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Abstract

DNA methylation is an epigenetic modification with significant roles

in various biological processes such as gene expression and cellular pro-

liferation. Aberrant DNA methylation patterns compared to normal

cells have been associated with a large number of human malignan-

cies and potential cancer symptoms. In DNA methylation studies,

an important objective is to detect differences between two groups

under distinct biological conditions, for e.g., between cancer/ageing

and normal cells. BiSulfite sequencing (BS-seq) is currently the gold

standard for experimentally measuring genome-wide DNA methyla-

tion. Recent evolution in the BS-seq technologies enabled the DNA

methylation profiles at single base pair resolution to be more accu-

rate in terms of their genome coverages. The main objective of my

thesis is to identify differential patterns of DNA methylation between

proliferating and senescent cells. For efficient detection of differential

methylation patterns, this thesis adopts the approach of Bayesian la-

tent variable model. One such class of models is hidden Markov model

(HMM) that can detect the underlying latent (hidden) structures of

the model. In this thesis, I propose a family of Bayesian hierarchical

HMMs for identifying differentially methylated cytosines (DMCs) and

differentially methylated regions (DMRs) from BS-seq data which act

as important indicators in better understanding of cancer and other

related diseases. I introduce HMMmethState, a model-based hier-

archical Bayesian technique for identifying DMCs from BS-seq data.

My novel HMMmethState method implements hierarchical HMMs to



account for spatial dependence among the CpG sites over genomic

positions of BS-seq methylation data.

In particular, this thesis is concerned with developing hierarchical

HMMs for the differential methylation analysis of BS-seq data, within

a Bayesian framework. In these models, aberrant DNA methylation

is driven by two latent states: differentially methylated state and

similarly methylated state, which can be interpreted as methylation

status of CpG sites, that evolve over genomic positions as a first order

Markov chain. I first design a (homogeneous) discrete-index hierar-

chical HMM in which methylated counts given the methylation sta-

tus of CpG sites follow Beta-Binomial emission distribution specific

to the methylation state. However, this model does not incorporate

the genomic positional variations among the CpG sites, so I develop

a (non-homogeneous) continuous-index hierarchical HMM, in which

the transition probabilities between methylation status depend on the

genomic positions of the CpG sites.

This Beta-Binomial emission model however does not take into ac-

count the correlation in the methylated counts of the proliferating

and senescent cells, which has been observed in the BS-seq data ana-

lysis. So, I develop a hierarchical Normal-logit Binomial emission

model that induces correlation between the methylated counts of the

proliferating and senescent cells. Furthermore, to perform parameter

estimation for my models, I implement efficient Markov Chain Monte

Carlo (MCMC) based algorithms. In this thesis, I provide an ex-

tensive study on model comparisons and adequacy of all the models

using Bayesian model checking. In addition, I also show the perfor-

mances of all the models using Receiver Operating Characteristics



(ROC) curves. I illustrate the models by fitting them to a large BS-

seq dataset and apply model selection criteria on the dataset in search

of selecting the best model. In addition, I compare the performan-

ces of my methods with existing methods for detecting DMCs with

competing methods. I demonstrate how the HMMmethState based

algorithms outperform the existing methods in simulation studies in

terms of ROC curves. I present the results of DMRs obtained using my

method, i.e., the results of DMRs with the proposed HMMmethState

that have been applied to the BS-seq datasets. The results of the hier-

archical HMMs explain that I can certainly implement these methods

under unconditioned settings to identify DMCs for high-throughput

BS-seq data. The predicted DMCs can also help in understanding the

phenotypic changes associated with human ageing.
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Chapter 1

Introduction

The recent arrival of ultra-high throughput, next generation sequencing (NGS)

technologies has revolutionized the genetics and genomics fields by allowing rapid

and inexpensive sequencing of the billions of bases in human and other genomes.

The rapid deployment of NGS in a variety of sequencing-based experiments has

resulted in fast accumulation of massive amounts of sequencing data. These

technologies have enhanced the potential for understanding the workings of bio-

logical systems in depth and the development of personalized medicine and are

having an impact on the types of questions that biologists can ask these days.

In the past few years, several pioneering studies have put the focus on epige-

netics. Literally, the word epigenetic means in addition to alterations in genetic

sequence. Epigenetics generally focuses on biological processes that regulate the

activation of certain genes, i.e., how and when the genes are switched on or

switched off, whereas epigenomics is involved in the analysis of epigenetic mo-

difications across many genes in a cell or a multi-cellular organism. Epigenetic

processes control normal organism functions. However, if they occur abnormally,

there is the possibility of unfavourable health effects or diseases, such as cancer.

The most significant epigenetic process, which has been studied extensively in the

recent years due to the availability of high-throughput sequencing technology, is

1



1. Introduction

DNA (deoxyribonucleic acid) methylation.

1.1 DNA methylation

Figure 1.1 shows DNA contains combinations of the four nucleotides which in-

clude cytosine(C) (pink), guanine(G) (green), thymine(T) (blue) and adenine(A)

(orange). DNA methylation is a chemical modification of DNA resulting from

the addition of a methyl (CH3) group to a DNA nucleotide. DNA methylation is

an epigenetic modification which regulates gene transcription and is recognized

for their role in gene expression (Gopalakrishnan et al., 2008). The CpG sites

are DNA dinucleotide positions of DNA where a C nucleotide is followed by a G

nucleotide in the linear sequence of nucleotides along its 5′ → 3′ direction. A

CpG site (CpG dinucleotide) is defined to be methylated, if a CH3 group is added

to the C. In addition, DNA treatment with sodium bisulfite chemicals initiates

conversion of unmethylated cytosine to Uracil (U) which is subsequently conver-

ted to T by DNA polymerase, whereas a methylated cytosine remains unaffected

(Krueger et al., 2012).

1.1.1 Importance of DNA methylation

Cytosine methylation of DNA plays an active role in epigenetic mechanism to

control gene expression, silencing or genomic imprinting (Li et al., 1993), both

during the normal developmental stage and as well as in the adult (Law and

Jacobsen, 2010). The occurrence of DNA methylation was first confirmed in

human cancer in 1983. DNA methylation plays a key part in the development of

cancer and is also an active regulator of gene transcription. It enables a single

cell to develop into a complex multicellular organism (Smith and Meissner, 2013),

in the formation of chromatin structure, which is another important epigenetic

2
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Figure 1.1: DNA methylation.
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modification.

1.1.2 Differential methylation

Several studies have confirmed that genes with a promoter region that contains a

high concentration of 5′-methylated Cs are transcriptionally silent. These studies

mainly discuss the functional changes to the promoter regions that are differenti-

ally methylated between cancer/ageing and normal cells. Aberrant DNA methy-

lation patterns are a hallmark feature of cancer (Das and Singal, 2004, Kulis and

Esteller, 2010, Laird and Jaenisch, 1994) and have been widely associated with

numerous diseases (Robertson, 2005). In this context, I shall use differentially

methylated C (DMC) to denote a differentially methylated C and differentially

methylated region (DMR) to denote a genomic region of adjacent DMCs. DNA

hypermethylation is linked to the activation of genes and DNA hypomethylation

(Esteller, 2002, Qu et al., 2014) has been associated with the development of

cancer through various mechanisms.

1.2 Motivation

Many studies have confirmed correlation between promoter methylation and gene

expression (Henrichsen et al., 2009, Moarii et al., 2015). In addition, the occu-

rence of wide-ranging aberrantly methylated regions is a characteristic feature of

various kinds of cancer (Ehrlich, 2002). Identifying DMRs in the genome is cru-

cial for attaining deeper knowledge into the functioning of epigenetic processes,

from the cellular level to multicellular organisms, i.e., eukaryotes. Understanding

functional (regulatory) regions is one of the main challenges in epigenetics. One

of the most essential steps during the epigenetic process is to determine how pro-

teins interact with targeted DNA for the regulation of gene expression (Laurent

et al., 2010).
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To uncover the regulation mechanisms of the epigenetic process, one promising

approach is to identify DMRs on the genome scale. The popular technology used

to study the mechanism is BiSulfite sequencing (BS-seq). Epigenetic regulation

is a routine mechanism in cancer for silencing the expression of tumor suppressor

genes (Blair and Yan, 2012) and actively participates in various cellular processes,

such as, gene expression and regulation (Newell-Price et al., 2000).

One of the most important applications in the field of epigenetics is the epigenetic

modifications to the genome of cancer cells that do require an alteration in the

nucleotide sequence. Understanding the pattern of epigenetic mechanisms seems

likely to be effective in the future for cancer detection, therapy and prevention.

BS-seq procedure is one of the most reliable technologies to profile genome-wide

DNA methylation reads in eukaryotes. In contrast to the rapid development of

numerous pre-processing, alignment and mapping softwares, tools for analysing

the generated methylation reads and implementing a flexible pipeline to identify

differential DNA methylation patterns in two groups, e.g., cancer and control

samples, are comparatively limited.

1.3 Bayesian latent variable framework for the

analysis of differential methylation

In this thesis, I have focussed on the application of latent variable Bayesian

techniques to epigenomics, in particular to detect DMRs. These DMRs are usu-

ally studied by performing BS-sequencing, an experimental prcedure that applies

high-throughput methods on bisulfite-induced DNA to ascertain the methylation

status at each CpG site. The epigenomic profiles of differential methylation of

DNA are examined to assess the regulatory roles of differentially expressed genes

which are generally identified with predominant hypomethylation.
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Due to the rapid development of BS-seq technology, several algorithms have been

designed to analyse the data and identify the DMRs of interest, but the algo-

rithms are mostly restricted to Fisher’s exact test or Wald’s test. On the other

hand, I focussed on developing a method that is suitable for modelling the data

observations with respect to the data-generating process and the underlying ge-

nomic structure.

I incorporate the genomic location in the model to help identify the DMRs of

interest. I designed a family of hierarchical hidden Markov models (HMMs),

HMMmethState, that treat the genome as a sequence of latent states, classi-

fied as DMCs or similarly methylated Cs (SMCs). I implemented Markov Chain

Monte Carlo (MCMC) based algorithms using Forward-sum recursions, Gibbs

samplers and the Metropolis-Hastings (M-H) algorithms to estimate the latent

states and the model parameters.

In addition, I have explored several characteristics of my proposed method to

study its performance. The main advantage of HMMmethState is the inclusion

of the Bayesian approach to parameter and state estimation. Furthermore, my

proposed choice of the Binomial distribution to model the distributions at the first

stage of the hierarchical model of methylated counts reports the approximately

random process during the sampling of the two types of reads, i.e., methylated

or unmethylated.

1.4 Thesis outline

This thesis is motivated by questions in epigenetics and aims to analyse BS-seq

data applied to the study of differential methylation patterns. In Chapter 2, I

introduce basic statistical concepts that form the basis of my analysis. I pro-

vide a brief description of the Bayesian framework and MCMC based algorithms
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that form the basis of my research. In addition, I also describe a family of models

within a hierarchical HMM framework, which aim to characterize systems that are

dependent on an underlying structure. The generic Bayesian estimation techni-

ques involving MCMC based algorithms and also the Forward-sum recursion are

also described in Chapter 2. Implementation and further developments of the

MCMC based algorithms and Forward-sum recursions are described in details in

Chapters 4 and 5, tailored to the nature of the problem in question. Furthermore,

I give a brief description of the implementation of MCMC based algorithms and

convergence tools. Finally, I describe the model selection criteria and also poste-

rior predictive analysis within the Bayesian framework, which form a substantial

part of my analysis. However, not all model selection criteria are directly applica-

ble to my problems and I provide an explanation of those difficulties in Chapter 6.

Chapter 3 gives an introduction to the high-throughput sequencing technology

that generates the data analysed in the remaining part of this thesis and existing

differential methylation caller approaches. It describes the sequencing procedure

and the subsequent steps involved in the processing of BS-seq methylation data.

Furthermore, it also provides an overview of the BS-seq tool, Bismark, that per-

forms the alignments of bisulfite-treated reads to a reference genome for further

analysis. In addition, I also give brief descriptions of existing differential methy-

lation caller approaches that aim to detect DMCs in the genome. Finally, I also

introduce the structure of the BS-seq datasets that are used for the analysis in

this thesis.

In Chapter 4, I propose two HMMmethState models (BBDM and BBCM ) that

I developed using a hierarchical Beta-Binomial emission distribution and explain

its association with the data-generating process. I also provide a detailed descrip-

tion of the Bayesian estimation procedure for estimating the model parameters

and hidden states, which subsequently enables the identification of DMCs.
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In Chapter 5, I develop an extension to the HMMmethState models. I propose an

improved emission distribution as the Beta-Binomial emission distribution fails

to capture the observed correlation between the methylated counts of the two cell

types (senescent and proliferating cells). I implement the extended HMMmeth-

State models (NLBD and NLBC ) using a hierarchical bivariate Normal-Binomial

distribution and explain their associations with the data-generating process. Here

also, I provide a detailed description of Bayesian estimation procedure for esti-

mating the model parameters and hidden states, which subsequently enables the

identification of the DMCs.

Chapter 6 provides a description of a simulation study of all the HMMmethState

models and compare the model performances based on the selection criteria and

ROC curves. In addition, I include the visual exploration and assessment of

some features of the model using posterior predictive checks. I also discuss the

comparison among the model selection criteria and posterior predictive p values

of the competing HMMmethState methods. Furthermore, I also discuss the the

performance of my HMMmethState model and assess my proposed algorithms by

comparing with two existing differential methylation caller approaches described

in Chapter 3. Finally, I present the results of HMMmethState on chromosomal

datasets and compare them with the two competing methods.
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Chapter 2

Statistical Concepts and Methods

In this chapter, I introduce a number of statistical concepts and methods used

and implemented throughout this thesis. In Section 2.1, I introduce the Bayesian

techniques used in Chapters 4 and 5, in particular Markov Chain Monte Carlo

(MCMC) based inference. These MCMC methods are combined with the hidden

Markov models (HMMs) from Section 2.2 to create Bayesian HMMs introduced in

Chapters 4 and 5. The concepts of identifiability and label switching are outlined

in Sections 2.2.5 and 2.2.6, respectively. In addition, I also discuss Bayesian

model checking and model selection (Section 2.3) implemented in Chapter 6.

2.1 Bayesian framework

In a Bayesian framework, the parameters are considered as random variables

whereas classical framework treats parameters to be unspecified but fixed. For a

given model specification, the data D can be modelled based on the parameters θ,

a vector of random quantities with prior distribution p(θ). According to Bayes’

theorem (Bayes, 1763), the (posterior) distribution of the parameters θ given the

data D is proportional to the product of likelihood L(θ|D) = p(D|θ), i.e., the

probability of the data D given the parameters p(θ) and the prior distribution
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p(θ):

p(θ|D) =
p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

∝ p(D|θ)p(θ), (2.1)

assuming θ is continuous.

Generally, calculating the posterior distribution and its moments is not possible

in complex or high-dimensional problems as integrating over θ requires compu-

ting high-dimensional integrals with no closed form solution. However, to tackle

these complications, numerical integration is required, which can be done by

Monte Carlo methods. The posterior distribution p(θ|D) can be sampled from

p(D|θ)p(θ) using the MCMC methodology.

2.1.1 Markov chain Monte Carlo

The MCMC method simulates samples from the posterior distribution of the mo-

del parameters when the likelihood is tractable. The objective is to construct

a Markov chain whose stationary distribution is the posterior distribution of in-

terest (target distribution). The new sample is simulated based on the current

sampled value only and hence the samples form a Markov chain. The chain is

run for sufficiently long, as convergence to the stationary distribution is not attai-

ned immediately. A burn-in period is thus required, where the initial simulated

values are discarded (Brooks and Gelman, 1998). Furthermore, to save storage

memory and reduce the autocorrelation between samples, sometimes, only every

ith (i > 1) updated sample of the parameter is stored. This process is termed

thinning of the chain.

In the next two subsections, I discuss the two most popular MCMC implementa-

tions used to simulate values of the parameters from their posterior distribution.
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2.1.2 Metropolis-Hastings algorithm

The Metropolis-Hastings (M-H) algorithm is an MCMC technique which was first

introduced by Metropolis et al. (1953) and later developed by Hastings (1970).

The M-H algorithm is often used where the posterior distribution cannot easily

be directly sampled from. It implements a rejection sampling method based on

the target distribution to sample the parameter from the posterior distribution

through an acceptance and rejection step. A candidate sample is simulated from

a proposal distribution conditional on the updated draw of the previous state,

and subsequently it is accepted or rejected based on an acceptance probability

that depends on the posterior density and the proposal density.

To illustrate the algorithm, let the proposal density for a candidate draw θ′ given

the current update θ in the sequence of the samples be denoted by q(θ, θ′). The

M-H algorithm simulates new candidate values of the parameter from the propo-

sal distribution (candidate distribution) and accepts them as the next update in

the Markov chain according to the acceptance probability,

α(θ, θ′) = min

(
1,
p(θ′|D)q(θ′, θ)

p(θ|D)q(θ, θ′)

)
. (2.2)

The proposed value θ′ is only accepted if the acceptance probability α(θ, θ′) is

greater than a realized value u of the uniform random variable U on the interval

[0, 1], such that U ∼ Uniform(0, 1). However, if the proposed value is rejected,

then the next sampled value is set to be the current one.

2.1.3 Gibbs sampler

Gibbs sampler (Geman and Geman, 1984) is a special case of the M-H algorithm.

The parameter vector of the Markov chain is split into components and then each

component of the parameter vector is updated sequentially. The Gibbs sampler

samples each component from its distribution conditional on the remaining com-
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ponents and the data, (the full conditional) one at a time.

I describe the sampling steps of the algorithm for a parameter vector θ with

S components (θ1, . . . , θS) and full conditionals p(θs|D,θ−s), where

θ−s = {θ1, . . . , θs−1, θs+1, . . . , θS} as below:

1. Set i = 0 and initialize starting values: θ0 = (θ0
1, . . . , θ

0
S).

2. Simulate,

θi+1
1 from p(θi+1

1 |D, θi2, . . . , θiS)

...

θi+1
s from p(θi+1

s |D, θi+1
1 , . . . , θi+1

s−1, θ
i
s+1, . . . , θ

i
S) (2.3)

...

θi+1
S from p(θi+1

S |D, θi+1
1 , . . . , θi+1

S−1).

3. Set i = i+ 1.

4. Repeat 2 and 3 beyond convergence and discard burn-in.

After a number of iterations, the Markov chain that converges to the target dis-

tribution and then the updated values are sampled from the desired posterior

distribution.

The M-H algorithm does not require the information related to the full conditio-

nal distributions, in contrast to the Gibbs sampler. However, the M-H algorithm

often requires the tuning of parameters in the proposal distribution in order to

speed up the convergence to stationarity. On the other hand, the Gibbs sam-

pler automatically determines the proposal distributions from which the updated

samples are always accepted.
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2.1.4 Assessing MCMC convergence

Convergence is often examined by running parallel chains with different initial

values to assess whether all the chains converge to the same target distribution

by using Potential Scale Reduction Factors (PSRFs). A PSRF is a measure

which evaluates the convergence of multiple parallel MCMC chains as proposed

by Gelman and Rubin (1992). The calculation of the PSRF for each parameter,

θ, requires m parallel sequences, each of length n. Let θij be the ith sample of the

jth chain, i = 1, . . . , n and j = 1, . . . ,m. Let θ̄j and s2
j be the sample posterior

mean and variance of the jth parallel chain. Let θ̄ be the overall sample posterior

mean. To calculate the PSRF of each of the model parameters, one computes the

between-sequence, B, and within-sequence, W , variances:

B =
n

m− 1

m∑

j=1

(
θ̄j − θ̄

)2
, where θ̄j =

1

n

n∑

i=1

θij, θ̄ =
1

m

m∑

j=1

θ̄j (2.4)

W =
1

m

m∑

j=1

s2
j , where s2

j =
1

n− 1

n∑

i=1

(
θij − θ̄j

)2
. (2.5)

One can then estimate Var(θ|D), the marginal posterior variance of the parame-

ter, by a weighted average of W and B:

V̂ar(θ|D) =
n− 1

n
W +

1

n
B. (2.6)

This quantity overestimates the marginal posterior variance of the parameter,

Var(θ|y), while W underestimates it for finite n. From this the PSRF can be

calculated as follows:

R̂ =

√
V̂ar(θ|D)

W
, (2.7)

where the value decreases to 1 as n → ∞. Large values of R̂ indicate a lack of

convergence and values of less than 1.05 or 1.1 generally indicate convergence.
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2.2 Hidden Markov models

In this section, I introduce hidden Markov models (HMMs) (Rabiner, 1989) that

describe observations emerging conditionally from an underlying discrete and

unobserved process. Each observation is associated with a latent or hidden state

which yields classification of the data into distinct clusters/groups. In the context

of finite mixture models, the hidden or latent states are assumed to be indepen-

dent and identically distributed (i.i.d.) random variables. However, in a HMM,

they are represented by an unobservable Markov chain. HMMs induce long-range

conditional dependencies in the observed data by imposing Markovian conditi-

oning on the latent states and have many applications in pattern recognition,

high-throughput sequencing data and bioinformatics (Durbin et al., 1998, Koski,

2001).

A HMM is a bivariate stochastic process comprising an observed process and

a hidden (unobserved) process. The unobserved process is assumed to be a first-

order Markov chain with a finite number of hidden states, whereas, the obser-

vable random variables conditional on the hidden states generate a conditionally

independent sequence, which is termed as the emission sequence, where the con-

ditional (emission) distribution of the observable random variable depends only

on the corresponding hidden state. In most standard cases, the HMM is gene-

rally assumed to be homogeneous if the Markov chain in the hidden process is

homogeneous, i.e., in the underlying Markov chain, the transition probabilities

are constant over time. However, non-homogeneous transition probabilities can

also be incorporated in the hidden process. The concept of a non-homogeneous

hidden Markov process will be formally introduced in Section 4.1.4 through a

continuous-index hidden Markov process.

Let us define, X = (X1, · · · , XT ) be the sequence of observable random variables,

such that x = (x1, · · · , xT ) are the realizations of X and Z = (Z1, · · · , ZT ) ∈
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ZTK be the sequence of hidden states, where ZTK =

T terms︷ ︸︸ ︷
ZK ⊗ · · · ⊗ ZK and ZK =

{1, . . . , K}, such that ZTK is the set of all possible hidden states. Now, the hidden

process can be derived from the first-order Markovian property as,

P (Zt = j|Z1:t−1) = P (Zt = k|Zt−1 = j), t = 2, . . . , T and j, k = 1, . . . , K, (2.8)

where Z1:t−1 = (Z1, . . . , Zt−1).

The three main sets of parameters of an HMM correspond to the initial state

distribution, the transition probability matrix and the emission distribution (Ra-

biner, 1989). The initial state parameters, transition parameters and emission

parameters are denoted by π, τ and θ, respectively. They are as follows.

• Let us consider the initial state distribution P (Z1 = k) = πk for k =

1, . . . , K, with initial state probabilities π = (π1, π2, · · · , πK), such that
∑K

k=1 πk = 1. πk is the prior probability of state k at the first step in the

chain.

• The transition probabilities between the states τjk(t) = P (Zt = k|Zt−1 = j)

for j, k = 1, 2, . . . , K and t = 2, . . . , T are given by the matrix τ .

• The emission probability of the (discrete) observation xt conditional on the

hidden state Zt and the emission parameter can be written as:

bk(t) = P (Xt = xt|θ, Zt = k)

= P (xt|θ, Zt = k), k = 1, . . . , K. (2.9)

For notational simplicity, I re-write P (xt|θ, Zt) = PZt(xt|θ) = bZt(t), which

is termed as the emission distribution at index t for t = 1, . . . , T conditional

on the state Zt.
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I simplify my notation, by defining, es:T = (es, es+1, . . . , eT ), where es:T is a vec-

tor with (T − s) + 1 elements and s is any positive integer, such that s ≤ T .

More generally, the hidden state sequence Z = (Z1, . . . , ZT ) can also be assu-

med to be a Markov process of mth order, such that the conditional distribution

of Zt given all the past values Z1:t−1 depends only on the preceding m values,

i.e., Zt−1:t−m = (Zt−m, Zt−m+1, . . . , Zt−1). When m = 0, the HMM boils down to

a finite mixture model.

2.2.1 Computing the likelihood

Let the set of all parameters be generically denoted by ζ = (θ,π, τ ) where θ

denotes the emission parameters and π, τ denote the initial state and transi-

tion parameters, respectively, such that π = {πk : k = 1, 2, . . . , K} and τ =

{τjk(t) : j, k = 1, 2, . . . , K}. The joint probability of the sequence of observable

random variables X and the sequence of the hidden states Z conditional on the

model parameters ζ is

P (X,Z |ζ) = πZ1PZ1(X1|θ)
T∏

t=2

τZ(t−1),Zt(t)PZt(Xt|θ). (2.10)

If X and Z were observed, (2.10) would give the complete data likelihood. To

emphazise that only X is directly observed (to be x), I shall hereafter write

P (X = x,Z |.) as P (x,Z |.) , in a slight abuse of notation and similarly in poste-

rior distributions and likelihoods, throughout my thesis.

Then, the likelihood of the observed data values x of X given the HMM mo-
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del parameter ζ can be expressed as,

Lx(ζ) = P (X = x|ζ)

=
∑

Z1,...,ZT

πZ1PZ1(x1|θ)
T∏

t=2

τZ(t−1),Zt(t)PZt(xt|θ), (2.11)

the probability of the observed data values x of X for the HMM model parame-

ters θ which is the sum over all the KT possible state sequences of the complete

data likelihood.

The direct computation of the likelihood expression in (2.11), being the sum

over all KT possible realisations of Z, is infeasible and must be avoided. With 1st

order Markovian dependencies of the hidden states in (2.11), it is straightforward

to compute the likelihood using a recursive forward summation (Rabiner, 1989,

Scott, 2002) procedure described below.

2.2.2 Forward-sum recursion

In this section, I introduce a forward variable at each index of the hidden state

sequence and these forward variables are processed to compute the terms of the

likelihood using a recursive method. The forward probability can be expressed

as,

αk(t) = P (X1:t = x1:t;Zt = k|ζ) , for k = 1, 2, . . . , K. (2.12)

Interestingly, the forward probability αk(t) can also be viewed as the partial like-

lihood of the first t observed values of x1:t of X1:t with hidden state Zt = k, i.e.,

αk(t) is the joint probability of observing the data at the first t indices and being

in state k at the tth index.
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For t = 1, I can write,

αk(1) = P (X1 = x1, Z1 = k|ζ)

= πkP (x1|Z1 = k,θ)

= πkPk (x1|θ)

= πkbk(1). (2.13)

I can derive a recursive procedure to calculate αk(t) for t = 2, . . . , T and k =

1, 2, . . . , K as below.

αk(t) = P (X1:t = x1:t, Zt = k|ζ)

=
∑

l ∈ ZK
P (x1:t, Zt−1 = l, Zt = k|ζ)

=
∑

l ∈ ZK
P (x1:t−1, Zt−1 = l|ζ)P (xt, Zt = k|X1:t−1, Zt−1 = l; ζ)

=
∑

l ∈ ZK
P (x1:t−1, Zt−1 = l|ζ)P (xt|x1:t−1, Zt−1 = l, Zt = k; ζ)

× P (Zt = k|Zt−1 = l)

=
∑

l ∈ ZK
αl(t− 1)P (xt|Zt,θ)P (Zt = k|Zt−1 = l)

= bk(t)
∑

l ∈ ZK
αl(t− 1)P (Zt = k|Zt−1 = l). (2.14)

Now, the likelihood can be derived from (2.14),

Lx(ζ) = P (X1:T = x1:T |ζ)

=
∑

k ∈ ZK
πZ1PZ1(x1|θ)

T∏

t=2

τZ(t−1),Zt(t)PZt(xt|θ)

=
∑

k ∈ ZK
αk(T ). (2.15)

18



2. Statistical Concepts and Methods

For this reason, the forward sum recursion is often referred as the likelihood

recursion.

2.2.3 Bayesian parameter and state estimation

The Bayesian parameter and state estimation of HMMs uses the strategy of a

two-stage Gibbs sampler which simulates from the joint posterior distribution of

the HMM parameters and hidden states by alternating between sampling the hid-

den states Z given ζ and x from the conditional posterior distribution p(Z|ζ,x)

and sampling the HMM parameters ζ given the complete data (x,Z) from the

conditional posterior distribution p(ζ|Z,x).

