

Katsarou, Foteini (2018) Improving the performance and scalability of
patten subgraph queries. PhD thesis.

http://theses.gla.ac.uk/9024/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior

permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given

Enlighten:Theses

http://theses.gla.ac.uk/

theses@gla.ac.uk

http://theses.gla.ac.uk/9024/
http://theses.gla.ac.uk/
http://theses.gla.ac.uk/
mailto:theses@gla.ac.uk

IMPROVING THE PERFORMANCE AND

SCALABILITY OF PATTERN SUBGRAPH

QUERIES

FOTEINI KATSAROU

SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

SCHOOL OF COMPUTING SCIENCE

COLLEGE OF SCIENCE AND ENGINEERING

UNIVERSITY OF GLASGOW

APRIL 2018

c© FOTEINI KATSAROU

Abstract

Graphs have great representational power, and can thus efficiently represent complex
structures, such as chemical compounds and social networks. A common problem that often
arises to graphs is the subgraph pattern matching querying problem, where given a graph
DB and a query in the form of a graph, the graphs from the DB that contain the query are
returned. In some algorithms, all possible occurrences of the query graph in the DB graphs
are additionally returned. The subgraph matching problem entails subgraph isomorphism
which is known to be NP-Complete. To alleviate the problem, a large number of methods
has been proposed over the years that can be classified in two major categories: (i) the
filter-then-verify (FTV) and (ii) the subgraph isomorphism (SI) methods. Specifically, the
FTV methods rely on a constructed index with the aim to filter out graphs from the DB that
definitely do not contain the query graph as an answer. On the remaining set of graphs,
which form the so-called candidate set, a subgraph isomorphism algorithm is applied to
verify whether the query graph is indeed contained in the DB graph. SI methods target in
optimizing their subgraph isomorphism testing process by suggesting different heuristics.

With our work, we confirm that both FTV and SI methods suffer from significant perfor-
mance and scalability limitations, stemming from the NP-complete nature of the subgraph
isomorphism problem. Instead of trying to devise new algorithms with better performance
compared to the already existing ones, we take a different approach. We suggest a number
of solutions to improve their performance and to extend their scalability limitations.

In more detail, we conduct a comprehensive analysis of the state of the art FTV methods.
We initially identify a set of key-factor parameters that influence the performance of related
methods, namely the number of nodes and density per graph, the number of distinct labels
and graphs in the graph DB, and the size of the query. Subsequently, using the aforemen-
tioned parameters, we perform a large number of experiments with both real and synthetic
datasets in a systematic way, where we report on indexing time and size, query process-
ing time and filtering power. We analyze the sensitivity of the various FTV methods. Our
analysis helps us draw useful conclusions about the algorithms relative performance. In par-
allel, we stress-test them and thus, we recognize different scalability limitations, i.e., points
where some algorithms operate while others break.

One of the conclusions drawn from our experiments with the FTV methods is that as the
graphs in the dataset grow large in the number of nodes and/or density and as the query size
increases query processing becomes harder. Thus, we additionally bring into the play the
state of the art SI methods and along with the top-performing FTV methods as indicated by
our aforementioned analysis, we investigate whether all queries of the same size are equally
challenging. First, our experiments reveal that all proposed methods suffer from stragglers,
i.e., queries with execution times many orders of magnitude worse compared to the majority
of them. Second, through our experiments we have seen that isomorphic queries can have
widely and wildly different execution times on the various algorithms. Thus, we propose
our own isomorphic query rewritings that can introduce large performance gains. Third, we
observe that stragglers are algorithm specific, i.e., a straggler query on one algorithm can be
a typical query on some other algorithm. We incorporate our findings in a novel proposed
framework, coined Ψ-framework that runs in parallel different isomorphic instances of the
original query and/or different algorithms. Such parallel executions of various algorithms
have been used for other NP-hard problems and are known as portfolios of algorithms. Our
framework introduces large performance gains in the subgraph matching problem, on both
FTV and SI methods across all employed datasets, where some combinations of algorithms
perform better than others. Similar to Ψ-framework, some portfolios are more favorable than
others.

Recent proposed methods tend to totally dismiss FTV methods and employ SI methods
instead, with the claim that the SI methods enjoy shorter query execution times and that
managing the index-based FTV methods is too costly. With our work, we investigate this
claim. We initially quantify the constructed index of state of the art SI methods and the
top performing FTV method in terms of time and size and we evaluate the efficiency of the
constructed indices in filtering out graphs that do not contain the query. Based on our ex-
periments, in both real and synthetic datasets, SI methods fail to avoid a large number of
redundant subgraph isomorphism tests. Additionally, our experiments on the SI methods fail
to indicate a single-winner. Thus, we propose a hybrid FTV-SI method, as a combination
of the filtering achieved by the top-performing FTV method and the verification of various
SI methods. This hybrid FTV-SI combination was not studied before, perhaps surprisingly
for the problem at hand. Based on our experiments, such a hybrid combination brings high
speedups in the subgraph matching problem. In an attempt to reduce even more the un-
derlying indexing costs, we additionally experiment with different values of the enumerated
features. Our experiments reveal that we can still achieve high quality filtering, even with
smaller features, whereas the overall query execution time is still significantly boosted.

With our research results, we hope to open up a whole new research trend where commu-
nity will benefit from already existing solutions by combining them appropriately to achieve
large performance gains.

Acknowledgements

At this point I would like to express my sincere gratitude to my supervisors Prof. Peter
Triantafillou and Dr. Nikos Ntarmos for the opportunity they gave me to work with them and
for their help and guidance through all these years. My PhD studies was a long journey, but
with their support and patience, I was able to face numerous challenges. Their dedication to
excellence as well as the effort they made and the time they sacrificed not only for me but for
all the members of the team are priceless. Among others, through their guidance I succeeded
in expanding my knowledge and improving my programming and presentation skills, which
are invaluable assets to pursue any career in the future.

Additionally, I would like to thank my examiners, Prof. Phil Trinder and Prof. Alexandra
Poulovassilis, during my PhD viva, for reading my thesis so carefully, for their precious
advice for improvement and for the stimulating discussion we had during the viva. It was a
pleasure meeting them.

I would also like to thank my office mates Dr. Jing Wang, Atoshum Cahsai, Fotis Savva
and Wei Ma for their friendship and kindness and for their willingness and patience to dis-
cuss and analyze academic issues. Special thanks to Dr. Christos Anagnostopoulos and Dr.
Yashar Moshfeghi for their guidance and invaluable advice through my PhD, and to Bessy
Mousioni for proof-reading my PhD thesis.

During my PhD studies, I made good friends around the department, who gave me the
necessary distractions from my research. Thus, I would like to thank Dr. Baharak Raste-
gari, Dr. Ornela Dardha, Dr. Rosanne English, Dr. Natalia Chechina, Dr. Oana Andrei,
Fatma Amin Ibrahim, Gözel Shakeri, Frances Cooper, David Maxwell, Stuart Mackie, Os-
eghale Osezua Igene, Maria Evangelopoulou, Teresa Bonner, Gail Reat, Aileen Orr, Steven
Kendrick, Helen McNee, Anastasia Fliatoura, Lydia Marshall, and John Hunter, and also my
flatmates and good friends Georgios Sfakianakis and Susanne Oehler that made my stay in
Glasgow memorable.

Finally, I would like to thank the people who with their support helped me reach my
destination, and persuaded me to try this whole new experience. Thus, I would like to thank

my professors from the Department of Electrical & Computer Engineering from University
of Thessaly and especially Dr. Dimitrios Katsaros for all the knowledge I gained from them,
my parents, Theodosios and Panagiota, who stand by my side in every choice I make, support
and guide me, and Georgios Kazanidis, my partner in life, who not only shares with me
beautiful moments and concerns and stands by also my side with a lot of patience and care.

“Τοῖς τολμῶσιν ἡ τύχη ξύμφορος”
Θουκυδίδης, 460-394 π.Χ.

“Fortune is by the side of those who dare to try”
Thucydides, 460-394 BC

To my parents:
Theodosios and Panagiota

Author’s Declaration

I declare that, except where explicit reference is made to the contribution of others, that
this dissertation is the result of my own work and has not been submitted for any other degree
at the University of Glasgow or any other institution.

Foteini Katsarou

Contents

[X \

1 Introduction 1

1.1 Graphs and the Subgraph Pattern Querying Problem 1

1.1.1 Thesis Statement . 3

1.2 Research Questions and Contributions . 4

1.3 Thesis Outline . 9

1.4 Publications . 11

2 Related Work & Basic Definitions 12

2.1 Graphs and Networks . 12

2.1.1 Graph Data Models . 13

2.2 Basic Definitions . 13

2.3 Subgraph Matching problem . 15

2.3.1 FTV methods . 16

2.3.2 SI methods . 19

2.4 Other types of queries . 22

2.5 Graph Databases . 23

2.6 Graph Generators and Graph Visualization 24

2.7 Branch and bound paradigm . 25

3 Experimental Setup 27

3.1 Competing algorithms . 27

3.1.1 Competing FTV methods . 28

3.1.2 Competing SI methods . 30

3.2 Datasets . 32

3.2.1 Graph Generation . 33

3.2.2 Characteristics of Real and Synthetic Datasets 33

3.2.3 Query Workloads . 35

3.3 Metrics . 35

3.3.1 Time and Size metrics . 36

3.3.2 Quantifying the Filtering Power 36

3.3.3 Speedup . 37

3.3.4 WLA and QLA Performance Metrics 37

4 Performance and Scalability of Indexed Subgraph Query Processing Methods 39

4.1 Introduction . 39

4.2 Related Work and Contributions . 41

4.3 The Experimental Framework . 43

4.3.1 Competing Algorithms . 43

4.3.2 Setup . 43

4.3.3 Real and Synthetic Datasets . 44

4.3.4 Query Workloads . 46

4.4 Evaluation Results . 46

4.4.1 Real Datasets . 46

4.4.2 Synthetic datasets . 46

4.5 Lessons Learned . 60

4.5.1 Effect of key dataset/workload characteristics 60

4.5.2 Sancta Simplicitas . 61

4.5.3 Choosing the right index method for user needs 62

4.5.4 Scalability limits . 63

4.6 Conclusions . 63

5 Subgraph Querying with Parallel Use of Query Rewritings and Alternative Al-
gorithms 65

5.1 Introduction . 66

5.2 Related Work and Contributions . 66

5.3 Experimental Setup . 67

5.3.1 Algorithms . 67

5.3.2 Setup . 68

5.3.3 Datasets . 69

5.3.4 Query Workloads . 69

5.3.5 Performance Metrics . 70

5.4 Straggler Queries . 71

5.5 Isomorphic queries . 76

5.6 Graph query rewriting . 80

5.7 Algorithm-specific Stragglers . 87

5.8 The Ψ-framework . 90

5.9 Conclusions . 98

6 Hybrid Algorithms for Subgraph Pattern Queries in Graph Databases: An
Evaluation 100

6.1 Introduction . 101

6.2 Related Work and Contributions . 102

6.3 Experimental Setup . 104

6.3.1 Algorithms . 104

6.3.2 Setup . 104

6.3.3 Datasets . 105

6.3.4 Query Workloads . 105

6.4 Index construction . 107

6.5 Filtering power . 108

6.6 Performance of SI methods . 110

6.7 Evaluating the hybrid FTV-SI method . 112

6.7.1 Performance Metrics . 112

6.7.2 Performance Results . 113

6.8 Reducing filtering time with parallelism 115

6.9 Index Time/Size - Filtering Power Tradeoff 118

6.10 Conclusions . 125

7 Conclusion and Future Steps 127

7.1 Summary of Contributions . 127

7.2 Limitations and Future Work . 132

Bibliography 134

List of Tables

[X \

3.1 Characteristics of 4 Real datasets and the Synthetic dataset for FTV methods 34

3.2 Dataset characteristics for SI methods . 34

5.1 Results for SI methods on the yeast dataset (AET: Average exec time) . . . 73

5.2 Results for SI methods on the human dataset (AET: Average exec time) . . 73

5.3 (max/min)QLA statistics for FTV methods 77

5.4 (max/min)QLA statistics for SI methods 79

5.5 Percent reduction of straggler queries for FTV and SI methods using isomor-
phic query counterparts . 84

5.6 speedup∗QLA statistics for FTV methods across rewritings 85

5.7 speedup∗QLA statistics for SI methods across rewritings 86

5.8 speedup∗QLA statistics when utilizing different algorithms on SI methods for
yeast and human . 87

5.9 speedup∗QLA statistics when utilizing different algorithms on SI methods for
wordnet . 89

5.10 Percentage of killed queries of FTV methods and different versions of our
Ψ-framework. (Or stands for original query.) 92

5.11 Percentage of killed queries of SI methods and different versions of our Ψ-
framework. (Or stands for original query.) 94

5.12 Percentage of killed queries of SI methods and on running multiple SI algo-
rithms on Ψ-framework. (Or stands for original query.) 97

6.1 speedup∗QLA statistics for FTV-SI combination with 1 thread 114

6.2 speedup∗QLA statistics for FTV-SI combination with 4 threads 118

6.3 speedup∗QLA statistics for FTV-SI combination with 1 and 4 threads,maxL =

2 . 123

6.4 speedup∗QLA statistics for FTV-SI combination with 1 and 4 threads,maxL =

3 . 124

List of Figures

[X \

1.1 The subgraph querying problem. In the example, the graph DB consists of
4 graphs. The different colors on the nodes represent different labels. The
query graph is found in G1 (one occurrence) and G4 (two occurrences). . . 2

1.2 Features of different sizes of a given graph. 7

2.1 Summary of the stages of FTV methods 18

2.2 Example of a hypothetical FTV method that enumerates exhaustively paths
and organizes them in a trie index structure 19

2.3 Summary of the stages of SI methods . 20

4.1 Indexing results over the real datasets . 47

4.2 Query processing results over the real datasets 48

4.3 Indexing performance results for varying number of nodes 49

4.4 Query processing performance results for varying number of nodes 50

4.5 Indexing performance results for varying density values 52

4.6 Query processing performance results for varying density values 53

4.7 Query processing times for individual query graph sizes and varying density
values . 54

4.8 Indexing performance results for varying number of distinct labels 55

4.9 Query processing performance results for varying number of distinct labels 56

4.10 Indexing performance results for varying number of graphs in the dataset . 58

4.11 Query processing performance results for varying number of graphs in the
dataset . 59

5.1 WLA-Average exec time (s) in FTV methods 72

5.2 Percentages of easy, 2”-600”, and hard queries in FTV methods 73

5.3 WLA-Average exec time (s) in SI methods 74

5.4 Percentages of easy, 2”-600”, and hard queries in SI methods 75

5.5 Average (max/min)QLA for FTV methods 77

5.6 Average (max/min)QLA for different query sizes on FTV methods and for
PPI dataset . 78

5.7 Average (max/min)QLA for SI methods 78

5.8 Average (max/min)QLA for different query sizes on SI methods and for
human dataset . 79

5.9 Isomorphic queries generated with different rewritings (assuming the label
frequencies in the stored graph are: “A”=20, “B”=15, “C”=10) 82

5.10 Results for individual query rewritings for FTV on PPI dataset 82

5.11 Results for individual query rewritings for SI methods on yeast dataset . . . 83

5.12 Average speedup∗QLA for FTV methods across rewritings 84

5.13 Average speedup∗QLA for different query sizes on FTV methods 85

5.14 Average speedup∗QLA for SI methods across rewritings 86

5.15 Average speedup∗QLA when utilizing different algorithms on SI methods . . 88

5.16 Average speedup∗QLA across different versions of our framework on the
FTV methods . 92

5.17 Average speedup∗WLA across different versions of our framework on the
FTV methods . 93

5.18 Comparison of average execution time over the PPI dataset, for Grapes/4
against the Ψ-framework with 4 rewritings (ILF, IND, DND, ILF+IND) over
Grapes/1 . 94

5.19 Average speedup∗QLA across different versions of Ψ-framework on the SI
methods . 95

5.20 Average speedup∗QLA for running multiple algorithms against SI methods
on Ψ-framework . 96

5.21 Average speedup∗WLA for running multiple algorithms against SI methods
on Ψ-framework . 97

6.1 Indexing time and size of Grapes and SI methods 106

6.2 Indexing time and size of subsets of the Synthetic dataset 108

6.3 Pruning Power of Grapes and SI methods 109

6.4 Avg query exec time (ms) of SI methods 110

6.5 Avg query exec time (ms) of SI methods for PPI and Synthetic datasets and
for different query sizes . 111

6.6 Average speedup∗QLA & speedup∗WLA of the hybrid FTV-SI method . . . 113

6.7 Avg query exec time (ms) of hybrid FTV-SI methods for PPI and Synthetic
datasets and for different query sizes . 115

6.8 Avg query exec time (ms) of the FTV-SI hybrid methods 116

6.9 Example on parallel execution of the verification stage of the hybrid FTV-SI
combination with number of threads N = 2. (We assume that graphs g1,
g2, g4, and g8 formed the candidate set after the filtering stage. The red X is
used to represent the removal of a grpah from the queue or the completion of
a thread execution.) . 116

6.10 Average speedup∗QLA & speedup∗WLA of the hybrid FTV-SI method, 4
threads . 117

6.11 Tweaking the maxL parameter, index construction 119

6.12 Tweaking the maxL parameter, filtering power 120

6.13 Tweaking the maxL parameter, achieved speedup∗, 1 thread 121

6.14 Tweaking the maxL parameter, achieved speedup∗, 4 threads 122

Abbreviations

[X \

Avg exec time Average execution time
FTV Filter-then-Verify
SI Subgraph Isomorphism
GGSX GraphGrepSX
GR Grapes
GQL GraphQL
SP sPath
QSI QuickSI
TI TurboIso
BTI BoostIso over TurboIso
FPR False Positive Ratio
QLA Query-Level Average
WLA Workload-Level Aggregation

1

Chapter 1

Introduction

[X \

This chapter contains an introduction to graphs, their efficacy to represent complex struc-
tures, the graph databases and an informal definition of the subgraph pattern querying prob-
lem, along with useful applications. It also contains the thesis statement along with the basic
research questions and research contributions of this thesis. Subsequently, an outline of the
chapters that follow is presented. Finally, we provide the list of publications that came out
of this work.

1.1 Graphs and the Subgraph Pattern Querying Prob-

lem

Graphs have great representational power. They are ideal for representing complex enti-
ties and their relationships / interactions, such as social networks, chemical compounds and
protein-protein interaction networks. Both nodes and edges that connect the nodes allow
labels that characterize them, in such a way that repetitions of the labels are allowed. For
example, in a chemical compound the node labels are the names of the molecules, whereas
the edge labels could characterize the type of the chemical bonds. In a social network the
node labels could be various properties such as the name, age, location, profession and the
edge labels could be the existence of friendship, reactions to posts and others. Thus, the
graphs that constitute the graph datasets, e.g., [1, 2, 3], can vary widely in numerous graph
characteristics, such as the number of graphs in the dataset, the size of the graphs and the
number of distinct labels. As a result, a large number of graph databases (graph DBs) has

1.1. Graphs and the Subgraph Pattern Querying Problem 2

been developed to efficiently store, handle and process the ever increasing graph data, such
as Neo4j[4] and OrientDB[5].

A common query pattern that arises in such a graph DB, which is essential to graph an-
alytics, is finding the occurrence(s) of a pattern graph within the various graphs in the graph
DB. Specifically, in subgraph pattern matching or subgraph querying (for short), given a
graph DB and a pattern query graph, we want to locate which graphs in the DB contain
the query (the decision problem) and/or find all its occurrences (the matching problem).
Subgraph querying entails the subgraph isomorphism problem, which is known to be NP-
complete [6]. Over the years, subgraph querying has received and continues to receive a
lot of attention, as is evident by the numerous new methods that are added in the bibliog-
raphy annually. Furthermore, four recent experimental and analysis papers ([7, 8, 9, 10])
compare and stress-test the proposed methods, thus providing interesting insights about the
performance of the various solutions. Figure 1.1 presents a simple example of the subgraph
querying problem. In the presented example, the graph DB consists of four graphs, and
the different colors on the nodes represent different labels. Thus, the whole dataset consists
of four distinct labels. In this example, the query graph (which is usually a much smaller
graph compared to those stored in the DB) is found in G1 (one occurrence) and G4 (two
occurrences), as highlighted with red color.

Figure 1.1: The subgraph querying problem. In the example, the graph DB consists of 4
graphs. The different colors on the nodes represent different labels. The query graph is
found in G1 (one occurrence) and G4 (two occurrences).

The various proposed methods can be classified in two major categories: the filter-then-

verify (FTV) and the subgraph isomorphism (SI) methods. Specifically, the FTV methods,
that address the decision problem, mainly focus on filtering out graphs from the DB that defi-
nitely do not contain the query graph as an answer. Then, in the remaining set of graphs FTV

1.1. Graphs and the Subgraph Pattern Querying Problem 3

methods employ a “standard” SI algorithm for performing the final verification, to confirm
that the query graph is indeed located in those larger graphs. However, the SI methods, that
usually address the matching version of the problem, mainly neglect indexing and filtering
in order to focus on providing different subgraph isomorphism heuristics.

1.1.1 Thesis Statement

The subgraph matching problem entails the subgraph isomorphism which is known to
be NP-Complete.. For the purpose of this thesis, we have conducted a large number of ex-
periments with existing FTV and SI methods employing both real and synthetic datasets
designed for the subgraph matching problem. However, both FTV and SI methods show sig-
nificant limitations in their performance as the key parameters of the problem are increased,
i.e., the number of nodes and / or density per graph, the number of stored graphs in the DB,
and the size of the query. One solution is to try to devise new algorithms, with the aim to
avoid these problems. Instead, in the current thesis, we take a completely different route.
With our work we have come to the conclusion that these shortcomings were vanished when
we applied various simple techniques such as reformulating the query to an equivalent one
and/or combining existing algorithms to form hybrids or employing them in a framework.
This gave rise to the following thesis statement.

State of the art methods for the subgraph querying problem, which include both the
FTV and SI methods, do not scale when the graph DB grows large in terms of number
of nodes or density per graph and/or in number of graphs in the DB. Additionally,
their performance is seriously affected by increasing the query size. Instead of devising
new algorithms with the aim of better performance, to extend the scalability of existing
methods, one should consider rewriting the original query and/or combining the top-
performing methods appropriately. By such simple techniques, one is able to achieve
large performance gains.

The above thesis statement can be further analyzed to the following statements:

• Both existing FTV and SI methods have serious shortcomings stemming from the NP-
Complete nature of the underlying subgraph isomorphism.
• Key parameters that influence the algorithms performance are: the number of nodes

and density per graph, the number of graphs and the number of distinct labels in the
dataset, and the size of the query.
• Proposed FTV and SI methods suffer from straggler queries, i.e., queries with execu-

tion time much larger compared to the majority of them.
• Isomorphic queries to the original query can have widely and wildly different execu-

tion times.

1.2. Research Questions and Contributions 4

• Challenging queries are algorithm-specific.
• Thus, by executing in parallel isomorphic instances of the original query and/or differ-

ent algorithms in the proposed Ψ-framework, we are to able to achieve large perfor-
mance gains. Such parallel executions of algorithms are widely used for other NP-hard
problems, as we will discuss in §2.7 and §5.8. As in the case of the Ψ-framework, some
combinations of algorithms are more beneficial than others.
• FTV methods were designed to prune out graphs from the dataset that definitely do not

contain the query graph as an answer and thus they possess high filtering power. How-
ever, their overall performance is diminished because of their underlying isomorphism
algorithms, which can be replaced with newer SI methods to achieve large performance
gains. Such a hybrid FTV-SI combination can prove to be highly beneficial.

1.2 Research Questions and Contributions

A number of different FTV and SI methods is presented annually, extending the rele-
vant bibliography for the subgraph matching problem, with the purpose of surpassing the
performance of older methods. But before totally dismissing older proposed methods, it is
essential that we better analyze existing ones and study their performance, stress-test them,
bring out their good qualities, and combine them (when appropriate) thus forming new better
performing hybrids or execute them in parallel and achieve large performance gains. Such a
work has not been conducted properly so far and this blind spot is investigated by the current
thesis.

In the current work, we tried to answer a set of fundamental questions for the subgraph
matching methods. The knowledge we have gained from our experiments in its turn gener-
ated other fundamental questions. Specifically, we know that both FTV and SI methods rely
on a constructed index to facilitate the query processing. The index is formed by various
features either maintained or encoded in a compressed format. Thus, our initial question was
the following:

Question 1: What is the time and space required to construct the index of related subgraph
matching methods and how effective is the constructed index in the query processing?

All proposed methods claim that they exhibit better performance results compared to
preceding ones. However, existing comparative studies ([7, 8]) claim that this is not the case.
With our experiments, we also investigated the aforementioned claim (§4.4 and §4.5 for the
FTV methods, §6.6 for the SI methods).

Question 2: Does a performance analysis of both FTV and SI methods reveal a single-
winner?

1.2. Research Questions and Contributions 5

The quick answer to this question is that there was no algorithm that was the clear winner
across the spectrum. As a matter of fact and especially in the case of the SI methods, there
were cases that the best algorithm changed even for the same dataset and different query
workload sizes (§6.6). Additionally, our intuition was confirmed; as we were increasing the
parameters of the problem such as the number of nodes of the stored graph or the size of the
query, query processing was becoming harder (§4.4 and §5.4). Thus, our findings triggered
the following two questions:

Question 3: Are all queries of the same size equally challenging for a specific algorithm?

Question 4: In the case that a query is found to be challenging for one algorithm, should we
conclude that the query is challenging for all algorithms or is this related to the algorithm’s
specificity?

The brief answer to these is that there is a small portion of queries whose execution time
dominates the overall processing time (§5.4) and that different algorithms are challenged
by different queries (§5.7). Triggered from all of our findings, our last question was the
following:

Question 5: How to combine / exploit existing algorithms appropriately to achieve large
performance gains?

Motivated from the above questions, we studied the details (both theoretical and their
implementation) of existing methods, and we performed a large number of experiments.
With the knowledge we gained, we were able to point out the real assets of existing work. We
exploited them appropriately to achieve large performance gains in the subgraph matching
problem on both FTV and SI methods (§5.8, §6.7.2, §6.8 and §6.9).

Overall, the current thesis makes the following key research contributions, that were so
far lacking from the bibliography.

Contribution 1: Identification of a set of key factor-parameters that influence the perfor-
mance of subgraph matching methods.

In chapter §4, and specifically in §4.3, we identify the number of nodes and density per
graph, the number of distinct labels and graphs in the dataset and the size of the query that
influence the performance of both FTV and SI methods either positively or negatively, as
these factors influence the performance of the underlying subgraph isomorphism test. In
§4.4, we use these parameters to perform experiments and analyze the sensitivity on existing
FTV methods in a systematic manner, i.e., we maintain all parameters fixed except for one

1.2. Research Questions and Contributions 6

that we gradually increase and we study the effect of the said parameter on the performance
of the various algorithms. Furthermore, we stress-test them and we study the scalability
limitations of these algorithms by pinpointing points where some algorithms break whereas
others still operate by efficiently constructing their index and by answering queries.

Contribution 2: Choosing the right algorithm for our application through the quantification
of indexing time, index size, query processing time and filtering power of top-performing
FTV and SI methods.

In §4.4 and §4.5, in order to identify top-performing methods, we have quantified the
constructed index in time and size and we have studied its efficiency in answering queries
both in time and in filtering power (when applicable). For this task, we have used both well-
known real and numerous synthetic datasets. Such an analysis is essential as newly proposed
methods utilize different metrics to compare with each other, and thus it is very difficult to
decide which method performs best and based on which criteria. All in all, all proposed
methods have their advantages and disadvantages and when we need to choose the right
method to use, we need to consider optimizing different aspects of the problem and these
are the indexing time, the index size, the query processing time and scalability. Although
our experiments in §6.6 were inconclusive for pointing out the top-performing SI method,
for the FTV methods our experiments revealed two winners with a common attribute, the
simplicity. Specifically, features are the fundamental components for constructing the index;
the term feature refers to a connected subgraph structure of the initial graph, and the size

of the enumerated features refers to the size of the subgraph structure in number of edges.
Figure 1.2 illustrates an example of features produced from a given graph. Related FTV
methods employ various features for constructing their index; i.e., paths, trees, graphs, cycles
or a combination of them, up to maximum size. Among these features, paths is the simplest
form because of the underlying procedure for extracting them. Additionally, paths are also
considered to be trees and graphs. Various methods employ different maximum sizes that in
bibliography (§2.3.1 and §3.1) varies between 4 and 10 edges. Based on our experiments.
Grapes[11] and GGSX[12], which employ the simplest form of features, the paths, are the
clear winners from the set of the various FTV methods by performing the best in terms of
indexing time, query processing time and scalability limitations. However, we also see that
Grapes significantly outperforms GGSX in filtering power, especially when the stored graphs
in the dataset increase in size, i.e., in number of nodes and/or density. Contributions 1 and 2
are additionally discussed in [9].

Contribution 3: Confirmation of the existence of straggler-queries and the role of isomor-
phic instances of the same query.

1.2. Research Questions and Contributions 7

Figure 1.2: Features of different sizes of a given graph.

So far, related work, e.g. [7, 8] was limited in employing workload metrics; i.e., the
average query execution time (calculated as the total time to execute all queries in the work-
load divided by the number of the queries in the workload) as a representative metric of the
algorithms’ performance (§5.4). In other cases, queries that were identified as outliers, i.e.,
too time-consuming to execute, were totally removed from the query workloads. With our
experiments, we show that such assumptions are erroneous and improper. Specifically, we
show that given a large stored graph and some query graphs, the query execution times for a
specific algorithm (among queries of the same size) can vary widely, with the majority of the
queries being very easy to execute; i.e., their execution time is<2”. However, there is a small
percentage of queries with execution times many orders of magnitude higher compared to the
rest, which we call “straggler” queries. In such a query workload, different algorithms have
different percentages of straggler queries. This finding holds for both FTV and SI methods
(§5.4). Given the existence of straggler queries, averaging execution times over all queries in
the workload can lead to a misinterpretation of the algorithms’ performance; i.e.: the average
execution time can be artificially inflated or the straggler queries can disappear because of
the possible accumulated number of non-straggler queries.

In both the stored and the query graph, a unique number (ID) is used to identify the
nodes; this numbering is used by some algorithms during query processing and can affect
the order in which the nodes of the query are matched to the nodes of the stored graph. Given

1.2. Research Questions and Contributions 8

a query graph q, we can produce an isomorphic query q′ by maintaining the structure and
labels of the query the same (i.e., the nodes with their labels and edges among the nodes),
and by interchanging the node IDs (definition 3 and figure 5.9). We call this process query

rewriting. In §5.5 and §5.6 we see that if we rewrite the query to an isomorphic one, we might
get completely different execution times. In other words, isomorphic queries can have widely
and wildly different execution times. Thus, we propose and implement our own isomorphic
query rewritings (on top of any other rewriting imposed internally by each algorithm), by
permuting the node IDs in a specific manner, to achieve large performance gains (§5.6).

Contribution 4: Discovery of algorithm specific stragglers.

With our experiments in §5.4, we see that all proposed methods suffer from stragglers,
which appear in different percentages depending on the dataset. We also know that the
various SI methods employ different heuristics to perform the subgraph isomorphism test
(§2.3.2). With our experiments in §5.7, we see that different algorithms are challenged by
different queries. In other words, a straggler query on one algorithm is a typical query on
some other algorithm.

Contribution 5: The Ψ-Framework.

Instead of totally dismissing prior work and trying to devise new straggler-free algo-
rithms, with all the aforementioned findings, we show that related work already performs
very well in the majority of queries, i.e.: although proposed algorithms suffer from strag-
gler queries, a large number of queries is actually executed very fast, as discussed in §5.4.
Thus, we need to exploit existing methods appropriately in order to achieve large perfor-
mance gains in the subgraph matching problem. This is the task of our novel proposed
Ψ-Framework (§5.8), which stands for Parallel Subgraph Isomorphism Framework. As the
name suggests, we generate and execute in parallel different isomorphic instances of the
same query and/or different algorithms by instantiating executions in different threads. After
the completion of any first thread, the rest of them are killed. Although such an execution can
have a large memory footprint, which depends on the number of the instantiated threads, it
is highly beneficial across algorithms and datasets and leads to a performance improvement
of many orders of magnitude compared to the original proposed methods. Contributions 3,
4 and 5 are also discussed in [10].

Contribution 6: Creation of hybrid FTV-SI methods for the matching problem.

The smart indexing of FTV methods is mainly used to prune out graphs that definitively
do not contain the query as an answer and is thus useless in scenarios of a dataset consisting

1.3. Thesis Outline 9

of a single large stored graph. Of course in such scenarios, SI methods surpass FTV meth-
ods without doubt [8]. However, recent works ([8]) tend to totally dismiss FTV methods
even in datasets consisting of a large number of graphs, with the claim that the fast subgraph
isomorphism test of the SI methods can significantly outperform the overall performance of
the FTV methods. With our work, we investigate the above claim. To better test this, we
study whether the benefits of the filtering of the FTV methods can be really offset by the
fast SI methods in datasets consisting of a large number of graphs and under which circum-
stances. In chapter §4 and in [9], we identify Grapes as a top-performing FTV method in
terms of indexing time, index size, scalability limitations and filtering power. Our experi-
ments are inconclusive in identifying a single top-performing SI method in §6.6. Knowing
that Grapes has a much stronger filtering compared to the filtering, if any, performed by the
SI methods (§6.5), we set out to construct a hybrid FTV-SI method as a combination of the
top performing FTV method (Grapes) and any SI method that would replace the underlying
subgraph isomorphism test used in Grapes (§6.7 and §6.8). Such a hybrid combination is able
to achieve large performance gains in the subgraph matching problem. This contribution is
also discussed in [13].

Contribution 7: Identifying and extending scalability limitations.

With our comprehensive and systematic conducted experiments on the FTV methods,
we show that all proposed methods suffer from scalability limitations as the dataset grows
large in terms of number of nodes / density per graph or as the number of graphs in the
dataset increases (§4.5). We identify cases where (i) the index creation required excessive
amount of time or was not even possible due to excessive memory requirements and (ii) the
queries could not be answered in reasonable time (§4.4). Similar conclusions hold for the SI
methods (§5.4). However, we are able to extend these scalability limitations by applying a set
of different techniques, presented in this thesis. Specifically, although Grapes is one of the
top performing FTV methods, the size of the enumerated features can restrict its scalability.
By tweaking this parameter with smaller values in §6.9, we can still achieve high filtering
power but with a non-negligible reduced cost of index time and size. Also, our proposed
hybrid FTV-SI method aims to solve scalability limitations in query processing. Finally, our
Ψ-Framework, proposed in §5.8 is another solution to the scalability limitations problem in
the identified cases where the index could be constructed efficiently but the queries were not
answered in reasonable time.

1.3 Thesis Outline

The current thesis is organized as follows:

1.3. Thesis Outline 10

• Chapter 1 serves as the introductory material of this thesis, by presenting the efficacy of
graphs in representing complex structures and the subgraph pattern matching problem.
It presents the thesis statement and it identifies the fundamental research questions and
contributions of this thesis. Finally, it provides the list of peer-reviewed publications
that came out of this thesis.

• Chapter 2 provides the literature review of the most recent and well-known work con-
ducted in the field of graph DB and specifically in the subgraph pattern querying prob-
lem, and emphasizes on the various FTV and SI methods that were introduced over
the years. It also provides some useful definitions.

• Chapter 3 provides details for the experimental setup for the chapters that follow.
Specifically, it provides details on the employed algorithms, the used datasets for the
subsequent experiments (both real and synthetic ones). It also provides details on how
we generate the queries and some useful metrics for evaluating the performance of the
existing algorithms and the introduced solutions.

• Chapter 4 includes results from the comparison of various well-known and top-performing
FTV methods. After a set of experiments with both real and synthetic datasets, where
we vary parameters of interest, i.e. number of nodes, density, number of labels of
graphs and number of graphs in the dataset, and the query size it also provides useful
insights about their performance and scalability.

• Chapter 5 focuses on the subgraph isomorphism test of both FTV and SI methods.
This chapter identifies the straggler queries, i.e. queries with execution times much
greater than the majority of queries in the workload. Subsequently, it employs iso-
morphic instances or alternative algorithms to efficiently cope with straggler queries.
Finally, it employs these findings in the novel proposed Ψ-framework to achieve large
performance gains on both FTV and SI methods.

• Chapter 6 studies the indexing time and size and the achieved filtering of a top-
performing and well-known FTV method (Grapes) with top-performing SI methods.
Equipped with this knowledge, we combine them to form a hybrid FTV-SI method
that is able to achieve large performance gains on a graph dataset that consists of many
large graphs. Finally, to reduce the cost of index time/size, we tweak the size of the
enumerated features and we study the related trade-offs.

• Chapter 7 concludes this thesis by presenting an overview of the contributions. Ad-
ditionally, it sets the future steps through the questions arising from the already con-
ducted work.

1.4. Publications 11

1.4 Publications

The majority of the content of this thesis has been peer-reviewed and published in aca-
demic conference proceedings as follows:

• Foteini Katsarou, Nikos Ntarmos, Peter Triantafillou, “Performance and Scalability of
Indexed Subgraph Query Processing Methods”, Proceedings of the VLDB Endowment,

(P/VLDB 2015), vol. 8, no. 12, pp. 1566-1577, August 2015.

• Foteini Katsarou, Nikos Ntarmos, Peter Triantafillou, “Subgraph Querying with Paral-
lel Use of Query Rewritings and Alternative Algorithms”, 20th International Confer-

ence on Extending Database Technology, (EDBT17), pp. 25-36, March, 2017.

• Foteini Katsarou, Nikos Ntarmos, Peter Triantafillou, “Towards Hybrid Methods for
Graph Pattern Queries”, 6th International Workshop on Querying Graph Structured

Data (GraphQ 2017) co-located with EDBT2017, March 2017.

