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Abstract

Space weather refers to electromagnetic disturbances in the near-Earth environment as a

result of the Sun-Earth interaction. Severe space weather events such as magnetic storms

can cause disruption to a wide range of technologies and infrastructure, including com-

munications systems, electronic circuits and power grids. Because of its high potential

impact, space weather has been included in the UK National Risk Register since 2011.

Space weather monitoring and early magnetic storm detection can be used to mitigate

risk in sensitive technological systems. The aim of this project is to investigate the elec-

tromagnetic disturbances in the near-Earth environment through developing statistical

models that quantifies the variations and uncertainties in the near-Earth magnetic field.

Data of the near-Earth magnetic field arise from in-situ satellite measurements and com-

puter model outputs. The Cluster II mission (Escoubet et al., 2001a) has four satellites

that provide in-situ measurements of the near-Earth magnetic field at time-varying lo-

cations along their trajectories. The computer model consists of an internal part that

calculates the magnetic field sourced from Earth itself and an external part that es-

timates the magnetic field resulting from the Sun-Earth interaction. These magnetic

fields, termed as the internal field and the external field, add up to the total magnetic

field. Numerical estimates of the internal field and the external field are obtained re-

spectively from the IGRF-11 model (Finlay et al., 2010) and the Tysganenko-96 (T96)

model (Tsyganenko, 2013) given the times and the locations as inputs. The IGRF model

outputs are invariant to space weather conditions whereas the T96 model outputs change

with the input space weather parameters. The time-varying space weather parameters

for T96 model include the solar wind ram pressure, the y and the z-components of the

interplanetary magnetic field, and the disturbance storm time index. These parameters

are the estimated time series of the solar wind conditions at the magnetopause, i.e.

the boundary of the magnetosphere on the day-side, and the disturbance level at the

Earth’s surface. Real-time values of the T96 model input parameters are available at

hourly resolution from https://omniweb.gsfc.nasa.gov/.

The overall aim of the thesis is to build spatio-temporal models that can be used to un-

derstand uncertainties and constraints leveraged from 3D mathematical models of space

weather events. These spatio-temporal models can be then used to help understand the

design parameters that need to be varied in building a precise and reliable sensor net-

work. Chapter 1 provides an introduction to space weather in terms of the near-Earth

magnetic field environment. Beginning with an overview of the near-Earth magnetic

field environment, Chapter 2 describes the sources for generating in-situ satellite mea-

surements and computer model outputs, namely the Cluster II mission, the IGRF model,

https://omniweb.gsfc.nasa.gov/
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and the T96 model. The process of sampling the magnetic field data from the different

data sources and the space-time dependence in the hourly sampled magnetic field data

are also included in this Chapter. Converting the space-time structure in the magnetic

field data into a time series structure with a function relating the position in space to

time, Chapter 3 explores the temporal variations in the sampled in-situ satellite mea-

surements. Through a hierarchical approach, the satellite measurements are related to

the computer model outputs. This chapter proposes statistical methods for dealing with

the non-stationary features, temporal autocorrelation, and volatility present in the time

series data.

With the aim of better characterising the electromagnetic environment around the Earth,

Chapter 4 develops time-series models of the near-Earth magnetic field utilising in-situ

(CLUSTER) magnetic field data. Regression models linking the CLUSTER satellite

observations and two physical models of the magnetic field (T96 and IGRF) are fit to

each orbit in the period 2003-2013. The time series of model parameter estimates are

then analysed to examine any long term patterns, variations and associations to storm

indices. In addition to explaining how the two physical models calibrate with the ob-

served satellite measurements, these statistical models capture the inherent volatility in

the magnetic field, and allow us to identify other factors associated with the magnetic

field variation, such as the relative position of each satellite relative to the Earth and the

Sun. Mixed-effect models that include these factors are constructed for parameters es-

timated from the regression models for evaluating the performance of the two computer

models. Following the calibration of the computer models against the satellite measure-

ments, Chapter 5 investigates how these computer models allow us to investigate the

association between the variations in near-Earth magnetic field and storms. To identify

the signatures of storm onsets in different locations in the magnetosphere, change-point

detection methods are considered for time series magnetic field signals generated from

the computer models along various feasible satellite orbits. The detection results in-

form on potential sampling strategies of the near-Earth magnetic field to be predictive

of storms through selecting achievable satellite orbits for placing satellite sensors and

detecting changes in the time series magnetic signals.

Chapter 6 provides of a summary of the main finding within this thesis, identifies some

limitations of the work carried out in the main chapters, and include a discussion of future

research. An Appendix provides details of coordinate transformation for converting the

time and position dependent magnetic field data into an appropriate coordinate system.
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Chapter 1

Introduction

“Weather on Earth, such as wind, snow and rain, has different terrestrial impacts and different

meteorological causes. Similarly, space weather, including geomagnetic storms, radiation storms

and solar radio noise, has different terrestrial impacts and is the result of different types of

solar phenomena. ”

UK National Risk Register of Civil Emergencies 2013

Space weather is a rapidly growing field within space sciences that studies the electro-

magnetic variations in the complex Sun-Earth system and their consequences on human

society (Moldwin, 2008). The term space weather refers to time-variable conditions in

the space environment that can influence the performance and reliability of space-borne

and ground-based technological systems, and can endanger human life and health (US

National Space Weather Program Strategic Plan, 2010). The space environment consists

of the Sun, the solar wind, and the Earth’s magnetosphere, ionosphere, and atmosphere.

As the development of modern technology facilitates research into plasma physics pro-

cesses in space, it is now well understood that space weather is driven by the Sun. The

Sun interacts with the Earth via the continuously emitted high-speed plasma streams

that propagate across interplanetary space and envelop the Earth (Hapgood, 2017).

The sequence of physics processes associated with the Sun-Earth interaction generates

various space weather phenomena.

One key phenomenon of space weather is the space storm (Daglis, 2001) which, if it

arrives at Earth, can give rise to a magnetic storm or geomagnetic storm (Loewe and

Prölss, 1997). The storm interconnects the Sun, interplanetary space, and the Earth.

Magnetic storms that last from days to weeks are mainly triggered by the Sun’s coronal

1
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mass ejections (CMEs), the mechanism of which is explained in Section 1.1. In the near-

Earth space environment, a storm can be recognized as temporary disturbances in the

electromagnetic field preceded by the arrival of a solar wind shock wave. On the surface

of the Earth, a storm can be observed as a sharp decrease in the magnetic field strength

followed by a gradual recovery to its original level. Magnetic storms have profound

influence on the Earth. An example of severe space weather can be found in Eastwood

(2008), where a recent major space storm in October-November 2003 was discussed.

Records of the 2003 Halloween storm show that a series of solar flares and CMEs occurred

from mid-October to early November, satellite-based systems and communications were

affected, aircraft were advised to avoid high altitudes near the polar regions, a one-

hour-long power outage happened in Sweden, and aurorae were observed in countries

at different latitudes (NASA/SOHO, 2008, United States Geological Survey: Science

Features, 2013). These facts suggest that this space storm affected the Earth in a global

manner. Prior to 2003, there are notable major events in 1967, 1972, 1989, and 2000,

but at the present time there have been no significant events for over a decade (Hapgood,

2017). Further back in history, the Carrington event recorded in September 1859 when

the English astronomer Richard Carrington observed a white light flare on the solar

disk, is thought to have been the most severe on record, and marked the beginning of

extreme space weather studies (Cliver and Dietrich, 2013, Cliver and Svalgaard, 2004).

A recent threat tantamount to the Carrington storm appeared in July 2012 when a

non-Earth-directed CME was measured in-situ by the STEREO-A spacecraft (Baker

et al., 2013, Ngwira et al., 2013). It was argued that the CME would have generated a

Carrington-class geomagnetic storm if it had been Earth-directed.

Magnetic storms and other space weather phenomena under severe conditions have nu-

merous adverse impacts on human activities, especially when our society becomes more

and more dependent on advanced technology. Everyday technological systems, such

as power grids, pipelines, transoceanic communication cables, satellites, aviation, and

global navigation satellite systems, can be easily disrupted by severe space weather, as

large variations in the terrestrial magnetic field induce currents that affect the normal

operation of electrical conductor systems. Odenwald (2012) gave a detailed description

of space weather impacts. Eastwood et al. (2017) reviewed the economic impacts of

space weather among other literature detailing the likelihood and statistics of different

types of space weather phenomena. The threat that space weather poses to our modern
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society has been in included in the UK National Risk Register (NRR) for Civil Emer-

gencies (Cabinet Office, 2015), where severe space weather is ranked highly, ahead of

explosive volcanic eruptions and alongside extreme weather (Hapgood, 2012).

The societal needs of understanding and forecasting space weather has increased tremen-

dously. Early detection of space storms can be used for mitigating risks in sensitive

technological systems. This thesis is motivated by the possibility of using a space-based

network of sensors for monitoring the near-Earth magnetic field, with each sensor carried

on a CubeSat-like spacecraft. The core question of this Ph.D. project is to design an

optimal monitoring network consisting of moving sensors for sampling the magnetic field

at desired frequency, subject to the physical constraints of satellite orbits, to guarantee

that certain statistical design objectives are met. The project involves statistical mod-

elling, changepoint detection, and network design for monitoring the 3D spatio-temporal

electromagnetic disturbances in the near-Earth environment.

So far this chapter has provided an overview of this Ph.D. project with a brief introduc-

tion to space weather. Section 1.1 gives the research background of the project, with

a sketch of the physics behind space weather, a description of important space weather

features, and a summary of recent advances in space weather studies. Section 1.2 states

the aims and objectives of statistical modelling, change-point analysis, and sensor net-

work design in three stages, and Section 1.3 closes this chapter with an outline of the

thesis structure.

1.1 Research Background

Space weather exists both as a type of natural hazard and a scientific discipline. Since

the risks of space weather gained rising awareness in the past few decades, space weather,

as a discipline, has been developed along with the need for forecasting and prediction

of extreme space weather events. Space weather as a discipline studies the state and

dynamics of the Earth’s space environment in response to variable solar activity (Wa-

termann, 2007), and the task of forecasting space weather requires the integration of

solar physics, interplanetary physics, magnetospheric physics and ionospheric physics

(Saiz et al., 2013). Efforts of space weather modelling in different aspects have been
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made accordingly. Tsagouri et al. (2013) summarized the recent progress in understand-

ing space weather phenomena with the focus on solar activity (Messerotti et al., 2009),

the radiation environment of the Earth (Vainio et al., 2009), solar wind variations and

their interaction with the geomagnetic field (Watermann et al., 2009), and the upper

atmosphere response to space weather events (Belehaki et al., 2009).

This project concerns primarily the near-Earth magnetic field environment, since the

near-Earth field is influenced by the solar-terrestrial interaction, and variations in this

field reflects sophisticated space plasma processes associated with space weather. Ad-

verse space weather conditions that directly or indirectly affect human and technology

systems merges in the near-Earth field in the form of electromagnetic disturbances.

Large electromagnetic disturbances that occur occasionally have detrimental effects,

and early detection of such events can be achieved through developing a monitoring

network that recognizes abrupt changes of magnetospheric behaviours in the near-Earth

space. This requires the knowledge of the magnetospheric behaviours under different

space weather conditions, i.e. the dynamics of the near-Earth magnetic field in space

plasma physics.

As a matter of fact, physics processes that govern the transport of energy, momentum

and mass in the complex Sun-Earth system during electromagnetic disturbances have

only been partially understood by scientists. Hultqvist and Treumann (1999) acknowl-

edged that the contribution of solar plasma to the Earth’s magnetosphere has only been

tenuously understood due to inseparable plasma condition in the ionosphere, which is

the ionized component in the Earth’s upper atmosphere that forms the inner edge of the

magnetosphere. Welling et al. (2015) summarized the advances in understanding the

near-Earth plasma environment and provided an up-to-date review. An accurate under-

standing of the near-Earth magnetic field and its spatio-temporal variations is crucial

in many aspects of solar-terrestrial physics and applications. Therefore a quantitative

approach that fuses the known facts from established magnetospheric physics and direct

observations from operational services would contribute to the knowledge of the near-

Earth space environment. Tools available for this study include Earth-orbiting satellites

that provide in-situ measurements of the field and semi-empirical models that are based

on mathematical equations and historical observations of the near-Earth magnetic field.

This section introduces a framework for a statistical formulation of the space weather
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monitoring problem, namely design of the best sampling strategies for recognizing the

spatio-temporal disturbances related to space storms in the near-Earth environment.

Subsection 1.1.1 describes the near-Earth space environment, covering the formation,

structure, and dynamics of the Earth’s magnetosphere. Subsection 1.1.2 presents the

main features of magnetic storms, shedding light on the storm-time disturbances in the

near-Earth magnetic environment. Section 1.1.3 reviews recent development of space

weather monitoring based on the study of the near-Earth magnetic field.

1.1.1 Space weather in the near-Earth environment

Space weather arises from the Sun (Bothmer and Daglis, 2007, Kivelson and Russell,

1995, Koskinen, 2011), from where streams of high-speed hot plasma continuously flow

outward. The variable plasma stream, known as the solar wind, is supersonic with

velocity ranging from 300 to 800 km/s, and forms shock waves when diverted around

a planetary obstacle. Alfvén’s frozen-in theorem (Alfvén, 1942) states that in a fluid

with infinite electric conductivity, magnetic field lines are frozen into the fluid and have

to move along with it. Since the solar wind is highly electrically conducting, the solar

magnetic field is considered to be frozen into the flow of the solar wind. As the Sun

rotates, the solar wind carries the solar magnetic field outward in a spiral pattern (Parker,

1965). Transient disturbances in the solar wind, such as erupting “ropes” of magnetised

plasma caused by CME, and their effects will be elaborated in subsection 1.1.2. Structure

in the solar magnetic field modulates the flow of the solar wind. With the fast flows

overtaking the slow ones, the interaction of solar wind with different velocities compresses

the solar wind plasma, distorting the magnetic fields and the flow directions (Russell,

1991). The Interplanetary Magnetic Field (IMF) is the magnetic field of the solar wind

that carries the effects of solar activity towards the Earth and other planets in the solar

system. The Earth has a dipole magnetic field with the axis tilted at an angle of 11.7

degrees with respect to its rotational axis. The solar wind interacts with the terrestrial

magnetic field, compressing it on the day-side and stretching it on the night-side. The

huge cavity in the solar wind created by the solar-terrestrial interaction is called the

magnetosphere (Russell, 2007).

The Earth’s magnetosphere responds to solar activity and and functions as a reservoir

of energy and particles. As a result of the interaction between the magnetized solar
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wind and Earth’s magnetic field, the magnetosphere is shaped by a series of current

systems and filled by a variable mixture of ionospheric and solar wind plasma. Figure

Figure 1.1: Cross section of the magnetosphere. Source: Hughes (1995). The arrows
show the magnetic field directions. The circles with an X represent currents flowing

into the page and the circles with a dot represent outward flowing currents.

1.1 shows the magnetopause current system and the magnetotail current sheet in the

cross section of the magnetosphere. A bow shock is formed as indicated by the dashed

curve. The bow shock slows down and deflects the solar wind flow before it reaches

the magnetopause (De Pater and Lissauer, 2015). The magnetopause is the bound-

ary separating the magnetosheath, the zone of shocked solar wind plasma, from the

plasma of the magnetosphere. Inside the magnetopause, plasma motion is dominated

by the terrestrial magnetic field. The distance of the magnetopause from the centre of

the Earth varies with solar wind ram pressure, i.e. the product of plasma density and

squared relative speed of the plasma, and typically ranges from 6 to 15 Earth radii (rE).

Lines and arrows in the figure represent the magnetic field lines and their directions.

Figure 1.2 provides an illustration of magnetospheric currents in 3D. The ring current

flowing westward around the Earth is carried by charged particles trapped in the inner

magnetosphere. It is the most essential element in the study of magnetic storms and
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Figure 1.2: A sketch of the magnetosphere. Source: Kivelson and Russell (1995). The
Sun-Earth interaction generates a complex system of magnetospheric and ionospheric

current systems.

magnetospheric substorms. During a magnetic storm, the number of particles in the

ring current will increase, resulting in a decrease in the geomagnetic field. The decrease

of the geomagnetic field due to the ring current is measured by the disturbance storm

time (Dst) index available from http://wdc.kugi.kyoto-u.ac.jp/dstdir/. The field-

aligned currents in coexistence with the ring current flow along magnetic field lines and

connect the magnetosphere to the ionosphere. Radiation belts where the magnetic field

traps high-energy plasma were discovered in the inner magnetosphere, or the plasmas-

phere, by Van Allen et al. (1959). The inner belts extend from 1.1 to 2 rE and the outer

belts extend from 3 to 9 rE (Daglis, 2001). The region between the belts is considered as

an ideal location for spacecraft operation as it is normally devoid of particles, however,

during storms the region would turn into location of high particle radiation intensity

and could become harmful to space-based assets (Baker et al., 2004).

In the near-Earth space, the magnetic field comes from the magnetospheric currents

and the Earth’s dipole magnetic field. The overall magnetic field has diurnal and annual

http://wdc.kugi.kyoto-u.ac.jp/dstdir/
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variations in an Earth-fixed reference frame. The daily variations are caused by the

Earth’s rotation and the orientation of the rotational axis (Maus and Lühr, 2005). The

magnetospheric fields sourced from the magnetospheric currents under quiet conditions

would appear steady in the Geocentric Solar Magnetospheric (GSM) coordinate system,

which has its x-axis pointing from the Earth to the Sun and the z-axis being the projec-

tion of the dipole axis on the plane perpendicular to the x-axis. The GSM coordinate

system is the mostly commonly used reference frame in studies of the Sun-Earth inter-

action. The IMF should also be considered in the GSM system (Russell and McPherron,

1973). Conversions between the GSM system and other Earth-fixed coordinate systems

(Russell, 1971), such as GEI, GEO, or GES, are included in Appendix A. However,

the magnetopheric fields do not appear stationary in the GSM frame. A fundamental

process that limits the field being stationary in magnetospheric dynamics is magnetic

reconnection.

The magnetic field lines inside the magnetosphere continuously join or merge with mag-

netic field lines of the interplanetary magnetic field. The process transfers plasma and

energy from the solar wind into the magnetosphere and drives particle acceleration and

convection (Kuijpers et al., 2015). Reconnection occurs when magnetic field lines of

opposite directions get compressed together. Dungey (1961) proposed that the dynam-

ics of the magnetosphere are driven by magnetic reconnection and the reconnection is

regulated by the orientation of the IMF. The Dungey model in Figure 1.3 shows re-

connection in the noon-midnight meridian in two scenarios: the northward IMF on the

left panel and the southward IMF on the right panel. During northward IMF, the re-

connection occurs symmetrically away from the magnetopause; During southward IMF,

the reconnection occurs first at the day-side magnetopause and then at the night-side

magnetotail. For IMF that involves an east-west component, reconnection would still

occur and the reconnection site locate at points where the internal magneto-spheric

field is anti-parallel to the external shocked solar-wind field. As the IMF changes, the

reconnection site moves on the magnetopause.

In general, southward IMF is expected to produce a much stronger effect than north-

ward IMF. Figure 1.4 shows an example of reconnection during southward IMF. The

processes can be summarized as follows: southward IMF triggers reconnection at day-

side magnetopause in stage 1, creating open magnetic field lines that allow solar wind

plasma to enter the magnetosphere along the open field in stage 2 and 3; solar wind
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Figure 1.3: Dungey models of the reconnecting magnetosphere. Source: Russell
(2007). The left panel shows the noon-midnight meridian (the x-z plane in the GSM
frame) for northward IMF and the right panel the southward IMF. The points labelled
“N” are neutral points at which the magnetic field is zero. The arrows show the flowing

directions.

Figure 1.4: Diagram showing the stages of the Dungey cycle. Source: Seki et al.
(2015). E - the electric field; V - the velocity vector; B - the magnetic field. The
solar wind plasma and IMF impose on the Earth’s magnetopshere: E = −V×B. The
dashed lines are the flow streamlines and the solid lines are the magnetic field lines.

The stages of reconnection are numbered from 1 to 7 in time order.

mass, momentum and energy transferred and stored in the magneto-tail subsequently

cause reconnection between open lobe field lines at the cross-tail current sheet in stage

4; the reconnection ends with closed magnetic field lines in stage 5 and 6 and convects

back to day-side magnetic field or IMF in stage 7. In short, day-side reconnection at the

magnetoapuse opens closed magnetic flux; nightside reconnection at a distant location

(∼ 100 rE) in the magnetotail closes open magnetic flux. Time scales of these stages

from the opening of the field lines at the day-side to the closing of the field lines on the

nightside are 1-hour (Cowley, 1982), or equivalently, the propagation time of the solar

wind from the magnetopause to the magnetotail can be several tens of minutes (Milan
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et al., 2007).

The Dungey cycle was once considered as a steady-state process where the rates of

day-side and nightside reconnection were assumed equal. It is now understood that

reconnection at day-side and night-side can happen independently and the reconnection

rates do not need to be balanced at any instant. Sotirelis et al. (2017) demonstrated

the linkage of magnetic reconnection to the polar cap behaviour. It has been found

that day-side reconnection causes the polar cap to expand while night-side reconnection

causes the polar cap to contract. Depending on the reconnection rates at the two sides,

the response of the Earth’s magnetosphere to the solar wind can be recognized as steady

and non-steady states. However, it has been argued that the solar-wind-magnetospheric

system never reaches a steady state but keeps oscillating with a period of roughly an

hour, and the oscillation may be driven by intermittent magnetic reconnection (You-Qiu

et al., 2005).

