -CH3), ethyl acrylate has 

two (an ethyl group -CH2-CH3). When prepared as an approximately 1 µm thick 

film on a glass substructure (Vanterpool et al. 2014), they reportedly have 

similar wettability and surface roughness (a broad measure of topography or 

smoothness). The density of adsorbed FN from a solution of fixed concentration 

is also comparable (Salmerón-Sánchez et al. 2011; Guerra et al. 2010; 

Vanterpool et al. 2014; Mnatsakanyan et al. 2015). The elasticities of the films 

are considered similar (~1000-2000 kPa) with respect to a cell’s ability to 

distinguish between values greater than 40 kPa (Llopis-Hernández et al 2016; 

Rico et al. 2016; Engler et al. 2006; González-García et al. 2012; Guerra et al. 

2010). 

It has been reported that FN adopts an interconnected network-like 

conformation with nano- to micron-sized fibres when adsorbed onto PEA, 

whereas on PMA FN has an isolated conformation on a similar scale (Guerra et al. 

2010; Salmerón-Sánchez et al. 2011; González-García et al. 2012; Llopis-

Hernández et al. 2013; Vanterpool et al. 2014; Rico et al. 2016; Moulisová et al. 
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2017) (Figure 1.3). It is reported that the availability of the FN RGD binding site 

is similar between PEA and PMA, whereas the PHSRN peptide is more available 

on PEA (Vanterpool et al. 2014). Further, the growth factor binding site was 

suggested to be more available on PEA (Moulisová et al. 2017; Llopis-Hernández 

et al. 2016). These results are believed to indicate that FN has an extended 

conformation with FN-FN interactions on PEA, similar to the result of cell-

mediated FN fibrillogenesis, but not on PMA (Salmerón-Sánchez & Dalby 2016). 

BMP2 and VEGF bind to FN on PMA and PEA and their blank counterparts (Llopis-

Hernández et al. 2016; Moulisová et al. 2017). 

 

Figure 1.3 Assembling the artificial FN matrices. A solution of PEA (green) or PMA (pink) is 
used to produce a film of the polymer on a glass (white) substructure. The surfaces of the 
coated samples are then immersed in a solution of FN, which organises into either an 
interconnected network-like conformation (PEA) or a relatively isolated non-connected 
conformation (PMA). 

The behaviour of several cell types on these artificial ECMs have been studied, 

and some are relevant to TERM having focused on differentiation. Myogenic 

differentiation of C2C12 cells into myoblasts was reportedly greater on PEA with 

FN substrates compared to those cultured on PMA with FN (Salmerón-Sánchez et 

al. 2011; Mnatsakanyan et al. 2015). It was communicated that human bone 

marrow STRO-1+ MSCs underwent greater osteogenic differentiation by day 21 
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(21 d) of culture on PMA with FN than on PEA with FN, but at day 1 there was no 

difference in pRunx2 expression (González-García et al. 2012). Further, it was 

reported that osteogenic and adipogenic differentiation of mouse C3H10T1/2 

cells, an embryonic MSC cell line, was not different between the FN 

conformations, and that instead, PEA with FN maintains C3H10T1/2 

multipotency (Rico et al. 2016). Some experiments have also used growth factors 

in combination with the different FN conformations due to the reported 

differential availability of the growth factor binding domains. In vitro human 

MSC osteogenesis and in vivo repair via an implant in a mouse bone defect model 

were enhanced when using the PEA-based FN network and adsorbed BMP2 

compared to that without BMP2 (Llopis-Hernández et al. 2016). Using VEGF 

instead of BMP2, it was shown that the vasculogenic response of human umbilical 

vascular endothelial cells (HUVEC) was improved when presented using the FN 

network compared to the isolated conformation (Moulisová et al. 2017).  

Some focal adhesion-related proteins have been investigated as part of 

mechanistic studies on how these artificial ECMs influence cell behaviour. Using 

vinculin as a proxy for total focal adhesions, the size of focal adhesions formed 

after 3 h on the artificial ECM was reportedly different between FN 

conformations, with those on the isolated FN conformation (PMA) smaller than 

those formed on the FN network (PEA) in mouse MC3T3 and C3H10T1/2 cells, 

and human L929 fibroblasts, suggesting a difference in downstream signalling 

(Guerra et al. 2010; Rico et al. 2016; Vanterpool et al. 2014). However, focal 

adhesions after 3 d culture in human bone marrow STRO-1+ MSCs were reportedly 

not different in size (González-García et al. 2012). Further, the degree of focal 

adhesion kinase activation, an integrin-associated enzyme involved in regulating 

focal adhesion formation (Geiger et al. 2009), after 3 h appeared to be greater 

in cells cultured on PEA with FN than PMA with FN in C2C12 myoblasts and 

C3H10T1/2 cells (Rico et al. 2016; Mnatsakanyan et al. 2015). Signalling 

pathways downstream of VEGF signalling are reportedly more active when 

HUVECs are presented with VEGF bound to the FN network conformation 

compared to soluble VEGF or VEGF adsorbed onto the isolated FN conformation 

(Moulisová et al. 2017). 
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Figure 1.4 is an illustration of the model of how the artificial ECMs create a 

synergistic effect between growth factor receptors and integrins with substrate-

bound FN and growth factors. In summary, the network conformation of FN on 

PEA is believed to result in greater exposure of the growth factor binding and 

cell binding domains of FN, in comparison to the isolated conformation on PMA. 

The increased growth factor binding domain exposure means that growth factors 

bind to the network conformation more so than to the isolated counterpart. 

Together, this means cellular growth factor receptors and integrins are engaged 

together on PEA to a larger extent than on PMA, resulting in differential effects 

on cultured cell phenotype. 

 

Figure 1.4 Model of synergistic binding on material-driven FN matrices. FN is believed to 
adopt an extended network-like conformation when adsorbed onto a film of PEA, which 
exposes integrin and growth factor binding sites otherwise hidden when in an isolated, 
globular conformation, as reported when adsorbed onto PMA. The exposure of the growth 
factor binding domains on PEA means growth factors (GF) can bind, and together with the 
also exposed cell binding sites, means both cellular integrins (orange and red alpha and 
beta sticks) and growth factor receptors (blue cup) adhere. Synergistic binding is lower on 
PMA because of the less expanded FN conformation. 

1.4 Bioinformatics Data and Software 

The field of bioinformatics can be defined as the amalgamation of biology, 

computer science, and mathematics (Bayat 2002; Hagen 2000). Technological 

advancements and their application to biological research have led to the 

production of large, complex datasets from biological experiments, the analyses 

of which require this combination of fields. This is perhaps most notably 

embodied by "omics" experiments, namely genomics, transcriptomics, 

proteomics, and metabolomics, that aim to analyse the whole complement of 
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genes, transcripts, proteins, and metabolites in a biological sample, respectively 

(Horgan & Kenny 2011). By studying these molecular classes at such scale, it is 

anticipated that a more holistic understanding of biology will be gained, in 

contrast to small-scale experiments that perhaps measure only a handful of 

molecules at a time. This way of measurement also means that targets do not 

need to be picked for study in advance. 

These approaches are not without limitations, however. Raw data direct from 

the recording instruments are usually in an abstract form from which the 

biological context is unclear and which therefore must be pre-processed before 

useful information can be extracted. Selecting and using appropriate pre-

processing steps usually requires the assistance of a bioinformatician or 

statistician (Horgan & Kenny 2011). These large-scale datasets are normally too 

large and the pre-processing too complex to be analysed using conventional 

graphical applications (for example, Microsoft Excel). The use of software 

programming languages is much more suitable as they are flexible, expressive, 

permit explicitly recorded analyses for reproducibility, and scale with dataset 

size. There are domain-specific programming languages like R or MATLAB that 

are built specifically for numeric data handling tasks, or general-purpose 

languages like Python that have specialist libraries for the same purpose. 

Indeed, toolkits and workflows that cover the range of pre-processing and 

analysis steps exist for each omics type, such as BioPython for handling 

sequencing data using Python (Cock et al. 2009) or XCMS for metabolomics data 

(Smith et al. 2006).  

However, the ability to process a bioinformatics dataset from raw data to 

biological inference using appropriate tools does not necessarily offset its 

complexity. Ideally, an end user would be provided with a list of interesting 

molecules summarised from a bioinformatics experiment without needing to 

know any further details, but ultimately certain ones do need to be preserved. 

These are related to what the instrument actually records and how it is related 

back to molecular biology. Genomics and transcriptomics are based around the 

measurement of fragments of genes or transcripts, but the biological inference 

from the experiment is in the form of changes in whole genes or transcripts 

(Goodwin et al. 2016). Metabolomics and proteomics is the measurement of 
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fragments or derivatives of molecules with specific properties, but the biological 

inference is of changes in whole metabolites or proteins (Patti et al. 2012; 

Mallick & Kuster 2010). It is important to acknowledge the underlying structure 

of the data and pre-processing steps when using it to make biological inferences 

(Figure 1.5). This argument can be generalised to any data source, but it is 

particularly important for omics technologies because of the current state of 

bioinformatics software and the division between bioinformatics and end users 

of biological data. 

 

Figure 1.5 General pipeline for an omics experiment. A sample is prepared or extracted in a 
form suitable for measurement, which is then done using an instrument. The subsequent 
raw data is pre-processed to transform it into data that represents the biology of the 
sample, which then needs to be analysed and visualised for inferences to be made. When a 
list of biological data and analyses are interpreted it should be in the context of these 
previous stages. 

There is no shortage of established and new bioinformatics software aimed at 

users without practical knowledge of software development, programming, or 

statistics to enable biological researchers to benefit from bioinformatics without 

needing significant training (Spicer et al. 2017; Goecks et al. 2010). Such 

software needs to balance the desired endpoint with respect to the researcher 

(a list of changing molecules, for example) and providing important other details 

about how the data was produced. This is a trade-off between complexity, 

because bioinformatics data is inherently complicated and some aspects of this 

complexity needs to be preserved while remaining clear and intuitive; and 

usability, because hard-to-use software is unlikely to be helpful or used in 

practice. Getting this balance wrong may mean the software does not support 

the user in performing bioinformatics analyses. Further, the software needs to 

be easy to maintain and expand by the developers (Carpenter et al. 2012).  
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1.4.1 Improving the Usability and Interpretation of Metabolomics 

Data with the Polyomics integrated Metabolomics Pipeline 

1.4.1.1 Metabolomics 

Metabolites are important in determining cell phenotype because they form a 

cell’s biochemistry (Patti et al. 2012), the connection between genes and 

phenotype (Fiehn 2002). By measuring the metabolome, the complement of 

small molecules transformed during metabolism, there is potential for direct 

insight into cell status. The comprehensive measurement of the metabolome, 

metabolomics, has been used in the study of stem cells including MSCs 

(McNamara et al. 2012; McNamara et al. 2011; Surrati et al. 2016; Tsimbouri et 

al. 2014; Alakpa et al. 2016), neural stem and progenitor cells (Knobloch et al. 

2013), HSCs (Oburoglu et al. 2014), and induced pluripotent and embryonic stem 

cells (Panopoulos et al. 2012). Untargeted metabolomics to measure as many 

metabolite classes as possible, in contrast to targeted metabolomics that focuses 

on specific metabolites (Zamboni et al. 2015), was used to compare the 

metabolomes of MSCs cultured on the artificial ECMs. In particular, liquid 

chromatography—mass spectrometry (LC-MS) was used to acquire the 

metabolomics data. 

Figure 1.6 (a) outlines the acquisition of LC-MS metabolomics data. A sample 

(Figure 1.6 (a) sample stage), which is a solvent-based extract of metabolites, is 

passed through a chromatography column that separates metabolites based on 

their interaction with its solid phase. The time taken for a given metabolite to 

elute from the column is called retention time (RT) (Figure 1.6 (a) LC stage). 

The separated sample then gradually elutes into the mass spectrometer, which 

ionises and measures the relative abundance (or intensity) of the metabolites at 

each RT over a range of masses (Figure 1.6 (a) MS stage). The total ion current 

(TIC) chromatogram shows the sum of measured intensities over time (Figure 1.6 

(a) TIC stage). At each RT, a range of masses is detected. These are processed 

into peaks — a mass (m/z) and RT pair — which represent metabolites (Smith et 

al. 2006; Scheltema et al. 2011). The peaks at a specific RT for two hypothetical 

samples are shown in Figure 1.6 (b). The abundance of metabolites between 

experimental conditions forms the data of interest (Figure 1.6 (b)). Annotating a 

peak with its cognate metabolite then allows biological inference in the context 
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of known biochemicals and their pathways. Some peaks can be confidently 

annotated by matching to authentic chemical standards measured alongside 

experimental samples — known as “identified” peaks — but for peaks that do not 

have corresponding standards, tentative metabolite identification is performed 

by matching against a pre-existing database (Sumner et al. 2007; Dunn et al. 

2013; Aretz & Meierhofer 2016).  

Database searching can produce ambiguous results: a metabolite can annotate 

multiple peaks at the same mass, which can be especially challenging if they 

have conflicting abundances (Figure 1.6 (c)). Further, a single peak can resolve 

to multiple metabolites that have the same mass (Figure 1.6 (d)). Using a list of 

metabolites without considering this so-called “peak misannotation” is a pitfall 

of untargeted LC-MS metabolomics (Lu et al. 2017). Adding to the complexity is 

that, with respect to metabolic pathway analysis, a metabolite can belong to 

multiple pathways. It is crucial for LC-MS metabolomics data interpretation that 

a user understands the potential complexity that underlies the detected 

pathways and metabolites. 

 

Figure 1.6 The acquisition and pre-processing of LC-MS metabolomics data. (a) A solvent 
extract (sample) is loaded into a liquid chromatography (LC) column and elutes into a mass 
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spectrometer (MS), which measures the mass (mass to charge ratio, m/z) of metabolites in 
the sample. Overall the result can be visualised as a TIC, the sum of intensities of detected 
metabolites at each RT. (b) Peaks, which are mass and RT pairs that represent a metabolite, 
are detected by pre-processing this raw signal. For example, peaks are detected at a 
specific RT (orange line on the TIC in (a)), shown in two example samples as orange and 
blue spectra, and the abundances of one of these in each spectrum (black vertical arrow) is 
compared in the bar chart. Peaks are assigned to metabolites by searching a database, 
leading to some ambiguity in matches such as multiple peaks annotated by one metabolite 
(c) or multiple metabolites matching to one peak (d). 

1.4.1.2 Polyomics integrated Metabolomics Pipeline 

The Polyomics integrated Metabolomics Pipeline (PiMP) is a freely available, 

open-source metabolomics pipeline which aims to be an easy-to-use 

metabolomics data analysis application (Gloaguen et al. 2017). It is developed by 

Glasgow Polyomics (University of Glasgow, UK), who also provide services for 

metabolomics data acquisition (among other omics technologies). PiMP fulfils an 

unmet need in metabolomics data processing as an integrated pipeline to take 

metabolomics data from its raw form to biological context, and it does this in 

such a way that enables biological researchers to do their own analysis. To use 

PiMP, a user enters details about the experimental design, provides the raw 

metabolomics data, optionally sets some pre-processing parameters, and PiMP 

returns the peaks, metabolites, and pathways found in the dataset and statistics 

on their comparisons between experimental groups.  

PiMP is built as a web application so that it may be used by anyone with access 

to a modern web browser, and so works using a client-server architecture. This 

means no installation is required. The server code is built using the Django web 

framework, a Python library, which uses the common model-view-template 

(related to model-view-controller) design pattern for structuring and accessing 

(model), manipulating (view), and presenting (template) data. An R pipeline is 

controlled by Django to pre-process and analyse the data. The web page itself 

was built using modern web standards: HTML, CSS, JavaScript.  

Each of the sets of peaks, metabolites, and pathways are shown in separate tabs 

in PiMP (Figure 1.7). There is some informational overlap between these tabs so 

that the relationships of the metabolomics data can be followed. For example, 

the metabolites are shown in a sidebar when a peak is selected in the peak 

comparison tab (Figure 1.7 (a)), and the pathways associated with a metabolite 

are shown in the metabolites tab (Figure 1.7 (b)). However, following the 
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relationships can be cumbersome because of the need to navigate these tabs. In 

the instance displayed in Figure 1.7 (b), after discovering 1,3-diaminopropane, it 

is not clear which, if any, other metabolites are associated with the same peaks 

that represent 1,3-diaminopropane. Further, a sidebar is not an efficient way of 

displaying the associated peaks, or for that matter, any of the relationships 

underlying the data. Selecting a pathway in the pathways tab does not provide a 

list of associated metabolites found in the dataset, and for large pathways like 

the ABC transporters map, an alternative to using the sidebar to present this 

information is needed anyway. Nevertheless, because of the way PiMP was 

architected it can be readily modified with new functionality to improve these 

issues. 

 

Figure 1.7 PiMP uses a tabbed-interface to display the peaks, metabolites, and pathways in 
a metabolomics dataset. (a) The comparisons tab shows a table of relative changes of 
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peaks by experimental group. Selecting one (in the example, peak ID 432) shows the related 
metabolites in a sidebar (for peak 432, there is one compound, n-stearoyl valine). (b) In the 
metabolites tab, a table of metabolites and their relative changes is shown. Selecting a 
metabolite (here, 1,3-Diaminopropane) shows its related pathways and peaks in a sidebar. 
(c) The pathway tab displays a list of pathways that contained metabolites found in the 
dataset. The ABC transporters pathway is selected in this example to show its coverage and 
a link to a pathway database. However, it does not show which metabolites are in each 
pathway. 

1.4.2 Fluorescence Microscopy and High-Content Automated 
Image Analysis 

1.4.2.1 Fluorescence Microscopy 

Biological fluorescence microscopy refers to the imaging of organic samples 

stained with antibodies that are conjugated to fluorescent compounds, known as 

fluorophores, or dyes with inherent fluorescence activity, that recognise and 

bind to a molecule of interest. Fluorescence is the emission of light of a specific 

range of wavelengths (emitted light) from a fluorescent compound after it has 

absorbed a particular colour of light (excitation light), and a fluorescence 

microscope serves as a way to target the excitation light at a stained sample, 

and where to capture emitted light from, at high magnification (Figure 1.8). The 

wavelength regions corresponding to a particular colour of fluorescence are 

referred to as channels, and fluorescence microscopes are equipped with a 

mechanism for selecting which channel to image. Multiple fluorophores that 

target different molecules and have distinct emission and excitation profiles can 

be used to image multiple components at once.  

 

Figure 1.8 Fluorescent staining to visualise molecules of interest. A cell expressing a 
molecule of interest, either intracellularly or extracellularly, is stained with an antibody 
conjugated to a fluorophore or fluorescent dye that binds to that molecule. A microscope is 
used to focus light of a specific excitation wavelength onto the stained target molecule, 
which is absorbed by the fluorescent compound, and which then emits light at a specific 
wavelength that is captured by the microscope to form an image. A sample can be stained 
with multiple fluorophores against different target molecules. 
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Several of the aforementioned studies used fluorescence image processing to 

examine the influence of the FN conformations on cell morphometry and 

intracellular protein expression. L929 fibroblasts and C2C12 myoblasts cultured 

for 3 h on PEA with FN had a larger area than those on PMA with FN (Vanterpool 

et al. 2014; Mnatsakanyan et al. 2015). Further, C2C12 cells were reported to be 

more circular on PMA with FN than on PEA with FN (Mnatsakanyan et al. 2015). 

However, while the area of C3HT101/2 cells was not reportedly different across 

the FN conformations, they were more circular on PMA with FN (Rico et al. 

2016). HUVECs were shown to have a larger area on PEA with FN with adsorbed 

VEGF in comparison with PEA with FN alone, but the presence of VEGF on PMA 

with FN appeared to make no difference (Moulisová et al. 2017). Image 

processing was also used to draw the aforementioned conclusions about focal 

adhesion size.  

1.4.2.2 Automated Microscopy 

These image analyses tended to be of small numbers (n < 200) of cells from 

manually recorded fluorescence images, which is typical for fluorescence 

microscopy analyses. Fluorescence microscopy can also be performed in an 

automated manner with additional hardware, known as automated fluorescence 

microscopy. The bulk of fluorescence imaging in this thesis used an automated 

microscope system comprised of a motorised sample platform and channel 

selector (a light filter) with a fluorescence microscope, which was controlled 

using a computer and software package. The software controlling the set-up can 

be instructed to take many images (tiles) over a defined area in a number of 

fluorescence channels, that can then be stitched together to form a large 

multichannel mosaic image (Figure 1.9). This was used to capture images of 

multiple entire samples at the same time, meaning that every single cell stained 

by the fluorescent markers could be analysed. 
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Figure 1.9 Unautomated and automated microscopy. Using unautomated microscopy (a) 
requires manual selection of regions (blue squares) to image, and is done for each sample 
(green circles) in turn, whereas automated microscopy (b) means whole samples and 
defined regions (blue grids) can be imaged together automatically.  

