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Abstract

DNA methylation is an epigenetic modification with significant roles
in various biological processes such as gene expression and cellular pro-
liferation. Aberrant DNA methylation patterns compared to normal
cells have been associated with a large number of human malignan-
cies and potential cancer symptoms. In DNA methylation studies,
an important objective is to detect differences between two groups
under distinct biological conditions, for e.g., between cancer/ageing
and normal cells. BiSulfite sequencing (BS-seq) is currently the gold
standard for experimentally measuring genome-wide DNA methyla-
tion. Recent evolution in the BS-seq technologies enabled the DNA
methylation profiles at single base pair resolution to be more accu-
rate in terms of their genome coverages. The main objective of my
thesis is to identify differential patterns of DNA methylation between
proliferating and senescent cells. For efficient detection of differential
methylation patterns, this thesis adopts the approach of Bayesian la-
tent variable model. One such class of models is hidden Markov model
(HMM) that can detect the underlying latent (hidden) structures of
the model. In this thesis, I propose a family of Bayesian hierarchical
HMMs for identifying differentially methylated cytosines (DMCs) and
differentially methylated regions (DMRs) from BS-seq data which act
as important indicators in better understanding of cancer and other
related diseases. I introduce HMMmethState, a model-based hier-
archical Bayesian technique for identifying DMCs from BS-seq data.
My novel HMMmethState method implements hierarchical HMMs to



account for spatial dependence among the CpG sites over genomic

positions of BS-seq methylation data.

In particular, this thesis is concerned with developing hierarchical
HMMs for the differential methylation analysis of BS-seq data, within
a Bayesian framework. In these models, aberrant DNA methylation
is driven by two latent states: differentially methylated state and
similarly methylated state, which can be interpreted as methylation
status of CpG sites, that evolve over genomic positions as a first order
Markov chain. I first design a (homogeneous) discrete-index hierar-
chical HMM in which methylated counts given the methylation sta-
tus of CpG sites follow Beta-Binomial emission distribution specific
to the methylation state. However, this model does not incorporate
the genomic positional variations among the CpG sites, so I develop
a (non-homogeneous) continuous-index hierarchical HMM, in which
the transition probabilities between methylation status depend on the

genomic positions of the CpG sites.

This Beta-Binomial emission model however does not take into ac-
count the correlation in the methylated counts of the proliferating
and senescent cells, which has been observed in the BS-seq data ana-
lysis. So, I develop a hierarchical Normal-logit Binomial emission
model that induces correlation between the methylated counts of the
proliferating and senescent cells. Furthermore, to perform parameter
estimation for my models, I implement efficient Markov Chain Monte
Carlo (MCMC) based algorithms. In this thesis, I provide an ex-
tensive study on model comparisons and adequacy of all the models
using Bayesian model checking. In addition, I also show the perfor-

mances of all the models using Receiver Operating Characteristics



(ROC) curves. I illustrate the models by fitting them to a large BS-
seq dataset and apply model selection criteria on the dataset in search
of selecting the best model. In addition, I compare the performan-
ces of my methods with existing methods for detecting DMCs with
competing methods. I demonstrate how the HMMmethState based
algorithms outperform the existing methods in simulation studies in
terms of ROC curves. I present the results of DMRs obtained using my
method, i.e., the results of DMRs with the proposed HMMmethState
that have been applied to the BS-seq datasets. The results of the hier-
archical HMMs explain that I can certainly implement these methods
under unconditioned settings to identify DMCs for high-throughput
BS-seq data. The predicted DMCs can also help in understanding the

phenotypic changes associated with human ageing.
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Chapter 1
Introduction

The recent arrival of ultra-high throughput, next generation sequencing (NGS)
technologies has revolutionized the genetics and genomics fields by allowing rapid
and inexpensive sequencing of the billions of bases in human and other genomes.
The rapid deployment of NGS in a variety of sequencing-based experiments has
resulted in fast accumulation of massive amounts of sequencing data. These
technologies have enhanced the potential for understanding the workings of bio-
logical systems in depth and the development of personalized medicine and are

having an impact on the types of questions that biologists can ask these days.

In the past few years, several pioneering studies have put the focus on epige-
netics. Literally, the word epigenetic means in addition to alterations in genetic
sequence. Epigenetics generally focuses on biological processes that regulate the
activation of certain genes, i.e., how and when the genes are switched on or
switched off, whereas epigenomics is involved in the analysis of epigenetic mo-
difications across many genes in a cell or a multi-cellular organism. Epigenetic
processes control normal organism functions. However, if they occur abnormally,
there is the possibility of unfavourable health effects or diseases, such as cancer.
The most significant epigenetic process, which has been studied extensively in the

recent years due to the availability of high-throughput sequencing technology, is
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DNA (deoxyribonucleic acid) methylation.

1.1 DNA methylation

Figure 1.1 shows DNA contains combinations of the four nucleotides which in-
clude cytosine(C) (pink), guanine(G) (green), thymine(T) (blue) and adenine(A)
(orange). DNA methylation is a chemical modification of DNA resulting from
the addition of a methyl (C'Hs) group to a DNA nucleotide. DNA methylation is
an epigenetic modification which regulates gene transcription and is recognized
for their role in gene expression (Gopalakrishnan et al.,; 2008). The CpG sites
are DNA dinucleotide positions of DNA where a C nucleotide is followed by a G
nucleotide in the linear sequence of nucleotides along its 5 — 3’ direction. A
CpG site (CpG dinucleotide) is defined to be methylated, if a C' Hj group is added
to the C. In addition, DNA treatment with sodium bisulfite chemicals initiates
conversion of unmethylated cytosine to Uracil (U) which is subsequently conver-
ted to T by DNA polymerase, whereas a methylated cytosine remains unaffected

(Krueger et al., 2012).

1.1.1 Importance of DNA methylation

Cytosine methylation of DNA plays an active role in epigenetic mechanism to
control gene expression, silencing or genomic imprinting (Li et al., 1993), both
during the normal developmental stage and as well as in the adult (Law and
Jacobsen, 2010). The occurrence of DNA methylation was first confirmed in
human cancer in 1983. DNA methylation plays a key part in the development of
cancer and is also an active regulator of gene transcription. It enables a single
cell to develop into a complex multicellular organism (Smith and Meissner, 2013),

in the formation of chromatin structure, which is another important epigenetic
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One type of epigenetic modification: methylation
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Figure 1.1: DNA methylation.
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modification.

1.1.2 Differential methylation

Several studies have confirmed that genes with a promoter region that contains a
high concentration of 5'-methylated Cs are transcriptionally silent. These studies
mainly discuss the functional changes to the promoter regions that are differenti-
ally methylated between cancer/ageing and normal cells. Aberrant DNA methy-
lation patterns are a hallmark feature of cancer (Das and Singal, 2004, Kulis and
Esteller, 2010, Laird and Jaenisch, 1994) and have been widely associated with
numerous diseases (Robertson, 2005). In this context, I shall use differentially
methylated C (DMC) to denote a differentially methylated C and differentially
methylated region (DMR) to denote a genomic region of adjacent DMCs. DNA
hypermethylation is linked to the activation of genes and DNA hypomethylation
(Esteller, 2002, Qu et al., 2014) has been associated with the development of

cancer through various mechanisms.

1.2 Motivation

Many studies have confirmed correlation between promoter methylation and gene
expression (Henrichsen et al., 2009, Moarii et al., 2015). In addition, the occu-
rence of wide-ranging aberrantly methylated regions is a characteristic feature of
various kinds of cancer (Ehrlich, 2002). Identifying DMRs in the genome is cru-
cial for attaining deeper knowledge into the functioning of epigenetic processes,
from the cellular level to multicellular organisms, i.e., eukaryotes. Understanding
functional (regulatory) regions is one of the main challenges in epigenetics. One
of the most essential steps during the epigenetic process is to determine how pro-
teins interact with targeted DNA for the regulation of gene expression (Laurent

et al., 2010).



1. Introduction

To uncover the regulation mechanisms of the epigenetic process, one promising
approach is to identify DMRs on the genome scale. The popular technology used
to study the mechanism is BiSulfite sequencing (BS-seq). Epigenetic regulation
is a routine mechanism in cancer for silencing the expression of tumor suppressor
genes (Blair and Yan, 2012) and actively participates in various cellular processes,

such as, gene expression and regulation (Newell-Price et al., 2000).

One of the most important applications in the field of epigenetics is the epigenetic
modifications to the genome of cancer cells that do require an alteration in the
nucleotide sequence. Understanding the pattern of epigenetic mechanisms seems
likely to be effective in the future for cancer detection, therapy and prevention.
BS-seq procedure is one of the most reliable technologies to profile genome-wide
DNA methylation reads in eukaryotes. In contrast to the rapid development of
numerous pre-processing, alignment and mapping softwares, tools for analysing
the generated methylation reads and implementing a flexible pipeline to identify
differential DNA methylation patterns in two groups, e.g., cancer and control

samples, are comparatively limited.

1.3 Bayesian latent variable framework for the

analysis of differential methylation

In this thesis, I have focussed on the application of latent variable Bayesian
techniques to epigenomics, in particular to detect DMRs. These DMRs are usu-
ally studied by performing BS-sequencing, an experimental prcedure that applies
high-throughput methods on bisulfite-induced DNA to ascertain the methylation
status at each CpG site. The epigenomic profiles of differential methylation of
DNA are examined to assess the regulatory roles of differentially expressed genes

which are generally identified with predominant hypomethylation.
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Due to the rapid development of BS-seq technology, several algorithms have been
designed to analyse the data and identify the DMRs of interest, but the algo-
rithms are mostly restricted to Fisher’s exact test or Wald’s test. On the other
hand, T focussed on developing a method that is suitable for modelling the data
observations with respect to the data-generating process and the underlying ge-

nomic structure.

I incorporate the genomic location in the model to help identify the DMRs of
interest. I designed a family of hierarchical hidden Markov models (HMMs),
HMMmethState, that treat the genome as a sequence of latent states, classi-
fied as DMCs or similarly methylated Cs (SMCs). I implemented Markov Chain
Monte Carlo (MCMC) based algorithms using Forward-sum recursions, Gibbs
samplers and the Metropolis-Hastings (M-H) algorithms to estimate the latent

states and the model parameters.

In addition, I have explored several characteristics of my proposed method to
study its performance. The main advantage of HMMmethState is the inclusion
of the Bayesian approach to parameter and state estimation. Furthermore, my
proposed choice of the Binomial distribution to model the distributions at the first
stage of the hierarchical model of methylated counts reports the approximately
random process during the sampling of the two types of reads, i.e., methylated

or unmethylated.

1.4 Thesis outline

This thesis is motivated by questions in epigenetics and aims to analyse BS-seq
data applied to the study of differential methylation patterns. In Chapter 2, 1
introduce basic statistical concepts that form the basis of my analysis. I pro-

vide a brief description of the Bayesian framework and MCMC based algorithms
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that form the basis of my research. In addition, I also describe a family of models
within a hierarchical HMM framework, which aim to characterize systems that are
dependent on an underlying structure. The generic Bayesian estimation techni-
ques involving MCMC based algorithms and also the Forward-sum recursion are
also described in Chapter 2. Implementation and further developments of the
MCMC based algorithms and Forward-sum recursions are described in details in
Chapters 4 and 5, tailored to the nature of the problem in question. Furthermore,
I give a brief description of the implementation of MCMC based algorithms and
convergence tools. Finally, I describe the model selection criteria and also poste-
rior predictive analysis within the Bayesian framework, which form a substantial
part of my analysis. However, not all model selection criteria are directly applica-

ble to my problems and I provide an explanation of those difficulties in Chapter 6.

Chapter 3 gives an introduction to the high-throughput sequencing technology
that generates the data analysed in the remaining part of this thesis and existing
differential methylation caller approaches. It describes the sequencing procedure
and the subsequent steps involved in the processing of BS-seq methylation data.
Furthermore, it also provides an overview of the BS-seq tool, Bismark, that per-
forms the alignments of bisulfite-treated reads to a reference genome for further
analysis. In addition, I also give brief descriptions of existing differential methy-
lation caller approaches that aim to detect DMCs in the genome. Finally, I also
introduce the structure of the BS-seq datasets that are used for the analysis in

this thesis.

In Chapter 4, I propose two HMMmethState models (BBDM and BBCM) that
I developed using a hierarchical Beta-Binomial emission distribution and explain
its association with the data-generating process. I also provide a detailed descrip-
tion of the Bayesian estimation procedure for estimating the model parameters

and hidden states, which subsequently enables the identification of DMCs.



1. Introduction

In Chapter 5, I develop an extension to the HMMmethState models. I propose an
improved emission distribution as the Beta-Binomial emission distribution fails
to capture the observed correlation between the methylated counts of the two cell
types (senescent and proliferating cells). I implement the extended HMMmeth-
State models (NLBD and NLBC') using a hierarchical bivariate Normal-Binomial
distribution and explain their associations with the data-generating process. Here
also, I provide a detailed description of Bayesian estimation procedure for esti-
mating the model parameters and hidden states, which subsequently enables the

identification of the DMCs.

Chapter 6 provides a description of a simulation study of all the HMMmethState
models and compare the model performances based on the selection criteria and
ROC curves. In addition, I include the visual exploration and assessment of
some features of the model using posterior predictive checks. I also discuss the
comparison among the model selection criteria and posterior predictive p values
of the competing HMMmethState methods. Furthermore, I also discuss the the
performance of my HMMmethState model and assess my proposed algorithms by
comparing with two existing differential methylation caller approaches described
in Chapter 3. Finally, I present the results of HMMmethState on chromosomal

datasets and compare them with the two competing methods.



Chapter 2

Statistical Concepts and Methods

In this chapter, I introduce a number of statistical concepts and methods used
and implemented throughout this thesis. In Section 2.1, I introduce the Bayesian
techniques used in Chapters 4 and 5, in particular Markov Chain Monte Carlo
(MCMC) based inference. These MCMC methods are combined with the hidden
Markov models (HMMs) from Section 2.2 to create Bayesian HMMs introduced in
Chapters 4 and 5. The concepts of identifiability and label switching are outlined
in Sections 2.2.5 and 2.2.6, respectively. In addition, I also discuss Bayesian

model checking and model selection (Section 2.3) implemented in Chapter 6.

2.1 Bayesian framework

In a Bayesian framework, the parameters are considered as random variables
whereas classical framework treats parameters to be unspecified but fixed. For a
given model specification, the data D can be modelled based on the parameters 0,
a vector of random quantities with prior distribution p(@). According to Bayes’
theorem (Bayes, 1763), the (posterior) distribution of the parameters 6 given the
data D is proportional to the product of likelihood L(0|D) = p(D|0), i.e., the
probability of the data D given the parameters p(@) and the prior distribution



2. Statistical Concepts and Methods

p(D|0)p(0)
[ p(D|6)p(0)d6

p(0|D) = o p(D[0)p(0), (2.1)

assuming @ is continuous.

Generally, calculating the posterior distribution and its moments is not possible
in complex or high-dimensional problems as integrating over 6 requires compu-
ting high-dimensional integrals with no closed form solution. However, to tackle
these complications, numerical integration is required, which can be done by
Monte Carlo methods. The posterior distribution p(@|D) can be sampled from
p(D]0)p(0) using the MCMC methodology.

2.1.1 Markov chain Monte Carlo

The MCMC method simulates samples from the posterior distribution of the mo-
del parameters when the likelihood is tractable. The objective is to construct
a Markov chain whose stationary distribution is the posterior distribution of in-
terest (target distribution). The new sample is simulated based on the current
sampled value only and hence the samples form a Markov chain. The chain is
run for sufficiently long, as convergence to the stationary distribution is not attai-
ned immediately. A burn-in period is thus required, where the initial simulated
values are discarded (Brooks and Gelman, 1998). Furthermore, to save storage
memory and reduce the autocorrelation between samples, sometimes, only every
i'" (i > 1) updated sample of the parameter is stored. This process is termed

thinning of the chain.

In the next two subsections, I discuss the two most popular MCMC implementa-

tions used to simulate values of the parameters from their posterior distribution.

10
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2.1.2 Metropolis-Hastings algorithm

The Metropolis-Hastings (M-H) algorithm is an MCMC technique which was first
introduced by Metropolis et al. (1953) and later developed by Hastings (1970).
The M-H algorithm is often used where the posterior distribution cannot easily
be directly sampled from. It implements a rejection sampling method based on
the target distribution to sample the parameter from the posterior distribution
through an acceptance and rejection step. A candidate sample is simulated from
a proposal distribution conditional on the updated draw of the previous state,
and subsequently it is accepted or rejected based on an acceptance probability

that depends on the posterior density and the proposal density.

To illustrate the algorithm, let the proposal density for a candidate draw 6’ given
the current update # in the sequence of the samples be denoted by ¢(6,6"). The
M-H algorithm simulates new candidate values of the parameter from the propo-
sal distribution (candidate distribution) and accepts them as the next update in

the Markov chain according to the acceptance probability,

NN )
(0.0 =min (1.0 GG ) 22

The proposed value 6’ is only accepted if the acceptance probability a(6,6’) is
greater than a realized value u of the uniform random variable U on the interval
[0, 1], such that U ~ Uniform(0, 1). However, if the proposed value is rejected,

then the next sampled value is set to be the current one.

2.1.3 Gibbs sampler

Gibbs sampler (Geman and Geman, 1984) is a special case of the M-H algorithm.
The parameter vector of the Markov chain is split into components and then each
component of the parameter vector is updated sequentially. The Gibbs sampler

samples each component from its distribution conditional on the remaining com-

11
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ponents and the data, (the full conditional) one at a time.

I describe the sampling steps of the algorithm for a parameter vector @ with
S components (01, ...,0s) and full conditionals p(6s|D, 8_s), where
0_={61,...,051,05:1,...,0s} as below:

1. Set i = 0 and initialize starting values: 8° = (69,...,62).

2. Simulate,

07 from p(6:H D, 65, ..., 0%)

0.+ from p(0i7'|D, 07,00, ‘92+1= - 05) (2:3)
05 from p(057 D, 0 ... 05T,

3. Seti=1i+1.
4. Repeat 2 and 3 beyond convergence and discard burn-in.

After a number of iterations, the Markov chain that converges to the target dis-
tribution and then the updated values are sampled from the desired posterior

distribution.

The M-H algorithm does not require the information related to the full conditio-
nal distributions, in contrast to the Gibbs sampler. However, the M-H algorithm
often requires the tuning of parameters in the proposal distribution in order to
speed up the convergence to stationarity. On the other hand, the Gibbs sam-
pler automatically determines the proposal distributions from which the updated

samples are always accepted.

12
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2.1.4 Assessing MCMC convergence

Convergence is often examined by running parallel chains with different initial
values to assess whether all the chains converge to the same target distribution
by using Potential Scale Reduction Factors (PSRFs). A PSRF is a measure
which evaluates the convergence of multiple parallel MCMC chains as proposed
by Gelman and Rubin (1992). The calculation of the PSRF for each parameter,
0, requires m parallel sequences, each of length n. Let 6,; be the i*" sample of the

h chain, i =1,...,nand j = 1,...,m. Let G_j and sjz- be the sample posterior
mean and variance of the j* parallel chain. Let 6 be the overall sample posterior
mean. To calculate the PSRF of each of the model parameters, one computes the

between-sequence, B, and within-sequence, W, variances:

1 where 9]—%2613, 52%2@ (2.4)
]:1 =1 7j=1
1 « 1 < _
W = - Z sj, where s; m— Z (6 — ;) (2.5)

One can then estimate Var(#|D), the marginal posterior variance of the parame-

ter, by a weighted average of W and B:

n—1 1

Var(6|D) = (2.6)
This quantity overestimates the marginal posterior variance of the parameter,
Var(fly), while W underestimates it for finite n. From this the PSRF can be

calculated as follows:

Var(6|D)

R= 2.7
W ) ( )

where the value decreases to 1 as n — oo. Large values of R indicate a lack of

convergence and values of less than 1.05 or 1.1 generally indicate convergence.

13
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2.2 Hidden Markov models

In this section, I introduce hidden Markov models (HMMs) (Rabiner, 1989) that
describe observations emerging conditionally from an underlying discrete and
unobserved process. Each observation is associated with a latent or hidden state
which yields classification of the data into distinct clusters/groups. In the context
of finite mixture models, the hidden or latent states are assumed to be indepen-
dent and identically distributed (i.i.d.) random variables. However, in a HMM,
they are represented by an unobservable Markov chain. HMMs induce long-range
conditional dependencies in the observed data by imposing Markovian conditi-
oning on the latent states and have many applications in pattern recognition,
high-throughput sequencing data and bioinformatics (Durbin et al., 1998, Koski,
2001).

A HMM is a bivariate stochastic process comprising an observed process and
a hidden (unobserved) process. The unobserved process is assumed to be a first-
order Markov chain with a finite number of hidden states, whereas, the obser-
vable random variables conditional on the hidden states generate a conditionally
independent sequence, which is termed as the emission sequence, where the con-
ditional (emission) distribution of the observable random variable depends only
on the corresponding hidden state. In most standard cases, the HMM is gene-
rally assumed to be homogeneous if the Markov chain in the hidden process is
homogeneous, i.e., in the underlying Markov chain, the transition probabilities
are constant over time. However, non-homogeneous transition probabilities can
also be incorporated in the hidden process. The concept of a non-homogeneous
hidden Markov process will be formally introduced in Section 4.1.4 through a

continuous-index hidden Markov process.

Let us define, X = (X1, -+, Xr) be the sequence of observable random variables,

such that x = (2, -+ ,zr) are the realizations of X and Z = (Z;,---,Zr) €

14
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T terms
o\

ZL be the sequence of hidden states, where Z% = ZK R ® Zlg and Zig =
{1,..., K}, such that ZZ is the set of all possible hidden states. Now, the hidden

process can be derived from the first-order Markovian property as,
P(Zt = j|Z1:t_1) = P(Zt = k’Zt_l = j), t = 2, c ,T and j,]{? = 1, .. .,K, (28)

where Z14 1 = (Z1,..., Zi1)-

The three main sets of parameters of an HMM correspond to the initial state
distribution, the transition probability matrix and the emission distribution (Ra-
biner, 1989). The initial state parameters, transition parameters and emission

parameters are denoted by 7, 7 and 0, respectively. They are as follows.

e Let us consider the initial state distribution P(Z; = k) = m for k =
1,..., K, with initial state probabilities w = (m, 79, -+ ,7g), such that
215:1 m, = 1. m is the prior probability of state k at the first step in the

chain.

e The transition probabilities between the states 7;(t) = P(Z; = k|Z;—1 = j)
for j,k=1,2,..., K and t =2,...,T are given by the matrix 7.

e The emission probability of the (discrete) observation x; conditional on the

hidden state Z; and the emission parameter can be written as:

bk(t) = P<Xt = $t|07 Zy = k)
:P($t|9,Zt:kf), kzl,,K (29)

For notational simplicity, I re-write P(z:|0, Z;) = Pz, (x4|0) = bz, (t), which

is termed as the emission distribution at index ¢t for ¢t = 1,..., T conditional

on the state Z,.

15
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I simplify my notation, by defining, esr = (es, €si1,...,er), where ezr is a vec-

tor with (7" — s) 4+ 1 elements and s is any positive integer, such that s < T.

More generally, the hidden state sequence Z = (Zy,...,Zr) can also be assu-
med to be a Markov process of m** order, such that the conditional distribution
of Z; given all the past values Zy.,_; depends only on the preceding m values,
ie, Zi14-m = (Zi—m, Zt—ms1,---,Zi—1). When m = 0, the HMM boils down to

a finite mixture model.

2.2.1 Computing the likelihood

Let the set of all parameters be generically denoted by ¢ = (8,7, T) where
denotes the emission parameters and 7, 7 denote the initial state and transi-
tion parameters, respectively, such that # = {m,: k=1,2,..., K} and 7 =
{mjx(t) : 4,k =1,2,..., K}. The joint probability of the sequence of observable
random variables X and the sequence of the hidden states Z conditional on the

model parameters ¢ is
T

P(X’ Z |C) = 71-Z1F)Z1 (X1|9) H TZ -1y, %t (t)PZt (Xt|0) (210)
t=2

If X and Z were observed, (2.10) would give the complete data likelihood. To
emphazise that only X is directly observed (to be x), I shall hereafter write
P(X =x,7Z]|.) as P(x,Z|.), in a slight abuse of notation and similarly in poste-

rior distributions and likelihoods, throughout my thesis.

Then, the likelihood of the observed data values x of X given the HMM mo-

16
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del parameter ¢ can be expressed as,

Lx(¢) = P(X =x[()
T
= Z 7T'Z1P21 (Xl‘e) HTZ(t—DvZ’f (t)PZt (Xt‘0)7 (211)
VAT Zr t=2
the probability of the observed data values x of X for the HMM model parame-
ters @ which is the sum over all the K7 possible state sequences of the complete

data likelihood.

The direct computation of the likelihood expression in (2.11), being the sum
over all K7 possible realisations of Z, is infeasible and must be avoided. With 1%
order Markovian dependencies of the hidden states in (2.11), it is straightforward
to compute the likelihood using a recursive forward summation (Rabiner, 1989,

Scott, 2002) procedure described below.