Whether the reconnection is intrinsically intermittent or continuous has long been a

discussion. Frey et al. (2003) reported continuous reconnection at the Earth’s high-

latitude magnetopause under northward IMF, or stable solar wind conditions, based on

observation of day-side proton aurora spot, as variable solar wind would input energy

into the magnetosphere and cause radiation belt particles to spiral into the atmosphere

thus creating aurorae. The reconnection rate at the magnetopause could be intermittent

if the IMF changes. During southward IMF, the day-side reconnection leads to a build

up of magnetic energy in the magnetotail, and a subsequent tail reconnection results

in an explosive release of magnetic energy, termed a magnetospheric substorm (Baker

et al., 1996). The intervals where the dayside reconnection is balanced by nightside

reconnection are recognized as steady magnetic convection events (DeJong et al., 2008).

There exists auroral electrojets, i.e. two broad sheets of electric current flowing in the

auroral ovals, and auroral observations in the form of auroral electrojet indices AE,

AL, and AU (See Table 1.1 for definitions of these indices) (Davis and Sugiura, 1966,

Gjerloev et al., 2004, Kamide and Akasofu, 1983) were considered the most accurate

way of timing and locating magnetospheric events (Sergeev et al., 2012). McWilliams

et al. (2008) details the selection criteria of magnetospheric events using AE index. The

auroral indices together with in-situ spacecraft observations advance understanding of

substorm dynamics.
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The study of what factors control the rate of reconnection has been an active field.

Connor et al. (2014) recently found that sudden enhancements of solar wind dynamic

pressure increases the reconnection rates at the day-side and night-side within an hour.

The temporal behaviour of IMF and solar wind pressure control the time-varying re-

connection rate. The hourly variation of IMF leads to magnetospheric events such as

substorms, but when the solar wind apply a coherent stress to the magnetosphere over

many hours, i.e. prolonged southward IMF, the response of the magnetosphere would

involve into a magnetic storm under such conditions. (Bothmer and Daglis, 2007)

1.1.2 Magnetic storm and its main features

A magnetic storm or geomagnetic storm refers to large global disturbances in the near-

Earth environment under the influence of the solar wind and the interplanetary magnetic

field. As the magnetosphere is controlled by the solar wind, magnetic storms begin when

disturbances in the solar wind reach the Earth’s magnetosphere. CMEs, the massive

transient eruptions of solar coronal material into space, and solar flares, the rapid release

of energy from the coronal magnetic field, are the most energetic phenomena among

various types of solar disturbances. Figure 1.5 provides photos of a CME taken by two

Figure 1.5: A coronal mass ejection on Feb 27th, 2000 taken by SOHO LASCO C2
and C3. Credit: SOHO ESA NASA

coronagraphs on SOHO. A large CME blast a billion tons of particles into space and

the particles can be accelerated to millions of miles per hour. These solar phenomena

are more likely to occur during solar maximum, marked by the maximum number of
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sunspots in a solar cycle that lasts 11 years on average. A magnetic storm would happen

if a CME strikes the Earth’s magnetosphere. As a result, a peak in geomagnetic activity

occurs around the solar maximum (Richardson et al., 2000). Another source contributing

to the occurrence of geomagnetic storms but out of solar maximum is the Corotating

Interaction Regions (CIRs), which are formed because the Sun’s dipole tilt and irregular

shape of solar coronal holes, lead fast solar wind to run into slow solar wind further

ahead.

Chapman and Bartels (1940) described the typical behaviour of the geomagnetic storm

in four stages: the sudden commencement signalled by an increase in the horizontal

component of the Earth’s magnetic field within a few minutes, the initial phase lasting

a few hours during which the horizontal component stays higher than its normal value,

the main phases characterized by a sharp decrease, and the recovery phase consisted of

a slow relaxation of the horizontal component back to its normal value. This description

was based on magnetic field measurements at ground observatories. Parker (1962) sum-

marized the dynamical process of geomagnetic storm as follows: The solar wind exerts

force on the boundary of the magnetosphere, resulting in a compression of the geomag-

netic field, and the field then exerts force outward into space, causing an expansion and

a decrease of the magnetic field around the equatorial regions. This phenomenon can be

interpreted as a deformation of the geomagnetic field by external stresses. This inter-

pretation is that the phenomena are a deformation of the geomagnetic field by external

stresses. Gonzalez et al. (1994) defined a geomagnetic storm as

“an interval of time when a sufficiently intense and long-lasting interplanetary con-

vection electric field leads, through a substantial energization in the magnetosphere-

ionosphere system, to an intensified ring current sufficiently strong to exceed some key

threshold of the quantifying storm time (Dst) index”.

Figure 1.6 gives an example of the Dst index during the Oct-Nov 2003 storm, with quiet-

time behaviour on the left side of the plot and the super storm on the right. The activity

levels are indicated by the shaded regions in the plot and the typical cut-off for studying

the storm effects on power grids and satellites is Dst less than −200 to −300 nT. During

solar cycle 23, beginning in May 1996 and ending in January 2008, 90 intense storms

(Dst ≤ 100 nT) have been identified out of the 220 storms (Dst ≤ 50 nT) (Rathore

et al., 2011), and the 2003 Halloween storm driven by CMEs was the largest storm in
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Figure 1.6: Illustration of geomagnetic storm classifications. Source http://www.

aer.com/science-research/space/space-weather/space-weather-index

that solar cycle (Gopalswamy et al., 2005). Echer et al. (2008) investigated these intense

storms with the interplanetary data from the ACE and WIND satellites and classified

the storms into different interplanetary causes. It was found that all the intense storms

were caused when the IMF was southwardly directed in the GSM coordinate and the four

most common interplanetary structures responsible for intense storm development were

sheath fields (Sh), magnetic clouds which drove fast shocks (sMC), combined sheath and

MC fields (Sh+MC), and CIRs, in decreasing order with the highest being 24% and the

lowest 13%. Sh and MC are both possible manifestation of a CME: MCs are defined

by strong magnetic field and large-angle smooth rotation of the field; sheath fields are

recognized as highly turbulent solar wind plasma and fields (Tsurutani et al., 1988).

Dst is one of the most widely used geomagnetic indices partly because it is motived

by a specific physical theory – the enhancement of equatorial ring current. The Dst

is derived from ground-based observations at low-latitude magnetometer stations as an

estimate of the storm-time magnetic disturbances at the Earth’s equator. It reflects the

variation of the ring current, and other currents including the day-side magnetopause

and the night-side tail current also contribute to the Dst during highly disturbed storm

periods (Turner et al., 2000). However, the Dst has some biases mostly because of the

geographic location of measurements (Häkkinen et al., 2003) and CIR-driven and CME-

driven storm differs in their Dst representation in that a corrected Dst, excluding the

effects of the quiet-time currents, is more under-predicted for CIR-driven storms than

http://www.aer.com/science-research/space/space-weather/space-weather-index
http://www.aer.com/science-research/space/space-weather/space-weather-index
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Table 1.1: Summary of important geomagnetic indices

AE,AU,AL 1-, 2.5-min, or hourly auroral electrojet indices
Dst Hourly index mainly related to the ring current
K 3-hr local quasi-logarithmic index
Kp 3-hr and hourly quasi-logarithmic planetary index

for that of CME-driven storms (Cramer et al., 2013). Table 1.1 summarizes some of the

important geomagnetic indices. There are other geomagnetic indices that function as

more generic measurements such as the range indices K and Kp (Love and Remick, 2007).

The 3-hour K integer index was first introduced by Bartels et al. (1939) as a measure of

the range of irregular and rapid, storm-time activity, and the Kp index (Menvielle and

Berthelier, 1991) measures the planetary-scale magnetic activity based on the average

of fraction K indices at 13 sub-auroral observatories. The auroral electrojet indices AU,

AL, and AE measure the auroral zone component of the currents at different temporal

scales.

All these indices are indicators of geomagnetic activity. The Dst and Kp are used to

study magnetic storms, whereas the auroral electrojet indices are used to study mag-

netospheric substorms. The storm-substorm relationship does not seem to be fully un-

derstood yet. An earlier view by Akasofu and Chapman (1961) believed that magnetic

storms are caused by frequent occurrence of intense substorms, and a modern view by

Kamide (1992) proposed that the magnetic storms are driven by the enhanced magne-

tospheric convection from sustained southward IMF. McPherron (1997) concluded that

magnetospheric substorms occur regardless of magnetic storm and substorms are more

frequent and stronger during the main phase of magnetic storms.

1.1.3 A review of recent developments

The Earth’s magnetosphere has time-varying configurations and exhibits non-linear fluc-

tuations over a wide range of spatial and temporal scales. The magnetospheric variations

are produced by the interaction of the solar conditions with the near-Earth space en-

vironment and can be detected from observations in the magnetosphere and on the

surface of the Earth. Solar activity such as CMEs could provide warnings for severe

space weather events, however, forecasting magnetopsheric disturbances based on solar

observations are not accurate enough for practical purposes (Saiz et al., 2013).
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The challenge of the forecasting task is to predict magnetic storms accurately and as

soon as possible based on the understanding of the near-Earth space environment. It

is understood that the large-scale variability of the magnetosphere is produced both by

the changing external solar conditions and by non-equilibrium internal dynamics (Va-

syliūnas, 2011). The coupling of the solar-wind to the magnetosphere and the internal

physical processes have been modelled by the magnetohydrodynamics (MHD) equa-

tions. Global MHD models provide a physics-based understanding of magnetospheric

structure and dynamics (Lopez et al., 2001). Magnetospheric research has advanced

from the early days of considering primarily electrodynamics and plasma physical pro-

cesses by the MHD equations to the present-day realization of the real complexity of

the magnetosphere (Lui, 2002). Data-based modelling of the Earth’s dynamic magne-

tosphere has been developed from the aspects of the mathematical methods, spacecraft

databases, and parametrization of the magnetospheric models by the solar wind drivers

and ground-based indices (Tsyganenko, 2013). The semi-empirical magnetic field mod-

els are now capable of producing the magnetospheric response to variable solar wind

and interplanetary conditions. On the other hand, in-situ satellites such as Cluster mis-

sion (Escoubet et al., 2001a) and the Solar Terrestrial Probes mission Magnetospheric

Multiscale (MMS) provide an improved perspective of the micro-physics of magneto-

spheric phenomena, contributing to the knowledge in the driving mechanisms in the

magnetosphere (Angelopoulos et al., 1998).

Development of the lower-cost CubeSat (Woellert et al., 2011) makes an in-situ monitor-

ing sensor network plausible. The UK Space Agency performed a preparatory study of

CENTINEL, a magnetospheric space weather constellation mission consisting of 100+

CubeSats (Eastwood, 2015). The study examined key technical challenges - deployment,

communications and debris mitigation - in the context of space weather observation. A

statistical design of sensor network of CubeSats will provide space weather monitor-

ing system for recognizing storms and contribute to better space weather mitigation

strategies in the cases of extreme space weather events.

1.2 Aims and Objectives

This Ph.D. project aims at developing statistical designs of a sensor network of small

satellites moving through space, and measuring space weather conditions, including the
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magnetic field, semi-continuously. The project involves research in data analysis, spatio-

temporal statistical methodology, visualization, and computational inference.

The overall aim of the thesis is to build spatio-temporal models that can be used to

understand uncertainties and constraints leveraged from 3D mathematical models of

space weather events, and from typical measurement and error values derived from

existing single-spacecraft sensors. These spatio-temporal models can be then used to

help understand the design parameters that need to be varied in building a precise and

reliable sensor network. The required network parameters must then be set against

what is achievable in terms of sensor quality and satellite numbers (i.e. cost), satellite

orbits and formations (i.e. sensor positions) and satellite communication restrictions (i.e.

temporal sampling) to arrive at an optimal sensor network solution. This is primarily

a modelling project that requires advanced statistical methods of general applicability,

basic aspects of the physics of space weather and its measurements, and the real world

constraints of practical engineering.

The space weather monitoring problem of developing a sensor network that can provide

reliable estimates of the near-Earth magnetic field for detecting and predicting space

storm has three stages. The first stage explores the variations in the near-Earth mag-

netic field utilizing in-situ satellite measurements and physics-based empirical models.

The main objectives of spatio-temporal statistical modelling are to characterise the mag-

netic field variation in near-Earth space, compare storm and non-storm behaviour, and

calibrate the physical models with real magnetic field data. The second stage investi-

gates the best sampling strategies for recognizing storm signals based on results from

stage one. The objectives are to develop a detection algorithm for recognizing changes

along a satellite orbit and identify feasible satellite orbits along which storm signal can

be captured in time. The final stage is devoted to the construction of a storm warning

system, i.e. an achievable CubeSat constellation for monitoring space weather, with the

proposed detection algorithms and the planned satellite orbits from stage two. The ob-

jective is to optimize statistical design of a sensor network consisting of small satellites

moving through space and continuously measuring space weather conditions for early

space storm detection, when informed by space-weather physical models, the character

of the sensed data and the achievable satellite orbits. With spacecraft and telemetry

resources at a premium, it is necessary to ensure that the network is configured and the
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data sampled in an optimal way. Statistical techniques will be extended for application

to the design of space weather monitoring network.

In summary, this research project tackles general questions of spatial-temporal modelling

of sensor data, optimal sensor positioning, sampling and data selection in constrained,

dynamic 3D sensor networks.

1.3 Thesis Outline

This thesis consists of 6 chapters including this introductory chapter. Chapter 1 has

defined the space weather monitoring problem in the context of the near-Earth magnetic

field environment and identified magnetic storms as the event of interest for monitoring

space weather.

Chapter 2 describes the data sources for the study of the near-Earth magnetic field

environment. The data sources include satellite measurements and computer models of

the near-Earth magnetic field. The Cluster II satellites provide in-situ measurements

of the near-Earth magnetic field at time-varying locations along their trajectories. Two

computer models are available for producing estimates of the internal and the external

magnetic fields. IGRF the internal field model calculates the Earth’s magnetic field and

takes times and locations as inputs; T96 the external field model outputs the magne-

tospheric field from the Sun-Earth interaction and requires space weather parameters

as additional inputs. The space weather parameters are derived from satellite-based

observations in the interplanetary space and ground-based observations at the surface

of the Earth. These parameters have an one-hour resolution. Sampling from the satel-

lite measurements and the computer model outputs generate near-Earth magnetic field

data that are dependent in space and time. The data consists of three magnetic field

vectors, which are the Cluster satellite measurements, the IGRF model outputs, and the

T96 model outputs, sampled at one-hour time interval along the motion of the Cluster

satellites.

Chapter 3 explores the variations in the hourly-sampled magnetic field data. The mag-

netic field data has a space-time dependency for which the location in space can be

regarded as a function of time. The chapter presents the space-time structure of the

magnetic field data in the GSM coordinate frame and visualizes the Cluster satellite
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trajectories. The GSM frame is considered the most appropriate reference frame for

describing the solar-terrestrial magnetic field interaction, which plays a key role in the

near-Earth magnetic field environment. In the GSM frame, magnetic field vectors are

represented by magnetic field strengths in the x-, y- and z-components of the GSM

frame. The satellite measurements and the computer model outputs are collected along

the each of the four Cluster satellites and consist of field strengths in the three com-

ponents. A simple regression model relates the satellite measurements to the IGRF

and the T96 model outputs, since the observations of the near-Earth magnetic field are

correlated with the estimates of the internal and the external fields. Such models are

fitted to the data of the three components across the four satellites. Residuals of the

regression model exhibit non-stationarity and time series methods are applied to piece-

wise stationary residuals for dealing with the temporal autocorrelation and the changing

variances.

Chapter 4 evaluates the overall performance of the two computer models through devel-

oping a time-series-based regression model that incorporates the Cluster satellite data

and the computer model outputs. The statistical model regresses the satellite measure-

ments on the two computer model outputs and allows its parameters to vary across

satellite orbits. Within each satellite orbit, the error term of the regression model ap-

pears to be stationary. The autocorrelation and the changing variance identified in the

regression errors are captured by a time series structure. The time series structure for

errors that quantifies the uncertainties in the regression modelling is individually defined

for each orbit. These structures are taken into account in the estimation of the regres-

sion model parameters. The estimated parameters in the regression model characterize

the relationship between the satellite measurements and the computer model outputs,

thus calibrating the computer models against the Cluster satellite data. The Chapter

then assesses the calibration results using a mixed-effects model. Potential fixed and

random effects are considered in the mixed effects model for explaining the variations in

the estimated regression parameters.

Chapter 5 focuses on recognizing the patterns of magnetic storm onset in the near-

Earth space environment through generating estimates of the magnetic field at times

and locations in space under storm and non-storm conditions and creating spatial maps

of the near-Earth magnetic field on selected 2-dimensional grids with the estimates.

Magnetic storms disturb the near-Earth magnetic field environment on a global scale and
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such disturbances reach the surface of the Earth. The geomagnetic storm indices derived

from observations at the surface of the Earth are used to select the storm periods. Space

weather parameters under storm and non-storm conditions are input to the T96 model

for generating estimates of the external magnetic field under both conditions, given that

the external field responses to space weather and, based on the results from Chapter 4,

the T96 models provide fairly good estimates of the external magnetic field regardless

of the space weather conditions. Change-point detection approaches are considered for

recognizing the magnetic storm patterns in time series magnetic field data collected

along different satellite orbits. Comparison of change-point methods will be made based

on the detection results. The detection results inform on potential sampling strategies

of the near-Earth magnetic field to be predictive of storms through selecting achievable

satellite orbits for placing the sensors and detecting changes in the time series magnetic

signals.

Chapter 6 summarizes the main finding of these thesis and closes with a discussion of

this work, as well as areas for future research.



Chapter 2

Space-weather data sources

Space weather is concerned with studying the natural variability of the near-Earth space

environment, the region of which encompasses the Earth’s upper atmosphere, ionosphere,

and magnetosphere. The near-Earth space environment is a complex system of mag-

netic fields that responds to solar-terrestrial interaction. This magnetic environment is

considered as being quiet if it exhibits regular small variations. A quiet magnetic envi-

ronment is essential to the operation of our modern society, since an increasing number

of sensitive technological systems on Earth or in near-Earth space rely on it. However,

the magnetic environment can be disturbed by solar activity and sometimes undergoes

sharp changes when magnetic storms occur. The mechanism of magnetic storms was

reviewed in Section 1.2. It is understood that the onset of magnetic storms depends on

the solar wind condition and the IMF orientation external to the Earth’s magnetosphere.

We also learned that storms are powered by magnetic reconnection and are identified by

intensification of the equatorial ring current inside the magnetosphere. The storm-time

magnetic disturbances, on time-scales ranging from minutes to a few days, result from

changes in the ionospheric and magnetospheric electric currents driven by the Sun-Earth

interaction.

The magnetic environment surrounding the Earth is systemically monitored by geo-

magnetic observatories on the ground. Ground-based surveys, quantifying the level of

disturbances with geomagnetic indices, suggest that the amplitude and the time deriva-

tive of magnetic field are the main two sources of geomagnetic effects on technological

systems, as they distort the magnetic field reference and induce electric currents.

20
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The magnetic environment has also been explored by numerous satellites orbiting in

near-Earth space. The in-situ investigation has revealed some key mechanisms of space

weather phenomena and provided a large set of magnetic field measurements in near-

Earth space. The NASA’s Magnetospheric Multiscale mission recently witnessed the

process of magnetic reconnection happening in the magnetosphere and confirmed that

the reconnection powers various events in space (Burch et al., 2016). The availability

of the large set of magnetic data provided by past and currently-flying missions to-

gether with ground observatories led to the development of data-based modelling of the

magnetic fields in near-Earth space.

We study the magnetic field resulting from two sources: (i) the main or internal field,

generated from the Earth’s core; and (ii) the magnetospheric field, also known as external

field, originating from the Sun-Earth interaction. This leads to modelling each source

separately (see, e.g., Tsyganenko (2013)): the main-field models only take time and

position as inputs, whereas the magnetospheric models are parametrized by solar wind

drivers and ground-based index as their inputs.

This chapter describes the process of collecting magnetic data in near-Earth space for

the study of the near-Earth space magnetic environment and its variability in relation

to space weather. Near-Earth space is conventionally defined as the region of space

starting 50 -70 km above the Earth’s surface and extending tens of Earth radii, and as

introduced by Hargreaves (1992), it refers to the space close enough to affect human

activities but remote enough to be beyond everyday experience. In near-Earth space

there are interactions between the terrestrial magnetic field and the solar magnetic field.

Magnetic data in near-Earth space are available in the form of satellite measurements

and computer model outputs. The difference of collecting magnetic data from the two

sources lies in the fact that satellite measurements are made at time-varying locations

with the motion of the satellite while computer model outputs can be generated at

arbitrary time and location from the main-field and the magnetospheric models.

The chapter is organized as follows. Section 2.1 introduces the near-Earth space mag-

netic environment with the physical properties of magnetic fields and the origins of

the Earth’s magnetic fields. Section 2.2 presents the sources of the near-Earth space

magnetic data. The Satellite measurements come from the Cluster II mission and the

computer model includes an internal part IGRF-11 and an external part T96. Section
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2.3 details the sampling procedure for collecting magnetic data from the two data sources

and Section 2.4 summarizes the structure of the magnetic data and discusses the limits

and complexity of the data sets.

2.1 Introduction

The near-Earth space environment is a complex region, which can be modelled in a

number of different physical approximations. However, the complexity is such that

a complete physical description of its dynamics is still lacking. Instead of gaining a

physical knowledge of the space plasma, the research project is oriented towards a sta-

tistical understanding of near-Earth space dynamics, in particular, the variations in

the electromagnetic fields. As already mentioned, the variations observed in near-Earth

electromagnetic fields are separated into variations in the internal field and the magneto-

spheric field. The variations of internal origins is relevant to the study of geomagnetism

(De Michelis et al., 2005), while the variations of external origins shed light on space

weather. The central physical quantity of interest is the magnetic field from the space

weather effects point of view (Bowe and McCulloch, 2007, Menvielle and Marchaudon,

2007, Thomson, 2014). In addition, electric fields are more difficult to measure in space

than on the Earth, give that the intensities of electric fields in space can be relatively

small (Parks, 1991).

