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Abstract 

 

Collective movements are ubiquitous in biological systems, occurring at all scales; from 

the sub-organismal movements of groups of cells, to the far-ranging movements of bird flocks and 

herds of large herbivores.  Movement patterns at these vastly different scales often exhibit 

surprisingly similar patterns, suggesting that mathematically similar mechanisms may drive 

collective movements across many systems.  The aims of this study were three-fold. First, to 

develop mechanistic movement models capable of producing the observed wealth of spatial 

patterns. Second, to tailor statistical inference approaches to these models that are capable of 

identifying drivers of collective movement that could be applied to a wide range of study systems.  

Third, to validate the approaches by fitting the mechanistic models to data from diverse biological 

systems. These study systems included two small-scale in vitro cellular systems, involving 

movement of groups of human melanoma cells and Dictyostelium discoideum (slime mould) cells, 

and a third much larger-scale system, involving wildebeest in the Serengeti ecosystem.   

I developed a series of mechanistic movement models, based on advection-diffusion partial 

differential equations and integro-differential equations, that describe changes in the spatio-

temporal distribution of the study population as a consequence of various movement drivers, 

including environmental gradients, environmental depletion, social behaviour, and spatial and 

temporal heterogeneity in the response of the individuals to these drivers.  I also developed a 

number of approaches to statistical inference (comprising both parameter estimation and model 

comparison) for these models that ranged from frequentist, to pseudo-Bayesian, to fully Bayesian.  

These inference approaches also varied in whether they required numerical solutions of the models, 

or whether the need for numerical solutions was bypassed by using gradient matching methods.  

The inference methods were specifically designed to be effective in the face of the many 

difficulties presented by advection-diffusion models, particularly high computational costs and 

instabilities in numerical model solutions, which have previously prevented these models from 

being fitted to data.  It was also necessary for these inference methods to be able to cope with data 

of different qualities; the cellular data provided accurate information on the locations of all 

individuals through time, while the wildebeest data consisted of coarse ordinal abundance 

categories on a spatial grid at monthly intervals. 

 By applying the developed models and inference methods to data from each study system, 

I drew a number of conclusions about the mechanisms driving movement in these systems.  In all 

three systems, for example, there was evidence of a saturating response to an environmental 

gradient in a resource or chemical attractant that the individuals could deplete locally.  I also found 

evidence of temporal dependence in the movement parameters for all systems.  This indicates that 

the simplifying assumption that behaviour is constant, which has been made by many previous 

studies that have modelled movement, is unlikely to be justified.  Differences between the systems 

were also demonstrated, such as overcrowding affecting the movements of melanoma and 

wildebeest, but not Dictyostelium, and wildebeest having a much greater range of perception than 

cells, and thus being able to respond to environmental conditions tens of kilometres away.   

 The toolbox of methods developed in this thesis could be applied to increase understanding 

of the mechanisms underlying collective movement in a wide range of systems.  In their current 

form, these methods are capable of producing very close matches between models and data for our 

simple cell systems, and also produce a relatively good model fit in the more complex wildebeest 

system, where there is, however, still some room for improvement.  While more work is required to 
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make the models generalisable to all taxa, particularly through the addition of memory-driven 

movement, inter-individual differences in behaviour, and more complex social dynamics, the 

advection-diffusion modelling framework is flexible enough for these additional behaviours to be 

incorporated in the future.  A greater understanding of what drives collective movements in 

different systems could allow management of these movements to prevent the collapse of important 

migrations, control pest species, or prevent the spread of cancer. 
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1. Introduction to collective movement 

 Collective movement is widespread at all scales in biological systems; from the sub-

organismal movements of groups of cells in the body during the processes of embryonic 

morphogenesis, wound healing and cancer metastasis (Friedl and Gilmour 2009, Rorth 2009), to 

the movements of herds of large herbivores around whole ecosystems (Fryxell and Sinclair 1988) 

and the bird migrations that traverse continents (Hahn et al. 2009).  Despite the vastly different 

scales at which these movements occur, they exhibit some surprisingly similar patterns.  For 

example, a phase transition from disordered movement to aligned, directional movement as the 

density of interacting individuals increases has been observed in systems ranging from locusts and 

glass prawns (Buhl et al. 2006, Mann et al. 2013), to bacteria and fish tissue cells (Szabó et al. 

2006, Sokolov et al. 2007).  Such similarities in movement behaviour, despite very different social 

and cognitive abilities, beg the question of common causality.  In this introductory chapter, I 

introduce the various types of mechanisms that have been proposed as drivers of collective 

movement, and the methods that have been used to model these mechanisms and infer their 

presence in various biological systems.  I conclude by outlining the aims and structure of this 

thesis. 

  

1.1. Mechanisms driving collective movement 

The precise mechanisms leading to collective movement behaviour may vary from system 

to system, but four broad categories of such mechanisms can be distinguished; environmental 

variability, environmental depletion, interactions between individuals, and memory.  Many systems 

may involve mechanisms from more than one of these categories.  The different mechanisms or 

their relative contributions to the emergent patterns of movement may also change temporally or 

spatially, as has been indicated by many examples of seasonal or state-based movement (Bonner 

1982, Morales et al. 2004, Hopcraft et al. 2014). 

 

1.1.1. Environmental Variability 

Collective movement may emerge as a result of individuals responding in similar ways to 

spatiotemporally varying environments, such that each individual tracks the most favourable 

conditions and thus increases its fitness.  In some ecosystems, certain resources vary predictably in 

time and space along environmental gradients.  For example, in the Serengeti ecosystem, a 

declining rainfall gradient from north to south occurs alongside an opposing gradient of declining 

plant nutritional quality from south to north.  Wildebeest respond to these gradients by following 

the nutritional gradient south for the wet season and then following the rainfall gradient back north 

for the dry season, when conditions in the south deteriorate (Holdo et al. 2009).  Tracking of 

environmental gradients is also observed in some zooplankton species, which move down gradients 

of ultraviolet radiation and predation risk to deeper waters during the day, and then follow the 

gradient in algal food abundance back up the water column at night, when ultraviolet radiation and 

predation risk at the surface are lower (Hansson and Hylander 2009).  Situations like these, where 

the environment varies predictably, and all organisms have a similar response to this variation, 

produce predictable and periodic migratory patterns.  In cases where the spatiotemporal distribution 

of resources varies unpredictably, however, tracking of favourable conditions can lead to nomadic 

movement patterns that are irregular in time and space (Jonzén et al. 2011).  Nomadism is exhibited 
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by a number of bird species in arid environments, where rainfall above a critical level triggers the 

arrival of nomadic birds in an area.  These nomads exploit the temporarily abundant local resources 

to breed before moving on (Dean et al. 2009).  Tracking of environmental gradients is also widely 

observed in cell systems through the process of chemotaxis, which involves cells detecting and 

biasing their direction of movement in response to gradients in certain chemicals known as 

chemoattractants (Insall 2010, Coburn et al. 2013). 

The environment can also drive movement in cases where two essential resources, such as 

breeding sites and foraging sites, are geographically separated (Börger et al. 2011).  In some taxa, 

such as seabirds moving between foraging sites and nesting colonies, this scenario can lead to 

animals making regular commutes (daily, or every few days) over relatively long distances (Dingle 

and Drake 2007).  In other cases, migrations between sites that offer alternative resource types 

occur over much longer time scales.  Minke whales, for example, are capital breeders that build up 

energy reserves during the summer in their northern feeding grounds, before migrating to their less 

productive breeding grounds in equatorial waters during the winter (Christiansen et al. 2013).  

Seasonally utilised sites may be separated by unsuitable habitat, so that following an environmental 

gradient in the favourability of conditions is no longer a viable strategy for reaching the destination.  

Navigation between such sites may instead involve individuals responding to the sun, stars and 

Earth’s magnetic field (Cochran et al. 2004), once cues, such as day length, have informed them 

that the time to switch sites has arrived (Gwinner 1996).    

  

1.1.2. Environmental Depletion 

While, as described in section 1.1.1, organisms may move in response to spatio-temporally 

varying environmental conditions that are generated externally (for example, by weather patterns), 

they may also cause these variations in habitat favourability themselves through local depletion of 

resources.  Depletion-driven movements will be amplified by the presence of conspecifics, since 

multiple individuals exploiting the same resource are more likely to deplete it than a single animal, 

forcing all the individuals to move on.  If there are only a limited number of alternative habitat 

patches to exploit, or if interactions between the individuals occur (see section 1.1.3), these onward 

movements are likely to be collective (Börger et al. 2011).  An example of resource depletion 

driving movement is found in Mormon crickets, which show a greater propensity to move when 

they are protein deprived (Simpson et al. 2006).  There is also evidence that wildebeest in the 

Serengeti move further when at higher densities, perhaps suggesting greater depletion of resources 

by larger concentrations of animals as a factor in their movement behaviour (Thirgood et al. 2004, 

Harris et al. 2009, Hopcraft et al. 2014, 2015).  Local depletion of chemoattractants, leading to the 

creation of detectable chemical gradients, has also been identified as a driver of movement in a 

number of cellular systems.  Gradients in the chemical LPA (lysophosphatidic acid), which can be 

broken down by and is attractive to melanoma cells, for example, were recently discovered in vivo 

around cutaneous tumours (Muinonen-Martin et al. 2014).  It is likely that such gradients are only 

able to develop when the cells reach high enough densities (i.e. when the tumour reaches a large 

enough size), and this may be the reason that the probability of melanoma recurrence or metastasis 

following surgical removal of a tumour has been found to depend heavily on the thickness of the 

tumour removed (Breslow 1970, Owen et al. 2001); the larger the tumour, the stronger the LPA 

gradient around it, and, thus, the greater the drive for cells to migrate out from the tumour and 

cause subsequent metastases.  A similar role of self-generated chemical gradients has been 
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proposed for the migration of the cells of the lateral line primordium during zebrafish embryonic 

development (Donà et al. 2013, Venkiteswaran et al. 2013). 

 

1.1.3. Interactions between individuals 

Environmental variability has the potential to drive organisms seeking the same 

environmental conditions to move collectively in the absence of interactions between the 

individuals, while environmental depletion can drive such movements using just indirect density-

dependent interactions.  However, direct interactions between individuals can also be an important 

component of movement behaviour, with studies indicating that simple attraction, repulsion or 

alignment rules occur between individuals in a wide range of taxa.  In locusts, for example, a 

spontaneous switch from solitary to gregarious behaviour occurs when conditions become 

crowded, leading to scarce resources (Simpson et al. 2001).  Since locusts also become 

cannibalistic under conditions of limited resources (hence the draw of conspecifics as a food 

source), this attraction is coupled with a tendency for individuals to be repelled by any conspecifics 

approaching from behind, and to align their direction of movement with neighbouring individuals, 

in an effort to avoid being bitten, resulting in directional collective movement (Bazazi et al. 2008).  

Attraction and repulsion dynamics have also been inferred for golden shiners, where each fish is 

repulsed by conspecifics that come too close, but attracted to conspecifics that are further away, 

allowing maintenance of an inter-individual distance that is large enough to prevent collisions and 

small enough to produce a cohesive school (Katz et al. 2011).  The combination of these forces of 

attraction and repulsion also leads to the coordinated and aligned movement of the school.  Similar 

short-range repulsion and longer-range attraction has been observed in flocking surf scoters, which 

also exhibit explicit alignment interactions at intermediate distances (Lukeman et al. 2010).  In cell 

systems, movement-inducing interactions can result from the release and receipt of chemical 

signals by the cells, which may be of the same or different types.  For example, breast tumour cells 

release colony-stimulating factor 1, which attracts macrophages, and the macrophages in turn 

release epidermal growth factor, which stimulates movement of the tumour cells, potentially 

facilitating tissue invasion and metastasis (Wyckoff et al. 2004).  Cell-cell interactions may also 

occur through direct contact, as in the case of contact inhibition of locomotion, where moving cells 

that come into contact will collapse the protrusions that they use to produce movement at the site of 

contact, and then move off in a new direction (Mayor and Carmona-Fontaine 2010). 

A commonly observed movement phenomenon in systems of interacting individuals is a 

phase transition from disordered to ordered directional movement as density increases. This 

transition, and the critical density at which it occurs, has been observed under experimental 

conditions in locusts (Buhl et al. 2006), keratocytes (Szabó et al. 2006) and glass prawns (Mann et 

al. 2013).  Sokolov et al. (2007) also observed a shift from individual to collective movement 

behaviour in swimming bacteria, though in this case the transition was more gradual, possibly due 

to random noise in the orientation of individuals.  Simulations from self-propelled particle (SPP) 

models (see section 1.2.2 for a description of this class of models) have indicated that this transition 

to ordered movement can be replicated through simple attraction, repulsion or alignment rules 

between individuals (Vicsek et al. 1995, Buhl et al. 2006, Szabó et al. 2006), like those in the 

systems described in the previous paragraph  This emergence of coordinated directional group 

movement from simple interaction rules at high densities occurs even in the absence of directional 

environmental cues.   
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When a directional environmental cue is present and each individual has some degree of 

error in detecting this cue, SPP models have also indicated that the average ability of an individual 

to accurately follow the most favourable conditions or reach a target location is improved when it 

interacts with its neighbours through attraction and alignment relative to when it navigates without 

such interactions, using only its own flawed assessment of the environment (Grünbaum 1998, 

Codling et al. 2007).  This improved navigation in the presence of interactions occurs as a result of 

an averaging of the individuals’ imperfect directional preferences, an effect known as the ‘many-

wrongs principle’ (Simons 2004).  An experiment by Berdahl et al. (2013) provides evidence of 

this effect in golden shiners, which are more successful in tracking their preferred patches of low 

light level across a tank when in larger groups.  Similarly, shoals of lake whitefish have been found 

to be more responsive than individual fish in their avoidance of a toxic cadmium gradient (McNicol 

et al. 1996).  In cases where certain individuals are better able to determine the appropriate 

direction than others (for example, due to greater age and experience), and the group members are 

able to recognise these differences in ability, then each individual may not be weighted equally in 

the choice of group direction.  An example of this is found in whooping cranes, where the accuracy 

of an individual during migration is dependent on the age of the oldest individual in its flock, but 

not on the individual’s own age, or the group size (Mueller et al. 2013), despite the fact that 

accuracy is expected to increase with group size when individuals are given equal weighting 

(Grünbaum 1998, Codling et al. 2008, Berdahl et al. 2013).  This suggests that the directional 

preference of the flock is dictated by the most experienced individual.  Interactions between 

individuals also play a role in groups reaching consensus decisions on the direction of movement in 

cases where there are two subsets of individuals that have different preferences.  In baboons, it has 

been observed that if the difference in preferred directions is small, the group tends to follow a 

trajectory that is an average of these preferences.  However, if there is a large difference in the 

preferred directions, the baboons will typically choose the direction preferred by the majority or, if 

there is equal support for both directions, will choose one of them at random (Strandburg-Peshkin 

et al. 2015).  These findings for decision-making in baboons agreed with predictions previously 

made by simulations from SPP models (Couzin et al. 2005). 

 

1.1.4. Memory 

 A final driver that is likely to be important in shaping movement patterns is memory.  

Memories may be obtained through experience by an initially naïve individual passing through 

different locations and remembering their quality and position.  Bison, for example, remember the 

location and quality of patches of meadow within forest habitat, and use this knowledge to select 

meadows that they have previously visited and that are of a higher profitability than those they 

have visited in their most recent foraging efforts (Merkle et al. 2014).  In other cases, memories are 

genetic, being passed through generations, and causing individuals to be pre-programmed to move 

to a certain location seasonally, even if they have never previously visited that location.  This is 

observed in some bird species that are able as juveniles to successfully migrate to the correct area 

at the correct time, without guidance from experienced individuals, due to their genetic knowledge 

of the direction in which they should fly and the distance for which they should continue (Helbig 

1996).  Other species may need a combination of genetic and learned memory.  Juvenile whooping 

cranes that had been reintroduced into a location with no experienced adults had to learn their first 

southwards migration by following an ultralight aircraft.  However, the same juvenile cranes were 

then able to initiate their first successful northwards migration independently the following spring, 

suggesting at least some genetic influence (Urbanek et al. 2005, Mueller et al. 2013).  The use of 
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memory to guide movement is expected to be most advantageous in cases where the landscape 

does not change rapidly over time, rendering memories useless, and where the landscape is of 

intermediate complexity, since memories are unnecessary in a homogeneous environment and 

costly to maintain in a highly heterogeneous one (Fagan et al. 2013).  Single cells, unlike 

vertebrates do not have a well-developed brain in which to store memories, so we might not expect 

to observe any influences of learned memory in cellular systems.  Cells do exhibit behaviours that 

could be considered to represent types of memory, however, such as their tendency to persist in 

their direction of travel (i.e. perform a correlated random walk; see section 1.2.1), even in the 

absence of any directional cue (Bosgraaf and Van Haastert 2009).  Another example of cell 

memory occurs during cell differentiation, where a precursor cell exposed to short-term signals 

permanently becomes more specialised, as though it retains a memory of the conditions that caused 

the specialisation (Ajo-Franklin et al. 2007) 

Memories may be retained by an individual for long periods of time.  Genetic memories in 

particular will be retained for generations beyond the lifetime of an organism, but learned 

memories can also lead to persistent behaviours, such as breeding and foraging site fidelity, where 

an individual will return to the same location year after year.  Turtles and salmon, for example, are 

believed to imprint on signatures (such as the magnitude and inclination) of the Earth’s magnetic 

field at their natal sites and then use this imprint to navigate back to this natal site as breeding 

adults years later (Lohmann et al. 2008).  Returning to a site that has proven successful in previous 

years is advantageous in that it prevents unnecessary energy expenditure on searching for new 

sites.  However, if the target site changes in some way, and individuals do not adapt to these 

changes, simply continuing to move to the same location at the same time every year, these 

movements can become maladaptive.  Such failure to alter migratory behaviour has been observed 

in a number of bird species, where populations have been unable to adjust the timing of their 

migration in response to climate change-induced changes in the timing of peak resource abundance 

(Visser and Both 2005).  In other cases, memories are much more short-lived.  Glass prawns, for 

example, remember and may change direction in response to other conspecifics that they 

encountered travelling in the opposite direction, but these memories have a half-life of only around 

one second (Mann et al. 2013). 

 

1.2. Models and inference 

 A wide range of models have been proposed for describing how collective movement 

emerges from the mechanisms described in section 1.1.  Many of these models have been shown to 

produce movement behaviour that is at least qualitatively similar to that observed in real systems, 

and a growing number of studies are also attempting to statistically fit these models to data and use 

model comparison techniques to infer the drivers of movement in these systems.  Here, I introduce 

a selection of movement model classes that have been particularly popular, and which are general 

and flexible enough that they can be applied to different systems. Consequently, I exclude from my 

presentation highly specialised movement models describing, for example, the dynamics of cell 

protrusions (Neilson et al. 2011, Coburn et al. 2013), which may be apt for investigating cell 

movement, but are unsuitable for application to the movement of large mammals.   
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1.2.1. Random walk models 

Random walks are among the most commonly used methods for modelling movement in a 

diverse range of settings, as is evident by their use to describe movements of cells (Hall 1977, 

Tweedy et al. 2016), mice (Blackwell 1997) and various large ungulates (Morales et al. 2004, 

Hopcraft et al. 2014, Langrock et al. 2014), to name but a few.  This popularity results, in part, 

from the way that they intuitively describe movements of individuals through time as a stochastic 

series of steps.  Given that individual-based movement data typically take the form of a series of 

locations at different points in time, between which steps can be inferred, random walk models are 

particularly suited to the analysis of such data.  These models are also very flexible.  At their 

simplest, they can describe Brownian motion (or diffusion), where movement is uncorrelated (the 

direction is not influenced by the direction at past time points) and unbiased (there is no preference 

for a particular direction).  However, animals and cells typically do not move via pure diffusion, 

and a number of extensions to this basic model have been developed that allow description of more 

realistic movement patterns through combined processes of diffusion and drift (or advection) 

(Codling et al. 2008).  A few of these extensions include the correlated random walk (each step 

tends to be in a similar direction to the previous one), the biased random walk (movement is biased 

in a particular direction) (Codling et al. 2008), and the Ornstein-Uhlenbeck process (a form of 

biased random walk where movement is biased towards a particular point, with the strength of 

attraction to this point increasing with distance) (Blackwell 1997).   

Studies using random walks to model movements of large herbivores (Morales et al. 2004, 

Haydon et al. 2008, Hopcraft et al. 2014, Langrock et al. 2014) have described the movement 

between each pair of successive time points in terms of the step length and the turning angle 

relative to the previous step.  These step lengths and turning angles are drawn from specified 

distributions; e.g. gamma or Weibull distribution for step length and von Mises or wrapped Cauchy 

distribution for turning angle (Langrock et al. 2012).  While the various extensions of the basic 

random walk have improved our ability to describe short-term movement patterns, applying a 

single random walk with non-changing step length and turning angle distributions is unlikely to be 

realistic in the long term, since animals tend to change their movement behaviour as they move 

between different habitats and interact with other individuals (Morales et al. 2004).  To address this 

problem, models composed of mixtures of random walks have been developed, where each walk 

within the mixture may have different step length and turning angle distributions, and different 

sources of bias.  These walks each describe an unobserved behavioural state underlying the 

observed movement pattern, e.g. foraging vs. ranging or grouped vs. solitary (Morales et al. 2004, 

Haydon et al. 2008, Langrock et al. 2014).  Individuals can switch between any two behavioural 

states with specified probabilities, described using a transition matrix (Morales et al. 2004, 

Langrock et al. 2014).  Since these changes in behavioural state are likely driven by factors such as 

habitat type or interactions between individuals, the probability of switching can be expressed as a 

function of these factors (e.g. the probability that a migratory animal becomes encamped increases 

with the quality of the habitat) (Morales et al. 2004, Haydon et al. 2008).  Responses to the 

environment and conspecifics can also be introduced through biases in the direction of movement 

(Langrock et al. 2014).  An alternative to imposing a small number of discrete movement states is 

to allow the turning angle and step length distribution parameters to vary continuously with 

environmental variables (Hopcraft et al. 2014).  In addition, realistic individual-level variation in 

movement behaviour can be introduced by allowing individuals to vary in the parameter values 

describing their step lengths, turning angles and responses to environmental factors (Hopcraft et al. 

2014).   
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Several studies have carried out parameter inference and model comparison for random 

walk models using movement data from real systems.  In some cases parameter inference has been 

achieved through likelihood maximisation, with comparison of different candidate model for 

movement being achieved using AIC (Akaike Information Criterion)  (Langrock et al. 2012, 2014).  

AIC, like all information criteria, favours models with a high goodness of fit, while imposing a 

penalty for the number of parameters required to achieve this fit (Akaike 1974).  In other studies, 

Bayesian approaches to model inference based on MCMC (Markov Chain Monte Carlo) algorithms 

have been adopted (Blackwell 1997, Morales et al. 2004, Hopcraft et al. 2014).  Bayesian inference 

has two main advantages: 1. it allows prior information about values of the model parameters to be 

accounted for; 2. by estimating the full posterior probability distributions, it gives a better 

description of the uncertainty around the estimated parameter values.  Model comparison for 

random walk models in a Bayesian framework has been achieved using DIC (Deviance 

Information criterion) (Spiegelhalter et al. 2002, Morales et al. 2004, Hopcraft et al. 2014). 

Random walk models are a potentially very flexible modelling approach.  Social, 

environmental and memory-based drivers can be incorporated through effects on behavioural 

switching, step lengths and turning angles, and biases in direction (movement could for example be 

biased up a local gradient in environmental quality).  However, previous random walk models have 

typically only included one or two of these three movement drivers.  Environmental depletion 

mechanisms have rarely been incorporated into random walk models; I am aware of just one 

example that described cellular movement in response to a gradient in chemoattractant that is self-

generated through depletion, and this model was used for qualitative comparison with data, rather 

than being formally fitted (Tweedy et al. 2016).  Studies that account for potential seasonal changes 

in the parameters of random walk models, and not just state-switching behaviour at short time 

intervals, are also uncommon, though there are some examples: Hopcraft et al. (2014) illustrated 

differences in the movement decisions of wildebeest between their wet and dry season ranges by 

fitting a random walk model to data from each of the two ranges separately.  One limitation of 

random walk models for studying collective movement is that fitting them requires data where the 

movement of the individuals has been followed through time.  If we want to use these models to 

describe a field system involving a large number of interacting individuals, collecting the necessary 

data may be infeasible.  GPS tags, for example, are too expensive to deploy in large numbers 

(Hebblewhite and Haydon 2010), and fitting them to all the individuals in a group would be time 

consuming and highly disruptive.  Large numbers of moving individuals could be recorded 

simultaneously by hovering small, inexpensive drones with video cameras attached over 

collectively moving groups, but flight times for such drones are typically in the region of minutes 

(Anderson and Gaston 2013), which in many cases will not be long enough to give an accurate 

description of the full spectrum of movement behaviour. 

 

1.2.2. Self-propelled particle models 

 Self-propelled particle (SPP) models could technically be considered a sub-class of biased 

random walk models, where the direction of the bias of each individual in a group is informed by 

the position and/or heading of its neighbours.  However, here I consider these models as a separate 

class due to the large volume of collective movement literature that has built up around them, and 

because these models typically consider interactions between individuals that are more complex 

than in the average random walk model, with each individual being able to affect the movement of 

every other individual using a set of rules at every time step.  SPP models are typically described 
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by systems of difference equations, where each individual’s location at a particular time step is 

determined from its position and velocity at the previous time step.  The direction of movement of 

an individual at each time step was described in the original Vicsek model (Vicsek et al. 1995) as 

resulting from an alignment rule, whereby the individual moves in the average direction taken by 

the other individuals within an interaction radius in the previous time step, with the addition of a 

random noise term.  Later models have included additional interaction rules by modelling 

concentric zones of repulsion, alignment and attraction around each individual (Couzin et al. 2002).  

While SPP models have most commonly described an individual’s neighbours as all other 

individuals occurring within these fixed spatial zones, sometimes with an assumption that repulsive 

interactions take precedence to avoid collisions (Couzin et al. 2002, Szabó et al. 2006, Lukeman et 

al. 2010), alternatives, such as the restriction of interactions to a fixed number of nearest 

neighbours have also been developed (Ballerini et al. 2008, Mann 2011, Mann et al. 2013).  Blind 

zones can also be incorporated, so that an individual only responds to individuals within its field of 

vision (Couzin et al. 2002, Lukeman et al. 2010).  Traditionally, SPP models have been Markovian, 

assuming that an individual’s choice of direction is dependent only on information derived from 

individuals encountered during the current time step, but more recently, non-Markovian models 

have been used to incorporate the influence of memories of past neighbour encounters at earlier 

time steps (Mann et al. 2013).  SPP models have also tended to use the simplification that all 

individuals travel at the same constant speed, but following on from the observation that 

interactions between individuals can involve changes in speed, as well as changes in direction 

(Katz et al. 2011), variable speed models have also been considered (Mishra et al. 2012, Berdahl et 

al. 2013).  As mentioned in section 1.1.3, SPP models have been used to demonstrate that simple 

attraction, repulsion and/or alignment dynamics can produce the phase transition from disordered 

to ordered movement that has been observed with increasing density of interacting organisms in a 

wide range of systems (Vicsek et al. 1995, Buhl et al. 2006, Szabó et al. 2006, Sokolov et al. 2007, 

Mann et al. 2013). 

 The effect of an environmental gradient or a remembered location can easily be added to 

an SPP model as an additional bias on the direction of movement.  The direction chosen by an 

individual at a given time point is then a summation of the preferred direction based on the 

gradient/memory, the preferred direction based on interactions with neighbours, and a random 

noise term.  A weighting can also be applied to each directional preference, describing the priority 

that an organism gives each movement cue (Couzin et al. 2005, Codling et al. 2007, Lukeman et al. 

2010).  Alternatively the environmental cue can be assumed to alter the speed of the individual 

(Berdahl et al. 2013).  Simulations from such models have been used to demonstrate the ‘many 

wrongs’ principle (Grünbaum 1998, Codling et al. 2007, Berdahl et al. 2013), to indicate that a 

small number of informed individuals can accurately lead a large group of uninformed individuals 

(Couzin et al. 2005), and to show the different consensus decisions that arise in cases where 

individuals within a group differ in their directional preferences and in the strength of these 

preferences (Couzin et al. 2005, 2011).  Crucially these patterns of group movement behaviour 

predicted from simulations have also been observed in data from lab and field systems (Reebs 

2000, Couzin et al. 2011, Strandburg-Peshkin et al. 2015). 

While simulations from SPP models have shown them to be able to qualitatively reproduce 

the dynamics of group movement behaviour in a wide range of systems, statistical inference has 

rarely been used to fit these models to data, so that the validity of the proposed underlying 

interaction mechanisms has not been fully tested.  A small number of studies, however, have begun 

to tackle this problem.  Lukeman et al. (2010) fitted a subset of the parameters of a set of candidate 

SPP models for describing the behaviour of surf scoter flocks using an optimisation approach.  This 
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approach minimised the difference between characteristic functions calculated both from the data 

and from simulations from a particular model with a given parameter set.  Mann et al. (2013) 

carried out model selection to identify the social interaction mechanisms underlying changes in the 

direction of glass prawns moving clockwise or anti-clockwise around a ring-shaped arena.  In this 

case, a Bayesian approach was used to calculate the marginal likelihoods of the data given each 

model; the marginal likelihood is a statistic that inherently accounts for model complexity, and so 

can be used to select a best model.  The most probable parameter values from the posterior were 

then used to simulate from each model and calculate the Kullback-Leibler divergence (Kullback 

and Leibler 1951) of the distribution of the proportion of prawns moving clockwise obtained in the 

simulations from that for the data.  The marginal likelihood and Kullback-Leibler divergence based 

tests both supported the same best model.  A third study involving model inference for SPP models 

is Mann (2011), where a Bayesian approach was used to select the correct model for simulated 

datasets based on Bayes factors.  

The focus of research using SPP models has typically been on the social drivers of 

movement behaviour, with the description of environmental effects being kept at a very basic level, 

often just involving a single fixed gradient or target location.  To my knowledge, the literature does 

not currently contain any SPP models that have included environmental depletion or temporal 

changes in behaviour.  Individual variation in behaviour can be easily introduced to these models, 

but, as a result of their individual-based nature, they share the limitation of random walk models in 

that fitting them requires individual-based data.  Much of the SPP model literature has been 

focussed on finding qualitative agreement between simulation outcomes and behaviour in real 

systems, and there is a need for further development of formal statistical inference for this class of 

models. 

 

1.2.3. Advection-Diffusion Models 

 Advection-diffusion (also known as convection-diffusion) equations are a type of partial 

differential equation (PDE) that describe changes in the density of moving organisms in space and 

time, as a result of the combined processes of advection (directional movement) and diffusion 

(random movement).  They are essentially the deterministic counterpart of random walks; the 

output of a simulation of one or more individuals from a particular random walk is a stochastic 

movement path or set of stochastic movement paths, while the output of a simulation from the 

corresponding advection-diffusion PDE is the density of individuals that we expect to see at every 

point in space and time given the random walk (if we simulated the individuals from the random 

walk many times, we would converge on the distribution from the advection-diffusion model) 

(Moorcroft and Lewis 2006).  Advection-diffusion models can, therefore, incorporate all the 

environmental, social and memory biases on movement direction and speed that we can incorporate 

into random walk models (see section 1.2.1) via their advection and diffusion coefficients (see 

section 2.3 for a mathematical description of these models), making them similarly flexible.  They 

have been widely used to describe movement behaviour in systems of, for example, cells (Keller 

and Segel 1970, Hillen and Painter 2009), coyotes (Moorcroft et al. 2006), caribou (Fortin et al. 

2013) and tuna (Sibert et al. 1999).  

Advection-diffusion models are a population-based modelling approach, and this gives 

them an advantage over the individual-based modelling approaches described in sections 1.2.1-

1.2.2, in that the computational cost of simulating a density surface from these models does not 

increase with group size, while every additional individual in an individual-based approach 
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requires computation of a new movement path.  Introducing individual variation in behaviour, 

however, is less intuitive in a population-based framework, though behavioural differences 

between group members could be incorporated by splitting the modelled population into sub-

populations that are each described by their own advection-diffusion PDE with its own movement 

parameters and mechanisms.  Movement of organisms between these groups, representing changes 

in individual state could also be included in such a framework; an approach that is widely used in 

compartmental models in epidemiology to describe susceptible, infected and recovered groups 

within a population (Ross 1911; Kermack & McKendrick 1927; see Brauer (2008) for a more 

recent introduction).   

The role of environmental depletion in driving collective movement has been considered in 

advection-diffusion models far more often than in the individual-based modelled approaches 

described above.  This has primarily been through studies in the cellular literature.  The popular 

Keller-Segel model, which describes the aggregation of cells in response to a spatial gradient in a 

chemoattractant that they can both release into the environment and deplete from the environment 

through the release of an enzyme that breaks down the attractant (Keller and Segel 1970).  The 

depletion mechanism is incorporated by modelling the concentrations of the chemoattractant and 

the enzyme that breaks it down using additional PDEs.  The enzyme’s equation includes a term 

describing how it increases with cell density, and the chemoattractant’s equation has a term 

describing how it decreases with increasing enzyme concentration. 

Rarely have studies attempted to fit advection-diffusion models to data.  This is, in part, a 

result of the need to solve these models numerically for each parameter set for which we wish to 

calculate a likelihood during parameter optimisation or MCMC sampling.  Numerical integration 

can be computationally costly, and in the case of advection-diffusion equations is also hampered by 

instabilities in the model solution that occur when advection dominates over diffusion and can halt 

inference procedures prematurely (Sibert et al. 1999).  However, the development of methods in 

the statistical literature, such as gradient matching (Macdonald & Husmeier 2015; Xun et al. 2013; 

chapter 5 of this thesis), that bypass the need for numerical solution is promising.  Despite the 

numerical difficulties, a small number of ecological studies have been successful in carrying out 

inference for advection-diffusion models.  A maximum likelihood approach was used to infer the 

parameters of a model describing tuna movement (Sibert et al. 1999).  This model also accounted 

for spatial and temporal variation in the parameters describing the rates of advection and diffusion, 

something that has been relatively rare in other studies.  Inference of the mechanism driving the 

distribution of coyote packs was also achieved using maximum likelihood, with AIC being used to 

select the best candidate model (Moorcroft et al. 2006).  Hierarchical Bayesian approaches to 

inference have also been demonstrated on data describing the invasion of North America by the 

Eurasian collared-dove (Wikle and Hooten 2006, Cressie and Wikle 2011).   

 

1.3. Aims and structure of this thesis 

 The preceding review of the mechanisms producing collective movement and the methods 

used to model them, highlights a number of areas where further work is required.  First, while 

efforts to understand collective movement are increasing in number, the majority of studies have 

not used formal statistical inference (comprising parameter optimisation and model selection) to 

infer movement drivers in real systems, instead just presenting results from simulations or showing 

that models are qualitatively capable of reproducing the patterns observed in a particular system.  

Second, of the models that have been fitted to data, most have only looked at one or two of the 
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potential types of movement drivers described in section 1.1., while I anticipate that many systems, 

particularly in the field, will involve a greater range of these mechanisms.  Third, environmental 

depletion mechanisms have been particularly poorly studied as a movement driver, with few 

studies even simulating from models involving such effects.  Finally, the majority of modelling 

studies have not included temporal or spatial variation in the parameters and mechanisms 

describing movement behaviour (though we recognise the work that has been done to incorporate 

state-switching behaviour into random walk models), despite the fact that, outside of the lab, it is 

likely that most systems are subjected to seasonal conditions that could heavily impact behaviours.  

I aimed to address these issues by: 

1. Developing models that incorporate a wide range of movement mechanisms, including 

environmental depletion, and temporal and spatial variation in movement behaviour  

2. Developing and adapting methods for fitting these models to data  

3. Applying these fitting methods to infer parameter values for a range of candidate models, 

using data from a range of study systems at different scales (see below)  

4. Using model selection to select the most parsimonious model (i.e. the model that best 

balances quality of fit to the data and the number of parameters) for each study system, 

thus inferring the movement mechanisms most likely to be influencing these systems   

The models presented in this thesis are based on advection-diffusion partial differential equations, 

largely because this population-based approach does not require individual-based data for 

inference, and such data were unavailable for one of the study systems considered (wildebeest, see 

below).  Additional reasons for selecting advection-diffusion models included the potential 

computational gains made by not having to compute a movement path for every individual when 

simulating from the model, and also the need for the development of new inference methods for 

these models that can be effective in the face of numerical stability issues. 

 The aims outlined above are addressed with respect to data from three study systems 

(which are described fully in subsequent chapters).  These include two lab-based cellular systems 

involving the slime mould Dictyostelium discoideum and human melanoma.  Dictyostelium is an 

organism that exists as both a single celled amoeba and a multicellular aggregate at different stages 

in its development (Bonner 1982), and that has emerged as a model organism for eukaryotic cell 

movement (Carnell and Insall 2011).  Melanoma is a particularly aggressive cancer as a 

consequence of the rapidity with which it can spread (Balch et al. 2009), making an understanding 

of the mechanisms by which it moves crucial.  The raw data in both of the cellular study systems is 

in the form of time series of microscopy images.  The third system considered is wildebeest 

(Connochaetes taurinus) movement in the Serengeti.  The data for this system takes the form of 

ordinal categorical wildebeest abundance categories, which were recorded on a spatial grid on a 

monthly basis for three years in an effort to observe the changing distribution of animals in space 

and time.  Large field systems are seldom used in studies of collective movement, which 

predominantly focus on simple easily observed lab systems, and I hope to start readdressing this 

bias using this large complex system in which the movement drivers are likely to be many and 

varied.  By fitting the mechanistic movement models developed during this study to data from 

systems at such vastly different scales as single cells and large ungulates, I hope to demonstrate 

that the model framework can be widely applied to understand movement in many systems. 

 A summary of the subsequent chapters in this thesis is as follows.  In chapter 2, I 

developed a series of candidate advection-diffusion models for describing the movement behaviour 

in the two cellular systems.  The mechanisms considered in these models included a response to a 
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chemical gradient that is self-generated by local depletion, attraction to or repulsion from 

conspecifics, and an overcrowding effect.  Time-varying parameters were also considered.  These 

models were fitted to each of the cellular datasets using parameter optimisation-based approaches 

that maximised the likelihood, and model selection using various information criteria was used to 

infer the best model.  In chapter 3, I investigated extensions to the framework for inference of 

cellular movement drivers, including spatial variation in parameter values, and a Bayesian 

approach to model inference.  Chapter 4 describes a method for obtaining smooth density surfaces 

in time and two-dimensional space from large ordinal categorical datasets using GAMs.  This 

method was applied to the wildebeest dataset as a prerequisite for the work carried out in the next 

chapter.  In chapter 5, I extended the modelling framework developed for analysing the cell data, so 

that it could be used for the inference of movement drivers in the wildebeest system.  Parameter 

inference in this chapter involved a gradient matching approach that made use of the wildebeest 

density surface developed in chapter 4.  Finally, I discuss the results and future directions in 

chapter 6. 

  



28 
 

2. Inference of the drivers of collective movement in two cell types: 

Dictyostelium and melanoma 

 

The work presented in this chapter has been published at the following reference: 

Ferguson, E.A., Matthiopoulos, J., Insall, R.H. & Husmeier, D., 2016. Inference of the drivers of 

collective movement in two cell types: Dictyostelium and melanoma. Journal of the Royal Society 

Interface, 13(123), 20160695. Available at: 

http://rsif.royalsocietypublishing.org/content/13/123/20160695  

 

2.1. Introduction 

Collective movements are important in many cell systems, affecting processes of 

considerable medical interest, including wound healing, the immune response and the spread of 

cancers.  Cell movements can have both random (diffusive) and directional components.  

Chemotaxis, the movement of cells up or down spatial gradients in the concentrations of chemicals 

(chemoattractants or chemorepellants), is the process underlying many of the directional cell 

movements that we observe (Majumdar et al. 2014).  The chemical gradients to which cells 

respond can result from chemicals diffusing from a local source, which is typically formed by 

either the cells themselves or nearby cells of a different type releasing chemicals into the 

environment.  An example of local source gradient generation is the suggested mechanism by 

which macrophages promote metastasis of breast tumours; the tumour cells release an attractant for 

macrophages, which chemotax towards the tumour and release an attractant for the tumour cells, 

encouraging their migration away from the primary tumour (Wyckoff et al. 2004).  Chemical 

gradients may also result from local sinks, which are typically caused by cells depleting a chemical 

from their environment.  Recent studies have suggested that cell movements caused by chemotactic 

gradients that cells self-generate by depletion may be common to a wide range of cell types 

(Scherber et al. 2012, Donà et al. 2013, Venkiteswaran et al. 2013, Muinonen-Martin et al. 2014, 

Tweedy et al. 2016).  Cell movements resulting from diffusion and chemotaxis may additionally be 

influenced by density-dependent effects.  If cells are in a tightly-packed environment, then they 

may restrict each other’s abilities to move in response to stimuli.  The process of contact inhibition 

of locomotion, which occurs in many cell types and forces cells to change direction when they 

contact one another (Mayor and Carmona-Fontaine 2010), also has a more pronounced effect at 

high density. 