2.2.2 Forward-sum recursion

In this section, I introduce a forward variable at each index of the hidden state
sequence and these forward variables are processed to compute the terms of the
likelihood using a recursive method. The forward probability can be expressed

as,
CYk(t) =P (Xl:t = X1:t; Zt = k’lC) s for k = 1, 2, ey K. (212)

Interestingly, the forward probability ay(t) can also be viewed as the partial like-
lihood of the first ¢t observed values of x1.; of X;.; with hidden state Z;, = k, i.e.,
ax(t) is the joint probability of observing the data at the first ¢ indices and being

in state k at the " index.

17
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For t = 1, I can write,

Ozk(l) = P(Xl = 131,21 = k’c>
= mp P (11|21 =k, 0)

= WkPk (ZL‘1|9)
I can derive a recursive procedure to calculate ay(t) for t = 2,...,T and k =

1,2,..., K as below.

ai(t) = P (Xt = X1, Z; = k[C)
= Z P(Xl;t,Zt—l - l7Zt = klc>

l € Zgk

= > P(xu-1,Zis = UQ) P (w4, Zy = k| X1, Zimy = 15€)
l (S ZK

= Z P (X1;t71, Zi1 = l|C) P (ﬂft|X1;t71, Ziy=1,Z; = k; C)
l (S ZK

X P(Z, = k|Ziy =1)
Z t— 1 l’t’Zt, ) (Zt == kth_l == l)
€ Zgk
k(1)

Z (t—=1)P(Z, =k|Z_y =1). (2.14)
€ Zx
Now, the likelihood can be derived from (2.14),

Ly(¢) = P(Xy.1 = x1.7/€)

T
> 7Pz (@110) [ 720y 2 (1) Pz (2,]6)

k € Zk t=2

= ) (D). (2.15)

k € Zik

18



2. Statistical Concepts and Methods

For this reason, the forward sum recursion is often referred as the likelihood

recursion.

2.2.3 Bayesian parameter and state estimation

The Bayesian parameter and state estimation of HMMs uses the strategy of a
two-stage Gibbs sampler which simulates from the joint posterior distribution of
the HMM parameters and hidden states by alternating between sampling the hid-
den states Z given ¢ and x from the conditional posterior distribution p(Z|¢,x)
and sampling the HMM parameters ¢ given the complete data (x,Z) from the

conditional posterior distribution p(¢|Z, x).

The HMM model parameters and hidden states are thus sampled from their cor-
responding full conditional distributions. I can sample the hidden states from the
conditional posterior distribution in two ways. The first method is called the Di-
rect Gibbs sampler (Scott, 2002). It is just a general version of the Gibbs sampler.
Now, to sample from the conditional posterior distribution of the hidden states,
the Direct Gibbs sampler treats every state as an individual parameter then si-

mulates each state Z; from its full conditional distribution for all t = 2,...,T,

P(Zt = k"Z,t,X, C) XX TZt717ka’Zt+1P(It|Zt, 0) (216)

The Direct Gibbs sampler step can be coupled with Gibbs sampler to generate
samples of the HMM parameters ¢ from the conditional posterior distribution
p(€|Z, x), which returns values of parameter updates and hidden states at every
iteration. Consider the *" iteration, for i = 1,...,I to sample an update of the
parameter ¢ and Z@ from an MCMC process whose limiting distribution is
p(¢, Z|x). Since the Gibbs sampler directly depends on the parameters and their
dimensionality, considering every single Z; as a separate parameter increases the

dimension of parameters and can cause algorithmic inefficiency.
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The idea of the Forward Gibbs sampler was first conceived by Chib (1996) and
later it was developed by Scott (2002). Here all the states were treated as one
block for updating and then implementing the forward sum recursions as descri-
bed in Section 2.2.2. The important characteristic of the Forward Gibbs sampler
is that it can directly sample the hidden states Z from the conditional posterior
distribution p(Z|{,x), whereas the Direct Gibbs sampler can only sample from
the full conditionals of each Z; (2.16). One needs to update one block of hidden
states parameter Z rather than updating all the 7" hidden states separately.

2.2.4 Backward sampling

The goal of this step is to update the states from the posterior distribution of
all the states conditional on data and parameters. This Backward sampling
procedure requires computation of the Forward-sum probabilities described in

Section 2.2.2.

The conditional posterior distribution of the hidden states Z given ¢ and x can

be written as,

P(Z|¢,x) = P(Zy.r %11, €)

= P(ZT‘XI:T7 C) T P(Zt|X1:T§ Zt+1;T; C) Tt P(Zl|X1:T§ Za.r C)
(2.17)

The " term in (2.17) can be written as,

P(Zt\XlzT;ZtH:T;C) X P(Zt’X1:t§C>P<Xt+1:T;Zt+1:T’X1:taZt§C)- (2-18)
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The states Z;, t = (1,...,T) can now be updated using a backward sampling

imputation step:

T
Sample Zr from P (Z7 = k|x1.1;¢) = %'
k

Sample Z; from P (Z; = k|x1.1; Zey1.1;C) X o (t)P (Zea|Ze = k). (2.19)

Sample Z; from P (Z) = k|x1.7; Zo.7;¢) x oy (1) P (Z3| Z1 = k) . (2.20)

I first sample Zr and use this updated information recursively in order to sam-
ple the remaining states. Thus, after sampling Zr, the remaining hidden states
Z_p = (Zp_q,...,7) can be sampled by going backwards and updating the ge-
neral t'" term Z; from P(Z|xy.0; Zyy1.7;¢) for t =T —1,..., 1.

An advantage of using Backward sampling compared to Direct Gibbs is that
it allows more rapid mixing as the Markov chain has fewer components. Sub-
sequently, the dependence of every hidden state on its previous updated value
can be significantly minimized by directly sampling from P(Z|x,¢). The emis-
sion and transition parameters ¢ are also sampled using either a M-H or Gibbs

sampler conditional on the updates states.

2.2.5 Identifiability and label switching

A mixture model is a special case of a HMM, where the hidden states are assumed
to be independent. In general, HMMs including mixture models often suffer from
the label switching problem when the parameters are estimated using MCMC
techniques. There have been many approaches developed in the recent past in
order to tackle the label switching problem. The values of the parameters adjust

themselves to suitable modal values and cause label switching. Label switching
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emerges mostly when one has exchangeable priors for all the parameters. The
symmetric nature of the priors can cause non-identifiability. Non-identifiability
means that more than one set of parameter values can lead to the same likelihood.
It can be proved that the parameters of a HMM /mixture model are identifiable
(Leroux, 1992).

In Bayesian mixture models/HMMSs literature, popular approaches for dealing
with the label switching problem include constraints on the prior distributions of
the parameters which cause rejection of the proposed values of the parameters
that do not comply with the prior constraint assumptions (Richardson and Green,
1997). The label switching problem in HMMs can also be tackled by choosing the
initial values of the MCMC updates empirically using empirical measures from
the data or by using method of moments even if I have uninformative or weakly
informative priors. In addition, a decision theoretic approach was proposed in
Stephens (2000) using the Kullback-Leibler divergence method that minimises the
expected posterior loss under a class of loss functions and calculate the marginal
distributions of the parameters. I can also fix the label switching by ordering the

means in my prior specification.

In this thesis, I implement an efficient classification based relabelling algorithm
in HMMs proposed by Cron and West (2011). The idea of the algorithm can be

explained as below:

e Given the current parameter draw ¢, define the corresponding hidden states
7 with T elements, such that 7 = (21, e ,ZT>, where Z assigns each
observation to its modal component under the current set of classification

probabilities.

~R o o
o Z = (Zf”, cee Zf‘) as the corresponding hidden states (classification vec-

tor) with elements Z}.
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. ~R
e Loss function: The misclassifications that Z implies relative to Z leads
to a natural, intuitive loss function, such that, permuting the component

~R
labels in Z to maximize the match with Z minimizes the misclassification.

e Define a K x K misclassification matrix C,

Cri=H{(ZE=hANZ, =5}, G, h=1,...,K)and t =1,...,T. (2.21)

This matrix contains full information on sample and component classifica-
. ~R
tions to compare the current MCMC state Z with a reference Z , and can

be computed even with very large sample sizes.

e (; counts misclassified observations MCMC component j is matched with

reference component A, thus a column permutation is required to minimize

tr(C).

e This technique applied in Cron and West (2011) can be implemented effi-
ciently using the Hungarian algorithm (Munkres, 1957).

2.2.6 Relabelling algorithm

The online relabelling algorithm proposed by Cron and West (2011) can be imple-
mented completely on-line. It computes the optimal component permutations to
minimize referenced misclassification costs at each MCMC iterate. The summary

of the algorithm is provided as below:
e Calculate Z given the current MCMC iterate (.
e (Calculate the misclassifcation cost matrix C.

e Apply the Hungarian algorithm to match the optimal permutation of com-

ponent indices denoted by o(1 : K), in the current MCMC draw.

e Permute C1.x — Co(1:x) accordingly.

23



2. Statistical Concepts and Methods

e Move to the next MCMC iterate.

2.3 Bayesian model checking and selection

Model checking is critical to any statistical analysis in that it tries to verify that
the model assumptions are reasonable and sufficient. A well-performed Bayesian
analysis must therefore adhere to some competent model assessment techniques,
so that the model provides plausible descriptions of the data. If there is more
than one relevant model, model selection then becomes of interest to statisticians.

These concepts and definitions are described in the following sections.

2.3.1 Posterior predictive model checking

To understand whether the model captures the data in a Bayesian context, I will
perform some model adequacy assessment, called posterior predictive checking.
A Bayesian model fit can be examined using the posterior predictive distribution
(Gelman and Meng, 1998) and test statistics that can be a function of both the
data and parameters. These test statistics are termed as discrepancy variables
(Gelman and Stern, 2000) to highlight the purpose of assessing the discrepancy

between the model and data, in contrast to checking the accuracy of the model.

The basic technique implemented by Gelman and Stern (2000) for checking the

model fit is to simulate replicated data from the posterior predictive distribution.
The posterior predictive distribution is described as below.

I have earlier defined the likelihood Lx(¢{), and the posterior distribution be
p(¢|x). T also define ¢, --- ¢ to be I simulated draws from the posterior

distribution. Next, I generate data x( according to the model assumptions ba-

sed on the parameter updates ¢V at every MCMC iteration 4, for i = 1,..., 1.
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Now, I obtain I sets of replicated data {x(l), e ,X(I)}, and compare those with
the observed data by using a discrepancy test-statistic. The posterior predictive

distribution for the replicated data x"" is

p(x"P|x) = / p(x™7|¢, X)p(CIX)dC. (2.22)

The computational steps of posterior predictive checking can be described as

follows:
e Simulate ¢ from the posterior distribution p({|x).
e Simulate x" from the predictive distribution p(x""|{, x).

e Next, compare the data x to the replicated datasets x"* using a discrepancy

test-statistic.

If the model fit is reasonable, then the replicated data x"? simulated under the
specific model assumptions should be similar to the observed data, i.e., the ob-

served data should look plausible under the posterior predictive distribution.

The discrepancy between model and data can be measured by quantifying a
discrepancy variable T(x, ¢), which is a scalar summary of the model parameters

and data.

2.3.2 Posterior predictive p-values

As already explained at the beginning, the discrepancy test statistics can be
functions of the parameters since they are calculated from the simulated posterior
draws of the parameters at every iteration. The posterior predictive p-value can
be defined as the probability that the discrepancy test statistic based on the
replicated data and posterior draws of the parameters exceeds the discrepancy

test statistic based on the observed data and posterior draws of the parameters,
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as denoted by,
pa=P(T(x"*,¢) = T(x,{)|x), (2.23)

where the probability in Equation (2.23) is calculated over the posterior draws of
¢ and the posterior predictive distribution of x"”  which is basically the joint dis-
tribution, p(¢, x"?|x). For practical purposes, I calculate the posterior predictive
distribution using posterior draws of ¢ for I simulations and then generate x"¢?()
from the predictive distribution for each posterior draw of ¢ for i = 1,...,1,

e., I generate I replicated draws of x" from the joint posterior distribution
p(¢,x"?|x). Thus, to estimate the posterior predictive p-value, I must compute
the proportion of times in which the discrepancy test statistic based on the re-
plicated data and posterior draws of the parameters exceeds the discrepancy test

statistic based on the observed data and posterior draws of the parameters,

I
1 7'6
=7 E ( P ¢) > T(x, C)|x) (2.24)
where I(.) is the indicator function.

A visual check can be performed by a scatter plot of the realised values T(x, ()
against the replicated values T(x"", (). For a good fit, about half the points
would be expected to fall above the line of equality and half to fall below it.

2.3.3 Deviance Information Criterion

The Deviance Information Criterion (DIC) introduced by Spiegelhalter et al.
(2002) is a popular tool for Bayesian model comparison and is defined in terms

of deviance,

DIC, = —2log P(x|C) + 2ppic, (2.25)
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where ¢ are the posterior means, i.e., ¢ = Ep(¢|x) where Epoq(¢|x) can be
estimated from Epost(c Ix) = %Zi[:l ¢® and ppre, is the effective number of

parameters which can be found from,

Ppic, =2 <log P (x|5> — Epou (log P(X|C))> . (2.26)

For model comparison, DIC with the lowest numerical value indicates the best
performing model. The expectation term in Equation (2.26) is the posterior
expectation of log P(x|¢) which can be estimated from the average of log P(x|¢)
over the posterior draws of ¢, so that, the computed version of pp;e, using the

simulated draws of ¢ can be expressed as,

1
Pbic, = 2 <10g P(X|5) — %Zlog P(X|C(z))> . (227)
=1

An alternative version of ppro, (Gelman et al.; 2014) is,

PDIC,, = 2 Varpos (log (P (x[C))) - (2.28)

Even though ppre, is numerically stable, the alternative version of ppsc,,, has
the benefit of always being positive. I have only used the alternative definition of
effective number of free parameters, i.e., pprc,,,,- Thus, DIC can be re-evaluated

as,

DIC, = —2log P(x|¢) + 2ppicy..,, (2.29)
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where P(x |€) = Ly ().
Now, Var,,s (log(P(x|¢))) can be estimated from \//a\rpost (log(P(x|¢))), such that

@postaog(P(xmm:%Z[mg( (x[¢®)) ——Zlog (x]¢® )}

(2.30)

where ¢@ is the i posterior draw of the parameter ¢ and ¢ is the posterior

estimate (mean) of ¢, averaged over the total number of iterations after burn-in.

Furthermore, the computations and definitions have also been explored for the
family of latent variable models (Celeux et al., 2006) which also includes mixture
models and HMMs. However, various studies have advised against the use of
the DIC with data augmentation for comparing latent variable models. Li et al.
(2012) claim that DIC must not be used with data-augmentation as the augmen-
ted data is non-regular and does not validate the asymptotic properties that are
required for the DIC.

The DIC expression for complete-data (x,Z) can be defined as,

DICy = —2log P(x, Z|C) + 2ppicy,,, (2.31)

where P(x,Z|¢) = Lyz(C).
Now, Varp.s (log (P (x,Z[¢))) can be estimated from \//a\rpost (log (P (x,Z|¢))),

Vot (lo5 (P (%, Z1)) = 77 D [bg (P (X,zw)) - %Zlg (P (x. 2Ic?) )}

(2.32)

One of the most used version of computing the DIC is based on the conditional
likelihood Ly(¢,Z) in the context of HMM in the recent literature. Here, the

latent variables Z are considered as an additional parameter in the construction
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of DIC (Celeux et al., 2006). Now, the definition of DIC based on conditional

likelihood can be computed as
DICs = —2log P(x|¢, Z) + 2ppics..,, (2.33)

where P(x|¢,Z) = Ly (¢, Z).
Now, Varp,s (log (P (x,Z[¢))) can be estimated from \//a\rpost (log (P (x,Z|¢))),

\//a\rpost (log (P (x[¢,2Z))) = ]% Z [log <P <X‘C(i)7 Z(z’)))

=1

(P (e z0)) [ s
i=1
For Poisson model comparisons, Millar (2009) concludes that the DIC computed
based on the conditional likelihood, obtained by conditioning on the latent varia-
bles and parameters (x|Z, ¢), usually prefers the Poisson-Gamma model instead
of the Poisson-log-Normal model, even though the latter is the base model from
which the data are generated from. Contrary to this, Millar (2009) also esta-
blished the fact that DIC calculated using the integrated likelihood, i.e., L(¢),
obtained by integrating out the latent variables appears to perform well in com-
parison to the conditional likelihood. The DIC performance using the integrated
likelihood is not unexpected as the standard asymptotic properties for validating
the DIC are based on the integrated likelihood based DIC. However, in my ap-
plications in Chapter 6, I have computed the last versions of DIC, i.e., DIC5 and
DIC5. Chan and Grant (2016) set ¢ to be the posterior mode of ¢. However, in

my applications, I have used the posterior mean of ¢.

2.3.4 Widely Applicable Information Criterion

The Widely Applicable Information Criterion (WAIC) (Watanabe, 2010) is anot-

her measure for selecting the most appropriate model and it has an edge over
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DIC as it does not depend on the posterior point estimates of the parameters but

rather averages over the posterior distribution. WAIC is given by
WAIC = —21ppd + 2pWA[C, (235)

where Ippd (log-pointwise predictive density) can be estimated from

T I
1 - A
computed lppd = E log (7 E P(:Bt|Zt(l),C(Z))>. (2.36)
t=1 i=1

pwarc is the effective number of free parameters and can be computed as

pwarc = Y_ Varyey (log (P (2|2, €))), (2.37)

t=1

where Var,os: (log (P (x| Z:, ¢))) can be estimated from \//a\rpost (log (P (z¢|Z+,¢)))-

@post (log (P (2|2, €))) = I—il i [log <P (xt!Zt(i)’ C(z’)))

(2.38)

I

s (i) |

Likewise DIC, the model with the smallest WAIC is to be preferred.
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Chapter 3

BiSulfite-Sequencing Data and
Differential Methylation Callers

In this chapter, I describe a new sequencing technology, BiSulfite-sequencing
(BS-seq), that can determine DNA methylation profiles with higher resolution
and greater sensitivity. We also give an overview of some available algorithms

that can detect differential methylation patterns from BS-seq data.

3.1 BS-sequencing procedure

BS-seq is a high-throughput sequencing procedure that can ascertain DNA met-
hylation patterns. It employs standard sequencing methods on bisulfite-treated
genomic DNA to ascertain the methylation status at each CpG site. In the
BS-seq technique, DNA is treated with bisulfite chemicals which convert the
non-methylated Cs to Us and subsequently to Ts, but the methylated cytosines
remain unaffected (Figure 3.1). Now, the converted DNA fragments are aligned
using an appropriate alignment tool to read the methylation status of a nucleotide
base. The total number of aligned reads determines the accuracy of the estima-
ted methylation levels at each CpG site. Typically, the reads of the methylation

status calculated by the BS-seq data are in percentages. Here, the percentage
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3. BiSulfite-Sequencing Data and Differential Methylation Callers

measure computes the proportion of actual C bases in the reads that are aligned
with respect to a given C base in the reference genome (e.g., hgl9 assembly)

multiplied by 100.

The explanations that a percentage measure is provided as a methylation score

are as follows:

1. the likely sequencing errors in the high-throughput bisulfite sequencing ex-

periments;
2. due to incomplete bisulfite conversions of the cytosines;

3. the most probable case, the heterogeneity of samples and the fact that most

of the genome is diploid.

In general, BS-seq experiments have both test and control samples. The test
samples are mostly obtained from the disease tissue (e.g., cancer tissue) whereas
the control samples can be obtained from a healthy tissue (e.g., proliferating

tissue).

Originalsequence C C CCGGGCGGAAGCTGCGGGCGG

Bisulfite converted T T T[T )6 G[T 6|6 4 26 T T 6[C_6 6 G[C_& 6

sequence

i
‘ N i a

| I

M AJ ". J '|

Unmethylated C Methylated C

C Cytosine notin CpG site C G CpG site

Figure 3.1: Bisulfite sequencing result of a single read. Figure taken from
Yingying and Jeltsch (2010). After bisulfite conversion, the unmethylated cytosi-
nes are converted to thymines, and the methylated cytosines remain as cytosines.
The methylated cytosine and unmethylated cytosine can be distinguished accor-
ding to the sequencing result. Original sequence: DNA sequence before bisulfite
treatment.

32
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3.2 BS-sequencing tools

Several tools are available for the analysis of epigenomic datasets, especially BS-
seq datasets. Tools to accurately analyze bisulfite-induced DNA are periodically
being improved. These tools not only differ to a notably large extent in terms
of their alignment technique, robustness and computational cost but also in the
amount of information they generate. The latest tools also produce exhaustive
methylation output, which in turn allow the end user to investigate the epigeno-
mic effects of methylation more swiftly due to their ease of use. Two considerati-
ons are pivotal when ascertaining the methylation state of a read from a BS-seq

experiment.

e The sequence of the read must be correctly derived entirely from a bisulfite-

converted sequence in the original genome.

e The read must be mapped correctly to its corresponding position of the

reference genome.

The methylation state of genomic positions involving Cs in the reference genome
sequence can be inferred once a dataset of best alignments has been assigned.
In the next subsection, we provide a brief description of one such popular tool,
Bismark, which has been extensively used in recent BS-seq data analysis for its

robust alignment procedure and methylation calling performance.

3.2.1 Bismark

Bismark (Krueger and Andrews, 2011) is a versatile tool for the analysis of BS-
seq data. It carries out both read mapping and methylation calling in a single
step. Furthermore, the methylation state of each C position in the read can be
determined by this software. The main objective of Bismark bisulfite mapping is

to find a unique alignment by simultaneously running four alignment processes
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as the strand identity of a bisulfite read may be unknown, in advance.

The alignment techniques of Bismark can be explained as below.

1. Bisulfite reads are converted into a C-to-T and a G-to-A version (which is

an equivalent version of C-to-T on the reverse strand).

2. Employing four parallel instances of the short read aligner Bowtie, each
read is aligned to equivalently pre-converted forms of the human reference

genome, Figure 3.2 (A).

3. The strand origin of a bisulfite read can be uniquely determined using these

read mapping.

Before the alignment process begins, residual Cs are converted in silico into a
fully bisulfite-converted form. Mapping conducted using this technique accounts
for partial methylation precisely. Furthermore, Figure 3.2 (B) shows that the
methylation state of each C position in the read is determined using Bismark.
Most previous BS-seq tools were mainly mapping applications. Thus, a huge
amount of post-processing were required to extract the methylation information.
However, Bismark generates an output of bisulfite mapping which can be explored

further by researchers.

3.3 Differential methylation calling

In the past few years, several statistical tools have been developed for the analysis
of BS-seq data. MethVisual (Zackay and Steinhoff, 2010) is an R/Bioconductor
package, which has been developed for visualization and exploratory statistical
analysis of BS-seq data. BiQQ Analyzer HT (Lutsik et al., 2011) implements a
locus-specific analysis and visualization of BS-seq data. Streamlined Analysis and
Annotation Pipeline for Reduced Representation Bisulfite Sequencing (SAAP-
RRBS) (Sun et al., 2012) is mainly designed for implementation of methylation

summary statistics and annotation of CpG sites. However, few tools have been
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Figure 3.2: Bismark’s approach (Krueger and Andrews, 2011) to mapping of
bisulfite reads and calling methylation. (A) Reads from a BS-Seq experiment
are transformed into a C-to-T and a G-to-A version and are then aligned to
equivalently converted versions of the reference genome. The best alignment is
then assessed from the four parallel alignment processes [in this example, the best
alignment has no mismatches and comes from thread (1)]. (B) The methylation
state of each C position in the read is determined by comparing the read sequence
with the corresponding genomic sequence.
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developed for the analysis of differential methylation. The most popular approach
is to perform Fisher’s exact test in a specific CpG window (Challen et al., 2012).
BSmooth has been developed as a pipeline to detect DMRs in whole-genome BS
data (Hansen et al., 2012). BSmooth essentially leans on smoothing the met-
hylation values sample-wise and then testing for group differences via CpG-wise
t-tests. DMRs are explained as adjacent CpG sites with absolute t-statistics
above a defined cut-off value. The BiSeq package (Hebestreit et al., 2013) in Bi-
oconductor is based on an algorithm which can detect DMRs. The package takes
already aligned BS-seq data from one or multiple samples. The BiSeq package
provides useful classes and functions to handle and analyze targeted BS-seq data
such as reduced-representation BS-seq (RRBS) data. In particular, it implements
an algorithm to detect DMRs. The package takes already aligned BS-seq data
from one or multiple samples. The MethylSeekR package (Bioconductor/R) (Bur-
ger et al.,; 2013) is a computational tool that can identify the active regulatory
regions based on the transcription binding which leads to defined reduction in
DNA methylation. This package can accurately identify such functional regions

from BS-seq data.

3.3.1 MethylKit

MethylKit (Akalin et al., 2012) is an all-inclusive R/Bioconductor package pri-
marily designed to deal with sequencing data from RRBS data. In addition to
that, it can also manage whole-genome bisulfite sequencing (WGBS) data and
other variations of RRBS provided the proper data input format is created for the
analysis. This R/Bioconductor package can efficiently tackle the high-throughput
BS-seq data structure for the annotation and subsequent analysis of DNA met-
hylation. The advantage of using methylKit is that it only requires a methylation
score per base for any analysis. The main features of methylKit and the sequential

relationship between them are as follows:

1. Reading the methylation calls from sorted Bismark alignments: Methyla-
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tion percentage calls can be determined from sorted Sequence Alignment
Map (SAM) format (Li et al., 2009) or Binary Alignment Map (BAM)

alignment files from Bismark aligner and can be read into memory.