As shown in the previous chapter, the Earth’s magnetic field interacts with the solar

wind and the solar-terrestrial interaction forms the terrestrial magnetosphere, resulting

in various kinds of phenomena in space. With the beginning of scientific satellite inves-

tigations in 1958, many phenomena of space plasma have been directly observed (Stern,

1989). This includes disturbances in the magnetosphere, which is the subject of our

research project. It has been gradually revealed that the Earth’s magnetic field traps

charged particles and the magnetosphere has a changing boundary and configuration.

We now provide a review of the science underlying magnetic fields.

2.1.1 The basic science of magnetic fields

A magnetic field is a mathematical tool used to describe the magnetic effect of electric

currents and magnetic materials. In the near-Earth space environment, the magnetic
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field can be regarded as the total magnetic effect of the magnetospheric currents and

the Earth itself. At a given point in time and space, the magnetic field can be specified

by a direction and a magnitude. The symbol B is often used to represent the vector

field that has three components in a Cartesian coordinate system. A magnetic field can

be written as

B = Bxx +Byy +Bzz, (2.1)

where x, y, and z are unit vectors in a chosen reference frame, and Bx, By, and Bz

are strengths of the magnetic field measured in each component. The strengths and

the magnitude of B are measured in nano-Tesla (nT), e.g. 10−9 Tesla (T), in the near-

Earth space environment. The equivalence of Tesla in SI units is newtons per meter per

ampere, where B is defined in terms of the Lorentz force it exerts on moving electric

charges. The Lorentz force law states that a particle of charge q moving with velocity v

in the presence of an electric field E and a magnetic field B experiences a force F such

that

F = qE + qv ×B, (2.2)

in SI units. The force F in (2.2) is named the electromotive force (emf ). The elec-

tric field E and the magnetic field B are both vector fields, and each has a time and

location dependence. The Lorentz force and Maxwell’s equations form the foundation

of electromagnetism, i.e. the interaction between charged particles and electromagnetic

fields,

∇ ·E =
ρ

ε0
; (2.3)

∇ ·B = 0; (2.4)

∇×E = −∂B

∂t
; (2.5)

∇×B = µ0

(
J + ε0

∂E

∂t

)
; (2.6)

where ε0 and µ0 are the universal constants representing the permittivity and perme-

ability of free space, ρ and J denotes the electric charge and current density, and E and

B are the electric and magnetic fields. The above equations from the top to bottom

are Gauss’s law, Gauss’s law for magnetism, Maxwell-Faraday equation, and Ampere’s

Law with Maxwell’s addition. Gauss’s law (2.3) means the electric flux leaving a volume

is proportional to the charge inside. Gauss’s law for magnetism (2.4) shows the total
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magnetic flux through a closed surface is zero. Ampere’s Law with Maxwell’s addition

(2.5) states that magnetic fields can be generated by electric current, i.e. flow of electric

charge, and by changing electric fields. The Maxwell-Faraday equation (2.6) describes

how a time-varying magnetic field induces an electric field. Following Faraday’s law of

induction, the electromotive force, emf, drives the induced electric current, as described

by

emf = −dφ
dt

(2.7)

where φ is the magnetic flux through the loop defined as

φ =

ˆ
S

B · dS. (2.8)

In the above sentence, B denotes the magnetic field and S denotes the loop. Equations

(2.7) and (2.8) show that the electric field and current can be induced by a time-varying

magnetic field. It is important to note the magnetic field B in (2.8) comes from both

the external and internal magnetic sources, the external field originating in the magne-

tosphere and ionosphere, and the internal field generated by the Earth. The induced

current at the surface of the Earth can be thought as the end link of the chain interac-

tion in space weather, and the geomagnetic indices derived from the rate of change in

the magnetic field on the Earth are reliable indicators for the space weather effects on

ground-based technological systems (Pulkkinen, 2007, Viljanen et al., 2001).

The electromagnetic fields and the charged particles obey the fundamental Maxwell’s

equations and the Lorentz equation of motion in a vacuum, and some of the magnetic

storm effects are associated with the electromotive force. The behaviour of near-Earth

space is in principle described by Maxwell’s equations and the Lorentz force equation,

however the coupling between the macroscopic E and B fields, and the microscopic

behaviour of particles, and the range of space and time scales involved, means that

analytical solutions are impossible and numerical solutions are only approximations.

Although the near-Earth space is a tenuous medium, the number of equations involved

in the plasma dynamics is still large in number, making analytical solution to all of

the coupled equations impossible (Parks, 1991). Thus historical observations and em-

pirical studies are invaluable in understanding the behaviour of the near-Earth space

environment.



Chapter 2. Space-weather data sources 25

2.1.2 Earth’s magnetic field

As previously stated the magnetosphere refers to the space dominated by the Earth’s

magnetic field, or the so-called geomagnetic field. Since the Earth is composed of solid

crust, semi-solid mantle, liquid iron outer core, and solid iron inner core, the geomag-

netic field is a combination of magnetic fields generated by three different sources (Gun-

narsdóttir, 2012). First, the main field is generated by a magnetic dynamo in the

Earth’s liquid core. Secondly the crustal field is generated by magnetized rocks on the

Earth’s crust. Finally, the induced field is produced by the induced currents from the

ionized particles above the Earth. Thus changing magnetic field in the crust, mantle and

oceans, the magnetospheric field is generated by electric currents flowing in the iono-

sphere and the magnetosphere. On the surface of the Earth, the main field constitutes

97-99 percent of the total field and the other fields make up the rest of the total field

(https://denali.gsfc.nasa.gov/research/mag_field/conrad/explain.html).

The main field and the crustal field have internal origins, and the magnetospheric field

and the induced field have eternal origins. In a word, the geomagnetic field comprises

an internal field originated from the Earth and an external field resulting from the solar-

terrestrial interaction. Hence a decomposition of the geomagnetic field divides it into an

internally generated field and an externally driven field. Separating the external field

from the overall magnetic field is essential for the study of space weather phenomena.

Olsen et al. (2010) reviewed methods developed for the separation of external and in-

ternal source contributions. In the regions without electric currents, the magnetic field

can be expressed as the negative gradient of a scalar potential, and the potential can be

expanded into a series of spherical harmonics (Gauss et al., 1839). The Gauss algorithm

has been proven to be sufficient for describing the internal field that resembles a mag-

netic dipole field, and Finlay et al. (2010) present numerical modelling of the internal

field using this method. In the region with electric currents, knowledge of the distribu-

tion of currents in space is required for separating the external field from the measured

magnetic field. In the widely used models by Tsyganenko and Stern (1996a), the ex-

ternal field of magnetospheric origin is described as the sum of the currents flowing in

the near-Earth environment. Magnetic contributions of the currents can be analytically

derived from solar wind dynamic pressure, IMF, and geomagnetic index in the externally

parametrized model.

https://denali.gsfc.nasa.gov/research/mag_field/conrad/explain.html
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The geomagnetic field has been measured at various locations over hundreds of years,

with devices ranging from ancient compass to modern magnetometers. Historical study

of the geomagnetic field suggests that the main field can be approximated by a mag-

netic dipole that is tilted at an angle of about 10 degrees with respect to the Earth’s

rotational axis. On the surface of the Earth, the magnitude of the geomagnetic field

ranges from 23, 000 nT to 62, 000 nT (Matzka et al., 2010). Figure 2.1 shows a map of an

international network of about 160 observatories. The geomagnetic field has also been

Figure 2.1: Worldwide distribution of geomagnetic observatories in 2013. Source:
Thomson (2014). Squares, triangles, and dots indicate locations of observatories.
Blue/red contours represent the west/east direction of magnetic north from true (geo-

graphic) north; black contours show where magnetic and true north match.

investigated by satellites for several decades, and in-situ measurements of the geomag-

netic field in the near-Earth space has revealed that the dipole field becomes distorted

by the time-variable solar wind when the field reaches outward into space. The internal

field dominates the geomagnetic field from the Earth’s surface up to around four rE ,

beyond which the geomagnetic field is increasingly affected by the external field.

Both the internal field and the external field change with time. Temporal variations

in the overall magnetic field have time scales from seconds up to millions of years.

The variations include changes in direction and magnitude, the strength of which can

vary from a few nT to thousands of nT, and can be periodic or completely random.

For example, the main field varies in strength from approximately 30, 000 nT near the
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equator to 60, 000 nT at the poles. The secular variation or amount of change is about

10 per year as a result of the geomagnetic pole reversal, during which the north and

south pole undergo a reversal i.e. change in direction, that happens every 500, 000 years

on average; the external field varies on time scales of seconds to days, primarily due to

solar interactions. These fields result from current systems and range in intensity from

fractions of a nT to thousands of nT.

It is generally believed that the long-term variations, i.e variations with time scales of a

year or more, come from the internal field, whereas short-term variations are associated

with the external field. The short-term variations can be traced to irregular changes

that happen during magnetic storms and regular changes due to the rotation or orbital

motion of the Earth, Sun and Moon. The storm-time disturbances that are rapid and

intense involve the magnetospheric currents and induced currents in the Earth’s crust

and oceans, and pose a natural hazard to technological systems that rely on a stable

magnetic environment. The long-term variations can be divided into the variations in

the Earth’s dipole field and its non-dipole field. The non-dipole variations come from

electric currents flowing at the core-mantle boundary while the dipole variations are

attributed to the Earth’s core (Lanza et al., 2006). Another kind of variation that

is non-dipole but originates from the core is called the geomagnetic jerks, which are

relatively sudden changes in the second derivative of the Earth’s magnetic field with

respect to time (De Michelis et al., 2005). Geomagnetic jerks are observed every one or

two years, on average.

To sum up, the geomagnetic field observed at a location in space within the region of the

magnetosphere can be regarded as the sum of the internal field BI and the external field

BE , i.e. B = BI + BE , where B denotes the total observed magnetic field. Both the

internal and the external magnetic fields have a time-varying spatial structure, however,

the dynamics differs in the two fields. The fields BI and BE can be regarded as functions

of time and location, respectively. The internal field BI undergoes slow secular variations

and is almost static with respect to the Earth; The external field BE is highly variable

under the influence of solar wind and IMF conditions and is relatively fixed with respect

to the Sun. In the data-based modelling of the magnetic fields, the internal field BI is

viewed as the negative gradient of the Earth’s magnetic potential and the external field

BE is considered as the overall effects of the major magnetospheric currents, including

the ring current, tail current sheet, field-aligned current systems, and the magnetopause
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currents. The next section will present computer models of the magnetic fields, together

with other magnetic data sources, in further details.

2.2 Sources of near-Earth magnetic data

The geomagnetic field has been routinely measured in a number of ways. At the surface

of the Earth, observatories around the world monitor the geomagnetic field at fixed

locations. Temporal variations in the ground data are summarized through geomagnetic

indices, such as Kp and Dst, for quantifying the global magnetic activity (Menvielle and

Marchaudon, 2007). In the near-Earth space, satellite missions sample the magnetic

field at time-varying locations restricted to orbital trajectories. Current multi-satellite

missions include Cluster II (Escoubet et al., 2001b) and Swarm (Friis-Christensen et al.,

2008, Macmillan and Olsen, 2013) launched in 2013. The near-Earth magnetic field is

measured by flux-gate magnetometers carried on the spacecraft. Further away from the

Earth, the ACE satellite (Smith et al., 1998) records the IMF, a component of the solar

magnetic field, carried outward from the Sun by the solar wind, and the solar wind ram

pressure in the interplanetary space around the L1 Lagrangian point (The L1 Lagrangian

point is the point between the Sun and the Earth at a distance of approximate 1.5

million kilometres). ACE lies outside the magnetosphere, while Earth-orbiting satellites

and ground observatories investigate mostly the field within the magnetosphere.

Numerical simulations of the geomagnetic field from computer-based models complement

satellite measurements for the study of the near-Earth space environment. The computer

models used in the work presented in this thesis are the IGRF model that approximates

the internal field, and the Tsyganenko model T96 that approximates the external field.

The T96 model requires external conditions, such as the solar wind, IMF, and Dst, to

be input. The solar wind and IMF are being measured by satellite in the interplanetary

space and the Dst index is derived from ground-based observations. All these input

parameters are available on an hourly basis. This section focuses on the Cluster mission

that provides magnetic field vector measurements at a high resolution.
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2.2.1 Satellite investigations

The Cluster mission (Escoubet et al., 1997) directed by ESA and NASA investigates the

small-scale plasma structure in the key magnetospheric regions. The multi-spacecraft

mission consists of four identical satellite orbiting around the Earth in a tetrahedral

formation. The four Cluster II satellites C1-C4 were launched in pairs in July and

August 2000 after the first launch of Cluster I satellite failed in 1996. The mission was

declared operational in February 2001 and has been extended until December 2018.

Each Cluster satellite carries the same set of eleven instruments, a complete list of which

is given in Table 2.1. The Flux-gate Magnetometer (FGM) (Balogh et al., 2001) listed

Table 2.1: The instrumental complement of each Cluster spacecraft

Instrument Purpose

ASPOC Spacecraft potential control
CIS Ion velocity distribution
EDI Electric field drift velocity
FGM Magnetometer

PEACE Electron velocity distribution
RAPID High energy electron and ion velocity distribution
DWP Wave processor
EFW Electric field and waves

STAFF Magnetic and electric fluctuations
WBD Electric field and wave forms

WHISPER Electron density and waves

among the eleven instruments samples the magnetic field as the satellite travels along

its orbit, so that the FGM sensor measures the magnetic field at time-varying location

in space. Consequently, the in-situ measurements of the magnetic field are constrained

by the satellite orbits.

The Cluster satellites were initially launched into similar elliptical polar orbits, within

which the satellites reach variable altitude and speed. At or near apogee, i.e. the point

of highest altitude, a satellite moves slowly; at or near perigee, i.e. the point of lowest

altitude, a satellite travels rapidly. These orbits have a perigee of roughly 4 rE , an

apogee of roughly 19.6 rE , and orbital periods of 57 hours (Zhang et al., 2010). The

plane of the orbits is fixed with respect to the inertial space, and with the Sun-Earth

rotation, the plane sweeps through the magnetosphere completing a full scan every year

(Escoubet et al., 1997). There is a day-side season from November to June, during which



Chapter 2. Space-weather data sources 30

the satellite spend most of their time investigating the day-side magnetosphere, and a

tail season between June and November, when the satellite investigate the night-side

magnetotail region. Figure 2.2 shows the two seasons in the left and right panels with

a sketch of the magnetosphere as the background. The red ellipses indicate the initial

orbit of 2001 and the orbit in 2009 in the two seasons.

Figure 2.2: The sketch of the Earth’s magnetosphere with the orbits of Cluster satel-
lite. source: ESA.

The inter-satellite distance varies with time. Figure 2.3 shows that the separations of

the satellites within the tetrahedron have changed throughout the mission, from 2001

up to 2018. The separation distance is relatively small in comparison with the distance

from the Earth to the satellite. The ESA website at http://sci.esa.int/cluster/

Figure 2.3: The inter-satellite separation during the mission. Source: ESA

http://sci.esa.int/cluster/23160-constellation-geometry-over-time/
http://sci.esa.int/cluster/23160-constellation-geometry-over-time/
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23160-constellation-geometry-over-time/ also provides a detailed description of

satellite operation in relation to Figure 2.3.

The Cluster magnetic field investigation provides provide the magnetic field vector and

the position vector in the GSE coordinate system. The FGM instrument carried on

Cluster satellite has two tri-axial flux-gate sensors, with one designated as the primary

sensor. The sensors can be operated in several ranges, covering the magnetic strength

from less than 1 nT to over 65000 nT (Alconcel et al., 2014). The procedures of cali-

bration, validation and archiving the Cluster FGM parameters are described in Gloag

et al. (2010). It is important to note that the Cluster data are calibrated by the data

centre from 2001 to 2007 but not afterwards. It was claimed by Balogh et al. (1997) that

the Cluster magnetic-field investigation provides accurate, hi-resolution, inter-calibrated

four-point measurements of the magnetic-field vector in the magnetosphere and in the

upstream solar wind along the Cluster orbit. After more than ten years in operation,

Alconcel et al. (2014) investigated the long-term trends in the Cluster FGM calibration,

and concluded that the calibration parameters of the Cluster FGM sensors are stable,

with offset being around 0.2 nT per year in sensors on C1 and negligible on C2, C3 and

C4.

The calibrated FGM magnetic data along with the satellite trajectory data for C1-C4

are available in ASCII format from the CDAWeb data service in the Space Physics Data

Facility (SPDF) at NASA’s Goddard Space Flight Centre https://cdaweb.sci.gsfc.

nasa.gov/index.html/.

2.2.2 Computer models

The International Geomagnetic Reference Field (IGRF) (Finlay et al., 2010) is an es-

tablished numerical model for calculating BI the internal magnetic field. The IGRF is

based on Gauss’s harmonic expansion which has the following expression in spherical

coordinates:

U(r, θ, φ) = RE

N∑
n=1

(
RE
r

)n+1 n∑
m=1

(gmn cosmφ+ hmn sinmφ)Pmn (cos θ) , (2.9)

where U(r, θ, φ) represents the scalar potential of the main field, r denotes the radial

distance from the centre of the Earth in units of km, RE = 1rE is the Earth radius,

http://sci.esa.int/cluster/23160-constellation-geometry-over-time/
http://sci.esa.int/cluster/23160-constellation-geometry-over-time/
https://cdaweb.sci.gsfc.nasa.gov/index.html/
https://cdaweb.sci.gsfc.nasa.gov/index.html/
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θ denotes the geocentric co-latitude and φ denotes east longitude. Pmn (cos θ) are the

Schmidt semi-normalized associated Legendre functions of degree n and order m (Winch

et al., 2005). gmn and hmn are the Gaussian coefficients.

The IGRF models the geomagnetic field as a gradient of a magnetic scalar potential

and fits the parameters using measured magnetic field from a global network of ground-

based observatories and a huge volume of marine, airborne, and satellite data. The

IGRF describes the large-scale structure of the main field and its secular variations and

updates every five years, as the main field undergoes slow but noticeable variations. The

11-th version of the IGRF, IGRF-11, specifies the numerical coefficient of a truncated

spherical harmonic series up to 10th order in n, with 120 coefficients. The coefficient

values are give by linear interpolation. IGRF-11 is the internal field model that spans

the time interval from 1900.0 to 2015.0. The model coefficients are available at http://

www.ngdc.noaa.gov/IAGA/vmod/igrf.html, along with software to compute the model

output given times and locations as input.

The IGRF model serves as a reasonable approximation in the space near or above the

Earth’s surface. However, there might be contributions on the surface of the Earth

that not taken into account in the model, e.g. man-made sources such as buildings,

parked cars, and etc. and natural sources such as the magnetization of crustal rocks.

The IGRF model aims to capture the secular variations of the internal magnetic field;

hence its estimates should not be very much affected by man-made sources as mentioned

above. Other limitations of the IGRF model include errors in the numerical coefficients

and omissions as a result of the truncation.

The semi-empirical Tsyganenko magnetic field models (Tsyganenko, 2013) are consid-

ered as the best-fit representations for the external magnetic field. The Tsyganenko

model has been updated from its earliest version T89 (Tsyganenko, 1989), a simple

empirical approximation for the global magnetosphere for different ground disturbance

levels, to T96 (Tsyganenko and Stern, 1996a), a variable configuration that has an explic-

itly defined realistic current systems the response to the different solar wind condition.

A few more recent versions of Tsyganenko models are T01, T04S and TS07D (Tsyga-

nenko and Sitnov, 2007). T01 is different from T96 in that T01 requires a one-hour time

history of external inputs. T04S and TS07D absorbed more satellite data such as Cluster

in determining its dynamical structure. As previous research by Woodfield et al. (2007),

http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html
http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html
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Zhang et al. (2010) suggests, the T96 model among the series of Tsyganenko models is

adequate for studying the storm-time disturbances in this project.

The T96 model includes a few modules representing the principal magnetospheric current

systems:

• Chapman-Ferraro current confining the dipole field inside the magnetopause;

• the tail current closed via the magnetopause;

• symmetric ring current and partial ring current;

• Birkeland currents, connecting the ionosphere with the solar wind (Region 1 cur-

rents) or with the partial ring current (Region 2).

A rough sketch of how the currents flow in space can be found at Figure 1.2 in Chapter

1.

Since the external field is associated with flowing currents that are widely distributed

over the space, the external field model cannot be derived from spatially localized ob-

servations but extensive sets of spacecraft data that covers the magnetosphere with a

sufficient density (Tsyganenko and Sitnov, 2007). Figure 2.4 shows projections of mea-

surement locations on the equatorial plane in the GSM frame for subsets of data taken

from five different satellites indicated by different colours. The magenta represents the

locations of Cluster satellite.

Figure 2.4: Distribution of magnetic field data measurements in the magnetosphere.
Source: http://rbspgway.jhuapl.edu/geomag_field/model/index.html

Figure 2.5 shows plots of the magnetospheric field lines generated from the Tsyganenko

model. The left and right panel plots can be regarded as two snapshots of the magnetic

http://rbspgway.jhuapl.edu/geomag_field/model/index.html
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field line inside the magnetosphere on the x-z plane. In this case, the two plots together

illustrate change in magnetic configuration as a result of a southward turn in IMF, where

the z-component of IMF goes from 2 nT in the left figure to −8 nT in right figure.

Figure 2.5: Examples of magnetosphere field model plots. The left and the right
panel show snapshots of magnetic field lines in side the Earth’s magnetosphere at two
adjacent time points. Source: ESA by N.Tsyganenko (https://directory.eoportal.

org/web/eoportal/satellite-missions/content/-/article/cluster)
The figure are plotted in units of rE in the x-z plane of the GSM coordinate system.