• Foteini Katsarou, Nikos Ntarmos, Peter Triantafillou, “Hybrid Algorithms for Sub-
graph Pattern Queries in Graph Databases”, In Proc. IEEE International Conference

on Big Data, (BigData17), December 2017.

12

Chapter 2

Related Work & Basic Definitions

[X \

In this chapter, we will introduce the background information and we will provide a
literature review of the most relevant related work for this thesis. Specifically, we will first
provide a formal definition of the problem along with other useful basic definitions. We
will then define the graphs by giving representative examples of some real world, well-
known graphs and networks and we will explore the expressive power of graphs, i.e., their
efficiency in representing complex structures. Armed with this basic knowledge, we will
set the context of the pattern subgraph querying problem, which is the main scope of this
thesis. We will discuss extensively the various proposed FTV and SI methods and we will
focus on their differences on addressing the subgraph queries. Subsequently, we will briefly
discuss other types of queries addressed by the graph DBs. Additionally, we will provide
an overview of the various well-known graph DBs. As visual representation of graphs is
essential in graph analysis, we will name some well-known tools that are publicly available
for graph visualization, along with some tools for graph generation that try to emulate the
characteristics of real-world graphs.

2.1 Graphs and Networks

A graph is a collection of vertices / nodes and edges. Assuming that the nodes are
different entities and the edges are the various relationships among them, then graphs are
ideal for representing complex entities and their relationships / interactions.

Examples that can be modeled as graphs are abundant in both real life and in computer
and communication systems. One of the most characteristic examples is the various online

2.2. Basic Definitions 13

social networks [14], where the entities are the users of the social network and the relation-
ships are the friendship, follow, like or other kinds of interactions among them. Similar to
that, the World Wide Web can be modeled as a huge graph with the nodes being the var-
ious pages and the edges being the links among different pages. Accordingly, the set of
research papers and their citations could model a similar network. In biology, we have bi-
ological networks such as chemical compounds[15, 1, 16, 2] and protein-protein interaction
networks[17, 18, 19]. Even the various transportation networks can form large graphs. In all
the aforementioned examples of graphs, the various components / entities interact with other
components / entities and thus they formulate interconnected and heterogeneous networks of
various scales [20].

2.1.1 Graph Data Models

Depending on the purposes of the application, several different graph data models have
been developed and these include (among others): property graphs, hypegraphs and triples.

Property graphs contain nodes and relationships, where both nodes and relationships
can contain properties in the form of key-value pairs. Relationships are always directed and
named, but also nodes can be labeled with one or more labels.

Hypergraphs are especially popular when modeling a many-to-many relationship, where
a special relationship, called hyper-edge, can connect any number of nodes. In other words,
the hyper-edge allows as starting point multiple start vertices and as ending point multiple
end nodes.

Triples are developed to model short statements in the form of subject - predicate -
object. Triples originate from the semantic web and the idea behind them is to harvest useful
relationship information from the Web.

2.2 Basic Definitions

The aforementioned algorithms can in theory support arbitrary graphs with labels on
both vertices and edges; however, the available implementations of several of them can only
handle undirected graphs with labels only on vertices (e.g. [11, 12, 8]). We thus focus on
graph datasets with such graphs.

Definition 1 (Graph) A graph G = (V,E, L) is defined as the triplet consisting of the set

V = {vi}, i = 1, ..., n of vertices of the graph, the set E ⊆ {(v, u) : v, u ∈ V } of edges

between vertices in the graph, and a function L : V → L assigning a label l ∈ L (L being

the set of all possible labels) to each vertex v ∈ V .

2.2. Basic Definitions 14

We assume that each node in a graph is assigned an integer in the interval [1, n], so that
no two nodes in a graph have the same number; we call this the node ID.

In this work we consider undirected graphs. We assume that, in each graph, each vertex
has a unique identifier. Note that, by the above definition, each node in a graph can have only
one label, but any given label can be assigned to multiple nodes in a graph.

Definition 2 (Graph Database/Dataset) A graph DB or graph datasetD = {G1, G2, . . . , Gm}
is a collection of vertex-labeled graphs as defined in definition 1.

Definition 3 (Graph Isomorphism) Two graphs G = (V,E, L) and G′ = (V ′, E ′, L′) are

isomorphic iff there exists a bijection I : V → V ′ that maps each vertex of G to a vertex of

G′, such that if (u, v) ∈ E then (I(u), I(v)) ∈ E ′, L(u) = L′(I(u)), L(v) = L′(I(v)), and

vice versa. The isomorphism class of G is the collection of graphs that are isomorphic to

graph G and to each other.

Note that, given a graph G, a graph G′ isomorphic to G can be trivially produced by
permuting the node IDs in G.

Definition 4 (Canonical Label) A canonical labeling, or canonical form, of a graph G is a

unique string representation which characterizes the whole isomorphism class of G.

Definition 5 (Non-Induced Subgraph Isomorphism) A graphG= (V,E, L) is non-induced

subgraph isomorphic to a graph G′ = (V ′, E ′, L′), denoted by G ⊆ G′, iff there exists

an injective function I : V → V ′ such that if (u, v) ∈ E then (I(u), I(v)) ∈ E ′ and

L(u) = L′(I(u)) and L(v) = L′(I(v)). Graph G is then called a subgraph of G′ and G′

is called a supergraph of G; equivalently, we say that G is contained in G′. Subgraph iso-

morphism is injective; thus there may exist edges in E ′ for which there are no corresponding

edges in E.

Definition 6 (Induced Subgraph Isomorphism) A graph G = (V,E, L) is induced sub-

graph isomorphic to a graph G′ = (V ′, E ′, L′), iff there exists an injective function I :

V → V ′ such that (i) if (u, v) ∈ E then (I(u), I(v)) ∈ E ′ for L(u) = L′(I(u)) and

L(v) = L′(I(v)) and (ii) if (u, v) /∈ E then (I(u), I(v)) /∈ E ′ for L(u) = L′(I(u)) and

L(v) = L′(I(v)).

In other words, induced subgraph isomorphism is different than the non-induced sub-
graph isomorphism in that the absence of an edge in G also implies the absence of the
corresponding edge in G′, whereas in subgraph isomorphism these “extra” edges may be
present. Checking for either induced or non-induced subgraph isomorphism is known to

2.3. Subgraph Matching problem 15

be NP-Complete [6]. Although the problem of induced subgraph isomorphism seems to be
only slightly different from that of subgraph isomorphism, the “induced” restriction intro-
duces enough changes that have major implications for the computational complexity. There
are pairs of G and G′, that when the subgraph isomorphism problem is applied, the problem
is NP-Complete, whereas when the induced subgraph isomorphism is applied, the problem
can be solved in polynomial time, while the opposite is not valid [21, 22]. Much like all
of the FTV and SI methods discussed in §2.3, we focus on the non-induced subgraph iso-
morphism problem, or simply subgraph isomorphism, and omit any further discussion of the
induced subraph isomorphism.

Definition 7 (Graph Density) The density d of a graph G = (V,E, L) is defined as the

quotient of the division of the number |E| of edges in the graph over the number of edges in

a complete graph with the same number of vertices. In an undirected graph with |V | vertices,

the latter is equal to |V |×(|V |−1)
2

edges, and thus:

d =
2× |E|

|V | × (|V | − 1)
, d ∈ [0, 1] (2.1)

Definition 8 (Average Degree) The degree of a node v in a graph G = (V,E, L) is defined

as the number of edges in the graph having v as an endpoint. The average degree avgdeg
of graph G is then defined as the average of the degrees of all vertices in the graph. For

undirected graphs:

avgdeg = 2× |E|
|V |

(2.2)

Finally, we define the subgraph matching problem, that we will discuss later in chapters
§4, §5 and §6.

Definition 9 (Subgraph Matching Problem) Given a set of graphs D = G1, ..., Gn, and

a query graph q, the subgraph matching problem determines all graphs Gi ∈ D such that

q ⊆ Gi and finds all the occurrences of q within each Gi.

2.3 Subgraph Matching problem

Armed with the knowledge of examples of real graphs, it is essential to set the context
of typical queries addressed to these graphs. Thus, in the exact subgraph pattern querying

problem, given a pattern graph (query) and a graph DB, we want to locate which graphs in
the DB contain this query. In some algorithms, all occurrences of the query graph in the DB
graphs are additionally returned. Exact subgraph matching is one of the most fundamental

2.3. Subgraph Matching problem 16

operators in many applications that handle graphs (as discussed in [23]). Typical application
fields, among others, are biomedicine and the protein-protein interaction networks [11, 24,
25], knowledge bases [26, 27], program analysis [28, 29], social network search and graph
analytics applications [23, 30, 31]. Another manifestation of the importance of the problem
is the large set of already proposed solutions and comparative studies, e.g.: [7, 8], which is
annually enhanced by at least 2 new proposed methods. Other types of queries addressed in
a graph DB will be discussed in §2.4.

The subgraph querying problem entails subgraph isomorphism which is known to be
NP-complete [6]. Thus, over the years numerous methods have been proposed to alleviate
the problem with related work being fragmented in two different categories that examine
different versions of the subgraph querying problem: the decision and the matching version.
In the decision version, given a DB of many (typically small) graphs and a query/pattern
graph q, the method decides whether q is contained in any graph in the dataset and returns the
IDs of those graphs. The decision version is typically addressed by the so called filter-then-

verify (FTV) or indexed subgraph query processing methods and work in two stages. In the
matching version, the method finds all embeddings of the query graph q in a typically large,
stored graph g or in each graph of a graph DB. The matching version is usually addressed by
subgraph isomorphism (SI) algorithms that employ different heuristics.

2.3.1 FTV methods

With a typical graph DB consisting of a large number of graphs and subgraph isomor-
phism being NP-complete, the philosophy of FTV methods relies on the attempt to reduce
the number of graphs that undergo subgraph isomorphism. Specifically, all such algorithms
construct an index with the attempt to reduce the set of graphs against which to test for con-
tainment and during query processing they operate in two stages: filtering (where they create
a set of candidate matching graphs) and verification (of the query graph in the candidate
set). Central to the whole procedure is the use of features, where the term “feature” refers to
substructures of DB graphs used to produce the index, regardless of whether these are then
stored in the index or not.

The wide design space is formed through the different design options of the numerous
proposed FTV methods. In total, the design space is characterized through a classification of
related works in 4 major categories: (i) type of indexed features: paths, trees, simple cycles,
or graphs; (ii) approach for extracting said features from indexed graphs: i.e., exhaustive
enumeration or frequent mining techniques; (iii) index data structure: hash table, tree, trie;
and (iv) whether the index stores location information or not.

We will now present in detail the distinct stages of the various FTV methods:

2.3. Subgraph Matching problem 17

Index Construction, which is a pre-processing step before the actual query processing.
Specifically, The various FTV methods extract features from the DB’s graphs and index
them in an appropriate data structure. Depending on the algorithm, these features can be
(a) simple paths[32, 12, 33, 11, 34], (b) trees[35, 36, 37], (c) graphs[38, 39, 40, 41, 42, 43],
or (d) a combination of trees and graphs/cycles[44, 43]. Additionally, the features can be
extracted from the graphs by either (i) exhaustively enumerating all such features across all
graphs[12, 44, 39, 34], or (ii) mining the dataset graphs for frequent patterns[38, 36, 40, 41,
42, 37, 43, 45, 46]. LIndex[42] reuses the frequent feature extraction primitives of previous
algorithms (e.g., [38, 35, 41, 43]), and is thus able to function with several feature types.

In the case of frequent feature mining algorithms a larger feature can be produced as
the union of several smaller features, and thus, the number of graphs that contain the for-
mer is a subset of those that contain the latter. Thus, frequent mining techniques employ
the support ratio metric of a feature which is defined as the percentage of graphs in the
dataset containing it, where the feature is considered frequent if its support ratio is above
some algorithm-specific threshold. Correspondingly, the discriminative ratio of a feature is
a metric characterizing the pruning power of a feature compared to its sub-features 1. Finally,
in order to be able answer all possible queries, frequent mining techniques index all features
of size 1.

In all cases, an upper limit is imposed on the size of the indexed features, where the size
of a feature is defined as the number of edges comprising it. Features are identified by their
canonical label; i.e., a unique string representation of each feature, computed on the labels
of the vertices of the feature using an algorithm appropriate for the feature’s structure (path,
tree, etc.). In the end of the indexing phase, the stored index contains the features along with
graph ID lists, i.e. a list of the IDs of graphs containing this specific feature. Additionally,
some of the algorithms choose to further enhance their index with location information, such
as the id of the first node in each path feature [11], or the id of the node at the center of a
tree feature [37], whereas others [41] prefer not to do so for space reduction purposes. Last,
all this is organized in algorithm-specific structures, such as hash tables, prefix trees, tries,
or lattices.

During query processing, the stages of the various FTV methods are:

Filtering. In this stage, the query graph is first looked up in the index. If an exact
match is found, the related graph IDs are returned. Otherwise, the query graph is broken
up into features of the same form as those used to create the index. The query index is
matched with the dataset’s index, filtering out unmatched branches. Subsequently, in the
majority of algorithms, an intersection of the sets of graphs containing each feature of the

1All frequent mining-based works mentioned above provide differing formulas for this metric; we thus do
not provide a formula here but rather refer interested readers to the cited papers for more details.

2.3. Subgraph Matching problem 18

query graph (i.e. an intersection of the returned graph ID lists) is performed, resulting in a set
of graphs possibly containing the query graph, called the candidate set for the given query.
Additionally, the algorithms that also store location information take advantage of this added
knowledge at this stage for further filtering.

Verification. The above filtering stage may well produce false positives as graphs in
the dataset may contain all (size-limited) features of a query graph but not the query graph
itself. To this end, a final verification step is necessary, consisting of testing the query graph
for subgraph isomorphism against only those graphs in its candidate set. The vast major-
ity of FTV algorithms opt to employ the VF2 subgraph-isomorphism algorithm[47] mainly
because of its public availability, with the exception of [44], [35] and [37] which employ
algorithm-specific tests.

Figure 2.1: Summary of the stages of FTV methods

Figure 2.1 summarizes the stages of the various FTV methods. FTV methods are ex-
tensively discussed in [7, 42, 9, 13]. To better comprehend the stages of the various FTV
methods, figure 2.2 presents a hypothetical FTV method that exhaustively enumerates paths
up to maximum length maxL = 2 for a graph dataset that consists of graphs {g1, g2, g3}.
The enumerated paths are organized in a trie and the graph-id lists are represented with the
’@’ sign followed by the ids of graphs. In query processing, the query index is matched with
the dataset’s index (highlighted with orange color in the figure), and the intersection of the
graph-id lists reveal the candidate set; i.e. {g1, g2}. The final isomorphism test reveals g1 as
an answer to the query.

The main target of all these methods is to prune the candidate set and thus to reduce the

2.3. Subgraph Matching problem 19

Figure 2.2: Example of a hypothetical FTV method that enumerates exhaustively paths and
organizes them in a trie index structure

number of (expensive) subgraph-isomorphism tests performed. However, with their design
options the various proposed methods try to optimize 4 different criteria: (i) the indexing
time, (ii) the index size, (iii) the query processing time and (iv) the candidate set size. Their
design options reflect on the scalability of these methods, i.e., the ability of constructing the
index in reasonable time and size and answering queries in reasonable time. Our findings on
the above criteria are extensively discussed in chapter §4 and specifically in §4.4 and §4.5. In
brief, with our work we concluded that Grapes[11] and GGSX[12] are the best solutions in
terms of index construction time, query processing time, and scalability limitations. We also
showed that both Grapes and GGSX enjoy similar filtering power for datasets consisting of
relatively small graphs. However, when the graph sizes increase, Grapes outperforms GGSX
in filtering power.

2.3.2 SI methods

Some early SI methods include [48, 49, 50, 51], approaches [24, 47, 52] are widely used
and later work include [53, 54]. The main focus of SI methods, is not to filter out graphs
in the dataset that definitely do not contain the query as an answer, but for each DB graph
(i) to locate the best candidate vertices to expedite the sub-iso test, and (ii) to decide the
optimal join plan to follow; i.e., the sequence in which the query vertices will be matched
to those of the stored graph. Thus, proposed SI methods, apart from the sub-iso heuristic

2.3. Subgraph Matching problem 20

algorithm, additionally comprise of a pre-processing/indexing step where they maintain a
feature-based index consisting of: (i) vertices and edges [35, 49], (ii) shortest paths [29] or
(iii) subgraphs [24, 52] up to a certain size. The algorithms additionally store vertex label
lists along with additional information to facilitate the sub-iso test. During query processing,
they apply different heuristics and define different join operations to match the query. Figure
2.3 summarizes the stages of the various SI methods.

Figure 2.3: Summary of the stages of SI methods

A number of such methods were presented and compared in [8], concluding that (i) al-
though there was no single algorithm to outperform all others on all occasions, GraphQL[24]
was the only one that managed to complete all tested query workloads; (ii) GraphQL and
sPath[29] showed very good performance; but also that (iii) all existing algorithms have
weaknesses in the way they apply their join selection and pruning heuristics, leading to the
need for new SI methods with improved performance. Following the publication of [8],
several subgraph isomorphism tests were proposed. Specifically, TurboIso[55] rewrites the
query by merging vertices that share the same label and neighborhoods. BoostIso[56] applies
the aforementioned rewriting technique to the stored graph and dynamically reduces the du-
plicate computations. Thus, BoostIso claims that it can be applied on top of any SI algorithm
and that it can accelerate all proposed subgraph isomorphism techniques. CFL-Match[57]
applies decomposition of the query in dense subgraph and forest and unlike other methods,
CFL-Match processes the dense subgraph first. Finally, Peng et al.[58] decompose the query
in adjacent edge pairs or star-style patterns and propose an Edge Join algorithm for matching
the query.

2.3. Subgraph Matching problem 21

Our recent work[10], also discussed in chapter §5, provided key insights about the per-
formance of both FTV and SI methods, and complements [8] with the inclusion of more
recent SI algorithms. In brief, our experiments first showed that all existing SI algorithms
suffer from straggler-queries; i.e., queries whose processing time is many orders of mag-
nitude worse compared to the rest (§5.4). Second, that isomorphic queries, generated by
simply permuting the node IDs, can have widely and wildly different execution times. The
fact that all proposed methods do not define an absolutely strict order in which the nodes
of the query will be matched, constitutes to this end (§5.5). Thus, straggler queries may
have isomorphic instances which are not stragglers. Finally, we observed that stragglers are
algorithm-specific, i.e. a straggler-query on one algorithm can be a typical query on some
other algorithm (§5.7). These findings yielded the Ψ-framework (Ψ for Parallel Subgraph
Isomorphism), which executes in parallel threads of different query rewritings and/or alter-
native algorithms to achieve large performance gains on both SI and FTV methods (§5.8).

There is nothing obstructing the SI methods being applied for the decision problem or
the FTV methods for the matching problem. Both FTV and SI methods initially construct an
index. FTV methods were originally proposed to work with datasets consisting of numerous,
relatively small graphs, whose effectiveness relies on their achieved filtering, whereas SI
methods employ the constructed index to primarily locate candidate vertices of the query in
a large stored graph.

Finally, McCreesh [59], proposes additional heuristics to the subgraph matching prob-
lem. Unfortunately, [59] did not consider as many/large real datasets (yeast[8], human[8],
wordnet[23]) or synthetic datasets (constructed using GraphGen[60] – see section §3.2.1),
as we did. Additionally, the state of the art SI methods, namely GraphQL[24], sPath[29],
QuickSI[35], TurboIso[55] and BoostIso[56] over TurboIso, are totally ignored and no com-
parison with them is considered.

Distributed SI methods

All the aforementioned FTV and SI methods are designed for subgraph matching query
processing over graph DBs that can reside in the memory of a single commodity computer.
In other words, they are not designed to tolerate any graph partitioning mechanisms or pro-
cessing of the graphs in the DB in batches.

Thus, in addition to the above directly relevant research, recent research has expanded
its scope in various directions. Below we refer to some interesting representative examples.
Methods, such as sTwig[23], TwinTwig[30], SEED[31], and ParMa[61] deal with a single,
very large graph, stored in a distributed infrastructure, and rely on parallel computing algo-
rithms and infrastructures to perform the subgraph isomorphism testing.

2.4. Other types of queries 22

Specifically, sTwig[23] relies on Trinity[62] for storing and partitioning the large graph.
During query processing, the query is decomposed into smaller subqueries and sTwig uti-
lizes mainly graph exploration, whereas the expensive joins are necessary only in the case
of cycles existing in the query. TwinTwigJoin[30] is implemented over MapReduce[63].
Similar to sTwig, the query is decomposed in smaller subqueries, but the main join unit is a
TwinTwig, i.e., either an edge or two incident edges of a node. The query is reconstructed fol-
lowing left-deep-joins of intermediate results of matching the TwinTwigs against the stored
graph. SEED[31] is an improvement over TwinTwigJoin (by the same authors), where not
only TwinTwigs are considered for the intermediate joins, but also stars and cliques. Addi-
tionally, the left-deep joins are replaced with a dynamic-programming algorithm and cliques
are compressed to reduce the intermediate results. ParMa[61], unlike all other previous meth-
ods, tries to optimize not only the number of intermediate results produced during the join
operations but also the number of iterations through the query decomposition. Therefore, the
query is decomposed in such a way that overlaps are allowed. Finally, all aforementioned
methods employ a mechanism in such a way to estimate intermediate produced results and
thus they attempt to define the optimal order in which the join operations will be applied in
the decomposed query.

2.4 Other types of queries

Apart from the subgraph pattern queries, other types of queries could be addressed in a
graph DB. Therefore, there has been considerable work on the subjects of approximate graph
pattern matching and of supergraph query processing. In the first case, related techniques
(e.g, cTree[36], CT-Index[44], Tale[64], GD-Index[39], Grafil[65], GiS[66], SAPPER[28],
SAGA[67], gSimJoin-minEdit[68], APPSUB[69], NeMa[70], GrafD-Index[71], etc.) do
perform subgraph matching, but with support for wildcards and/or approximate matches. A
characteristic use case is the 2017 Pulitzer Prize-winning Panama Papers investigation[72]
initiated by the International Consortium of Investigative Journalists, which revealed highly
connected networks of offshore tax structures, created in Neo4j[4]. In the second case, the
related algorithms (e.g., LW-Index[73], cIndex[74], prefIndex[75], igQuery[76]) return those
graphs in the dataset which are contained in the query graph (as opposed to containing the
query graph; see [73] for an overview of related approaches). All these algorithms are not
directly related to our work, as we focus on exact-match subgraph query processing.

Methods, like iGQ[77] and GraphCache[78], employ caching on top of any proposed
FTV method to improve performance and study the architecture, system and algorithms for
a graph cache for both subgraph and supergraph queries for FTV and SI methods, whereas
GraphCache+[79] proposes different approaches to ensure consistency in GraphCache. Sim-

2.5. Graph Databases 23

ilarly, PatternTreeISO[80] utilizes pattern correlations of preceding queries to expedite sub-
graph isomorphism for subsequent ones. Ren et al.[81] study the problem of multi-query
optimization (MQO) on a system where multiple subgraph matching queries arrive simulta-
neously; first the system detects useful common subgraphs on the queries, then it proposes a
sequence in which the queries should be executed and a caching mechanism to exploit inter-
mediate results. Lin et al.[82] address the problem of generalized subgraph query processing.
Finally, Semertzidis et al.[83] considered pattern queries over time-evolving graphs.

Significant work has been conducted in graph mining, which is essential in frequent
mining FTV methods (as presented in §2.3.1). Proposed algorithms can be classified in the
apriori approach (e.g. AGM[84], FGS[85]) or the pattern growth approach (e.g. gSpan[46],
SPIN[86], GASTON[87]). For more information, [88] is a recent comparative study of var-
ious subgraph mining methods. Unlike, other mining methods, GraMi[89] is a system that
allows frequent subgraph mining in a single large graph.

Finally, as we already mentioned in §2.3, canonical labels (or canonical forms), i.e., a
unique string representation of a feature employing the labels of the vertices of the feature,
are essential in the indexing process. The indexed features can be paths, trees or graphs. For
paths, the generation of canonical labels is straight forward and is computed as the concate-
nation of labels of participating nodes in the path. The canonical label of a tree is calculated
in linear time. Specifically, first we need to calculate the center of the tree by repeatedly
removing the leaf nodes till 1 or 2 nodes are left. Then, as proposed in [90], the vertices of
the rooted unordered tree are sorted / ordered level-by-level and bottom to up following a re-
cursive procedure. Subsequently, the canonical label is produced by concatenating the labels
of the vertices in a DFS traversal. Canonical labels for graphs is known to be NP-complete.
Thus, efficient algorithms have been proposed that scale reasonably in moderate size graphs
such as Nauty[48], Bliss[91] and Traces[92].

2.5 Graph Databases

There are various types of databases (DBs), that could be used to store graph data with
many different database management systems (DBMS) developed over the years to manage
the DB; i.e., traditional relational DBs with PostegreSQL[93] being a characteristic DBMS,
and NoSQL DBs, with the DBMS MongoDB[94]. However, both relational DBs and NoSQL
DBs struggle to model the complex represented relationships [95]. Specifically, the “third
normal form (3NF)” is crucial in a relational DB, where a series of transformations in tables
is applied in order to avoid replication of data and thus redundancy, and to enforce logical
consistency among the data of the table [96]. Thus, exploring relationships in a graph stored
in a relational DB translates into joining different tables, where additional overheads are

2.6. Graph Generators and Graph Visualization 24

added by the foreign key constraints and the special checking of nullable columns [95]. Sim-
ilarly, the NoSQL DBs are used to store sets of disconnected values/ columns/ documents,
and in order to impose some order in the stored data, they can add aggregate identifiers in-
side these fields. Thus, when exploring relationships in a graph stored in a NoSQL DB, that
translates into expensive join of aggregates which become too costly too soon.

On the contrary, a graph DB is more appropriate to efficiently store and process graphs
and the queries addressed to the said graphs, by storing the data using graph structures, i.e.,
the entities are represented as vertices and the relationships/ interactions are represented as
edges. Graph DBs are well-known for 2 basic characteristics: (i) the index-free adjacency,
i.e., every element contains a pointer to its adjacent element and thus no index lookups
are necessary, and (ii) native graph processing, the graph traversal is achieved by literally
chasing pointers [97].

Over the years, several graph DBs have been proposed such as Neo4j[4] (which is
open-source and well documented [98, 99, 100]), OrientDB[5], Titan[101], Trinity[62],
FlockDB[102] and others. We omit any further analysis here, as it is beyond the scope
of this thesis. Addtionally, for the same reason we just reference here Pregel[103], and its
open-source counterpart Apache Giraph[104], Horton[105] and GraphLab[106] which are
different graph processing systems that offer high scalability, whereas GraphChi[107] was
designed to perform processing of large graphs over a single computer.

For the current thesis, and for simplicity reasons, we omit the use of the above systems
for storing and processing the graphs. Instead, graphs reside in plain text files, which are
loaded into memory at the beginning and before any processing. Graphs in the DB are
also static, i.e. no modifications such as deletion/ additions of graphs/ nodes/ edges are
considered.

2.6 Graph Generators and Graph Visualization

The Stanford Network Analysis Project [3] provides some real-world graphs, which
among others represent social networks, communication networks, online reviews and com-
munities. However, the number and/or size of graphs publicly available are not suitable for
experimentation. Thus, over the years various graph generators have been proposed that cap-
ture properties of these real-world graphs, which allow various parameters of interest to be
set such as the number of nodes and edges of the generated graphs. In other words, such a
parametrization is suitable to generate graphs of different scale and size.

GraphGen[60] is a standard tool for constructing datasets suitable for graph mining tech-
niques and subgraph queries, as it allows the parametrization of various parameters of inter-
est; namely number of graphs, average number of nodes and density per graph, number of

2.7. Branch and bound paradigm 25

labels in the dataset, etc. As GraphGen is essential in our experiments (see chapters §4, §5
and §6), we include a more detailed description of how it generates a graph dataset in §3.2.1.
R-MAT[108] follows the Erdös-Rényi model and is especially popular for generating power-
law degree distributions graphs, such as the social network graphs or the World Wide Web, in
a recursive manner by specifying a small number of parameters. However, neither Stanford
Network Analysis Project nor R-MAT contain any labels on the nodes and/or the edges of
the graph.

Visual representation of graphs is essential in graph analysis. GraphTool[109] is a very
powerful tool that enables graph visualization, along with other capabilities such as statistical
analysis of graphs. It is a Python[110] module with many algorithms implemented in C++,
which benefits from the Boost Graph Library[111]. A similar tool for graph visualization,
but with less algorithms ready implemented is SNAP[112]. Pajek[113] is one of the oldest
graph visualization tools which is publicly available but not open-source and additionally
offers some real graphs with various characteristics. Pegasus[114] is an open-source graph
mining library which is able to perform statistical analysis of graphs in the size of Tera- or
even Peta-bytes, and is implemented over Hadoop[115].

2.7 Branch and bound paradigm

Branch and bound refers to the exploration of the tree-shaped search space by sub-
dividing it and branching recursively into each sub-space [116, 117]. The concept of branch
and bound search is equivalent to the case where many paths from a root node to a goal
exist. What we want to achieve is to locate the optimal path; i.e. the path with the smallest
cost. Thus, we perform a depth-first traversal from the root node to the goal, by extending by
one edge each time, and we maintain the path with the lowest cost discovered so far. While
forming the path from root to goal, if we encounter a path with higher cost than the currently
optimal one, this path can be safely pruned. Otherwise, the current best path and cost is
updated. Branch and bound is applied in solving NP-hard optimization problems such as
constraint satisfaction and mixed integer programming problems.

Proposed algorithms for these problems can show a high variance in their execution
times. In their core, they employ different heuristics and are significantly affected by the
search order they impose. Additionally, during the process of defining a search order, they
may encounter ties, that when randomized can even further affect the algorithm’s perfor-
mance.

Given an algorithm, its execution time is a random variable and independent of the ex-
ecution time of another algorithm for the same problem. Thus, in order to achieve large
performance gains, the algorithms are combined in parallel searches and/or re-uses of the

2.7. Branch and bound paradigm 26

same algorithm, which is known as portfolios of algorithms [116]. It can be easily conceived
that portfolio approaches can have a practical pay-off when combining methods with a high
variance in their execution time and when there is not a single winning algorithm across the
whole spectrum of problem instances. Thus, some portfolios of algorithms are favorable
when compared to others. Additionally, the design of the optimal portfolio is quite sensitive
to the distribution of underlying execution times of the various algorithms.

27

Chapter 3

Experimental Setup

[X \

In the current chapter, we will set the experimental framework for the chapters that fol-
low. Specifically, we provide a detailed description of the competing algorithms of both
FTV and SI research camps. We also provide the description and statistics of the employed
datasets (both real and synthetic) for our experiments and the procedure we follow to gen-
erate our query workloads. We conclude this chapter with the presentation of the main
performance metrics we employ for the evaluation of our experiments. We note that addi-
tional details for the experimental setup of each chapter will be introduced in the individual
chapters.

3.1 Competing algorithms

For the experiments carried out for the purpose of this thesis, we used a set of well-
established FTV and SI algorithms. To facilitate the reader, the competing algorithms’ details
are presented here.

For the FTV methods, our main focus was to cover as much of the design space as
possible, and thus, we opted to perform an extensive comparison of six of the above algo-
rithms. These algorithms were purposefully selected to represent different points in the de-
sign space, characterized by their use of: different feature types, different feature extraction
approaches, different index data structures, and different filtering and verification processes.
We chose to evaluate a set of representatives of the various regions in the design space, as
opposed to providing an exhaustive (and unwieldy) examination of all available FTV algo-
rithms. More specifically, we compare CT-index[44], GCode[34], gIndex[41], Grapes[11],

3.1. Competing algorithms 28

GraphGrepSX[12], and Tree+∆[43]. We justify our selection of algorithms and discuss their
characteristics below.

For the experiments with the SI methods, we opted for methods (i) whose code is pub-
licly available or made available to us by the authors upon request, so any conclusions would
not be implementation dependent and (ii) that were well recognized as well performing. We
selected GraphQL[24], sPath[29], QuickSI[35], TurboIso[55], and BoostIso[56] over Tur-
boIso. With respect to CFL-Match[57]: we did not employ the algorithm as its authors did
not respond to our request for their code.

3.1.1 Competing FTV methods

gIndex[41] uses a frequent mining approach, indexing graph-structured features. It uses
both the features’ support ratio and the discriminative ratio to decide whether a feature is
frequent or not, and indexes these features in a prefix tree. gIndex uses no location infor-
mation, and thus it only stores a graph ID list per feature. During query processing, gIndex
enumerates all graph-structured fragments of the query graph up to a maximum fragment
size, in a way which ensures that (a) smaller fragments are enumerated before larger ones,
by starting with fragments of size one and expanding each fragment with one additional edge
at a time, and (b) if a fragment does not appear in the index, no supergraphs of that fragment
will be produced. Then, the candidate set of the query is computed as the intersection of
the graph ID lists of the largest fragments along each expansion path. Finally, the verifica-
tion is performed by comparing the query graph against all candidate graphs using the VF2
algorithm.

Tree+∆[43] also uses a frequent mining approach, but initially indexes only tree-structured
features of up to a predefined size. The feature information is stored in a hash table. Like gIn-
dex, no location information is maintained. In the query processing phase, all tree-structured
fragments of the query graphs are enumerated and looked up in the index; the candidate set is
then computed as the intersection of the graph ID lists corresponding to these fragments, and
a final verification step is performed using the VF2 algorithm. However, Tree+∆ takes an
extra step: in addition to trees, the algorithm also enumerates simple cycles found in query
graphs, which then extends by adjacent edges. Those cycle-based structures that are found to
be discriminative enough (based on a predefined threshold on their discriminative ratio) are
used to enhance the index structure and serve just like the initially indexed tree-structured
features do for the subsequent queries.

gCode[34] takes a different route and chooses an exhaustive enumeration approach.
First, it enumerates all paths of up to a predefined size. Given these paths, it then pro-
duces vertex signatures, consisting of three components. The first two components are a

3.1. Competing algorithms 29

counter-string encoding of the labels of vertices in each path1, and a counter-string encoding
of the neighbors of each vertex in each path. The third component is computed as follows:
(i) first, for each node in the database, the algorithm creates a “level-N path tree” rooted at
said node and consisting of all length-N paths starting at that node; (ii) this tree is encoded
in an adjacency matrix form; (iii) the eigenvalues of the matrix are computed and sorted by
value; and (iv) the top-m such values (for some user-configurable m) are used as the third
component of the vertex signature. For every graph in the database, all these vertex signa-
tures are then combined to form the graph’s code. All graph codes are finally stored in a
balanced search tree. When a query comes in, first gCode follows the same process as above
to construct a graph code for the query graph. This code is then compared against the codes
of graphs in the database. This results in a first set of candidate graphs, which is then fur-
ther pruned by comparing the individual vertex signatures of the query graph and candidate
graphs. Finally, verification is performed by comparing the query graph against all graphs in
the final candidate set using the VF2 algorithm.

CT-Index[44] also uses an exhaustive enumeration approach to build its index. It uses
path-, tree- and cycle-structured features (of up to a user-configurable size). The canonical
labels of all such features are then combined and hashed, producing a fixed-size bit array
fingerprint for each graph in the database. Because of the hash-key compression applied,
additional collisions are introduced in the case of high numbers of different features and
small number of used bit array size. This algorithm, too, does not maintain any location
information. During query processing, a similar fingerprint is created for the query graph
and is then compared against the fingerprints of all graphs in the database via a bitwise-AND
operation. This produces a candidate set which is then fed to a verification stage utilizing a
modified VF2 algorithm with additional heuristics. The leading heuristic is that the frequent
labels have bigger priority than the less frequent ones.

GraphGrepSX[12] (GGSX for short) enumerates all paths up to a maximum length
using depth first search (DFS) and organizes them in a suffix tree. Each node of the suffix
tree also stores the graph ID list along with the number of occurrences of the corresponding
path feature in each graph it appears in. During query processing, maximal paths (of the same
maximum length as above) of the query graph are extracted and organized in a query suffix
tree, which is then compared against the index structure. Unmatched branches of the index
are pruned away, and a further filtering is performed based on the frequencies of features
in each graph. This process produces the candidate set, which then undergoes a verification

1 gCode utilizes a fixed-length vector representation, of size n of each node label l, let Xl =
{xl

0, x
l
1, ..., x

l
n−1}, that is computed via hashing. Let also P the set of paths of maximum length L, start-

ing from a node n of the graph, and pathi ∈ P . Then, a counter-string encoding Cn for a node n is calculated

as Cn =
{ P∑

l∈pathi

xl
0,

P∑
l∈pathi

xl
1, ...,

P∑
l∈pathi

xl
n−1

}
. In other words, Cn is the vector produced as the sum of

all the Xl representations of all labels appearing in all pathi ∈ P starting from node n. A similar definition
applies to the counter-string encoding of the neighbors of each vertex in each path.

3.1. Competing algorithms 30

stage using VF2.

Finally, Grapes[11] (GR for short) also uses an exhaustive enumeration approach, in-
dexing the simplest of features – i.e., paths of up to a maximum length, denoted maxL.
However, in addition to the paths’ canonical labels, Grapes also maintains location informa-
tion in the form of the ID of the starting node of each path for each graph it appears in, as
well as a counter denoting how many times each feature appears in each such graph. This
information is then indexed using a trie. An added benefit of Grapes is that it is the only of
the above algorithms which was designed specifically to support parallel execution of both
its indexing and query processing chores. In the former case, this is accomplished via a
smart assignment of graph nodes to threads so that each thread can produce a complete and
disjoint part of the final trie, without needing to synchronize with the rest. In more depth,
from the pool of all distinct labels, every initialized thread is assigned some labels to perform
the indexing and every new path that is enumerated is added on the local tries created by the
thread. When the indexing of a specific label is terminated, the next “free” label is assigned
to that thread. In the end, all the local tries are concatenated very fast, as no merging of
the inner nodes of the tries is required. During query processing, the query graph also un-
dergoes the same (parallel) process of path enumeration and trie construction, with the sole
exception that only maximal paths are considered. The query trie is then compared against
the index trie and the non-matching parts are pruned away. The “surviving” parts of the trie
are further reduced by taking into account the aforementioned location information, and are
then translated into a set of connected components per database graph. This set then forms
the candidate set of this algorithm. In the verification stage, the query graph is tested for
subgraph isomorphism against each of these connected components in parallel, with each
such component being assigned to a different thread.