Identification of the drivers of movement in a particular cell system is a crucial step in 

understanding how we might influence that system through new medical interventions, such as the 

use of chemical-releasing implants to disrupt chemotactic gradients responsible for cancer cell 

migration (Fleming and Saltzman 2002, Deisboeck and Couzin 2009).  However, without any prior 

knowledge, identifying movement drivers experimentally can be a long process.  Mathematical 

models offer a potential solution.  By fitting sets of candidate cell movement models to data from 

cell systems, and then carrying out model comparison to identify the best model, we can get an 

indication of what mechanisms are most likely to be driving movement in those systems.  This 

information could then be used to guide experimental work, to confirm the existence of these 

mechanisms.   

http://rsif.royalsocietypublishing.org/content/13/123/20160695
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Since the development of the Keller-Segel model to describe the aggregation of 

Dictyostelium discoideum cells (Keller and Segel 1970), a large body of work has emerged on the 

modelling of cell movement mechanisms using partial differential equations (PDEs); see Hillen and 

Painter (2009) for a guide to these cellular models.  However, I am unaware of any attempts to 

formally fit these models to cell movement data and infer movement drivers through model 

comparison.  A possible reason for this is the computational expense.  The PDEs involved are of 

the advection-diffusion-reaction type, describing spatio-temporal changes in the distribution of 

cells as a result of random cell movements (diffusion), directional movements through chemotaxis 

(advection) and changes in the numbers of cells through cell division and death (reaction).  PDEs 

with the level of complexity and flexibility required to simulate realistic cell movements typically 

have to be solved and optimised numerically due to a lack of analytical solutions and closed-form 

likelihoods, which incurs high computational costs.  Numerical solution of the models also 

introduces error, and when advection is strong relative to diffusion, this error can manifest as 

oscillations in the modelled cell density.  When severe, these instabilities can cause the model 

solver to fail, halting parameter optimisation prematurely (Sibert et al. 1999).  Inference for these 

models is further complicated by the presence of local likelihood optima that can trap optimisation 

algorithms before the global optimum is reached.  Finally, adequate data on all important variables 

are not always available; cells may be affected by unidentified chemicals in their environment, and 

concentrations of even known important chemicals may be impossible to obtain at sufficiently high 

spatiotemporal resolution.  In such cases, these latent variables must be inferred from the 

information provided by the observed variables.  Overcoming these difficulties in model fitting 

would be an important step towards helping us understand cell movement in a wide range of 

systems. 

In this chapter, I describe six candidate models for cell movement that incorporate various 

biological hypotheses, including chemotaxis up self-generated gradients, repulsive and attractive 

interactions between the cells, and interference effects due to cell crowding.  Temporal changes in 

the weightings given to these different movement drivers were also considered within the models.  

I then develop an inference method that involves the application of maximum likelihood estimation 

to many bootstrap samples of the data and aims to overcome the challenges associated with model 

fitting outlined above.  This method is tested on data from movement assays for cells of two 

different types; Dictyostelium discoideum and human melanoma.  Dictyostelium is an amoeba that 

can exist in both unicellular and multicellular forms (the data used in this study are from cells in the 

unicellular phase), and is frequently used as a model organism for eukaryotic cell movement 

(Carnell and Insall 2011).  When in their solitary form, Dictyostelium cells feed on bacteria, which 

are located by climbing up gradients in bacteria-produced chemicals.  They also respond to 

chemical gradients under conditions of starvation, when they produce waves of the chemoattractant 

cAMP, attracting other nearby cells to form a multicellular aggregate (Bonner 1982).  Melanoma is 

a skin cancer, made particularly aggressive by the rapidity with which it spreads, with the risk of 

metastasis increasing sharply with the thickness of the tumour (Breslow 1970, Balch et al. 2009).  

Given that metastasis is the primary cause of human cancer deaths (Steeg 2006), understanding 

why these cells move is important.  Recent work has suggested that migration of melanoma cells 

away from the primary tumour is driven by the tumour becoming large enough to create a local 

gradient in the chemoattractant lysophosphatidic acid (LPA) through depletion (Muinonen-Martin 

et al. 2014).  Here, I attempt to draw conclusions about the drivers of movement in these cell types, 

under the conditions of certain movement assays, by fitting the candidate models to data from these 

assays and carrying out model comparison.  Note that the major driver of movement in the two 

datasets, a self-generated gradient in attractant, has already been determined experimentally 
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(Muinonen-Martin et al. 2014, Tweedy et al. 2016), so that the ability to identify this key 

mechanism provides a useful test for the inference scheme developed here.  Self-generated 

gradients are important in driving movement in a range of systems (Scherber et al. 2012, Donà et 

al. 2013, Venkiteswaran et al. 2013, Muinonen-Martin et al. 2014, Tweedy et al. 2016), and the 

development of model selection methods that can detect drivers of this type is, therefore, 

particularly desirable.  Other processes that could be playing a more minor role in producing the 

movement patterns observed in the data, such as overcrowding or chemical interactions between 

the cells, have been less exhaustively tested for, and so I also test for these within the set of 

candidate models. 

 

2.2. Data 

Data on the collective movement of Dictyostelium cells during an under-agarose assay 

(Laevsky and Knecht 2001) were collected by Tweedy et al. (2016).  The agarose under which the 

cells moved contained folate, a chemoattractant that the cells can deplete from their environment, at 

an initially homogeneous concentration of 10µM.  Under these conditions, Dictyostelium cells 

create a gradient in folate through depletion, and collectively move up this gradient (Tweedy et al. 

2016). 

A similar dataset on the collective movement of melanoma cells was collected by 

Muinonen-Martin et al. (2014).  Here the migration of the cells was observed between two wells 

connected by a bridge in a direct visualisation chamber (Muinonen-Martin et al. 2010) that was 

homogeneously filled with 10% FBS (foetal bovine serum).  It was previously determined 

experimentally that collective movement in this case is primarily driven by a self-generated 

gradient in LPA, a component of FBS that can be depleted by the melanoma cells (Muinonen-

Martin et al. 2014). 

Dictyostelium cells move more rapidly than melanoma cells, so the Dictyostelium dataset 

covers both a larger spatial distance (~2500μm compared to ~400μm), and a shorter time frame 

(5.5 hours compared to 50 hours) than the melanoma dataset.  Supplementary videos 2.1 and 2.2 

(Appendix A.8) show microscopy images that were captured during these time periods, for 

Dictyostelium and melanoma respectively.  I extracted the cell coordinates manually from these 

images at half-hour time intervals for Dictyostelium and ten-hour intervals for melanoma.  The 

cells were initialised in a linear group along the y-axis in both assays.  Since little variation in 

movement behaviour is expected in the y-direction as a result of this initial distribution, the datasets 

are effectively one-dimensional, and I reduced the data to one spatial dimension (x) for the 

analyses.  One-dimensional logspline density estimates (Kooperberg and Stone 1992, Stone et al. 

1997, Kooperberg 2015) were used to visualise the spread of the cells up the spatial axis for both 

Dictyostelium and melanoma. 

 Spatio-temporal variation in the concentration of the chemoattractants, folate and LPA, 

was unmeasurable during the assays.  Therefore, I treated these concentrations as latent variables 

during model fitting. 
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2.3. Models 

All of the cell movement models considered in this study involve one-dimensional 

advection-diffusion-reaction PDEs of the form:  

 
 

      
 

 
, ,

, , t ,

reaction

C
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a x t C x D t C x t

t x x x


    
    

    
advection diffusion

  (2.1) 

where t is time, x is space and  ,C x t  is cell density.  A positive or negative value of the advection 

coefficient  ,a x t leads to directional movement towards higher or lower x respectively.  The 

diffusion coefficient   0CD t   describes the rate at which cells spread out from high to low 

density areas via randomly directed movements, and the reaction term describes exponential 

growth of the cell population through cell division at rate 0  .   

I investigated six different advection coefficients, each representing a hypothesis for the 

drivers of cell movement.  The diffusion model assumes that cell movement is simply random, 

with no directional movement component, i.e.: 

  , 0a x t    (2.2) 

Directional movement up a spatial gradient in the concentration of an attractant  ,A x t  is 

described in the basic model: 
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,
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a x t t
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  (2.3) 

Here the rate of advective cell movement depends both on the strength of the gradient in  ,A x t  

and the magnitude of the parameter 0  .  The attractant concentration is modelled through a 

second PDE: 
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  (2.4) 

This function allows the cells to create self-generated gradients in  ,A x t  through local depletion 

in proportion with their density and the remaining level of attractant, at a rate determined by 0  .  

The parameter AD  describes the constant rate at which attractant diffuses in the medium. 

While the basic model (equation (2.3)) assumes that the ability of the cells to chemotax up 

a gradient in attractant is influenced only by the steepness of the gradient, it has been shown that 

chemotaxis also depends on the concentration of chemoattractant in a cell’s local environment 

(Tweedy et al. 2013).  This dependency is a result of receptor saturation. Cells detect spatial 

gradients in chemicals through the resulting gradients in the occupancy of their surface receptors 

for those chemicals.  When the background chemoattractant concentration is high, a cell’s receptors 

can become saturated, so that an underlying chemotactic gradient fails to produce a detectable 
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gradient in receptor occupancy, preventing accurate chemotaxis.  In the receptor saturation 

model, I replace the chemoattractant gradient of the basic model (equation (2.3)) with a gradient in 

receptor occupancy, calculated according to Michaelis-Menten kinetics, where dK  is the 

dissociation constant that describes the folate concentration at which half the cells’ folate receptors 

are occupied, as follows: 

    
 

 
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, d
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A x t
t

A x t K
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  (2.5) 

Cell movement may be influenced by attractive or repulsive chemical interactions between 

the cells.  In the receptor saturation and interaction model, I incorporate these behaviours by 

allowing the cells to move directionally in response to gradients in their own density, in addition to 

the gradient in receptor occupancy for  ,A x t : 
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  (2.6) 

Here, a negative   indicates repulsion between the cells and a positive   indicates attraction.  The 

strength of the interaction is reduced at high cell densities through the parameter 0  .  This 

feature is intended to mimic the effect of saturation of the cell receptors for the chemical involved 

in the interaction; at high cell density, higher concentrations of the chemical released by the cells 

are expected, leading to saturation effects that reduce the ability of the cells to detect and migrate in 

response to the conspecific density gradient.  Keller and Segel (1970) previously proposed a 

method for modelling cell interactions, in which the cells respond directly to the interaction 

chemical, the production and decay of which is modelled through an additional PDE.  The more 

indirect approach I use here, where the cells instead respond to their own density gradient, has the 

advantages that it requires fewer new parameters, which simplifies model fitting, and it avoids the 

need to make an assumption about the unknown initial distribution of the interaction chemical. 

 It is expected that the ability of cells to move freely will be reduced at high density, both 

because tight packing of cells means that there is physically less space for them to move into, and 

because more contact between cells occurs at high density, meaning that the effects of contact 

inhibition of locomotion (Mayor and Carmona-Fontaine 2010) will be more evident.  I incorporate 

these effects into the receptor saturation model (equation (2.5)) to produce the receptor saturation 

and overcrowding model: 
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  (2.7) 

The new term in the advection coefficient, which is derived in Hillen and Painter (2009), causes 

advection up the gradient in receptor saturation to slow as cell density approaches its maximum 

value maxC . 

 Finally, the full model combines the effects of receptor saturation, cell interactions and 

overcrowding, with the advection coefficient: 
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  (2.8) 

Note that all of the models presented here are nested within the full model as illustrated in the 

model relational graph of Fig. 2.1. 

Four of the model parameters  , CD ,  and  , which relate to cell advection and 

diffusion rates, and the rate of depletion of chemoattractant, are permitted to vary in time to allow 

for changes in cell behaviour over the course of the assays.  These temporal dependencies were 

introduced by modelling the parameters as polynomial functions of time, which were exponentiated 

for those parameters that were restricted to positive values ( , CD  and ).  The degrees of the 

polynomial functions were selected as described in section 2.5.   

 

 

Figure 2.1: Graph illustrating the relationships between the candidate models.  Wherever two of the 

models (described in section 2.3) occupy adjacent nodes, it is possible for the more complex model (with the 

greater number of parameters) to be reduced to the less complex one by constraining parameters.  The 

number of parameters given for each model is based on a degree of one for the polynomials describing the 

time-varying parameters for melanoma, and a degree of three for Dictyostelium (see Tables A.6.1-2 in 

Appendix A.6).  For each dataset, the models preferred by WAIC, AICc and BIC are indicated with arrows.  
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2.4. Likelihood calculation  

For a given dataset, model and set of parameters θ , I obtained spatiotemporally varying 

functions describing cell density  ,C x t  and attractant concentration  ,A x t  by solving the PDEs 

numerically using the method of lines (Schiesser and Griffiths 2009, Soetaert et al. 2010) (see 

Appendix A.1.1 for details).  For melanoma, there were no cells in the observation region at 0t  , 

so I used initial conditions of  ,0 0C x   and  ,0 1A x   (100% of the initial concentration of the 

attractant (LPA) remaining in the serum).  For Dictyostelium, where some cells had already moved 

into the observation area at 0t   (which was around an hour after the cells were actually 

introduced to the experiment) as a consequence of their having a more rapid movement rate than 

melanoma cells, the initial distribution of cells was obtained by applying logspline density 

estimation (Kooperberg and Stone 1992, Stone et al. 1997, Kooperberg 2015) to the cell location 

data.  I assumed a sigmoidal function for the unobserved initial distribution of the attractant for 

Dictyostelium (folate), the parameters of which were estimated along with the model parameters.  

Increases in the total number of cells due to cell division were relatively minor over the time period 

of interest for Dictyostelium, so I set   to zero.  For melanoma, the value of   was estimated from 

the data as described in Appendix A.1.3. In both datasets, large numbers of cells moved into the 

observation region via the left boundary, and I captured these movements by introducing a cell flux 

across this boundary, which was equal to the rate of change in the number of cells observed in the 

region minus the rate of change in cell numbers due to cell division.  Full details on the choices of 

boundary and initial conditions can be found in Appendix A.1. 

The models were fitted to the cell locations at the T  time points for each dataset.  The raw 

observations  1,..., ny y  were, thus, each referenced by both a spatial location and time, i.e. 

 ,i i iy x t .  The total number of cells observed over the T  time points was given by   
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   (2.9) 

where jn  was the number of cells observed at time point  1,...,j T .   

Following numerical integration of the model, the likelihood of θ  can be calculated for 

each  ,i ix t  as: 
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Division by  
0

,
l

iC x t dx  normalises the cell density to convert it into a probability density in 

space.  By summing over the iy , the total log-likelihood could then be obtained as: 
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However, since the number of cells observed increases over time for both datasets, this standard 

log-likelihood will be biased towards producing a good fit at the end of the time period considered; 

potentially leading to a poorer match between model and data at the beginning of the time period.  

An alternative method that corrects for this bias is to weight each   log | ,i iP tx θ  according to 

the total number of cells observed at the corresponding time point as follows: 

   
1 1
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i i
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 
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In this weighted log-likelihood calculation, the multiplication by n T returns the value to the scale 

of the standard log-likelihood.  Weighted likelihoods have frequently been used to remove bias by 

down-weighting observations believed to be of a lower quality (Hu and Zidek 2002, Agostinelli 

and Greco 2013).  Here, I down-weight observations not because they are of a lower quality, but 

because they provide less new information, given that there are already many other observations at 

the same time point. 

 

2.5. Model inference  

For all models considered, it was necessary to infer both the model parameters and, for 

Dictyostelium, also the parameters of the sigmoidal distribution describing the unknown initial 

distribution of folate (see Appendix A.1.2).  During inference, I used a lower bound of zero for the 

diffusion coefficient AD  of LPA in the melanoma assay, while for Dictyostelium, I used literature 

values for the diffusion coefficient of folate (Kalimuthu and John 2009, Ershad et al. 2013) to 

introduce more restrictive upper and lower bounds of 200μm
2
/s and 150μm

2
/s respectively for AD .  

For both datasets, I set a lower bound for maxC  that was equal to the maximum cell density value 

observed in the logspline density estimates obtained from the cell location data (blue lines in Figs 

2.2-3).  I bounded the parameters dK  and   below by zero, leaving them unbounded above.   The 

parameters describing the initial folate distribution were given upper and lower bounds that 

prevented initial distributions known to be unrealistic (see Appendix A.1.2).  The remaining 

parameters ( ,  ,   and CD ) were modelled as polynomial functions of time, which for  , CD  

and  were exponentiated to bound the functions below by zero.  The coefficients of the 

polynomial functions were unbounded during model inference. 

 It was necessary to select the degrees of the polynomial functions used to describe the 

time-varying parameters.  Ideally, this would be achieved by carrying out inference for each model 

on each dataset using a range of polynomial degrees for each of the parameters, and then applying 

model comparison to select the best combination of polynomial degrees for each model.  However, 

inference for these models is computationally expensive, making such an exhaustive model 

comparison infeasible.  I instead proceeded by fitting the most complex model (the full model, 

equation (2.8)) to each of the two datasets by maximising the weighted log-likelihood (equation 

(2.12); see Appendix A.2 for details on the maximisation procedure), and gradually increasing the 

degree of the polynomials, always keeping the degree the same for all time-varying parameters in 

the model.  I stopped increasing the polynomial degree when there was no further improvement in 

the values of two model comparison statistics; AICc (the Akaike Information Criterion corrected 
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for small sample sizes (Akaike 1974, Hurvich and Tsai 1989)) and BIC (Bayesian Information 

Criterion (Schwarz 1978)).  Once I had used this maximum weighted log-likelihood approach to 

obtain the optimal polynomial degree for the temporal variation of the parameters for each dataset, 

I carried out inference for the full set of six candidate models, using the more computationally 

costly, but more reliable, pseudo-Bayesian approach described below, always using the polynomial 

degree selected based on AICc and BIC.   

The use of a Bayesian approach to obtain a posterior distribution of the parameters 

provides access to WAIC (Widely Applicable Information Criterion (Watanabe 2010)); a recently 

developed model comparison statistic that makes fewer assumptions than those commonly 

calculated from maximum likelihood estimates (including AICc and BIC).  The key improvement 

offered by WAIC is that it allows for the fact that some parameters might be poorly determined by 

the data (for details see Chapter 7 of Gelman et al. (2013)).  However, Markov Chain Monte Carlo 

(MCMC) algorithms, the standard approach to obtaining a sample from the posterior, are 

intrinsically sequential, making them unable to exploit parallel computer clusters.  This sequential 

nature of MCMC presents further problems for advection-diffusion models, as chains can break 

down or become trapped in regions of parameter space where unstable numerical solutions cause 

model solving algorithms to fail (Sibert et al. 1999).  I avoided these issues by using the following 

method to obtain a pseudo-posterior for each of the models and datasets. 

The cell location data were sampled with replacement for each time point involved in the 

fitting process to obtain many bootstrap datasets of the same size as the original ones.  A 

maximisation of the weighted log-likelihood (equation (2.12)) was then carried out for each model 

on each bootstrap dataset using an optimisation algorithm (I found that the quasi-Newton BFGS 

algorithm performed well for the Dictyostelium data, while the Nelder-Mead algorithm was more 

effective at reaching high-likelihood parameter regions for the melanoma data).  By optimising on 

many re-samples of the data, I obtained many parameter sets that could be used as a proxy for a 

sample from the posterior distribution of the parameters, where there is an assumption of uniform 

prior distributions.  This pseudo-posterior is similar to a true posterior in that it describes 

uncertainty in the parameter values, with the variance of the pseudo-posterior being driven by the 

uncertainty in the data, which is introduced through the bootstrapping procedure.  Similar 

approaches to obtaining a pseudo-posterior have previously been applied by other authors; see for 

example Friedman et al. (2000).  Note that this approach to inference is computationally costly, due 

to the need to run many optimisations per model (I used 3,000), but has advantages in being easily 

automated and parallelised.  Additionally, any optimisations that fail due to numerical instability 

can simply be discarded and reinitialised, though, as discussed in section 2.7, this leads to certain 

regions of parameter space being under-represented in the pseudo-posterior distribution. 

As a result of the optimiser becoming trapped on local optima, I found that, for both 

datasets, the pseudo-posteriors obtained by this method tended to be multi-modal.  I removed all 

but the highest-likelihood peak in the pseudo-posteriors, as described in Appendix A.3, prior to 

using the pseudo-posteriors to calculate WAIC as: 
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where m is the number of optimisations,   
1,

,j j j
j n

y x t


   are the cell location data, and iθ  are 

the optimised parameter sets.  To verify that WAIC approximated using a pseudo-posterior 

obtained by bootstrap sampling gives comparable results to the standard WAIC calculated by direct 

sampling from the true posterior, I carried out a test study that used both methods to select the 

order of a polynomial model fitted to independent benchmark data (Appendix A.4).  There was 

very close agreement between the WAIC values obtained using the two methods, suggesting that, 

at least in this simple test case, the pseudo-posterior is practically equivalent to the true posterior.   

 

2.6. Results  

Based on AICc and BIC, I selected a degree of three for the polynomial function describing 

the temporal variation in the parameters for Dictyostelium, and a degree of one for melanoma 

(Tables A.6.1-2 in Appendix A.6), suggesting that the Dictyostelium cells are changing their 

behaviour more rapidly than the melanoma cells.  

 For Dictyostelium, WAIC selects the receptor saturation model as the best model, while, 

for melanoma, the slightly more complex receptor saturation and overcrowding model is preferred 

(Table 2.1).  While there are known issues with AICc and BIC – AICc can select overly complex 

models, while BIC typically selects overly simple models (Ripplinger and Sullivan 2008), and 

neither accounts for parameter uncertainty – that make them less reliable than WAIC, I also 

compared the models based on these simpler statistics to check for consistency (Tables A.6.3-4 in 

Appendix A.6).  The difference between the model selected by WAIC and the models selected by 

AICc and BIC never exceeds a graph distance of one (Fig. 2.1).   

For both datasets, the selected models produce very good visual agreement with the data 

(Figs 2.2-3).  These fits are a vast improvement over those produced by the simple diffusion model 

(Figs A.7.1-2 in Appendix A.7), and also provide a clear improvement over the basic model (Figs 

A.7.3-4 in Appendix A.7); the inclusion of the receptor saturation effect appears to allow the 

models to better replicate the peaked cell front, which the basic model tends to smooth over. 

 

 

Table 2.1: Selection of best model for each cell type based on WAIC.  WAIC values (equation (2.13)) are 

given for the six candidate models for both datasets.  Standard errors (in brackets) were calculated as 

described in Appendix A.5.  The best model for each dataset (i.e. the model with the lowest WAIC value) is 

indicated *. 

Model WAIC 

 Dictyostelium Melanoma 

Diffusion 88367.1 (0.10) 5985.5 (0.03) 

Basic 87970.7 (0.77) 5736.2 (7.70) 

Receptor Saturation 87631.2 (0.39)* 5719.9 (3.10) 

Receptor Saturation & Interaction 87636.8 (0.44) 5743.1 (2.08) 

Receptor Saturation & Overcrowding 87648.0 (0.44) 5712.2 (1.85)* 

Full 87646.3 (0.47) 5739.6 (2.25) 
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Figure 2.2: Dictyostelium data and fitted best model.  A) Image taken 4 hours into the Dictyostelium cell 

movement assay (see J for corresponding cell density estimate).  B-M) Cell distributions obtained every half 

hour using logspline density estimation (Kooperberg and Stone 1992, Stone et al. 1997, Kooperberg 2015) in 

the x dimension are shown by blue lines, with 95 percentile intervals obtained using 10,000 bootstrap 

samples of the data indicated by blue shaded areas.  Cell distributions produced by the best model (the 

receptor saturation model, Table 2.1) for this dataset, using the optimised parameters from the bootstrap 

optimisation that gave the highest value of the maximum weighted log-likelihood (equation (2.12)), are 

shown by dashed red lines.  The corresponding folate distributions predicted by this model are indicated by 

green dotted lines.  Pink shaded areas show the 95 percentile interval for the modelled cell density, based on 

200 samples from the pseudo-posterior. 
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Figure 2.3: Melanoma data and fitted best model.  A) Image taken 40 hours into the melanoma cell 

movement assay (see E for corresponding cell density estimate).  B-M) Cell distributions obtained every 10 

hours using logspline density estimation (Kooperberg and Stone 1992, Stone et al. 1997, Kooperberg 2015) 

in the x dimension are shown by blue lines, with 95 percentile intervals obtained using 10,000 bootstrap 

samples of the data indicated by blue shaded areas.  Cell distributions produced by the best model (the 

receptor saturation and overcrowding model, Table 2.2) for this dataset, using the optimised parameters from 

the bootstrap optimisation that gave the highest value of the maximum weighted log-likelihood (equation 

(2.12)), are shown by dashed red lines.  The corresponding LPA distributions predicted by this model are 

indicated by green dotted lines.  Pink shaded areas show the 95 percentile interval for the modelled cell 

density, based on 200 samples from the pseudo-posterior. 

 

 

 For Dictyostelium, the diffusion rate of the cells, DC, is estimated to first increase with time 

and then to decline again towards the end of the time period (Fig. 2.4A).  The responsiveness of the 

Dictyostelium cells to the folate gradient, α, tends to increase over time (Fig. 2.4B), and the rate at 

which the cells deplete folate, γ, shows no clear trend (Fig. 2.4C).  To investigate the importance of 

the temporal variation in each of these parameters in improving the fit of the selected model, I 

refitted the model multiple times by maximum weighted log-likelihood (see Appendix A.2), 

gradually replacing the time-varying parameters with constants, and comparing these simplified 

models based on AICc and BIC (Table A.6.5 in Appendix A.6).  I found that BIC selects only α 

and DC to be time-varying parameters, suggesting that γ can be left time-invariant. The difference 

in AICc score between the model with all three time-varying parameters and the model with time-

invariant γ is small. These findings are consistent with the trends in Fig. 2.4. 
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Figure 2.4: Time-varying parameters for the best Dictyostelium model (the receptor saturation model, 

Table 2.1).  Lines show the mean of the pseudo-posterior obtained by many optimisations of the weighted 

log-likelihood (equation (2.12)) on bootstrap samples of the data.  Shaded areas indicate 95 and 66 percentile 

intervals obtained from 200 samples from the pseudo-posterior. 

 

 

Carrying out a similar model selection for melanoma (Table A.6.6 in Appendix A.6), both 

AICc and BIC consistently suggest that the time dependence of DC and γ can be removed, and that 

α should be retained as the only time-varying parameter.  A plot of the time dependence of α is 

given in Fig. 2.5, which shows a monotonically decreasing trend.  There is a large amount of 

uncertainty in the value of α, particularly at the beginning of the time series.  However, as was 

suggested by the AICc and BIC results (Table A.6.6), making α time invariant leads to a visible 

reduction in the quality of the fit of the model to the data (compare Fig. 2.3 and Fig. A.7.5). 

 

 

 

Figure 2.5: Temporal variation in α for the best melanoma model (the receptor saturation and 

overcrowding model, Table 2.1), based on the mean of the pseudo-posterior obtained by many optimisations 

of the weighted log-likelihood (equation (2.12)) on bootstrap samples of the data.  The shaded area indicates 

the 66 percentile interval obtained from 200 samples from the pseudo-posterior. 
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2.7. Discussion  

Despite several decades of work developing mathematical models for collective cell 

movement, surprisingly little has been done to confront these models with data. Recent 

developments in both microscopy techniques and computer-intensive statistics are gradually 

removing the obstacles in this area.  Here, I have begun exploring the technical challenges 

associated with carrying out statistical inference (comprising both parameter estimation and model 

selection) for PDE models using microscopy data on collective cell movement.  

The novel inference method presented here, which involves running independent parameter 

optimisations on many bootstrap replicates of the data, was motivated by Friedman et al. (2000), 

where it was referred to as a “poor man’s” approximation of the posterior distribution.  In 

comparison to MCMC, this bootstrapping approach is easily automated, and can be parallelised to 

spread the high computational cost over many processors.  By generating a pseudo-posterior 

distribution, the bootstrapping approach also allows computation of WAIC, which accounts for 

parameters that are poorly determined when penalising model complexity, making it a more 

powerful and reliable model comparison statistic than AICc and BIC.  This reduced penalty for 

poorly-defined parameters may be why, in the melanoma case, WAIC selects a more complex 

model than AICc and BIC (Fig. 2.1)).  I showed in a test study that obtaining WAIC from a 

pseudo-posterior can give good correspondence with the standard WAIC calculated by sampling 

from the true posterior (Appendix A.4).  This test study involved a polynomial regression problem, 

where the goal was to identify the optimal degree of a polynomial describing the relationship 

between two variables using model comparison.  The polynomial models considered in the test 

study had numbers of estimated parameters ranging from 2-10, which is comparable to the cell 

movement models considered in this chapter (see Fig.2.1).  However, despite this similar model 

complexity, it is possible that the complexity of the likelihood surfaces differs between this test 

study and the cell movement study.  If the likelihood surfaces in the cell movement study were less 

smooth and had more local optima than occurred in the test study, then more of the parameter 

optimisations could have become trapped on these local optima.  This would have led to the shapes 

of the pseudo-posteriors being different to those of the true posteriors, making a WAIC comparison 

based on these pseudo-posteriors less reliable.  Further testing of the bootstrapping method on 

problems known to produce complex likelihood surfaces is, therefore, required to determine how 

robust the approach is under these conditions.  It should be noted that, in the test study, AICc and 

BIC based approaches were just as accurate in selecting the correct model as WAIC calculated 

from the pseudo-posterior (Table A.4.1), so that the more computationally expensive and non-

standard bootstrapping approach was unnecessary.  However, given that in the melanoma 

movement study WAIC estimated through bootstrapping selected a different model to that 

identified by AICc and BIC (Fig. 2.1), it could be argued that, assuming the WAIC estimate is a 

good representation of the true value, this represents a case in which the extra work to obtain an 

estimate of WAIC was valuable.  

An issue arose during fitting of the cell movement models that could have led to a certain 

distortion in the approximations of the posterior distributions.  This was that some optimisations 

failed due to instability in the numerical model solution at certain parameter combinations, which 

could have meant that certain areas of parameter space were under-represented.  These numerical 

instabilities are a known issue for advection-diffusion models that become evident when the Péclet 

number (the ratio of the advection coefficient to the diffusion coefficient, multiplied by the box 

length used when discretising the PDE in space during numerical solution (Soetaert and Herman 
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2009)) exceeds one.  The pseudo-posteriors, therefore, are limited to those regions where the 

numerical solutions of the models are relatively stable, and this may have led to them being 

different to the pseudo-posteriors that would have been obtained with accurate analytical solutions.  

If the method were to be applied in a case where the majority of the posterior probability density 

was located in an unstable region of parameter space, the majority of optimisations would fail.  As 

a result, it may be computationally infeasible to obtain sufficient optimised parameter sets, and the 

resulting parameter estimates would be highly inaccurate anyway.  In such cases, methods for 

fitting differential equations that bypass the need for numerical solution may be the only option 

(Macdonald & Husmeier 2015; Xun et al. 2013; see also chapter 5 of this thesis). 

A further potential problem with the inference methodology outlined in this chapter lies in 

the application of bootstrapping to a dataset where the points (cells) may be interacting with one 

another.  Bootstrapping leads to some individuals appearing multiple times in a bootstrap sample at 

a particular time point, while other individuals are omitted from the sample entirely.  Since this 

leads to changes in the cell density at each point in space relative to the original data, and 

individuals in the models that include cell interactions are responding to this rearranged density, the 

shape of the posterior distributions of the parameters associated with cell interactions could be 

affected.  This, in turn, could lead to a wrong conclusion being drawn as to whether cell 

interactions do or do not affect movement behaviour in the system in question.  Simulation studies 

to test whether bootstrapping affects our ability to determine the correct model in cases where cell 

interactions are or are not present would be a useful avenue for future work. 

The decision to model cell movement in one spatial dimension, rather than two, could also 

have influenced the inference results.  This choice was made in order to make the computational 

cost of solving the PDEs numerically during inference feasible, and was justified on the basis that 

the cells began the experiment in linear group lying parallel to the y-axis, limiting the amount of 

variation in the cell distribution along this axis.  However, it is acknowledged that there was some 

variation in how quickly the cell fronts advanced at different points in y, as can be observed in both 

Fig. 2.2A and Fig. 2.3A.  This could have resulted from the initial cell density not being exactly 

constant in y, which would have led to variation in the rate of development of the chemoattractant 

gradient through depletion, and, therefore, variation in the rate at which the cells moved in response 

to this gradient.  As a consequence of the slight y-variation in the rate of progression of the cell 

front along x, collapsing the data onto the single x-dimension is likely to have resulted in a cell 

front that appears broader and less sharp than that that would have been observed if the data from a 

narrower window in y were considered.  This distortion of the cell distribution when the cell data 

are reduced to one dimension may have had an influence on the parameter values estimated.  The 

appearance of a broader cell front than was actually present may, for example, have led to 

overestimation of the diffusion coefficient, since increased diffusion leads to the cells spreading out 

more. 

In addition to these specific limitations, I acknowledge that statistical methods, on their 

own, are not able to identify a model with absolute certainty, as has been discussed, for example, in 

Burnham and Anderson (2002).  This is a consequence of both sampling uncertainty, and the 

reliance of these methods on heuristic approximations (as discussed in the previous paragraph, or in 

Appendix A.2).  However, statistical methods can identify those models that are most likely given 

current data, filtering out those that are unlikely to be correct, and thus guiding future targeted 

experimental work to confirm the statistical findings.  This makes model inference a useful tool, as 

narrowing down hypotheses using experiments alone is often made infeasible by the number and 

complexity of these hypotheses, and the cost of such experiments.  The reliability of the novel 
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statistical procedures used here has been critically assessed in two ways.  First, I compared the 

model selection scheme, based on WAIC estimated from the pseudo-posterior, with two established 

asymptotic model selection criteria (AICc and BIC), and found that the models selected by these 

different statistics are never separated by a graph distance of more than one.  This agreement 

between statistics is reassuring; WAIC is expected to provide a slight improvement on, but not a 

complete deviation from, the asymptotic results.  Second, while complete a priori knowledge of the 

processes affecting cell movement in the two datasets is lacking, partial knowledge with which to 

validate the statistical results is available, as discussed below.  

Through model inference and comparison, I have drawn a number of conclusions about the 

drivers of collective movement in assays for both Dictyostelium and melanoma cells.  In both 

systems, the simple diffusion model is rejected as a description of the observed movement patterns 

in favour of more complex models that incorporate directional movement in response to attractant 

gradients that are self-generated through depletion.  This indication of the importance of the self-

generated gradient mechanism shows agreement with experimental findings for melanoma 

(Muinonen-Martin et al. 2014), and experimental and simulation model results for Dictyostelium 

(Tweedy et al. 2016), that this mechanism is a key driver of the direction of chemotaxis in these 

systems. Confidence in the ability of the inference methods to identify the correct movement 

mechanisms is further increased by the fact that, for both cell types, a substantial improvement of 

the receptor saturation model over the basic model is observed (Table 2.1).  This agrees with the 

widely-accepted concept that connection between extracellular signals and the intracellular 

mechanisms that drive cell migration occurs through cell-surface receptors.  These receptors 

communicate to the inside of the cell by adopting two states, unoccupied and occupied; thus the 

only information seen by the motility machinery is the fractional occupancy of the receptors.  At 

high receptor saturation there can be very little difference in receptor occupancy between the front 

and rear of the cell. Incorporating receptor saturation led to the models being better able to replicate 

the form of the peak in cell density that marks the moving cell front.  The receptor saturation effect 

causes this peak to become more defined, by causing the cells at the very front of the distribution, 

where attractant is most concentrated, to move more slowly than those directly behind, leading to a 

build-up of cells where the faster moving individuals meet the slower front-runners.  The inference 

methods also allowed prediction of how the gradients in folate and LPA concentration, on which no 

directly measured data were available, changed over the course of the assays.  For Dictyostelium, 

the form of the predicted folate distribution gives a relatively close visual match to that measured 

experimentally by Tweedy et al. (2016), using the same assay but with a higher initial folate 

concentration. 

In addition to providing insights into the self-generated gradient mechanism, model 

comparison suggests that an effect of cells blocking each other’s movement when at high density 

(described in those models with an overcrowding effect) was evident in the melanoma data, but not 

in the Dictyostelium data.  The primary reason for this difference may be that the cell densities in 

the Dictyostelium dataset never became high enough for overcrowding effects to exert an effect that 

the inference methods could detect; a visual comparison of images from the two datasets indicates 

that there are less direct contacts between the Dictyostelium cells (Fig. 2.2A) than between the 

melanoma cells (Fig. 2.3A).  It is not completely clear how contact inhibition of locomotion (CIL) 

would be expected to modify cells moving in a self-generated gradient, but this process is known to 

occur in neural crest cells (Scarpa et al. 2015).  Since the melanocytes that mutate into melanoma 

cells develop from neural crest cells (Parichy et al. 2007), it is likely that melanoma cells will also 

exhibit CIL, which may be a contributing factor to the selection of the receptor saturation and 
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overcrowding model for the melanoma dataset.  Previous results simulated from an individual-

based cell movement model suggested that CIL may also play a role in Dictyostelium movements 

in the system investigated here (Tweedy et al. 2016).  The inability to detect this effect in 

Dictyostelium here through a preference for the receptor saturation and overcrowding model over 

the receptor saturation model may be a result of the loss of information incurred in moving from an 

individual-based modelling approach, where the movement path of each cell is known, to the 

population-based approach used in this study, where individual movement paths are not analysed.   

The model comparison found no evidence for direct attractive or repulsive interactions 

between the cells for melanoma; a finding that is backed up by a lack of evidence for such 

conspecific interactions in the literature.  For Dictyostelium, AICc suggests that such interactions 

may be important, but the other two comparison statistics (including the more reliable WAIC) 

place the receptor saturation and interaction model second to the receptor saturation model (Table 

2.1, Table A.6.3 in Appendix A.6).  Thus, while there may be some chemical communication 

between the Dictyostelium cells, its effect on the observed behaviour is not strong enough to be 

reliably detected.  Vegetative Dictyostelium cells are known to secrete and respond to 

chemorepellents, but these appear to act over short time scales (minutes rather than hours) and 

ranges, so that repulsive interactions are not found to be important over the time-frame and 

distances involved in the assay investigated here (Keating and Bonner 1977, Kakebeeke et al. 

1979).  Since Dictyostelium is well known for exhibiting aggregative interactions when exposed to 

prolonged starvation conditions (Bonner 1982), a shift in preference towards the receptor saturation 

and interaction model may have been observed had the cell movement assay been run for a longer 

time period, or used Dictyostelium cells that were at a later stage in their development.  

 I found evidence in both datasets for changes in cell behaviour over time (Figs 2.4-5, Tables 

A.6.1-2 in Appendix A.6).  The diffusion coefficient for Dictyostelium is estimated to be low at the 

beginning of the assay (Fig. 2.4A), which may be a result of most of the cells still being in the 

process of transitioning under the gel at this stage.  During this transition, the cells experience 

resistance from the gel (Laevsky and Knecht 2001), which will reduce the speed of diffusion.  The 

diffusion rate increases once the cells have successfully moved under the gel, but then declines 

again towards the end of the time period, which may be a result of both starvation (Chubb et al. 

2000) and the cells changing their mode of motility from predominantly random movement 

towards chemotaxis, which is strong at the end of the time period (Fig. 2.4B).  The chemotactic 

response of the Dictyostelium cells to the folate gradient increases over time.  Slow initial 

chemotaxis may again be a result of the cells still adapting to move under the gel, while starvation 

may contribute to the subsequent increase in the efficiency of chemotaxis; starvation results in 

increasing polarity of the cells, leading to greater persistence in their direction of movement (Zhang 

et al. 2002).  It is also possible that the decreased random movement and increase in chemotaxis is 

caused by repression of macropinocytosis, which is important for feeding but incompatible with 

chemotaxis (Veltman et al. 2014).  The production of folate deaminase (the enzyme responsible for 

folate depletion) by Dictyostelium has previously been found to increase over time in response to 

folate exposure (Bernstein et al. 1981).  However, I found no evidence for this trend in the rate with 

which the Dictyostelium cells analysed here deplete folate (Fig. 2.4C).  It is possible that this 

increase in enzyme production had already occurred by the time the first image was obtained, over 

an hour after the cells were added to the system, and was, therefore, not detectable in the data.  For 

melanoma, only the chemotactic responsiveness of the cells shows a temporal trend, declining over 

the course of the assay (Fig. 2.5).  This decline could be caused by cells being imperfectly 

maintained during the longer assay conditions, or by endoctyosis and degradation of the LPA 
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receptor (LPAR1), which is a universal behaviour (Donà et al. 2013). 

 To conclude, I have developed an inference methodology that overcomes many of the 

computational difficulties associated with fitting a set of candidate PDE models for cell movement 

to data.  I have applied these methods to data from two systems, one involving Dictyostelium, a 

well-studied model organism in this field, and the other involving human melanoma, a cancer made 

particularly aggressive by its rapid spread.  Through model comparison, I have drawn conclusions 

about the drivers of movement in these systems, many of which are in agreement with previous 

experimental and modelling work, and, thus, offer a validation of the inference methods applied.  