The Tsyganenko model is parametrized by the solar wind ram pressure, Dst index,

and the transverse components of the IMF. The input parameters can be obtained

from OMNIWeb at https://omniweb.gsfc.nasa.gov/form/dx1.html. The OMNI-

Web contains an almost 50-year record of hourly-averaged solar wind magnetic field

and geomagnetic activity indices. The solar wind data are derived from 15 geocentric

spacecraft and 3 solar spacecraft.

2.3 Sampling from the data sources

High-resolution magnetic field B(t, s) at time t and location s has been directly measured

by the flux-gate magnetometers (FGM) carried on Cluster satellites. The times and

locations at which the magnetic field is measured is determined by the trajectory of the

satellites. Numerical estimates of the internal field BI(t, s) and the external field BE(t, s)

can be simulated from mathematical and empirical models, namely the IGRF-11 model

and the T96 model, given the time t and the location s as inputs.

The sampling methods used in this work are designed to pair up the in-situ satellite

measurements and the two model-based outputs and carry out regression analysis using

https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/cluster
https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/cluster
https://omniweb.gsfc.nasa.gov/form/dx1.html
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the satellite measurements as the reponse and the two outputs as explanatory variables.

For a set of {t, s}, there will be corresponding B(t, s) measured by a Cluster satellite,

BI(t, s) estimated by the IGRF model, and BE(t, s) generated from the T96 model

given appropriate input parameters including the transverse components of IMF, solar

wind ram pressure, and Dst index. The input parameters for T96 model are all time-

dependent and are be obtained from OMNIWeb, as discussed already in Section 2.2.2.

The data available for the Cluster satellites are the trajectories (i.e., time points t and

positions s) along with the recorded magnetic vector field, B(t, s). Hourly values of the

observed magnetic vector fields are obtained by sampling at one hour intervals from

the Cluster dataset. For the simulated internal and external field outputs, we use the

hourly trajectories from each Cluster satellite as inputs. The sampling of the magnetic

field vector from the magnetic field models requires simulation in a FORTRAN package

GEOPACK (Tsyganenko, 2008). The GEOPACK has 19 subroutines for transformation

between various geophysical coordinate systems and calculations of the geomagnetic

field model in the Earth’s magnetosphere using the numerical model IGRF-11 or the

empirical model T96. The time restriction for IGRF-11 is from 1900 to 2015 and for

T96 is the recent fifty years during which solar wind and geomagnetic input parameters

are recorded.

2.4 Examples of satellite-based and model-based data

This section closes the chapter with a summary of the magnetic data in the near-Earth

space at time-varying locations. The satellites and the computer models are producing

estimates of the magnetic field B in three components, X, Y , and Z at times t ∈ T , for

some time index set T , at locations s ∈ D in a given three dimensional coordinate system

D ⊂ R3. Given regular hourly measurements in time we have assumed that T ⊂ Z, the

time domain is a subset of the integer set. t takes positive integer values and s can be

vectors restricted to the space covered by the satellite orbits. t stands for number of

hours since the first observation and can be converted to the format of “yyyy-mm-dd

hh”; s represents position vector with its x-, y-, and z- components, measured in km or

rE , in GSM coordinate system.
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For a component d, d = X,Y, Z, let Sd(s, t) denote the satellite measurement of the

magnetic field component d, Id(s, t) denote the IGRF model calculation of the internal

magnetic field component d, and Td(s, t) denote the Tsyganenko (T96) model calculation

of the external magnetic field component d.

Table 2.2: An example of a magnetic field data subset (1)

Index time (hour) position (rE) orbit
No. yyyy-mm-dd hh X Y Z No.

1 2003-01-01 01 5.39 13.15 8.31 1
2 2003-01-01 02 5.87 13.94 7.46 1
3 2003-01-01 03 6.33 14.71 6.37 1

Table 2.3: An example of a magnetic field data subset (2)

Index Satellite (nT) IGRF (nT) T96 (nT)
No. Sx Sy Sz Ix Iy Iz Tx Ty Tz
1 -14.88 7.94 15.24 -5.12 -4.65 2.99 5.19 10.35 -0.47
2 -3.71 12.90 0.98 -4.53 -3.15 3.73 4.59 4.73 -4.22
3 12.75 18.65 -4.09 -3.90 -1.73 4.26 3.95 7.51 -2.74

The sampled magnetic field dataset has a structure illustrated by Table 2.2 and 2.3,

which together form a subset of the hourly observations. Table 2.2 lists variables of

time, position, and orbit; Table 2.3 lists variables of the sampled observed and modelled

magnetic field vectors corresponding to the information in Table 2.2. The magnetic

field vectors from different sources have three components in the GSM coordinate frame

and the three field strengths are measured in units of nano-Tesla (nT). In the data set,

missing values are represented by the symbol NA.

Figure 2.6: Missing proportion in years

The dataset contains hourly samples of 11-years from 2003 to 2013, during which Cluster

satellites are operative and have rather complete measurements. There are 8760 or

8784 hourly observations for normal or leap years. The 11-year dataset contains 96432
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observations in 1663 orbits and roughly ten percent of the observations (10482) are

missing. Missing data occur when Cluster satellite measurements are not recorded.

There are different amount of data missing every year and especially in 2007, where 35

percent of the observations are missing, as Figure 2.6 suggests. The data do not appear

to be missing at random. It has been mentioned that data loss is mainly due to satellite

manoeuvre, which happens in the case of satellites changing orbit or storm occurrences to

avoid damaging devices carried on the satellite. Further analysis of trajectory data and

solar wind data would be required to identify the reason for missing data at particular

time.

Previous study suggests that these empirical models provide realistic results in general.

Woodfield et al. (2007) surveyed the contributions of ionospheric and magnetospheric

current systems to the Earth’s magnetic field, by using perigee pass data from the

Cluster spacecraft, based on predictions of the Tsyganenko 2001 (T01) global field model.

The results showed that the T01 model performs very well in a global sense, although

absolute residuals between the data and the model can reach 20 nT near perigee, often

with stable bipolar signatures, which repeat on the phase period of the Cluster orbit and

were assumed to be observed field-aligned currents (FACs). Zhang et al. (2010) extended

the study of Woodfield to compare eight years magnetic field data from the 4-spacecraft

Cluster array with the Tsyganenko (T89, T96, T01, T04) models. It has been found

that the Tsyganenko models perform better during weaker geomagnetic activity. There

are particular deviations from the models associated with the ring current. It also has

been concluded that during the ring current crossings through perigee, at around 4 rE ,

the T96 model always overestimates the ring current.



Chapter 3

Characterizing the magnetic

variations

The aim in this chapter is to derive statistical properties of the observed magnetic fields

sampled from the Cluster satellite FGM measurements and compare these properties

with the properties of the simulated magnetic fields generated by the IGRF-11 and the

T96 models. As mentioned in Chapter 2, the IGRF-11 and the T96 models provide

estimates of the internal and the external magnetic fields and the two model outputs are

subject to different biases and uncertainties as indicated by reviews of the two models

by Macmillan and Finlay (2011) and Tsyganenko (2013). Likewise, the Cluster satellite

FGMs, although the general performance of which are considered to be satisfactory,

nonetheless, measure the magnetic field with errors, that needs to be quantified. A recent

evaluation of Cluster FGM magnetic data can be found in Alconcel et al. (2014). Thus

it is necessary to develop a scientific understanding of the near-Earth space magnetic

environment in the presence of possible biases and uncertainties.

This chapter serves as an exploratory data analysis chapter and is organized as follows.

Section 3.1 presents the space-time dependence of the magnetic field data and demon-

strates how it is possible to analyse the spatio-temporal structure in terms of a simpler

time series structure. Section 3.2 explores the temporal variations in the time series

magnetic data and addresses the relevant statistical issues, such as temporal correlation

and changing variances. Section 3.3 performs regression analysis of the magnetic data

while accounting for its temporal structure, using the Cluster satellite measurements as

38
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the response and the two computer model outputs as the predictor variables. Section

3.4 closes this chapter with a summary of the exploratory analysis.

3.1 Space-time dependence

The magnetic data are sampled across time as well as space and the spatio-temporal

dataset consists of 9 variables that are the satellite measurements and estimates of the

internal and the external magnetic field components of the x-, y-, and z- directions in the

GSM coordinate frame. For any variable in the dataset, let {Y (s, t) : s ∈ Ds, t ∈ Dt}

denote the sequence of observations made at spatial position s and time t with the

spatial domain being Ds ⊂ R3 and the temporal domain being Dt ⊂ R1. If the time

t varies discretely (as in our case – the data is sampled hourly), the sequence can be

written as {Yt(s) : s ∈ Ds, t ∈ Dt} where Dt ⊂ Z. In addition, if a set of time-dependent

observations is fixed in space, the spatial components can be discarded and {Yt : t ∈ Dt}

forms a time series.

The sampling processes in space and time is constrained by the motion of Cluster satel-

lites, so that the location in space s is determined by the time t and the range of the

spatial domain Ds becomes the coverage of the satellite in space. We can introduce

an orbital function, f : Dt 7→ Ds, that maps the time t from the temporal domain Dt

to the location in space s in the spatial domain, and the function should be bijective.

The spatio-temporal process {Yt(s) : s ∈ Ds, t ∈ Dt} with the space-time constraint

s = f(t) can be written as {Yt(f(t)) : t ∈ Dt}, or simply {Yt : t ∈ Dt}. Thus the spatio-

temporal process becomes a discrete time series process with the temporal domain being

Dt = {1, 2, · · · , n}. The spatial information, though not included in the modelling of

the data in terms of the time t, can be accessed through the orbital function.

This section explores the space-time dependency in the hourly sampled magnetic field

data through visualizing the motion and spatial coverage of the Cluster satellites, and

then transforms the spatio-temporal data into time series data, embedding the spatial

information into time for later analysis in the following sections. Subsection 3.1.1 in-

troduces the concept of orbit and trajectory for describing the motion of the Cluster

satellites. Subsection 3.1.2 relates the space to the time via an orbital function and
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presents the magnetic data as a time series with spatial information incorporated in an

orbital factor.

3.1.1 Satellite trajectories

Trajectory data consists of the times t and the locations s at which the Cluster satellites

measure the magnetic field. The locations s are 3-dimensional vectors originally recorded

in the GSE frame and then transformed in the GSM frame (see details of coordinate

transformation in Appendix A). The GSM frame is a non-inertial reference frame which,

by definition, is a frame of reference that is undergoing acceleration with respect to an

inertial frame (Tocaci, 2012). The GSM frame is converted from an inertial frame,

the GEI frame with time defined in the rotational matrix. This makes space and time

interdependent in the GSM frame, apart from the fact that the data are collected at

time-varying locations constrained by the motion of Cluster satellites. In other words,

the reference frame itself and the location of sampling in the reference frame are both

determined by time. The orbits of the satellite can be visualized and understood based

on the trajectory information.

As previously mentioned in Chapter 2, the four Cluster satellites, C1, C2, C3 and C4, are

flying in a tetrahedron shape, and the size of this tetrahedron varied through time from

200 km up to about 19, 000 km. Despite the separation in distance, the four satellites

have similar orbital features in the same time periods, as operation of the four identical

satellites are controlled simultaneously by European Space Operation Centre (ESOC).

Figure 3.1 provides a visualization of the trajectory of C1 in the year 2003. The sub-

plots show the satellite positions in the x-z planes in the GSM coordinate system for

every month, with yellow curves showing the effects on an orbit which is elliptical in the

inertial frame of the transformation to GSM. Assuming no perturbations or manoeuvres

in a short time period, the satellite orbit is fixed in the inertial system. When projected

into the GSM system, however, the satellite orbit wobbles and its plane gradually sweeps

through space. The wobbling effect is caused by the Earth rotating about its rotational

axis, as the Earth’s magnetic dipole is tilted roughly at an angle of about 10 degrees

with respect to the Earth’s rotational axis and the GSM frame has the projection of the

magnetic field dipole as its z-axis while the inertial frame has the rotational axis as its

z-axis. The rotation of the Earth around the Sun causes the satellite to cross the various
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near-Earth plasma regions. Every year, the satellite orbit plane should complete a 360

degree scan in the GSM system.

The trajectory of C1 in year 2003 was chosen as C1 is the first satellite and 2003 was the

first year in the dataset. Figure 3.1 and 3.2 show the typical variations in the satellite

trajectories. Other satellites of other years have similar trajectories.

Figure 3.1: Orbital variations of satellite by month in 2003
The axis unit is km.The centre of the Earth is at the origin of the reference frame

In the year 2003, the highly elliptical orbits (HEO) of the Cluster satellite reached

a perigee of around 4 Earth radii (rE) and an apogee of 19.6 rE . Each orbit took

approximately 57 hours to complete. We visualise the perigee and apogee positions of

C1 of the 2003 orbits in Figure 3.2. Orbits are numbered from 1 to 154 in 2003. The

starting point of an orbit is chosen to be the location at time half way through an apogee

to a perigee, and the end point lies roughly at the same position as its starting point

after an orbit period. The orbits are defined in this way so that it is easy to split one

orbit into two halves, the perigee-crossing half and the apogee-crossing half, for later

investigation. The plot is given on the x-y plane in GSM system. Dots on the inner circle
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Figure 3.2: Perigee and apogee locations of C1 in 2003 on the GSM x-y plane

mark the perigee locations, and dots on the outer circle mark the apogee locations. The

perigees and apogees are labelled for selected orbits from 10 to 150 at a separation of 10

orbits. As the number indicates on the x-y plane in GSM system, the projected axis of

the satellite orbit goes clockwise. Along the two circles, there are dots along the curve

that are disconnected. This suggests that there are discontinuities in the observation.

Data are missing in these disconnected areas around perigees and apogees and at other

locations where satellite positions are not recorded. The missing data problem will be

addressed in a later section.

The example of the trajectory of the C1 satellite in 2003 has shown orbital variations in

the GSM coordinate system. When elements of the orbit remain unchanged, or the orbit

is fixed in the inertial system, the orbital variations in the GSM system come from the

Earth’s rotation, which generates wobbling features, and the rotation of Earth around

the Sun, causing the orbit plane to sweep through the magnetosphere.

Apart from the short-term orbital variations described in the above example, there exists

long-term orbital variations resulting from artificial and natural forces, such as manoeu-

vres and gravitational perturbations. Satellite manoeuvres change the semi-major axis of

the orbit, apogee and perigee altitudes, orbital period, orbit plane inclination etc. Data

are not available during or shortly after manoeuvres. The satellite orbit also changes
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over time due to gravitational perturbations by other objects. It is impossible to de-

scribe satellite orbits precisely using only fixed orbital parameters, commonly known as

Keplerian elements, throughout the whole Cluster mission, as Keplerian elements only

describe the orbit at any given instant of time, and they are time-varying.
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Figure 3.3: Boxplot of the C1 satellite locations from 2003 to 2013

Figure 3.3 roughly assesses the long term orbital variations in C1 satellite using box-plot

of the satellite locations. From 2003 to 2013, box-plots are given for satellite positions in

the x-, y-, and z-direction in the GSM system. From the z-component, shown by boxes

coloured in blue, it can be observed that gravitational effects of the Earth impose a long

term cycle of change in the mean distance, which reduced to a minimum in 2011 before

beginning to rise again. The sudden change in the 2007 trajectory data for the x- and

y-component was mainly due to missing observations and satellite manoeuvre. In later

analysis of magnetic field data, orbits along which large proportion of missing values

occurred were removed hence the sudden change in the trajectory data wouldnt affect

the modelling of the magnetic field data. The gradual change in the z-component can

be explained by the fact that polar orbit tends to cartwheel as it need fuel to maintain

apogee in equatorial plane. Similar results have been obtained from trajectory analysis

of the other Cluster satellites.



Chapter 3. Characterizing the magnetic variations 44

3.1.2 Time dependence

Let {Yt(s) : s ∈ Ds, t ∈ Dt} denote a sequence of magnetic field strengths recorded at

time t and space s. There exists a function f : Dt 7→ Ds assigning the time t to the

space s. The function f specifies the movement of the satellite in space and time and can

be regarded as an orbital function. It is difficult to define the motion of the satellites

in an explicit function since the motion is being affected by a number of unexpected

conditions such as the cumulative effects of gravitational perturbation or the satellite

manoeuvre. To simplify this problem, the orbit numbers, i.e. the labels of the perigees,

are considered as the orbital factor in the later analysis of the magnetic data. Hence the

orbital factor together with the time index takes account of the proximity in time and

space in the non-inertial GSM reference and the orbital factor will used be in statistical

modelling in the later section to allow variations in the parameters across orbits.

Setting aside the orbital factors, the spatio-temporal magnetic data becomes time-

dependent only, with spatial information incorporated in time. The datasets of each indi-

vidual satellite can be regarded as a multivariate time series of 9 components, namely the

satellite measurements and the two model outputs of the magnetic field strengths in the

{x, y, z} direction in the GSM frame. The datasets contain {Sx, Sy, Sz, Ix, Iy, Iz, Tx, Ty, Tz}

for each of the four satellites {C1, C2, C3, C4}. For a given component d ∈ {x, y, z},

a subset of three variables {Sd, Id, Td} is of interest and the subscript d can be omit-

ted for simplicity. To include the time-dependency, the notation of the subset becomes

{St, It, Tt} for t ∈ Z. The next section explores the temporal variations in {St, It, Tt :

t ∈ Z} of all three components {x, y, z} and the four satellites {C1, C2, C3, C4}.

3.2 Temporal features

3.2.1 Trends, seasonal, and cyclic patterns

We start by visualizing the temporal variations in the magnetic field data in a short

time period. Figure 3.4 gives time plots of a single satellite (C1) measurements and the

two model outputs within an orbit period of 57 hour. The top panel (a) has the position

vectors decomposed into three components in the GSM coordinate frame. The grey

dotted vertical lines indicate the time at which the satellite reaches perigee in the orbit.
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Panel (b) plots C1 measurements of the magnetic field. The x-, y-, and z- components of

the field vectors are represented by the black, blue, and red curves. The field strengths

lies in the range of −400 to 400 nT. The field curves take a bipolar shape as the satellite

sweeps across the geomagnetic equator around the perigee and are flat at both ends.

As the magnetic field strength drops off rapidly with distance from the Earth, the field

strengths have values close to zero when the location of sampling is far from the perigee.

Around the perigee, the field strengths deviate from each other in magnitude. Panel (c)

plots IGRF outputs along the same orbit of C1 obtained by calculating IGRF at the C1

positions and times. The patterns in (c) are almost identical to (b). Panel (d) plots the

T96 outputs within the range of −100 to 100 nT, where the model has been generated

from the appropriate solar wind and other inputs. The variation in T96 outputs is much

smaller but more spread out compared to IGRF outputs. This means that the internal

field is more variable than the external field in scale and the large variations in the

satellite measurements mainly come from the internal field with in this time period.
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Figure 3.4: temporal variations within an orbit

We visualize the variations on a longer time scale by taking a full year of satellite data.
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Figure 3.5 plots the satellite measurements of the field strengths against time in the

year 2003. From top to bottom rows the figure has the x-, y-, and z- components of the

magnetic field. The figure shows, on the left column, time plots of the three components

in the full year. All three components seem to have mean values centred around zero.

Cyclic features can be observed in the x- and y- component. The z-component has

changing variance as well. Between the two blue vertical lines are data in March, the

time plot of which is given in the middle column for further examination. The right

column plots the data in June, corresponding to the interval between the red vertical

lines in the left column plots. There are periodic patterns in the month time plot. The

length of the period approximates to the orbital period of 57 hours. The spikes in the

magnetic fields values are due to perigee crossing. The magnitude of the spike varies

over the three components, and over time. When the satellite is not crossing the perigee,

the magnitude of the magnetic field is closer to zero.
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Figure 3.5: Time plot of hourly sampled satellite data in 2003

Figure 3.6 provides a better visualization of the monthly variations in the magnetic data

and associates the variations to the shifting locations in space. The left panels are box

plots of the magnetic field strengths, from top to bottom, in the x, y, and z components;

the right panels are the box-plots of the satellite position vectors, from top to bottom,
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in the x-, y-, and z- components. The plots show that there are notable cyclic patterns

in the x- and y- components of both the satellite measurements and positions.
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Figure 3.6: Box plots of the satellite measurements and positions by month

Figure 3.7 provides the time series plots of C1 measurements and position from 2003 to

2013. From top to bottom are the x-, y- and z- component of the measured magnetic

field vectors and the x-, y- and z- component of the satellite position vectors. The

vectors are recorded in the GSM frame and have one-hour resolution. The behaviour

of the magnetic data in the first half of the plot is quite different from its behaviour

in the second half. Up to the year 2007, the magnetic field strengths in the x- and y-

components have a seasonal pattern, however, the pattern changes dramatically after

2007 and missing values as indicated by the blank regions in the plot occur more frequent

in the later years. This could be a results of satellite manoeuvre. The time plots of the

position vectors in the bottom three panel suggested that the orbital inclination changes

as the z-component has a decreasing trend when the x- and y- component remain the

same. This is a demonstration of one satellite data and the other three satellites data

have similar features since the satellite are staying relatively close to each other and are

thus investigating the same regions at the same time.
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Figure 3.7: Time plot of satellite measurements and positions from 2003-2013

3.2.2 Missing data

Missing values occur when satellite measurements are not recorded in the exact hours

that the data are being sampled at. The four Cluster satellites appear to have missing

values at the same times and locations, hence the missingness in the satellite data is

considered to be a results of satellite manoeuvres. Figure 3.7 give us a rough idea of

where and when the data are missing. The blank space in the time plots indicates

missing values. The plot suggests a large portion of data are missing in the second half

of the year 2007 when the satellites were shifting orbits and in the later years there are

noticeable missing values as well. The dataset from 2003 to 2006 seems to be rather

complete compared with the dataset of other years. However, there is a small portion

of missing values which are not observable in the time plots in all these years. The time

plots in Figure 3.7 also tells us that the satellite records of the magnetic field vectors and

the position vectors are consistent in that missing values occurs at the same time in both.