3.1.2 Competing SI methods

The underlying isomorphism algorithm for the majority of FTV methods is VF2[47].
VF2 does not define any order in which query vertices are selected. Given a query graph q
and a dataset graph g, the algorithm chooses a vertex from q to match to vertices in g, and
proceeds by then trying to match still unmatched vertices adjacent to the matched ones in
q. Given an unmatched vertex in q, the set of candidate vertices of g is defined as the set
of all vertices in g with the same label as the unmatched vertex in q. VF2 then employs 3
pruning rules to reduce the number of candidate vertices. The first rule removes candidates
that are not directly connected to the already matched vertices of g. The second rule removes
all candidates for which the number of adjacent unmatched nodes which are also adjacent
to matched nodes of g, is smaller than the corresponding figure for the matched vertex of q.
The final rule removes all g candidates with less adjacent (matched/candidate) nodes than

3.1. Competing algorithms 31

the corresponding figure in q.

In the indexing phase of GraphQL[24] (GQL for short), the labels of all vertices along
with the neighborhood signatures, which capture the labels of neighboring nodes in a radius
i in lexicographical order, are indexed. In the subgraph matching phase, the algorithm starts
by retrieving all possible matches for each node in the pattern. Subsequently, 3 rules are
applied in order to prune the search space. First, the indexed vertex labels and neighborhood
signatures are used to remove infeasible matches. Then a pseudo subgraph isomorphism
algorithm is applied to the problem iteratively up to level l; i.e., for every pair of possible
graph-query vertex matches, the nodes adjacent to the query node should be matched to the
corresponding neighbors of the graph. Finally, the algorithm needs to optimize the search
order in the query before proceeding with the actual sub-iso test, which in turn consists of a
number of joins of the candidate node lists. This optimization is based on an estimation of
the result-set size of intermediate joins, and as it would be very expensive to enumerate all
possible search orders, only left-deep query plans are considered.

sPath[29] (SPA for short), similarly to GraphQL, also maintains a neighborhood sig-
nature comprised of shortest paths organized in a compact indexing structure. Specifically,
in order to reduce the storing space, shortest paths are not really maintained, but they are
decomposed in a distance-wise structure. In the query processing, the query is initially de-
composed in shortest paths that are then matched to the candidate shortest paths from the
stored graph. From all possible candidate shortest paths, those that (i) can cover the query
and (ii) provide good selectivity, i.e. minimize the estimated result-set size of each join
operation, are selected as candidates. For each one of the selected paths, an edge-by-edge
verification is then used to perform the sub-iso test.

In the sub-iso test of QuickSI[35] (QSI for short), priority is given to the vertices with
infrequent labels and infrequent adjacent edge labels. In the indexing phase, QuickSI pre-
computes the frequencies of labels and edges and uses them to compute the “average inner
support” of a vertex or an edge; i.e., the average number of possible mappings of the vertex
or edge in the graph. The inner support is later used in the graph matching process to assign
weights on the edges of the query graph and to construct a rooted minimum spanning tree
(MST). In case of symmetries, edges are added in such a way that they will make the MST
denser. The order in which vertices are inserted to the MST defines the order in which they
are then matched in the sub-iso test.

TurboIso[55] (TI for short), utilizes 2 data structures as its index: (i) an inverse vertex
label list that allows easy access to the vertices that share the same label, and (ii) a list of
adjacent vertices for every vertex. TurboIso defines the Neighborhood Equivalent Class (or
NEC for short) as the class of vertices that share the same structure, i.e. the same labels. In
the query processing, for a given query a starting (root) vertex is chosen based on a ranking

3.2. Datasets 32

function that favors low label frequencies and high node degrees and the query is rewritten
to the equivalent NECtree. Initiating from the root query vertex, TurboIso identifies candi-
date regions to the stored graph by performing a DFS search on the query’s NECtree. As in
all aforementioned methods, the matching order for the query vertices is chosen so that the
intermediate candidate results are minimized. However, TurboIso defines a better matching
order because of the more precise candidate regions estimation. Specifically, TurboIso ex-
ploits the paths of the NECtree from the starting vertex to every leaf node of the NECtree,
and calculates the cardinalities of their candidate regions. Based on that, a matching order is
defined in ascending order to the vertices of the NECtree.

BoostIso[56] (BI for short) can be applied on top of every proposed back-tracking al-
gorithm and is based on the use of 4 types of relationships: (i) syntactic containment (SC),
(ii) syntactic equivalence (SE), (iii) query-dependent containment (QDC), and (iv) query-
dependent equivalence (QDE). Empirically, the SC is evident in the case that two nodes have
the same label and the neighboring set of nodes on the second node is contained in the first
node. In the SE, two nodes share the same label and the same neighboring set of nodes. SC
and SE relationships are combined to form the Syntactic Equivalence Class (SEC), where
vertices in the same SEC form a clique or are pairwise adjacent (they are either 1-step or
2-step reachable from each other respectively). QDC and QDE are similar conditions to SC
and SE between the nodes of the query and the nodes of the stored graph. In brief, BoostIso
employs the aforementioned relationships as follows: the SC and SE relationships are used
to transform the stored graph to a new graph called the adapted hypergraph Gsh (sh stands
for stored hypergraph), whereas QDC and QDE are only applied in query processing and are
employed to further reduce duplicate computations. In more detail, as a pre-processing step,
BoostIso transforms the stored graph to the adapted hypergraph, by utilizing the SEC. This
process is called graph adaptation. Thus, the adapted hypergraph Gsh captures the structure
of the original graph along with the SE and SC relationships between vertices. In the query
processing, BoostIso searches for hyperembeddings of the query graph Gq in the adapted
hypergraph Gsh which are then translated to embeddings. Duplicates can be further reduced
using the QDC and QDE relations along with the SC and SE relations. For our experiments,
we employ BoostIso over TI (BTI for short).

3.2 Datasets

For our experiments, we have employed both real world and synthetic datasets (gener-
ated with GraphGen). The DOI of data used for the current thesis can be found in http:
//dx.doi.org/10.5525/gla.researchdata.588. In the current subsection, we
will present their characteristics.

http://dx.doi.org/10.5525/gla.researchdata.588
http://dx.doi.org/10.5525/gla.researchdata.588

3.2. Datasets 33

3.2.1 Graph Generation

GraphGen[60] allows the parametrization of a large number of key graph parameters,
such as the number of the graphs in the dataset, the average number of edges per graph, the
number of unique node labels in the whole dataset and the average density of the graphs. We
obtained the binary files of GraphGen from http://www.cse.ust.hk/graphgen/

(authors of FG-Index[38]) where it was publicly available, and through reverse engineering
we obtained the source code. GraphGen employs the following algorithm to generate a graph
DB:

1. The user specifies the number of distinct labels, of distinct edges, and of graphs in the
dataset, as well as the average graph density and graph size;

2. First, GraphGen produces an alphabet of distinct edges, in our case consisting of all
possible pairs of distinct node labels;

3. Then, for every new graph, GraphGen:
(a) Computes a random size (number of edges) and density, following a normal dis-

tribution around the aforementioned averages and a standard deviation of 5 and
0.01 respectively, and

(b) Iteratively selects a (uniformly distributed) random edge from the alphabet, adding
it to the current graph, until the requested size/density is reached or the system
runs out of edges to use.

Concerning the alphabet, let L be the number of distinct node labels. Then the maximum
number of distinct edge labels is: L×(L−1)

2
+L = L×(L+1)

2
. To better justify this formula, let a

graph dataset with 3 distinct node labels, i.e., “A”, “B”, “C”. Then the possible edge labels are
the combination in pairs of the above labels (in lexicographical order): “AA”, “AB”, “AC”,
“BB”, “BC”, “CC”. Note that “BA” is the same as considering “AB” and is thus omitted.
Finally, all graphs generated by GraphGen are connected.

3.2.2 Characteristics of Real and Synthetic Datasets

We have chosen datasets which (a) have also been used by other studies, so as to enable
possible direct comparisons, and (b) have key characteristics covering a large part of the
design space (e.g., regarding graph size and density).

We have performed experiments with datasets consisting of a large number of graphs,
both real and synthetic ones and their characteristics are found in table 3.1 and datasets
consisting of a single graph with their characteristics summarized in table 3.2.

Table 3.1 summarizes the characteristics of the 4 real datasets and a synthetic dataset
that consist of many graphs. All these datasets differ across all characteristics of interest.

http://www.cse.ust.hk/graphgen/

3.2. Datasets 34

AIDS PDBS PCM PPI Synthetic

D
at

as
et # graphs 40000 600 200 20 1000

disconnected graphs 3157 360 200 20 0
labels 62 10 21 46 20

Pe
rG

ra
ph

Avg # nodes 45 2939 377 4942 1100
StdDev # nodes 21.7 3215 186.7 2648 483
Avg # edges 46.95 3064 4340 26667 12487
Avg density 0.0475 0.0007 0.0612 0.0022 0.020
Avg node degree 2.09 2.06 23.01 10.87 24.5
Avg # labels 4.4 6.4 18.9 28.5 20

Table 3.1: Characteristics of 4 Real datasets and the Synthetic dataset for FTV methods

The AIDS antiviral dataset was used (as a whole or in subsets) by all the aforementioned
FTV algorithms and it consists of 40000 small graphs, with only 45 nodes on average each.
PDBS, PCM and PPI are 3 real datasets that were used in [11, 9]. PDBS and PCM represent
chemical compounds comprising of 600 and 200 graphs respectively, whereas PPI repre-
sents 20 different protein-protein interaction networks. The majority of existing real datasets
comprise of relatively small and sparse graphs.

In the lack of real datasets publicly available that preserve the required properties (i.e.,
many large graphs), for this thesis we employ an additional synthetic dataset of 1000 graphs
generated with GraphGen[60], which is further described in table 3.1.

yeast human wordnet
#nodes 3112 4674 82670
#edges 12519 86282 120399
Avg degree 8.04 36.91 2.912
StdDev degree #nodes 14.50 54.16 7.74
Density 0.00258 0.0079 0.000035
#labels 184 90 5
Avg frequency labels 127 240 16534
StdDev frequency labels 322.5 430 152

Table 3.2: Dataset characteristics for SI methods

The primary task of the SI methods is to find all occurrences of the pattern graph in
a large stored graph, as mentioned in §2.3.2. Table 3.2 summarizes the characteristics of
the three real datasets – namely yeast, human and wordnet — that we have used for the SI
methods.

Yeast and human were previously used in [8] and we obtained them from the authors of
[8], while wordnet was used in [23]. We obtained wordnet from http://vlado.fmf.

uni-lj.si/pub/networks/data/dic/Wordnet/Wordnet.htm. Both yeast and
human represent protein-protein interaction networks for budding yeast and for homo sapi-

http://vlado.fmf.uni-lj.si/pub/networks/data/dic/Wordnet/Wordnet.htm
http://vlado.fmf.uni-lj.si/pub/networks/data/dic/Wordnet/Wordnet.htm

3.3. Metrics 35

ens accordingly. Wordnet represents relations of the variable words. It has only 5 distinct
labels which represent nouns, verbs, adjectives, adverbs or adjective satellites. Here, we need
to note that unlike wordnet, yeast and human, allow multiple labels on each node. Finally,
all three datasets vary widely in their size and the number of distinct labels.

3.2.3 Query Workloads

For the query formation, the following process is followed. Given the number of query
graphs and their desired size (in terms of number of edges), a query workload is constructed
as follows:

1. If the dataset consists of many graphs, we first select a graph uniformly and at random
from the dataset. Otherwise, we proceed to the next step.

2. We maintain two sets: one for visited nodes and one for traversed edges that will
formulate the query graph; both sets are initially empty.

3. We select a node uniformly at random from said graph and we add the said node to the
set of visited nodes.

4. Starting from that node, we perform a random walk, by choosing one of the edges of
that node. The sets of visited nodes and traversed edges are updated accordingly.

5. If the query graph size has not been reached, a new starting node is chosen from the set
of visited nodes as long as possible edges exist from that node, i.e., not yet considered
in the set of traversed edges and the previous step is repeated.

6. When the desired query graph size is reached, the procedure is terminated and the
new query graph is returned as the union of visited nodes and traversed edges and in a
compatible format for each algorithm.

Although the graphs in the dataset are not connected, the formulated query graphs are al-
ways connected. Additionally, because of the procedure followed to formulate the query, all
queries are matched to at least one graph in the dataset. Finally, the formulated queries can
be paths, trees (stars) or graphs (containing loops).

3.3 Metrics

This subsection presents the metrics used throughout this thesis and are essential for the
evaluation of our experiments in the subsequent chapters along with other metrics that have
been used in related work.

3.3. Metrics 36

3.3.1 Time and Size metrics

Indexing time, index size and average query processing time are the three standard met-
rics that are employed by all relevant publications, as presented in §2.3 and are also reported
in the current thesis, to study algorithms’ relevant performance and to allow direct com-
parisons with previous work. Indexing time and size are reported in §4.4, §6.4 and §6.9.
The average query execution time is calculated as the query workload execution time di-
vided by the number of queries in the workload and is reported in §4.4, §5.4, §5.6, §5.8,
§6.6 and §6.7.2. We are interested in the aforementioned index and query processing time
metrics because we are looking at the subgraph pattern matching problem from the systems’
perspective, and thus, it is important to measure the overall (clock) execution time. Addi-
tionally, we are interested in measuring the index size because all methods discussed in §2.3
and especially in §3.1 load all data in memory, and thus, in cases where the constructed index
size is close to the machine’s available memory, then the index size is a limiting factor for
scalability.

Apart from the aforementioned metrics, some prior works report on the average num-
ber of recursive calls during query processing and the number of maintained features during
indexing. The average number of recursive calls can be used to compare different query
processing instances of the same algorithm, but it is not a good metric to compare across al-
gorithms because any recursive algorithm could be transformed to an equivalent iterative one
through the use of stack [118], without really giving any information about how expensive
each step is. For this reason, we did not utilize the average number of recursive calls.

3.3.2 Quantifying the Filtering Power

To quantify the filtering power, we utilize 2 different metrics.

The first metric is the percentage of graphs that constitute the candidate set for each algo-
rithm, before proceeding with the final subgraph isomorphism test. This metric is employed
in §6.5 and §6.9. It is a standard metric used by prior work, e.g. [41, 7, 44].

The second metric is the false positive ratio, defined as:

FPR =
1

|Q|
∑
q∈Q

|C{q}| − |A{q}|
|C{q}|

(3.1)

where |·| denotes set cardinality,Q is the set of all queries in each query workload, andC{q}
and A{q} are the candidate set and answer set respectively for query q, with A{q} ⊆ C{q}.
Additionally, FPR ∈ [0, 1]. We note that FPR = 0 means that the candidate set is exactly
the same as the answer set and FPR = 1 that although some/all of the graphs in the dataset

3.3. Metrics 37

belong in the candidate set, none of them is found to be an answer in the query, i.e. the
answer set size is 0.

Similar metrics to the false positive ratio have been used by prior work to quantify the
pruning power of the algorithms, such as: 1

|Q|
∑

q∈Q
|C{q}|
|D| (in [44]) and 1

|Q|
∑

q∈Q
|D|−|C{q}|
|D|−|A{q}|

(in [34]), where |D| denotes the number of graphs in the dataset. For our experiments, we
employ the FPR metric for comparing results across algorithms. We note that we can still
reach the same conclusions for the relative order of the algorithms with any of the these
formulas. Thus, we used the FPR in §4.4, §6.5 and §6.9.

3.3.3 Speedup

For every query against a stored graph, we measure the Execution Time, denoted exec

time, for both FTV and SI methods, while avg exec time denotes the average execution time.

In many cases, we need to compare the performance of two different methods M and
M ′. Let qi be a given query. Let also tMi and tM ′i the exec time of qi over method M and
M ′ respectively. Thus, we employ the speedup∗ metric calculated as: tMi

tM
′

i

. In other words,
speedup∗ represents what we lose in performance if we choose methodM over an alternative
method M ′. More details about the calculated speedup∗ will be introduced in the following
chapters. Finally, the speedup∗ metric is used in §5.6, §5.7, §5.8, §6.7, §6.8 and §6.9.

3.3.4 WLA and QLA Performance Metrics

Fundamentally, FTV and SI solutions must confront the NP-Completeness of the under-
lying sub-iso testing. That is, all solutions are heuristics whose main achievement is that in

the majority of cases performance is very good. However, in any workload of non-negligible
size there will always be queries whose execution time may take a very large amount of
time to complete (called straggler queries). And it has been discovered (see §5) that dif-
ferent queries may be stragglers for different methods. All related work so far utilize only
workload-based metrics: they run a workload of a number of queries where they compute
the average query execution time. Also, they (unavoidably) set an upper bound for the ex-
ecution time of each query. If a query in the workload takes longer, it is simply discarded
and not included in the results. Thus the workload-based metric in itself (unavoidably) is not
entirely reliable. In addition, such metrics provide only one point of view: that of the system.
However, to the average user, this is not particularly informative. To her the question is what
is the best method for her query and by how much; or, put differently, what is the probabil-
ity that a given method will perform best for her query. To address these concerns we will
provide, additionally to workload-based metrics, query-based metrics which will reflect the
(average) per-query performance of each method. This has the effect of treating all queries

3.3. Metrics 38

(and thus users) equally, despite the time taken by each query to execute. Such query-based
metrics have unfortunately so far escaped all related work.

When comparing two sets of measurements A = {Ai} and B = {Bi}, for i = 1, ..., n,
we can compute their average (mean) ratio in two ways:

• Workload-Level Aggregation (WLA), given by

∑n
i=1 Bi

n∑n
i=1 Ai

n

=
∑n

i=1 Bi∑n
i=1 Ai

. WhenA andB con-

tain query response times, the WLA computation would give the improvement in the
overall average execution time. This metric is important from the system perspective
as it encapsulates the overall performance change.
• Query-Level Aggregation (QLA), computed as 1

n

∑n
i=1

Bi

Ai
. When applied to query

processing times, the QLA computation would give the average of per-query improve-
ments. This metric is user-centric in the sense that each user cares what the perfor-
mance improvement for his query is using different methods.

Let a set X = {Xi}, where Xi = Bi

Ai
for i = 1, ..., n. In other words, speedup∗QLA =

avg(Xi) (the average/mean over all items Xi in the set X). Thus, the QLA variant can also
be carried over to other computations; for example, the standard deviation of the ratio of A
and B would be computed as stdDev(Xi) under QLA. However, unless stated otherwise,
we shall use QLA to denote averages. Finally, we note that the QLA and WLA subscripts
are widely used in chapters §5 and §6.

39

Chapter 4

Performance and Scalability of Indexed Sub-
graph Query Processing Methods

[X \

In the current chapter, we identify a set of key factors-parameters, that influence the
performance of related FTV index-based methods: namely, the number of nodes per graph,
the graph density, the number of distinct labels, the number of graphs in the dataset, and
the query graph size. We then conduct comprehensive and systematic experiments that ana-
lyze the sensitivity of the various methods on the values of the key parameters. Our aim are
twofold: first to derive conclusions about the algorithms’ relative performance, and, second,
to stress-test all algorithms, deriving insights as to their scalability, and highlight how both
performance and scalability depend on the above factors. We choose six well-established
indexing methods, namely Grapes, CT-Index, GGSX, gIndex, Tree+∆, and gCode, as rep-
resentative approaches of the overall design space, including the most recent and best per-
forming methods. We report on their index construction time and index size, and on query
processing performance in terms of time and false positive ratio. We employ both real and
synthetic datasets. Specifically, four real datasets of different characteristics are used: AIDS,
PDBS, PCM, and PPI. In addition, we generate a large number of synthetic graph datasets,
empowering us to systematically study the algorithms’ performance and scalability as they
depend on the aforementioned key parameters.

4.1 Introduction

We have already seen that real graph datasets (Table 3.1) can vary wildly on several key
characteristics, such as the number of graphs in the dataset, the number of nodes per graph,

4.1. Introduction 40

the average density of the graphs in the dataset, and the size of the set of distinct node la-
bels and these are typical datasets handled by the graph data management systems. One of
the main problems addressed by the current graph data management systems is the decision

subgraph query processing problem (as discussed in §2.3), where given a graph dataset con-
sisting of numerous graphs and a query graph, all graphs that contain the query are returned.
A straight forward solution for processing such queries is to perform a subgraph isomor-
phism test against each graph in the dataset, which is known to be NP-Complete and thus
could be computationally expensive. With the claim that expensive subgraph isomorphism
tests can be avoided for those graphs that definitely do not contain the query, a research trend
has been formulated; many index-based methods or filter-then-verify (FTV) methods have
been proposed to reduce the number of candidate graphs that have to underpass the subgraph
isomorphism test. As a reminder, in brief, FTV solutions utilize an index based on features
(i.e., substructures) of the graphs to filter out some of those that definitely do not contain the
query q; however, the graphs remaining after the filtering – called the candidate set – may
not actually contain q (i.e., the filtering process can produce false positives). Due to this,
a verification stage is required, during which q is tested for subgraph isomorphism against
all of these remaining graphs. The main premise of these algorithms is that the candidate
set is usually much smaller in size than the complete dataset, and the number of redundant
isomorphism tests is significantly reduced.

Given the importance of the problem and the large attention it has received in the research
community, with this chapter we provide a systematic and comprehensive evaluation of the
performance and scalability of a representative set of related methods, which includes the
most recent and most competitive approaches and also approaches representing different key
decisions in the design space. More specifically, the contributions of this chapter are the
following:

1. Algorithm Performance. A comprehensive study of the performance of related meth-
ods. A set of methods is selected to represent different key design decisions with
respect to the type of graph features indexed (i.e., paths, trees, cycles, subgraphs) and
the method selected for generating graph features (i.e., based on frequency mining or
exhaustive enumeration of graph features). Further, this set of methods includes the
most recent and higher-performing methods (such as GGSX, Grapes, and CT-Index).
Our performance metrics include query indexing time and space, as well as query
processing time and false positives.

2. Algorithm Scalability. Our experiments also aim to stress-test the above methods, de-
riving conclusions with respect to the methods’ scalability. The existing work focuses
only on performance issues – i.e., time and space comparison of the algorithms – and
fails to look at scalability issues – i.e., what the performance of the algorithm is when
both the dataset and the graphs grow large and/or more complex.

4.2. Related Work and Contributions 41

3. A systematic evaluation of performance and scalability. We employ both real and
synthetic graph datasets. Specifically, four real datasets of different characteristics
are used: AIDS[1], PDBS[16], PCM[15], and PPI[18, 19]. Furthermore, a very large
number of synthetic datasets is generated which facilitates a systematic study on the
dependence of the algorithms’ performance and scalability on the key problem pa-
rameters (e.g., number of nodes, graph density, number of distinct labels, number of
graphs, and query graph size).

Such a scalability and performance showdown is currently very much lacking. Most
related works are tested against the AIDS antiviral dataset and synthetic datasets, formed of
many small graphs. These sets are not adequate to provide definitive conclusions on how
an algorithm is influenced by the characteristics of the graphs. Of these works, Grapes[11]
alone used several real datasets; however, the authors did not evaluate scalability. Also,
their performance evaluation did not include a systematic exploration of the effect of the key
problem parameters. The iGraph comparison framework [7], which implements several such
techniques, compared the performance of older algorithms (up to 2010). Since then, several,
more efficient algorithms have been proposed (e.g. GGSX[12], Grapes[11], CT-Index[44]).
Finally, virtually all of these works report on different metrics; thus, no concrete conclusion
can be reached regarding their relative scalability.

In order to address all above problems, we conduct a systematic and comprehensive
evaluation on existing implementations and we report the results. Specifically, we use several
real datasets (AIDS, PDBS, PCM, PPI [11]), as well as several synthetic datasets varying
in all the factors of interest (created using GraphGen[60]). Because it is very difficult to
exhaustively run experiments for variating simultaneously all factors of interest (number of
nodes, number of graphs, density, distinct labels), we choose to fix all the parameters apart
from one for every set of experiments and decide about how influential a specific factor is
for every algorithm.

4.2 Related Work and Contributions

As mentioned previously, one approach to process a subgraph query is to check the query
graph for subgraph isomorphism against each graph in the dataset. As subgraph isomorphism
is an NP-complete problem, and graph datasets may contain a large number of graphs, this
procedure can get too time consuming. To this end, many indexing methods, also known
as FTV methods, have been proposed over the years, attempting to reduce the set of graphs
against which to test for containment. The numerous proposed FTV methods were exten-
sively discussed in §2.3. For completeness, we additionally reference here earlier works that
also considered larger graphs and/or a comparison with related FTV methods. Thus, we note

4.2. Related Work and Contributions 42

that Lindex[42] provides an extensive discussion of related methods (although some of the
methods considered in our work were not mentioned in Lindex). Additionally, Lindex reuses
the frequent feature extraction primitives of previous algorithms (e.g., [38, 35, 41, 43]), and
is thus able to function with several feature types. CP-index [40] was designed to solve the
frequent mining problem for larger graphs but not necessarily for bigger datasets (in number
of graphs).

All aforementioned algorithms reported performance results against datasets consisting
of a large number of small graphs (e.g., the AIDS antiviral dataset containing 40,000 graphs
each consisting of 45 nodes and 47 edges on average (Table 3.1), the PubChem dataset
containing 1 million graphs each consisting of 24 nodes and 26 edges on average ([7]),
etc.), often providing no proper insight on the performance and scaling of the algorithms
against considerably larger and more complex datasets and query workloads. Of these works,
Grapes[11] was the only one to provide results against datasets with larger graphs (PDBS,
PCM, PPI, Table 3.1), but the number of graphs in these datasets was quite small (PDBS
contains 600 graphs, PCM contains 200 graphs, and PPI only 20 graphs). Moreover, virtually
every such work reported on a different set of metrics, thus making comparisons between the
various algorithms a very hard task.

iGraph[7] provided a comprehensive comparison of indexing methods for subgraph
query processing. Our work replicates some of the experiments in [7]. However, our work
complements and surpasses iGraph in several ways. First, we considered several indexing
algorithms that were published after [7] and were proven to be significantly superior to those
tested by the latter (often by orders of magnitude). Second, in iGraph, scalability was not
addressed; all the previous papers, and specifically iGraph, focus on performance evaluation
against small graphs (especially in terms of number of nodes), while their “large datasets”
are typically only large in terms of the number of graphs in the dataset and not with respect to
the size/complexity of the graphs. Third, we performed a systematic study on performance
and scalability based on 5 characteristics of a graph dataset/workload: the number of nodes,
the density of the graphs, the number of distinct labels, the number of graphs in the dataset,
and the query size.

Finally, sTwig[23] has looked at subgraph query processing for datasets consisting of a
single very large (billion-node) graph, and the same research paradigm was later followed
by TwinTwig[30], and SEED[31]. sTwig takes a totally different approach, by not build-
ing an index at all and instead utilizing a memory cloud and massively parallel computing
primitives. Its authors motivate their approach by claiming that index-based solutions do not
scale, and by providing theoretical arguments based on the asymptotic complexity of the lat-
ter (but no experimental evaluation of their approach against index-based techniques). Our
work complements and substantiates this claim, by providing hard numbers and a systematic
examination of the breaking points of each index algorithm type, across a large number of

4.3. The Experimental Framework 43

datasets of varying characteristics.

4.3 The Experimental Framework

4.3.1 Competing Algorithms

For our study, we chose different six algorithms so that they represent different points in
the design space, and a range of publication dates with an emphasis on newer and improved
approaches:

• gIndex[41] to represent frequent-mining algorithms, utilizing graph-structure features,
storing the index in a prefix tree data structure;
• Tree+∆[43] to represent frequent mining algorithms, utilizing tree- and cycle-structured

features, storing the index in a hash table;
• CT-Index[44] to represent exhaustive enumeration algorithms utilizing tree- and cycle-

structured features, encoding indexed features as fingerprints, and storing them in a
hash table;
• gCode[34] to represent exhaustive enumeration algorithms utilizing path-structured

features, encoding vertex- and neighborhood-related information in bit strings, and
storing their combination in a balanced search tree data structure;
• GGSX[12] to represent exhaustive enumeration algorithms utilizing path-structured

features, and storing them in a prefix tree data structure; and
• Grapes[11] to represent exhaustive enumeration algorithms utilizing path-structured

features along with location information and storing them in a trie data structure.

A more detailed description of the in-use algorithms can be found in §3.1.1. In the following
section, we report the indexing time, index size, the query processing time and filtering
power of the above algorithms by employing the false positive ratio metric as discussed in
§3.3.2.

4.3.2 Setup

All experiments were conducted on a Windows 7 SP1 host, featuring 2 Intel Xeon E5-
2660 CPUs (2.20GHz, 20MB Cache, 8 cores/16 threads per CPU) and 128GB of RAM. For
each experiment, a time limit of totally 8 hours1 was imposed, after which the experiment
was terminated.

1As a matter of fact, we waited for more than 24 hours before terminating those experiments exceeding the
8-hour limit, but to no avail.

4.3. The Experimental Framework 44

For Tree+∆, gIndex and gCode we used the implementations provided by [7]. For all
remaining algorithms, we used the implementations provided by their respective authors. In
the case of Grapes, we had to alter the source code so that the VF2 verification step returns
after the first match of the query graph against a connected component for an indexed graph,
as opposed to the original implementation which was returning all possible matches; this
was necessary as all other algorithms return only the first match by default.

We used the default values for the input parameters of compared algorithms, as they were
defined by their respective authors in the relevant publications and/or in their implementation
code. Specifically:

• For gIndex, the maximum feature size was set to 10, the support ratio to 0.1, and the
discriminative ratio to 2.0. The same parameters were used for both indexing and
query processing.
• For Tree+∆ the maximum feature size was set to 10, the support ratio to 0.1, and the

discriminative ratio2 to 0.1. For query processing, the support ratio threshold to add
new features to the index is set to 0.8.
• For gCode, paths of up to size 2 were used to construct the vertex signatures, and

the top 2 eigenvalues are maintained. These values are based on the experiments per-
formed by the respective authors of gCode, where their experiments reveal that the
extra values maintained do not improve the filtering power. Additionally, the main-
tained vertex label and neighbor label bit-strings were both 32 bits long.
• For CT-Index, we created 4096-bit fingerprints by exhaustively enumerating trees and

cycles of up to length 4. The respective authors of CT-Index propose the use of trees
of size 6 and cycles of size 8, but [11] showed that a size of 4 for the features re-
sults in a somewhat worse filtering power but a significantly lower indexing and query
processing time.
• For GGSX, we enumerated paths of up to a size of 4.
• For Grapes, we used 6 threads and enumerated paths of up to a size of 4.

4.3.3 Real and Synthetic Datasets

We tested the performance and scalability of these algorithms against (a) a set of real
datasets provided by [11] (i.e., AIDS, PDBS, PCM, PPI), and (b) synthetic datasets created
using the widely used GraphGen[60] generator.

Table 3.1 summarizes the characteristics of the real datasets. All four datasets differ
across all of the characteristics which we identified as significant. Specifically, AIDS con-
sists of a large number of small and low average degree graphs, PDBS contains a moderate

2Tree+∆ uses a different formula than gIndex to compute the discriminative ratio, hence the different pa-
rameter value.

4.3. The Experimental Framework 45

number of large but low average degree graphs, PCM is comprised of a moderate number of
medium-sized but high average degree graphs, and PPI includes few large but medium av-
erage degree graphs. Thus, they provide individual data points across the evaluation space,
but are not adequate to examine the algorithms’ scaling across datasets of varying sizes and
complexities. Please note that the AIDS antiviral dataset was used by all the aforementioned
algorithms as a whole or as a subset of graphs that form the database and thus, it can be used
to compare results with previous work.

We used GraphGen (see §3.2.1) for the generation of our synthetic graphs, as it allows
the parameterization of various parameters of interest. The parameters used are: number
of graphs in the dataset, number of distinct labels (that will define the size of the alphabet),
mean number of nodes and mean density per graph. Given a mean number of nodes and mean
density per graph, and using the equation 2.1, the mean size of the graph in number of edges
is retrieved, which is the input parameter used in GraphGen (instead of mean number of
nodes). In brief, based on the aforementioned input parameters, GraphGen initially produces
the alphabet of possible distinct edges. Then, for every new graph that will be added in the
dataset, GraphGen computes a random number of edges and density, following a normal
distribution around the user’s corresponding input parameters, with a standard deviation of
5 and 0.01 respectively. Subsequently, GraphGen iteratively selects a random edge from the
alphabet to add to the current graph until the desired size/density for this graph is reached.

Regarding the generation of the synthetic datasets, we took a rather systematic approach.
First, we examined the values of the core input parameters for the four real datasets (AIDS,
PDBS, PCM, PPI) (table 3.1) and we established an initial set of relevant values:

• Mean number of nodes per graph: {50, 200, 400, 4000},
• Mean graph density: {0.005, 0.025, 0.05, 0.075},
• Number of labels in the dataset: {10, 20, 40, 60},
• Number of graphs in the dataset: {1000, 10000}.
• Query size: {4, 8, 16, 32}.

We then tested the algorithms using all possible combinations of these parameter values
(4 ∗ 4 ∗ 4 ∗ 2 = 128 cases in the indexing phase and 4 ∗ 128 = 512 in the query processing
phase). Alas, the results revealed that many of the algorithms could not produce an index or
process queries for most of these combinations. We then computed a set of “sane defaults”,
so that they represent a challenging case but for which all algorithms could produce results;
namely, 200 nodes per graph, average density 0.025, 20 distinct labels and 1000 graphs in the
dataset. Subsequently, we executed several experiments to study the scalability of the various
algorithms, varying one parameter at a time to examine its effect on the various metrics and
algorithms.

It is also worth mentioning that several of the graphs in the real datasets are disconnected,

4.4. Evaluation Results 46

whereas all generated graphs in the synthetic datasets are connected. Moreover, for the vast
majority of the input parameter values considered in our setting, the datasets generated by
GraphGen consisted almost exclusively – more than 95% of the graphs in the dataset – of
graphs with cycles (i.e., not trees or paths). There were only two exceptions to this rule: (i)
datasets with only 50 nodes per graph, where almost half of the graphs were tree-shaped,
and (ii) datasets with average graph density of 0.005, where 8.5% of the graphs contained no
cycles.

4.3.4 Query Workloads

We describe the procedure for generating query workloads in §3.2.3. For the purpose of
our experiments, we created query graphs with 4, 8, 16, and 32 edges, to match the query
graph sizes used by related work. As these query graphs are actually subgraphs of the various
datasets, they have the same characteristics (on average) as the latter with regard to density
and distribution of labels.

4.4 Evaluation Results

4.4.1 Real Datasets

Figures 4.1(a) and 4.1(b) present the time and size requirements to perform the index
creation with all algorithms. Grapes and GGSX are the only algorithms which managed
to complete indexing for all datasets in the 8-hour time limit. Grapes consistently outper-
formed the other methods in terms of indexing time, often by at least one order of magnitude;
conversely, its index size grows quite large compared to all but Tree+∆’s.

Figures 4.2(a) and 4.2(b) present the query processing time and false positive ratio re-
spectively. Again, Grapes outperforms all contenders in processing time, with the sole ex-
ception of GGSX on the PPI dataset. The fact that there is no result for gCode for the PDBS
dataset, is due to its implementation not being able to handle signatures of the size required
for this dataset and thus crashing.

Overall, the results agree with what was reported in the respective papers for these algo-
rithms.

4.4.2 Synthetic datasets

We will now focus on stress-testing the various algorithms using synthetic datasets, with
the intent of both covering the space of possible parameter value combinations, and explor-

4.4. Evaluation Results 47

 0.1

 1

 10

 100

 1000

 10000

 100000

AIDS PDBS PCM PPI

ti
m

e
(s

ec
)

databases

Grapes
GGSX

CT-Index
gCode

gIndex
Tree+∆

(a) Indexing Time

 0.1

 1

 10

 100

 1000

 10000

AIDS PDBS PCM PPI

si
ze

 (
M

B
)

databases

Grapes
GGSX

CT-Index
gCode

gIndex
Tree+∆

(b) Index Size

Figure 4.1: Indexing results over the real datasets

ing the breaking points of the various indexing and query processing algorithms. Unless
otherwise noted, we are using the “sane” defaults mentioned above to generate the graph
datasets and query workloads.

Number of nodes

First, we vary the number of nodes per graph in the dataset in an almost linear way so as
to capture the different breaking points of the various algorithms for both indexing and query
processing phases. Thus, we initially increase the number of nodes using smaller intervals

4.4. Evaluation Results 48

 0.001

 0.01

 0.1

 1

 10

 100

AIDS PDBS PCM PPI

ti
m

e
(s

ec
)

databases

Grapes
GGSX

CT-Index
gCode

gIndex
Tree+∆

(a) Query Processing Time

 0

 0.2

 0.4

 0.6

 0.8

 1

AIDS PDBS PCM PPI

av
g

 f
al

se
 p

o
si

ti
v

e
ra

ti
o

databases

Grapes
GGSX

CT-Index
gCode

gIndex
Tree+∆

(b) Query Processing False Positive Ratio

Figure 4.2: Query processing results over the real datasets

to provide sufficient points for all algorithms and then we gradually increase the intervals.
Specifically, we have created datasets consisting of graphs with 50, 75, 100, 125, 150, 175,
200, 250, 300, 400, 500, 600, 800, 1000, 1200, 1400, 1600, 1800, and 2000 nodes. Given a
fixed value for the average graph density, a linear increase in the number of nodes translates
into a quadratic increase in the number of edges in the graph (see equation (2.1)); that is, we
can also think of this scenario as consisting of graphs with an increasing number of edges.