The HMM model parameters and hidden states are thus sampled from their cor-

responding full conditional distributions. I can sample the hidden states from the

conditional posterior distribution in two ways. The first method is called the Di-

rect Gibbs sampler (Scott, 2002). It is just a general version of the Gibbs sampler.

Now, to sample from the conditional posterior distribution of the hidden states,

the Direct Gibbs sampler treats every state as an individual parameter then si-

mulates each state Zt from its full conditional distribution for all t = 2, . . . , T ,

P (Zt = k|Z−t,x, ζ) ∝ τZt−1,kτk,Zt+1P (xt|Zt,θ). (2.16)

The Direct Gibbs sampler step can be coupled with Gibbs sampler to generate

samples of the HMM parameters ζ from the conditional posterior distribution

p(ζ|Z,x), which returns values of parameter updates and hidden states at every

iteration. Consider the ith iteration, for i = 1, . . . , I to sample an update of the

parameter ζ(i) and Z(i) from an MCMC process whose limiting distribution is

p(ζ,Z|x). Since the Gibbs sampler directly depends on the parameters and their

dimensionality, considering every single Zt as a separate parameter increases the

dimension of parameters and can cause algorithmic inefficiency.
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The idea of the Forward Gibbs sampler was first conceived by Chib (1996) and

later it was developed by Scott (2002). Here all the states were treated as one

block for updating and then implementing the forward sum recursions as descri-

bed in Section 2.2.2. The important characteristic of the Forward Gibbs sampler

is that it can directly sample the hidden states Z from the conditional posterior

distribution p(Z|ζ,x), whereas the Direct Gibbs sampler can only sample from

the full conditionals of each Zt (2.16). One needs to update one block of hidden

states parameter Z rather than updating all the T hidden states separately.

2.2.4 Backward sampling

The goal of this step is to update the states from the posterior distribution of

all the states conditional on data and parameters. This Backward sampling

procedure requires computation of the Forward-sum probabilities described in

Section 2.2.2.

The conditional posterior distribution of the hidden states Z given ζ and x can

be written as,

P (Z |ζ,x) = P (Z1:T |x1:T , ζ)

= P (ZT |x1:T , ζ) · · ·P (Zt|x1:T ;Zt+1:T ; ζ) · · ·P (Z1|x1:T ;Z2:T ; ζ).

(2.17)

The tth term in (2.17) can be written as,

P (Zt|x1:T ;Zt+1:T ; ζ) ∝ P (Zt|x1:t; ζ)P (xt+1:T ; Zt+1:T |x1:t, Zt; ζ). (2.18)
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The states Zt, t = (1, . . . , T ) can now be updated using a backward sampling

imputation step:

Sample ZT from P (ZT = k|x1:T ; ζ) =
αk(T )∑
k αk(T )

.

...

Sample Zt from P (Zt = k|x1:T ; Zt+1:T ; ζ) ∝ αk(t)P (Zt+1|Zt = k) . (2.19)

...

Sample Z1 from P (Z1 = k|x1:T ; Z2:T ; ζ) ∝ αk(1)P (Z2|Z1 = k) . (2.20)

I first sample ZT and use this updated information recursively in order to sam-

ple the remaining states. Thus, after sampling ZT , the remaining hidden states

Z−T = (ZT−1, . . . , Z1) can be sampled by going backwards and updating the ge-

neral tth term Zt from P (Zt|x1:T ;Zt+1:T ; ζ) for t = T − 1, . . . , 1.

An advantage of using Backward sampling compared to Direct Gibbs is that

it allows more rapid mixing as the Markov chain has fewer components. Sub-

sequently, the dependence of every hidden state on its previous updated value

can be significantly minimized by directly sampling from P (Z|x, ζ). The emis-

sion and transition parameters ζ are also sampled using either a M-H or Gibbs

sampler conditional on the updates states.

2.2.5 Identifiability and label switching

A mixture model is a special case of a HMM, where the hidden states are assumed

to be independent. In general, HMMs including mixture models often suffer from

the label switching problem when the parameters are estimated using MCMC

techniques. There have been many approaches developed in the recent past in

order to tackle the label switching problem. The values of the parameters adjust

themselves to suitable modal values and cause label switching. Label switching
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emerges mostly when one has exchangeable priors for all the parameters. The

symmetric nature of the priors can cause non-identifiability. Non-identifiability

means that more than one set of parameter values can lead to the same likelihood.

It can be proved that the parameters of a HMM/mixture model are identifiable

(Leroux, 1992).

In Bayesian mixture models/HMMs literature, popular approaches for dealing

with the label switching problem include constraints on the prior distributions of

the parameters which cause rejection of the proposed values of the parameters

that do not comply with the prior constraint assumptions (Richardson and Green,

1997). The label switching problem in HMMs can also be tackled by choosing the

initial values of the MCMC updates empirically using empirical measures from

the data or by using method of moments even if I have uninformative or weakly

informative priors. In addition, a decision theoretic approach was proposed in

Stephens (2000) using the Kullback-Leibler divergence method that minimises the

expected posterior loss under a class of loss functions and calculate the marginal

distributions of the parameters. I can also fix the label switching by ordering the

means in my prior specification.

In this thesis, I implement an efficient classification based relabelling algorithm

in HMMs proposed by Cron and West (2011). The idea of the algorithm can be

explained as below:

• Given the current parameter draw ζ, define the corresponding hidden states

Ẑ with T elements, such that Ẑ =
(
Ẑ1, · · · , ẐT

)
, where Ẑ assigns each

observation to its modal component under the current set of classification

probabilities.

• Ẑ
R

=
(
ẐR

1 , · · · , ẐR
T

)
as the corresponding hidden states (classification vec-

tor) with elements ẐR
t .
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• Loss function: The misclassifications that Ẑ implies relative to Ẑ
R

leads

to a natural, intuitive loss function, such that, permuting the component

labels in Z to maximize the match with Ẑ
R

minimizes the misclassification.

• Define a K ×K misclassification matrix C,

Chj = |{(ẐR
t = h ∧ Ẑt = j)}|, (j, h = 1, . . . , K) and t = 1, . . . , T. (2.21)

This matrix contains full information on sample and component classifica-

tions to compare the current MCMC state Ẑ with a reference Ẑ
R

, and can

be computed even with very large sample sizes.

• Chj counts misclassified observations MCMC component j is matched with

reference component h, thus a column permutation is required to minimize

tr(C).

• This technique applied in Cron and West (2011) can be implemented effi-

ciently using the Hungarian algorithm (Munkres, 1957).

2.2.6 Relabelling algorithm

The online relabelling algorithm proposed by Cron and West (2011) can be imple-

mented completely on-line. It computes the optimal component permutations to

minimize referenced misclassification costs at each MCMC iterate. The summary

of the algorithm is provided as below:

• Calculate Ẑ given the current MCMC iterate ζ.

• Calculate the misclassifcation cost matrix C.

• Apply the Hungarian algorithm to match the optimal permutation of com-

ponent indices denoted by σ(1 : K), in the current MCMC draw.

• Permute ζ1:K → ζσ(1:K) accordingly.
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• Move to the next MCMC iterate.

2.3 Bayesian model checking and selection

Model checking is critical to any statistical analysis in that it tries to verify that

the model assumptions are reasonable and sufficient. A well-performed Bayesian

analysis must therefore adhere to some competent model assessment techniques,

so that the model provides plausible descriptions of the data. If there is more

than one relevant model, model selection then becomes of interest to statisticians.

These concepts and definitions are described in the following sections.

2.3.1 Posterior predictive model checking

To understand whether the model captures the data in a Bayesian context, I will

perform some model adequacy assessment, called posterior predictive checking.

A Bayesian model fit can be examined using the posterior predictive distribution

(Gelman and Meng, 1998) and test statistics that can be a function of both the

data and parameters. These test statistics are termed as discrepancy variables

(Gelman and Stern, 2000) to highlight the purpose of assessing the discrepancy

between the model and data, in contrast to checking the accuracy of the model.

The basic technique implemented by Gelman and Stern (2000) for checking the

model fit is to simulate replicated data from the posterior predictive distribution.

The posterior predictive distribution is described as below.

I have earlier defined the likelihood Lx(ζ), and the posterior distribution be

p(ζ|x). I also define ζ(1), · · · , ζ(I) to be I simulated draws from the posterior

distribution. Next, I generate data x(i) according to the model assumptions ba-

sed on the parameter updates ζ(i) at every MCMC iteration i, for i = 1, . . . , I.
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Now, I obtain I sets of replicated data
{
x(1), · · · ,x(I)

}
, and compare those with

the observed data by using a discrepancy test-statistic. The posterior predictive

distribution for the replicated data xrep is

p(xrep|x) =

∫
p(xrep|ζ,x)p(ζ|x)dζ. (2.22)

The computational steps of posterior predictive checking can be described as

follows:

• Simulate ζ from the posterior distribution p(ζ|x).

• Simulate xrep from the predictive distribution p(xrep|ζ,x).

• Next, compare the data x to the replicated datasets xrep using a discrepancy

test-statistic.

If the model fit is reasonable, then the replicated data xrep simulated under the

specific model assumptions should be similar to the observed data, i.e., the ob-

served data should look plausible under the posterior predictive distribution.

The discrepancy between model and data can be measured by quantifying a

discrepancy variable T(x, ζ), which is a scalar summary of the model parameters

and data.

2.3.2 Posterior predictive p-values

As already explained at the beginning, the discrepancy test statistics can be

functions of the parameters since they are calculated from the simulated posterior

draws of the parameters at every iteration. The posterior predictive p-value can

be defined as the probability that the discrepancy test statistic based on the

replicated data and posterior draws of the parameters exceeds the discrepancy

test statistic based on the observed data and posterior draws of the parameters,
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as denoted by,

pd = P (T(xrep, ζ) ≥ T(x, ζ)|x), (2.23)

where the probability in Equation (2.23) is calculated over the posterior draws of

ζ and the posterior predictive distribution of xrep, which is basically the joint dis-

tribution, p(ζ,xrep|x). For practical purposes, I calculate the posterior predictive

distribution using posterior draws of ζ for I simulations and then generate xrep(i)

from the predictive distribution for each posterior draw of ζ(i) for i = 1, . . . , I,

i.e., I generate I replicated draws of xrep from the joint posterior distribution

p(ζ,xrep|x). Thus, to estimate the posterior predictive p-value, I must compute

the proportion of times in which the discrepancy test statistic based on the re-

plicated data and posterior draws of the parameters exceeds the discrepancy test

statistic based on the observed data and posterior draws of the parameters,

pd =
1

I

I∑

i=1

I

(
T(xrep, ζ) ≥ T(x, ζ)|x

)
, (2.24)

where I(.) is the indicator function.

A visual check can be performed by a scatter plot of the realised values T(x, ζ)

against the replicated values T(xrep, ζ). For a good fit, about half the points

would be expected to fall above the line of equality and half to fall below it.

2.3.3 Deviance Information Criterion

The Deviance Information Criterion (DIC) introduced by Spiegelhalter et al.

(2002) is a popular tool for Bayesian model comparison and is defined in terms

of deviance,

DIC1 = −2 logP (x
∣∣∣ζ̃) + 2pDIC1 , (2.25)
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where ζ̃ are the posterior means, i.e., ζ̃ = Epost(ζ|x) where Epost(ζ|x) can be

estimated from Êpost(ζ|x) = 1
I

∑I
i=1 ζ

(i) and pDIC1 is the effective number of

parameters which can be found from,

pDIC1 = 2
(

logP
(
x|ζ̃
)
− Epost (logP (x|ζ))

)
. (2.26)

For model comparison, DIC with the lowest numerical value indicates the best

performing model. The expectation term in Equation (2.26) is the posterior

expectation of logP (x|ζ) which can be estimated from the average of logP (x|ζ)

over the posterior draws of ζ, so that, the computed version of pDIC1 using the

simulated draws of ζ can be expressed as,

pDIC1 = 2

(
logP (x|ζ̃)− 1

I

I∑

i=1

logP (x|ζ(i))

)
. (2.27)

An alternative version of pDIC1 (Gelman et al., 2014) is,

pDIC1alt
= 2 Varpost (log (P (x|ζ))) . (2.28)

Even though pDIC1 is numerically stable, the alternative version of pDIC1alt
has

the benefit of always being positive. I have only used the alternative definition of

effective number of free parameters, i.e., pDIC1alt
. Thus, DIC can be re-evaluated

as,

DIC1 = −2 logP (x|ζ̃) + 2pDIC1alt
, (2.29)
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where P (x
∣∣∣ζ̃) = Lx(ζ̃) .

Now, Varpost (log(P (x|ζ))) can be estimated from V̂arpost (log(P (x|ζ))), such that

V̂arpost (log (P (x|ζ))) =
1

I − 1

I∑

i=1

[
log
(
P
(
x|ζ(i)

))
− 1

I

I∑

i=1

log
(
P
(
x|ζ(i)

)) ]2

,

(2.30)

where ζ(i) is the ith posterior draw of the parameter ζ and ζ̃ is the posterior

estimate (mean) of ζ, averaged over the total number of iterations after burn-in.

Furthermore, the computations and definitions have also been explored for the

family of latent variable models (Celeux et al., 2006) which also includes mixture

models and HMMs. However, various studies have advised against the use of

the DIC with data augmentation for comparing latent variable models. Li et al.

(2012) claim that DIC must not be used with data-augmentation as the augmen-

ted data is non-regular and does not validate the asymptotic properties that are

required for the DIC.

The DIC expression for complete-data (x,Z) can be defined as,

DIC2 = −2 logP (x,Z|ζ̃) + 2pDIC2alt
, (2.31)

where P (x,Z|ζ̃) = Lx,Z(ζ̃).

Now, Varpost (log (P (x,Z|ζ))) can be estimated from V̂arpost (log (P (x,Z|ζ))),

V̂arpost (log (P (x,Z|ζ))) =
1

I − 1

I∑

i=1

[
log

(
P
(
x,Z|ζ(i)

))
− 1

I

I∑

i=1

log

(
P
(
x,Z|ζ(i)

))]2

.

(2.32)

One of the most used version of computing the DIC is based on the conditional

likelihood Lx(ζ̃,Z) in the context of HMM in the recent literature. Here, the

latent variables Z are considered as an additional parameter in the construction
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of DIC (Celeux et al., 2006). Now, the definition of DIC based on conditional

likelihood can be computed as

DIC3 = −2 logP (x|ζ̃,Z) + 2pDIC3alt
, (2.33)

where P (x|ζ̃,Z) = Lx(ζ̃,Z).

Now, Varpost (log (P (x,Z|ζ))) can be estimated from V̂arpost (log (P (x,Z|ζ))),

V̂arpost (log (P (x|ζ,Z))) =
1

I − 1

I∑

i=1

[
log
(
P
(
x|ζ(i),Z(i)

))

− 1

I

I∑

i=1

log
(
P
(
x|ζ(i),Z(i)

))]2

. (2.34)

For Poisson model comparisons, Millar (2009) concludes that the DIC computed

based on the conditional likelihood, obtained by conditioning on the latent varia-

bles and parameters (x|Z, ζ), usually prefers the Poisson-Gamma model instead

of the Poisson-log-Normal model, even though the latter is the base model from

which the data are generated from. Contrary to this, Millar (2009) also esta-

blished the fact that DIC calculated using the integrated likelihood, i.e., L(ζ̃),

obtained by integrating out the latent variables appears to perform well in com-

parison to the conditional likelihood. The DIC performance using the integrated

likelihood is not unexpected as the standard asymptotic properties for validating

the DIC are based on the integrated likelihood based DIC. However, in my ap-

plications in Chapter 6, I have computed the last versions of DIC, i.e., DIC2 and

DIC3. Chan and Grant (2016) set ζ̃ to be the posterior mode of ζ. However, in

my applications, I have used the posterior mean of ζ.

2.3.4 Widely Applicable Information Criterion

The Widely Applicable Information Criterion (WAIC) (Watanabe, 2010) is anot-

her measure for selecting the most appropriate model and it has an edge over
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DIC as it does not depend on the posterior point estimates of the parameters but

rather averages over the posterior distribution. WAIC is given by

WAIC = −2lppd + 2pWAIC , (2.35)

where lppd (log-pointwise predictive density) can be estimated from

computed lppd =
T∑

t=1

log

(
1

I

I∑

i=1

P (xt|Z(i)
t , ζ

(i))

)
. (2.36)

pWAIC is the effective number of free parameters and can be computed as

pWAIC =
T∑

t=1

Varpost (log (P (xt|Zt, ζ))), (2.37)

where Varpost (log (P (xt|Zt, ζ))) can be estimated from V̂arpost (log (P (xt|Zt, ζ))).

V̂arpost (log (P (xt|Zt, ζ))) =
1

I − 1

I∑

i=1

[
log
(
P
(
xt|Z(i)

t , ζ
(i)
))

−1

I

I∑

i=1

log
(
P
(
xt|Z(i)

t , ζ
(i)
))]2

.

(2.38)

Likewise DIC, the model with the smallest WAIC is to be preferred.
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Chapter 3

BiSulfite-Sequencing Data and

Differential Methylation Callers

In this chapter, I describe a new sequencing technology, BiSulfite-sequencing

(BS-seq), that can determine DNA methylation profiles with higher resolution

and greater sensitivity. We also give an overview of some available algorithms

that can detect differential methylation patterns from BS-seq data.

3.1 BS-sequencing procedure

BS-seq is a high-throughput sequencing procedure that can ascertain DNA met-

hylation patterns. It employs standard sequencing methods on bisulfite-treated

genomic DNA to ascertain the methylation status at each CpG site. In the

BS-seq technique, DNA is treated with bisulfite chemicals which convert the

non-methylated Cs to Us and subsequently to Ts, but the methylated cytosines

remain unaffected (Figure 3.1). Now, the converted DNA fragments are aligned

using an appropriate alignment tool to read the methylation status of a nucleotide

base. The total number of aligned reads determines the accuracy of the estima-

ted methylation levels at each CpG site. Typically, the reads of the methylation

status calculated by the BS-seq data are in percentages. Here, the percentage
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measure computes the proportion of actual C bases in the reads that are aligned

with respect to a given C base in the reference genome (e.g., hg19 assembly)

multiplied by 100.

The explanations that a percentage measure is provided as a methylation score

are as follows:

1. the likely sequencing errors in the high-throughput bisulfite sequencing ex-

periments;

2. due to incomplete bisulfite conversions of the cytosines;

3. the most probable case, the heterogeneity of samples and the fact that most

of the genome is diploid.

In general, BS-seq experiments have both test and control samples. The test

samples are mostly obtained from the disease tissue (e.g., cancer tissue) whereas

the control samples can be obtained from a healthy tissue (e.g., proliferating

tissue).

Figure 3.1: Bisulfite sequencing result of a single read. Figure taken from
Yingying and Jeltsch (2010). After bisulfite conversion, the unmethylated cytosi-
nes are converted to thymines, and the methylated cytosines remain as cytosines.
The methylated cytosine and unmethylated cytosine can be distinguished accor-
ding to the sequencing result. Original sequence: DNA sequence before bisulfite
treatment.
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3.2 BS-sequencing tools

Several tools are available for the analysis of epigenomic datasets, especially BS-

seq datasets. Tools to accurately analyze bisulfite-induced DNA are periodically

being improved. These tools not only differ to a notably large extent in terms

of their alignment technique, robustness and computational cost but also in the

amount of information they generate. The latest tools also produce exhaustive

methylation output, which in turn allow the end user to investigate the epigeno-

mic effects of methylation more swiftly due to their ease of use. Two considerati-

ons are pivotal when ascertaining the methylation state of a read from a BS-seq

experiment.

• The sequence of the read must be correctly derived entirely from a bisulfite-

converted sequence in the original genome.

• The read must be mapped correctly to its corresponding position of the

reference genome.

The methylation state of genomic positions involving Cs in the reference genome

sequence can be inferred once a dataset of best alignments has been assigned.

In the next subsection, we provide a brief description of one such popular tool,

Bismark, which has been extensively used in recent BS-seq data analysis for its

robust alignment procedure and methylation calling performance.

3.2.1 Bismark

Bismark (Krueger and Andrews, 2011) is a versatile tool for the analysis of BS-

seq data. It carries out both read mapping and methylation calling in a single

step. Furthermore, the methylation state of each C position in the read can be

determined by this software. The main objective of Bismark bisulfite mapping is

to find a unique alignment by simultaneously running four alignment processes
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as the strand identity of a bisulfite read may be unknown, in advance.

The alignment techniques of Bismark can be explained as below.

1. Bisulfite reads are converted into a C-to-T and a G-to-A version (which is

an equivalent version of C-to-T on the reverse strand).

2. Employing four parallel instances of the short read aligner Bowtie, each

read is aligned to equivalently pre-converted forms of the human reference

genome, Figure 3.2 (A).

3. The strand origin of a bisulfite read can be uniquely determined using these

read mapping.

Before the alignment process begins, residual Cs are converted in silico into a

fully bisulfite-converted form. Mapping conducted using this technique accounts

for partial methylation precisely. Furthermore, Figure 3.2 (B) shows that the

methylation state of each C position in the read is determined using Bismark.

Most previous BS-seq tools were mainly mapping applications. Thus, a huge

amount of post-processing were required to extract the methylation information.

However, Bismark generates an output of bisulfite mapping which can be explored

further by researchers.

3.3 Differential methylation calling

In the past few years, several statistical tools have been developed for the analysis

of BS-seq data. MethVisual (Zackay and Steinhoff, 2010) is an R/Bioconductor

package, which has been developed for visualization and exploratory statistical

analysis of BS-seq data. BiQ Analyzer HT (Lutsik et al., 2011) implements a

locus-specific analysis and visualization of BS-seq data. Streamlined Analysis and

Annotation Pipeline for Reduced Representation Bisulfite Sequencing (SAAP-

RRBS) (Sun et al., 2012) is mainly designed for implementation of methylation

summary statistics and annotation of CpG sites. However, few tools have been
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Figure 3.2: Bismark’s approach (Krueger and Andrews, 2011) to mapping of
bisulfite reads and calling methylation. (A) Reads from a BS-Seq experiment
are transformed into a C-to-T and a G-to-A version and are then aligned to
equivalently converted versions of the reference genome. The best alignment is
then assessed from the four parallel alignment processes [in this example, the best
alignment has no mismatches and comes from thread (1)]. (B) The methylation
state of each C position in the read is determined by comparing the read sequence
with the corresponding genomic sequence.
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developed for the analysis of differential methylation. The most popular approach

is to perform Fisher’s exact test in a specific CpG window (Challen et al., 2012).

BSmooth has been developed as a pipeline to detect DMRs in whole-genome BS

data (Hansen et al., 2012). BSmooth essentially leans on smoothing the met-

hylation values sample-wise and then testing for group differences via CpG-wise

t-tests. DMRs are explained as adjacent CpG sites with absolute t-statistics

above a defined cut-off value. The BiSeq package (Hebestreit et al., 2013) in Bi-

oconductor is based on an algorithm which can detect DMRs. The package takes

already aligned BS-seq data from one or multiple samples. The BiSeq package

provides useful classes and functions to handle and analyze targeted BS-seq data

such as reduced-representation BS-seq (RRBS) data. In particular, it implements

an algorithm to detect DMRs. The package takes already aligned BS-seq data

from one or multiple samples. The MethylSeekR package (Bioconductor/R) (Bur-

ger et al., 2013) is a computational tool that can identify the active regulatory

regions based on the transcription binding which leads to defined reduction in

DNA methylation. This package can accurately identify such functional regions

from BS-seq data.

3.3.1 MethylKit

MethylKit (Akalin et al., 2012) is an all-inclusive R/Bioconductor package pri-

marily designed to deal with sequencing data from RRBS data. In addition to

that, it can also manage whole-genome bisulfite sequencing (WGBS) data and

other variations of RRBS provided the proper data input format is created for the

analysis. This R/Bioconductor package can efficiently tackle the high-throughput

BS-seq data structure for the annotation and subsequent analysis of DNA met-

hylation. The advantage of using methylKit is that it only requires a methylation

score per base for any analysis. The main features of methylKit and the sequential

relationship between them are as follows:

1. Reading the methylation calls from sorted Bismark alignments: Methyla-
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tion percentage calls can be determined from sorted Sequence Alignment

Map (SAM) format (Li et al., 2009) or Binary Alignment Map (BAM)

alignment files from Bismark aligner and can be read into memory.

(a) Reading methylation call files. The data can be read into methylKit

in two possible ways:

i. The methylKit can read the methylation scores from a typical

methylation call text file as shown in Table 3.1.

ii. It can also read SAM format or BAM alignment files that are

generated from Bismark.

(b) When a SAM file is provided, it processes the alignment file to obtain

percent methylation scores and then methylKit can read that informa-

tion into a flat file database, Table 3.2.

2. Merging samples from both groups: Most of the BS-seq data have test

(e.g., cancer tissue) and control (e.g., normal tissue) samples and biological

replicates. Merging samples from both the control and treatment group is

an important database manipulation. Since I am interested in CpG sites, it

is essential to merge reads on both strands of a CpG dinucleotide as it gives

better coverage. Table 3.2 shows a methylBase object (flat file database)

for differential methylation analysis using methylKit.

3. Differential Methylation calculation: In methylKit, two main methods have

been implemented to identify differential methylation patterns across all

regions.

(a) Logistic regression: In logistic regression, the number of methylated Cs

and unmethylated Cs at a given region are specified for each sample.

The logistic regression model is fitted in such a way that it can compare

the fraction of methylated Cs for the treatment and control groups.

The null hypothesis is that the methylation levels are the same in both
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groups. Rejection of the null hypothesis is the same as declaring that

CpG site or CpG region a DMC or DMR. On the other hand, if the

null hypothesis is not rejected, it means that there is no statistically

significant difference in methylation level between the two groups.

(b) Fisher’s Exact test: Fisher’s exact test is used to compare the fraction

of methylated Cs in treatment and control samples in the absence of

replicates.

The R/Bioconductor package implementation of methylKit decides between the

choice of tests (Fisher’s exact or logistic regression based test) based on the bio-

logical replicates per group. If there is only one sample at each CpG dinucleotide

for both the groups, i.e., no biological replicate, then Fisher’s exact test can be

used. However, if there are multiple samples at each CpG dinucleotide for both

the groups, i.e., there exists biological replicates, then the logistic regression ba-

sed test is employed. Furthermore, multiple samples from the biological replicates

can be pooled together to create one merged sample at each CpG dinucleotide for

both the groups by summing the number of Ts and number of Cs across replicates

with respect to their CpG sites in each group. Subsequently, Fisher’s exact test

can then be applied. In addition, methylKit also implements the sliding linear

model (SLIM) method to adjust p-values to q-values (Wang et al., 2011) and

eventually corrects for the problem of multiple hypothesis testing.

3.3.2 DSS

1. DSS-single (Wu et al., 2015) is mainly designed for the detection of DMRs

from WGBS data for two groups without replicates. The BS-seq methyla-

tion data as explained by the authors is described below.

Let Xtj be the methylated count and Ntj be the total count at the tth

CpG site and jth treatment group for t = 1, . . . , T and j = 1, 2. The true
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chrBase chr base strand coverage freqC freqT
1 chr21.9826907 chr21 9826907 F 96 18.75 81.25
2 chr21.9853326 chr21 9853326 F 16 87.50 12.50
3 chr21.9853296 chr21 9853296 F 18 88.89 11.11
4 chr21.9860126 chr21 9860126 F 83 100.00 0.00
5 chr21.9906663 chr21 9906663 R 14 92.86 7.14

Table 3.1: A typical methylation call text file includes a unique identifier (chr-
Base), chromosome name (chr), strand information (F denotes forward and R
denotes reverse strand), read coverage (coverage), percent of C (methylated cyto-
sines) bases (freqC) and percent of T (unmethylated cytosines which eventually
transformed into thymines (Ts) after bisulfite treatment) bases (freqT) at that
particular genomic base.

underlying methylation proportion is denoted by ptj. Feng et al. (2014)

showed that it is reasonable to assume that Xtj follows a Beta-Binomial

distribution, which encapsulates both the biological and technical variati-

ons in the counts. The Beta distribution is parametrized by its mean (µtj)

and dispersion (ϕtj), where ϕtj denotes the biological variation among re-

plicates in the same treatment group.