1.4.2.3 High-Content Image Analysis 

If the target molecule in a fluorescence image can be used to identify individual 

cells then they can be computationally segmented from the image into distinct 

regions. This allows each cell on a substrate to be measured to understand the 

variation of such a molecule on a single cell level. Further, while other 

molecules of interest might not entirely delimit a cell, they can be imaged in a 

channel separate to the one used for segmentation to allow for its measurement 

as well (Figure 1.10).  

 

Figure 1.10 Cell segmentation. If an imaged fluorescently-labelled molecule delimits a cell 
body it could be used to computationally segment the cell from the rest of the image for 
analysis. For example, the actin cytoskeleton can be used (a). Another molecule labelled 
with a different fluorophore that may not demarcate a cell, but lies within its bounds, can be 
measured within the segmented region, for example vinculin (b). Red, actin; green, vinculin; 
blue, example segmentation of cell.  
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Various measurements about the molecules of interest can be determined by 

quantifying a fluorescence image. The segmented raw pixels, represented as 

intensity values, can be summed to produce an estimate of the total amount of 

marker. The intensity values can also be converted into various forms for further 

processing to calculate features related to their boundary and internal qualities 

(Gonzalez et al. 2009; Gonzalez & Woods 2010a). High-content image analysis is 

the name given to this process, the extraction of information from images using 

computational approaches to reveal patterns that may have remained otherwise 

unnoticed (Shamir et al. 2010; Sommer & Gerlich 2013). Internal qualities of a 

segmented region are properties like texture, which is the relationship between 

intensity and position. Textural features of biological molecules as calculated 

from fluorescence molecules are a common way of comparing them between 

experimental conditions (Caicedo et al. 2017). Using a toy greyscale image as an 

example (Figure 1.11 (a)), different textural statistics can be calculated from 

the histogram of its pixel intensities (Figure 1.11 (b)) or grey-level co-

localisation matrix (GLCM) (Figure 1.11 (b)). Whereas a pixel intensity histogram 

ignores the spatial relationship between pixels, a GLCM represents a 

combination of which pixel intensities are adjacent to others (Haralick et al. 

1973). In addition to these pixel-based features, geometric measurements of the 

segmented region, known as morphometrics, can be calculated, such as area or 

perimeter length.  

 

Figure 1.11 High-content image analysis. (a) Example greyscale image. Each pixel in an 
image is represented as a number that is proportional to the intensity of fluorescence 
recorded at that location. The calculation of various features relating to the intensity and 
relative locations of the pixels using computational tools can be referred to as high-content 
image analysis. For example, statistics about the histogram of pixel intensities (b) or 
statistics about the GLCM, which summarises the mapping between pixel intensities and 
locations in an image (c). The example here shows counts of pixel intensities directly to the 
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right of a given pixel for image (a). For example, there is one pixel with intensity 1 to the 
right of a pixel with intensity 0 (1st row, 2nd column), and there are no other pixels adjacent 
to a pixel with intensity 0 (1st row); there are two pixels with intensity 1 that are to the right 
of a pixel with intensity 7 (8th row, 2nd column). 

Because of the large number of measurements that can be made about each cell 

in an image, and the large number of cells that can be imaged, the process 

becomes data-intensive and relies on the same fields that underlie the 

processing of omics datasets. For this reason, this domain is sometimes referred 

to as bioimage informatics (Peng 2008). 

Since target molecules for fluorescent staining are not limited to those that 

demarcate cell-surface boundaries, intracellular organelles like nuclei can also 

be segmented with a sufficient marker. Together with a multichannel image of 

different markers that delineate the borders between various organelles, this 

means that multiple features of several cellular and subcellular biomolecules 

can be determined from a single image. The combination of automated 

fluorescence microscopy and high-content image analysis therefore enables the 

broad measurement and comparison of larger numbers of subcellular and cellular 

aspects and samples for less effort than manual fluorescence microscopy (Ljosa 

& Carpenter 2009). High-content analysis can be applied to small numbers of 

manually selected images as well, but conclusions are more robust when drawn 

from the large numbers of cells gained from automated microscopy.  

1.4.2.4 High-Content Automated Fluorescence Microscopy Analysis of 
Biomaterials Control of MSCs 

Several studies have used high-content automated fluorescence image analysis 

to profile stem cell behaviour on various biomaterials. The ALP expression of 

MSCs cultured on a variety of topographical features made of different 

geometric shapes was imaged to determine the most osteogenic combination, 

and various cell morphometric features were measured to determine which were 

associated with the highest ALP expression (Unadkat et al. 2011). Further, 

descriptors based on the actin cytoskeleton were used to establish what 

morphometric features were associated with topographically enhanced 

osteogenesis (Hulshof et al. 2017). Using cell shape and nuclei or actin 

cytoskeleton texture features, surfaces with different roughness or topography 

were compared for their capacity to induce osteogenesis in MSCs (Unadkat et al. 
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2013; Vega et al. 2015). The effect of a substrate with a hydrophobicity gradient 

on MSC differentiation in adipogenic media was measured using high-content 

image analysis, which revealed that MSC position on the gradient could be 

determined from nuclear protein descriptors that were correlated with degree 

of differentiation (Vega et al. 2012). High-content imaging of multipotency-

associated proteins has also been used to select combinations of polymers that 

can maintain MSC multipotency from a number of candidates (Duffy et al. 2014). 

More generally, cytoskeletal and nuclear protein features derived from 

fluorescence images can be used to predict differentiated phenotypes at an 

early time point (Liu et al. 2010; Treiser et al. 2010; Marklein et al. 2016; Vega 

et al. 2012; Vega et al. 2015). 

1.5 Project Aims 

The aim of this project was to further the aforementioned works on using the 

artificial ECMs to control MSC behaviour. In particular, the study of human bone 

marrow STRO-1+ MSCs on the FN conformations (González-García et al. 2012) will 

be expanded to include those with additional growth factors BMP2 (Llopis-

Hernández et al. 2016) and VEGF (Moulisová et al. 2017). This was to take 

advantage of the potential synergistic effect of co-presenting growth factors and 

biomaterial-induced FN domain exposure to regulate cell behaviour (Salmerón-

Sánchez & Dalby 2016). In doing so, several techniques (high-content image 

processing and metabolomics), which have not been used before to study these 

substrates and cells, produced sizeable and complex datasets. To analyse these, 

bespoke and general software for visualisation and analysis was therefore 

developed. In all, several pieces of software were built in order to extend the 

analysis of STRO-1+ MSC behaviour on the artificial ECMs, or to generally improve 

the state of analysis of the associated data. 

The objectives of this project were: 

1. Characterise the growth and osteogenic differentiation of human bone 

marrow STRO-1+ MSCs on the artificial ECMs with BMP2 or VEGF. 

2. Develop and use a high-content image processing pipeline to analyse 

automated microscopy images of MSCs cultured on the artificial ECMs in 
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order to study substrate-induced differences in cell morphology, and 

cytoskeleton and nucleus features.  

3. Make improvements to PiMP by developing a metabolomics data 

visualisation and analysis tool and compare the metabolomes of MSCs 

cultured on the artificial ECMs. 
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2 Surface and Cell Culture Characterisation 

2.1 Introduction 

The introduction described artificial ECMs made of FN and growth factors, and 

studies of MSC osteogenesis cultured with them, including commercially-sourced 

human bone marrow MSCs (Llopis-Hernández et al. 2016), primary human bone 

marrow STRO-1+ MSCs (González-García et al. 2012), and mouse C3H10T1 MSCs 

(Rico et al. 2016). Primary human bone marrow STRO-1+ MSCs (referred to as 

MSCs hereon) have not been characterised on the artificial ECMs with growth 

factors. This chapter extends the previous work by presenting experiments of 

MSCs cultured on the full range of artificial ECMs: PMA or PEA with FN (PMA + 

FN, PEA + FN), and PEA with FN and BMP2 or VEGF (PEA + FN + BMP2, PEA + FN + 

VEGF). Using STRO-1+ MSCs instead of commercially-sourced cells is preferable as 

they are provided at passage zero, thus having undergone minimal and 

transparent preparation (Williams et al. 2013). Further, the STRO-1+ fraction of 

human bone marrow is believed to be an enriched source of MSCs (Gronthos et 

al. 2003; Gronthos et al. 1994).  

In this chapter, the binding and organisation of FN and growth factors to the 

artificial ECMs were explored using customary and new approaches, for example 

infrared (IR) spectroscopy. Based on these data, the substrates were reliably 

reproduced. MSCs were cultured on the artificial ECMs with the aim of 

characterising their survival and differentiation, tested by measuring the 

expression of relevant proteins and their global biochemical profile. MSCs 

adhered and spread quickly, forming actin and tubulin cytoskeletons and focal 

adhesions. OPN expression was greater on the network conformation of FN in 

comparison to its isolated counterpart, and IR analysis indicated changes in lipid, 

protein, and nucleic acids between the two conformations. No discernible 

differences were observed when adding BMP2 or VEGF. Finally, different culture 

conditions were tested to improve differentiation. Serum-free adhesion 

conditions used in prior studies (Rico et al. 2016; Llopis-Hernández et al. 2016; 

González-García et al. 2012) caused notable cell death and therefore were 

unsuitable for use with these MSCs. 
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The aims of this chapter were to: (1) compare the production of the artificial 

ECMs with previous data to ensure reproducibility and extend their 

characterisation using IR spectroscopy; (2) characterise MSC behaviour across the 

different artificial ECMs; (3) optimise culture conditions to affect MSC 

differentiation. 

2.2 Materials and Methods 

2.2.1 Tables of Reagents 

Table 2.1 Fabrication Materials 
Item Source 

Toluene Alfa Aesar 
PMA UPV, Spain 
PEA UPV, Spain 
Ethanol VWR Chemicals 
12 mm diameter glass coverslips VWR 
13 mm diameter Raman-grade calcium 
fluoride CaF2 windows 

Crystran 

Human plasma fibronectin Sigma-Aldrich or R&D Systems 
Recombinant human BMP2 R&D Systems 
Recombinant human VEGF-165 (VEGF) R&D Systems 
Phosphate buffered saline (PBS) Sigma-Aldrich 
 
Table 2.2 Cell Culture Reagents 

Item Source 
PBS Sigma-Aldrich 
Foetal bovine serum (FBS) Sigma-Aldrich 
4-(2-hydroxyethyl)-1-piperazine-
ethanesulphonic acid (HEPES) 

Fisher Scientific 

Dulbecco’s Modified Eagle’s medium 
(DMEM) 

Sigma-Aldrich 

Trypsin Sigma-Aldrich 
Versene In-house 
Phenol red 0.5 % Sigma-Aldrich 
Penicillin-streptomycin Sigma-Aldrich 
MEM non-essential amino acids Sigma-Aldrich 
Sodium pyruvate Life Technologies 
L-glutamine 200 mM Invitrogen 
Glucose Fisher Scientific 
Medium 199 Sigma-Aldrich 
Ethylenediaminetetraacetic acid 
(EDTA) 

Sigma-Aldrich 

Ascorbate-2-phosphate Sigma-Aldrich 
Dexamethasone Sigma-Aldrich 
Insulin Sigma-Aldrich 
Isobutylmethylxanthine Sigma-Aldrich 
 



29 
 
Table 2.3 Immunocytochemistry, histochemistry, and fluorescence labelling reagents 

Item (and dilution if appropriate) Source 
Anti-β-tubulin (1:100) Sigma-Aldrich 
Anti-OCN (1:100) Santa Cruz Biotechnology 
Anti-VCAM1 (1:100) Santa Cruz Biotechnology 
Anti-STRO-1 (1:100) Santa Cruz Biotechnology 
Anti-ALP (1:100) Santa Cruz Biotechnology 
Anti-FN (1:100) Sigma-Aldrich 
Anti-glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) (1:100) 

Sigma-Aldrich 

Anti-OPN (1:100)  Santa Cruz Biotechnology 
Anti-vinculin (1:100) Sigma-Aldrich 
Rhodamine phalloidin (1:500) Invitrogen 
Fluorescein streptavidin (1:50) Vector Laboratories 
Biotinylated immunoglobulin G (IgG) 
(1:50) 

Vector Laboratories 

IRdye 680 (1:800) Li-Cor 
IRdye 800 (1:800) Li-Cor 
Vectashield mountant with 4',6-
diamidino-2-phenylindole (DAPI) 

Vector Laboratories 

Bovine serum albumin (BSA) Sigma-Aldrich 
Tween 20 Sigma-Aldrich 
PBS Sigma-Aldrich 
Triton-X100 Sigma-Aldrich 
MgCl2 hexahydrate VWR Chemicals 
NaCl VWR Chemicals 
Sucrose Fisher Scientific 
Formaldehyde (37-41%) Fisher Scientific 
Li-Cor blocking buffer Li-Cor 
CellTag 700 (1:500) Li-Cor 
Methanol VWR Chemicals 
LIVE/DEAD Viability/Cytotoxicity Kit Invitrogen 
Oil red O Sigma-Aldrich 
Isopropanol Sigma-Aldrich 
 
2.2.2 Recipes 

Versene 
Water 1000 mL 
NaCl 8 g 
KCl 0.4 g 
Glucose 1 g 
HEPES 2.38 g 
EDTA 0.2 g 
0.5 % Phenol red 2 mL 
Adjusted to pH 7.5 
  
2.5 % trypsin solution 
Trypsin 0.5 mL 
Versene 20 mL 
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Basal media (cell lines) 
DMEM 400 mL 
FBS 50 mL 
Medium 199 100 mL 
Penicillin-streptomycin 10 mL 

L-glutamine 200 mM 5 mL 

Sodium pyruvate 5 mL 

  

Basal media (MSC) 
DMEM 500 mL 
FBS 0 (0 mL), 2 (10 mL), 5 (25 mL), or 10 

(50 mL) % 
Penicillin-streptomycin 10 mL 

MEM non-essential amino acids 5 mL 

Sodium pyruvate 5 mL 

  

Osteogenic differentiation media 
Basal media 500 mL 

Ascorbate-2-phosphate 350 µM 

Dexamethasone 0.1 µM 

  

Adipogenic differentiation media 

Basal media 500 mL 

Insulin 1.7 nM 

Indomethacin 200 µM 

Isobutylmethylxanthine 500 µM 

Dexamethasone 1 µM 

  

Fixation solution 

PBS 90 mL 

Formaldehyde (37-41 %) 10 mL 

Sucrose 2 g 

  

Permeabilisation buffer 
PBS 100 mL 

Sucrose 10.3 g 

NaCl 0.292 g 

MgCl2 hexahydrate 0.06 g 

HEPES 0.476 g 

Adjusted to pH 7.2 

Triton X 0.5 mL 
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0.5 % Tween 20 solution (wash buffer) 
PBS 100 mL 

Tween 20 0.5 mL 

  

Blocking solution for immunofluorescence microscopy 

PBS 100 mL 

BSA 1 g 

  

Oil red O staining stock solution  

Oil red O 150 µL 

Isopropanol 5 mL 

  

Oil red O staining solution  

Oil red O staining stock solution 3 mL 

Deionised water 2 mL 

Syringe filtered  

 
2.3 Cells 

2.3.1 Mesenchymal Stem Cells 

MSCs were provided by Bone and Joint Research Group, Institute of 

Developmental Sciences, University of Southampton, UK. MSCs were isolated by 

STRO-1 (in-house antibody) magnetic cell separation from bone marrow of 

haematologically-normal consenting anonymised patients undergoing 

orthopaedic surgery at Southampton General Hospital, and were transported as 

growing cells under chilled conditions. They were then maintained at 37 °C in 

stem cell basal media (BM) with 10 % FBS, which was changed twice weekly. 

Cells were split 1:3 before confluence was reached. No MSCs beyond passage 5 

were used. 

For dissociation, cells were rinsed in 37 °C HEPES before incubation at 37 °C in 

2.5 % trypsin solution for 5-10 mins with regular agitation. Trypsin was 

inactivated with excess BM and cells were pelleted by centrifugation at 1400 

RPM for 5 mins. After discarding supernatant, the cell pellet was re-suspended 

immediately in the appropriate medium for seeding. 
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MSCs used in the IR study of differentiation in chemical induction media were 

cultured by Dr Lesley-Anne Turner, University of Glasgow. 

2.3.2 Saos-2 Cells 

Saos-2 cells were cultured by incubation at 37 °C in BM, which was changed 

twice weekly. Cells were split 1:10 before confluence was reached. Dissociation 

was by the same method as MSCs. 

2.3.3 Fabrication of Artificial ECMs 

Bulk PEA with 1 % benzoin or PMA with 0.35 % benzoin was provided by the 

Universitat Politecnica de Valencia (UPV), Spain, or produced in-house (Mark 

Sprott, Division of Biomedical Engineering, University of Glasgow, UK). 2.5 % or 4 

% PEA and 6 % PMA w/v solution was made by dissolving the corresponding 

amount of bulk polymer in toluene. 100 µL of polymer solution was spun coat at 

3000 RPM at 3000 RPM s-1 for 30 s onto 12 mm diameter ethanol-cleaned circular 

glass coverslips or 13 mm diameter circular CaF2 windows. Samples were then 

dried at 60 °C in a vacuum for 2 h and stored at RTP. Then, samples were 

immersed in 200 µL of a 20 µg/mL human plasma FN in PBS for 1 h at room 

temperature. Growth factors were then adsorbed in the same way using 25 or 50 

ng mL-1 VEGF-165 (VEGF) or BMP2; 25 ng mL-1 was used for experiments up to 

optimisation, and 50 ng mL-1 used thereafter, unless noted. 

2.3.4 Atomic Force Microscopy 

FN conformation images were produced using atomic force microscopy (AFM) 

(JPK Nanowizard 3; Zeiss Axio Observer A1; Accurion Halcyonics_i4 balance 

table) in tapping mode on dry FN-coated samples (section 2.3.3) washed several 

times in deionised water. A pyramidal-tip probe (MPP-21220, Bruker) was used. 

Force spectroscopy was performed on submerged samples after immersion in 

deionised water overnight at room temperature, using 5 µm silica beads glued to 

tip-less cantilevers (Nanosensors TL-FM-10). AFM done with assistance from Eleni 

Grigoriou, Annie Cheng, Marco Cantini, and Virginia Llopis-Hernandez (Division of 
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Biomedical Engineering, University of Glasgow). A Kruskal-Wallis test was used to 

compare conditions. 

2.3.5 Culture on Artificial ECMs 

Following protein adsorption but prior to cell seeding, samples were stored in 

PBS. Cells were seeded at specific densities in various culture media and 

cultured for up to 21 d. Except where mentioned, cells were seeded at 1x103 

cells cm-2. Cells were seeded in serum-free BM for 2 h before culture in serum-

containing media where noted. 

2.3.6 Fluorescence Microscopy 

Samples were washed with warm PBS then immersed in 37 °C fixing solution for 

15 min, 4 °C permeabilisation solution for 5 min, and 37 °C blocking buffer for 5 

min. Cells were incubated in primary antibody diluted in blocking buffer and 

optionally rhodamine phalloidin, then washed in wash buffer before repeating 

the process with secondary (biotinylated IgG) and tertiary (fluorescein 

streptavidin) stains without phalloidin. Samples were mounted in VECTASHIELD 

mounting medium with 4',6-diamidino-2-phenylindole (DAPI) on a microscope 

slide. Prepared samples were stored at 4 °C. Mosaic images were taken using an 

Olympus BX51 coupled to a Prior L200/D automated stage, controlled using 

Surveyor software and an OASIS controller (Objective Imaging). Vinculin images 

were taken using a Zeiss Axiophot. Exposure, gain, and offset are constant for all 

images of an experiment. Contrast was adjusted for display purposes and images 

were cropped using Fiji (Schindelin et al. 2012).  

2.3.7 In-Cell Western 

In-Cell Western (ICW) is a high-throughput dual-channel near-infrared 

fluorescence assay (Aguilar et al. 2010). A representative ICW image of samples 

in a well plate is shown in Figure 2.1. The red 700 nm channel (Figure 2.1 (a) 

top) is fluorescence from CellTag, a whole-cell stain, or a dye binding to an anti-

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) antibody, and the green 

800 nm (Figure 2.1 (a) bottom) represents expression of the protein of interest. 
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Negative controls are samples without the normalisation stain or antibody 

against the protein of interest (Figure 2.1 (b)). A ratio of the green-to-red 

fluorescence is calculated to measure protein expression normalised to total cell 

volume or control protein expression. Single channel fluorescence can be 

reported as well. Compared to whole-sample immunofluorescence microscopy, 

ICW is higher throughput but has a lower resolution. 

 

Figure 2.1 ICW example of samples in a 24 well plate (a) Example of ICW scanned image in 
700 (top) and 800 (bottom) nm channels. Each well is a separate sample, allowing for high-
throughput multiple comparisons. (b) Negative control showing low red (top) and green 
(bottom) background. 