Figures 4.3(a) and 4.3(b) present the time and size results for the index construction for
each algorithm. For clarity, we provide the breaking points of the algorithms; gIndex can
efficiently construct an index for only up to 250 nodes, Tree+∆ for up to 300 nodes, CT-

4.4. Evaluation Results 49

 0.1

 1

 10

 100

 1000

 10000

 100000

 500 1000 1500 2000

ti
m

e
(s

ec
)

number of nodes

Grapes
GGSX

CT-Index
gCode

gIndex
Tree+∆

(a) Indexing Time

 0.1

 1

 10

 100

 1000

 10000

 100000

 500 1000 1500 2000

si
ze

 (
M

B
)

number of nodes

Grapes
GGSX

CT-Index
gCode

gIndex
Tree+∆

(b) Index Size

Figure 4.3: Indexing performance results for varying number of nodes

Index for up to 400 nodes, gCode for up to 600 nodes, GGSX for up to 800 nodes and finally
Grapes for up to 1800 nodes. For small graphs (less than 175 nodes), Tree+∆ is marginally
better than Grapes in index construction time. For larger graphs, Grapes takes the lead, being
faster than the rest by at least one order of magnitude. GGSX comes second, with gCode and
CT-Index being third and fourth; gIndex and Tree+∆ fail to produce an index even for as few
as 250-300 nodes per graph. This result is expected and is a direct artefact of the complexity
of the indexed features and the methods of feature extraction. Frequent feature mining is
known to be a very computationally costly process[7] and thus gIndex and Tree+∆ have
the worst running times; moreover, as graphs are more complex (and more numerous) than

4.4. Evaluation Results 50

 0.001

 0.01

 0.1

 1

 10

 100

 100 200 300 400 500 600 700 800

ti
m

e
(s

ec
)

number of nodes

Grapes
GGSX

CT-Index
gCode

gIndex
Tree+∆

(a) Query Processing Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800

av
g

 f
al

se
 p

o
si

ti
v

e
ra

ti
o

number of nodes

Grapes
GGSX

CT-Index
gCode

gIndex
Tree+∆

(b) Query Processing False Positive Ratio

Figure 4.4: Query processing performance results for varying number of nodes

trees, gIndex fairs worse than Tree+∆. CT-Index and gCode exhaustively enumerate their
features and are thus faster than the frequent mining approaches; however, the computation
of fingerprints/signatures is non-trivial and this is evident in the results. Moreover, tree
features are more complex (and numerous) than paths, and thus CT-Index fairs worse than
gCode. Last, Grapes and GGSX both exhaustively enumerate paths (leading to the lowest
running times), with the former having an edge due to its multi-threaded implementation.

On the index size front, CT-Index and gCode have the smallest indices since these al-
gorithms only store fixed-size fingerprints/signatures per graph (gCode’s index is larger as
it also stores node signatures). The index size for GGSX and Grapes levels out after some

4.4. Evaluation Results 51

point; as these algorithms use a prefix tree/trie to store indexed paths, as soon as all possible
paths up to the size limit have been produced, the index structure doesn’t grow any further
(other than location/frequency information being recorded). Last, the frequent mining algo-
rithms start off with a small index, but the larger the graphs the more the frequent features,
and this exponential increase is evident in both of these figures.

Figures 4.4(a) and 4.4(b) depict the query processing time and false positive ratio results
for this case, averaged over all query sizes. The x-axis extends only up to 800 nodes due
to the fact that no algorithm could handle queries on datasets with larger graphs within the
8-hour limit. Although Grapes managed to complete the indexing stage for larger cases (up
to 1800-node graphs), in the query processing phase the increase in the number of candidates
and in the average size of each candidate graph made the subgraph isomorphism time take
more than the 8-hour limit. Moreover, gCode was failing for graphs larger than 200 nodes
with error messages indicating that the implementation was unable to handle signatures of the
produced sizes. Trend-wise, the “simple” algorithms (exhaustive enumeration of paths) were
the clear winners, with the other algorithms following in a similar order as in the indexing
time case. The exception here is gCode, whose convoluted signature generation algorithm
resulted in a larger execution time than even the frequent mining algorithms. In conclusion,
the order of the algorithms from the fastest to the slowest is: (Grapes, GGSX) < CT-Index
< (Tree+∆, gIndex) < gCode.

Last, as far as the algorithms’ filtering power is concerned, figure 4.4(b) shows an inter-
esting trend: for all algorithms, the false positive ratio increases initially with the number of
nodes, but then decreases again after some point: This “knee” appears around the 100-node
mark for CT-Index and Tree+∆, around the 200-node mark for gIndex and gCode, on the
500-node mark for GGSX, while Grapes doesn’t reach its turning point in the x-axis range
depicted in the figure.

Density

Next, we vary the density of the graphs in the dataset. We used four intervals with
different increasing steps each, denoted [starting point : increasing step : ending point],
and these are: [0.005:0.001:0.01], [0.01:0.005:0.05], [0.05:0.01:0.1], [0.1:0.1:0.3]. Thus, we
used the following density values: 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.015, 0.02,
0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3. The chosen values
follow an almost exponential series with the exception of the second interval. We opted for
the aforementioned density values for practical purposes, as in the first 2 intervals executions
were fast and thus we were able to get more results. This allowed us to also reveal interesting
patterns appearing in the performance sequence of algorithms in both indexing and query
processing. Additionally, we identify the breaking points of all competing algorithms to

4.4. Evaluation Results 52

appear in between density values 0.035 and 0.3.

Figures 4.5(a) and 4.5(b) depict the indexing time and size results, while figures 4.6(a)
and 4.6(b) show the query processing results. Apart from Grapes and GGSX, no other al-
gorithm could produce an index for density values above 0.1 within the 8-hour limit, and
Grapes was the only one capable of dealing with densities above 0.2. With a fixed number
of graph nodes, increasing density results in a proportional increase in the number of graph
edges (see equation (2.1)). We would thus expect to see similar behavior for both indexing
and query processing as in the previous case, only with a less dramatic effect as the depen-
dency is now proportional, not quadratic, and this is exactly what can be seen in these figures.

 1

 10

 100

 1000

 10000

 100000

 0.01 0.1

ti
m

e
(s

ec
)

densities

Grapes
GGSX

CT-Index
gCode

gIndex
Tree+∆

(a) Indexing Time

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1

si
ze

 (
M

B
)

densities

Grapes
GGSX

CT-Index
gCode

gIndex
Tree+∆

(b) Index Size

Figure 4.5: Indexing performance results for varying density values

4.4. Evaluation Results 53

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1

ti
m

e
(s

ec
)

densities

Grapes
GGSX

CT-Index
gCode

gIndex
Tree+∆

(a) Query Processing Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1

av
g

 f
al

se
 p

o
si

ti
v

e
ra

ti
o

densities

Grapes
GGSX

CT-Index
gCode

gIndex
Tree+∆

(b) Query Processing False Positive Ratio

Figure 4.6: Query processing performance results for varying density values

For clarity, we provide the breaking points of the algorithms; gIndex can efficiently construct
an index for only up to density 0.035, Tree+∆ for up to 0.04, CT-Index for up to 0.08, gCode
for up to 0.1, GGSX for up to 0.2 and finally Grapes for up to 0.3.

The astute reader will note that although GGSX and Grapes did produce an index for
density values up to 0.3, the x-axis in Figures 4.6(a) and 4.6(b) does not extend beyond
the 0.1 point. This was due to the fact that, when increasing densities, these algorithms
didn’t manage to produce results for densities above 0.1 within the 8-hour limit. To this
end, we also show per-query-size query processing time results in figure 4.7. An interesting
observation stemming from this figure is that, for density values up to 0.1, the exhaustive

4.4. Evaluation Results 54

 0
.0

0
1

 0
.0

1

 0
.1 1

 1
0

 1
0
0

 1
0
0
0

 0
.0

1
 0

.1

time (sec)

d
en

si
ti

es

G
ra

p
es

G
G

S
X

C
T

-I
n
d
ex

g
C

o
d
e

g
In

d
ex

T
re

e+
∆

(a
)

Q
ue

ry
Si

ze
:4

 0
.0

0
1

 0
.0

1

 0
.1 1

 1
0

 1
0
0

 1
0
0
0

 0
.0

1
 0

.1

time (sec)

d
en

si
ti

es

G
ra

p
es

G
G

S
X

C
T

-I
n
d
ex

g
C

o
d
e

g
In

d
ex

T
re

e+
∆

(b
)

Q
ue

ry
Si

ze
:8

 0
.0

0
1

 0
.0

1

 0
.1 1

 1
0

 1
0
0

 1
0
0
0

 0
.0

1
 0

.1

time (sec)

d
en

si
ti

es

G
ra

p
es

G
G

S
X

C
T

-I
n
d
ex

g
C

o
d
e

g
In

d
ex

T
re

e+
∆

(c
)

Q
ue

ry
Si

ze
:1

6

 0
.0

0
1

 0
.0

1

 0
.1 1

 1
0

 1
0
0

 1
0
0
0

 0
.0

1
 0

.1

time (sec)

d
en

si
ti

es

G
ra

p
es

G
G

S
X

C
T

-I
n
d
ex

g
C

o
d
e

g
In

d
ex

T
re

e+
∆

(d
)

Q
ue

ry
Si

ze
:3

2

Fi
gu

re
4.

7:
Q

ue
ry

pr
oc

es
si

ng
tim

es
fo

ri
nd

iv
id

ua
lq

ue
ry

gr
ap

h
si

ze
s

an
d

va
ry

in
g

de
ns

ity
va

lu
es

4.4. Evaluation Results 55

enumeration approaches are rather insensitive to the size of the queries, whereas the frequent
mining approaches show a small but noticeable increase in their query processing times.
Grapes was the only algorithm capable of producing some query results for densities above
0.1. Moreover, we can see how the increase in query processing time becomes more abrupt
as the query size gets larger, with Grapes producing results within the 8-hour limit for density
values up to only 0.2 for 16-edge queries, and only up to 0.1 for 32-edge queries.

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

ti
m

e
(s

ec
)

labels

Grapes
GGSX

CT-Index
gCode

gIndex
Tree+∆

(a) Indexing Time

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100

si
ze

 (
M

B
)

labels

Grapes
GGSX

CT-Index
gCode

gIndex
Tree+∆

(b) Index Size

Figure 4.8: Indexing performance results for varying number of distinct labels

4.4. Evaluation Results 56

 0.001

 0.01

 0.1

 1

 10

 0 20 40 60 80 100

ti
m

e
(s

ec
)

labels

Grapes
GGSX

CT-Index
gCode

gIndex
Tree+∆

(a) Query Processing Time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

av
g

 f
al

se
 p

o
si

ti
v

e
ra

ti
o

labels

Grapes
GGSX

CT-Index
gCode

gIndex
Tree+∆

(b) Query Processing False Positive Ratio

Figure 4.9: Query processing performance results for varying number of distinct labels

Number of distinct node labels

Varying the number of nodes per graph or the average graph density, resulted in larger
graphs with more nodes and more edges. However, other than the graph size, the number of
distinct labels in the dataset can also affect the indexing and query processing performance
of the algorithms. Specifically, the alphabet of edges produced by GraphGen grows quadrat-
ically to the number of distinct labels (see §3.2.1). With the rest of the parameters constant,
a larger alphabet translates into less overlap in the edges across graphs of any given dataset,
inadvertently affecting approaches based on frequent pattern mining. We opted for a linear

4.4. Evaluation Results 57

increase in the number of distinct labels, with the aim to include the number of distinct labels
found in the real datasets, as presented in table 3.1. To this end, we performed an evaluation
over datasets with 10, 20, 30, 40, 50, 60, 70, and 80 distinct labels.

Figures 4.8(a) and 4.8(b) present the indexing time and index size for all algorithms.
True to our above intuition, the indexing time of approaches using exhaustive enumera-
tion, i.e. in Grapes, GGSX, CT-Index and gCode, is relatively unaffected by the increase
in the number of distinct labels. On the other hand, the two frequent-mining algorithms are
definitely affected, albeit curiously in completely opposite ways; whereas gIndex’s index-
ing time increases with more distinct labels, that of Tree+∆’s decreases. We attribute this
discrepancy in the different heuristics implemented by each algorithm; both algorithms set
different discriminative ratios and employ different mining features, i.e., the former mines
graphs while the latter mines trees. Tree canonical labels are less computationally expen-
sive to be produced than graph canonical labels and require less space for storage. Also
notably, the frequent mining techniques could not construct an index within the 8-hour limit
for the case of 10 distinct labels. We speculate the following: these mining techniques start
from small features of size 1 (1 edge), that are expanded by one edge at every stage. If all
features are found to be frequent because of the small number of labels, then they all need
to be expanded in the next step, leading to an exponential increase of combinations to be
considered.

Figures 4.9(a) and 4.9(b) present the query processing time and false positive ratio re-
sults, averaged over all different query sizes. We can see that the processing time of all
algorithms seems to improve when utilizing more distinct labels, with the sole exception of
gIndex. Similarly, the filtering power of the algorithms also improves when increasing the
distinct labels, with the exception of Tree+∆ and CT-Index. Intuitively, the more the distinct
labels, the less repetition there is of distinct edges (i.e., pairs of labels) from the alphabet, so
the number of false positives is expected to decrease. CT-Index again has the worst filtering
power of all contenders, since its fixed-size hash-based fingerprints seem to suffer from “col-
lisions” (considerably different graphs producing very similar fingerprints); however, what
it loses in filtering power, it gains in processing time, with the simplicity of its hash-based
approach and its tweaked verification algorithm. In this case as well, the general pattern
regarding query processing time is: (Grapes, GGSX) < CT-Index < (Tree+∆, gIndex) <

gCode.

Number of graphs in the dataset

Last, we vary the number of graphs in the dataset. This parameter takes on values of
1000, 2500, 5000, 7500, 10000, 25000, 50000, 100000 and 500000 graphs. Similar to the
density, we also opted for the semi-exponential series. We would expect all performance

4.4. Evaluation Results 58

metrics (indexing time, index size, processing time) to scale linearly to the number of graphs,
as the latter does not affect in any way the complexity or size of individual graphs in the
dataset. Along the same lines, we would expect the query processing false positive ratio to
be relatively unaffected, for the exact same reason. These intuitions are indeed verified by
the results depicted in figures 4.10 and 4.11, where these tendencies are rather prominent and
clear.

Although the increase in performance metrics is linear to the number of graphs, we can
see that all algorithms other than GGSX didn’t manage to produce an index for very large
numbers of graphs. For gCode, CT-Index, and Tree+∆, this was a case of the indexing pro-

 10

 100

 1000

 10000

 100000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

ti
m

e
(s

ec
)

number of graphs

Grapes
GGSX

CT-Index
gCode

gIndex
Tree+∆

(a) Indexing Time

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

si
ze

 (
M

B
)

number of graphs

Grapes
GGSX

CT-Index
gCode

gIndex
Tree+∆

(b) Index Size

Figure 4.10: Indexing performance results for varying number of graphs in the dataset

4.4. Evaluation Results 59

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

ti
m

e
(s

ec
)

number of graphs

Grapes
GGSX

CT-Index
gCode

gIndex
Tree+∆

(a) Query Processing Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

av
g

 f
al

se
 p

o
si

ti
v

e
ra

ti
o

number of graphs

Grapes
GGSX

CT-Index
gCode

gIndex
Tree+∆

(b) Query Processing False Positive Ratio

Figure 4.11: Query processing performance results for varying number of graphs in the
dataset

cess taking more than 8 hours for datasets with more than 50,000 graphs. gIndex also failed
to produce indices due to excessive indexing time; moreover, its average time was much
higher than that of other algorithms (an artefact of frequent mining and graph features) and
thus exceeded the 8-hour limit much earlier than the rest (around the 10,000-node mark).
Furthermore, this is the only case in our experiments where Grapes didn’t manage to com-
plete all indexing chores; the reason for this was excessive memory usage (its index size
curve alludes to this), leading to thrashing even in our 128GB RAM host. However, for the
cases where it managed to produce an index, its query processing performance was on par
with that of GGSX and considerably better than the rest. GGSX towards the indexing of

4.5. Lessons Learned 60

the last paths in the case of 100,000 graphs was also using an excessive amount of memory
with the thrashing not being very evident in that stage. Last, we can see again the same
paradox as before for CT-Index; although its filtering power was the worst by a large mar-
gin, its query processing time was second only to Grapes and GGSX, due to the speed of
using hash-based fingerprints and implementing a smarter subgraph isomorphism algorithm.
In summary, the general pattern regarding query processing time is: (Grapes, GGSX) <

CT-Index < (Tree+∆, gIndex) < gCode.

4.5 Lessons Learned

We strived for comprehensiveness; first, we used four real datasets representing different
points in the dataset complexity, to gain some first insights into the performance of the var-
ious approaches and to validate our experimental infrastructure against results published in
the respective papers for the competing algorithms. We then identified five key characteris-
tics of the graph datasets and corresponding query workloads that influence the performance
of the underlying subgraph isomorphism algorithm; namely, (i) the number of nodes/ edges
and (ii) average density per graph, (iii) the number of distinct labels and (iv) the number
of graphs in the database, and (v) the number of nodes/ edges in the query graphs. Subse-
quently, we performed an extensive and systematic exploration of this space, by using a large
number of purposefully generated synthetic datasets generated so as to cover all aspects of
the design space, employing a well-known synthetic generator. We focused not only on the
performance of the various algorithms, but also on their scalability, in terms of constructing
the index in reasonable time and size and answering queries in reasonable time; by stress-
testing the various approaches, we attempted to identify tendencies in their performance as
well as their breaking points. Based on our experiments, the following is a summary of the
insights we gained from the above evaluation.

4.5.1 Effect of key dataset/workload characteristics

Our findings of the effect of the dataset characteristics on the performance and scalability
of the various algorithms are summarized below:

• As indicated by equation (2.1), when density is kept constant, a linear increase in the
number of nodes results in a quadratic increase in the number of edges. As the number
of features is exponential to the number of nodes in the graph, the increase on the
number of nodes leads to a detrimental increase in the indexing time, with the frequent
mining techniques being more severely affected (figures 4.3 and 4.4).

4.5. Lessons Learned 61

• Along the same lines by equation (2.1), given a constant number of nodes, the number
of edges increases linearly to the graph density. Thus, when increasing the graph
density, indexing and query processing times are affected in a similar manner as in the
case of increasing the number of nodes, only with a less dramatic effect, because the
dependency is now proportional and not quadratic (figures 4.5 and 4.6).
• The number of graphs increases the overall complexity only linearly (albeit the fre-

quent mining techniques are more sensitive because more features have to be located
across more graphs) (figures 4.10 and 4.11).
• The increase in the number of distinct labels leads to an easier dataset to index and an

easier query workload to process (figures 4.8 and 4.9), as it results in fewer occurrences
of any given feature and thus in a decrease in the false positive ratio of the various
algorithms. Even relatively small changes in this characteristic affected drastically the
performance of some of the algorithms.
• The size of query graphs affects all methods, even more so in the case where the

datasets consist of dense graphs. This effect is more pronounced for frequent mining
techniques, manifesting even for moderately dense or even sparse graphs (figures 4.4,
4.6, 4.7, 4.9 and 4.11).

4.5.2 Sancta Simplicitas

As shown by our experiments, on one hand, algorithms utilizing complex feature struc-
tures: (a) fail to produce indexes within the time limit for large/complex datasets, and (b)
exhibit a high filtering power, but at the expense of a much higher overall query process-
ing time. On the other hand, algorithms with simpler feature structures (i) have very fast
indexing times, traded off for a higher index size, (ii) also exhibit a high filtering power by
the sheer coverage provided by the larger number of indexed features, and (iii) achieve the
lowest processing times of the lot; (iv) last, the additional use of location information seems
to greatly increase the index’s filtering power (e.g., see Grapes).

Overall, our findings give rise to the following adage: “Keep It Simple and Smart”.

The general tendency is that, the simpler the feature structure and extraction process, the
faster the indexing and query processing algorithm. Although seemingly counterintuitive,
this conclusion is easily justifiable. Graphs are indeed more expressive than trees, which
are in turn more expressive than paths, and thus a graph-based index would have a higher
filtering power and lower processing time than a tree-based index etc. However, the number

of subgraphs of size n in a graph is significantly larger than the number of trees of size n,

and the trees of size n is significantly larger than the number of paths of size n. Due to this,
on one side, indexes utilizing more features with complex structures are forced to maintain
only a subset of them (frequent mining techniques) or apply some compression upon them

4.5. Lessons Learned 62

(CT-index). Thus, the expressive power gained by the more complex features is offset by the
decrease in coverage and/or by the introduction of yet more false positives in the filtering
stage. Moreover, the more complex features also translate into higher indexing times and
similarly higher filtering times. On the other side, algorithms with simpler feature structures,
resorting to exhaustive enumeration during their index construction, enjoy low indexing and
filtering times, at the expense of considerably larger indexes.

4.5.3 Choosing the right index method for user needs

The various solutions tend to optimize different aspects of their operation. Answering
which algorithm is best fit for any given case requires choosing an optimization criterion
of interest, and these are the indexing time and size, the query processing time and the
scalability.

If index size is of importance, algorithms utilizing fixed-width encodings (CT-Index,
gCode) should be chosen first; this is especially true as the size and complexity of the input
grows. Frequent mining algorithms (gIndex, Tree+∆) may be competitive for small/sparse
datasets, but they quickly lose their edge as the datasets grow. Last, techniques using ex-
haustive enumeration and no encoding of features (Grapes, GGSX) have by far the largest
indexes in size. This is particularly important if the index is to reside in main memory, as it
is usually desirable in most realistic use cases.

For the lowest indexing time, one should first look at techniques exhaustively enumer-
ating their features (Grapes, GGSX, gCode, CT-Index). Approaches that utilize simpler
features (paths; i.e., Grapes, GGSX) are considerably faster compared to those using more
complex features (trees, cycles; i.e., CT-Index) and/or those using encoding (i.e., CT-Index,
gCode). Again, frequent mining approaches (gIndex, Tree+∆) are competitive only for
small/sparse datasets, but their indexing times grow very high very fast.

For query processing time, again the approaches using exhaustive enumeration (Grapes,
GGSX, CT-Index) are the definitive winners, with those indexing simple features (paths; i.e.,
Grapes, GGSX) having the edge over those with more complex features (trees, cycles; i.e.,
CT-Index). Frequent mining approaches (gIndex, Tree+∆) are usually an order of magnitude
slower than that. gCode here is the odd one out, as its encoding scheme seems to dominate
the query processing time, hence it appears to be the slowest.

From a scalability point of view, as the input grows larger and/or denser, interesting
trends evolve. For example, gCode, usually by far the slowest of the lot in query process-
ing time, wins over the initially much faster frequent mining approaches as the dataset and
graphs grow in size and density, as it exhibits a much better scaling. Conversely, Grapes,
usually a very fast algorithm, fails to produce an index for certain very large datasets, and is

4.6. Conclusions 63

routinely outscaled by GGSX. Notably, when the number of graphs goes beyond a few thou-
sand, Grapes is also outscaled by Tree+∆, gCode and CT-Index, as the additional location
information in Grapes’ index causes it not to fit in main memory.

4.5.4 Scalability limits

When the size of the dataset (in number of nodes or density per graph and/or in number
of graphs in the dataset) grows very large, none of the above methods is capable of coping
with it. Specifically, our results show that none of the studied methods can scale beyond
graph datasets with 1000 graphs, with each graph having 800 nodes, of medium (0.025)
density (figures 4.3 and 4.4). Reducing the average number of nodes per graph to 200 allows
GGSX to operate with a dataset of up to 100000 graphs (figures 4.10 and 4.11). At larger
scales, one should (i) vary input parameters of existing algorithms and/or combine existing
top-performing algorithms to form a better one (this will be discussed in chapter §6), (ii)
rethink anew indexing methods, (iii) adopt an index-less approach (e.g., [23]), or (iv) devise
algorithms providing approximate answers.

Finally, comparing our conclusions against those reached by the iGraph[7] study, we
note the following. For the smaller datasets that iGraph studied and for the common al-
gorithms in iGraph and our paper, our results are in complete agreement. Specifically, the
results for the index construction of gCode, gIndex and Tree+∆ show the same relative order
and trends in both papers. Furthermore, for smaller datasets, our query processing results
also coincide.

However, in our work, the algorithms were systematically studied as they depend on key
workload and dataset characteristics and were stress-tested using 4 real and many synthetic
datasets, revealing the new insights outlined above. Furthermore, with respect to the common
algorithms with iGraph, although gCode can be up to orders of magnitude worse than gIndex
and Tree+∆ at smaller scales, gCode can outscale both gIndex and Tree+∆, as the dataset’s
density increases. gCode can also outscale gIndex and match the scalability of Tree+∆ as
the number of dataset graphs increases. More importantly, in contrast to the iGraph paper’s
conclusion that there is no overall winner, our study reveals 2 methods, GGSX and Grapes,
one of which is always the clear winner for query processing time and scalability!

4.6 Conclusions

The chapter reports a comprehensive and systematic evaluation of the performance and
scalability of FTV methods for processing graph containment queries. Graph containment
queries have received a lot of attention from our community, with research efforts spanning

4.6. Conclusions 64

for over a decade. We have employed four real-world graph datasets and a large number of
synthetic graph datasets. We have selected six methods to comparatively evaluate, represent-
ing different key design decisions and including also the most recent and higher performing
methods. The performance and scalability of the methods was analyzed with respect to their
sensitivity to different key dataset and workload characteristics that can affect the perfor-
mance and scalability of methods; namely, the number of DB graphs, the size of DB graphs
(as it depends on the graph density and number of graph nodes), the number of distinct labels
per graph, and the size of query graphs. We provide detailed conclusions on (and explana-
tions for) the comparative performance and scalability of the methods, as they depend on
the key dataset and workload characteristics. In addition, we provide a set of major lessons
learned. Although the results show no clear winner, we shed light into the characteristics of
the winning methods for most of the datasets-workloads, the effect of the different charac-
teristics of the performance/scalability of different methods, and on the differences between
scalability and performance.

Limitations Despite the large number of experiments performed, there are limitations to
the study. The initial target was to be able to answer exactly which algorithm to use given any
set of parameters, i.e. average number of nodes and density, number of distinct labels and
graphs in the dataset. Instead, we set the “sane” default parameters as discussed in §4.3.3 and
vary only one parameter at a time to examine its effect on the various metrics and algorithms.
Finding the exact algorithm to use for any set of given parameters proved to be impractical
as the dataset workload characteristics are not enough to select the best algorithm. In more
detail, as we will see in chapter §5, even different rewritings of a query – i.e., isomorphic
instances of the same query – can lead to different algorithms performing the “best”. For
this reason, a more detailed model needs to be devised, which is left as the subject of future
work.

Another limitation of our study is related to the values of the input parameters of the
compared algorithms (see §4.3.2). Although these values are defined by the respective au-
thors, the experiments reported in §6.9 indicate that the overall performance of the algorithms
can be significantly affected. Defining the optimal values, requires deep knowledge of the
algorithm, the underlying implementation and the problem to solve, and it is hard even for
the authors of these methods to answer what are the optimal parameters to use.

Along the same lines of the previous limitation, the experimentation for finding the opti-
mal values to use for every case is highly impractical. Thus, we need to devise a framework
to use that would be able to auto-adjust the optimal values for answering queries in the most
effective way on a specific dataset. That is also left for future work.

65

Chapter 5

Subgraph Querying with Parallel Use of
Query Rewritings and Alternative Algo-
rithms

[X \

Despite the large attention the problem of subgraph query processing has enjoyed within
the data management/mining communities and the large number of methods that have been
developed, scalability and efficiency remain an elusive goal, owing to the NP-Complete na-
ture of the underlying subgraph isomorphism test. We analyze this problem and present key
novel discoveries and observations on the nature of the problem which hold across query
sizes, datasets, and top-performing algorithms. Firstly, we show that algorithms (for both
the decision and matching versions of the problem) suffer from straggler queries, which
dominate query workload times. If one were to cap query times and not to report results
for queries exceeding the cap (personal communication with authors of [11], 2015), this can
lead to erroneous conclusions of the methods’ relative performance. Secondly, we study and
show the dramatic effect that isomorphic graph queries can have on query times. Thirdly,
we show that for each query, isomorphic queries based on proposed query rewritings can
introduce large performance benefits. Fourthly, we observe that straggler queries are largely
algorithm-specific: many challenging queries to one algorithm can be executed efficiently by
another. Finally, the above discoveries naturally lead to the derivation of a novel framework
for subgraph query processing, resting on query graph rewritings (producing graphs that are
isomorphic to the original query) and on using multiple alternative algorithms. The central
idea is to employ parallelism in a novel way, instead of trying to parallelize the subgraph
isomorphism algorithm, whereby parallel matching/decision attempts are initiated, each us-

5.1. Introduction 66

ing a query rewriting and/or an alternate algorithm. Such an approach is common to other
NP-hard problems, where parallelizing the underlying algorithm is not easily feasible and
thus running parallel instances of the same or alternative algorithms is a better approach,
known as portfolios of algorithms. The framework is shown to be highly beneficial across
algorithms and datasets.

5.1 Introduction

With our work, we explore the strengths and weaknesses of existing FTV and SI methods
for all versions of the subgraph querying problem, and we exploit the strong points of every
algorithm by combining them in parallel executions to achieve large performance gains in the
subgraph querying problem. Our analysis aims to (i) lead to interesting novel findings about
the nature of the problem and existing solutions, (ii) analyze and quantify said discoveries
and their effect on well-established existing solutions, and (iii) show that the findings can be
used to develop a framework that can offer large performance gains. Specifically, we first rec-
ognize the existence of “straggler” queries; i.e., queries whose execution time is dramatically
higher than the rest. This holds for all query workloads and all datasets examined and across
all tested FTV and SI algorithms. Subsequently, we reveal and quantify the interesting fact
that isomorphic instances of queries can have a wild variation in querying times. Then we
generate isomorphic instances of the original query using statistics on vertex-label frequen-
cies and/or vertex degrees and we investigate their performance. Moreover, for SI methods in
particular, we additionally show that challenging queries are algorithm-specific, with a strag-
gler query for one algorithm possibly being easy for others. Finally, we incorporate these
findings in a novel framework, coined the Ψ-framework, that exploits parallelism for both
FTV and SI methods, achieving large performance gains. Specifically, instead of trying to
come up with new algorithms for sub-iso testing, we utilize isomorphic query rewritings and
existing alternative algorithms in parallel. Extensive experimentation shows that our frame-
work can be highly beneficial across both real and synthetic datasets and query workloads,
and for both FTV and SI methods.

5.2 Related Work and Contributions

The numerous proposed FTV and SI methods have been extensively discussed in §2.3.
The target of the current chapter is to propose empirical ways in order to expedite the sub-
graph queries, originated from the strengths and weaknesses of all proposed methods. We
mainly focus on the various SI methods and thus, we leave intact the indexing and filtering
stage of the used FTV methods.

5.3. Experimental Setup 67

As subgraph querying is an important problem, we expect that many researchers will
keep focusing on trying to improve upon existing algorithms in the future. Indeed, since
the publication just a few years ago of iGraph-v2[8], comprehensively comparing the then
state of art SI algorithms, newer algorithms have been proposed, e.g. [55], with better per-
formance. Nonetheless all algorithms show exponential execution times even at small query
sizes (up to 10 edges) (BoostIso[56]). Our contributions aim to help this process in two
ways. First, by revealing key insights, based on comprehensive experimentation, about the
problem itself and how they affect well-known algorithms. Second, by shedding light onto a
novel overall approach to the problem and its benefits. Namely, instead of focusing solely on
developing new solutions by improving earlier algorithms, try to benefit from the wealth of
ideas already existing within previous algorithms! Specifically, our findings show that dif-
ferent algorithms are appropriate for different queries. Furthermore, they show that different
query rewritings are appropriate for different queries and for different algorithms! Finally,
the existence of straggler queries poses new challenges for the performance comparison of
different algorithms, needing more detailed performance metrics and experimenting with
more challenging queries. All current works miss the above points: (i) they only consider
one query rewriting, if at all, for all queries, (ii) they use only one algorithm for all work-
load queries, and (iii) they do not stress-test their algorithms with more challenging queries
(e.g., larger sizes). Our framework shows that such misses also lead to misses of dramatic
performance improvements.

5.3 Experimental Setup

5.3.1 Algorithms

For the FTV methods, we chose Grapes[11] and GGSX[12] to be included in our exper-
iments, accredited as top-performing based on our experiments in chapter §4.

For the SI methods, we opted for methods (i) whose code is publicly available or made
available to us by the authors upon request, so any conclusions would not be implementation
dependent, (ii) that were well recognized as well performing and (iii) used by many papers
for comparison purposes. We selected QuickSI[35], GraphQL[24], sPath[29], TurboIso[55],
and Boosted-TurboIso[56]. With respect to CFL-Match [57], its authors did not respond to
our request for their code, and thus CFL-Match is not included in our experiments.

A more detailed description of the in-use algorithms can be found in §3.1.

5.3. Experimental Setup 68

5.3.2 Setup

Experiments with Grapes and GGSX were conducted on a small cluster consisting of 5
nodes, each featuring an Intel Core i5-3570 CPU (3.4GHz, 4 physical cores, 6MB cache),
16GB of RAM, 500GB disk per node, and running Ubuntu Linux 14.04. Experiments with
QuickSI, GraphQL, sPath, TurboIso and BTI (i.e., the SI methods) were conducted on a Win-
dows 7 SP1 host, with 2 Intel Xeon E5-2660 CPUs (2.20GHz, 20MB cache) with 8 cores/16
vcores per CPU, 128GB of RAM, and 3.5TB disk. With the term “experiment”, we refer to
the subgraph matching process of 1 query graph against 1 stored graph. For practical pur-
poses, we allowed a maximum limit of 10 mins for each query to be processed. Beyond that
time, the execution is terminated and we proceed with the next query in the workload. Please
note that this 10’ limit does not apply in the indexing phase of the individual algorithms.

For Grapes and GGSX we used the implementations provided by their respective au-
thors. However, in the case of Grapes, we had to alter the source code so that the VF2
verification step returns after the first match of the query graph, as opposed to the original
implementation which was returning all possible matches. The reason for this is that FTV
methods are mainly designed to retrieve the graphs that contain the query as an answer. For
QuickSI, GraphQL and sPath, we used the implementation provided by [8]. For TurboIso,
we obtained the binary code from the authors and for BTI we obtained the source code from
GitHub1 where it was publicly available.

We used the default values for the input parameters of the compared algorithms, as
they were defined by their respective authors in the relevant publications and/or in their
implementation code. More specifically:

• For GGSX and Grapes, we enumerated paths of up to size of 4.
• We ran Grapes with 1 and 4 threads; results for executions with 1 (respectively 4)

threads are denoted by Grapes/1 or GR/1 (respectively Grapes/4 or GR/4).
• For GraphQL, we used a refined level of iterations of pseudo-subgraph isomorphism
r = 4.
• For sPath, we used a neighborhood radius of 4 and maximum path length 4.
• TurboIso does not require any input parameter. However, by default only queries up

to 25 vertices are able to execute. We were not able to change this option because of
the binary that was made available to us.
• BTI, too, does not require any input parameter. However, compared to the rest of the

in-use SI methods, BTI only allows one label per vertex on the stored graph. Thus, we
were not able to execute experiments with some of our datasets (see §5.3.3).
• For all SI methods the number of searched embeddings of the pattern graph on the

stored graph is capped at 1000; i.e., after finding the first 1000 matches, the algorithms
1 https://github.com/UltraHector/BoostIsoGraphAdaptation

https://github.com/UltraHector/BoostIsoGraphAdaptation

5.3. Experimental Setup 69

terminate. We note that for GraphQL, sPath, QuickSI and BTI the number of embed-
dings is configurable, but for TurboIso it is hardcoded (an option we cannot change
because of the binary made availabe to us).

A detailed description of the employed algorithms can be found in §3.1.

5.3.3 Datasets

We chose datasets which (a) have also been used by other studies, so as to enable possible
direct comparisons, and (b) have key characteristics covering a large part of the design space
(e.g., regarding graph size and density).

For the FTV methods, we have used PPI and the Synthetic datasets and their charac-
teristics can be seen in Table 3.1. PPI (used in [11, 9]) is a real dataset representing 20
different protein-protein interaction networks, as discussed in §3.2.2. The majority of ex-
isting real datasets that were used for the FTV methods comprises of relatively small and
sparse graphs. In [9] we showed that, for such datasets, both Grapes and GGSX perform
adequately well. For our current study we are further interested in more challenging datasets
and we thus employ the additional synthetic dataset generated with GraphGen[60], allow-
ing various parameters of interest to be specified; namely, number of graphs and number
of labels in the dataset, average number of nodes and density per graph). A more detailed
description of how GraphGen constructs the dataset can be found in §3.2.1.

Datasets used for the SI methods consist of only one graph, as the primary task of these
methods is to find all occurrences of the pattern graph in the large stored graph. Table 3.2
summarizes the characteristics of the three real datasets – namely yeast, human and wordnet
– that we have used for the SI methods. Yeast and human were previously used in [8], while
wordnet2 was used in [23]. Finally, yeast and human, unlike wordnet, allow multiple labels
on each node, and thus we were able to execute BTI only on wordnet, as discussed in §5.3.2.

5.3.4 Query Workloads

To generate each of the query graphs, we follow the procedure described in §3.2.3.

For the FTV methods, for the synthetic dataset, we used queries of size 24, 32 and
40 edges for Grapes/1 and Grapes/4. We did not run GGSX against the synthetic dataset,
because of excessive amount of time required for the experiments to complete. For the PPI
dataset, we used queries of size 16, 20, 24, and 32 edges.