(a) Reading methylation call files. The data can be read into methylKit

in two possible ways:

i. The methylKit can read the methylation scores from a typical

methylation call text file as shown in Table 3.1.

ii. It can also read SAM format or BAM alignment files that are

generated from Bismark.

(b) When a SAM file is provided, it processes the alignment file to obtain
percent methylation scores and then methylKit can read that informa-

tion into a flat file database, Table 3.2.

2. Merging samples from both groups: Most of the BS-seq data have test
(e.g., cancer tissue) and control (e.g., normal tissue) samples and biological
replicates. Merging samples from both the control and treatment group is
an important database manipulation. Since I am interested in CpG sites, it
is essential to merge reads on both strands of a CpG dinucleotide as it gives
better coverage. Table 3.2 shows a methylBase object (flat file database)

for differential methylation analysis using methylKit.

3. Differential Methylation calculation: In methylKit, two main methods have
been implemented to identify differential methylation patterns across all

regions.

(a) Logistic regression: In logistic regression, the number of methylated Cs
and unmethylated Cs at a given region are specified for each sample.
The logistic regression model is fitted in such a way that it can compare
the fraction of methylated Cs for the treatment and control groups.

The null hypothesis is that the methylation levels are the same in both
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groups. Rejection of the null hypothesis is the same as declaring that
CpG site or CpG region a DMC or DMR. On the other hand, if the
null hypothesis is not rejected, it means that there is no statistically

significant difference in methylation level between the two groups.

(b) Fisher’s Exact test: Fisher’s exact test is used to compare the fraction
of methylated Cs in treatment and control samples in the absence of

replicates.

The R/Bioconductor package implementation of methylKit decides between the
choice of tests (Fisher’s exact or logistic regression based test) based on the bio-
logical replicates per group. If there is only one sample at each CpG dinucleotide
for both the groups, i.e., no biological replicate, then Fisher’s exact test can be
used. However, if there are multiple samples at each CpG dinucleotide for both
the groups, i.e., there exists biological replicates, then the logistic regression ba-
sed test is employed. Furthermore, multiple samples from the biological replicates
can be pooled together to create one merged sample at each CpG dinucleotide for
both the groups by summing the number of T's and number of Cs across replicates
with respect to their CpG sites in each group. Subsequently, Fisher’s exact test
can then be applied. In addition, methylKit also implements the sliding linear
model (SLIM) method to adjust p-values to g-values (Wang et al.; 2011) and

eventually corrects for the problem of multiple hypothesis testing.

3.3.2 DSS

1. DSS-single (Wu et al., 2015) is mainly designed for the detection of DMRs
from WGBS data for two groups without replicates. The BS-seq methyla-

tion data as explained by the authors is described below.

Let X;; be the methylated count and NV be the total count at the tth
CpG site and ;™ treatment group for t = 1,...,7 and j = 1,2. The true
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chrBase chr base strand coverage freqC freqT
chr21.9826907 chr21 9826907 96 18.75 81.25
chr21.9853326 chr21 9853326 16 87.50 12.50
chr21.9853296 chr21 9853296 18  88.89 11.11
chr21.9860126 chr21 9860126 83 100.00  0.00
chr21.9906663 chr21 9906663 14 9286 7.14

S R R
=o RS BRES BAES BAES

Table 3.1: A typical methylation call text file includes a unique identifier (chr-
Base), chromosome name (chr), strand information (F denotes forward and R
denotes reverse strand), read coverage (coverage), percent of C (methylated cyto-
sines) bases (freqC) and percent of T (unmethylated cytosines which eventually
transformed into thymines (Ts) after bisulfite treatment) bases (freqT) at that
particular genomic base.

underlying methylation proportion is denoted by p;;. Feng et al. (2014)
showed that it is reasonable to assume that X;; follows a Beta-Binomial
distribution, which encapsulates both the biological and technical variati-
ons in the counts. The Beta distribution is parametrized by its mean (ju;)
and dispersion (¢y;), where ¢;; denotes the biological variation among re-

plicates in the same treatment group.

A log-normal prior is imposed on ¢;; in order to gather information from all
CpG sites in estimating the site-specific dispersions. The mean of the beta
distribution is assumed to vary across the genome. To incorporate the spa-
tial correlation in the methylation levels, it has been assumed p:; = f;(1;),
where [; denotes the genomic co-ordinate of the ¢ CpG site and f; is a
smoothing function. A simple moving average procedure is applied on the
collapsed counts to estimate f;. The final hierarchical structure for model-

ling the BS-seq data under this set up is given below.

th|th>ptj ~ Bin(thyptj)
ptj|,utju Pej ~ Beta(:utju SOtj) (3-1)

prj ~ log N (myjo, 75),
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where m;o and %, are hyperparameters. In (3.1), the parameters (fu;, ¢y;)

have the following relationship compared to the conventional Beta(a, f3)

parametrization:
o«
M C( + 6’
B 1
L B+1

Table 3.3 shows the data inputs for the DMR detection algorithm of DSS.

2. Statistical test procedure: After estimating the hyperparameters through
an empirical Bayes (EB) procedure (Feng et al., 2014), DML (differentially
methylated loci) or DMC can be identified by a hypothesis test: Hy : g =
2 for the equality of the mean methylation levels at each CpG site. Wald’s
test is employed to compare the mean methylation levels at each CpG site,

and p-values are evaluated from the test statistics.

3. In an extension to DSS-single, Park and Wu (2016) developed DSS-general
to model BS-seq data under a more general multifactor experimental de-
sign. The data input more or less remains the same as described by Wu
et al. (2015) except that the idea of the treatment group is extended to a

generalized multifactor dataset.

3.4 Data

In this thesis, I have analysed a dataset from a study of methylation changes
in human ageing provided by the Adams’ lab, Beatson Cancer Research Insti-
tute, Glasgow. It contains the pooled dataset of three biological replicates for

proliferating and senescent IMR90 cells. The BS-seq data has information about
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chr pos N X
chrl8 3014904 26 2
chrl8 3031032 33 12
chrl8 3031044 33 13
chrl8 3031065 48 24
chr18 3031069 17 4
chrl8 3031082 93 37

S UL = W N~

Table 3.3: The text file includes chromosome name (chr), genomic position (CpG
site), count of read coverage of one group (N), count of methylated Cs of treat-
ment one group(X).

methylation for all the chromosomes. The longest chromosome, i.e, Chromosome-
1 contains 4, 590, 977 CpG sites while the shortest Chromsome-Y contains 27, 562
CpG sites. On average, this dataset covers 1.8 million CpG sites per chromosome
with an average sequencing depth of 10. Table 3.4 displays the data format of
Cruickshanks et al. (2013). In the following chapters, I present my own met-

chr pos T, Yp Ts Ys
1 chr2l 9411551 16 35 6 53
2 chr2l 9411552 22 51 9 74
3 chr21l 9411783 6 21 1 23
4 chr21 9411784 11 29 6 39
5 chr21l 9412098 8 11 8 10
6 chr2l 9412099 18 13 11 13

Table 3.4: The text file includes chromosome name (chr), genomic position (pos:
CpG site), count of methylated Cs of proliferating cells (z,), count of unmethy-
lated Cs of proliferating cells (y,), count of methylated Cs of senescent cells (x;),
count of unmethylated Cs of senescent cells (ys).

hod for detecting DMCs based on this dataset, which takes a different approach

compared to the existing methods discussed in this chapter.

42



Chapter 4

Hierarchical Hidden Markov
Models with Applications to
BS-Seq Data

In this chapter, I propose Bayesian latent variable models for predicting DMCs
on the basis of BS-seq data using a hierarchical hidden Markov model (HMM)
framework. I developed Bayesian latent variable models that aim to incorporate
many features of the data under a hierarchical framework. HMMs are quite po-
pular in the analysis of biological datasets. A suitable model for this type of
analysis is the HMM, where the evolution of a latent characteristic of interest is
represented by an unobserved Markov chain. By imposing Markovian conditio-
ning on the latent states, the model class becomes richer than mixture models
where the states are considered to be independent, since the Markovian property

of HMM can induce long-range conditional dependencies in the observed data.
I employ Bayesian techniques to estimate the HMM parameters and infer the

hidden states. In the following sections, I describe the model assumptions and

structure of my HMMs and demonstrate an efficient method for applying MCMC

43



4. Hierarchical HMMs with Applications to BS-Seq Data

techniques to both simulated as well as real data.

4.1 Model assumptions

The main objective is to infer genomic Cs with different levels of methylation
between distinct cell types. I can denote whether a CpG site is differentially

methylated or not using a latent variable.

BS-sequencing of methylated samples generates counts of methylated and un-
methylated Cs. At present, I ignore the genomic position of each CpG site, and
the fact that adjacent CpG sites are not equally spaced. To study and analyse
methylation patterns, I assume two methylation states, i.e., a similarly methy-
lated state and a differentially methylated state, corresponding to similar and

differential methylation of CpG sites, respectively.

Let the BS-seq data (observed) be denoted by x = (x?, x°), such that

xP = (af,--- ,2k) and x* = (xf,---,2%), where 2} and zf (t = 1,...,T) are
the methylated counts of proliferating and senescent cells, respectively, for the ¢
CpG site as described in Section 3.4. Furthermore, let n = (n?, n®), such that
n? = (nf,--- ,n%) and n® = (nf,--- ,n%), where ny and nj (t =1,...,T) are the
total number of counts (methylated Cs and unmethylated Cs) of proliferating and
senescent cells respectively, at the t** CpG site. For each observation, I assume
an unobserved state Z;, (t = 1,...,T), where Z; represents the ¢/ hidden state
such that Z; = 1, if the methylation levels in proliferating and senescent cells
are the same at the ¢ CpG site and Z;, = 2, if there is differential methylation
between the two cell types at the ¢! CpG site, where Z = (Z,,--- , Z7). Since the
process of BS-seq involves the random sampling of two types of reads- methylated

and unmethylated counts, the data will follow an independent bivariate Binomial

distribution.
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I assume 2} and xf are the realizations of the pair of random variables X! and
X} such that X} and X} independently follow Binomial distributions with para-

meters (n},p}) and (nf, p;) respectively, such that,
X{py ~ Bin(ng,py), t=1,....T, (4.1)

and

X/ |p; ~ Bin(nj, p}), t=1,...,T, (4.2)

where p! and p{ are the probability parameters of methylation for proliferating
and senescent cells, respectively, at the #** CpG site. For notational simplicity,
let the pair of random variables X} and X} be denoted by X; = (X}, X;) and
the pair of proportion parameters p! and p; be denoted by p, = (p!, p§) for
t =1,...,7. T also assume X = (X?, X°), where X? = (X?,---, X?) and
X* = (X, X7).

Now, I describe the emission densities. I implement a Beta-Binomial hierarchical
model conditional on the true underlying methylation proportions and hidden

states.

The underlying methylation proportions at CpG site t in state k for prolifera-
ting and senescent cells can be defined as pfk and pi¥, respectively. Let pF =

(%, p*), t =1,...,T. Then,

XP|pP, Z, = k ~ Bin(n?,p*) and X?|p;, Z, = k ~ Bin(n?, pi*), t =1,....T,
(4.3)

are independently distributed, where k takes a value of 1 or 2.
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Equation (4.3) can be written more compactly as
XPf* ~ Bin(n, pi*), and Xflpi* ~ Bin(nf,pi"), t=1,....T.  (44)

The true underlying methylation proportions at the CpG site indexed ¢ in state
k for proliferating and senescent cells are assumed to follow Beta distributions at

the second stage of the hierarchical model:

Y| Zy = 1 ~ Beta(a, B), pi|Zs = 2 ~ Beta(a, B) (4.5)
p;|Z; = 1 ~ Beta(vy,01), pi|Z; = 2 ~ Beta(s, 02). (4.6)

Define 8 = (01, 02), where 01 = (Oé, ﬁ) and 92 = (’71, (51, Y2, (52)

Now, if the methylation pattern in proliferating and senescent cells is the same
for state 1, i.e., k = 1, I assume pfl = pi! = pi | say, for the unobserved state

Z; =1 in the ¢ CpG site, such that, p} = (p}, p}).

Similarly, if the methylation in proliferating and senescent cells is different for
state 2, I assume, p? = (p!, p;?) for the unobserved state Z; = 2 in the t** CpG

site.

4.1.1 Binomial emission distributions of the model

The emission probability of the observation x; = (2}, xf) conditional on the

hidden state Z, can be written as:
bi(t) = P(x|pF, Z, = k), k=1, 2and t =1,...,T. (4.7)

Let X be a discrete random variable and follows Binomial distribution with pa-

rameters n and p. Then the probability mass function (p.m.f.) of the realized
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value z of X is defined below.

P(X =2x)= (Z)px(l —-p)" T x=0,1,...,n

= Bin(z;n,p). (4.8)

The emission distributions of the model are as follows:

e The emission probability of the observation x, = (af, zf) conditional on

the hidden state Z; = 1 is given by,

bi(t) = Bin(x{;ny, p;) x Bin(xj;ni, py). (4.9)

e Similarly, the emission probability of x; = (27, xf) conditional on the hid-

den state Z; = 2 is given by,

bo(t) = Bin(xtsny, p}) x Bin(z};ng, pi). (4.10)

4.1.2 Beta-Binomial emission distributions of the model

I use a two-level hierarchical model and assume Beta priors on p}, pf and p;.
Now, in the bivariate Beta-Binomial density, the effect of the nuisance parame-
ters pf, p§, p; can be integrated out with respect to the relevant states due to
conjugacy, leaving the hyperparameters of the conjugate prior distributions as the
only parameters. This leads to computational efficiency in the proposed model

(Figure 4.1).

By marginalizing the second level hierarchical model parameters, the emission
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Al

For: t=1,...,T

X7 Bin(n?,p}), if Zz =1 X5 Bin(ni,pi), ifZ;=1
t Bin(n?,pl), if Z, =2 t Bin(ng, ps), if Z, =2

. Beta(a, 8), ifZ; =1 R Beta(a, 8), ifZ;=1
¢ Beta(yy,01), if Z; =2 P Beta(vyq,d2), if Z; =2

Figure 4.1: Graphical representation of the Beta-Binomial emission model. The
grey circles refer to the fixed values of the total counts and data respectively,
while the white circles refer to emission hyperparameters and hidden states that
are inferred.
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distributions can be written as:

1
P(x?,xﬂa,ﬁ;Zt:l):/ Bin(x};n?, p;)Bin(x};ng, py) Beta(p; a, B)dp;
0

_ (nf) (nf) 1 /1 (p*(xf+x§+a—1)
vy ) \z; ) B(a,8) Jo
« (1 N p:)(nf+n§xf1§+51))dp:

_ (nf) (nf) B(af + 2§ + a,nf +nf —af —xf + )

)

oy ) \xf B(a, )
(4.11)
and,
1
P(x}, x{|m, 01,72, 02; Zp = 2) :/ Bin(xy;ny, p}) Beta(py; v1, 01)dp]
0
1
x / Bin(a}; ng, pf) Beta(pj; 72, 62)dp;
0
nf 1 /1 (aP+y1—1) PPy —
— P S(Ty 1— DY (ny —y +01 l)dpp
(ﬁ) B(71,61) Jo P ( vi) !
nf 1 /1 s(zf4vy2—1) s\(nf—xi+d2—1) 7.8
X —_— t 1-— e T2 dp
(x§> B(%,&) ; Dy ( pt) t
) (n) (n) B(ef + 71,1} — o + )
xy ) \xf B(71,61)
% B(mt +727nt - xt + 62)’ (412)
B(’72752)

where B(a, b) is the Beta function,i.e., fol u? (1 — u)* tdu, where a, b > 0.

4.1.3 Homogeneous transition model

The initial state distribution at the first CpG site is denoted as P(Z; = k) = my,

for k = 1,2, with initial probabilities = = (7, m2).
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The transition probabilities between the states 7, = P(Z; = k|Z,_1 = j) are

given by the matrix 7. So, 719 =1 — 71 and 790 = 1 — 791

I denote the transition counts from state 1 to state 1, state 1 to state 2, state 2
to state 1, state 2 to state 2 as t11, t12, t21, tag respectively. t; and ¢y are the total

counts of state 1s and state 2s respectively. That is,

th=S0 o 1(Zi =k Z,=1)and t), = S [(Z = k)
The probability of the initial state Z; given m; is
P(Zy|m) oc m"@=0(1 — ) HA=2), (4.13)

The probability for the sequence of the hidden states Zs. conditional on the

initial state Z; and the transition parameters is

P(Z2:T|Zl,7') X P(ZQ|Zl,T)P(Zg|ZQ,T) e P(ZT|ZT_17T)
oc it (1 = 70) 2753 (1 — 1)

XX Bm(tn; tll + tlg, Tn)B’in(th; t21 + t22, 7'21). (414)

4.1.4 Non-homogeneous transition model

In reality, there are unequal gaps between CpG sites in BS-seq data, which motiva-
tes me to introduce a non-homogeneous transition model leading to a continuous-
index HMM. The only modification required for this model is to assume that the
underlying methylation status to be a latent stochastic process emitting over a
continuous genomic index, represented by Z(c) for ¢ > 0. [Z(c), ¢ > 0] is a
continuous-index Markov process, assuming values in a finite state space 1, 2,
i.e., a two state Markov process, such that, if, Z(¢) = 1(2), a similarly methyla-
ted state (differentially methylated state) is signalled for the CpG site. I define

U, as the genomic distance (in base pairs) between two adjacent CpG sites at
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genomic positions 1y and ¢;_1, i.e., Wy = ¢y —1p;_1, such that, ¥ = (Vy, .-+, Uyp),

where ¥, is initialized to be 0.

In Section 4.1.3, the underlying structure of the methylation status was assu-
med to be a latent stochastic process emitting over a discrete genomic index,

represented by Z;, fort =1,...,T.

I define a non-homogeneous transition probability 7;,(V;) for t =2,...,T, as

P( 201200 200) Xuar ) = P( 20| 20010 )

= 7u(¥), g k=1,2, (4.15)

the process was in state k£ at genomic position ¢; conditional on the process being
in state j at genomic position ¢, 1. (4.15) clearly indicates that the transition
probability depends on the gapped distance of the genomic positions between two

adjacent CpG sites indexed by ¢ and (¢t — 1).

For notational simplicity, I shall this time onwards refer to Z(v¢y) as Z;. The
probability of staying in a state is subsequently assumed to be linear with respect
to the genomic index for an infinitesimal interval. The two-state hidden Markov
process at genomic index t can be parameterized with transition rate parameters
A1 and Ay, where A\; and )y are the transition rate parameters from a similarly
methylated state to a differentially methylated state and from a differentially

methylated state to a similarly methylated state, respectively.

The intensity matrix v of the transition rate parameters \; and A, is then given
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A=A
v = ' P (4.16)
Do Ao

The transition probability matrix 7(¢) over genomic interval ¥, is calculated by
the matrix exponential of ¥ multiplied by W, i.e., 7(t) = exp(vW¥;). Hence, 7(¢)

is represented by,

T(t) = : (4.17)

where the non-homogeneous transition probabilities at CpG site ¢ over genomic

interval W, are given by,

Tll(t) - >\1)-\i-2>\2 + >\1)-\-1>\2 e_(A1+A2)qlt’
TlQ(t) - )\1)—\%1)\2 - ﬁQ*(AlJF)Q)‘I’t’
T21(t) = )\1>J\r2)\2 B ﬁe—(/\ﬁ)\z)‘l’t’ (418)
ra(t) = g i

Here also, the initial state distribution at the first CpG site is denoted as P(Z; =
k) = . for k = 1,2, with initial probabilities 7w = (71, ma).

The initial state distribution of Z; is taken to be uniform.

P(Zy=k)=m,=0.5, for k=1, 2. (4.19)
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Now, the probability of the sequence of the hidden states Z,.; given the initial

state Z; and transition rate parameters can be factorized as,

P(ZQ:T |Z1, T) x P (Zg|Zl,T(2)) P (Z3|Z2, T(S)) . P (ZT|ZT_1, T(T))
T
x H (Tll(t)I(Ztl1,Zt1)7_12<t>I(Zt1I,Zt2)
t=2

X Tgl(t)”t—l?vzt1%22(15)1%—1%2)) . (4.20)

4.1.5 Beta-Binomial hierarchical HMMs

In this section, I describe the two hierarchical Beta-Binomial HMMs by combining
the Beta-Binomial emission probability distributions and transition probability

distributions.

e Model BBDM: this model combines the Beta-Binomial emission probability
model in (4.11) and (4.12) with the homogeneous discrete-index transition

probability model in (4.13) and (4.14).

e Model BBCM: this model combines the same Beta-Binomial emission pro-
bability model with the non-homogeneous continuous-index transition pro-

bability model in (4.19) and (4.20).

To simplify the notation in the following sections, I represent the hidden states as
Z, 7 as the initial state transition parameter and (o, 3,71, d1,72,d2) as emission
parameters for both the models BBDM and BBC'M even though the behaviour
of the hidden states and the parameters are different in the two models. In
addition, I describe the general version of the likelihood for model M where M
represents the true model, i.e., M = BBDM, BBCM. However, to simplify
the notational subscripts of the parameters, I use M = D, C', where D denotes

BBDM and C denotes BBC'M. Thus, the transition parameters for model M are
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assumed to be M) such that 7(") = (741, 75;) for BBDM and 7€) = (A1, \o)
for BBC'M. Similarly, initial state parameters for model M are assumed to be
a0 = (7" 70Dy The transition probability matrix is denoted by ) (t) for
model M, where T,EZM) (t) is the (k,1)™ element of 7()(t), such that the process
was in state [ at genomic index t conditional on the process being in state k at

genomic index ¢t — 1.

4.1.6 Computing the likelihoods

In this section, let the set of all parameters and hyperparameters be generi-
cally denoted by ¢M) = (M) +(M) 7)) for both the models as described in
Section 4.1.5 where §M) = (9§M), 0§M)), such that 9§M) = (a, B) and OéM) =
(Y1, 01,72, 62) and 73 for model M. The joint probability distribution of the ob-
servations X = (Xy,...,xr) and the sequence of the hidden states Z = (Z1, ..., Zr)
for model M conditional on the model parameters ¢™) is the complete data li-

kelihood of the observations and the states:

T
P(x, Z[¢") = 730 Py (a0 T] 7 4 () P, (i 047) (4.21)
t=2

= W(Z]Y)le (X1|9(M))Tgl\22(Q)Pzt(xtIO(M)) .
M
X Té(T)—l)va (T)PZT (XT|0(M))7 (4.22)

where Py(x,|0)) = P(x,|Z, = k;000), ™ = P(Z, = k) and 7)"(t) =
P(Zy=U|Zi—y = k; M) for k,l =1, 2.
Basically, (4.11) and (4.12) provide Py(x,|0™)), such that,

Pi(x|00) = P(x,|Z, = 1;61")
- P($f7$f|&7B,Zt - 1)

nP\ (ni\ B(al + xf + a,nf +nf — o) — x5 + )
oy ) \x; B(a, )

(4.23)
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and

Po(x:|05™) = P(x:|Z; = 2;05")
= P(xf7x§‘71751772>52; Zt = 2)

_ (nf) <nf) B(2} + 1,0l — 2 + 61) B(2f + v, nf — a + 52)
xy ) \x; B(71,61) B(72,d2)

(4.24)

Now, the joint probability for the observed methylation data x and the sequence
of the hidden states (methylation status) Z can be obtained from the emission
quantities (4.23) and (4.24) and the hidden states probability expressions from
(4.13) and (4.14) for model BBDM and (4.19) and (4.20) for model BBC'M. So,
(4.22) can be rewritten specific to model BBDM as

X Z ‘C(D) = 7T(Z PZl X1|9 HTZ(t 1 Zt PZt(Xt|0 )

W(Z?)le(xﬂ@ )TZ1)ZQ(2)PZt(Xt|0 .. Tg(jT) 1)ZT(T>PZT(XT|0(D))

T nt\ (ni\ B(2} + 25 + a,nl +nf — 2l — 25 + ) 1[Z:=1]
([ () oy

t

(DD

B(xf + 2, nf —xp + 52) =
)

B(’}/Q; 62

X 7T11[21:1](1 — 7T1)I[Z1:2]Bin<t11; t11 + tlg, Tll)B’in(tgl; t21 + t22, 7'21>.
(4.25)
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Equation (4.22) can be rewritten specific to model BBC'M,

P(x,Z|¢) = 750 Ps (x,60© HTZ(t bz (t) Py, (x:|0')

C
= 75 7, (1075, (2) Py, (x40 ) (T) Py, (x|0'9)

= ﬁ { nﬁ) (nt> B(} + o} +a,nf +nf —af — a7 + )]
pale xy ) \a} B(a, B)
< { nf) (nf) (nt) <nt> B(z} + y1,nl — 2 + &)
xy ) \xi) \x} ) \z} B(71,61)
B S
% (z; +

B(727 52)
X [0.5]“21:”[0.5]”1:2)

\ L(Zi1=1,Z,=1)
1 —(A1+A2) ¥y

X e

H ()\1 + Ay )\1 + Ay )

Yo, mE — @ + @)1””)

X ( )\1 — )\1 e_(>\1+>\2)‘1’z)I(Zt_1 =)
M+ A AL+ A (4.26)
Ay Ao (Zi_1=2,7Z,=1) :
% . 6—(>\1+>\2)‘I’z
()\1 +X A+ )
y ( A L A2 6—()\1+)\2)\I!t>1(Zt_1 e 2)]
DYIESD YR PN P8 ’

where (4.25) and (4.26) are the complete data likelihoods for models BBDM and
BBCM, respectively.