A log-normal prior is imposed on ϕtj in order to gather information from all

CpG sites in estimating the site-specific dispersions. The mean of the beta

distribution is assumed to vary across the genome. To incorporate the spa-

tial correlation in the methylation levels, it has been assumed µtj = fj(lt),

where lt denotes the genomic co-ordinate of the tth CpG site and fj is a

smoothing function. A simple moving average procedure is applied on the

collapsed counts to estimate fj. The final hierarchical structure for model-

ling the BS-seq data under this set up is given below.

Xtj|Ntj, ptj ∼ Bin(Ntj, ptj)

ptj|µtj, ϕtj ∼ Beta(µtj, ϕtj) (3.1)

ϕtj ∼ logN(mj0, r
2
j0),
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3. BiSulfite-Sequencing Data and Differential Methylation Callers

where mj0 and r2
j0 are hyperparameters. In (3.1), the parameters (µtj, ϕtj)

have the following relationship compared to the conventional Beta(α, β)

parametrization:

µ =
α

α + β
,

ϕ =
1

α + β + 1
.

Table 3.3 shows the data inputs for the DMR detection algorithm of DSS.

2. Statistical test procedure: After estimating the hyperparameters through

an empirical Bayes (EB) procedure (Feng et al., 2014), DML (differentially

methylated loci) or DMC can be identified by a hypothesis test: H0 : µt1 =

µt2 for the equality of the mean methylation levels at each CpG site. Wald’s

test is employed to compare the mean methylation levels at each CpG site,

and p-values are evaluated from the test statistics.

3. In an extension to DSS-single, Park and Wu (2016) developed DSS-general

to model BS-seq data under a more general multifactor experimental de-

sign. The data input more or less remains the same as described by Wu

et al. (2015) except that the idea of the treatment group is extended to a

generalized multifactor dataset.

3.4 Data

In this thesis, I have analysed a dataset from a study of methylation changes

in human ageing provided by the Adams’ lab, Beatson Cancer Research Insti-

tute, Glasgow. It contains the pooled dataset of three biological replicates for

proliferating and senescent IMR90 cells. The BS-seq data has information about
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3. BiSulfite-Sequencing Data and Differential Methylation Callers

chr pos N X
1 chr18 3014904 26 2
2 chr18 3031032 33 12
3 chr18 3031044 33 13
4 chr18 3031065 48 24
5 chr18 3031069 17 4
6 chr18 3031082 93 37

Table 3.3: The text file includes chromosome name (chr), genomic position (CpG
site), count of read coverage of one group (N), count of methylated Cs of treat-
ment one group(X).

methylation for all the chromosomes. The longest chromosome, i.e, Chromosome-

1 contains 4, 590, 977 CpG sites while the shortest Chromsome-Y contains 27, 562

CpG sites. On average, this dataset covers 1.8 million CpG sites per chromosome

with an average sequencing depth of 10. Table 3.4 displays the data format of

Cruickshanks et al. (2013). In the following chapters, I present my own met-

chr pos xp yp xs ys
1 chr21 9411551 16 35 6 53
2 chr21 9411552 22 51 9 74
3 chr21 9411783 6 21 1 23
4 chr21 9411784 11 29 6 39
5 chr21 9412098 8 11 8 10
6 chr21 9412099 18 13 11 13

Table 3.4: The text file includes chromosome name (chr), genomic position (pos:
CpG site), count of methylated Cs of proliferating cells (xp), count of unmethy-
lated Cs of proliferating cells (yp), count of methylated Cs of senescent cells (xs),
count of unmethylated Cs of senescent cells (ys).

hod for detecting DMCs based on this dataset, which takes a different approach

compared to the existing methods discussed in this chapter.
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Chapter 4

Hierarchical Hidden Markov

Models with Applications to

BS-Seq Data

In this chapter, I propose Bayesian latent variable models for predicting DMCs

on the basis of BS-seq data using a hierarchical hidden Markov model (HMM)

framework. I developed Bayesian latent variable models that aim to incorporate

many features of the data under a hierarchical framework. HMMs are quite po-

pular in the analysis of biological datasets. A suitable model for this type of

analysis is the HMM, where the evolution of a latent characteristic of interest is

represented by an unobserved Markov chain. By imposing Markovian conditio-

ning on the latent states, the model class becomes richer than mixture models

where the states are considered to be independent, since the Markovian property

of HMM can induce long-range conditional dependencies in the observed data.

I employ Bayesian techniques to estimate the HMM parameters and infer the

hidden states. In the following sections, I describe the model assumptions and

structure of my HMMs and demonstrate an efficient method for applying MCMC
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4. Hierarchical HMMs with Applications to BS-Seq Data

techniques to both simulated as well as real data.

4.1 Model assumptions

The main objective is to infer genomic Cs with different levels of methylation

between distinct cell types. I can denote whether a CpG site is differentially

methylated or not using a latent variable.

BS-sequencing of methylated samples generates counts of methylated and un-

methylated Cs. At present, I ignore the genomic position of each CpG site, and

the fact that adjacent CpG sites are not equally spaced. To study and analyse

methylation patterns, I assume two methylation states, i.e., a similarly methy-

lated state and a differentially methylated state, corresponding to similar and

differential methylation of CpG sites, respectively.

Let the BS-seq data (observed) be denoted by x = (xp, xs), such that

xp = (xp1, · · · , xpT ) and xs = (xs1, · · · , xsT ), where xpt and xst (t = 1, . . . , T ) are

the methylated counts of proliferating and senescent cells, respectively, for the tth

CpG site as described in Section 3.4. Furthermore, let n = (np, ns), such that

np = (np1, · · · , npT ) and ns = (ns1, · · · , nsT ), where npt and nst (t = 1, . . . , T ) are the

total number of counts (methylated Cs and unmethylated Cs) of proliferating and

senescent cells respectively, at the tth CpG site. For each observation, I assume

an unobserved state Zt, (t = 1, . . . , T ), where Zt represents the tth hidden state

such that Zt = 1, if the methylation levels in proliferating and senescent cells

are the same at the tth CpG site and Zt = 2, if there is differential methylation

between the two cell types at the tth CpG site, where Z = (Z1, · · · , ZT ). Since the

process of BS-seq involves the random sampling of two types of reads- methylated

and unmethylated counts, the data will follow an independent bivariate Binomial

distribution.
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4. Hierarchical HMMs with Applications to BS-Seq Data

I assume xpt and xst are the realizations of the pair of random variables Xp
t and

Xs
t such that Xp

t and Xs
t independently follow Binomial distributions with para-

meters (npt , p
p
t ) and (nst , p

s
t) respectively, such that,

Xp
t |ppt ∼ Bin(npt , p

p
t ), t = 1, . . . , T, (4.1)

and

Xs
t |pst ∼ Bin(nst , p

s
t), t = 1, . . . , T, (4.2)

where ppt and pst are the probability parameters of methylation for proliferating

and senescent cells, respectively, at the tth CpG site. For notational simplicity,

let the pair of random variables Xp
t and Xs

t be denoted by Xt = (Xp
t , X

s
t ) and

the pair of proportion parameters ppt and pst be denoted by pt = (ppt , p
s
t) for

t = 1, . . . , T . I also assume X = (Xp, Xs), where Xp = (Xp
1 , · · · , Xp

T ) and

Xs = (Xs
1 , · · · , Xs

T ).

Now, I describe the emission densities. I implement a Beta-Binomial hierarchical

model conditional on the true underlying methylation proportions and hidden

states.

The underlying methylation proportions at CpG site t in state k for prolifera-

ting and senescent cells can be defined as ppkt and pskt , respectively. Let pkt =

(ppkt , p
sk
t ), t = 1, . . . , T . Then,

Xp
t |ppt , Zt = k ∼ Bin(npt , p

pk
t ) and Xs

t |pst , Zt = k ∼ Bin(npt , p
sk
t ), t = 1, . . . , T,

(4.3)

are independently distributed, where k takes a value of 1 or 2.

45



4. Hierarchical HMMs with Applications to BS-Seq Data

Equation (4.3) can be written more compactly as

Xp
t |ppkt ∼ Bin(npt , p

pk
t ), and Xs

t |pskt ∼ Bin(npt , p
sk
t ), t = 1, . . . , T. (4.4)

The true underlying methylation proportions at the CpG site indexed t in state

k for proliferating and senescent cells are assumed to follow Beta distributions at

the second stage of the hierarchical model:

ppt |Zt = 1 ∼ Beta(α, β), pst |Zt = 2 ∼ Beta(α, β) (4.5)

pst |Zt = 1 ∼ Beta(γ1, δ1), pst |Zt = 2 ∼ Beta(γ2, δ2). (4.6)

Define θ = (θ1, θ2), where θ1 = (α, β) and θ2 = (γ1, δ1, γ2, δ2).

Now, if the methylation pattern in proliferating and senescent cells is the same

for state 1, i.e., k = 1, I assume pp1t = ps1t = p∗t , say, for the unobserved state

Zt = 1 in the tth CpG site, such that, p1
t = (p∗t , p

∗
t ).

Similarly, if the methylation in proliferating and senescent cells is different for

state 2, I assume, p2
t = (pp2t , p

s2
t ) for the unobserved state Zt = 2 in the tth CpG

site.

4.1.1 Binomial emission distributions of the model

The emission probability of the observation xt = (xpt , x
s
t) conditional on the

hidden state Zt can be written as:

bk(t) = P (xt|pkt , Zt = k), k = 1, 2 and t = 1, . . . , T. (4.7)

Let X be a discrete random variable and follows Binomial distribution with pa-

rameters n and p. Then the probability mass function (p.m.f.) of the realized
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value x of X is defined below.

P (X = x) =

(
n

x

)
px(1− p)n−x, x = 0, 1, . . . , n

≡ Bin(x;n, p). (4.8)

The emission distributions of the model are as follows:

• The emission probability of the observation xt = (xpt , x
s
t) conditional on

the hidden state Zt = 1 is given by,

b1(t) = Bin(xpt ;n
p
t , p
∗
t )×Bin(xst ;n

s
t , p
∗
t ). (4.9)

• Similarly, the emission probability of xt = (xpt , x
s
t) conditional on the hid-

den state Zt = 2 is given by,

b2(t) = Bin(xpt ;n
p
t , p

p
t )×Bin(xst ;n

s
t , p

s
t). (4.10)

4.1.2 Beta-Binomial emission distributions of the model

I use a two-level hierarchical model and assume Beta priors on ppt , p
s
t and p∗t .

Now, in the bivariate Beta-Binomial density, the effect of the nuisance parame-

ters ppt , p
s
t , p

∗
t can be integrated out with respect to the relevant states due to

conjugacy, leaving the hyperparameters of the conjugate prior distributions as the

only parameters. This leads to computational efficiency in the proposed model

(Figure 4.1).

By marginalizing the second level hierarchical model parameters, the emission
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Xp
1 Xs

1 Xp
2 Xs

2 Xp
T Xs

T

np
1 pp1 ns

1 ps1 np
2 pp2 ns

2 ps2 np
T ppT ns

T psT

Z1 Z2 ZT

θ

For: t = 1, . . . , T

Xp
t ∼

{
Bin(np

t , p
p
t ), if Zt = 1

Bin(np
t , p

p
t ), if Zt = 2

Xs
t ∼

{
Bin(ns

t , p
s
t ), if Zt = 1

Bin(ns
t , p

s
t ), if Zt = 2

ppt ∼
{

Beta(α, β), if Zt = 1
Beta(γ1, δ1), if Zt = 2

pst ∼
{

Beta(α, β), if Zt = 1
Beta(γ2, δ2), if Zt = 2

Figure 4.1: Graphical representation of the Beta-Binomial emission model. The
grey circles refer to the fixed values of the total counts and data respectively,
while the white circles refer to emission hyperparameters and hidden states that
are inferred.
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distributions can be written as:

P (xpt , x
s
t |α, β;Zt = 1) =

∫ 1

0

Bin(xpt ;n
p
t , p
∗
t )Bin(xst ;n

s
t , p
∗
t )Beta(p∗t ;α, β)dp∗t

=

(
npt
xpt

)(
nst
xst

)
1

B(α, β)

∫ 1

0

(
p∗t

(xpt+xst+α−1)

× (1− p∗t )(npt+nst−xpt−xst+β−1)

)
dp∗t

=

(
npt
xpt

)(
nst
xst

)
B(xpt + xst + α, npt + nst − xpt − xst + β)

B(α, β)
,

(4.11)

and,

P (xpt , x
s
t |γ1, δ1, γ2, δ2;Zt = 2) =

∫ 1

0

Bin(xpt ;n
p
t , p

p
t )Beta(ppt ; γ1, δ1)dppt

×
∫ 1

0

Bin(xst ;n
s
t , p

s
t)Beta(pst ; γ2, δ2)dpst

=

(
npt
xpt

)
1

B(γ1, δ1)

∫ 1

0

pst
(xpt+γ1−1)(1− ppt )(npt−x

p
t+δ1−1)dppt

×
(
nst
xst

)
1

B(γ2, δ2)

∫ 1

0

pst
(xst+γ2−1)(1− pst)(nst−xst+δ2−1)dpst

=

(
npt
xpt

)(
nst
xst

)
B(xpt + γ1, n

p
t − xpt + δ1)

B(γ1, δ1)

× B(xst + γ2, n
s
t − xst + δ2)

B(γ2, δ2)
, (4.12)

where B(a, b) is the Beta function,i.e.,
∫ 1

0
ua−1(1− u)b−1du, where a, b > 0.

4.1.3 Homogeneous transition model

The initial state distribution at the first CpG site is denoted as P (Z1 = k) = πk

for k = 1, 2, with initial probabilities π = (π1, π2).
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The transition probabilities between the states τjk = P (Zt = k|Zt−1 = j) are

given by the matrix τ . So, τ12 = 1− τ11 and τ22 = 1− τ21.

I denote the transition counts from state 1 to state 1, state 1 to state 2, state 2

to state 1, state 2 to state 2 as t11, t12, t21, t22 respectively. t1 and t2 are the total

counts of state 1s and state 2s respectively. That is,

tkl =
∑T

t=2 I(Zt−1 = k, Zt = l) and tk =
∑T

t=1 I(Zt = k)

The probability of the initial state Z1 given π1 is

P (Z1|π1) ∝ π1
I(Z1=1)(1− π1)I(Z1=2). (4.13)

The probability for the sequence of the hidden states Z2:T conditional on the

initial state Z1 and the transition parameters is

P (Z2:T |Z1, τ ) ∝ P (Z2|Z1, τ )P (Z3|Z2, τ ) . . . P (ZT |ZT−1, τ )

∝ τ t1111 (1− τ11)t12τ t2121 (1− τ21)t22

∝ Bin(t11; t11 + t12, τ11)Bin(t21; t21 + t22, τ21). (4.14)

4.1.4 Non-homogeneous transition model

In reality, there are unequal gaps between CpG sites in BS-seq data, which motiva-

tes me to introduce a non-homogeneous transition model leading to a continuous-

index HMM. The only modification required for this model is to assume that the

underlying methylation status to be a latent stochastic process emitting over a

continuous genomic index, represented by Z(c) for c > 0. [Z(c), c > 0] is a

continuous-index Markov process, assuming values in a finite state space 1, 2,

i.e., a two state Markov process, such that, if, Z(c) = 1(2), a similarly methyla-

ted state (differentially methylated state) is signalled for the CpG site. I define

Ψt as the genomic distance (in base pairs) between two adjacent CpG sites at
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genomic positions ψt and ψt−1, i.e., Ψt = ψt−ψt−1, such that, Ψ = (Ψ1, · · · ,ΨT ),

where Ψ1 is initialized to be 0.

In Section 4.1.3, the underlying structure of the methylation status was assu-

med to be a latent stochastic process emitting over a discrete genomic index,

represented by Zt for t = 1, . . . , T .

I define a non-homogeneous transition probability τjk(Ψt) for t = 2, . . . , T , as

P

(
Z(ψt)|Z(ψt−1), . . . , Z(ψ1), X1:t−1

)
= P

(
Z(ψt)|Z(ψt−1)

)

= τjk(Ψt), j, k = 1, 2, (4.15)

the process was in state k at genomic position ψt conditional on the process being

in state j at genomic position ψt−1. (4.15) clearly indicates that the transition

probability depends on the gapped distance of the genomic positions between two

adjacent CpG sites indexed by t and (t− 1).

For notational simplicity, I shall this time onwards refer to Z(ψt) as Zt. The

probability of staying in a state is subsequently assumed to be linear with respect

to the genomic index for an infinitesimal interval. The two-state hidden Markov

process at genomic index t can be parameterized with transition rate parameters

λ1 and λ2, where λ1 and λ2 are the transition rate parameters from a similarly

methylated state to a differentially methylated state and from a differentially

methylated state to a similarly methylated state, respectively.

The intensity matrix ν of the transition rate parameters λ1 and λ2 is then given
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by

ν =


 λ1 −λ1

−λ2 λ2


 . (4.16)

The transition probability matrix τ (t) over genomic interval Ψt is calculated by

the matrix exponential of ν multiplied by Ψt, i.e., τ (t) = exp(νΨt). Hence, τ (t)

is represented by,

τ (t) =


 τ11(t) τ12(t)

τ21(t) τ22(t)


 , (4.17)

where the non-homogeneous transition probabilities at CpG site t over genomic

interval Ψt are given by,

τ11(t) = λ2
λ1+λ2

+ λ1
λ1+λ2

e−(λ1+λ2)Ψt ,

τ12(t) = λ1
λ1+λ2

− λ1
λ1+λ2

e−(λ1+λ2)Ψt ,

τ21(t) = λ2
λ1+λ2

− λ2
λ1+λ2

e−(λ1+λ2)Ψt , (4.18)

τ22(t) = λ1
λ1+λ2

+ λ2
λ1+λ2

e−(λ1+λ2)Ψt .

Here also, the initial state distribution at the first CpG site is denoted as P (Z1 =

k) = πk for k = 1, 2, with initial probabilities π = (π1, π2).

The initial state distribution of Z1 is taken to be uniform.

P (Z1 = k) = πk = 0.5, for k = 1, 2. (4.19)
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Now, the probability of the sequence of the hidden states Z2:T given the initial

state Z1 and transition rate parameters can be factorized as,

P (Z2:T |Z1, τ ) ∝ P (Z2|Z1, τ (2))P (Z3|Z2, τ (3)) . . . P (ZT |ZT−1, τ (T ))

∝
T∏

t=2

(
τ11(t)I(Zt−1=1,Zt=1)τ12(t)I(Zt−1=1,Zt=2)

× τ21(t)I(Zt−1=2,Zt=1)τ22(t)I(Zt−1=2,Zt=2)

)
. (4.20)

4.1.5 Beta-Binomial hierarchical HMMs

In this section, I describe the two hierarchical Beta-Binomial HMMs by combining

the Beta-Binomial emission probability distributions and transition probability

distributions.

• Model BBDM: this model combines the Beta-Binomial emission probability

model in (4.11) and (4.12) with the homogeneous discrete-index transition

probability model in (4.13) and (4.14).

• Model BBCM: this model combines the same Beta-Binomial emission pro-

bability model with the non-homogeneous continuous-index transition pro-

bability model in (4.19) and (4.20).

To simplify the notation in the following sections, I represent the hidden states as

Z, π1 as the initial state transition parameter and (α, β, γ1, δ1, γ2, δ2) as emission

parameters for both the models BBDM and BBCM even though the behaviour

of the hidden states and the parameters are different in the two models. In

addition, I describe the general version of the likelihood for model M where M

represents the true model, i.e., M = BBDM, BBCM . However, to simplify

the notational subscripts of the parameters, I use M = D, C, where D denotes

BBDM and C denotesBBCM . Thus, the transition parameters for modelM are
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assumed to be τ (M), such that τ (D) = (τ11, τ21) for BBDM and τ (C) = (λ1, λ2)

for BBCM . Similarly, initial state parameters for model M are assumed to be

π(M) = (π
(M)
1 , π

(M)
2 ). The transition probability matrix is denoted by τ (M)(t) for

model M , where τ
(M)
kl (t) is the (k, l)th element of τ (M)(t), such that the process

was in state l at genomic index t conditional on the process being in state k at

genomic index t− 1.

4.1.6 Computing the likelihoods

In this section, let the set of all parameters and hyperparameters be generi-

cally denoted by ζ(M) = (θ(M), τ (M),π(M)) for both the models as described in

Section 4.1.5 where θ(M) = (θ
(M)
1 , θ

(M)
2 ), such that θ

(M)
1 = (α, β) and θ

(M)
2 =

(γ1, δ1, γ2, δ2) and τ (M) for model M . The joint probability distribution of the ob-

servations x = (x1, . . . ,xT ) and the sequence of the hidden states Z = (Z1, . . . , ZT )

for model M conditional on the model parameters ζ(M) is the complete data li-

kelihood of the observations and the states:

P (x,Z
∣∣ζ(M)) = π

(M)
Z1

PZ1(x1|θ(M))
T∏

t=2

τ
(M)
Z(t−1),Zt

(t)PZt(xt|θ(M)) (4.21)

= π
(M)
Z1

PZ1(x1|θ(M))τ
(M)
Z1,Z2

(2)PZt(xt|θ(M)) · · ·

× τ
(M)
Z(T−1),ZT

(T )PZT (xT |θ(M)), (4.22)

where Pk(xt|θ(M)) = P (xt|Zt = k;θ(M)), π
(M)
k = P (Z1 = k) and τ

(M)
kl (t) =

P (Zt = l|Zt−1 = k; τ (M)) for k, l = 1, 2.

Basically, (4.11) and (4.12) provide Pk(xt|θ(M)), such that,

P1(xt|θ(M)
1 ) = P (xt|Zt = 1;θ

(M)
1 )

= P (xpt , x
s
t |α, β;Zt = 1)

=

(
npt
xpt

)(
nst
xst

)
B(xpt + xst + α, npt + nst − xpt − xst + β)

B(α, β)
(4.23)
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and

P2(xt|θ(M)
2 ) = P (xt|Zt = 2;θ

(M)
2 )

= P (xpt , x
s
t |γ1, δ1, γ2, δ2;Zt = 2)

=

(
npt
xpt

)(
nst
xst

)
B(xpt + γ1, n

p
t − xpt + δ1)

B(γ1, δ1)

B(xst + γ2, n
s
t − xst + δ2)

B(γ2, δ2)
.

(4.24)

Now, the joint probability for the observed methylation data x and the sequence

of the hidden states (methylation status) Z can be obtained from the emission

quantities (4.23) and (4.24) and the hidden states probability expressions from

(4.13) and (4.14) for model BBDM and (4.19) and (4.20) for model BBCM . So,

(4.22) can be rewritten specific to model BBDM as

P (x,Z
∣∣ζ(D)) = π

(D)
Z1
PZ1(x1|θ(D))

T∏

t=2

τ
(D)
Z(t−1),Zt

(t)PZt(xt|θ(D))

= π
(D)
Z1
PZ1(x1|θ(D))τ

(D)
Z1,Z2

(2)PZt(xt|θ(D)) . . . τ
(D)
Z(T−1),ZT

(T )PZT (xT |θ(D))

=
T∏

t=1

([(
npt
xpt

)(
nst
xst

)
B(xpt + xst + α, npt + nst − xpt − xst + β)

B(α, β)

]I[Zt=1]

×
[(
npt
xpt

)(
nst
xst

)(
npt
xpt

)(
nst
xst

)
B(xpt + γ1, n

p
t − xpt + δ1)

B(γ1, δ1)

×B(xst + γ2, n
s
t − xst + δ2)

B(γ2, δ2)

]I[Zt=2]
)

× π1
I[Z1=1](1− π1)I[Z1=2]Bin(t11; t11 + t12, τ11)Bin(t21; t21 + t22, τ21).

(4.25)
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Equation (4.22) can be rewritten specific to model BBCM ,

P (x,Z
∣∣ζ(C)) = π

(C)
Z1
PZ1(x1|θ(C))

T∏

t=2

τ
(C)
Z(t−1),Zt

(t)PZt(xt|θ(C))

= π
(C)
Z1
PZ1(x1|θ(D))τ

(C)
Z1,Z2

(2)PZt(xt|θ(C)) . . . τ
(C)
Z(T−1),ZT

(T )PZT (xT |θ(C))

=
T∏

t=1

([(
npt
xpt

)(
nst
xst

)
B(xpt + xst + α, npt + nst − xpt − xst + β)

B(α, β)

]I[Zt=1]

×
[(
npt
xpt

)(
nst
xst

)(
npt
xpt

)(
nst
xst

)
B(xpt + γ1, n

p
t − xpt + δ1)

B(γ1, δ1)

×B(xst + γ2, n
s
t − xst + δ2)

B(γ2, δ2)

]I[Zt=2]
)

× [0.5]I(Z1=1)[0.5]I(Z1=2)

×
T∏

t=2

[(
λ2

λ1 + λ2

+
λ1

λ1 + λ2

e−(λ1+λ2)Ψt

)I(Zt−1=1,Zt=1)

×
(

λ1

λ1 + λ2

− λ1

λ1 + λ2

e−(λ1+λ2)Ψt

)I(Zt−1=1,Zt=2)

×
(

λ2

λ1 + λ2

− λ2

λ1 + λ2

e−(λ1+λ2)Ψt

)I(Zt−1=2,Zt=1)

×
(

λ1

λ1 + λ2

+
λ2

λ1 + λ2

e−(λ1+λ2)Ψt

)I(Zt−1=2,Zt=2)
]
,

(4.26)

where (4.25) and (4.26) are the complete data likelihoods for models BBDM and

BBCM , respectively.

Then, the likelihood of the observed methylation data x given the HMM mo-

del parameters ζ(M) for model M can be expressed as,

Lx(ζ(M)) = P (x|ζ(M))

=
∑

Z1,...,ZT

π
(M)
Z1

PZ1(x1|θ(M))
T∏

t=2

τ
(M)
Z(t−1),Zt

(t)PZt(xt|θ(M)), (4.27)
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where Equation (5.18) is the probability of the observed methylation data x

conditional on the HMM model parameters ζ(M) and thus can be written as the

sum over all the 2T possible state sequences of the complete data likelihood.

4.1.7 Choice of Priors

I use Uniform priors for the emission hyperparameters and non-informative Beta

conjugate prior densities for the transition parameters.

The prior for the HMM model parameters ζ(M) can be decomposed into three

parts: i) priors of the emission hyperparameters θ(M); ii) priors of the initial state

parameters π(M); iii) priors of the transition parameters τ (M). I assume

p(ζ(M)) = p(θ(M)) p(π(M)) p(τ (M)), (4.28)

where p(χ) denotes the prior for χ.

For model M , the priors for the emission hyperparameters θ(M) are assumed to

be independent:

p(θ(M)) = p(α) p(β) p(γ1) p(δ1) p(γ2) p(δ2). (4.29)

The priors of the Beta (emission) hyperparameters for Model M are taken to be

uniform and they are expressed as,

α ∼ U(aα, bα)

β ∼ U(aβ, bβ)

γ1 ∼ U(aγ1 , bγ1)

δ1 ∼ U(aδ1 , bδ1) (4.30)

γ2 ∼ U(aγ2 , bγ2)

δ2 ∼ U(aδ2 , bδ2),
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where U(a, b) is the Uniform distribution with density f(y|a, b) ∝ 1
b−a , for

a ≤ y ≤ b.

For model BBDM , the priors for the initial state parameters π(D) are likewise

assumed to be independent:

p(π(D)) = p(π1). (4.31)

Similarly, the priors for the transition parameters τ (D) are assumed to be inde-

pendent:

p(τ (D)) = p(τ11) p(τ21). (4.32)

The priors for initial state and transition probabilities (π1, τ11, τ21) are each

assumed to be Beta(η1, η2). For model BBCM , the priors for the transition

parameters τ (C) are also independent:

p(τ (C)) = p(λ1) p(λ2). (4.33)

The priors for τ (C) = (λ1, λ2) are assumed to be uniform and they can be

expressed as,

λ1 ∼ U(aλ1 , bλ1)

λ2 ∼ U(aλ2 , bλ2). (4.34)

4.1.8 Joint posterior distribution

The joint unnormalized posterior distribution for model M is given by,

p(ζ(M)|x) ∝ L(ζ(M))p(ζ(M)). (4.35)
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4.2 Parameter and state estimation

I explore a fully Bayesian approach for estimating the parameters and the hid-

den states in my model. I construct an MCMC-based algorithm to examine the

joint posterior distribution of Beta-Binomial HHMM. The Bayesian approach to

estimate the model parameters and hidden states provides us with the capability

of drawing inference directly from the posterior distributions. It also takes into

account any prior information, including constraints on the parameters, to be

incorporated in the data analysis. I have chosen conjugate priors for the Bino-

mial proportions which permits only estimating the hyperparameters and thus

reducing the dimension of the parameter space and increasing the computational

efficiency by integrating out the parameters in the middle of the hierarchy.