Samples were prepared and stained according to section 2.3.6 using Li-Cor ICW 

blocking buffer, CellTag, and secondary antibodies. ICW analyses of serum-free 

and low-serum conditions used GAPDH as the normalisation factor; all other ICW 

assays used CellTag. For cell-based ICW assays with more than one donor, a 

mixed effects linear model which controlled for the within-donor variation was 

used (using the formula syntax in R: protein expression ~ artificial ECM + (1 | 

donor)) (Krzywinski et al. 2014; Aarts et al. 2014). All others were analysed using 

a permutation analysis of variance (ANOVA) with pairwise comparisons. Holm p-

value adjustment was used for multiple hypothesis test correction. A Kruskal-

Wallis test followed by pairwise comparisons using Dunn’s-test was used to 

analyse the FN and BMP2 ICW assays. 
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2.3.8 Cell Viability Assays 

Samples were stained using the LIVE/DEAD Cell Viability/Cytotoxicity kit as per 

the manufacturer’s instructions. Briefly, live samples were washed and 

incubated in calcein AM/ethidium homodimer staining solution under culture 

conditions for 30 min, and then washed, immersed in PBS, and immediately 

imaged using a Zeiss Axiovert 200m. 

2.3.9 Infrared Spectroscopy 

Fourier transform infrared spectroscopy using synchrotron radiation (SR-FTIR) is 

a label-free approach to chemically profile a substance. Different biological 

molecules with an electric dipole moment have distinct infrared signatures 

(Baker et al. 2014), so by comparing the absorbance of infrared wavelengths 

between samples inferences about substrate or cell biochemistry can be made.  

SR-FTIR was performed at Diamond Light Source (Oxford, UK), using a Bruker 

Hyperion 3000 microscope with a Bruker Vertex 80 V Fourier Transform IR 

Interferometer, a 36 x IR objective, and mercury cadmium telluride detector, 

recording 256 co-scans at 4 cm-1 resolution. Measurement coordinates were 

chosen using 20x magnification brightfield microscopy. Data was pre-processed 

by removing CO2 absorbance, correcting for negative absorbance (an artefact of 

SR-FTIR), correcting for scatter using RMieS-EMSC (Bassan et al. 2010) (only for 

cell spectra), removing wavenumbers outside the range 3700-1000 cm-1, and 

vector normalising (Trevisan et al. 2012; Baker et al. 2014). Assignments of 

wavenumbers to chemical groups was based on matches to the literature on 

biochemical spectra (Movasaghi et al. 2008) and so were considered tentative. 

SR-FTIR was performed with the assistance of Dr Lesley-Anne Turner (Centre for 

Cell Engineering, University of Glasgow, UK); Dr Matthew Baker and Dr Holly 

Butler (University of Strathclyde, UK); and Dr Chris Kelley, Dr Katia Wehbe, Dr 

Ann Fitzpatrick, and Dr Gianfelice Cinque (B22, Diamond Light Source, Oxford, 

UK). 
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2.3.10 Statistical Analysis Tools 

FTIR data pre-processing was performed using a pipeline built using MATLAB. All 

statistical analyses were performed using R with the following packages: ggplot2 

(Wickham 2016), dplyr, plyr (Wickham 2011), reshape2, PMCMR, lmTest, lme4 

(Bates et al. 2015), MASS, XLConnect, tidyr, JADE, lmperm, lsmeans, and 

ggsignif. 

2.3.11 Oil Red O staining 

Samples were washed with warm PBS and then immersed in 37 °C fixing solution 

for 15 min. Samples were quickly immersed in 60 % isopropanol, which was 

immediately removed, and then allowed to air dry. Oil red O solution was added 

to cover samples for 15 min at room temperature. The staining solution was then 

removed and samples were washed with water until clean before imaging using a 

Zeiss Axiovert 25 and a QImaging Micropublisher 3.3 RTV colour camera.  

2.4 Results 

2.4.1 Characterisation of the Artificial ECMs 

AFM was used to show the distribution of FN adsorbed to PMA and PEA on glass 

and calcium fluoride (CaF2). Glass is the usual substructure for assembling the 

artificial ECMs, and CaF2, needed for IR analysis, was novel. Figure 2.2 shows the 

results on glass, and Figure 2.3 on CaF2. On both substructures, FN had an 

isolated arrangement on PMA, whereas on PEA it formed a network. These 

results matched previous data (Llopis-Hernández et al. 2013; Rico et al. 2016; 

Guerra et al. 2010; Salmerón-Sánchez et al. 2011; Vanterpool et al. 2014; 

González-García et al. 2012; Llopis-Hernández et al. 2016; Moulisová et al. 2017) 

to demonstrate reproducibility, and also showed that the artificial ECMs can be 

made on CaF2. 
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Figure 2.2 AFM images of glass-based FN matrices. Note the isolated conformation on PMA 
and the connected network-like conformation on PEA. 

 

 
Figure 2.3 AFM images of CaF2-based FN matrices. Polymer-only substrates (PMA, PEA) are 
shown for comparison. Note the isolated conformation on PMA and the connected network-
like conformation on PEA. 

Substrate elasticity can regulate MSC differentiation (Engler et al. 2006). The 

elastic modulus of each surface was calculated using force spectroscopy, which 

was not significantly different between PMA and PEA (Figure 2.4 (a)). The 

amount of FN adsorbed to the polymers did not differ, as indicated by ICW assay 

using a polyclonal antibody (Figure 2.4 (b)), suggesting the primary difference in 

adsorbed FN between PMA and PEA was its conformation. BMP2 binding to FN-

coated surfaces was also examined by ICW (Figure 2.4 (c)); more BMP2 was 

observed on PMA with FN than the other two conditions. Note that BMP2 binds 

directly to the polymer film (Llopis-Hernández et al. 2016) and this assay did not 

specifically measure the FN-bound fraction that may have changed with FN 

conformation on PEA or PMA. 
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Figure 2.4 Characterising the artificial ECMs: (a) Force spectroscopy of spun-coat PMA and 
PEA (n = 6); (b) ICW quantification of FN adsorption (n = 3); and (c) ICW quantification of 50 
ng mL-1 BMP2 binding to FN adsorbed to glass, PMA, and PEA (n = 5 (glass) or 6); 
conditions without BMP2 were negative controls for anti-BMP2 antibody binding (n = 2). G = 
glass. Compared by Kruskal-Wallis rank sum test followed by a pairwise test for multiple 
comparisons of mean rank sums (Dunn’s-test). * = p < 0.05; ** = p < 0.01. 

SR-FTIR was used to compare the chemistry of the blank polymers, elucidate any 

differences in FN conformation across the polymers, and study the addition of 

BMP2 to the network conformation (VEGF was not measured due to sample size 

limitations) (Baujard-Lamotte et al. 2008; Barth 2007; Steiner et al. 2007). 

Establishing the chemical signature of the cell-free substrates was also 

important as a background measurement for later cell IR analysis (section 2.4.5). 

Figure 2.5 shows the absorbance of the artificial ECMs. The polymers were 

distinguished by a number of regions: 3000-2900 cm-1 (stretching of methyl [CH3] 

and methylene [CH2] groups); 1500-1300 cm-1 (various CH, CH2, and CH3 

deformations); 1300-1000 cm-1 (vibrations unique to the whole molecule). There 

is a common strong absorbance at 1800-1700 cm-1 (C=O). Tentative assignments 

of wavenumbers to functional groups was by comparison to a biological FTIR 

database (Movasaghi et al. 2008). The PEA and PMA spectra were also similar to 

NIST reference FTIR spectra for ethyl and methyl acrylate monomers (NIST Mass 

Spec Data Center 2017). Of note was the variation of absorbance within samples 

at these distinguishing bands, which may be due to uneven polymer distribution. 

Adsorbed FN was not detected on either polymer; no features corresponding to 

biological spectra (beyond the underlying polymer fingerprint) were observed 

(Baker et al. 2014). Similarly, BMP2 was not detected, suggesting that the 

amount of FN and BMP2 was too low for comparison by SR-FTIR, at least relative 

to the polymer IR signature. 
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Figure 2.5 SR-FTIR absorbance of cell-free artificial ECMs. Mean (black line) ± standard 
deviation (grey shadow) of multiple spectra (n > 30) taken on one sample of each type. 
Green regions indicate notable wavenumbers. 

2.4.2 Characterising Cell Culture on the Artificial ECMs 

2.4.2.1 Saos-2 Cells on Surfaces 

Saos-2 cells (Saos, hereafter) are used as a model for osteogenesis (Schröder et 

al. 2005; McQuillan et al. 1995; Lian & Stein 1992; Pautke et al. 2004; Stein & 

Lian 1993), and they proliferate as an adherent monolayer in the same 

conditions as MSCs (with a slight difference in the BM recipe) (McQuillan et al. 

1995), and have been used in biomaterial studies (Okumura et al. 2001; Liu et 

al. 2009). These attributes made them ideal for testing cell adhesion, growth, 

and osteogenesis on the artificial ECMs prior to using less readily-available MSCs.  

After 21 d, immunofluorescent mosaic images of Saos stained for actin, nuclei, 

and OCN, a marker for osteogenesis (Pittenger et al. 1999; Kulterer et al. 2007; 

Lian & Stein 1992; Stein & Lian 1993), were taken. In general, Saos formed a 

confluent monolayer with some regions of lower density, demonstrated by a 

representative image in Figure 2.6. The variation was likely due to a 
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combination of cell seeding, behaviour, proliferation and sample immersion 

throughout culture — samples would occasionally float and partially surface from 

their culture media. The actin cytoskeletons were clearly formed, and OCN was 

expressed across all surfaces (Figure 2.7). These results show that the artificial 

ECMs reproduced for this work maintain cells for 21 d and support osteogenic 

differentiation of osteogenic cells.  

 
Figure 2.6 Representative image of Saos cultured for 21 d, stained for actin, nuclei, and 
OCN. Highlighted regions demonstrate the range of cell density. Whole sample (top) scale 
bar 1 mm. Lower images scale bar 100 µm. Red, F-actin; blue, nuclei; green, OCN. 

 
Figure 2.7 OCN, DAPI, and actin in Saos over all conditions after 21 d. All artificial ECMs 
supported Saos adhesion, growth, and osteogenic marker expression for 21 d. G = glass, 
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PMA/PEA = PMA/PEA + FN, BMP2/VEGF = PMA/PEA + FN + BMP2/VEGF. Scale bar 100 µm. 
Red, F-actin; blue, nuclei; green, OCN. n = 2. 

2.4.2.2 MSC Characterisation 

Before evaluating MSC behaviour on the artificial ECMs they were characterised 

and tested for their ability to differentiate — a criteria for validating MSCs 

(Dominici et al. 2006). They readily adhered to glass and adopted a typical flat, 

spread, and stellate morphology (Figure 2.8) (Baksh et al. 2004), dividing and 

spreading over 21 d (Figure 2.10 top left). Within 24 h MSCs had developed clear 

actin cytoskeletons with various morphologies as indicated by 

immunofluorescence microscopy (Figure 2.9).  

 
Figure 2.8 Phase contrast microscopy of MSCs cultured on glass over time in BM. MSCs 
readily adhered, spread and grew on glass when cultured in BM. Scale bar 100 µm. 

 

Figure 2.9 Representative image of MSCs cultured for 24h in BM, stained for actin and 
nuclei. The actin cytoskeletons of MSCs formed within 24 h of adhesion highlighted a 
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variety of morphologies. White dashed circle highlights the edge of the sample. Whole 
sample (top) scale bar 1 mm. Lower images scale bar 100 µm. Red, F-actin; blue, nuclei. 

The multipotency of these MSCs was tested by culturing in adipogenic (AM) or 

osteogenic (OM) induction media; MSCs are expected to have lineage-specific 

features following 21 d culture under these conditions (Pittenger et al. 1999; 

Lian & Stein 1992; Kulterer et al. 2007; Dominici et al. 2006; Stein & Lian 1993). 

After 21 d, MSCs cultured in BM formed a dense and flat monolayer (Figure 2.10 

top left), whereas in OM they additionally formed several nodule-like features 

(Figure 2.10 top centre). These nodules stained positively for OCN (Figure 2.10 

bottom left, bottom centre). Lipid droplets had accumulated in several cells 

cultured in AM indicating that adipogenesis had occurred (Pittenger et al. 1999). 

These differentiation events — lipid accumulation and nodule-like formations — 

were infrequent as many cells retained a similar morphology as those cultured in 

BM, similar to other reports of STRO-1+ cells (Gronthos et al. 1994; Simmons & 

Torok-Storb 1991; Pittenger et al. 1999). 

 
Figure 2.10 MSC differentiation after 21 d culture on glass in BM, AM, or OM. In BM, MSCs 
proliferated and spread (top left), whereas in OM (top right) they also formed nodule-like 
features, as indicated by phase contrast microscopy. High density of MSCs in BM (bottom 
left) and OM (bottom centre) was also indicated by fluorescent microscopy of actin (red) and 
nuclei (blue), and MSCs in the nodule-like features in OM also expressed OCN (green). 
Regions of MSCs cultured in AM (top right, bottom right) stained positively for indicated 
lipid droplets (oil red O). 10x objective scale bar 100 µm. 40x objective scale bar 50 µm. n = 
2. 
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SR-FTIR was used to compare the biochemical profiles of differentiating MSCs 

(Figure 2.11). While the average spectra were indistinguishable, the variance did 

discriminate conditions: lipid-associated wavenumbers (3000-2800 cm-1) 

identified MSCs cultured in AM, and the fingerprint region (< 1450 cm-1) (Baker et 

al. 2014) was different for each culture. For later studies of MSCs cultured across 

the artificial ECMs, these biochemical profiles would have been a useful baseline 

for comparison but the differences between differentiation conditions were not 

obvious enough. Altogether, these data are coincident with and indicate that 

these were typical MSCs (Baksh et al. 2004; Dominici et al. 2006). 

 

Figure 2.11 SR-FTIR absorbance of MSCs at time-point 0 (tp0) or cultured in differentiation 
media for 21 days. MSCs cultured in AM (adipogenic) had variable absorbance in the lipid 
region. Variation in the fingerprint region also distinguished differentiation conditions, 
which indicated different phenotypes. Biologically relevant absorbance regions are 
highlighted by the blue labelled boxes. Mean (black line) ± standard deviation (grey shadow) 
of multiple spectra (n = 2 biological replicates, n = 1036 spectra in total). 
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2.4.3 MSC Culture on the Artificial ECMs 

In the previous section the MSCs were characterised. In this section, their 

adhesion, growth, and differentiation across the artificial ECMs are compared. 

The effect of varying culture conditions is also studied. 

After 24 h culture on the artificial matrices the actin cytoskeletons of MSCs were 

imaged (Figure 2.12). Across all surface combinations, including control glass 

and glass with FN, actin cytoskeletons formed, and cells spread to adopt a 

polygonal morphology. 

 
Figure 2.12 MSCs cultured for 24 h in BM on the artificial ECMs, stained for actin and nuclei. 
A range of morphologies can be seen. The MSCs were spread and had clear actin 
cytoskeletons. Scale bar 100 µm. Red, F-Actin; blue, nuclei. n = 2. 
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β-Tubulin is a cytoskeletal protein with diverse roles including organelle 

localisation, cell division, and metabolism (Cassimeris et al. 2012; Dutcher 2001; 

Oakley 2000). After 3 d culture, cells remained spread and networks of β-tubulin 

were evident across all surface combinations (Figure 2.13).  

 
Figure 2.13 MSCs cultured for 3 d on the artificial ECMs, imaged for actin, nuclei, and β-
tubulin. Microtubule and actin cytoskeletons were formed at 3 d culture on all artificial 
ECMs. Scale bar 100 µm. Red, F-actin; blue, nuclei; green, β-tubulin. n = 2. 

Adhesions of MSCs to the surfaces were compared using vinculin staining. 

Vinculin is a focal adhesion protein that is central to recruiting various cell 

signalling components (Carisey & Ballestrem 2011; Geiger et al. 2001). As 

demarcated by vinculin, focal adhesions were found in cells on all surfaces 

(Figure 2.14). 
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Figure 2.14 Vinculin distribution in MSCs cultured for 3 d on artificial ECMs. Focal adhesion 
formation occurs in MSCs adhered to all the artificial ECMs. White arrows indicate example 
focal adhesions, regions of bright vinculin staining at the terminals of actin fibres. Scale bar 
100 µm. Red, F-actin; blue, nuclei; green, vinculin. n = 2. 

At these early time points — 24 h and 3 d, early relative to the duration of 

culture for differentiation (21 d) — there is little cell-to-cell contact. After 21 d, 

cells had proliferated resulting in cell-to-cell contact with some regions of 

indistinguishable cell boundaries, as visualised by immunofluorescence 

microscopy of their actin cytoskeletons (Figure 2.15). There was a range of cell 

densities, and punctate OCN staining was observed on all matrices. Although a 

dense region of OCN expression was observed in MSCs cultured on PMA with FN, 

its pattern was not similar to the nodule-like formations observed in OM (Figure 

2.10). Note also that this only occurred on a small region on one of two samples. 
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Figure 2.15 OCN expression in MSCs cultured for 21 d in BM on the artificial ECMs. MSCs 
have low amounts or negative OCN expression after 21 d culture on the artificial ECMs. Note 
there were no obvious nodule-like features similar to that associated with late-stage 
osteogenesis. PMA inset: region of relatively greater OCN expression and cell density. PEA 
inset: region with higher cell density. Red, F-actin; blue, nuclei. Scale bar 100 µm. n = 2. 

Given that MSCs on the artificial ECMs did not produce significant bone matrix 

(Figure 2.15), and yet they have the capacity to do so (Figure 2.10), their ability 

to undergo osteogenesis on the surfaces in OM was tested. MSCs were cultured 

for 21 d in OM on the artificial ECMs and their OCN expression visualised with 
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immunofluorescence microscopy. MSCs on control glass and glass with FN 

displayed nodule-like features that stained with OCN, but this did not occur on 

the artificial ECMs (Figure 2.16). Note again that punctate OCN expression was 

observed on the artificial ECMs. 

 
Figure 2.16 OCN staining of MSCs cultured on the artificial matrices in OM. MSCs on glass 
and glass with FN displayed nodule-like features that stained positively for OCN, indicating 
osteogenesis had occurred. Low or no expression of OCN occurred on the polymer-based 
artificial ECMs. Scale bar 100 µm. Red, F-actin; blue, nuclei; green, osteocalcin. n = 2. 

To further evaluate differentiation, the expression of osteogenic — OCN and 

OPN, another osteogenic marker — and stemness — VCAM1 (Stewart et al. 1999; 

Gronthos et al. 2003) and NESTIN (Pinho et al. 2013; Méndez-Ferrer et al. 2010; 

Isern et al. 2013; Ding et al. 2012) — proteins were quantified by ICW after 21 d 

in culture on the artificial matrices. This was repeated for 3 different donors 

(Figure 2.17). Note that this experiment was missing the G with FN substrate 

because it was started before it was considered as a useful control. Both OPN 

and NESTIN had different expression in at least some of the comparisons (Figure 

2.18). NESTIN expression was estimated to be higher on glass in comparison to 



49 
 
the other surfaces. PMA with FN had a lower expression of OPN than PEA with FN 

and glass. No differences were estimated with respect to OCN and VCAM1 

expression. These results provided some evidence that MSCs were differentiating 

to an osteoblastic lineage on PEA with FN, and perhaps to other lineages on the 

other matrices as judged by the decrease in NESTIN compared to the control 

glass matrix. However, while the role of NESTIN and VCAM1 in MSC stemness is 

unclear (Chan et al. 2015), both OCN and OPN are expected to increase during 

osteogenesis (Kulterer et al. 2007; Lian & Stein 1992) and yet only OPN is shown 

to  be differentially expressed.  

 

Figure 2.17 ICW analysis of osteogenic (OCN, OPN) and stemness (VCAM1, NESTIN) marker 
expression normalised to total cell volume by MSCs after 21 d culture on artificial ECMs. 
Note relatively large intra- and inter- donor variation. n = 3 biological replicates (donors) 
distinguished by colour; n = 3 or 4 repeats per donor. AU, arbitrary units. 
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Figure 2.18 Comparison of the difference between protein expression in MSCs on the 
artificial ECMs (mean ± 95 % confidence interval) from Figure 2.17. MSCs cultured on PMA 
had a lower expression of OPN than on PEA. MSCs on glass had a higher expression of 
NESTIN compared to the other artificial ECMs. Estimates are calculated from a mixed effects 
linear model that controlled for within-donor variation. Red, p < 0.05. 

2.4.4 Optimising Culture Conditions to Improve Differentiation 

It is posited that FN from serum contained in culture media masks the FN 

conformations of the artificial ECMs to interfere with the interaction between 

cells and the underlying FN pattern (González-García et al. 2012; Rico et al. 

2016), so previous experiments using osteogenic cells or MSCs did not provide 

serum for initial — 2 or 3 h — adhesion (Llopis-Hernández et al. 2016; González-

García et al. 2012; Rico et al. 2016). Culture following the serum-free adhesion 

phase included varying amounts of serum, and differences in osteogenesis and 

cell adhesion between the different artificial ECMs were observed, including 

increased OCN expression on PEA with FN and BMP2 compared to PEA and PMA 

(Llopis-Hernández et al. 2016), increased OCN and OPN expression on PEA with 

FN compared to PMA (González-García et al. 2012), and increased FAK activation 

on PEA compared to PMA (Rico et al. 2016). This serum-free regime may enhance 

the effects of the artificial ECMs to bolster and/or consolidate the 

differentiation of MSCs in the above experiments. 