Then, the likelihood of the observed methylation data x given the HMM mo-

del parameters (™) for model M can be expressed as,

Ly(¢™) = P(x|¢"")

T
M M
= > m Patale™) [ (0P (x6M),  (4.27)
t=2
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where Equation (5.18) is the probability of the observed methylation data x
conditional on the HMM model parameters ¢™) and thus can be written as the

sum over all the 27 possible state sequences of the complete data likelihood.

4.1.7 Choice of Priors

I use Uniform priors for the emission hyperparameters and non-informative Beta

conjugate prior densities for the transition parameters.

The prior for the HMM model parameters ¢™) can be decomposed into three
parts: i) priors of the emission hyperparameters 8*); ii) priors of the initial state

parameters 7r(M); iii) priors of the transition parameters 7 ). T assume

p(¢™) = p(8W7) p(w™V) p(r 1), (4.28)

where p(x) denotes the prior for .
For model M, the priors for the emission hyperparameters 8 are assumed to

be independent:

p(0U) = p(a) p(B8) p(11) p(51) p(r2) P(d2). (4.29)

The priors of the Beta (emission) hyperparameters for Model M are taken to be

uniform and they are expressed as,

)

(51 ~U ag, , bgl) (430)
)
)
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where U(a,b) is the Uniform distribution with density f(yla,b) o 3=, for
a<y<b.

For model BBDM, the priors for the initial state parameters (") are likewise

assumed to be independent:

p(r?) = p(m). (4.31)

(D)

Similarly, the priors for the transition parameters 7\%) are assumed to be inde-

pendent:

p(r?) = p(m1) p(ra1). (4.32)

The priors for initial state and transition probabilities (m, 791, T21) are each

assumed to be Beta(ni,n2). For model BBCM, the priors for the transition

o)

parameters 7(©) are also independent:

p(T D) = p(A1) p(Xa). (4.33)

The priors for 7(¢) = (\;, \y) are assumed to be uniform and they can be

expressed as,

/\1 ~ U(a,\l,b)\l)
/\2 ~ U(GAQ, b)\Q). (434)

4.1.8 Joint posterior distribution

The joint unnormalized posterior distribution for model M is given by,

(¢ [x) oc L(CM)p(¢™). (4.35)
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4.2 Parameter and state estimation

I explore a fully Bayesian approach for estimating the parameters and the hid-
den states in my model. I construct an MCMC-based algorithm to examine the
joint posterior distribution of Beta-Binomial HHMM. The Bayesian approach to
estimate the model parameters and hidden states provides us with the capability
of drawing inference directly from the posterior distributions. It also takes into
account any prior information, including constraints on the parameters, to be
incorporated in the data analysis. I have chosen conjugate priors for the Bino-
mial proportions which permits only estimating the hyperparameters and thus
reducing the dimension of the parameter space and increasing the computational

efficiency by integrating out the parameters in the middle of the hierarchy.

In this MCMC-based algorithm, I have developed an augmented Gibbs sampler
to obtain the posterior samples. The augmented Gibbs sampler cycles among
updating the values of the emission hyperparameters, initial state and transition
parameters and the hidden states. The samples of the hyperparameters are si-
mulated from the posterior distributions conditional on the states using a M-H
within Gibbs sampler as no closed form can be obtained from the posterior dis-

tribution of the hyperparameters.

The hidden states are sampled from their posterior distributions conditional on
the hyperparameters. However, the direct computation of the likelihood L(¢ (M ))
must be avoided due to high computational cost. I introduce a recursive method
that considers all the hidden states as one block and then updates their posterior
distribution which in turn allows us to sample every state directly from the joint
density. This technique enables more rapid mixing as the Markov chain contains
a smaller number of parameters and also the dependency of every hidden state

on its preceding sampled value can be significantly diminished (Liu et al., 1994).
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4.2.1 Outline of the augmented Gibbs algorithm

In this section, I describe the details of the augmented Gibbs sampling scheme
for one iteration implemented to sample from the posterior distributions of the

HMM parameters ¢*) for model M.

1. T calculate the full likelihood of model M conditional on the current values
of the HMM parameters ¢™) using the forward sum recursion described in
Section 2.2.2. In my model M, I can re-construct the forward probability

as,
oM (1) = P (x4 Z = K|¢™) (4.36)

where £ = 1, 2 denotes the similarly methylated state and differentially

methylated state respectively. The quantity a,E:M) (t) can also be viewed as

the partial likelihood up to genomic position ¢, such that genomic position

tis in state k fort =1,...,T and kK = 1, 2 which can be written as
alM Z wo ) Py, (x,|0M HTZ( ) 2.(9) Pz, (x,|0MD).  (4.37)
Using the forward sum recursion, the partial likelihood is given by,

alM( Zalt—n,g,M)(), t=2,....T (4.38)

Here, b\ (t) = Py(x,|6™). T have already derived expressions of Py (x,|@31))
n (4.23) and (4.24), respectively. For ¢t = 1, I can write,

60



4. Hierarchical HMMs with Applications to BS-Seq Data

The full likelihood of the entire sequence can be expressed as,

Ly(¢M) =3 " aM(1), (4.40)

where Ly (¢™)) is the full likelihood for model M.

. After computing the partial likelihoods and the full likelihood using the
forward sum recursion, I employ a backward sampling procedure to sam-
ple the hidden states Z. The probability that the genomic position ¢ is in
state k given the sampled states at genomic positions ¢t + 1,...,7T, obser-
ved methylation data x and the HMM model parameters ¢(™) is given by
P (Zt = k[x1.7; Zey 11 C(M)) .

The hidden states Z;, t = 1,...,T can now be updated using a backward

sampling imputation step:

Sample Zr from P (Zy = k|xy.r; C(M)) —

Sample Z; from P (Z, = k|xy.z; Zysrr; ¢ oc o™ (0P (Zyy1| 2, = k)
(4.41)

Sample Z; from P (21 = k|x1.7; Zo.r; C(M)) x a,gM)(l)P (Z3|Z1 = k)

In practical computations, the expressions for a,(cM) (t) require reformulation

using logarithms in order to avoid computational underflow.

. Next, I update the initial state parameters w(*) and transition model pa-

(M

rameters 7(M) conditional on the current values of the emission hyperpa-

rameters ) and the hidden states Z and the observed methylation data
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X.

(a) For model BBDM, the initial state parameters (”) = (7, 1—m;) and
transition parameters 7P = (711, T21) can be updated using a Gibbs

sampler due to conjugacy in the full conditional posterior distributions.

(b) For model BBC'M, the transition rate parameters 7(©) = (\;, \g) can
be updated using a M-H algorithm.

4. For Model M, the emission hyperparameters 8 conditional on the current

(M) and transition model parameters

values of the initial state parameters m
M) the hidden states Z and the observed methylation data x can be

updated using a M-H procedure.

4.2.2 Further details of the augmented Gibbs sampler

I use a Gibbs sampler to update all the parameters of interest, i.e., HMM para-
meters (™) and the hidden states Z. The essential steps of the augmented Gibbs

sampler are as follows:

1. I sample the hidden state path Z from the full conditional posterior dis-
tribution p(Z|x, (™)) given ¢ = (M) 7)) and the observed
methylation data x. For this step, I employ the data-augmentation based
Forward-Sum Backward Sampling (FSBS) procedure (Scott, 2002) instead

of evaluating the likelihood expression, as described in Section 4.2.1.

2. I sample the emission hyperparameters 8 from the full conditional poste-
rior distribution p(™)|x, Z, #™) (M) given the initial state parameters

wM

) and transition parameters 7™, updated hidden states Z and obser-
ved methylation data x. However, in this step, it is enough to sample )
from the full conditional posterior distribution p(8*)|x, Z) using a M-H al-

gorithm given the updated hidden states Z and observed methylation data
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X, since,
PO x, 2, w0, 7) = p(6 |x, 7). (4.42)

(M) and transition

3. In this step, [ sample the HMM initial state parameters 7
parameters 7 from the full conditional posterior distribution
p(wM) M) |x 7, M) given the emission model parameters 8 updated

hidden states Z and observed methylation data x.

(a) For model BBDM, I sample the HMM initial state parameters (")
and transition parameters 7(”) from the full conditional posterior dis-
tribution p(wP), 7(P)|x, Z, P)) given the emission model parameters
0”) updated hidden states Z and observed methylation data x. Due
to the Beta-Binomial conjugacy of the full conditional posterior dis-

tribution, it is enough to sample from p(wP) 7(P)|Z), since,
p(r?) 7 P)|x, Z,6P)) = p(1P)|Z). (4.43)

(b) For model BBC M, I sample the HMM transition parameters 7(©) from
the full conditional posterior distribution p(7(©)|x,Z, 8 W) given
the emission model parameters 8(¢), updated hidden states Z and ob-
served methylation data x. It is enough to sample from p(7(©)|Z, ¥),

since
p(r V%, 2,69, W) = p(+9|Z, @), (4.44)

I now describe the sampling steps of the emission hyperparameters (2), the initial

state and transition parameters (3.(a), (b)) for both the models.
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4.2.3 Sampling from conditional posterior distributions
4.2.3.1 Emission hyperparameters

In this section, I elaborate in details the sampling steps of the emission hyperpa-
rameters from their full conditional posterior distributions. I first write the full

conditional posterior density of the HMM model emission hyperparameters 8(M):

p(@M|x, Z, 7™ 700y = p(gM)|x Z)
o Ly 2(090)p(6™)), (4.45)

Ly z(6™)) denotes the complete data likelihood.

I sample the emission hyperparameters («, 5, 71, 1,72, d2) from their full con-

ditional posterior distributions as follows:

e Sample «|f,x,Z from

T p s p s D s D s 1[Z:=1]
ny\ (ni\ B2} + af + a,nd +nf —af — x5 + 5)
Z | | t t t t ) ' t t t

t=1
(4.46)
1

X .
ba_aoz

e Sample Sla,x,Z from

T p s D s p s vy s I[Zt:”
B — _
o x.2) = T [(7F) (1) Bl i et i =t =i

1 \at )\ B(a, 3)

(4.47)
L
bg —ap
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e Sample v;|01, 72, 02, X, Z from

T P
n
(101,72, 02,%,Z) = | | [(x;)(
t=1

t

K] p S
nt nt ’I’Lt
xi ) \ay ) \xi

y B(z + y1,nf — af + 81) B(zf + 2,0 — x5 + 6,) ]
B(/yh 51) B(Vg, 52)
(4.48)
y 1
by — Gy
e Sample 1|71,72, 02, X, Z from
T b s D s
- e\ (1 [\ (1
s (DD
t=1
% B(a{ + 1, nf — 2y + 61) B(aj + 72,1 — 2] + 62) 1[2:=2)
B</yl7 51) B(V?) 62)
(4.49)
y 1
b51 - aél .
e Sample 2|61, 71, 02, X, Z from
n’\ /n2\ /nP\ [n®
wsmnnn- ()
t=1
« B(af +y1,m; — @y + 01) B(} + 72,1 — 27 + 02) 1z:=2]
B(1,01) B(7s, 65)
(4.50)
" 1
by, — @y
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e Sample d|V101, Y2, X, Z from

T p s p S
. nt nt nt nt
pane 2= 11 () () () ()

B(a} + 71,1} — af + 61) B(af + 72,15 — @ + 8) |1
B(71,01) B(72,02)
(4.51)
1
. bs, — as,’

where agan, bgoan for M € {a, B, 1, 01,72, 02} are fixed values of the Uni-
form emission hyperpriors.

The emission hyperparameters are sampled from their full conditionals using
the M-H algorithm as the conditional posterior densities of 8) do not have
any closed form. I propose new emission hyperparameter values of oM =
(o, 8,71, 61,75, 05) given the current emission hyperparameter values ot —
(at, B, 44, 04, 4%, 05) using symmetric random walk updates. To guarantee that
the proposed values (indicated by primes) of the hyperparameters 8*) are non-
negative, I choose the following truncated Normal proposal densities left-truncated

at zero:

o ~ Trunc.N

8, ~ Trunc.N(8¢, 05?) (4.52)
’757 O-"/g)

t 2
527 U§2>7

(
(
/ ¢
v ~ Trunc.N(vyy, 0,
(
vy ~ Trunc.N(
(

0y ~ Trunc.N

where o, 0, 0,,, 05, 04,, 05, are the tuning proposal parameters which can

be adjusted in order to improve the convergence properties of the MCMC-based
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augmented Gibbs sampler. The new value for « is accepted with acceptance

probability min(1, r,), where the M-H ratio, r,, is:

(é - Z((Zt)) (4.53)

where g(a’|a') is the truncated Normal proposal density with proposed value a’
given the current value a’. Now (4.46) can be substituted in (4.53) to get the
full expression for r,. Similarly, I can update the value of § with acceptance

probability min(1, r3) just by replacing o with 5 in (4.53).

Again, the new value for 7, is accepted with acceptance probability min(1, r,,).

Now, the M-H ratio r,, can be written as follows:

r p( |(51,’72,(52,X,Z)q(’}/i|’71>
n p( |517727527X7Z)Q(71|75>
p( |51,’}/2,52,X,Z)( _(I)(’Yi))
. 4.54
= e e B (1% () 45

(4.48) can be substituted in (4.54) for the detailed expression of r,,. Similarly,
I can update the values of d;, 72, d» with acceptance probabilities min(1, rs,),

min(1, 7,,), min(1, rs,) just by replacing v; with 61, 72, d2 respectively in (4.54).

4.2.3.2 Initial state and transition probabilities

I describe in detail the sampling steps of the initial state and transition probabili-
ties for model BBDM conditional on Z. 7y, 71 and 791 given Z are independent.
So, I can write the full conditional posterior distribution of the HMM model

initial state and transition parameters (w(?), 7(P)) as

p(7'P) 7 PNZ) = p(m1| Z0)p(111| o ) p(To1| Zoer ) (4.55)
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I assign a Beta prior for the initial state and transition probabilities; i.e.,
1, T11, T21 ~ Beta(n, 1) independently, but 7; and n, are both set to 1 to give a
noninformative prior to 711 and 791, respectively, namely the Uniform distribution

U(0,1).

Now, I sample the initial state and transition parameters (m, 7i1, 721) as fol-

lows:

e Sample 7|7, i.e.,

m ~ Beta(2,1), it Z; =1 (4.56)
and
m ~ Beta(1,2), if Z; = 2. (4.57)
e Sample 711|Zo.1, i€,
111 ~ Beta(ti; + 1,612 + 1). (4.58)
e Sample 791|Zo.1, i€,
To1 ~ Beta(ta; + 1,190 + 1). (4.59)

Thus, the initial state and the transition parameters (m, 711, T91) are sampled
directly from their full conditional posterior distributions simply by using Gibbs
sampler as the full conditionals have closed form due to Beta-Binomial conjugacy.

4.2.3.3 Transition rate parameters

In this section, I describe the sampling steps of the transition rate parameters for

model BBCM from their full conditional posterior distributions. I first write the

68



4. Hierarchical HMMs with Applications to BS-Seq Data

full conditional posterior density of the HMM model transition rate parameters

),

(7%, Z, %) = p(r'9|Z, )

T (Z_1=1,Z1=1
H )\2 + )\1 —(A1+22) ¥y ( ! e=1)
s \A A A+ A
(Zi1=1,Z;=2
% /\1 . Al 67(/\1+)\2)\I/t ( t—1 t )
)\14‘/\2 /\1+>\2 (460)
A\ A\ I(Zi_1=2,Z;=1) :
% 2 . 2 e*()\1+)\2)‘1’t
)\1 + /\2 )\1 + )\2
(Zi 1=2,71=2
Al + )\2 ef()\1+/\2)\11t ( tl ' )
AMAA A+ ’
where ¥ = (Wy, .-+, W), such that, ¥, is the genomic distance between two ad-

jacent CpG sites indexed at t — 1 and ¢.

I sample the transition rate parameters (A, Ag) from their full conditional pos-

terior distributions as follows.
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L4 Sample )\1|)\2, ZQ:T, v from

p()‘ly)\% Z2:T7 \Il)

A I(Z;_1=1,Z:=1)
1 e*()\1+>\2)‘1/t
)\1 —|— Ao )\1 + A9

T
=11
t=

L(Zi_1=1,Z,=2)
X ( )\1 1 e ()\1+)\2)\I/t)
AL+ Ao )\1 + Ay
L(Zi1=2,Z,=1)
( 2 (>\1+>\2)\Ift>
AL+ Ao )\1 + Ay

A\ L(Zi_1=2,71=2)
< 2 6—(>\1+/\2)‘1/t)
AL+ Ao )\1 + A9

(4.61)

b,\l — ay

e Sample A\s|Ai, Zo.p, ¥ from

p(A2| A1, Zor, )

<11

\ L(Zi_1=1,Z1=1)
< 1 e—(>\1+>\2)‘1’t)
AL+ Ao /\1 + Ag

t=2
I(Zs_1=1,Z;=2
% ( )\1 _ )\1 e_()‘l"')‘?)‘l’t) (Zt—1 +=2)
A+ A A
I(Z;_1=2,Z=1
% AQ . )\2 6_()\1+)\2)\I}t ( ' ' )
A+ A AL+ A

U Z4—1=2,7Z4=2
< )\1 + )\2 6—(>\1+)\2)\Ift) ( o ' )
A4+ AL+ A

1
Y
b,\2 — a>\2

(4.62)

X

where ay,, by,, ay,, by, are fixed values of the Uniform transition rate priors.
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The transition rate parameters 7(¢) = (A}, \y) are sampled from their full con-
ditionals using M-H algorithm as the conditional posterior densities of () do
not have any closed form. I propose new transition rate parameter values of
7@ = (X, \}) given the current transition rate parameter values 71<) = (AL, \%)

using symmetric random walk updates. To guarantee that the proposed values of

(©)

the transition rate parameters 7'’ are non-negative, I again choose the truncated

Normal proposal densities left-truncated at zero:

N ~ Trunc.N(\}, 0,3)
Ny ~ Trunc.N()\S, 0,3), (4.63)

where oy,, 0, are the tuning proposal parameters.

4.2.4 Summary of the augmented Gibbs sampler algo-

rithm steps

1. Initialize all the emission hyperparameters 8*) for model M.

(a) For model BBDM,

initialize initial state and transition parameters (7, 711, 791) and,

(b) For model BBCM,

initialize transition rate parameters () = (A, \y).

2. Compute the state-specific emission distributions,

P(xi|Z =k, 0M)for k=12andt=1,...,T.
3. Compute a,gM)(t) fork=1,2andt=1,...,T.
4. Sample backwards Zr, ..., Z; using backward sampling (Scott, 2002).

5. Sample M) using Component-wise M-H algorithm (Metropolis et al., 1953)
as described in 4.2.3.1.

71



4. Hierarchical HMMs with Applications to BS-Seq Data

6. Sample the transition parameters:

(a) For model BBDM,
sample 7;; NBeta(tij +1, Zi# ti + 1) for 7, 7 = 1, 2, such that,
k#7,
and mp|Z, = k NBeta(lJrI(Zl =k),1+1(Z, = k’)) for k, k' =1, 2.
(b) For model BBCM,
sample A\; and \; using M-H algorithm.

7. Implement the relabelling algorithm as described in Section 2.2.6.

8. Repeat steps (2)-(7) until convergence.

4.2.5 Updating the predicted states

Finally, I note the method used to identify the SMCs (statels) and DMCs (state2s)
in the chromosome. Define, Z, ... Z") to be I Gibbs draws (after burn-in) of
the joint hidden states, where Z(® = (Zy), . Zg)). The estimate of the pos-

terior probability that ¢ genomic position is similarly methylated is given by

~

P(Z, = 1|x) = %Zfil ](Zt(i) = 1). To decide whether a CpG site is differentially
methylated or not, I specify a threshold value on these posterior probabilities. If
ﬁ(Zt = 1]x) > 0.5, I predict the t"* CpG site to be similarly methylated or if
P(Z, =1x) < 0.5, I call that " CpG site to be differentially methylated.

4.3 Simulation studies

In this section, I perform simulation studies to compare the performance of my
proposed models (BBDM, BBCM ) in identifying the DMCs in artificial datasets.
The simulation studies were designed to examine the performance and robustness
of both models under different situations, such as model misspecification and

varying levels of noise in the data.
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4.3.1 Data generation

100 datasets were generated with 7" = 10000 observations each under different
situations to check the robustness of my models. The data generation was done

in 3 steps for both the models:

1. (a) For Model BBDM, the sequence of the hidden states Z = (71, ..., Z7)
was simulated using a Markov Chain with true fixed transition probabilities
711, T21 and initial state probability 71; (b) For model BBDM, the sequence
of the hidden states Z = (Zy,..., Zr) was simulated using a continuous-

index Markov chain with true fixed transition rate parameters A; and As.

2. The nuisance parameters p;, pi and p; for each t = 1,...,10000 were sam-
pled from Beta distributions with true fixed emission hyperparameters con-
ditional on the state labels Z, = k, k = 1,2. p; was sampled from a Beta
distribution with fixed state 1 hyperparameters («, [3), whereas pf and p;

are sampled from Beta distributions with fixed state 2 hyperparameters

(71; 617 Y2, 52)

3. The methylated counts of proliferating and senescent cells of each CpG site

2} and z§ for t = 1,...,10000 were sampled from Binomial distributions
with parameters n} and n; taken from the real data and probability of met-
hylations from the corresponding sampled values of p;, p} and p; conditional
on Z;. Since the total counts (methylated counts 4+ unmethylated counts)
at each CpG site were taken from the real data, it made my simulation

study design biologically realistic in this regard. I have studied 3 potential

cases in the following simulations.
1. Moderately overlapped

(a) For model BBDM, the data are generated in such a way that the data
classified by the simulated states overlap with each other, thus ma-

king it difficult to correctly predict the states. The data are generated
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from the Beta-Binomial HMM with similar modes for data of both
the states, i.e., state 1 hyperparameters (o = 3, = 4) and state 2
hyperparameters (v, = 3.2, §; = 3.9, 79 = 4, d = 5). The hidden
states Z are simulated from a 1% order Markov Chain with an initial
state probability for state 1, m; = 0.34, and transition probabilities
11 = 0.87, 751 = 0.068.

(b) For model BBCM, the data are generated as for BBDM except that
the hidden states Z are simulated from a 1% order continuous-index

Markov chain with transition rate parameters \; = 0.22 and Ay, = 0.22.

2. Well separated

(a) For model BBDM, the data are generated in such a way that the data
classified by the simulated states are well separated from each other,
making it easier to correctly predict the states. The data (xP, x°)
are generated from the Beta-Binomial HMM with well-separated mo-
des for data of both the states, i.e., state 1 hyperparameters (o =
1.2, p = 8.8) and state 2 hyperparameters (v, = 5.5, d; = 4.5, 75 =
8.5, d; = 1.5). The hidden states Z are simulated from a 15 order
Markov Chain with an initial state probability for State-1 71 = 0.34
and transition probabilities 71 = 0.87, 151 = 0.068.

(b) For model BBCM, the data are generated as for BBDM except that the
hidden states Z are simulated from a 1°¢ order continuous-index Mar-

kov chain with transition rate parameters A\; = 0.278 and Ay = 0.28.

3. Realistic
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()

For model BBDM, the data are generated using the real data study
estimates on this dataset. In this case, the data classified by the si-
mulated states slightly overlap with each other. Thus, it would be
interesting to test the performance of my model in the case of a more
realistic situation. The data (xP, x*) are generated from the Beta-
Binomial HMM with less well-separated modes for data of both the
states, i.e., state 1 hyperparameters (o = 5.2, § = 2.65) and state 2
hyperparameters (7, = 1.36, §; = 3.25, v, = 1.07, J = 5.3), thus
causing some amount of overlapping. The hidden states Z are simula-
ted from a 1% order Markov Chain with an intial state probability for

State-1 m; = 0.34 and transition probabilities 77 = 0.87, 191 = 0.068.

For model BBCM, the data are generated using the real data study
estimates on this dataset. The data (xP, x®) are generated from the
Beta-Binomial HMM with less well-separated modes for data of both
the states, i.e., state 1 hyperparameters (a« = 11.62, § = 5.10) and
state 2 hyperparameters (73 = 1.19, d; = 1.90, v, = 0.78, J, = 1.82).
The hidden states Z are simulated from a 1% order continuous-index
Markov chain with transition rate parameters A\; = 0.534 and Ay =

0.11.

Other than the realistic case, there was no strong additional reason
in the choice of true values for the transition parameters. The true
values of the transition parameters were more or less similar for all the
three cases. The main objective was to generate the data in such a
way that the data classified by the simulated states must satisfy the

data generation conditions.

5



4. Hierarchical HMMs with Applications to BS-Seq Data

4.3.2 Priors

e [ use weakly informative and independent Uniform priors for the emission
hyperparameters. The prior distributions of the emission hyperparameters

0™ = (a, 8,71, 01,72, 02) for model M are as follows:

0, 2000
B ~ U(0,2000

51 ~ U(0,2000 (4.64)

Yo ~ U(0,2000

U( )
( )
~v1 ~ U(0,2000)
( )
( )
9y ~ U(0,2000).
e [ use weakly informative and independent Uniform priors for the transi-

tion rate parameters 7¢ = (A, A2) for model BBCM and they are both
U(0,2000).