In this MCMC-based algorithm, I have developed an augmented Gibbs sampler

to obtain the posterior samples. The augmented Gibbs sampler cycles among

updating the values of the emission hyperparameters, initial state and transition

parameters and the hidden states. The samples of the hyperparameters are si-

mulated from the posterior distributions conditional on the states using a M-H

within Gibbs sampler as no closed form can be obtained from the posterior dis-

tribution of the hyperparameters.

The hidden states are sampled from their posterior distributions conditional on

the hyperparameters. However, the direct computation of the likelihood L(ζ(M))

must be avoided due to high computational cost. I introduce a recursive method

that considers all the hidden states as one block and then updates their posterior

distribution which in turn allows us to sample every state directly from the joint

density. This technique enables more rapid mixing as the Markov chain contains

a smaller number of parameters and also the dependency of every hidden state

on its preceding sampled value can be significantly diminished (Liu et al., 1994).
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4.2.1 Outline of the augmented Gibbs algorithm

In this section, I describe the details of the augmented Gibbs sampling scheme

for one iteration implemented to sample from the posterior distributions of the

HMM parameters ζ(M) for model M .

1. I calculate the full likelihood of model M conditional on the current values

of the HMM parameters ζ(M) using the forward sum recursion described in

Section 2.2.2. In my model M , I can re-construct the forward probability

as,

α
(M)
k (t) = P

(
x1:t;Zt = k|ζ(M)

)
, (4.36)

where k = 1, 2 denotes the similarly methylated state and differentially

methylated state respectively. The quantity α
(M)
k (t) can also be viewed as

the partial likelihood up to genomic position t, such that genomic position

t is in state k for t = 1, . . . , T and k = 1, 2 which can be written as

α
(M)
k (t) =

∑

Z1,...,Zt

π
(M)
Z1

PZ1(x1|θ(M))
t∏

s=2

τ
(M)
Z(s−1),Zs

(s)PZs(xs|θ(M)). (4.37)

Using the forward sum recursion, the partial likelihood is given by,

α
(M)
k (t) = b

(M)
k (t)

2∑

l=1

αl(t− 1)τ
(M)
kl (t), t = 2, . . . , T. (4.38)

Here, b
(M)
k (t) = Pk(xt|θ(M)). I have already derived expressions of Pk(xt|θ(M))

in (4.23) and (4.24), respectively. For t = 1, I can write,

αMk
(1) = πkbk(1). (4.39)
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The full likelihood of the entire sequence can be expressed as,

Lx(ζ(M)) =
2∑

k=1

α
(M)
k (T ), (4.40)

where Lx(ζ(M)) is the full likelihood for model M .

2. After computing the partial likelihoods and the full likelihood using the

forward sum recursion, I employ a backward sampling procedure to sam-

ple the hidden states Z. The probability that the genomic position t is in

state k given the sampled states at genomic positions t + 1, . . . , T , obser-

ved methylation data x and the HMM model parameters ζ(M) is given by

P
(
Zt = k|x1:T ; Zt+1:T ; ζ(M)

)
.

The hidden states Zt, t = 1, . . . , T can now be updated using a backward

sampling imputation step:

Sample ZT from P
(
ZT = k|x1:T ; ζ(M)

)
=

α
(M)
k (T )

∑
k α

(M)
k (T )

...

Sample Zt from P
(
Zt = k|x1:T ; Zt+1:T ; ζ(M)

)
∝ α

(M)
k (t)P (Zt+1|Zt = k)

(4.41)

...

Sample Z1 from P
(
Z1 = k|x1:T ; Z2:T ; ζ(M)

)
∝ α

(M)
k (1)P (Z2|Z1 = k)

In practical computations, the expressions for α
(M)
k (t) require reformulation

using logarithms in order to avoid computational underflow.

3. Next, I update the initial state parameters π(M) and transition model pa-

rameters τ (M) conditional on the current values of the emission hyperpa-

rameters θ(M) and the hidden states Z and the observed methylation data
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x.

(a) For model BBDM , the initial state parameters π(D) = (π1, 1−π1) and

transition parameters τ (D) = (τ11, τ21) can be updated using a Gibbs

sampler due to conjugacy in the full conditional posterior distributions.

(b) For model BBCM , the transition rate parameters τ (C) = (λ1, λ2) can

be updated using a M-H algorithm.

4. For ModelM , the emission hyperparameters θ(M) conditional on the current

values of the initial state parameters π(M) and transition model parameters

τ (M), the hidden states Z and the observed methylation data x can be

updated using a M-H procedure.

4.2.2 Further details of the augmented Gibbs sampler

I use a Gibbs sampler to update all the parameters of interest, i.e., HMM para-

meters ζ(M) and the hidden states Z. The essential steps of the augmented Gibbs

sampler are as follows:

1. I sample the hidden state path Z from the full conditional posterior dis-

tribution p(Z|x, ζ(M)) given ζ(M) = (θ(M), π(M), τ (M)) and the observed

methylation data x. For this step, I employ the data-augmentation based

Forward-Sum Backward Sampling (FSBS) procedure (Scott, 2002) instead

of evaluating the likelihood expression, as described in Section 4.2.1.

2. I sample the emission hyperparameters θ(M) from the full conditional poste-

rior distribution p(θ(M)|x,Z,π(M), τ (M)) given the initial state parameters

π(M) and transition parameters τ (M), updated hidden states Z and obser-

ved methylation data x. However, in this step, it is enough to sample θ(M)

from the full conditional posterior distribution p(θ(M)|x,Z) using a M-H al-

gorithm given the updated hidden states Z and observed methylation data
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x, since,

p(θ(M)|x,Z,π(M), τ (M)) = p(θ(M)|x,Z). (4.42)

3. In this step, I sample the HMM initial state parameters π(M) and transition

parameters τ (M) from the full conditional posterior distribution

p(π(M), τ (M)|x,Z,θ(M)) given the emission model parameters θ(M), updated

hidden states Z and observed methylation data x.

(a) For model BBDM , I sample the HMM initial state parameters π(D)

and transition parameters τ (D) from the full conditional posterior dis-

tribution p(π(D), τ (D)|x,Z,θ(D)) given the emission model parameters

θ(D), updated hidden states Z and observed methylation data x. Due

to the Beta-Binomial conjugacy of the full conditional posterior dis-

tribution, it is enough to sample from p(π(D), τ (D)|Z), since,

p(π(D), τ (D)|x,Z,θ(D)) = p(τ (D)|Z). (4.43)

(b) For modelBBCM , I sample the HMM transition parameters τ (C) from

the full conditional posterior distribution p(τ (C)|x,Z,θ(C),Ψ) given

the emission model parameters θ(C), updated hidden states Z and ob-

served methylation data x. It is enough to sample from p(τ (C)|Z,Ψ),

since

p(τ (C)|x,Z,θ(C),Ψ) = p(τ (C)|Z,Ψ), (4.44)

I now describe the sampling steps of the emission hyperparameters (2), the initial

state and transition parameters (3.(a), (b)) for both the models.

63



4. Hierarchical HMMs with Applications to BS-Seq Data

4.2.3 Sampling from conditional posterior distributions

4.2.3.1 Emission hyperparameters

In this section, I elaborate in details the sampling steps of the emission hyperpa-

rameters from their full conditional posterior distributions. I first write the full

conditional posterior density of the HMM model emission hyperparameters θ(M):

p(θ(M)|x,Z,π(M), τ (M)) = p(θ(M)|x,Z)

∝ Lx,Z(θ(M))p(θ(M)), (4.45)

Lx,Z(θ(M)) denotes the complete data likelihood.

I sample the emission hyperparameters (α, β, γ1, δ1, γ2, δ2) from their full con-

ditional posterior distributions as follows:

• Sample α|β,x,Z from

p(α|β,x,Z) =
T∏

t=1

[(
npt
xpt

)(
nst
xst

)
B(xpt + xst + α, npt + nst − xpt − xst + β)

B(α, β)

]I[Zt=1]

(4.46)

× 1

bα − aα
.

• Sample β|α,x,Z from

p(β|α,x,Z) =
T∏

t=1

[(
npt
xpt

)(
nst
xst

)
B(xpt + xst + α, npt + nst − xpt − xst + β)

B(α, β)

]I[Zt=1]

(4.47)

× 1

bβ − aβ
.
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• Sample γ1|δ1, γ2, δ2,x,Z from

p(γ1|δ1, γ2, δ2,x,Z) =
T∏

t=1

[(
npt
xpt

)(
nst
xst

)(
npt
xpt

)(
nst
xst

)

×B(xpt + γ1, n
p
t − xpt + δ1)

B(γ1, δ1)

B(xst + γ2, n
s
t − xst + δ2)

B(γ2, δ2)

]I[Zt=2]

(4.48)

× 1

bγ1 − aγ1
.

• Sample δ1|γ1, γ2, δ2,x,Z from

p(δ1|γ1, γ2, δ2,x,Z) =
T∏

t=1

[(
npt
xpt

)(
nst
xst

)(
npt
xpt

)(
nst
xst

)

×B(xpt + γ1, n
p
t − xpt + δ1)

B(γ1, δ1)

B(xst + γ2, n
s
t − xst + δ2)

B(γ2, δ2)

]I[Zt=2]

(4.49)

× 1

bδ1 − aδ1
.

• Sample γ2|δ1, γ1, δ2,x,Z from

p(γ2|δ1, γ1, δ2,x,Z) =
T∏

t=1

[(
npt
xpt

)(
nst
xst

)(
npt
xpt

)(
nst
xst

)

×B(xpt + γ1, n
p
t − xpt + δ1)

B(γ1, δ1)

B(xst + γ2, n
s
t − xst + δ2)

B(γ2, δ2)

]I[Zt=2]

(4.50)

× 1

bγ2 − aγ2
.
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• Sample δ2|γ1δ1, γ2,x,Z from

p(δ2|γ1δ1, γ2,X,Z) =
T∏

t=1

[(
npt
xpt

)(
nst
xst

)(
npt
xpt

)(
nst
xst

)

×B(xpt + γ1, n
p
t − xpt + δ1)

B(γ1, δ1)

B(xst + γ2, n
s
t − xst + δ2)

B(γ2, δ2)

]I[Zt=2]

(4.51)

× 1

bδ2 − aδ2
,

where aθ(M) , bθ(M) for θ(M) ∈ {α, β, γ1, δ1, γ2, δ2} are fixed values of the Uni-

form emission hyperpriors.

The emission hyperparameters are sampled from their full conditionals using

the M-H algorithm as the conditional posterior densities of θ(M) do not have

any closed form. I propose new emission hyperparameter values of θ′(M) =

(α′, β′, γ′1, δ
′
1, γ
′
2, δ
′
2) given the current emission hyperparameter values θt

(M)
=

(αt, βt, γt1, δ
t
1, γ

t
2, δ

t
2) using symmetric random walk updates. To guarantee that

the proposed values (indicated by primes) of the hyperparameters θ(M) are non-

negative, I choose the following truncated Normal proposal densities left-truncated

at zero:

α′ ∼ Trunc.N(αt, σ2
α)

β′ ∼ Trunc.N(βt, σ2
β)

γ′1 ∼ Trunc.N(γt1, σγ
2
1)

δ′1 ∼ Trunc.N(δt1, σδ
2
1) (4.52)

γ′2 ∼ Trunc.N(γt2, σγ
2
2)

δ′2 ∼ Trunc.N(δt2, σδ
2
2),

where σα, σβ, σγ1 , σδ1 , σγ2 , σδ2 are the tuning proposal parameters which can

be adjusted in order to improve the convergence properties of the MCMC-based
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augmented Gibbs sampler. The new value for α is accepted with acceptance

probability min(1, rα), where the M-H ratio, rα, is:

rα =
p (α′|β,x,Z) q (αt|α′)
p (αt|β,x,Z) q (α′|αt)

=
p (α′|β,x,Z) (1− Φ (αt))

p (αt|β,x,Z) (1− Φ (α′))
, (4.53)

where q(a′|at) is the truncated Normal proposal density with proposed value a′

given the current value at. Now (4.46) can be substituted in (4.53) to get the

full expression for rα. Similarly, I can update the value of β with acceptance

probability min(1, rβ) just by replacing α with β in (4.53).

Again, the new value for γ1 is accepted with acceptance probability min(1, rγ1).

Now, the M-H ratio rγ1 can be written as follows:

rγ1 =
p (γ′1|δ1, γ2, δ2,x,Z) q (γt1|γ′1)

p (γt1|δ1, γ2, δ2,x,Z) q (γ′1|γt1)

=
p (γ1|δ′1, γ2, δ2,x,Z) (1− Φ (γt1))

p (γ1|δt1, γ2, δ2,x,Z) (1− Φ (γ′1))
. (4.54)

(4.48) can be substituted in (4.54) for the detailed expression of rγ1 . Similarly,

I can update the values of δ1, γ2, δ2 with acceptance probabilities min(1, rδ1),

min(1, rγ2), min(1, rδ2) just by replacing γ1 with δ1, γ2, δ2 respectively in (4.54).

4.2.3.2 Initial state and transition probabilities

I describe in detail the sampling steps of the initial state and transition probabili-

ties for model BBDM conditional on Z. π1, τ11 and τ21 given Z are independent.

So, I can write the full conditional posterior distribution of the HMM model

initial state and transition parameters (π(D), τ (D)) as

p(π(D), τ (D)|Z) = p(π1|Z1)p(τ11|Z2:T )p(τ21|Z2:T ). (4.55)
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I assign a Beta prior for the initial state and transition probabilities, i.e.,

π1, τ11, τ21 ∼ Beta(η1, η2) independently, but η1 and η2 are both set to 1 to give a

noninformative prior to τ11 and τ21, respectively, namely the Uniform distribution

U(0, 1).

Now, I sample the initial state and transition parameters (π, τ11, τ21) as fol-

lows:

• Sample π1|Z1, i.e.,

π1 ∼ Beta(2, 1), if Z1 = 1 (4.56)

and

π1 ∼ Beta(1, 2), if Z1 = 2. (4.57)

• Sample τ11|Z2:T , i.e.,

τ11 ∼ Beta(t11 + 1, t12 + 1). (4.58)

• Sample τ21|Z2:T , i.e.,

τ21 ∼ Beta(t21 + 1, t22 + 1). (4.59)

Thus, the initial state and the transition parameters (π, τ11, τ21) are sampled

directly from their full conditional posterior distributions simply by using Gibbs

sampler as the full conditionals have closed form due to Beta-Binomial conjugacy.

4.2.3.3 Transition rate parameters

In this section, I describe the sampling steps of the transition rate parameters for

model BBCM from their full conditional posterior distributions. I first write the
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full conditional posterior density of the HMM model transition rate parameters

τ (C),

p(τ (C)|x,Z,Ψ) = p(τ (C)|Z,Ψ)

T∏

t=2

[(
λ2

λ1 + λ2

+
λ1

λ1 + λ2

e−(λ1+λ2)Ψt

)I(Zt−1=1,Zt=1)

×
(

λ1

λ1 + λ2

− λ1

λ1 + λ2

e−(λ1+λ2)Ψt

)I(Zt−1=1,Zt=2)

×
(

λ2

λ1 + λ2

− λ2

λ1 + λ2

e−(λ1+λ2)Ψt

)I(Zt−1=2,Zt=1)

(
λ1

λ1 + λ2

+
λ2

λ1 + λ2

e−(λ1+λ2)Ψt

)I(Zt−1=2,Zt=2)
]
,

(4.60)

where Ψ = (Ψ1, · · · ,Ψt), such that, Ψt is the genomic distance between two ad-

jacent CpG sites indexed at t− 1 and t.

I sample the transition rate parameters (λ1, λ2) from their full conditional pos-

terior distributions as follows.
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• Sample λ1|λ2,Z2:T ,Ψ from

p(λ1|λ2,Z2:T ,Ψ)

∝
T∏

t=2

[(
λ2

λ1 + λ2

+
λ1

λ1 + λ2

e−(λ1+λ2)Ψt

)I(Zt−1=1,Zt=1)

×
(

λ1

λ1 + λ2

− λ1

λ1 + λ2

e−(λ1+λ2)Ψt

)I(Zt−1=1,Zt=2)

×
(

λ2

λ1 + λ2

− λ2

λ1 + λ2

e−(λ1+λ2)Ψt

)I(Zt−1=2,Zt=1)

(
λ1

λ1 + λ2

+
λ2

λ1 + λ2

e−(λ1+λ2)Ψt

)I(Zt−1=2,Zt=2)
]

(4.61)

× 1

bλ1 − aλ1
.

• Sample λ2|λ1,Z2:T ,Ψ from

p(λ2|λ1,Z2:T ,Ψ)

∝
T∏

t=2

[(
λ2

λ1 + λ2

+
λ1

λ1 + λ2

e−(λ1+λ2)Ψt

)I(Zt−1=1,Zt=1)

×
(

λ1

λ1 + λ2

− λ1

λ1 + λ2

e−(λ1+λ2)Ψt

)I(Zt−1=1,Zt=2)

×
(

λ2

λ1 + λ2

− λ2

λ1 + λ2

e−(λ1+λ2)Ψt

)I(Zt−1=2,Zt=1)

(
λ1

λ1 + λ2

+
λ2

λ1 + λ2

e−(λ1+λ2)Ψt

)I(Zt−1=2,Zt=2)
]

(4.62)

× 1

bλ2 − aλ2
,

where aλ1 , bλ1 , aλ2 , bλ2 are fixed values of the Uniform transition rate priors.
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The transition rate parameters τ (C) = (λ1, λ2) are sampled from their full con-

ditionals using M-H algorithm as the conditional posterior densities of τ (C) do

not have any closed form. I propose new transition rate parameter values of

τ ′(C) = (λ′1, λ
′
2) given the current transition rate parameter values τ t

(C)
= (λt1, λ

t
2)

using symmetric random walk updates. To guarantee that the proposed values of

the transition rate parameters τ (C) are non-negative, I again choose the truncated

Normal proposal densities left-truncated at zero:

λ′1 ∼ Trunc.N(λt1, σλ
2
1)

λ′2 ∼ Trunc.N(λt2, σλ
2
2), (4.63)

where σλ1 , σλ2 are the tuning proposal parameters.

4.2.4 Summary of the augmented Gibbs sampler algo-

rithm steps

1. Initialize all the emission hyperparameters θ(M) for model M .

(a) For model BBDM,

initialize initial state and transition parameters (π1, τ11, τ21) and,

(b) For model BBCM,

initialize transition rate parameters τ (C) = (λ1, λ2).

2. Compute the state-specific emission distributions,

P (xt|Zt = k,θ
(M)
k ) for k = 1, 2 and t = 1, . . . , T .

3. Compute α
(M)
k (t) for k = 1, 2 and t = 1, . . . , T .

4. Sample backwards ZT , . . . , Z1 using backward sampling (Scott, 2002).

5. Sample θ(M) using Component-wise M-H algorithm (Metropolis et al., 1953)

as described in 4.2.3.1.
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6. Sample the transition parameters:

(a) For model BBDM,

sample τij ∼Beta

(
tij + 1,

∑2
k 6=j tik + 1

)
for i, j = 1, 2, such that,

k 6= j,

and πk|Z1 = k ∼Beta

(
1+I(Z1 = k), 1 + I(Z1 = k

′
)

)
for k, k

′
= 1, 2.

(b) For model BBCM,

sample λ1 and λ2 using M-H algorithm.

7. Implement the relabelling algorithm as described in Section 2.2.6.

8. Repeat steps (2)-(7) until convergence.

4.2.5 Updating the predicted states

Finally, I note the method used to identify the SMCs (state1s) and DMCs (state2s)

in the chromosome. Define, Z(1), . . . ,Z(I) to be I Gibbs draws (after burn-in) of

the joint hidden states, where Z(i) = (Z
(i)
1 , . . . , Z

(i)
T ). The estimate of the pos-

terior probability that tth genomic position is similarly methylated is given by

P̂ (Zt = 1|x) = 1
I

∑I
i=1 I(Z

(i)
t = 1). To decide whether a CpG site is differentially

methylated or not, I specify a threshold value on these posterior probabilities. If

P̂ (Zt = 1|x) > 0.5, I predict the tth CpG site to be similarly methylated or if

P̂ (Zt = 1|x) < 0.5, I call that tth CpG site to be differentially methylated.

4.3 Simulation studies

In this section, I perform simulation studies to compare the performance of my

proposed models (BBDM, BBCM ) in identifying the DMCs in artificial datasets.

The simulation studies were designed to examine the performance and robustness

of both models under different situations, such as model misspecification and

varying levels of noise in the data.
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4.3.1 Data generation

100 datasets were generated with T = 10000 observations each under different

situations to check the robustness of my models. The data generation was done

in 3 steps for both the models:

1. (a) For Model BBDM, the sequence of the hidden states Z = (Z1, . . . , ZT )

was simulated using a Markov Chain with true fixed transition probabilities

τ11, τ21 and initial state probability π1; (b) For model BBDM, the sequence

of the hidden states Z = (Z1, . . . , ZT ) was simulated using a continuous-

index Markov chain with true fixed transition rate parameters λ1 and λ2.

2. The nuisance parameters p∗t , p
p
t and pst for each t = 1, . . . , 10000 were sam-

pled from Beta distributions with true fixed emission hyperparameters con-

ditional on the state labels Zt = k, k = 1, 2. p∗t was sampled from a Beta

distribution with fixed state 1 hyperparameters (α, β), whereas ppt and pst

are sampled from Beta distributions with fixed state 2 hyperparameters

(γ1, δ1, γ2, δ2).

3. The methylated counts of proliferating and senescent cells of each CpG site

xpt and xst for t = 1, . . . , 10000 were sampled from Binomial distributions

with parameters npt and nst taken from the real data and probability of met-

hylations from the corresponding sampled values of p∗t , p
p
t and pst conditional

on Zt. Since the total counts (methylated counts + unmethylated counts)

at each CpG site were taken from the real data, it made my simulation

study design biologically realistic in this regard. I have studied 3 potential

cases in the following simulations.

1. Moderately overlapped

(a) For model BBDM, the data are generated in such a way that the data

classified by the simulated states overlap with each other, thus ma-

king it difficult to correctly predict the states. The data are generated

73



4. Hierarchical HMMs with Applications to BS-Seq Data

from the Beta-Binomial HMM with similar modes for data of both

the states, i.e., state 1 hyperparameters (α = 3, β = 4) and state 2

hyperparameters (γ1 = 3.2, δ1 = 3.9, γ2 = 4, δ2 = 5). The hidden

states Z are simulated from a 1st order Markov Chain with an initial

state probability for state 1, π1 = 0.34, and transition probabilities

τ11 = 0.87, τ21 = 0.068.

(b) For model BBCM, the data are generated as for BBDM except that

the hidden states Z are simulated from a 1st order continuous-index

Markov chain with transition rate parameters λ1 = 0.22 and λ2 = 0.22.

2. Well separated

(a) For model BBDM, the data are generated in such a way that the data

classified by the simulated states are well separated from each other,

making it easier to correctly predict the states. The data (xp, xs)

are generated from the Beta-Binomial HMM with well-separated mo-

des for data of both the states, i.e., state 1 hyperparameters (α =

1.2, β = 8.8) and state 2 hyperparameters (γ1 = 5.5, δ1 = 4.5, γ2 =

8.5, δ2 = 1.5). The hidden states Z are simulated from a 1st order

Markov Chain with an initial state probability for State-1 π1 = 0.34

and transition probabilities τ11 = 0.87, τ21 = 0.068.

(b) For model BBCM, the data are generated as for BBDM except that the

hidden states Z are simulated from a 1st order continuous-index Mar-

kov chain with transition rate parameters λ1 = 0.278 and λ2 = 0.28.

3. Realistic
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(a) For model BBDM, the data are generated using the real data study

estimates on this dataset. In this case, the data classified by the si-

mulated states slightly overlap with each other. Thus, it would be

interesting to test the performance of my model in the case of a more

realistic situation. The data (xp, xs) are generated from the Beta-

Binomial HMM with less well-separated modes for data of both the

states, i.e., state 1 hyperparameters (α = 5.2, β = 2.65) and state 2

hyperparameters (γ1 = 1.36, δ1 = 3.25, γ2 = 1.07, δ2 = 5.3), thus

causing some amount of overlapping. The hidden states Z are simula-

ted from a 1st order Markov Chain with an intial state probability for

State-1 π1 = 0.34 and transition probabilities τ11 = 0.87, τ21 = 0.068.

(b) For model BBCM, the data are generated using the real data study

estimates on this dataset. The data (xp, xs) are generated from the

Beta-Binomial HMM with less well-separated modes for data of both

the states, i.e., state 1 hyperparameters (α = 11.62, β = 5.10) and

state 2 hyperparameters (γ1 = 1.19, δ1 = 1.90, γ2 = 0.78, δ2 = 1.82).

The hidden states Z are simulated from a 1st order continuous-index

Markov chain with transition rate parameters λ1 = 0.534 and λ2 =

0.11.

Other than the realistic case, there was no strong additional reason

in the choice of true values for the transition parameters. The true

values of the transition parameters were more or less similar for all the

three cases. The main objective was to generate the data in such a

way that the data classified by the simulated states must satisfy the

data generation conditions.
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4.3.2 Priors

• I use weakly informative and independent Uniform priors for the emission

hyperparameters. The prior distributions of the emission hyperparameters

θ(M) = (α, β, γ1, δ1, γ2, δ2) for model M are as follows:

α ∼ U(0, 2000)

β ∼ U(0, 2000)

γ1 ∼ U(0, 2000)

δ1 ∼ U(0, 2000) (4.64)

γ2 ∼ U(0, 2000)

δ2 ∼ U(0, 2000).

• I use weakly informative and independent Uniform priors for the transi-

tion rate parameters τC = (λ1, λ2) for model BBCM and they are both

U(0, 2000).

4.3.3 Consistency of model parameters estimation

I generated 100 datasets under both models (BBDM and BBCM ). These data-

sets of size 10, 000 CpG sites were generated for each parameter setting described

in Section 4.3.1, which subsequently were estimated using the augmented Gibbs

sampler described in Section 4.2. Each simulated dataset was then fitted to the

models BBDM and BBCM for each case with 60, 000 MCMC iterations (with

20, 000 as burn-in) after which the posterior samples for each model parameter

were assessed for convergence.

After attaining convergence, to estimate the quality of the estimation of the

model parameters, I estimated the Root Mean Square Error (RMSE) of each of

the model parameters. The RMSE in my simulation studies for any parameter ε
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was determined from

RMSE(ε̂) =

√√√√ 1

J

J∑

j=1

(ε̂j − εtrue)2, for J = 100, (4.65)

where εtrue is the true value of the parameter and in the jth simulated dataset ε̂j

is its posterior mean estimate.

In Table 4.1, I presented the range of estimated RMSE of the model parameters

for each case. In each case, the estimated RMSE was small, demonstrating good

estimation of the model parameters except for the moderately overlapped case in

both the models. Here, the transition parameters for the moderately overlapped

case in both the models showed inconsistent estimation. Since the data for both

the states are generated using a similar set of true values of the hyperparameters,

it fails to distinguish between the 2 states. As a result, the RMSE for the model

parameters for the moderately overlapped case in both the models are large. Ho-

wever, for the well separated case in both the models, the RMSE for the model

parameters are much smaller ranging between (0.0002, 0.009) and (0.0006, 0.01),

respectively. Similarly, for the realistic case in both the models the RMSE for

model parameters ranged between (0.0006, 0.0093) and (0.0008, 0.009), respecti-

vely. Clearly, the values of RMSE for the model parameters for the well separated

case in both the models are generally the lowest.

The posterior state-membership for all the CpG sites are assigned using a cut-off

value of 0.5 as discussed in Section 4.2.5. The misclassification rate for all the

3 cases was calculated by comparing the simulated and predicted states at each

genomic position. The misclassification rate is the proportion of mismatches be-

tween the simulated and the predicted states. The average misclassification rate

is then the average of the misclassification rates based on 100 simulated datasets.