After adhesion for 2 h in serum-free conditions and culture in 1 % serum BM for 

21 d on the various substrates with doubled growth factor concentration, the 

expression of OPN and actin was visualised by immunofluorescence microscopy 

(Figure 2.19). Many cells appeared shrivelled with atypically shaped nuclei and 

negative actin staining on all artificial ECMs (Figure 2.19 (a)). Differential 

interference contrast microscopy visualised the contrast between the well 

spread and misshapen cells (Figure 2.19 (b)). Further, these misshapen cells 
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stained positively for OPN yet did not have well established actin cytoskeletons 

(Figure 2.19 (c)). These misshapen cells had possibly died because the culture 

conditions were insufficient. 

 

Figure 2.19 MSCs after 2 h serum-free adhesion followed by 1 % serum culture for 21 d 
Many MSCs had a misshapen morphology as determined by actin and nucleus staining, an 
indicator of cell death. These MSCs also appeared to express OPN, but this was likely to 
have been false positive staining. (a) DAPI image of normal and misshapen nuclei (arrows). 
(b) Matching differential interference contrast microscopy image to (a). Misshapen cells 
stained positively for OPN but did not appear to have well-formed actin cytoskeletons (c). 
Red, F-actin; blue, DAPI (nuclei); green, OPN. n = 2. 

Since 1 % serum after serum-free adhesion appears to lower cell viability, the 

effect of a range of cell densities (2-6x103 cells cm-2) and serum concentrations 

(1-10 %) was tested to find a compromise between serum concentration and MSC 

viability, focusing on glass or PEA with FN and BMP2 matrices (Figure 2.20). With 

increasing cell density and serum concentration, more cells appeared with an 

expected morphology. At higher densities, it was difficult to establish whether 

the effect was still present. At the lower density and serum concentration 

conditions, there are fewer misshapen and actin-negative cells on glass 

compared to the FN substrate. This is evidenced in more detail in Figure 2.21 of 

cells cultured in 1 % serum at 2x103 cells cm-2.  
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Figure 2.20 Serum concentration and cell density optimisation. MSCs were cultured for 21 d 
on glass or PEA with FN and BMP2. At lower serum concentration and cell density, fewer 
cells appeared well formed on PEA with FN and BMP2 in comparison to glass. Actin 
staining is shown to indicate the degree of adhesion and cell viability. n = 2. 

 

Figure 2.21 MSCs cultured for 21 d in 1 % serum at 2x103 cells cm-2 on glass or PEA with FN 
and BMP2. Many more cells stained positively with actin on glass as evidenced by the 
zoomed in images: few nuclei were missing a cytoskeleton on glass, whereas many were on 
PEA. Many nuclei on PEA with FN and BMP2 appeared misshapen in comparison to those 
on glass. Whole sample scale bar 1 mm. Zoomed-in region scale bar 1 mm. Red, F-actin; 
blue, nuclei. 
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To confirm cell death, a live/dead cell stain was performed. After 30 min in 

culture in low serum conditions — 2 or 5 % serum — no cell death was observed 

(Figure 2.22). More cell death was observed after 2 h in serum-free conditions 

than in 5 % serum (Figure 2.23). 

 

Figure 2.22 Live/dead stain of MSCs cultured in 2 or 5 % serum for 30 min. Cell death, 
indicated by ethidium homodimer staining (red) was undetected in either serum 
concentration and substrate. Green, calcein AM, indicated live cells. Scale bar 100 µm. n = 2. 

 

Figure 2.23 Live/dead stain of MSCs cultured for 2 h in 0 or 5 % serum. Dead cells were 
detected on all the substrates, and there appeared to be more in the 0 % serum condition 
compared to the 5 % serum condition. Inset images highlight dead cells. Red, ethidium 
homodimer; green, calcein AM. Scale bar 100 µm. n = 2. 

Following the observations that some cells were viable at low and 0 % serum 

conditions, and that previous experiments have used these conditions (Llopis-

Hernández et al. 2016; González-García et al. 2012; Rico et al. 2016), MSCs were 

cultured and their osteogenic and stemness protein expression measured as in 

section 2.4.3 with varying culture conditions. Figure 2.24 shows phase contrast 

microscopy images of MSCs cultured for 21 d in 5 % serum after 2 h of serum-free 

adhesion on the artificial ECMs. These conditions were chosen as the 

compromise between the number of healthy cells and low serum concentration 
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(Figure 2.20). On glass and glass with FN, cells had usual morphology and 

density. Many small and misshapen cells were seen on the artificial ECMs, with 

few normal MSCs. A positive control, MSCs cultured in osteogenic media with no 

serum-free step, demonstrated that these cells survived under regular serum 

concentrations. Figure 2.25 presents the ICW measurement of stemness and 

osteogenic proteins, and the estimated differences between matrices are in 

Figure 2.26. Expression of VCAM1 was higher on PEA with FN and VEGF compared 

to glass, but no other comparisons showed differences. Both PEA with FN and 

with BMP2 cells had higher average expression of OCN compared to glass 

controls, and PMA with FN had a higher expression than glass with FN. Finally, 

MSCs cultured in 2 % serum for 21 d were compared, but no differences were 

observed within the single donor that was tested (Figure 2.27). 

 

Figure 2.24 Phase contrast microscopy of MSCs cultured for 21 d in 5 % serum following 2 h 
serum-free adhesion. MSCs cultured on the glass controls appeared to have proliferated 
and spread to a greater extent than the polymer-based substrates. Many MSCs had 
misshapen morphology on the polymer-based substrates. MSCs cultured in OM for the 
entire culture with no serum-free adhesion stage. PMA inset: another region with denser 
cells. Scale bar 100 µm. n = 4 (n = 2 OM). 
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Figure 2.25 ICW analysis of stemness and osteogenic protein expression normalised to 
GAPDH in MSCs cultured for 21 d in 5 % serum following 2 h serum-free adhesion. AU, 
arbitrary units. n = 2 biological replicates (donors) distinguished by colour; n = 3 or 4 
repeats per donor. 

 

Figure 2.26 Comparison of differences between protein expression on the artificial ECMs 
(mean ± 95 % confidence interval) from Figure 2.25. VCAM1 expression was higher in MSCs 
cultured on PEA with FN and VEGF in comparison to glass. OCN expression was lower in 
MSCs cultured on glass and glass with FN in comparison to several of the polymer-based 
ECMs. Estimates are calculated from a mixed effects linear model that controlled for within-
donor variation. Red, p < 0.05. 
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Figure 2.27 Osteogenic and stemness protein expression normalised to GAPDH by MSCs 
cultured in 2 % serum for 21 d. AU, arbitrary units. n = 4. 

Although differences in the expression of some relevant proteins are observed 

using these low serum conditions, and previous published data also shows 

changes in osteogenesis (Llopis-Hernández et al. 2016; González-García et al. 

2012; Rico et al. 2016), only the full 10 % serum condition was taken forward. 

This is because the same artefact of staining dead cells by immunofluorescence 

microscopy (by the protocols used here) (Figure 2.19) may occur using ICW, and 

these results were inferred from such an assay, confounding any conclusions. 

Nevertheless, the outcomes of experiments using 10 % serum culture conditions 

indicated that the substrates were still able to influence MSC behaviour to a 

degree. 

2.4.5 Whole Biochemical Analysis 

The measurement of individual protein expression provided some insight into the 

state of MSCs on the substrates. In contrast, a broader and coarser 

understanding of the MSC phenotype can be obtained using IR spectroscopy. 
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MSCs were cultured for 21 d on the various artificial ECMs and their biochemical 

phenotypes measured using SR-FTIR (Figure 2.28). The previous analysis of cell-

free substrates revealed that there was variation in the polymer-defining bands 

(Figure 2.5). These overlapped some important biochemical wavenumbers 

including those for lipids (3000-2900 cm-1) and in the fingerprint region (< 1450 

cm-1). To compare cellular spectra independent components analysis (ICA) was 

used to estimate and separate the background polymer signal from that of the 

cells (Figure 2.29) (Rutledge & Jouan-Rimbaud Bouveresse 2013). The estimated 

polymer signal contained some biological features, suggesting incomplete 

separation, but many important ones were retained in the biological signal, for 

example the amide region (1700-1500 cm-1).  

 

Figure 2.28 SR-FTIR absorbance of MSCs cultured on the artificial ECMs for 21 days. Mean 
(black line) ± standard deviation (grey shadow) of multiple spectra (n = 2 or 3 biological 
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replicates, summing to n = 1416 spectra). Green bars indicate the notable wavenumbers of 
the corresponding blank polymers. Note that there was overlap between the wavenumbers 
associated with biochemical features (black arrows) and the blank polymer wavenumbers, 
for example, in the lipid and fingerprint regions. The amide region did not appear to be 
obstructed by the background polymer signal. 

 

Figure 2.29 ICA separation of SR-FTIR measurements of MSCs cultured on artificial ECMs 
into two sources, tentatively the polymer signal (source1) and cellular biochemical signal 
(source2). The green bars highlight the wavenumbers associated with the blank polymers. 
Note that source1 contains signal within these regions, indicating that the blank polymer 
signal has been at least moderately isolated from source2, that is mostly cellular signal. 
from the Each black line in the subplot is a replicate. n = 2 or 3. 

PCA analysis of the resultant biological signals showed separation between PMA 

and PEA cultures (Figure 2.30). Visualisation of the loadings of the first principal 

component, while ignoring the main blank polymer bands (3000-2900 cm-1; 1400-

1100 cm-1; 1800-1700 cm-1) — in case of incomplete signal separation by ICA — 

revealed several points of interest, including the amide I and II regions, the lipid 

region (~2900 cm-1), and others including nucleic acids, lipids, and proteins 

(1700-1300 cm-1). The SR-FTIR data showed that there was a broad difference in 
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the biochemical phenotype of MSCs on the FN network and isolated 

conformations. 

 

 

Figure 2.30 PCA of biological SR-FTIR signals after ICA from Figure 2.29. Note separation 
between FN conformations (PMA + FN and PEA + FN), whereas there is clustering between 
PEA + FN and the growth factor substrate variants. 

 

Figure 2.31 Loadings of PC1 from Figure 2.30. Loadings with large magnitudes highlighted 
by green bars were possibly due to background polymer signal. Loadings denoted by the 
blue bars were considered more reliable indicators of wavenumber differences between 
conditions. 

2.5 Discussion 

This chapter described the characterisation of a series of artificial ECMs, defined 

by their pattern of adsorbed fibronectin — network (PEA) or isolated (PMA) — 

and addition of growth factors BMP2 or VEGF, and the culture of primary human 

bone marrow STRO-1+ MSCs on these. Whereas previous work has studied these 

cells on the network and isolated conformations (González-García et al. 2012), 

the characterisation with the addition of BMP2 and VEGF is novel. 
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Substrate characterisation shows that the artificial ECMs were reproducibly 

made from published methods (Moulisová et al. 2017; Llopis-Hernández et al. 

2016; González-García et al. 2012; Guerra et al. 2010), and that CaF2 was a 

viable substrate for producing these biomaterials, opening up the range of 

possible characterisation techniques to include IR analysis (Baker et al. 2014). IR 

analysis is a common approach to characterising protein conformation at the 

biomaterial surface (Glassford et al. 2013), and while no conclusions about FN 

conformation could be drawn here — likely because the thickness (~ 1µm 

(Vanterpool et al. 2014)) of the polymer overwhelms the nanometer high FN 

signal — FTIR can be used to compare adsorbed FN conformation across 

substrates (Baujard-Lamotte et al. 2008). Future FTIR work could use thinner 

films. Nanoscale chemical imaging such as near-field IR spectroscopy (Donaldson 

et al. 2016; Cinque et al. 2016) or nanoscale secondary ionisation mass 

spectroscopy (Paine et al. 2017) could also be used to explore the binding of 

growth factors to the FN network and compare FN conformations. 

Many cell types have been studied on subsets of these artificial ECMs before 

including mouse C3H10T1/2 MSCs (Rico et al. 2016), mouse MC3T3 osteoblasts 

(Guerra et al. 2010), human osteoblasts (Rico et al. 2009), C2C12 myoblasts 

(Mnatsakanyan et al. 2015; Salmerón-Sánchez et al. 2011), primary human STRO-

1+ bone marrow MSCs (González-García et al. 2012), commercially-sourced bone 

marrow MSCs (Llopis-Hernández et al. 2016), NIH3T3 fibroblasts (Llopis-

Hernández et al. 2013), L929 fibroblasts (Vanterpool et al. 2014), and HUVECs 

(Moulisová et al. 2017). This work here added Saos-2 cells to the list. The study 

of primary human STRO-1+ bone marrow MSCs over the full repertoire of 

published artificial ECMs is a relatively important contribution. It fits with the 

dogma of tissue engineering — using cells direct from a donor (Lanza et al. 2013) 

— avoids proprietary preparations, and meant the cells were at passage 0 on 

arrival. Furthermore, these points mean data are as relevant to in vivo 

behaviour as possible, without implantation. Primary human STRO-1+ bone 

marrow MSCs have been used in the study of other osteogenic and multipotency-

maintaining biomaterials (McNamara et al. 2011; Tsimbouri et al. 2014; Dalby et 

al. 2007; González-García et al. 2012; McMurray et al. 2011). 
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Over all surfaces in 10 % serum, MSCs adhered, proliferated, and developed actin 

and β-tubulin cytoskeleton components and focal adhesions. OPN expression was 

higher on the network FN compared to the isolated organisation, the opposite to 

the previous study of these cells that used serum-free conditions and different 

quantification methods (González-García et al. 2012). NESTIN expression was 

lower on the artificial ECMs compared to control glass suggesting that 

differentiation is occurring on the artificial ECMs, but whether NESTIN truly 

represents an MSC-only population is contested (Xie et al. 2015). SR-FTIR 

analysis has been used to profile MSCs undergoing osteogenesis (Krafft et al. 

2007), chondrogenesis (differentiation to cartilage lineage cells, namely 

chondrocytes) (Chonanant et al. 2011), and adipogenesis (differentiation to fat 

lineage cells, namely adipocytes) (Liu et al. 2016). Analysis here suggested that 

there are differences in lipid, protein, and/or nucleic acid composition between 

MSCs cultured on the networks and those on the isolated organisation. Together, 

these results suggested differences in degree of osteogenesis between MSCs 

cultured on the PMA and PEA-based biomaterials. The addition of growth factors 

at the given concentrations did not lead to discernible differences, and this may 

be specific to primary human bone marrow STRO-1+ MSCs. 

Altering culture conditions to match previous work (González-García et al. 2012; 

Llopis-Hernández et al. 2016) lead to notable MSC death, which made whole-

surface measurements such as ICW unreliable as cell debris and false positive 

immunofluorescence staining could not be ignored. Nevertheless, when cultured 

in 5 % serum after 2 h serum-free adhesion, MSC cultured on FN networks with 

VEGF have a greater expression of VCAM1, and OCN expression is greater on the 

networks with/without BMP2 and on the isolated network compared to controls. 

More patients need to be measured for inferences to be drawn about 2 % serum 

conditions without serum-free adhesion. 
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3 High-Content Automated Microscopy Analysis of 
MSCs on the Artificial ECMs  

3.1 Introduction 

In the previous chapter, MSCs were characterised for their growth, viability, 

biochemistry, and differentiation on the artificial ECMs. Results suggested that 

the FN conformation affected the degree of osteogenesis and general protein, 

lipid, and nucleic acid content. Representative cells from whole-sample mosaic 

images of nuclei and actin and tubulin networks at various time-points were used 

as evidence.  

Hand-picking individual representative cells from images is a time-consuming 

process that is susceptible to bias, and there may be more information to gain by 

looking at the whole population of cells (Figure 3.1) (Caicedo et al. 2017). 

Another problem with this approach is that there may be seemingly 

imperceptible differences, due to subtlety and in obscure patterns of image 

features (Ljosa & Carpenter 2009). These issues can be offset by using a 

biological image analysis suite, for example CellProfiler (Carpenter et al. 2006; 

Kamentsky et al 2011) or ImageJ/Fiji (Schneider et al. 2012; Schindelin et al. 

2012; Schindelin et al. 2015), which provides an interface to automate and 

objectify comparisons between cells and measure more subtle features. These 

tools are convenient for researchers without programming experience but 

greater flexibility and performance can come from using a scripting language, 

for example, Python and its scikit-learn package (van der Walt et al. 2014) or 

MATLAB and its Image Processing Toolbox (Gonzalez et al. 2009; Gonzalez & 

Woods 2010b; Schindelin et al. 2012; Carpenter et al. 2006), both of which have 

been used as part of CellProfiler (Carpenter et al. 2006; Kamentsky et al. 2011). 

Furthermore, a script forms an explicitly recorded and automated approach 

meaning that methods are fully reproducible and tractable. 
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Figure 3.1 Quantification of cell morphology over whole samples. Cells are seeded on the 
artificial ECMs for a given length of time, after which a whole-sample image is taken and the 
morphology of each cell is measured and compared to other conditions. 

In this chapter, an image processing pipeline was developed in MATLAB and used 

to profile and then compare the morphology of cells across the artificial ECMs. 

These were used to gain more insight from the previous chapter’s image data 

and analyse some newer datasets of pRunx2, an osteogenic transcription factor 

(Stein et al. 2004), and ALP, an enzyme involved in bone matrix mineralisation 

(Sharma et al. 2014; Pittenger et al. 1999), expression in MSCs. It will be shown 

that, generally, cells on PMA with FN or PEA with FN and VEGF had the most 

idiosyncratic morphometric features.  

The aims of this chapter were to: (1) develop an image processing pipeline to 

detect and measure cell morphometrics from whole-sample multichannel 

automated fluorescence images, and (2) use it to compare nucleus, cytoskeletal, 

and lineage-specific protein morphometrics between MSCs cultured on the 

artificial ECMs. 

3.2 Methods 

3.2.1 Tables of Reagents 

Table 3.1 Immunofluorescence Microscopy Reagents (in addition to those used in chapter 2) 
 

Item (and dilution) Source 
Anti-phosphoS465-Runx2 (1:100) Abgent 
Anti-ALP (1:100) Santa Cruz Biotechnology 
 
3.2.2 MG63 Cell Culture 
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MG63 were cultured for 2 h on glass using the same media without serum as 

Saos-2 cells in the previous chapter. MG63 were used instead of Saos-2 cells 

because they were available at the time of the experiment. 

3.2.3 Immunofluorescence Microscopy 

As chapter 2. Montages of segmentations were made using ImageMagick. 

3.2.4 Image Processing Pipeline 

The image pipeline was written in MATLAB 2016a using the Image Processing 

Toolbox and Parallel Computing Toolbox. Since nuclei-only image analysis was 

performed on dense 21 d samples an extra pre-filter step was used: any 

segmented region with an eccentricity > 0.9 and an area > 2000 or < 275 pixels 

was removed. 

3.2.5 Data Analysis 

The image labeller was written in Python using tkinter and pillow, and data 

analysis was performed in R using ggplot2 (Wickham 2016), plyr (Wickham 2011), 

dplyr, tidyr, caret (Kuhn 2008), nnet (Venables & Ripley 2002), multcomp 

(Hothorn et al. 2008), lme4 (Bates et al. 2015), lmTest, MASS (Venables & Ripley 

2002), and glht (Venables & Ripley 2002). For experiments where all artificial 

ECMs had replicates a mixed effects linear model using sample replicate as the 

random effect (using R formula syntax: image feature ~ artificial ECM + (1 | 

sample)) was used to estimate differences. Logistic regressions for predicting 

the artificial ECM were run on scaled and centred data using 10-fold cross 

validation repeated 5 times with down-sampling during resampling. Type III 

analysis of variance tables were used to compare the predictor importance in 

fitted logistic regression models. The per-class average performance metrics are 

averages of the respective metric over all cross validations and repeats. 

3.3 Results 

3.3.1 Developing the Image Processing and Data Analysis 
Pipeline 
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To measure each cell, they were first segmented from their images using the 

image processing pipeline (Figure 3.2). The implemented approach, which relies 

on a registered nuclei and actin image, used marker-based watershed 

segmentation (Meyer & Beucher 1990) with nuclei as internal markers, a model-

based segmentation approach (Caicedo et al. 2017) that is one of the more 

common cell segmentation methods (Meijering 2012) and is generally similar to 

that used by CellProfiler (Carpenter et al. 2006; Kamentsky et al. 2011). Nuclei 

were detected from a DAPI (Chazotte 2011; Kapuscinski 1995) channel image 

using several steps: a Gaussian filter (σ = 5) that removed small noise elements 

and smoothed the image; a white top-hat transform using a disk-shaped 

structuring element with a radius of 20 px, which removed large noise elements 

(e.g. contamination by fibres during staining) and evened illumination; Otsu 

thresholding (Otsu 1979), which calculated a threshold level that was used to 

select nuclei pixels; a closing operation, which filled small holes; and border 

clearing, which removed any nuclei on the image borders that may have been 

incomplete (Gonzalez & Woods 2010a; Gonzalez et al. 2009) (Figure 3.3 left). 
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Figure 3.2 Flowchart of the image segmentation pipeline. The green box highlights the input 
fluorescence microscopy images; red, the segmentation process; blue, the measurement of 
the optional third channel and production of the final data. 