The study systems examined here are relatively simple in comparison with the levels of complexity 

often observed in vivo, where multiple cell types may be interacting within a considerably more 

complex environment.  However, they are nonetheless examples of real cell movement behaviour, 

one of which is of great medical relevance, in which I have been able to detect the presence of self-

generated chemotactic gradients; a movement driver recently found to be important in many 

systems, including in vivo (Scherber et al. 2012, Donà et al. 2013, Venkiteswaran et al. 2013, 

Muinonen-Martin et al. 2014, Tweedy et al. 2016).  This success is an encouraging first step, 

indicating that model inference has the potential to support targeted experimental work in 

increasing our understanding of collective cell movement in a range of systems.  
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3. Bayesian inference of the spatio-temporal mechanisms driving 

collective Dictyostelium movement 

 

The work presented in this chapter has been published at the following reference: 

Ferguson, E.A., Matthiopoulos, J., Insall, R.H. & Husmeier, D., 2017. Statistical inference of the 

mechanisms driving collective cell movement. Journal of the Royal Statistical Society. Series C: 

Applied Statistics, 66(4), pp.869–890. Available at: http://dx.doi.org/10.1111/rssc.12203  

 

3.1. Introduction 

In the preceding chapter, I developed a pseudo-Bayesian approach to inference that 

involved running parameter optimisations on many bootstrap samples of the cell movement data 

being analysed, to produce a pseudo-posterior.  Using the pseudo-posteriors obtained for a set of 

candidate models and a cell movement dataset, I was able to calculate WAIC (widely applicable 

information criterion (Watanabe 2010)) for each model, so as to select the optimal model and draw 

conclusions about the drivers of cell movement in the data.  As discussed in chapter 2 (section 2.5), 

this pseudo-Bayesian approach has an advantage over a frequentist approach based on maximum 

likelihood in that it allows use of WAIC, rather than less reliable model comparison statistics like 

AIC (Akaike 1974) and BIC (Schwarz 1978), which tend to select overly complex and overly 

simple models respectively (Ripplinger and Sullivan 2008).  The many parameter optimisations to 

be run on the bootstrap samples of the data are computationally costly, but they can easily be run in 

parallel to limit the time cost, also providing this pseudo-Bayesian approach an advantage over 

fully Bayesian approaches based on MCMC (Markov chain Monte Carlo) sampling, which are 

inherently sequential and cannot be parallelised.  Despite this, there are two key disadvantages of 

the pseudo-Bayesian approach over fully Bayesian methods.  The first is that it does not allow full 

advantage to be taken of prior information about the parameters; an assumption of uniform prior 

distributions is made, meaning that upper and lower bounds for a parameter can be specified, but 

more nuanced prior distribution information, for example, about the mode or skewness, cannot be 

accommodated.  The second issue with the pseudo-Bayesian approach is that it has thus far 

undergone fairly limited testing to prove that it can adequately approximate the true posterior 

distribution.  I carried out an initial test of the method in Appendix A.4, which showed that WAIC 

values calculated for various polynomial models fitted to a test dataset using samples from the true 

posterior versus using samples from a pseudo-posterior generated through bootstrapping were 

closely correlated, giving some confidence in the validity of the method.  However, further testing 

of the bootstrapping approach on more complex models, with more complex likelihood surfaces, is 

needed before it can be established that the method is comparable to a fully Bayesian approach in 

all cases.   

For the two reasons outlined above, development of a Bayesian method for fitting 

advection-diffusion PDE models for cell movement based on MCMC sampling is desirable.  Such 

methods for fitting PDE models of the spatio-temporal distribution of organisms using a 

hierarchical Bayesian framework have previously been proposed in the literature (Wikle and 

Hooten 2006, Cressie and Wikle 2011), but have typically been applied to much simpler models 

than the cell models with complex advection coefficients describing a range of movement 

http://dx.doi.org/10.1111/rssc.12203
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mechanisms that I outlined in section 2.3.  For these complex advection-diffusion models, which 

must be solved numerically at each step in an MCMC simulation at great computational cost, 

achieving convergence of MCMC chains may not be feasible using traditional approaches.  

One possible influence on cell movement behaviour that was not considered in the models 

described in section 2.3 is that of spatial features in the environment.  The experiments used to 

produce the datasets analysed in chapter 2 were purposefully set up in such a way that there were as 

few spatial effects on movement as possible.  However, the trough in the agarose gel in which the 

Dictyostelium cells began the experiment is one spatial feature that is known to affect movement 

rates, since the cells experience resistance as they transition from the trough to the narrow gap 

under the gel (Laevsky and Knecht 2001).  Similar effects could also have affected the melanoma 

cells as they transitioned between the central bridge and the troughs to the left and right of their 

spatial region.  For this reason spatial variation in the cell movement parameters should be 

considered, in addition to the temporal variation that I have already considered in chapter 2.  

In this chapter, I developed a Bayesian inference scheme that uses the delayed rejection 

adaptive Metropolis algorithm (DRAM; Haario et al. (2006)), with some changes to the standard 

protocol for achieving convergence that allow this inference approach to be feasible in the face of 

computationally costly numerical solutions of complex advection-diffusion models. I applied this 

inference scheme to fit a set of candidate advection-diffusion models for cell movement – including 

the 6 models previously described in section 2.3 and 3 additional models, which in this chapter all 

incorporated both spatial and temporal dependencies in the parameters – to data on the movement 

of Dictyostelium cells.  Model selection was then carried out on the basis of WAIC.  The main 

Dictyostelium dataset analysed in this chapter was collected in a repeat of the experiment used to 

produce the data analysed in Chapter 2 (Tweedy et al. 2016), allowing an assessment of the 

repeatability of the inference results between different groups of cells of the same species. 

 

3.2. Data 

Two datasets on the movement of groups of Dictyostelium cells were utilised in this 

chapter, both collected by Tweedy et al. (2016).  The first of these was obtained using the same 

experimental conditions that produced the Dictyostelium data described in section 2.2, where the 

cells moved under agarose containing folate at an initially homogeneous concentration of 10μM.  

The second dataset was collected using the same procedure, but with agarose containing 0μM 

folate.  The cell movement was imaged under a microscope (Fig. 3.1A) over 5.5 hours for the 

10μM folate dataset and 3.5 hours for the 0μM folate dataset, and I manually extracted the 

coordinates of the cells from the images at half-hourly intervals.  As in chapter 2, I collapsed the 

dataset along the y-axis for the analyses, considering only the x coordinates of the cells (an 

additional analysis supporting this simplifying assumption of one-dimensional movement is 

presented in Appendix B.1).  For the 10μM folate dataset, one-dimensional density estimates 

obtained from the cell location data show a very similar pattern to that observed for the dataset 

collected under the same conditions that I described in chapter 2 (see Fig. 2.2B-M); a gradual 

spread of the group of cells up the spatial axis, and the development of a bimodal cell distribution, 

with one peak indicating the progressing cell front and a second peak indicating the cells’ point of 

origin in a trough cut into the agarose along the far left of the region (Fig. 3.1B-M).  Note, 

however, that the peaked cell front emerges later (at around 3 hours, compared to 2 hours) and is 

less pronounced in the dataset described in this chapter than in the dataset described in chapter 2  



48 
 

 

Figure 3.1: 10μM folate Dictyostelium data.  A) Example image from the Dictyostelium cell movement 

dataset with 10μM of folate in the gel.  This image was obtained 4 hours into the experiment (compare with 

J).  The edge of the trough from which the cells originated is visible at the far left.  B-M) One-dimensional 

logspline density estimates (Stone et al. 1997) showing the cell distribution at half-hour intervals.  95 

percentile intervals were obtained by non-parametric bootstrapping, using 10,000 samples of the data. 
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(compare Fig. 3.1B-M to Fig. 2.2B-M).   There is no pronounced peaked cell front in the 0μM 

folate data, where cells move out from the trough more slowly and in lower densities (Fig. 3.2). 

 

 

 

Figure 3.2: 0μM folate Dictyostelium data.  One-dimensional logspline density estimates (Stone et al. 1997) 

showing the cell distribution at half-hour intervals from the 0μM folate dataset.  95 percentile intervals were 

obtained by non-parametric bootstrapping, using 10,000 samples of the data. 

 

 

3.3. Models 

3.3.1. Model descriptions 

In this chapter, I again consider the diffusion, basic, receptor saturation, receptor saturation 

and interaction, receptor saturation and overcrowding, and full models described in chapter 2 

(section 2.3, equations (2.1-8)), with the cell division rate   assumed to be zero (since cell division 

is anticipated to be only a very minor contributor to changes in cell density over the experimental 

time periods).  I also add three additional models containing further possible combinations of the 



50 
 

movement drivers considered in the advection coefficients of the original set of model.  The names 

and advection coefficients of these new models are as follows: 

- interaction model: 
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- overcrowding model: 
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- interaction and overcrowding model: 
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  (3.3) 

As in chapter 2, the parameters  , CD ,  and   are permitted to vary in time to account 

for changes in cell state.  In this chapter, I also consider spatial variation in the parameters.  Spatial 

effects on the parameters are expected to be limited due to the experimental set-up; the cells are 

moving under a gel, the structure and initial composition of which do not vary throughout the 

majority of the modelled region.  However, the trough cut into the agarose gel in which the cells 

began the experiment is one major spatial feature in the cells’ environment that could affect 

movement rates, as the cells will experience resistance as they move from the trough and under the 

gel (Laevsky and Knecht 2001).  The parameters directly controlling cell movement rates (α, DC, 

and η) are therefore allowed to vary in space in addition to time.  It is anticipated that the depletion 

rate of folate could increase over time as the cells, induced by their exposure to folate, release more 

and more folate deaminase (the enzyme responsible for breaking down folate) into their 

environment (Bernstein et al. 1981).  However, there are no spatial features present in the 

environment of the cells that could influence folate deaminase production (it will be unaffected by 

the presence of the trough for example).  Hence, the folate depletion rate γ (equation (2.4)) is 

allowed to vary in time, but not in space.  Spatial and temporal dependence in η was implemented 

through the description: 

      ,     x t E F x G t      (3.4) 

where E  is a constant, and  F x  and  G t  are polynomials, with zero intercepts, in space and 

time respectively.  For α, DC, and λ, which are constrained to values ≥0, I exponentiated the right 

hand side of equation (3.4); taking DC as an example: 

       , exp     CD x t E F x G t     (3.5) 

Note that for λ, the coefficients of  F x  were set to zero.   The degrees of the polynomials  F x  

and  G t  were chosen through statistical model selection, as described in section 5.   

 I formally adopt the hierarchical Bayesian modelling framework proposed in Cressie & 

Wikle (2011), page 114, and specify probability distributions at three tiers of a basic hierarchy: 

1. Data model: p(data|process,parameters)   
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2. Process model: p(process|parameters)    

3. Parameter model: p(parameters)  

At the bottom level of this hierarchy are the prior distributions of the parameters θ , which I 

describe in section 3.3.2 below.  The time-varying probability distribution  | ,p x t θ , given by the 

solution of the PDEs based on θ , forms the second tier in the hierarchy, and provides the 

likelihood of each observation  ,i ix t  given θ  (equation (2.10)).  The distribution at the top level 

of the hierarchy corresponds to the observational noise model.  I could distinguish between the 

measured cell locations 
ix  and the unknown true cell locations 

ix , with the observational noise 

model: 
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which is a convolution of the previous density with a Gaussian kernel of variance 2 .  To get an 

initial estimate of 2 , I manually extracted the cell locations twice, with a year elapsing between 

the extractions, ensuring independence. The cell locations from one extraction were paired with 

their nearest neighbours from the second extraction.  Fig. 3.3 shows a scatter plot of these paired 

locations, and indicates very good agreement.  A reasonable initial estimate for 2  is: 
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 (3.8) 

where ix  and ix are the two independent localisations of cell i   at time jt
 
.  In this way I find

2 2ˆ 52.29 m  , which implies ˆ 7.23 m  . The spatial discretisation involved in numerically 

solving the partial differential equations in this chapter is based on a spatial grid size of 30 m  for 

the 0μM folate dataset and 100 m  for the 10μM folate dataset.  Consequently, the estimated 

standard deviation of the observational noise is smaller by one or two orders of magnitude than the 

spatial resolution of the numerical discretisation, and accounting for it would have no practical 

effect.  I, therefore, discard the observation model, and assume that i ix x . 

 

3.3.2. Prior distribution 

I was able to obtain literature values for two of the model parameters; the dissociation 

constant Kd (De Wit et al. 1986) and the diffusion coefficient DA (Kalimuthu and John 2009, 

Ershad et al. 2013) of folate.  For DA, where I had confidence in the literature values due to their 

high level of consistency, I specified a rescaled beta prior, with mode positioned at the literature 
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value and cut-offs positioned close to this value.  For Kd, I specified a gamma prior with a mode of 

the literature value and scale chosen such that the probability fell to practically zero within an order 

of magnitude.  These priors enforce the required positivity constraint. 

As for the Dictyostelium dataset produced with 10μM folate in chapter 2, I used knowledge 

of the experimental conditions to set sensible boundaries on the values of the parameters describing 

the initial sigmoidal distribution of folate, δ and ε (equation (A.1.8) in Appendix A.1; Appendix 

B.3), so that the priors for these parameters could be described using rescaled beta distributions. 

For the remaining parameter priors, I used simulations from the models to identify values 

of the parameters beyond which the cell distributions differed substantially from those observed. 

Priors were then defined on the basis of these extreme values as either Gaussian distributions with 

mode zero or exponential distributions, with scales chosen such that the probability of extreme 

values was close to zero. Full details of the priors applied in this study can be found in Appendix 

B.3. 

 

 

 

Figure 3.3: Observation noise.  Two independent extractions ix  and ix of the location of each cell plotted 

against one another.  Note the close agreement between the two values, indicating minimal observation noise. 

 

 

3.4. Bayesian model inference 

As in chapter 2, numerical solution of the PDEs was carried out using the method of lines 

(Schiesser and Griffiths 2009, Soetaert et al. 2010; see Appendix A.1.1 for details) to obtain 

spatiotemporally varying functions describing cell density C(x,t) and attractant concentration A(x,t).  

The initial cell density distribution C(x,0) was obtained for each dataset from the cell locations at 

t=0 using logspline density estimation (Kooperberg and Stone 1992, Stone et al. 1997, Kooperberg 

2015) as before, and, for the 10μM folate dataset, the unknown initial folate distribution was again 

assumed to follow a sigmoidal distribution (Appendix A.1.2).  The form of the boundary conditions 

was also assumed to be the same as before (Appendix A.1.4), with cell fluxes of zero on the right 

boundary of the region and N’(t), the rate of change in the number of cells in the region with time, 



53 
 

on the left boundary; see Appendix B.3 for the form of this left boundary function for the two 

datasets examined in this chapter.  Calculation of the standard and weighted log-likelihoods 

(equations (2.11-12)) of a set of parameters θ given one of the datasets (composed of the locations 

of all the cells in the region of interest at half hourly time points) was achieved using the cell 

density curve C(x,t) as outlined in section 2.4.   

I followed a Bayesian approach to inference and sampled parameters from the posterior 

distribution with MCMC. The key question was what kind of MCMC scheme to use.  I attempted 

inference with standard random walk Metropolis MCMC, but this proved to be too slow in mixing. 

Advanced schemes, such as Hamiltonian Monte Carlo, which require repeated likelihood 

computations along the proposal path, are computationally inefficient, due to the high 

computational costs of the numerical solution of the PDEs.  A reasonable compromise is the 

delayed rejection adaptive Metropolis (DRAM) algorithm, proposed by Haario et al. (2006).  This 

is an MCMC algorithm with a multivariate proposal distribution that is automatically adapted 

to allow for posterior correlations among the parameters and to identify the directions of principal 

change along the ridges in the posterior landscape.  The acceptance rate is improved by the delayed 

rejection part of the algorithm where, instead of immediately advancing the chain following 

rejection of a parameter set, a second proposal is made that depends both on the current position of 

the chain and the rejected parameter set.  Multiple additional proposals can be implemented if 

desired.  I implemented DRAM using the function modMCMC in the FME package (Soetaert and 

Petzoldt 2010) in R (R Core Team 2015), using one delayed rejection step, and updating the 

proposal distribution every 10 iterations. 

The absence of any attractant in the experimental conditions that produced the 0μM folate 

dataset meant that I could immediately rule out all the models described in sections 2.3 and 3.3 that 

included a response to a chemoattractant gradient, leaving only the diffusion model (equations (2.1-

2, 3.5)).  It is, however, acknowledged that, just as for the 10μM folate data, responses to the 

conspecific density gradient and overcrowding could have been present in the 0μM folate data.  I 

discuss the potential consequences of the failure to consider these behaviours in section 3.6.  The 

0μM folate dataset was used to determine the appropriate degrees of the polynomials describing the 

dependencies of the cell diffusion parameter DC on space and time (equation (3.5)).  A possible 

approach is to use RJMCMC (Green 1995). However, convergence is typically slow, which is 

aggravated by the high computational costs of the numerical solution of the PDEs, and the 

sequential nature of the process. An alternative approach is the separate computation of marginal 

likelihoods; see e.g. Friel & Pettitt (2008).  However, in combination with the numerical solution of 

the PDEs, the computational costs are unrealistically high. The method can in principle be 

parallelised, but in practice the parallel processing capacity is already used up by the parallel 

tempering scheme on which the method is based. An alternative approach, which is 

computationally less expensive, and promoted in Gelman et al. (2013), Chapter 7, is WAIC  

(Watanabe 2010), calculated as: 
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where m is the number of parameter sets sampled from the posterior,  , ,1 mθ θ  are these parameter 

sets, and   
1,

,j j j
j n

y x t


  are the cell observations.  This score can be directly computed from the 

MCMC trajectory, and the computation is straightforward to parallelise, as the MCMC trajectories 

for different models can run on different processors simultaneously.   I, therefore, fit versions of the 

diffusion model with polynomial degrees for the dependencies of DC on time and space ranging 

from zero to six, and select the best combination of polynomial degrees as that giving the lowest 

WAIC.  Two chains were run from random parameters for each model variation, and I assessed 

within-chain convergence using the Geweke diagnostic (Geweke 1991) and between-chain 

convergence using the Gelman-Rubin statistic (Gelman and Rubin 1992).   

For the 10μM dataset, I first took the degrees of the polynomials describing spatial and 

temporal dependencies in DC from the 0μM folate dataset, and then carried out a local readjustment 

of these degrees using the diffusion model applied to this new dataset (see Appendix B.5 for 

details).  I then ran MCMC simulations for the remaining eight candidate models using the 10µM 

folate data.  To keep the approach computationally feasible, I used the same polynomial degrees in 

space and time as were selected for DC using the diffusion model for all four of the parameters with 

spatial and temporal dependencies (α, η, γ and DC) in the other more complex models.   

Note that the advection terms entering all models other than the diffusion model are 

complex nonlinear functions that model the processes of cell-cell interaction, cell-molecule 

interaction, receptor saturation, etc. This has two consequences that affect MCMC convergence: (1) 

the additional nonlinear complexity changes the topology of the log-likelihood, leading to a higher 

degree of multi-modality, and (2) the system of coupled nonlinear differential equations is stiff, 

leading to a substantial reduction in the numerical integration step size (for numerical stabilisation).  

The second aspect is particularly dramatic. I found that by including the advection term, the 

numerical solution of the differential equations slowed down by a whole order of magnitude as a 

mere consequence of the step size adjustment. Since the numerical solution of the differential 

equations is required in every step of the MCMC simulation, the impact on the overall runtime is 

substantial: for the models other than the diffusion model, no indication of convergence was found 

despite a month of run time.   

With the computational resources available, I could typically carry out 100,000 MCMC 

steps per week for the diffusion-only model, but only 10,000 MCMC steps per week for many of 

the more complex models with the nonlinear advection terms included. To obtain a reasonable 

degree of convergence, quantified in terms of the Gelman-Rubin statistic obtained from 

independent simulations started from hyperdispersed starting points, I would have required far in 

excess of 100,000 MCMC steps for the models with the advection term included, which was 

computationally infeasible. 

To deal with this problem, I adopted the following approximation. I started with repeated 

maximisations of the log-likelihood (more accurately: the log unnormalised posterior), to obtain a 

good approximation of the MAP (maximum a posteriori parameter configuration). This exploits the 

fact that optimisation is parallelisable, and that approximating the MAP by the best local optimum 

from several independent initialisations is common practice in complex systems science. I then 

started two independent MCMC simulations of a minimum 80,000 MCMC steps from the MAP, 

and checked for convergence based on consistency of the WAIC scores obtained from two sections 

(the middle and end thirds of the MCMC chains, discarding the first third of steps as burn-in) from 

two independent MCMC runs (hence giving 4 WAIC scores overall). In this way, I restricted the 
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exploration of the configuration space to the area around the MAP. The justification of this 

approach is discussed in section 3.6, and a test of the performance of the approach on simulated 

data is provided in Appendix B.4.  I repeated this procedure twice, using both the standard 

(equation (2.11)) and weighted (equation (2.12)) log-likelihoods. 

 

3.5. Results 

 WAIC values were obtained for fits of the diffusion model to the 0μM folate dataset with 

different combinations of polynomial orders for the dependencies of the diffusion rate on space and 

time (equation (3.5)).  I found that a polynomial degree of two in space and four in time was 

associated with the smallest WAIC values, both for the standard likelihood (equation (2.11); Table 

B.5.1) and the weighted likelihood (equation (2.12); supplementary Table B.5.2).  The cell 

distributions produced by this model show good agreement with those estimated directly from the 

data (Fig. 3.4).  The patterns of change in cell diffusion in time and space predicted by this model 

are illustrated in Fig. 3.5 (see also Fig. B.6.1 in Appendix B.6).  Cell diffusion is slowest at the 

beginning and end of the time period of interest, with two peaks in diffusion occurring in the 

middle.  In space, diffusion is slowest at the edges of the region of interest, with a single peak in 

the centre.  

I fitted the diffusion model with a polynomial degree of four in time and two in space (as 

suggested by model selection on the 0μM folate dataset) to the 10μM folate dataset, and then 

carried out a local readjustment of the polynomial degrees using this dataset.  This involved 

identifying polynomial coefficients where the posterior distribution was focussed around zero (Fig. 

B.5.3), and using this information as a guide to which polynomial degrees might be reduced to 

prevent unnecessary model complexity.  I tried different adjustments of the polynomial degrees, 

and selected the best degrees based on WAIC. This gave a degree of three in time for the standard 

likelihood and two for the weighted likelihood (Table B.5.7).  I maintain a polynomial degree of 

two in space for both the standard likelihood and weighted likelihood, as suggested by Fig. B.5.3. 

WAIC values calculated from the mid and end sections of the two chains for the eight 

models that include an advection component are closely grouped by model (Fig. 3.6), and the 

ranking of the models based on these values is consistent across the standard and weighted 

likelihoods (Fig. 3.6 and Table 3.1).  The diffusion model gives a much poorer WAIC value than 

the other models (Table 3.1), which all include an interaction of the cells with the chemoattractant 

(folate) in their environment, suggesting that this interaction is necessary for achieving a good fit to 

the data.  For both the standard likelihood and weighted likelihood, the interaction model produces 

the best mean WAIC value (Table 3.1), but there is a similar level of support for the model that 

includes both interaction and overcrowding terms, as indicated by the standard errors of the mean 

WAIC values (Table 3.1), and the large degree of overlap between the four individual WAIC 

values for these models (Fig. 3.5).  On examination of the parameters, I found that the estimated 

value of Cmax (the maximum cell density), which implements the overcrowding effect described in 

equation (3.2)), was very large.  A large value of Cmax essentially causes the interaction and 

overcrowding model to revert to the interaction model, explaining the similarity in WAIC for these 

models.  I, therefore, select the interaction model as the optimal model for explaining these data.  In 

addition to concluding that the correction for overcrowding has, at most, a very small effect, I also 

find that the effect of receptor saturation does not improve model fit. 
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Model outputs from the interaction model show very good agreement with the 10μM folate 

data (Fig. 3.7), successfully reproducing the steep cell front, which the simpler diffusion model 

fails to capture (Appendix B.8).  A residual analysis finds no significant mismatch between the 

selected model and the data (see Appendix B.9).   

 

 

 

 

Figure 3.4: Fit of the diffusion model to the 0μM folate data.  Plots of the cell distributions at half-hourly 

intervals simulated (using the posterior mean parameters) from the diffusion model fitted to the 0μM folate 

data using the standard likelihood (equation (2.11), with polynomial degrees of four and two describing the 

temporal and spatial dependencies of the diffusion coefficient respectively.  Direct density estimates from the 

data, obtained using logspline density estimation (Stone et al. 1997), are included for comparison.  95 

percentile intervals for the density estimates (blue shaded areas) were obtained by non-parametric 

bootstrapping, using 10,000 samples of the data.  95 percentile intervals for the model (pink shaded areas) 

were obtained from 500 samples from the posterior distribution. 
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Figure 3.5: Heat maps of spatial and temporal dependencies of the cell diffusion coefficient DC 

obtained by fitting the diffusion model to the 0μM folate dataset.  Plots show the value of the diffusion 

coefficient DC in time and space as calculated in equation (3.5) and estimated using both the standard and 

weighted likelihoods (L and L)̃. 

 

  

 

 

Figure 3.6: Consistency in WAIC values.  Plots of the four WAIC values calculated for each of the models 

fitted to the 10μM dataset using the standard likelihood and the weighted likelihood, L and L.̃  For each 

model, I obtained two MCMC chains, and calculated the WAIC (equation (3.9)) separately for the middle 

third (crosses) and the end third (points) of each chain.  Note that the minimum WAIC value has been 

subtracted from all values to aid comparison.  Model abbreviations: B=Basic, RS=Receptor Saturation, 

I=Interaction, O=Overcrowding. 
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Table 3.1: WAIC-based comparison of the candidate models for the 10μM folate data.  WAIC values 

for each model fitted to the 10μM folate dataset, using both the standard (equation (2.11)) and weighted 

(equation (2.12)) likelihoods, L and L.̃  The values for the diffusion model, which was the only model for 

which I achieved formal convergence of MCMC chains based on the Geweke and Gelman-Rubin 

diagnostics, were obtained using equation (3.9), with the standard errors (in brackets) being calculated as 

described in Appendix A.5.  The values for all other models were obtained as the means of the 4 WAIC 

values calculated from the mid and end sections of the chains for those models (Fig. 3.5, Appendix B.7).  The 

best model for each of L and L̃ is marked *.  Model abbreviations: RS=Receptor Saturation, I=Interaction, 

O=Overcrowding. 

Model WAIC 

 L  L  
Diffusion 702.0 (0.1) 605.9 (0.09) 
Basic 4.3 (0.58) 4.5 (1.18) 
RS 13.5 (1.16) 15.6 (0.44) 
I 0 (0.55)* 0 (1.52) * 
O 3.5 (0.29) 3.4 (0.42) 
RS+I 12.0 (0.69) 6.7 (0.37) 
RS+O 12.4 (0.26) 11.5 (0.85) 
I+O 2.0 (1.39) 2.9 (0.73) 
Full (RS+I+O) 9.9 (0.9) 9.6 (1.55) 

 

 

 

Illustrations of the spatial and temporal dependencies of the parameters of the interaction 

model fitted to the 10µM data can be found in Figs 3.8-9 (see also Fig. B.6.2 in Appendix B.6).  

The standard and weighted likelihoods gave good agreement in their estimates of the parameter 

trends in time and space with one exception.  This single case of disagreement occurred for the 

parameter η (describing attraction/repulsion between cells), which was found to decrease with x 

when fitted with the standard likelihood (Fig. 3.8B) and to increase with x when fitted with the 

weighted likelihood (Fig.3.9B).  There is also a slight trend for this parameter to increase over time 

for both the standard and weighted likelihoods.  The response of the cells to the folate gradient is 

estimated to become stronger with time and weaker with increasing x (Figs 3.8A, 3.9A).  Cell 

diffusion is slow initially, peaks at around 3.5h and then starts to decline again.  It also tends to 

decrease in x (Figs 3.8C, 3.9C).  The rate of folate depletion increases with time (Figs 3.8D, 3.9D). 

 

3.6. Discussion 

In this chapter, I developed a detailed protocol for Bayesian inference in PDE models of 

cell migration and interaction.  Hierarchical Bayesian frameworks have previously been proposed 

for fitting advection-diffusion PDE models describing spatio-temporal distributions of organisms 

(Wikle and Hooten 2006, Cressie and Wikle 2011).  However, these frameworks have typically 

been applied to models that are relatively simple, including few movement mechanisms, and the 

key advance of this work is in the consideration of a range of processes relating to the way cells 

sense and interact with their environment, leading to complex non-linear advection terms.  This 

leads to stiff PDEs, for which the numerical integration step size must be taken to be very small to 
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stabilise the numerical solution, substantially increasing computational costs.  Consequently, 

adequate adaptations are required to render statistical inference computationally viable. 

 

 

 

Figure 3.7: Fit of the interaction model to the 10μM folate data.  Plots of the cell distributions at half 

hourly intervals simulated from the interaction model fitted to the 10μM folate data using the standard 

likelihood (equation (2.11)).  I used the MAP (maximum a posteriori parameter configuration) of the model 

to produce the model fit lines.  95 percentile intervals for the model (pink shaded area) were obtained from 

250 parameter sets sampled evenly from the latter two thirds of the two MCMC chains for this model.  Direct 

density estimates from the data, obtained using logspline density estimation, are included for comparison.  95 

percentile intervals for the density estimates (blue shaded area) were obtained by non-parametric 

bootstrapping, using 10,000 samples of the data.  
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Figure 3.8: Spatial and temporal dependencies of the parameters of the interaction model fitted to the 

10μM folate dataset using the standard likelihood.  Plots show the cell advection rates in response to 

folate (A) and conspecific density (B) gradients, the cell diffusion rate DC (C), and the temporal dependence 

of the folate depletion rate (D).  Function values were calculated as described in equations (3.4-5). 

 

 

The approach to Bayesian inference I have adopted here has a particular focus on model 

selection: given a set of hypotheses for the mechanisms driving cell migration, which ones are most 

consistent with the data?  Model selection via Bayes factors, either directly estimated via parallel 

tempering (Friel and Pettitt 2008), or indirectly by RJMCMC (Green 1995), is computationally 

intractable due to the need to solve a stiff system of PDEs in every step of the Markov chain.  

Classical information criteria, on the other hand, such as AIC or BIC, rely on asymptotics that are 

hardly met in practice, especially not for the high degree of nonlinear complexity inherent in the 

models considered here.  As a compromise between numerical tractability and accuracy, I have 

adopted an approach based on WAIC (Watanabe 2010).  This approach is similar to DIC 

(Spiegelhalter et al. 2002) in spirit, but has been shown to be more “widely applicable” in the sense 

that it is not restricted to non-singular likelihood functions (as opposed to DIC). WAIC has been 

favourably reviewed in Gelman et al. (2013), Chapter 7.  A recent study suggests that for model 

selection in complex nonlinear systems, WAIC clearly outperforms DIC and is on a par with Bayes 

factors (Aderhold et al. 2017). 
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Figure 3.9: Spatial and temporal dependencies of the parameters of the interaction model fitted to the 

10μM folate dataset using the weighted likelihood.  Plots show the cell advection rates in response to 

folate (A) and conspecific density (B) gradients, the cell diffusion rate DC (C), and the temporal dependence 

of the folate depletion rate (D).  Function values were calculated as described in equations (3.4-5). 

 

 

I have found that the application of the outlined procedure to a diffusion model, e.g. as 

investigated in Wikle & Hooten (2006) and Cressie & Wikle (2011), is computationally tractable.  

However, when including a complex advection term, MCMC run times increase substantially as a 

consequence of the stiffness of the PDEs. This does not allow MCMC simulations of a sufficient 

length to satisfy established convergence criteria to be run.  The method I have proposed to deal 

with this difficulty is effectively a restriction of the configuration space. Rather than initialising 

independent MCMC simulations from starting points sampled from a hyperdispersed distribution, I 

started all MCMC simulations from an estimate of the MAP (maximum a posteriori parameters). I 

ran independent MCMC simulations over a minimum 80,000 iterations (the first third of which 

were discarded as burn-in) and computed the WAIC scores in a variety of ways: for different 

sections (middle versus end) of the same MCMC trajectory, for different MCMC trajectories, and 

for different objective functions (the standard versus the weighted log likelihood). The results show 

that the model selection results are consistent (Fig. 3.6). This suggests convergence in the actual 

WAIC scores, providing confidence in the model selection results.   

This inference method has the following justification: (1) Approximating the posterior 

distribution by the area around the MAP is akin to the Laplace approximation, which is widely 

applied to complex systems for which MCMC simulations are computationally too expensive (as 
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evidenced by the large number of applications using INLA (Rue et al. 2009)). The method 

described here is less restrictive than the Laplace approximation, in that it does not require a 

second-order truncation of the Taylor series expansion. (2) Approximating the posterior 

distribution by a unimodal model distribution from a standard function family is also commonly 

done in variational inference, which is another alternative method for systems that are too complex 

for MCMC (e.g. Bishop (2006)). Again, the approximation I use here is less restrictive than 

variational inference, in that it does not restrict the approximation to any a priori chosen functional 

form.  In an empirical investigation using simulated data (see Appendix B.4 for details), I found 

that the level of accuracy and precision of my approach is the same as for model selection with 

Bayes factors calculated using population MCMC (Girolami et al. 2010). 

The only alternative approach that could achieve a degree of MCMC convergence that 

meets established convergence criteria is to resort to gradient matching (Xun et al. 2013). Here, the 

computational costs of the individual MCMC steps are substantially reduced by bypassing the need 

for a numerical solution of the PDEs. However, gradient matching is an approximate method, and 

the current state of the art incurs a potentially substantial loss in model accuracy (Macdonald et al. 

2015).  Facing the choice between approximate modelling (gradient matching) and sound inference 

(standard MCMC convergence) versus accurate modelling (numerical integration) and approximate 

inference (MCMC around the MAP) I have here opted for the latter alternative. This is in line with 

the frequently cited proposition by John W. Tukey (1915-2000) that “the approximate answer to 

the right problem is worth a good deal more than an exact answer to the approximate a problem”.  

However, an interesting topic for future research is to put this proposition to the test and 

systematically compare both paradigms empirically. 

 

By applying the proposed Bayesian inference method and model selection using WAIC to 

a set of nine candidate models, I have drawn a number of conclusions about the mechanisms that 

drive the Dictyostelium movements in the 10μM folate data.  These conclusions can be compared 

to those drawn in chapter 2 by applying the pseudo-Bayesian bootstrapping inference approach to a 

second 10μM folate dataset obtained in a repeat of the assay used to produce the dataset analysed 

in this chapter.  In this chapter, as in chapter 2, I was able to successfully determine that a self-

generated gradient in folate has a significant role in producing the observed movement patterns, as 

previously reported by Tweedy et al. (2016).  This self-generated gradient mechanism is 

responsible for the sharp, dense moving cell front that is characteristic of these data, and which 

simple diffusion models fail to replicate.  Interest in self-generated gradients is growing rapidly, as 

studies have suggested that they may play an important role in embryonic development (Donà et al. 

2013) and the spread of cancers (Muinonen-Martin et al. 2014).  Many other examples of self-

generated gradients likely remain to be discovered throughout biomedical science, and the 

inference framework I have described here, provides a further useful tool for detecting these 

gradients.  This framework also allows estimation of how the form of the latent chemical gradient 

develops over time, which is generally not possible experimentally; measurement of the chemical 

gradient requires destruction of the gel under which the cells are moving and ends the experiment, 

making repeated measurements over time impossible (Tweedy et al. 2016).   

Despite its known influence on cell movement behaviour (Tweedy et al. 2013), and the fact 

that it was determined to be an important part of the mechanism by which the cell interact with the 

self-generated folate gradient in chapter 2, I did not obtain an improvement in model performance 

on inclusion of the receptor saturation term in this chapter.  This surprising difference in results 

between chapters could be a consequence of the groups of cells used to produce the two datasets 
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being in slightly different states at the start of the experiments, leading to differences in movement 

behaviour.  Indeed, it is observed that the peaked cell front, which is believed to result from 

receptor saturation making cells at the very front of the distribution move more slowly than those 

immediately behind, emerges later and is less pronounced in the dataset analysed in this chapter 

than in the dataset analysed in chapter 2 (compare Figs 2.2 and 3.1).  This could have made an 

effect of receptor saturation harder to detect in this chapter.  Additionally, as discussed further 

below, the choice of a model without receptor saturation is likely to be, in part, a consequence of 

the models without the receptor saturation term having enough flexibility to mimic the effect of 

receptor saturation (slower movement of the cells at the very front of the cell distribution than of 

the cell directly behind) through temporal and spatial variation in the parameter describing the 

basic gradient-following mechanism.  This leads to there being little improvement in model fit on 

inclusion of an explicit receptor saturation term.  Since spatial variation in parameters was not 

considered in the models in chapter 2, the basic model was there unable to adequately mimic 

receptor saturation, and the explicit saturation term was correctly selected for.   

In this chapter, I find that including direct interactions between the cells, allowing them to 

attract or repel one another, provides an improvement in model performance, as indicated by a 

reduction in WAIC.  This result differs from that in chapter 2, where an interaction effect was not 

incorporated in the best model selected by WAIC (though it should be noted that a model 

containing cell interactions was placed second by WAIC, and was selected as the optimal model by 

AICc).  I suspect that this slight change in the level of support for cell interactions between this 

chapter and the previous one is a consequence of the cells being in a slightly different condition or 

stage in their development.  The Dictyostelium cells studied in both chapters were vegetative, and 

therefore lack most of the complex cell-cell interactions of aggregating cells (Varnum and Soll 

1981, Bonner 1982).  However, vegetative cells can still exhibit weaker interactions, including 

short-range cell-cell repulsion driven by autorepellents (Keating and Bonner 1977, Kakebeeke et al. 

1979).  Additionally, lack of nutrients in the environment could cause the cells to starve 

progressively over the 5.5 hour time period.  During starvation, cells go through different phases of 

development, during which they produce cell surface molecules that affect movement by altering 

cell-cell interactions.  Contact sites A (csA), for example, is induced within hours of starvation 

(Eitle and Gerisch 1977).  CsA mediates cell-cell adhesion, and while aggregation was not visually 

obvious in the data analysed here, low levels of csA could still modify interactions between the 

cells.  Changes in csA and similar proteins could promote small repulsion and attraction effects, 

explaining why the interaction model was preferred.  It is clear, however, that cell-cell interactions 

are not the primary driving mechanism of the observed movements in this chapter; the 

improvement in WAIC obtained by including the interaction effect is smaller by a factor of 100 

than that obtained by inclusion of the self-generated folate gradient (Table 3.1).  

In this chapter, I estimated functions for three model parameters (α, η and DC) that varied 

in both time and space, and one model parameter (γ) that varied in time only.  The finding of 

temporal dependencies in the movement behaviour (see Figs 3.5 and 3.8-9) is in agreement with 

the results of chapter 2.  Temporal dependence in the diffusion parameter of the 10µM folate data 

is very similar in form between the two chapters, but there are differences for the folate depletion 

rate and the response to the folate gradient, which could be a consequence of either differences 

between the cells studied in each chapter, or of the differences in the model structures (compare 

Fig. 2.4A and Fig. B.6.2D).  The finding of spatial variation in the parameters is a new result for 

this chapter, and is in line with experimental work that has shown that the movement behaviour of 

cells can be affected by features of their physical environment, such as the rigidity of the substrate 
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(Lo et al. 2000, Ng et al. 2012).  In the cell movement assay used to produce the data analysed in 

this chapter, the edge of the trough within which the Dictyostelium cells were seeded is known to 

provide resistance to movement (Laevsky and Knecht 2001), potentially causing some of the 

spatial dependencies that were observed.  The estimated spatial and temporal dependencies in the 

parameter values shown in Fig. 3.5 and Figs 3.8-9 are relatively complex.  There are two possible 

explanations for this complexity, both of which are discussed below: 1. it is caused by real 

biological processes that affect cell behaviour; 2. it is a consequence of the models being overly 

flexible due to deficiencies in the approach used to select the degrees of the polynomials describing 

parameter variation in time and space.  

Experimental work has revealed many potential biological causes of changes in cell 

behaviour, some of which have opposing effects, leading to highly complex and variable patterns.  

Including mathematical descriptions of all of these details would lead to a model that is 

overcomplex and computationally intractable.  For that reason, I chose a more abstract level of 

description, describing changes in the relevant coefficients in space and time using smooth 

polynomial functions.  The estimated forms and complexity of these functions (Figs 3.5 and 3.8-9) 

are not dissimilar in form and complexity to those that have determined empirically (e.g. Bernstein 

et al. (1981), Chubb et al. (2000)).  Potential biological causes of the variation seen in each of the 

parameters are as follows. 