4.3.3 Consistency of model parameters estimation

I generated 100 datasets under both models (BBDM and BBCM ). These data-
sets of size 10,000 CpG sites were generated for each parameter setting described
in Section 4.3.1, which subsequently were estimated using the augmented Gibbs
sampler described in Section 4.2. Each simulated dataset was then fitted to the
models BBDM and BBCM for each case with 60,000 MCMC iterations (with
20,000 as burn-in) after which the posterior samples for each model parameter

were assessed for convergence.
After attaining convergence, to estimate the quality of the estimation of the

model parameters, I estimated the Root Mean Square Error (RMSE) of each of

the model parameters. The RMSE in my simulation studies for any parameter e
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was determined from

RMSE(¢) =

~ =

J
D (& — €rrue)?, for J =100, (4.65)
j=1

where €. is the true value of the parameter and in the 7" simulated dataset €j

is its posterior mean estimate.

In Table 4.1, I presented the range of estimated RMSE of the model parameters
for each case. In each case, the estimated RMSE was small, demonstrating good
estimation of the model parameters except for the moderately overlapped case in
both the models. Here, the transition parameters for the moderately overlapped
case in both the models showed inconsistent estimation. Since the data for both
the states are generated using a similar set of true values of the hyperparameters,
it fails to distinguish between the 2 states. As a result, the RMSE for the model
parameters for the moderately overlapped case in both the models are large. Ho-
wever, for the well separated case in both the models, the RMSE for the model
parameters are much smaller ranging between (0.0002, 0.009) and (0.0006, 0.01),
respectively. Similarly, for the realistic case in both the models the RMSE for
model parameters ranged between (0.0006, 0.0093) and (0.0008, 0.009), respecti-
vely. Clearly, the values of RMSE for the model parameters for the well separated

case in both the models are generally the lowest.

The posterior state-membership for all the CpG sites are assigned using a cut-off
value of 0.5 as discussed in Section 4.2.5. The misclassification rate for all the
3 cases was calculated by comparing the simulated and predicted states at each
genomic position. The misclassification rate is the proportion of mismatches be-
tween the simulated and the predicted states. The average misclassification rate
is then the average of the misclassification rates based on 100 simulated datasets.

In the moderately overlapped case, the average misclassification rates for BBDM
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Model Case Average Misclass. rate | Range of RMSE
Moderately overlapped 0.6673 (0.05, 1.091)
BBDM Well separated 0.0042 (0.0002, 0.009)
Realistic 0.0242 (0.0006, 0.0093)
Moderately overlapped 0.2782 (0.08, 1.72)
BBCM Well separated 0.0196 (0.0006, 0.01)
Realistic 0.0664 (0.0008, 0.009)

Table 4.1: Simulation study: Average misclassification rate and range of RMSE
for models: BBDM and BBCM based on 100 simulated datasets.

and BBCM are 0.6673 and 0.2782, respectively (Table 4.1). The corresponding
misclassification rates for the well separated case are 0.0042 and 0.0196 and for
the realistic case 0.0242 and 0.0664, respectively. The misclassification rates for

the well separated case in both models are much lower than the realistic case.

For one of the randomly selected simulation studies out of 100, I also present
the scatter plots of the data generation for all the cases. In Figures 4.2, 4.3, 4.4, 1
showed visually how well I have selected the true values of the parameters for each
of the cases, explained in Section 4.3.1. The scatter plots of simulated methyla-
tion proportions between proliferating and senescent cells classified by the true
states, for both the models, validate the choice of true values of the parameters
and the data generation procedure. From Figures 4.2a, 4.2c¢ for the moderately
overlapped case in both models, it can be seen from the scatter plots that the
simulated methylation proportions between proliferating and senescent cells clas-
sified by the true states overlap with each other. It can also be observed that the
simulated proportions between two cell types are much more scattered for BBCM
compared to BBDM in the moderately overlapped case. Hence, model BBCM is
able to classify the hidden states better than BBDM. Furthermore, from Figu-
res 4.3a, 4.3c for the well separated case in both models, the scatter plots display
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Figure 4.2: For the moderately overlapped case. (a) A scatter plot of simulated
methylation proportions between proliferating and senescent cells classified by
the simulated states for BBDM. (b) A scatter plot of simulated methylation
proportions between proliferating and senescent cells classified by the predicted
states for BBDM. (c) A scatter plot of simulated methylation proportions between
proliferating and senescent cells classified by the simulated states for BBCM. (d)
A scatter plot of simulated methylation proportions between proliferating and
senescent cells classified by the predicted states for BBCM.

79



4. Hierarchical HMMs with Applications to BS-Seq Data

2. 2.
=) 2

£ k=

2 2

g ]

a o

5 s

g Simulated EQ Predicted
5 states = states
E 0 * Statz 1 E 0 * State 1
B * Stat= Z a2 * State 2
[ w

o 1]

B 025 5 025

wm o w

- -

o @

& B

3 3

Eq E,

o @~

Simulated proliferating methylation propertions Simulated proliferating methylation proportions

(a) Scatter plot for BBDM (b) Scatter plot for BBDM
classified by simulated states. classified by predicted states.

2. 2.

=) =

£ =

2 2

g g

a o

5 5

g Simulated § Predicted
5 states = states

E 0 * Statz 1 E 0 * Statz 1
B * Stat= Z B * State 2
[ W

o o

B 025 & 025

wm o wm T

- =)

o o

& B

3 3

Eq E

o [

Simulated proliferating methylation propertions Simulated proliferating methylation proportions

(c) Scatter plot for BBCM (d) Scatter plot for BBCM
classified by simulated states. classified by predicted states.

Figure 4.3: For the well separated case. (a) A scatter plot of simulated met-
hylation proportions between proliferating and senescent cells classified by the
simulated states for BBDM. (b) A scatter plot of simulated methylation propor-
tions between proliferating and senescent cells classified by the predicted states
for BBDM. (c) A scatter plot of simulated methylation proportions between pro-
liferating and senescent cells classified by the simulated states for BBCM. (d)
A scatter plot of simulated methylation proportions between proliferating and
senescent cells classified by the predicted states for BBCM.
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Figure 4.4: For the realistic case. (a) A scatter plot of simulated methylation
proportions between proliferating and senescent cells classified by the simulated
states for BBDM. (b) A scatter plot of simulated methylation proportions between
proliferating and senescent cells classified by the predicted states for BBDM. (c)
A scatter plot of simulated methylation proportions between proliferating and
senescent cells classified by the simulated states for BBCM. (d) A scatter plot
of simulated methylation proportions between proliferating and senescent cells
classified by the predicted states for BBCM.
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that the simulated methylation proportions between proliferating and senescent
cells classified by the true states are well separated. The realistic case in both
the models also exhibit similar kind of pattern displayed by the moderately over-
lapped case and they can be verified from from Figures 4.4a, 4.4c. In addition, I
have also displayed the prediction power of my algorithm in both the models by
comparing the scatter plots of simulated methylation proportions between proli-
ferating and senescent cells classfied by predicted states in Figures 4.2b and 4.2d
for the moderately overlapped case, Figures 4.3b and 4.3d for the well separated
case and Figures 4.4b and 4.4d for the realistic case, respectively.

For this randomly selected simulation study, the histograms of state 2 poste-
rior probabilities for all the cases are also plotted in Figures (the histogram of
state 1 posterior probabilities is just an inverse image of state 2). For moderately
overlapped case in both the models as can be seen from the histograms (Figu-
res 4.5a, 4.5b), the medians of the posterior probabilities for state 2 are close
to 0.5. Thus, it gets extremely difficult to classify the correct states. For well
separated cases and realistic cases, the states are strongly classified as extreme
posterior state-membership probabilities close to 0 or 1 can be obtained. In Figu-
res 4.6a, 4.6b and Figure 4.7a, 4.7b, the posterior probabilities (mostly very close
to 0 or 1) admit little uncertainty in the state reconstruction. The histograms
for the moderately overlapped case in both the models are symmetric whereas the
histograms of the well separated and realistic cases are either U-shaped, J-shaped
or reflected J-shaped depending on the distributions of the state labels (state 1
and state 2).

I examine the performance of all the three cases for both the models using
receiver operating characteristic (ROC) curves based on the simulation study de-
sign. The ROC curve explains the relationship between the false positive rate
(FPR) and true positive rate (TPR) of inferred methylation status at each CpG

site. The TPR, also termed as sensitivity, is the proportion of correctly identi-
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Figure 4.5: For the simulation study of BBDM and BBCM, the 2 panels depict
the histogram of posterior state 2 probabilities for the moderately overlapped case:
(a) BBDM and (b) BBCM based on one randomly selected simulation.
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Figure 4.6: For the simulation study of BBDM and BBCM, the 2 panels depict
the histogram of posterior state 2 probabilities for the well separated case: (a)
BBDM and (b) BBCM based on one randomly selected simulation.
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Figure 4.7: For the simulation study of BBDM and BBCM, the 2 panels depict
the histogram of posterior state 2 probabilities for the realistic case: (a) BBDM
and (b) BBCM based on one randomly selected simulation.
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Figure 4.8: For the simulation study of BBDM and BBCM, the 2 panels depict
the ROC curves for the moderately overlapped case: (a) BBDM and (b) BBCM.
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Figure 4.9: For the simulation study of BBDM and BBCM, the 2 panels depict
the ROC curves for the well separated case: (a) BBDM and (b) BBCM.
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Figure 4.10: For the simulation study of BBDM and BBCM, the 2 panels depict
the ROC curves for the realistic case: (a) BBDM and (b) BBCM.
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fied differentially methylated CpG sites. The FPR is the proportion of similarly
methylated CpG sites which are incorrectly classified. The obtained ROC curves
are also plotted in Figures 4.8, 4.9, 4.10, respectively. In a ROC curve the TPR
(sensitivity) is plotted in function of the FPR (1-specificity). A test with perfect
discrimination (no overlap in the two distributions) has a ROC plot that passes
through the upper left corner (100% sensitivity, 100% specificity). Therefore the
closer the ROC plot is to the upper left corner, the higher the overall accuracy of
the test. Figures 4.8a, 4.8b display the poor performance in the moderately over-
lapped case for both the models. Clearly, from Figures 4.9a, 4.9b, 4.10a, 4.10b,
the well separated case for both the models outperforms the realistic case by a

small margin.

4.4 Real data study

In this section, I illustrate the potential of my proposed BS-seq methylation data
analysis method. I have applied the extended HMMmethState method to analyze
BS-seq data from Cruickshanks et al. (2013). I analysed a 90.23458 Mb region
(0.060034 — 90.294609 Mb on chromosome 16) of 2,165,796 CpG sites.

4.4.1 Inference via MCMC

In this section, I assess the results obtained using MCMC techniques and the con-
vergence properties of MCMC chains using various diagnostics for the real data
Chromosome 16. I tried to make sure that the MCMC chains run long enough
such that the samples of the parameters could be regarded as a good represen-
tation of their respective posterior distributions. I ran the augmented Gibbs
sampler for 10, 000 iterations for 3 parallel chains, thinning the chains and saving
every 10" value of the updates, to reduce autocorrelation between consecutive up-
dates and save storage space. The parameters of the proposal distributions were

also tuned to get coherent M-H updates. I checked the posterior samples using
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various convergence diagnostics to establish the fact that the posterior samples of
the parameters represented their corresponding posterior distributions.To assess
the convergence and mixing properties of the MCMC updates, I ran 3 MCMC
chains intializing with different starting points and also did a burn-in the first
300 MCMC updates. Optimizing the tuning parameter of the proposal distribu-
tion played a significant role in obtaining less correlated consecutive draws, thus
enhancing the efficiency of the M-H algorithm. The proposal distributions of the
hyperparameters were tuned appropriately in order to obtain optimal acceptance
rate which resulted in acceptance rates in the range of (0.25, 0.43). In addition,
I checked a few other convergence diagnostics to reaffirm my claim in the conver-
gence of the parameter estimates. I used PSRF (Gelman and Rubin, 1992) on
the 3 MCMC chains with dispersed starting values to examine the convergence
for each of the parameter to the same target distribution. The PSRF values are
only slightly above 1 (Tables 2 and 3), which is consistent with convergence of

the chains.

I carried out all the convergence diagnostics discussed and no evidence of non-
convergence was obtained from any of the diagnostics. From the noisy traceplots,
it can be easily inferred that the 3 chains mixed properly. Traceplots and PSRF
plots are presented in Appendix 7.2.3. The estimates of the posterior mean, pos-
terior standard deviation (S.D.), 95% credible intervals are presented in Table 2
for emission hyperparameters and Table 3 for transition parameters of both the

models for all the 3 chains.

The number of iterations for the simulation and real studies are not the same
because in some cases (for example, moderately overlapped), the transition para-
meters were taking longer to converge to their appropriate stationary distributions
compared to the realistic and well separated cases. Thus, to make the number

of iterations conformable with the other two cases, I have used 60, 000 iterations
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and 20,000 burn-in. Thinning was not implemented in the simulation studies.

Furthermore, for both the model boxplots (Figures 4.11, 4.13), y-axis denotes
the difference between methylation proportions of senescent and proliferating in
various categories. Hypo refers to the category when the proportions of senescent
cells is greater than proliferating cells and vice-versa for Hyper. Note how the
DMCs are hypomethylated on average (since the median difference is negative),
consistent with the biological presumption (Cruickshanks et al., 2013). Also the
Non-DMCs are indeed similarly methylated since the boxplot is centred on zero.
Additionally, the histograms of state 2 posterior probabilities for model BBDM
show strong classification of states in Figure 4.12 whereas the classification of the
states is moderately weak in the case of model BBCM as shown in Figure 4.14,

as many of the state 2 posterior probabilities vary between 0.2 and 0.8.

4.5 Discussion

In this chapter, I have described my proposed HMMmethState method for iden-
tifying DMCs from BS-seq methylation data. I described the structure of my
models and their association with the data-generating process. In addition, I
developed an efficient augmented Gibbs sampling method for applying MCMC
based techniques to datasets with hidden states, with the help of Forward-sum
recursion. [ designed my proposed method HMMmethState: a HMM, where I
assumed that the data followed an independent bivariate Binomial distribution
conditional on the true underlying methylation proportions and hidden states,
i.e., the methylation status of the CpG sites at the first stage of the hierarchical
model. The underlying methylation proportions for each CpG site were assumed
to be centrally clustered around a state-specific mean with a state-specific vari-
ance at the second stage of the hierarchical model. The advantage of using the

Binomial distribution at the first stage was that it involved CpG site-specific va-
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Figure 4.11: For the real study of BBDM, boxplots of the difference of methy-
lation proportions between proliferating and senescent cells classified by various
categories defined in the text.
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Figure 4.12: For the real study of BBDM, histogram of posterior state 2 proba-
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Figure 4.15: For the the real study, the 4 panels depict the scatter plots: (a)
A scatter plot of observed methylated counts for the proliferating and senescent
cells classified by the predicted states for BBDM. (b) A scatter plot of simula-
ted methylated counts (generated using the posterior mean estimates) for the
proliferating and senescent cells classified by the predicted states for BBDM. (c)
A scatter plot of observed methylated counts for the proliferating and senescent
cells classified by the predicted states for BBCM. (d) A scatter plot of simula-
ted methylated counts (generated using the posterior mean estimates) for the
proliferating and senescent cells classified by the predicted states for BBCM.
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riances, i.e., the data point (the methylated counts of proliferating and senescent
cells) for each CpG site was generated using the information obtained from the
total count and the true underlying methylation proportion parameter for each
CpG site. Thus, the hierarchical model became more capable of describing the
variability among CpG sites within each state. In order to obtain computational
simplicity, I implemented a simple version of the bivariate Binomial hierarchical
HMM with a collapsed distributional structure due to Beta-Binomial conjugacy.
I have presented the scatter plots of the methylation counts of proliferating cells
against senescent cells for the observed data and for the fitted models in Fi-
gure 4.15. The visual posterior predictive checking, using the posterior mean
estimates of the model parameters in Figure 4.15 indicates that the fitted mo-
dels fail to capture the correlation between the methylated counts of proliferating
and senescent cells. Figures 4.15a and 4.15¢ show the scatterplots of the obser-
ved data classified by the predicted states. On the other hand, Figures 4.15b
and 4.15d show scatterplots of the fitted data classified by the predicted sta-
tes. From Figures 4.15b and 4.15d, it can be interpreted that the correlation
between the methylated counts of proliferating and senescent cells cannot be
captured by the HMMmethState models. The main drawback of the bivariate
Beta-Binomial emission model is that it cannot induce correlation between the
methylated counts of these two cell types. Although it offers a natural interpre-
tation to the distribution of the data due to its collapsed hierarchical structure
(Beta-Binomial conjugacy), it fails to accomodate some features of the obser-
vations. In the next chapter, I present an extended version of HMMmethState
models which can incorporate a correlation parameter into the model for more

robust inference.
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Chapter 5
Model Extensions

In this chapter, I propose extensions of the HMM-based HMMmethState models
proposed in Chapter 4 for predicting DMCs in BS-seq data. The bivariate Beta-
Binomial emission model seems reasonably adequate to model the BS-seq data but
fails to capture certain features, primarily the correlation between the methylated
counts of the two cell types. This is visible in the visual posterior predictive
checking analysis in Chapter 4 (Figure 4.15). The scatterplots in Figure 4.15
show that the data exhibit strong correlation between the methylated counts of
the proliferating and senescent cells which was not allowed by the fitted models.
Failure to properly address the correlation between the methylated counts of
the two cell types may result in misleading inference. Thus, to incorporate the
correlation feature in the data, I propose a bivariate Normal distribution at the

274 stage of the HMMmethState model which introduces a correlation parameter.

5.1 Model assumptions

Let, as previously denoted in Chapter 4, 2} and xf denote the methylated counts
in proliferating and senescent cells of the pair of random variables X? and X} at
the t'" CpG site, such that X? and X independently follow Binomial distributions

with parameters (n?,logit ' (¢¥) and (n{,logit™'(q;) respectively, where X, =
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(X7, X}), ¢ = (2F,25) and X = (Xy,- -+, X7), x = (X1, -+, Xr), such that

X?|¢f ~ Bin (nf, logit_l(qf)), t=1,...,T (5.1)
and
X/|q; ~ Bin <nf, logitl(qf)), t=1,...,T, (5.2)

where ¢ and ¢ are the logit transforms of probability parameters p! and p;
as explained in Section 4.1 of methylation of proliferating and senescent cells,

respectively, at the t** CpG site, such that,

q; = log Vi , C=Dp, S.
1 — pf

ni and n{ are the total number of reads from the two cell types. For notational

simplicity, let the pair of logit parameters ¢¢ and ¢ be denoted by Q, = (¢, ¢})
fort=1,...,T.

For state k = 1, 2, the underlying logits will be written as

QF = (¢, ¢*), k=1,2, (5.3)

ie., Qf is the pair of auxiliary parameters for state k at each CpG site, where ¢ k
and ¢* denote the underlying auxiliary logit parameters for state k at t"* CpG
site of proliferating and senescent cells, respectively.

In order to account for the variability of the mean among CpG sites in the same
state, I constructed a hierarchical model where I have state-specific auxiliary logit
parameters for each CpG site and these auxiliary logit parameters are eventually
clustered around a state-specific mean with a state-specific variance and correla-
tion.

Thus, the structure of the hierarchical bivariate Normal-Logit-Binomial emission
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model is:
X?|Z, = k ~ Bin <nf, logit‘l(qfk)) and X/|Z; = k ~ Bin (nf, logit_l(qfk)>,
Q¥|Z, =k ~BVN(@), k=1, 2and t =1,...,T, (5.4)

where 0, = (Mj, X)) and BV N(.) is the bivariate Normal distribution, such
that,

2 2
Lhs b | oL Ok o,P2  OpOsp2
2 2
Lhs s pOs 0% OsOpP2  O5pP2

(5.5)

For notational simplicity, I denote the bivariate Normal state-specific parameters
as follows: 01 = (jus, 07, pi); 02 = (fip, 115, 05, 0%, P2)-
Now, if the methylation levels in proliferating and senescent cell are the same at

the t'* CpG site, i.e., Z; = 1, then
Q,; ~ BVN(6,). (5.6)

Similarly, if the methylation in proliferating and senescent cells are different at

the t*" CpG site, i.e., Z; = 2, then
Q? ~ BVN(8,). (5.7)

I will further explain the bivariate-Binomial emission model in Section 5.1.1 and
hierarchical structure of the bivariate-Binomial-Normal-Logit emission model (Fi-

gure 5.1) along with the auxiliary emission parameters in Section 5.1.2.
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Figure 5.1: Graphical representation of the bivariate Normal-logit emission mo-
del. The grey circles refer to the fixed values of the total counts and data re-
spectively, while the white circles refer to auxiliary emission parameters, hyper-
parameters and hidden states that are inferred.
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5.1.1 Binomial emission distributions of the model

Define the emission probability P(x; }Qf, Zy = k) =b(t), where k=1,2. The
emission probability of the pair of observation x; = (27, z7) conditional on the

hidden state Z, = k, (k =1, 2) is given by

bi(t) = P(xt Q.7 = k:)
et e
:Bz’n(x‘f;nf,—M)Bm(xf;nf,—m), k=1, 2. (5.8)
1+ e% 1+ e

5.1.2 Auxiliary emission parameters

To classify the states, I need to have different properties of (¢, ¢') and (¢f 2 a?)
(t =1,...,T), the auxiliary parameters (inverse-logit parameters) of proliferating
and senescent CpG site for both the states. I have introduced auxiliary emission
parameters and used a 3-stage hierarchical Bayesian model assuming bivariate

Normal state-dependent conditional priors on these parameters. I have defined

Qf = (¢/", ¢*) ~ BVN(6y).

Stage I: Methylation counts of proliferating and senescent cells sampled from
Bivariate Binomial Emission distributions with state-dependent auxiliary para-

meters:

x |Qf o« P (X|Qf), (5.9)

where P (Xt ‘Qf) = P(x; ‘Qf, Zy =k), k=1,2 is the bivariate Binomial emis-

sion distribution for state k.
Stage II: Auxiliary emission parameters are generated from bivariate Normal

prior distributions conditional on the differentially methylated (similarly methy-

lated) states:
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QF|Z =k ~ BVN(6,), (5.10)
such that,
exp (- 3@QE - Mm@ - M)
k _
o(QF, M, %)) = 27 : (5.11)

where ¢(.) denotes the bivariate Normal density. I can further simplify the equa-

tions specific to each state, k = 1,2,

HQL M, D)=

B 2ro24/1 —pzx
1 2
exp [—m{(fﬁl—ﬂ*) — 2px (Qfl_ﬂ*) (C]tsl_u*)

+ (4" —u*)z}]

and

1
2 M,, 3, = X
Q1 M, 2) 2no,054/1 — p?
2
1 { (@ =) 200 (4" = p1p) (4% — 1)

P [_2(1 — p3) o2 0p0s

Stage III: Global Hyperparameters 0y, k = 1,2 follow hyper-prior distributions
p(6):

0. ~ p(6y). (5.12)
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5.1.3 Normal-Logit-Binomial hierarchical HMM models

In this section, I define the two hierarchical Normal-Logit-Binomial HMM mo-
dels by combining the Normal-Logit-Binomial emission probability distributions
and transition probability distributions. The transition probability models were

explained in details in Sections 4.1.3 and 4.1.4, respectively.

e Model NLBDM: this model combines the Normal-Logit-Binomial emission
probability model in Section 5.1.1 and homogeneous transition probability

model in Section 4.1.3 through (4.13) and (4.14).

e Model NLBCM: this model combines the Normal-Logit-Binomial emission
probability model in Section 5.1.1 and non-homogeneous continuous-index

transition probability model in Section 4.1.4 through (4.19) and (4.20).

For notational consistency in this chapter, I have also assumed the same set of

HMM transition model parameters.

5.1.4 Computing the likelihood

In this section, I describe the general version of the likelihood for model M where
M represents the true model, i.e., M = NLBDM, NLBCM.

Let the set of all parameters and hyperparameters be generically denoted by
¢CM) = (nM) M) (M) for both the models as described in Section 5.1.3
where n@®) = (p™ p{™)Y such that, n{™ = (n,iM)(l), _ ,n,(CM)(T)) Then,

I denote n,gM)(t) = QF = (& ¢") for k =1, 2 and t = 1,...,T; where
o) = (0§M), OéM)), such that 9§M) = (s, 02, p,) and 0§M) = (kp, s, 05, 02, P2)
and 7™) for model M. The joint probability distribution of the observations
X = (X1,...,Xr) and the sequence of the hidden states Z = (Z,...,Zr) for

model M conditional on the model parameters ¢ can be interpreted as the

104



5. Model Extensions

complete data likelihood of the observations and the states:

Plx,2[60) = a0 Py, () )H 0Pz (xin"0))
=P, (xlin%u)) 50, @)y, (xQIn(zAf)(?)) .
M M
T ()P (xel65 (D)) (5.13)
where Pk<xt|n,(€M)(t)> = P(xt|Zt = 15717,2]\4)(15))7 W](CM) = P(Z, = k) and

Téfw)(t) =P(Zy=1|Zy1 = k; 7)) for k1 =1, 2.
Basically, (5.8) provides Py (xt|n,(€M) (t)), such that,

A (xin"0) = P (12 = 10"(0))

P(It,xtht 7q15 7Zt_ 1)

e‘]fl eqfl
= Bin (azf;nf, ﬁ) Bin (xf;nf, —1) (5.14)
+ et

edr 14 e

and

P (xn"(0)) = P2 = 200" )

P(xt7$t|qt aqt aZt - 2)
et e’
= Bin (a:f;nf, —pz> Bin (:vf;nf, —2) (5.15)
1+ et

Now, the detailed joint probability distribution expression for the observed met-

hylation data x and the sequence of the hidden states (methylation status) Z can
be obtained from the emission quantities (5.14) and (5.15) and the hidden states
probability expressions from (4.13), (4.14) for model NLBDM and (4.19), (4.20)
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for model NLBCM. So, (5.13) can be re-written specific to model NLBDM as

T
D D D D
Px.21”) = P (xn0)) [T 0P (el o))
t=2
D D D D
—Pp, (xl|n<zl’<1>)fél;2<2>zﬂz2 (xtm;;(z)) .