This is important because the IGFR and T96 models would not generate outputs if the

position vectors are not available. Therefore in the magnetic field dataset {St, It, Tt}

across the three components and the four satellite are missing at the same time.
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Most statistical methods for discrete-time series assume that values are observed at all

the regularly sampled time point. When data is missing we have to impute the missing

values (while carefully accounting for the uncertainty of imputed non-observed values)

or modify the statistical procedure to account for the missingness. The pattern in the

missingness needs to be identified before analysing incomplete data. Little and Rubin

(2014) provides a comprehensive discussion of exploring and processing datasets with

missing values. The mechanisms that leads to missing data, or the relationship between

missingness and the underlying values in the dataset, can be summarized as follows:

• Missing completely at random (MCAR) means the probability of a value being

missing is not related to the observed or missing values;

• Missing at random (MAR) means the probability of a value being missing is only

related to the observed values but not the unobserved values;

• Missing not at random (MNAR) means there are systematic and informative rea-

sons why data are missing and should be carefully evaluated.

As mentioned above, it seems that missing satellite observations are due to orbital

manoeuvre. It is evident that missing observations are unrelated to the magnetic field

values themselves, since satellite manoeuvres tend to happen around the same time

very year while extreme values occur under magnetic storm on rare occasions. The

missingness caused by the manoeuvres was removed by discarding orbits along which over

one third of satellite observations are missing. The new dataset of satellite observations

along selected orbits no longer has a missing pattern. Therefore it is safe to carry

on with the assumption of MAR; i.e., the patterns of missingness do not depend on the

unobserved values. The modification of statistical methods for dealing with the magnetic

data with the MAR assumption will be included in the next chapter, Data imputation

would be achievable for satellite position vectors, and subsequently, the magnetic field

vectors once the relationship between the satellite measurements and the model outputs

has been established and the model outputs have been generated given imputed position

vectors.
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3.2.3 Limits of detection

Data can be recorded as the minimum or the maximum of the detection level of an

equipment when true values of the observations are below or above the limit of detection.

Limits of detection exists as a problem not for the satellite data but the T96 model

outputs, since the T96 model requires external input parameters and some of which are

out of the range of detection.
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Figure 3.8: Time plot of T96 model input parameters in Oct 2003

Figure 3.8 shows an example in which one of the T96 input parameters is saturated.

From top to bottom the figure presents time plots of the Dst index, the y- and z-

component of IMF, the solar wind ram pressure, and the Kp index. The first four

variables are inputs parameters for the T96 models and the last variable quantified

the level of disturbances during a magnetic storms. The time range of these plots are

spanning over the 2003 Oct storm. The solar wind ram pressure shown in the fourth

panel are saturated at the values of 100, meaning the data are recorded as above the

limit of detection. This happens when the magnetic environment is highly disturbed

as indicated by the Kp index being over 8 (Kp*10 > 80). As a result, the T96 model

outputs could be compromised or biased given a saturated input parameter. Whether
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the T96 model outputs are still true representation of the external magnetic field under

the storm conditions will be examined in the next chapter.

Further analysis of the T96 input parameters suggests that the solar wind ram pressure

becomes saturated during long-lasting and highly disturbed storms and such storms

only happen on very rare occasion. For most of the major storms, for example the May

2003 storm with time-dependent inputs parameters given in Figure 3.9, there is no such

problem when the disturbances level is high in a shorter time span.
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Figure 3.9: Time plot of T96 model input parameters in May 2003

Conventional methods for dealing with this problem is to assume that the data values

are censored, and to adjust the statistical analysis to account for possible censoring.

A detailed discussion of statistical methods for censored data can be found at Helsel

(2012). In this thesis, the problem will not be discussed further as it is not a major

concern given that the limits of detection are not on the direct observations and only

apply for certain extreme events. The biases of T96 model engendered by the limits of

detection on the input parameters will be attributed to the overall performance of the

model in the later chapters. Extreme value theory deals with the stochastic behaviour

of the extreme values in a process and has been investigated for quantifying extreme
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behaviour in geomagnetic activity. However, the non-stationary nature of magnetic field

data poses a problem for making extreme value analysis assumptions (Thomson et al.,

2011).

3.3 A hierarchical statistical modelling approach

This section describes a hierarchical modelling approach that links the satellite mea-

surements to the two model outputs for each individual Cluster satellite. The approach

provides a structure that allows the bias and uncertainties of the magnetic data to be in-

corporated and quantified in a statistical model. We start with simple regression models

that take the satellite measurements as the response and the two computer model out-

puts as the explanatory variables, and then through careful diagnostics of the residuals

we make the model progressively more complicated to handle the time series dependence

that we observed in the regression errors.

The section is organized as follows: Subsection 3.3.1 introduces the model structure in

the time series context and states the assumptions of a regression model for the satellite

measurements of the magnetic field. Subsection 3.3.2 analyses the regression residuals

using time series methods and explores statistical properties of these residuals, such as

time series dependence in the mean and in the variance of the residuals. Subsection 3.3.2

then summarizes the regression modelling results and the time-series properties of the re-

gression residuals and comments on the relationship between the satellite measurements

and the model outputs as informed by the statistical model.

3.3.1 Regression in the time series context

For any Cluster satellites C ∈ {C1, C2, C3, C4} and any component d ∈ {x, y, z} in the

GSM frame, our magnetic field dataset contains a subset of three time series variables.

Let Bt denote the latent magnetic field component d at the position of C at time t, and

Bt can be decomposed into an internal field and an external field. The magnetic dataset

{St, It, Tt} at every time point t, for t ∈ {1, 2, · · · , n} where n denotes the length of each

variable in the dataset, has a satellite measurement St that estimates the magnetic field

strength Bt and two model outputs It and Tt that estimate, respectively, the internal
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and external components of Bt. It is reasonable to assume that St measures Bt with an

error ε1t, i.e.

St = Bt + ε1t, t ∈ {1, 2, · · · , n}, (3.1)

and Bt is linearly dependent on the It and Tt, i.e.

Bt = µt + αtIt + βtTt + ε2t, t ∈ {1, 2, · · · , n} (3.2)

where µt, αt, βt are time-dependent coefficients and ε2t is an error. Thus, through a

hierarchical approach, the satellite measurements can be related to the model outputs

via the latent magnetic field,

St = µt + αtIt + βtTt + εt, t ∈ {1, 2, · · · , n} (3.3)

where for each t, εt can be regarded as the sum of ε1t and ε2t.

We will show that the measurements of the magnetic fields from the satellites has a linear

relationship with the two model outputs and that the two outputs can be considered

to be independent from each other, as they were generated from computer models that

represent separate magnetic fields of different origins (see Chapter 2).

Figure 3.10: Scatter plots of the satellite measurements against the two model outputs
of the x-components in C1 2003

Figure 3.10 plots the x-components of the satellite measurements against the x-components

of the IGRF and T96 model outputs. The figure displays the pairwise relations among

the three variables as labelled. The dataset is taken from the satellite C1 in 2003. The

scatterplots suggest a strong linear relationship between the satellite measurements and
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the IGRF model outputs and a weak linear relationship between the satellite measure-

ments and the T96 model outputs.

We start with a simple regression model and set the time-varying parameters µt, αt, and

βt in model 3.3 to fixed parameter µ, α, and β in model 3.4,

St = µ+ αIt + βTt + εt, t ∈ {1, 2, · · · , n}. (3.4)

The model in Equation 3.4 can be expressed in a matrix form

y = Xθ + ε, (3.5)

where y is a n × 1 vector of observations, X is a n × 3 matrix of rank 3, θ is a 3 × 1

vector of unknown parameters, and ε is a n× 1 vector of observational errors, i.e.

y =


S1

S2

...

Sn

 , X =


1 I1 T1

1 I2 T2

...
...

...

1 In Tn

 , θ =


µ

α

β

 , ε =


ε1

ε2
...

εn

 .

Assuming that the components of ε are uncorrelated and have a mean value of zero and

a constant variance, say σ2, the estimator of θ can be obtained by the least squares

method which minimize (y − Xθ)T (y − Xθ) with respect to θ. The Gauss-Markov

Theorem states that in a linear regression model in which the errors have expectation

zero and are uncorrelated and have equal variances, the best linear unbiased estimator

(BLUE) of the coefficients is given by the ordinary least squares (OLS) estimator. The

OLS estimator has the form θ̂ = (XTX)−1XTy.

To apply the Gauss-Markov Theorem in a time series context, the following assumptions

must hold:

1. Linearity: there exists a relationship between the response yt and two explanatory

variables xt1 and xt2;

2. No perfect collinearity: no explanatory variables can be expressed as a linear

function of other explanatory variables;
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3. Strict exogeneity: the explanatory variables are strictly exogenous with respect to

the error term,

E(εt|X) = 0, t = 1, 2, · · · , n.

4. No serial correlation: the errors are uncorrelated,

Cov(εt, εt−τ |X) = 0, τ = 1, 2, · · · , n− 1.

5. Homoskedasticity: the conditional variance of the error term is constant, i.e.

Var(εt|X) = σ2, t = 1, 2, · · · , n.

When conditions 1−3 hold, the OLS coefficient estimator is unbiased, i.e. E(θ̂OLS) = θ.

When conditions 4 and 5 are added, the unbiased of the standard OLS estimator of the

variance of the OLS coefficients estimator can be obtained so that the standard tools of

OLS can be used for inference. The Gauss-Markov Theorem assures that OLS is BLUE

under the conditions 1 − 5. If an additional condition that the error term is normally

distributed and has mean zero, εt ∼ N (0, σ2), hold, then the OLS coefficient vector

has a normal distribution and the ratio of each coefficient to its standard error has a t

distribution.

In our analysis of the magnetic data, condition 1 − 3 are self-evident so that θ̂OLS =

{µ̂, α̂, β̂}, the OLS estimates of the regression coefficients in Equation 3.4 must be un-

biased. Regression residuals obtained through the OLS estimation, ε̂ = y−Xθ̂, can be

used to check condition 4 and 5.

Model 3.4 was fitted to one-year (2003) magnetic field data of the C1 satellite in three

components so that three models with the same regression structure were developed

for C1 satellite measurements in the x-, y-, and z-components in the GSM coordinate

frame. Table 3.1 shows the parameters estimated from the regression models for the

three components. All the coefficients in the regression model are highly significant.

The models of the x-, y-, and z- components have the R-squared as 0.9667, 0.9744 and

0.9798, respectively. This indicates that the linear models explain about 96-97 percent of

the variability of the satellite measurements with the IGRF and T96 model outputs. The

intercepts µ̂ are negative for all three components. The IGRF coefficients are estimated
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to be very close to 1 and the T96 coefficients are estimated to be slightly lower than

the values of the IGRF coefficients. Confidence intervals can be constructed for µ̂, α̂,

Table 3.1: OLS estimates of the regression coefficients

the x- components the y- components the z-components

µ̂ -0.703 -0.226 -1.774
α̂ 0.992 1.002 1.001

β̂ 0.943 0.814 0.818

and β̂ for assessing the regression parameters and quantifying the relationship between

the satellite measurements and the computer model outputs if the variance-covariance

structure of ε̂t is known. However, the information is unavailable since condition 4 and

5 have not been validated.

Figure 3.11 shows the time plots of the OLS residuals {ε̂t} of the models. Panel (a) plots

the residuals {εt} estimated from the GSM x-component against time t, t ∈ {1, 2, · · · , n},

where n represents the total number of discrete hours in the year and has the values

of 24 × 365 = 8760. Panel (b) gives the time plot of {εt} from the y-component and

Panel (b) gives the time plot of {εt} from the z-component. The residuals of the three
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Figure 3.11: Residual plots of the regression model (C1, 2003)

components seem to have mean zero but non-constant variance and serial correlation
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is difficult to assess in the residuals plots. We extend the regression analysis to other

datasets and the model fitted to magnetic field data of different satellite in other years

including 2004, 2005 and 2006 produce residuals of similar features.

In applying the OLS estimation, it has been assumed that the error term has mean zero,

constant variance, and no serial correlation. The assumptions of no serial correlation and

homoskedasticity look dubious for the satellite-based observations of the magnetic field

and need to be dealt with carefully. Residuals from the OLS regression can be regarded

as a univariate time series, since ε̂ = {ε̂t : t = 1, 2, · · · , n} is a sequence of observations

of the same variable collected at regular interval over time. In the following subsection,

time series analysis will be used for understanding the temporal dependence in the mean

and in the variance of the regression residuals.

3.3.2 Time series analysis of the residuals

Analysis of time series that takes temporal dependence into account is referred to as time

series analysis. Shumway and Stoffer (2010) provided a review of two approaches in time

series analysis, namely frequency-domain and time-domain approaches. The main differ-

ence between the two approaches is that the former analyses a mathematical function or

a signal with respect to the frequency while the latter is based on observing the autocor-

relation of the time series. For investigating the behaviour of the time-indexed regression

residuals, the time-domain approach would be appropriate. This subsection will pro-

vide the procedure to analyse and model the regression residuals from the magnetic

field data using the time-domain approach, which involves the use of AutoRegressive

Integrated Moving Average (ARIMA) models (Box et al., 2015), (generalized) autore-

gressive conditional heteroscedasticity (ARCH/GARCH) (Engle, 2001), or the combined

ARIMA-GARCH models. ARIMA models that analyse time series linearly are often

used together with ARCH/GARCH models, the method of which measures volatility of

the time series and can be used to describe the error term of ARIMA models. Theses

time series models will be briefly introduced in terms of their assumptions, parameter

estimation methods, and selection criteria in this subsection.
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3.3.2.1 Stationarity

A time series is often denoted as {xt} or {Xt}, since xt the observations of sequence

can be regraded as a set of random variables Xt. A common assumption in time series

methods is that the data are stationary. A time series being stationary means that

there is no systematic change in the mean or covariance properties of the series over

time. Strictly speaking, the property of stationarity is not defined for a time series

but for a model. If a time series data exhibits characteristics that resemble a stationary

process, a stationary model would be appropriate to be fitted. A transformation of a non-

stationary series into a stationary series is often required in the analysis of time series.

This often involves removing trend and seasonal and cyclic patterns by differencing or

regression modelling (Chatfield, 2016). Loosely speaking, a time series is said to be

stationary if it shows no long-term, has constant mean and variance. Two definitions of

stationarity, namely strictly stationary and weakly stationary, are given as follows:

Definition 3.1. A time series {Xt, t ∈ Z}, where Z is the integer set, is said to be strictly

stationary if the joint distribution of Xt1 , · · · , Xtk is the same as the joint distribution

of Xt1+τ , · · · , Xtk+τ .

Definition 3.2. A time series {Xt, t ∈ Z} is called second-order stationary, or weakly

stationary if it has finite variance, constant mean, and autocovariance function (acv.f)

that depends only on the lag, i.e.

1. E(X2
t ) <∞ ∀t ∈ Z,

2. E(Xt) = µ ∀t ∈ Z,

3. γ(t, t+ τ) = γ(τ), ∀t, τ ∈ Z.

The acv.f is given by γ(t, t+ τ) = Cov(Xt, Xt+τ ) = E[(Xt − E(Xt))E(Xt+τ − E(Xt+τ )].

Strictly stationarity 3.1 means that the shifting the time series by a time lag τ has no

effect on its joint distribution. The assumption of strictly stationary is very restrictive,

and in practice a time series process is often assumed to be weakly stationary 3.2. This

implies that the time series process has constant mean and variance over time and the

acv.f and the autocorrelation function (ac.f) specified in Equation 3.6 do not depend on
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the time t but only the lag τ .

ρ(τ) =
Cov(Xt, Xt−τ )√

Var(Xt)Var(Xt−τ )
(3.6)

Thus, under the stationary assumption, for a time series the acv.f. γ(t, t + τ) can be

written as γ(τ). Standardizing the acv.f. by the variance of Xt, which is γ(0) for a

stationary process, produces the ac.f, which is defined as

ρ(τ) = γ(τ)/γ(0).

A fundamental stationary process is the so-called white-noise process, from which many

other stationary processes can be derived. A white-noise process process consists of a

sequence of uncorrelated random variables, each with a zero mean and the same finite

variance, i.e. {Xt} is a white-noise process if, given a constant σ2,

E(Xt) = 0 ∀t, Var(Xt) = σ2 ∀t, γ(τ) = 0 ∀τ 6= 0.

A white noise process is a stationary process but not necessarily strict stationary, how-

ever a Gaussian white noise process is strictly stationary.

The regression residuals {ε̂t} of model 3.4 for magnetic field data of the three components

are not stationary, as time plots in Figure 3.11 suggested the variances of {ε̂t} for all

three directional components are clearly changing over time, and this invalidates the

weakly stationary assumption.

One way of carrying the stationary assumption forward is to assume locally stationary

or piecewise stationary for {ε̂t}. Segmenting the regression residuals by satellite orbits

generates piecewise residuals of each orbit. Figure 3.12 shows that the regression residu-

als of the three components within each satellite orbit appear to be stationary and there

are missing values in some orbits. In this case, time series models will be considered for

regression residuals within each satellite orbits so that the assumption of stationarity

holds. A discussion of fitting stationary time series models with missing value will follow.
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Figure 3.12: Plots of regression residuals against time within orbits across the first
30 orbits of C1 satellite in 2003. The black, red, and blue lines represents the residuals

of the x-, y-, and z-components.

3.3.2.2 Autocorrelation

Spatio-temporal data are often correlated in time and space. It is important to take

correlation into account when analysing spatio-temporal data as failing to do so would

result in underestimation of standard errors of model parameters (Cressie and Wikle,

2015). It is also of interest to use the correlation structure for predictive purposes.

As discussed earlier, the spatio-temporal magnetic field data can be viewed as time

series data using the orbital function. Within an orbit, the spatial dependence has been

reparametrized in terms of the temporal dependence. Spatial correlation will not be

discussed in this thesis, for the following reasons:

• There is not sufficient data for us to to investigate the spatial structure, as there

is one point of observation at one time rather that a snapshot of a large spatial

domain from the satellite measurements;

• The intrinsic spatial structure, i.e. the time-based sampling at time-varying lo-

cations, as demonstrated in the earlier sections, has been converted to temporal
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structure through relating the locations at which the observation to the time via

an orbital function.

Hence our analysis focuses on capturing the temporal correlation in regression residuals

within each orbital level using time series stationary process models.

Commonly used stationary process models include the AutoRegressive (AR), Moving

Average (MA), and AutoRegressive Moving Average (ARMA) model. These models

constitute a class of AutoRegressive Integrated Moving Average (ARIMA) models which

were developed by Box et al. (1970) to handle autocorrelation. An ARIMA model has

parameters of three components, autoregressive parameters p, number of differencing d,

and moving average parameters q. For stationary time series, d is set to be zero when

there is no constant or time-varying trend that needs to be dealt with by differencing the

time series. Hence for a stationary time series {xt} which has no trend or seasonality,

the following ARIMA models would be considered:

• In AR models, the current value of the series xt is expressed as a linear combination

of its p values. An autoregressive model of order p, AR(p), has the form:

xt =

p∑
τ=1

φτxt−τ + εt,

where φτ , τ = 1, · · · , p are auto-regression coefficients to be estimated and εt is a

white noise random error;

• In MA models, the current value of the series xt is expressed in terms of its current

and past q errors. A moving average model of order q, MA(q), can be written as:

xt =

q∑
τ=1

θτ εt−τ + εt,

where θτ , τ = 1, · · · , q are coefficients of the lagged errors to be estimated and εt

is a white noise random error;

• An AutoRegressive Moving Average model is denoted by ARMA(p,q), where p is

the order of the autoregressive part and q is the order of the moving average part,
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and the model has the following form:

xt =

p∑
τ=1

φτxt−τ +

q∑
τ=1

θτ εt−τ + εt.

The order of the ARMA model, p or q, can often be determined by the sample autocor-

relation function (ac.f.) and the sample partial autocorrelation function (pac.f.), which

are the ac.f. and pac.f. estimated from an observed time series.

The theoretical ac.f. was defined in Equation 3.6 and the theoretical pac.f is given as

π(τ) = Cov(Xt, Xt−τ |Xt−1, · · · , Xt−τ+1). (3.7)

The sample ac.f. is a sequence of auto-correlation coefficients computed at the different

time lags and a coefficient at lag h can be calculated from the sample covariance function

at lag h and 0 with the sample mean ȳ,

ρ̂τ =
γ̂(τ)

γ̂(0)
=

∑n−1
t=1 (xt − x̄)(xt+τ − x̄)∑n

t=1(xt − x̄)2
.

The sample pac.f. is the sequence of autocorrelation coefficients calculated between

different time lags with the observations in between the lags removed. The calculation

of the sample pac.f. of lag τ is given in Equation 3.8,

π̂τ =
ρ̂τ −

∑τ−1
j=1 πτ−1,j .ρ̂τ−j

1−
∑τ−1

j=1 πτ−1,j .ρ̂τ−j
, τ > 1. (3.8)

If τ = 0, then π̂0 = 1. If τ = 1, then π̂1 = ρ̂1.

Shumway and Stoffer (2010) provides a detailed description of identifying and modelling

the autocorrelation structure. For example, an AR(p) model can be identified if a time

series has an exponentially decaying pattern in its ac.f. plot and spikes to lag p in its

pac.f. plot. General rules of to identify ARIMA model can be summarized as follows:

• a MA(q) can be identified if the ac.f. plot cut off after lag q and the pac.f. plot

exponentially decays;

• if the ac.f. plot exponentially decays and the pac.f. plot cut off after lag p, an

AR(p) can be identified;
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• if both ac.f. plot and pac.f. plot die down, a mixed ARIMA model would be

considered.

Another way of checking and identifying the model is to use model selection criteria. This

approach finds the number of parameters that minimises the model selection criteria.

Common selection criteria include Akaike’s Information Criterion (AIC) (see Akaike

(1973)), Akaike’s Information Criterion (corrected) (AICc) (see Hurvich et al. (1998)),

and Bayesian Information Criterion (BIC) (see Schwarz et al. (1978)). These criteria

represent a trade-off between the complexity of the model and its goodness of fit.