For the 0µM dataset, I found that diffusion was slower both at the start and the end of the 

time period, but increased in the middle; showing a double peaked profile (Figs 3.5 and B.6.1B).  A 

similar pattern is seen for the 10µM data, but with just a single diffusion peak in the middle of the 

time period (Figs 3.8-9C and B.6.2D).  A low diffusion rate early in the assays is explained by the 

fact that most of the cells are still positioned in the trough in the gel.  Movement is restricted in the 

trough area as the cells must flatten themselves in order to make their transition under the gel 

(Laevsky and Knecht 2001).  Later in the time period many cells will have moved clear of the 

trough, leading to an increase in diffusion.  The decline in diffusion at the end of the time period 

may be related to cell starvation, since cells in the early stages of starvation can show a decline in 

motility (Chubb et al. 2000).  Changes in the rate of diffusion in space were also observed.  For the 

0µM dataset, I found that diffusion was slower at the beginning and end of the spatial axis, with a 

peak in the middle (Figs 3.5 and B.6.1A).  The low diffusion rate at the far left of the spatial region 

was most likely caused by the presence of the trough in that area.  The decline in diffusion at the 

far right may have been a consequence of the low cell densities in this area.  Dictyostelium cells in 

the vegetative state, like those studied here, can release a repellent which will enhance movement 

at high densities, relative to low densities (Keating and Bonner 1977).  In the 10µM data, a decline 

in diffusion was again observed at the far right of the region, but there was little evidence for 

reduced diffusion near the trough (Figs 3.8-9C and B.6.2C).  The reason for this is unclear, but, 

since the cells lift the gel slightly as they pass under it (Laevsky and Knecht 2001), the larger 

number of cells moving under the gel in this dataset compared to the 0μM folate dataset may mean 

that the transition under the gel becomes easier over time, so that the effect of the trough only 

occurs early in the time period.      

The responsiveness to the folate gradient (α) estimated for the 10µM data decreases in 

space and increases in time (Figs 3.8-9A and B.6.2A-B). Taken separately these two patterns are 

hard to explain, but if they are examined together and compared with plots showing the changing 

cell distribution in time (Fig. 3.1), it can be seen that they result in the value of α always being 

around log(10) at the position of the moving cell front, and declining towards the edge of the cell 

front.  As a result, the model is able to mimic the effect of receptor saturation, despite the fact that 
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the receptor saturation term (equation (2.5)) was not included.  It does this by causing the cells at 

the very front of the distribution, where folate is less depleted and receptor saturation is, therefore, 

higher, to advect more slowly than those behind, where folate has been more depleted and receptor 

saturation is lower.  I suspect that this ability of the model to mimic receptor saturation (equation 

(2.5)) through the flexibility of α in space and time is the reason why an improvement in model fit 

was not found on inclusion of the receptor saturation term (Table 3.1), despite the fact that this 

effect has been reported in the literature for cell chemotaxis (Tweedy et al. 2013).   

There was only one case where disagreement occurred between the standard and weighted 

likelihoods in the trend of one of the estimated parameter functions in space or time.  This 

disagreement occurred for the function describing spatial dependence of the parameter η 

(describing attraction/repulsion between cells), which tended to decrease with x when estimated 

using the standard likelihood (though with considerable uncertainty; Fig. B.6.2E), but increased 

with x when estimated using the weighted likelihood (Figs 3.8-9B and B.6.2E).  This ambiguity 

means that the trends for η are difficult to interpret biologically, since clearly at least one of the 

opposing estimates of the spatial trends is wrong.  Furthermore, the weighted likelihood estimated a 

positive value of η over almost the entire spatial region and time period (Fig. 3.9B), indicating 

attraction between the cells, while, for the standard likelihood, there is a large region to the right of 

the spatial region where η is negative (Fig. 3.8B), indicating repulsion.  It should be noted that 

Dictyostelium cells are capable of exhibiting both attractive and repulsive dynamics, and can switch 

between the two based on their developmental state and environmental conditions (Keating and 

Bonner 1977, Bonner 1982), so that either of the estimated scenarios for η is biologically plausible.  

However, as both scenarios clearly cannot be true for the same dataset, this is indicative of 

inaccuracies in parameter inference.   

The temporal variation in the folate depletion rate γ is the pattern that can most easily be 

explained.  This rate shows a monotonic increase (Figs 3.8-9D) as a result of the cells’ exposure to 

folate in their environment, which enhances their production of folate deaminase, the enzyme 

responsible for breaking down folate (Bernstein et al. 1981).  The longer the cells are present in the 

medium, the more enzyme they will have released, leading to faster folate depletion.  

A limitation of the model inference scheme that could have influenced the model selection 

result was that, for the 10µM dataset, the level of flexibility of all parameters of all models in space 

and time was chosen on the basis of the flexibility chosen by WAIC for the diffusion parameter in 

the diffusion-only model (see section 3.5).  It would have been preferable to fit the degree of each 

polynomial function in space and time separately for each parameter in each model, but this would 

have been prohibitively computationally expensive.  The diffusion model was the only model 

considered for which I was able to achieve relatively fast (within a few days) convergence of 

MCMC chains, allowing me to test a range of polynomial degrees.  However, since the diffusion-

only model is mechanistically very simple, it is likely that in the inference scheme’s attempt to get 

this unrealistic model to capture the features of the data, the flexibility of the diffusion parameter in 

space and time will have been exploited to compensate.  This may have led to the polynomial 

degrees fitted based on the diffusion model to be higher than those required by the more 

mechanistically complex models.  This could have caused the patterns in the parameters in space 

and time shown in Figs 3.8-9 being more complex than those that would have been estimated had 

the polynomial degrees producing those patterns been selected on a model by model basis.  This is 

likely to have been the cause of the receptor saturation effect not being included in the final model.  

The inclusion of the single constant parameter Kd in the models with receptor saturation, provides 

behaviour similar to that provided by the flexibility in α in the model without receptor saturation 
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(Figs 3.8-9A).  However, since the polynomials for α haven’t been simplified by removing multiple 

coefficients that are now unnecessary in the models with Kd  the receptor saturation term, which is 

known to be biologically realistic, is not selected for by WAIC.  This problem of computational 

constraints limiting the number of alternative model structures considered may be alleviated by 

faster inference approaches, such as gradient matching (Xun et al. 2013).  However, as discussed 

above, this approximate inference method comes with its own limitations. 

A related effect to that discussed above that could have influenced the estimated patterns of 

spatial and temporal dependence in the parameters selected for each dataset is a failure to consider 

all potential mechanisms driving cell movement behaviour.  Missing mechanisms could lead to the 

existing ones trying to compensate by increasing their complexity in space and time.  For the 10µM 

data, for example, I assumed that at a given point in space and time all the cells are either attracting 

or repulsing one another.  It is, however, possible that the cells exhibit both short-range repulsion 

through a mechanism such as contact inhibition of locomotion (Mayor and Carmona-Fontaine 

2010) and attraction through a longer distance mechanism, such as chemical signalling.  Combined 

effects of attraction and repulsion could offer an explanation for the ambiguous results for the time 

and space dependence in the interaction parameter η.  Consideration of models that incorporate 

these complex interaction behaviours (Mogilner and Edelstein-Keshet 1999) should, therefore be a 

goal for future work.  For the 0µM data, I only considered the simple diffusion model, and failed to 

address any potential interactions between the cells through attraction, repulsion and overcrowding.  

This could be the cause of the relatively complex patterns observed in the diffusion coefficient 

(Fig. 3.5).  Given that a small effect of cell interactions was detected for the 10µM data, there is a 

chance that such an effect would have been found in the 0µM data had it been tested for, and, if I 

were to analyse these datas again, I would include such a test.  The diffusion-only model does 

provide a good fit to the data, however, with the model producing a cell density distribution that 

remains with the 95 percentile interval of the distribution estimated from the data (Fig. 3.4).  One 

small feature of the data that is not replicated by the diffusion model is the slight second peak in 

cell density that forms at 3.5 hours (Fig. 3.4).  This feature could have been captured by a model 

with the interaction term included if η exhibited some relatively complex behaviour around the 

spatiotemporal location of the second peak, with higher repulsion or attraction occurring on one 

side of the peak than the other, but only at the end of the time period.  There is, however, no 

obvious biological reason why such behaviour should occur. 

In conclusion, I have presented a framework that allows effective Bayesian inference and 

model comparison for complex PDE models, despite the serious computational costs incurred in 

solving these models numerically.  Like the pseudo-Bayesian approach to inference discussed in 

chapter 2, this has allowed the identification of mechanisms driving the movement of 

Dictyostelium.  There were some changes in the optimal model between this chapter and chapter 2, 

but these differences can be easily explained as being a consequence of differences in the state of 

the cells used to produce the data used in each study, and the increased model flexibility that was 

introduced in this chapter.  In both chapters, model selection was able to clearly identify the self-

generated gradient mechanism known to be the main movement driver in the experimental system 

(Tweedy et al. 2016).  The fully Bayesian approach discussed in this chapter, however, introduces a 

key advantage over the previous pseudo-Bayesian approach in its ability to make full use of prior 

information about the parameter values.  It also doesn’t rely on any manipulations of the data that 

could affect our ability to detect cell interactions, and is a more standard approach than 

bootstrapping, with less need for further validation.  In an extension of the modelling framework 

previously outlined in chapter 2, I have now investigated spatial variation, in additional to temporal 
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variation, in the parameter values, and found both sources of changing movement behaviour to be 

important in this cellular system.  However, high computational costs limited the number of 

candidate models we were able to consider, and it is acknowledged that this may have led to 

spurious patterns in the parameters in space and time. 
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4. Constructing wildebeest density distributions by spatio-temporal 

smoothing of ordinal categorical data using GAMs 

 

The work presented in this chapter has been published at the following reference: 

Ferguson, E.A., Matthiopoulos, J. & Husmeier, D., 2017. Constructing wildebeest density 

distributions by spatio-temporal smoothing of ordinal categorical data using GAMs. In 32nd 

International Workshop on Statistical Modelling. Groningen, Netherlands, pp. 70–75. Available at: 

https://iwsm2017.webhosting.rug.nl/IWSM_2017_V1.pdf  

 

4.1. Introduction 

Spatio-temporal smoothing of species distribution data has many potential uses in ecology; 

for example, to examine changes in home range over time, or to provide a smooth density function 

that can be used with gradient matching approaches (Xun et al. 2013) to fit advection-diffusion 

PDE models of animal movement. A wide range of smoothing methods – including kernel density 

estimation, splines, generalised additive models (GAMs), Gaussian processes, etc. – have been 

developed in the statistical literature.  However, the practicalities and expense involved in 

collecting species distribution data over large areas in the field can mean that such data are not in a 

form that most user-friendly implementations of these smoothing methods can readily be applied 

to.  Ordinal categorical data, for example, are common in ecology (Guisan and Harrell 2000), and 

may be collected when it is infeasible to accurately count all individuals in a population, so that the 

abundance at each point in space and time is instead estimated as belonging to a broader abundance 

category.  A relatively small number of approaches have been developed for smoothing data of this 

type, where we need to recover the underlying true density of individuals from the categories.  Chu 

& Ghahramani (2005), for example presented a method for fitting Gaussian processes (also known 

as kriging) to ordinal categorical data, while Wood et al. (2016) describe ordinal categorical 

methods for GAMs.   

The computational costs of smoothing can rise quickly with the size of the dataset and the 

number of dimensions in which the smoothing is to be implemented.  Large datasets are a 

particular problem for Gaussian processes (like that of Chu & Ghahramani (2005)), since the 

computational complexity is cubic in the number of data points (section 19.2 of Barber (2012)).  If 

the data describe a complex pattern in space and time, so that a complex smoother with large 

numbers of parameters is required to adequately describe this pattern, costs rise even more rapidly.  

This can again cause problems for ecological data, which may cover large, complex landscapes 

over long time periods.  Methods that allow smoothing of these datasets even when computational 

resources are limited would therefore be very useful.   

In this chapter, I present an application of a GAM-based approach for applying spatio-

temporal smoothing to a large ordinal categorical dataset on the distribution of wildebeest in the 

Serengeti ecosystem of Tanzania and Kenya.  I chose a GAM-based approach for two reasons.  

First, GAMs are a more computationally feasible approach for dealing with large datasets than 

Gaussian processes.  Second, the ordinal categorical GAM method of Wood et al. (2016) has been 

https://iwsm2017.webhosting.rug.nl/IWSM_2017_V1.pdf
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implemented in the well-documented and user-friendly mgcv package (Wood 2011) in R (R Core 

Team 2015). 

The work I carried out in this chapter was an important pre-requisite for the study 

presented in chapter 5.  The purpose of chapter 5 was to fit advection-diffusion PDE models of 

wildebeest movement to the data introduced in section 4.2.  The fitting approach used was based on 

gradient matching; a method that bypasses the need for computationally costly numerical PDE 

solutions by first obtaining a smooth interpolation of the state variable that is described by the data, 

and then optimising the PDE parameters such that the difference between the partial derivatives of 

the state variable with respect to time obtained directly from the interpolant and from the PDE 

(using a given parameter set and information about the partial derivatives with respect to space 

from the interpolant) is minimised (Xun et al. 2013, Macdonald and Husmeier 2015).  The 

wildebeest density surface in space and time that is the product of this chapter provides the 

interpolant required for gradient matching in chapter 5.   

 

4.2. Data 

The wildebeest distribution data that I applied the smoothing approach developed in 

section 4.3 to have previously been described and utilised in a number of studies (Maddock 1979, 

Norton-Griffiths 1979, Boone et al. 2006, Holdo et al. 2009).  These data were obtained from aerial 

surveys of the Serengeti ecosystem between August 1969 and August 1972 on a roughly monthly 

basis (surveys were carried out on 33 of the 37 months in this period).  During these surveys each 

cell in a grid of 25km
2
 cells was estimated as belonging to one of five ordinal wildebeest 

abundance categories, which are described as containing 0, 1-25, 26-250, 251-2,500 and >2,500 

individuals per 25km
2
.  The original grid was irregularly shaped, covering the area that 

encompasses the range of the wildebeest migration (Maddock 1979).  To simplify the analysis, I 

worked with the dataset on a 56x46 rectangular grid that was just large enough to contain the 

original irregular grid, and assumed that any of the cells in this new grid that were not included in 

the original one contained zero wildebeest.  Thus, the dataset involved 2,576 cells making up the 

rectangular spatial grid, all of which were sampled at 33 time points, resulting in a large dataset 

with a total 85,008 data points.  The entire time series of 33 maps showing the ordinal wildebeest 

abundance categories can be viewed in supplementary video 4.1 (see Appendix C.1.1), and a subset 

of three of these maps can be seen in Fig. 1A-C. 

  

4.3. Methods 

To smooth the wildebeest distribution data in time t  and the two spatial dimensions  ,x y , 

I fitted GAMs (generalised additive models) with a tensor product between these three variables 

using the mgcv package in R.  This tensor product allows for interactions between the three 

variables, and was composed of cubic regression spline smooths, where overfitting (excessive 

curvature) was prevented by penalisation of the integral of the squared second derivatives.  I used 

the ordinal categorical GAM method described in Wood et al. (2016), where the linear predictor 

gives the value of a latent variable, here representing the wildebeest density underlying the ordinal 

categories.  The cut-off points that demarcate the five ordinal categories were specified, and the 
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probability that a point in space and time belongs to a given category equals the probability that the 

latent variable lies between the corresponding category cut-offs at that point.  

In Wood et al. (2016), the latent function can range from   to  , but this is unrealistic 

for the current problem, since wildebeest density has a known minimum of zero and a finite 

maximum maxW .  These constraints can be introduced by applying a sigmoidal transformation to 

the unbounded latent function L  after the GAM has been fitted, giving a preliminary estimate of 

wildebeest density Ŵ  as follows: 

    
max

, ,
, ,ˆ

1
L x y t

x y t
W

W
e





 (4.1) 

No transformation needed to be applied to the ordinal categorical data prior to the fitting of the 

GAM to get L ,  but it was necessary to apply the following inverse sigmoid transform to the 

category cut-offs c   that were used to inform the GAM fitting procedure: 

 maxlogˆ 1
W

 
 

 
 

c
c

 (4.2) 

I estimated maxW  by first assuming that the wildebeest densities in the grid cells assigned to the 

lower four ordinal categories, which had known upper and lower bounds, were equal to the mid-

points of those categories.  The sum of the densities in these lower category cells for each month 

was then subtracted from the total number of wildebeest TW  known to be in the region from a 

population count that took place in 1971, during the time period that the distribution data were 

collected (Norton-Griffiths 1973).  The remaining wildebeest for each month were assumed to be 

divided evenly between the cells in the highest ordinal category (which was unbounded above) for 

that month.  I took maxW  to be the largest wildebeest density estimated for grid cells in the highest 

abundance category over all months.  This led to max 332,355W  wildebeest/25km
2
, which 

corresponds to up to 46% of the total population TW  being present in a single grid cell.   

Even after applying sensible upper and lower bounds to the latent function, large 

fluctuations in the area under Ŵ  (which represents the total number of wildebeest in the region) 

could occur over time, and, at time points where multiple cells were assigned values of Ŵ  that 

were close to maxW , the estimated total number of wildebeest in the region at those times could 

greatly exceed TW , sometimes by an order of magnitude.  At other time points, the situation was 

reversed, and the estimated number of wildebeest in the region was much less than TW .  This 

behaviour was undesirable, since wildebeest numbers are expected to remain relatively stable at 

TW  over the time period of interest.  I therefore considered the normalised wildebeest density W , 

where the total number of animals was maintained at TW  by normalising Ŵ  as follows: 
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Due to computational time and memory constraints, a sufficiently flexible GAM could not 

be fitted to the entire large dataset simultaneously.  I therefore divided the time series into three 

contiguous intervals and fitted a GAM in  , ,x y t  to each interval separately.  Each GAM had 20 

knots in the marginal smooth in each spatial dimension, and a number of knots in the marginal 

smooth in time that was equal to the number of time points present in the data subset to which the 

GAM was fitted (12 for the first subset, 11 in the second and 12 in the third).  This resulted in the 

effective degrees of freedom, which are determined by the degree of penalization (selected during 

fitting) applied to the integral of the squared second derivatives, being considerably lower than the 

maximum number available, suggesting that the number of knots was sufficient (Wood 2006).  The 

three GAMs were joined together to form a single continuous function by averaging at the link 

times    1,2il i , and allowing the influence of each GAM on the others to decline smoothly, 

according to the parameter  , as distance from the point of joining increased.  For a given point 

 , ,x y t , therefore, I obtain a final estimate of wildebeest density W  by: 

    
 
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Here 
jGAMW  is the normalised wildebeest density obtained from the GAM fitted to time interval j , 

where: 
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The ia  are given by: 
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and the im , which ensure that the adjustments to W  are made in the correct direction on either side 

of each link point, are: 
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If the influence of the adjoining GAMs declines too slowly with distance from the link points, 

relative to the rate at which changes occur in 
iGAMW   (i.e.   is too large), unrealistic negative 

values of W  can occur.  I therefore tuned   by starting with a relatively large value and gradually 

decreasing it until no negative values of W  occurred. 
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4.4. Results 

Application of the method described above to the ordinal categorical wildebeest 

distribution data, produces a smooth density function in space (Fig. 4.1D-F) that, when categorised 

into the same ordinal categories as the original data, shows a pattern that resembles that in the 

original data, but with some added smoothness (compare Fig. 4.1A-C with Fig. 4.1G-I).  The 

resulting function is also smooth throughout the time period, with the exception of at the link 

points, where it is continuous, but small kinks occur as a consequence of the fact that the procedure 

described in equation (4.4) to link the three time intervals together forces the GAMs to have the 

same value at these link points, but not the same derivative.  Nevertheless, no visually obvious 

distortions to the wildebeest density function are observed around the link points; wildebeest 

density does not appear to change either more slowly or more rapidly around the GAM link times 

than it does elsewhere in the time period (Fig. 4.2).  Supplementary video 4.2 (see Appendix C.1.2) 

shows the changes in wildebeest density across the spatial region for the full time period from 

August 1969 to August 1972, as estimated using the GAM-based approach described in this 

chapter. 

 

4.5. Discussion 

 In summary I have presented an application of a GAM-based method for recovering 

realistic density estimates in space and time from coarse ordinal categorical data.  The approach is 

able to reduce the high computational costs of smoothing large datasets in multiple dimensions, by 

fitting models to subsets of the data and linking them together.  Such a method could be very useful 

in ecology, where deficient data of this type may frequently be collected due to feasibility 

constraints in large field systems.  Conversion of these ordinal categorical data into detailed 

densities is required for use of many of the analytical techniques that are commonly applied to 

animal distribution data, for example, to estimate home ranges (Worton 1987). 

 There are a number of limitations to the methodology described, however.  In order to 

maintain a realistic population size, I found that it was necessary to normalise the estimates of the 

density function obtained from the GAMs based on the known size of the wildebeest population 

around the time the data were collected (equation (4.3)).  Failure to do so led to a wildebeest 

population that fluctuated wildly in size over the time period, suggesting that the ordinal 

categorical GAM method was giving a poor recreation of the wildebeest densities underlying the 

data.  The fluctuations in the estimated wildebeest population are likely to have been a consequence 

of the coarseness of the data.  In binning wildebeest density into such broad categories, substantial 

losses of information are incurred, and it becomes very challenging for the GAM to retrieve an 

accurate density.  Additionally, gaps of around a month occurred between observations, during 

which the GAM had little information with which to estimate the size and distribution of the 

population.  The method may be more effective when applied in cases where the abundance 

categories are narrower, and the data is less sparse.  However, it is acknowledged that data of this 

quality are likely to be infeasible to collect in many ecological systems of interest.  A possible 

alternative to the method applied that would potentially have ameliorated the problem of a 

fluctuating population size would have been to assume for each time point that the number of 

wildebeest in each grid cell in one of the lower four abundance categories was equal to the mid-

point of the associated category.  The remaining animals in the population could then be distributed 
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evenly among cells in the highest abundance category.  A GAM with a gamma distributed response 

could have been fitted to these estimated wildebeest densities.  Since each data point is then a 

defined number, and the GAM is not as free to interpret it as potentially lying at any point within a 

broad category, there should be a greater tendency for the area under the estimated surface through 

time to remain close to the known population size.  However, this approach would not fully 

account for the uncertainty present in the original data, and the estimated numbers of wildebeest, 

particularly for cells in the highest abundance category, may have substantial amounts of error.  A 

second alternative, if we were prepared to give up on retrieving an accurate description of the 

density distribution, would be to instead consider the functions in space and time describing the 

probability of being in a particular abundance category.  While the exact number of animals at a 

point in space and time may be difficult to estimate with any accuracy, estimating the most likely  

 

 

Figure 4.1: GAM-based interpolant fit to the wildebeest distribution data in space at three different 

time points.  A-C) The wildebeest spatial distribution data for months 1, 18 and 35.  D-F) The smooth 

wildebeest density distribution estimated in space by the model for months 1, 18 and 35. The two contours 

indicate the boundaries between abundance categories 0, 1 and 2 (which respectively contain 0, 1-25, and 26-

250 wildebeest/25km
2
).  G-I) Estimated wildebeest abundance categories based on D-F. 
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Figure 4.2: Changes in estimated wildebeest density in eight grid cells over the time period of interest.  
Different cells are indicated by different colours/line types.  This particular set of cells was selected 

haphazardly, with the aim being to include cells that contained non-trivial numbers of wildebeest at at least 

one point in time, and that experienced these large numbers of wildebeest at a range of time periods.  

Changing wildebeest numbers in cells at the link times between the GAMs can thus be compared to those at 

other times.  The link times between the three GAMs are indicated by dashed vertical lines. 

 

category for this point may be a less difficult problem.  The functions describing the probability of 

each category are an additional output of the ordinal categorical GAM method in mgcv.  Since, 

however, my aim in this chapter was to obtain a surface from which wildebeest density gradients 

could be estimated for comparison with those produced by the PDE model of the next chapter, this 

option would not have been appropriate. 

 A second possible issue with the method is that it simply smooths the data without any 

knowledge of the rate at which the species of interest can actually move.  In the density surfaces 

output by the final model, it can be seen that on a small number of occasions spikes in the density 

of wildebeest occur rapidly in an area, seemingly out of nowhere (supplementary video 4.2, 

Appendix C.1.2), suggesting that the GAM is rapidly drawing density from more distant areas.  

This may or may not be a realistic description of the way these animals move; wildebeest move an 

average of 4.25km per day, but are capable of rapidly moving much longer distances, with daily 

movements of up to 58km being recorded (Hopcraft 2010).  Regardless, further development of the 

method to account for the maximum speed of movement of the focal species would be desirable.  

 As mentioned in section 4.4 above, the density function in space and time produced by 

equation (4.4) is smooth throughout space and time, except at the link times between the three 

GAMs used to produce it.  The lack of smoothness at the link times could be resolved by forcing 

the GAMs to have the same derivative, in addition to the same value, at the link points.  This is 

similar to the approach used to produce splines by joining together polynomials at knots, where the 

functions must have the same value and derivatives (see section 5.2 of Hastie et al. (2009)).  

Binding together the derivatives at the link points is necessary if the density function is to be used 
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to calculate analytical values of the derivatives of density.  However, this is unnecessary if, as is the 

case here, the derivatives are to be estimated using finite difference approximation (see chapter 5, 

section 5.5). 

 Finally, I note that the value estimated for maxW  may have been a little conservative.  

While it allows for 46% of the total population (332,355 individuals) to occur within a single cell, 

which is reasonable, it is likely that the wildebeest density at certain points within the grid cell will 

have densities higher than this value, which allows 70m
2
 for each individual.  An alternative way of 

estimating a less restrictive value for maxW  would have been to determine the minimum amount of 

space taken up by an animal based on average body size.  It should be noted that the normalisation 

step used to maintain the population at the correct size meant that wildebeest densities had the 

potential to rise above maxW .  However, values in excess of maxW  were not observed in practice 

(see supplementary video 4.2). 

 In the next chapter, I implement a gradient matching approach (Xun et al. 2013, 

Macdonald and Husmeier 2015) to fit advection-diffusion PDE models of wildebeest movement 

(similar to those I previously used to describe movement in cellular systems (chapters 2-3)).  This 

inference approach makes use of wildebeest density distributions obtained from the ordinal 

categorical distribution data using the methods described in this chapter.  
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5. Inference of the mechanisms driving the Serengeti wildebeest 

migration 

 

5.1. Introduction 

 The annual wildebeest migration in the Serengeti ecosystem involves the movement of 

around 1.2 million individuals, each of which covers an average of 1,550km/year (Hopcraft et al. 

2015) as they move between their wet season range on the south-eastern short-grass plains and 

their dry season range in the woodlands and savannah to the west and north of the region (Maddock 

1979, Thirgood et al. 2004, Boone et al. 2006).  This mass movement of animals is an important 

driver of the dynamics of the entire ecosystem. Changes in the size of the wildebeest population 

lead to changes in grazing pressure, which have previously had impacts on plant composition, the 

frequency of fires (due to changes in dry grass biomass), and the abundance of other herbivore 

species (Sinclair 1979).  At a time when migrations of large ungulates are collapsing globally, 

mainly as a result of human activity (Bolger et al. 2008, Harris et al. 2009), understanding the 

movement of these ecosystem engineers, so that risks to the continuance of the migration can be 

managed, may be critical for preserving the ecosystem as a whole. 

 Many studies have suggested potential environmental drivers of the movement of the 

Serengeti wildebeest.  There is wide consensus (McNaughton 1979, Boone et al. 2006, Holdo et al. 

2009) that movement to the north and west of the region in the dry season is primarily a result of 

the spatial gradient in rainfall, which declines from the north-west to the south-east (Fig. 5.1A) and 

alters the quality and abundance of forage and the availability of water.  The low annual rainfall 

and shallow soil horizon on the south-eastern plains leads to rapidly deteriorating grazing 

conditions at the end of the wet season, such that green grass production stops (McNaughton 1979) 

and water quality declines (Wolanski and Gereta 2001).  This forces wildebeest to move on to the 

wetter western and northern areas, where low quality green forage is available through the dry 

season.  The reasons for the movement back to the south-eastern plains when the wet season 

returns are less obvious, since the dry season range consistently has greater higher rainfall and, 

therefore, grass biomass throughout the year (Holdo et al. 2009).  The current hypothesis hinges on 

differences in the grass quality between the north-west and south-east.  Wilmshurst et al. (1999), 

for example, suggested that wildebeest distribute themselves on the plains during the wet season as 

part of an energy maximisation strategy, since the grasses are shorter, greener and more digestible 

than the taller, more mature grasses that dominate the dry season range.  Since tall grasses typically 

have a lower nitrogen concentration than shorter ones, an increasing gradient in plant nitrogen 

concentration runs from north-west to south-east, in the opposite direction to the rainfall gradient 

(Fig. 5.1B).  Previous modelling work has identified this nitrogen gradient as a driver of the wet 

season wildebeest distribution (Holdo et al. 2009).   Murray (1995) additionally found that 

concentrations of both calcium and phosphorus (two elements that are important for lactating 

females) in grass were higher in the wet season range than the dry season range.  In particular, 

concentrations of phosphorus on the dry season range were insufficient to support lactation, 

potentially explaining the movement to the more phosphorus-rich plains. 

 Two pieces of evidence suggest that gradients in grass availability that are produced (self-

generated) by the wildebeest themselves through local depletion are important in determining 

wildebeest movement patterns.  The first is that individual wildebeest move further each day during 

the wet season, when they are on the southern plains and grass is at its peak quality and abundance, 
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than they do at any other time (Hopcraft et al. 2014).  This was an unexpected result (animal 

movement is typically expected to become slower and more tortuous in high quality foraging areas; 

see, for example, Morales et al. (2004)), and may be a consequence of density dependence; the high 

densities of wildebeest (and other grazers) on the southern plains mean that local grass resources 

are rapidly depleted and the animals are forced to keep moving.  The second piece of evidence for 

self-generated resource gradients in wildebeest is the observation that when rinderpest reduced 

wildebeest numbers in the Serengeti to ~15% of their current level, the annual migration was 

shorter in length.  The subsequent increase in migration distance was probably a result of the 

recovering wildebeest numbers causing greater depletion of resources, forcing the herds to move 

further to maintain year-round access to sufficient forage (Thirgood et al. 2004, Harris et al. 2009, 

Hopcraft et al. 2015). 

 Given that direct interactions between individuals have been found to be important in 

driving the movement behaviour of other ungulate species, including reindeer (Langrock et al. 

2014) and elk (Haydon et al. 2008), we might expect that such social interactions would also be 

influential in modifying the movement patterns of the Serengeti wildebeest.  However, studies that 

include the effects of intraspecific social interactions on wildebeest movement are limited.  Gueron 

and Levin (1993) developed a theoretical model describing how the wave-like patterns of dense 

wildebeest migration fronts might develop through the effects of neighbours on the movement 

speed of leading individuals.  However, since this model only examined the behaviour of a subset 

of individuals in a specific type of herd formation, and was not formally fitted to data, the insights 

it offers for the migration as a whole are limited.  There is some evidence for social interactions 

influencing the distribution of wildebeest in other regions.  In Amboseli, Kenya, an effect of 

aggregation on wildebeest distribution was found in the dry season, but not the wet season (Mose et 

al. 2013), while in Karongwe Game Reserve, South Africa, wildebeest were found to form larger 

groups when in areas of open scrub where the probability of encountering lions was greatest 

(Thaker et al. 2010). 

 A number of previous wildebeest movement models have been fitted to data from the 

Serengeti ecosystem in an attempt to infer movement drivers (Boone et al. 2006, Holdo et al. 2009, 

Hopcraft et al. 2014).  However, none of these have included all three types of movement driver 

described above (gradients in environmental covariates, environmental depletion through grazing, 

and interactions between individuals).  In this chapter, I apply a model with all of these 

components, based on the PDE model framework introduced in Chapter 2, to data on the 

distribution of the Serengeti wildebeest population.  This required a number of extensions to the 

methodology that I previously applied to cell movement.  First, unlike in the simple experimental 

cell systems, movement had to be modelled in 2D (rather than 1D) space.  Second, because of the 

far greater computational expense of numerically solving the PDE model in 2D, and the issues 

encountered with instability in the numerical solutions, I implemented a new method, known as 

gradient matching (Xun et al. 2013, Macdonald and Husmeier 2015), to fit the movement models to 

the data.  This method removes the need to numerically solve the PDEs during model fitting.  To 

further reduce computational costs, I used gradient matching within a frequentist parameter 

optimisation setting, rather than within the pseudo-Bayesian and Bayesian approaches developed in 

chapters 2-3.  Finally, I also extended the models to account for the ability of wildebeest to sense 

their wider environment using visual, auditory and olfactory cues, giving them a greater range of 

perception than cells.  By carrying out model selection over a set of candidate wildebeest 

movement models, containing different combinations of movement drivers, I aimed to draw 

conclusions about the drivers of wildebeest movement in the Serengeti ecosystem. 
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5.2. Data 

 Here, I used the same dataset describing the distribution of the Serengeti wildebeest 

population that was introduced and described in detail in the previous chapter (section 4.2; see also 

supplementary video 4.1 and its description in Appendix C.1).  These data – on a 46x56 spatial grid 

of 25km
2
 cells, where each cell was assigned to one of five ordinal abundance categories – were 

collected, roughly monthly, at 33 time points between August 1969 and August 1972 (Norton-

Griffiths 1973, Maddock 1979).  Like other recent studies (Boone et al. 2006, Holdo et al. 2009), I 

also use this relatively old dataset, because there are no more recent data on the distribution of the 

entire population at multiple time stages of the annual migration.  The current number of 

wildebeest in the ecosystem is approximately double the 1971 population estimate of 720,769 

animals (Norton-Griffiths 1973, Hopcraft et al. 2015).  This increase in wildebeest density over 

time may be responsible for changes in the annual migration route, such as the herd’s tendency to 

migrate further north in the dry season (Thirgood et al. 2004, Harris et al. 2009, Hopcraft et al. 

2015).  However, the behavioural mechanisms and parameters underlying these migration routes 

(such as the rate of grass consumption, or the strength of conspecific interactions) are unlikely to 

have changed over the last 50 years (evolutionary changes in behaviour are likely to be negligible 

during this time period). Hence, conclusions drawn from these data should still be applicable to the 

larger present-day Serengeti wildebeest population. 

 I also use datasets on three environmental variables – rainfall, grass nitrogen concentration 

and tree canopy cover – to try to explain the wildebeest movement behaviour.  Rasters of monthly 

rainfall, produced by Holdo et al. (2009), from rain gauge data from the region were available for 

the period from January 1969 to December 1972.  A raster of grass nitrogen concentration was 

created by Hopcraft et al. (2014), who applied kriging to data obtained from 148 sites across the 

region between 2006 and 2008, using the mean NDVI (Normalized Difference Vegetation Index; a 

measure of vegetation greenness) at the sites as an explanatory variable.  Note that these nitrogen 

data were collected ~35 years after the collection of the wildebeest data, and it is possible nitrogen 

concentrations may have changed over this period, particularly since the wildebeest population 

roughly doubled (Hopcraft et al. 2015).  The associated increase in grazing could have affected the 

typical age and thus nitrogen content of the grasses.   However, while precise values of nitrogen 

concentration may have changed, it has previously been noted that broad spatial patterns in 

nitrogen concentration in the region have remained constant over long periods of time (Holdo et al. 

2009).  I produced a raster of tree canopy cover by ordinary kriging of information from different 

sources (Norton-Griffiths 1979; Reed et al. 2009; Frankfurt Zoological Society and Harvey Maps 

2010) ; see Appendix D.1 for details.  These environmental variables are illustrated in Fig. 5.1. 

 

 

5.3. Grass dynamics model 

Detailed data on grass abundance in the Serengeti region were not available for the time 

period of interest, so to include a response of the wildebeest to grass availability in the movement 

models to be considered (see section 5.4), it was necessary to simulate this environmental variable 

using a model of grass dynamics.  Here, I used the grass model outlined in Holdo et al. (2009), 

which is a two-compartment ordinary differential equation (ODE) model, describing changes in the 

densities (in g/m)  of green and dry grass (denoted G  and D  respectively) in the proportion of the 

local area that is available to grass growth as follows: 
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The first term of equation (5.13) describes green grass growth, which increases in response 

to daily rainfall 
day

R , according to rate parameter  .  The parameter   ensures that grass density 

does not recover unrealistically slowly if it drops to a value near zero.  Grass growth is increasingly 

limited as the abundance of green grass (plus a shading effect of dry grass on green grass, 

moderated by parameter  ) approaches the green grass carrying capacity 
GK , given by:  

 0 1G annK R     (5.3) 

where annR  is the mean annual rainfall (Fig. 5.1A).  Green grass decay occurs at rate G  and 

consumption of green grass by wildebeest W  occurs at rate 
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where GMVI  is the maximum daily voluntary intake of green grass, w  is the maximum rate at 

which wildebeest can crop grass, and w  is the grass abundance at which the intake rate reaches 

50% of its maximum value.  Biologically, GI  is the maximum intake rate of green grass, which is 

either a function of the cropping rate and grass availability, thereby accounting for hungry animals 

eating as much as they can, or the maximum daily voluntary intake rate, accounting for satiation.  

The amount of grass consumed by wildebeest based on GI  in equation (5.1) is divided by the 

proportion of the immediate area that contains grass, (1 )T .  This leads to the impact of 

wildebeest being greatest in cells that contain a low proportion of grass, based on the assumption 

that the animals in that cell will be focussed on the grassed portion of the cell. 

  

 

 

 
Figure 5.1: Maps of environmental variables.  A) Mean annual rainfall across the Serengeti ecosystem 

over the years 1969-1972 (calculated from data monthly rainfall maps; Holdo et al. (2009)).  B) Plant 

nitrogen concentration across the Serengeti ecosystem from data collected in the period 2006-2008 (Hopcraft 

et al. 2014).  C) Proportion of tree canopy cover across the Serengeti ecosystem based on data from Norton-

Griffiths (1979) and Frankfurt Zoological Society and Harvey Maps (2010) (see Appendix D.1).   
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 In equation (5.2), a fraction f  of decaying green grass becomes dry grass.  Dry grass also 

decays at rate D , and wildebeest consume dry grass at the rate 
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where DMVI  is the maximum voluntary intake of dry grass.  The amount of dry grass consumed by 

wildebeest is again divided by the proportion of the cell that is grass. 

 To obtain values of G  over the spatial region and time period of interest with which to 

inform the wildebeest movement model, I numerically solved the grass dynamics model (equations 

(5.1-5)) for each point of interest in space, using the lsodes integrator from the R package deSolve 

(Soetaert et al. 2010).  As I had no data on G  and D  with which to initialise the model during the 

numerical integration, I instead initialised the system with zero grass in January 1967 and allowed 

G  and D  to develop towards realistic distributions prior to the point where the first wildebeest 

distribution data were collected in August 1969, more than 2.5 years later.  The numerical 

integration was then continued until August 1972, which was the end of the time period covered by 

the wildebeest distribution data.  I obtained values for all parameters in the grass model (see Table 

5.1 for a summary) from Holdo et al. (2009), who developed this model and gathered these 

parameter values from the literature.   

To integrate the grass dynamics model I required information on two covariates; rainfall 

and wildebeest density.  As noted in section 5.2, maps of monthly rainfall were available from 

January 1969 to December 1972.  annR , the mean annual rainfall, was calculated from these data to 

give the map shown in Fig. 5.1A.  
dayR  was calculated for a given time point by taking the 

monthly rainfall associated with that time point, and dividing by 30. For each month of the year in 

the period of January 1967 to January 1969, where I did not have rainfall data, I took the monthly 

rainfall to be the average rainfall for that month of the year during the four years for which data 

were available.  Wildebeest abundances for the period August 1969 to August 1972 were obtained 

from GAMs (Generalised Additive Models) fitted to the ordinal categorical wildebeest distribution 

data (see section 5.5).  For each month of the year in the period prior to August 1969, a wildebeest 

abundance map was obtained by averaging daily estimates from the GAM for the same month in 

the three subsequent years. 

The changing abundances of green and dry grass estimated over the spatial region by 

numerical integration of equations (5.1-5) under the conditions outlined above, and using the least 

complex of the GAMs considered (section 5.5, Table 5.2, Fig.5.4F) to provide the wildebeest 

abundance estimates, are illustrated in Fig. 5.2 and supplementary video 5.1 (see Appendix D.2.1 

for video description).  I observed that grass abundances outside the protected areas (shown by the 

black outlines in Fig. 5.1), which are the areas most used by the wildebeest, were sometimes higher 

than anticipated, particularly in the north-east of the region.  These levels of grass abundance 

outside the protected areas are likely to be unrealistic, because the grass model does not account for 

the livestock grazing and other human-related activities on which I lack data but expect will be 

reducing grass availability in these areas.  Since any grass outside of the protected areas is largely 

inaccessible to the wildebeest, I prevent it from having an unrealistic impact on wildebeest 

movement in the models by assuming that the grass abundances outside the area encompassing the 

range of the wildebeest migration (Maddock 1979) are zero (see Fig. 5.2G-L and supplementary 

video 5.2 (video description can be found in Appendix D.2.2)).  To also prevent the wildebeest 
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being unrealistically driven out of their normal range by inaccessible areas of high plant nitrogen 

concentration, I additionally set plant nitrogen in these outer areas to zero when using this covariate 

(shown in Fig. 5.1B) in the models.  The values of green grass density G  estimated by the grass 

model were converted into green grass intakes GI  using equation (5.4) before being used in those 

wildebeest models that included a response to GI . 