D D
18] (P (xelal2))
:H Bin( z{;ny, —— | Bin| z};n;, ——
1 1+ e 1+ et

qPQ q32 I[Zt:2}
; p. D e . S,,..8 e’
B —— |B —
m xtanh p2 m ‘rtanﬂ $2
1+ e 1+ e

x mUZ=10(1 — o)A Bin (4t + ti, T11)

(tar; tar + tag, To1). (5.16)
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Similarly, equation (5.13) can be re-written specific to model NLBCM as

P(x,z}c(m W21>le <x1|77 >HTZ(t D, 2,(t) Py, <Xt|nzt (t )>
C C C C
9P, (mm;l)(l))fél ) (2P, (xtm;;(z)) -

c C

1

L(Zi_1=1,Z;=1)
( Ao n A1 e()\1+)\2)\pt> o ‘

(5.17)

L(Zy_1=2,7,=2
A n A2 o~ (A2 =2 =) .
A1+ Ao A1+ Ao

Then, the likelihood of the observed methylation data x given the HMM model

parameters ¢ for model M can be expressed as

Lx(¢™) = P(x¢™)

= Y Py (Xl\?’l )ﬁ [T 2O (Xtm ())}

Z1 s Z =2

(5.18)
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5.1.5 Conditional Bivariate Normal Priors of the auxiliary

emission parameters

I consider bivariate Normal priors for auxiliary emission parameters conditional

on the global emission hyperparameters

™00 ~ BYN@OM), k=12andt=1,...,T. (5.19)

5.1.6 Choice of priors

(M (M)

The priors for the initial state parameters 7w and transition parameters 7
for both models remain the same as described in Section 4.1.7.

The prior for the HMM model parameters ¢ can be decomposed into four
parts: i) bivariate Normal priors for auxiliary parameters conditional on the global
emission hyperparameters; ii) priors for the emission hyperparameters 830 iii)
priors of the initial state parameters w(™); iv) priors of the transition parameters

(M),

p(¢M) = p(n™10@) p(OU)) p(m )y p(r 1), (5.20)

For model M, the priors for the global emission hyperparameters 8*) can be

written as,

p(OM)) = p(1.) p(a2) p(p.) P(p) D(1ts) P(S2). (5.21)
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The priors of the bivariate Normal hyperparameters (emission) for model M are

assumed to be uniform and they are as expressed as,

(5.22)

where U(a, b) is the Uniform distribution with density on (a, b) f(yla,b) m,
for a <y <band IW (v, 1) is the bivariate Inverse-Wishart distribution with

density as

vo+2+1

_ 1 _
F(Y|ro, Q1) o< Y77 2 exp {—5157" (QY 1)} ,

such that Y is a 2 x 2 matrix and the elements of Q2 (which is also a 2 x 2 matrix)

and v are fixed constants.

5.1.7 Joint posterior distribution

The joint posterior distribution for model M is given by,

p(¢M]x) o< L (¢M)p(¢), (5.23)

up to a normalization constant.
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5.2 Parameter and state estimation

In this section, I implement an MCMC-based algorithm to estimate the hidden
states and parameters analogous to that in Section 4.2. The priors for the logit
auxiliary parameters described in Section 5.1.5 are not conjugate which makes

the MCMC algorithm more computationally intensive.

The augmented Gibbs sampler that I develop in this chapter sequentially upda-
tes the values of auxiliary parameters, then the global emission hyperparameters
conditional on the data (auxiliary parameters), transition parameters and the
hidden states. The samples of the auxiliary emission parameters are simulated
from their conditional distributions using M-H (within Gibbs) samplers as no
closed form can be obtained from the conditional posterior distributions of the
auxiliary emission parameters. The samples of the global emission hyperparame-
ters are then sampled using a mix of direct samplers and one M-H (within Gibbs)
step. The updating scheme of the remaining parameters, i.e., the states Z and

the transition parameters 7™ for model M remain the same as in Chapter 4.

5.2.1 Outline of the augmented Gibbs algorithm

In this section, I outline the steps of the augmented Gibbs-M-H sampling scheme
for one iteration implemented to sample from the posterior distributions of the

HMM model parameters ¢™) for model M.

1. T calculate the full likelihood of model M conditional on the HMM model
parameter ¢(™) using the forward sum recursion. The details of the forward
sum recursion procedure have been described in Section 2.2.2. In my model

M, 1 can re-construct the forward probability as

oM () = P (x14; Z = K|¢D) (5.24)
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where k£ = 1, 2 denotes the similarly methylated state and differentially

methylated state, respectively. The quantity a,gM) (t) can also be viewed as

the partial likelihood up to genomic position ¢, such that genomic position

t is in state k for t = 1,...,T and k = 1, 2 which can be written as

oM () = > Wg\f)pzl(xlmzl )H H)ZS st(xsmz ()).
Z,

(5.25)

Using the forward sum recursion, the partial state based likelihood is given

by

2
o) =00t - 1)), t=2,....T. (5.26)
I=1
Here b(M)(t) =P (M) i i
, by = Dy | x¢|m;, '(t) ). I have already derived expressions for
Pk(xt]nt(M)) in (5.14) and (5.15). For t = 1, I can write

The full likelihood of the entire sequence can be expressed as,

Lu(¢M) = >~ ag(1), (5.28)

where L(¢*)) is the full likelihood for model M.

2. After computing the state-based partial likelihoods and the full likelihood
using forward sum recursion, I employ a backward sampling procedure to
sample the hidden states Z. The steps of the backward sampling have been
described in detail before (step (2) of Section 4.2.1).

3. Next, I update the initial state parameters (™) and transition model para-
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meters (M) conditional on the current values of the emission hyperparame-
ters ™) the sequence of the hidden states Z and the observed methylation
data x. Again, the steps have been described in detail before (step (3) of
Section 4.2.1).

(M) " conditional on the

4. For model M, the auxiliary emission parameters 7
current values of the global emission model parameters 8) the initial
state parameters w™) and transition model parameters 7™, the sequence
of the hidden states Z and the observed methylation data x, can be updated

using a M-H procedure.

5. For model M, the global emission model parameters 8, conditional on
the current values of the auxiliary emission parameters n*) . the initial state
parameters ™) and transition model parameters () and the hidden
states Z and the observed methylation data x can be updated using a mix

of Gibbs sampler and M-H sampling.

5.2.2 Further details of the augmented Gibbs sampler

The key steps of the augmented Gibbs sampler are as follows:

1. I sample the hidden state path Z from the full conditional posterior distri-
bution p(Z|x, (™M) given ¢(M) = (9 7(M) (M) and observed methy-
lation data x. For this step, I employ the data-augmentation based FSBS

procedure as described in Section 5.2.1.

2. I sample the auxiliary emission parameters ™) from the full conditional
posterior distribution p(n™)|x, Z, ™) 73 @(M)) given the global emis-

(M) and transition

sion model parameter 8™) | the initial state parameters 7
model parameter 7™ updated hidden states Z and observed methylation
data x. However, in this step, I sample n*) from the full conditional distri-

bution p(n™)|x, Z,8M)) using a M-H algorithm given the updated hidden
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states Z, observed methylation data x and the global emission model para-

meter 8M) | since,

. I sample the global emission hyperparameters @) from the conditional
posterior distribution p(@")|x, Z, M) (M) (M) given the auxiliary emis-

M) and transition

sion model parameter ™), the initial state parameters 7
model parameter 7™ updated hidden states Z and observed methylation
data x. In this step, it is enough to sample 8 from the full conditional
posterior distribution p(@™)|Z, n™)) using a M-H algorithm given the up-
dated hidden states Z and the auxiliary emission model parameter n),

since,
p(0|x, Z, w7 ) — p(910|Z, D). (5.30)

M)

. In this step, I sample the HMM model initial state parameters ) and

transition parameters 7™ from the full conditional posterior distribution
p(wM) M) |x 7, nM) 9M)) given the auxiliary emission parameter n™),
global emission model hyperparameter 8 updated hidden states Z and
observed methylation data x. Again, the steps have been described in detail

before (step (3) of Section 4.2.2).

I now describe the sampling steps of the auxiliary emission parameters (2), glo-

bal emission hyperparameters (3) for both the models NLBDM and NLBCM.
I have already explained the sampling steps of the initial state and transition pa-
rameters (4.(a), (b)) for both the models analogous to Section 4.2.2 (3.(a), (b))
of Chapter 4 in Sections 4.2.3.2 and 4.2.3.3, respectively.
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5.2.3 Sampling steps from conditional posterior distribu-

tions
5.2.3.1 Auxiliary emission parameters

In this section, I elaborate on the sampling steps of the auxiliary emission para-
meters from their full conditional distributions. I first write the full conditional

distribution of the HMM model auxiliary emission parameters n),

p(n™x, 2,7, 00M) = p(n™|x, Z,0%) (5.31)
o< Lz (n™)p(n*10"").

(5.31) is proportional to the complete data likelihood Ly z(n™*") times the second-

stage conditional prior p(n®)|@™M)) for the auxiliary emission parameter.

Again, (5.31) can be further simplified as the product of full conditional dis-

tributions of bivariate auxiliary emission parameters for model M,

p(n®|x, 2,6%) = p(n{™|x, 2,0 )p(n{"|x, Z, 65). (5-32)

(M)

Since, 1, ’ are state 1 auxiliary emission parameters and né )

are state 2 auxi-

liary emission parameters, I can further re-write (5.32) as,
T

p(m{ 1%, 2,0) =[] (", 4" %0, 21, 65", (5.33)

t=1

Now, the conditional posterior distribution of the state-specific n,(CM) (t) given
Z; = k can be written as the product of single-point data likelihood and the

conditional prior for the auxiliary emission parameter at the t** CpG site,

p(mM (0)xs, Ze = &, 08) o< L™ (1)x1, Zo)p(n™ (£)|6)).
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If Z, =K, ie, {t: Z, =k} is an empty set as no observation is associated with
the hidden state k, then the conditional posterior distribution of state-specific

n,ﬁM) (t) is just proportional to its conditional prior:

p(m™ (@)%, Ze = K, 00 oc p(mi™ ()| 0. (5.34)

5.2.3.2 Global emission hyperparameters

The full conditionals of the global emission hyperparameters can be developed
from the Bivariate conditional priors of the auxiliary emission parameters which
in this case act as the likelihoods as mentioned in (5.19) due to non-informative

prior distributions for model M:

T ply sl —
e Sample p.|o?, p.,n™), Z from N (Zt‘l (o ;Zt iz 1], (1+2‘Z)Uz) :

T
1[Z;=1
p(ﬂ*|0iap*>77(M)aZ) = H [¢(QtlaM1721)j| | | X

t=1

T ] . 1[Z,=1]
x Hexp [—5((Q% -My) =,71(Q; - Ml))]
=1

bu, — ay,

2t4

21, (M* Tl (@ )12 = 1])] |
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ie.,

(@ a1z =1 2
1 1

e Sample 02|p,, ps, N, Z from IG |t; — 1,

ST { (a8 =) =200 (-1 (a5 u*)+(qflu*)2}I[Zt=1]]‘

2(1-p3)

T
1[Z,=1 1
P02l e, 2) =TT [6(QE My, 2] L
t=1 T Tx
(ti—1)—1 d
2 1—
x| S

—2p, (¢ — ) (@' — p) + (¢ — u*)z} 117, =1]|.

So,

0-»2<|M*7p*777(M)7Z ~ IG th — 17

> {(Qf Yo )t = 20 (g — ) (g = )+ (g - m)Q}I[Zt = 1]
21— %) |

e Sample p.|p, 02, ™M) Z from

1

[QS(QL}? Mlv 21)] He= X b—
pe — Qp

*

=

(p*|,u*, *777(M) Z) =

t=1
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Zthl quI[Zt:ﬂ 0_1% OpTsp2

to 2 to
e Sample M, |2y, ™) Z from BVN ,

23:1 Qf21[zt:2] OpOspP2 U_?

to to 2
d 1[2:=2] 1 1
=2
M2|U 2277’ 7 H Qt7M27 )} X b X b
pp — Qup ps — Qps

@@y )|

[
— exp %i((@t )EQI(Q?—Mz))
1

X exp —2 — 21\/[222’1152@ + t2M2T221M2):|

117, = 2]

X exp | b (M T3, "M, — 2M, 3, 'Q% + Q2 B> » Q7 )]

2
[t
X exp —52 (MZ - Q2> ! (Mz -Q ) )]
ie.,
S a*1Z=2] o 0pTsp2
to to to
M, |25, 7™ Z ~ BUN , ,
ZtT:I QzSQI[ZtZZ} OpOspP2 U_g
to to to
(5.36)
‘2 p2 T s2 T
where Q = [ (S0, 112, = 2, L, 011Z = 2)) | -
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e Sample ¥o| M, ™), Z from IW (Vo + to, [Qo + (Q? - M2) (Q? - MQ)T} 1) :

T
T\ _

oc [Bp| 2 exp [_5 (( t2_ MQ) b ! (Qf _MQ))

t=1
(vg+2+1) 1
X [a|” Y exp{—étr (9022_1)}
_ (rotta+2+1)
o | 3y| 2

X exp {—%tr ([QO +(Q7 — ML) (Qf — MQ)T} 2271> } I[Z,

ie.,

-1
YoMy, ™) Z ~ TW (1/0 + o, [Qo +(Qf — M2) (QF - Mz)T] ) :

(5.37)

5.2.4 Summary of the Augmented Gibbs sampler algo-

rithm steps

1. Initialize all auxiliary emission parameters (n*)), hyperparameters ("))

for model M.

(a) For model NLBDM,

initialize all transition parameters 7(”) = (m, 711, 71) and,

(b) For model NLBCM,

initialize all transition rate parameters 7(©) = (A, \y).

2. Compute the state-specific emission distributions,

P(xi|Z = ki) fork=1, 2andt=1,...,T.

3. Compute a,(gM)(t) fork=1,2andt=1,...,T.
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. Sample backwards Zr, ..., Z; using backward sampling (Scott, 2002).
. Sample (qfl, ¢, qu, ¢;?) using M-H algorithm as explained in Section 5.2.3.1.

. Sample (g, 02) and (pp, pis, 05, 03, p2) using direct sampler and p, using

M-H sampler.

. For model M, sample the transition parameters as described in step (7) of

Section 4.2.4.
. Implement the relabelling algorithm as described in Section 2.2.6.

. Repeat steps (2)-(8) until convergence.

5.3 Simulation study

In this section, I describe the simulation study design, which plays the same

role for the models of this chapter as that in Section 4.3 did for the models in
Chapter 4.

5.3.1 Data generation

100 datasets were generated with 7" = 10000 observations each under different

situations to check the robustness of my models. The data generations were done

for 3 cases in each of the model as described in detail before (Section 4.3.1).

1. Moderately overlapped

(a) For model NLBDM, the data (xP, x*) are generated from the Normal-
logit-Binomial HMM with exactly same modes for data of both the
states, i.e., state 1 hyperparameters (. = 0.2,02 = 1.2, p, = 0.7) and
state 2 hyperparameters (u, = 0.2, = 0.2,02 = 1.2,02 = 1.2, py =

0.7). The hidden states Z are simulated from a 1% order Markov Chain
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with an initial state probability for state 1, m; = 0.34, and transition

probabilities 711 = 0.87, 191 = 0.068, as before.

For model NLBCM, the data (xP, x*) are generated as for NLBDM ex-
cept that the hidden states Z are simulated from a 1% order continuous-
index Markov Chain with transition rate parameters A\; = 0.27 and

Ao = 0.27.

2. Well separated

(a)

For model NLBDM, the data (x?, x°) are generated from the Normal-
logit-Binomial HMM with well-separated modes for data of both the
states, i.e., state 1 hyperparameters (u, = —2.95,0% = 0.7, p. = 0.65)
and state 2 hyperparameters (1, = 2.3,u, = 3.2,0, = 0.85,07 =
1.2, p2 = 0.75). The hidden states Z are simulated as for the moderately
overlapped NLBDM case.

For model NLBCM, the data (xP, x°) are generated as for NLBDM
with the hidden states Z simulated as for the moderately overlapped
NLBCM case.

3. Realistic

(a)

For model NLBDM, the data (x?, x°) are generated from the Normal-
logit-Binomial HMM with less well-separated modes for data of both
the states comparable to the real data, i.e., state 1 hyperparameters
(us = 0.326,02 = 1.806,p, = 0.964) and state 2 hyperparameters
(1p = —0.676, s = —1.65,07 = 1.77,07 = 2.364, p, = 0.97), thus cau-
sing some amount of overlapping. The hidden states Z are simulated

from a 1% order Markov Chain with an initial state probability for

state-1 m; = 0.39 and transition probabilities 711 = 0.97, 75, = 0.02.

For model NLBCM, the data (x?, x°) are generated from the Normal-
logit-Binomial HMM with less well-separated modes for data of both
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the states comparable to the real data, i.e., state 1 hyperparameters
(pe = 2.77,02 = 1.62, p, = 0.73) and state 2 hyperparameters (u, =
—0.66, us = —1.58, ag = 3.64,0% = 4.71, py = 0.86). The hidden states
Z are simulated from a 1% order continuous-index Markov Chain with

transition rate parameters \; = 0.20 and Ay, = 0.128.

5.3.2 Priors for the global emission hyperparameters

[ have already observed that the full conditionals of global emission hyperparame-
ters become independent of the prior choices for these hyperparameters as they
were chosen to uninformative except for one global emission hyperparameter for

state 1, i.e., py.

pe ~U(—1,1) (5.38)

5.3.3 Consistency of model parameters estimation

I generated 100 datasets under models NLBDM and NLBCM. These datasets
of size 10,000 CpG sites were generated for each parameter setting described
in Section 5.3.1 and fitted using the augmented Gibbs sampler described in
Section 5.2. Each simulated dataset was fitted to the models NLBDM and NL-
BCM for each case with 60,000 MCMC iterations (with 20,000 as burn-in) after
which the posterior samples for each model parameter were assessed for conver-
gence. In Table 5.1, I present the results of the range of estimated RMSE of the
model parameters for each case. In each case, the estimated RMSE was small for
the well separated and realistic cases and much larger for the moderately over-
lapped case, comparable to the corresponding results for BBDM and BBCM in
Section 4.3.3.
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Model Case Average Misclass. rate | Range of RMSE
Moderately overlapped 0.6617 (0.03, 1.026)
NLBDM Well separated 0.0014 (0.0001, 0.005)
Realistic 0.0255 (0.0005, 0.0098)
Moderately overlapped 0.5091 (0.08, 1.66)
NLBCM Well separated 0.0043 (0.0004, 0.009)
Realistic 0.0963 (0.0006, 0.009)

Table 5.1: Simulation study: Average misclassification rate and range of RMSE
for models: NLBDM and NLBCM based on 100 simulated datasets.

5.4 Real data study

In this section, I fit the two models NLBDM and NLBCM discussed in this

chapter to the same real data from chromosome 16 as in Chapter 4.

5.4.1 Inference via MCMC

I examined the results obtained using MCMC techniques and the convergence
properties of the estimates using various diagnostics for the real data Chromo-
some 16 described in Section 4.4.1. The proposal distribution of the p, for both
the models NLBDM and NLBCM was tuned appropriately in order to obtain
optimal acceptance rates. The acceptance rates of p, for models NLBDM and
NLBCM were 0.22 and 0.37, respectively. All necessary convergence diagnostics
were carried out and no evidence of non-convergence was obtained from any of
the diagnostics. I present the traceplots and PSRF plots in Appendix 7.2.3. In
addition, I also present the estimates of the posterior mean, S.D., 95% credible in-

tervals in Tables 4 and 5 for emission hyperparameters and Table 6 for transition
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parameters of both the models for all the 3 chains.

5.5 Comparison with Chapter 4

In this section, I have compared the simulation and real data results of this chap-

ter with Chapter 4.

In the moderately overlapped case, the average misclassification rates for NLBDM
and NLBCM are 0.6617 and 0.5091, respectively (Table 5.1). The corresponding
misclassification rates for the realistic case are 0.0255 and 0.0969, respectively,
whereas the misclassfication rates for the well separated case in both models are
much smaller than the realistic case (Table 5.1). For one of the randomly selected
simulation studies out of 100, I also present the scatter plots (Figures 5.2 5.3 5.4)
of the methylation proportions between the two cell types for all the cases clas-
sified by the true states and predicted states analogous to the corresponding
Figures 4.2, 4.3, 4.4 for models BBDM and BBCM described in Section 4.3.3.
These scatter plots (Figures 5.2 5.3 5.4) provide some improvement in the corre-
lation between the simulated methylation proportions between proliferating and
senescent cells. In addition, I also plot the histograms (Figures 5.5a, 5.5b, 5.6a,
5.6b, 5.7a, 5.7b) for all the cases. The histograms (Figures 5.5a, 5.5b) for the
moderately overlapped case in both the models are symmetric whereas the histo-
grams of the well separated (Figures 5.6a, 5.6b) and realistic (Figures 5.7a, 5.7b
cases are either U-shaped, J-shaped or reflected J-shaped. Furthermore, the ROC
curves are plotted for all the cases (Figures 5.8a, 5.8b 5.9a, 5.9b, 5.10a, 5.10b).
Figures 5.8a, 5.8b display the weak performance in the moderately overlapped
case for both the models. The well separated (Figures 5.9a, 5.9b) case for both

the models beats the realistic (Figures 5.10a, 5.10b) case by a narrow margin.

In the real data study, the boxplots (Figures 5.11, 5.13) validating the biolo-
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gical presumption, for both models are plotted. These boxplots are analogous
to the boxplots in Chapter 4 (Figures 4.11, 4.13) . Additionally, the histograms
of state 2 posterior probabilities for model BBDM show strong classification of
states in Figure 5.12 whereas the classification of the states is moderately poor
in the case of model BBCM as shown in Figure 5.14, comparable to the corre-

sponding histograms (Figures 5.12, 5.14) for BBDM and BBCM in Section 4.5.

5.6 Summary

In this Chapter, I described my extended HMMmethState method for identifying
DMCs from BS-seq methylation data. I implemented both the models NLBDM
and NLBCM, to capture the correlation in the bivariate data between the met-
hylated counts of senescent and proliferating cells. 1 have extended the original
Beta-Binomial emission model described in Chapter 4 to a bivariate Normal-logit

emission model, where the underlying bivariate logit parameters at the 2"¢

stage
of the hierarchical model are assumed to be normally distributed at each CpG site
and they are clustered around a state-specific mean with a state-specific variance

and state-specific correlation between the two cell types.

I have also visually illustrated my claim that both the models NLBDM and
NLBCM can capture the correlation between the methylated counts of both the
cells. T have presented the scatter plots of the methylation counts of proliferating
cells against senescent cells for the observed data and for the fitted models in
Figure 5.15. The visual posterior predictive checking using the posterior mean
estimates of the parameters of the fitted models in Figure 5.15 clearly indicates
that there is a correlation between the methylated counts of proliferating and
senescent cells. Figures 5.15a, 5.15¢ show the scatterplots of the observed data

classified by the predicted states. On the other hand, Figures 5.15b, 5.15d show

124



5. Model Extensions

[ o
s s
£ =
2 2
g g
=1 a
5 5
g Simulated § Predicted
5 states = states
E 0 * Statz 1 E 0 * Statz 1
B * Stat= Z B * State 2
] ]
€ a5 S oz
wm o wm T
- =)
o o
& B
3 3
E E
o [
Simulated proliferating methylation propertions Simulated proliferating methylation proportions
(a) Scatter plot for NLBDM (b) Scatter plot for NLBDM
classified by simulated states. classified by predicted states.
[ o
5 =
k= =
(=] (=]
(=8 o
g g
[~ [~
5 5
g Simulated g Predicted
= states s states
E 0 * Ctate 9 E 0 * Ctate 1
z * Stat= 2 z * State 2
[ W
o o
§ o5 5 025
wm o wm T
= =)
o o
5 5
3 3
E , E g
[ [
0.00 0.25 0.50 0.75 {00 0.00 0.25 0.50 0.75 A0
Simulated proliferating methylation propertions Simulated proliferating methylation proportions
(c) Scatter plot for NLBCM (d) Scatter plot for NLBCM
classified by simulated states. classified by predicted states.