For the SI methods, we used 200 queries of 10, 16, 20, 24 and 32 edges. For QuickSI
we only report results against the yeast dataset, as (i) it was the easiest dataset used for

2http://vlado.fmf.uni-lj.si/pub/networks/data/dic/Wordnet/Wordnet.htm

http://vlado.fmf.uni-lj.si/pub/networks/data/dic/Wordnet/Wordnet.htm

5.3. Experimental Setup 70

the SI methods to process (smallest number of nodes with highest number of distinct labels
compared to human and yeast as discussed in §3.2.2), and (ii) QuickSI always had many
more cases, compared to GraphQL and sPath, where query processing exceeded the 10’ cap
(figures 5.4). Because of implementation restrictions with TurboIso and the binary that was
made available to us, we were not able to execute queries with more than 25 vertices, and
as a result, from the 200 constructed queries of 32-edges workload, none of them qualify
for yeast and only 60 of them qualify for human dataset that we include on our experiments.
BTI does not support the use of multiple labels per node. Thus, we do not present any results
with BTI against the yeast and human dataset. Finally, to restrict the number of executed
experiments, we opted to execute BTI instead of TurboIso as the third alternative algorithm
in wordnet.

For all used methods, the majority of the queries completed in under 2”. We call them
easy queries. Another portion of queries had processing times in the 2” to 600” range; we
denote these 2”-600” queries. We use the term completed to refer to all queries that finished
within the 10’ limit; those that did not are called hard or killed.

5.3.5 Performance Metrics

For every query against a stored graph, we measure the Execution Time, denoted exec

time, for both FTV and SI methods, while avg exec time denotes the average execution time.
Specifically for this specific chapter, for FTV methods, this is the pure subgraph isomor-
phism time; i.e., excluding the index loading and filtering times, which add only a trivial
overhead, unless stated otherwise. For FTV methods reported times are in seconds, while
for SI methods times are in milliseconds, unless stated otherwise.

Let qi be a given query and tMi the exec time of qi over method M . Let also qi,j be the
j-th isomorphic instance of qi and tMi,j the exec time of qi,j over method M . Finally, let tΨi,j
be the exec time of qi,j over our proposed Ψ-framework, and tGR−M

i be the execution time
of qi over the hybrid combination of Grapes (GR) with method M over all the graphs in the
dataset.

We define the (max/min) metric as:
maxj(tMi,j)

minj(tMi,j)
. The minimum value of this metric is 1,

indicating that there are no variations between the min and max exec time. The higher the
value of this metric, the higher the differences between the min and max exec time achieved
by the isomorphic query instances.

We also define the speedup∗ metric as: tMi
T

, where T is set to: (i) minj(t
M
i,j), when

comparing against the various isomorphic instances of qi, (ii) minM(tMi,j), when comparing
against different methods, and (iii) tΨi , when comparing against our Ψ-framework. speedup∗

represents what we lose in performance if we choose the original method over the various

5.4. Straggler Queries 71

alternatives; i.e., speedup∗ equals the maximum attainable speedup over the original method,
if we chose the best of the examined alternatives. For comparison purposes, for queries that
were killed at the 10’ limit we use this time (i.e., 600”) as their minimum execution time.

Finally, both (max/min) and speedup∗ metric have their QLA and WLA version, as we
discussed in §3.3.4, denoted with a matching subscript; e.g. speedup∗QLA.

5.4 Straggler Queries

We know that as the dataset grows in terms of the size of graphs (i.e. density, number of
nodes), query processing becomes harder; likewise, query processing becomes harder as the
query graph incresases, as discussed in [9] and in chapter §4. But are these statements true
for all queries-dataset stored graph combinations? Running many queries against the whole
dataset can hide the details of how much time is required per individual graph-query pair. In
the case that a small portion of such pairs dominates the whole execution time, then by just
looking at the whole query workload execution times it is easy to draw wrong conclusions
about the algorithms’ performance. Also, several related works choose to ignore queries
whose execution is much higher compared to the rest. To investigate the above, in this study
we execute each individual query against a single stored graph at a time, for both FTV and
SI methods.

Observation 1: In all workloads generated by us or found in other papers, our experiments
show “stragglers”; i.e., queries whose processing time is many orders of magnitude higher
compared to the rest.

To support our observation, we present the results from our experiments on the afore-
mentioned datasets against both FTV (figures 5.1 and 5.2) and SI methods (figures 5.3 and
5.4).

FTV methods

Figures 5.1 and 5.2 present the results from the query workloads on the FTV methods.
Specifically, figures 5.1(a) and 5.1(b) show the average execution times for the correspond-
ing algorithms for the synthetic and the PPI dataset accordingly (GGSX/synthetic results
are omitted; see §5.3.2). Figure 5.2 presents the percentage of the sub-iso tests that were
easy, 2”-600”, and hard for both the synthetic and PPI datasets. As expected, Grapes/4 has
a much smaller percentage of killed queries compared to Grapes/1 and GGSX. A notable
thing here is that, the average execution time of easy queries is measured to some tens of

5.4. Straggler Queries 72

 0.01

 0.1

 1

 10

 100

GR/1 GR/4

W
L

A
-A

v
g

 e
x

ec
 t

im
e

(s
)

easy 2’’-600’’ completed

(a) Synthetic dataset, WLA-Average exec time (s)

 0.01

 0.1

 1

 10

 100

GR/1 GR/4 GGSX

W
L

A
-A

v
g

 e
x

ec
 t

im
e

(s
)

easy 2’’-600’’ completed

(b) PPI dataset, WLA-Average exec time (s)

Figure 5.1: WLA-Average exec time (s) in FTV methods

milliseconds and the average execution time of 2”-600” is hundreds of seconds, which re-
sults in an average execution time of completed queries measured in tens of seconds. In
other words, although for both Grapes/1 and Grapes/4 the percentage of 2”-600” queries is
only < 5% in the synthetic dataset and < 10% in PPI, the average execution time across all
completed queries is significantly affected; that is, the most expensive queries dominate the
overall execution time.

SI methods

Figures 5.3 and 5.4 present the results from the query workloads on the SI methods
(QuickSI-[human/wordnet], TurboIso-wordnet and BTI-[human/yeast] results are omitted;
see §5.3.2), while tables 5.1 and 5.2 give the average execution times and percentages for

5.4. Straggler Queries 73

 0

 20

 40

 60

 80

 100

GR/1 GR/4 GR/1 GR/4 GGSX

%
 o

f
q

u
er

ie
s

easy 2’’-600’’ hard

PPIsynthetic

Figure 5.2: Percentages of easy, 2”-600”, and hard queries in FTV methods

GraphQL sPath QuickSI TurboIso

10
-e

dg
e
q

AET easy (ms) 66.84 134.78 131.67 92.69
% of easy 100 99.5 99 99.5

AET 2”-600” (ms) - 2871.44 50367.40 -
% of 2”-600” 0 0.5 1 0

% of hard 0 0 0 0.5

32
-e

dg
e
q

AET easy (ms) 130.66 120.71 96.62 -
% of easy 80 91 67.5 -

AET 2”-600” (ms) 140812 140781 78917.2 -
% of 2”-600” 6.5 3 6 -

% of hard 13.5 6 26.5 -

Table 5.1: Results for SI methods on the yeast dataset (AET: Average exec time)

GraphQL sPath TurboIso

10
-e

dg
e
q

AET easy (ms) 179.49 209.91 87.04
% of easy 100 98 100

AET 2”-600” (ms) - 182392 -
% of 2”-600” 0 1 0

% of hard 0 0 0

32
-e

dg
e
q

AET easy (ms) 246.31 277.13 173.35
% of easy 71.5 84.5 73.33

AET 2”-600” (ms) 93523.7 31817 148.695
% of 2”-600” 4.5 4.5 8.33

% of hard 24 11 18.33

Table 5.2: Results for SI methods on the human dataset (AET: Average exec time)

10- and 32-edge easy, 2”-600” and hard queries for the yeast and human datasets. We use
the 10-edge query results to compare our findings with those presented in iGraph-v2[8] and
for the common algorithms, i.e., GraphQL, sPath and QuickSI. iGraph-v2 used small query

5.4. Straggler Queries 74

 1

 10

 100

 1000

 10000

 100000

 1x10
6

GQL SP QSI TI

W
L

A
-A

v
g

 e
x

ec
 t

im
e

(m
s)

easy 2’’-600’’ completed

yeast

(a) yeast dataset, WLA-Average exec time (ms)

 1

 10

 100

 1000

 10000

 100000

 1x10
6

GQL SP TI

W
L

A
-A

v
g

 e
x

ec
 t

im
e

(m
s)

easy 2’’-600’’ completed

human

(b) human dataset, WLA-Average exec time (ms)

 1

 10

 100

 1000

 10000

 100000

GQL SP BTI

W
L

A
-A

v
g

 e
x

ec
 t

im
e

(m
s)

easy 2’’-600’’ completed

(c) wordnet dataset, WLA-Average exec time (ms)

Figure 5.3: WLA-Average exec time (s) in SI methods

5.4. Straggler Queries 75

 0

 20

 40

 60

 80

 100

GQL SP QSI TI GQL SP TI GQL SP BTI

%
 o

f
q

u
er

ie
s

easy 2’’-600’’ hard

wordnethumanyeast

Figure 5.4: Percentages of easy, 2”-600”, and hard queries in SI methods

sizes (up to 10 edges) and showed that the best performing algorithm is GraphQL, because it
managed to complete all tested query workloads. With our experiments, we confirm this for
both yeast and human datasets and for queries of size 10 edges. GraphQL performs the best
among the three, having also 0% of hard queries. However, the picture is totally reversed
when looking at the rest of the queries.

Specifically, regarding table 5.1 and the yeast dataset, for 10-edge queries, results for
sPath and QuickSI are comparable, with GraphQL having 0% of hard queries, whereas Tur-
boIso is already lagging behind with 0.5% of hard queries. The same is valid for the easy

queries of 32 edges. However, the picture is totally reversed when looking at the rest of the
queries. In this case, the percentage of killed queries is double for GraphQL and quadruple
for QuickSI compared to sPath.

Additionally, regarding table 5.2 and the human dataset, where QuickSI is replaced with
TurboIso (§5.3.2), GraphQL and TurboIso perform better compared to sPath that already has
a 1% 10-edge query that takes 2”-600” to execute. The picture is again reversed for all three
competing algorithms as sPath proves to be the most robust at 32-edge queries, with only
11% of hard queries.

Because of implementation restrictions, we were not able to execute queries of >25
vertices with TurboIso (see §5.3.2); thus no queries of 32 edges were executed for yeast
and only 60 queries of 32 edges qualified for human. As a result, the presented results for
TurboIso on human and yeast are not directly comparable with the numbers provided for
GraphQL and sPath. However, we note that for the same 60 32-edge queries executed over
human dataset on all 3 algorithms, TurboIso encountered more hard queries than the other
two contestants. Finally, although BTI is the latest proposed method, it suffers from more
hard queries compared to GraphQL and sPath for the wordnet dataset.

5.5. Isomorphic queries 76

GraphQL and sPath are the 2 alogrithms executed against all 3 datasets (figures 5.3
and 5.4, tables 5.1 and 5.2). Based on our experiments, sPath performs overall better than
GraphQL having (i) smaller average execution times on the completed queries and (ii) smaller
percentages of hard queries in yeast and human datasets. However, in wordnet this behavior
is reversed. Thus, it’s very difficult to claim that one algorithm is performing better than
the other. In fact, in order to claim that, we need to define a performance metric of interest.
Such a performance metric could be the percentage of killed queries, but that still depends
on the time limit imposed on query processing. For example, in wordnet, if the threshold
was 2”, then sPath would be better than GraphQL, but if we change this threshold the picture
changes.

We summarize our results to the following 3 conclusions: (1) Some queries are hard.
(2) Different algorithms have different percentages of completed queries; thus, different al-
gorithms find different queries hard. (3) As the most expensive queries dominate the average
execution time, one must include a sufficient number of hard queries in order to draw con-
clusions about the relative performance of the algorithms.

5.5 Isomorphic queries

Various proposed SI methods ([24, 29, 35]), as well as iGraph-v2[8] that compares them,
observe that the search order on the query can have a huge impact on query processing
time. We agree with this claim. This behavior is typical on other NP-hard problems, as
discussed in §2.7 ([116]). In the current study, we take a further step and instead of relying
on the order that the individual method imposes, we generate our own isomorphic query
rewritings. To achieve this, we maintain the structure of the query graph and the labels on
the nodes unchanged, and we permute the node IDs. Subsequently, we transform the query
graph to an input format compatible with each individual method and we perform the query
processing. The same effect of constructing isomorphic query graphs to the original query
graph can be achieved by permuting rows/columns of the original graph in an adjacency
matrix representation. In the following experiments, we use a total of 6 different rewritings
per query, leading to the following observation.

Observation 2: Queries which are isomorphic to the original query graph can have widely
and wildly different execution times.

We attribute this behavior to the fact that all proposed methods do not define an abso-
lutely strict order in which the nodes of the query are matched, as it would be too compu-
tationally expensive to compute a globally optimal join plan. Thus, all proposed methods,

5.5. Isomorphic queries 77

similarly to other NP-hard problems [116], rely on heuristics (see §5.3.1) in order to min-
imize the search space for the join plan. However, given the fact that SI methods define
a more strict order in which the nodes of the query are matched, this wide execution time
variation (as we will see later on in this chapter) was not initially expected.

 1

 10

 100

 1000

 10000

 100000

 1x10
6

(m
ax

/m
in

) Q
L

A

GR/1
GR/4

GGSX

PPIsynthetic

Figure 5.5: Average (max/min)QLA for FTV methods

Grapes/1 Grapes/4 GGSX

sy
nt

he
tic

stdDev 86,700.40 65,988.40 -
min 1.06 1.02 -
max 3,820,000.00 3,490,000.00 -

median 3.90 4.45 -

PP
I

stdDev 469,934 395,285 1,020,000
min 1.03 1.02 1.01
max 3,680,000 3,160,000 12,000,000

median 1,186.51 11.19 109,086.00

Table 5.3: (max/min)QLA statistics for FTV methods

FTV methods

Figure 5.5 depicts the QLA average value of the (max/min) metric for the synthetic
and PPI datasets, for the FTV methods (GGSX results are omitted for the synthetic dataset;
see §5.3.4), whereas figure 5.6 presents the (max/min)QLA for different query sizes on
the PPI dataset. Table 5.3 additionally reports the stdDev, min, max and median values of
(max/min)QLA. In the calculations, we did not include a small number of queries that
were not helped by any of the isomorphic instances tried; i.e., queries that were hard on
all tested isomorphic instances of the query. This behavior occurred in 0.0036% and 1.4%
of queries for Grapes/1 on the synthetic and PPI datasets respectively, in 0.37% of queries

5.5. Isomorphic queries 78

 10000

 100000

 1x10
6

 16 20 24 32

(m
ax

/m
in

) Q
L

A

query size (# of edges)

GR/1 GR/4 GGSX

Figure 5.6: Average (max/min)QLA for different query sizes on FTV methods and for PPI
dataset

for Grapes/4 and 1.96% of queries for GGSX for the PPI dataset. Note that the “max” and
“average” values of (max/min)QLA are only lower-bound estimations, because of the 10’
limit that we used instead of the actual verification time. In these results, we observe that
there is an at least 6 orders of magnitude difference between the min and the max value of
(max/min)QLA, with the median (apart from GGSX) being closer to the min value. Along
with the high stdDev, we can see that isomorphic instances of the same query can indeed
have widely and wildly different verification times.

 1

 10

 100

 1000

(m
ax

/m
in

) Q
L

A

GQL SP QSI TI BTI

wordnethumanyeast

Figure 5.7: Average (max/min)QLA for SI methods

5.5. Isomorphic queries 79

GraphQL sPath QuickSI TurboIso BTI

ye
as

t

stdDev 287.5 533.8 1685.7 704.7 -
min 1.0 1.0 1.0 1.0 -
max 7286.3 6695.8 15021.6 14053.4 -

median 1.4 1.3 1.6 2.1 -

hu
m

an
stdDev 440.1 662.7 - 1214.7 -

min 1.0 1.0 - 1.0 -
max 4115.0 4087.8 - 9030.0 -

median 1.8 1.9 - 1.9 -

w
or

dn
et

stdDev 20.5 396.8 - - 1635.1
min 1.0 1.0 - - 1.0
max 646.4 3081.1 - - 31121.8

median 1.2 1.3 - - 1.1

Table 5.4: (max/min)QLA statistics for SI methods

 1

 10

 100

 1000

 10000

 10 16 20 24 32

(m
ax

/m
in

) Q
L

A

query size (# of edges)

GQL SP TI

Figure 5.8: Average (max/min)QLA for different query sizes on SI methods and for human
dataset

SI methods

Figure 5.7 reports the QLA-average values of the (max/min) metric for the yeast, hu-
man and wordnet datasets, for the tested SI methods (QuickSI-[human/wordnet], TurboIso-
wordnet and BTI-[human/yeast] results are omitted; see §5.3.4). Additionally, figure 5.8
presents the (max/min)QLA for different query sizes on the PPI dataset. Table 5.4 reports
the stdDev, min, max and median value of (max/min)QLA. We report that 4.2%, 8.2% and
1.5% of queries were not helped by any tested isomorphic query instances for GraphQL and
for yeast, human and wordnet respectively. For sPath the corresponding values are 2.1%,
1.4% and 11.8%, and for QuickSI 8.6% of the queries were not helped for the yeast dataset.
For TurboIso 0.88% and 4.19% of the queries were not helped for yeast and human respec-
tively and for BTI and wordnet the corresponding value is 7.7%.

5.6. Graph query rewriting 80

The QLA-average (max/min) for the SI methods is up to 3 orders of magnitude lower
than that of the FTV methods. This is somewhat expected as the SI methods define a more
strict order in which the nodes of the query are matched and thus leave less space for wild
variations. However, this order is still significantly affected by the initial node ids of the
query, and thus we still see per-query (max/min) values of up to 2 orders of magnitude.

We summarize our overall results to the following conclusions: (1) For every isomorphic
test to be executed, given a query graph q and a stored graph, there is an isomorphic version
of q that can take anywhere from 2 to 6 orders of magnitude more time to execute compared
to the least expensive version of the query. This holds across all algorithms and datasets
tested. This is a typical behavior of other algorithms proposed for NP-hard problems, as
discussed in §2.7. Specifically, we have seen that these algorithms also employ different
heuristics and their performance is significantly affected by the search order they impose.
(2) The harder the queries (higher query sizes), the higher these number are, as it can be seen
by figures 5.6 and 5.8.

5.6 Graph query rewriting

Having established that isomorphic versions of a query can have dramatically different
execution times, we set out to construct our own specific rewritings, constructing graphs iso-
morphic to the original queries, with the aim to capture these benefits. We have developed
and experimented with several such query rewritings. We outline below five such rewrit-
ings, all performed by carefully permuting the node IDs in the query graph: The discussion
assumes a query graph and a stored graph.

• Query Rewriting ILF (Increasing Label Frequency):
In a preprocessing step, we compute the frequencies of all node labels in the stored
graph, sorted in increasing frequency order. Given this order, we produce a rewriting
of the query graph so if i, j are the node IDs of query graph nodes ni, nj , L(ni), L(nj)

are their labels, and f(L(·)) is the frequency of a label L(·) in the stored graph, then
f(L(ni)) < f(L(nj)) ⇒ i < j. Ties can appear in 2 cases: (i) two or more query
nodes have the same label, or (ii) two or more query nodes have different labels but
with the same frequency. These ties are broken arbitrarily.
• Query Rewriting IND (Increasing Node Degree):

The nodes of the query are sorted in increasing node degree order; i.e., if ni, nj are two
query graph nodes, and d(·) is the degree (number of edges) of a node, then d(ni) <

d(nj) ⇒ i < j. In the case of nodes with the same number of edges, ties are broken
arbitrarily.

5.6. Graph query rewriting 81

• Query Rewriting DND (Decreasing Node Degree):
This rewriting is similar to the IND rewriting but the nodes of the query are sorted in
decreasing node degree and the node ids are assigned accordingly.
• Query Rewriting ILF+IND:

This rewriting is the same as ILF above, with ties being broken in an IND manner: i.e.,
nodes with smaller outgoing degree get a lower node id.
• Query Rewriting ILF+DND:

This rewriting is the same as ILF+IND, with ties being broken in a DND manner.

In order to conduct our experiments, and to perform our query rewriting, based on the
initial query node IDs of the original query, we break ties by respecting the order of nodes on
the original queries. In other words, let ni and nj be two query graph nodes with node IDs
i < j, that belong in the same tie group; i.e. they have the same label or the same degree,
or both the same label and degree. Then, in the rewritten query the node IDs will be i′ < j′.
Undoubtedly, this is not the only way to resolve ties; for example we could randomly assign
node IDs on the nodes that belong in the same tie group. Additionally, although our current
tie-breaking approach is deterministic, it is still based on the initial assignment of IDs to
nodes, which is in turn arbitrary and random in its own right, e.g., any random rewriting
could have been the original form of the query graph.

In §3.1.2 and §5.5, we discussed how the various methods decide the optimal join plan
so as to match the query vertices to the vertices on the stored graph. However, we have seen
that in some cases ties (symmetries) still exist, in other cases that not all possible join plans
are considered. For example, QuickSI tries to resolve symmetries by making the constructed
MST denser, whereas GraphQL considers only left-deep join plans to define a good search
order. However, ties still exist and it is expected that these ties are resolved by the various
algorithms by looking at the query node IDs. Thus, intuitively, and in case of ties, given that
node ID i < j, it is expected that ni will be matched earlier than node nj . Time-wise, this
might have a tremendous effect on the algorithm’s performance depending on the number of
the actual join operations to consider.

Figure 5.9 presents an example of the above rewritings. Note that the ILF+IND rewriting
in 5.9(d) is another valid isomorphic ILF rewriting. Ties are (utterly) broken in an arbitrary
way, and thus one may compute several different isomorphic graphs for the same rewriting.

Indicatively3, in figures 5.10 and 5.11 we report the WLA average processing times
of the original query and the 5 proposed query rewritings for the PPI and yeast datasets,
as well as the corresponding percentages of the hard queries. For the FTV methods, the
best performing rewritings are ILF and ILF+DND, with the percentage of hard queries be-

3We obtained similar results for the synthetic dataset for the FTV methods and the human and wordnet
datasets for all used SI methods. The sole exception was sPath, whose percentage of hard queries increased
slightly for the wordnet dataset.

5.6. Graph query rewriting 82

A A

A
B

B

C

C
0

1
23

4
5

6

(a) Original

A A

A
B

B

C

C
0

1

2

3
4

5
6

(b) ILF

A A

A
B

B

C

C

0

1

2

3 4

5

6

(c) IND

A A

A
B

B

C

C
0

1
2

3

4

5

6

(d) ILF+IND

Figure 5.9: Isomorphic queries generated with different rewritings (assuming the label fre-
quencies in the stored graph are: “A”=20, “B”=15, “C”=10)

 0

 50

 100

 150

 200

 250

 300

GR/1 GR/4 GGSX

W
L

A
-A

v
g

 e
x

ec
 t

im
e

(s
)

Orig
ILF

IND
DND

ILF+IND
ILF+DND

(a) WLA-Average exec time (s)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

GR/1 GR/4 GGSX

%
 o

f
h

ar
d

 q
u

er
ie

s

Orig
ILF

IND
DND

ILF+IND
ILF+DND

(b) percentage of hard queries

Figure 5.10: Results for individual query rewritings for FTV on PPI dataset

5.6. Graph query rewriting 83

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

GQL SP QSI TI

W
L

A
-A

v
g

 e
x

ec
 t

im
e

(m
s)

Orig
ILF

IND
DND

ILF+IND
ILF+DND

(a) WLA-Average exec time (ms)

 0

 2

 4

 6

 8

 10

 12

GQL SP QSI TI

%
 o

f
h

ar
d

 q
u

er
ie

s

Orig
ILF

IND
DND

ILF+IND
ILF+DND

(b) percentage of hard queries

Figure 5.11: Results for individual query rewritings for SI methods on yeast dataset

ing significantly improved. For the SI methods, the picture is slightly different. GraphQL
shows no considerable improvement for each rewriting individually; as a matter of fact, there
are rewritings leading to higher average execution times than the original query does. For
sPath, the DND and ILF+DND rewritings reduce the percentage of killed queries from 2.8%
to 2.4%. For QuickSI, ILF+DND reduced the percentage of killed queries from 11.3% to
10.2%, but DND only brings it down to 10.9%. For TurboIso, IND and ILF+IND reduce the
percentage of killed queries from 1% to 0.875%. Note that in the case of TurboIso, results are
not directly comparable with the rest of the contestants because no queries of 32 edges are
included (see §5.3.4). More importantly, note that there is no single rewriting that manages
to improve all algorithms across all datasets and workloads. However, if we were to execute
in parallel various isomorphic rewritings, we would achieve large performance gains.

5.6. Graph query rewriting 84

Observation 4: “Stragglers” can have isomorphic counterparts which are not stragglers.
Table 5.5 quantifies the percent reduction of straggler queries for both FTV and SI methods
when using isomorphic query counterparts for the tested datasets.

GR/1 GR/4 GGSX GQL SP QSI TI BTI

FT
V synthetic 98.8% 100% - - - - - -

PPI 91.1% 94.1% 94.7% - - - - -

SI

yeast - - - 2.32% 25% 23.9% 12% -
human - - - 15.5% 68.2% - 24.9% -
human - - - 6.3% 9.2% - - 36.9%

Table 5.5: Percent reduction of straggler queries for FTV and SI methods using isomorphic
query counterparts

Figures 5.12 and 5.14 present the achieved speedup∗ of such an execution. Similarly, as
in §5.5, the max and average reported speedup∗ represent a lower-bound estimation because
of the value 10’ that we use for the hard queries that were killed. Additionally, in our
calculations we do not include the few queries that were killed in both the original instance
and in all the rewritings of the query (see §5.5).

 1

 10

 100

 1000

 10000

 100000

 1x10
6

sp
ee

d
u

p
*

Q
L

A

GR/1
GR/4

GGSX

PPIsynthetic

Figure 5.12: Average speedup∗QLA for FTV methods across rewritings

FTV methods

Figure 5.12 presents the average speedup∗QLA for the FTV methods for the synthetic and
PPI datasets (GGSX/ synthetic results are omitted; see §5.3.4). Additionally, table 5.6 reports
the QLA stdDev, min, max and median of speedup∗QLA. Moreover, as we increased the size
of the queries, speedup∗QLA increased by up to 5 orders of magnitude, as it can be seen by
figure 5.13. Regarding the presented results in table 5.6, median speedup∗QLA is close to

5.6. Graph query rewriting 85

Grapes/1 Grapes/4 GGSX

sy
nt

he
tic

stdDev 53,785.70 24,267.60 -
min 1.00 1.00 -
max 3,820,000 2,110,000 -

median 1.36 1.24 -

PP
I

stdDev 302,250 237,573 758,668
min 1.00 1.00 1.00
max 3,370,000 2,910,000 9,390,000

median 3.71 1.67 1,751.22

Table 5.6: speedup∗QLA statistics for FTV methods across rewritings

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 16 20 24 32

sp
ee

d
u

p
*

Q
L

A

query size (# of edges)

GR/1 GR/4 GGSX

(a) PPI dataset

 1

 10

 100

 1000

 10000

 100000

 24 32 40

sp
ee

d
u

p
*

Q
L

A

query size (# of edges)

GR/1 GR/4

(b) Synthetic dataset

Figure 5.13: Average speedup∗QLA for different query sizes on FTV methods

min speedup∗QLA, evidencing again a wide variation in the benefits of the isomorphic query
rewritings. Keeping in mind that the majority of the queries are easy (figure 5.2), we come

5.6. Graph query rewriting 86

to the conclusion that large performance gains can come from improving the hard queries.
Finally, the percentages of the queries that were not helped by any of the rewritings are the
same as presented in §5.5.

 1

 10

 100

 1000

sp
ee

d
u

p
*

Q
L

A

GQL SP QSI TI BTI

wordnethumanyeast

Figure 5.14: Average speedup∗QLA for SI methods across rewritings

GraphQL sPath QuickSI TurboIso BTI

ye
as

t

stdDev 235.6 422.5 1193.0 498.7 -
min 1.0 1.0 1.0 1.0 -
max 7286.3 6695.8 15021.6 14053.3 -

median 1.1 1.1 1.3 1.7 -

hu
m

an

stdDev 259.9 492.4 - 695.1 -
min 1.0 1.0 - 1.0 -
max 4115.1 4087.8 - 8919.7 -

median 1.1 1.1 - 1.1 -

w
or

dn
et

stdDev 20.5 244.6 - - 1029.7
min 1.0 1.0 - - 1.0
max 646.4 3081.1 - - 31121.8

median 1.1 1.1 - - 1.0

Table 5.7: speedup∗QLA statistics for SI methods across rewritings

SI methods

Figure 5.14 presents the average speedup∗QLA for the SI methods for the yeast, human
and wordnet datasets (QuickSI-[human/wordnet], TurboIso-wordnet and BTI-[human/ yeast]
results are omitted; see §5.3.4). Table 5.7 reports the stdDev, min, max and median of
the speedup∗QLA. The percentages of the queries that were not helped by any rewriting
are in accordance with those reported in §5.5. The performance of sPath could seemingly
be improved by one to two orders of magnitude across all datasets. The same holds for

5.7. Algorithm-specific Stragglers 87

QuickSI, TurboIso and BTI on the corresponding datasets. GraphQL could also be improved
by more than a factor of 10× on the yeast and human datasets. However, no significant
improvement was possible for GraphQL on wordnet. The reason why this is so, is somewhat
subtle. Apart from what the algorithms do internally to match the query, other culprits are
the characteristics of the actual stored graphs and the generated queries. Looking at the
statistics of the graphs (table 3.2), yeast and especially wordnet are very sparse graphs with
small average node degree. Thus, the majority of the generated queries are paths, where the
rewritings based on node degrees are not effective in this case. Additionally for wordnet, the
small number of labels (only 5) and the distribution of the frequencies of the labels being
highly skewed leads to the generation of queries that in their majority contain only 1 or 2
labels, with the second label appearing only once. As a result, the rewritings are of little use
in these cases.

5.7 Algorithm-specific Stragglers

In §5.4, we notice that for the SI methods, different algorithms have different percent-
ages of hard queries. With our experiments, we elaborated more on that and we found that
different algorithms find different queries hard.

Observation 5: “Stragglers” are algorithm-specific; i.e., by evaluating the same query
workloads with various algorithms, we have seen that a “straggler”-query for one algorithm
can be a typical query for some other algorithm.

GraphQL sPath QuickSI

ye
as

t 2
a
lg

stdDev 1094.57 1051.65 -
min 1.00 1.00 -
max 9189.36 9129.60 -

median 1.00 1.80 -

ye
as

t 3
a
lg

stdDev 1596.47 1255.34 2162.97
min 1.00 1.00 1.00
max 13060.10 12403.70 12312.70

median 1.00 1.88 1.32

hu
m

an

stdDev 1394.34 570.83 -
min 1.00 1.00 -
max 30873.80 4341.44 -

median 1.00 1.04 -

Table 5.8: speedup∗QLA statistics when utilizing different algorithms on SI methods for yeast
and human

Here, we present the results of our observation for the various SI methods. But before
presenting the achieved speedup∗QLA, we recall the formula of calculating the speedup∗

5.7. Algorithm-specific Stragglers 88

 1

 10

 100

 1000

yeast human wordnet

sp
ee

d
u

p
*

Q
L

A

QSI GQL
SP

BTI

SP-BTIGQL-BTIGQL-SP3algGQL-SPGQL-SP-QSIGQL-SP

(a) yeast, human, wordnet with all query sizes

 1

 10

 100

 1000

yeast human

sp
ee

d
u

p
*

Q
L

A

GQL SP TI

SP-TIGQL-TIGQL-SP3algSP-TIGQL-TIGQL-SP3alg

(b) yeast & human using GraphQL, sPath and TurboIso, (only queries that qualify for TurboIso,
i.e. no queries with >25 vertices)

Figure 5.15: Average speedup∗QLA when utilizing different algorithms on SI methods

metric as presented in §3.3.3. Specifically in our case, let t{M}i and tMi the execution time of
qi over a set of methods {M} and the execution time of qi over a method M respectively.

Then the speedup∗ metric is calculated as: t
{M}
i

tMi
. In other words, the speedup∗ represents

what we gain in performance if we choose a set of methods {M} over a single alternative
method M .

Figure 5.15 presents the average speedup∗QLA for the yeast, human and wordnet datasets
and for the tested algorithms and query workloads. Note that TurboIso cannot execute
queries of >25 vertices, as discussed in §5.3.4. Thus, in the presented results, figure 5.15(a)
includes all 3 datasets with the algorithms that were able to be executed against all different
query sizes and these dataset-algorithms combinations are yeast-[GraphQL/ sPath], yeast-
[GraphQL/ sPath/ QuickSI], human-[GraphQL/ sPath], wordnet-[GraphQL/ sPath/ BTI] (ti-

5.7. Algorithm-specific Stragglers 89

GraphQL sPath BTI

3a
lg

stdDev 486.72 699.97 668.07
min 1.00 1.00 1.00
max 11061.40 12776.40 9376.22

median 4.51 1.00 4.79

G
Q

L
-S

P stdDev 253.56 104.42 -
min 1.00 1.00 -
max 3733.78 932.58 -

median 2.47 1.00 -
G

Q
L

-B
T

I stdDev 445.85 - 155.64
min 1.00 - 1.00
max 11061.40 - 3278.35

median 1.00 - 1.47

SP
-B

T
I stdDev - 714.31 683.56

min - 1.00 1.00
max - 12776.40 9376.22

median - 1.00 3.42

Table 5.9: speedup∗QLA statistics when utilizing different algorithms on SI methods for
wordnet

tled as 3alg), wordnet-[GraphQL/ sPath], wordnet-[GraphQL/ BTI], wordnet-[sPath/ BTI],
whereas figure 5.15(b) includes results for yeast and human and for GraphQL, sPath and Tur-
boIso but only for the graph query sizes that qualify for TurboIso (as discussed in §5.3.4),
i.e. the algorithm combinations are [GraphQL/ sPath/ TurboIso] (titled as 3alg), [GraphQL/
sPath], [GraphQL/ TurboIso], [sPath/ TurboIso]. For example, the first bar (from left) on
figure 5.15(a) represents the speedup∗QLA achieved when using the set of methods {M}
[GraphQL/sPath] instead of method M GraphQL on yeast dataset. In tables 5.8 and 5.9, we
additionally report the stdDev, min, max and median of speedup∗QLA for GraphQL, sPath,
QuickSI and BTI and the corresponding datasets; presented results are relevant to figure
5.15(a). We note that for the 5.15(b), where not all query sizes are included because of the
implementation restrictions with TurboIso, the corresponding stdDev, min, max and median
of speedup∗QLA follow similar trends as above.

With the use of multiple algorithms, there were very few query executions that were not
helped by any of the employed algorithms. Thus, in figure 5.15(a), for the yeast dataset, we
note that all cases were helped by either the use of 2 (GraphQL and sPath) or 3 (GraphQL,
sPath, QuickSI) algorithms. In human only 0.8% were not helped by the GraphQL-sPath
combination, and in wordnet 0.1% of the queries were not helped by the same algorithms’
combination. Including BTI in wordnet, all queries are helped, whereas the GraphQL-BTI
combination leads to 0.2% of hard queries and the sPath-BTI combination to 4.7% hard
queries. Thus, looking at these results in comparison with figures 5.3 and 5.4, we note
that BTI is one of the least performing algorithms, but when combined with other better

5.8. The Ψ-framework 90

performing algorithms large performance gains can be achieved.

Similar results are obtained for yeast and human and for the GraphQL, sPath, TurboIso
combinations, as presented in figure 5.15(b). Specifically, any combination of algorithms in
yeast and the all-3-algorithm combination in human leads to straggler-free query executions.
In human, GraphQL-sPath combination leads to 0.35%, GraphQL-TI to 1.51% and sPath-TI
to 0.12% hard queries.

Finally, the speedup∗QLA values for using multiple algorithms are higher compared to
the speedup∗QLA values achieved with multiple query rewritings (see §5.6). This leads to the
conclusion that the use of multiple algorithms could be way more beneficial compared to the
rewritings, which are not always effective (§5.6).

5.8 The Ψ-framework

In this subsection we present how we incorporate our findings in a novel framework that
exploits parallelism. The proposed framework is called Ψ-framework (Parallel Subgraph
Isomorphism framework). Unlike recent related work [30, 23], by having different threads/
machines working on different versions of the problem our Ψ-framework exploits paral-
lelism in a novel way. We utilize Grapes and GGSX as top-performing FTV and GraphQL
and sPath as top-performing SI methods that were additionally able to execute against all
three considered datasets and query sizes. We do not include TurboIso, BTI and QuickSI
as (1) in many cases they showcase worse performance than the incorporated GraphQL and
sPath, and (2) because of the implementation restrictions as described in §5.3.1. Within our
Ψ-framework we have incorporated the original implementations of Grapes and GGSX as
provided by their authors, and of GraphQL and sPath as found in [8].

In the FTV methods we leave the index construction and the filtering stages intact during
query processing. In the verification stage, for every graph in the candidate set, we instantiate
a number of threads equal to the number of the isomorphic-query rewritings we utilize. These
threads run in parallel with each being assigned one rewriting of the initial query, and the
first thread to finish is the “winner”; i.e., the rest of the threads are killed and the algorithm
proceeds with the verification of the next graph in the candidate set.

Ψ-framework for the SI methods works similarly to the verification stage of the FTV
methods. However, we mentioned in observation 5 that stragglers disappear when using an
alternative matching algorithm. We incorporate this finding in our Ψ-framework by running
simultaneously two threads: one for sPath and one for GraphQL with the original query.
Again after the completion of the fastest thread, the rest of them are killed. Additionally,
because of the finding that different query rewritings can have widely different execution
times, we further enhance Ψ-framework as follows: we run simultaneously multiple threads

5.8. The Ψ-framework 91

with each thread being assigned a pair of [algorithm] - [original query and/or rewritings of
the original query]. This will be further discussed later in this section.