In the moderately overlapped case, the average misclassification rates for BBDM
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Model Case Average Misclass. rate Range of RMSE

BBDM
Moderately overlapped 0.6673 (0.05, 1.091)

Well separated 0.0042 (0.0002, 0.009)
Realistic 0.0242 (0.0006, 0.0093)

BBCM
Moderately overlapped 0.2782 (0.08, 1.72)

Well separated 0.0196 (0.0006, 0.01)
Realistic 0.0664 (0.0008, 0.009)

Table 4.1: Simulation study: Average misclassification rate and range of RMSE
for models: BBDM and BBCM based on 100 simulated datasets.

and BBCM are 0.6673 and 0.2782, respectively (Table 4.1). The corresponding

misclassification rates for the well separated case are 0.0042 and 0.0196 and for

the realistic case 0.0242 and 0.0664, respectively. The misclassification rates for

the well separated case in both models are much lower than the realistic case.

For one of the randomly selected simulation studies out of 100, I also present

the scatter plots of the data generation for all the cases. In Figures 4.2, 4.3, 4.4, I

showed visually how well I have selected the true values of the parameters for each

of the cases, explained in Section 4.3.1. The scatter plots of simulated methyla-

tion proportions between proliferating and senescent cells classified by the true

states, for both the models, validate the choice of true values of the parameters

and the data generation procedure. From Figures 4.2a, 4.2c for the moderately

overlapped case in both models, it can be seen from the scatter plots that the

simulated methylation proportions between proliferating and senescent cells clas-

sified by the true states overlap with each other. It can also be observed that the

simulated proportions between two cell types are much more scattered for BBCM

compared to BBDM in the moderately overlapped case. Hence, model BBCM is

able to classify the hidden states better than BBDM. Furthermore, from Figu-

res 4.3a, 4.3c for the well separated case in both models, the scatter plots display
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(a) Scatter plot for BBDM
classified by simulated states.

(b) Scatter plot for BBDM
classified by predicted states.

(c) Scatter plot for BBCM
classified by simulated states.

(d) Scatter plot for BBCM
classified by predicted states.

Figure 4.2: For the moderately overlapped case. (a) A scatter plot of simulated
methylation proportions between proliferating and senescent cells classified by
the simulated states for BBDM. (b) A scatter plot of simulated methylation
proportions between proliferating and senescent cells classified by the predicted
states for BBDM. (c) A scatter plot of simulated methylation proportions between
proliferating and senescent cells classified by the simulated states for BBCM. (d)
A scatter plot of simulated methylation proportions between proliferating and
senescent cells classified by the predicted states for BBCM.
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(a) Scatter plot for BBDM
classified by simulated states.

(b) Scatter plot for BBDM
classified by predicted states.

(c) Scatter plot for BBCM
classified by simulated states.

(d) Scatter plot for BBCM
classified by predicted states.

Figure 4.3: For the well separated case. (a) A scatter plot of simulated met-
hylation proportions between proliferating and senescent cells classified by the
simulated states for BBDM. (b) A scatter plot of simulated methylation propor-
tions between proliferating and senescent cells classified by the predicted states
for BBDM. (c) A scatter plot of simulated methylation proportions between pro-
liferating and senescent cells classified by the simulated states for BBCM. (d)
A scatter plot of simulated methylation proportions between proliferating and
senescent cells classified by the predicted states for BBCM.
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(a) Scatter plot for BBDM
classified by simulated states.

(b) Scatter plot for BBDM
classified by predicted states.

(c) Scatter plot for BBCM
classified by simulated states.

(d) Scatter plot for BBCM
classified by predicted states.

Figure 4.4: For the realistic case. (a) A scatter plot of simulated methylation
proportions between proliferating and senescent cells classified by the simulated
states for BBDM. (b) A scatter plot of simulated methylation proportions between
proliferating and senescent cells classified by the predicted states for BBDM. (c)
A scatter plot of simulated methylation proportions between proliferating and
senescent cells classified by the simulated states for BBCM. (d) A scatter plot
of simulated methylation proportions between proliferating and senescent cells
classified by the predicted states for BBCM.
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that the simulated methylation proportions between proliferating and senescent

cells classified by the true states are well separated. The realistic case in both

the models also exhibit similar kind of pattern displayed by the moderately over-

lapped case and they can be verified from from Figures 4.4a, 4.4c. In addition, I

have also displayed the prediction power of my algorithm in both the models by

comparing the scatter plots of simulated methylation proportions between proli-

ferating and senescent cells classfied by predicted states in Figures 4.2b and 4.2d

for the moderately overlapped case, Figures 4.3b and 4.3d for the well separated

case and Figures 4.4b and 4.4d for the realistic case, respectively.

For this randomly selected simulation study, the histograms of state 2 poste-

rior probabilities for all the cases are also plotted in Figures (the histogram of

state 1 posterior probabilities is just an inverse image of state 2). For moderately

overlapped case in both the models as can be seen from the histograms (Figu-

res 4.5a, 4.5b), the medians of the posterior probabilities for state 2 are close

to 0.5. Thus, it gets extremely difficult to classify the correct states. For well

separated cases and realistic cases, the states are strongly classified as extreme

posterior state-membership probabilities close to 0 or 1 can be obtained. In Figu-

res 4.6a, 4.6b and Figure 4.7a, 4.7b, the posterior probabilities (mostly very close

to 0 or 1) admit little uncertainty in the state reconstruction. The histograms

for the moderately overlapped case in both the models are symmetric whereas the

histograms of the well separated and realistic cases are either U-shaped, J-shaped

or reflected J-shaped depending on the distributions of the state labels (state 1

and state 2).

I examine the performance of all the three cases for both the models using

receiver operating characteristic (ROC) curves based on the simulation study de-

sign. The ROC curve explains the relationship between the false positive rate

(FPR) and true positive rate (TPR) of inferred methylation status at each CpG

site. The TPR, also termed as sensitivity, is the proportion of correctly identi-

82



4. Hierarchical HMMs with Applications to BS-Seq Data

State 2 posterior probability

N
um

be
r 

of
 C

pG
 s

ite
s

0.370 0.375 0.380 0.385

0
50

0
10

00
15

00
20

00

(a) Histogram for BBDM
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(b) Histogram for BBCM

Figure 4.5: For the simulation study of BBDM and BBCM, the 2 panels depict
the histogram of posterior state 2 probabilities for the moderately overlapped case:
(a) BBDM and (b) BBCM based on one randomly selected simulation.
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(b) Histogram for BBCM

Figure 4.6: For the simulation study of BBDM and BBCM, the 2 panels depict
the histogram of posterior state 2 probabilities for the well separated case: (a)
BBDM and (b) BBCM based on one randomly selected simulation.
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Figure 4.7: For the simulation study of BBDM and BBCM, the 2 panels depict
the histogram of posterior state 2 probabilities for the realistic case: (a) BBDM
and (b) BBCM based on one randomly selected simulation.
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Figure 4.8: For the simulation study of BBDM and BBCM, the 2 panels depict
the ROC curves for the moderately overlapped case: (a) BBDM and (b) BBCM.
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Figure 4.9: For the simulation study of BBDM and BBCM, the 2 panels depict
the ROC curves for the well separated case: (a) BBDM and (b) BBCM.
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Figure 4.10: For the simulation study of BBDM and BBCM, the 2 panels depict
the ROC curves for the realistic case: (a) BBDM and (b) BBCM.
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fied differentially methylated CpG sites. The FPR is the proportion of similarly

methylated CpG sites which are incorrectly classified. The obtained ROC curves

are also plotted in Figures 4.8, 4.9, 4.10, respectively. In a ROC curve the TPR

(sensitivity) is plotted in function of the FPR (1-specificity). A test with perfect

discrimination (no overlap in the two distributions) has a ROC plot that passes

through the upper left corner (100% sensitivity, 100% specificity). Therefore the

closer the ROC plot is to the upper left corner, the higher the overall accuracy of

the test. Figures 4.8a, 4.8b display the poor performance in the moderately over-

lapped case for both the models. Clearly, from Figures 4.9a, 4.9b, 4.10a, 4.10b,

the well separated case for both the models outperforms the realistic case by a

small margin.

4.4 Real data study

In this section, I illustrate the potential of my proposed BS-seq methylation data

analysis method. I have applied the extended HMMmethState method to analyze

BS-seq data from Cruickshanks et al. (2013). I analysed a 90.23458 Mb region

(0.060034− 90.294609 Mb on chromosome 16) of 2, 165, 796 CpG sites.

4.4.1 Inference via MCMC

In this section, I assess the results obtained using MCMC techniques and the con-

vergence properties of MCMC chains using various diagnostics for the real data

Chromosome 16. I tried to make sure that the MCMC chains run long enough

such that the samples of the parameters could be regarded as a good represen-

tation of their respective posterior distributions. I ran the augmented Gibbs

sampler for 10, 000 iterations for 3 parallel chains, thinning the chains and saving

every 10th value of the updates, to reduce autocorrelation between consecutive up-

dates and save storage space. The parameters of the proposal distributions were

also tuned to get coherent M-H updates. I checked the posterior samples using
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various convergence diagnostics to establish the fact that the posterior samples of

the parameters represented their corresponding posterior distributions.To assess

the convergence and mixing properties of the MCMC updates, I ran 3 MCMC

chains intializing with different starting points and also did a burn-in the first

300 MCMC updates. Optimizing the tuning parameter of the proposal distribu-

tion played a significant role in obtaining less correlated consecutive draws, thus

enhancing the efficiency of the M-H algorithm. The proposal distributions of the

hyperparameters were tuned appropriately in order to obtain optimal acceptance

rate which resulted in acceptance rates in the range of (0.25, 0.43). In addition,

I checked a few other convergence diagnostics to reaffirm my claim in the conver-

gence of the parameter estimates. I used PSRF (Gelman and Rubin, 1992) on

the 3 MCMC chains with dispersed starting values to examine the convergence

for each of the parameter to the same target distribution. The PSRF values are

only slightly above 1 (Tables 2 and 3), which is consistent with convergence of

the chains.

I carried out all the convergence diagnostics discussed and no evidence of non-

convergence was obtained from any of the diagnostics. From the noisy traceplots,

it can be easily inferred that the 3 chains mixed properly. Traceplots and PSRF

plots are presented in Appendix 7.2.3. The estimates of the posterior mean, pos-

terior standard deviation (S.D.), 95% credible intervals are presented in Table 2

for emission hyperparameters and Table 3 for transition parameters of both the

models for all the 3 chains.

The number of iterations for the simulation and real studies are not the same

because in some cases (for example, moderately overlapped), the transition para-

meters were taking longer to converge to their appropriate stationary distributions

compared to the realistic and well separated cases. Thus, to make the number

of iterations conformable with the other two cases, I have used 60, 000 iterations
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and 20, 000 burn-in. Thinning was not implemented in the simulation studies.

Furthermore, for both the model boxplots (Figures 4.11, 4.13), y-axis denotes

the difference between methylation proportions of senescent and proliferating in

various categories. Hypo refers to the category when the proportions of senescent

cells is greater than proliferating cells and vice-versa for Hyper. Note how the

DMCs are hypomethylated on average (since the median difference is negative),

consistent with the biological presumption (Cruickshanks et al., 2013). Also the

Non-DMCs are indeed similarly methylated since the boxplot is centred on zero.

Additionally, the histograms of state 2 posterior probabilities for model BBDM

show strong classification of states in Figure 4.12 whereas the classification of the

states is moderately weak in the case of model BBCM as shown in Figure 4.14,

as many of the state 2 posterior probabilities vary between 0.2 and 0.8.

4.5 Discussion

In this chapter, I have described my proposed HMMmethState method for iden-

tifying DMCs from BS-seq methylation data. I described the structure of my

models and their association with the data-generating process. In addition, I

developed an efficient augmented Gibbs sampling method for applying MCMC

based techniques to datasets with hidden states, with the help of Forward-sum

recursion. I designed my proposed method HMMmethState: a HMM, where I

assumed that the data followed an independent bivariate Binomial distribution

conditional on the true underlying methylation proportions and hidden states,

i.e., the methylation status of the CpG sites at the first stage of the hierarchical

model. The underlying methylation proportions for each CpG site were assumed

to be centrally clustered around a state-specific mean with a state-specific vari-

ance at the second stage of the hierarchical model. The advantage of using the

Binomial distribution at the first stage was that it involved CpG site-specific va-
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Figure 4.11: For the real study of BBDM, boxplots of the difference of methy-
lation proportions between proliferating and senescent cells classified by various
categories defined in the text.
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Figure 4.12: For the real study of BBDM, histogram of posterior state 2 proba-
bilities.
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Figure 4.13: For the real study of BBCM, boxplots of the difference of methy-
lation proportions between proliferating and senescent cells classified by various
categories defined in the text.
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Figure 4.14: For the real study of BBCM, histogram of posterior state 2 proba-
bilities.
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(a) BBDM : Observed (b) BBDM : Simulated

(c) BBCM : Observed (d) BBCM : Simulated

Figure 4.15: For the the real study, the 4 panels depict the scatter plots: (a)
A scatter plot of observed methylated counts for the proliferating and senescent
cells classified by the predicted states for BBDM. (b) A scatter plot of simula-
ted methylated counts (generated using the posterior mean estimates) for the
proliferating and senescent cells classified by the predicted states for BBDM. (c)
A scatter plot of observed methylated counts for the proliferating and senescent
cells classified by the predicted states for BBCM. (d) A scatter plot of simula-
ted methylated counts (generated using the posterior mean estimates) for the
proliferating and senescent cells classified by the predicted states for BBCM.
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riances, i.e., the data point (the methylated counts of proliferating and senescent

cells) for each CpG site was generated using the information obtained from the

total count and the true underlying methylation proportion parameter for each

CpG site. Thus, the hierarchical model became more capable of describing the

variability among CpG sites within each state. In order to obtain computational

simplicity, I implemented a simple version of the bivariate Binomial hierarchical

HMM with a collapsed distributional structure due to Beta-Binomial conjugacy.

I have presented the scatter plots of the methylation counts of proliferating cells

against senescent cells for the observed data and for the fitted models in Fi-

gure 4.15. The visual posterior predictive checking, using the posterior mean

estimates of the model parameters in Figure 4.15 indicates that the fitted mo-

dels fail to capture the correlation between the methylated counts of proliferating

and senescent cells. Figures 4.15a and 4.15c show the scatterplots of the obser-

ved data classified by the predicted states. On the other hand, Figures 4.15b

and 4.15d show scatterplots of the fitted data classified by the predicted sta-

tes. From Figures 4.15b and 4.15d, it can be interpreted that the correlation

between the methylated counts of proliferating and senescent cells cannot be

captured by the HMMmethState models. The main drawback of the bivariate

Beta-Binomial emission model is that it cannot induce correlation between the

methylated counts of these two cell types. Although it offers a natural interpre-

tation to the distribution of the data due to its collapsed hierarchical structure

(Beta-Binomial conjugacy), it fails to accomodate some features of the obser-

vations. In the next chapter, I present an extended version of HMMmethState

models which can incorporate a correlation parameter into the model for more

robust inference.
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Chapter 5

Model Extensions

In this chapter, I propose extensions of the HMM-based HMMmethState models

proposed in Chapter 4 for predicting DMCs in BS-seq data. The bivariate Beta-

Binomial emission model seems reasonably adequate to model the BS-seq data but

fails to capture certain features, primarily the correlation between the methylated

counts of the two cell types. This is visible in the visual posterior predictive

checking analysis in Chapter 4 (Figure 4.15). The scatterplots in Figure 4.15

show that the data exhibit strong correlation between the methylated counts of

the proliferating and senescent cells which was not allowed by the fitted models.

Failure to properly address the correlation between the methylated counts of

the two cell types may result in misleading inference. Thus, to incorporate the

correlation feature in the data, I propose a bivariate Normal distribution at the

2nd stage of the HMMmethState model which introduces a correlation parameter.

5.1 Model assumptions

Let, as previously denoted in Chapter 4, xpt and xst denote the methylated counts

in proliferating and senescent cells of the pair of random variables Xp
t and Xs

t at

the tth CpG site, such thatXp
t andXs

t independently follow Binomial distributions

with parameters (npt , logit
−1(qpt ) and (nst , logit

−1(qst ) respectively, where Xt =
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(Xp
t , X

s
t ), xt = (xpt , x

s
t) and X = (X1, · · · ,XT ), x = (x1, · · · ,xT ), such that

Xp
t |qpt ∼ Bin

(
npt , logit

−1(qpt )

)
, t = 1, . . . , T (5.1)

and

Xs
t |qst ∼ Bin

(
nst , logit

−1(qst )

)
, t = 1, . . . , T, (5.2)

where qpt and qst are the logit transforms of probability parameters ppt and pst

as explained in Section 4.1 of methylation of proliferating and senescent cells,

respectively, at the tth CpG site, such that,

qct = log

(
pct

1− pct

)
, c = p, s.

npt and nst are the total number of reads from the two cell types. For notational

simplicity, let the pair of logit parameters qpt and qst be denoted by Qt = (qpt , q
s
t )

for t = 1, . . . , T .

For state k = 1, 2, the underlying logits will be written as

Qk
t = (qpkt , q

sk
t ), k = 1, 2, (5.3)

i.e., Qk
t is the pair of auxiliary parameters for state k at each CpG site, where qpkt

and qskt denote the underlying auxiliary logit parameters for state k at tth CpG

site of proliferating and senescent cells, respectively.

In order to account for the variability of the mean among CpG sites in the same

state, I constructed a hierarchical model where I have state-specific auxiliary logit

parameters for each CpG site and these auxiliary logit parameters are eventually

clustered around a state-specific mean with a state-specific variance and correla-

tion.

Thus, the structure of the hierarchical bivariate Normal-Logit-Binomial emission
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model is:

Xp
t |Zt = k ∼ Bin

(
npt , logit

−1(qpkt )

)
and Xs

t |Zt = k ∼ Bin

(
nst , logit

−1(qskt )

)
,

Qk
t |Zt = k ∼ BV N(θk), k = 1, 2 and t = 1, . . . , T, (5.4)

where θk = (Mk,Σk) and BV N(.) is the bivariate Normal distribution, such

that,

M1 =


µ∗
µ∗


 ; M1 =


µp
µs


 ; Σ1 =


 σ2

∗ σ2
∗ρ∗

ρ∗σ2
∗ σ2

∗


 ; Σ2 =


 σ2

pρ2 σpσsρ2

σsσpρ2 σ2
sρ2


 .

(5.5)

For notational simplicity, I denote the bivariate Normal state-specific parameters

as follows: θ1 = (µ∗, σ2
∗, ρ∗); θ2 = (µp, µs, σ

2
p, σ

2
s , ρ2).

Now, if the methylation levels in proliferating and senescent cell are the same at

the tth CpG site, i.e., Zt = 1, then

Q1
t ∼ BV N(θ1). (5.6)

Similarly, if the methylation in proliferating and senescent cells are different at

the tth CpG site, i.e., Zt = 2, then

Q2
t ∼ BV N(θ2). (5.7)

I will further explain the bivariate-Binomial emission model in Section 5.1.1 and

hierarchical structure of the bivariate-Binomial-Normal-Logit emission model (Fi-

gure 5.1) along with the auxiliary emission parameters in Section 5.1.2.
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Xp
1 Xs

1 Xp
2 Xs

2 Xp
T Xs

T

np
1 qp1 ns

1 qs1 np
2 qp2 ns

2 qs2 np
T qpT ns

T qsT

Z1 Z2 ZT

θ

For: t = 1, . . . , T

Xp
t ∼

{
Bin(np

t , logit
−1(qpt )), if Zt = 1

Bin(np
t , logit

−1(qpt )), if Zt = 2
Xs

t ∼
{

Bin(ns
t , logit

−1(qst )), if Zt = 1
Bin(ns

t , logit
−1(qst )), if Zt = 2

qpt , q
s
t ∼

{
BVN(θ1), if Zt = 1
BVN(θ2), if Zt = 2

Figure 5.1: Graphical representation of the bivariate Normal-logit emission mo-
del. The grey circles refer to the fixed values of the total counts and data re-
spectively, while the white circles refer to auxiliary emission parameters, hyper-
parameters and hidden states that are inferred.
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5.1.1 Binomial emission distributions of the model

Define the emission probability P (xt
∣∣Qk

t , Zt = k) = bk(t) , where k = 1, 2. The

emission probability of the pair of observation xt = (xpt , x
s
t) conditional on the

hidden state Zt = k, (k = 1, 2) is given by

bk(t) = P

(
xt

∣∣∣∣Q
k
t , Zt = k

)

= Bin

(
xpt ;n

p
t ,

eq
pk
t

1 + eq
pk
t

)
Bin

(
xst ;n

s
t ,

eq
sk
t

1 + eq
sk
t

)
, k = 1, 2. (5.8)

5.1.2 Auxiliary emission parameters

To classify the states, I need to have different properties of (qp1t , q
s1
t ) and (qp2t , q

s2
t )

(t = 1, . . . , T ), the auxiliary parameters (inverse-logit parameters) of proliferating

and senescent CpG site for both the states. I have introduced auxiliary emission

parameters and used a 3-stage hierarchical Bayesian model assuming bivariate

Normal state-dependent conditional priors on these parameters. I have defined

Qk
t = (qpkt , q

sk
t ) ∼ BV N(θk).

Stage I: Methylation counts of proliferating and senescent cells sampled from

Bivariate Binomial Emission distributions with state-dependent auxiliary para-

meters:

xt
∣∣Qk

t ∝ P
(
Xt|Qk

t

)
, (5.9)

where P
(
xt
∣∣Qk

t

)
= P (xt

∣∣Qk
t , Zt = k), k = 1, 2 is the bivariate Binomial emis-

sion distribution for state k.

Stage II: Auxiliary emission parameters are generated from bivariate Normal

prior distributions conditional on the differentially methylated (similarly methy-

lated) states:
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Qk
t |Z = k ∼ BV N(θk), (5.10)

such that,

φ(Qk
t ,Mk,Σk) =

exp

(
− 1

2
(Qk

t −Mk)
T
Σk
−1(Qk

t −Mk)

)

2π |Σk|
. (5.11)

where φ(.) denotes the bivariate Normal density. I can further simplify the equa-

tions specific to each state, k = 1, 2,

φ(Q1
t ,M1,Σ1) =

1

2πσ2
∗
√

1− ρ2
∗
×

exp

[
− 1

2σ2
∗(1− ρ2

∗)

{(
qp1t − µ∗

)2 − 2ρ∗
(
qp1t − µ∗

) (
qs1t − µ∗

)

+
(
qs1t − µ∗

)2
}]

and

φ(Q2
t ,M2,Σ2) =

1

2πσpσs
√

1− ρ2
×

exp

[
− 1

2(1− ρ2
2)

{(
qp2t − µp

)2

σ2
p

− 2ρ2

(
qp2t − µp

)
(qs2t − µs)

σpσs

+
(qs2t − µs)

2

σ2
s

}]
.

Stage III: Global Hyperparameters θk, k = 1, 2 follow hyper-prior distributions

p(θk):

θk ∼ p(θk). (5.12)
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5.1.3 Normal-Logit-Binomial hierarchical HMM models

In this section, I define the two hierarchical Normal-Logit-Binomial HMM mo-

dels by combining the Normal-Logit-Binomial emission probability distributions

and transition probability distributions. The transition probability models were

explained in details in Sections 4.1.3 and 4.1.4, respectively.

• Model NLBDM: this model combines the Normal-Logit-Binomial emission

probability model in Section 5.1.1 and homogeneous transition probability

model in Section 4.1.3 through (4.13) and (4.14).

• Model NLBCM: this model combines the Normal-Logit-Binomial emission

probability model in Section 5.1.1 and non-homogeneous continuous-index

transition probability model in Section 4.1.4 through (4.19) and (4.20).

For notational consistency in this chapter, I have also assumed the same set of

HMM transition model parameters.

5.1.4 Computing the likelihood

In this section, I describe the general version of the likelihood for model M where

M represents the true model, i.e., M = NLBDM, NLBCM .

Let the set of all parameters and hyperparameters be generically denoted by

ζ(M) = (η(M),θ(M), τ (M)) for both the models as described in Section 5.1.3

where η(M) = (η
(M)
1 , η

(M)
2 ) such that, η

(M)
k =

(
η

(M)
k (1), · · · ,η(M)

k (T )

)
. Then,

I denote η
(M)
k (t) = Qk

t = (qpkt , q
sk
t ) for k = 1, 2 and t = 1, . . . , T ; where

θ(M) = (θ
(M)
1 , θ

(M)
2 ), such that θ

(M)
1 = (µ∗, σ2

∗, ρ∗) and θ
(M)
2 = (µp, µs, σ

2
p, σ

2
s , ρ2)

and τ (M) for model M . The joint probability distribution of the observations

x = (x1, . . . ,xT ) and the sequence of the hidden states Z = (Z1, . . . , ZT ) for

model M conditional on the model parameters ζ(M) can be interpreted as the
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complete data likelihood of the observations and the states:

P (x,Z
∣∣ζ(M)) = π

(M)
Z1

PZ1

(
x1|η(M)

Z1
(1)

) T∏

t=2

τ
(M)
Z(t−1),Zt

(t)PZt

(
xt|η(M)

Zt
(t)

)

= π
(M)
Z1

PZ1

(
x1|η(M)

Z1
(1)

)
τ

(M)
Z1,Z2

(2)PZ2

(
x2|η(M)

Z2
(2)

)
· · ·

· · · τ (M)
Z(T−1),ZT

(T )PZT

(
xT |θ(M)

ZT
(T )

)
, (5.13)

where Pk

(
xt|η(M)

k (t)

)
= P

(
xt|Zt = k;η

(M)
k (t)

)
, π

(M)
k = P (Z1 = k) and

τ
(M)
kl (t) = P (Zt = l|Zt−1 = k; τ (M)) for k, l = 1, 2.

Basically, (5.8) provides Pk

(
xt|η(M)

k (t)

)
, such that,

P1

(
xt|η(M)

1 (t)

)
= P

(
xt|Zt = 1;η

(M)
1 (t)

)

= P (xpt , x
s
t |qp1t , qs1t ;Zt = 1)

= Bin

(
xpt ;n

p
t ,

eq
p1
t

1 + eq
p1
t

)
Bin

(
xst ;n

s
t ,

eq
s1
t

1 + eq
s1
t

)
(5.14)

and

P2

(
xt|η(M)

2 (t)

)
= P

(
xt|Zt = 2;η

(M)
2 (t)

)

= P (xpt , x
s
t |qp2t , qs2t ;Zt = 2)

= Bin

(
xpt ;n

p
t ,

eq
p2
t

1 + eq
p2
t

)
Bin

(
xst ;n

s
t ,

eq
s2
t

1 + eq
s2
t

)
. (5.15)

Now, the detailed joint probability distribution expression for the observed met-

hylation data x and the sequence of the hidden states (methylation status) Z can

be obtained from the emission quantities (5.14) and (5.15) and the hidden states

probability expressions from (4.13), (4.14) for model NLBDM and (4.19), (4.20)
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for model NLBCM . So, (5.13) can be re-written specific to model NLBDM as

P (x,Z
∣∣ζ(D)) = π

(D)
Z1
PZ1

(
x1|η(D)

Z1
(1)

) T∏

t=2

τ
(D)
Z(t−1),Zt

(t)PZt

(
xt|η(D)

Zt
(t)

)

= π
(D)
Z1
PZ1

(
x1|η(D)

Z1
(1)

)
τ

(D)
Z1,Z2

(2)PZ2

(
xt|η(D)

Z2
(2)

)
· · ·

· · · τ (D)
Z(T−1),ZT

(T )PZT

(
xT |η(D)

ZT
(T )

)

=
T∏

t=1

([
Bin

(
xpt ;n

p
t ,

eq
p1
t

1 + eq
p1
t

)
Bin

(
xst ;n

s
t ,

eq
s1
t

1 + eq
s1
t

)]I[Zt=1]

×
[
Bin

(
xpt ;n

p
t ,

eq
p2
t

1 + eq
p2
t

)
Bin

(
xst ;n

s
t ,

eq
s2
t

1 + eq
s2
t

)]I[Zt=2])

× π1
I[Z1=1](1− π1)I[Z1=2]Bin(t11; t11 + t12, τ11)

(t21; t21 + t22, τ21). (5.16)
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Similarly, equation (5.13) can be re-written specific to model NLBCM as

P (x,Z
∣∣ζ(C)) = π

(C)
Z1
PZ1

(
x1|η(C)

Z1
(1)

) T∏

t=2

τ
(C)
Z(t−1),Zt

(t)PZt

(
xt|η(C)

Zt
(t)

)

= π
(C)
Z1
PZ1

(
x1|η(C)

Z1
(1)

)
τ

(C)
Z1,Z2

(2)PZ2

(
xt|η(C)

Z2
(2)

)
· · ·

· · · τ (C)
Z(T−1),ZT

(T )PZT

(
xT |η(C)

ZT
(T )

)

=
T∏

t=1

([
Bin

(
xpt ;n

p
t ,

eq
p1
t

1 + eq
p1
t

)
Bin

(
xst ;n

s
t ,

eq
s1
t

1 + eq
s1
t

)]I[Zt=1]

×
[
Bin

(
xpt ;n

p
t ,

eq
p2
t

1 + eq
p2
t

)
Bin

(
xst ;n

s
t ,

eq
s2
t

1 + eq
s2
t

)]I[Zt=2])

× [0.5]I(Z1=1)[0.5]I(Z1=2)

×
T∏

t=2

[(
λ2

λ1 + λ2

+
λ1

λ1 + λ2

e−(λ1+λ2)Ψt

)I(Zt−1=1,Zt=1)

×
(

λ1

λ1 + λ2

− λ1

λ1 + λ2

e−(λ1+λ2)Ψt

)I(Zt−1=1,Zt=2)

×
(

λ2

λ1 + λ2

− λ2

λ1 + λ2

e−(λ1+λ2)Ψt

)I(Zt−1=2,Zt=1)

×
(

λ1

λ1 + λ2

+
λ2

λ1 + λ2

e−(λ1+λ2)Ψt

)I(Zt−1=2,Zt=2)
]
.