Figure 5.2: For the moderately overlapped case. (a) A scatter plot of simulated
methylation proportions between proliferating and senescent cells classified by the
simulated states for NLBDM. (b) A scatter plot of simulated methylation propor-
tions between proliferating and senescent cells classified by the predicted states
for NLBDM. (c) A scatter plot of simulated methylation proportions between
proliferating and senescent cells classified by the simulated states for NLBCM.
(d) A scatter plot of simulated methylation proportions between proliferating and
senescent cells classified by the predicted states for NLBCM.
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Figure 5.3: For the well separated case. (a) A scatter plot of simulated met-
hylation proportions between proliferating and senescent cells classified by the
simulated states for NLBDM. (b) A scatter plot of simulated methylation propor-
tions between proliferating and senescent cells classified by the predicted states
for NLBDM. (c) A scatter plot of simulated methylation proportions between
proliferating and senescent cells classified by the simulated states for NLBCM.
(d) A scatter plot of simulated methylation proportions between proliferating and
senescent cells classified by the predicted states for NLBCM.
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Figure 5.4: For the realistic case. (a) A scatter plot of simulated methylation
proportions between proliferating and senescent cells classified by the simula-
ted states for NLBDM. (b) A scatter plot of simulated methylation proportions
between proliferating and senescent cells classified by the predicted states for
NLBDM. (c) A scatter plot of simulated methylation proportions between pro-
liferating and senescent cells classified by the simulated states for NLBCM. (d)
A scatter plot of simulated methylation proportions between proliferating and
senescent cells classified by the predicted states for NLBCM.
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Figure 5.5: For the simulation study of NLBDM and NLBCM, the 2 panels depict
the histogram of posterior state 2 probabilities for the moderately overlapped case:
(a) NLBDM and (b) NLBCM based on one randomly selected simulation.
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Figure 5.6: For the simulation study of NLBDM and NLBCM, the 2 panels depict
the histogram of posterior state 2 probabilities for the well separated case: (a)
NLBDM and (b) NLBCM based on one randomly selected simulation.
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Figure 5.7: For the simulation study of NLBDM and NLBCM, the 2 panels depict
the histogram of posterior state 2 probabilities for the realistic case: (a) NLBDM
and (b) NLBCM based on one randomly selected simulation.
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Figure 5.8: For the simulation study of NLBDM and NLBCM, the 2 panels
depict the ROC curves for the moderately overlapped case: (a) NLBDM and (b)
NLBCM.
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Figure 5.9: For the simulation study of NLBDM and NLBCM, the 2 panels depict
the ROC curves for the well separated case: (a) NLBDM and (b) NLBCM.
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Figure 5.10: For the simulation study of NLBDM and NLBCM, the 2 panels
depict the ROC curves for the realistic case: (a) NLBDM and (b) NLBCM.

133



5. Model Extensions

=] B
w 0.5 7
c
o
5 i
= I |
2 I I J
o | : I : 1
5 L | '
5 — = =
T ‘ = '
z 1
E h 1
—
5 |
W T ! T
L] 1 . 1
@ ! . !
z | I
= : ! :
O 0.5 ! ! '
! 1

I I I I I I I I

= = = = = = o =

] ] [ ] ] [} :JE I

= L o = =

o g o o =]

= - z 2

= =
I I

Figure 5.11: For the real study of NLBDM, boxplots of the difference of methy-
lation proportions between proliferating and senescent cells classified by various
categories defined in the text.
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Figure 5.12: For the real study of NLBDM, histogram of posterior state 2 proba-
bilities.
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Figure 5.15: For the the real study, the 4 panels depict the scatter plots: (a)
A scatter plot of observed methylated counts for the proliferating and senescent
cells classified by the predicted states for NLBDM. (b) A scatter plot of simu-
lated methylated counts (generated using the posterior mean estimates) for the
proliferating and senescent cells classified by the predicted states for NLBDM. (c)
A scatter plot of observed methylated counts for the proliferating and senescent
cells classified by the predicted states for NLBCM. (d) A scatter plot of simu-
lated methylated counts (generated using the posterior mean estimates) for the
proliferating and senescent cells classified by the predicted states for NLBCM.
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scatterplots of the fitted data classified by the predicted states, displaying that
the correlation between the methylated counts of proliferating and senescent cell
can be better captured by the extended HMMmethState models: NLBDM and
NLBCM. Furthermore, from these initial visual posterior predictive scatterplots,
I concluded that, the Normal-logit-Binomial emission model is an improvement
over Beta-Binomial emission model in capturing the correlation between methy-

lated counts of proliferating and senescent cells.

Although the extended HMMmethState models NLBDM and NLBCM give a
reasonable description of the data-generating process, it is still essential to de-
termine the appropriateness of the models to data, more widely. In the following
chapter, I will check the practical fit to whole-genome data and whether my se-
lection of it is important to check the practical fit and whether my selection of the
Normal-logit-Binomial emission model over the Beta-Binomial emssion model, as

described in Chapter 4 is justified or not.
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Chapter 6

Assessment of HMMmethState
and Biological Results

In this chapter, I perform model adequacy checks and model comparisons to
assess the suitability of my proposed HMMmethState models: BBDM, BBCM,
NLBDM and NLBCM. I have described the concepts of model assessment within
a Bayesian framework in Section 2.3. I use the posterior predictive model checking
techniques and model selection criteria to examine the adequacy and fit of the

models.

I also assess the performance of my models and compare their efficacies in iden-
tifying DMRs/DMCs with other existing methods. While it would be ideal to
know the true state of methylation in order to compare the performance of the
newly proposed models, unfortunately, an ideal BS-seq test data set with known
methylation status at each CpG site does not exist. Even though several studies
have been put into developing gold-standard datasets which can be used for com-
parison purposes, I need a well-founded dataset, such that the data (methylated
and unmethylated counts at each CpG site) as well as the missing data, i.e., the

methylation status at each CpG site, and both the data and the missing data
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are derived from a realistic approach. Thus, these comparisons are carried out
by means of a simulation study where the true methylation status is known, as
well as application to real data where this information is missing. I also use an

alternative surrogate data to assess the results.

In the following sections, I perform cross comparison under different models.
I simulate data under each model and subsequently estimate the model parame-
ters and hidden states to decide whether in each case the correct true model was
the most accurate or not. I compare the model assessment and model selection
results for all the models when applied to a real dataset. Furthermore, I investi-
gate and explore various ways of assessing the efficacies of DMC calling methods
using simulated datasets. In addition, I also present and compare the DMCs
and DMRs obtained using my proposed method: HMMmethState and existing
methods.

6.1 Simulation study

In this section, the data generation assumptions considered for comparing my
proposed HMMmethState models are described. Four simulation studies were
performed to compare the predictive accuracies of the hidden states and perfor-
mances among the four HMMmethState models namely BBDM, BBCM, NLBDM,
NLBCM. For each simulation study, the data was generated from model M
(M:BBDM, BBCM, NLBDM, NLBCM) using the posterior estimates (means)
of the transition parameters and emission hyperparameters based on a subset
of a real dataset (Chromosome 21) of 10,000 CpG sites. To ensure the data
generated in the simulation studies exhibit prominent features of the real data,
methylated counts (xP,x®) were generated for each CpG site using a Binomial
distribution, where the total counts (n?,n®) were taken from the real dataset of

Chromosome 21. For each simulation study, the methylated counts (x = xP, x*)
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True base model Emission hyperparameters Transition parameters
BBDM @ B T 1 "2 02 m Ti1 T21
519 2.678 1.356 3.228 1.107 5.48 0.334 0.867 0.067
A « B 1 01 Y2 32 A Ao
BBCM 1162 510 119 190 0.78 1.82 0.534  0.11
2 2 2
y s 07« Px Hp Hs (2 0~s P2 1 Ti1 T21
NLBDM 0.33 1.892 0964 -0.65 -1.61 1.73 230 0968 | 038 0.97 0.0175
2 2 2
y Hos 07« Px Hp Hs 0p 07 P2 At Az
NLBCM 277 162 073 -0.66 -1.58 3.64 4.71 0.86 0.20  0.128

Table 6.1: Simulation study: parameters for generation of data using HMMmet-
hState models.

and the true hidden states Z were generated with the parameter values given in
Table 6.1. The transition parameters and emission hyperparameters as provided
in Table 6.1 were chosen to match the posterior estimates for the realistic cases

as described in Sections 4.3.1 and 5.3.1, respectively.

For each of the four competing models, 100 datasets were simulated. Then, each
simulated dataset was fitted with the four competing HMMmethState models:
BBDM, BBCM, NLBDM, NLBCM and compared using different model selection

criteria and performance.

6.1.1 Model selection criteria

In this section, the ability of model selection criteria to distinguish among the four
HMMmethState models is discussed. The model selection criteria implemented
are DIC (Spiegelhalter et al., 2002), DIC3 (Celeux et al., 2006) as described in
Section 2.3.3 and WAIC (Gelman et al., 2014, Watanabe, 2010) as described in
2.3.4. Table 6.2 presents the proportion of times that DIC,, DIC5 and WAIC
selected each of the four compteing HMMmethState models for each true model
(base model). It can be observed from Table 6.2 that DIC,, DIC3 and WAIC
mostly select the correct model, except in the case of DIC5 for model NLBCM.
It can be further noted that the DICy values for models NLBCM and NLBDM

with respect to the true base model NLBCM were similar and the differences
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between these values were small. Hence, this kind of model selection criterion

rejects the information about relative model selection accuracy contained in the

differences between the DIC5 values of models NLBCM and NLBDM.

Model Chosen model BBDM BBCM NLBDM NLBCM
Base model
DIC, 0.71 0 0.29 0
DIC; 0.8 0.0 0.2 0.0
BBDM WAIC 0.63 0.05 0.26 0.06
misclass. prob. 0.0195 0.1941  0.0201 0.0415
DIC, 0 1 0 0
DIC; 0.0 1.0 0.0 0.0
BBCM WAIC 0.03 0.67 0.09 0.21
misclass. prob. 0.0816 0.0660 0.0743 0.0679
DIC, 0 0.27 0.73 0
DIC; 0.0 0.4 0.6 0.0
NLBDM WAIC 0.02 0.03 0.88 0.7
misclass. prob. 0.3503  0.3075  0.0263 0.1659
DIC, 0.2 0.19 0.08 0.53
DIC; 0.4 0.3 0.3 0.0
NLBCM WAIC 0.01 0.06 0.11 0.82
misclass. prob. 0.1186  0.4215  0.0341 0.0956

Table 6.2: Performance of model selection criteria and sensitivity based on the

simulation study.

6.1.2 ROC curves

In the previous section, I examined the ability of HMMmethState models in
selecting the true base model. Now, in this section, I review the performance of
the HMMmethState models using receiver operating characteristic (ROC) curves
based on the simulation study design described in Section 6.1. The ROC curve of
the model-based method explains the relationship between the false positive rate
(FPR) against true positive rate (TPR) of methylation status at each CpG site.
The TPR can be described as the proportion of correctly identified differentially
methylated CpG sites. The FPR can then be described as the proportion of
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similarly methylated CpG sites which are incorrectly selected by the method due
to classification error. I present the results of the misclassification rates of the
model with repect to the true base models in Table 6.2. It can be clearly observed
from Table 6.2 that the misclassification rates of HMMmethState models are the
lowest when the data are generated from the true (base) models except in the
case for base model NLBCM, where the misclassification rate of model NLBDM
is the lowest. Overall, the performance of model NLBDM is the best in terms of
misclassification rates as it ranged between (0.0201, 0.0743) irrespective of the
true base models. These performances of HMMmethState models can also be
validated visually using the ROC curves. Figures 6.1 shows the ROC curves for
the models BBDM (red line), BBCM (blue line), NLBDM (green line), NLBCM
(yellow line) with area under the ROC curves suggestive of the relative accuracies
of the models in identifying the status of methylated CpG sites averaged over 100
repetitions. While the performance of model NLBDM efficiently overtakes the
performance of the other models, NLBCM also attains a higher area under the
curves than the other two competing models. However, the pertinent question
arises, which among these models is the best one and on what basis? I next study

the choice of the best model in modelling the real data.

6.2 Real data analysis (0.060034 —90.294609 Mb on
chromosome 16)

The performance of the 4 HMMmethState models namely BBDM, BBCM, NLBDM,
NLBCM are assessed with respect to their corresponding true base models in the
previous simulation study section 6.1. In this section, I assess the adequacy
and appropriateness of the competing HMMmethState models and compare the

models using different model selection criteria.
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Figure 6.1: For the simulation study of four true base HMMmethState model
setups: (a) BBDM, (b) BBCM, (¢) NLBDM and (d) NLBCM, four panel depict
the ROC curves for each HMMmethState models in comparison to the true base
HMMmethState models based on 100 simulated datasets.

6.2.1 Posterior predictive model checking

The fit of the model can be studied using the log-posterior predictive distribu-

tions of the data (Gelman and Meng, 1998), which are commonly used as the
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discrepancy statistics for finite mixture models. Thus, the use of such kind of
discrepancy statistics can also be extended for HMMs (Scott, 2002) As already
described in details in Section 2.3.2, the discrepancy statistics can be functions
of both the parameters and the data, that assess the discrepancy between the
model and the data rather than correctness of the model. In order to explore the
relevant characteristics of the BS-seq methylation data, I use the most pragmatic
version of the discrepancy test statistic, log-posterior predictive distributions as
used in Gelman and Stern (2000) and Jonghyun et al. (2014), which include all

the features of my model parameters.

Let us denote x" as the replicated data simulated from the posterior predictive
distribution p(x"?|x) and then the discrepancy test-statistics can be described

for model M as,
T(x,¢™) = log L (¢™), (6.1)

where ¢ denotes the HMM parameters for model M.
The posterior predictive p-value for model M can also be explained as the pro-
bability that the replicated data is more extreme than the observed data, which

is defined as below,

pM = P(T(x",¢M) > T(x, ¢") x). (6.2)
To study the plausability of HMMmethState models: BBDM, BBCM, NLBDM,
NLBCM, 1 compute the posterior predictive p-values of all the models. The
posterior predictive p-value can be interpreted as the measure to evaluate the
discrepancies between the model and the data. I calculate p-values using the
MCMC samples for i = 1,...,1, [(x"), C(M)(i)] and (x")" are generated
from p(x|¢M )(i)) for model M. I performed the posterior predictive checks for
all the competing models. I present the scatterplots in Figure 6.2 of the MCMC
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Model BBDM BBCM NLBDM NLBCM

DIC, 20162274 23754504 6400362623 9994570530
PDIC, 5.897 254064 3194513526 4991464492
DIC5 20098146 23229972 6400362180 9994568928
PDIC, 5.816 246928 3194512813 4991460281
WAIC 19258033 22787917 14960221 15137114
PwalC 8.64 19.65 1614579 1688645
p™M)0.0000000 0.0000000 0.6119829  0.7517832

Table 6.3: Model comparisons.

simulated paired values of T(x, (™)) and T(x", (™)) for the four models after
burn-in.

I performed the posterior predictive checks for all the competing models and the
scatter plots based on the test statistics for model M (6.1) are displayed in Fi-
gure 6.2. The last row in Table 6.3 show the posterior predictive p-values, which
demonstrate the discrepancies between the models and the data. The p-values
of BBDM and BBCM being 0 clearly indicate a lack of model fit. The pos-
terior predictive p-values for NLBDM and NLBCM do not show any evidence
of discrepancies between the model and the data. It can also be observed from
Figure 6.2 that the replicated log-posterior densities are higher than the obser-
ved log-posterior densities over the MCMC draws. Thus, the posterior checking
I conducted in this section, indicates that models BBDM, BBCM are not ade-
quate for the data whereas NLBDM, NLBCM would be better suited for BS-seq
methylation data.

6.2.2 Model selection

Table 6.3 comprises the model selection criteria estimates from the real data ana-
lysis. I have presented the values of the effective number of parameters for both
versions of DICs, i.e., DIC and DIC's for HMMmethState model in Table 6.3 to
show the variations of these values especially for models NLBDM and NLBCM.
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Figure 6.2: For the real study of four HMMmethState models: (a) BBDM, (b)
BBCM, (¢) NLBDM and (d) NLBCM, four panel depict the scatter plots of log-
posterior densities for the observed and replicated data based on thinned MCMC

draws.

Although the values of two versions of DIC are different, both these DICs, i.e.,

DIC, and DIC5 select the same model. I observed this characteristic even in the

simulation study of model selection criteria as described in Section 6.1.1. DIC
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values for models NLBDM and NLBCM are largely affected due to the variations
in the values of effective dimension (effective number of free parameters) compa-
red to models BBDM and BBCM, where the effective dimension values are quite
stable. As one can see from Figure 6.2, the y-axis (observed log-posterior densi-
ties based on 10,000 MCMC iterations) of the scatter plots for models NLBDM
and NLBCM show huge variations compared to models BBDM and BBCM. Ta-
ble 6.3 displays the estimated effective dimension of values of WAIC which are
quite stable for all the HMMmethState models. I have also observed that the
estimated effective dimension values for models NLBDM and NLBCM are ap-
proximately close to the total number of data points (around 2.16 million data

points for Chromosome 16).

WAIC based model selection has an edge over DIC based model selection specifi-
cally for models with mixture and hierarchical structures as explained in Gelman
et al. (2013). The point estimates of the model sometimes do not make sense as
the number of parameters increases with the sample size for hierarchical HMMs.
I also found the efficacy of WAIC in this section. As it can be observed from
Table 6.3 that with the increase in the effective number of parameters, the DIC
values were inconclusive especially for models NLBDM and NLBCM. Due to the
non-conjugate structure of models NLBDM and NLBCM, the number of para-
meters (auxiliary parameters) increases with the sample size for HHMM, which is
evidently quite high for real data. DIC values can be quite distinct to each other
for the pair of models BBDM, BBCM and models NLBDM, NLBCM as they de-
pend on the effective dimension, i.e., effective dimension of auxiliary parameters
for models NLBDM and NLBCM, which is essential to the idea of DIC (Celeux
et al., 2006). Several authors including Celeux et al. (2006) and Plummer (2008)
have suggested that DIC might not be appropriate in the context of hierarchical
missing data models. Although Celeux et al. (2006) discussed in details different

variations of DICs for missing data models. I have only described three versions
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of DICs in Section 2.3.3. DIC expressions for latent variable models were previ-
ously explored by Richardson (2002) which was again discussed by Celeux et al.
(2006), Hooten and Hobbs (2015) and later which had been theoretically justi-
fied by Watanabe (2010). For the purpose of model selection, I applied WAIC

expressions for selecting the best models based on real data.

6.3 Comparison with other methods

Two existing methods methylKit and DSS, that analyse BS-seq data in order to
detect DMCs/DMRs were discussed in Chapter 3. To compare the performance
of my models to other competing methods, I implemented an extensive simulation
study based on the HMMmethState models to compare the performance of each
of my true HMMmethState models with methylKit and DSS.

6.3.1 Simulation study

To examine the robustness of my proposed method, i.e., HMMmethState, with
other existing methods, I performed a simulation study. In this section, I inves-
tigate the performance of each of the models of HMMmethState with DSS and
methylKit.

The simulation procedure remains the same as described in Section 6.1. For
cach simulation study, the methylated counts x = (x,,%s) and true underlying
methylation status for each CpG site, i.e., Z, hidden states, were generated with
the parameter values provided in Table 6.1. The simulation study involved 100

replications under each simulation setting.
I fit four HMMmethState models to the data generated using the true base mo-

dels. Furthermore, I simultaneously fit DSS and methylKit models to the data
and compare them with each of the HMMmethState models (true base models)
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that generated the data.

6.3.2 ROC curves

To compare the performance of each of the HMMmethState models with the
other differential methylation caller methods, I inspect their ROC curves. For
each simulation setup of each of the HMMmethState models, I plot the ROC
curves of each of the HMMmethState (true base) models and then compare with
DSS and methylKit averaged over 100 repetitions. Figure 6.3 shows the ROC
curves for the HMMmethState methods (red line), DSS (blue line) and methylKit
(orange line) with areas under the ROC curves indicating the accuracies of the
competing methods in identifying the DMCs. For the ROC curves in Figure 6.3,
HMMmethState clearly achieves the highest area under the ROC curves than
the competing methods: DSS and methylKit irrespective of the HMMmethState
models, thus inferring their high reliability in identifying DMCs.

6.4 Simulating data from a mixture model

To assess the reliability of HMMmethState, computationally-derived data that
mimic the experimental observations with known underlying structure of the
hidden states was simulated in Section 6.3.1 using HMMmethState model as the
true base model. Although my HMMmethState method models the properties of
the data reasonably well as described in Section 6.3.2, the performance should not
be examined on data simulated using the same models, since it tends to provide
an undue advantage to the true base model and the comparison would eventually
become biased. To implement a more objective analysis, I searched for a con-
ceptually distinct simulator that has similarities to the data assumption criteria
used in the competing methods: methylKit and DSS. Clearly, both these models
do not consider Markovian dependence between two adjacent hidden states in

their model specifications, since the spatial dependence among the CpG sites is
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Figure 6.3: For the simulation study of four true base HMMmethState model
setups: (a) BBDM, (b) BBCM, (¢) NLBDM and (d) NLBCM, four panel depict
the ROC curves for methylKit and DSS in comparison to the true base HMM-
methState models.

not taken into account.

One possible model that could emulate BS-seq methylation data and yet retain
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non-Markovian and independence assumptions of the hidden states is the mixture
model. To test the robustness of HMMmethState to the data generated using
the mixture model, I simulated methylated counts from a model similar to model
NLBDM as described in Chapter 5 with the only difference being that the hidden
states Z are assumed to be independent. The joint mixture model (Model MM)
for X can be defined by its probability distribution:

P(x[n{"™, M) = 0P (xipM,Z) 4 (1= 7010) P (x|nf"™", 7).

(6.3)

MM)

where 7(MM) ig the mixture proportion of state 1 component and P <x|77(MM) Z)

and P <X|’I’]2 M) , Z) are state-dependent densities of state 1 and state 2 respecti-
vely. I have already defined the generic notations of the emission parameters in

Section 5.1.4.

Furthermore, P (x|77(MM), Z) for state k can be written as,

P(xm,gM : ) ﬁp(xtmk t))I[Zt:k], k=1, 2 (6.4)

t=1

It is obvious that in a mixture model, the hidden states Z, which influence the
mixture component to be picked for each observation, are independent of each

other rather than related through a Markov process (as in the case of HMM).

The structure of the hierarchical mixture model can be written as follows:

X?|Zy =k ~ Bin <nt,logzt (qF )) and X/|Z, = k ~ Bin (nf, logit_l(qfk)>,

Q|Z, =k ~BVNOMD) k=1 2andt=1,...,T, (6.5)
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where O,EMM) = (My, X¢) and BV N(.) is the bivariate Normal distribution as
described in Section 5.1. The structure of the hierarchical mixture model remains
the same as of NLBDM and NLBCM except that the hidden states are assumed
to be non-Markovian and independent.

The likelihood function given the data x and the hidden states Z is given by,

Lo (. 700) =TT [ {90 (st}

t=1

{(1 (MM ( |Qt)I[Zt }}

— {7T(MM)}1£1 {1- W(MM)}t2
T

< [T [P (x:lQ})] "~ ”H (x]Q2)]"7. (6.6)

X

The probability for the sequence of the hidden states Z conditional on the mixture

proportion 7MM) is:

P(Z|x MMy = {7 WDV £ p(MAMLE (6.7)

Similar to my previous approaches as described in Equation 4.55 for the state

transition probabilities, I choose a Uniform prior for 7™M such that m(MM) ~

Beta(1,1) independently and sample the mixture proportion 7™M) conditional
on the hidden states Z as below.
MM\ 7 ~ Beta(t, + 1,t5 + 1). (6.8)

The conditional bivariate Normal priors of the auxiliary emission parameters n
and the priors for the global hyperparameters @ are explained in Sections 5.19
and 5.19, respectively.

The full conditional posterior distributions of n and @ are described in detail in

Sections 5.2.3.1 and 5.2.3.2, respectively.
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The full conditional posterior probability of Z; at state k, k = 1,2 are:
P(Z; = 1fx,n™*D, g M) oc M0 P (x,]Qy) (6.9)
and

P(Z, = 2x, n(MM),H(MM),W(MM)) o (1 — W(MM)) P (XJQ%) ) (6.10)

6.4.1 Summary of the Gibbs sampler algorithm steps

1. Initialize all auxiliary parameters n™™) hyperparameters (§MM)) Z.
2. Initialize mixture proportion 7).

3. Update nMM) from the full conditional posterior distributions in

Section 5.2.3.1.

4. Update (8™M)) from the full conditional posterior distributions in

Section 5.2.3.2.
5. Update 7™ from the full conditional posterior distribution in Section 6.8.
6. Implement the relabelling algorithm as described in Section 2.2.6.

7. Repeat steps (3)-(6) until convergence.

To resemble the real data, for model MM, the data are generated using the
real data study posterior estimates. The posterior estimates of the parameters

obtained using MCMC techniques and convergence properties of the estimates as
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explained in Section are given below:

s = 0.26
0? =154
ps« = 0.91
1, = —0.82 (6.11)
s = —1.95
o, = 1.68
oy =227
pa = 0.96
aMM) — (.42

In this case, the simulation procedure was replicated 100 times, such that 100
datasets were generated with 7' = 10000 observations. I fit four HMMmethState
models to the mixture model MM data. Furthermore, I fit methylKit and DSS
models to the data. In Figure 6.4, I plotted the ROC curves. For the ROC plot,
all the HMMmethState methods attain the higher area under the ROC curve
compared to the competing methods. In addition, Model NLBDM again outper-
forms all the competing methods and validates its high reliability in identifying
DMCs.