The recent trends in cpu design go towards multicore/manycore systems, and as such,
our proposed approach bears great potential. This is yet another way to harness the par-
allelism available at the hardware level, not via parallelizing individual algorithms, which
might be hard, error prone or outright impractical [119], but via executing algorithms and/or
isomorphic instances in parallel.

The aforementioned technique of killing the rest of the threads after the completion of
the fastest one is not entirely new. The logic is similar to the branch and bound search
where the goal is to find the optimal path between the root node and the goal. In order to
achieve this, during space exploration, we can safely prune a path that is more costly than
the currently optimal one, as discussed in §2.7.

On the one hand we have seen that the more the isomorphic instances we use, the better
the speedup we gain in the graph matching process. On the other hand, the instantiation and
synchronization of many threads come with a non-trivial overhead, impacting the overall
speedup. To this end, in our performance evaluation we report on the speedup achieved by
several beneficial combinations of rewritings. We note that our Ψ-framework is of course
not the only solution to the straggler-queries’ problem. Undoubtedly, it would be preferable
to choose the right isomorphic query instance and/or algorithm to use to minimize the query
execution time. However, given the complex nature of the sub-iso problem, we leave such
design decisions for future work.

The proposed Ψ-framework shares the same concept idea of portfolios of algorithms as
discussed in §2.7 and in [116]. This is indeed a common technique in NP-hard problems
where (i) the execution times of proposed algorithms can have a wide variance and (ii) there
is not a single winning algorithm across all instances of the whole spectrum. We will also
see in our experiments that some combinations of algorithms pay-off better than others.

The cost of producing the query rewritings was measured from a few tens (for the small-
est query sizes) to a few hundreds (for the biggest query sizes) of µsecs; being a negligible
overhead to the overall query processing time, we ignore it in the figures and omit any further
discussion of this cost factor.

FTV methods

Figures 5.16 and 5.17 present the average speedup∗QLA and average speedup∗WLA re-
spectively for utilizing different versions of Ψ-framework on the FTV methods. Specifically,
we present the average speedup∗QLA and average speedup∗WLA of the following versions
of Ψ-framework: (a) ILF/ ILF+IND (2 threads), (b) ILF/ ILF+DND (2 threads), (c) ILF/

5.8. The Ψ-framework 92

 0

 500

 1000

 1500

 2000

 2500

 3000

sp
ee

d
u

p
*

Q
L

A

Ψ(ILF/ILF+IND)
Ψ(ILF/ILF+DND)
Ψ(ILF/IND/DND)

Ψ(ILF/IND/DND/ILF+IND)
Ψ(all_rewritings)

GR/4GR/1

(a) Synthetic dataset

 0

 50000

 100000

 150000

 200000

 250000

 300000

sp
ee

d
u

p
*

Q
L

A

Ψ(ILF/ILF+IND)
Ψ(ILF/ILF+DND)
Ψ(ILF/IND/DND)

Ψ(ILF/IND/DND/ILF+IND)
Ψ(all_rewritings)

GGSXGR/4GR/1

(b) PPI dataset

Figure 5.16: Average speedup∗QLA across different versions of our framework on the FTV
methods

Synthetic PPI
GR/1 GR/4 GR/1 GR/4 GGSX

Original Algorithm 0.299% 0.131% 15.888% 6.298% 37.6362%
Ψ(ILF/ ILF+IND) 0.100% 0.061% 6.441% 2.333% 7.168%
Ψ(ILF/ ILF+DND) 0.122% 0.066% 5.353% 1.603% 7.798%
Ψ(ILF/ IND/ DND) 0.007% 0.000% 2.261% 0.715% 5.182%

Ψ(ILF/ IND/ DND/ ILF+IND) 0.007% 0.000% 2.061% 0.658% 3.681%
Ψ(all rewrtings) 0.003% 0.000% 1.631% 0.458% 2397%

Ψ(Or/ all rewrtings) 0.003% 0.000% 1.402% 0.372% 1.961%

Table 5.10: Percentage of killed queries of FTV methods and different versions of our Ψ-
framework. (Or stands for original query.)

5.8. The Ψ-framework 93

 0

 5

 10

 15

 20

 25

 30

 35

 40

sp
ee

d
u

p
*

W
L

A

Ψ(ILF/ILF+IND)
Ψ(ILF/ILF+DND)
Ψ(ILF/IND/DND)

Ψ(ILF/IND/DND/ILF+IND)
Ψ(all_rewritings)

Ψ(Or/all_rewritings)

GR/4GR/1

(a) Synthetic dataset

 0

 5

 10

 15

 20

sp
ee

d
u

p
*

W
L

A

Ψ(ILF/ILF+IND)
Ψ(ILF/ILF+DND)
Ψ(ILF/IND/DND)

Ψ(ILF/IND/DND/ILF+IND)
Ψ(all_rewritings)

Ψ(Or/all_rewritings)

GGSXGR/4GR/1

(b) PPI dataset

Figure 5.17: Average speedup∗WLA across different versions of our framework on the FTV
methods

IND/ DND (3 threads), (d) ILF/ IND/ DND/ ILF+IND (4 threads) and (e) all 5 possible
rewritings (5 threads). Table 5.10 reports the percentage of killed queries for the original
query against the used FTV algorithms and the different used versions of our Ψ-framework.
Our framework proves highly beneficial for all algorithms and datasets. As it was expected,
by increasing the number of threads running multiple rewritings on the Ψ-framework, not
only the average execution time is significantly improved but also the percentage of hard

queries is decreased, even leading to straggler-free executions. However, note that the Ψ-
framework(ILF/ IND/ DND) (3 threads) is only 3-8% worse compared to Ψ-framework(ILF/
IND/ DND/ ILF+IND) (4 threads) for Grapes/1 and Grapes/4.

As Grapes is designed as a multi-threaded application, we additionally compare Grapes/4
against our Ψ-framework running Grapes/1 with the following four rewritings (for a total of

5.8. The Ψ-framework 94

 0

 20

 40

 60

 80

 100

 120

 140

W
L

A
-A

v
g

 e
x

ec
 t

im
e

(s
)

GR/4 ΨGR/1

32e24e20e16e

Figure 5.18: Comparison of average execution time over the PPI dataset, for Grapes/4 against
the Ψ-framework with 4 rewritings (ILF, IND, DND, ILF+IND) over Grapes/1

4 threads as well): ILF, IND, DND, ILF+IND. The results are presented in figure 5.18 for the
PPI dataset (results for the synthetic dataset were similar). The corresponding percentages
of killed queries are: 6.298% for Grapes/4 and 2.061% for Ψ(ILF/ IND/ DND/ ILF+IND)
(as reported in table 5.10). As it can be conceived, although both contenders have the same
level of parallelism, Ψ-framework makes better use of its threads and leads to lower query
processing times.

yeast human wordnet
GQL SP QSI GQL SP GQL SP

Original Algorithm 4.3% 2.8% 11.3% 10% 4.4% 1.6% 13%
Ψ(Or/ ILF/ ILF+IND) 4.2% 2.4% 9.4% 8.4% 2.2% 1.5% 11.8%

Ψ(Or/ ILF/ IND/ DND) 4.2% 2.1% 8.9% 8.3% 1.4% 1.5% 11.8%
Ψ(Or/ ILF/ IND/ DND/ ILF+IND) 4.2% 2.1% 8.8% 8.2% 1.4% 1.5% 11.8%

Ψ(all) 4.2% 2.1% 8.6% 8.2% 1.4% 1.5% 11.8%

Table 5.11: Percentage of killed queries of SI methods and different versions of our Ψ-
framework. (Or stands for original query.)

SI methods

Figure 5.19 presents the average speedup∗QLA for utilizing different versions of Ψ-
framework on the SI methods. We utilize the following versions of Ψ-framework and the cor-
responding number of threads: (a) Orig/ ILF/ ILF+IND (3 threads) (b) Orig/ ILF/ IND/ DND
(4 threads), (c) Orig/ ILF/ IND/ DND/ ILF+IND (5 threads), and (d) Orig + all-rewritings
(titled as all) (6 threads). Table 5.11 presents the percentage of killed queries for the original
query against the in use SI algorithm and the different used versions of our Ψ-framework.

5.8. The Ψ-framework 95

 0

 20

 40

 60

 80

 100

 120

 140

 160

sp
ee

d
u

p
*

Q
L

A

Ψ(Or/ILF/ILF+IND)
Ψ(Or/ILF/IND/DND)

Ψ(Or/ILF/IND/DND/ILF+IND)
Ψ(all)

QSISPGQL

(a) yeast dataset

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

sp
ee

d
u

p
*

Q
L

A

Ψ(Or/ILF/ILF+IND)
Ψ(Or/ILF/IND/DND)

Ψ(Or/ILF/IND/DND/ILF+IND)
Ψ(all)

SPGQL

(b) human dataset

 0

 5

 10

 15

 20

 25

 30

sp
ee

d
u

p
*

Q
L

A

Ψ(Or/ILF/ILF+IND)
Ψ(Or/ILF/IND/DND)

Ψ(Or/ILF/IND/DND/ILF+IND)
Ψ(all)

SPGQL

(c) wordnet dataset

Figure 5.19: Average speedup∗QLA across different versions of Ψ-framework on the SI meth-
ods

5.8. The Ψ-framework 96

For all tested datasets and workloads, GraphQL was benefited the least from the rewritings.
The biggest improvements appear in the human dataset. We attribute this to the fact that this
dataset comprises of a denser graph with more labels, thus a larger portion of hard queries
was benefited from our rewritings and framework. Apart from the case of QuickSI in yeast,
the rest of the algorithms do not accomplish significant speedups by increasing the number
of threads in most cases. This is particularly evident in Ψ-framework(Orig/ ILF/ IND/ DND/
ILF+IND) with 5 threads and Ψ-framework(all) which operates with 6 threads. Although,
Ψ-framework is able to achieve large performance gains, the large number of killed queries
is still prevalent.

 0

 50

 100

 150

 200

 250

 300

 350

 400

sp
ee

d
u

p
*

Q
L

A

Ψ([GQL/SP]-[Or])
Ψ([GQL/SP]-[ILF])

Ψ([GQL/SP]-[IND])
Ψ([GQL/SP]-[DND])

Ψ([GQL/SP]-[Or/DND])

wordnethumanyeast

(a) speedup∗QLA for GraphQL

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

sp
ee

d
u

p
*

Q
L

A

Ψ([GQL/SP]-[Or])
Ψ([GQL/SP]-[ILF])

Ψ([GQL/SP]-[IND])
Ψ([GQL/SP]-[DND])

Ψ([GQL/SP]-[Or/DND])

wordnethumanyeast

(b) speedup∗QLA for sPath

Figure 5.20: Average speedup∗QLA for running multiple algorithms against SI methods on
Ψ-framework

Finally, figures 5.20 and 5.21 depict the average speedup∗QLA and the average speedup∗WLA

for utilizing different algorithms and different versions of Ψ-framework on the SI meth-

5.8. The Ψ-framework 97

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

sp
ee

d
u

p
*

W
L

A

Ψ([GQL/SP]-[Or])
Ψ([GQL/SP]-[ILF])

Ψ([GQL/SP]-[IND])
Ψ([GQL/SP]-[DND])

Ψ([GQL/SP]-[Or/DND])

wordnethumanyeast

(a) speedup∗WLA for GraphQL

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

sp
ee

d
u

p
*

W
L

A

Ψ([GQL/SP]-[Or])
Ψ([GQL/SP]-[ILF])

Ψ([GQL/SP]-[IND])
Ψ([GQL/SP]-[DND])

Ψ([GQL/SP]-[Or/DND])

wordnethumanyeast

(b) speedup∗WLA for sPath

Figure 5.21: Average speedup∗WLA for running multiple algorithms against SI methods on
Ψ-framework

yeast human wordnet
GraphQL 4.3% 10% 1.6%

sPath 2.8% 4.4% 13%
Ψ([GQL/SP]-[Or]) 0% 0.8% 0.1%
Ψ([GQL/SP]-[ILF]) 0% 0.8% 0%
Ψ([GQL/SP]-[IND]) 0% 0.6% 0%
Ψ([GQL/SP]-[DND]) 0% 0.9% 0%

Ψ([GQL/SP]-[Or/DND]) 0% 0.7% 0%

Table 5.12: Percentage of killed queries of SI methods and on running multiple SI algorithms
on Ψ-framework. (Or stands for original query.)

ods and on yeast, human and wordnet, against vanilla GraphQL and sPath respectively,
whereas table 5.12 depicts the corresponding percentages of killed queries. We instanti-

5.9. Conclusions 98

ated the following versions of our Ψ-framework with the corresponding number of threads:
(a) GraphQL-Orig/ sPath-Orig (2 threads), (b) GraphQL-ILF/ sPath-ILF (2 threads), (c)
GraphQL-IND/ sPath-IND (2 threads), (d) GraphQL-DND/ sPath-DND (2 threads). (e)
GraphQL-Orig /sPath-Orig/ GraphQL-DND/ sPath-DND (4 threads). For both GraphQL
and sPath, we were able to achieve up to 3 orders of magnitude improvement with our Ψ-
framework on both per-query and per-workload metrics. Also, with the Ψ-framework, the
percentage of hard queries was reduced and, for yeast and wordnet, hard queries became
extinct – see Table 5.12. Both metrics and the percentage of the killed queries reveal that for
different workloads and different algorithms, there are different performance gains. This is
another manifestation of the algorithm specificity.

5.9 Conclusions

We have studied the subgraph isomorphism problem, in both its decision and matching
versions, using well-established FTV and SI methods respectively, and against several dif-
ferent real and synthetic datasets of various characteristics. Our research has revealed and
quantified a number of insights, concerning (i) the existence and role of straggler queries
in a method’s overall performance (§5.4), (ii) the dramatically varying performance of iso-
morphic queries (§5.5), (iii) the impressive impact that query rewriting can have when used
before executing the query with several algorithms ((§5.6)), and (iv) the fact that straggler
queries are algorithm-specific (§5.7). We used both WLA and QLA metrics to fully ap-
preciate the performance of algorithms in the presence of stragglers. A number of query
rewritings were proposed, and our results showed that in many cases at least one rewriting
existed which could offer great performance advantages – with different rewritings being
best for different queries. We showcased that, for the SI algorithms, when a query proved to
be very expensive with one algorithm, another algorithm would actually manage to compute
its answer very efficiently. These findings then naturally culminated into a novel framework,
which employs in parallel different threads, each using a different well-known algorithm
and/or a specific query rewriting, per query. This introduced dramatic improvements (up to
several orders of magnitude) to FTV and SI algorithms. We hope that our findings will open
up new research directions, striving to find appropriate, per-query, isomorphic rewritings, in
combination with alternate per-query subgraph isomorphism algorithms that can yield large
improvements. Using machine learning models to predict which version of our framework
(algorithms, rewritings) to employ per query is of high interest.

Limitations We summarize some of the limitations discussed earlier in this chapter along
with further steps that we could follow. Experiments in this chapter and especially in §5.6

5.9. Conclusions 99

and §5.8 are limited to the use of 5 different query rewritings. Additional query rewritings
could be introduced along with combining existing rewritings in a different sequence, e.g.
IND+ILF instead of ILF+IND.

Additionally, in §5.6, we mentioned that in order to perform our query rewriting, we are
based on the initial query node IDs of the original query, and we break ties by respecting the
order of nodes on the original queries. Undoubtedly, this is not the only way to resolve ties.
Thus, it would be preferable to experiment with possible combinations in the case of ties.
However, given queries with high number of edges and a large number of ties to break, such
an experimentation is not easily feasible.

In §5.8, we discussed that Ψ-framework is not the only solution to the straggler queries
problem. Instead, it would be preferable to be able to choose the right algorithm and/or
isomorphic query instance to use so as to minimize the query execution time along with the
memory overhead that is introduced by the parallel execution. This research direction is left
for future work.

Finally, so far, we have considered graph query rewritings for performing the subgraph
matching and we leave intact the stored graphs. Thus, similar rewritings could be applied on
the stored graph. Undoubtedly, given the size of the stored graphs compared to the size of the
query graph, this can be impractical; additionally a much larger number of ties is expected
with the proposed rewritings in §5.6 that would have to be resolved with more complex
rewritings.

100

Chapter 6

Hybrid Algorithms for Subgraph Pattern
Queries in Graph Databases: An Evalua-
tion

[X \

Numerous methods have been proposed over the years for subgraph query processing, as
it is central to graph DB analytics. These are fragmented in two major categories; FTV and
SI methods. Alas, the current research trend is to totally dismiss FTV methods, because SI
methods have been shown to enjoy much shorter query execution times and because of the
alleged high costs of managing the DB graph index in FTV methods. As a result, a number
of new SI methods is being proposed annually.

In the current work, we initially study the performance of the latest SI algorithms over
datasets consisting of a large number of graphs. With our study, we evaluate the algorithms’
performance and we provide comparison details with former studies. As a second step, we
combine the powerful filtering of a top-performing FTV method, with the various SI meth-
ods, which leads to the best practice conclusion that SI and FTV shouldn’t be thought of
as disjoint types of solutions, as their union achieves better results than any one of them
individually. Specifically, we experimentally analyze and quantify the (positive) impact of
including the essence of indexed FTV methods within SI methods, showing that query pro-
cessing times can be significantly improved at modest additional memory costs. To achieve
this, we initially quantify the time and space that is required to construct the indexes used by
FTV and SI methods. Subsequently, we study the effectiveness of the constructed indexes in
the process of filtering away candidate graphs and the time/space trade-offs involved in this
process. We show that these results hold over a variety of well-known SI methods and across

6.1. Introduction 101

several real and synthetic datasets. As such, hybrids of the FTV and SI methods reveal a
missing opportunity and a blind spot in related literature and trends. With a typical dataset
consisting of many large graphs and the query graph existing in a small portion of them,
Grapes is capable of filtering out the majority of graphs that do not contain the query graph.
Thus, such a combination proves to be beneficial by primarily avoiding the initiation of a
large number of redundant subgraph isomorphism tests.

6.1 Introduction

Related work in the subgraph querying problem is segregated in two major categories:
the filter-then-verify (FTV) and the subgraph isomorphism (SI) methods, as discussed in §2.3.
Specifically, FTV methods mainly focus on filtering out graphs that do not contain a query
graph as an answer and then employ a “standard” SI algorithm for verification, whereas for
SI methods indexing/filtering is usually neglected in favor of better/faster SI heuristics. The
more recent works, e.g. [8, 55, 23], dismiss the FTV methods with the claim that the fast sub-
iso test of the SI methods significantly outperforms the index-based FTV methods. Thus, all
recently published methods follow the SI paradigm.

In the current chapter, our goal is to identify the best practices for processing subgraph
pattern queries. In turn this rests on two pillars: The first is a head-to-head comparison and
evaluation of the state-of-the-art SI methods. Our findings will allow a direct comparison
with [8] for the common used algorithms, but will also reveal interesting insights for two
notable and high performing SI methods proposed after the publication of [8]. Second, and
most importantly, armed with the knowledge of the above conclusions, we investigate best
practices for subgraph pattern querying in graph DBs by combining the main assets of the
FTV and SI methods to derive hybrid FTV-SI methods. Perhaps surprisingly, for the problem
at hand, no prior research has considered to study the impact of hybrid FTV-SI solutions,
whereby the benefits of a top-performing graph DB index are combined with the benefits
of the faster sub-iso heuristics offered by the SI methods. With the current chapter, we fill
this gap by studying the benefits of hybrid FTV-SI solutions and thus putting forward a new
point in the solution space. In other words, we investigate the effect of combining (parts
of) well known algorithms from different research categories, bringing new insights into the
strengths and weaknesses of existing FTV and SI methods, and analyzing the benefits of their
hybrids, revealing a blind spot in related research. Overall, the current chapter shows that
such approaches can be very beneficial and suggests how to address the key shortcomings of
such hybrid solutions.

In total, we provide answers to the following central questions: (1) Does a head-to-head
comparison reveal a single winner among the top-performing SI algorithms in both index-

6.2. Related Work and Contributions 102

ing and query processing? (2) Noting that even SI methods utilize a pruning (index-like)
structure, how much time/space is required to create the index from the FTV methods and
the corresponding SI methods? (3) How effective is the index from the SI methods versus
FTV in terms of filtering away candidate graphs? (4) What are the time/space trade-offs
involved in this process? (5) Finally, the dominant question is “can we achieve significant
speedups by using hybrid solutions and quantify the speedups given memory and time con-
straints for the index?” With a typical graph dataset consisting of many large graphs and
the actual answer set consisting of a small portion of graphs, with this work we show that
large performance gains are possible. We employ three real and a synthetic dataset generated
with GraphGen[60] to investigate characteristics not present in the real datasets. Finally, we
consider five popular and efficient recent SI methods for our evaluation and a top-performing
filtering approach from an FTV method to construct our best practice hybrids.

6.2 Related Work and Contributions

The numerous proposed FTV and SI methods have been extensively discussed in §2.3.
For the purposes of this chapter and in order to facilitate the discussion in the presented
results, we recap here the key-points of both FTV and SI methods. FTV methods were orig-
inally proposed for the decision version of the subgraph querying problem, where given a
dataset of numerous (typically small) graphs and a query/pattern graph q, the method de-
cides whether q is contained in any graph in the dataset and the IDs of those graphs are
returned, whereas SI methods were originally proposed for the matching version to find all
the embeddings of q in a typically large, stored graph.

In the index construction phase of FTV methods, stored graphs are decomposed into
features which are then indexed. During query processing, query graphs are similarly de-
composed into features; graphs from the dataset that do not contain one or more of these
features definitely do not contain the query and are thus pruned away, with the remaining
graphs forming the candidate set. At the verification stage, the query graph is tested for
subgraph isomorphism against each graph in the candidate set to produce the final answer.
The target of all these methods is to prune as much as possible the candidate set and thus
to reduce the number of subgraph isomorphism tests performed. The underlying isomor-
phism test of the vast majority of proposed methods is VF2[47], which was widely publicly
available. In chapters §4 and §5, we extensively discussed various proposed FTV methods.
With our experiments, we concluded that Grapes[11] and GGSX[12] are the best solutions
in terms of index construction time, query processing time, and scalability limitations. It was
also showed that both Grapes and GGSX enjoy similar filtering power for datasets consist-
ing of relatively small graphs. However, when the graph sizes increase, Grapes outperforms

6.2. Related Work and Contributions 103

GGSX in filtering power.

The focus of SI methods is not to filter out graphs in the dataset that definitely do not
contain the query as an answer, but for each DB graph (i) to locate the best candidate ver-
tices to expedite the sub-iso test, and (ii) to decide the optimal join plan to follow; i.e., the
sequence in which the query vertices will be matched to those of the stored graph. Thus,
proposed SI methods, apart from the subgraph isomorphism heuristic algorithm, addition-
ally contain a pre-processing/indexing step where they maintain a feature-based index, along
with vertex label lists and additional information to facilitate the sub-iso test. With our ex-
periments on chapter §5, among others, we have shown that all SI proposed methods suffer
from “straggler” queries; i.e., queries whose processing time is many orders of magnitude
worse compared to the rest. We have also seen that a straggler query on one algorithm can
be a typical query on some other algorithm.

There is nothing preventing the SI methods from being applied for the decision problem,
as discused in §2.3. FTV methods were originally proposed to work with datasets consisting
of numerous, relatively small graphs, and their effectiveness relies on their achieved filter-
ing. In the current research, SI methods gain ground over FTV methods. There are various
reasons for that. First reason is the claim that the SI methods enjoy shorter query execu-
tion times that can offset the gains of the filtering offered by the FTV methods and thus SI
methods outperform FTV methods [8, 55, 23]. Another reason is that FTV methods come
bundled with the alleged high costs of managing the constructed DB graph index [7, 9].

Contributions: In the current work, our goal is twofold. We evaluate top-performing
SI methods against datasets consisting of a large number of graphs to provide insights about
their performance. Our findings compare with [8] for the 3 common algorithms and com-
plement it with inclusion of 2 notable SI methods proposed after the publication of [8]. In
parallel, we thoroughly investigate the current community wisdom which tends to totally
dismiss FTV methods based on the fact that the fast sub-iso test of the more recent SI meth-
ods can significantly outperform the index-based FTV methods [55, 8, 23]. This is indeed a
claim we have verified as well: when comparing a fast SI algorithm (even if not the fastest
one yet, such as GraphQL) against a top-performing FTV algorithm (such as Grapes) for
queries run over a single graph in the DB, SI methods are the winners. However, this fact
requires further analysis which has not as of yet been performed. Note that: (1) No analysis
for the reasons for this fact has ever been provided. (2) SI methods also essentially develop
and utilize indexes for pruning the search space during matching; no one has ever really
provided any insights as to how costly in time and in memory space this is. And, combined
with (1) above, (3) No evidence exists so far that relates the efficacy of FTV-indexes versus
SI-indexes in terms of reducing the search space. Finally, FTV algorithms utilize both a
filtering and a verification stage. Hence, if FTV-type indexing is more powerful than SI-type
indexing, this implies that the subgraph-isomorphism heuristics of SI methods must signif-

6.3. Experimental Setup 104

icantly outperform the verification algorithms of FTV methods. Therefore, combining the
additional power of FTV-type indexing with the great efficiency of SI algorithms appears to
be a promising avenue for new performance gains. So, the real issue becomes to (4) Inves-
tigate and quantify what the expected performance gains of hybrid FTV-SI solutions are. In
the current chapter, we will tackle the above issues and we will show that dismissing com-
pletely indexed FTV methods leads to missing an opportunity for significant performance
gains and thus reveal a research blind spot. This we hope will motivate new research into
hybrid FTV-SI combinations and new indexes and/or new subgraph isomorphism heuristic
algorithms for such hybrids.

For our experiments, we employ various real-world and synthetic datasets over the top-
performing FTV algorithm (based on the results from [9]) and 5 high-performing SI methods
(based on results from [8, 10, 55]). Our results will show that FTV-based indexing can be
beneficial despite the added time and space overhead, by offering great pruning in the search
space compared to SI methods. As a result, we then study the performance of a novel hybrid
method that utilizes the index from Grapes and 5 different top-performing SI methods. We
analyze the performance speedup that can be achieved and the related trade-offs.

6.3 Experimental Setup

6.3.1 Algorithms

For the FTV methods, we chose Grapes[11] as top-performing in terms of (i) indexing
time, (ii) query processing time, (iii) scalability limitations and (iv) filtering power (§6.2).

For the SI methods, we opted for methods (i) whose code is publicly available or made
available to us by the authors upon request, so any conclusions would not be implementa-
tion dependent and (ii) that were well recognized as well performing. Thus, we selected
GraphQL[24], sPath[29], QuickSI[35], TurboIso[55], and BoostIso[56] over TurboIso. With
respect to CFL-Match[57]: we did not employ the algorithm as its authors did not respond
to our request for their code.

A more detailed description of the used algorithms can be found in §3.1.

6.3.2 Setup

All the experiments were conducted on a Windows 7 SP1 host, with 2 Intel Xeon E5-
2660 CPUs (2.20GHz, 20MB cache) with 8 cores/16 vcores per CPU, 128GB of RAM, and
3.5TB disk. We ran our experiments individually and one at a time to avoid any interference
across runs.

6.3. Experimental Setup 105

For Grapes we used the implementation provided by its authors. For GraphQL, sPath,
and QuickSI, we used the implementation provided by [8]. For TurboIso we obtained the
binary code from the authors and for BTI we obtained the source code from GitHub1 where
it was publicly available.

We used the default values for the input parameters of the compared algorithms, as
they were defined by their respective authors in the relevant publications and/or in their
implementation code. Specifically:

• For Grapes, we enumerated paths of up to size of 4. We used 1 and 4 threads; results
for executions with 1 (respectively 4) threads are denoted by Grapes/1 (respectively
Grapes/4).
• For GraphQL, we used a refined level of iterations of pseudo-subgraph isomorphism
r = 4.
• For sPath, we used a neighborhood radius of 4 and maximum path length 4.
• TurboIso and BTI do not require any input parameter. However, for TurboIso we were

able to execute queries of only up to 25 vertices, due to an inherent limitation in the
executable provided to us (and we were unable to amend this because we were only
provided with the binary).
• For all SI methods the number of searched embeddings of the pattern graph in the

stored graph is capped at 1000; i.e., after finding the first 1000 matches, the algorithms
terminate. For TurboIso this option is hardcoded whereas for the rest it is configurable.

6.3.3 Datasets

Table 3.1 summarizes the characteristics of the employed datasets. Recall that PDBS,
PCM and PPI are 3 real datasets that were previously used in [11, 9]. PDBS and PCM rep-
resent chemical compounds comprising of 600 and 200 graphs respectively, whereas PPI
represents 20 protein-protein interaction networks. The majority of existing real datasets
comprise of relatively small and sparse graphs, and thus in the lack of real datasets pub-
licly available that preserve the required properties (i.e., many large graphs), we additonally
employ a synthetic dataset of 1000 graphs generated with GraphGen[60]. GraphGen was
presented in detail in §3.2.1.

6.3.4 Query Workloads

To generate each of the query graphs, we follow the procedure described in §3.2.3.

1 https://github.com/UltraHector/BoostIsoGraphAdaptation

https://github.com/UltraHector/BoostIsoGraphAdaptation

6.3. Experimental Setup 106

For PDBS and PCM, we use queries of size 20 and 24 edges. For PPI, we use queries
of size 16, 20, 24, and 32 edges. For the synthetic dataset, we use queries of size 24, 32
and 40 edges. For every query size we use 200 queries for PDBS and PCM and 100 queries
for PPI and the Synthetic dataset. Finally, we were unable to execute queries greater that
25 vertices on TurboIso, as discussed in §6.3.2. Thus, in the presentation of our results in
the subsequent figures and because of the small number of queries of >25 edges in PPI and
Synthetic dataset that qualify for TurboIso, we omit them completely and we only present
results for queries up to 24 edges.

 1

 10

 100

 1000

 10000

ti
m

e
(s

)

GQL
SP

QSI
TI

BTI
GR/1

GR/4

SyntheticPPIPCMPDBS

(a) Indexing time

 1

 10

 100

 1000

 10000

 100000

si
ze

 (
M

B
)

GQL SP QSI TI BTI GR

SyntheticPPIPCMPDBS

(b) Index size

Figure 6.1: Indexing time and size of Grapes and SI methods

6.4. Index construction 107

6.4 Index construction

Both FTV and SI methods rely on an index which is used to fulfill different purposes in
each case. For the FTV methods, the index construction facilitates the pruning of graphs in
the dataset that definitely do not contain the query graph as an answer. For the SI methods
the index purpose is to locate the candidate vertices on the stored graph to expedite the
underlying subgraph isomorphism test. Thus, SI methods require less time and space to
construct and store their index respectively.

Figure 6.1 presents the results from the index construction phase for all datasets and al-
gorithms. For Grapes, the index size is independent of the number of threads and thus only
one bar is used in the corresponding figure 6.1(b) for this algorithm. Among the SI methods,
we notice the following trend in the index sizes: SizeQuickSI > SizesPath > SizeGraphQL >

SizeTurboIso > SizeBTI and this trend is also followed by the indexing time, with the sole
exception of BTI, where the indexing time is comparable to that of QuickSI. In the majority
of algorithms, this is somewhat expected because of the structures used by each algorithm to
maintain the index. Specifically, based on the code we had available, we note that GraphQL
and sPath along with the additional information they require to store their index – i.e. labels
of neighboring nodes in radius i shorted in lexicographical order for GraphQL, and shortest
paths for sPath – they also store the actual graphs in a convenient format as presented in Tur-
boIso (§3.1.2). Our results come in agreement with [8] for GraphQL and sPath but not for
QuickSI. Finally, BTI’s index consists of 2 distinct files that store the hypergraph and con-
tainment graph (as described in §3.1.2) and even though their size is already small enough,
it could be diminished even more if the index files were stored in a binary format instead of
plain “txt” files.

Comparing sPath, that constructs the second largest in size index, with Grapes, we note
that both sPath and Grapes work with paths. However, sPath maintains only the shortest
paths, whereas Grapes enumerates all paths up to maximum length and additionally main-
tains location and frequency information. Thus, as it was expected, Grapes/1 constructs up
to 1 order of magnitude bigger indices than sPath and it requires up to 1 order of magnitude
more time to achieve this, with the sole exception of PDBS. To justify the results in PDBS,
we need to look at the dataset characteristics in table 3.1. PDBS is a very sparse dataset,
with only 10 labels totally and an average number of only 6.4 distinct labels per graph. As a
result, the enumerated distinct paths are well compressed in the trie utilized by Grapes and
less time and space are required to build/store the index.

Finally, to highlight how the number of graphs in the DB affect the indexing phase, we
employ the Synthetic dataset, that consists of 1000 graphs and we utilize appropriate subsets
of the dataset. Specifically, we utilize 10 different subsets consisting of the first 100, 200,

6.5. Filtering power 108

 1

 10

 100

 1000

 10000

 100 200 300 400 500 600 700 800 900 1000

ti
m

e
(s

)

number of graphs

GQL
SP

QSI
TI

BTI
GR/1

GR/4

(a) Indexing time

 1

 10

 100

 1000

 10000

 100000

 100 200 300 400 500 600 700 800 900 1000

si
ze

 (
M

B
)

number of graphs

GQL SP QSI TI BTI GR

(b) Index size

Figure 6.2: Indexing time and size of subsets of the Synthetic dataset

..., 1000 graphs. Figure 6.2 presents the corresponding results. As it was expected, a linear
increase in the number of graphs leads to a linear increase in both indexing time and size
consistently across all algorithms.

6.5 Filtering power

To quantify the filtering power, we utilize 2 different metrics, as they were presented
in §3.3.2. These are: (1) the percentage of graphs that constitute the candidate set for each
algorithm, before proceeding with the final subgraph isomorphism test and (2) the FPR as
defined in §3.3.2.

Figure 6.3 presents the results for the pruning power of used algorithms. In the presented

6.5. Filtering power 109

 0

 20

 40

 60

 80

 100

av
g

 %
 g

ra
p

h
s

GQL_CSS SP_CSS GR_CSS ASS

SyntheticPPIPCMPDBS

(a) Candidate and answer sets for all algorithms

 0

 0.2

 0.4

 0.6

 0.8

 1

fa
ls

e
p

o
si

ti
v

e
ra

ti
o

GQL SP GR

SyntheticPPIPCMPDBS

(b) False Positive Ratio

Figure 6.3: Pruning Power of Grapes and SI methods

figures, CSS stands for Candidate Set Size and ASS stands for Answer Set Size. QuickSI,
TurboIso, and BTI are not included in the presented results as they do not perform any
filtering and they proceed directly with the subgraph isomorphism test. Grapes provides the
same filtering power independently of the number of threads that are executed and thus on the
corresponding figures we do not distinguish the results. For comparison purposes, we report
the percentage of graphs that constitute the average answer set size along with the percentage
of graphs that constitute the average candidate set size for each algorithm in figure 6.3(a).

In the aforementioned figures, we observe that different number of graphs were filtered
out by the three different methods. Although it is not presented in the above figures, the
filtering power of the SI methods is slightly improved as the query size increases and the
same effect holds for Grapes. In the majority of cases, Grapes was able to filter out at least

6.6. Performance of SI methods 110

double the amount of graphs compared to GraphQL and sPath, leading to candidate sets very
close to the actual answer set, and this is also evident in the low FPR. However, Grapes’
filtering comes at an extra cost of a much larger index to store and more time to construct
(see §6.3.2), with the sole exception of PDBS. sPath, that constructs a slightly more elaborate
index compared to GraphQL, was also able to achieve an up to 10% better filtering than
GraphQL. A very interesting observation is the fact that in very rare cases the graphs that
were filtered out by the SI methods were not always a subset of the graphs filtered out by
Grapes. This occurred in <1% of graph-query pairs and was more evident when increasing
the query size. Finally, it is important to observe the FPR in combination with the candidate
set and answer set sizes. To showcase this, we note that although PDBS is the only dataset
where the average candidate set sizes are among the biggest for all 3 algorithms reported, the
corresponding FPR are the lowest for all datasets because of the high answer set size.

6.6 Performance of SI methods

SI methods keep gaining ground over FTV methods, with the current tendency in recent
work to totally dismiss FTV methods with the claim that the smart subgraph isomorphism
heuristics of the SI methods outperform the index-based FTV methods. Before proceeding
with further investigating this claim, we provide in figure 6.4 a head-to-head comparison
of the average query execution time of SI algorithms across all datasets. Because of the
restriction mentioned in §6.3.2, for TurboIso and for PPI and Synthetic dataset only results
with queries ≤ 24 edges are presented.

 1

 10

 100

 1000

 10000

 100000

 1x10
6

av
g

 q
u

er
y

 e
x

ec
 t

im
e

(m
s)

GQL SP QSI TI BTI

SyntheticPPIPCMPDBS

Figure 6.4: Avg query exec time (ms) of SI methods

As it can be seen from figure 6.4, there is no winner algorithm across all datasets. This
finding comes in agreement with [8] and our experiments in chapter §5, where for the SI

6.6. Performance of SI methods 111

algorithms the tested dataset contained only a single, large graph. TurboIso and BTI, the
newest additions in the set of SI algorithms, are favored particularly in datasets consisting
of a small number of labels because of the smart rewritings applied on the query graph (and
on the stored graph in the case of BTI). The least promising SI algorithm is QuickSI, but
outperforms BTI on PPI where the number of distinct labels is more abundant.