(5.17)

Then, the likelihood of the observed methylation data x given the HMM model

parameters ζ(M) for model M can be expressed as

Lx(ζ(M)) = P (x|ζ(M))

=
∑

Z1,...,ZT

π
(M)
Z1

PZ1

(
x1|η(M)

Z1
(1)

) T∏

t=2

[
τ

(M)
Z(t−1),Zt

(t)PZt

(
xt|η(M)

Zt
(t)

)]
.

(5.18)
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5.1.5 Conditional Bivariate Normal Priors of the auxiliary

emission parameters

I consider bivariate Normal priors for auxiliary emission parameters conditional

on the global emission hyperparameters

η
(M)
k (t)|θ(M)

k ∼ BV N(θ
(M)
k ), k = 1, 2 and t = 1, . . . , T. (5.19)

5.1.6 Choice of priors

The priors for the initial state parameters π(M) and transition parameters τ (M)

for both models remain the same as described in Section 4.1.7.

The prior for the HMM model parameters ζ(M) can be decomposed into four

parts: i) bivariate Normal priors for auxiliary parameters conditional on the global

emission hyperparameters; ii) priors for the emission hyperparameters θ(M); iii)

priors of the initial state parameters π(M); iv) priors of the transition parameters

τ (M):

p(ζ(M)) = p(η(M)|θ(M)) p(θ(M)) p(π(M)) p(τ (M)), (5.20)

For model M , the priors for the global emission hyperparameters θ(M) can be

written as,

p(θ(M)) = p(µ∗) p(σ
2
∗) p(ρ∗) p(µp) p(µs) p(Σ2). (5.21)
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The priors of the bivariate Normal hyperparameters (emission) for model M are

assumed to be uniform and they are as expressed as,

µ∗ ∼ U(aµ∗ , bµ∗)

σ2
∗ ∼ U(aσ2

∗ , bσ2
∗)

ρ∗ ∼ U(aρ∗ , bρ∗)

µp ∼ U(aµp , bµp) (5.22)

µs ∼ U(aµs , bµs)

Σ2 ∼ IW (ν0,Ω
−1
0 )

where U(a, b) is the Uniform distribution with density on (a, b) f(y|a, b) ∝ 1
(b−a)

,

for a ≤ y ≤ b and IW (ν0,Ω
−1
0 ) is the bivariate Inverse-Wishart distribution with

density as

f(Y|ν0,Ω
−1
0 ) ∝ |Y|−

ν0+2+1
2 exp

{
−1

2
tr
(
Ω0Y

−1
)}

,

such that Y is a 2×2 matrix and the elements of Ω0 (which is also a 2×2 matrix)

and ν0 are fixed constants.

5.1.7 Joint posterior distribution

The joint posterior distribution for model M is given by,

p(ζ(M)|x) ∝ Lx(ζ(M))p(ζ(M)), (5.23)

up to a normalization constant.
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5.2 Parameter and state estimation

In this section, I implement an MCMC-based algorithm to estimate the hidden

states and parameters analogous to that in Section 4.2. The priors for the logit

auxiliary parameters described in Section 5.1.5 are not conjugate which makes

the MCMC algorithm more computationally intensive.

The augmented Gibbs sampler that I develop in this chapter sequentially upda-

tes the values of auxiliary parameters, then the global emission hyperparameters

conditional on the data (auxiliary parameters), transition parameters and the

hidden states. The samples of the auxiliary emission parameters are simulated

from their conditional distributions using M-H (within Gibbs) samplers as no

closed form can be obtained from the conditional posterior distributions of the

auxiliary emission parameters. The samples of the global emission hyperparame-

ters are then sampled using a mix of direct samplers and one M-H (within Gibbs)

step. The updating scheme of the remaining parameters, i.e., the states Z and

the transition parameters τ (M) for model M remain the same as in Chapter 4.

5.2.1 Outline of the augmented Gibbs algorithm

In this section, I outline the steps of the augmented Gibbs-M-H sampling scheme

for one iteration implemented to sample from the posterior distributions of the

HMM model parameters ζ(M) for model M .

1. I calculate the full likelihood of model M conditional on the HMM model

parameter ζ(M) using the forward sum recursion. The details of the forward

sum recursion procedure have been described in Section 2.2.2. In my model

M , I can re-construct the forward probability as

α
(M)
k (t) = P

(
x1:t;Zt = k|ζ(M)

)
, (5.24)
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where k = 1, 2 denotes the similarly methylated state and differentially

methylated state, respectively. The quantity α
(M)
k (t) can also be viewed as

the partial likelihood up to genomic position t, such that genomic position

t is in state k for t = 1, . . . , T and k = 1, 2 which can be written as

α
(M)
k (t) =

∑

Z1,...,Zt

π
(M)
Z1

PZ1

(
x1|η(M)

Z1
(1)

) t∏

s=2

τ
(M)
Z(s−1),Zs

(s)PZs

(
xs|η(M)

Zs
(s)

)
.

(5.25)

Using the forward sum recursion, the partial state based likelihood is given

by

α
(M)
k (t) = b

(M)
k (t)

2∑

l=1

αl(t− 1)τ
(M)
kl (t), t = 2, . . . , T. (5.26)

Here, b
(M)
k (t) = Pk

(
xt|η(M)

k (t)

)
. I have already derived expressions for

Pk(xt|η(M)
t ) in (5.14) and (5.15). For t = 1, I can write

αMk
(1) = πkbk(1). (5.27)

The full likelihood of the entire sequence can be expressed as,

Lx(ζ(M)) =
2∑

k=1

α
(M)
k (T ), (5.28)

where L(ζ(M)) is the full likelihood for model M .

2. After computing the state-based partial likelihoods and the full likelihood

using forward sum recursion, I employ a backward sampling procedure to

sample the hidden states Z. The steps of the backward sampling have been

described in detail before (step (2) of Section 4.2.1).

3. Next, I update the initial state parameters π(M) and transition model para-

111



5. Model Extensions

meters τ (M), conditional on the current values of the emission hyperparame-

ters η(M), the sequence of the hidden states Z and the observed methylation

data x. Again, the steps have been described in detail before (step (3) of

Section 4.2.1).

4. For model M , the auxiliary emission parameters η(M), conditional on the

current values of the global emission model parameters θ(M), the initial

state parameters π(M) and transition model parameters τ (M), the sequence

of the hidden states Z and the observed methylation data x, can be updated

using a M-H procedure.

5. For model M , the global emission model parameters θ(M), conditional on

the current values of the auxiliary emission parameters η(M), the initial state

parameters π(M) and transition model parameters τ (M), and the hidden

states Z and the observed methylation data x can be updated using a mix

of Gibbs sampler and M-H sampling.

5.2.2 Further details of the augmented Gibbs sampler

The key steps of the augmented Gibbs sampler are as follows:

1. I sample the hidden state path Z from the full conditional posterior distri-

bution p(Z|x, ζ(M)) given ζ(M) = (θ(M), π(M), τ (M)) and observed methy-

lation data x. For this step, I employ the data-augmentation based FSBS

procedure as described in Section 5.2.1.

2. I sample the auxiliary emission parameters η(M) from the full conditional

posterior distribution p(η(M)|x,Z,π(M), τ (M),θ(M)) given the global emis-

sion model parameter θ(M), the initial state parameters π(M) and transition

model parameter τ (M), updated hidden states Z and observed methylation

data x. However, in this step, I sample η(M) from the full conditional distri-

bution p(η(M)|x,Z,θ(M)) using a M-H algorithm given the updated hidden
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states Z, observed methylation data x and the global emission model para-

meter θ(M), since,

p(η(M)|x,Z,π(M), τ (M),θ(M)) = p(η(M)|x,Z,θ(M)). (5.29)

3. I sample the global emission hyperparameters θ(M) from the conditional

posterior distribution p(θ(M)|x,Z,π(M), τ (M),η(M)) given the auxiliary emis-

sion model parameter η(M), the initial state parameters π(M) and transition

model parameter τ (M), updated hidden states Z and observed methylation

data x. In this step, it is enough to sample θ(M) from the full conditional

posterior distribution p(θ(M)|Z,η(M)) using a M-H algorithm given the up-

dated hidden states Z and the auxiliary emission model parameter η(M),

since,

p(θ(M)|x,Z,π(M), τ (M),η(M)) = p(θ(M)|Z,η(M)). (5.30)

4. In this step, I sample the HMM model initial state parameters π(M) and

transition parameters τ (M) from the full conditional posterior distribution

p(π(M), τ (M)|x,Z,η(M),θ(M)) given the auxiliary emission parameter η(M),

global emission model hyperparameter θ(M), updated hidden states Z and

observed methylation data x. Again, the steps have been described in detail

before (step (3) of Section 4.2.2).

I now describe the sampling steps of the auxiliary emission parameters (2), glo-

bal emission hyperparameters (3) for both the models NLBDM and NLBCM .

I have already explained the sampling steps of the initial state and transition pa-

rameters (4.(a), (b)) for both the models analogous to Section 4.2.2 (3.(a), (b))

of Chapter 4 in Sections 4.2.3.2 and 4.2.3.3, respectively.
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5.2.3 Sampling steps from conditional posterior distribu-

tions

5.2.3.1 Auxiliary emission parameters

In this section, I elaborate on the sampling steps of the auxiliary emission para-

meters from their full conditional distributions. I first write the full conditional

distribution of the HMM model auxiliary emission parameters η(M),

p(η(M)|x,Z, τ (M),θ(M)) = p(η(M)|x,Z,θ(M)) (5.31)

∝ Lx,Z(η(M))p(η(M)|θ(M)).

(5.31) is proportional to the complete data likelihood Lx,Z(η(M)) times the second-

stage conditional prior p(η(M)|θ(M)) for the auxiliary emission parameter.

Again, (5.31) can be further simplified as the product of full conditional dis-

tributions of bivariate auxiliary emission parameters for model M ,

p(η(M)|x,Z,θ(M)) = p(η
(M)
1 |x,Z,θ(M)

1 )p(η
(M)
2 |x,Z,θ(M)

2 ). (5.32)

Since, η
(M)
1 are state 1 auxiliary emission parameters and η

(M)
2 are state 2 auxi-

liary emission parameters, I can further re-write (5.32) as,

p(η
(M)
k |x,Z,θ(M)

k ) =
T∏

t=1

p(qpkt , q
sk
t |xt,Zt,θ

(M)
k ). (5.33)

Now, the conditional posterior distribution of the state-specific η
(M)
k (t) given

Zt = k can be written as the product of single-point data likelihood and the

conditional prior for the auxiliary emission parameter at the tth CpG site,

p(η
(M)
k (t)|xt,Zt = k,θ

(M)
k ) ∝ L(η

(M)
k (t)|xt,Zt)p(η

(M)
k (t)|θ(M)

k ).
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If Zt = k′, i.e., {t : Zt = k} is an empty set as no observation is associated with

the hidden state k, then the conditional posterior distribution of state-specific

η
(M)
k (t) is just proportional to its conditional prior:

p(η
(M)
k (t)|xt,Zt = k′,θ(M)

k ) ∝ p(η
(M)
k (t)|θ(M)

k ). (5.34)

5.2.3.2 Global emission hyperparameters

The full conditionals of the global emission hyperparameters can be developed

from the Bivariate conditional priors of the auxiliary emission parameters which

in this case act as the likelihoods as mentioned in (5.19) due to non-informative

prior distributions for model M :

• Sample µ∗|σ2
∗, ρ∗,η

(M),Z from N

(∑T
t=1 (qp1t +qs1t )I[Zt=1]

2t1
, (1+ρ∗)σ2

∗
2t1

)
.

p(µ∗|σ2
∗, ρ∗,η

(M),Z) =
T∏

t=1

[
φ(Q1

t ,M1,Σ1)
]I[Zt=1] × 1

bµ∗ − aµ∗

∝
T∏

t=1

exp

[
−1

2

(
(Q1

t −M1)
T
Σ1
−1(Q1

t −M1)

)]I[Zt=1]

= exp

[
− 1

2σ2
∗(1− ρ2

∗)

T∑

t=1

{(
qp1t − µ∗

)2

−2ρ∗
(
qp1t − µ∗

) (
qs1t − µ∗

)
+
(
qs1t − µ∗

)2
}]

I[Zt = 1]

∝ exp

[
− 1

2σ2
∗(1− ρ2

∗)

T∑

t=1

(
µ2
∗ (2− 2ρ∗)

−2µ∗
[(
qp1t + qs1t

)
(1− ρ∗)

])
]
I[Zt = 1]

∝ exp

[
− 2t1

2σ2
∗(1 + ρ∗)

(
µ∗ −

∑T
t=1

(
qp1t + qs1t

)
I[Zt = 1]

2t1

)]
.
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i.e.,

µ∗|σ2
∗, ρ∗,η

(M),Z ∼ N

(∑T
t=1

(
qp1t + qs1t

)
I[Zt = 1]

2t1
,
(1 + ρ∗)σ2

∗
2t1

)
. (5.35)

• Sample σ2
∗|µ∗, ρ∗,η(M),Z from IG

[
t1 − 1,

∑T
t=1

{
(qp1t −µ∗)

2−2ρ∗(qp1t −µ∗)(qs1t −µ∗)+(qs1t −µ∗)
2
}
I[Zt=1]

2(1−ρ2∗)

]
.

p(σ2
∗|µ∗, ρ∗,η(M),Z) =

T∏

t=1

[
φ(Q1

t ,M1,Σ1)
]I[Zt=1] × 1

bσ2
∗ − aσ2

∗

∝ σ2
∗
−(t1−1)−1

exp

[
− 1

2σ2
∗(1− ρ2

∗)

T∑

t=1

{(
qp1t − µ∗

)2

−2ρ∗
(
qp1t − µ∗

) (
qs1t − µ∗

)
+
(
qs1t − µ∗

)2
}

I[Zt = 1]

]
.

So,

σ2
∗|µ∗, ρ∗,η(M),Z ∼ IG

[
t1 − 1,

∑T
t=1

{(
qp1t − µ∗

)2 − 2ρ∗
(
qp1t − µ∗

)
(qs1t − µ∗) + (qs1t − µ∗)

2
}

I[Zt = 1]

2(1− ρ2
∗)

]
.

• Sample ρ∗|µ∗, σ2
∗,η

(M),Z from

p(ρ∗|µ∗, σ2
∗,η

(M),Z) =
T∏

t=1

[
φ(Q1

t ,M1,Σ1)
]I[Zt=1] × 1

bρ∗ − aρ∗
.
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• Sample M2

∣∣Σ2,η
(M),Z fromBV N







∑T
t=1 q

p2
t I[Zt=2]

t2

∑T
t=1 q

s2
t I[Zt=2]

t2


 ,




σ2
p

t2

σpσsρ2
t2

σpσsρ2
t2

σ2
s

t2





 .

p(M2

∣∣σ2
p,Σ2,η

(M),Z) =
T∏

t=1

[
φ(Q2

t ,M2,Σ2)
]I[Zt=2] × 1

bµp − aµp
× 1

bµs − aµs

∝
T∏

t=1

exp

[
−1

2

((
Q2
t −M2

)T
Σ2
−1
(
Q2
t −M2

))]I[Zt=2]

= exp

[
−1

2

T∑

t=1

((
Q2
t −M2

)T
Σ2
−1
(
Q2
t −M2

))
]

I[Zt = 2]

∝ exp

[
−1

2

(
− 2M2Σ2

−1t2Q
2 + t2M2

TΣ2
−1M2

)]

∝ exp

[
−t2

2

(
M2

TΣ2
−1M2 − 2M2Σ2

−1Q2 + Q2
T
Σ2
−1Q2

)]

∝ exp

[
−t2

2

((
M2 −Q2

)T
Σ2
−1
(
M2 −Q2

))]

i.e.,

M2

∣∣Σ2,η
(M),Z ∼ BV N







∑T
t=1 q

p2
t I[Zt=2]

t2

∑T
t=1 q

s2
t I[Zt=2]

t2


 ,




σ2
p

t2

σpσsρ2
t2

σpσsρ2
t2

σ2
s

t2





 ,

(5.36)

where Q2 =
[

1
t2

(∑T
t=1 q

p2
t I[Zt = 2],

∑T
t=1 q

s2
t I[Zt = 2]

)]T
.
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• Sample Σ2|M2,η
(M),Z from IW

(
ν0 + t2,

[
Ω0 +

(
Q2
t −M2

) (
Q2
t −M2

)T]−1
)
.

p(Σ2|M2,η
(M),Z) =

T∏

t=1

[
φ(Q2

t ,M2,Σ2)
]I[Zt=2] × p(Σ2)

∝ |Σ2|−
t2
2 exp

[
−1

2

T∑

t=1

((
Q2
t −M2

)T
Σ2
−1
(
Q2
t −M2

))
]

I[Zt = 2]

× |Σ2|−
(ν0+2+1)

2 exp

{
−1

2
tr
(
Ω0Σ2

−1
)}

∝ |Σ2|−
(ν0+t2+2+1)

2

× exp

{
−1

2
tr
([

Ω0 +
(
Q2
t −M2

) (
Q2
t −M2

)T]
Σ2
−1
)}

I[Zt = 2]

i.e.,

Σ2|M2,η
(M),Z ∼ IW

(
ν0 + t2,

[
Ω0 +

(
Q2
t −M2

) (
Q2
t −M2

)T]−1
)
.

(5.37)

5.2.4 Summary of the Augmented Gibbs sampler algo-

rithm steps

1. Initialize all auxiliary emission parameters (η(M)), hyperparameters (θ(M))

for model M .

(a) For model NLBDM,

initialize all transition parameters τ (D) = (π1, τ11, τ21) and,

(b) For model NLBCM,

initialize all transition rate parameters τ (C) = (λ1, λ2).

2. Compute the state-specific emission distributions,

P (xt|Zt = k,η
(M)
k ) for k = 1, 2 and t = 1, . . . , T .

3. Compute α
(M)
k (t) for k = 1, 2 and t = 1, . . . , T .
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4. Sample backwards ZT , . . . , Z1 using backward sampling (Scott, 2002).

5. Sample (qp1t , q
s1
t , q

p2
t , q

s2
t ) using M-H algorithm as explained in Section 5.2.3.1.

6. Sample (µ∗, σ2
∗) and (µp, µs, σ

2
p, σ

2
s , ρ2) using direct sampler and ρ∗ using

M-H sampler.

7. For model M , sample the transition parameters as described in step (7) of

Section 4.2.4.

8. Implement the relabelling algorithm as described in Section 2.2.6.

9. Repeat steps (2)-(8) until convergence.

5.3 Simulation study

In this section, I describe the simulation study design, which plays the same

role for the models of this chapter as that in Section 4.3 did for the models in

Chapter 4.

5.3.1 Data generation

100 datasets were generated with T = 10000 observations each under different

situations to check the robustness of my models. The data generations were done

for 3 cases in each of the model as described in detail before (Section 4.3.1).

1. Moderately overlapped

(a) For model NLBDM, the data (xp, xs) are generated from the Normal-

logit-Binomial HMM with exactly same modes for data of both the

states, i.e., state 1 hyperparameters (µ∗ = 0.2, σ2
∗ = 1.2, ρ∗ = 0.7) and

state 2 hyperparameters (µp = 0.2, µs = 0.2, σ2
p = 1.2, σ2

s = 1.2, ρ2 =

0.7). The hidden states Z are simulated from a 1st order Markov Chain
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with an initial state probability for state 1, π1 = 0.34, and transition

probabilities τ11 = 0.87, τ21 = 0.068, as before.

(b) For model NLBCM, the data (xp, xs) are generated as for NLBDM ex-

cept that the hidden states Z are simulated from a 1st order continuous-

index Markov Chain with transition rate parameters λ1 = 0.27 and

λ2 = 0.27.

2. Well separated

(a) For model NLBDM, the data (xp, xs) are generated from the Normal-

logit-Binomial HMM with well-separated modes for data of both the

states, i.e., state 1 hyperparameters (µ∗ = −2.95, σ2
∗ = 0.7, ρ∗ = 0.65)

and state 2 hyperparameters (µp = 2.3, µs = 3.2, σ2
p = 0.85, σ2

s =

1.2, ρ2 = 0.75). The hidden states Z are simulated as for the moderately

overlapped NLBDM case.

(b) For model NLBCM, the data (xp, xs) are generated as for NLBDM

with the hidden states Z simulated as for the moderately overlapped

NLBCM case.

3. Realistic

(a) For model NLBDM, the data (xp, xs) are generated from the Normal-

logit-Binomial HMM with less well-separated modes for data of both

the states comparable to the real data, i.e., state 1 hyperparameters

(µ∗ = 0.326, σ2
∗ = 1.806, ρ∗ = 0.964) and state 2 hyperparameters

(µp = −0.676, µs = −1.65, σ2
p = 1.77, σ2

s = 2.364, ρ2 = 0.97), thus cau-

sing some amount of overlapping. The hidden states Z are simulated

from a 1st order Markov Chain with an initial state probability for

state-1 π1 = 0.39 and transition probabilities τ11 = 0.97, τ21 = 0.02.

(b) For model NLBCM, the data (xp, xs) are generated from the Normal-

logit-Binomial HMM with less well-separated modes for data of both
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the states comparable to the real data, i.e., state 1 hyperparameters

(µ∗ = 2.77, σ2
∗ = 1.62, ρ∗ = 0.73) and state 2 hyperparameters (µp =

−0.66, µs = −1.58, σ2
p = 3.64, σ2

s = 4.71, ρ2 = 0.86). The hidden states

Z are simulated from a 1st order continuous-index Markov Chain with

transition rate parameters λ1 = 0.20 and λ2 = 0.128.

5.3.2 Priors for the global emission hyperparameters

I have already observed that the full conditionals of global emission hyperparame-

ters become independent of the prior choices for these hyperparameters as they

were chosen to uninformative except for one global emission hyperparameter for

state 1, i.e., ρ∗.

ρ∗ ∼ U(−1, 1) (5.38)

5.3.3 Consistency of model parameters estimation

I generated 100 datasets under models NLBDM and NLBCM. These datasets

of size 10, 000 CpG sites were generated for each parameter setting described

in Section 5.3.1 and fitted using the augmented Gibbs sampler described in

Section 5.2. Each simulated dataset was fitted to the models NLBDM and NL-

BCM for each case with 60, 000 MCMC iterations (with 20, 000 as burn-in) after

which the posterior samples for each model parameter were assessed for conver-

gence. In Table 5.1, I present the results of the range of estimated RMSE of the

model parameters for each case. In each case, the estimated RMSE was small for

the well separated and realistic cases and much larger for the moderately over-

lapped case, comparable to the corresponding results for BBDM and BBCM in

Section 4.3.3.
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Model Case Average Misclass. rate Range of RMSE

NLBDM

Moderately overlapped 0.6617 (0.03, 1.026)

Well separated 0.0014 (0.0001, 0.005)

Realistic 0.0255 (0.0005, 0.0098)

NLBCM

Moderately overlapped 0.5091 (0.08, 1.66)

Well separated 0.0043 (0.0004, 0.009)

Realistic 0.0963 (0.0006, 0.009)

Table 5.1: Simulation study: Average misclassification rate and range of RMSE
for models: NLBDM and NLBCM based on 100 simulated datasets.

5.4 Real data study

In this section, I fit the two models NLBDM and NLBCM discussed in this

chapter to the same real data from chromosome 16 as in Chapter 4.

5.4.1 Inference via MCMC

I examined the results obtained using MCMC techniques and the convergence

properties of the estimates using various diagnostics for the real data Chromo-

some 16 described in Section 4.4.1. The proposal distribution of the ρ∗ for both

the models NLBDM and NLBCM was tuned appropriately in order to obtain

optimal acceptance rates. The acceptance rates of ρ∗ for models NLBDM and

NLBCM were 0.22 and 0.37, respectively. All necessary convergence diagnostics

were carried out and no evidence of non-convergence was obtained from any of

the diagnostics. I present the traceplots and PSRF plots in Appendix 7.2.3. In

addition, I also present the estimates of the posterior mean, S.D., 95% credible in-

tervals in Tables 4 and 5 for emission hyperparameters and Table 6 for transition
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parameters of both the models for all the 3 chains.

5.5 Comparison with Chapter 4

In this section, I have compared the simulation and real data results of this chap-

ter with Chapter 4.

In the moderately overlapped case, the average misclassification rates for NLBDM

and NLBCM are 0.6617 and 0.5091, respectively (Table 5.1). The corresponding

misclassification rates for the realistic case are 0.0255 and 0.0969, respectively,

whereas the misclassfication rates for the well separated case in both models are

much smaller than the realistic case (Table 5.1). For one of the randomly selected

simulation studies out of 100, I also present the scatter plots (Figures 5.2 5.3 5.4)

of the methylation proportions between the two cell types for all the cases clas-

sified by the true states and predicted states analogous to the corresponding

Figures 4.2, 4.3, 4.4 for models BBDM and BBCM described in Section 4.3.3.

These scatter plots (Figures 5.2 5.3 5.4) provide some improvement in the corre-

lation between the simulated methylation proportions between proliferating and

senescent cells. In addition, I also plot the histograms (Figures 5.5a, 5.5b, 5.6a,

5.6b, 5.7a, 5.7b) for all the cases. The histograms (Figures 5.5a, 5.5b) for the

moderately overlapped case in both the models are symmetric whereas the histo-

grams of the well separated (Figures 5.6a, 5.6b) and realistic (Figures 5.7a, 5.7b

cases are either U-shaped, J-shaped or reflected J-shaped. Furthermore, the ROC

curves are plotted for all the cases (Figures 5.8a, 5.8b 5.9a, 5.9b, 5.10a, 5.10b).

Figures 5.8a, 5.8b display the weak performance in the moderately overlapped

case for both the models. The well separated (Figures 5.9a, 5.9b) case for both

the models beats the realistic (Figures 5.10a, 5.10b) case by a narrow margin.

In the real data study, the boxplots (Figures 5.11, 5.13) validating the biolo-
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gical presumption, for both models are plotted. These boxplots are analogous

to the boxplots in Chapter 4 (Figures 4.11, 4.13) . Additionally, the histograms

of state 2 posterior probabilities for model BBDM show strong classification of

states in Figure 5.12 whereas the classification of the states is moderately poor

in the case of model BBCM as shown in Figure 5.14, comparable to the corre-

sponding histograms (Figures 5.12, 5.14) for BBDM and BBCM in Section 4.5.