 

 

Figure 5.2: Simulated grass biomass.  Green and dry grass abundance outputs, alongside wildebeest and 

rainfall inputs, from the grass dynamics model (section 5.3) across the spatial region at 3 time points.  A-C) 

Wildebeest density estimated from the least complex GAM fitted to the ordinal categorical distribution data 

(section 5.5).  D-F) Monthly rainfall.  G-I) Green grass abundance estimated from the grass model.  J-L) Dry 

grass abundance estimated from the grass model.  Note that the abundances of green and dry grass outside 

the area encompassing the range of the wildebeest migration have been set to zero.  A video of the changing 

grass abundances over the full time period of interest can be observed in Supplementary video 5.2 (Appendix 

D.2.2).    
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Table 5.1: Summary of model parameters.  Values of the fixed parameters were taken from Holdo et al. 

(2009). 

Parameter Description 

 

Inferred 

or fixed? 

Time- 

varying? 

 

WD  wildebeest diffusion coefficient (equation (5.6)) 
 

Inferred Yes 

  strength of wildebeest movement response to gradient in 

green grass intake rate GI  (or green grass abundance G ) 

(equations (5.7-8,5.16-17) 
 

Inferred Yes 

  strength of wildebeest movement response to gradient in 

grass nitrogen concentration N (equations (5.7-8,5.16-17) 
 

Inferred Yes 

  strength of wildebeest movement response to gradient in 

conspecific density W  (equations (5.7-8,5.16-17) 

Inferred Yes 

    

maxW  maximum conspecific density tolerated by wildebeest 

(equations (5.7-8,5.16-17) 
 

Inferred Yes 

r   wildebeest range of perception (only for non-local models) 

(equation (5.9)) 
 

Inferred No 

   strength of rainfall effect on grass growth rate (equation 5.1) 
 

Fixed No 

   prevents unrealistically slow grass regrowth from near zero 

values (equation (5.1)) 
 

Fixed No 

   effect of shading by dry grass D  on the growth of green 

grass G  (equation (5.1)) 
 

Fixed No 

G   decay rate of G  (equation (5.1)) 
 

Fixed No 

G   decay rate of D  (equation (5.2)) 
 

Fixed No 

f   fraction of decaying G  that becomes D  (equation (5.2)) 
 

Fixed No 

0   intercept of linear model describing effect of annual rainfall 

on grass carrying capacity (equation (5.3)) 
 

Fixed No 

1   slope of linear model describing effect of annual rainfall on 

grass carrying capacity (equation (5.3)) 
 

Fixed No 

w   maximum rate at which wildebeest can crop grass (equations 

(5.4-5)) 
 

Fixed No 

w   grass abundance at which wildebeest intake rate is 50% of its 

maximum (equations (5.4-5)) 
 

Fixed No 

GMVI   maximum daily voluntary intake of green grass by 

wildebeest (equation (5.4)) 
 

Fixed No 

DMVI   maximum daily voluntary intake of dry grass by wildebeest 

(equation (5.5)) 
 

Fixed No 
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5.4. Wildebeest movement models 

I considered advection-diffusion partial differential equation (PDE) models of wildebeest 

movement of the form: 

    x y W W

W W W
a W a W D D

t x y x x y y

        
       

         

advection diffusion

  (5.6) 

which describe spatio-temporal changes in wildebeest density W .  Note that this is similar to the 

general model form used to describe cell movement in chapters 2-3 (equation (2.1)).  The major 

change between this model and the previous, cell-based one is that movement is now being 

modelled in two-dimensional rather than one-dimensional space.  As a result, there are now two 

advection terms and two diffusion terms, describing movements along each of the two spatial axes, 

denoted x  and y .  I did not include a reaction term like that in equation (2.1) to describe changes 

in wildebeest density resulting from births and deaths, instead assuming (as in the previous chapter) 

that the population size remained constant at 720,769 individuals, the population size  estimated in 

1971 (Norton-Griffiths 1973).  The decision not to include a reaction term was made primarily 

because the coarse ordinal categorical data analysed here did not provide accurate enough 

information on the population size over time to estimate a rate of population change (as was 

possible in our melanoma analysis (Appendix A.1.3)).  While there is evidence that the population 

was increasing during the three-year period when the wildebeest data were being collected 

(Hopcraft et al. 2015), it is not anticipated that the population increase over just three years would 

have had a major impact on the migratory patterns observed; even at the maximum growth rate 

observed for this population (~10% per annum (Mduma et al. 1999)), wildebeest numbers at the 

end of the time period of interest would still only be at ~60% of the current population size. 

 In equation (5.6), I assumed a wildebeest diffusion coefficient WD  that is constant over x  

and y , and does not depend on any environmental variables.  I considered the following functions 

for the advection coefficients in x  and y , denoted xa  and ya : 

 
  

max

1
1x

G TW N W
a

W x x x
  
     

          

  (5.7) 
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W y y y
  
     

          

  (5.8) 

where G  is the density of green grass (in g/m) in the proportion of the spatial location that is 

available to grass (which develops as previously described in section 5.3), T  is the proportion tree 

canopy cover (Fig. 5.1C), and N  is the grass nitrogen concentration (Fig. 5.1B).  These advection 

coefficients describe preferential movement of the animals up the gradients with respect to x  and 

y  in G multiplied by the proportion of the immediate area that is grass, assumed to be  1 T .  It 

is anticipated that wildebeest will focus their grazing effort on the proportion of the local area that 

is grass (as described in section 5.3 and equation (5.1)), so that their intake rate is not impeded by 

the presence of tree canopy cover.  Still, it seems reasonable to assume that if a wildebeest were 

offered two locations, both with the same value of G , but one of which is 100% grass, and the 

other only 50% grass, the location with 100% grass should be twice as attractive, hence why G  is 



84 
 

multiplied by  1 T .  The speed that the wildebeest move in response to this gradient in  1G T

is mediated by the parameter 0  .  It is assumed that the wildebeest are responding just to green 

grass, and not both green and dry grass, since evidence from previous studies suggests that these 

animals follow an energy maximisation strategy by focussing on the more nutritious young, green 

grass (Wilmshurst et al. 1999, Boone et al. 2006).  We may alternatively want to consider that the 

wildebeest are moving in response to their green grass intake rate, which takes account of digestive 

and food handling constraints, and the additional presence of dry grass, as modelled in equation 

(5.16), rather than simply responding to green grass density.  Therefore, I also tested versions of 

these advection coefficients where G  was replaced by GI , to determine whether the animals would 

be content to remain stationary once their intake had been maximised, or whether they would 

continue to seek out areas of higher grass abundance, despite there being no immediate benefit to 

doing so.  Movement of wildebeest towards regions of higher grass nitrogen concentration N  is 

also incorporated into the model, with the strength of the response to the nitrogen gradients being 

described by the parameter 0  .  I incorporate the effects of conspecifics on movement in two 

ways, the first being through movement in response to the conspecific gradient (mediated by 

parameter  ), and the second being an overcrowding effect, which is identical to that used in the 

cell movement models (equation (2.7)) and reduces advection along both axes to zero as the 

wildebeest density approaches the parameter maxW ; the maximum conspecific density that the 

animals will tolerate.  See Table 5.1 for a summary of the model parameters. 

 One potential problem with using the basic advection-diffusion PDE outlined above to 

describe wildebeest movement is that it assumes that the animals move based only on local 

information about the exact point in space at which they are currently located – they cannot 

perceive and respond to non-local environmental conditions associated with positions at a distance 

from themselves.  While this assumption is justifiable for cell behaviour, where detection of 

movement driving chemicals in the environment is typically achieved only via cell surface 

receptors, this may not be the case for wildebeest, which have superior methods of sensing their 

wider environment using visual, auditory and olfactory cues.  I, therefore, also considered non-

local versions of the advection coefficients in equations (5.7-8), which were derived by first 

defining a function for the perceptive field  P x , which declines with distance from the current 

location: 

  
2 2 2 2 2

2 2 2

,  if  
,

0,                     if  

r x y x y r
P x y

x y r

    
 

 

  (5.9) 

where r  is the wildebeest radius of perception.  This function is depicted in Fig.5.3A, which shows 

wildebeest perception at its highest at the animal’s location  0,0 , and then linearly declining with 

increasing distance from this point until it hits zero at a distance of r .  I chose to use this function 

rather than (say) a smooth bivariate Gaussian, both for computational efficiency and to allow us to 

estimate the radius of perception r , a parameter that is perhaps more intuitive than the standard 

deviation of perception that would be estimated for the Gaussian function.  In practice, using a 

Gaussian function would have made little difference to the qualitative results (Mogilner and 

Edelstein-Keshet 1999).  The next step was to take the convolutions of  P x  with the partial 

derivatives of the variables driving movement (i.e.  1GI T , N  and W ) with respect to x  and y  

in equations (5.7-8) as follows (taking  W x  as an example): 
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where A   is the circular area    
2 2

x x y y b     , with radius b  and centre  ,x y  at time t .  

By integration by parts: 
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where B  is    
2 2

x x y y b     , the boundary of A , and v̂  is the outward unit surface normal 

to B .  I then obtained: 
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where C  is the circle centred on  ,x y  at t  with radius r , since r  is finite and 

 , 0P x x y y     for all  ,x x y y    where    
2 2 2x x y y     r  (see equation (5.9)).  

The convolution of  W y  and P  could similarly be found to be: 
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and the partial derivatives of P  with respect to x  and y  (illustrated in Fig. 5.3B-C) are: 
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I could then replace the gradients driving movement in equations (5.7-8) with the convolution 

integrals obtained as described in equations (5.12-13), with equations (5.14-15) substituted in, to 

give the advection coefficients of the non-local model: 
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  (5.17) 

The consequence of these new advection coefficients is that, when making movement decisions in 

response to one of the three movement drivers  1G T , N  and W , the animals now consider the 

values of these variables over their entire range of perception r .  Note that this non-local model 

reverts to the local model in the case where 0r   and P  becomes the   function.  Similar non-

local models have previously been proposed for modelling swarm behaviour based on various 

types of social interactions (Mogilner and Edelstein-Keshet 1999, Topaz and Bertozzi 2004, Miller 

et al. 2012).     

 

 

 

Figure 5.3: Wildebeest perceptive field.  A) Depiction of the perceptive field of a wildebeest P , as defined 

in equation (5.9).  B) Partial derivative of P  with respect to x  (equation (5.14)).  C) Partial derivative of P  

with respect to y  (equation (5.15)).   

 

 

In addition to the two models described by the advection coefficients in equations (5.7-8) 

and (5.14-15), I investigated models where the green grass density G  in these advection 

coefficients had been replaced by the green grass intake rate GI .  During model selection, I also 

considered models with advection coefficients that were nested within equations (5.7-8) and (5.16-

17) by removing the effect of  1G T  (or  1GI T ), N , W , or maxW  on wildebeest movement. 

When fitting advection-diffusion models to the cellular movement datasets, I found that the 

movement parameters had to be time-varying in order to obtain a good model fit (see section 2.6).  

Here, I tested whether the same was true in the wildebeest system by assessing versions of the 

models described above where the parameters  ,  ,  , maxW  and WD  were constant in time, and 

versions where these parameters were time-varying.  I assumed that the radius of perception r  was 

constant, since it describes the sensory capabilities of the animals, which are not anticipated to 

change seasonally.  Since I did not have any a priori reason to assume any particular functional 

form for the time-variance of these parameters, and initial attempts to fit the parameters as simple 

polynomial functions of time (as was done for the cell behaviour parameters in chapter 2) failed to 
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effectively describe the observed wildebeest distribution patterns, I fitted values of these 

parameters separately to each of the 33 time points present in the wildebeest dataset.  Model fitting 

and comparison methods are described in section 5.5. 

 

5.5. Model Inference 

In Chapters 2-3, I carried out model inference by numerically integrating the PDE models many 

times with different parameter values within an optimisation or MCMC algorithm.  These 

numerical PDE solutions were computationally costly even for the 1D cell movement models, but 

for the 2D wildebeest movement models described in section 5.4, the costs of numerically 

integrating on a large grid are even greater, particularly for the non-local models that require 

various integrals to be calculated (equations (5.16-17)).  Gradient matching is an inference 

approach that has been used for both ODEs (Macdonald and Husmeier 2015) and PDEs (Xun et al. 

2013) in order to bypass the need for expensive numerical solutions.  It is a two-step process that 

involves first obtaining a smooth interpolation of the state variable (in this study, wildebeest 

density) in time and space using the data, and then optimising the PDE parameters such that the 

difference between the partial derivatives of the state variable with respect to time obtained directly 

from the interpolant and from the PDE (using a given parameter set and information about the 

partial derivatives with respect to space from the interpolant) is minimised. 

For the interpolation step, I used the method described in chapter 4 to obtain continuous 

wildebeest density surfaces in space and time from the ordinal categorical wildebeest distribution 

data.  This involved splitting the large dataset into three contiguous time intervals, fitting a GAM to 

each, and then connecting the three GAMs together at the time points where they overlapped (the 

‘link points’).  The three GAMs I fitted in chapter 4 included a tensor product between time and the 

two spatial dimensions, using cubic regression splines with 20 knots in each of  the x  and y  

marginal bases, and either 12 or 11 knots (equal to the number of time points present in the data 

subset to which the GAM was being fitted) in t .  In this chapter, I used the method described in 

chapter 4 to produce further sets of linked GAMs in which the number of knots were reduced, with 

the aim being to fit the PDEs to each of these interpolants of different complexities, and find the 

optimum combination of PDE and interpolant (as outlined at the end of this section).  These 

reduced-knot linked GAMs all provided poorer fits to the data in terms of the number of cells on 

the original grid that were assigned to the wrong abundance category by the GAM (Table 5.2, Fig 

5.4).  AICc (Akaike 1974, Hurvich and Tsai 1989) and BIC (Schwarz 1978) values were calculated 

for the GAMs as follows: 

  
 ˆ ˆ2 1

ˆAICc 2ln 2
ˆ 1

GAM

k k
L k

n k


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 
  (5.18) 

    ˆBIC 2ln lnGAM L k n     (5.19) 

where L  is the likelihood and k̂  is the effective number of parameters of the fitted GAM, and n  is 

the number of data points.  AICcGAM  suggests that the original GAM with the most knots should be 

preferred, while the more conservative BICGAM   selects one of the new, less complex GAMs (Table 

5.2). 
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Table 5.2: Comparison of sets of linked GAMs with different numbers of knots in the spatial and 

temporal marginal cubic spline bases. The GAMs are compared based on the percentage of grid cells that 

they assigned to a different wildebeest abundance category than in the original wildebeest distribution data, 

and also based on the comparison statistics AICc and BIC. 

Knots in x  

and y  

marginals 

Knots in t  

marginal 

% Grid cells in 

wrong category 
AICcGAM   BICGAM  

20 12/11 12.5 57783* 99652 

12 12/11 17.5 66550 87744 

10 10 20.1 70545 86307* 

8 8 27.2 77717 86927 

6 6 39.9 87528 92375 

 

 

 

From the linked GAMs fitted to the wildebeest distribution data I was able to obtain 

estimates of W  at any point in the spatio-temporal domain of interest.  I could similarly obtain 

values of G  and I  at any point in time and space from the grass dynamics model, and of N  and 

T  (see Fig. 5.1B-C) at any point in space (these variables are assumed to be constant in time) by 

kriging.  Kriging was carried out using the autoKrige function from the automap package 

(Hiemstra et al. 2009) in R (R Core Team 2015), which tests a range of variogram models and 

selects the one giving the lowest residual sum of squares with the sample variogram.  From the 

estimates of  W , it was possible to use finite differencing to approximate the partial derivative of 

wildebeest density with respect to time W t   at the centre of each cell in the spatial grid, at each 

time point at which the wildebeest distribution data were collected, as follows: 

 
     , , , , 0.5 , , 0.5t t

t

W x y t W x y t h W x y t h

t h

   



  (5.20) 

where th  is a constant step parameter.  The partial derivatives with respect to x  and y  that 

populate the right hand side of equation (5.6) could similarly be approximated for a given set of 

movement model parameters using the estimates of the state variables W , G  (or GI ), T  and N .  

As th  (or, similarly, xh  or yh ) moves closer to zero the approximation of the partial derivative at 

 , ,x y t  should become gradually more accurate.  However, at very small values of these step 

parameters, rounding errors that occur during computation start to dominate the estimate and 

accuracy decreases again.  This is illustrated in Fig. 5.5, where it can be seen that the value of the 

estimates of the partial derivatives of W  with respect to x , y  and t  at a specific point  , ,x y t , 

obtained from the most complex GAMs (Fig. 5.4B), stabilise at relatively small values of th , xh  

and yh  in the range of 210  to 610  kilometres/days, but then start to show large fluctuations at 

very small values.  This pattern appears to be consistent across points in time and space.  Based on 

this finding, I calculated the partial derivatives using 410th days  and 410x yh h km  .  

However, I also tested a more arbitrary alternative scheme with larger step sizes of 10th days  and 

1x yh h km  to check whether the model selection results were consistent over alternative step 

sizes.  The larger step sizes chosen here also reduce the impact of any potential under-smoothing 

between data points in the GAMs by averaging any sharp changes in W  over a greater distance.   
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Figure 5.4: Comparison of GAMs of varying complexity.  A) Ordinal categorical wildebeest distribution 

data from August 1969 over the spatial region of interest.  B-F) Ordinal categories estimated for August 1969 

from five different GAMs fitted to the wildebeest distribution data.  These GAMs are of successively 

decreasing flexibility, with the numbers of knots in the spatial and temporal marginal cubic spline bases 

declining as described in Table 5.1.  

 

 

 

 

 

Figure 5.5: Comparison of finite differencing step size parameter values.  Estimates of the partial 

derivatives of W  with respect to x  (A), y  (B) and t  (C) at a specific point in space and time  , ,x y t  that 

were obtained from the most complex GAMs at a range of values of xh , yh  and th .   Units for xh  and yh  

are kilometres and for th  are days. 
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 For the integro-differential equations, which use the advection coefficients given in 

equations (5.16-17), approximation of the partial derivatives in the right hand side of equation (5.1) 

also required estimation of the integrals in these advection coefficients.  I did this for 26 potential 

values of r , the wildebeest range of perception, spread evenly at 5km  intervals between 5km  and 

130km .  Estimation of the integral         2 2
, ,

C
W x y t x x x x y y dC        , for example, 

at a point  , ,x y t  involved first obtaining values of W  at time t  for every grid cell whose centre 

lay within r  of  ,x y .  Each of these values of W  was then multiplied by the value of 

     
2 2

x x x x y y      , where  ,x y   is the location of the centre of the grid cell where the 

W  value was obtained.  By summing each value         2 2
, ,W x y t x x x x y y        , I 

then obtain an estimate of         2 2
, ,

C
W x y t x x x x y y dC        . 

 By obtaining estimates of the partial derivatives with respect to space on the right hand 

side of equation (5.1) at each point in space and time that occurred in the original wildebeest 

distribution dataset, as described above, I was able to use equation (5.1) to calculate associated 

estimates of W t   for a given set of movement model parameters.  The sum of squared residuals 

(SSR) between these estimates of W t   and the alternative estimates obtained directly from the 

GAMs using equation (5.20) could then easily be obtained.  Fitting of the wildebeest movement 

model parameters by gradient matching was achieved by minimising the SSR using the quasi-

Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm within the R function optim().  It 

would also have been possible to use a Bayesian scheme based on MCMC sampling for parameter 

estimation; the choice of a frequentist approach was made because of time constraints, given that 

achieving parameter convergence with the optimisation algorithm was less computationally costly 

than with MCMC sampling.  The parameter optimisation was repeated 50 times for each model 

using different sets of randomly selected initial parameter values, after which only the optimised 

parameter set that gave the lowest SSR out of the 50 was retained.  By running multiple 

optimisations from different starting points, I reduced the risk that the optimised parameters 

represented a local rather than a global optimum.  During the optimisations, I set lower and upper 

bounds on a number of the model parameters.  A diffusion coefficient cannot be negative, so WD  

was bounded below at zero, but left unbounded above.  Similar zero lower bounds were set for   

and  , since I can think of no biological reason why the wildebeest should be repelled by greater 

abundances of green grass or grass that is of a higher quality in terms of nitrogen concentration.  I 

leave   unbounded, allowing for either attraction or repulsion between conspecifics.  The 

parameter maxW  was given a minimum value of the maximum wildebeest density obtained from the 

GAMs, and a maximum value of 56.7 10  wildebeest per 2km .  For the non-local models 

(equations (5.11-12)), I fitted each model with each of the 26 values of the parameter r  between 

5km  and 130km ; a value of 130km allows a wildebeest standing in the centre of the region of 

interest to determine the environmental conditions across almost the entire region.  The values 

considered for r  may appear to include unrealistically large values, but this range was selected on 

the basis of a previous study that estimated the wildebeest radius of perception to be at least 80km 

(Holdo et al. 2009). 

 I used a backward selection approach to determine which of the proposed mechanisms 

affecting wildebeest movement (movement up gradients in green grass intake/abundance, 

conspecific density and grass nitrogen concentration, and movement being limited by 
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overcrowding) should be retained in the optimal model.  Comparison of the PDE models was 

achieved using two information criteria; AICc and BIC.  These statistics were obtained from the 

SSR as follows: 

 
 2 1

AICc ln 2
1

PDE

k kSSR
n k

n n k

 
   

  
  (5.21) 

  BIC ln lnPDE

SSR
n k n
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 
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 
  (5.22) 

where n  is the number of data points and k  is the number of parameters estimated during fitting.   

The best model is indicated by the lowest value of each of these comparison statistics.  Note, 

however, that these statistics are describing the fit of the PDE models to the GAM-based model 

that was fitted to the data, not directly to the data itself.  This means that if the GAM model is 

unrealistic in some way, due to it being under- or over-fitted to the data for example, then it may 

not be possible to get a good fit of the PDEs to the GAM, or, if it is possible to get a good fit of the 

PDEs, then the fit of the GAM to the data may be so poor that the PDE is not actually giving a 

good description of the true movement behaviour.  As a way of balancing the quality of fit of the 

PDE with the quality of fit of the GAM, I fitted all of the PDE models using each of the five GAM 

models outlined in Table 5.2, which vary in their complexity (as indicated by the number of knots 

used in each), such that both AICcGAM  and BICGAM  (equations (5.18-19)) suggest that the least 

complex GAMs may be underfitted to the data, whilst BIC suggests that the most complex are 

perhaps overfitted.  AICcPDE  and BICPDE  values were calculated using equations (5.21-22) for all 

of these PDE model fits and I used the following equations to penalise these statistics based on the 

AICcPDE  and BICPDE  values (equations (5.21-22)) for the GAMs from which each PDE fit was 

produced: 

  pAICc 1 AICc AICcPDE GAM      (5.23) 

  pBIC 1 BIC BICPDE GAM      (5.24) 

Here, 0 1   is a weighting parameter that describes how much weight is to be put on the fit of 

the GAM versus the fit of the PDE.  Ideally the value for   would be selected using cross-

validation, but given the high computational costs of this, I instead compute the pAICc and pBIC 

values across the range of possible values of   and take the best PDE/GAM combination to be the 

one that gives the lowest value of these statistics over the greatest range of  .  

 

5.6 Results 

 The AICcPDE  and BICPDE  values calculated from the fits of all variations of the wildebeest 

movement PDE models to the GAMs describing the spatio-temporal distribution of wildebeest (see 

Appendix D.3; equations (5.21-22)) show three general patterns.  The first is that the models fitted 

using finite difference approximations of the partial derivatives that were obtained using the small 

step size scheme, where 8.64th s  and 10x y cmh h   (see equation 5.20), typically had poorer 

(larger) AICcPDE and BICPDE values than the same models fitted using finite difference 

approximations obtained with the large step size scheme, where 10th days  and 1x yh h km  .  

Since the larger step size scheme effectively adds an extra degree of smoothing to the partial 
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derivatives of wildebeest density obtained from whichever GAM the model was fitted to, this trend 

may indicate that the GAMs are under-smoothing the data.  The second pattern observed is that 

PDE models fitted to GAMs of lower complexity typically have improved AICcPDE  and BICPDE  

values compared to the same PDE models fitted to higher complexity GAMs, again indicating that 

a greater degree of smoothing of the data is desirable.  Third, I find that, despite the large increase 

in the total number of fitted parameters in the time-varying parameter models compared to the 

constant parameter models, the time-varying parameter models had consistently lower AICcPDE  

and BICPDE  values.  This strongly indicates changes in wildebeest movement behaviour over time. 

 The best model for every GAM complexity based on both AICcPDE  and BICPDE  (the two 

statistics were always in agreement; see tables in Appendix D.3) included the spatial gradients in 

grass nitrogen concentration N  and conspecific density W  as drivers of movement, along with an 

overcrowding effect mediated by 
maxW  (Table 5.3).  Each of these best models also included a green 

grass-based movement response, but there was some disagreement between GAM complexities 

over whether this response should be to green grass abundance G  or green grass intake 
GI .  A non-

local version of each best model was always selected over a local version, with estimates for r  

ranging from 30km to 50km (Table 5.3).   

 

 

Table 5.3: Optimal wildebeest movement PDE model for each GAM complexity.  The drivers of 

wildebeest movement in the optimal model selected for each of the five GAM complexities (indicated by the 

different numbers of knots in the marginal bases in x , y  and t ) based on AICc
PDE

and BIC
PDE

 (see tables in 

Appendix D.3).  All of these best models were non-local, had time-varying parameters, and were obtained 

using the larger step size scheme considered, where 10th days  and 1x yh h km   (see equation (5.20)).  

Note that all of the AICc
PDE

 and BIC
PDE

 values (equations (5.21-22)) recorded here have had the minimum 

value subtracted for ease of comparison.  The distance estimated for the wildebeest range of perception r  is 

given for each GAM complexity.  G=green grass abundance; IG=green grass intake; N=plant nitrogen 

concentration; W=wildebeest density; Wmax=maximum tolerated wildebeest density. 

Knots in x   

and y  
 

marginals 

Knots in t   

marginal 

Best Model Range of 

perception r  

(km) 

AICcPDE  BICPDE  

6 6 IG + N + W + Wmax 50 0 0 

8 8 G + N + W + Wmax 35 90629 90629 

10 10 G + N + W + Wmax 30 186794 186794 

12 12/11 G + N + W + Wmax 40 173381 173381 

20 12/11 IG + N + W + Wmax 30 220452 220452 

 

 

 

 Calculating pAICc and pBIC (equations (5.23-24)) for the best models fitted to each GAM 

complexity over the full range of values for   indicates that for the vast majority of this range 

(88% for pAICc and 94% for pBIC), the best PDE model fitted to the lowest GAM complexity (6 

knots in each of the 3 marginal bases) would be selected as the best PDE/GAM combination (Fig. 

5.6).  A comparison of the values of W t   calculated from this PDE, with its optimal parameter 

values, and the values of W t   calculated from the GAM over the spatial region for the first four 



93 
 

time points observed in the data is provided in Fig. 5.7 (see supplementary video 5.3 and its 

description in Appendix D.2.3 for a comparison over the full time series).  It is observed that the 

closeness of the match between the two estimates of the W t   values varies between time points 

and over space, with some features in the GAM being accurately represented by the PDE, while 

other features are not.  I provide a similar comparison of the temporal gradients for the best of the 

constant parameter PDE models fitted to the same GAM (Fig. 5.8).  The performance of the 

constant parameter PDE in replicating the patterns observed in the GAM is much poorer, with the 

values of W t   from the PDE never reaching the magnitudes observed from the GAM. 

The parameter values estimated for the best PDE/GAM combination fluctuate over time, 

with no obvious patterns (Fig. 5.9).  I checked for the presence of seasonality in these parameters 

by fitting a GAM containing a cyclic cubic regression spline smooth in time with a period of a year 

to the time series for each parameter using the mgcv package in R (Wood 2006).  This analysis 

found no evidence of seasonality in any of the five parameters (P≥0.05 for all cyclic spline smooths 

in time).  It is observed that both positive and negative values occur for the parameter  , 

suggesting attractive interactions between the animals at some time points, but repulsive 

interactions at others. 

 

 

 

 

Figure 5.6: Selection of the optimal wildebeest PDE/GAM combination.  Plots of the changing values of 

the pAICc (A) and pBIC (B) (equations (5.23-24)) for the best PDE model (based on AICc and BIC; see 

tables in Appendix D.3) fitted to each of the five GAM complexities considered (here indicated by the 

different colours and line types), as the weighting parameter   is increased from zero to one.  The vertical 

dashed black line indicates the value of   at which the PDE model fitted to the least complex GAM (with 6 

knots in space) ceases to have the best value of each of the two model comparison statistics. 
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Figure 5.7: Best time-varying parameter wildebeest PDE model fitted to least complex GAM. 

Comparison of W t   as estimated from the best PDE fitted to the least complex GAM (Table 5.2; 

suggested to be the best PDE/GAM combination based on pAICc and pBIC (Fig.5.6)) using the optimised 

parameters (left plots) and W t   as estimated directly from the least complex GAM by finite differencing 

(right plots) across the spatial region at the first four time points present in the original wildebeest data 

(rows).  Comparison plots for all 33 time points can be observed in supplementary video 5.3 (for video 

description see Appendix D.2.3). 
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Figure 5.8: Best constant-parameter wildebeest PDE model fitted to least complex GAM.  Comparison 

of W t   as estimated from the best constant parameter PDE fitted to the least complex GAM using the 

optimised parameters (left plots) and W t   as estimated directly from the least complex GAM by finite 

differencing (right plots) across the spatial region at the first four time points present in the original 

wildebeest data (rows).  Comparison plots for all 33 time points can be observed in supplementary video 5.4 

(for video description see Appendix D.2.4). 
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Figure 5.9: Fitted values of each of the time-varying PDE model parameters (Table 5.1) at each time 

point present in the wildebeest distribution data, from the best model fitted to the least complex of the GAMs 

(Table 5.3). 

 

 

5.7 Discussion 

 I have used a gradient matching approach to fit advection-diffusion PDE models of 

wildebeest movement to GAM-based wildebeest density surfaces, which had in turn been fitted to 

ordinal categorical wildebeest distribution data.  Model comparison statistics were used to identify 

the best model for each of five complexities of the wildebeest density surface, and to give an 

indication of the overall best combination of PDE model and GAM-based density surface.  The 

best PDE/GAM combination included influences of green grass intake (which is determined by 

factors including rainfall and depletion by grazing), grass nitrogen concentration and conspecific 

density (both through overcrowding and attraction/repulsion interactions) on wildebeest movement.  

I also found evidence that the responsiveness of wildebeest to these movement drivers changes 

over time. 

 The PDE in the best PDE/GAM combination suggested that wildebeest move in the 

direction that maximises their green grass intake, which is a result that agrees with previous 

modelling work applied to the same dataset (Holdo et al. 2009).  However, the best models fitted to 

some of the alternative GAM complexities disagreed with this conclusion, indicating that 

wildebeest are responding directly to green grass abundance.  Intuitively, we might expect that the 

animals should be seeking to maximise their intake of green grass, which is limited by cropping 

and digestive constraints (Wilmshurst et al. 1999, Holdo et al. 2009), rather than simply seeking 

out the location with the highest possible green grass abundance, since, if their intake is already at 

its maximum, continuing to move to areas of higher grass abundance appears to be a waste of 
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energy.  However, given that these animals are typically moving as part of a large herd, leading to 

rapid depletion of local resources, it may still be a good strategy to readily move to other areas with 

more green grass.  It is also possible that green grass availability in the ecosystem over the time 

period of interest was such that green grass intake often could not reach its maximum, so that 

maximising green grass intake and maximising green grass abundance resulted in similar 

movement patterns.  These variables could have led to the observed difficulties in distinguishing 

between the two alternative strategies.   

 The finding that grass also directs movement via its nitrogen concentration agrees with 

results reported in previous modelling studies.  Holdo et al. (2009) found that wildebeest had a 

significant preference for areas with higher grass nitrogen concentration, and proposed that this was 

the factor driving the southwards migration to the nitrogen-rich plains in the wet season.  A 

tendency for individual wildebeest to move further each day and change direction more frequently 

when close to or within high-nitrogen patches on the plains, but move shorter distances each day 

when close to or within high nitrogen patches in the woodlands, was reported by Hopcraft et al. 

(2014).  The suggested explanation for the increased daily movement in response to high nitrogen 

on the wet season range was that very high densities of grazers congregate on these high-quality 

patches, causing rapid depletion and forcing more onward movement.  The typically more 

dispersed distribution of animals in the woodlands during the dry season may allow individuals to 

linger for longer in high-nitrogen patches before resources are depleted.  The results presented here 

provide further confirmation of the attractiveness of areas of high grass nitrogen concentration to 

wildebeest as they attempt to meet protein requirements. 

 Attractive and repulsive interactions between individuals have never previously been 

considered in models of the Serengeti migration, and here I find evidence that such interactions 

may be important in determining movement patterns.  The finding of repulsive interactions in some 

months was surprising, because previous studies have indicated that aggregatory behaviour is 

important in this herding species (Thaker et al. 2010, Mose et al. 2013).  There are a number of 

possible explanations for this, some biological, and others that relate to the model being a poor 

description of wildebeest behaviour or to inaccuracies in inference.  Biologically, it is possible that 

under certain conditions, when resources are particularly scarce, the animals prefer to move further 

away from each other to reduce competition while grazing.  In cases where such repulsive 

interactions are occurring, a herd may still be maintained by the fact that the individuals all require 

the same resources and are forced to congregate on limited suitable habitat despite these repulsive 

tendencies.  The mix of attractive and repulsive behaviours observed over different months could 

also be a consequence of the model wrongly assuming that only one of these interaction types can 

be occurring at any one time, when in fact both may play a role in driving the dynamics of the herd.  

Other studies of collective movement have found evidence that individuals are repulsed by 

conspecifics that come too close, but attracted to conspecifics that are further away; leading to 

aligned movement and maintenance of a stable inter-individual distance (Lukeman et al. 2010, 

Katz et al. 2011).  Differential equation models that incorporate these short-range repulsion and 

long-range attraction dynamics have been proposed, and I hope to investigate such models in future 

work (Mogilner and Edelstein-Keshet 1999, Topaz and Bertozzi 2004, Miller et al. 2012).  It 

should be noted, however, that the inclusion of the overcrowding effect in the PDE models should 

partially account for such behaviours, as, similarly to short-range repulsion, it prevents densities in 

excess of a maximum maxW .  A failure to include other important wildebeest movement drivers, not 

involving conspecific interactions (see discussion of possible mechanisms below), in the models 

considered could also have led to the complex inferred patterns of attraction and repulsion.  A 

model that is mechanistically too simple to describe the observed behaviour may try to compensate 

for missing mechanisms through the flexibility allowed in those mechanisms that are present, 

leading to spurious inferences.  It is also possible that the somewhat messy pattern observed for 
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conspecific interactions is a consequence of identifiability issues between the parameter mediating 

these effects   and the diffusion parameter 
WD .  Both diffusion and conspecific repulsion tend to 

lead to individuals moving from areas of high to low density, and, given that the months in which 

the strongest repulsive interactions were observed correspond to months where diffusion was 

relatively low (Fig. 5.9), it is possible that the parameters are compensating for one another.  

Finally. as discussed in more detail below, errors in inferring the parameters of the PDE model may 

arise due to the GAM to which the PDE is fitted not providing an accurate description of the 

changing wildebeest distribution.  

 The best PDE/GAM combination suggested a wildebeest range of perception of 50km, 

with the best PDEs fitted to the alternative GAM complexities suggesting values in the range 30-

40km.  These distances are shorter than that estimated in a previous model by Holdo et al. (2009), 

who found that a range of perception of at least 80km was required to produce realistic migration 

patterns, but are still surprisingly long.  There are four possible explanations for this: 1. A large 

range of perception is being estimated to compensate for some other mechanism that is missing in 

the model, or as a consequence of inaccuracies in inference resulting from the reliance of the 

gradient matching technique on an imperfect interpolant; 2. Wildebeest are not actually perceiving 

information about environmental quality over these large distances in real time, but as a result of 

their learned or genetic memory; 3. Wildebeest are able to use distant cloud formations, or other 

long-range cues such as wind, to determine where rainfall, and the resulting new grass growth, is 

occurring; 4. Wildebeest are only able to directly perceive information about the environment over 

relatively short distances, but receive information about distant locations indirectly as it is passed 

through interacting individuals in dispersed herds.  Previous modelling studies have shown that 

such interactions can allow individuals with imperfect knowledge of the environment to more 

accurately navigate up noisy gradients in environmental quality as part of a group than would be 

possible in isolation (Grünbaum 1998, Couzin et al. 2005).  By allowing for interactions between 

individuals in our model, I have accounted for this fourth explanation of the long ranges of 

perception, and it is suspected this is the reason that the presented estimates were somewhat shorter 

than that of Holdo et al. (2009), who did not account for interactions.  Including the effects of 

memory and cloud cover in the models is a goal for future work, which could allow further 

narrowing down of the cause of the long estimated range of perception.   

 The finding that wildebeest movement behaviour changes over time agrees with previous 

studies that suggest that the behaviour of this species differs between different habitats and seasons 

(Thaker et al. 2010, Mose et al. 2013, Hopcraft et al. 2014).  Such changes in behaviour could be a 

result of changes in the nutritional requirements of the animals at different times of year as a 

consequence of events such as calving and the rut.  However, I was unable to find a clear seasonal 

pattern in the changes of the movement parameters that could be explained by these seasonal 

events.  This could be a consequence of the coarse temporal resolution of the data; calving and the 

rut are events that happen in a roughly 2-3 week period (Hopcraft et al. 2015), so these events 

could easily be missed by the monthly data collections.  A lack of seasonality could also be a result 

of the way in which the time-varying parameters were fitted, with a separate value of each 

parameter being estimated independently for each time point.  Since there is no dependence of a 

parameter value at one time point on the values of that parameter at previous or subsequent time 

points, there is no incentive for smoothness over time in the parameter time series, resulting in the 

volatile patterns observed in Fig. 5.9.  Smoothness could be enforced by assuming a smooth 

functional form for the parameters over time; a methodology that I previously implemented for the 

temporal changes in the cell movement parameters in chapters 2-3.  The low-order polynomials 

that were found to be suitable for changes in cell behaviour over hours or days, however, are 

unlikely to be appropriate for describing changes in wildebeest movement over a period of years, 

hence why I chose a more flexible approach in this study.  A possible alternative of intermediate 
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flexibility would be to model the parameters as cyclic cubic regression splines, which are cubic 

regression splines where the start and end points (which would here be assumed to be the start and 

end of a year) are forced to have the same value, and first and second derivatives, resulting in a 

smooth function that repeats annually (Wood 2006).  Two final possible explanations for the lack 

of pattern observed in the time-varying parameters, both of which are discussed in more detail 

below, are: 1. Important wildebeest movement drivers are still missing from the current best PDE 

model, forcing the values of the other parameters to try and compensate in unpredictable ways for 

these missing drivers; 2. The GAM fitted to the data is a poor description of wildebeest movement 

patterns, and, as a result, the PDE model requires wildly fluctuating parameters to imitate it. 

 While the PDE model from the best PDE/GAM combination was able to produce a 

gradient surface that was similar to that obtained from the GAM for many of the time points, this 

match was poorer in other time points (see Fig. 5.7, supplementary video 5.3 and Appendix D.2.3).  

This could, again, be a result of a failure to account for all important wildebeest movement drivers 

in this PDE model.   Including the effects of gradients in the concentration of additional elements in 

the grass, such as sodium and phosphorus, which have both previously been suggested as drivers of 

the migration (Murray 1995, Hopcraft et al. 2015), could be a next step in improving the movement 

model.  Additional improvements could be made in the way in which the wildebeest respond to 

these nutrients in the grass.  Currently, it is assumed that the movement response to the nitrogen 

gradient is unaffected by the density of grass.  However, it seems likely that the animals will 

actually become less responsive to the nitrogen gradient when grass is low.  An individual in a 

location with dense grass of a moderate nitrogen concentration is likely to reach a higher total 

nitrogen intake over the course of a day than an individual in a location with a high plant nitrogen 

concentration but very low grass density, which will additionally make it vulnerable to starvation.  

In addition, the grass nitrogen gradient may become difficult for the animals to detect when grass 

density is low.  Such an effect could be incorporated by having the animals respond to the gradient 

in  1G T N   (where   is a parameter that alters the relative weighting given to nitrogen and 

grass density) rather than to the two separate gradients in  1G T  and N .  The presence of other 

species in the ecosystem is another potentially important factor that we have not considered.  

Hopcraft et al. (2014) found only a weak influence of perceived predation risk on individual-level 

movement of wildebeest, but identified a stronger response to human presence. Other grazing 

species could also affect wildebeest movement patterns through the increased grazing pressure 

created by their presence.  Data on the distribution of two additional grazers, zebra and Thompsons 

gazelle, were collected at the same time as the wildebeest data considered in this study (Maddock 

1979), so the effects of the distribution of these species on grass biomass and the distribution of 

wildebeest could be incorporated into the model.  Memory is another effect that may be considered 

in the future, as wildebeest may use information obtained during migrations in previous years to 

guide their movement decisions in subsequent years.  It has previously been noted that the 

Serengeti wildebeest migration route regularly changes in response to the population size or 

environmental conditions in a particular year (Pennycuick 1975, Thirgood et al. 2004, Harris et al. 