 100

 1000

 10000

 100000

 1x10
6

 16 20 24 32

av
g

 q
u

er
y

 e
x

ec
 t

im
e

(m
s)

query size (# of edges)

GQL SP QSI TI BTI

(a) PPI

 1000

 10000

 100000

 1x10
6

 24 32 40

av
g

 q
u

er
y

 e
x

ec
 t

im
e

(m
s)

query size (# of edges)

GQL SP QSI TI BTI

(b) Synthetic

Figure 6.5: Avg query exec time (ms) of SI methods for PPI and Synthetic datasets and for
different query sizes

As we increase the query size, query processing becomes harder for all algorithms, with
the exception of PDBS and PCM where there are no significant differences for different
query sizes. The relevant results for the PPI and the Synthetic dataset can be seen in figure
6.5. It is worth mentioning that there is not a single winning algorithm for different query
sizes even for the same dataset; this is consistent with both the findings in [10] and the results
presented in §5.4.

6.7. Evaluating the hybrid FTV-SI method 112

6.7 Evaluating the hybrid FTV-SI method

Having discussed that the filtering of Grapes is more powerful than that achieved by
the SI methods, we set out to construct a hybrid FTV-SI solution. The proposed hybrid
solution works as follows: We construct the index for both Grapes (the in use FTV method)
and for the in use SI method. In the query processing, we perform the filtering of Grapes
(as discussed in §3.1.1) and till the stage of forming the candidate set. Subsequently, for
those graphs that pass the filtering stage we use GraphQL/ sPath/ QuickSI/ TurboIso/ BTI,
instead of Grapes’s default (and expensive) VF2 subgraph isomorphism test. Since an extra
filtering step is introduced (namely, the filtering from Grapes), it is worthwhile evaluating,
analyzing, and quantifying the effect of the cost to perform this additional on-line filtering on
the overall achievable performance. As Grapes was originally designed to work in parallel,
we utilize (·)/N to denote the in use number of threads N for Grapes-[GraphQL/ sPath/
QuickSI/ TurboIso/ BTI] as the FTV-SI combination of algorithms. In this section we utilize
only one thread; additional parallelism will be discussed in the following section. Last, for
the rest of the discussion, we assume that the indices are already loaded into main memory
once at the beginning of the execution for each query workload.

6.7.1 Performance Metrics

For every query against a dataset of graphs, we measure the execution time, while avg

exec time denotes the average execution time. For the SI methods the execution time in-
cludes the time for constructing the index of the query, the matching of the query’s index to
the databases’ index (where applicable) and the time required to perform the subgraph iso-
morphism test. For our proposed hybrid FTV-SI solution the execution time includes (i) the
time required to perform the filtering of Grapes as described in §3.1.1 and (ii) the execution
time of the in use SI method for the graphs that passed the filtering stage (that substitutes the
VF2 verification algorithm).

Let qi be a given query. Let also tMi be the execution time of qi over methodM , whereM
can be one of the SI methods, i.e., GraphQL/ sPath/ QuickSI/ TurboIso/ BTI, and tGrapes−M

i

be the execution time of qi over the hybrid combination of Grapes with method M over all
the graphs in the dataset. In order to evaluate the performance of this combination, we utilize
the speedup∗ metric defined as: tMi

tGrapes−M
i

. speedup∗ represents what we lose in performance
if we choose the original method over the various alternatives; i.e., speedup∗ equals the
maximum attainable speedup over the original method, if we chose the best of the examined
alternatives. As we described in §3.3.4, the aforementioned speedup∗ metric can have a QLA
and WLA version, denoted with a matching subscript; e.g. speedup∗QLA.

6.7. Evaluating the hybrid FTV-SI method 113

6.7.2 Performance Results

Before proceeding with the presentation of the achieved speedups, we initially discuss
the indexing costs we need to pay for our hybrid FTV-SI solution. Thus, the size of the
constructed index for all datasets for the hybrid FTV-SI solution is the addition of Grapes’
index with the index of the in use SI method as presented in figure 6.1(b). The same holds
for the corresponding indexing times. The pruning power of the FTV-SI solution is equal
to the pruning power of Grapes, as it was presented in figure 6.3 and for the corresponding
datasets.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

av
g

 s
p

ee
d

u
p

*
Q

L
A

(GR-GQL)/1
(GR-SP)/1

(GR-QSI)/1
(GR-TI)/1

(GR-BTI)/1

SyntheticPPIPCMPDBS

(a) Average speedup∗QLA

 0

 1

 2

 3

 4

 5

 6

av
g

 s
p

ee
d

u
p

*
W

L
A

(GR-GQL)/1
(GR-SP)/1

(GR-QSI)/1
(GR-TI)/1

(GR-BTI)/1

SyntheticPPIPCMPDBS

(b) Average speedup∗WLA

Figure 6.6: Average speedup∗QLA & speedup∗WLA of the hybrid FTV-SI method

Figure 6.6 presents the average QLA and WLA speedups for all datasets and query sizes.
We were not able to execute queries >25 vertices with TurboIso (§6.3.2); as a result in PPI
and the Synthetic dataset the presented speedup for the hybrid Grapes-TurboIso combination

6.7. Evaluating the hybrid FTV-SI method 114

(GR-GQL)/1 (GR-SP)/1 (GR-QSI)/1 (GR-TI)/1 (GR-BTI)/1

PD
B

S

stdDev 1.783 2.035 2.589 1.556 0.456
min 0.777 0.798 0.847 0.682 0.022
max 10.361 12.179 15.185 9.107 3.055

median 1.937 1.934 2.119 1.915 0.308
PC

M

stdDev 3.454 3.093 6.560 3.655 0.218
min 1.164 1.182 1.250 1.195 0.053
max 14.912 14.029 26.001 17.099 1.078

median 5.436 5.153 6.975 5.619 0.776

PP
I

stdDev 2.886 7.112 37.603 2.852 119.611
min 0.857 0.914 0.001 0.877 0.067
max 24.196 29.198 89.884 18.479 90.6

median 1.496 1.416 1.522 1.865 0.993

Sy
nt

he
tic

stdDev 5.465 9.444 21.386 2.248 15.599
min 1.269 1.094 1.168 1.633 0.292
max 28.554 65.586 29.042 12.920 61.415

median 5.107 3.683 2.777 2.649 0.964

Table 6.1: speedup∗QLA statistics for FTV-SI combination with 1 thread

refers to queries ≤ 24 edges, and thus results are not directly comparable with the rest of the
results for the hybrid Grapes-M combinations. BTI is the sole algorithm that is rather hurt
than improved by this hybrid combination in PCM where the size of data graphs is relatively
small, and in PDBS where the size of the candidate graphs in the dataset is relatively high.
In the majority of cases the achieved speedups are higher as the query size increases and
this effect is more profound in the Synthetic dataset, because of the much higher number
of graphs that constitute the Synthetic dataset and the higher percentages of graphs that
were filtered out (as we can observe in combination with figure 6.3(a)). To showcase this,
we provide in figure 6.7 the average query execution times of the hybrid FTV-SI methods
for PPI and Synthetic datasets and for different query sizes that can be compared against
the average query execution times of the hybrid SI methods for the same datasets (figure
6.5). In other words, the query graphs in the Synthetic dataset provide better selectivity than
those in the 3 Real datasets and this is reflected in the achieved speedups. A notable fact,
presented in figure 6.8, is that the different achieved speedups for all algorithms bring about
significant changes in their average query execution times, as they were presented in figure
6.4. However, not a single winner algorithm across all datasets and different query sizes is
yet identified!

Table 6.1 presents additional statistics for min, max, median and stdDev of the achieved
speedup∗QLA. For all algorithms except for BTI, we observe that the min achieved speedup
is not always > 1, but the median speedup∗QLA is in all cases > 1. In other words, there
are some queries that the time gained from the filtered out graphs does not pay off. For the
executed queries, this phenomenon occurred when the candidate set size was ≥ 500 graphs

6.8. Reducing filtering time with parallelism 115

 100

 1000

 10000

 100000

 1x10
6

 16 20 24 32

av
g

 q
u

er
y

 e
x

ec
 t

im
e

(m
s)

query size (# of edges)

(GR-GQL)/1
(GR-SP)/1

(GR-QSI)/1
(GR-TI)/1

(GR-BTI)/1

(a) PPI

 1000

 10000

 100000

 1x10
6

 24 32 40

av
g

 q
u

er
y

 e
x

ec
 t

im
e

(m
s)

query size (# of edges)

(GR-GQL)/1
(GR-SP)/1

(GR-QSI)/1
(GR-TI)/1

(GR-BTI)/1

(b) Synthetic

Figure 6.7: Avg query exec time (ms) of hybrid FTV-SI methods for PPI and Synthetic
datasets and for different query sizes

in PDBS and ≥ 15 graphs in PPI.

6.8 Reducing filtering time with parallelism

As Grapes was designed to work in parallel, we studied this effect with additional ex-
periments. Specifically, we used Grapes/4 for the filtering stage, alongside one of the SI
algorithms, on the same set of datasets and query workloads. We utilize as many differ-
ent (parallel) instances of SI algorithms as the number of threads N utilized by Grapes. We
maintain the graphs that passed Grapes’ filtering test in a queue and the firstN graphs are as-
signed to theN threads. Till the graph queue is empty, the first graph in the queue is assigned

6.8. Reducing filtering time with parallelism 116

 1

 10

 100

 1000

 10000

 100000

 1x10
6

av
g

 q
u

er
y

 e
x

ec
 t

im
e

(m
s)

(GR-GQL)/1
(GR-SP)/1

(GR-QSI)/1
(GR-TI)/1

(GR-BTI)/1

SyntheticPPIPCMPDBS

Figure 6.8: Avg query exec time (ms) of the FTV-SI hybrid methods

to the next available thread. This choice brings additional performance improvement.

Figure 6.9: Example on parallel execution of the verification stage of the hybrid FTV-SI
combination with number of threads N = 2. (We assume that graphs g1, g2, g4, and g8

formed the candidate set after the filtering stage. The red X is used to represent the removal
of a grpah from the queue or the completion of a thread execution.)

To showcase this, we will additionally present an example (figure 6.9). We assume that
we use N = 2 threads and that after the filtering stage of Grapes the candidate set is formed
by graphs g1, g2, g4 and g8. Thus, in the verification stage and at time t0, g1, g2, g4, and
g8 are placed in a queue. We also instantiate as many different instances of the in use SI
method as the number of threads N to run in parallel, denoted T#i, where i = 0, ..., N − 1.

6.8. Reducing filtering time with parallelism 117

At t1, the first graph (g1) is removed from the queue and is assigned to thread T#0. At the
same time, thread T#1 is free, and thus g2 is also removed from the queue and is assigned
to thread T#1. At t2, thread T#1 completed the subgraph isomorphism on g2. Thus, g4 is
removed from the queue and thread T#1 starts executing subgraph isomorphism test on g4.
At t3, thread T#0 completed the sub-iso on g1. Similar to before, g8 is removed from the
queue and thread T#0 executes subgraph isomorphism test on g8. The queue is now empty.
Finally, at t4 thread T#0 completed the subgraph isomorphism on g8. With the queue being
empty, thread T#0 is killed. At t5, thread T#1 is killed accordingly after the completion of
the subgraph isomorphism on g4.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

av
g

 s
p

ee
d

u
p

*
Q

L
A

(GR-GQL)/4
(GR-SP)/4

(GR-QSI)/4
(GR-TI)/4

(GR-BTI)/4

SyntheticPPIPCMPDBS

(a) Average speedup∗QLA, 4 threads

 0

 2

 4

 6

 8

 10

 12

 14

 16

av
g

 s
p

ee
d

u
p

*
W

L
A

(GR-GQL)/4
(GR-SP)/4

(GR-QSI)/4
(GR-TI)/4

(GR-BTI)/4

SyntheticPPIPCMPDBS

(b) Average speedup∗WLA, 4 threads

Figure 6.10: Average speedup∗QLA & speedup∗WLA of the hybrid FTV-SI method, 4 threads

Figure 6.10 presents the corresponding speedup∗ result for all datasets. As expected,
by increasing the number of threads N from 1 to 4, we were able to achieve up to 4 times

6.9. Index Time/Size - Filtering Power Tradeoff 118

(GR-GQL)/4 (GR-SP)/4 (GR-QSI)/4 (GR-TI)/4 (GR-BTI)/4

PD
B

S

stdDev 2.393 2.838 4.067 2.022 0.829
min 1.794 1.924 2.201 1.353 0.022
max 13.988 16.847 23.709 11.568 4.278

median 5.250 5.616 6.585 4.770 0.397
PC

M

stdDev 3.397 2.925 8.550 3.603 0.901
min 3.579 3.521 4.453 3.776 0.054
max 18.425 17.255 40.317 21.375 3.475

median 10.298 9.435 17.664 10.838 1.721

PP
I

stdDev 3.280 16.967 61.712 7.481 134.922
min 1.001 1.003 1.003 3.403 0.0893
max 26.366 5.613 85.818 63.498 297.41

median 4.511 4.278 4.409 7.001 1.704

Sy
nt

he
tic

stdDev 6.184 12.819 30.828 6.639 22.757
min 1.318 1.134 1.636 6.153 0.330
max 31.975 108.596 96.647 30.388 72.763

median 13.613 10.892 8.913 9.491 3.342

Table 6.2: speedup∗QLA statistics for FTV-SI combination with 4 threads

better speedups compared to the single-threaded executions. Table 6.2 presents additional
statistics for min, max, median and stdDev of the achieved speedup∗QLA in the case of 4
threads, where in all datasets and query workloads the achieved speedup is > 1.

6.9 Index Time/Size - Filtering Power Tradeoff

In our discussion so far we used the default values of the enumerated features for con-
structing the index for Grapes, as suggested by the respective authors. But as we have seen,
the constructed index of FTV methods is costly both in size and in time. In this section we
tweak the size of the enumerated featuresmaxL (see §3.1.1) and we observe the filtering that
can be achieved and how this affects the gained speedups in our hybrid proposed solution.
Thus, for our experiments we have used maxL = 2, 3, 4, 5. We report that for maxL = 5,
the index process was utilizing excessive amount of memory, leading to thrashing even to our
128GB machine and thus no numbers are reported for this case. In the subsequent figures,
we utilize Grapes-Li, i = 2, 3, 4 (or GR-Li for short) to denote the maxL value used.

Figures 6.11(a) and 6.11(b) report the indexing time and size for Grapes and the dif-
ferent maxL tried for all employed datasets. For comparison, we additionally include the
corresponding values for the employed SI methods. For all datasets, except for PDBS, there
is a difference of up to 3 orders of magnitude for both indexing time and size and for maxL
from 2 to 4, leading to times and sizes much smaller than the SI methods in most cases. For
PDBS, the small number of labels and thus the small variation of enumerated paths leads to

6.9. Index Time/Size - Filtering Power Tradeoff 119

 0.1

 1

 10

 100

 1000

 10000

ti
m

e
(s

)

GQL
SP

QSI

TI
BTI

(GR-L2)/1

(GR-L2)/4
(GR-L3)/1
(GR-L3)/4

(GR-L4)/1
(GR-L4)/4

SyntheticPPIPCMPDBS

(a) Indexing Time

 1

 10

 100

 1000

 10000

 100000

si
ze

 (
M

B
)

GQL
SP

QSI
TI

BTI
GR-L2

GR-L3
GR-L4

SyntheticPPIPCMPDBS

(b) Indexing Size

Figure 6.11: Tweaking the maxL parameter, index construction

up to 1 order of magnitude difference of the index size from maxL = 2 to 4. Thus, overall
in the hybrid FTV-SI method, the use of smaller maxL values results in adding only a trivial
time and space overhead in the indexing phase.

Figures 6.12(a) and 6.12(b) present the pruning power of Grapes utilizing different fea-
ture sizes on all datasets. As it was expected, as we increase the size of the features, the
candidate set size decreases and it affects accordingly the FPR. However, in all occasions
the filtering power is better than that achieved by the SI methods. This is particularly evident
in PPI, PCM and the Synthetic dataset. For these datasets and for all feature sizes, the candi-
date set size is very close to the answer set size. Thus, we also obtain relatively small FPR
values. PDBS follows the same trends but with less steep divergence from the SI methods
because of the high answer set size. This leads to the conclusion that we can still achieve

6.9. Index Time/Size - Filtering Power Tradeoff 120

 0

 20

 40

 60

 80

 100

av
g

 %
 g

ra
p

h
s

GQL_CSS
SP_CSS

GR-L2_CSS
GR-L3_CSS

GR-L4_CSS
ASS

SyntheticPPIPCMPDBS

(a) Candidate and answer sets

 0

 0.2

 0.4

 0.6

 0.8

 1

fa
ls

e
p

o
si

ti
v

e
ra

ti
o

GQL SP GR-L2 GR-L3 GR-L4

SyntheticPPIPCMPDBS

(b) False Positive Ratio

Figure 6.12: Tweaking the maxL parameter, filtering power

high speedups with smaller feature sizes.

Finally, figures 6.13(c) - 6.14(f) report the achieved QLA and WLA speedups by tweak-
ing the maxL value of Grapes for the used datasets for our hybrid FTV-SI solution when
utilizing 1 and 4 threads and for all query sizes. A notable observation here is that in some
cases, with the sole exception of PDBS and PCM, the achieved speedups with smaller values
of maxL outperform the speedups with larger values of maxL. We attribute this to the fact
that for smaller maxL values less time is required to construct the index of the query and
match it to the dataset’s index. Additionally, the fact that the candidate set sizes that are
formed after Grapes’s filtering are close for the various maxL values, contributes to this.
For completeness, tables 6.3 and 6.4 provide additional statistics for min, max, median and
stdDev of the achieved speedup∗QLA with different feature sizes and different number of

6.9. Index Time/Size - Filtering Power Tradeoff 121

 0 2 4 6 8

 1
0

 1
2

 1
4

avg speedup*QLA

(G
R

-L
2
 -

 G
Q

L
)/

1
(G

R
-L

2
 -

 S
P

)/
1

(G
R

-L
2
 -

 Q
S

I)
/1

(G
R

-L
2
 -

 T
I)

/1
(G

R
-L

2
 -

 B
T

I)
/1

S
y

n
th

et
ic

P
P

I
P

C
M

P
D

B
S

(a
)

A
vg

sp
ee
d
u
p
∗ Q

L
A

,m
a
x
L

=
2,

1
th

re
ad

 0 2 4 6 8

 1
0

 1
2

 1
4

avg speedup*QLA

(G
R

-L
3
 -

 G
Q

L
)/

1
(G

R
-L

3
 -

 S
P

)/
1

(G
R

-L
3
 -

 Q
S

I)
/1

(G
R

-L
3
 -

 T
I)

/1
(G

R
-L

3
 -

 B
T

I)
/1

S
y

n
th

et
ic

P
P

I
P

C
M

P
D

B
S

(b
)

A
vg

sp
ee
d
u
p
∗ Q

L
A

,m
a
x
L

=
3,

1
th

re
ad

 0 2 4 6 8

 1
0

 1
2

 1
4

avg speedup*QLA

(G
R

-L
4
 -

 G
Q

L
I)

/1
(G

R
-L

4
 -

 S
P

)/
1

(G
R

-L
4
 -

 Q
S

I)
/1

(G
R

-L
4
 -

 T
I)

/1
(G

R
-L

4
 -

 B
T

I)
/1

S
y

n
th

et
ic

P
P

I
P

C
M

P
D

B
S

(c
)

A
vg

sp
ee
d
u
p
∗ Q

L
A

,m
a
x
L

=
4,

1
th

re
ad

 0 1 2 3 4 5 6

avg speedup*WLA

(G
R

-L
2
 -

 G
Q

L
)/

1
(G

R
-L

2
 -

 S
P

)/
1

(G
R

-L
2
 -

 Q
S

I)
/1

(G
R

-L
2
 -

 T
I)

/1
(G

R
-L

2
 -

 B
T

I)
/1

S
y

n
th

et
ic

P
P

I
P

C
M

P
D

B
S

(d
)

A
vg

sp
ee
d
u
p
∗ W

L
A

,m
a
x
L

=
2,

1
th

re
ad

 0 1 2 3 4 5 6

avg speedup*WLA

(G
R

-L
3
 -

 G
Q

L
)/

1
(G

R
-L

3
 -

 S
P

)/
1

(G
R

-L
3
 -

 Q
S

I)
/1

(G
R

-L
3
 -

 T
I)

/1
(G

R
-L

3
 -

 B
T

I)
/1

S
y

n
th

et
ic

P
P

I
P

C
M

P
D

B
S

(e
)

A
vg

sp
ee
d
u
p
∗ W

L
A

,m
a
x
L

=
3,

1
th

re
ad

 0 1 2 3 4 5 6

avg speedup*WLA

(G
R

-L
4
 -

 G
Q

L
I)

/1
(G

R
-L

4
 -

 S
P

)/
1

(G
R

-L
4
 -

 Q
S

I)
/1

(G
R

-L
4
 -

 T
I)

/1
(G

R
-L

4
 -

 B
T

I)
/1

S
y

n
th

et
ic

P
P

I
P

C
M

P
D

B
S

(f
)

A
vg

sp
ee
d
u
p
∗ W

L
A

,m
a
x
L

=
4,

1
th

re
ad

Fi
gu

re
6.

13
:T

w
ea

ki
ng

th
e

m
ax

L
pa

ra
m

et
er

,a
ch

ie
ve

d
sp
ee
d
u
p∗

,1
th

re
ad

6.9. Index Time/Size - Filtering Power Tradeoff 122

 0 5

 1
0

 1
5

 2
0

 2
5

 3
0

avg speedup*QLA

(G
R

-L
2
 -

 G
Q

L
)/

4
(G

R
-L

2
 -

 S
P

)/
4

(G
R

-L
2
 -

 Q
S

I)
/4

(G
R

-L
2
 -

 T
I)

/4
(G

R
-L

2
 -

 B
T

I)
/4

S
y

n
th

et
ic

P
P

I
P

C
M

P
D

B
S

(a
)

A
vg

sp
ee
d
u
p
∗ Q

L
A

,m
a
x
L

=
2

 0 5

 1
0

 1
5

 2
0

 2
5

 3
0

avg speedup*QLA

(G
R

-L
3
 -

 G
Q

L
)/

4
(G

R
-L

3
 -

 S
P

)/
4

(G
R

-L
3
 -

 Q
S

I)
/4

(G
R

-L
3
 -

 T
I)

/4
(G

R
-L

3
 -

 B
T

I)
/4

S
y

n
th

et
ic

P
P

I
P

C
M

P
D

B
S

(b
)

A
vg

sp
ee
d
u
p
∗ Q

L
A

,m
a
x
L

=
3

 0 5

 1
0

 1
5

 2
0

 2
5

 3
0

avg speedup*QLA

(G
R

-L
4
 -

 G
Q

L
I)

/4
(G

R
-L

4
 -

 S
P

)/
4

(G
R

-L
4
 -

 Q
S

I)
/4

(G
R

-L
4
 -

 T
I)

/4
(G

R
-L

4
 -

 B
T

I)
/4

S
y

n
th

et
ic

P
P

I
P

C
M

P
D

B
S

(c
)

A
vg

sp
ee
d
u
p
∗ Q

L
A

,m
a
x
L

=
4

 0 2 4 6 8

 1
0

 1
2

 1
4

 1
6

avg speedup*WLA

(G
R

-L
2
 -

 G
Q

L
)/

4
(G

R
-L

2
 -

 S
P

)/
4

(G
R

-L
2
 -

 Q
S

I)
/4

(G
R

-L
2
 -

 T
I)

/4
(G

R
-L

2
 -

 B
T

I)
/4

S
y

n
th

et
ic

P
P

I
P

C
M

P
D

B
S

(d
)

A
vg

sp
ee
d
u
p
∗ W

L
A

,m
a
x
L

=
2

 0 2 4 6 8

 1
0

 1
2

 1
4

 1
6

avg speedup*WLA

(G
R

-L
3
 -

 G
Q

L
)/

4
(G

R
-L

3
 -

 S
P

)/
4

(G
R

-L
3
 -

 Q
S

I)
/4

(G
R

-L
3
 -

 T
I)

/4
(G

R
-L

3
 -

 B
T

I)
/4

S
y

n
th

et
ic

P
P

I
P

C
M

P
D

B
S

(e
)

A
vg

sp
ee
d
u
p
∗ W

L
A

,m
a
x
L

=
3

 0 2 4 6 8

 1
0

 1
2

 1
4

 1
6

avg speedup*WLA

(G
R

-L
4
 -

 G
Q

L
I)

/4
(G

R
-L

4
 -

 S
P

)/
4

(G
R

-L
4
 -

 Q
S

I)
/4

(G
R

-L
4
 -

 T
I)

/4
(G

R
-L

4
 -

 B
T

I)
/4

S
y

n
th

et
ic

P
P

I
P

C
M

P
D

B
S

(f
)

A
vg

sp
ee
d
u
p
∗ W

L
A

,m
a
x
L

=
4

Fi
gu

re
6.

14
:T

w
ea

ki
ng

th
e

m
ax

L
pa

ra
m

et
er

,a
ch

ie
ve

d
sp
ee
d
u
p∗

,4
th

re
ad

s

6.9. Index Time/Size - Filtering Power Tradeoff 123

1
th

re
ad

4
th

re
ad

s
G

R
-G

Q
L

G
R

-S
P

G
R

-Q
SI

G
R

-T
I

G
R

-B
T

I
G

R
-G

Q
L

G
R

-S
P

G
R

-Q
SI

G
R

-T
I

G
R

-B
T

I

PDBS

st
dD

ev
1.

48
1

1.
68

9
2.

18
5

1.
33

2
0.

21
5

2.
25

3
2.

61
2

3.
66

9
2.

02
4

0.
41

8
m

in
0.

58
1

0.
60

7
0.

68
8

0.
48

5
0.

02
1

1.
01

9
1.

10
4

1.
37

0
0.

74
8

0.
02

1
m

ax
9.

71
2

11
.8

53
16

.6
12

8.
83

8
0.

84
9

12
.7

58
16

.1
89

22
.3

75
10

.9
04

1.
60

8
m

ed
ia

n
1.

68
7

1.
78

1
1.

89
3

1.
64

3
0.

25
1

4.
22

5
4.

70
6

5.
58

7
3.

78
9

0.
30

8

PCM

st
dD

ev
2.

50
9

2.
24

7
4.

86
4

2.
66

1
0.

22
1

2.
37

8
2.

04
7

6.
29

2
2.

55
6

0.
82

2
m

in
1.

04
9

1.
03

9
1.

10
1

1.
03

0
0.

04
2

3.
17

3
3.

07
0

3.
80

8
2.

98
1

0.
04

3
m

ax
11

.1
55

10
.0

22
21

.0
71

12
.2

03
1.

05
0

13
.4

68
11

.6
85

29
.3

72
14

.2
27

3.
24

2
m

ed
ia

n
4.

00
8

3.
69

0
4.

89
1

4.
11

9
0.

71
0

7.
56

9
6.

89
6

12
.7

12
7.

95
9

1.
44

0

PPI

st
dD

ev
3.

51
5

6.
06

0
36

.8
28

3.
23

4
15

1.
38

5
3.

56
3

11
.6

06
54

.5
06

8.
72

8
15

1.
34

6
m

in
0.

83
2

0.
88

9
0.

91
0

0.
84

6
0.

08
1

1.
00

1
1.

00
3

1.
00

2
2.

20
1

0.
08

1
m

ax
30

.7
59

8.
57

4
98

.4
90

22
.1

04
22

5.
01

0
30

.7
59

7.
71

6
89

.2
18

71
.1

03
32

5.
01

m
ed

ia
n

1.
36

4
1.

30
1

1.
38

5
1.

64
0

0.
99

2
3.

29
8

3.
39

3
3.

38
0

4.
56

0
1.

61
3

Synthetic

st
dD

ev
8.

54
9

13
.6

67
22

.3
41

1.
90

1
21

.3
19

9.
23

8
16

.8
97

38
.4

26
5.

13
4

30
.5

81
m

in
1.

26
0

1.
09

2
1.

10
5

1.
53

3
0.

47
4

1.
31

5
1.

13
5

1.
63

6
5.

34
2

0.
47

6
m

ax
51

.6
35

10
1.

99
7

37
.1

79
10

.5
95

62
.1

39
54

.0
19

12
3.

50
4

11
2.

20
9

29
.8

12
59

.0
15

m
ed

ia
n

4.
29

2
3.

14
5

2.
32

5
2.

28
1

0.
97

2
11

.7
96

9.
05

4
7.

56
6

8.
04

3
3.

29
9

Ta
bl

e
6.

3:
sp
ee
d
u
p∗

Q
L
A

st
at

is
tic

s
fo

rF
T

V
-S

Ic
om

bi
na

tio
n

w
ith

1
an

d
4

th
re

ad
s,
m
a
x
L

=
2

6.9. Index Time/Size - Filtering Power Tradeoff 124

1
th

re
ad

4
th

re
ad

s
G

R
-G

Q
L

G
R

-S
P

G
R

-Q
SI

G
R

-T
I

G
R

-B
T

I
G

R
-G

Q
L

G
R

-S
P

G
R

-Q
SI

G
R

-T
I

G
R

-B
T

I

PDBS

st
dD

ev
1.

64
5

1.
86

9
2.

37
4

1.
47

0
0.

30
4

2.
49

1
2.

89
0

4.
03

4
2.

20
1

0.
51

7
m

in
0.

61
5

0.
64

0
0.

71
2

0.
53

0
0.

02
2

1.
14

0
1.

23
2

1.
52

9
0.

86
3

0.
02

2
m

ax
10

.0
11

12
.0

68
15

.2
31

9.
13

9
2.

50
9

13
.2

79
16

.5
94

23
.3

19
11

.3
66

3.
36

8
m

ed
ia

n
1.

79
3

1.
85

2
2.

01
6

1.
76

2
0.

27
8

4.
58

1
5.

10
5

6.
02

3
4.

19
8

0.
35

0

PCM

st
dD

ev
2.

73
5

2.
44

7
5.

41
9

2.
91

4
0.

22
1

2.
25

2
2.

11
3

6.
75

0
2.

67
1

0.
85

4
m

in
1.

09
4

1.
11

4
1.

17
5

1.
11

9
0.

04
0

3.
38

5
3.

38
3

4.
12

8
3.

49
1

0.
04

1
m

ax
11

.5
53

11
.0

26
22

.2
61

12
.9

35
1.

05
6

13
.6

22
12

.4
83

30
.9

01
15

.2
42

3.
31

3
m

ed
ia

n
4.

56
8

4.
36

1
5.

85
9

4.
79

1
0.

73
6

8.
69

1
7.

98
6

14
.4

45
9.

09
3

1.
54

8

PPI

st
dD

ev
4.

06
9

7.
69

9
38

.2
34

3.
46

7
18

9.
83

7
4.

12
8

17
.3

64
56

.9
09

10
.2

98
18

9.
79

7
m

in
0.

84
1

0.
91

8
0.

93
6

0.
85

7
0.

09
7

1.
00

1
0.

00
3

0.
00

3
2.

40
1

0.
09

8
m

ax
38

.7
83

3.
41

9
60

.9
49

25
.9

94
92

.8
00

38
.7

83
5.

28
8

76
.1

24
82

.4
86

39
2.

8
m

ed
ia

n
1.

49
1

1.
38

8
1.

48
3

1.
77

2
0.

99
4

3.
76

4
3.

72
3

3.
58

4
5.

07
8

1.
66

7

Synthetic

st
dD

ev
16

.4
81

25
.0

57
47

.3
67

2.
43

1
30

.4
14

19
.1

01
30

.9
24

67
.6

76
7.

37
4

52
.5

43
m

in
1.

27
3

1.
09

6
1.

14
0

1.
59

0
0.

80
4

1.
32

4
1.

13
6

1.
63

9
5.

72
9

0.
80

9
m

ax
73

.5
71

78
.9

34
37

.9
49

15
.3

83
50

.7
45

13
.6

31
20

1.
79

9
78

.1
02

47
.3

72
80

.1
54

m
ed

ia
n

5.
31

3
3.

67
1

2.
67

0
2.

64
8

0.
99

0
16

.1
92

10
.8

27
8.

55
8

9.
67

4
3.

57
7

Ta
bl

e
6.

4:
sp
ee
d
u
p∗

Q
L
A

st
at

is
tic

s
fo

rF
T

V
-S

Ic
om

bi
na

tio
n

w
ith

1
an

d
4

th
re

ad
s,
m
a
x
L

=
3

6.10. Conclusions 125

threads and along with tables 6.1 and 6.2 (presented earlier in§6.7 and §6.8) complete the
picture. We note that BTI is again the least benefited algorithm, as evident in the retrieved
values of average, min and median speedup∗QLA values. In fact it is rather harmed than im-
proved by the use of smaller feature sizes, i.e., maxL = 2 or maxL = 3 in the vast majority
of cases. In PDBS particularly, BTI with the use of smaller feature sizes is not even benefited
by the use of 4 threads.

Undoubtedly, the aforementioned speedups bring about additional changes in the aver-
age query execution times, as discussed earlier in §6.7. Thus, the overall conclusion, with the
sole exception of BTI, is that the use of smaller feature sizes in the hybrid FTV-SI method is
not just a good compromise of the achieved speedups. This solution offers additional bene-
fits in the indexing phase by reducing significantly both the index size and time, as discussed
earlier in this section.

6.10 Conclusions

The current trend in research for subgraph pattern queries in graph DBs dismisses FTV
methods since the fast subgraph isomorphism heuristics of SI methods significantly outper-
form FTV methods. We analyzed the problem by answering a set of fundamental questions.
Specifically, we initially investigated the index time and space requirements from both FTV
and SI methods. Subsequently, we showed that the filtering power of a top-performing FTV
algorithm (Grapes) is significantly better than that of all SI methods. Having that in mind and
knowing that the subgraph isomorphism testing can be very expensive as the graph DB grows
large (in number or size of stored graphs), we set out to initially evaluate the performance
of well known SI methods. Our experiments reveal no single winner across all datasets. We
then evaluate the performance of a hybrid FTV-SI solution, that incorporates the powerful
filtering of the FTV methods with the fast subgraph-isomorphism algorithm of the SI meth-
ods. This hybrid proves to be a better practice compared to the traditional SI methods over
datasets consisting of a large number of graphs by avoiding redundant and possibly expensive
sub-iso tests in the whole DB, and thus by bringing about significant speedups and changes
in algorithms’ relative performance with not yet a single winner. However, gained benefits
come at the extra costs of index memory space and indexing time. We then further analyzed
this hybrid method in two dimensions: First, to reduce the space-time index costs, we low-
ered the size of indexed features. Our results revealed that the filtering power of the FTV
index is still much higher than that of SI methods and that high speedups can be achieved,
even with these smaller indexes, which are in turn even smaller than the SI indexes. Second,
as the time to perform index-based filtering is substantial, we studied the positive effects of
doing this in parallel. Our results showed that expected speedups can thus be significantly

6.10. Conclusions 126

boosted. Parallelizing this filtering step is a much easier task than parallelizing the actual
subgraph-isomorphism algorithm. Overall, this work surfaces new promising possibilities
for expediting subgraph queries in graph DBs by experimentally revealing a blind spot in
current thinking. We hope this will inspire new research targeting new FTV-style indexes
and/or SI-style subgraph-isomorphism algorithms for FTV-SI hybrids.

Limitations The current work is limited to the use of three real and a synthetic datasets.
A systematic study, as performed in chapter §4, would be useful to (i) perform a systematic
evaluation of existing SI algorithms and the hybrid FTV-SI method and (ii) pinpoint the
scalability limitations. Regarding the scalability limits, we also need to identify the existence
of straggler-queries (as discussed in chapter §5). Then, we could combine the Ψ-framework
(§5.8) and the hybrid FTV-SI combination method (§6.7 and §6.8) to extend the scalability
limitations of the originally proposed FTV and SI methods. This will be further discussed in
§7.2.

Another limitation of our study is related to the values of the input parameters of the
employed SI algorithms (see §4.3.2). We would expect that varying the input parameters on
the SI methods (see §6.3.2) would have similar effects as varying the input parameters on the
FTV methods (see §6.9).

127

Chapter 7

Conclusion and Future Steps

[X \

After numerous experiments and all the knowledge we have gained so far, we are ready
to conclude this thesis. In the current chapter, we briefly review our findings and our major
contributions. Of course, there are still open questions and space for improvement. Thus, in
the end we set the future steps to be conducted.

7.1 Summary of Contributions

Graphs have great representation power in representing complex structures and their
interactions. A common problem that is addressed to such graphs is the subgraph pattern
matching problem. Over the years, significant work has been conducted in the field of sub-
graph matching queries, which entails subgraph isomorphism, a well-known NP-Complete
problem. Related work, that was extensively discussed in chapter §2, is classified in two ma-
jor categories: the FTV methods that typically address the decision version, and SI methods
that usually address the matching version of the problem. We have seen that a number of
such methods is added in the bibliography annually, that tend to totally dismiss older pro-
posed methods and instead present new ideas with the aim to surpass the performance of
former work. With our experiments, we show that both FTV and SI methods show signifi-
cant limitations in their performance as we were increasing the parameters of the problem,
i.e. the number of nodes and / or density per graph, the number of graphs in the dataset,
and the size of the query. Thus, in the current thesis we propose that instead of devising
new algorithms, we should consider rewriting the original query and / or combining existing,
top-performing algorithms appropriately in order to achieve large performance gains.