Cell bodies were detected following nuclei segmentation using the actin 

(tetramethylrhodamine (TRITC)) channel. Images were smoothed using a 

Gaussian filter (σ = 3) to obfuscate neighbouring actin fibres so that a 

subsequent Sobel gradient filter detected the very edges of the cells. Minima 

corresponding to points halfway between neighbouring nuclei centroids — 

computed by a watershed distance transform — and the nuclei centroids 

themselves were then imposed on the gradient image, known as minima 

imposition, and watershed segmentation of the resultant images was used to 

segment the cell bodies. Finally, borders were cleared to remove any 



67 
 
incomplete cell segmentations (Gonzalez et al. 2009; Gonzalez & Woods 2010a; 

Soille 2013) (Figure 3.3 right).  

 

Figure 3.3 Nuclei and actin image processing steps, in order from top-to-bottom, using an 
example image. Left, DAPI image processing to segment nuclei: the noise reduction step 
represents close and border clearing operations. Right, TRITC image processing to 
segment cell bodies/actin cytoskeletons: the minima step represents minima imposition 
using information about nuclei locations. The colours of the segmentations in the labelled 
images were arbitrary. Scale bar 50 µm. 
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The MATLAB image processing pipeline was developed to allow different 

combinations of channels and regions to be analysed. At minimum, a blue DAPI 

nuclei image must be provided, but the red TRITC actin and a third green 

fluorescein isothiocyanate (FITC) channel are optional. With all combinations, 

measurements for each of the entities — nuclei, actin cytoskeleton, third green 

channel — and a combined RGB image of the segmented entities are returned by 

the pipeline. The third channel is treated differently to the other two. It 

undergoes no image processing per se, but instead, measurements are taken 

from it in regions corresponding to the actin or nuclei segmented regions, 

according to user preference (Figure 3.2). For example, with an interest in 

osteogenesis, a third channel image of phospho-Runx2 (pRunx2) would be 

measured at locations coincident with nuclei segmentations since it is an 

osteogenic transcription factor (Stein et al. 2004). If an actin image is provided, 

a final step removes all but the first nucleus in an actin segmentation, if 

multiple were found, and any nucleus segmentation that is not within the 

boundary of an actin segmentation.  

The shape descriptors: area, eccentricity, perimeter length, major axis length, 

minor axis length, orientation, maximum intensity, mean intensity, and 

minimum intensity; histogram-based texture descriptors: standard deviation, 

skew, roughness, uniformity, and entropy; and grey-level co-occurrence matrix 

descriptors for horizontally adjacent pixels: contrast, correlation, energy, and 

homogeneity (Gonzalez et al. 2009; Gonzalez & Woods 2010a; Haralick et al. 

1973) are calculated for the actin and nuclei segments. For the third channel, 

only the histogram-based texture and grey-level co-occurrence matrix 

descriptors are calculated. Recording many diverse features is a common 

approach in cell profiling (Caicedo et al. 2017).  

Figure 3.4 shows the result of cell segmentation using the image processing 

pipeline on a test image of MG63 cells stained for actin and nuclei. MG63 cells, 

like Saos-2 cells in the previous chapter, are used as a model for osteogenesis, 

grow as an adherent monolayer, and their culture uses the same methods as 

Saos-2 cells (Pautke et al. 2004). Most nuclei were segmented well but several 

actin cytoskeletons, particularly of closely neighbouring cells, were incompletely 

segmented. Further, some nuclei remained after removing their corresponding 
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actin segmentations that were touching the image border. The image processing 

pipeline was then applied to a dataset from the previous chapter, where MSCs 

were cultured for 24 h and stained for actin and nuclei, to evaluate a larger 

sample size closer to the problem domain. Figure 3.5 (left) shows a random 

sample of the resultant segmentations. Artefacts in the DAPI channel image from 

the staining process were segmented, as were some incomplete cells.  

 

Figure 3.4 Segmentation of MG63 cultured on glass for 2 h. Top: original image; bottom: 
labelled segmentation image, where the circles (black outline, white centre) indicate the 
position of detected nuclei centroids and the variably coloured regions delimit detected cell 
boundaries. Note generally favourable segmentation with some incomplete segmentation of 
touching cells (vertical arrow), and some false positive nuclei identification (horizontal 
arrow). 10x objective. Top: Red, actin; blue, nuclei. Bottom: The colours of the 
segmentations are arbitrary. Scale bar 50 µm. 

A cell-level quality control process (Caicedo et al. 2017) was developed to 

remove bad segmentations, which required a ground truth dataset. All 12,475 

putative segmented cells were classified by hand as “keep” or “reject” — good 

or bad segmentation — in a decision to discard them before analysis (Figure 3.5). 
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Segmentations that were mostly incomplete, not in focus, and clearly not 

cellular material, such as contaminating fibres, were rejected. Note that some 

“good” segmentations were not particularly so due to mistakes during the 

manual classification. 8,132 segmentations were kept and 3,343 were rejected. 

A comparison of the annotated good and bad segmentations highlighted several 

distinguishing features, particularly actin perimeter, area, and intensity 

standard deviation (Figure 3.6), suggesting that bad segmentations tended to be 

smaller with a more homogeneous actin stain. Several features did not appear to 

have a normal distribution, so they were log-transformed to have a more normal 

distribution. These were the nucleus and actin grey level co-occurrence matrix 

contrast, pixel intensity histogram uniformity, aspect ratio, area, and perimeter; 

actin eccentricity, and grey level co-occurrence matrix energy; and nucleus 

pixel intensity roughness and mean. Features that would be expected to contain 

negative values, such as orientation (the angle between the major axis and the 

x-axis of the image, ranging from -90 to 90 degrees) or correlation were exempt 

from log-transformation. If transformation created infinite or null values for a 

particular segmentation it was removed from further analysis. The reported 

number of segmentations produced for each subsequently described set of 

images will be the number remaining after those with invalid feature 

quantifications have been removed. 

 

Figure 3.5 Generation of a ground truth dataset for developing a segmentation quality 
control process. Left: A random selection of segmentations produced by the image 
processing pipeline from images of MSCs cultured for 24 h on the artificial ECMs, showing 
segmented cells and non-cell matter. These were manually annotated as good (centre) or 
bad (right) segmentations. While some bad segmentations were mistakenly labelled as 
good, for example, centre panel 4th column 4th row, the majority of bad segmentations are 
genuinely so. Red, actin; blue, nuclei. 

All Good Bad
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Figure 3.6 Distributions of segmentation features by quality classification. Note that some 
features were log10-transformed. Actin perimeter (tritc Perimeter), area (tritc Area), and 
intensity histogram standard deviation (tritc txtSd), were particularly different between 
classes. tritc = actin, dapi = nuclei, “txt” prefix = intensity histogram feature, “gl” prefix = 
grey-level co-occurrence matrix feature, reject = bad segmentation, keep = good 
segmentation. 8132 keep segmentations, 3343 reject segmentations. 

Given that it was time-consuming and error-prone to classify each segmentation 

by hand, a logistic regression classifier, was tested for its utility as a semi-

automatic filter using the annotated segmentations. A classifier learns from a set 

of training data, a subset of the total dataset, about the relationship between a 

class (which can be referred to as an outcome or a category) and features 

(otherwise known as predictors), so that it may predict the class of future test 

samples based only on the measured features. With respect to this specific task, 

the class was whether the segmentation was good or bad, and the features were 
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the morphometrics and textures of the segmentation. A logistic regression is the 

relationship, or function, between segmentation quality class and pixel features. 

Over several test subsets the logistic regression was accurate in predicting good 

and bad segmentations (Figure 3.7 (a)), with the probability of most predictions 

being near 1 or 0 (Figure 3.7 (b)). False positive segmentations, those incorrectly 

predicted as good, were usually predicted as such for all repeats (Figure 3.7 (c)), 

and these tended to be damaged or rounded cells (Figure 3.7 (d)). False negative 

segmentations (Figure 3.7 (e)) were predicted similarly and were usually 

incomplete segmentations (Figure 3.7 (f)). The distribution of actin area, one of 

the more discriminating features, for segmentations that had both true positive 

and false negative classifications over the test repeats is shown in Figure 3.7 (g), 

showing overlap with the other events. A random sample of these revealed a 

mixture of larger incomplete segmentations and non-cellular fluorescence 

(Figure 3.7 (h)). These results suggested that a logistic regression was adequate 

for filtering out most poor segmentations prior to analysis. 
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Figure 3.7 Segmentation quality control performance. (a) Average confusion matrix of 
predicted and reference classes over 5 repeats of testing/training. The majority of 
segmentations were correctly classified. (b) Distribution of the probabilities of keep 
classification, the positive class, (P(keep)) by reference class. The probability for most good 
quality segmentations was high and vice versa for bad segmentations. (c) Distribution of 
the number of times a false positive image was classified as such. Most false positive 
segmentations were always predicted as false positives over the 5 repeats. (d) Random 
sample of false positive segmentations, which tended to be damaged or rounded. (e) 
Distribution of the number of times a false negative image was classified as such. Most 
false negative segmentations were always predicted as false negatives over the 5 repeats. 
(f) Random sample of false negative segmentations, which were usually incomplete 
segmentations. (g) Distribution of actin area by classification type. Actin area is mostly 
distinct between prediction classes. (h) Random sample of segmentations that were 
classified as false positive or true negative over the repeats, which tended to be large 
incomplete segmentations or non-cellular fluorescence. tp = true positive, fp = false 
positive, tn = true negative, fn = false negative, “keep” = positive class. 
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The optimum sample size for fitting the logistic regression was determined by 

fitting the model on progressively larger portions of a training set from 1-99%, 

and testing on a constant test set (Figure 3.8 (a)). Learning curve plots in Figure 

3.8 (b) suggested this was about 10 %. The final data curation and analysis 

pipeline is shown in Figure 3.9 (left), with manual curation of 10 % of the total 

dataset needed to filter the rest before analysis. A graphical Python application 

was written to expedite the curation step: this lets the user view each 

segmentation in a given list and classify each as “keep” or “reject” using 

keyboard shortcuts — classifying an image automatically moves to the next — 

and save the list of classifications and corresponding image names in a comma-

delimited file (Figure 3.9 (right)). This image processing and data curation 

pipeline was used to generate the datasets analysed in the rest of this chapter. 

 

Figure 3.8 Optimal sample size for the quality control process. (a) Schematic of optimisation 
approach. A logistic regression model was fitted on a different sized random sample of 
training data and then tested on a constant dataset, twenty times. Red/green colouring 
represents segmentation quality. The blue region indicates repeated model fitting/testing. 
(b) The average true positive and false positive rates of the fitted model for each training 
sample size, showing that approximately 10 % of the total dataset is an optimal size for 
training. Logreg = logistic regression model fitting. 
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Figure 3.9 Data curation and analysis pipeline. (left) From top to bottom, of the 
segmentations from the image processing pipeline, 10 % are manually annotated to be kept 
or discarded using the image labeller (right). The labeller displays each segmentation in 
turn to be classified by the user, and shown is an example of a labelled bad (right, top) and 
a labelled good segmentation (right, bottom). The logistic regression is then fit to the 
curated sample and used to filter out bad segmentations from the rest of the unlabelled 
dataset before analysis. 

3.3.2 Image Analysis of MSCs Cultured on the Artificial ECMs 

3.3.2.1 Analysis of Actin and Nuclei After 24 h Culture  

In the previous chapter, MSCs were cultured for 24 h and stained for actin and 

nuclei, which demonstrated adhesion, spreading, and the formation of actin 

cytoskeletons. Here, the image processing (Figure 3.2) and data analysis (Figure 

3.9) pipeline was used to analyse, in more detail, the whole images from which 

these conclusions were drawn. A sample of the resulting good quality 

segmentations is shown in Figure 3.10 (a), which were evenly distributed across 

the different artificial ECMs and replicates suggesting that initial seeding density 

was similar (Figure 3.10 (b)). The results of a logistic regression used to predict 
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which substrate an MSC was cultured on, using all of the measured features, 

revealed (Figure 3.10 (c)) that the majority of cells cultured on the control 

substrates were distinguishable from those cultured on the polymer-based ECMs, 

and that those on PMA with FN, and to a lesser extent, those on PEA with FN and 

VEGF were also distinct. MSCs cultured on PEA with FN and with BMP2 were 

largely misclassified. Cells on the control substrates were also misclassified as 

one another more often than the other classes. A PCA plot revealed little 

clustering of conditions (Figure 3.10 (d)). The average accuracy, precision, 

recall, and F-1 score (Caicedo et al. 2017) were all approximately 50 %, with 

glass and particularly PMA with FN predictions faring relatively better (Table 

3.2). The distribution of probabilities that each segmentation belonged to each 

class is shown in Figure 3.10 (e): correct glass, glass with FN, and PMA 

predictions tended to have higher probabilities; correct predictions for the other 

ECMs were less certain. The logistic regression coefficients of the top 10 most 

informative predictors are shown in Figure 3.10 (f), which suggested that nuclei-

based features were more informative for discrimination. MSCs that were 

cultured on control substrates and correctly predicted appeared to have brighter 

actin staining (Figure 3.11).  

Classification of the MSC images provided insight into how the actin and nucleus 

features varied by substrate (Figure 3.10 (f)) (Shmueli 2010). In contrast to 

classification, an inference task is used to infer the value of a property about a 

population from a sample of that population. Here, inference was used to 

compare the image features between the artificial ECMs. A mixed effects linear 

model was used to test for differences while adjusting for sample-specific 

variation (Gelman & Hill 2007; Krzywinski et al. 2014). Three actin-related 

features were significantly different in at least one of the non-control 

comparisons (Figure 3.12). MSCs cultured on PMA with FN had a greater aspect 

ratio, eccentricity, and perimeter than those on PEA with FN and with BMP2, and 

those on PEA with FN and VEGF had a greater perimeter than MSCs on PEA with 

FN and with BMP2. 
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Figure 3.10 Results of a logistic regression used to predict which ECM a given MSC was 
cultured on after 24 h based on actin and nuclei image analysis. (a) Random sample of good 
segmentations. (b) Mean ± standard deviation of number of good segmentations (8,132 
good segmentations in total, n = 2 sample replicates), showing small variations across 
replicates. (c) Confusion matrix showing average percentage of classifications for each 
substrate, showing high accuracy for MSCs cultured on PMA and VEGF compared to the 
other polymer-based ECMs. (d) PCA of all features. (e) Logistic regression probability of 
belonging to each class by correct or incorrect prediction, with predictions for MSCs 
cultured on glass and PMA having a high probability. (f) Top 10 most significant coefficients 
of the logistic regression fit for each artificial ECM, of which most are related to nuclei. tritc 
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= actin, dapi = nuclei, “txt” prefix = intensity histogram feature, “gl” prefix = grey-level co-
occurrence matrix feature. 

Table 3.2 Per-class performance for prediction of substrates at 24 h 
 G G+Fn PMA+FN PEA+FN PEA+FN+BMP2 PEA+FN+VEGF Mean 
Precision 0.78 0.54 0.87 0.26 0.28 0.54 0.54 
Recall 0.64 0.55 0.78 0.32 0.39 0.44 0.52 
f-1 score 0.70 0.54 0.83 0.29 0.32 0.49 0.53 
 

 

Figure 3.11 Random samples of correctly predicted MSCs after 24 h culture. 

 

Figure 3.12 Features of MSCs cultured for 24 h on the artificial ECMs with significantly 
different estimated means ± 95 % confidence interval. MSCs on PMA had a greater aspect 

G

PMA + FN

PEA + FN + VEGFPEA + FN + BMP2

PEA + FN

G + FN
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ratio, eccentricity, and perimeter than those on PEA and BMP2. MSCs on VEGF had a 
greater perimeter than those on BMP2. Red, significant. tritc = actin. 

The prediction of substrates using a logistic regression model was used to 

analyse the rest of the chapter’s image datasets. Those with at least 2 replicates 

for each substrate were also analysed using the mixed effects model to control 

for replicate variance. 

3.3.2.2 Analysis of Early Osteogenesis After 5 d Culture 

pRunx2 is the activated form of an osteogenic transcription factor, localised to 

the nucleus in early osteogenesis (Stein et al. 2004; Vimalraj et al. 2015; Komori 

2010). Images of MSCs cultured for 5 d on the artificial ECMs stained for pRunx2, 

actin, and nuclei were analysed as above. The inclusion of pRunx2 in the third 

(FITC/green) channel increased the number of features analysed. 58,636 

segmentations were determined from the images, and 38,388 images were 

classified as good segmentations. pRunx2 staining occurred in nuclei (Figure 3.13 

(a)). Fewer cells were observed on control substrates but seeding density was 

similar across replicates (Figure 3.13 (b)). Similar to the prediction performance 

for MSCs at 24 h (Figure 3.10 (c)), accuracy was high for cells on PMA with FN, 

PEA with FN and VEGF, and control substrates (Figure 3.13 (c)), with a small 

drop in overall performance (Table 3.3). No clustering was observed using PCA 

(Figure 3.13 (d)). The distribution of prediction probabilities reflects this 

reduction in confidence (Figure 3.13 (e)). The most informative predictors 

included the maximum and standard deviation of pRunx2 staining intensity 

(Figure 3.13 (f)). Differences between correctly predicted segmentations were 

not readily discernible by eye besides the seemingly brighter actin cytoskeleton 

staining on control substrates (Figure 3.14). 

14 of 57 features were estimated to be significantly different between non-
control substrates, none of which were based on pRunx2 (Figure 3.15, 
summarised in   
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Table 3.4). Many of the differences were between the different FN 

conformations. MSCs on PMA with FN had a more homogeneous actin 

cytoskeleton texture (higher intensity histogram uniformity, and higher grey-

level co-occurrence matrix energy and lower entropy) and lower intensity 

(mean, maximum, and minimum) compared to those on PEA with FN. They also 

had a smaller nuclei aspect ratio and greater minimum intensity. Further, the 

growth factor-based ECMs also had differences compared to PMA; PEA with FN 

and BMP2 had similar differences to the comparison with PEA; and while PEA 

with FN and VEGF did not have a lower mean and maximum actin intensity, they 

did have a greater nuclei intensity (mean, maximum, and minimum). Comparing 

between the two growth factors on PEA with FN, MSCs on BMP2 had a smaller 

area and perimeter. Finally, MSCs on PEA with FN and VEGF had a smaller 

nuclear aspect ratio than those on the FN network on PEA alone. 
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Figure 3.13 Results of a logistic regression used to predict which ECM a given MSC was 
cultured on after 5 d based on pRunx2, actin, and nuclei image analysis. (a) Random sample 
of good segmentations. (b) Mean ± standard deviation of number of segmentations (38,411 
good segmentations, n = 4 sample replicates), showing similar numbers across replicates, 
but fewer segmentations on control substrates. (c) Confusion matrix showing average 
percentage of classifications for each substrate, with higher accuracy for MSCs cultured on 
control, PMA, and VEGF substrates. (d) PCA of all features. (e) Logistic regression 
probability of belonging to each class by correct or incorrect prediction. Predictions for 
MSCs on PEA and BMP2 had comparatively lower confidence, while the other classes were 
spread over a range of probabilities. (f) Top 10 most significant coefficients of the logistic 
regression fit for each ECM, which contains features from all three image channels. tritc = 
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actin, dapi = nuclei, fitc = pRunx2, “txt” prefix = intensity histogram feature, “gl” prefix = 
grey-level co-occurrence matrix feature. 

Table 3.3 Per-class performance metrics for prediction of substrates at 5 d 
 G G+Fn PMA+FN PEA+FN PEA+FN+BMP2 PEA+FN+VEGF Mean 
Precision 0.68 0.57 0.64 0.22 0.36 0.57 0.50 
Recall 0.30 0.46 0.64 0.37 0.40 0.51 0.45 
f-1 score 0.41 0.51 0.64 0.27 0.37 0.54 0.46 
 

 

Figure 3.14 Random samples of correctly predicted MSCs after 5 d culture 
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Table 3.4 Summary of estimated differences from Figure 3.15. SD = standard deviation. 