In addition, statistical tests can be used to check if a fitted ARMA model is appropriate.

Ljung-Box test (Ljung and Box, 1978), for example, tests whether the autocorrelations

of a time series are different from 0 by setting up a testing hypothesis. The test can be

applied to the residuals of an ARMA model to check if the ARMA model selected using

the general rules or selection criteria is adequate for describing the autocorrelation in a

time series. The hypothesis will be rejected if the time series is independent and uncor-

related; otherwise , the ARMA model needs modification due to remaining correlation

in the series of the ARMA model residuals.

Assuming stationarity for this regression residuals within each satellite orbit, we fit

ARMA models to {εt : t = 1, 2, · · ·no}, where t denotes the hour within the orbit o and

no denotes the length of the orbit o. Figure 3.13 shows the sample ac.f. and the sample

pac.f. plots of the residuals within a selected orbits and the residuals are obtained from

OLS estimation. The panel (a), (c), and (e) show the ac.f. plots of the residuals in the

x-, y- and z-components and the panels (b), (d), and (f) show the pac.f. plots of the

residuals in the three components. For all three components, the ac.f. plots are decaying

and the pac.f. plots have a spike at lag 1. This suggests that an AR(1) model can be

fitted to each of the three series. Analysis of regression residuals within other orbits

shows similar patterns for the ac.f. plot and the pac.f plot across the three components.

Hence for the regression residuals {εt : t = 1, 2, · · ·no} of any orbit o in any component

d, d ∈ {x, y, z}, we propose

εt = φoεt−1 + zt, (3.9)

where φo is the AR(1) parameter that varies across orbits and zt denotes the AR(1)

model residuals. zt is assumed to be a white noise process, the observations within

which has no correlation or dependence. The models are fitted by calling the function
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Figure 3.13: Ac.f. and pac.f. plots of the regression residuals

ar() in R. Fitting an AR model to the data by selecting the complexity by AIC also

identifies the order 1. The AIC developed by Akaike (1973) is a measure of the relative

quality of statistical models for a given set of data. The AIC has a definition that given a

statistical model M of data x, let k be the number of estimated parameters in the model,

L̂ be the maximum value of the likelihood function for the model, i.e. L̂ = P (x|θ̂,M),

where θ̂ are the parameter values that maximize the likelihood function, then the AIC

value of the model is AIC = 2k − 2ln(L̂). The model with the minimum AIC value

would be preferred. AR(1) models have been identified for regression residuals within

each orbit by the Jenkins-Box rules and the AIC criteria. Therefore we discuss methods

of parameter estimation for AR(p) assuming the order p is known to be 1.

In general, estimation of AR models can be done with simple regressions using OLS

estimator. However, estimating an AR(p) model by OLS does not use information con-

tained in the first p observation and thus causes a loss of efficiency. The method of

Yule-Walker estimation calculates the approximate confidence intervals for the model

parameters, but the Yule-Walker estimator has poor asymptotic efficiency and unnec-

essarily high variance. Maximum Likelihood Estimator (MLE), which often assumes

Gaussian white noise for the AR model residuals, is the optimal since the maximum
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likelihood estimates have the smallest asymptotic variance. The approach of using an

approximate (typically Gaussian) likelihood function for estimation is called quasi-MLE

(QMLE). The likelihood function is calculated from a transformed set of data instead

of all data.

MLE evaluates the sample joint distribution, also called the likelihood function, and

search for the parameters that maximize the likelihood function. The likelihood function

can be regarded as the product of marginal density of individual sample in the case of

identical and independent sample. In time series analysis where dependence structure

of observations is specified, conditional density must be used in replacement of marginal

density for evaluating the sample likelihood. Let {εt, t = 1, 2, · · · , N} denote the N

observations of the variables {Et, t = 1, 2, · · · , N} that follows an AR(1) process,

Et = φEt + zt, (3.10)

with zt ∼ N (0, σ2) and |φ| < 1 (the condition for the process to be stationary). The

parameters to be estimated are denoted by a vector θ, θ = (φ, σ2)T . Since {zt} is a

Gaussian white noise, E1 must be Gaussian,

E1 ∼ N (0,
σ2

1− φ2
). (3.11)

For t > 1,

Et|Et−1 = εt−1 ∼ N (φεt−1, σ
2), (3.12)

The likelihood of the complete sample can thus be calculated as

fEN ,EN−1,EN−2,··· ,E1(εN , εN−1, εN−2, · · · , ε1;θ) = fE1(ε1;θ).
N∏
t=2

fEt|Et−1
(εt|εt−1;θ).

The conditional densities fE1(ε1;θ) and fEt|Et−1
(εt|εt−1;θ) for t > are specified by their

distributions in Equation 3.11 and 3.12.

The log likelihood function, denoted as L(θ), is therefore

L(θ) = log fE1(ε1;θ +

N∑
t=2

log fEt|Et−1
(εt|εt−1;θ),
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and can be used for the computation of the MLE estimates for θ. (The numerical

computation is omitted here).

Using the MLE method, we fit AR(1) models to the regression residuals of individual

orbits, {ε̂t; t = 1, 2, ·, no}. ε̂t was obtained using OLS estimation from the regression

model 3.4 and for missing observations of the response, the residuals are recorded as NA.

Hence the time series datasets {ε̂t; t = 1, 2, ·, no}. ε̂t contain missing values whenever the

satellite measurements are missing. In R, the function na.action() deals with missing

values. Setting na.action() to na.pass, we skip the missing values when estimating

the AR(1) model parameters in our exploratory analysis. The missing values will be

reconsidered in the Chapter 4.

Table 3.2 lists the AR(1) model parameters estimated with MLE for regression residuals

of a single orbit across the three component. The coefficients φ estimated from this

particular orbit have similar values (around 0.5) for the x-, y-, and z-components. The

variances σ2 have its lowest value of 44.34 in the x-component and its highest value of

93.34 in the y-component. Both parameters, the coefficients and the variances, change

over satellite orbits since the AR(1) models are fitted to different orbital datasets. The

AR(1) parameter estimation results from other orbits will be included in the summary

of this section.

Table 3.2: MLE estimates of the AR(1) coefficients

the x- component the y- component the z-component

φ̂ 0.5638 0.5220 0.4058
σ̂2 44.34 93.34 85.42

Diagnostic procedure of the fitted AR(1) models includes observing residual plot and

the AR(1) model residual ac.f. and pac.f. diagrams or checking Ljung-Box result.

Figure 3.14 shows the ac.f. and pac.f.plots of the AR(1) model residuals of a single

orbit in the three components. Panel (a) and (b) are for the ac.f. and pac.f.plots of

the x-component; Panel (c) and (d) are for the y-component; Panel (e) and (f) are

for the z-component. These plots show no significant lags (the 0 lag ac.f. is always 1

as it calculates the autocorrelation between an observation and itself.), indicating the

selected models are appropriate for capturing the autocorrelation in the regression errors,

i.e. AR(1) models are adequate models to represent the regression residuals.
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Figure 3.14: Ac.f. and pac.f. plots of the AR(1) model residuals

Although the ac.f. and pac.f.plots of the AR(1) model residuals have no significant lags,

the time series plot of residuals and squared residuals, shown in Figure 3.15, display some

cluster of volatility. Panels (a), (c), (e) on the left-hand side give the AR(1) residual

plot in the x-, y- and z-components; Panels (b), (d), (f) on the right-hand side give

the squared residual plots. This violates the AR(1) model assumptions that {zt} has

constant variances, and needs to be dealt with in the subsequent section.

3.3.2.3 Heteroscedasticity

Heteroscedasticity, as opposed to homoscedasticity, refers to changes in variance in a

model. White test proposed by White (1980) is the best test for heteroskedasticity.

Model for changing variance would provide better estimates of the local variance, and

such estimates can be used to produce more reliable prediction intervals. Such models

are often considered for residuals, referred to as the error terms, of regression or ARMA

models. Engle (1982) introduced ARCH models, assuming the variance of the current

error term is related to the size of the past error terms. Such dependence in the error

terms gives rise to volatility clustering, the behaviours of which are commonly observed
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Figure 3.15: Time series plots of AR(1) residuals and squared residuals of the three
components

in financial time series, e.g. return series of market-priced assets. Bollerslev (1986) gen-

eralized the ARCH model into GARCH models that account for the volatility clustering.

Changing variance is evident in the time plot of the AR model residuals, as shown in

Figure 3.15, and ARCH or GARCH methods, which concerns with the conditional vari-

ance of the time series, will be used to model the volatility clustering of the AR model

residuals.

Let {zt} denote the error terms. In our case the error terms are the AR(1) model

residuals. In an ARCH process, zt can be split into two components, a stochastic piece

ηt and a time-dependent standard deviation σt, so that

zt = σtηt, (3.13)

{ηt} follow a standard normal distribution and are independently and identically dis-

tributed while {σt} are described as

σt
2 = ω +

q∑
i=1

λiz
2
t−i, (3.14)
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where ω > 0 and λi ≥ 0.

In a GARCH(p, q), σt has a different description,

σ2
t = ω +

q∑
i=1

λiz
2
t−i +

p∑
i=1

δiσ
2
t−i. (3.15)

The steps for fitting an ARCH/GARCH model are similar to those for fitting an ARIMA

model. We start with checking the clusters of volatility in the AR residual plot and then

the squared residual plot. Then ac.f. and pac.f. plots of squared residual will suggest if

the squared residuals from the AR model are independent. If the ac.f. and pac.f. plots of

squared residuals display significant lags, then the residuals should not be independent.

The lag length p of a GARCH(p, q) process can be obtained through estimating the ac.f.

and pac.f. of {z2
t }.

Figure 3.16 plots the ac.f and pac.f of the squared AR(1) model residuals. Since there is

no significant spike in the plot, we drop the p component in GARCH(p, q) and consider

an ARCH(q) model. The Lagrange multiplier test proposed by Engle (1984) determines

the lag length q of ARCH(q) models. Likewise, selection criteria can be used to determine

the order of an ARCH model.

For the AR(1) model residuals, we identify q = 1 and assume an ARCH(1) process for

{zt} in Equation 3.9,

zt = σtηt, ηt
i.i.d.∼ N (0, 1) (3.16)

σt
2 = ω + λz2

t−1, ω > 0, λi ≥ 0. (3.17)

The ARCH(1) model parameters ω and λ can be estimated using OLS or MLE. Given

an estimate of the parameters for the ARCH(1) model, we use Ljung-Box test to check

the model adequately explains the variance process.

3.3.3 Summary and results

Regression analysis has been performed on magnetic field data of the four Cluster satel-

lites of the three components in the GSM frame over 11 years (2003-2013). For a single

satellite measurements of one component in a year, there exists such a relationship that



Chapter 3. Characterizing the magnetic variations 70

0 10 20 30 40 50

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

(a)

0 10 20 30 40 50

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

P
ar

tia
l A

C
F

(b)

0 10 20 30 40 50

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

Series  ar.y$resid[−1]^2

(c)

0 10 20 30 40 50

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

P
ar

tia
l A

C
F

Series  ar.y$resid[−1]^2

(d)

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

A
C

F

Series  ar.z$resid[−1]^2

(e)

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

P
ar

tia
l A

C
F

Series  ar.z$resid[−1]^2

(f)

Figure 3.16: Ac.f. and pac.f. plots of the squared AR(1) model residuals

the satellite measurements are linearly dependent on the IGRF and the T96 model

outputs, i.e.,

St = µ+ αIt + βIt + εt, t = 1, 2, · · · , n. (3.18)

In Equation 3.18, µ, α, and β are the regression coefficients fixed over time, {εt, t =

1, 2, · · · , n} are the error terms, and n denotes the total number of observations in the

year.

OLS estimation provides estimates of the regression parameters, µ̂, α̂, and β̂, and a series

of regression residuals {ε̂t, t = 1, 2, · · · , n}. Time plot of {ε̂t} suggests that the regression

errors are not stationary. Splitting the series {ε̂t, t = 1, 2, · · · , n} by the satellite orbit

o lead to piecewise stationary time series, {ε̂t, t ∈ Oo(t)}, where Oo(t) denotes the set of

times within the satellite orbit o.

Time analysis of {ε̂t, t ∈ Oo(t)} for individual orbit o suggested the errors are correlated

in time and have changing variance. An AR(1) model has been identified for capturing

autocorrelation in the regression errors and an ARCH(1) model has been incorporated

to the AR(1) model for accounting changing volatility in the AR(1) model errors. The

method of MLE was used to obtain parameters in the the AR and the ARCH models.
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The combine AR(1)-ARCH(1) can be written as, for the regression error term εt of any

satellite orbit o at times t ∈ Oo(t),

εt = φεt−1 + zt, |φ| < 1 (3.19)

zt = σtηt, ηt
i.i.d.∼ N (0, 1) (3.20)

σ2
t = ω + λz2

t−1 ω > 0, λi ≥ 0. (3.21)

The AR(1)-ARCH(1) model parameters are estimated in two steps using MLE. We

fitted an AR(1) model to the piecewise regression residuals {ε̂t, t ∈ Oo(t)}, assuming

equal variance for the AR(1) errors, and obtained the AR(1) model residuals {ẑt, t ∈

Oo(t)} for which we then fitted an ARCH(1) model. Missing values were ignored in

estimating parameter in the AR and the ARCH models. The parameters {φ, ω, λ} can

be subscripted by the orbit o, since they are estimated from regression residuals of

different satellite orbits and are allowed to vary across the orbits.

Initial results from the regression analysis give OLS estimates of regression model pa-

rameters across satellites and directional components by year. Figure 3.17 plots the

estimates obtained from the four satellites and the three components against the time

by year. Panel (a) plots µ̂ the estimated intercepts, Panel (b) plots α̂ the estimated

coefficients of the IGRF model, and Panel (c) plots β̂ the estimated coefficients of the

T96 model. The three colours, black, red and blue, represent x-, y- , and z- components

and the four lines of the same colour in each plot represent the estimates from the four

satellites. Panel (a) and (c) show a difference in the estimated parameters µ̂ and β̂ across

the three components while Panel (b) shows α̂ estimated from the three components and

the four satellites are almost identical since the 12 lines overlay with each other. The

x-component of C1 in 2003, for example, have α̂ and β̂ close to 1 and m̂u close to 0.

This implies that in 2003 the IGRF and the T96 model well represent the x-component

of C1.

The OLS estimates are believed to be unbiased since the residuals of each regression

model appear to have the expectation of zero. However, the variance-covariance struc-

ture of the residuals within each model changes over time. The variance-covariance

structure of the regression residuals are parametrized by the AR(1)-ARCH(1) models

fitted to every single orbit period whereas the regression parameters are estimated from

magnetic field data of every single year. Hence condolence intervals can not be computed
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Figure 3.17: Time plots of the OLS estimates over 11 years of three components and
four satellites. Panel (a), (b), and (c) show the plots of µ̂, α̂, and β̂

for the yearly estimated regression parameters at this stage for assessing the relationship

between the satellite measurements and the two computer model outputs.

3.4 Comments and discussion

It has been demonstrated in this chapter that in-situ observations of the near-Earth

magnetic field provided by the Cluster satellite measurements poses various challenges

to statistical analysis and modelling.

To begin with, the magnetic field data has an unusual dependence in space and time,

as the data were collected at regular time intervals but at time-varying locations. The

space-time dependence is govern by the Cluster satellites orbiting around the Earth, the

motion of which depicts the satellite trajectories, and the trajectories are subject to non-

quantifiable changes, such as changes resulted from satellite manoeuvre and gravity. The

locations and the times at which the magnetic field are being sampled are contained in

the satellite trajectory data. Through mapping the locations to the times via an orbital



Chapter 3. Characterizing the magnetic variations 73

function, we simplified the problem by converting the spatio-temporal data into time

series data while keeping the spatial information accessible.

Secondly, the magnetic field data has three dimensions since the data were recorded

as vectors in the GSM coordinate frame. Temporal variations, as illustrated in time

plots of the magnetic field data, are engendered by a change of sampling locations and

space weather conditions, and patterns of the variations appeared to be different in the

magnetic field strengths measured in different components. Hence the behaviour of the

three magnetic field components will be considered individually.

Thirdly, time plots of the in-situ Cluster measurements along the satellite orbits exhibit

seasonal and cyclic variations. This because the time-varying magnetic field is being

sampled at time-varying location. Temporal variations in the observed magnetic field

can be attribute to changes in the sampling locations and the space weather conditions.

Decomposing the magnetic field by its source of origin produces an internal field which is

invariant to the space weather conditions and an external field that responses to the Sun-

Earth interaction. Estimates of the internal and the external fields are obtained from the

computer models, the IGRF and the T96 models. The time and the sampling location of

each Cluster measurements are input into the computer models. We regress the satellite

data on the two model outputs, assuming the relationship between the satellite data

and the model outputs is constant in time. A simple regression model was fitted to

the magnetic field strengths in each components and of each satellite. Estimates of the

regression parameters differs in components but do not seem to change much across

satellite. Statistical properties of in the magnetic field data, such as non-stationarity,

autocorrelation, and heteroskedasticity, have been derived from the time-series of the

regression residuals. This suggest the errors are correlated and have clustering volatility

when modelling the satellite measurements in terms of the two model outputs. To

hand the time series dependence, we assume locally stationarity for orbital errors, i.e.

regression residuals within each orbits and apply the ARIMA and ARCH methods using

MLE estimation. MLE can be used to deal with missing data, problem of which will be

address in the next chapter. A two stage fitting procedure has been used for describing

the autocorrelation and the heteroskedasticity. An AR process is fitted to the regression

residuals and then an ARCH process is fitted to the AR residuals. Again this was

preformed on residuals of every single orbit.
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The work in this chapter was a preliminary assessment of the calibration of the mag-

netic field models with the satellite data by looking at the yearly estimated regression

parameters. The fact that regression residuals are piecewise stationary and the pieces

were segmented by the satellite orbits suggest that the properties of the magnetic field

data changes over orbits. We also recognize that the spatial information and the space

weather condition changes across the satellite orbits as well. It can be deduced from the

exploratory analysis that the relationship between the satellite measurement and the two

model outputs might not stay constant across the orbit. We will include time-varying

effects in our models in terms of satellite orbit to include space and characterized the

near-Earth magnetic field through calibrating the physical models using Cluster satellite

observations Orbit-varying coefficients models will be developed in the next chapter to

account for the magnetic field variations in satellite orbits and the models will be fitted

to the data of different satellites and directional components. Confidence intervals for

orbital parameters can be constructed through parametrizing the variance-covariance

structure of each orbit in an AR-ARCH model. Estimates of orbital parameters in the

time-series-based model quantifies the relationship between the satellite measurements

and the two model outputs and can be used to calibrate the computer models with

the satellite measurements made in different regions of space and under variable space

weather conditions.



Chapter 4

Time-series-based modelling of

the magnetic field

Previous analysis in Chapter 3 has showed a regression model with time series errors

can be used to link the measurements of individual Cluster satellites to the IGRF and

T96 model outputs for hourly sampled magnetic field vectors of their x-, y- and z-

components. Parameters in the regression model and its time series components are

set to vary across satellite orbits given that the spatial information from the orbits is

gradually changing throughout every year in the chosen GSM coordinate frame and

temporal information such as space weather condition is also changing over the orbits.

Hence for each orbit of an individual satellite the statistical model has orbit-indexed

parameters. Letting the model parameters vary over the orbits allows us to relate the

orbit-indexed regression parameters to the orbital information, i.e. the spatial and the

temporal information associated with the orbits, and the orbital information can be used

to understand variations in the regression parameters. The regression model is fitted

individually to the x-, y- and z-components of the magnetic field vectors of the four

Cluster satellites and their corresponding computer model outputs, and as a result, the

different satellites and the field strength components might have effects on the time-series

based regression model.

This chapter develops a statistical model that quantifies the biases and uncertainties in

the magnetic field data of four satellites in three components. The time-series-based re-

gression modelling is motivated by our attempts to calibrate the two computer models,

75
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namely the IGRF and the T96 model, and to explain the variations in the magnetic

field strength, the knowledge of which can be used for change point detection of mag-

netic storms in Chapter 5. Statistical models in this chapter include time-series based

regression models and mixed-effects models. The aim in this chapter is to calibrate

the computer models of the near-Earth magnetic field through estimating and making

inference of parameters in the statistical model, and to explore factors that affect the

calibration results using the mixed-effects model. The chapter is organized as follows.

Section 4.1 provides an overview of the time-series based regression and the mixed-effects

modelling. Section 4.2 describes the statistical methods used in the time-series-based

regression modelling of the magnetic field data and the mixed-effects modelling of the

estimates of the orbital regression model parameters. Section 4.3.1 applies the methods

to the modelling of the magnetic field data and Section 4.4 concludes this chapter with

a discussion of the modelling results.

4.1 Introduction

The regression model with time series errors that describes the relationship between the

observed and simulated magnetic field data is given in Equation 4.1. For any Cluster

satellite C, C ∈ {C1, C2, C3, C4}, and a given component d, d ∈ {x, y, z},

St = µo(t) + αo(t)It + βo(t)Tt + εt, (4.1)

where St, It, and Tt denote, respectively, the satellite measurement, IGRF output and

T96 output of the magnetic field strength in the component d at time t and position

of Satellite C at time t. o(.) is an orbital function and o(t) maps the time t to an

orbital number o. µo(t), αo(t), and βo(t) are the regression model parameters at orbit

o determined by time t, and can be writen as µo, αo, and βo since the parameters are

fixed for time within a single orbit, {t : t ∈ Oo(t)}, where Oo(t) denotes the set of times

within the orbit o. Equation 4.1 differs from Equation 3.18 in that that orbital function

has been included in the regression model.