7.1. Summary of Contributions 128

More specifically, in chapter §4, we conducted a set of experiments with well-known and
top-performing FTV methods with an emphasis on newer proposed methods. We have em-
ployed four real datasets and many synthetic ones, generated with the well-known GraphGen[60].
We have identified a set of key-factor parameters that influence the performance of FTV
methods and in general the underlying subgraph isomorphism test and these are the num-
ber of nodes and density per graph, the number of distinct labels and number of graphs
in the dataset, along with the size of the query. The primary aim of our experiments was
to study their performance and sensitivity in the gradual increasing key-factor parameters
(§4.4). Additionally, we stress-tested the various FTV methods by pinpointing points where
some algorithms continue to operate whereas others break. Overall, from our analysis we
gained the following insights:

• The first major lesson is related to the effect of the key dataset characteristics. The
intuition is verified; increasing the number of graphs (see figures 4.10 and 4.11) leads
to a linear increase in the problem’s complexity. The frequent mining techniques are
more severely affected, as more features have to be located across more graphs. By
complexity, we mean the indexing time and size and the query processing time. By
increasing the number of nodes and density, the complexity increases in a super-linear
way (see figures 4.3 and 4.4, 4.5 and 4.6). However, increasing the number of labels
leads to an easier problem, because there are more distinct features and the filtering
works better (see figures 4.8 and 4.9). Finally, by increasing the size of the queries,
the query processing becomes harder, with the effect being more profound on dense
graphs and specifically on frequent mining techniques (see figures 4.4, 4.6 and 4.11
and §4.5.1).
• The second major lesson is that simplicity wins (see §4.5.2). Many methods advo-

cate that graphs are more expressive than trees and trees are more expressive than
paths accordingly, as graphs can maintain more structural information. We agree with
this claim. However, considering that all paths are trees but the opposite does not
hold, given any graph in the dataset and similarly for graphs, the number of produced
subgraphs of the same size is higher than the number of trees of the same size and
accordingly for paths. If the methods utilizing more complex structures had to store
everything, then the indexing time, index size and filtering time would be much higher.
Thus, all methods employing complex structures maintain only a subset or apply en-
coding (see description of gIndex, Tree+∆, gCode and CT-Index in §3.1.1). As a
result, their coverage is decreased, i.e., some features are not represented in the in-
dex. On the other side, methods that rely on simpler features (paths), compared to the
frequent mining techniques can index all the features up to a certain size, in the cost
of an increased constructed index (Grapes and GGSX in figures 4.3(b), 4.5(b), 4.8(b)
and 4.10(b)). In the end, exhaustive enumeration techniques have more or less the

7.1. Summary of Contributions 129

same behavior with frequent mining techniques in the filtering, but because of their
simplicity, they win in both indexing and query processing time.
• The choice of the right algorithm relies on optimizing different aspects of the prob-

lem and these are: efficiency in terms of indexing time, index size, query processing
time and scalability limitations. Based on our experiments, in most cases, Grapes and
GGSX, utilizing the simplest features, are the winners, as discussed in §4.5.3. How-
ever their index size requirements are the highest among all contestants.
• In the relevant bibliography [7], all methods were tested with small and sparse datasets.

With our experiments, we have seen that at datasets consisting of larger and denser
graphs, these algorithms do not scale. At larger scales, one should consider other op-
tions such as devising new algorithms, varying the input parameters of top-performing
methods and/or combining existing top-performing algorithms to form a better one, as
discussed in §4.5.4.

In chapter §5, we focused on the various subgraph isomorphism tests. We conducted a
set of experiments with top-performing FTV, namely Grapes and GGSX, and SI methods,
namely GraphQL, sPath, QuickSI, TurboIso and BTI, and we presented key novel discoveries
and observations of the nature of the subgraph isomorphism problem. Specifically, we made
the following key observations.

• Related works present the average query execution time, calculated as the query work-
load time divided by the number of the queries in the workload to showcase the per-
formance of their method compared to others. However, such an approach can conceal
the real execution times of individual queries. Specifically, with our work we have
seen that as the dataset grows large in terms of number of nodes and/or density, query
processing becomes harder (see figures 5.1 and 5.3 and tables 5.1 and 5.2). We con-
ducted experiments with a single query against a single large stored graph and we have
seen that both FTV and SI methods suffer from straggler queries, i.e., queries with ex-
ecution times many orders of magnitude worse compared to the majority (see figures
5.2 and 5.4). Straggler queries appear in a small percentage of the total query work-
loads, but when execution times are averaged, the most expensive queries dominate
the overall processing time.
• Isomorphic queries can have widely and wildly different execution times (see figures

5.5 and 5.7 and discussion in §5.5). We recall that for the generation of an isomorphic
query to the original query, one can simply permute the node IDs of the original query,
as discussed in §2.2. The reason for that is that all proposed methods do not define an
absolutely strict order in which the nodes of the query are matched, because it would
be too computationally expensive to compute a globally optimal join plan. Instead,
proposed methods rely on heuristics to minimize the search space for the join plan
(§5.5). We have seen that FTV methods are more vulnerable to such wild variations

7.1. Summary of Contributions 130

as they propose a less strict order in which the nodes of the query are matched to the
nodes of the stored graph compared to the SI methods.
• Finally, we have seen that straggler queries are algorithm specific, i.e., a straggler

query on one algorithm could be a typical query on some other algorithm (figures
5.15). For our experiments, we employed the various SI methods. We have seen
that the use of alternative algorithms is much more beneficial compared to the use
of different isomorphic query rewritings, leading to straggler-free executions (figures
5.14 and 5.15).

Many of the issues observed are encountered with other NP-hard problems, such as
branch and bound[116], as discussed in §2.7 and in §5.5, §5.8. We have seen that proposed
algorithms show a wide variance in their execution times as they employ different heuristics
and are significantly affected by the search order they impose. Additionally, the way they
resolve ties during their processing may further affect the search order, again resulting in
unpredictable overall execution times.

Subsequently, we used our observations to make the following key contributions.

• We generated our own isomorphic query rewritings by permuting the query node IDs
in a specific manner, as discussed in §5.6. Thus, we implemented and further experi-
mented with 5 such rewritings, namely ILF, IND, DND, ILF+IND and ILF+DND that
permute the node IDs in such a way that they take into consideration the frequencies
of labels of the stored graph and/or the query node degrees. With our experiments, we
have seen that these rewritings are beneficial across different algorithms and datasets
(see figures 5.12 and 5.14).
• We proposed and experimented with the Ψ-framework which stands for Parallel Sub-

graph Isomorphism Framework, as discussed in §5.8. Specifically, we run in parallel
different isomorphic instances of the same query and/or different algorithms by instan-
tiating different threads. After the completion of any first thread, the rest of them are
killed. To reduce the memory footprint, we experimented with various combinations
and a number of threads. Such an execution leads to a performance improvement of
many orders of magnitude compared to the original proposed methods.

Similar techniques to our Ψ-framework are applied to other NP-hard searches. These
are known as portfolios of algorithms, as discussed in §2.7 and §5.8, where some portfolios
pay-off more than others.

In chapter §6, we investigated the current trend that tends to totally dismiss FTV meth-
ods and instead employ SI methods, with the claim that SI methods enjoy much shorter
execution times whereas FTV methods additionally suffer from elevated costs in managing
their constructed index. Thus, we initially evaluated the performance of the aforementioned
top-performing SI methods over graph DBs consisting of a large number of graphs. Our

7.1. Summary of Contributions 131

experiments in featuring a single winner were inconclusive (see figure 6.4). In parallel, we
investigated the time and size costs (figure 6.1) related to the constructed index of both the
SI methods and Grapes – the top-performing FTV method in terms of indexing time, query
processing time, scalability limitations and filtering power, as shown in chapter §4 – along
with the filtering power (figure 6.3) achieved from all aforementioned methods. Having seen
that the filtering achieved by Grapes is much higher than that of the SI methods, we set out
to combine the powerful filtering of Grapes, with the fast subgraph isomorphism of the var-
ious SI methods. Subsequently, we studied the overall query processing time of this hybrid
combination of our in use FTV method and the various SI methods (figures 6.6, 6.8 and
6.10). Additionally, taking into consideration that the constructed index of Grapes can have
an elevated cost both in time and size, we study various trade-offs involved in the process
by varying the size of the enumerated features, as discussed in §6.9. Thus, we repeated all
aforementioned experiments and we quantified the indexing time, size, filtering power and
achieved speedups using smaller enumerated features compared to what was initially pro-
posed by the respective authors. Our experiments reveal that the efficiency of this hybrid
FTV-SI combination is not compromised by employing smaller features. In fact, not only
the overall speedups were significantly boosted even with very small feature size, but also
the cost of the constructed index was reduced up to 3 orders of magnitude both in time and
size, while the filtering power remained of high quality and still much better compared to
that of the SI methods.

In chapter §4 and specifically in §4.5.4, we identified significant scalability limitations
on top-performing FTV methods. Specifically, we identified both cases where (i) the con-
structed index was not adequate to secure the execution of query processing in reasonable
time at all times, such as in Grapes in the case of increasing the number of nodes beyond 800
nodes (figures 4.3 and 4.4) and (ii) the index construction was not completed in reasonable
time because of either excessive time or of space restrictions, as discussed in §4.4. Although,
we have not conducted a similar systematic survey in the SI methods, we have identified sim-
ilar scalability limitations on the SI methods, especially because of the straggler queries, that
were identified in chapter §5 and specifically in §5.4. Thus, apart from the aforementioned
contributions, with our work we managed to extend the scalability limitations in various
ways. Specifically, our proposed Ψ-Framework, presented in §5.8, can ameliorate the prob-
lem in the cases that the index could be constructed, but queries could not be answered in
reasonable time by some of the FTV or SI methods. Similar to that, our hybrid FTV-SI com-
bination, as presented in §6.7 can be efficiently used in such cases. In the cases that the index
could not be constructed, our hybrid FTV-SI combination with smaller sizes of enumerated
features is a good option, because the index size and time are significantly reduced whereas
the filtering power remains of good quality, as discussed in §6.9.

7.2. Limitations and Future Work 132

7.2 Limitations and Future Work

Despite the large number of experiments performed, there are some limitations on the
existing work that leave space for improvement on the above proposed solutions for the
subgraph matching problem. We now discuss the limitations and we set the future steps to
follow.

With the conducted experiments in chapter §4, the initial target was to be able to answer
exactly which algorithm to use given any set of parameters, i.e. average number of nodes
and density, number of distinct labels and graphs in the dataset. Instead, in our research
we establish a set of the “sane” default parameters as discussed in §4.3.3 where we vary
only one parameter at a time to examine its effect on the various metrics and algorithms.
Finding the exact algorithm to use for any set of given parameters proved to be impractical
because the dataset workload characteristics are not enough to let us select the best algorithm
to execute. In more detail, we have seen in chapter §5, even different rewritings of a query
– i.e., isomorphic instances of the same query – can lead to different algorithms performing
the “best”.

In chapter §5 and especially in §5.6 and §5.8, our study is limited to the use of 5 different
query rewritings. On top of that, we currently break ties by respecting the order of nodes
on the original queries, as discussed in §5.6, instead of generating all possible combinations
in the case of ties. Thus, additional query rewritings could be introduced, that would intro-
duce new criteria for breaking ties, along with combining existing rewritings in a different
sequence, e.g. IND+ILF instead of ILF+IND that we considered. Finally, in this chapter we
have not considered rewritings of the stored graphs, which given the size of the stored graphs
can be impractical. Additionally a much larger number of ties is expected compared to the
query graphs that would have to be resolved with more complex rewritings.

Experiments in chapter §6 are limited in the use of three real and a synthetic dataset.
Thus, a systematic study, as performed in chapter §4, would be useful, so as (i) to perform
a systematic evaluation of existing SI algorithms and the hybrid FTV-SI method and (ii) to
indicate the scalability limitations.

For the majority of experiments, with few exceptions (see §6.9), we rely on and employ
algorithm’s input parameters as defined by the respective authors, as discussed in §4.3.2.
Taking the experiments we performed in §6.9 into consideration, it is shown that varying
these parameters can significantly affect the algorithms’ performance. Although the sug-
gested input parameters for the various methods are defined by the respective authors, defin-
ing the optimal input parameters, requires deep knowledge of the algorithm, the underlying
implementation and the problem to solve. Thus, it is often hard even for the authors of these
methods to answer what are the optimal parameters to use. The experimentation for finding

7.2. Limitations and Future Work 133

the optimal values to use for every case is highly impractical. Thus, devising a framework
to use that would be able to auto-adjust the optimal values for answering queries in the most
effective way on a specific dataset is left for future work.

Thus, apart from the aforementioned limitations that could be addressed, we propose the
following two ideas for future work:

Combining the benefits of both the hybrid FTV-SI solution and the Ψ-framework

We concluded the previous section of contributions (§7.1) by stating that our proposed
solutions – the hybrid FTV-SI solution and the Ψ-framework – can extend the scalability
limitations of the originally proposed FTV and SI methods. But instead of only applying
these solutions separately, we could further combine them for better results. Specifically, we
have seen that the hybrid FTV-SI solution aims primarily at filtering out graphs that do not
contain the query as an answer rapidly and efficiently. Thus, for the datasets consisting of a
large number of graphs, we initially employ the hybrid FTV-SI solution as it was presented
in §6.7. However, in the verification stage, instead of executing a single SI method against
the original query, we could employ our Ψ-framework as it was presented in §5.8. Such
a combination requires a set of additional experiments to define how the scalability limita-
tions have been extended. Furthermore, in these experiments it is essential to quantify the
additional space required for the parallel executions.

Identifying the right isomorphic query instance and/or right SI algorithm to employ

As we mentioned earlier in chapter §5, our Ψ-framework runs in parallel different iso-
morphic instances of the same query and/or alternative algorithms, with the generated iso-
morphic instances adding only a trivial overhead in the whole process. Although such a
solution provides an easy fix to the problem of straggler-queries, it can have a non-negligible
memory footprint which is proportional to the number of parallel executions that are instan-
tiated. To tackle this problem, we need to identify the right algorithm to execute and/or the
right isomorphic instance of the original query to use. In other words, we need to identify
which queries are difficult for which algorithms and/or which instances of the same query are
difficult for a specific algorithm. To achieve this, we need to identify the characteristics of
the stored graphs and of the queries that lead to difficult instances in the subgraph matching
problem. Then, we could feed these characteristics in a machine learning model that could
predict the right algorithm and/or right isomorphic query to employ. Such a solution would
resolve the problem of the large memory footprint.

BIBLIOGRAPHY 134

Bibliography

[X \

[1] National Cancer Institute - DTP AIDS antiviral screen dataset, http://dtp.nci.nih.gov/
docs/aids/aids data.html.

[2] E. E. Bolton, Y. Wang, P. A. Thiessen, and S. H. Bryant, “Pubchem: integrated plat-
form of small molecules and biological activities,” Annual reports in computational

chemistry, vol. 4, pp. 217–241, 2008.

[3] J. L. et al., “Stanford network analysis project,” https://snap.stanford.edu/data/
loc-gowalla.html, 2010.

[4] Neo4j Team, “Neo4j,” http://www.neo4j.org/.

[5] L. Garulli, “Orientdb,” 2012, http://www.orientdb.org/.

[6] R. G. Michael and S. J. David, Computers and intractability: a guide to the theory of

NP-completeness. San Francisco, LA: Freeman, 1979.

[7] W.-S. Han, J. Lee, M.-D. Pham, and J. X. Yu, “iGraph: a framework for comparisons
of disk-based graph indexing techniques,” PVLDB, vol. 3, no. 1-2, pp. 449–459, 2010.

[8] J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee, “An in-depth comparison of sub-
graph isomorphism algorithms in graph databases,” PVLDB, vol. 6, no. 2, pp. 133–
144, 2012.

[9] F. Katsarou, N. Ntarmos, and P. Triantafillou, “Performance and scalability of indexed
subgraph query processing methods,” PVLDB, vol. 8, no. 12, pp. 1566–1577, 2015.

[10] ——, “Subgraph Querying with Parallel Use of Query Rewritings and Alternative
Algorithms,” in Proc. ACM EDBT, 2017, pp. 25–36.

http://dtp.nci.nih.gov/docs/aids/aids_data.html
http://dtp.nci.nih.gov/docs/aids/aids_data.html
https://snap.stanford.edu/data/loc-gowalla.html
https://snap.stanford.edu/data/loc-gowalla.html
http://www.neo4j.org/
http://www.orientdb.org/

Bibliography 135

[11] R. Giugno, V. Bonnici, N. Bombieri, A. Pulvirenti, A. Ferro, and D. Shasha,
“GRAPES: A software for parallel searching on biological graphs targeting multi-
core architectures,” PloS One, vol. 8, no. 10, p. e76911, 2013.

[12] V. Bonnici, A. Ferro, R. Giugno, A. Pulvirenti, and D. Shasha, “Enhancing graph
database indexing by suffix tree structure,” in Proc. IAPR PRIB. Springer, 2010, pp.
195–203.

[13] F. Katsarou, N. Ntarmos, and P. Triantafillou, “Towards Hybrid Methods for Graph
Pattern Queries,” in Proc. GraphQ Workshop EDBT/ICDT, 2017.

[14] Facebook Graph API, https://developers.facebook.com/docs/graph-api.

[15] C. Vehlow, H. Stehr, M. Winkelmann, J. M. Duarte, L. Petzold, J. Dinse, and
M. Lappe, “Cmview: Interactive contact map visualization and analysis,” Bioinfor-

matics, 2011.

[16] Y. He, et al., “Structure of decay-accelerating factor bound to echovirus 7: a virus-
receptor complex,” Proc. National Academy of Sciences of the United States of Amer-

ica, 2002.

[17] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H. Weissig, I. N.
Shindyalov, and P. E. Bourne, “The protein data bank,” Nucleic acids research, 2000.

[18] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P.
Davis, K. Dolinski, S. S. Dwight, J. T. Eppig et al., “Gene ontology: tool for the
unification of biology,” Nature genetics, vol. 25, no. 1, pp. 25–29, 2000.

[19] C. Zhang, K. Hanspers, A. Kuchinsky, N. Salomonis, D. Xu, and A. R. Pico, “Mosaic:
making biological sense of complex networks,” Bioinformatics, vol. 28, no. 14, pp.
1943–1944, 2012.

[20] Khan, Arijit and Wu, Yinghui, “Graph Pattern Matching Queries – Approximation
and User-Friendliness,” http://wp.sigmod.org/?p=2202.

[21] S. Kijima, Y. Otachi, T. Saitoh, and T. Uno, “Subgraph isomorphism in graph classes,”
Discrete Mathematics, vol. 312, no. 21, pp. 3164–3173, 2012.

[22] P. Heggernes, P. van’t Hof, D. Meister, and Y. Villanger, “Induced subgraph isomor-
phism on proper interval and bipartite permutation graphs,” Theoretical Computer

Science, vol. 562, pp. 252–269, 2015.

[23] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li, “Efficient subgraph matching on billion
node graphs,” PVLDB, vol. 5, no. 9, pp. 788–799, 2012.

https://developers.facebook.com/docs/graph-api
http://wp.sigmod.org/?p=2202

Bibliography 136

[24] H. He and A. K. Singh, “Graphs-at-a-time: query language and access methods for
graph databases,” in Proc. SIGMOD, 2008, pp. 405–418.

[25] H. S. de Andrade and C. L. Sales, “Pattern match query in a large graph database,”
Encontros Universitários da UFC, vol. 2, no. 1, p. 1544, 2009.

[26] G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath, and G. Weikum, “Naga: Search-
ing and ranking knowledge,” in Proc. ICDE, 2008, pp. 953–962.

[27] W. Wu, H. Li, H. Wang, and K. Q. Zhu, “Probase: A probabilistic taxonomy for text
understanding,” in Proc. SIGMOD, 2012, pp. 481–492.

[28] S. Zhang, J. Yang, and W. Jin, “SAPPER: subgraph indexing and approximate match-
ing in large graphs,” PVLDB, vol. 3, no. 1-2, pp. 1185–1194, 2010.

[29] P. Zhao and J. Han, “On graph query optimization in large networks,” PVLDB, vol. 3,
no. 1-2, pp. 340–351, 2010.

[30] L. Lai, L. Qin, X. Lin, and L. Chang, “Scalable subgraph enumeration in mapreduce,”
PVLDB, vol. 8, no. 10, pp. 974–985, 2015.

[31] L. Lai, L. Qin, X. Lin, Y. Zhang, L. Chang, and S. Yang, “Scalable distributed sub-
graph enumeration,” PVLDB, vol. 10, no. 3, pp. 217–228, 2016.

[32] R. Giugno and D. Shasha, “GraphGrep: A fast and universal method for querying
graphs,” in Proc. ICPR, 2002, pp. 112–115.

[33] R. Di Natale, A. Ferro, R. Giugno, M. Mongiovı̀, A. Pulvirenti, and D. Shasha, “Sing:
Subgraph search in non-homogeneous graphs,” BMC Bioinformatics, 2010.

[34] L. Zou, L. Chen, J. X. Yu, and Y. Lu, “A novel spectral coding in a large graph
database,” in Proc. ACM EDBT, 2008, pp. 181–192.

[35] H. Shang, Y. Zhang, X. Lin, and J. X. Yu, “Taming verification hardness: an efficient
algorithm for testing subgraph isomorphism,” PVLDB, vol. 1, no. 1, pp. 364–375,
2008.

[36] H. He and A. K. Singh, “Closure-tree: An index structure for graph queries,” in Proc.

ICDE, 2006, pp. 38–38.

[37] S. Zhang, M. Hu, and J. Yang, “TreePi: A Novel Graph Indexing Method,” in Proc.

ICDE, 2007, pp. 966–975.

[38] J. Cheng, Y. Ke, W. Ng, and A. Lu, “FG-index: towards verification-free query pro-
cessing on graph databases,” in Proc. SIGMOD, 2007, pp. 857–872.

Bibliography 137

[39] D. W. Williams, J. Huan, and W. Wang, “Graph database indexing using structured
graph decomposition,” in Proc. ICDE, 2007, pp. 976–985.

[40] Y. Xie and P. Yu, “CP-Index: on the efficient indexing of large graphs,” in Proc. CIKM,
2011, pp. 1795–1804.

[41] X. Yan, P. S. Yu, and J. Han, “Graph indexing: a frequent structure-based approach,”
in Proc. SIGMOD, 2004, pp. 335–346.

[42] D. Yuan and P. Mitra, “Lindex: a lattice-based index for graph databases,” VLDBJ,
vol. 22, no. 2, pp. 229–252, 2013.

[43] P. Zhao, J. X. Yu, and P. S. Yu, “Graph indexing: tree + delta >= graph,” in PVLDB,
2007, pp. 938–949.

[44] K. Klein, N. Kriege, and P. Mutzel, “CT-index: Fingerprint-based graph indexing
combining cycles and trees,” in Proc. ICDE, 2011, pp. 1115–1126.

[45] A. Ferro, et al., “Graphfind: enhancing graph searching by low support data mining
techniques,” BMC Bioinformatics, vol. 9, no. Suppl 4, p. S10, 2008.

[46] X. Yan and J. Han, “gSpan: Graph-based substructure pattern mining,” in IEEE

ICDM, 2002, pp. 721–724.

[47] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub) graph isomorphism
algorithm for matching large graphs,” IEEE TPAMI, vol. 26, no. 10, pp. 1367–1372,
2004.

[48] B. D. McKay, “Nauty user’s guide (version 2.4),” Computer Science Dept., Australian

National University, pp. 225–239, 2007.

[49] J. R. Ullmann, “An algorithm for subgraph isomorphism,” Journal of the (JACM),
vol. 23, no. 1, pp. 31–42, 1976.

[50] B. D. McKay et al., “Practical graph isomorphism,” 1981.

[51] B. D. McKay and A. Piperno, “Practical graph isomorphism, ii,” Journal of Symbolic

Computation, vol. 60, pp. 94–112, 2014.

[52] S. Zhang, S. Li, and J. Yang, “GADDI: Distance Index Based Subgraph Matching in
Biological Networks,” in Proc. ACM EDBT, 2009, pp. 192–203.

[53] C. R. Rivero and H. M. Jamil, “Efficient and scalable labeled subgraph matching using
sgmatch,” Knowledge and Information Systems, pp. 1–27, 2016.

Bibliography 138

[54] M. Saltz, A. Jain, A. Kothari, A. Fard, J. A. Miller, and L. Ramaswamy, “DualIso:
An algorithm for subgraph pattern matching on very large labeled graphs,” in IEEE

BigData Congress, 2014, pp. 498–505.

[55] W.-S. Han, J. Lee, and J.-H. Lee, “Turboiso: towards ultrafast and robust subgraph
isomorphism search in large graph databases,” in Proc. SIGMOD, 2013, pp. 337–348.

[56] X. Ren and J. Wang, “Exploiting vertex relationships in speeding up subgraph iso-
morphism over large graphs,” PVLDB, vol. 8, no. 5, pp. 617–628, 2015.

[57] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang, “Efficient subgraph matching by
postponing cartesian products,” in Proc. SIGMOD, 2016, pp. 1199–1214.

[58] P. Peng, L. Zou, L. Chen, X. Lin, and D. Zhao, “Answering subgraph queries over
massive disk resident graphs,” WWW, vol. 19, no. 3, pp. 417–448, 2016.

[59] C. McCreesh, “Solving hard subgraph problems in parallel,” Ph.D. dissertation,
School of Computing Science, University of Glasgow, 2017.

[60] J. Cheng, Y. Ke, and W. Ng, “GraphGen,” http://www.cse.ust.hk/graphgen/, 2007.

[61] B. Suo, Z. Li, Q. Chen, and W. Pan, “Towards scalable subgraph pattern matching
over big graphs on mapreduce,” in IEEE International Conference on Parallel and

Distributed Systems (ICPADS), 2016, pp. 1118–1126.

[62] B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph engine on a memory
cloud,” in Proc. ACM SIGMOD, 2013, pp. 505–516.

[63] T. White, Hadoop: The Definitive Guide. O’Reilly Media, 2009.

[64] Y. Tian and J. M. Patel, “Tale: A tool for approximate large graph matching,” in Proc.

ICDE, 2008, pp. 963–972.

[65] X. Yan, F. Zhu, P. S. Yu, and J. Han, “Feature-based similarity search in graph struc-
tures,” ACM TODS, vol. 31, no. 4, pp. 1418–1453, 2006.

[66] D. Pal, P. Rao, V. Slavov, and A. Katib, “Fast processing of graph queries on a large
database of small and medium-sized data graphs,” Journal of Computer and System

Sciences, vol. 82, no. 6, pp. 1112–1143, 2016.

[67] Y. Tian, R. C. Mceachin, C. Santos, J. M. Patel et al., “SAGA: a subgraph matching
tool for biological graphs,” Bioinformatics, vol. 23, no. 2, pp. 232–239, 2007.

[68] X. Zhao, C. Xiao, X. Lin, W. Wang, and Y. Ishikawa, “Efficient processing of graph
similarity queries with edit distance constraints,” VLDBJ, vol. 22, no. 6, pp. 727–752,
2013.

http://www.cse.ust.hk/graphgen/

Bibliography 139

[69] Z. Zeng, A. K. Tung, J. Wang, J. Feng, and L. Zhou, “Comparing stars: On approxi-
mating graph edit distance,” in Proc. VLDB, vol. 2, no. 1, 2009, pp. 25–36.

[70] A. Khan, Y. Wu, C. C. Aggarwal, and X. Yan, “NeMa: Fast graph search with label
similarity,” in Proc. VLDB, vol. 6, no. 3, 2013, pp. 181–192.

[71] H. Shang, X. Lin, Y. Zhang, J. X. Yu, and W. Wang, “Connected substructure similar-
ity search,” in ACM SIGMOD, 2010, pp. 903–914.

[72] A. Khan and Y. Wu, “Graph pattern matching queries – approximation and user-
friendliness,” http://wp.sigmod.org/?p=2202.

[73] D. Yuan, P. Mitra, and C. L. Giles, “Mining and indexing graphs for supergraph
search,” PVLDB, vol. 6, no. 10, pp. 829–840, 2013.

[74] C. Chen, X. Yan, P. S. Yu, J. Han, D.-Q. Zhang, and X. Gu, “Towards graph contain-
ment search and indexing,” in PVLDB, 2007, pp. 926–937.

[75] G. Zhu, X. Lin, W. Zhang, W. Wang, and H. Shang, “Prefindex: an efficient super-
graph containment search technique,” in Scientific and Statistical Database Manage-

ment. Springer, 2010, pp. 360–378.

[76] J. Cheng, Y. Ke, A. W.-C. Fu, and J. X. Yu, “Fast graph query processing with a
low-cost index,” VLDBJ, vol. 20, no. 4, pp. 521–539, 2011.

[77] J. Wang, N. Ntarmos, and P. Triantafillou, “Indexing query graphs to speedup graph
query processing,” in Proc. ACM EDBT, 2016, pp. 41–52.

[78] ——, “GraphCache: A Caching System for Graph Queries,” in Proc. ACM EDBT,
2017, pp. 13–24.

[79] ——, “Ensuring consistency in graph cache for graph-pattern queries,” in Proc.

GraphQ Workshop EDBT/ICDT, 2017.

[80] M. Zhou, J. Yu, Y. Liu, Q. Dai, and L. Guo, “PatternTreeISO: A Pattern Graph Corre-
lation Framework for Accelerating Subgraph Isomorphism over Massive Graphs,” in
Proc. CIKM, 2016.

[81] X. Ren and J. Wang, “Multi-query optimization for subgraph isomorphism search,”
PVLDB, vol. 10, no. 3, pp. 121–132, 2016.

[82] W. Lin, X. Xiao, J. Cheng, and S. S. Bhowmick, “Efficient algorithms for generalized
subgraph query processing,” in Proc. CIKM, 2012, pp. 325–334.

http://wp.sigmod.org/?p=2202

Bibliography 140

[83] K. Semertzidis and E. Pitoura, “Durable graph pattern queries on historical graphs,”
in Proc. ICDE, 2016.

[84] A. Inokuchi, T. Washio, and H. Motoda, “An apriori-based algorithm for mining fre-
quent substructures from graph data,” in Principles of Data Mining and Knowledge

Discovery. Springer, 2000, pp. 13–23.

[85] M. Kuramochi and G. Karypis, “An efficient algorithm for discovering frequent sub-
graphs,” IEEE TKDE, vol. 16, no. 9, pp. 1038–1051, 2004.

[86] J. Huan, W. Wang, J. Prins, and J. Yang, “SPIN: mining maximal frequent subgraphs
from graph databases,” in ACM SIGKDD, 2004, pp. 581–586.

[87] S. Nijssen and J. N. Kok, “A Quickstart in frequent structure mining can make a
difference,” in ACM SIGKDD, 2004, pp. 647–652.

[88] C. C. Aggarwal and H. Wang, “Graph data management and mining: A survey of
algorithms and applications,” in Managing and mining graph data. Springer, 2010,
pp. 13–68.

[89] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis, “GraMi: Frequent Sub-
graph and Pattern Mining in a Single Large Graph,” PVLDB, vol. 7, no. 7, 2014.

[90] Y. Chi, Y. Yang, and R. R. Muntz, “Canonical forms for labelled trees and their ap-
plications in frequent subtree mining,” Knowledge and Information Systems, vol. 8,
no. 2, pp. 203–234, 2005.

[91] T. A. Junttila and P. Kaski, “Engineering an efficient canonical labeling tool for large
and sparse graphs.” in SIAM ALENEX, vol. 7, 2007, pp. 135–149.

[92] A. Piperno, “Search space contraction in canonical labeling of graphs,” Elsevier, 2008.

[93] R. O. Obe and L. S. Hsu, PostgreSQL: Up and Running: A Practical Introduction to

the Advanced Open Source Database. O’Reilly Media, Inc., 2014.

[94] K. Chodorow and M. Dirolf, MongoDB: The Definitive Guide. O’Reilly Media, Inc.,
2010.

[95] I. Robinson, J. Webber, and E. Eifrem, Graph Databases. O’ Reilly, 2013.

[96] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database system concepts. McGraw-
Hill New York, 2002, vol. 4.

[97] M. A. Rodriguez and P. Neubauer, “The Graph Traversal Pattern.” chapter in Graph

Data Management: Techniques and Applications, 2011.

Bibliography 141

[98] S. Jouili and V. Vansteenberghe, “An empirical comparison of graph databases,” in
International Conference on Social Computing (SocialCom). IEEE, 2013, pp. 708–
715.

[99] J. J. Miller, “Graph Database Applications and Concepts with Neo4j,” Proc. of South-

ern Association for Information Systems, 2013.

[100] Chris Gioran, “Digital Stain,” http://digitalstain.blogspot.co.uk/.

[101] M. Broecheler, D. LaRocque, M. A. Rodriguez, S. Mallette, and P. Yaskevich, “Titan,”
2012, http://titan.thinkaurelius.com/.

[102] R. Pointer, N. Kallen, E. Ceaser, and J. Kalucki, “Introducing flockDB,” 2010.

[103] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Cza-
jkowski, “Pregel: a system for large-scale graph processing,” in Proc. ACM SIGMOD,
2010, pp. 135–146.

[104] Sakr, Sherif and Orakzai, Faisal Moeen and Abdelaziz, Ibrahim and Khayyat, Zuhair,
“Apache Giraph,” https://giraph.apache.org/.

[105] M. Sarwat, S. Elnikety, Y. He, and G. Kliot, “Horton: Online query execution engine
for large distributed graphs,” in Proc. IEEE ICDE, 2012, pp. 1289–1292.

[106] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, and C. Guestrin, “Graphlab: A distributed
framework for machine learning in the cloud,” arXiv preprint arXiv:1107.0922, 2011.

[107] A. Kyrola, G. E. Blelloch, and C. Guestrin, “GraphChi: Large-scale graph computa-
tion on just a pc,” USENIX, 2012.

[108] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model for graph
mining,” in SIAM International Conference on Data Mining, 2004, pp. 442–446.

[109] T. P. Peixoto, “The graph-tool python library,” figshare, 2014. [Online]. Available:
https://graph-tool.skewed.de/

[110] G. van Rossum, “Python,” https://www.python.org/.

[111] Siek, Jeremy and Lee, Lie-Quan and Lumsdaine, Andrew, “boost,” http://www.boost.
org/.

[112] V. Batagelj, “Stanford network analysis project,” http://snap.stanford.edu/, 2004.

[113] S. University, “Pajek,” http://vlado.fmf.uni-lj.si/pub/networks/pajek/, 2011.

http://digitalstain.blogspot.co.uk/
http://titan.thinkaurelius.com/
https://giraph.apache.org/
https://graph-tool.skewed.de/
https://www.python.org/
http://www.boost.org/
http://www.boost.org/
http://snap.stanford.edu/
http://vlado.fmf.uni-lj.si/pub/networks/pajek/

Bibliography 142

[114] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “PEGASUS: A peta-scale graph mining
system implementation and observations,” in Proc. IEEE ICDM, 2009, pp. 229–238.

[115] , “Apache Hadoop,” http://hadoop.apache.org/.

[116] C. P. Gomes and B. Selman, “Algorithm portfolios,” Artificial Intelligence, vol. 126,
no. 1, pp. 43 – 62, 2001, tradeoffs under Bounded Resources.

[117] B. Archibald, P. Maier, R. Stewart, P. Trinder, and J. De Beule, “Towards generic
scalable parallel combinatorial search,” in Proc. of the International Workshop on

Parallel Symbolic Computation. ACM, 2017, p. 6.

[118] Y. A. Liu and S. D. Stoller, “From recursion to iteration: what are the optimizations?”
ACM Sigplan Notices, vol. 34, no. 11, pp. 73–82, 1999.

[119] A. Suleman, “Parallel programming: When Amdahl’s law is inapplicable,” Future

chips, June, 2011.

http://hadoop.apache.org/

	1 Introduction
	1.1 Graphs and the Subgraph Pattern Querying Problem
	1.1.1 Thesis Statement

	1.2 Research Questions and Contributions
	1.3 Thesis Outline
	1.4 Publications

	2 Related Work & Basic Definitions
	2.1 Graphs and Networks
	2.1.1 Graph Data Models

	2.2 Basic Definitions
	2.3 Subgraph Matching problem
	2.3.1 FTV methods
	2.3.2 SI methods

	2.4 Other types of queries
	2.5 Graph Databases
	2.6 Graph Generators and Graph Visualization
	2.7 Branch and bound paradigm

	3 Experimental Setup
	3.1 Competing algorithms
	3.1.1 Competing FTV methods
	3.1.2 Competing SI methods

	3.2 Datasets
	3.2.1 Graph Generation
	3.2.2 Characteristics of Real and Synthetic Datasets
	3.2.3 Query Workloads

	3.3 Metrics
	3.3.1 Time and Size metrics
	3.3.2 Quantifying the Filtering Power
	3.3.3 Speedup
	3.3.4 WLA and QLA Performance Metrics

	4 Performance and Scalability of Indexed Subgraph Query Processing Methods
	4.1 Introduction
	4.2 Related Work and Contributions
	4.3 The Experimental Framework
	4.3.1 Competing Algorithms
	4.3.2 Setup
	4.3.3 Real and Synthetic Datasets
	4.3.4 Query Workloads

	4.4 Evaluation Results
	4.4.1 Real Datasets
	4.4.2 Synthetic datasets

	4.5 Lessons Learned
	4.5.1 Effect of key dataset/workload characteristics
	4.5.2 Sancta Simplicitas
	4.5.3 Choosing the right index method for user needs
	4.5.4 Scalability limits

	4.6 Conclusions

	5 Subgraph Querying with Parallel Use of Query Rewritings and Alternative Algorithms
	5.1 Introduction
	5.2 Related Work and Contributions
	5.3 Experimental Setup
	5.3.1 Algorithms
	5.3.2 Setup
	5.3.3 Datasets
	5.3.4 Query Workloads
	5.3.5 Performance Metrics

	5.4 Straggler Queries
	5.5 Isomorphic queries
	5.6 Graph query rewriting
	5.7 Algorithm-specific Stragglers
	5.8 The -framework
	5.9 Conclusions

	6 Hybrid Algorithms for Subgraph Pattern Queries in Graph Databases: An Evaluation
	6.1 Introduction
	6.2 Related Work and Contributions
	6.3 Experimental Setup
	6.3.1 Algorithms
	6.3.2 Setup
	6.3.3 Datasets
	6.3.4 Query Workloads

	6.4 Index construction
	6.5 Filtering power
	6.6 Performance of SI methods
	6.7 Evaluating the hybrid FTV-SI method
	6.7.1 Performance Metrics
	6.7.2 Performance Results

	6.8 Reducing filtering time with parallelism
	6.9 Index Time/Size - Filtering Power Tradeoff
	6.10 Conclusions

	7 Conclusion and Future Steps
	7.1 Summary of Contributions
	7.2 Limitations and Future Work

	Bibliography