 

BMP2-
VEGF 

PEA-
VEGF 

PEA-
BMP2 

PMA-
VEGF 

PMA-
BMP2 

PMA
-PEA 

Actin perimeter ¯      
Actin uniformity    ­ ­ ­ 

Actin entropy      ¯ 
Actin energy    ­ ­ ­ 
Actin mean    ¯ ¯ ¯ 
Actin max     ¯ ¯ 
Actin min     ¯ ¯ 

Actin area ¯      
Nucleus SD    ­   

Nucleus eccentricity    ¯   
Nucleus aspect ratio  

¯  
¯ ¯ ¯ 

Nucleus mean    ­   
Nucleus max    ­   
Nucleus min    ­  ­ 
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Figure 3.15 Features of MSCs cultured for 5 d on the artificial ECMs with significantly 
different estimated means ± 95 % confidence interval. MSCs on PMA tended to have 
differences to the PEA-based substrates in both actin and nuclei features. Red, significant 
(confidence interval does not include 0). tritc = actin, dapi = nucleus, “txt” prefix = intensity 
histogram feature, “gl” prefix = grey-level co-occurrence matrix feature. 
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3.3.2.3 Analysis of β-tubulin, Actin, and Nuclear Images After 3 d Culture 

Figure 3.16 shows the results of the image analysis of β-tubulin, actin, and 

nuclei of MSCs cultured for 3 d on the artificial ECMs. 13,263 segmentations were 

determined from the images, and 8,346 were predicted as good segmentations. 

Variation in seeding was greater in this experiment (Figure 3.16 (b)) partially 

because some samples partly surfaced during culture (the same problem 

occurred in the following ALP analysis, but it was corrected for all other 

experiments). Despite this, good quality segmentations were still obtained 

(Figure 3.16 (a)). In contrast to the previous analyses the correct prediction rate 

was roughly consistent across all substrates (Figure 3.16 (c), Table 3.5), which 

was supported by the distribution of prediction probabilities (Figure 3.16 (e)). 

No clustering of substrates was observed using PCA (Figure 3.16 (d)). Correct 

prediction rates for MSCs cultured on PEA with FN and VEGF appeared higher, 

but this condition only had one replicate (Table 3.5). The top features contained 

a mix of those for nuclei, actin, and β-tubulin (Figure 3.16 (f)). Figure 3.17 

shows samples of cell images that were correctly predicted, and by eye there 

was no discernible difference between them. 
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Figure 3.16 Results of a logistic regression used to predict which ECM a given MSC was 
cultured on after 3 d based on β-tubulin, actin, and nuclei image analysis. (a) Random 
sample of good segmentations. (b) Mean ± standard deviation of number of segmentations 
by artificial ECM type (8,346 good segmentations; n = 4, PMA n = 3, BMP2 n = 3, VEGF n = 1 
sample replicate(s)). More variation was observed across PEA replicates. (c) Confusion 
matrix showing average percentage of classifications for each substrate, showing similar 
accuracy for all substrates. (d) PCA of all features. (e) Logistic regression probability of 
belonging to each class by correct or incorrect prediction, showing a spread of confidence 
for each class. (f) Top 10 most significant coefficients of the logistic regression fit for each 
ECM, containing features from each image channel. tritc = actin, dapi = nuclei, fitc = β-
tubulin, “txt” prefix = intensity histogram feature, “gl” prefix = grey-level co-occurrence 
matrix feature. 
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Table 3.5 Per-class performance metrics for prediction of substrates at 3 d 
 G G+Fn PMA+FN PEA+FN PEA+FN+BMP2 PEA+FN+VEGF Mean 
Precision 0.57 0.48 0.46 0.56 0.58 0.70 0.56 
Recall 0.58 0.38 0.36 0.77 0.55 0.55 0.53 
f-1 score 0.57 0.42 0.40 0.65 0.56 0.62 0.54 
 

 

Figure 3.17 Random samples of correctly predicted MSCs after 3 d culture. 

3.3.2.4 Analysis of Mid-Late Osteogenesis 

ALP is an enzyme involved in osteogenesis, expressed at the cell surface (Sharma 

et al. 2014; Pittenger et al. 1999; Štefková et al. 2015), and necessary to initiate 

mineralization of bone nodules (Wennberg et al. 2000; Bellows et al. 1991). MSCs 

were imaged for ALP, actin, and nuclei at 14 d (Stein & Lian 1993) culture on the 

artificial ECMs. 24,797 segmentations were obtained from the images and 15,715 

were predicted as good segmentations. A sample of segmentations kept for 

analysis is shown in Figure 3.18 (a), and the number of these per artificial ECM in 

Figure 3.18 (b) shows that cell number across the replicates was alike; note that 
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there was only one replicate for PMA with FN. The average prediction rates using 

a logistic regression on all the features was again accurate for cells cultured on 

control substrates, with those on PMA with FN and PEA with FN and VEGF being 

similarly well predicted. In contrast to previous predictions, cells cultured on 

PEA with FN were relatively accurate (Figure 3.18 (c)). Performance metrics 

were, however, particularly low (Table 3.6). No clustering was observed using 

PCA (Figure 3.18 (d)). The lower performance was reflected by the distribution 

of class probabilities in Figure 3.18 (e), where besides the control substrates, 

most probabilities were centred around lower values. Features for all three 

channels were contained in the top 10 most informative (Figure 3.18 (f)). In 

agreement with previous random samples there was no easily perceptible 

difference in images of correct segmentations besides a brighter actin stain on 

control substrates (Figure 3.19).  
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Figure 3.18 Results of a logistic regression used to predict which ECM a given MSC was 
cultured on after 3 d based on ALP, actin, and nuclei image analysis. (a) Random sample of 
good segmentations. (b) Mean ± standard deviation of number of segmentations by artificial 
ECM type (15,715 good segmentations; n = 3, G+FN n = 2, PMA n = 1 sample replicate(s)), 
showing small variation in cell number across replicates. (c) Confusion matrix showing 
average percentage of classifications for each substrate, showing higher accuracy from 
MSCs on control, PMA, PEA and VEGF substrates. (d) PCA of all features. (e) Logistic 
regression probability of belonging to each class by correct or incorrect prediction. 
Polymer-based MSC predictions were less confident in comparison to the control 
substrates. (f) Top 10 most significant coefficients of the logistic regression fit for each 
ECM, which contains features from all three image channels. 
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Table 3.6 Per-class performance metrics for prediction of substrates at 14 d 
 G G+Fn PMA+FN PEA+FN PEA+FN+BMP2 PEA+FN+VEGF Mean 
Precision 0.67 0.54 0.42 0.37 0.25 0.42 0.45 
Recall 0.51 0.56 0.22 0.52 0.41 0.30 0.42 
f-1 score 0.58 0.55 0.29 0.43 0.31 0.35 0.42 
 

 

Figure 3.19 Random samples of correctly predicted MSCs after 14 d culture. 

3.3.2.5 Analysis of Late Osteogenesis in BM 

In the previous chapter, MSCs were cultured in BM for 21 d and their patterns of 

OCN, actin, and nuclei compared. Their high density meant the image processing 

pipeline under-segmented based on actin, so the following analysis focused on 

their nuclei alone, which were better segmented (Figure 3.20 (a)). 24,764 

segmentations were detected in the images and 19,408 were predicted as good 

segmentations. In keeping with prior counts of segmentations kept for analysis, 

the number of segmentations was similar across replicates, apart from glass, 

which had fewer replicates (Figure 3.20 (b)). Figure 3.20 (c) shows the 
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prediction rates of the logistic regression. Cells on control substrates were 

accurately predicted in comparison to the other ECMs, and PMA was also 

relatively high. Notably, a large number of MSCs cultured on PEA with FN and 

VEGF were predicted to be cultured on glass with FN. Performance metrics were 

low, possibly attributed to the reduced number of features for analysis in 

comparison to those with more than one channel (Table 3.7). PCA revealed no 

clustering by condition (Figure 3.20 (d)). The distributions of prediction 

probabilities were similar except for glass with FN, which featured a bimodal 

distribution (Figure 3.20 (e)). While only nuclei features were included in this 

analysis, the mean intensity of DAPI staining was again considered informative 

for the logistic regression (Figure 3.20 (f)). No features were estimated to be 

significantly different as a function of substrate using the mixed effects model. 
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Figure 3.20 Results of a logistic regression used to predict which ECM a given MSC nucleus 
was cultured on after 21 d based on nucleus image analysis. (a) Random sample of good 
segmentations. (b) Mean ± standard deviation of number of segmentations by artificial ECM 
type (good segmentations 19,408; n = 4, glass n = 2 sample replicates). There was more 
variation across glass replicates than the other conditions. (c) Confusion matrix showing 
average percentage of classifications for each substrate. Predictions for MSCs on control 
and PMA substrates had the highest accuracies. (d) PCA of all features. (e) Logistic 
regression probability of belonging to each class by correct or incorrect prediction, 
showing a bimodal distribution for glass with FN, and similar distributions for the other 
substrates. (f) Top 10 most significant coefficients of the logistic regression fit for each 
ECM. 
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Table 3.7 Per-class performance metrics for prediction of substrates at 21 d 
 G G+Fn PMA+FN PEA+FN PEA+FN+BMP2 PEA+FN+VEGF Mean 
Precision 0.54 0.58 0.48 0.33 0.37 0.11 0.40 
Recall 0.23 0.61 0.39 0.45 0.44 0.16 0.38 
f-1 score 0.32 0.60 0.43 0.38 0.42 0.13 0.38 
 

 

Figure 3.21 Random samples of correctly predicted MSC nuclei after 21 d culture. 

3.3.2.6 Analysis of Late Osteogenesis in OM 

In addition to the 21 d culture in BM analysed above, MSCs were also cultured in 

OM, the images of which were initially examined in the previous chapter. As 

above, images of the MSC nuclei segmented from these images were analysed. 

37,072 segmentations were obtained from the images and 11,653 were predicted 

as good segmentations. Segmentations kept for analysis are shown in Figure 3.22 

(a), but there was comparatively greater variation in the number of kept 

segmentations by replicate for PEA with FN and growth factors (Figure 3.22 (b)). 

MSC nuclei on control substrates were relatively accurately predicted, and those 
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on PMA and especially PEA with FN and VEGF were also well predicted (Figure 

3.22 (c)), but overall prediction performance and confidence was low (Table 3.8, 

Figure 3.22 (e)). No clustering was observed using PCA (Figure 3.22 (d)). Perhaps 

importantly, most of the top 10 (out of 17) most informative features in this 

analysis (Figure 3.22 (f)) were also important for the previous BM analysis (Figure 

3.20 (f)). MSCs cultured on PMA with FN or PEA with FN and VEGF had nuclei 

with greater perimeter and area than those cultured on glass with FN (Figure 

3.24).  
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Figure 3.22 Results of a logistic regression used to predict which ECM a given MSC nucleus 
was cultured on after 21 d in OM based on nucleus image analysis. (a) Random sample of 
good segmentations. (b) Mean ± standard deviation of number of segmentations by artificial 
ECM type (11,653 good segmentations; n = 4, PEA n = 3 sample replicates). Variation across 
replicates was greater on the growth factor-based substrates. (c) Confusion matrix showing 
average percentage of classifications for each substrate. VEGF had a comparatively high 
accuracy. Performance for glass with FN and PMA was also relatively good. (d) PCA of all 
features. (e) Logistic regression probability of belonging to each class by correct or 
incorrect prediction. Probabilities of VEGF predictions were spread, whereas those for other 
classes were generally lower over a smaller range. (f) Top 10 most significant coefficients of 
the logistic regression fit for each ECM. 
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Table 3.8 Per-class performance metrics for prediction of substrates at 21 d in OM 
 G G+Fn PMA+FN PEA+FN PEA+FN+BMP2 PEA+FN+VEGF Mean 
Precision 0.32 0.53 0.39 0.13 0.32 0.70 0.40 
Recall 0.23 0.24 0.55 0.23 0.47 0.38 0.35 
f-1 score 0.27 0.33 0.46 0.17 0.38 0.49 0.35 
 

 

Figure 3.23 Random samples of correctly predicted MSC nuclei after 21 d culture in OM. 

 

Figure 3.24 Features of MSC nuclei cultured for 21 d on the artificial ECMs in OM with 
significantly different estimated means ± 95 % confidence interval. Nuclei of MSCs cultured 
on PMA or VEGF tended to be larger than glass with FN. Red, significant (confidence 
interval does not include 0).  
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These results indicate that the addition of OM caused nuclei of MSCs cultured on 

PEA with FN and VEGF to become particularly distinct, and that cells cultured on 

control and PMA with FN substrates are also relatively distinguishable by their 

nuclei. Further, nuclei on PEA with FN and VEGF and on PMA tend to be larger in 

comparison to control conditions. 

3.4 Discussion 

In this chapter, an image processing and data analysis pipeline was developed to 

investigate MSCs using fluorescence images. It was used to analyse datasets of 

MSC morphology and osteogenic-related protein expression patterns studied in 

the previous and current chapters. This approach lent to a more robust 

conclusion compared to hand-picking individual cells, of which no difference 

could be discerned, and also yielded information about heterogeneity across and 

within the substrates (Caicedo et al. 2017). 

The image processing pipeline was based around marker-based watershed 

segmentation of cells by their actin cytoskeleton and nuclei. This model-based 

approach is reported to work well for fluorescence images (Caicedo et al. 2017). 

Due to the size of the mosaic images it was infeasible to use commonly 

employed biological image analysis tools such as CellProfiler (Carpenter et al. 

2006; Kamentsky et al. 2011), and more flexible to use MATLAB and its Image 

Processing Toolbox (Gonzalez & Woods 2010a; Gonzalez et al. 2009). While the 

pipeline was focused on whole-cell segmentation, it was built to allow nuclei 

alone to be analysed. Furthermore, it accommodated the addition of a third 

channel to allow investigation of nuclear or cytoplasmic proteins. A reported 

disadvantage of using custom programs is that they are not modular, unlike 

CellProfiler, or easy to use for routine high-throughput processing (Carpenter et 

al. 2006), but the pipeline here was built in an object-oriented style and it 

supported parallel processing using the MATLAB Parallel Computing Toolbox. 

Still, it was specifically written to process images obtained using the protocols 

described in the methods sections of this and the previous chapter, and so will 

not necessarily translate to other image sets (for example, those recorded using 

a different microscope) without modification, a common problem with scripted 

and CellProfiler-based pipelines (Carpenter et al. 2006; Caicedo et al. 2017). 

However, writing code for the flexible analysis of non-standardised images is an 
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accepted solution (Eliceiri et al. 2012). Future work could focus on enabling the 

analysis of different image magnifications and developing a graphical interface 

for the MATLAB pipeline to enable wider usage; the image labeller has already 

been written with a graphical interface. 

The strength of the conclusions in this chapter should be considered in light of 

the effectiveness of the cell segmentation process. The segmentation pipeline 

worked well for nuclei as evidenced for example by Figure 3.21, but was not as 

successful in identifying the entire cell body using the actin cytoskeleton. In 

many cases the putative cell segmentations were fragments of the cell body 

surrounding the nucleus, for example those shown in Figure 3.5. While the filter 

process was developed to remove these bad segmentations, it was clear that 

some remained (Figure 3.5). As a result, the information about actin morphology 

and texture features was only partial in comparison to nuclei and therefore the 

contribution of nuclei features to conclusions would be more robust and 

informative than those of cell bodies. This may then underlie the fitted 

predictive models attributing higher importance to nuclei features in contrast to 

the actin-based features (for example Figure 3.10 (f), and in the high ranking of 

mean DAPI intensity in the other analyses). Further work is needed to improve 

the cell segmentation process either through the staining procedure or the 

segmentation algorithm. 

Accurate prediction by a classifier of which substrate a cell was cultured on 

indicates a relationship between the various measured features and properties 

of the substrate, albeit through a complex underlying model, here a logistic 

regression (Lever et al. 2016). The results presented here suggest that the FN 

conformations, particularly the isolated conformation on PMA, and the addition 

of growth factors, particularly PEA with FN and VEGF, had a discriminating 

effect on the measured protein and nuclei features, at least for a subpopulation 

of cells. These studies of using a classifier may be useful for future work 

focusing on variations of the artificial ECMs, for example, the addition of new or 

combinations of growth factors, and the use of blends of PEA and PMA 

(Mnatsakanyan et al. 2015), with an interest in establishing how similar the cell 

phenotypes are to those cultured on the artificial ECMs presented here — these 



99 
 
studies may benefit from using a supervised method previously demonstrated for 

fluorescence phenotyping (Jones et al. 2009; Sommer et al. 2011).  

Using a mixed effects model allowed inferences to be made about differences in 

particular features while controlling for inherent variation across replicates 

(Krzywinski et al. 2014; Gelman & Hill 2007), but did limit these inferences to 

experiments where there was more than one replicate for each condition, and 

ignored relationships between features that would be captured by the 

classification analysis. Nevertheless, comparisons of cell morphometrics without 

adjusting for replicate variability has been used to contrast other cell types on 

the artificial ECMs. At 3 h in serum-free culture conditions, it was reported that 

mouse C3H10T1/2 MSCs on the isolated FN conformation were more circular 

compared to those on the network FN conformation (Rico et al. 2016), and L929 

fibroblasts had a larger cell area on the network FN conformation (Vanterpool et 

al. 2014). After 24 h, cell shape, judged by measurements of the segmented 

actin cytoskeleton, tended to be longer or narrower — have a greater aspect 

ratio and eccentricity — on PMA with FN than PEA with FN. MSCs cultured on PMA 

with FN tended to have more homogeneous actin cytoskeletons and rounder 

nuclei at 5 d compared to PEA-based surfaces. While no specific feature of 

nuclei in MSCs after 21 d culture in BM was estimated to be different, those 

cultured in OM on PMA with FN or PEA with FN and VEGF had a larger perimeter 

and area compared to glass with FN.  

Image processing studies of MSCs have suggested that actin and nuclei features 

at early time points (24 h – 3 d) were predictive of differentiated phenotypes 

(Liu et al. 2010; Treiser et al. 2010; Marklein et al. 2016; Matsuoka et al. 2013; 

Vega et al. 2012; Vega et al. 2015). Analysis of the actin cytoskeleton and nuclei 

of MSCs at 24 h and 5 d showed distinct differences in morphology for cells on 

PMA with FN and PEA with FN and VEGF to those on PEA with FN alone. In the 

previous chapter, MSCs on the isolated FN conformation had a higher expression 

of OPN and a distinct biochemical profile compared to those on the network 

conformation. The relationship between MSC morphology and osteogenesis has 

been reported using several biomaterials that constrict cell shape and 

cytoskeletal conformation (McBeath et al. 2004; Kilian et al. 2010). 
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Previous image analysis studies of MSC behaviour have suggested there are 

donor- and time-specific differences in image features (Liu et al. 2010; Treiser 

et al. 2010; Marklein et al. 2016; Matsuoka et al. 2013), but there are conflicting 

studies as to whether these dissimilarities extend to lineage-specific markers 

and proliferation (Stenderup et al. 2001; Surdo & Bauer 2012). The different 

datasets analysed in this chapter were from different donors but only one donor 

was analysed in each experiment; this may partly underlie the variation in 

segmentation counts across the artificial ECMs. However, there was a general 

theme in that cells on PMA with FN and PEA with FN and VEGF were most 

distinct. Repeats using more donors would strengthen these conclusions. 
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4 Metabolomics 

4.1 Introduction 

In the previous chapters, single protein measurements indicated varying degrees 

of osteogenesis in MSCs cultured on the artificial ECMs, and high-content image 

analysis of cytoskeletal, nuclear, and lineage-specific protein expression 

suggested that the ECM compositions differentially influenced MSC 

morphometrics. Further, SR-FTIR analyses revealed broad biochemical 

differences in lipid, protein, and nucleic acid contents in MSCs that were related 

to the underlying FN conformation.  

In this chapter, the metabolomes of MSCs cultured on the artificial ECMs are 

compared using LC-MS to gain understanding of the different biochemical states 

alluded to by the previous results. While there were no individual biomarkers 

that distinguished the different artificial ECMs in this dataset, it is shown that 

metabolic pathway analyses revealed large differences between MSCs cultured 

on the different FN conformations. 

PiMP was used to analyse the metabolomics data. To address the issues detailed 

in the introduction, of consolidating PiMP and improving how LC-MS 

metabolomics data is presented, the development of a tool to explore and 

visualise the relationships (Figure 4.1) that underlie the peak-metabolite-

pathway annotations resulting from an LC-MS metabolomics experiment is also 

described in this chapter.  

 

Figure 4.1 Peak-metabolite-pathway relationships. Several peaks can be annotated by a 
single metabolite. Several metabolites can annotate a single peak. Multiple metabolites can 
belong in the same pathway. A single metabolite can belong to several pathways. 
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The aims of this chapter were to: (1) develop a quick results (QR) application for 

visualising and exploring untargeted LC-MS metabolomics data to improve PiMP, 

and (2) use this and PiMP to compare the metabolomes of MSCs cultured on the 

artificial ECMs. 

4.2 Materials and Methods 

4.2.1 Software Development 

Software was version controlled using a private GitLab server hosted by Glasgow 

Polyomics. Local instances of software were tested before running on a 

production server (http://www.polyomics.mvls.gla.ac.uk). 

4.2.2 Filtering Related Data Interactively (FiRDI) 

FiRDI was written in JavaScript using jQuery, AlaSQL, DataTables, and jQuery. 