2009, Hopcraft et al. 2015), which suggests that memory is not the over-riding mechanism by 

which these animals move.  However, evidence from the Tarangire-Manyara ecosystem, where 

there are multiple alternative wet season ranges and individuals show high fidelity to a particular 

range between years (Morrison and Bolger 2012), suggests that memory may still have some 

influence on movement decision in this species. A final potential model improvement that I have 

already discussed above, is the incorporation of more complex interactions between individuals, 

such as short-range repulsion and long-range attraction.    

 Another possible cause of the poorer fit of the PDE model to the GAM-based wildebeest 

density surface at certain time points is that it is not the PDE model, but the GAM-based model that 

is failing to provide an accurate description of the changing wildebeest distribution over the whole 
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region and time period of interest.  The data to which the various GAM models were fitted were 

collected on a roughly monthly basis, and, given that the average distance a wildebeest covers in 

just a day is 4.25km (Hopcraft 2010), this temporal resolution can be considered to be relatively 

coarse.  As a fitted GAM simply aims to produce a smooth interpolant of the data, any fine-scale 

changes in the wildebeest distribution over time that are not observed in the data due to the 

coarseness of the temporal resolution, will also be missing in the smooth GAM surface.  

Additionally, given that the data took the form of ordinal categories rather than accurate densities, 

there was substantial information loss during data collection.  The GAM has to attempt to recover 

this information, inevitably with some error.  If the GAM to which the PDE model is fitted does 

not realistically describe wildebeest movement behaviour, then, even if the correct PDE model for 

describing the real movement process was known, we might fail to get an accurate match between 

the temporal gradients in wildebeest density estimated from the fitted PDE model and the GAM.  

This reliance of the results of inference on the quality of the interpolating surface is an important 

potential issue when using a gradient matching approach where the fitting of the interpolant to the 

data and the fitting of the differential equation model to the interpolant are carried out as two 

separate processes. A more robust alternative is to regularise the interpolant with the differential 

equations (see for example Dondelinger et al. (2013), Ramsay et al. (2007), Xun et al. (2013)).  

This involves fitting both the interpolant and the differential equation model simultaneously, with 

an objective function that both rewards an improved fit of the interpolant to the data and penalises a 

decreasing quality of fit of the differential equation model to this interpolant, thus providing a 

better balance between the two fits.  Such an approach was not feasible in this study, as fitting the 

GAM-based interpolants was highly expensive in terms of computational time and memory due to 

the large size of the wildebeest distribution dataset (85,008 data points) and the complexity of the 

GAMs, which were required to smooth these data in three dimensions.  Repeatedly adjusting the fit 

of these GAMs based on the fit of the PDEs would not have been possible with the time and 

resources available.  I did, however, implement a less expensive, alternative approach, where I 

fitted GAMs of five different complexities to the data, fitted the PDEs to each of these different 

complexity GAMs, and then selected the best PDE/GAM combination by balancing the model 

comparison statistics calculated from the fits of the GAMs and the fits of the PDEs.  In doing so, I 

found that the least complex interpolant, which had a relatively poor fit to the data as a result of its 

increased degree of smoothing, but produced the best fitting PDEs, had the greatest degree of 

support.  This preference for the least complex GAM surface suggests that the more complex 

GAMs that provided better values of AICcGAM  and BICGAM  were actually overfitting to the data. 

 Despite the issue of the reliance of gradient matching on the quality of the interpolation, 

discussed above, this method of fitting the wildebeest movement models provides two key 

advantages.  First, parameter inference was far less computationally costly using this approach than 

it would have been using the methods described in chapters 2-3, where the movement models were 

numerically integrated for each new parameter combination tested.  I was able to run 50 

optimisations of one of the wildebeest models using the gradient matching approach in less 

computational time than it often took to run one optimisation of one of the cell models using 

numerical integrations, despite the larger size of the wildebeest dataset and the more complex, two-

dimensional nature of the wildebeest models.  Second, by avoiding numerical integration of the 

PDEs, gradient matching also allows avoidance of the instabilities that are inherent to numerical 

solutions of advection-diffusion equations in certain regions of parameter space, which presented 

difficulties when I fitted the cell movement models in chapter 2-3.  These numerical instabilities 

can cause attempts at parameter optimisation to halt prematurely (Sibert et al. 1999), and, if the true 

movement parameters are in an unstable region of parameter space, inference through numerical 

integration to get the correct model parameters becomes not just slow, but computationally 

impossible.  It appears that inference through a numerical integration-based method would not have 

been appropriate in this study, since I have thus far been unable to solve the best wildebeest 
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movement model numerically using the parameters estimated by gradient matching without 

instabilities causing the model solver to fail.  Unfortunately, this inability to numerically solve the 

final model makes it difficult to obtain wildebeest density surfaces from the model that can be 

compared to the original data.  A possible method for achieving such a comparison would be to 

convert the PDE model into an SDE (stochastic differential equation) model, which could be used 

to simulate the movement of lots of individuals.  This would be computationally expensive, but it 

would only be necessary to carry out such a simulation once. 

  In conclusion, I have carried out inference on PDE models of wildebeest movement to 

identify a number of drivers of the Serengeti wildebeest migration.  These drivers include gradients 

in environmental covariates, depletion of resources, and interactions between conspecifics.  No 

previous model of this migration has included all of these movement mechanisms, and, indeed, 

very few models fitted to data from any system exhibiting collective movement have considered all 

three of these factors.  In the process of developing these wildebeest models, I have further 

extended the framework introduced for modelling cellular movement in chapters 2-3, by modelling 

in two-dimensional space and considering responses to non-local information.  These extensions 

make the framework applicable to a much wider range of systems, but meant that it was no longer 

feasible to use numerical model solutions during parameter inference, forcing the use of gradient 

matching.  I have found this method to be a promising approach to decreasing computational costs 

and allowing inference for advection-diffusion equations in regions of parameter space where it 

would not otherwise be possible.  However, there are some worrying features of the inference 

results, such as the highly erratic changes in parameter values through time and the poor fit of the 

PDE model to the GAM interpolant at certain time points, that may be a consequence of 

inaccuracies in the gradient matching methods.  As a result, tests of the approach’s ability to 

retrieve parameter values from datasets of various qualities simulated from movement models of 

varying complexity are required to assess under which conditions it allows accurate inference.  

This future work could determine whether gradient matching is really a good solution to the 

problem of inferring movement behaviour from real, inevitably imperfect, ecological data from 

complex field systems. 
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6. Discussion and conclusion 

 The aim of this thesis was to develop mathematical models and tailored statistical inference 

methodologies that could help determine which from a comprehensive list of mechanisms are 

driving collective movement behaviour in a range of study systems at different scales.  Therefore, 

in the preceding chapters, I have developed a range of advection-diffusion PDE models.  These 

described changes in the distribution of populations as an outcome of movement responses to 

gradients in environmental variables, which in some cases are self-generated by the organisms 

through depletion, and responses to conspecifics, through attraction, repulsion or overcrowding 

effects.  I have also developed three alternative approaches to inference for these models, and 

applied them to draw conclusions about the drivers of movement in three systems, two involving 

small scale cellular movements, and the third involving the large-scale movement of wildebeest 

around the Serengeti ecosystem.  In this chapter, I discuss the key results and developments in 

methodology arising from this work, before considering some limitations and directions for 

addressing these in future work. 

 

6.1. A comparison of three study systems 

 As discussed in chapter 1, collective movements are ubiquitous in biology, exhibiting 

similar patterns in a range of systems, at often very different scales, suggesting that commonalities 

in the behaviours that drive movement exist between disparate systems.   During the development 

of models for three study systems, involving Dictyostelium cells, human melanoma cells, and 

wildebeest, I found that similar mathematical features could be used for all three systems to 

describe hypotheses for movement (for instance, conspecific attraction/repulsion and movements 

up spatial gradients in chemoattract/grass).  I used model inference to draw conclusions about the 

types of mechanism driving movement in each study system, allowing an investigation of the 

common causality question.  

 In chapters 2-3, state-of-the-art methods from computational inference and statistical 

model selection were applied to show that the movement patterns of cells in both the Dictyostelium 

and the melanoma movement assays were primarily a consequence of the cells depleting a 

chemical from their environment, and then moving up the resulting gradient in that chemical, as 

was already known from previous work on these study systems (Muinonen-Martin et al. 2014, 

Tweedy et al. 2016).  The chemicals that the cells were responding to (folate for Dictyostelium and 

lysophosphatidic acid for melanoma) differed between the systems, but the mechanism by which 

this response occurred was modelled using the same mathematical functions in both cases.  A 

similar mechanism was also identified for the wildebeest system in chapter 5, where the selected 

best model included preferential movement towards areas with a higher green grass intake rate.  

This intake rate was determined by green grass abundance, which, in turn, was influenced by 

depletion due to wildebeest grazing.  These results suggest that self-generated gradient mechanisms 

may be important for generating movement in a range of systems, as is also suggested by previous 

experimental work in additional systems (see, for example, Scherber et al. (2012), Simpson et al. 

(2006), Donà et al. (2013)), and that the methods presented in this thesis provide an effective 

means of detecting these behaviours when they occur in a system. 

 I found evidence in chapters 2-3 for receptor saturation affecting movement in both 

Dictyostelium and melanoma.  This mechanism results in cells being unable to detect and therefore 
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less responsive to chemoattractant gradients when the local concentration of the chemoattractant is 

high (Tweedy et al. 2013).  I also found some evidence of a similar effect in wildebeest, where the 

PDE in the best PDE/GAM combination involved a response to the green grass intake rate, in 

preference to a direct response to green grass abundance (as was also previously found by Holdo et 

al. (2009)).  The animals can only consume a limited amount of grass in a day due to food handling 

and digestive constraints (Wilmshurst et al. 1999), so that once there is enough grass available 

locally to maximise the intake rate, there is no incentive to continue to move up the grass 

abundance gradient.  Thus, a saturating response to attractive resources in the environment appears 

to be common across the systems considered.   

 I found no evidence for attractive or repulsive interactions between the cells in the 

melanoma data analysed in chapter 2.  For Dictyostelium, I found evidence for such interactions in 

one of the two repeats of the experiments analysed (chapter 3), but only limited evidence in the 

other (chapter 2), where only one of three model comparison statistics (AICc) supported a model 

with interactions.  This indicates that the importance of these interactions varies not just between 

systems, but also within systems, perhaps based on the state of the particular groups of cells being 

considered (this particular cell species is well-known for changing its interaction behaviour in 

response to starvation conditions, as discussed in section 3.6).  There was also evidence for 

attractive and repulsive interactions between wildebeest, suggesting some similarities between 

Dictyostelium and this large ungulate species.  Interactions with conspecifics through 

overcrowding, whereby an individual’s ability to move is inhibited at high density, were found to 

be important in both melanoma and wildebeest, but not in Dictyostelium, possibly because the 

Dictyostelium cells never reached high enough densities for such effects to be detected by the 

inference schemes. 

 In all three systems, temporal changes in movement behaviour over time were found to be 

important in describing the observed movement patterns.  It is acknowledged that some of the 

observed temporal patterns may be spurious consequences of imperfect models (with overly 

flexible parameters and/or important missing mechanisms) or inaccurate inference as discussed in 

sections 3.6 and 5.7.  However, the presence of behavioural changes is supported by previous work 

in many systems, including Dictyostelium and wildebeest (Bonner 1982, Hopcraft et al. 2014).  

While there are exceptions, such as random walk models where the animals can switch between 

movement states (Haydon et al. 2008, Langrock et al. 2014), and the advection-diffusion model of 

Sibert et al. (1999), the majority of studies that have modelled collective movement have not 

considered temporal changes in movement parameters.  The results presented in this thesis indicate 

that such simplifications may not be justified.  I also found evidence for spatial variation in the 

movement parameters of Dictyostelium cells in chapter 3, but did not test for similar spatial effects 

in wildebeest, both to reduce computational costs and because the wildebeest herds tend to be 

focussed in certain areas at certain times of year, so that the effects of space and time on the 

parameters are likely to be closely correlated, potentially leading to parameter identifiability issues 

during inference.  As a result, no comparison could be made between the cell and wildebeest 

systems in terms of spatial variation in behaviour. 

 In addition to changing the approach to inference, discussed in section 6.2, I made two key 

changes to the original advection-diffusion models used for cell movement before they were 

applied to wildebeest movement.  These were the switch from modelling movement in one spatial 

dimension to movement in two spatial dimensions, and the introduction of movement responses to 

non-local information, which allowed for the fact that wildebeest can perceive environmental 

conditions at locations that are at a distance from their current spatial location.  Neither of these 
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changes makes the models unsuitable for modelling cell systems, and, in fact, they should also 

make the models a more accurate description of cellular behaviour.  The assumption of one-

dimensional cell movement was a convenient simplification (justified by two statistical hypothesis 

tests (Appendix B.1)) to reduce computational costs, and was enabled by the particular 

experimental set-ups, which were spatially two-dimensional, but had little variation in movement 

behaviour along one spatial axis.  Such a simplification is unlikely to be plausible in any non-

experimental cellular system, for example during in vitro movements of melanoma cells out from a 

tumour (Muinonen-Martin et al. 2014), or for Dictyostelium cells in their natural soil environment 

(Bonner 1982); indeed, movements in these cases may even require modelling in three spatial 

dimensions.  The local models that I fitted to the cell movement data, which assume that cells 

respond to the conditions at a point location, are likely to be a close enough approximation to the 

truth to get good agreement between models and data in many cases (as I found in chapters 2-3).  

However, cells are able to detect the presence of chemicals across the entire length of their 

membranes, so, while the range of perception described by the length of a cell is tiny in comparison 

to the 50km that I estimated for the wildebeest range of perception in chapter 5, the non-local 

models would be a technically more accurate (if far more computationally costly) description of 

cell behaviour. 

 Perhaps the biggest difference between the cellular and wildebeest systems studied in this 

thesis was that the optimal PDE model fitted to the wildebeest dataset was more complex than 

those that were selected for the cell datasets.  The wildebeest PDE model included various 

environmental and social effects on movement, which were allowed substantial flexibility in the 

way that they changed over time, more so than with the low order polynomials used to model 

temporal dependence in the cell systems.  Yet, this model still didn’t appear to be complex enough 

to capture all of the features of the changing wildebeest distribution as detailed in even the least 

complex GAM fitted to the data, suggesting that there are still effects missing.  This higher 

complexity in the large-scale wildebeest system, where the data came from a natural, fully-

functioning ecosystem, is probably more a consequence of the cell data being from highly 

simplified and controlled lab systems, rather than an indication that cellular movements are 

inherently less complex than large mammal movements.  Cells moving within the complex 

ecosystem of the body, for example, have far more scope for complex interactions with a range of 

different cell types (see for example Wyckoff et al. (2004)), and may move through much more 

diverse habitats (consider cancer cells moving from tumour, to surrounding tissues, to bloodstream, 

to other distant tissues (Steeg 2006)), than do cultured Dictyostelium cells moving under a gel in a 

petri dish for a few hours. 

 

6.2. A comparison of three inference methods 

 As discussed in chapter 1, a majority of studies describing models of collective movement 

have not formally fitted these models to data or used model comparison techniques to identify the 

most likely movement drivers.  In this thesis, I have developed and trialled three different 

approaches to inference for advection-diffusion PDE models, where statistical inference of models 

with realistic levels of complexity has been particularly limited as a consequence of high 

computational costs and numerical instability issues (see Sibert et al. (1999) and chapter 6 of 

Soetaert & Herman (2009)).  A summary of these three approaches is as follows: 
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1. A pseudo-Bayesian scheme during which a ‘posterior’ distribution was developed by 

running parameter optimisations (using maximum likelihood) on many bootstrap samples 

of the data (see section 2.5).  During parameter optimisation, the PDE model was solved 

numerically for each new parameter set.  Model selection was achieved using WAIC 

(Watanabe 2010). 

2. A Bayesian scheme using the delayed rejection adaptive Metropolis algorithm (DRAM; 

(Haario et al. 2006)), initialised with parameters that were a good approximation of the 

MAP (maximum a posteriori parameter configuration); see section 3.4 for details.  The 

models were solved numerically for each parameter set tested in both the initial 

optimisations and the MCMC chains.  Model selection again made use of WAIC. 

3. A frequentist approach, where the PDE models were fitted by optimising the parameters 

such that the difference between temporal gradients in wildebeest density estimated from 

the PDE and from a GAM-based interpolant fitted to the original data was minimised (a 

method known as gradient matching; see section 4.3 for the interpolant fitting methodology 

and 5.5 for details on the gradient matching procedure).  This method did not require 

numerical PDE solutions for each parameter set tested.  Model selection was achieved 

using AICc and BIC values calculated for both the GAM and fitted PDE models. 

Which of these methods is most suitable for advection-diffusion model inference will vary between 

cases based on the considerations discussed below. 

 Given the potentially high computational costs of frequently solving advection-diffusion 

models numerically, consideration of the computational resources and time that are available for a 

particular study is important in the choice of inference scheme.  If both computational resources 

and time are limited (or the models are of such complexity that inference schemes involving many 

numerical solutions are infeasible even with generous resources), then the best option may be to 

avoid numerical solution entirely and pursue a gradient matching approach.  However, the greatly 

decreased computational cost offered by such methods comes at the price of a potential reduction 

in the accuracy of the fitted model (Macdonald et al. (2015)).  This reduced accuracy is a 

consequence of not fitting the PDE directly to the data, but instead to an interpolant, which may not 

be an accurate description of the true density surface from which the data are a sample (see section 

5.7 for further discussion of this point).  For this reason, if it is feasible to use an inference method 

that involves numerical model solutions, then it may be advisable to do so.  If a computer cluster is 

available then the first inference method I described, involving the development of a pseudo-

posterior through multiple parameter optimisations on bootstrap samples of the data, which can 

easily be parallelised, has an advantage over the second approach based on MCMC sampling, 

which is inherently sequential and thus cannot fully exploit the computational resources.  In a case 

where parallel processing capacity is limited, MCMC-based inference may be preferred to the 

pseudo-Bayesian approach, as it is the more traditional and thoroughly tested option.  

 Another issue that will influence the choice of inference methodology is the availability of 

prior information.  If detailed priors are available, then a fully Bayesian approach based on MCMC 

sampling is best able to exploit this information.  If only basic information on upper and lower 

bounds of parameters is available, then any of the three approaches – frequentist, pseudo-Bayesian 

or fully Bayesian – can make use of this prior information.   

 In addition to allowing use of detailed prior information, Bayesian approaches also allow 

parameter uncertainty to be taken into account during model selection.  If posterior distributions are 

available from MCMC sampling it is possible to use this information on parameter uncertainty to 
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calculate and compare WAIC scores for different models, rather than the less reliable comparison 

statistics, including AIC and BIC, that are offered in a frequentist scheme.  The use of advanced 

comparison statistics like WAIC is not just restricted to fully Bayesian approaches.  I used a simple 

test study to determine whether WAIC scores calculated using the pseudo-Bayesian scheme were 

comparable to those calculated using a true posterior (Appendix A.4), which indicated good 

agreement between the two.  However, it should be noted that this test involved a very different 

model system to the cell movement one, and it is unclear whether it involved a likelihood surface 

of a comparable complexity to that being explored in the real problem (see discussion in section 

2.7).  Indeed, more basic inference approaches using AICc and BIC were just as effective as the 

WAIC obtained by bootstrapping in this test case.  Therefore, provisional to more extensive testing, 

the pseudo-Bayesian scheme may offer a promising alternative the fully Bayesian one for taking 

parameter uncertainty into account. 

  A further consideration that must be made is the stability of numerical model solutions.  

Instabilities in the numerical solution of advection-diffusion PDEs under certain parameter 

regimes, particularly when advection is dominant over diffusion (i.e. the Péclet number is high) 

(Leonard 1979, Soetaert and Herman 2009), can mean that it is not possible to explore certain 

regions of parameter space using inference methods that involve numerical solution of the PDEs 

(Sibert et al. 1999).  This may not be a problem if the optimal parameters lie in a stable region of 

parameter space – as appeared to be the case for the models fitted to the cell systems in this thesis.  

However, if the true movement parameters are in an unstable region (as seems to have been the 

case for the wildebeest system), then the only option for parameter inference may be a gradient 

matching approach, which does not require numerical model solutions.  It should be noted that, 

while a frequentist approach to inference was used with the gradient matching approach in chapter 

5, it would be equally possible to combine gradient matching with a Bayesian scheme (see, for 

example, Macdonald et al. (2015), Xun et al. (2013)), and so take advantage of prior information 

and parameter uncertainty as discussed above.  I used a frequentist approach alongside the gradient 

matching methods in chapter 5 primarily to remain within time constraints; achieving convergence 

of MCMC chains is typically more time consuming than achieving convergence of an optimisation 

algorithm.  I would not advocate combining gradient matching with the pseudo-Bayesian approach 

unless the fitting of an interpolant to the data was a low cost procedure (which was not the case for 

the interpolant I fitted to the wildebeest data; chapter 4), since an interpolant would have to be 

fitted to every bootstrap sample of the data. 

 The inference methods developed in this thesis are able to cope with data of different 

qualities.  This was demonstrated in the contrast between the cellular data, which provided accurate 

information on the locations of all individuals through time, and the wildebeest data, which 

consisted of coarse ordinal abundance categories on a spatial grid at monthly intervals.  The high 

quality cell data were used to calculate a likelihood from the numerical PDE solutions as described 

in section 2.4.  However, they could also be smoothed in space and time to allow them to be used 

within a gradient matching approach.  The GAM-based method described in chapter 4 was used 

both to enable recovery of realistic wildebeest densities from the ordinal categories into densities 

and to produce a spatio-temporal interpolant that could be used for inference of the PDE models 

using gradient matching.  It would also have been possible to use these data in an inference method 

based on numerical PDE solutions by optimising the PDE model parameters such that the 

difference (as quantified, for example, by the Kullback-Liebler divergence) between the wildebeest 

density surfaces obtained from the GAM-based method and the numerical PDE solution was 

minimised. 



107 
 

6.3. Limitations and future directions 

 As discussed in section 6.1, the models and inference methods developed in this thesis 

have been successfully used to identify drivers of movement in three systems.  The selected models 

for the cellular systems appear to have produced movement patterns that give very good matches to 

the data for the cell systems.  However, while the best model in the wildebeest system seems to be 

successfully capturing many of the main features of the population distribution in time and space, it 

is still missing some details, suggesting that further model development might be required, as 

discussed in section 5.7.  It must also be acknowledged that the three study systems studied here, 

while representing movement at two very different scales, do not cover the huge diversity of taxa in 

which collective movements are observed (see the examples given in fish, insects, birds, etc. in 

chapter 1).  Ideally, the modelling framework would be able to generalise to describe the 

movement behaviour in any of these various systems.  Below, I briefly outline three areas where 

the models discussed in this thesis could be extended to potentially improve their ability to explain 

movement in the systems studied (particularly wildebeest), or to make them more applicable to 

additional systems, where their application could be useful in the future.  I also discuss some 

limitations to the inference approaches used (see section 6.2) and how these limitations might be 

overcome.   

 

6.3.1. Memory-driven movement 

 In chapter 1, I identified and described four key types of movement driver (see section 

1.1); environmental variability, environmental depletion, interactions between individuals, and 

memory.  Incorporating a range of these movement drivers into collective movement models was 

one of the aims of this thesis, and, of the four types of driver, the only one that I have not yet 

considered in the advection-diffusion models that I developed is memory.   

The reason for memory being given a lower priority than the other three movement drivers 

in this work was primarily a consequence of the particular study systems investigated.  The lack of 

a brain may mean that memories are relatively unimportant in cellular movement decisions.  

However, the tendency of cells to persist in their movement direction, even in the absence of any 

directional cue could be considered a type of memory (Bosgraaf and Van Haastert 2009), as could 

events in cell differentiation, where a precursor cell exposed to short-term signals permanently 

becomes more specialised (Ajo-Franklin et al. 2007).  For wildebeest, the plasticity observed in the 

migration route between years suggests that movement decisions are primarily made in response to 

the current environmental conditions rather than in response to memories from previous years 

(Pennycuick 1975, Thirgood et al. 2004, Harris et al. 2009, Hopcraft et al. 2015).  A study on 

wildebeest in another region, however, has shown high wet season fidelity (Morrison and Bolger 

2012), so memory may be a minor movement driver that could be introduced to further improve the 

fit of the wildebeest model in the future.  Memory could be incorporated into the models through a 

bias in the movement of wildebeest at a particular time point towards the location where they were 

most densely focussed at the same time in the previous year.   

In addition to perhaps providing a better description of wildebeest behaviour, the inclusion 

of learned or genetic memory in the models is likely to be essential for explaining the movement of 

many other species that are believed to rely much more heavily on this driver to accurately navigate 

to distant locations; for example, salmon, sea turtles, and many bird species (Helbig 1996, 
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Lohmann et al. 2008, Mueller et al. 2013).  In such memory-driven systems, the earth’s magnetic 

field is most often credited as the guiding mechanism.  This movement behaviour could be 

incorporated into the models by assuming that the individuals bias their movements up or down 

gradients in the magnitude and inclination of the magnetic field, until they reach the remembered 

signature of their target location (Lohmann et al. 2008).  The target location of the individuals 

could be switched based on seasonal environmental cues to simulate back and forth migratory 

movements. 

 

6.3.2. Individual differences in movement behaviour 

A second feature that was not included in the models presented here, possibly limiting their 

applicability to certain systems, was individual variation.  Differences between individuals have 

frequently been identified as an important driver of movement patterns.  In partial migration, for 

example, different subsets of the population follow different movement patterns, with one part of 

the population migrating seasonally, while the other part remains in the same region year-round.  

Membership of these population subsets is often determined by the competitive ability or state of 

individuals.  In European blackbirds, for example, it is typically the less competitive females and 

juveniles that migrate for the winter, while the adult males are able to remain and monopolise the 

limited resources (Lundberg 1985).  A similar dynamic is observed in roach, where individuals that 

have been able to attain a larger size while feeding in lakes over the summer are more likely to 

migrate to streams, where food is low but there is less risk of predation, over the winter (Broderson 

et al. 2008).  Differences in individual behaviour are also important in systems where there are 

subsets of leaders and followers within a population, such as in the case of whooping cranes, where 

more experienced individuals appear to have a larger influence over the movement of their flocks 

than do less experienced individuals (Mueller et al. 2013).  Other studies have identified 

distributions of movement parameter values across the individuals in a population (see, for 

example, Hopcraft et al. (2014)). 

Individual-based models, such as the random walk and self-propelled particle models discussed in 

section 1.2, may be a more flexible framework for incorporating differences in the behaviour of 

individuals than the advection-diffusion PDEs that are the main focus of this thesis.  This is 

particularly true if, for whatever reason, every individual in the population must have its own 

personal set of movement parameters.  However, the advection-diffusion models could be extended 

to describe the movement of different sub-groups within the population, where the individuals 

within a sub-group share a set of movement parameters.  This would require that each sub-group be 

modelled using a separate equation, similar to the approach used by compartmental models in 

epidemiology (Brauer 2008).  Individuals could even be allowed to switch between sub-groups at a 

given rate to allow for the switches in behavioural state that have been identified as being important 

in a number of species using models based on mixtures of random walks (Morales et al. 2004, 

Langrock et al. 2014). 

While it is known that individual differences in movement behaviour exist in wildebeest (Hopcraft 

et al. 2014), it is unclear whether incorporating individual variation would have led to an improved 

model.  In general, more work is required to determine under what scenarios differences in 

individual behaviour are likely to have important consequences for the emergent population 

movement patterns, and when such individual differences can reasonably be averaged over in 

models to still adequately replicate the whole population movement.   
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6.3.3. Complex social behaviour 

 The models developed in this work allow attractive or repulsive interactions between 

conspecifics, but not both at the same time.  As previously discussed in section 5.7, this may be 

somewhat at odds with the more complex situation found in a number of systems, where 

individuals may be simultaneously be repulsed by individuals that are too close to them, attracted 

to individuals that are further away, and perhaps also be actively trying to align their direction of 

motion with individuals at intermediate distances (Lukeman et al. 2010, Katz et al. 2011).  Such 

complex interactions have typically been modelled using self-propelled particle models (Couzin et 

al. 2002), but a smaller number of studies have also incorporated these dynamics into advection-

diffusion models using integro-differential equations similar to those I used to describe non-local 

responses to environment conditions in the wildebeest system (Mogilner and Edelstein-Keshet 

1999, Topaz and Bertozzi 2004, Miller et al. 2012).  To my knowledge, there have been no 

attempts to fit these advection-diffusion models to data, and this would be an interesting avenue for 

future work.  Extending the model I used to describe the distribution of the wildebeest population 

in chapter 5 to include complex social behaviours of this type may improve the fit of the model to 

the data; particularly since the estimated parameters currently indicate a difficult to interpret 

mixture of both attractive and repulsive interactions between conspecifics.  

 

6.3.4. Limitations of the inference methodologies 

 A number of limitations of the various inference strategies I developed during this work 

have already been touched upon in section 6.2.  For the methods involving numerical solution of 

the models, a major issue is the instabilities in certain parameter regimes.  A finite differencing 

scheme that reduces these issues with instabilities, such as ‘upwind’ differencing, can be chosen to 

numerically solve the models, but this does not always completely remove the issue; some 

parameter combinations can still produce instabilities that can prevent accurate inference (Sibert et 

al. 1999).  Thus, inference using these schemes is limited to cases where the true model parameters 

are within a stable region.  This is most likely to be the case in systems where advective movement 

does not overpower diffusion (Leonard 1979). 

 The alternative to numerical solution-based methods is gradient matching.  This approach 

also has a limitation in that the accuracy of inference is dependent on the accuracy of the 

interpolant used to describe the data (Macdonald and Husmeier 2015).  As discussed in more detail 

in section 5.7, the quality of the interpolant could be improved by regularising it with the 

differential equations (see Dondelinger et al. (2013), Ramsay et al. (2007), Xun et al. (2013)).  

Implementation of a regularisation scheme is, therefore, recommended when using gradient 

matching, but if (as was the case for the application in chapter 5) such an approach is not feasible 

due to computational costs, the method described in equations (5.19-20) offers a less expensive 

alternative.  This cheaper approach, which involved selecting the best combination of various 

alternative interpolants and PDE models by balancing model comparison statistics calculated for 

both interpolants and PDEs, still requires some validation, however.  A study to compare whether 

the results of this approach are generally similar to those of a proper regularisation scheme would 

be useful. 

 Further validation studies for the inference methodologies developed in chapters 2-3 could 

also be an area for future work.  Both the pseudo-Bayesian scheme based on optimisations on many 



110 
 

bootstrapped datasets, and the Bayesian approach using MCMC chains initialised at the MAP 

(rather than random initial parameters from a hyperdispersed distribution) are, non-standard 

techniques that were necessary as a consequence of the high computational costs of numerical 

solutions and of reaching convergence of MCMC chains for the particular models that were the 

focus of this work.  I have presented short validation studies for both of these techniques (see 

Appendices A.4 and B.4), which indicate that they produce model inference results that are 

comparable to more standard approaches in at least one test example.  In fact, MCMC sampling 

around the MAP was found to be more precise than standard Metropolis sampling, and similarly 

precise to population MCMC, in identifying the correct model (Appendix B.4).  Additionally, as 

discussed in section 3.6, this method is less restrictive than the Laplace approximation (Rue et al. 

2009), which is a more standard approach to approximating the posterior in the face of 

computational difficulties.  More extensive testing with a range of models and simulated datasets 

may still be advisable, however, particularly for the bootstrapping technique of chapter 2, to 

increase confidence in these newly developed inference approaches. 

 

6.4. Conclusion 

 Over the course of this thesis, I have developed advection-diffusion models of collective 

movement behaviour that incorporate a wide range of movement drivers – including  

environmental variation, environmental depletion and conspecific interactions – and that account 

for spatial and temporal variation in the response of individuals to these drivers.  I have also 

developed a range of inference methods that can be applied to determine the drivers of collective 

movement from data for a given system.  These methods have been specifically designed to allow 

effective inference in the face of the many difficulties presented by advection-diffusion models, 

particularly high computational costs and numerical instabilities, which have previously led to 

these models rarely being fitted to data.  These models and inference techniques have been applied 

to data from three study systems to successfully allow conclusions to be drawn about the drivers of 

movement in these systems, and thus show that collective movements in systems at opposite ends 

of the scale spectrum can be influenced by surprisingly similar dynamics.  More work is required in 

making the models generalisable to the full range of collective movements observed in biological 

systems, particularly through the addition of memory mechanisms, inter-individual differences in 

behaviour, and more complex social dynamics, but the advection-diffusion modelling framework is 

flexible enough for these additional behaviours to be incorporated in future work.  In short, the 

techniques presented in this thesis represent a toolbox that I hope will be used for increasing 

understanding of the mechanisms underlying collective movement in a wide range of systems.  An 

improved understanding of what drives collective movements could allow these movements to be 

managed, for example, to prevent the collapse of important migrations, to control pest species, or to 

prevent the mass movement of cancer cells around the body. 
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Appendix A: Additional information for chapter 2 

A.1. Numerical model solution  

A.1.1. The method of lines 

I numerically solved the partial differential equations on which the models in section 2.3 were 

based using the method of lines (Schiesser and Griffiths 2009, Soetaert et al. 2010).  This involved 

discretising the spatial region of interest of length l  into equal-sized boxes, so that changes in cell 

density and attractant concentration in these boxes through time could be described as a system of 

ordinary differential equations (ODEs).   

The basic form of the cell movement PDEs (equation (2.1)) can be rewritten as: 
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where 
CFlux  is the cell flux, which describes the net movement of cells up the spatial axis if 

positive and down the spatial axis if negative.  The one-dimensional spatial regions of interest were 

divided into boxes of length 50x m   for Dictyostelium and 10x m   for melanoma, 

allowing cell density changes in box  1,...,i B  to be described: 
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where 1,i i

CFlux   describes the cell flux between boxes 1i   and i .  The cell fluxes across the 

boundaries of the modelled region were specified as described below in Appendix A.1.4. Fluxes 

over the region’s internal box boundaries were obtained by approximating the spatial derivatives by 

finite differencing.  For example, given equations (2.3, A.1.1), 
CFlux  for the basic model is: 
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and the 1,i i

CFlux  are estimated by: 
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For those models incorporating the attractant  ,A x t , the additional attractant PDE (equation 

(2.4)) can, like the cell PDE (equation (A.1.1)), be rewritten in terms of fluxes: 
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Changes in attractant levels in a particular box i  in the discretised spatial region are then be 

described by: 
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where 1,i i

AFlux   describes the attractant flux between boxes 1i   and i .  Attractant fluxes across the 

internal box boundaries were approximated in the same way as the cell fluxes (equation (A.1.4)), 

using finite differences: 
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The attractant fluxes across the external boundaries of the modelled region were specified as 

described in Appendix A.1.4.  

Numerical solutions of the models were obtained by numerical integration of the system of ODEs 

described in equations (A.1.2, A.1.6).  Numerical integration was achieved using the R package 

deSolve (function ode.1D) (Soetaert et al. 2010). 

 

A.1.2. Initial conditions 

In the melanoma dataset, there were no cells in the observation region at 0t  .  I, therefore, expect 

that no depletion of the attractant LPA had occurred in this region by 0t  , so that LPA remained 

at 100% of its initial concentration throughout the region at this point.  Appropriate initial 

conditions from which to solve the models are, thus,  ,0 0C x   and  ,0 1A x  . 

In the Dictyostelium dataset, cells were already present in the left of the observation region at 

0t  .  The initial cell density distribution was, therefore, obtained from the cell locations at t=0 by 

first obtaining a probability density function by logspline density estimation (Kooperberg and 

Stone 1992, Stone et al. 1997, Kooperberg 2015).  This probability density function was then 

rescaled to ensure that the integral of  ,0C x  over the modelled region equalled the number of 

cells in the observation region at 0t  .   

The folate in the Dictyostelium assay was homogeneously distributed in the gel at a concentration 

of 10μM prior to the addition of the cells to a folate-free trough that was cut into the gel (the edge 

of this trough is visible to the left of the image in Fig. 2.2A).  However, there were no data on the 

folate distribution at the time point 0t   where the first cell observations were made.  Given that 

some cells have already moved under the gel at the left side of the region of interest at 0t  , it 

seems likely that some depletion of the folate will have occurred in this region.  I, therefore, expect 

the folate distribution at 0t   to be roughly sigmoidal in form, with low concentrations occurring 
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near the initially folate-free trough, and a smooth increase in concentration to a maximum of 10μM 

occurring as we move to the right, away from the trough and the folate-depleting cells.  Such a 

distribution of attractant at 0t   can be obtained by assuming the sigmoidal functional: 
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The parameters δ and ε respectively describe the steepness of the increase in folate as we move to 

the right of the region, and the location in x at which half the folate is remaining.  Since the precise 

values of these parameters were unknown, they were inferred during model fitting.  I set realistic 

maximum and minimum values for both of these parameters (δmin=0.002, δmax=1, εmin=0 and 

εmax=700) by comparing the cell distribution at 0t   to folate distributions obtained from equation 

(A.1.8) with a range of parameter values, and selecting those values giving the realistic extremes 

that the attractant distribution at 0t   could take (Fig. A.1.1).  There is little change to the folate 

distribution if δ is increased above the selected δmax, hence the choice of this bound.  Decreasing δ 

below δmin causes folate to be depleted too far in advance of the cell front, or to extend too far into 

the initially folate-free trough area.  An ε value of more than εmax will also lead to too extensive a 

depleted region, while a value below εmin results in high levels of folate in the trough area.   

 

 

Figure A.1.1: Extremes that the initial folate distribution was permitted to take during model fitting.  
Green lines show the initial attractant distributions calculated from equation (A.1.8) using each combination 

of the maximum and minimum values of the parameters δ and ε.  Black lines show the initial cell distribution 

obtained by logspline density estimation. 
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A.1.3. Cell Division 

In both the Dictyostelium and melanoma datasets, the number of cells in the observation region 

increased substantially over time, primarily as a result of cells moving into the region across the 

left boundary (Figs A.1.2A & A.1.3A).  A second contributor to increasing cell numbers is cell 

division.  For Dictyostelium, where the assay was run over a relatively short time interval (5.5 

hours), cell division is a very minor contributor, and can reasonably be ignored.  I, therefore, set the 

cell division rate   of Dictyostelium to zero, and assumed that all increases in cell number were a 

result of cell movements across the left boundary (see Appendix A.1.4 for details).  For melanoma, 

however, where the time interval of interest spanned 50 hours, cell division had a larger impact on 

the cell distribution, such that ignoring it did not give good agreement between models and data; 

attributing all changes in cell number to movements led to modelled cell densities that were too 

high at the boundary of the region.  From the microscopy images, it was observed that the influx of 

cells over the region’s left boundary ceased by 30t  , and, since any subsequent increases in cell 

number can be assumed to result from cell division, I estimated 0.004   for melanoma by fitting 

an exponential curve to the data from 30t   onwards (Fig A.1.3A). 

 

A.1.4. Boundary conditions 

For both of the datasets it was necessary to account for movements of cells into the regions of 

interest across the left boundaries by incorporating appropriate boundary conditions into the 

models.  To achieve this, I first took the time series: 

   : 1, ,jS n j T    (A.1.9) 

for each dataset, where jn  is the number of cells observed at time point  1,...,j T .  I then used 

these data, as outlined in Figs A.1.2-3, to estimate smooth functions  N t  describing the rates at 

which the numbers of cells in the regions of interest increased over time.  It can be assumed that 

these increases in cell numbers resulted from just two processes; movements across the region’s 

left boundary (all cells began the assays to the left of the observation region) and cell division (see 

Appendix A.1.3).  A reasonable left boundary condition would, therefore, be: 

    0,1

0
,

l

C N C x t dxFlux t     (A.1.10) 

where 
0,1

CFlux  is the cell flux across the left boundary of the region.  For Dictyostelium, given the 

choice of 0  , equation (A.1.10) reduces to: 

  0,1

C NFlux t  (A.1.11) 

while, for melanoma, as no cells cross the left boundary after 30t  , we have: 

 
     0,1

0
,      if 0,30

0                                     if 30

l

C

N C x t dx t

t

t
Flux

   
 
 

  (A.1.12) 
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Figure A.1.2: Changes in the number of Dictyostelium cells in the region of interest over time.  A) 
Numbers of Dictyostelium cells observed in microscopy images at half-hourly intervals (black crosses), 

interpolated using a cubic spline N(t) (blue line).  B) Derivative of the spline fitted in A. This curve was used 

to define realistic boundary conditions for the cells (see Appendix A.1.4).   

   

 

 

 

Figure A.1.3: Changes in the number of melanoma cells in the region of interest over time.  A) Numbers 

of melanoma cells observed in microscopy images at five-hourly intervals (black crosses).  The blue line 

shows the exponential curve fitted to the data from 30t   in order to estimate the rate of population growth 

through cell division  .  B) Crosses show finite difference approximations of the rate of change in cell 

numbers during the interval from 0t   to 30t  , calculated from the data shown in A.  The blue line shows 

the nonparametric regression curve N’(t) fitted to the points using the sm package in R (Bowman and 

Azzalini 2014).  This curve was used to define realistic boundary conditions for the cells (see Appendix 
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A.1.4).  As no new cells entered the region across the left boundary after 30t  , extending N’(t) beyond this 

point was unnecessary. 