It was found in the exploratory data analysis that the errors of the regression model εt

are correlated in time. For errors within each orbit {εt : t ∈ Oo(t)}, an AR(1) model

was reasonable to capture dependence in the mean of the errors, and an ARCH (1)
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model was reasonable to capture the dependence in the variance in the errors. Thus an

AR(1)-ARCH(1) model, i.e. the two time series models in combination, can be fitted to

the errors estimated from the regression model over the orbits. The AR(1)-ARCH(1)

process for errors within an orbit o can be written as,

εt = φoεt−1 + zt, −1 < φ < 1

zt = σtηt, {ηt}
iid∼ N (0, 1)

σ2
t = ωo + λoz

2
t−1, ωo > 0, λo ≥ 0

where φo, ωo, and λo are the time series model parameters which also vary across the

satellite orbits. The time series model for the orbital errors account for two components:

possible error in the Cluster satellite measurements, and possible uncertainty due to a

lack of fit (or mis-calibration) between the computer model outputs and the observed

Cluster satellite measurements.

The parameters in the regression model are allowed to vary across satellite orbits, given

spatial properties of the orbit that are gradually changing throughout a year in the chosen

GSM reference frame. Within each satellite orbit, the models have a time-series-based

structure for describing the autocorrelated disturbances and the non-constant variances

for the error. Autocorrelation and heteroskedasticity detected in the estimated errors

from the OLS fit can be characterized by AR model and ARCH model component. The

AR model specifies that the variable depends linearly on its own previous values and on

a stochastic term; ARCH is the condition that one or more data points in a series for

which the variance of the current error term or innovation is a function of the actual

sizes of the previous time periods error terms.

Estimation of AR-ARCH models for the error terms encounters the problem of missing

values. The missingness of the error terms comes from the Cluster satellite measure-

ments which were assumed to be missing at random. The missing at random (MAR)

assumption made in Chapter 3 states that the observations are missing at random if the

probability of missingness does not depend on the unobserved values, i.e.

P(R = r|Y = y) = P(R = r|Y = yobs)
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or equivalently in terms of the likelihood function f ,

fR|Y (r|y, θ) = fR|Yobs(r|yobs, θ),

where Y denotes a variable that has a sequence of independent and identically distributed

(iid) observations y = {y1, · · · , yn} and follows a known distribution Pθwith parameter

θ. The likelihood function of y can be written as

fY (y|θ) =

n∏
i=1

fY (yi|θ),

where fY (.|θ) is the density of Pθ. If the observations have missing values, the variable

can be written as Y = (yobs,ymis), where yobs are the observed values and ymis are the

missing values. Let ri be an indicator variable R that has values

ri =


1 if yi is observed

0 if yi is missing

,

This is saying that R and Ymis are conditionally independent given Yobs. In the presence

of missing values, MAR has been assumed for estimating the time series model param-

eters with MLE or QMLE, which searches for the parameter values that maximize the

likelihood of obtaining the data given the parameters. MLE is the most commonly used

estimation procedure for AR and ARCH models when data are missing. Berkes and

Horváth (2004), Francq et al. (2004), Straumann et al. (2006) studied the asymptotic

properties of QMLE for ARCH models. Other approaches for dealing with missing data

in time series modelling include least square methods and Expectation-Maximization al-

gorithm and Bootstrap approach (EMB). Bondon and Bahamonde (2012) addressed the

problem of estimating an ARCH model in the presence of missing values by proposing a

two-stage least square estimation which generalizes the estimator proposed by Bose and

Mukherjee (2003) for estimating the ARCH parameters by solving linear equations. The

EMB algorithm combines the classic EM algorithm with a bootstrap approach to take

draws from the posterior. For each draw, Honaker and King (2010) bootstrap the data

to simulate estimation uncertainty and then run the EM algorithm to find the mode of

the posterior for the bootstrapped data, which gives the fundamental uncertainty.

The time series parameters characterize the temporal structures in the errors of each
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orbit and need to be estimated for constructing the variance-covariance matrix of the

regression errors and are important for making inference on the regression parameters,

namely the intercept µo, the IGRF model coefficient αo, and the T96 model coefficient

βo. Estimates of the regression parameters quantify the relationship between the satel-

lite measurements and two models outputs over orbits and the two model coefficients

inform on how close the IGRF and T96 model outputs match with the Cluster satellite

measurements. Section 4.2 describes the theory and method used for estimating the

regression parameters over the orbits while accounting for the time series errors.

The estimates of {µo, αo, βo : o ∈ no}, where no denotes the total number of the orbits

in the magnetic field data, form new time series indexed by the orbit o. By examining

the estimated time series parameters from the regression model again over the orbit, we

can assess whether there are effects in the regression errors that are due to other factors.

On this note, the mixed-effects model is used to explore how the various parameters in

the regression model are associated with other factors as either fixed or random effects.

By definition, fixed effects refers to parameters associated with an entire population;

random effects are associated with individual units drawn at random from a population

(Pinero and Bates, 2000). In our analysis of the magnetic field data, the factors that

we consider as fixed effects in the mixed model include the storm levels, i.e. space

weather conditions, and the orbital features, and for random effects we consider the four

Cluster satellites and their measurements in the three components in the GSM frame.

The inclusion of fixed and random effects, estimation and selection of the mixed-effects

model will be elaborated again in Section 4.2.

4.2 Statistical methodology

This section describes statistical methods used for calibrating the IGRF and the T96

models against the Cluster satellite measurements in the time-series-based regression

model, and explaining the calibration results with relevant factors.

The regression model in Equation 4.1 has a matrix form, y = Xβ + ε,where y and X

represent the response and explanatory variables, β denotes the unknown parameters,

and ε is the error term. Estimation of the unknown parameters quantifies the rela-

tionship between the response and explanatory variables, and assumptions must hold
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for estimation methods to be applicable. Ordinary least squares (OLS) is a commonly

used method for estimating the unknown parameters in a linear regression model, with

the goal of minimizing the sum of the squares of the differences between the observed

responses in the given dataset and those predicted by a linear function of a set of ex-

planatory variables. One OLS assumption that the error term has constant variance, i.e.

V ar(ε|X) = σ2In, where In is the identity matrix in dimension n, and σ2 is a parameter

which determines the variance of each observation, is violated by the fact that the error

term has changing variances. If this assumption is violated then the OLS estimates are

still valid, but no longer efficient. Therefore, an alternative method need to be consid-

ered to enhance the efficiency of parameter estimation in the regression model of the

magnetic field data. Generalized least squares (GLS) relaxes the assumptions in OLS

by stating that the conditional mean of y given X is a linear function of X, whereas the

conditional variance of the error term given ε is a known non-singular matrix Σ. This

usually written as

y = Xβ + ε, E(ε|X) = 0 and V ar(ε|X) = Σ. (4.2)

In practice the covariance matrix Σ is unknown and we use feasible GLS (FGLS) to

estimate the structure of Σ from the OLS residuals.

Fitting the regression AR-ARCH errors provides estimates of the regression model pa-

rameters. The Maximum-likelihood Estimation (MLE) algorithm has been developed

for dealing with missing data problem in FGLS estimation with AR-ARCH structure.

The estimated parameters with their confidence intervals calibrate the IGRF model and

the T96 model with the Cluster satellite measurements. Performance of the two com-

puter models can be evaluated through analysing the estimated parameters together

with other factors that might affect the calibration results.

The estimated model parameters quantify the relationship between the satellite mea-

surements and the two computer model outputs and can be used to explore how the

relationship varies across satellite orbits. In the mixed-effects modelling, we consider

orbital factors such as mean orbital distance, storm level (as indicated by the maximum

of the Kp index over the orbit), the missing proportion (number of orbital observations

divided by hours of the orbital period ), etc. Mixed-effects models that take both fixed
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effects and random effects into account can be used to explain the calibration or mis-

calibration of the computer model simulations. In the mixed-effects analysis, whether

treating a factor as fixed or random depends on the questions of interest and how the

data is gathered. Our primary interest in assessing the calibration of the computer

model is to understand how the models perform under different space weather condition

across the satellite orbits. Hence factors of the storm levels and the satellite orbits are

considered as fixed effects. Random factors include satellites and components of which

the magnetic field data are collected. The factor of satellites has four levels for C1-4

and can be regarded as a random sample of satellites in near-Earth space. Instead of

estimating the effect of each of the Cluster satellite, estimating the variability caused by

the satellite factor would make more sense. The component factor nested in the satellite

factor should also be considered random.

4.2.1 GLS estimation with an AR-ARCH structure

GLS considers a more general variance covariance matrix for the disturbances, in which

case ε ∼ N (0, σ2In) is relaxed to ε ∼ N (0, σ2Σ), where Σ is a positive definite matrix

of dimension (n × n). For every positive definite matrix Σ, there exists a non-singular

matrix P such that PPT = Σ. The original model can be transformed into

P−1y = P−1Xβ + P−1ε

by pre-multiplying P−1. Then

Var(P−1ε) = P−1Var(ε)PT−1 = σ2P−1ΣPT−1 = σ2P−1PPTPT−1 = σ2In

Hence the variance-covariance of the transformed errors of the model becomes a scalar

times the identity matrix. Using this transformation allows us to obtain the GLS esti-

mator of β

The regression model given in Equation 4.1 can be expressed in a matrix form as shown

in Equation 4.2. The heterogeneous variance of the error term is taken into account in

the GLS estimation of the regression parameters β̂ and the standard errors of β̂,

β̂GLS = (XTΣ−1X)−1XTΣ−1y, Var(β̂GLS) = (XTΣ−1X)−1 (4.3)
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where the structure of Σ is unknown. Instead of assuming the structure of Σ, we usually

obtain the estimated error ε̂ from OLS and estimate its variance-covariance structure,Σ̂,

and use Σ̂ instead of Σ.

Assuming time-dependent error within an orbit o, {εt : t ∈ Oo(t)}, to follow an AR(1)-

ARCH(1) process,

εt = φεt−1 + zt, −1 < φ < 1 (4.4)

zt = σtηt, {ηt}
iid∼ N (0, 1) (4.5)

σ2
t = ω + λz2

t−1, ω > 0, λ ≥ 0. (4.6)

The unconditional variance of εt is invariant to t and can be obtained through Equation

4.4 given Var(zt). Equation 4.5 relates zt to σt and ηt, which follows a standard normal

distribution. Hence zt has mean zero and its variance can be obtained from Equation

4.6.

It can be derived, for t = 1,

ε1 ∼ N
(

0,
ω

(1− λ)(1− φ2)

)
, (4.7)

for t = 2,

ε2|ε1 ∼ N
(
φε1,

ω

1− λ

)
, (4.8)

and for t ≥ 3,

εt|εt−1, εt−2 ∼ N
(
φεt−1, ω + λz2

t−1

)
. (4.9)

Since zt−1 = εt−1 − φεt−2, the conditional probability of εt given its past values can be

written as

εt|εt−1, εt−2 ∼ N
(
φεt−1, ω + λ(εt−1 − φεt−2)2

)
, t ≥ 3. (4.10)

Equations of the AR-ARCH model give the variance-covariance matrix,

Cov(εt, εt+τ ) = Cov(εt, φ{. . . (φ(φ︸ ︷︷ ︸
τ

εt + zt+1) + zt+2) + . . . }+ zt+τ ) (4.11)

= φτVar(εt), (4.12)
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since for any positive integer τ , Cov(εt, zt+τ ) = 0, and

Var(εt) =
Var(zt)

1− φ2
=

1

1− φ2

ω

1− λ

the variance-covariance matrix becomes

Cov(εt, εt+τ ) = φτ
1

1− φ2

ω

1− λ

R functions were implemented to estimate the model parameters for εt using maximum

likelihood estimation. The vector of parameters is

θ = (φ, ω, λ)T (4.13)

and the following conditions hold so that the error process is stationary:

|φ| < 1, ω > 0, 0 ≤ λ < 1.

To find the MLEs numerically, exponential and logit inverse transformations were used

for α0 and α1. The logit of a number p between 0 and 1 is given by logit(p) = log( p
1−p).

Let {εt} be a realization of length n to the AR(1)-ARCH(1) model. Conditional on

initial values, the overall likelihood Ln is given by

Ln(θ; ε1, · · · , εn) = P (ε1) · P (ε2|ε1) ·
n∏
t=2

P (εt|εt−1, εt−2). (4.14)

Through an iterative process, we find the measurable solution θ̂n of

θ̂n = arg max
θ∈Θ

Ln(θ) (4.15)

The error variance-covariance matrix takes the form Σ̂ = (σij) ∈ Rn×n with

σij = φ̂|i−j|
1

(1− φ̂2)

ω̂

1− λ̂
(4.16)

where φ̂, α̂0, α̂1 are the estimates of the AR-ARCH model.
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The GLS estimator β̂GLS and its variances can be obtained using Equation 4.3, replacing

Σ with Σ̂.

4.2.2 Mixed effects model

This section provides an overview of linear mixed-effects model (LME) in terms of its

theoretical and computational aspects, covering a general formulation of LME models

and estimation methods for LME models. A comprehensive description of the theory of

LME models can be found in McCulloch (1997), and detailed examples of the applica-

tions of LME models are available in Pinero and Bates (2000).

A two nested levels of random effects, the cross-satellite and the cross-component effects,

are considered in the mixed-effects model. The first grouping factor divides the obser-

vations into M groups and the response vectors can be written as yij , i = 1, · · · ,M ,

j = 1, · · · ,Mi, where M is the number of first-level groups and Mi is the number of

second-level groups nested within the first-level group i. yij has the length nij .

Let Xij denote the fixed-effects model matrices that have size nij × p, bi of length q1

be the first-level random effects, bij of length q2 be the second-level random effects, Zi,j

of size ni × q1 denote the model matrices corresponding to bi, and Zij of size ni × q2

denotes the model matrices corresponding to bij . Hence the LME model of two nested

levels of random effects can be written as

yij = Xijβ + Zi,jbi + Zijbij + εij , i = 1, · · · ,M j = 1, · · · ,Mi,

bi ∼ N (0,Ψ1), bij ∼ N (0,Ψ2), εij ∼ N (0, σ2I).
(4.17)

The first-level random effects bi are assumed to be independent for different i, the

second-level random effects bij are assumed to be independent of bi and for different i

or j, and the within-group errors εij are assumed to be independent of bi and bij and

for different i or j.

The two variance-covariance matrices Ψ1 and Ψ2 are written in terms of relative preci-

sion factors ∆1 and ∆2, parametrized by unconstrained parameter vectors θ1 and θ2.

The profiled log-likelihood or the profiled log-restricted-likelihood, a function of θ1 and

θ2 only, is maximized to produce the estimates β̂, σ̂2, Ψ̂1, and Ψ̂2.
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4.3 Application to the magnetic field data

This section calibrates the IGRF and T96 models with satellite measurement using a

time-varying coefficients model. The estimated model coefficients that quantify the re-

lationship of between the satellite measurements and the computer models are analysed

in a linear mixed effects model with the satellite numbers, C1-4, and the components,

x, y, and z, as random effects, for evaluating the overall performance of the computer

model. The mixed-effect model assumes the same amount of variance between obser-

vations within each group, i.e. the satellite group or the component group, but the

observations do not vary consistently across these groups.

4.3.1 Calibrating the computer models with the Cluster data

We apply the methods given in subsection 4.2.1 to the magnetic field datasets of the

four Cluster satellites in the three components of 11-years.

Steps in the time-series based modelling can be summarized as follows:

1. obtain {ε̂t : t ∈ Oo(t)} the estimated regression errors using OLS;

2. estimate the AR-ARCH model parameters, {φ̂o, ω̂o, λ̂o}, using the regression resid-

uals of each orbit o;

3. construct Σ̂ the variance-covariance matrix of the regression errors using the esti-

mated AR-ARCH model parameters;

4. estimate the regression model parameters, {α̂o, β̂o, µ̂o}, construct confidence inter-

vals for the estimated regression model parameters using the variance-covariance

information of the regression error.

The work provides a calibration of the magnetic field models with the four Cluster

satellite data in the three components through estimating the time-varying regression

model parameters. Figure 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7 provide time plots of the

estimates of model coefficients {α̂o}, {β̂o}, and {µ̂o}, against orbits in the year 2003,

2004, 2007, 2009, 2010, 2011 and 2012. {α̂o} and {β̂o} are the coefficients for the IGRF

and the T96 model outputs. {µ̂o} are the intercepts in the regression model. Each figure
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presents, from the top to the bottom panels, the estimates of the three parameters from

the magnetic field strengths in the x-, y- and z- component. The parameter estimates

across orbits are indicated by the black line, and the confidence intervals for the estimates

are shown by the grey regions around the black line. The red lines represent the mean

features of the estimated parameters using B-splines for smoothing.

The regression parameter estimated across the satellite orbits form new time series. The

temporal features of the estimated parameters can be summarized as:

• {α̂o} are centred around 1 and range from 0.5 to 1.5. The {α̂o} of the x-component

has higher variability in June and December, when the orbits of the satellite are

most elongated in the plane perpendicular to the x-component (see Figure 3.1);

The {α̂o} of the y-component has higher variability in March and September,

when the orbits of satellite are most elongated in the plane perpendicular to the

y-component.

• {β̂o} ranges from 0 to 2 and have larger variances {α̂o}. Trends of each component

appear different.

• {µ̂o} ranges from −20 to 20 and have value 0 included in most of their confidence

intervals.

The temporal features of the three estimated parameters, especially {α̂o}, also differs

in years. The {α̂o} obtained after 2007 become noisier for certain time periods in the

following years. The time series of the estimated IGRF coefficient is stationary and

has smaller variance than the time series of the estimated T96 coefficient, which has

changing volatility and a trend that can be removed by taking its first order difference.

If, for example, {αo(t) : t ∈ Z} follows a distribution that centred around the value 1

with a small variance, we would conclude that the IGRF model calibrates the internal

magnetic field well with the satellite data. If the mean value estimated from {αo(t) : t ∈

Z} deviates significantly from 1, we would conclude that the IGRF model overestimates

or underestimates the internal magnetic field with an uncertainty depending on the size

of the variance.

The results show that the estimated parameter β̂o for T96, the external model, has

more variability than the estimated parameter α̂o for IGRF, the internal model. This is
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consistent with the fact that the external field contributed by the current system is more

uncertain than the internal field generated by the Earth’s dynamo. Therefore, given

the complex nature of the external field, the T96 model is less reliable in predicting

the external field than the IGRF model for the internal field. Temporal analysis of

{α̂o : o ∈ O} and {β̂o : o ∈ O} suggest that α̂o has no trend while β̂o has a trend that

can be removed by taking its first order difference.

It has also been observed that α̂o seems to have a mean value of 1 with outliers occurring

at the same orbits in a few years while β̂o has a clear cyclic pattern that repeats every

year from 2003 to 2006, before the satellite maneuver took place in 2007. The time plot

of β̂o in 2003 shows the mean value of the parameter is close to 1 in the first half of the

year, when the satellite spent most of its time in the magnetopause, i.e. the head of

the magnetosphere, but drops below 1 in the second half of the year, when the satellite

were mainly investigating the magnetotail region. The changes in the ˆbeta and m̂u from

2009 onwards is associated with the changes in the satellite trajectories, as discussed

in Chapter 3. This suggests the reliability of the T96 model varies across space. The

T96 model provides less reliable estimates in the years when ˆbeta and m̂u have larger

confidence interval and larger variability. All this evidence is pointing to the fact that

the calibration results are somehow associated with the properties of the orbits, to be

exact, the region in space that the satellite travels through.



Chapter 4. Time-series-based modelling of the magnetic field 88

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 2]

al
ph

a 
G

LS
 2

00
3

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

alpha.x

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 3]

be
ta

 G
LS

 2
00

3

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

beta.x

−20−1001020

n.
or

bi
ts

Beta.GLS[, 1]

m
u 

G
LS

 2
00

3

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

mu.x

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 2]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

alpha.y

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 3]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

beta.y

−20−1001020

n.
or

bi
ts

Beta.GLS[, 1]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

mu.y

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 2]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

alpha.z

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 3]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

beta.z

−20−1001020
n.

or
bi

ts

Beta.GLS[, 1]
Ja

n
M

ar
M

ay
Ju

l
A

ug
O

ct
D

ec
mu.z

F
ig
u
r
e
4
.1
:

E
st

im
at

es
of

re
gr

es
si

on
p

ar
am

et
er

s
in

20
0
3
.

T
h

e
b

la
ck

li
n

es
re

p
re

se
n
t

th
e

es
ti

m
a
te

d
va

lu
es

o
f

th
e

p
a
ra

m
et

er
s;

th
e

g
re

y
sh

a
d

ed
re

g
io

n
s

d
en

ot
e

th
e

95
p

er
ce

n
t

co
n

fi
d

en
ce

in
te

rv
al

co
n
st

ru
ct

ed
fo

r
th

e
es

ti
m

a
te

d
p

a
ra

m
et

er
s;

T
h

e
re

d
cu

rv
es

a
re

th
e

sm
o
o
th

in
g

sp
li

n
es

fi
tt

ed
to

th
e

es
ti

m
a
te

s.



Chapter 4. Time-series-based modelling of the magnetic field 89

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 2]

al
ph

a 
G

LS
 2

00
4

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

alpha.x

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 3]

be
ta

 G
LS

 2
00

4

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

beta.x

−20−1001020

n.
or

bi
ts

Beta.GLS[, 1]

m
u 

G
LS

 2
00

4

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

mu.x

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 2]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

alpha.y

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 3]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

beta.y

−20−1001020

n.
or

bi
ts

Beta.GLS[, 1]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

mu.y

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 2]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

alpha.z

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 3]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

beta.z

−20−1001020
n.

or
bi

ts

Beta.GLS[, 1]
Ja

n
M

ar
M

ay
Ju

l
A

ug
O

ct
D

ec
mu.z

F
ig
u
r
e
4
.2
:

E
st

im
at

es
of

re
gr

es
si

o
n

p
a
ra

m
et

er
s

in
2
0
0
4
,

L
in

es
h
av

e
th

e
sa

m
e

m
ea

n
in

g
as

in
F

ig
u

re
4
.1

.