5.6 Summary

In this Chapter, I described my extended HMMmethState method for identifying

DMCs from BS-seq methylation data. I implemented both the models NLBDM

and NLBCM, to capture the correlation in the bivariate data between the met-

hylated counts of senescent and proliferating cells. I have extended the original

Beta-Binomial emission model described in Chapter 4 to a bivariate Normal-logit

emission model, where the underlying bivariate logit parameters at the 2nd stage

of the hierarchical model are assumed to be normally distributed at each CpG site

and they are clustered around a state-specific mean with a state-specific variance

and state-specific correlation between the two cell types.

I have also visually illustrated my claim that both the models NLBDM and

NLBCM can capture the correlation between the methylated counts of both the

cells. I have presented the scatter plots of the methylation counts of proliferating

cells against senescent cells for the observed data and for the fitted models in

Figure 5.15. The visual posterior predictive checking using the posterior mean

estimates of the parameters of the fitted models in Figure 5.15 clearly indicates

that there is a correlation between the methylated counts of proliferating and

senescent cells. Figures 5.15a, 5.15c show the scatterplots of the observed data

classified by the predicted states. On the other hand, Figures 5.15b, 5.15d show
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(a) Scatter plot for NLBDM
classified by simulated states.

(b) Scatter plot for NLBDM
classified by predicted states.

(c) Scatter plot for NLBCM
classified by simulated states.

(d) Scatter plot for NLBCM
classified by predicted states.

Figure 5.2: For the moderately overlapped case. (a) A scatter plot of simulated
methylation proportions between proliferating and senescent cells classified by the
simulated states for NLBDM. (b) A scatter plot of simulated methylation propor-
tions between proliferating and senescent cells classified by the predicted states
for NLBDM. (c) A scatter plot of simulated methylation proportions between
proliferating and senescent cells classified by the simulated states for NLBCM.
(d) A scatter plot of simulated methylation proportions between proliferating and
senescent cells classified by the predicted states for NLBCM.
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(a) Scatter plot for NLBDM
classified by simulated states.

(b) Scatter plot for NLBDM
classified by predicted states.

(c) Scatter plot for NLBCM
classified by simulated states.

(d) Scatter plot for NLBCM
classified by predicted states.

Figure 5.3: For the well separated case. (a) A scatter plot of simulated met-
hylation proportions between proliferating and senescent cells classified by the
simulated states for NLBDM. (b) A scatter plot of simulated methylation propor-
tions between proliferating and senescent cells classified by the predicted states
for NLBDM. (c) A scatter plot of simulated methylation proportions between
proliferating and senescent cells classified by the simulated states for NLBCM.
(d) A scatter plot of simulated methylation proportions between proliferating and
senescent cells classified by the predicted states for NLBCM.
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(a) Scatter plot for NLBDM
classified by simulated states.

(b) Scatter plot for NLBDM
classified by predicted states.

(c) Scatter plot for NLBCM
classified by simulated states.

(d) Scatter plot for NLBCM
classified by predicted states.

Figure 5.4: For the realistic case. (a) A scatter plot of simulated methylation
proportions between proliferating and senescent cells classified by the simula-
ted states for NLBDM. (b) A scatter plot of simulated methylation proportions
between proliferating and senescent cells classified by the predicted states for
NLBDM. (c) A scatter plot of simulated methylation proportions between pro-
liferating and senescent cells classified by the simulated states for NLBCM. (d)
A scatter plot of simulated methylation proportions between proliferating and
senescent cells classified by the predicted states for NLBCM.
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(b) Histogram for BBCM

Figure 5.5: For the simulation study of NLBDM and NLBCM, the 2 panels depict
the histogram of posterior state 2 probabilities for the moderately overlapped case:
(a) NLBDM and (b) NLBCM based on one randomly selected simulation.
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(b) Histogram for BBCM

Figure 5.6: For the simulation study of NLBDM and NLBCM, the 2 panels depict
the histogram of posterior state 2 probabilities for the well separated case: (a)
NLBDM and (b) NLBCM based on one randomly selected simulation.
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(b) Histogram for BBCM

Figure 5.7: For the simulation study of NLBDM and NLBCM, the 2 panels depict
the histogram of posterior state 2 probabilities for the realistic case: (a) NLBDM
and (b) NLBCM based on one randomly selected simulation.
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(a) ROC curve for NLBDM

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) ROC curve for NLBCM

Figure 5.8: For the simulation study of NLBDM and NLBCM, the 2 panels
depict the ROC curves for the moderately overlapped case: (a) NLBDM and (b)
NLBCM.
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(a) ROC curve for NLBDM
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(b) ROC curve for NLBCM

Figure 5.9: For the simulation study of NLBDM and NLBCM, the 2 panels depict
the ROC curves for the well separated case: (a) NLBDM and (b) NLBCM.
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(b) ROC curve for NLBCM

Figure 5.10: For the simulation study of NLBDM and NLBCM, the 2 panels
depict the ROC curves for the realistic case: (a) NLBDM and (b) NLBCM.
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Figure 5.11: For the real study of NLBDM, boxplots of the difference of methy-
lation proportions between proliferating and senescent cells classified by various
categories defined in the text.
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Figure 5.12: For the real study of NLBDM, histogram of posterior state 2 proba-
bilities.
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Figure 5.13: For the real study of NLBCM, boxplots of the difference of methy-
lation proportions between proliferating and senescent cells classified by various
categories defined in the text.
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Figure 5.14: For the real study of NLBCM, histogram of posterior state 2 proba-
bilities.
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(a) NLBDM : Observed (b) NLBDM : Simulated

(c) NLBCM : Observed (d) NLBCM : Simulated

Figure 5.15: For the the real study, the 4 panels depict the scatter plots: (a)
A scatter plot of observed methylated counts for the proliferating and senescent
cells classified by the predicted states for NLBDM. (b) A scatter plot of simu-
lated methylated counts (generated using the posterior mean estimates) for the
proliferating and senescent cells classified by the predicted states for NLBDM. (c)
A scatter plot of observed methylated counts for the proliferating and senescent
cells classified by the predicted states for NLBCM. (d) A scatter plot of simu-
lated methylated counts (generated using the posterior mean estimates) for the
proliferating and senescent cells classified by the predicted states for NLBCM.
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scatterplots of the fitted data classified by the predicted states, displaying that

the correlation between the methylated counts of proliferating and senescent cell

can be better captured by the extended HMMmethState models: NLBDM and

NLBCM. Furthermore, from these initial visual posterior predictive scatterplots,

I concluded that, the Normal-logit-Binomial emission model is an improvement

over Beta-Binomial emission model in capturing the correlation between methy-

lated counts of proliferating and senescent cells.

Although the extended HMMmethState models NLBDM and NLBCM give a

reasonable description of the data-generating process, it is still essential to de-

termine the appropriateness of the models to data, more widely. In the following

chapter, I will check the practical fit to whole-genome data and whether my se-

lection of it is important to check the practical fit and whether my selection of the

Normal-logit-Binomial emission model over the Beta-Binomial emssion model, as

described in Chapter 4 is justified or not.
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Chapter 6

Assessment of HMMmethState

and Biological Results

In this chapter, I perform model adequacy checks and model comparisons to

assess the suitability of my proposed HMMmethState models: BBDM, BBCM,

NLBDM and NLBCM. I have described the concepts of model assessment within

a Bayesian framework in Section 2.3. I use the posterior predictive model checking

techniques and model selection criteria to examine the adequacy and fit of the

models.

I also assess the performance of my models and compare their efficacies in iden-

tifying DMRs/DMCs with other existing methods. While it would be ideal to

know the true state of methylation in order to compare the performance of the

newly proposed models, unfortunately, an ideal BS-seq test data set with known

methylation status at each CpG site does not exist. Even though several studies

have been put into developing gold-standard datasets which can be used for com-

parison purposes, I need a well-founded dataset, such that the data (methylated

and unmethylated counts at each CpG site) as well as the missing data, i.e., the

methylation status at each CpG site, and both the data and the missing data
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are derived from a realistic approach. Thus, these comparisons are carried out

by means of a simulation study where the true methylation status is known, as

well as application to real data where this information is missing. I also use an

alternative surrogate data to assess the results.

In the following sections, I perform cross comparison under different models.

I simulate data under each model and subsequently estimate the model parame-

ters and hidden states to decide whether in each case the correct true model was

the most accurate or not. I compare the model assessment and model selection

results for all the models when applied to a real dataset. Furthermore, I investi-

gate and explore various ways of assessing the efficacies of DMC calling methods

using simulated datasets. In addition, I also present and compare the DMCs

and DMRs obtained using my proposed method: HMMmethState and existing

methods.

6.1 Simulation study

In this section, the data generation assumptions considered for comparing my

proposed HMMmethState models are described. Four simulation studies were

performed to compare the predictive accuracies of the hidden states and perfor-

mances among the four HMMmethState models namely BBDM, BBCM, NLBDM,

NLBCM. For each simulation study, the data was generated from model M

(M :BBDM, BBCM, NLBDM, NLBCM ) using the posterior estimates (means)

of the transition parameters and emission hyperparameters based on a subset

of a real dataset (Chromosome 21) of 10, 000 CpG sites. To ensure the data

generated in the simulation studies exhibit prominent features of the real data,

methylated counts (xp,xs) were generated for each CpG site using a Binomial

distribution, where the total counts (np,ns) were taken from the real dataset of

Chromosome 21. For each simulation study, the methylated counts (x = xp,xs)
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True base model Emission hyperparameters Transition parameters

BBDM
α β γ1 δ1 γ2 δ2 π1 τ11 τ21

5.19 2.678 1.356 3.228 1.107 5.48 0.334 0.867 0.067

BBCM
α β γ1 δ1 γ2 δ2 λ1 λ2

11.62 5.10 1.19 1.90 0.78 1.82 0.534 0.11

NLBDM
µ∗ σ2∗ ρ∗ µp µs σ2

p σ2
s ρ2 π1 τ11 τ21

0.33 1.892 0.964 -0.65 -1.61 1.73 2.30 0.968 0.38 0.97 0.0175

NLBCM
µ∗ σ2∗ ρ∗ µp µs σ2

p σ2
s ρ2 λ1 λ2

2.77 1.62 0.73 -0.66 -1.58 3.64 4.71 0.86 0.20 0.128

Table 6.1: Simulation study: parameters for generation of data using HMMmet-
hState models.

and the true hidden states Z were generated with the parameter values given in

Table 6.1. The transition parameters and emission hyperparameters as provided

in Table 6.1 were chosen to match the posterior estimates for the realistic cases

as described in Sections 4.3.1 and 5.3.1, respectively.

For each of the four competing models, 100 datasets were simulated. Then, each

simulated dataset was fitted with the four competing HMMmethState models:

BBDM, BBCM, NLBDM, NLBCM and compared using different model selection

criteria and performance.

6.1.1 Model selection criteria

In this section, the ability of model selection criteria to distinguish among the four

HMMmethState models is discussed. The model selection criteria implemented

are DIC1 (Spiegelhalter et al., 2002), DIC3 (Celeux et al., 2006) as described in

Section 2.3.3 and WAIC (Gelman et al., 2014, Watanabe, 2010) as described in

2.3.4. Table 6.2 presents the proportion of times that DIC1, DIC3 and WAIC

selected each of the four compteing HMMmethState models for each true model

(base model). It can be observed from Table 6.2 that DIC1, DIC3 and WAIC

mostly select the correct model, except in the case of DIC3 for model NLBCM.

It can be further noted that the DIC3 values for models NLBCM and NLBDM

with respect to the true base model NLBCM were similar and the differences
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between these values were small. Hence, this kind of model selection criterion

rejects the information about relative model selection accuracy contained in the

differences between the DIC3 values of models NLBCM and NLBDM.

Model Chosen model BBDM BBCM NLBDM NLBCM
Base model

BBDM

DIC1 0.71 0 0.29 0
DIC3 0.8 0.0 0.2 0.0
WAIC 0.63 0.05 0.26 0.06

misclass. prob. 0.0195 0.1941 0.0201 0.0415

BBCM

DIC1 0 1 0 0
DIC3 0.0 1.0 0.0 0.0
WAIC 0.03 0.67 0.09 0.21

misclass. prob. 0.0816 0.0660 0.0743 0.0679

NLBDM

DIC1 0 0.27 0.73 0
DIC3 0.0 0.4 0.6 0.0
WAIC 0.02 0.03 0.88 0.7

misclass. prob. 0.3503 0.3075 0.0263 0.1659

NLBCM

DIC1 0.2 0.19 0.08 0.53
DIC3 0.4 0.3 0.3 0.0
WAIC 0.01 0.06 0.11 0.82

misclass. prob. 0.1186 0.4215 0.0341 0.0956

Table 6.2: Performance of model selection criteria and sensitivity based on the
simulation study.

6.1.2 ROC curves

In the previous section, I examined the ability of HMMmethState models in

selecting the true base model. Now, in this section, I review the performance of

the HMMmethState models using receiver operating characteristic (ROC) curves

based on the simulation study design described in Section 6.1. The ROC curve of

the model-based method explains the relationship between the false positive rate

(FPR) against true positive rate (TPR) of methylation status at each CpG site.

The TPR can be described as the proportion of correctly identified differentially

methylated CpG sites. The FPR can then be described as the proportion of
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similarly methylated CpG sites which are incorrectly selected by the method due

to classification error. I present the results of the misclassification rates of the

model with repect to the true base models in Table 6.2. It can be clearly observed

from Table 6.2 that the misclassification rates of HMMmethState models are the

lowest when the data are generated from the true (base) models except in the

case for base model NLBCM, where the misclassification rate of model NLBDM

is the lowest. Overall, the performance of model NLBDM is the best in terms of

misclassification rates as it ranged between (0.0201, 0.0743) irrespective of the

true base models. These performances of HMMmethState models can also be

validated visually using the ROC curves. Figures 6.1 shows the ROC curves for

the models BBDM (red line), BBCM (blue line), NLBDM (green line), NLBCM

(yellow line) with area under the ROC curves suggestive of the relative accuracies

of the models in identifying the status of methylated CpG sites averaged over 100

repetitions. While the performance of model NLBDM efficiently overtakes the

performance of the other models, NLBCM also attains a higher area under the

curves than the other two competing models. However, the pertinent question

arises, which among these models is the best one and on what basis? I next study

the choice of the best model in modelling the real data.

6.2 Real data analysis (0.060034−90.294609 Mb on

chromosome 16)

The performance of the 4 HMMmethState models namely BBDM, BBCM, NLBDM,

NLBCM are assessed with respect to their corresponding true base models in the

previous simulation study section 6.1. In this section, I assess the adequacy

and appropriateness of the competing HMMmethState models and compare the

models using different model selection criteria.
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(d) Base model: NLBCM

Figure 6.1: For the simulation study of four true base HMMmethState model
setups: (a) BBDM, (b) BBCM, (c) NLBDM and (d) NLBCM, four panel depict
the ROC curves for each HMMmethState models in comparison to the true base
HMMmethState models based on 100 simulated datasets.

6.2.1 Posterior predictive model checking

The fit of the model can be studied using the log-posterior predictive distribu-

tions of the data (Gelman and Meng, 1998), which are commonly used as the
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6. Assessment of HMMmethState and Biological Results

discrepancy statistics for finite mixture models. Thus, the use of such kind of

discrepancy statistics can also be extended for HMMs (Scott, 2002) As already

described in details in Section 2.3.2, the discrepancy statistics can be functions

of both the parameters and the data, that assess the discrepancy between the

model and the data rather than correctness of the model. In order to explore the

relevant characteristics of the BS-seq methylation data, I use the most pragmatic

version of the discrepancy test statistic, log-posterior predictive distributions as

used in Gelman and Stern (2000) and Jonghyun et al. (2014), which include all

the features of my model parameters.

Let us denote xrep as the replicated data simulated from the posterior predictive

distribution p(xrep|x) and then the discrepancy test-statistics can be described

for model M as,

T(x, ζ(M)) = logLx(ζ(M)), (6.1)

where ζ(M) denotes the HMM parameters for model M.

The posterior predictive p-value for model M can also be explained as the pro-

bability that the replicated data is more extreme than the observed data, which

is defined as below,

p(M) = P (T(xrep, ζ(M)) ≥ T(x, ζ(M))|x). (6.2)

To study the plausability of HMMmethState models: BBDM, BBCM, NLBDM,

NLBCM, I compute the posterior predictive p-values of all the models. The

posterior predictive p-value can be interpreted as the measure to evaluate the

discrepancies between the model and the data. I calculate p-values using the

MCMC samples for i = 1, . . . , I, [(xrep)(i), ζ(M)(i)
] and (xrep)(i) are generated

from p(x|ζ(M)(i)
) for model M . I performed the posterior predictive checks for

all the competing models. I present the scatterplots in Figure 6.2 of the MCMC
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6. Assessment of HMMmethState and Biological Results

Model BBDM BBCM NLBDM NLBCM

DIC1 20162274 23754504 6400362623 9994570530
pDIC1 5.897 254064 3194513526 4991464492
DIC3 20098146 23229972 6400362180 9994568928
pDIC3 5.816 246928 3194512813 4991460281
WAIC 19258033 22787917 14960221 15137114
pWAIC 8.64 19.65 1614579 1688645
p(M) 0.0000000 0.0000000 0.6119829 0.7517832

Table 6.3: Model comparisons.

simulated paired values of T(x, ζ(M)) and T(xrep, ζ(M)) for the four models after

burn-in.

I performed the posterior predictive checks for all the competing models and the

scatter plots based on the test statistics for model M (6.1) are displayed in Fi-

gure 6.2. The last row in Table 6.3 show the posterior predictive p-values, which

demonstrate the discrepancies between the models and the data. The p-values

of BBDM and BBCM being 0 clearly indicate a lack of model fit. The pos-

terior predictive p-values for NLBDM and NLBCM do not show any evidence

of discrepancies between the model and the data. It can also be observed from

Figure 6.2 that the replicated log-posterior densities are higher than the obser-

ved log-posterior densities over the MCMC draws. Thus, the posterior checking

I conducted in this section, indicates that models BBDM, BBCM are not ade-

quate for the data whereas NLBDM, NLBCM would be better suited for BS-seq

methylation data.

6.2.2 Model selection

Table 6.3 comprises the model selection criteria estimates from the real data ana-

lysis. I have presented the values of the effective number of parameters for both

versions of DICs, i.e., DIC1 and DIC3 for HMMmethState model in Table 6.3 to

show the variations of these values especially for models NLBDM and NLBCM.

147



6. Assessment of HMMmethState and Biological Results

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

−10081142 −10081138 −10081134

−
10

11
80

00
−

10
11

20
00

−
10

10
60

00

Observed

R
ep

lic
at

ed

(a) BBDM
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(b) BBCM

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

−6800000 −6700000 −6600000 −6500000

−
7e

+
06

−
6e

+
06

−
5e

+
06

−
4e

+
06

Observed

R
ep

lic
at

ed

(c) NLBDM
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Figure 6.2: For the real study of four HMMmethState models: (a) BBDM, (b)
BBCM, (c) NLBDM and (d) NLBCM, four panel depict the scatter plots of log-
posterior densities for the observed and replicated data based on thinned MCMC
draws.

Although the values of two versions of DIC are different, both these DICs, i.e.,

DIC1 and DIC3 select the same model. I observed this characteristic even in the

simulation study of model selection criteria as described in Section 6.1.1. DIC
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values for models NLBDM and NLBCM are largely affected due to the variations

in the values of effective dimension (effective number of free parameters) compa-

red to models BBDM and BBCM, where the effective dimension values are quite

stable. As one can see from Figure 6.2, the y-axis (observed log-posterior densi-

ties based on 10, 000 MCMC iterations) of the scatter plots for models NLBDM

and NLBCM show huge variations compared to models BBDM and BBCM. Ta-

ble 6.3 displays the estimated effective dimension of values of WAIC which are

quite stable for all the HMMmethState models. I have also observed that the

estimated effective dimension values for models NLBDM and NLBCM are ap-

proximately close to the total number of data points (around 2.16 million data

points for Chromosome 16).

WAIC based model selection has an edge over DIC based model selection specifi-

cally for models with mixture and hierarchical structures as explained in Gelman

et al. (2013). The point estimates of the model sometimes do not make sense as

the number of parameters increases with the sample size for hierarchical HMMs.

I also found the efficacy of WAIC in this section. As it can be observed from

Table 6.3 that with the increase in the effective number of parameters, the DIC

values were inconclusive especially for models NLBDM and NLBCM. Due to the

non-conjugate structure of models NLBDM and NLBCM, the number of para-

meters (auxiliary parameters) increases with the sample size for HHMM, which is

evidently quite high for real data. DIC values can be quite distinct to each other

for the pair of models BBDM, BBCM and models NLBDM, NLBCM as they de-

pend on the effective dimension, i.e., effective dimension of auxiliary parameters

for models NLBDM and NLBCM, which is essential to the idea of DIC (Celeux

et al., 2006). Several authors including Celeux et al. (2006) and Plummer (2008)

have suggested that DIC might not be appropriate in the context of hierarchical

missing data models. Although Celeux et al. (2006) discussed in details different

variations of DICs for missing data models. I have only described three versions
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of DICs in Section 2.3.3. DIC expressions for latent variable models were previ-

ously explored by Richardson (2002) which was again discussed by Celeux et al.

(2006), Hooten and Hobbs (2015) and later which had been theoretically justi-

fied by Watanabe (2010). For the purpose of model selection, I applied WAIC

expressions for selecting the best models based on real data.

6.3 Comparison with other methods

Two existing methods methylKit and DSS, that analyse BS-seq data in order to

detect DMCs/DMRs were discussed in Chapter 3. To compare the performance

of my models to other competing methods, I implemented an extensive simulation

study based on the HMMmethState models to compare the performance of each

of my true HMMmethState models with methylKit and DSS.

6.3.1 Simulation study

To examine the robustness of my proposed method, i.e., HMMmethState, with

other existing methods, I performed a simulation study. In this section, I inves-

tigate the performance of each of the models of HMMmethState with DSS and

methylKit.

The simulation procedure remains the same as described in Section 6.1. For

each simulation study, the methylated counts x = (xp,xs) and true underlying

methylation status for each CpG site, i.e., Z, hidden states, were generated with

the parameter values provided in Table 6.1. The simulation study involved 100

replications under each simulation setting.

I fit four HMMmethState models to the data generated using the true base mo-

dels. Furthermore, I simultaneously fit DSS and methylKit models to the data

and compare them with each of the HMMmethState models (true base models)
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that generated the data.

6.3.2 ROC curves

To compare the performance of each of the HMMmethState models with the

other differential methylation caller methods, I inspect their ROC curves. For

each simulation setup of each of the HMMmethState models, I plot the ROC

curves of each of the HMMmethState (true base) models and then compare with

DSS and methylKit averaged over 100 repetitions. Figure 6.3 shows the ROC

curves for the HMMmethState methods (red line), DSS (blue line) and methylKit

(orange line) with areas under the ROC curves indicating the accuracies of the

competing methods in identifying the DMCs. For the ROC curves in Figure 6.3,

HMMmethState clearly achieves the highest area under the ROC curves than

the competing methods: DSS and methylKit irrespective of the HMMmethState

models, thus inferring their high reliability in identifying DMCs.

6.4 Simulating data from a mixture model

To assess the reliability of HMMmethState, computationally-derived data that

mimic the experimental observations with known underlying structure of the

hidden states was simulated in Section 6.3.1 using HMMmethState model as the

true base model. Although my HMMmethState method models the properties of

the data reasonably well as described in Section 6.3.2, the performance should not

be examined on data simulated using the same models, since it tends to provide

an undue advantage to the true base model and the comparison would eventually

become biased. To implement a more objective analysis, I searched for a con-

ceptually distinct simulator that has similarities to the data assumption criteria

used in the competing methods: methylKit and DSS. Clearly, both these models

do not consider Markovian dependence between two adjacent hidden states in

their model specifications, since the spatial dependence among the CpG sites is
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Figure 6.3: For the simulation study of four true base HMMmethState model
setups: (a) BBDM, (b) BBCM, (c) NLBDM and (d) NLBCM, four panel depict
the ROC curves for methylKit and DSS in comparison to the true base HMM-
methState models.

not taken into account.

One possible model that could emulate BS-seq methylation data and yet retain
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non-Markovian and independence assumptions of the hidden states is the mixture

model. To test the robustness of HMMmethState to the data generated using

the mixture model, I simulated methylated counts from a model similar to model

NLBDM as described in Chapter 5 with the only difference being that the hidden

states Z are assumed to be independent. The joint mixture model (Model MM )

for X can be defined by its probability distribution:

P (x|η(MM)
1 ,η

(MM)
2 ) = π(MM)P

(
x|η(MM)

1 ,Z
)

+
(
1− π(MM)

)
P
(
x|η(MM)

2 ,Z
)
,

(6.3)

where π(MM) is the mixture proportion of state 1 component and P
(
x|η(MM)

1 ,Z
)

and P
(
x|η(MM)

2 ,Z
)

are state-dependent densities of state 1 and state 2 respecti-

vely. I have already defined the generic notations of the emission parameters in

Section 5.1.4.

Furthermore, P
(
x|η(MM)

k ,Z
)

for state k can be written as,

P
(
x|η(MM)

k ,Z
)

=
T∏

t=1

P
(
xt|η(MM)

k (t)
)I[Zt=k]

, k = 1, 2. (6.4)

It is obvious that in a mixture model, the hidden states Z, which influence the

mixture component to be picked for each observation, are independent of each

other rather than related through a Markov process (as in the case of HMM).

The structure of the hierarchical mixture model can be written as follows:

Xp
t |Zt = k ∼ Bin

(
npt , logit

−1(qpkt )

)
and Xs

t |Zt = k ∼ Bin

(
nst , logit

−1(qskt )

)
,

Qk
t |Zt = k ∼ BV N(θ

(MM)
k ), k = 1, 2 and t = 1, . . . , T, (6.5)
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where θ
(MM)
k = (Mk,Σk) and BV N(.) is the bivariate Normal distribution as

described in Section 5.1. The structure of the hierarchical mixture model remains

the same as of NLBDM and NLBCM except that the hidden states are assumed

to be non-Markovian and independent.

The likelihood function given the data x and the hidden states Z is given by,

Lx,Z

(
η

(MM)
1 ,η2, π

(MM)
)

=
T∏

t=1

[{
π(MM)P

(
xt|Q1

t

)I[Zt=1]
}

×
{(

1− π(MM)
)
P
(
xt|Q2

t

)I[Zt=2]
}]

=
{
π(MM)

}t1 {
1− π(MM)

}t2

×
T∏

t=1

[
P
(
xt|Q1

t

)]I[Zt=1]
T∏

t=1

[
P
(
xt|Q2

t

)]I[Zt=2]
. (6.6)

The probability for the sequence of the hidden states Z conditional on the mixture

proportion π(MM) is:

P (Z|π(MM)) =
{
π(MM)

}t1 {
1− π(MM)

}t2
. (6.7)

Similar to my previous approaches as described in Equation 4.55 for the state

transition probabilities, I choose a Uniform prior for π(MM) such that π(MM) ∼
Beta(1, 1) independently and sample the mixture proportion π(MM) conditional

on the hidden states Z as below.

π(MM)|Z ∼ Beta(t1 + 1, t2 + 1). (6.8)

The conditional bivariate Normal priors of the auxiliary emission parameters η

and the priors for the global hyperparameters θ are explained in Sections 5.19

and 5.19, respectively.

The full conditional posterior distributions of η and θ are described in detail in

Sections 5.2.3.1 and 5.2.3.2, respectively.
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The full conditional posterior probability of Zt at state k, k = 1, 2 are:

P (Zt = 1|x,η(MM),θ(MM), π(MM)) ∝ π(MM)P
(
xt|Q1

t

)
(6.9)

and

P (Zt = 2|x,η(MM),θ(MM), π(MM)) ∝
(
1− π(MM)

)
P
(
xt|Q1

t

)
. (6.10)

6.4.1 Summary of the Gibbs sampler algorithm steps

1. Initialize all auxiliary parameters η(MM), hyperparameters (θ(MM)), Z.

2. Initialize mixture proportion π(MM).

3. Update η(MM) from the full conditional posterior distributions in

Section 5.2.3.1.

4. Update (θ(MM)) from the full conditional posterior distributions in

Section 5.2.3.2.