4.2.3 Quick Results (QR) Application 

The QR application was written in Python using PiMP, Django, NumPy and Pandas 

packages; and in JavaScript using FiRDI, d3, and HighCharts. Pre-existing 

features in PiMP were used in the QR application, and Bootstrap was used for 

web page layout. 

4.2.4 Metabolomics 

MSCs were cultured as described in the previous chapters for 7 or 14 days on the 

artificial ECMs with n = 4 replicates. For extraction, media was discarded and 

samples were immersed in 1:3:1 methanol:chloroform:water on a shaker for 1 h 

at 4 °C. Extracts were then centrifuged at 4 °C for 3 min at 13,000 RPM before 

storage at -80 °C before use. 

LC-MS was performed by Glasgow Polyomics (University of Glasgow, UK), using 

the following approach: Hydrophilic interaction liquid chromatography (HILIC) 

was carried out on a Dionex UltiMate 3000 RSLC system (Thermo Fisher 

Scientific, UK) using a iHILIC-Fusion(P) column (150 m, 4.6mm, 5 m column, 

Hilicon). Pooled samples were run for quality control. 
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The column was maintained at 30°C and samples were eluted with a linear 

gradient (20 mM ammonium carbonate in water (A) and acetonitrile (B) over 30 

min at a flow rate of 0.3 ml min-1 as follows: 

Time (min) %A %B 
0 20 80 
15 80 20 
15 95 5 
17 95 5 
17 20 80 
30 20 80 

 
The injection volume was 10 µL and samples were maintained at 4 °C prior to 

injection. For the MS analysis, a Thermo Orbitrap Exactive (Thermo Fisher 

Scientific) was operated in polarity switching mode and the MS settings were as 

follows: resolution 50,000, AGC 106, m/z range 70–1400, sheath gas 40, auxiliary 

gas 5, sweep gas 1, probe temperature 150°C, capillary temperature 275°C. 

 
For positive mode ionisation: source voltage +4.5 kV, capillary voltage +50 V, 

tube voltage +70 kV, skimmer voltage +20 V. For negative mode ionisation: 

source voltage -3.5 kV, capillary voltage -50 V, tube voltage -70 V, skimmer 

voltage -20 V. 

Mass calibration was performed for each polarity immediately prior to each 

analysis batch. The calibration mass range was extended to cover small 

metabolites by inclusion of low-mass contaminants with the standard Thermo 

calmix masses (below m/z 1400), C2H6NO2 for positive ion electrospray ionisation 

(PIESI) mode (m/z 76.0393) and C3H5O3 for negative ion electrospray ionisation 

(NIESI) mode (m/z 89.0244). To enhance calibration stability, lock-mass 

correction was also applied to each analytical run using these ubiquitous low-

mass contaminants. 

4.2.5 Metabolomics Data Analysis 

Analysis was performed using PiMP (Gloaguen et al. 2017) with the following 

data processing parameters: relative standard deviation (RSD) filter 0.5, noise 

filter 0.8, parts per million (ppm) window 3, minimum intensity 5000, minimum 

number of detections 3, RT window 0.05, RT alignment using CowCoda. Peaks 
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comparisons with p-value < 0.05 were rejected (Scheltema et al. 2011; Smith et 

al. 2006; Gloaguen et al. 2017). A modified pathway activity score based on the 

pathway-level analysis of gene expression (PLAGE) algorithm (Tomfohr et al. 

2005) (Personal communication, Karen McCluskey, Glasgow Polyomics, University 

of Glasgow, UK) was used to compare metabolic pathway activity. The modified 

score of a pathway is its PLAGE score combined with a hypergeometric 

(overrepresentation) test using Stouffer’s method (Whitlock 2005), which can be 

interpreted as adjusting the pathway activity to compensate for its size. 

Modified activity scores that were associated with pathways that had enough 

detected metabolites compared with the pathway size (overrepresentation test, 

false discovery rate < 0.1) and that had raw PLAGE score p-values < 0.05 in any 

comparison were considered significant. 

4.3 Results 

4.3.1 Developing the QR Application 

The QR web application was designed to display the peaks, metabolites, and 

pathways found in a metabolomics experiment using PiMP (Section 1.4.1; Figure 

1.7). In particular, so that this information was in a single page with interactivity 

to allow a user to browse the relationships between these biological entities. To 

do this, a JavaScript module named Filter related data interactively (FiRDI) was 

developed which can take any relational dataset and present it in a webpage in 

this manner. Displaying relational data in this way may be useful for other non-

metabolomics and even non-biological datasets, so developing the QR 

application in this way — creating a distinct and reusable JavaScript module that 

was used to present the metabolomics data in the QR application — means FiRDI 

may be used to benefit other unrelated projects. In this section, first, FiRDI is 

described, and then the QR web application extension to PiMP, which uses FiRDI, 

is detailed. 

4.3.1.1 FiRDI 

FiRDI is designed to display related data tables in an interactive webpage. It 

presents each data type — for example, peak, metabolite, or pathway — in its 

own table, and each table is interactive in the sense that selecting any row will 

filter out the unrelated data in the other tables. As an example, consider that a 
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certain peak is of interest since it is changing in abundance between 

experimental conditions, and therefore picking out its associated metabolites is 

of biological interest. All the peaks and metabolites resulting from a 

metabolomics experiment are initially displayed in their respective tables, but 

selecting this peak restricts the list of displayed metabolites to only those 

related to that peak. This filter is removable by deselecting said peak. 

FiRDI is run in a webpage created by the user that contains empty table 

elements for each data type to be displayed, meaning that the user controls the 

webpage layout. The relational data is provided to FiRDI in JavaScript object 

notation (JSON) format, and a JavaScript object in a prescribed format is also 

provided by the user which describes the relationship of the tables (Figure 4.2 

(a)). From this JavaScript configuration object, FiRDI compiles a partial SQL 

query based on the described relationships. It is comprised of a SELECT clause 

for all table columns and a parameterised WHERE clause. The WHERE clause has 

a series of predicates that follow the relationships, and is parameterised such 

that when a user selects a table row, the WHERE clause will filter out any 

unrelated data when the query is run. FiRDI then repopulates the tables with the 

filtered dataset. Moreover, the filter is cumulative. For example, if visualising a 

peak-metabolite-pathway dataset, a pathway is selected to see all related 

metabolites and peaks, and a further filter can be added by selecting one of 

those metabolites to show only peaks related to that metabolite in that 

pathway. Further, these filters can be switched on and off in any order. 

The relational data should be interpretable as a connected path graph and have 

only unique rows. In addition, the relationships should be embodied as 

junction/joining tables (Figure 4.2 (b)). As well as describing the table 

relationships, the configuration object also contains information about which 

tables are junction/joining tables, so that when the data is presented in the 

webpage they are hidden from view since they are not relevant for visualising 

the data (Figure 4.2 (c)). 

FiRDI is not restricted to viewing metabolomics data nor limited to the number 

of tables of data that can be displayed and filtered (within the limits of 

computational resources). Selecting related data to a datum of interest is a 

common and general task, and FiRDI allows the display and querying of datasets 
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that can be arranged in the same way as the metabolomics data example (Figure 

4.2 (b)). Finally, FiRDI also provides functionality to replace the initial data with 

a new dataset that has identical relationships and structure without reloading 

the entire webpage. This is useful, for example, when a dataset is perhaps time-

sensitive and needs to be replaced with up-to-date data. 

 

 

Figure 4.2 How FiRDI works. (a) FiRDI is used by providing a set of relational data and a 
description of their relationships. It then populates tables in a web page created by the user 
and provides interactive filtering functionality to visualise and explore the relationships in a 
dataset. (b) An example metabolomics dataset that would be provided to FiRDI. Each Peak 
(peak 1, peak 2, …, peak 7) is annotated (related) by a metabolite via a joining table 
Peak:Metabolite. The same goes for metabolites that are part of a pathway. (c) Using the 
example metabolomics dataset (b), only the Peak, Metabolites, and Pathway tables are 



107 
 
displayed by FiRDI, and the Peak:Metabolite and Metabolite:Pathway joining tables are 
hidden from view. 

4.3.1.2 PiMP QR Application 

FiRDI was described in the previous section, which is a JavaScript module that 

enables the visualisation and interactive filtering of related data in a webpage. 

The use of FiRDI to extend PiMP with the QR application is detailed in this 

section.  

PiMP displays information about the peaks, metabolites, and pathways in a 

metabolomics dataset in different places. Further, the relationships underlying 

the peak-metabolite-pathway mapping could be made more explicit to assist the 

understanding of metabolomics data. These two problems are addressed using 

the QR application, which displays the data in a single interface and makes clear 

the aforementioned complexity in LC-MS metabolomics features. 

The QR application is a single webpage accessed through a link in PiMP (Figure 

4.3). It presents the results of an “analysis”, which is the result of pre-

processing of a metabolomics dataset and comparison between experimental 

conditions (Gloaguen et al. 2017). The title of the analysis and a settings menu 

heads the QR webpage (Figure 4.3 (1)), and below it is the data in tables 

produced by FiRDI. The columns of the peaks table (Figure 4.3 (2)) display peak 

identifiers (ID), RTs, masses, and a symbol representing the direction of 

significant log fold changes across comparisons (titled c0, c1, c2) — the “?” 

symbol above the peaks table is a key for the comparisons. The metabolites 

table (Figure 4.3 (3)) lists the metabolites, and the pathways table lists the 

pathways (Figure 4.3 (4)). Each table is orderable, paged, and selectable. Below 

each table is an information pane (Figure 4.3 (5, 6, 7)) where information 

related to the table row that was selected is displayed. 
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Figure 4.3 Screenshot of the QR webpage with an example analysis titled “tp7”. (1) Title and 
settings button. (2, 3, 4) Interactive tables produced by FiRDI, with ordering, pagination, and 
row selection functions. (5, 6, 7) Information panes that display information related to the 
selected table row above them. Note that nothing is selected in this example. 

When a peak is selected (Figure 4.3 (2)) the peak information pane (Figure 4.3 

(5)) is populated with relevant information (Figure 4.4): the ID, type of peak, 

and MS polarity mode that the peak was recorded in is shown. Further, two 

charts are offered to the user through loading buttons that call asynchronous 

functions, since the charts could take a long time to load (Figure 4.4 (1,2)). The 

first (Figure 4.4 (1)) is an extracted ion chromatogram of the peak across all of 

the experimental samples, which is taken directly from PiMP. The second is a 

box-and-whisker plot of the intensity of that peak across experimental groups 

(Figure 4.4 (2)). The metabolite information pane (Figure 4.5 (left)) provides the 

international chemical identifier key (InChiKey) of the selected metabolite, its 

parts per million, and what adduct was detected. It also shows the Kyoto 

Encyclopaedia of Genes and Genomes (KEGG) structure for the compound and a 

link to the related KEGG compound database entry (Kanehisa et al. 2011). The 

pathway information pane displays a link to the related KEGG pathway database 

(Figure 4.5 (right)) (Kanehisa et al. 2011).  
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Figure 4.4 Peak information pane. (left) The peak information pane displays the peak ID, 
type, and polarity of the selected peak. It also provides two charts related to the peak, (1) an 
extracted ion chromatogram for all samples in the analysis, and (2) a box-and-whisker plot 
of peak intensities across experimental groups.  

 

Figure 4.5 Metabolite and pathway information panes. Information related to the selected 
metabolite, its InChiKey, ppm, detected adduct, structure, and link to the KEGG compound 
database entry (left); and pathway, a link to its entry in the KEGG maps database (right) are 
shown in these panes. 

The settings menu (Figure 4.6), accessed through a settings button (Figure 4.3 

(1)), has controls to show only peaks that are significantly different across 

experimental groups, and to only show peaks that are annotated with authentic 

chemical standards (identifications).  
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Figure 4.6 QR settings. The settings button (Figure 4.3 (1)) opens a settings menu 
containing two options to control what analysis data is shown: significantly changing peaks 
only, and peaks annotated with an authentic chemical standard only. 

An example of exploring metabolomics data and its relationships using the QR 

application is shown in Figure 4.7. The pyrimidine metabolism pathway has been 

selected in the pathways table (Figure 4.7 (1)) to restrict the visualised data to 

peaks (Figure 4.7 (3)) and metabolites (Figure 4.7 (2)) in that pathway. Next, the 

metabolite L-glutamine has been selected to filter out unrelated peaks and 

pathways (Figure 4.7 (4)). It is seen that two peaks are related to L-glutamine, 

and selecting each peak in turn and viewing the peak information pane reveals 

that these are the MS positive and negative mode peaks for this metabolite. 

 

Figure 4.7 Example of using FiRDI to interactively filter metabolomics data in the QR 
application. Selecting the pyrimidine metabolism pathway in the pathways table (1) removes 
all metabolites (2) and their cognate peaks (3) that are not in the pathway. Selecting L-
glutamine in the metabolites table after having filtered on the pyrimidine metabolism 
pathway shows only the peaks annotated with L-glutamine (4). 
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Figure 4.8 shows an outline of how PiMP, FiRDI, and the QR application work 

together. A user navigates to the QR page for their analysis of interest using 

PiMP, and the request is sent to a Django QR view (Figure 4.8 (1)). The view 

populates a Django template, the QR page, which contains the layout shown in 

Figure 4.3 (Figure 4.8 (2)). This runs the QR JavaScript code, which gets the 

analysis data from another Django view, the QR Data function (Figure 4.8 (3)), 

and together with a JavaScript configuration object, it is used to initialise FiRDI 

(Figure 4.8 (4)). FiRDI then fills the tables in the template (Figure 4.8 (5)) and 

the QR page is ready for use. Changing the settings (Figure 4.6) uses the 

functionality in FiRDI to load new data without having to reload the webpage 

(Figure 4.9): for example, a user changes the peak identification setting (Figure 

4.9 (1)) and the QR JavaScript code gets the new data from the Django QR data 

view (Figure 4.9 (2)) and passes it to FiRDI (Figure 4.9 (3)), which empties and 

repopulates the peak, metabolites, and pathways tables in the QR page with the 

new data (Figure 4.9 (4)). 

 

Figure 4.8 Starting the QR application. (1) Request to quick_results_view(), which fills the 
quick_result.html template. (2) quick_results.html runs pimp_quick_results_firdi.js. (3) 
pimp_quick_results_firdi.js gets the data from another view, get_quick_results_data(). (4)  
pimp_quick_results_firdi.js runs FiRDI.js with the data and configuration. (5) FiRDI.js 
populates the quick_results.html page and provides control to pimp_quick_results_firdi.js. 
The webpage is now ready to be used. Names suffixed with “()” indicate Python 
functions/Django views. Names suffixed with “.js” indicate JavaScript functions. 
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Figure 4.9 Loading new metabolomics data from the settings menu. (1) User redefines data 
(for example, show only significant peaks or identified metabolites) by changing a setting in 
the QR settings menu. (2) The new dataset is requested and the view 
(get_quick_results_data(), a Python function/Django view) returns the data. (3) The new data 
is sent to FiRDI, (4) which empties the existing tables and populates them with the new data.  

4.3.2 Metabolomics Analysis of MSCs Cultured on the Artificial 
ECMs 

Metabolomes of MSCs were extracted at 7 and 14 d culture on the artificial ECMs 

and measured using LC-MS. The TIC chromatogram shown in Figure 4.10 shows 

high instrument reproducibility. 946 peaks were detected in the 7 d dataset and 

1032 were detected at 14 d. A plot of the first two principal components of a 

principal components analysis (PCA) of peak intensities revealed little separation 

between ECMs at 7 d, but at 14 d there was slight clustering between PMA and 

PEA-based samples but not those with added growth factors. Using the QR 

application to analyse the data revealed that no peaks annotated by authentic 

chemical standards were significantly changing between ECMs at 7 or 14 d. 

 

Figure 4.10 TIC statistics for positive mode pooled samples. 
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Figure 4.11 PCA of metabolomics data. At 7 d, there was little evidence of clustering by 
substrate, but at 14 d there is slightly more separation between samples cultured on PEA 
with FN and PMA with FN. The variance accounted for by the corresponding principal 
component is shown in brackets. 

Instead of comparing individual metabolites, the pathways they belong to were 

compared. Small changes in individual compounds may be insignificant and 

therefore missed, but these small changes may amount to a large effect if they 

are consistent and grouped by a metabolic pathway (Tomfohr et al. 2005). A 

modified pathway-level analysis of gene expression (PLAGE) score that is part of 

the PiMP ecosystem (Karen McCluskey, Polyomics, University of Glasgow, 

unpublished) was used to compare the metabolomes of MSCs cultured on the 

artificial ECMs. This score combines the pathway activity score calculated by 

PLAGE of changes in compound formulae abundance with an overrepresentation 

test to compensate for the size of a pathway relative to how many compounds 

were detected in it. In general, the lower the modified pathway score, the 

greater the difference in activity between the experimental groups. At 7 d there 

did not appear to be much difference between the artificial ECMs (Figure 4.12), 

whereas at 14 d the activity of many pathways of MSCs cultured on PMA with FN 

compared to PEA with FN were different (Figure 4.13).  
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Figure 4.12 Comparison of pathway activity between MSCs cultured on the artificial ECMs at 
7 d. Note that there was little difference between conditions. Darker/lower modified activity 
score indicates a larger difference in activity. 

 

Figure 4.13 Comparison of pathway activity between MSCs cultured on the artificial ECMs at 
14 d. Many pathways had different activity levels across the FN conformations (PMA + FN / 
PEA + FN), but few were different when comparing the growth factor based ECMs with PEA 
with FN. Darker/lower modified activity score indicates a larger difference in activity. 

While no pathway activity met the threshold of significance at 7 d, several 

pathways had significant differences in activity at 14 d (Figure 4.14). These 

differences were largely observed between MSCs cultured on PEA with FN and 

those on PMA with FN, the two different FN conformations. Some of these 

pathways should be considered carefully as they are ostensibly unrelated to MSC 

or mammalian behaviour, such as bacterial chemotaxis, but, on the other hand, 

metabolites can be in several pathways. Nevertheless, the general trend was 

that there were several metabolic pathway differences based on FN 
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conformation, and the HMG-CoA reductase inhibitors pathway is different 

between PEA + FN and PEA + FN + VEGF.  

 

Figure 4.14 Pathways with different activity levels at 14 d as indicated by a modified activity 
score. Several pathways have a different activity depending on whether MSCs were cultured 
on PMA and PEA, whereas only the HMG-CoA reductase inhibitors pathway was different in 
cells cultured on PEA with FN and VEGF compared to PEA with FN. No pathway activity met 
the criteria for significance comparing PEA with FN and BMP2 to PEA with FN. A lower 
activity score (representing the modified activity score) indicates a greater difference in 
activity between the compared conditions. 

4.4 Discussion 

This chapter described the QR application extension to the PiMP ecosystem, 

which streamlines the visualisation and analysis of metabolomics data. Further, 

it was shown that metabolic pathway analysis of the LC-MS metabolomics data 
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suggested several pathways with different activities in MSCs that depended on 

the FN conformation of the underlying substrate. 

Other approaches to profiling the global state of a cell include transcriptomics 

and proteomics. While metabolomics is comparatively newer, it is equally 

viewed as providing a global view into cell phenotype (Fiehn 2002). As well as its 

newness, metabolomics has shown to be a promising approach to improving the 

understanding of biomaterial-guided cell behaviour (Alakpa et al. 2016; 

McNamara et al. 2012). Together, these points justify the use of metabolomics 

in this study. Further, other omics techniques may complement metabolomics 

data and vice versa (Groen et al. 2016), providing grounds for future work. 

The three main LC-MS metabolomics features — peaks, metabolites, and 

pathways — can be explored using PiMP, but doing so requires navigation to 

different parts of the application; following the flow of information from peak to 

pathway could be made easier. This is necessary in order to highlight the 

ambiguity in the list of metabolites and pathways output by such an analysis. 

The presence of a metabolite or pathway in the list does not guarantee that it is 

part of the true biological context of the system under investigation because of 

possible peak misannotation (Lu et al. 2017). By unifying these features of a 

PiMP analysis into a single QR webpage, the relationships among them are 

explicit and the underlying complexity clear, so that the user can make more 

informed decisions about what aspects of the dataset to focus on. Further, this 

consolidation can expedite data exploration. 

In the process of developing the QR application several choices were made with 

respect to what features to include, and some features are still missing. Future 

work could focus on incorporating the modified pathway activity scores used 

above into the pathways table of the QR page. Further, other databases exist 

that contain biological information about compounds and metabolic pathways. 

Only KEGG pathways (Kanehisa et al. 2011) are currently used in PiMP, but for 

example, the metabolites and pathways in the human metabolome database 

(Wishart et al. 2017) could be used. With the field of metabolomics advancing at 

pace, the modular design of PiMP and the QR application enables the addition of 

new features. 
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The activity changes in metabolic pathways described here can be used to 

generate targets or hypotheses for further experiments that study how the 

artificial ECMs influence MSC behaviour. However, some of the highlighted KEGG 

metabolic pathways contain large numbers of metabolites and some are very 

broad, for example the aminoacyl tRNA biosynthesis and ATP-binding cassette 

(ABC) transporter pathways contain amino acids, and so will appear to have 

changes in activity (Booth et al. 2013), but could be false positive findings. With 

consideration of these points, several of these pathways can be related to 

previous studies of stem cells. Variation in the expression of ABC transporter 

genes distinguished MSCs from other ESCs (Barbet et al. 2012) and their 

expression appeared to identify adult stem cells in mice (Ramalho-Santos et al. 