 

In both datasets, no cells crossed the right boundary during the time period considered, so I applied 

a zero-flux boundary condition: 

 
, 1 0B B

CFlux     (A.1.13) 

where B  is the total number of boxes making up the discretised spatial region.  This condition 

prevents any loss or gain of cell density across this boundary.   

A reasonable assumption that I make for the boundary conditions for the attractants (folate and 

LPA) is that the flux across each region boundary equals the flux across the nearest internal box 

boundary in the spatial discretisation: 

    0,1 1,2

A At tFlux Flux   (A.1.14) 

    , 1 1,B B B B

A At tFlux Flux    (A.1.15) 

 

 

A.2. Weighted log-likelihood maximisation 

Numerical solution of the PDE models using the method of lines (Appendix A.1.1) introduces error 

through discretisation of the models in space and time.  This numerical error in the model solution 

leads to noise in the computation of the derivatives of the weighted log-likelihood (equation (2.12)) 

with respect to the parameters (via difference quotients).  If the parameter difference is sufficiently 

large, corresponding to a low resolution representation, this numerical noise tends to average out 

and the weighted log-likelihood appears to be smooth (top row of Fig. A.2.1).  However, if the 

difference is small, corresponding to a higher resolution representation, the numerical noise does 

not average out and spurious low-magnitude high-frequency oscillations are observed (bottom row 

of Fig. A.2.1).  These numerical artefacts in the weighted log-likelihood surface cause problems for 

parameter inference by trapping optimisation algorithms that seek to maximise this function.  

When fitting the models by the maximum weighted log-likelihood, I introduced steps to deal with 

the problem of numerical instabilities leading to optimisers becoming trapped on local optima.  

These involved first attempting to get close to the global optimum for each model by running 200 

optimisations from random initial parameter sets using an optimiser (I found that the quasi-Newton 

BFGS algorithm performed well for the Dictyostelium dataset, while the Nelder-Mead algorithm 

was more effective at reaching high weighted log-likelihood parameter regions for the melanoma 

dataset).  From these 200 optimisations I retained only the one that gave the highest weighted log-

likelihood.  One-dimensional profile weighted log-likelihood plots around these best parameter sets 

(using a low enough resolution for each parameter to obtain a smooth weighted log-likelihood 

profile) were then used to determine whether the weighted log-likelihood was actually at a 

maximum at the optimised value for each parameter.  If the parameters had not been fully 

optimised, I adjusted one of the parameters that was furthest from its optimal position (selected 
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based on the weighted log-likelihood plots) to an improved position.  A re-optimisation of the full 

parameter set was then implemented.  This process of parameter adjustment and re-optimisation 

was continued until re-plotting the weighted log-likelihood profiles showed that a maximum had 

been reached for all parameters (Fig. A.2.2), indicating that the maximum weighted log-likelihood 

had been reached.  Model comparison using AICC (the Akaike Information Criterion corrected for 

small sample sizes (Akaike 1974, Hurvich and Tsai 1989)) and BIC (Bayesian Information 

Criterion (Schwarz 1978)) could then be carried out by calculating these statistics for each model 

as: 

 
 *

C

2 1
AIC 2log 2

1

k k
L k

n k


   

 
 (A.2.1) 

 
*BIC 2log logL k n    (A.2.2) 

where 
*log L  is the maximum weighted log-likelihood and k is the number of model parameters.  

These statistics reward models based on their fit to the data, indicated by 
*log L , and apply a 

complexity penalty based on k, on the assumption that all parameters are well-determined by the 

data.   

 

 

 

Figure A.2.1: Numerical error in the likelihood surface.  One-dimensional plots of the weighted log-

likelihood (equation (2.12)) against a parameter α at different resolutions.  The value to which the parameter 

was optimised on one run of the quasi-Newton BFGS optimisation algorithm is marked with a point.  Note 

that the optimiser has failed to reach the maximum likelihood value, and become trapped on a local optimum 

instead.  These local optima are artefacts of the numerical noise inherent in the discretisation of the PDEs, 

and only appear at high resolution (i.e. when making small changes in the parameter values).  
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This weighted log-likelihood maximisation procedure is very effective for obtaining a reliable 

estimate of the optimal parameters.  However, the reliance of this method on visual inspections of 

the profile weighted log-likelihood and manual parameter adjustments make it labour intensive.  In 

addition, this method does not produce an estimate of the posterior distribution of the parameters, 

making it difficult to assess parameter uncertainty, and restricting access to more advanced model 

comparison statistics like WAIC (Watanabe 2010).  For these reasons, I only relied on model 

inference using the maximum weighted log-likelihood during selection of the degrees of the 

polynomial functions describing the time-varying parameters (Tables A.6.1-2), and when 

determining the relative importance of the time-variance in each parameter in the best model for 

each dataset (Tables A.6.5-6).  When carrying out the more important task of comparing the full set 

of candidate models for each dataset, I applied the inference scheme described in section 2.5 of the 

main text, which involved the development of a pseudo-posterior through multiple optimisations on 

bootstrap samples of the data, and thus allowed the calculation of WAIC.  While this bootstrapping 

method allows a more advanced model comparison, it does incur high computational costs, which 

is why, in the face of limited cluster resources with which to parallelise this procedure, I resorted to 

the computationally cheaper weighted log-likelihood maximisation for the more minor model 

comparisons.  While WAIC should be preferred as the more reliable statistic, I did also compare 

the full set of models using AICc and BIC to check for consistency between these statistics (Tables 

A.6.3-4). 

  

 

 

Figure A.2.2: Sufficient optimisation of the model parameters.  One-dimensional plots of the weighted 

log-likelihood (equation (2.12)) landscape around the parameters for one of the models following sufficient 

optimisation.  For each parameter, the resolution was selected to be low enough to give a visually relatively 

smooth likelihood surface.  Note that all parameters have now been optimised to a true peak in the likelihood 

surface (compare with Fig. A.2.1).  
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A.3. Eliminating bimodality in the pseudo-posterior   

The inference method involving multiple optimisations on many bootstrap samples of the data (see 

section 2.5) resulted in the production of a pseudo-posterior for each model.  For both datasets, 

bimodality was observed in the pseudo-posteriors for all models except the simple diffusion model 

(Figs A.3.1-2).  This bimodality is a result of the presence of local optima, which cause some 

optimisations to become trapped before they reach the maximum likelihood parameters.  For both 

datasets, the positions of the lower-likelihood peaks in the posteriors of the more complex models 

roughly correspond to the position of the single likelihood peak that occurs for the diffusion model.  

This suggests that these lower-likelihood peaks are made up of optimisations that failed to properly 

fit the parameters describing the self-generated attractant gradient mechanism; a suggestion that is 

backed up by the fact that model outputs obtained by sampling from these lower peaks closely 

resembled those obtained from a diffusion-only scenario (shown in Figs A.7.1-2).  The presence of 

these low-likelihood peaks in the pseudo-posteriors will affect the values of model comparison 

statistics calculated from these pseudo-posteriors, potentially influencing model rankings.  I, 

therefore, chose to isolate and use only the highest-likelihood peak when evaluating the models.  

This was achieved for each dataset by introducing a cut-off value in the log-likelihood for all the 

models except the diffusion model, which was positioned in the trough between the two peaks.  

Any optimisations that achieved a log-likelihood that was lower than this cut-off were discarded, 

and only the remaining optimisations (indicated by the blue shaded areas in Figs A.3.1-2) were 

used in the calculation of model comparison statistics (see section 2.5 of the main text). 

 

 
Figure A.3.1: Histograms of the pseudo-posteriors produced by multiple optimisations of each model 

on bootstrap samples of the Dictyostelium data.  Note that all pseudo-posteriors except that for the 

diffusion model exhibit bimodality (though the two peaks are fused in the case of the basic model).  For all 

models except the diffusion model, I introduced a cut-off of log 43940L    to isolate the upper peak in the 

likelihood.  The blue shaded areas illustrate the shapes of the pseudo-posteriors after imposing this cut-off. 
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Figure A.3.2: Histograms of the pseudo-posteriors produced by multiple optimisations of each model 

on bootstrap samples of the melanoma data.  Note that all pseudo-posteriors except that for the diffusion 

model exhibit bimodality.  For all models except the diffusion model, I introduced a cut-off of 

log 2885L    to isolate the upper peak in the likelihood.  The blue shaded areas illustrate the shapes of the 

pseudo-posteriors after imposing this cut-off. 

 

 

A.4. Validation of WAIC calculated using a pseudo-posterior 

A.4.1. Background 

The various candidate cell movement models described in section 2.3 were compared using 

WAIC values calculated using a pseudo-posterior that was obtained by fitting the models to many 

bootstrap datasets (section 2.5).  To verify whether this method produces results comparable to 

sampling from a true posterior, I carried out an additional study using the radiocarbon dataset from 

the sm package in R (Bowman and Azzalini 2014), which describes the radiocarbon age of Irish 

oak in comparison to its true calendar age.  This involved comparing the fits of polynomial models 

of degrees one to nine (Fig. A.4.1) using DIC (Deviance Information Criterion (Spiegelhalter et al. 

2002)) and WAIC values calculated from the true posterior and from the pseudo-posterior obtained 

by the bootstrapping method.  Note that I have not compared the models based on DIC in the main 

text, since I encountered issues with negative values being estimated for the effective number of 

parameters (a known issue with this comparison statistic), rendering DIC less reliable than the 

more recently developed WAIC. 
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Figure A.4.1: Fits of polynomials of degrees one and nine to the radiocarbon dataset 

 

 

A.4.2. Calculation of DIC and WAIC from the true posterior 

The polynomial models fitted to the data take the form: 

 y B    (A.4.1) 

where 
1( ,..., )y  T

ny y  is the vector of radiocarbon age observations (n=343), 
1( ,..., )  T

k   

is the vector of coefficients (k is equal to the degree of the polynomial plus one) and 

1( ,..., )  T

n   is iid (independent and identically distributed) Gaussian error, with mean zero and 

variance 
2

 .  For each model considered, 
2

  was estimated by fitting to the data and calculating 

the variance of the residuals.  The design matrix B  is given by: 
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 (A.4.2) 

where  1, ,x 
T

nx x  is the calendar age covariate. 

 Gaussian priors with mean zero and variance 
2  were applied to each of the parameters.  I 

specified vague prior distributions where 
2 61 10  .  The likelihood is given by: 

    
   2 2 2

2
| , , 2 exp

2
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P  

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  

  

y B y B
y x

 
  (A.4.3) 

As the priors and likelihood are Gaussian distributions, the posterior is Gaussian also, and is given 

by: 

    2 2, , , ,NP   x y    (A.4.4) 
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where 

  

1
2

2
B B I B y
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 
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 (A.4.5) 
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 (A.4.6) 

 I drew a sample of m=20,000 parameter sets  1, , m
 from the posterior distribution 

for each model and, using the likelihood function stated above (equation (A.4.3)), calculated the 

DIC as: 
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where   are the mean values of the parameters, and the WAIC as: 
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 (A.4.8) 

 

 

A.4.3. Calculation of DIC and WAIC from bootstrap samples 

 The data were sampled with replacement to generate m=20,000 bootstrap datasets of the 

same dimension n as the original dataset, each consisting of a vector of radiocarbon age 

observations 
,1 ,( ,..., )T

i i ni r rr  and the associated calendar ages 
,1 ,( ,..., )T

i i ni q qq , where 

 1, ,i m .  Since I chose a vague prior for the regression parameters (i.e. with a large value of 

the variance hyperparameter 
2  in equations (A.4.4-6), maximum likelihood parameter estimates 

will be effectively the same as maximum a posteriori estimates.  I, therefore, fitted the nine 

polynomial models to each of the bootstrap datasets using maximum likelihood to obtain a sample 

of parameter sets  1, , m
 that are taken as an approximation of a posterior distribution.  This 

‘pseudo-posterior’ can be used to estimate the DIC and WAIC in two alternative ways.  The first 

uses the parameter sets obtained from the bootstrap data (and their mean  ), with only the true un-

bootstrapped data as follows: 
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In the second method I incorporate the bootstrap data into the calculations: 
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 (A.4.12) 

 

 

A.4.4. Calculation of AICc and BIC 

 For each polynomial model considered, I also calculated two more basic model selection 

criteria, AICc and BIC, which do not account for parameter uncertainty and tend to select models 

that over-fit and under-fit the data respectively (Ripplinger and Sullivan 2008).  This involved first 

finding the maximum likelihood parameters 
*

  for each model, given by  

   
1* T T


 X X X y  (A.4.13) 

and then finding the maximum likelihood *L  by inserting these parameters into equation (A.4.3).  

AICc and BIC could then be calculated as 
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*BIC 2log logL k n    (A.4.14) 

where k  is the number of model parameters. 

 

A.4.5. Results & discussion 

 I found a generally strong correspondence between the standard DIC and WAIC values and 

the approximations from bootstrap sampling (Fig. A.4.2), with correlation coefficients in excess of 

0.999 for all relationships, except that between the standard WAIC and WAICB, which had a 

correlation coefficient of 0.98.  The standard DIC and WAIC both select the eighth degree 
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polynomial from the nine candidate models (Table A.4.1).  DICA and WAICA are successful in 

selecting this same best model, and in exactly replicating the full model ranking observed for the 

standard DIC and WAIC, suggesting that these statistics are a valid approximation of the standard 

DIC and WAIC.  DICB and WAICB were less successful, showing a preference for the ninth degree 

polynomial.  Based on these results, I chose to use the WAICA approximation when comparing the 

models of cell movement (equation (2.13)).   

 While WAIC and DIC estimated from the optimisations on bootstrap samples of the data 

have been shown in this case to give a good approximation to the same statistics estimated from the 

true posterior, it should be noted that AICc and BIC, which are typically less reliable model 

comparison statistics, also showed good agreement with the standard DIC and WAIC (Table 

A.4.1).  Both AICc and BIC selected the same best model as DIC and WAIC, and AICc 

successfully reproduces the full model ranking (there are some inconsistencies in the ranking by 

BIC).  This suggests that, for this particular study, little accuracy in model selection was gained by 

calculating DIC and WAIC from the optimisations on bootstrap samples; a simpler analysis based 

on AICc or BIC would have been just as effective in selecting the correct model.  Ultimately, 

further testing of the bootstrapping method is required in cases where AICc and BIC fail to give the 

right answer, so as to verify whether this method provides any improvement over these more basic 

comparison statistics. 

 

Table A.4.1: Model comparison statistics for each polynomial model fitted to the radiocarbon data 

(Fig. A.4.1).  The standard values of DIC and WAIC are calculated using the true posterior, while the 

alternative estimates are obtained through the bootstrapping technique.  The best model based on each 

statistic is indicated by *. 

Degree Standard 

DIC 

DICA DICB Standard 

WAIC 

WAICA WAICB AICc BIC 

1 -927 -926 -936 -927 -925 -556 -143 -136 

2 -1065 -1063 -1080 -1064 -1061 -850 -701 -689 

3 -1409 -1408 -1425 -1408 -1406 -1106 -1403 -1388 

4 -1407 -1406 -1427 -1407 -1404 -1112 -1402 -1383 

5 -1412 -1410 -1438 -1411 -1404 -1125 -1408  -1386 

6 -1411 -1407 -1441 -1409 -1393 -1124 -1407 -1381 

7 -1448 -1445 -1481 -1447 -1439 -1184 -1448 -1417 

8 -1457* -1456* -1493 -1457* -1452* -1213 -1457* -1423* 

9 -1456 -1454 -1495* -1456 -1446 -1219* -1455 -1418 
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Figure A.4.2: Comparison of DIC and WAIC values calculated using bootstrapping and standard 

approaches. Plots of the DIC and WAIC approximations obtained for the nine polynomial models through 

bootstrapping against the standard DIC and WAIC values obtained for the models by direct sampling from 

the posterior.  The value of Pearson’s correlation coefficient is indicated for each comparison. 

 

 

A.5. Calculation of standard errors for WAIC 

WAIC was calculated for the cell movement models as: 
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To calculate the variance of the first term, I first obtained the variances of the mean likelihoods of 

each observation  ,j jx t  using: 

 

    

   

1

2

1 1

1 1
var

1 1 1

| , var | ,

| , | ,

m

j j i j j

i

m m

j j i j j i

i i

P P
m m

P P
m m m

x t x t

x t x t



 



 
 

 

   
    
     



 

θ θ

θ θ

 (A.5.2) 



137 
 

The univariate delta method was then applied to get the variances of the log mean likelihoods as: 
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and the variance of the sum of the log mean likelihoods was obtained as: 
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 The variance of the second term in the WAIC was obtained by first calculating the variance 

of the sample variance of the log likelihood of each observation  ,j jx t  as: 
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where μ2 and μ4 are the 2
nd

 and 4
th
 central moments of   log | ,

j j i
P x t θ , calculated by: 
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These variances of sample variances are then summed to get: 
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 The standard error of the full WAIC can be obtained as: 
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 A.6. Supplementary tables 

 

Table A.6.1: Selection of the degree of the polynomials used to describe the time-varying parameters 

for Dictyostelium.  Values of the statistics are based on fits of the full model (equation (2.8)) with different 

polynomial degrees.  Both AICc and BIC show a preference for a degree of three.  Based on these results, I 

used a polynomial degree of three when fitting the remaining models to this dataset (see Table 2.1 in the 

main text). 

Degree logL̃
* 

AICc BIC 

0 -44114.5   88249.0  88316.3 

1 -43929.2    87886.5   87980.8 

2 -43792.8   87621.7   87742.8 

3 -43771.0 87586.1*   87734.1* 

4 -43771.0  87594.1   87769.0 

 

 

 

Table A.6.2: Selection of the degree of the polynomials used to describe the time-varying parameters 

for melanoma.  Values of the statistics are based on fits of the full model (equation (2.8)) with different 

polynomial degrees.  AICc shows a strong preference for a degree of one, while BIC (a comparison statistic 

known for its tendency to select models that are overly simple (Ripplinger and Sullivan 2008)) shows only a 

slight preference for a degree of zero (i.e. no time variance).  Based on these results, I used a polynomial 

degree of one when fitting the remaining models to this dataset (see Table 2.1 in the main text). 

Degree logL̃
*
 AICc BIC 

0 -2850.5   5717.3   5751.4*   
1 -2838.5   5701.5*  5752.5   
2 -2837.7   5708.5   5776.2   

 

 

 

Table A.6.3: AICc and BIC based comparisons of the six models fitted to the Dictyostelium data.  The 

model comparison statistics were calculated using the maximum weighted log-likelihood fits (Appendix 

A.2).   

Model AICc BIC 

Diffusion 88356.81   88383.75 

Basic 87831.87   87932.83 

Receptor Saturation 87587.29   87694.98* 

Receptor Saturation & Interaction 87584.05*   87725.36 

Receptor Saturation & Overcrowding 87589.00   87703.41 

Full 87586.06   87734.09 
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Table A.6.4: AICc and BIC based comparisons of the six models fitted to the melanoma data.  The 

model comparison statistics were calculated using the maximum weighted log-likelihood fits (Appendix 

A.2).   

Model AICc BIC 

Diffusion 6003.3   6011.9   

Basic 5711.9   5741.8   

Receptor Saturation 5701.1*   5735.3*   

Receptor Saturation & Interaction 5702.1   5748.9   

Receptor Saturation & Overcrowding 5703.2   5741.5   

Full       5701.5  5752.5   

 

 

 

Table A.6.5: Consequences of removing the time-variance in the parameters of the receptor saturation 

model fitted to the Dictyostelium dataset.  The receptor saturation model was the best model for this dataset 

based on WAIC (Table 2.1).  Removing variation in α gives poorer (higher) values of AICc and BIC, while 

removing variation in DC improves BIC but gives a poorer AICc.  Making γ constant improves BIC and has 

little effect on AICc.   

Time-varying 

parameters 

logL̃
*
 AICc BIC 

α,γ,DC -43777.6 87587.3*   87695.0 
γ,DC -43823.5   87673.0 87760.6 
α,DC -43780.9   87588.0   87675.5* 
α,γ -43783.7   87593.4   87680.9 
α -43830.6 87681.3 87748.6 
γ -43853.0  87726.0 87793.4 
DC -44094.8   88209.6   88276.9 
none -44120.2 88256.4 88310.3 

 

 

 

Table A.6.6: Consequences of removing the time-variance in the parameters of the receptor saturation 

and overcrowding model fitted to the melanoma dataset.  The receptor saturation and overcrowding 

model was the best model for this dataset based on WAIC; Table 2.1).  Note that there is virtually no change 

in the maximum weighted log-likelihood provided that α is retained as a time-varying parameter.  There is 

also no increase in either AICc or BIC unless both α and γ are removed as time-varying parameters, 

suggesting that these two parameters are able to compensate for one another to some degree. 

Time-varying 

parameters 

logL̃
*
 AICc BIC 

α,γ,DC -2842.4   5703.2   5741.5   
γ,DC -2843.5   5703.3   5737.4 
α,DC -2842.4   5701.2   5735.3  
α,γ -2842.4   5701.2   5735.3 
α -2842.4   5699.1*   5729.0*   
γ -2843.9   5702.0   5731.9 
DC -2849.1   5712.3   5742.2 
none -2851.7     5715.5 5741.1 
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A.7. Supplementary figures 

 

 

 

Figure A.7.1: Diffusion model fitted to the Dictyostelium data.  Dashed red lines show Dictyostelium cell 

distributions at half-hour intervals produced by the diffusion model (equation (2.2)) using the optimised 

parameters from the bootstrap optimisation that gave the highest value of the weighted log-likelihood 

(equation (2.12)).  Pink shaded areas show the 95 percentile interval for the modelled cell densities, based on 

200 samples from the pseudo-posterior.  Cell distributions obtained from the data using logspline density 

estimation (Kooperberg and Stone 1992, Stone et al. 1997, Kooperberg 2015) are shown by blue lines, with 

95 percentile intervals obtained using 10,000 bootstrap samples of the data indicated by blue shaded areas.   
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Figure A.7.2: Diffusion model fitted to the melanoma data.  Dashed red lines show melanoma cell 

distributions at 10-hour intervals produced by the diffusion model (equation (2.2)) using the optimised 

parameters from the bootstrap optimisation that gave the highest value of the weighted log-likelihood 

(equation (2.12)).  Pink shaded areas show the 95 percentile interval for the modelled cell densities, based on 

200 samples from the pseudo-posterior.  Cell distributions obtained from the data using logspline density 

estimation (Kooperberg and Stone 1992, Stone et al. 1997, Kooperberg 2015) are shown by blue lines, with 

95 percentile intervals obtained using 10,000 bootstrap samples of the data indicated by blue shaded areas. 
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Figure A.7.3: Basic model fitted to the Dictyostelium data.  Dashed red lines show Dictyostelium cell 

distributions at half-hour intervals produced by the basic model (equation (2.3)) using the optimised 

parameters from the bootstrap optimisation that gave the highest value of the weighted log-likelihood 

(equation (2.12)).  Pink shaded areas show the 95 percentile interval for the modelled cell densities, based on 

200 samples from the pseudo-posterior. The corresponding folate distributions predicted by this model are 

indicated by green dotted lines.  Cell distributions obtained from the data using logspline density estimation 

(Kooperberg and Stone 1992, Stone et al. 1997, Kooperberg 2015) are shown by blue lines, with 95 

percentile intervals obtained using 10,000 bootstrap samples of the data indicated by blue shaded areas.   
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Figure A.7.4: Basic model fitted to the melanoma data.  Dashed red lines show melanoma cell 

distributions at 10-hour intervals produced by the basic model (equation (2.3)) using the optimised 

parameters from the bootstrap optimisation that gave the highest value of the weighted log-likelihood 

(equation (2.12)).  Pink shaded areas show the 95 percentile interval for the modelled cell densities, based on 

200 samples from the pseudo-posterior. The corresponding LPA distributions predicted by this model are 

indicated by green dotted lines.  Cell distributions obtained from the data using logspline density estimation 

(Kooperberg and Stone 1992, Stone et al. 1997, Kooperberg 2015) are shown by blue lines, with 95 

percentile intervals obtained using 10,000 bootstrap samples of the data indicated by blue shaded areas.   
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Figure A.7.5: Time invariant receptor saturation and overcrowding model fitted to the melanoma 

data.  Dashed red lines show melanoma cell distributions at 10-hour intervals produced by the receptor 

saturation and overcrowding model (equation (2.3)) using the parameters optimised to give the maximum 

value of the weighted log-likelihood (see Appendix A.2). The corresponding LPA distributions predicted by 

this model are indicated by green dotted lines.  Cell distributions obtained from the data using logspline 

density estimation (Kooperberg and Stone 1992, Stone et al. 1997, Kooperberg 2015) are shown by blue 

lines, with 95 percentile intervals obtained using 10,000 bootstrap samples of the data indicated by blue 

shaded areas.   
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A.8. Supplementary video descriptions 

Supplementary videos are available online at: https://theses.gla.ac.uk/8942/ 

 

A.8.1. Supplementary video 2.1 

This video is composed of microscopy images, captured every 90 seconds, of 

Dictyostelium discoideum cells moving under agarose.  The first image was captured around an 

hour after the cells were introduced to a trough cut into the agarose, which is visible along the far 

left of the images.  The agarose contained folate at an initially homogeneous concentration of 

10μM.  No folate was present in the trough area.  The cells are observed to move to the right over 

time, leaving the trough and moving under the agarose.  These images were collected by Tweedy et 

al. (2016) 

 

A.8.1. Supplementary video 2.2 

This video is composed of microscopy images, captured every 30 minutes, of human 

melanoma cells moving between two wells connected by a bridge in a direct visualisation chamber 

(Muinonen-Martin et al. 2010) that was homogeneously filled with 10% FBS (foetal bovine serum)  

The wells are visible to the far left and right of the images.  The cells move from the left well to the 

right well over time.  These images were collected by Muinonen-Martin et al. (2014). 
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Appendix B: Additional information for chapter 3 

B.1. Representing the data in 1D 

When fitting the cell movement  models, I chose to discard the y-dimension, where, owing 

to the experimental set-up, there was nothing biologically interesting happening.  Running the 

models in 1D space as opposed to 2D space allowed computational costs to be decreased by an 

order of magnitude.  To check that there would be no significant misrepresentation of the data 

caused by this decision, I carried out two statistical tests.  The first used Kolmogorov-Smirnov tests 

for each time point in each of the two datasets to confirm that the cell coordinates in y were not 

significantly different from samples from uniform distributions, indicating that there are no 

interesting features to be explained in this dimension (Table B.1.1).  The second test was used to 

confirm that the x and y dimensions were independent by first calculating the mutual information 

for each time point for each dataset as: 
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  (B.1.1)  

where the probability density functions were obtained by kernel density estimation using the sm 

package in R (Bowman and Azzalini 2014).  I then created 1,000 sample datasets for each time 

point in each dataset, under an assumption of independence of x and y, by carrying out slice 

sampling (e.g. section 24.5 of Murphy (2012)) on the marginal distributions  p x  and  p y  and 

randomly pairing the sampled x  and y coordinates.  The mutual information was then calculated 

for each of these sample datasets.   I, thus, found that the mutual information values calculated 

from the original data were not significantly larger than would be expected if x and y were 

independent (Figs B.1.1-2).   

 

 

 

Table B.1.1: Kolmogorov-Smirnov tests for uniformity of cell distributions in y.  P-values from 

Kolmogorov-Smirnov tests used to check for significant deviations of the cell locations in y from samples 

from uniform distributions.  In the 10μM folate dataset, two of the P-values were below the 0.05 significance 

level, but, following adjustment of the values for multiple testing (values shown  in brackets; see Benjamini 

and Hochberg (1995) for calculation), I conclude that there is no evidence for significant deviation from a 

uniform distribution for either dataset. 

Time Point 

 

P-value 

0μM folate 10μM folate 

0 0.522 0.008 (0.102) 

0.5 0.497 0.101 (0.304) 

1.0 0.750 0.080 (0.321) 

1.5 0.403 0.666 (0.799) 

2.0 0.321 0.320 (0.480) 

2.5 0.192 0.596 (0.795) 

3.0 0.426 0.694 (0.757) 

3.5 0.561 0.808 (0.807) 

4.0  0.300 (0.599) 

4.5  0.317 (0.543) 

5.0  0.254 (0.609) 

5.5  0.024 (0.146) 
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Figure B.1.1: Test of independence of the cell distributions in x and y for the 0μM folate data.  

Histograms of the mutual information between x and y for 1,000 sample datasets drawn assuming 

independence of x and y for each time point in the 0μM folate dataset.  The mutual information values 

calculated from the real data are indicated by the red points.  Solid blue lines show the mutual information 

beyond which the maximum 5% of the distribution is found.  Dashed orange lines show the mutual 

information below which the red points must lie to indicate that x and y in the real data are independent, 

when multiple testing is controlled for (Benjamini and Hochberg 1995). 
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Figure B.1.2: Test of independence of the cell distributions in x and y for the 10μM folate data.  

Histograms of the mutual information between x and y for 1,000 sample datasets drawn assuming 

independence of x and y for each time point in the 10μM folate dataset.  The mutual information values 

calculated from the real data are indicated by the red points.  Solid blue lines show the mutual information 

beyond which the maximum 5% of the distribution is found.  Dashed orange lines show the mutual 

information below which the red points must lie to indicate that x and y in the real data are independent, 

when multiple testing is controlled for (Benjamini and Hochberg 1995). 
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B.2. Prior distributions of model parameters 

Details on all the priors applied to the parameters in the cell movement models are 

provided in Table B.2.1.  Priors for two parameters, δ and ε, that respectively describe the steepness 

and position of the sigmoidal initial attractant distribution (equation (A.1.8)) are also included in 

Table B.2.1.  As the initial attractant distribution was unobserved, these parameters were inferred 

during model fitting, with upper and lower bounds being introduced to prevent the distribution 

becoming unrealistic.  I set the parameter bounds to δmin=0.002, δmax=1, εmin=0 and εmax=600.  These 

bounds were selected in the same way as I selected those for the Dictyostelium dataset described in 

chapter 2 (see Appendix A.1.2), by comparing the initial cell distribution obtained from the data to 

initial attractant distributions obtained from a range of parameter values, and selecting the extremes 

that the distribution could realistically take (Fig. B.2.1).  Increasing δ above δmax has very little 

effect on the distribution, since the curve cannot get much steeper than it already is, making this a 

reasonable cut-off.  A δ of less than δmin either leads to the depleted attractant region extending too 

far beyond the initial distribution of the cells, into an area that should be at the undepleted 

maximum attractant value, or causes attractant to be too abundant in the trough region, where it is 

known that there was initially no attractant.  An ε value greater than εmax will similarly lead to the 

depleted area extending too far into the region where there are no cells, while a value lower than 

εmin puts the inflection point into to the trough area, where attractant concentration should be low. 

 

 

Table B.2.1: Prior distributions of model parameters. 

Parameter Prior Notes 

DR Beta(shape1=2, shape2=1.163),  

Rescaled to min=150μm
2
/s, 

max=200μm
2
/s 

Folate diffusion coefficient; literature 

values are 192 and 194μm
2
/s (Kalimuthu 

and John 2009, Ershad et al. 2013).  This 

prior has a mode at 193μm
2
/s 

 

Kd Gamma(shape=1.2, scale=0.08) Dissociation constant; literature value of 

0.016μM (De Wit et al. 1986) at which 

the mode of this gamma prior is 

positioned. 

 

Cmax 

 

Gamma(shape=3.05, scale=50) 

Rescaled to have a minimum of 2.09 

 

Maximum cell density; mode is at 50 

times the maximum observed cell density, 

minimum is at the maximum observed 

cell density. 

 

λ Exponential(scale=4) Describes decline in cell-cell 

attraction/repulsion as cell density 

increases 

 

DC intercept Exponential(scale=50,000) 

 

Cell diffusion coefficient.  Prior is for the 

exponential of this parameter. 

 

α intercept Exponential(scale=50,000) Advection in response to the gradient in 

folate/receptor saturation. Prior is for the 

exponential of this parameter. 
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γ intercept Exponential(scale=800) Folate depletion rate.  Prior is for the 

exponential of this parameter. 

 

η intercept 

 

Normal(mean=0, sd=500,000) Advection in response to the cell density 

gradient 

 

α, γ & DC 

time 

polynomial 

coefficients 

 

Normal(mean=0, sd=20*0.5^(power of 

t))  

standard deviations start at 20 for t
1
 and 

progressively halve for each higher order 

of t 

 

α & DC 

space 

polynomial 

coefficients 

 

Normal(mean=0, sd=20*0.5^(power of 

x))  

standard deviations start at 20 for x
1
 and 

progressively halve for each higher order 

of x 

 

η time 

polynomial 

coefficients 

 

Normal(mean=0, 

sd=500,000*0.5^(power of t))  

standard deviations start at 500,000 for t
1
 

and progressively halve for each higher 

order of t 

 

η space 

polynomial 

coefficients 

Normal(mean=0, 

sd=500,000*0.5^(power of x))  

standard deviations start at 500,000 for x
1
 

and progressively halve for each higher 

order of x 

 

δ Beta(shape1=1.5, shape2=1.5),  

Rescaled to min=0.002, max=1  

Steepness of the sigmoid describing 

initial folate distribution (equation 

(A.1.8)).  Boundaries of this distribution 

are as illustrated in Fig. B.2.1. 

 

ε Beta(shape1=1.5, shape2=1.5),  

Rescaled to min=0, max=600 

Position of the inflection point of the 

sigmoid describing initial folate 

distribution (equation (A.1.8)).  

Boundaries of this distribution are as 

illustrated in Fig. B.2.1. 
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Figure B.2.1: Extremes that the initial folate distribution was permitted to take during model fitting to 

the 10μM folate dataset.  Green lines show the initial attractant distributions calculated from equation 

(A.1.8) using each combination of the maximum and minimum values of the parameters δ and ε.   The initial 

cell distribution (obtained by density estimation from the data) is included for reference (black line). 
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B.3. Cell numbers in the spatial region of interest over time 

 

 

Figure B.3.1: Changes in the number of Dictyostelium cells in the region of interest for each dataset 

over time.  A-B) Numbers of Dictyostelium cells observed in microscopy images at half-hourly intervals 

(black crosses), interpolated using a cubic spline N(t) (blue line) for the datasets with 0μM folate (A) and 

10μM folate (B).  C-D) Derivatives of the curves in A and B. 
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B.4. Test of Bayesian inference method on simulated data  

When carrying out inference for the models with advection coefficients (as discussed in 

section 3.4), high computational costs meant that achieving convergence of MCMC chains from 

hyperdispersed starting points was infeasible.  I, therefore, first used repeated maximisations of the 

log-likelihood to obtain a good approximation of the MAP (maximum a posteriori parameter 

configuration).  I then started two independent MCMC simulations of a minimum 80,000 MCMC 

steps from the MAP, and checked for convergence based on consistency of the WAIC scores 

obtained from two sections (the middle and end thirds of the MCMC chains, discarding the first 

third of steps as burn-in) of each MCMC run (giving 4 WAIC scores overall).  Here, I provide a 

demonstration of the effectiveness of this approach on data simulated from a test model, the N-

variable Goodwin model of biochemical oscillatory control (Goodwin 1965):  
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  (B.4.1) 

This model can produce oscillating solutions that lead to highly multi-modal likelihood surfaces, so 

that, as for the cell movement models, MCMC chains used to infer the parameters of this model 

frequently become trapped on local optima (see Fig 8.3 of Girolami et al. (2010)).  I set myself the 

same model selection problem described in Girolami et al. (2010), as outlined below. 

Data were simulated from two versions of the model, using 3N   and 5N  .  The 

parameters from which the data were simulated were all drawn randomly from  Gamma 2,1  

distributions (with the exception of  , which was set to 10 throughout this analysis to ensure 

oscillating responses), and the models were numerically integrated using these parameters over a 

time period from 0t   to 60t  , and initial conditions of zero for all variables.  The values of the 

first two variables 1x  and 2x  were obtained at time intervals of 0.5, and Gaussian noise with 

variance 0.2 was added to these observations to create two datasets (Fig. B.4.1).    

For a given parameter set, the probability of each data point was obtained from a Gaussian 

distribution with variance 0.2, centred on the model output for the variable (
1x  or 

2x ) to which that 

data point corresponds, at the time point at which the data point was obtained.  The log-likelihood 

of the parameter set is then given by the sum of the log-probabilities over all data points.  Note that 

when calculating the log-likelihood, I discarded the data points for which 20t  , allowing the 

models to reach steady state. 

I ran ten likelihood maximisations for each of the two models on each of the two datasets, 

drawing initial parameter values randomly from  Gamma 2,1  distributions.  For each model-

dataset combination, I then identified the set of optimised parameters that gave the highest 

likelihood.  These best parameter sets were used to initialise two MCMC chains of 20,000 

iterations, using  Gamma 2,1  priors for the parameters.  WAIC values were then calculated from 

the middle and end thirds of each MCMC chain, and the two models were compared based on the 
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mean of these four values for each dataset. This process of carrying out ten likelihood 

maximisations, running MCMC chains from the best optimised parameters and comparing WAIC 

values was repeated a further nine times, and the results are shown in Table B.4.1.  It can be seen 

that, in every case, the mean WAIC is lower for the true model, suggesting that this approach to 

inference and model selection is generally accurate.  In addition, based on the standard errors of the 

WAIC values (Table B.4.1), the inference and model selection approach I have developed is 

considerably more precise than model comparison using Bayes factors computed from standard 

MCMC sampling using an adaptive Metropolis algorithm (see Table 8.1 in Girolami et al. (2010)).  

My approach offers a similar level of precision to model selection using Bayes factors obtained 

from population MCMC with parallel tempering (see Table 8.2 in Girolami et al. (2010)).  Note 

that this test of the inference method used both a relatively small number of initial optimisations 

(ten; the same number as I used in the main study) and short MCMC chains (20,000 iterations; I 

used a minimum of 80,000 in the main study).  I expect the scheme to become even more accurate 

in identifying the correct model as the number of optimisations and the length of the MCMC chains 

are increased, as this increases the probability that good starting positions are obtained for the 

MCMC chains and that these MCMC chains reach convergence.   

 

 

 

Figure B.4.1: Simulation of datasets from the Goodwin model of biochemical oscillatory control.   Lines 

show the values of the first two variables 
1x  and 

2x  obtained by numerical integration of the Goodwin 

model (equation (B.4.1)) with  3N   and 5N  , using parameters drawn from  Gamma 2,1  distributions.  

Crosses show data simulated by adding independent Gaussian noise with variance 0.2 to the model output at 

time intervals of 0.5. 
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Table B.4.1: Test of the inference method’s ability to identify the correct model for the simulated 

datasets. Mean of the four WAIC values obtained from the middle and end thirds of the two MCMC chains 

run for each model-dataset combination during each of the ten replicates of the inference scheme.  The model 

selected in each replicate is marked *. 

Replicate N=3 dataset 

 

N=5 dataset 

N=3 model 

 

N=5 model N=3 model N=5 model 

1 314.2 (se=10.14) * 322 (se=3.87) 627.2 (se=1.64) 296.3 (se=4.38) * 

2 315.0 (se=8.68) * 317.8 (se=1.12) 624.7 (se=0.6) 619.9 (se=4.99) * 

3 302.4 (se=0.89) * 315 (se=0.58) 625 (se=0.79) 622.8 (se=3.91) * 

4 301.9 (se=0.84) * 316.8 (se=1.55) 625.9 (se=1.45) 297.4 (se=4.56) * 

5 302.1 (se=0.97) * 317.1 (se=0.99) 827.2 (se=76.97) 294.4 (se=4.38) * 

6 300.5 (se=0.83) * 337.3 (se=0.54) 642 (se=0.37) 296.3 (se=4.99) * 

7 314.6 (se=7.57) * 330.2 (se=2.57) 624.5 (se=0.19) 620.3 (se=3.91) * 

8 302.2 (se=0.78) * 328.5 (se=5.16) 643.1 (se=0.49) 552.3 (se=4.56) * 

9 302.0 (se=0.54) * 316.4 (se=0.89) 842.9 (se=0.91) 297.6 (se=4.38) * 

10 301.9 (se=2.91) * 331.9 (se=1.48) 625.4 (se=0.82) 621.3 (se=4.99) * 
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B.5. Selecting the degrees of the polynomials describing the dependencies of the 

model parameters on time and space 

The WAIC values used to select the optimal degrees of the polynomials describing spatial and 

temporal dependencies in the diffusion coefficient of the cells (DC; equation (3.5)) for the diffusion 

model fitted to the 0μM folate dataset are provided in Tables B.5.1-2.  For both the standard and 

weighted likelihoods (equations (2.11-12)), I select a polynomial degree of 4 in time and 2 in space 

based on WAIC.  While I have more confidence in WAIC as a model comparison statistic, due to 

its reduced reliance on asymptotics and relaxation of the assumption that all parameters are well-

determined by the data (see Chapter 7 of Gelman et al. (2013)), I also calculated AICc (Akaike 

Information Criterion corrected for small sample sizes; Akaike (1974), Hurvich and Tsai (1989)) 

and BIC (Bayesian Information Criterion; Schwarz (1978)) values for each combination of 

polynomial degrees, using the highest likelihood point visited by the MCMC chains as an estimate 

of the maximum likelihood (Tables B.5.3-6).  I find a close agreement between WAIC and AICc, 

increasing confidence in the WAIC results, though the agreement between WAIC and BIC is 

poorer (Fig. B.5.1).  