6.5 Real data analysis across all chromosomes

(Cruickshanks et al., 2013)

In this section, I demonstrate the results of applying the proposed HMMmet-
hState models on BS-seq methylation data from Cruickshanks et al. (2013). I
analyse the whole data for detecting DMRs across all chromosomes described in

Sections 6.5.2 and 6.5.3, respectively.
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Figure 6.4: For the mixture model MM simulation study, ROC curves for models
BBDM, BBCM, NLBDM, NLBCM, methylKit and DSS.
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6.5.1 Implementations of HMMmethState models with
methylKit, DSS

In this section, I compare the results of HMMmethState analysis with the results
obtained from DSS and methylKit based on their publicly available R/Bioconductor
package implementations. I have applied HMMmethState models to analyze four
chromosomal datasets: Chromosomes-3, 9, 14, 22 and model selection was done
using WAIC. T only considered 20, 000 contiguous CpG sites (randomly selected)

of each chromosome for comparisons.

In this subsection, I have fitted four HMMmethState models: BBDM, BBCM,
NLBDM and NLBCM to the data (Chromosome 16). The WAIC favors the
NLBDM model as the best among the four HMMmethState models, which im-
plies positional variations of the CpG sites does not affect the methylation status
prediction of the neighboring CpG sites. In the rest of this subsection, I illustrate
the HMMmethState results based on all the four HMMmethState models.

I first applied the algorithms based on the four HMMmethState models and then
compared the predicted states with the competing methods methylKit (Akalin
et al.,, 2012) and DSS (Wu et al., 2015) as described in Sections 3.3.1 and 3.3.2
respectively. I presented the results of the DMCs identified by each of the four
HMMmethState models, methylKit and DSS in the following subsections. Fi-
gure 6.5 presents a Venn diagram that summarizes the results for DSS, methylKit

and HMMmethState models.

e Chromosome 3: I have applied the HMMmethState, methylKit and DSS
methods to 20,000 CpG sites of Chromosome 3. The WAIC favors the
NLBCM model as the best among the four HMMmethState models for
this dataset, which implies positional variations of the CpG sites affects

the methylation status prediction of the neighboring CpG sites. The sets
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of DMCs identified by the methods HMMmethState, methylKit and DSS
are summarized in Figure 6.5a. The method HMMmethState discovered
19,999 CpG sites. In contrast, the methods DSS and methylKit detected
only 13,796 DMCs and 14,790 DMCs respectively. A closer examination
sheds light on the differing sets of DMCs identified by HMMmethState,
methylKit and DSS. Of the DMCs detected by HMMmethState, as many
as 13,795 DMCs were also identified by DSS. And, all the DMCs detected
by methylKit were also identified by HMMmethState.

Chromosome 9: All methods were applied to 20,000 CpG sites of Chromo-
some 9. The WAIC favors the NLBDM model as the best among the four
HMMmethState models for this dataset, which implies positional variations
of the CpG sites does not affect the methylation status prediction of the
neighboring CpG sites. The HMMmethState technique identified 13,565
DMCs. The overlapping set of DMCs are summarized in Figure 6.5b and
reveal a greater lack of concordance among the methods than the Chromo-
some 3 dataset. Only 6,117 CpG sites are identified as DMCs by all three
methods. This low level of agreement is a result of the low overlap that

methylKit has with the other methods.

Chromosome 14: I have applied the HMMmethState, methylKit and DSS
methods to 20,000 CpG sites of Chromosome 14. I have found that the
WAIC favours the NLBDM model, which is a hierarchical correlated HMM
without CpG sites dependence. The sets of DMCs identified by the methods
HMMmethState, methylKit and DSS are summarized in Figure 6.5c. Here,
HMMmethState method identifies 17,190 CpG sites as DMCs. methylKit
and DSS detect 12,633 and 11,447 DMCs respectively. 6,843 DMCs are
identified by all the three methods.

Chromosome 22: Here, WAIC favours the NLBDM model as well. 8795
DMCs are identified by all the three methods. Of the 13,785 DMCs iden-
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tified by DSS, HMMmethState detected 12,717 DMCs and of the 17,884
identified by HMMmethState, methylKit successfully detected 11, 873 DMCs.

Figure 6.5d presents a Venn diagram that summarizes the results for DSS,

methylKit and HMMmethState.

6.5.2 Spatial dependence comparison among chromoso-

mes

I analyze the BS-seq data of each chromosome separately and subsequently inves-
tigate the posterior distribution of the chromosome-specific parameters using the
MCMC based algorithm explained in Section 5.2.2, since all the models selected
were either NLBDM or NLBCM.

To analyze the difference between models NLBDM and NLBCM, I investigate
patterns among the chromosomal datasets in which one model fits better than the
other. One significant pattern is related to the way the two models tackle the spa-
tial dependence in the data. Their difference is quite evident in the posterior dis-
tributions of the estimated probabilities or the deviations of certains data points.
Model NLBDM fits better than model NLBCM in most datasets. Selecting model
NLBDM implies that the positional variations among the CpG sites do not affect
the spatial dependence among the CpG sites. The chromosomal datasets that
select model NLBCM are: Chromosome 1, 2, 3, 5, 6, 8 and Y. The remaining
chromosomal datasets select NLBDM for model fit based on WAIC. Furthermore,
I estimate the credible intervals of HMMmethState model parameters selected
using WAIC for each chromosomal datasets. Tables 6.4 and 6.5 present the WAIC
picked model for each chromosome. Figures 6.6, 6.7, 6.8, 6.9, 6.10, 6.11, 6.12 and
6.13 display the credible intervals of the WAIC picked model emission parameters
for each chromosome. Since NLBDM and NLBCM have the same set of emission
parameters, I plotted the credible intervals of the parameter in the same graph.

Clearly, there is a pattern of consistency in the credible intervals of the parame-
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Figure 6.5: Venn diagrams for the DMCs identified by the methods HMMmet-
hState, DSS and methylKit in the real data analysis of 20,000 CpG sites of 4
chromosomes. HMMmethState model setups: (a) NLBCM- Chr3, (b) NLBDM-
Chr9, (¢) NLBDM- Chrl4 and (d) NLBDM- Chr22.

ters. There is a significant variation in the credible intervals of NLBDM model
parameters to the NLBCM model parameters due to the change of assumptions

in the respective transition models. The credible interval regions of the WAIC
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picked model M: (NLBDM, NLBCM ) parameters are quite consistent in nature
and the two different model parameters can even be visually segregated from

Figures 6.6 to 6.13.

6.5.3 Defining DMR windows

In many instances, it might be sensible to summarize the differential methyla-
tion status of each CpG site over tiling windows instead of the single base pair
resolution. As an example, D Smith et al. (2012) studied methylation profiles
with RRBS experiments on gametes and zygote and subsequently summarized
methylation data information over 100 bp resolution windows across the genome.
These results uncovered a unique segment of DMRs maintained in early embryo.
Employing tiling window techniques could be useful when methylation pattern of
a region determines its whole funtional dynamics and also help in understanding

the role of gene-expression in differential methylation.

[ implemented a simple technique in HMMmethState for defining DMRs based on
the predicted methylation status at each CpG site. The method I implemented
to calculate the start and end region of these 500 bp windows is slightly different
from the conventional 500 bp equispaced tiling windows. The start and end of
the region are the start and end position of the CpG site of each window. In 500
bp equispaced window, the chromosome is divided into 500 bp regions where the
difference between the start and end region is exactly 500. But in my case, the
first start of the region is the first position of the CpG site and first end of the
region is the highest nucleotide position of the CpG site within the 500 sliding bp
window. The next start of the region is the position of the CpG site which is just
after the CpG nucleotide position of the preceding end region. I had to deal with
the genomic positions of the CpG in a different manner than a conventional 500
bp window because the positions of the CpG sites are not equispaced. That is

why I have used the sliding 500 bp technique to account for the contiguous CpG
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sites.

Furthermore, to identify a DMR, the proportion of CpG sites identified as DMCs
in a 500 bp region must exceed the threshold value of 0.5. Similarly, I also classi-
fied SMRs, such that, if the proportion of CpG sites identified as DMCs in a 500
bp region is less than the threshold value of 0.5, then I term the region to be SMR.

In addition, I further classified DMRs into partial DMRs (pDMRs) and strong
DMRs (sDMRs) and SMRs into partial SMRs (pSMRs) and strong SMRs (sSMRs).

They are described as follows:

e If the proportion of DMCs in a 500 bp region is greater than or equal to
0.8, then I call the region to be sDMR.

e If the proportion of DMCs in a 500 bp region lies between 0.5 and 0.8, 1
term the region to be pDMR.

e If the proportion of DMCs in a 500 bp region is less than or equal to 0.2,
then I call the region to be sSMR.

e If the proportion of DMCs in a 500 bp region lies between 0.2 and 0.5, 1
term the region to be pSMR.

Tables 6.4 and 6.5 show the different classes of DMRs and SMRs identified WAIC

picked model for each chromosome.

6.6 Computational time

The HMMmethState method was coded in R and C++ and run on a Linux
machine with a 2.50 GHz processor. The MCMC simulations of my proposed

method reach convergence within 10,000 iterations, so I burn-in the first 3,000
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WAIC picked(Chromosome) | Methylation level | DMR | SMR
NLBCM(chrl) g 11787401647 12244285978
NLBCM(chr2) S 12001504118 2223
NLBCM(chr3) E 217123111 390386579
NLBDM(chrd) 5 12?829 11014477142
NLBOM(chrs) i 1715 | 45197
NLBCM(chr6) Is) 11048037268 2‘3??2
NLBDM(chr7) E 97;128915 12111230
NLBCM(chr8) g éggg 12833124506
NLBDM(chr9) E 973008130 689846376
NLBDM(chr10) E 889325824 995935874
NLBDM(chrl1) S 852885478 1222?9
NLBDM(chr12) Is) 984141848 ;ggég

Table 6.4: DMR identified by WAIC picked HMMmethState model for each chro-
mosome (Chromosome-1-12).

samples and thin at every 10" iteration. Although it takes a longer time compa-
red to other methods like DSS and methylKit, HMMmethState mostly achieves
higher accuracy of DMC identification than other methods due to its robustness
that allows for spatial genomic dependence over the genomic positions of the

CpG sites. Different HMMmethState methods take different computation times.

172



6. Assessment of HMMmethState and Biological Results

WAIC picked(Chromosome) | Methylation level | DMR | SMR
NLBDM(chr13) Is) 757189624 563762678
NLBDM(chr14) Is) 643694389 651708082
NLBDM(chr15) Is) 555198089 568866841
NLBDM(chr16) Is) 547810147 650036286
NLEDAM(chr1?) ’ at34 | 5037
NLBD(chr18) IS) 6309;1995 454046982
NLBDM(chr19) E 159076223 663647155
NLBDM (chr20) E 535332599 342375017
NLBDM(chr21) E 227358578 2228()4451
NLBDM(chr22) E 242025214 247566281
NLBDM(chrX) E 898052512 (5351%23;51;
NLBCM(chrY) E 1524132 };?7,3

Table 6.5: DMR identified by WAIC picked HMMmethState model for each chro-
mosome (Chromosome-13-22,XY).

For a chromosome with approximately 1.8 million CpG sites, NLBDM takes to
run approximately 76 hours, whereas, NLBCM takes around 109 hours. BBDM
and BBCM take approximately 67 hours and 92 hours respectively with proper
MCMC convergence. Besides, the computational time of all the HMMmethState

models are insignificant compared to the time and resource required to perform
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experiments to obtain BS-seq data by biologists. In addition, for a large memory,
say 32 GB, and 40 cores, the HMMmethState analysis can be run in parallel

computing for individual chromosomes to save the computational cost.

6.7 Summary

In this Chapter, I conducted a thorough investigation of the features of my pro-
posed HMMmethState models and justified their strength and limitations in
identifying DMCs in BS-seq data. I assessed my models and showed that the
Normal-logit-Binomial emission model adequately fits the data and that the cor-
relation between the methylated counts of proliferating and senescent cells cannot
be explained by the Beta-Binomial emission model irrespective of the transition
models. This claim can further be corroborated with the results of the estimates
of WAIC. 1 have also examined the reliability of my results where HMMmet-
hState models are applied to both simulated and real data and simultaneously
compare their performances with existing differential methylation caller methods.
The differential methylation identification methods are based on certain model
assumptions and they have their own advantages and disadvantages. The perfor-
mance study of these methods even using an independent simulator could be a
matter of dispute as the performance can be tilted towards the true base model
or a model similar to the true base model. Thus, it is hard to conclude that
HMMmethState models perform better than DSS and methylKit as there is no
available gold standard BS-seq methylation dataset (training, test and validation)

where the methylation status of each CpG site is known.

In an attempt to assess the performance of my proposed method- HMMmeth-
State, I implemented a simulation study design based on reasonable model of the
underlying process. Through simulated datasets, I compare the performance of

each of the HMMmethState models with two popular methods, illustrating the
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reliability of my method in the identification of DMCs. 1 have also conducted
detailed investigations of the features of the models and justified their ability to
identify DMCs in BS-seq data, specific to the chromosomal datasets. As a first
step, I checked the MCMC simulations of the hidden states and the model para-
meters converged to the stationary posterior distribution to ensure the reliability
of my estimates. I then chose the chromosomal data specific models based on
WAIC model selection criterion, which are then used for further analyses, i.e.,
DMC prediction.In addition, I applied two DMC callers to the same datasets for
comparing their results to my results. Since the true DMCs are not known for

these datasets, I concluded that the DMCs identified by my method were reliable.
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Chapter 7

Conclusions and Further Work

The key contribution of this thesis has been to develop models that can identify
DMCs in the BS-seq data. I propose HMMmethState, a method based on Baye-
sian hierarchical HMMs for identifying DMCs between proliferating and senescent
cells for BS-seq methylation data. My proposed approach also employs hierarchi-
cal HMMs to account for the spatial dependence among the CpG sites based on
their genomic positions. The HMMmethState models can also be applied to any
other sequencing experiment of two treatment groups. In this chapter, I high-
light my thesis contributions and then provide a brief outline of some possible

directions that can be implemented as a basis for further research.

7.1 Contributions of this thesis

The thesis contributions can be catergorized into two parts and they are as follows:

1. Methodological advances: In Section 7.1.1, I discuss the main goals I have
achieved in my methodological work and the importance of the implemen-

tation of HMMmethState models in detecting DMCs in BS-seq data.

2. Biological Advances: In Section 7.1.2, I also discuss biological advantages

in my methodology that offers improved performance over other existing
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methods.

7.1.1 Methodological advances

The primary objective of this thesis was to create HHMMs for BS-seq methy-
lation data within a Bayesian framework. To this end, I have examined four
HHMMs with state-dependent emission distributions for methylated counts, gi-
ven the methylation status of the CpG sites. I have further shown how the
positional variations of the CpG sites can be incorporated in the methylation
state of the CpG sites to account for the spatial dependence between the genomic

positions of the CpG sites.

7.1.1.1 The HMMmethState method

Taking a broad view, the main contributions of Chapters 4 and 5 has been towards
an improved understanding of the potential HHMMSs to assess the methylation
data from BS-seq experiments and also critically examining the strengths and

limitations of the HMMmethState models.

In particular, Chapters 4, 5 and 6 explain the significance of developing and com-
paring the four versions of HMMmethState- BBDM, BBCM, NLBDM, NLBCM
for analysing BS-seq methylation data. The four versions of the HMMmethState
models were implemented by combining the emission and transition models as
shown in Table 7.1. The models ED and EC, [where E: BB, NLB]| can be dis-
tinguished by their transition models as discussed in Sections 4.1.3 and 4.1.4
respectively. The only alteration required for EC from ED is to assume that the
status of DMC is represented by an unobservable Markov chain instead of an
unobservable discrete Markov chain. The sole idea behind implementing EC is to
capture the positional variations of CpG dinucleotide bases and whether it has

any significant effect over ED in detecting the DMCs. The proposed approach of
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HMMmethState models are described in details in Chapters 4 and 5.

In Chapter 4, I proposed the first two models of the HMMmethState framework-

Emission Model BB NLB
Transition model
D BBDM | NLBDM
C BBCM | NLBCM

Table 7.1: Description of HMMmethState models.

BBDM and BBCM, as shown in Figure 4.1. In Section 4.1.2, I proposed Beta-
Binomial emission models and subsequently combined with transition model T:
C, D for the implementations of BBDM and BBCM. The reason I model the
methylated counts using a Binomial emission distribution at the first stage of
the hierarchical model is due to the process of BS-seq which subsequently invol-
ves the random sampling of methylated and unmethylated reads.The underlying
true methylation proportions (2"¢ stage of the hierarchical model) are assumed to
follow a Beta distribution. In order to accelerate computational simplicity, Beta-
Binomial emission distribution becomes a natural choice with collapsed distribu-
tional structure due to Beta-Binomial conjugacy. However, there is substantive
potential for improvement in the structure of BBDM and BBCM, especially on
emission probability functions that eventually play a key role in computing the

likelihood functions.

To improve upon my emission model, I develop a hierarchical emission model
that considers correlation between proliferating and senescent methylated pro-
portions. From visual posterior predictive checks, it has been observed that there
is strong evidence of correlation between proliferating and senescent methylated
proportions. I develop a hierarchical bivariate Normal-Binomial emission model
to account for the correlation in the bivariate underlying true methylation propor-

tions in Chapter 5 and subsequently combined with transition model T: C, D for
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the implementations of NLBDM and NLBCM. Again, the primary structure (1%
stage of the hierarchical model) of the model, i.e., the methylated counts follow
a Binomial distribution remains the same as in Chapter 4. I modify the under-
lying true methylation proportions as functions of logit variables for each CpG
site, which ultimately act as auxiliary parameters. Unlike Beta-Binomial con-
jugacy, the Bayesian Bivariate Normal-Binomial emission model does not have
a collapsed structure, thus it involves computational complexity in estimating
the emission hyperparameters and auxiliary parameters. Furthermore, to per-
form parameter estimation for my models, I implement efficient MCMC based
algorithms. In Chapters 4 and 5, I examine the convergence properties of the

posterior distributional quantities for simulation and real studies.

7.1.1.2 Significance of transition model for model comparison

In Chapter 6, I have done an extensive analysis on model comparison. The
Normal-logit-Binomial emission model outperformed the Beta-Binomial emission
model in most real datasets. Furthermore, in Chapter 6, I have also observed that
a particular chromosomal dataset is modelled by either NLBDM or NLBCM de-
pending on the effect of positional variations among CpG sites. Even though the
spatial dependence assumption is taken into account by considering Markovian
dependence over the latent states, the effect of positional variations in identi-
fying DMCs can only be observed in a particular dataset. I have only selected
the models based on WAIC computations as it has been specifically formula-
ted for hierarchical or mixture models. WAIC appeared to perform consistently
well compared to two different DIC versions in simulation studies as described in

Section 6.1.1.

7.1.2 Biological Advances

In Chapter 6, I compare the performances of my methods with existing methods

for detecting DMCs/DMRs. [ subsequently illustrate the advantages of HMM-
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methState by appying to simulated data and comparing it with two of the most
popular packages (R/Bioconductor packages) DSS and methylKit. I demonstrate
how the HMMmethState based algorithms outperform the existing methods in
simulation studies in terms of sensitivity and specificity. In addition, I have also
applied HMMmethState to a published dataset (Cruickshanks et al., 2013) and
presented my findings. I presented the results of DMCs and DMRs obtained using
my methods, i.e., the results of DMCs/DMRs with the proposed HMMmethState
that have been applied to the BS-seq datasets.

The main biological contributions of HMMmethState can be explained as fol-

lows:
1. It can robustly identify DMCs from BS-seq data.

2. It can automatically update DMRs based on the results on DMCs and can
futher classify into pDMRs (partial DMRs) and sDMRs (strong DMRs)
which can help biologists in better understanding of the functional genomic

regions of interests.

3. It can also be applied to both whole-genome and targeted BS-seq methyla-

tion data.

The results of the HMMmethState models explain that I can certainly imple-
ment these methods under unconditioned settings to identify DMCs/DMRs for
high-throughput BS-seq data. The predicted DMCs/DMRs can also help in un-

derstanding the phenotypic changes associated with human ageing.

7.2 Further Work

The HMMmethState models I developed and assessed in this thesis provide an
efficient way of identifying DMCs in BS-seq data. However, there still remains
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scope for improving the models which can work better in understanding the spe-
cific biological questions. In the following sections, I briefly outline the scope for

further work in this area.

7.2.1 Bivariate Beta-Binomial correlated emission distri-

bution

The idea behind choosing and constructing a Bivariate Beta-Binomial distribution
is to induce correlation between proliferating and senescent methylation propor-
tion parameters as it is theoretically very complicated to construct a Bivariate
Binomial distribution with a correlation parameter. I construct a Bivariate Beta
distribution as a prior for two correlated proportions from the Bivariate Binomial
distribution. The approach used in Chapter 4 can be modified to account for the
correlation within paired samples. The bivariate Beta distribution can be assu-
med as a prior distribution on proliferating methylation proportions and senescent
methylation proportions. Here, I use Variable-in-common and transformation-
based constructions as explained by (Olkin and Trikalinos, 2015) and (Oleson,
2010).

The joint full conditional distribution of (pf, p§) for t = 1,...,T is given by,

(pf)xf—l-a—l(l _p%?)nt—mt+b+c l(ps) S4+b— 1( pf)nf—mf+a+c—1

p(p]tga pﬂ) (S8 (1 _pp f) (a+b+c)

(7.1)

This is the form of a generalized Beta distribution where a, b, ¢ > 0.
It will be interesting to examine the results based on correlated Beta-Binomial

emission model and whether it has the ability to outperform the HMMmethState

models.

181



7. Conclusions and Further Work

7.2.2 Ad hoc label-switching technique

In Chapters 4 and 5, I have efficiently implemented a relabelling algorithm which
perform quite switfly in my augmented Gibbs sampler. However, I can also fix
label switching by ordering the means in my prior specification. Another way of
tackling this problem is by using informative priors, However in this case there
is a limitation. If the priors I use are informative as well as exchangeable then
they still might cause label switching. Thus in order to counter label switching,
I impose informative prior constraints based on the nature of the hidden state

labels on the parameters.

In a nutshell, informative priors can still cause label switching either due to
the exchangeable properties or when the modes are not clearly separated in the
model. Thus label switching problem can be tackled by using a constraint on the

prior of the parameter.

In my approach, I use uninformative and exchangeable priors in my model para-

meters. I impose a constraint on the state 2 hyperparameters such that, if,

e For Chapter 4,

no 2| 0008 (7.2)

(i +61) (12 +02)

e For Chapter 5,

|, — ps| < 0.35. (7.3)

I swap the state labels in order to avoid label switching, i.e., I perform an online
relabelling at every MCMC run. The reason I swap the labels is because from
(7.2) and (7.3), it is evident that the Beta and Normal prior means of the methy-

lation levels of the proliferating and senescent tend to be similar as the absolute
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difference between them is getting closer to 0. In my assumption, I had already
stated that state 2 indicates DMC, i.e, it is fair to assume that the proportions
of methylation levels of proliferating and senescent must be significantly diffe-
rent and the proportions of these cells can only be reflected through their means
or modes. However, the choice of this cut-off value varies from distribution to
distribution and a lot of simulation experiments are required in order to choose
the best cut-off value. The cut-off values are extremely sensitive even by a small

margin. This kind of assumption can only be valid for 2 state labels in a HMM.

7.2.3 Merging contiguous DMCs

For practical situations, it might be desirable to summarize DMRs over tiling
windows. For this reason, I have defined DMR windows by tiling vast genomic
regions in Section 6.5.3. However, I can also create a new form of DMR. If
the contiguous CpG sites are all DMCs, I can call it a DMR window. This
kind of DMR windows might also be useful for biologists who wish to correlate
information about gene-expression and differential methylation. In Figure 7.1,
I have also presented an Integrative Genomics Viewer (IGV) snapshot of my
DMRs. In this Figure 7.1, I merge the contiguous DMCs to form a new block
of DMR. I also plan to extend HMMmethState by including other biological
sources of dependence among CpG sites. For HMMmethState models, I have
already considered the spatial dependence assumption among CpG sites based
on genomic position. However, including other sources of biological variations
like gene-expression information, promoter region, promoter-enhancer-promoter
interactions might improve my current method in understanding the differential
methylation pattern. I will also focus on extending HMMmethState to BS-seq
data under general multiple experimental design. In addition, I am developing

an R package which implements my proposed HMMmethState method.
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Figure 2: Trace plots of BBDM model parameters applied to the Chromosome
16 data.
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Figure 3: Gelman and Rubin’s shrink factor plot of BBDM model parameters
applied to the Chromosome 16 data.
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Figure 5: Gelman and Rubin’s shrink factor plot of BBCM model parameters
applied to the Chromosome 16 data.
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Figure 6: Trace plots of NLBDM model parameters applied to the Chromosome
16 data.
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Figure 7: Gelman and Rubin’s shrink factor plot of NLBDM model parameters
applied to the Chromosome 16 data.
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Figure 9: Gelman and Rubin’s shrink factor plot of NLBCM model parameters
applied to the Chromosome 16 data.
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