5. Update π(MM) from the full conditional posterior distribution in Section 6.8.

6. Implement the relabelling algorithm as described in Section 2.2.6.

7. Repeat steps (3)-(6) until convergence.

To resemble the real data, for model MM, the data are generated using the

real data study posterior estimates. The posterior estimates of the parameters

obtained using MCMC techniques and convergence properties of the estimates as
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explained in Section are given below:

µ∗ = 0.26

σ2
∗ = 1.54

ρ∗ = 0.91

µp = −0.82 (6.11)

µs = −1.95

σp = 1.68

σs = 2.27

ρ2 = 0.96

π(MM) = 0.42

In this case, the simulation procedure was replicated 100 times, such that 100

datasets were generated with T = 10000 observations. I fit four HMMmethState

models to the mixture model MM data. Furthermore, I fit methylKit and DSS

models to the data. In Figure 6.4, I plotted the ROC curves. For the ROC plot,

all the HMMmethState methods attain the higher area under the ROC curve

compared to the competing methods. In addition, Model NLBDM again outper-

forms all the competing methods and validates its high reliability in identifying

DMCs.

6.5 Real data analysis across all chromosomes

(Cruickshanks et al., 2013)

In this section, I demonstrate the results of applying the proposed HMMmet-

hState models on BS-seq methylation data from Cruickshanks et al. (2013). I

analyse the whole data for detecting DMRs across all chromosomes described in

Sections 6.5.2 and 6.5.3, respectively.
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Figure 6.4: For the mixture model MM simulation study, ROC curves for models
BBDM, BBCM, NLBDM, NLBCM, methylKit and DSS.
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6.5.1 Implementations of HMMmethState models with

methylKit, DSS

In this section, I compare the results of HMMmethState analysis with the results

obtained from DSS and methylKit based on their publicly available R/Bioconductor

package implementations. I have applied HMMmethState models to analyze four

chromosomal datasets: Chromosomes-3, 9, 14, 22 and model selection was done

using WAIC. I only considered 20, 000 contiguous CpG sites (randomly selected)

of each chromosome for comparisons.

In this subsection, I have fitted four HMMmethState models: BBDM, BBCM,

NLBDM and NLBCM to the data (Chromosome 16). The WAIC favors the

NLBDM model as the best among the four HMMmethState models, which im-

plies positional variations of the CpG sites does not affect the methylation status

prediction of the neighboring CpG sites. In the rest of this subsection, I illustrate

the HMMmethState results based on all the four HMMmethState models.

I first applied the algorithms based on the four HMMmethState models and then

compared the predicted states with the competing methods methylKit (Akalin

et al., 2012) and DSS (Wu et al., 2015) as described in Sections 3.3.1 and 3.3.2

respectively. I presented the results of the DMCs identified by each of the four

HMMmethState models, methylKit and DSS in the following subsections. Fi-

gure 6.5 presents a Venn diagram that summarizes the results for DSS, methylKit

and HMMmethState models.

• Chromosome 3: I have applied the HMMmethState, methylKit and DSS

methods to 20, 000 CpG sites of Chromosome 3. The WAIC favors the

NLBCM model as the best among the four HMMmethState models for

this dataset, which implies positional variations of the CpG sites affects

the methylation status prediction of the neighboring CpG sites. The sets
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of DMCs identified by the methods HMMmethState, methylKit and DSS

are summarized in Figure 6.5a. The method HMMmethState discovered

19, 999 CpG sites. In contrast, the methods DSS and methylKit detected

only 13, 796 DMCs and 14, 790 DMCs respectively. A closer examination

sheds light on the differing sets of DMCs identified by HMMmethState,

methylKit and DSS. Of the DMCs detected by HMMmethState, as many

as 13, 795 DMCs were also identified by DSS. And, all the DMCs detected

by methylKit were also identified by HMMmethState.

• Chromosome 9: All methods were applied to 20, 000 CpG sites of Chromo-

some 9. The WAIC favors the NLBDM model as the best among the four

HMMmethState models for this dataset, which implies positional variations

of the CpG sites does not affect the methylation status prediction of the

neighboring CpG sites. The HMMmethState technique identified 13, 565

DMCs. The overlapping set of DMCs are summarized in Figure 6.5b and

reveal a greater lack of concordance among the methods than the Chromo-

some 3 dataset. Only 6, 117 CpG sites are identified as DMCs by all three

methods. This low level of agreement is a result of the low overlap that

methylKit has with the other methods.

• Chromosome 14: I have applied the HMMmethState, methylKit and DSS

methods to 20, 000 CpG sites of Chromosome 14. I have found that the

WAIC favours the NLBDM model, which is a hierarchical correlated HMM

without CpG sites dependence. The sets of DMCs identified by the methods

HMMmethState, methylKit and DSS are summarized in Figure 6.5c. Here,

HMMmethState method identifies 17, 190 CpG sites as DMCs. methylKit

and DSS detect 12, 633 and 11, 447 DMCs respectively. 6, 843 DMCs are

identified by all the three methods.

• Chromosome 22: Here, WAIC favours the NLBDM model as well. 8795

DMCs are identified by all the three methods. Of the 13, 785 DMCs iden-
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tified by DSS, HMMmethState detected 12, 717 DMCs and of the 17, 884

identified by HMMmethState, methylKit successfully detected 11, 873 DMCs.

Figure 6.5d presents a Venn diagram that summarizes the results for DSS,

methylKit and HMMmethState.

6.5.2 Spatial dependence comparison among chromoso-

mes

I analyze the BS-seq data of each chromosome separately and subsequently inves-

tigate the posterior distribution of the chromosome-specific parameters using the

MCMC based algorithm explained in Section 5.2.2, since all the models selected

were either NLBDM or NLBCM.

To analyze the difference between models NLBDM and NLBCM, I investigate

patterns among the chromosomal datasets in which one model fits better than the

other. One significant pattern is related to the way the two models tackle the spa-

tial dependence in the data. Their difference is quite evident in the posterior dis-

tributions of the estimated probabilities or the deviations of certains data points.

Model NLBDM fits better than model NLBCM in most datasets. Selecting model

NLBDM implies that the positional variations among the CpG sites do not affect

the spatial dependence among the CpG sites. The chromosomal datasets that

select model NLBCM are: Chromosome 1, 2, 3, 5, 6, 8 and Y . The remaining

chromosomal datasets select NLBDM for model fit based on WAIC. Furthermore,

I estimate the credible intervals of HMMmethState model parameters selected

using WAIC for each chromosomal datasets. Tables 6.4 and 6.5 present the WAIC

picked model for each chromosome. Figures 6.6, 6.7, 6.8, 6.9, 6.10, 6.11, 6.12 and

6.13 display the credible intervals of the WAIC picked model emission parameters

for each chromosome. Since NLBDM and NLBCM have the same set of emission

parameters, I plotted the credible intervals of the parameter in the same graph.

Clearly, there is a pattern of consistency in the credible intervals of the parame-
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Figure 6.5: Venn diagrams for the DMCs identified by the methods HMMmet-
hState, DSS and methylKit in the real data analysis of 20, 000 CpG sites of 4
chromosomes. HMMmethState model setups: (a) NLBCM - Chr3, (b) NLBDM -
Chr9, (c) NLBDM - Chr14 and (d) NLBDM - Chr22.

ters. There is a significant variation in the credible intervals of NLBDM model

parameters to the NLBCM model parameters due to the change of assumptions

in the respective transition models. The credible interval regions of the WAIC
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picked model M : (NLBDM, NLBCM ) parameters are quite consistent in nature

and the two different model parameters can even be visually segregated from

Figures 6.6 to 6.13.

6.5.3 Defining DMR windows

In many instances, it might be sensible to summarize the differential methyla-

tion status of each CpG site over tiling windows instead of the single base pair

resolution. As an example, D Smith et al. (2012) studied methylation profiles

with RRBS experiments on gametes and zygote and subsequently summarized

methylation data information over 100 bp resolution windows across the genome.

These results uncovered a unique segment of DMRs maintained in early embryo.

Employing tiling window techniques could be useful when methylation pattern of

a region determines its whole funtional dynamics and also help in understanding

the role of gene-expression in differential methylation.

I implemented a simple technique in HMMmethState for defining DMRs based on

the predicted methylation status at each CpG site. The method I implemented

to calculate the start and end region of these 500 bp windows is slightly different

from the conventional 500 bp equispaced tiling windows. The start and end of

the region are the start and end position of the CpG site of each window. In 500

bp equispaced window, the chromosome is divided into 500 bp regions where the

difference between the start and end region is exactly 500. But in my case, the

first start of the region is the first position of the CpG site and first end of the

region is the highest nucleotide position of the CpG site within the 500 sliding bp

window. The next start of the region is the position of the CpG site which is just

after the CpG nucleotide position of the preceding end region. I had to deal with

the genomic positions of the CpG in a different manner than a conventional 500

bp window because the positions of the CpG sites are not equispaced. That is

why I have used the sliding 500 bp technique to account for the contiguous CpG
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Figure 6.6: 95% horizontal posterior credible interval plots for WAIC picked
model parameter µ∗. x-axis: range of the credible intervals; y-axis: Chromosome.
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Figure 6.7: 95% horizontal posterior credible interval plots for WAIC picked
model parameter σ2

∗. x-axis: range of the credible intervals; y-axis: Chromosome.
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Figure 6.8: 95% horizontal posterior credible interval plots for WAIC picked
model parameter ρ∗. x-axis: range of the credible intervals; y-axis: Chromosome.
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Figure 6.9: 95% horizontal posterior credible interval plots for WAIC picked
model parameter µp. x-axis: range of the credible intervals; y-axis: Chromosome.
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Figure 6.10: 95% horizontal posterior credible interval plots for WAIC picked
model parameter µs. x-axis: range of the credible intervals; y-axis: Chromosome.

167



6. Assessment of HMMmethState and Biological Results

chr1

chr2

chr3

chr4

chr5

chr6

chr7

chr8

chr9

chr10

chr11

chr12

chr13

chr14

chr15

chr16

chr17

chr18

chr19

chr20

chr21

chr22

chrX

chrY

3.5 4.0 4.5 5.0

σp
2

C
hr

om
os

om
e

Figure 6.11: 95% horizontal posterior credible interval plots for WAIC picked
model parameter σ2

p. x-axis: range of the credible intervals; y-axis: Chromosome.
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Figure 6.12: 95% horizontal posterior credible interval plots for WAIC picked
model parameter σ2

s . x-axis: range of the credible intervals; y-axis: Chromosome.
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Figure 6.13: 95% horizontal posterior credible interval plots for WAIC picked
model parameter ρ2. x-axis: range of the credible intervals; y-axis: Chromosome.
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sites.

Furthermore, to identify a DMR, the proportion of CpG sites identified as DMCs

in a 500 bp region must exceed the threshold value of 0.5. Similarly, I also classi-

fied SMRs, such that, if the proportion of CpG sites identified as DMCs in a 500

bp region is less than the threshold value of 0.5, then I term the region to be SMR.

In addition, I further classified DMRs into partial DMRs (pDMRs) and strong

DMRs (sDMRs) and SMRs into partial SMRs (pSMRs) and strong SMRs (sSMRs).

They are described as follows:

• If the proportion of DMCs in a 500 bp region is greater than or equal to

0.8, then I call the region to be sDMR.

• If the proportion of DMCs in a 500 bp region lies between 0.5 and 0.8, I

term the region to be pDMR.

• If the proportion of DMCs in a 500 bp region is less than or equal to 0.2,

then I call the region to be sSMR.

• If the proportion of DMCs in a 500 bp region lies between 0.2 and 0.5, I

term the region to be pSMR.

Tables 6.4 and 6.5 show the different classes of DMRs and SMRs identified WAIC

picked model for each chromosome.

6.6 Computational time

The HMMmethState method was coded in R and C++ and run on a Linux

machine with a 2.50 GHz processor. The MCMC simulations of my proposed

method reach convergence within 10, 000 iterations, so I burn-in the first 3, 000
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WAIC picked(Chromosome) Methylation level DMR SMR

NLBCM(chr1)
p 18414 24257
s 177067 124898

NLBCM(chr2)
p 20541 33724
s 101018 63719

NLBCM(chr3)
p 7694 9367
s 245441 30859

NLBDM(chr4)
p 9359 11474
s 151089 104712

NLBCM(chr5)
p 30745 173739
s 12713 48127

NLBCM(chr6)
p 14076 42259
s 108328 88176

NLBDM(chr7)
p 7481 8103
s 97295 124600

NLBCM(chr8)
p 1805 23140
s 8619 183256

NLBDM(chr9)
p 7083 8867
s 93010 69436

NLBDM(chr10)
p 8352 9957
s 89284 95384

NLBDM(chr11)
p 5857 6583
s 82848 106059

NLBDM(chr12)
p 8114 10219
s 94488 88007

Table 6.4: DMR identified by WAIC picked HMMmethState model for each chro-
mosome (Chromosome-1-12).

samples and thin at every 10th iteration. Although it takes a longer time compa-

red to other methods like DSS and methylKit, HMMmethState mostly achieves

higher accuracy of DMC identification than other methods due to its robustness

that allows for spatial genomic dependence over the genomic positions of the

CpG sites. Different HMMmethState methods take different computation times.
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WAIC picked(Chromosome) Methylation level DMR SMR

NLBDM(chr13)
p 5192 6727
s 77864 53668

NLBDM(chr14)
p 4648 5788
s 63939 61002

NLBDM(chr15)
p 5188 6864
s 55909 58681

NLBDM(chr16)
p 4804 5068
s 57117 60326

NLBDM(chr17)
p 6634 9037
s 6634 9037

NLBD(chr18)
p 3949 5068
s 60795 44492

NLBDM(chr19)
p 5062 6675
s 19723 63415

NLBDM(chr20)
p 3329 4351
s 55359 32707

NLBDM(chr21)
p 2387 2845
s 27558 22041

NLBDM(chr22)
p 4051 4568
s 22224 27621

NLBDM(chrX)
p 9021 59678
s 88552 61281

NLBCM(chrY)
p 543 1233
s 1212 1579

Table 6.5: DMR identified by WAIC picked HMMmethState model for each chro-
mosome (Chromosome-13-22,X,Y).

For a chromosome with approximately 1.8 million CpG sites, NLBDM takes to

run approximately 76 hours, whereas, NLBCM takes around 109 hours. BBDM

and BBCM take approximately 67 hours and 92 hours respectively with proper

MCMC convergence. Besides, the computational time of all the HMMmethState

models are insignificant compared to the time and resource required to perform
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experiments to obtain BS-seq data by biologists. In addition, for a large memory,

say 32 GB, and 40 cores, the HMMmethState analysis can be run in parallel

computing for individual chromosomes to save the computational cost.

6.7 Summary

In this Chapter, I conducted a thorough investigation of the features of my pro-

posed HMMmethState models and justified their strength and limitations in

identifying DMCs in BS-seq data. I assessed my models and showed that the

Normal-logit-Binomial emission model adequately fits the data and that the cor-

relation between the methylated counts of proliferating and senescent cells cannot

be explained by the Beta-Binomial emission model irrespective of the transition

models. This claim can further be corroborated with the results of the estimates

of WAIC. I have also examined the reliability of my results where HMMmet-

hState models are applied to both simulated and real data and simultaneously

compare their performances with existing differential methylation caller methods.

The differential methylation identification methods are based on certain model

assumptions and they have their own advantages and disadvantages. The perfor-

mance study of these methods even using an independent simulator could be a

matter of dispute as the performance can be tilted towards the true base model

or a model similar to the true base model. Thus, it is hard to conclude that

HMMmethState models perform better than DSS and methylKit as there is no

available gold standard BS-seq methylation dataset (training, test and validation)

where the methylation status of each CpG site is known.

In an attempt to assess the performance of my proposed method- HMMmeth-

State, I implemented a simulation study design based on reasonable model of the

underlying process. Through simulated datasets, I compare the performance of

each of the HMMmethState models with two popular methods, illustrating the
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reliability of my method in the identification of DMCs. I have also conducted

detailed investigations of the features of the models and justified their ability to

identify DMCs in BS-seq data, specific to the chromosomal datasets. As a first

step, I checked the MCMC simulations of the hidden states and the model para-

meters converged to the stationary posterior distribution to ensure the reliability

of my estimates. I then chose the chromosomal data specific models based on

WAIC model selection criterion, which are then used for further analyses, i.e.,

DMC prediction.In addition, I applied two DMC callers to the same datasets for

comparing their results to my results. Since the true DMCs are not known for

these datasets, I concluded that the DMCs identified by my method were reliable.
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Chapter 7

Conclusions and Further Work

The key contribution of this thesis has been to develop models that can identify

DMCs in the BS-seq data. I propose HMMmethState, a method based on Baye-

sian hierarchical HMMs for identifying DMCs between proliferating and senescent

cells for BS-seq methylation data. My proposed approach also employs hierarchi-

cal HMMs to account for the spatial dependence among the CpG sites based on

their genomic positions. The HMMmethState models can also be applied to any

other sequencing experiment of two treatment groups. In this chapter, I high-

light my thesis contributions and then provide a brief outline of some possible

directions that can be implemented as a basis for further research.

7.1 Contributions of this thesis

The thesis contributions can be catergorized into two parts and they are as follows:

1. Methodological advances: In Section 7.1.1, I discuss the main goals I have

achieved in my methodological work and the importance of the implemen-

tation of HMMmethState models in detecting DMCs in BS-seq data.

2. Biological Advances: In Section 7.1.2, I also discuss biological advantages

in my methodology that offers improved performance over other existing
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methods.

7.1.1 Methodological advances

The primary objective of this thesis was to create HHMMs for BS-seq methy-

lation data within a Bayesian framework. To this end, I have examined four

HHMMs with state-dependent emission distributions for methylated counts, gi-

ven the methylation status of the CpG sites. I have further shown how the

positional variations of the CpG sites can be incorporated in the methylation

state of the CpG sites to account for the spatial dependence between the genomic

positions of the CpG sites.

7.1.1.1 The HMMmethState method

Taking a broad view, the main contributions of Chapters 4 and 5 has been towards

an improved understanding of the potential HHMMs to assess the methylation

data from BS-seq experiments and also critically examining the strengths and

limitations of the HMMmethState models.

In particular, Chapters 4, 5 and 6 explain the significance of developing and com-

paring the four versions of HMMmethState- BBDM, BBCM, NLBDM, NLBCM

for analysing BS-seq methylation data. The four versions of the HMMmethState

models were implemented by combining the emission and transition models as

shown in Table 7.1. The models ED and EC, [where E: BB, NLB] can be dis-

tinguished by their transition models as discussed in Sections 4.1.3 and 4.1.4

respectively. The only alteration required for EC from ED is to assume that the

status of DMC is represented by an unobservable Markov chain instead of an

unobservable discrete Markov chain. The sole idea behind implementing EC is to

capture the positional variations of CpG dinucleotide bases and whether it has

any significant effect over ED in detecting the DMCs. The proposed approach of
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HMMmethState models are described in details in Chapters 4 and 5.

In Chapter 4, I proposed the first two models of the HMMmethState framework-

Emission Model BB NLB
Transition model

D BBDM NLBDM
C BBCM NLBCM

Table 7.1: Description of HMMmethState models.

BBDM and BBCM, as shown in Figure 4.1. In Section 4.1.2, I proposed Beta-

Binomial emission models and subsequently combined with transition model T:

C, D for the implementations of BBDM and BBCM. The reason I model the

methylated counts using a Binomial emission distribution at the first stage of

the hierarchical model is due to the process of BS-seq which subsequently invol-

ves the random sampling of methylated and unmethylated reads.The underlying

true methylation proportions (2nd stage of the hierarchical model) are assumed to

follow a Beta distribution. In order to accelerate computational simplicity, Beta-

Binomial emission distribution becomes a natural choice with collapsed distribu-

tional structure due to Beta-Binomial conjugacy. However, there is substantive

potential for improvement in the structure of BBDM and BBCM, especially on

emission probability functions that eventually play a key role in computing the

likelihood functions.

To improve upon my emission model, I develop a hierarchical emission model

that considers correlation between proliferating and senescent methylated pro-

portions. From visual posterior predictive checks, it has been observed that there

is strong evidence of correlation between proliferating and senescent methylated

proportions. I develop a hierarchical bivariate Normal-Binomial emission model

to account for the correlation in the bivariate underlying true methylation propor-

tions in Chapter 5 and subsequently combined with transition model T: C, D for
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the implementations of NLBDM and NLBCM. Again, the primary structure (1st

stage of the hierarchical model) of the model, i.e., the methylated counts follow

a Binomial distribution remains the same as in Chapter 4. I modify the under-

lying true methylation proportions as functions of logit variables for each CpG

site, which ultimately act as auxiliary parameters. Unlike Beta-Binomial con-

jugacy, the Bayesian Bivariate Normal-Binomial emission model does not have

a collapsed structure, thus it involves computational complexity in estimating

the emission hyperparameters and auxiliary parameters. Furthermore, to per-

form parameter estimation for my models, I implement efficient MCMC based

algorithms. In Chapters 4 and 5, I examine the convergence properties of the

posterior distributional quantities for simulation and real studies.

7.1.1.2 Significance of transition model for model comparison

In Chapter 6, I have done an extensive analysis on model comparison. The

Normal-logit-Binomial emission model outperformed the Beta-Binomial emission

model in most real datasets. Furthermore, in Chapter 6, I have also observed that

a particular chromosomal dataset is modelled by either NLBDM or NLBCM de-

pending on the effect of positional variations among CpG sites. Even though the

spatial dependence assumption is taken into account by considering Markovian

dependence over the latent states, the effect of positional variations in identi-

fying DMCs can only be observed in a particular dataset. I have only selected

the models based on WAIC computations as it has been specifically formula-

ted for hierarchical or mixture models. WAIC appeared to perform consistently

well compared to two different DIC versions in simulation studies as described in

Section 6.1.1.

7.1.2 Biological Advances

In Chapter 6, I compare the performances of my methods with existing methods

for detecting DMCs/DMRs. I subsequently illustrate the advantages of HMM-
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methState by appying to simulated data and comparing it with two of the most

popular packages (R/Bioconductor packages) DSS and methylKit. I demonstrate

how the HMMmethState based algorithms outperform the existing methods in

simulation studies in terms of sensitivity and specificity. In addition, I have also

applied HMMmethState to a published dataset (Cruickshanks et al., 2013) and

presented my findings. I presented the results of DMCs and DMRs obtained using

my methods, i.e., the results of DMCs/DMRs with the proposed HMMmethState

that have been applied to the BS-seq datasets.

The main biological contributions of HMMmethState can be explained as fol-

lows:

1. It can robustly identify DMCs from BS-seq data.

2. It can automatically update DMRs based on the results on DMCs and can

futher classify into pDMRs (partial DMRs) and sDMRs (strong DMRs)

which can help biologists in better understanding of the functional genomic

regions of interests.

3. It can also be applied to both whole-genome and targeted BS-seq methyla-

tion data.

The results of the HMMmethState models explain that I can certainly imple-

ment these methods under unconditioned settings to identify DMCs/DMRs for

high-throughput BS-seq data. The predicted DMCs/DMRs can also help in un-

derstanding the phenotypic changes associated with human ageing.

7.2 Further Work

The HMMmethState models I developed and assessed in this thesis provide an

efficient way of identifying DMCs in BS-seq data. However, there still remains
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scope for improving the models which can work better in understanding the spe-

cific biological questions. In the following sections, I briefly outline the scope for

further work in this area.

7.2.1 Bivariate Beta-Binomial correlated emission distri-

bution

The idea behind choosing and constructing a Bivariate Beta-Binomial distribution

is to induce correlation between proliferating and senescent methylation propor-

tion parameters as it is theoretically very complicated to construct a Bivariate

Binomial distribution with a correlation parameter. I construct a Bivariate Beta

distribution as a prior for two correlated proportions from the Bivariate Binomial

distribution. The approach used in Chapter 4 can be modified to account for the

correlation within paired samples. The bivariate Beta distribution can be assu-

med as a prior distribution on proliferating methylation proportions and senescent

methylation proportions. Here, I use Variable-in-common and transformation-

based constructions as explained by (Olkin and Trikalinos, 2015) and (Oleson,

2010).

The joint full conditional distribution of (ppt , p
s
t) for t = 1, . . . , T is given by,

p(ppt , p
s
t |.) ∝

(ppt )
xpt+a−1(1− ppt )n

p
t−x

p
t+b+c−1(pst)

xst+b−1(1− pst)n
s
t−xst+a+c−1

(1− pptpst)(a+b+c)
. (7.1)

This is the form of a generalized Beta distribution where a, b, c > 0.

It will be interesting to examine the results based on correlated Beta-Binomial

emission model and whether it has the ability to outperform the HMMmethState

models.
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7.2.2 Ad hoc label-switching technique

In Chapters 4 and 5, I have efficiently implemented a relabelling algorithm which

perform quite switfly in my augmented Gibbs sampler. However, I can also fix

label switching by ordering the means in my prior specification. Another way of

tackling this problem is by using informative priors, However in this case there

is a limitation. If the priors I use are informative as well as exchangeable then

they still might cause label switching. Thus in order to counter label switching,

I impose informative prior constraints based on the nature of the hidden state

labels on the parameters.

In a nutshell, informative priors can still cause label switching either due to

the exchangeable properties or when the modes are not clearly separated in the

model. Thus label switching problem can be tackled by using a constraint on the

prior of the parameter.

In my approach, I use uninformative and exchangeable priors in my model para-

meters. I impose a constraint on the state 2 hyperparameters such that, if,

• For Chapter 4,

∣∣∣∣
γ1

(γ1 + δ1)
− γ2

(γ2 + δ2)

∣∣∣∣ < 0.008. (7.2)

• For Chapter 5,

|µp − µs| < 0.35. (7.3)

I swap the state labels in order to avoid label switching, i.e., I perform an online

relabelling at every MCMC run. The reason I swap the labels is because from

(7.2) and (7.3), it is evident that the Beta and Normal prior means of the methy-

lation levels of the proliferating and senescent tend to be similar as the absolute
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difference between them is getting closer to 0. In my assumption, I had already

stated that state 2 indicates DMC, i.e, it is fair to assume that the proportions

of methylation levels of proliferating and senescent must be significantly diffe-

rent and the proportions of these cells can only be reflected through their means

or modes. However, the choice of this cut-off value varies from distribution to

distribution and a lot of simulation experiments are required in order to choose

the best cut-off value. The cut-off values are extremely sensitive even by a small

margin. This kind of assumption can only be valid for 2 state labels in a HMM.

7.2.3 Merging contiguous DMCs

For practical situations, it might be desirable to summarize DMRs over tiling

windows. For this reason, I have defined DMR windows by tiling vast genomic

regions in Section 6.5.3. However, I can also create a new form of DMR. If

the contiguous CpG sites are all DMCs, I can call it a DMR window. This

kind of DMR windows might also be useful for biologists who wish to correlate

information about gene-expression and differential methylation. In Figure 7.1,

I have also presented an Integrative Genomics Viewer (IGV) snapshot of my

DMRs. In this Figure 7.1, I merge the contiguous DMCs to form a new block

of DMR. I also plan to extend HMMmethState by including other biological

sources of dependence among CpG sites. For HMMmethState models, I have

already considered the spatial dependence assumption among CpG sites based

on genomic position. However, including other sources of biological variations

like gene-expression information, promoter region, promoter-enhancer-promoter

interactions might improve my current method in understanding the differential

methylation pattern. I will also focus on extending HMMmethState to BS-seq

data under general multiple experimental design. In addition, I am developing

an R package which implements my proposed HMMmethState method.
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Figure 2: Trace plots of BBDM model parameters applied to the Chromosome
16 data.
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Figure 3: Gelman and Rubin’s shrink factor plot of BBDM model parameters
applied to the Chromosome 16 data.
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Figure 4: Trace plots of BBCM model parameters applied to the Chromosome
16 data.
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Figure 5: Gelman and Rubin’s shrink factor plot of BBCM model parameters
applied to the Chromosome 16 data.
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Figure 6: Trace plots of NLBDM model parameters applied to the Chromosome
16 data.
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Figure 7: Gelman and Rubin’s shrink factor plot of NLBDM model parameters
applied to the Chromosome 16 data.
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Figure 8: Trace plots of NLBCM model parameters applied to the Chromosome
16 data.
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Figure 9: Gelman and Rubin’s shrink factor plot of NLBCM model parameters
applied to the Chromosome 16 data.
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