2002). Studies of the metabolomes of MSCs undergoing osteogenesis on 

nanotopographies made from bacterial inclusion bodies suggested that activity 

of the aminoacyl tRNA biosynthesis pathway did not change with differentiation 

(Seras-Franzoso et al. 2014). Beta-alanine appeared not to change after hypoxic 

pre-treatment of human MSCs implanted into mice, despite the treatment 

improving MSC retention and survival (Beegle et al. 2015). MSCs treated with 

sodium butyrate (a butanoate salt) underwent increased osteogenesis in OM 

compared to OM alone (Chen et al. 2007). Sodium butyrate is a histone 

deacetylase inhibitor, and given that nuclei measurements based on DAPI DNA 

staining contributed to the discrimination of which artificial ECM an MSC was 

cultured on (described in the previous chapter), a possible set of experiments is 

to explore the epigenome, or at least specific histone modifications (Jenuwein & 

Allis 2001; Strahl & Allis 2000), across the artificial ECMs; biomaterials are 

reported to be able to regulate stem cell epigenetics (Crowder et al. 2016). In 

all, this information could be used to inform the rational design of novel 

biomaterials for guiding MSC and stem cell fate for the purpose of tissue 

engineering and stem cell biology (McNamara et al. 2012).  
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5 General Discussion and Conclusions 

5.1 Discussion 

5.1.1 Artificial ECMs for MSC Control 

The control of stem cells in vitro is important for understanding their biology 

and to exploit their potential for TERM. Biomaterials provide this control in the 

form of a tailored extracellular environment. For example, biomaterials have 

been customised to present variations in stiffness (Engler et al. 2006), 

topography (Dalby et al. 2007), and chemistry (Curran et al. 2005). The work 

presented here is the first characterisation of primary STRO-1+ MSC behaviour on 

material-driven FN and growth factor matrices using high-content automated 

fluorescence microscopy and untargeted metabolomics. 

In vivo, protein sequestration of growth factors and ECM constituents has a 

significant role in controlling stem cell behaviour, and so biomaterials that 

mimic or present ECM-inspired cues are particularly promising for in vitro stem 

cell guidance (Hettiaratchi et al. 2016). Synthetic polymers are a popular 

approach to control the assembly and patterning of ECM proteins in vitro 

because they can be biocompatible, customisable, and compliant with various 

manufacturing techniques to build complex substrates (Donnelly et al. 2017), 

and differences in their chemistry lead to modulation of adsorbed proteins 

(Krutty et al. 2016). For example, substrates covered with long polymer chains 

terminated with different chemical groups have been used to vary the pattern of 

FN adsorption and therefore cell behaviour (Araújo et al. 2016; Lin et al. 2015).  

The most notable findings related to the artificial ECMs in this thesis were that 

the difference in FN conformation had a notable effect on the cytoskeletal 

structure, nuclei organisation, and metabolic activity of the cultured MSCs. Prior 

work demonstrating that, for either the same MSCs or a model mouse MSC cell 

line, PMA was generally associated with differentiation and PEA with 

maintenance of multipotency (González-García et al. 2012; Rico et al. 2016), is 

in line with these data. Several studies have also investigated the variation in 

substrate chemistry to control adsorbed FN conformation (Keselowsky et al. 

2003; García et al. 1999; Mitsi et al. 2006; Phillips et al. 2010; Araújo et al. 
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2016; Klotzsch et al. 2014), but these have not produced such physiologically-

similar FN matrices as those seen on PEA (Salmerón-Sánchez et al. 2011). Other 

ECM proteins are used in studies of controlling protein adsorption for controlling 

cell behaviour, such as vitronectin and collagen (Salasznyk et al. 2004), but FN is 

particularly well studied and has been used as a part of many biomaterials 

(Wilson et al. 2005; Zollinger & Smith 2017). 

The addition of growth factors to the FN network conformation has been shown 

to enhance the activity of BMP2 and VEGF in a synergistic effect (Llopis-

Hernández et al. 2016; Moulisová et al. 2017). BMP2 is associated with inducing 

osteogenesis in MSCs (Carreira et al. 2014), and VEGF is reported to enhance 

mineralization, proliferation, and survival in MSCs (Mayer et al. 2005; Pons et al. 

2008). Other approaches to present these growth factors to cells that have had 

reported effects include, for example, artificially crosslinking BMP2 to FN (Hauff 

et al. 2015), or directly covalently immobilising VEGF to the substrate (Guex et 

al. 2014), but these approaches required chemical modification of the growth 

factors for linking to occur, whereas the ECMs used here rely on the natural 

binding properties of FN and its growth factor binding site for adsorption. With 

these studies in mind, especially those on the PEA-based FN network matrices 

with growth factors, it was hypothesised that the artificial ECMs with growth 

factors would also affect STRO-1+ MSC differentiation. However, there was no 

consistent difference between the FN network with and without growth factors. 

The only indication of an effect was from the results of the image classification 

task, where MSCs cultured on the FN network with VEGF could be accurately 

predicted. There was no such discrimination when using BMP2 instead. However, 

these prior studies of the synergistic effect between the FN network and growth 

factors used different cell types (commercially-sourced MSCs and HUVECs) and 

measurement techniques, which may explain this difference. At least for 

topographies, it has been reported that there are cell type-specific responses to 

identical biomaterials (Biela et al. 2009). 

With respect to using these artificial ECMs for TERM, using primary cells 

originating from the target tissue, as opposed to transformed cell lines or those 

that are processed using proprietary methods before procurement, is important 

so that results can be as similar as possible to the in vivo environment. The 
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human STRO-1+ bone marrow cell population is believed to contain actual MSCs, 

but there are also other markers like STRO-1+, such as CD146 (Sacchetti et al. 

2007), NESTIN (Méndez-Ferrer et al. 2010; Isern et al. 2013), CD271 (Tormin et 

al. 2011), or VCAM1 (Gronthos et al. 2003), associated with the same claim 

(Bianco 2014), highlighting the lack of consensus on MSC identity (Lv et al. 

2014). A downside of working with these specific primary cells is that they are 

obtained from donors undergoing surgery, meaning supply is limited and 

unpredictable, which forms a bottleneck in throughput. Small molecules 

discovered to accelerate the rate of MSC self-renewal while maintaining their 

multipotency may be a useful solution to this problem (Schugar et al. 2008). 

Each substrate used in this work was produced one at a time, meaning that 

throughput was limited not only by the supply of cells but also by the rate of 

substrate production. Several studies have demonstrated the use of high-

throughput approaches to quickly produce combinatorial arrays of biomaterial 

components, referred to as polymer microarrays. This has been used to produce 

arrays of different ECM proteins, synthetic polymers, artificial peptides, and 

small molecules in order to discover which combinations have a desirable effect 

on stem cell behaviour (Coyle et al. 2016). For example, arrays comprised of 

patches of varying concentrations of BMP2 and collagen to discover that which 

elicited the greatest degree of MSC osteogenesis (Ghaemi et al. 2016). A 

microarray of a variety of synthetic polymers was tested with the aim of 

determining which best maintained MSCs in long term culture (Duffy et al. 2014). 

The approach has even been used to make arrays of hydrogels with varying 

stiffness in order to examine the effect on MSC osteogenesis (Gobaa et al. 2011). 

An obvious improvement to the experimental methods used in this thesis is 

therefore to use polymer microarrays to rapidly increase the number of 

replicates and add the capacity for novel variants of the artificial ECMs, such as 

changes in protein concentrations or entirely new combinations of growth 

factors and proteins.  

5.1.2 High-Content Biomaterial Analyses 

Fluorescence image analysis is a keystone in many of the artificial ECM studies. 

It was also a predominant technique in this project, but it was used for the high-

content analysis of automated microscopy images as opposed to manually 
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selected pictures used in these previous works. This was critical to ensure 

robustness of conclusions and for abrogating the bias associated with selecting 

regions of a sample to image. The availability of general purpose fluorescence 

image analysis packages like CellProfiler (Kamentsky et al. 2011) and Fiji 

(Schindelin et al. 2012) have been met with broad adoption (Caicedo et al. 2017) 

but they do not necessarily meet the requirements of every imaging task, 

entailing the use of a bespoke MATLAB and R pipeline for the analysis (Eliceiri et 

al. 2012). Nevertheless, the pipeline followed the general outline of a standard 

fluorescence image analysis procedure (Eliceiri et al. 2012). 

The microscopy hardware used in this thesis, while automated, was a fast, single 

sample mosaic image solution. Though the software controlling the microscope 

allowed for the mosaic imaging of multiple samples at the same time, the set up 

did not support a predefined arrangement of positions to image. Samples had to 

be arbitrarily placed on the microscope stage for imaging, and for each use 

these positions had to be mapped using the software. This process was slow in 

comparison to using high-throughput microscopes, which are typically used to 

image each well of a tissue culture plate or each section of a regularly organised 

array of cell cultures (Pepperkok & Ellenberg 2006). Indeed, many polymer array 

studies make use of high-throughput fluorescence microscopes (Pepperkok & 

Ellenberg 2006), and the throughput of future work would benefit from this. 

A limitation of using fluorescence microscopy was the false positive staining 

inherent in using certain antibodies and dyes. Actin was also not a perfect 

candidate for cell segmentation. These impediments became particularly clear 

when examining the segmentations produced by the MATLAB pipeline, for 

example in the form of DAPI-stained matter that was not relevant cellular 

material, or the high number of accurate rejections made during the filtering 

step, such as those that were incomplete segmentations. There are alternatives 

to using antibody-based labelling including label-free imaging such as by phase 

contrast microscopy (Meijering 2012) or whole homogenous cell staining such as 

a cytoplasmic dye like CellTracker (Reynolds et al. 2013). However, the 

advantage of using a cellular protein like actin is that, as well as being useful for 

segmentation, its provides other features that are relevant to cell behaviour on 

biomaterials, such as its distribution. The alternative suggestions only provide 
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morphological information. There is a balance between the extra information 

afforded by a channel containing an informative marker and one dedicated 

solely to improving segmentation performance. 

High-content fluorescence image analysis is not the only high-information option 

for directly studying cellular interactions with biomaterials. For example, focal-

plane array FTIR imaging enables rapid IR measurement over a large area 

(Heraud & Tobin 2009), and this has been used to profile sizeable regions 

(approximately 250 µm x 250 µm at 4 µm resolution) of MSCs undergoing 

differentiation in various culture conditions (Krafft et al. 2007). FTIR is label-

free and produces data that can be processed using techniques similar to the 

multivariate analyses used in this thesis. Equally, there are several high-

throughput measurement techniques to analyse the biomaterials themselves 

(Urquhart et al. 2007). Time-of-flight secondary ionisation mass spectrometry is 

a tested approach for profiling the protein composition of biomaterials and 

polymer arrays (Mei et al. 2010; Ghaemi et al. 2016). Together, the relationship 

between material properties and cell behaviour can be rapidly mapped using 

high information content approaches and multivariate statistics. 

It should be noted that the performance metrics for the image classification task 

were generally low, with precision and recall rarely ascending above 50 %. The 

classifier performed similarly for all classes overall, with no one class 

particularly more successful or worse than the others. Classification is not 

necessarily an easy task, and will be particularly hampered by variability within 

the classes of the training data. Many reasons could be suggested to explain this 

variability. Perhaps only a subset of the MSCs have the capacity to respond, or 

respond with a similar phenotypic change, to the artificial ECMs. This is 

supported by the previously mentioned uncertainty about the true in vivo 

identity of MSCs and over the efficiency of markers for enriching for MSCs — not 

all STRO-1+ cells have differentiation potential (Stewart et al. 1999; Gronthos et 

al. 1994). Even with populations of cells derived from a single ancestor there can 

be substantial variability within gene and protein expression (Cote et al. 2016; 

Elowitz et al. 2002). There is also likely flexibility in the range of expression 

values that underlie a given phenotype (Huang 2010), that may make 

classification difficult. Further, the changes that occur needed to be measured 
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with the chosen fluorescence markers. It could be that there were ECM-wide 

phenotypic changes occurring, but those phenotypic markers were not labelled. 

For some of the image processing results, the classification results did not 

always tally with those of the inference task. Classification works by computing 

a relationship between image features but inference compares the features in 

isolation. The relationships may be more informative for explaining differences 

in MSC phenotype than any given feature alone. The limitation of using 

classification is that the model chosen to represent the relationship is difficult 

to comprehend with respect to the real-world biology. A logistic regression was 

chosen as the model since it is one of the simpler choices, and the coefficients 

of the model can be interpreted in the context of the features measured. 

Random forests, support vector machines, and neural networks were also tested, 

which are more complex but flexible models that may have better performance, 

yet there was no substantial difference in their capabilities for these datasets 

compared to the logistic regression (neural networks tested by Vihang Godbole, 

Glasgow Polyomics, University of Glasgow).  

5.1.3 Metabolomics and Metabolomics Data Analysis 

Metabolomics has been used to identify small molecules related to the effects of 

biomaterials upon stem cells that could be used to control their behaviour 

without biomaterials or improve understanding of the mechanisms behind 

differentiation (McNamara et al. 2012). Doing so follows the approach of 

identifying individually significantly changing metabolites related to a desirable 

biomaterial effect, such as maintaining multipotency. For example, untargeted 

LC-MS metabolomics was used to identify changes in lipids that accompanied 

MSC bone or chondrogenic differentiation on hydrogels of varying stiffness 

(Alakpa et al. 2016). Unfortunately, no single metabolite that was matched to an 

authentic standard was changing significantly in this work. Perhaps at earlier 

time points significant changes would be observed, as sharp changes in individual 

metabolites could be evened out by flux with time. This could conceivably 

manifest as the observed changes in pathway activity, which absorb the changes 

as part of homeostasis. Admittedly, the cited identification of lipids associated 

with MSC differentiation was performed at 1 and 4 weeks, so this theory may not 

hold true in all cases. The low numbers of metabolomics replicates used in this 
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thesis may also underlie the inability to make statistically backed inferences 

about metabolite changes. 

The interpretation of untargeted LC-MS metabolomics data is complicated by the 

complexity of the underlying metabolite identification process. The QR web 

application enables exploration of the metabolites in an LC-MS metabolomics 

dataset while visualising this complexity in a straightforward manner. Coupled 

with the information and infrastructure already provided by PiMP, such as the 

pathways and comparisons between conditions, the QR page is expected to 

replace the current user interface for PiMP, after some of the changes discussed 

in the relevant section have been made. Further, FiRDI provides a means of 

visualising related data in a web page while providing functionality to 

interactively query the relations of a data point of interest. In bioinformatics, 

this may be useful for such areas as proteomics by visualising measured 

peptides, the proteins they are believed to represent, and perhaps the functions 

they are associated with (Mallick & Kuster 2010). More generally, many data sets 

can be interpreted under a relational model, for which FiRDI may be of use.  

Alternative web-based metabolomics pipelines to PiMP exist, such as XCMS 

online (Tautenhahn et al. 2012; Gowda et al. 2014), workflow4metabolomics 

(Giacomoni et al. 2015), and MetaboAnalyst (Xia et al. 2015), but they either are 

not streamlined or do not offer the same level of functionality and biological 

context (Gloaguen et al. 2017; Spicer et al. 2017). Further, given that PiMP 

forms part of the provision of metabolomics data by Glasgow Polyomics, it was 

the best pipeline to extend with the QR application. Nevertheless, since the 

relevant functionality has been abstracted as FiRDI, it could be used in other 

web-based applications. While stand-alone applications for metabolomics (for a 

review, see Booth et al. 2013) may be less user-friendly because of set up, 

installation, and hardware requirements, the concepts that are embodied by the 

QR application could be readily adopted. 

There were certain compromises between complexity, flexibility, and usability 

in the QR application. For example, it provides an option to filter out non-

statistically significantly changing metabolites/peaks, but this was implemented 

at the cost of flexibility: users are restricted to using the standard multiple 

correction p-value threshold of 0.05 (Altman & Krzywinski 2016). This may not 
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be a problem, but some users may wish to have more control. For those focussed 

on pathway analysis, this may be of no consequence anyway. It is anticipated 

that the pathway-level analysis tools used in this thesis will be integrated into 

the QR application, and that changes will be made to allow custom statistical 

thresholding of both pathways and metabolites/peaks. With this in mind, the QR 

application has received positive feedback from users. 

5.1.4 General Biological Discussion 

The results of this thesis did not persuasively demonstrate that the artificial 

ECMs induced osteogenesis in the cultured MSCs, although control experiments 

did indicate that these cells were capable of differentiation. In particular, the 

lack of changes in osteogenic markers, as measured by ICW and image analysis, 

suggested this. Furthermore, no individual identified metabolites were 

significantly changing between conditions, but changes were anticipated 

because of the relationship between biomaterials and changes in the 

metabolome in stem cells (McNamara et al. 2015; Alakpa et al. 2016; 

Agathocleous & Harris 2013), and the coverage of many common pathways by 

the list of potential identified metabolites (Glasgow Polyomics, University of 

Glasgow). Other phenotypic differences were indicated in the image analysis 

classification, image analysis inference, and metabolomics sections, such as the 

relatively successful classification, observed differences in nuclei features, and 

changes in pathway activity of MSCs cultured on PMA with FN. These results 

support the argument that the different FN conformations alter MSC phenotype 

(González-García et al. 2012) or other cell types (Rico et al. 2016; Moulisová et 

al. 2017; Salmerón-Sánchez et al. 2011), but the evidence presented herein was 

limited by the poor image classification performance, lack of individually 

changing metabolites, and little discrimination of the MSCs cultured on the 

corresponding PEA with FN substrate. The addition of growth factors to the FN 

network conformation did not convincingly lead to phenotypic changes such as 

osteogenesis, in contrast to previous studies (Llopis-Hernández et al 2016; 

Moulisová et al. 2017). It was expected that the techniques used here would 

have shown changes in MSCs cultured on these surfaces because of these works. 

It is possible that differences in cell source and cell culture conditions to the 

published works underpin these conclusions. 
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5.2 Future Work 

FN has binding activity for a range of growth factors beyond BMP2 and VEGF that 

have roles in the regulation of a variety of cells (Martino & Hubbell 2010; 

Rodrigues et al. 2010), and it would be interesting whether the effect of these 

or combinations thereof would be enhanced by being presented using the PEA-

based FN network conformations. This future work would particularly benefit 

from high-throughput biomaterial manufacturing techniques and therefore high-

throughput analysis techniques. 

The metabolomes of MSCs on the artificial ECMs were investigated in this thesis, 

but there are other omics technologies that provide a similarly detailed insight 

into cell behaviour. Further, it is believed that by integrating omics data sets, 

particularly transcriptomics with metabolomics data, more information about 

the biology of the system can be obtained (Groen et al. 2016), and recent 

developments in PiMP have enabled the analysis of metabolomics datasets in the 

context of genome-scale metabolic networks (the prediction of metabolic 

networks using transcriptome data) using MetExplore (Cottret et al. 2010). A 

greater understanding of the biology of MSCs cultured on these artificial ECMs 

may come from studies using multiple omics technologies. 

Many metabolic pathways appeared to be changing in MSCs between the 

different FN conformations, and with more time these could be studied in detail. 

It is important to work out which pathways are already associated with stem cell 

metabolic activity, which are irrelevant, and which of these are novel findings. 

When viable pathways are identified, it is important to modulate their activity, 

perhaps using stimulating or inhibiting small molecules targeted against certain 

members, to test the findings and establish whether they would be useful 

candidates as composites of new biomaterials, or as alternatives to regulate 

stem cell self-renewal and differentiation for TERM (Schugar et al. 2008). 

The process of mapping from measured molecules to actual biological knowledge 

is common in omics technologies, for example, from DNA fragment to the gene it 

was derived from, or from a peptide to the protein it comprised. Together this 

knowledge is more informative than the list of putative proteins or genes alone, 

and sometimes is critical for interpretation. Other web-enabled pipelines for 
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analysing or visualising omics data may benefit from the functionality offered by 

FiRDI in the future. 

5.3 Conclusion 

In this thesis, human bone marrow STRO-1+ MSCs were characterised on artificial 

ECMs comprised of different FN conformations with added growth factors. This 

revealed substrate-dependent changes in MSC behaviour, highlighting the 

potential for modulating protein conformation in order to control cell behaviour. 

During this process, new techniques were developed or demonstrated to improve 

existing approaches to analyse cells on these biomaterials, namely using 

automated microscopy and high-content image analyses, and using 

metabolomics. Further, as a result of needing to improve the analysis of 

untargeted LC-MS metabolomics data, a metabolomics data visualisation tool 

was developed, which also has further reaching implications for the general 

visualisation and interaction of related data. 
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