 

Table B.5.1: WAIC-based selection (using the standard likelihood) of the degrees of the polynomials 

describing the spatio-temporal dependence of the diffusion coefficient of the diffusion model for the 

0μM folate dataset.   WAIC values are given for various combinations of degrees of the spatial and temporal 

polynomials (which are defined in equation (3.5)).  Note that the minimum value was subtracted from all of 

the values to aid comparison.  The optimal combination of degrees is marked *. 

 Degree in time 

0 1 2 3 4 5 6 

D
eg

re
e 

in
 s

p
a
ce

 0 87.9 79 61.5 56.6 57.6 50.3 44.1 

1 48.2 41.7 37.2 33.9 33.3 36.7 41 

2 9.5 2.9 4.6 2.7 0* 1.9 5.9 

3 11 4.4 6.2 4.4 1.8 4 8 

4 13.5 6.6 8.3 6.3 4.4 6.7 10.4 

5 7.8 1 3 1.6 1.3 8.3 11.2 

6 87.9 79 61.5 56.6 57.6 50.3 44.1 

 

Table B.5.2: WAIC-based selection (using the weighted likelihood) of the degrees of the polynomials 

describing the spatio-temporal dependence of the diffusion coefficient of the diffusion model for the 

0μM folate dataset.   WAIC values are given for various combinations of degrees of the spatial and temporal 

polynomials (which are defined in equation (3.5)).  Note that the minimum value was subtracted from all of 

the values to aid comparison. The optimal combination of degrees is marked *. 

 Degree in time 

0 1 2 3 4 5 6 

D
eg

re
e 

in
 s

p
a
ce

 0 95.4 99.1 63.4 58.8 67.6 65.1 52.2 

1 50.6 49.9 39.3 33.6 33.1 36.1 42.8 

2 10.4 7.2 7.3 2.4 0* 2.3 5.9 

3 12.2 8.9 8.8 3.5 1.9 4.3 8.7 

4 14.2 11.2 11.6 6.6 4.7 7.7 12.4 

5 12.3 9 9.4 4.8 4.3 9.8 18.9 

6 95.4 99.1 63.4 58.8 67.6 65.1 52.2 
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For both the standard and weighted likelihoods, BIC selects a lower polynomial degree in 

time than WAIC, but the same degree in space (Tables B.5.3-4).  This reduction in the complexity 

of the preferred model when using BIC is expected, as this statistic is known for its tendency to 

select models that are overly simple (Ripplinger and Sullivan 2008).  The shape of the time 

polynomial has been substantially simplified in the BIC selected model (Fig. B.5.2D) compared to 

the WAIC-selected model (Fig. B.5.2.B). The shape of the polynomial in space, however, is 

unchanged between the models selected by WAIC and BIC (Fig. B.5.2A,C).  

 

 

Table B.5.3: BIC-based selection (using the standard likelihood) of the degrees of the polynomials 

describing the spatio-temporal dependence of the diffusion coefficient of the diffusion model for the 

0μM folate dataset.   BIC values are given for various combinations of degrees of the spatial and temporal 

polynomials (which are defined in equation (3.5)).  Note that the minimum value was subtracted from all of 

the values to aid comparison.  The optimal combination of degrees is marked *. 

 Degree in time 

0 1 2 3 4 5 6 

D
eg

re
e 

in
 s

p
a
ce

 0 69.9 64.3 52.4 51.9 55.1 53.2 50.6 

1 35.4 33.4 33.5 34.5 37.5 44.4 51.3 

2 1.7 0* 6.5 9.2 4.7 17.8 24.7 

3 7.9 6 12.2 15.2 17 24.1 31 

4 14.6 12.8 19.1 21.9 23.9 30.7 37.8 

5 12.9 11.2 17.3 20 23.1 30 38.8 

6 87.9 79 61.5 56.6 57.6 50.3 44.1 

 

 

 

 

Table B.5.4: BIC-based selection (using the weighted likelihood) of the degrees of the polynomials 

describing the spatio-temporal dependence of the diffusion coefficient of the diffusion model for the 

0μM folate dataset.   BIC values are given for various combinations of degrees of the spatial and temporal 

polynomials (which are defined in equation (3.5)).  Note that the minimum value was subtracted from all of 

the values to aid comparison. The optimal combination of degrees is marked *. 

 Degree in time 

0 1 2 3 4 5 6 

D
eg

re
e 

in
 s

p
a
ce

 0 74.7 81.4 50.7 50.3 56.9 57.3 54.6 

1 35.2 38.8 32.3 30.7 33.8 40.6 47 

2 0* 1.5 6.1 5.8 8 14.6 21.8 

3 6.3 7.7 12 11.7 13.9 20.6 27.7 

4 13.1 14.5 18.8 18.6 20.9 27.9 34.9 

5 14.6 16.1 20 20.2 23.4 30.5 38.8 

6 18.7 20.2 24.3 24.5 27.6 34.4 42.1 
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For the weighted likelihood, AICc selects the same model as WAIC, with a degree of 4 in 

time and 2 in space (Table B.5.6).  For the standard likelihood, AICc shows a slight preference for 

an increased polynomial degree of 6 in space (Table B.5.5), but it should be noted that there is a 

similar level of support (difference in AICc of only 1.0) for the degree of 2 in space that was 

selected by WAIC.  AICc is known to typically select models that are overly complex (Ripplinger 

and Sullivan 2008), so this slight disagreement between WAIC and AICc is to be expected.  Using 

a polynomial degree of 6 in space results in a considerably more complex pattern in the space 

polynomial (Fig. B.5.2E), but the time polynomial is largely unchanged (Fig. B.5.2F). 

 

 

Table B.5.5: AICc-based selection (using the standard likelihood) of the degrees of the polynomials 

describing the spatio-temporal dependence of the diffusion coefficient of the diffusion model for the 

0μM folate dataset.   AICc values are given for various combinations of degrees of the spatial and temporal 

polynomials (which are defined in equation (3.5)).  Note that the minimum value was subtracted from all of 

the values to aid comparison.  The optimal combination of degrees is marked *. 

 Degree in time 

0 1 2 3 4 5 6 

D
eg

re
e 

in
 s

p
a
ce

 0 89.8 79.5 62.9 57.7 56.2 49.5 42.1 

1 50.6 43.9 39.2 35.6 33.8 36 38.1 

2 12.2 5.8 7.5 5.5 1 4.7 6.9 

3 13.6 7 8.5 6.8 3.9 6.3 8.4 

4 15.6 9.1 10.7 8.8 6.1 8.2 10.5 

5 9.2 2.8 4.1 2.1 0.5 2.8 6.9 

6 8.2 2 3.9 2.1 0* 1.9 5.6 

 

 

 

Table B.5.6: AICc-based selection (using the weighted likelihood) of the degrees of the polynomials 

describing the spatio-temporal dependence of the diffusion coefficient of the diffusion model for the 

0μM folate dataset.   AICc values are given for various combinations of degrees of the spatial and temporal 

polynomials (which are defined in equation (3.5)).  Note that the minimum value was subtracted from all of 

the values to aid comparison. The optimal combination of degrees is marked *. 

 Degree in time 

0 1 2 3 4 5 6 

D
eg

re
e 

in
 s

p
a
ce

 0 95.1 97.1 61.7 56.5 58.4 54.1 46.7 

1 50.9 49.8 38.6 32.2 30.6 32.7 34.3 

2 11 7.8 7.6 2.6 0* 2 4.5 

3 12.5 9.2 8.8 3.7 1.3 3.3 5.6 

4 14.6 11.3 10.9 6 3.5 5.9 8.2 

5 11.4 8.2 7.4 2.9 1.3 3.8 7.4 

6 10.8 7.6 7 2.4 0.9 3 6 
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Figure B.5.1: Comparison of WAIC, AICc and BIC.  Plots of AICc (blue points) and BIC (red crosses) 

against WAIC for versions of the diffusion model that used different combinations of degrees for the 

polynomials describing the temporal and spatial dependencies, fitted to the 0μM folate data using both the 

standard and weighted likelihoods (L and L,̃ equations (2.11-12)). 

 

 

When carrying out the local readjustment of the polynomial degrees for the 10μM folate 

dataset, I first identified polynomial coefficients where the posterior distribution was focussed 

around zero (Fig. B.5.3).  Those parameters with a relatively high posterior density at zero were 

associated with the time polynomial, suggesting that the degree of this polynomial could be 

reduced.  Using WAIC, I thus reduce the time polynomial degree from the value of 4 obtained from 

the 0μM folate dataset to a value of 3 for the standard likelihood and 2 for the weighted likelihood 

(Table B.5.7).  An AICc comparison shows close agreement with the WAIC results.  BIC is in 

agreement with WAIC and AICc for the weighted likelihood, but, predictably, selects a simpler 

time polynomial than WAIC and AICc for the standard likelihood (Table B.5.7). 

 

 

Table B.5.7: Local readjustment of the temporal polynomial degree for the 10μM folate data.  WAIC, 

AICc and BIC values for the diffusion model, with different degrees of the polynomial describing the 

dependence of DC on time (equation (3.5)), fitted to the 10μM folate dataset using both the standard (equation 

(2.11)) and weighted (equation (2.12)) likelihoods, L and L.̃   The degree of the polynomial describing 

dependence in space was fixed to 2, the value suggested from fits to the 0μM folate dataset (Tables B.5.1-2).  

For both L and L,̃ the minimum value has been subtracted from each statistic to aid comparison.  Standard 

errors (in brackets) for WAIC were calculated as described in Appendix A.5.  Note that for all statistics and 

both  L and L̃, the optimal degree in time (marked *) is lower than the value of 4 suggested by the WAIC 

results from the 0μM folate dataset (Tables B.5.1-2). 

Degree in 

Time 

WAIC AICc BIC 

L  L  L  L  L  L  
1 253.0 (0.1) 314.1 (0.08) 253.0 314.5 243.2 307.8 
2 2.7 (0.1) 0 (0.09)* 3.2 0* 0* 0* 
3 0 (0.1)* 1.4 (0.11) 0* 1.2 3.5 7.9 
4 1.6 (0.1) 3.9 (0.12) 1.9 3.2 12.1 16.6 
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Figure B.5.2: Spatial and temporal dependencies of the cell diffusion coefficient DC  fitted to the 0μM 

folate data.  Plots show the polynomials F(x) and G(t) (equation (3.5)) estimated from the data with the 

degrees selected by WAIC (A-B), BIC (C-D) and AICc (E-F) (see Tables B.5.1-6)).  Polynomials obtained 

using both the standard and weighted likelihoods (L and L,̃ equations (2.11-12)) are shown.  95 percentile 

intervals were obtained from 1,000 samples from the posterior distribution. 

 

 

 



161 
 

 

 

Figure B.5.3: Identification of polynomial coefficients with a posterior that is focussed around zero for 

the 10μM dataset.  Posterior distributions for the coefficients of the polynomials describing spatial and 

temporal dependencies of the cell diffusion coefficient DC (see equation (3.5)) from sampling from the 

posterior distribution of the diffusion model using the 10μM folate dataset and both the standard and 

weighted likelihoods (L and L)̃.  Here, I have used a polynomial degree of four in time and two in space (the 

degrees selected from fitting to the 0μM folate dataset (Tables B.5.1-2)).  Note that, while zero has a very 

low posterior density for the coefficients of the spatial polynomial (plots E-F), it is well within the main bulk 

of the posterior distribution for three of the coefficients in the time polynomial (plots B-D), suggesting that a 

polynomial in time of degree four may be overly complex.  I used this information to guide a local 

readjustment of the time polynomial (Table B.5.7). 
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B.6. Additional plots of dependence of cell behaviour on time and space 

   

 
Figure B.6.1: Dependence of the diffusion coefficient DC fitted to the 0μM folate dataset on space and 

time.  Spatial (A) and temporal (B) dependencies of the cell diffusion coefficient DC from fitting the 

diffusion model to the 0μM folate dataset, using both the standard and weighted likelihoods (L and L̃, 

equations (2.11-12)).  Plots show the polynomials F(x) and G(t) (see equation (3.5)), which have degrees of 

two and four respectively (the degrees selected by WAIC (Tables B.5.1-2)).  95 percentile intervals were 

obtained from 1,000 samples from the posterior distribution. 

 

 
Figure B.6.2: Spatial and temporal dependencies of the parameters of the interaction model fitted to 

the 10μM folate dataset.  The polynomials (see equations (3.4-5)) were estimated using both the standard 

and weighted likelihoods (equations (2.11-12)).  95 percentile intervals were obtained by sampling 1,000 

parameter sets evenly from the latter two thirds of both MCMC chains obtained for this model.  Lines show 

the mean values of the functions. 
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B.7. WAIC tables for comparison of full set of candidate models 

 

Table B.7.1: WAIC values for models fitted to the 10μM folate dataset using the standard likelihood 
(equation (2.11)).  Two values of the WAIC are given for each MCMC chain; one using samples from the 

middle third of the chain, and one using samples from the final third of the chain.  The mean WAIC value for 

each model is taken as the mean of the 4 values calculated from the mid and end sections of the chains for 

that model.  Standard errors are included in brackets and were calculated as outlined in Appendix A.5, with 

the exception of the standard error of the mean, which was obtained as the standard deviation of the four 

values for each model, divided by √4. Note that the minimum value was subtracted from all values to aid 

comparison.  B=Basic, RS=Receptor saturation, I=Interaction, O=Overcrowding. 

Model WAIC  
Chain1 Chain2 Mean 

Mid End Mid End  

B 6.8 (0.29) 6.6 (0.29) 4.9 (0.3) 4.6 (0.29) 5.8 (0.58) 
RS 17 (0.28) 16.6 (0.28) 14.1 (0.3) 12 (0.28) 14.9 (1.16) 
I 1.6 (0.28) 0.7 (0.29) 0.5 (0.33) 3 (0.33) 1.5 (0.55) 
O 5.4 (0.28) 4.6 (0.27) 4.3 (0.31) 5.5 (0.3) 5 (0.29) 
RS+I 11.7 (0.31) 13.1 (0.32) 14.2 (0.29) 14.8 (0.27) 13.4 (0.69) 
RS+O 14.2 (0.31) 13.2 (0.3) 14.3 (0.34) 13.5 (0.35) 13.8 (0.26) 
I+O 2.7 (0.27) 6.6 (0.26) 0 (0.23) 4.5 (0.24) 3.4 (1.39) 
RS+I+O 12 (0.3) 12.3 (0.33) 12.5 (0.3) 8.7 (0.35) 11.4 (0.9) 

 

 

 

 

Table B.7.2: WAIC values for models fitted to the 10μM folate dataset using the weighted likelihood 
(equation (24)).  Two values of the WAIC are given for each MCMC chain; one using samples from the 

middle third of the chain, and one using samples from the final third of the chain.  The mean WAIC value for 

each model is taken as the mean of the 4 values calculated from the mid and end sections of the chains for 

that model.  Standard errors are included in brackets and were calculated as outlined in Appendix A.5, with 

the exception of the standard error of the mean, which was obtained as the standard deviation of the four 

values for each model, divided by √4. Note that the minimum value was subtracted from all values to aid 

comparison.  B=Basic, RS=Receptor saturation, I=Interaction, O=Overcrowding. 

Model WAIC  
Chain1 Chain2 Mean 

Mid End Mid End  

B 8.4 (0.36) 10.1 (0.36) 5.4 (0.35) 5.3 (0.35) 7.3 (1.18) 
RS 18.6 (0.33) 17.4 (0.32) 18.3 (0.34) 19.5 (0.35) 18.5 (0.44) 
I 5 (0.32) 5.9 (0.33) 0 (0.32) 0.5 (0.33) 2.8 (1.52) 
O 5.3 (0.31) 6.5 (0.32) 6 (0.32) 7.3 (0.32) 6.3 (0.42) 
RS+I 8.9 (0.32) 9.8 (0.38) 8.9 (0.33) 10.4 (0.32) 9.5 (0.37) 
RS+O 13.4 (0.28) 16.1 (0.3) 15.5 (0.29) 12.5 (0.3) 14.3 (0.85) 
I+O 4.3 (0.32) 7.8 (0.32) 5.8 (0.33) 5.3 (0.32) 5.8 (0.73) 
RS+I+O 9.6 (0.34) 16.8 (0.37) 11.2 (0.34) 12 (0.35) 12.4 (1.55) 
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B.8. Diffusion model fit to 10μM folate data 

 

 

Figure B.8.1: Fit of the diffusion model to the 10μM folate data.  Plots of the cell distributions at half-

hourly intervals simulated (using the posterior mean parameters) from the diffusion model fitted to the 10μM 

folate data using the standard likelihood (equation (2.11), with polynomial degrees of three and two 

describing the temporal and spatial dependencies of the diffusion coefficient respectively.  Direct density 

estimates from the data, obtained using logspline density estimation (Stone et al. 1997), are included for 

comparison.  95 percentile intervals for the density estimates (blue shaded areas) were obtained by non-

parametric bootstrapping, using 10,000 samples of the data.  95 percentile intervals for the model (pink 

shaded areas) were obtained from 500 samples from the posterior distribution.  
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B.9. Residual Analysis 

In standard residual analysis, the residuals are computed by taking the difference between 

the observed data and the predictions from the model, and then using them in standard diagnostic 

plots, to test e.g. independence or distributional assumptions. This is not immediately feasible in 

this study, because the model target is not directly observed. Time-varying cell locations are 

observed, while the model predicts time-varying spatial cell distributions. I therefore proceeded by 

using the time-varying cell locations to obtain an estimate of the MAP (maximum a posteriori 

parameter configuration) for the selected model (the interaction model, Table 3.1) as described in 

section 3.4, and using this to predict time-varying cell distributions from the model.  I then 

obtained independent density estimates from the same time-varying cell locations using the 

logspline method described in Stone et al. (1997), and computed the difference between these 

probability densities and those predicted by the model. To obtain 95% confidence intervals around 

the density estimates, I repeated the density estimation procedure 10,000 times on 10,000 bootstrap 

replicates of the cell data.  The results for the selected model are shown in Fig. B.9.1. I find that the 

differences between the model predictions and the density estimates from the data lie clearly within 

the relevant confidence regions, suggesting that there is no significant model mismatch. 
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Figure B.9.1: Residual analysis. The lines show the difference between the cell distribution estimated from 

the 10μM folate data (using logspline density estimation (Stone et al. (1997)) and the cell distribution 

predicted from the MAP (maximum a posteriori parameter configuration) of the interaction model fitted 

using the standard likelihood and the weighted likelihood, plotted against x (the spatial coordinate) at 

different times t. The blue shaded areas show the 95% confidence regions obtained by logspline density 

estimation on bootstrap samples of the data, indicative of intrinsic estimation uncertainty.  Note that the 

difference between model prediction and direct estimate from the data (the residual) is always included in the 

confidence intervals, suggesting that there is no significant model mismatch.  

 

  



167 
 

Appendix C: Additional information for chapter 4 

C.1. Supplementary video descriptions 

Supplementary videos are available online at: https://theses.gla.ac.uk/8942/ 

 

C.1.1. Supplementary video 4.1 

This video is composed of 33 maps showing data on the distribution of wildebeest in the 

Serengeti ecosystem collected through aerial surveys over the period between August 1969 and 

August 1972.  Each 25km
2
 cell in a 56x46 grid is shown by its colour as belonging to one of five 

ordinal wildebeest abundance categories.  The wildebeest density ranges that fall into each category 

are outlined in the scale bar. 

 

C.1.2. Supplementary video 4.2 

This video shows daily maps of wildebeest density obtained from the ordinal categorical 

wildebeest distribution data (see supplementary video 4.2) using the GAM-based spatio-temporal 

smoothing method outlined in section 4.3.  The densities, in wildebeest/25km
2
, are  indicated by 

the colours of the grid cells as described in the scale bar.  The two contours indicate the boundaries 

between abundance categories 0, 1 and 2 (which respectively contain 0, 1-25, and 26-250 

wildebeest/25km2). 
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Appendix D: Additional information for chapter 5 

D.1. Preparation of canopy cover data layer 

I had access to three sources of data on canopy cover in the region.  The first two were 

collected in 1962 and 1972 by Norton-Griffiths (1979) using aerial photography.  These two 

datasets are grids of 10x10km cells, where the proportion of each cell that is tree cover is recorded 

(Fig. D.1A-B).  Both of these grids have many missing values however (see white grid cells in Fig. 

D.1A-B).  The third data source was the official Serengeti management map (Frankfurt Zoological 

Society and Harvey Maps 2010).  This is a spatial polygon dataset, where each polygon is assigned 

to one of four ordinal categories, describing the proportion of canopy cover: 0-0.02, 0.02-0.2, 0.2-

0.5 and 0.5-1.0.  These categories were assigned based on the vegetation map produced by Reed et 

al. (2009), which used satellite images collected in 1999 and 2000.  When using these data, I 

assumed that the proportion of canopy cover at a point in space in this map has a proportion of 

canopy cover equal to the mid-point of the ordinal category assigned to that point (Fig. D.1C). 

 

 

 

Figure D.1.1: Creating a map of canopy cover.  A) 1972 canopy cover data.  B) 1962 canopy cover data.  

C) 1999/2000 canopy cover data.  D) 1972 data kriged onto the spatial grid used in our wildebeest movement 

models.  E) 1972 data with missing values filled in with the 1962 data where available.  F) 1972 data with 

missing values filled in using 1962 and 1999/2000 data where available.  G) Data from  panel F kriged onto 

the spatial grid used in the wildebeest movement models. 
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Since the wildebeest distribution data I am using in my analyses are from 1969-1972, it 

may be tempting to simply use the 1972 canopy data (Fig. D.1A), which overlap this time period, 

to explain the movement patterns observed in the data.  However, as there are data missing, an 

interpolation method like kriging would be needed to fill in the gaps (Fig. D.1D), and this leads to 

results that are known to be inaccurate, such as the plains in the southwest of the region being 

given a proportion canopy cover of ~ 0.3 , when this area was – as it is now – almost entirely 

treeless.  Therefore, I instead incorporated information from all three datasets (Fig. D.1A-C) when 

creating a raster of canopy cover to be used in the analyses.  Starting from the 1972 map, I filled in 

as many of the 10x10km grid cells with missing data as possible using the 1962 data (Fig. D.1E).  

The 1999/2000 data were then used to fill as many of the remaining missing data grid cells as 

possible (Fig. D.1F).  In this way, I gave priority to the datasets that were collected at times that 

were closer to the period at which the wildebeest data were collected. Finally, I carried out ordinary 

kriging on this amalgamated dataset to get canopy cover values on the same grid being used in the 

wildebeest movement models (Fig. D.1G).  Kriging was carried out using the autoKrige function 

from the automap package (Hiemstra et al. 2009) in R (R Core Team 2015), which tests a range of 

variogram models and selects the one giving the lowest residual sum of squares with the sample 

variogram. 

 

 

D.2. Supplementary video descriptions 

Supplementary videos are available online at: https://theses.gla.ac.uk/8942/ 

 

D.2.1. Supplementary Video 5.1 

This video shows the changing abundances of green and dry grass estimated over the 

region of interest by numerical integration of the grass dynamics model described in section 5.4, 

alongside the wildebeest densities and monthly rainfall used as inputs to this model.  The time 

series shown covers the period from January 1967, where I initialised the model with a grass 

abundance of zero, until August 1972.  Note that the wildebeest data being analysed in this study 

were collected between August 1969 and August 1972, so that the grass was given more than 2.5 

years to reach realistic levels of abundance.   

In the video, rainfall is shown to change monthly, while green and dry grass abundance 

change daily.  The wildebeest density in the region changes monthly for the initialisation period 

prior to August 1969, after which it begins to change daily.  This is because daily wildebeest 

abundances for the period August 1969 to August 1972 were obtained from a GAM (Generalised 

Additive Model) fitted to the wildebeest distribution data, while for each month of the year in the 

period prior to August 1969, a wildebeest abundance map was obtained by averaging the daily 

estimates from the GAM for the same month in the three subsequent years.  Note that I produced 

this video using the least complex of the GAMs fitted to the wildebeest distribution data (see Table 

5.1). 

The key mechanisms driving green and dry grass abundance can be observed in the video.  

Both green and dry grass become depleted in the presence of high wildebeest densities.  If there is 

sufficient rainfall, the green grass recovers after the wildebeest have moved, and the dry grass 

recovers somewhat later when the new green grass starts to mature and dry.  If there is little 

rainfall, depleted patches are unable to recover and any remaining areas of green grass disappear as 
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they dry out.  Since there is little rainfall in the south of the region during the dry season months, 

this leads to green grass periodically disappearing almost entirely from this area, while areas 

further north retain some rainfall and thus maintain a supply of green grass throughout.  From the 

video, it can be seen that the patches with the most green grass are those that have previously been 

heavily depleted, but now have high rainfall, low wildebeest, and not enough standing dry grass to 

suppress new grass growth. 

 

D.2.2. Supplementary Video 5.2 

This video was developed from supplementary video 5.1 (a description is available in 

Appendix D.2.1) by removing the initialisation period, so that the video now covers the period 

from August 1969 to August 1972 (the time period of interest).  In this video, I also set the grass 

abundances outside the area encompassing the range of the wildebeest migration to zero.  This is 

because the levels of grass estimated outside the protected areas within which the wildebeest move 

are likely to have been unrealistically high (the grass dynamics model does not account for the 

effects of human-related activities in these areas), and also because any grass that is present in 

these unprotected areas is largely inaccessible to the wildebeest herds in any case.  Assuming that 

the grass abundance is zero outside the wildebeest range prevents grass in these areas exercising an 

unrealistic draw on the animals within the wildebeest movement models. 

 

D.2.3. Supplementary Video 5.3 

Video showing comparisons of W t   as estimated from the best PDE model fitted to the 

least complex GAM (Table 5.2; suggested to be the best PDE/GAM combination based on pAICc 

and pBIC (Fig.5.6)) using the associated optimised parameters (left plots) and W t   as estimated 

directly from the least complex GAM by finite differencing (right plots) across the spatial region at 

all time points present in the original wildebeest data.  The PDE used to produce the results in this 

video had time-varying fitted parameter values (see Fig. 5.9). 

 

D.2.4. Supplementary Video 5.4 

Video showing comparisons of W t   as estimated from the best constant-parameter PDE 

model fitted to the least complex GAM (see tables in Appendix D.3) using the associated optimised 

parameters (left plots) and W t   as estimated directly from the least complex GAM by finite 

differencing (right plots) across the spatial region at all time points present in the original 

wildebeest data.  Note the much lower agreement between the PDE model and GAM in this video 

compared with supplementary video 5.3, where the parameters were time-varying, not constant. 

 

 

D.3. Model comparison tables 

Here, I provide a collection of tables containing AICcPDE  and BICPDE  values equations 

(5.21-22) calculated for each PDE model of wildebeest movement fitted to each GAM complexity 

(indicated by the number of knots in the spatial marginals).  The models are described based on 

which effects on wildebeest movement they contain: G=green grass abundance; IG=green grass 
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intake; N=plant nitrogen concentration; W=wildebeest density; Wmax=maximum tolerated 

wildebeest density.  There are eight tables for each of AICcPDE  and BICPDE , with these eight tables 

representing all possible combinations of constant versus time-varying parameters, local (equations 

(5.2-3)) versus non-local (equations (5.11-12)) versions of the models, and the small step size 

versus large step size schemes for the finite difference approximations of the partial derivatives 

from the GAMs (equation (5.20)).  Values highlighted in yellow indicate the best model for a given 

GAM complexity for a given table, while values highlighted in blue represent the best model for a 

given GAM complexity over all tables.  The AICcPDE  and BICPDE  values given in the tables have 

all had the lowest values of these statistics subtracted, so that the overall best model for each 

statistic has a value of zero, to aid comparison.  

 

 

Table D.3.1: AICcPDE  values for each constant parameter, local PDE model fitted to each GAM 

complexity using the small step size finite differencing scheme. 

 Model 

Knots 

in 

Space 

IG + N 

+ W + 

Wmax 

G + N 

+ W + 

Wmax 

IG + N 

+ W  

G + N 

+ W  

IG + W 

+ Wmax 

G + W 

+ Wmax 

IG + N 

+ Wmax 

G + N 

+ Wmax 

N + W 

+ Wmax 

6 60241 60241 60238 60238 62128 62128 60349 60349 60239 

8 199308 198929 199367 199071 199305 198895 199503 199065 199468 

10 283046 283751 284780 285536 283045 283749 284875 285594 283749 

12 283253 283568 283248 283453 283251 283454 283997 284114 283758 

20 349213 349213 349193 349193 349211 349211 351676 351676 349211 

 

 

 

Table D.3.2: BICPDE values for each constant parameter, local PDE model fitted to each GAM 

complexity using the small step size finite differencing scheme. 

 Model 

Knots 

in 

Space 

IG + N 

+ W + 

Wmax 

G + N 

+ W + 

Wmax 

IG + N 

+ W  

G + N 

+ W  

IG + W 

+ Wmax 

G + W 

+ Wmax 

IG + N 

+ Wmax 

G + N 

+ Wmax 

N + W 

+ Wmax 

6 58736 58736 58724 58724 60614 60614 58835 58835 58725 

8 197803 197424 197853 197557 197791 197381 197988 197551 197954 

10 281542 282246 283266 284022 281531 282235 283361 284080 282235 

12 281748 282063 281734 281939 281736 281939 282483 282600 282244 

20 347708 347708 347679 347679 347697 347697 350162 350162 347697 
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Table D.3.3: AICcPDE values for each time-varying parameter, local PDE model fitted to each GAM 

complexity using the small step size finite differencing scheme. 

 Model 

Knots 

in 

Space 

IG + N 

+ W + 

Wmax 

G + N 

+ W + 

Wmax 

IG + N 

+ W  

G + N 

+ W  

IG + W 

+ Wmax 

G + W 

+ Wmax 

IG + N 

+ Wmax 

G + N 

+ Wmax 

N + W 

+ Wmax 

6 34073 35459 36568 36568 43554 45385 38911 38803 41142 

8 139350 123861 139995 130560 146461 131977 143846 128560 176894 

10 243068 240699 251849 246864 254418 252218 253071 248867 258326 

12 248166 233814 258011 242477 254899 240174 259535 242151 257785 

20 293582 511387 283348 276893 284755 271333 306204 298635 279451 

 

 

 

Table D.3.4: BICPDE values for each time-varying parameter, local PDE model fitted to each GAM 

complexity using the small step size finite differencing scheme. 

 Model 

Knots 

in 

Space 

IG + N 

+ W + 

Wmax 

G + N 

+ W + 

Wmax 

IG + N 

+ W  

G + N 

+ W  

IG + W 

+ Wmax 

G + W 

+ Wmax 

IG + N 

+ Wmax 

G + N 

+ Wmax 

N + W 

+ Wmax 

6 34064 35449 36250 36251 43236 45067 38593 38486 40824 

8 139341 123851 139678 130242 146143 131659 143529 128242 176576 

10 243059 240689 251532 246547 254100 251900 252753 248549 258009 

12 248157 233805 257694 242159 254581 239856 259217 241833 257467 

20 293573 511378 283030 276576 284437 271016 305886 298317 279134 

 

 

 

Table D.3.5: AICcPDE values for each constant parameter, non-local PDE model fitted to each GAM 

complexity using the small step size finite differencing scheme. 

 Model 

Knots 

in 

Space 

IG + N 

+ W + 

Wmax 

G + N 

+ W + 

Wmax 

IG + N 

+ W  

G + N 

+ W  

IG + W 

+ Wmax 

G + W 

+ Wmax 

IG + N 

+ Wmax 

G + N 

+ Wmax 

N + W 

+ Wmax 

6 61716 60649 61714 60744 61714 60647 62011 61284 61806 

8 198995 197986 199076 198083 198993 197984 198993 198069 199323 

10 283511 282591 284217 283102 283509 282589 283962 283312 283913 

12 282060 281807 282223 281802 282058 281940 282337 282727 282738 

20 339497 334942 339330 334750 339999 335713 350008 347229 339757 
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Table D.3.6: BICPDE values for each constant parameter, non-local PDE model fitted to each GAM 

complexity using the small step size finite differencing scheme. 

 Model 

Knots 

in 

Space 

IG + N 

+ W + 

Wmax 

G + N 

+ W + 

Wmax 

IG + N 

+ W  

G + N 

+ W  

IG + W 

+ Wmax 

G + W 

+ Wmax 

IG + N 

+ Wmax 

G + N 

+ Wmax 

N + W 

+ Wmax 

6 60220 59153 60209 59239 60209 59142 60506 59779 60301 

8 197500 196491 197571 196578 197489 196479 197489 196564 197818 

10 282015 281095 282712 281597 282004 281084 282458 281807 282409 

12 280565 280312 280719 280298 280553 280435 280832 281222 281234 

20 338002 333446 337825 333246 338494 334208 348504 345725 338252 

 

 

 

Table D.3.7: AICcPDE values for each time-varying parameter, non-local PDE model fitted to each 

GAM complexity using the small step size finite differencing scheme. 

 Model 

Knots 

in 

Space 

IG + N 

+ W + 

Wmax 

G + N 

+ W + 

Wmax 

IG + N 

+ W  

G + N 

+ W  

IG + W 

+ Wmax 

G + W 

+ Wmax 

IG + N 

+ Wmax 

G + N 

+ Wmax 

N + W 

+ Wmax 

6 19670 25479 22745 27079 22376 27897 35795 40614 31420 

8 137585 150311 141010 152289 145819 159389 151856 172742 164766 

10 232148 235540 237575 240167 242909 249256 243399 251486 249015 

12 239348 237420 248042 245135 248131 246501 261881 256819 243907 

20 263108 266710 273844 275106 276946 276116 288635 284638 278017 

 

 

 

Table D.3.8: BICPDE  values for each time-varying parameter, non-local PDE model fitted to each 

GAM complexity using the small step size finite differencing scheme. 

 Model 

Knots 

in 

Space 

IG + N 

+ W + 

Wmax 

G + N 

+ W + 

Wmax 

IG + N 

+ W  

G + N 

+ W  

IG + W 

+ Wmax 

G + W 

+ Wmax 

IG + N 

+ Wmax 

G + N 

+ Wmax 

N + W 

+ Wmax 

6 19670 25479 22437 26771 22067 27588 35486 40306 31112 

8 137585 150311 140702 151981 145511 159081 151548 172434 164458 

10 232148 235540 237267 239859 242601 248948 243091 251177 248706 

12 239348 237420 247734 244827 247823 246192 261573 256510 243599 

20 263108 266710 273535 274798 276638 275807 288327 284329 277709 
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Table D.3.9: AICcPDE values for each constant parameter, local PDE model fitted to each GAM 

complexity using the large step size finite differencing scheme. 

 Model 

Knots 

in 

Space 

IG + N 

+ W + 

Wmax 

G + N 

+ W + 

Wmax 

IG + N 

+ W  

G + N 

+ W  

IG + W 

+ Wmax 

G + W 

+ Wmax 

IG + N 

+ Wmax 

G + N 

+ Wmax 

N + W 

+ Wmax 

6 42034 41935 42102 42092 42070 41964 42387 42362 42032 

8 130829 130545 130827 130543 130828 130545 130838 130551 130827 

10 218440 218487 220389 220427 218438 218485 220446 220494 218485 

12 210487 210430 210485 210427 210485 210428 210526 210479 210485 

20 257839 257881 257834 257876 257837 257879 258269 258307 257891 

 

 

 

Table D.3.10: BICPDE  values for each constant parameter, local PDE model fitted to each GAM 

complexity using the large step size finite differencing scheme. 

 Model 

Knots 

in 

Space 

IG + N 

+ W + 

Wmax 

G + N 

+ W + 

Wmax 

IG + N 

+ W  

G + N 

+ W  

IG + W 

+ Wmax 

G + W 

+ Wmax 

IG + N 

+ Wmax 

G + N 

+ Wmax 

N + W 

+ Wmax 

6 40529 40431 40587 40578 40556 40449 40873 40848 40518 

8 129324 129041 129313 129029 129313 129031 129324 129037 129313 

10 216936 216983 218875 218913 216924 216971 218932 218980 216971 

12 208982 208925 208971 208913 208971 208914 209012 208965 208971 

20 256334 256376 256320 256362 256323 256365 256755 256793 256377 

 

 

 

Table D.3.11: AICcPDE values for each time-varying parameter, local PDE model fitted to each GAM 

complexity using the large step size finite differencing scheme. 

 Model 

Knots 

in 

Space 

IG + N 

+ W + 

Wmax 

G + N 

+ W + 

Wmax 

IG + N 

+ W  

G + N 

+ W  

IG + W 

+ Wmax 

G + W 

+ Wmax 

IG + N 

+ Wmax 

G + N 

+ Wmax 

N + W 

+ Wmax 

6 26374 26519 29257 28742 27183 27124 32764 33315 28258 

8 112219 108297 114386 110543 113543 109631 119874 117977 114406 

10 201384 201552 206743 208669 203649 203858 209866 213102 204514 

12 191574 189735 199161 197967 193210 191422 201522 200363 193201 

20 234911 235491 240919 239047 236214 236115 248151 249047 239251 
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Table D.3.12: BICPDE  values for each time-varying parameter, local PDE model fitted to each GAM 

complexity using the large step size finite differencing scheme. 

 Model 

Knots 

in 

Space 

IG + N 

+ W + 

Wmax 

G + N 

+ W + 

Wmax 

IG + N 

+ W  

G + N 

+ W  

IG + W 

+ Wmax 

G + W 

+ Wmax 

IG + N 

+ Wmax 

G + N 

+ Wmax 

N + W 

+ Wmax 

6 26365 26509 28939 28425 26865 26806 32447 32997 27940 

8 112209 108287 114068 110226 113225 109313 119556 117659 114088 

10 201375 201542 206426 208352 203332 203541 209548 212784 204196 

12 191564 189725 198843 197649 192892 191104 201205 200045 192883 

20 234902 235482 240601 238729 235896 235798 247833 248730 238933 

 

 

 

Table D.3.13: AICcPDE values for each constant parameter, non-local PDE model fitted to each GAM 

complexity using the large step size finite differencing scheme. 

 Model 

Knots 

in 

Space 

IG + N 

+ W + 

Wmax 

G + N 

+ W + 

Wmax 

IG + N 

+ W  

G + N 

+ W  

IG + W 

+ Wmax 

G + W 

+ Wmax 

IG + N 

+ Wmax 

G + N 

+ Wmax 

N + W 

+ Wmax 

6 41734 40539 41732 40618 41732 40537 41994 40941 41783 

8 130298 129490 130366 129578 130296 129488 130315 129574 130665 

10 218833 218406 219884 219712 218831 218404 218925 219504 218945 

12 208434 209126 208641 209201 208432 209209 208588 209570 209273 

20 257649 257629 257775 257626 257830 257857 257660 257680 257902 

 

 

 

Table D.3.14: BICPDE values for each constant parameter, non-local PDE model fitted to each GAM 

complexity using the large step size finite differencing scheme. 

 Model 

Knots 

in 

Space 

IG + N 

+ W + 

Wmax 

G + N 

+ W + 

Wmax 

IG + N 

+ W  

G + N 

+ W  

IG + W 

+ Wmax 

G + W 

+ Wmax 

IG + N 

+ Wmax 

G + N 

+ Wmax 

N + W 

+ Wmax 

6 40239 39044 40228 39113 40228 39032 40489 39436 40279 

8 128803 127995 128862 128074 128792 127984 128810 128069 129160 

10 217338 216910 218379 218207 217326 216899 217420 218000 217441 

12 206938 207630 207136 207696 206927 207704 207083 208065 207768 

20 256154 256133 256270 256121 256325 256352 256155 256175 256398 
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Table D.3.15: AICcPDE values for each time-varying parameter, non-local PDE model fitted to each 

GAM complexity using the large step size finite differencing scheme. 

 Model 

Knots 

in 

Space 

IG + N 

+ W + 

Wmax 

G + N 

+ W + 

Wmax 

IG + N 

+ W  

G + N 

+ W  

IG + W 

+ Wmax 

G + W 

+ Wmax 

IG + N 

+ Wmax 

G + N 

+ Wmax 

N + W 

+ Wmax 

6 0 1367 4941 4824 2517 4186 17240 18229 6602 

8 93111 90629 96523 94319 99632 96729 98810 101145 100529 

10 187068 186794 193081 192868 191019 193337 197238 199634 194952 

12 175073 173381 183704 181482 178957 178661 187977 188575 179237 

20 220452 227835 229196 234668 227497 234277 234377 239869 232832 

 

 

 

Table D.3.16: BICPDE values for each time-varying parameter, non-local PDE model fitted to each 

GAM complexity using the large step size finite differencing scheme. 

 Model 

Knots 

in 

Space 

IG + N 

+ W + 

Wmax 

G + N 

+ W + 

Wmax 

IG + N 

+ W  

G + N 

+ W  

IG + W 

+ Wmax 

G + W 

+ Wmax 

IG + N 

+ Wmax 

G + N 

+ Wmax 

N + W 

+ Wmax 

6 0 1367 4633 4515 2209 3877 16932 17921 6293 

8 93111 90629 96215 94011 99324 96421 98501 100837 100220 

10 187068 186794 192773 192560 190711 193029 196930 199326 194644 

12 175073 173381 183396 181173 178649 178352 187669 188267 178928 

20 220452 227835 228888 234360 227189 233969 234068 239561 232524 

 