Chapter 4. Time-series-based modelling of the magnetic field 90

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 2]

al
ph

a 
G

LS
 2

00
7

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

alpha.x

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 3]

be
ta

 G
LS

 2
00

7

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

beta.x

−20−1001020

n.
or

bi
ts

Beta.GLS[, 1]

m
u 

G
LS

 2
00

7

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

mu.x

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 2]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

alpha.y

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 3]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

beta.y

−20−1001020

n.
or

bi
ts

Beta.GLS[, 1]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

mu.y

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 2]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

alpha.z

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 3]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

beta.z

−20−1001020
n.

or
bi

ts

Beta.GLS[, 1]
Ja

n
M

ar
M

ay
Ju

l
A

ug
O

ct
D

ec
mu.z

F
ig
u
r
e
4
.3
:

E
st

im
a
te

s
o
f

re
g
re

ss
io

n
p

a
ra

m
et

er
s

in
2
0
0
7



Chapter 4. Time-series-based modelling of the magnetic field 91

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 2]

al
ph

a 
G

LS
 2

00
9

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

alpha.x

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 3]

be
ta

 G
LS

 2
00

9

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

beta.x

−20−1001020

n.
or

bi
ts

Beta.GLS[, 1]

m
u 

G
LS

 2
00

9

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

mu.x

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 2]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

alpha.y

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 3]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

beta.y

−20−1001020

n.
or

bi
ts

Beta.GLS[, 1]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

mu.y

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 2]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

alpha.z

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 3]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

beta.z

−20−1001020
n.

or
bi

ts

Beta.GLS[, 1]
Ja

n
M

ar
M

ay
Ju

l
A

ug
O

ct
D

ec
mu.z

F
ig
u
r
e
4
.4
:

E
st

im
a
te

s
o
f

re
g
re

ss
io

n
p

a
ra

m
et

er
s

in
2
0
0
9



Chapter 4. Time-series-based modelling of the magnetic field 92

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 2]

al
ph

a 
G

LS
 2

01
0

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

alpha.x

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 3]

be
ta

 G
LS

 2
01

0

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

beta.x

−20−1001020

n.
or

bi
ts

Beta.GLS[, 1]

m
u 

G
LS

 2
01

0

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

mu.x

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 2]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

alpha.y

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 3]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

beta.y

−20−1001020

n.
or

bi
ts

Beta.GLS[, 1]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

mu.y

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 2]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

alpha.z

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 3]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

beta.z

−20−1001020
n.

or
bi

ts

Beta.GLS[, 1]
Ja

n
M

ar
M

ay
Ju

l
A

ug
O

ct
D

ec
mu.z

F
ig
u
r
e
4
.5
:

E
st

im
a
te

s
o
f

re
g
re

ss
io

n
p

a
ra

m
et

er
s

in
2
0
1
0



Chapter 4. Time-series-based modelling of the magnetic field 93

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 2]

al
ph

a 
G

LS
 2

01
1

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

alpha.x

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 3]

be
ta

 G
LS

 2
01

1

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

beta.x

−20−1001020

n.
or

bi
ts

Beta.GLS[, 1]

m
u 

G
LS

 2
01

1

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

mu.x

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 2]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

alpha.y

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 3]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

beta.y

−20−1001020

n.
or

bi
ts

Beta.GLS[, 1]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

mu.y

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 2]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

alpha.z

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 3]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

beta.z

−20−1001020
n.

or
bi

ts

Beta.GLS[, 1]
Ja

n
M

ar
M

ay
Ju

l
A

ug
O

ct
D

ec
mu.z

F
ig
u
r
e
4
.6
:

E
st

im
a
te

s
o
f

re
g
re

ss
io

n
p

a
ra

m
et

er
s

in
2
0
1
1



Chapter 4. Time-series-based modelling of the magnetic field 94

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 2]

al
ph

a 
G

LS
 2

01
2

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

alpha.x

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 3]

be
ta

 G
LS

 2
01

2

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

beta.x

−20−1001020

n.
or

bi
ts

Beta.GLS[, 1]

m
u 

G
LS

 2
01

2

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

mu.x

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 2]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

alpha.y

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 3]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

beta.y

−20−1001020

n.
or

bi
ts

Beta.GLS[, 1]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

mu.y

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 2]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

alpha.z

0.00.51.01.52.0

n.
or

bi
ts

Beta.GLS[, 3]

Ja
n

M
ar

M
ay

Ju
l

A
ug

O
ct

D
ec

beta.z

−20−1001020
n.

or
bi

ts

Beta.GLS[, 1]
Ja

n
M

ar
M

ay
Ju

l
A

ug
O

ct
D

ec
mu.z

F
ig
u
r
e
4
.7
:

E
st

im
a
te

s
o
f

re
g
re

ss
io

n
p

a
ra

m
et

er
s

in
2
0
1
2



Chapter 4. Time-series-based modelling of the magnetic field 95

The calibration results, based on α̂o and β̂o the estimated coefficients correspond to the

IGRF and the T96 model, differ in years, shown in Figure 4.8, as a result of the Cluster

satellite investigating different regions in space.
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Figure 4.8: Boxplot of α̂o, the estimated coefficients for the IGRF model, and β̂o, the
estimated coefficients for the T96 model.

Estimates of the AR-ARCH model parameters, {φo}, {ωo}, and {λo}, are provided

in Figure 4.9, 4.10, 4.11, 4.12,4.13,4.14,4.15,4.16,4.17, and 4.18. These plot suggest

the yearly patterns in the three estimated parameters. The values of the estimated

parameters confirm the existence of autocorrelation and conditional variances in the

regression model residuals.
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4.3.2 Understanding the uncertainties in the model calibration

In the previous analysis, we obtain {µ̂o, α̂o, β̂oo ∈ O}, for a single satellite C ∈ {C1, C2, C3, C4}

in the component d, d ∈ {x, y, z}. To explain the variability in the orbital coefficients and

comprehensively assess the calibration of the IGRF and T96 model, we fit mixed-effects

models (Pinheiro and Bates, 2000) to {α̂o} and {β̂o}. Potential fixed effects are the

space weather condition, indicated by the orbital max Kp index, i.e. the highest storm

level in each orbit, and orbit properties, such as the mean distance from the satellite to

the Earth. The satellites and the components are included as random factors.

4.4 Results and discussion

We have developed spatio-temporal statistical models of the near-Earth magnetic field

utilising in-situ magnetic field data and physical model outputs. Statistical approaches

used include B-spline smoothing to capture the complex mean features, and AR-ARCH

models to capture the stochastic model components due to the non-stationary properties

of the time series. The physical models, the IGRF and the T96 models representing the

internal and external magnetic field, calibrate the observed magnetic field well, however,

the statistical properties of the time-series models change across the satellite orbits and

the variations in the estimated time-series model parameters have a seasonal pattern.

This could be a result of the satellite investigating different regions though out the year.

In the current work, the calibration of the models and measurements as a function of

time has been examined. In the first stage, a time-series-based regression model has

been developed for the magnetic field data, linking them to the computer model out-

puts. The parameters in the regression model are estimated using GLS with an unknown

variance-covariance matrix. It is assumed that the error term in the regression model

has an AR-ARCH structure given the presence of serial correlation and heteroscedas-

ticity in the time-dependent errors. A first order AR-ARCH model has been identified

for the error term. Because of missing data in the satellite observations, a maximum

likelihood approach is used to deal with the missing data problem. Based on the es-

timation of AR-ARCH parameters, the variance-covariance matrix of the error term is

constructed combining the serial correlation and heteroscedasticity. The GLS estima-

tion then provides the estimates of the regression model parameters and their standard
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errors. In the second stage, these estimated regression parameters are then modelled

in the mixed-effects models to evaluate the overall performance of the IGRF and the

T96 models, based on the time-series-based modelling results. The calibration results

show that the reliability of the two models are invariant to satellite and components and

the performance of the T96 model the external magnetic field model don’t seem to be

affected by space weather conditions which are indicated by the Kp indices. Spatial in-

formation contained in the satellite orbits are not significant in the mixed-effects model.

The internal field is invariant to space weather.

In general, the two models, IGRF and T96, calibrate well with Cluster satellite mea-

surements. IGRF provides more precise prediction for the internal field than T96 does

for the external field. However, if one miscalibrates, the other tends to miscalibrate at

the same time. The performance of the two physical models appears to be consistent

when calibrated with measurements in different components or from different satellites.

The calibration of the physical models is affected by where the satellite travels through

space and is weakly associated with storm conditions. The T96 model, though not be-

ing tested under extreme conditions separately, has been calibrated under time-varying

space weather conditions from 2003 to 2013, the time period of which includes a few

extreme storm events.



Chapter 5

Detecting magnetic storms in

space

The near-Earth magnetic field is being investigated by sensors carried on Earth-orbiting

satellites and these satellites provide in-situ observations at regular time-intervals and

locations along their trajectory. Real-time magnetic field data provided by the satellite-

based sensors, however, are not sufficient for studying the global behaviour of the mag-

netic field during storm periods, since the current satellite investigations of the near-

Earth magnetic field have a limited spatial coverage. This limits our ability to detect

storms using satellite data. For studying the behaviour of the near-Earth magnetic field

in response to space weather, the data sparsity issue can be addressed by using the

T96 model to generate estimates of the external magnetic field at desired times and

locations with appropriate space weather parameters. It is reasonable to use the T96

model because the calibration of T96 model against the Cluster satellite measurements

in Chapter 4 has proved that the T96 model provides fairly reliable and accurate es-

timates of the external magnetic field regardless of the space weather condition. The

time points and the location vectors input into the T96 model can be constructed so

that the process of simulating data from the T96 model mimics the process of collect-

ing data along a satellite orbit. Hence simulating the magnetic field at time-varying

locations along arbitrarily defined satellite orbits compensates for the limitation by the

space-time constraints in current-flying satellites.

108
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Towards the aim of real-time monitoring of space weather from space-based platforms,

we investigate how satellites can be placed in near-Earth space so that the in-situ satel-

lite measurements, i.e. the real-time observations of the magnetic field along the satellite

orbits, capture spatio-temporal changes that are relevant to magnetic storms in the near-

Earth magnetic field. Large magnetic disturbances as a result of magnetic reconnection

and ring current intensification are expected in certain regions of the space during a

magnetic storm (see details in Chapter 1). A simulation study is designed and imple-

mented in this chapter to identify probable locations at which magnetic storm features

are likely to occur. Given the constraint that satellites are in orbit, and therefore the

sampling locations for the near-Earth magnetic field change in time along a prescribed

orbital path, we search for satellite orbits along which the magnetic field data obtained

as a time series exhibits changes in its statistical properties. For stationary time series,

it is common to look for change in mean, variance, or both. This chapter considers

the use of online change-point detection methods for recognizing both such changes.

Using physical positional constraints that Earth-orbiting satellites must follow, and the

characterisation of detectability of storms, we are able to propose network design con-

siderations, which will be included in Chapter 6, for space weather monitoring in terms

of early magnetic storm detection.

The chapter begins with an introduction to the magnetic storm detection problem in

Section 5.1, and then describes the process of the simulation study for exploring the

magnetic storm features along imaginary satellite orbits in Section 5.2. A literature

review of change-point detection is provided in Section 5.3 and the methods appropri-

ate for near-Earth magnetic storm detection are given in Section 5.4. Application of

the change-point methods on the magnetic field data collected along satellite orbits is

included in Section 5.5. Results of the applications are summarized and discussed in

Section 5.6.

5.1 Introduction

As introduced in Chapter 1, space weather describes the environmental conditions in

space determined by plasma physics and solar process, Magnetic storms are one of the

most important space weather phenomena and characterized as large-scale electromag-

netic disturbances in the near-Earth space environment. Magnetic storms may damage
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satellites and sensitive technology systems, so early detection is an important step in

mitigating their effects.

The aim in this chapter is to extract storm patterns from time series magnetic field data

generated from the T96 model and to apply appropriate change-point detection meth-

ods for recognizing the storms in the near-Earth magnetic field. We first simulate the

near-Earth magnetic field under storm and quiet conditions using the T96 model, given

that the T96 model provides reliable estimates of the external magnetic field under both

conditions. It has been understood that the dynamic processes in the external mag-

netic field are associated with space weather conditions, and the external magnetic field

would become highly disturbed at specified and localized regions, such as in the magne-

totail, at the boundary of the magnetosphere, and in the ring current regions, when a

magnetic storm happens. Earth-orbiting satellites sample the near-Earth magnetic field

along their trajectories, and provide sensor-based monitoring of the near-Earth mag-

netic field environment. Time series magnetic field data from satellites can be used to

identify if a magnetic storm is in progress. Satellite orbits that cross different regions of

space are emulated through manipulating orbital parameters, and in-situ magnetic field

data are obtained from T96 model estimates of the external magnetic field along these

satellite orbits, under quiet and storm space weather conditions. We process the model

magnetic field data under storm and quiet conditions, extracting time series magnetic

field data that contain space weather information, and consider magnetic storms, the

episodes when the magnetic field behaviour changes considerably over time, as quali-

tatively significant change in space weather. Thus the problem is to identity the time

points at which magnetic storm behaviour occurs and whether the changes are signifi-

cant. Such kind of problem has been referred to as the change-point detection problem

in the statistics literature (Antoch and Jarušková, 2000, Guralnik and Srivastava, 1999).

Specifically speaking, our problem is to detect magnetic storms that evolve in the near-

Earth space environment, from time series magnetic field data sampled sparsely from

restricted locations.

The storm detection problem can be decomposed into three questions,

1. to understand the dynamics of the magnetic storms in the external magnetic field

and to identify orbits along which, when sampling the magnetic field along these

orbits, we can pick up the magnetic storm signal;
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2. to summarize the changes in the time series magnetic field data generated along

selected satellite orbits and to consider appropriate change-point detection meth-

ods for recognizing the changes in the near-Earth magnetic field along the satellite

orbits;

3. to apply prospective detection algorithms to the simulated spatio-temporal mag-

netic field data with the goal of identifying the storm onset as accurately and

quickly as possible.

Each of the above question will be addressed in the following sections accordingly. Ques-

tion 1 will be answered in the simulation study of the external magnetic field in Section

5.2. Question 2 will be discussed in Section 5.4, preceded by a review of change-point

methods in Section 5.3. The review provides a statistical framework for performing

change-point detection in two settings, namely using the batch detection method and

the sequential detection method. In batch detection, the dataset for the entire observa-

tional time period is available whereas in sequential detection, new observations will be

received one at a time. Question 3 will be investigated in Section 5.5 through comparing

the results of change-point detection with different approaches based on sensible criteria.

Summary of the chapter in Section 5.6 will include:

1. types of satellite orbits that are likely to capture the storm-time behaviour in the

external magnetic field;

2. typical features of the storm-time behaviours as observed along the satellite orbits;

3. a discussion of detection methods for recognizing the changes in the external mag-

netic field along the satellite orbits and their application on simulated and real

magnetic field data.

5.2 Simulation study on the external magnetic field

It has been explained in Chapter 2 that the magnetic field in near-Earth space can

be viewed as the sum of an internal magnetic field and an external magnetic field,

with the former being invariant to solar sources and the latter answering to the solar-

terrestrial interaction. Space weather is engendered by the solar-terrestrial interaction
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in the external magnetic field and conditions of space weather, either being stormy or

quiet, can be characterized through the behaviour of the external magnetic field. Hence

understanding the storm-time behaviour of the external magnetic field is a crucial step

in detecting magnetic storms in near-Earth space.

This section focuses on extracting the storm patterns of the external magnetic field using

the T96 model. The T96 model, as introduced and calibrated in Chapter 2 and 4, is a

physics-based empirical model that produces reliable estimates of the external magnetic

field given real-time space weather parameters. The space weather parameters used in

the T96 model include observations of the solar wind and the magnetic field in interplan-

etary space and the storm-disturbance level on the surface of the Earth. The solar-wind

ram pressures and the y- and the z-components of the IMF, measured by satellites,

together with the Dst index derived from ground-based observatories, parametrize the

T96 model for constructing the external magnetic field based on physical equations and

past observations in near-Earth space. We reconstruct the external magnetic field under

selected magnetic storm events to visualise the spatio-temporal variations in the external

magnetic field.

5.2.1 Global simulation

We start with a global simulation of the T96 model under five pre-defined storm events

on a global scale; i.e. near-Earth space encompassing most of the Earth’s magnetosphere.

The five events are major magnetic storms that occurred from 2003 to 2005. In 2003,

there were two storms in May and October, lasting from 4 to 8 days. The simulation

results of all these events look similar in terms of the external magnetic field variations

and an example of the 2003 May storm is presented in Figure 5.1 and 5.2. These figures

provide the magnetospheric configurations at different time points, i.e. by displaying

time-varying contour plots of the z-component of the external magnetic field on the x-y

plane in the GSM coordinates frame.

Figure 5.1 shows the contrast between the field configuration at one time point before

the onset of the storm (bottom left panel) and the field configuration at another time

point when the storm is in progress (bottom right panel). The time points at which

the two field were simulated are indicated by the vertical lines in the time plots of the

space weather parameters shown on the top panels. The top three panels on the left
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and right columns show the time plots of the T96 model input parameters, the Dst

index, the y- and z- components of the IMF, and the solar wind ram pressure. These

parameters become disturbed and the Dst index in the top panels drops below −100

when the main phase of the magnetic storm starts. Figure 5.2 shows the gradual changes

in the field configuration over the x-y plane throughout the entire storm period. Each

panel corresponds to a time point and the time point increases by hour. The panels are

arranged in time order from left to right and then top to bottom.

The contour plots in Figure 5.1 and 5.2 have the same resolution and scale. The x-axis

ranges from −35 to 15 rE and the y-axis ranges from −25 to 25 rE . The x-y plane

was chosen to cover the magnetopause and part of the magnetotail, and the magnetotail

extends to over 100 rE . The Earth, which is not shown on the plots, should sit at the

place where the vertical and horizontal dashed lines intersect. The boundary of the

magnetosphere is visible in each panel, and the magnetospheric configuration changes

throughout the storm periods. The stand-off position, i.e. the distance between the

boundary at the magnetopause on the day-side and the centre of the Earth, ranges from

about 6 to 10 rE . The magnetopause stand-off distance is important as it determines

the size of the magnetosphere. The problem of identifying the location of the magne-

topause was briefly reviewed by Pudovkin et al. (1998). The T96 model attributed the

Earthward displacement of the magnetopause to variations of magnetospheric currents

rather than simply the solar wind pressure and the southward IMF, which trigger mag-

netic reconnection at the magnetopause and subsequently erode the magnetic field on

the day-side (Tsyganenko and Sibeck, 1994, Tsyganenko and Stern, 1996b).

The comparison of the before-storm and the storm-time configurations in Figure 5.1

shows that the magnetosphere gets compressed and the ring current region, as indicated

by the blue area between 3 and 5 rE , becomes distinct, during the magnetic storms. The

hourly configuration in Figure 5.1 reveals the spatial variations of the storm process.

Similar patterns have been obtain for other storm periods, and hence the description

given above is considered as typical storm-behaviours in the external magnetic field.

This suggests that magnetic storms are more likely to be recognized in the ring current

regions.

We also investigated what happens in the external magnetic field when the space weather

condition is absolutely quiet. The absolute quiet condition is defined as when the space
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weather parameters have constant values close to those of the average quiet condition

over a time period. We fix the space weather input parameters in the T96 model to their

annual average, since storms rarely occur and the space weather condition is quiet for

most of the year, and simulate the external magnetic field with these fixed parameters

for an extended time period. The external magnetic field appears steady in the GSM

coordinate frame under absolute quiet conditions, since fixed input parameters generate

fixed output from the T96 model. In other words, the only magnetic field variation in

simulation study that we present in this chapter come from the variation in the space

weather parameters.

Running the T96 model simulation with real-time space weather parameters for extended

time periods shows that there are variations in the external magnetic field during time

periods which are not characterized as major storms. Major storms, as mentioned in

Chapter 1, are indicated by the Kp index greater than 8 or the Dst index less than

−100. These two selection criteria (Kp or Dst index) can be used interchangeably as

they identify the same major storms. The non-storm variations in the external mag-

netic field do not appear to be as distinct as storm-time variations, i.e. there are no

strong variations in the ring current regions, but the regions are still recognizable from

the changing boundary of the magnetosphere. All these external field variations are re-

sponses to the input space weather parameters and so the minor variation are probably

related to substorms rather than major geomagnetic storms, since disturbances in the

field have multi-scale features. The occurrence of sub-storms is thought to be indepen-

dent from the occurrence of magnetic storm, however, the substorms are more frequent

and stronger during the main phase of magnetic storms.
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5.2.2 Orbital simulation

Space weather monitoring differs from other environmental monitoring problems in that

the magnetic field monitoring sensors, instead of being placed at fixed locations, are

carried by Earth-orbiting satellites. So far there are a limited number of satellites that

carry magnetic field sensors and the satellites are investigating a small fraction of space,

hence the time series arising from the in-situ satellite measurements of the magnetic field

are not enough for us to study in any detail the time-varying behaviour of the magnetic

field across different regions of space. Therefore estimates of the external magnetic

field, produced along various satellite orbits from the T96 model, substitute for real-

time satellite observations. Generating T96 model outputs along feasible satellite orbits

under pre-defined magnetic storm periods allows us to extract storm patterns along

these orbits.

An elliptical satellite orbit can be determined by five orbital parameters, a the semi-

major axis, e the eccentricity, and three angular parameters that define the orientation

of the orbital plane in the reference frame, namely i inclination, Ω longitude of the

ascending node, and ω argument of periapsis. We first use the a and e to determine

the size and shape of the orbits in a 2-D plane, with the restriction 0 < e < 1 and then

through a rotation matrix with the angular parameters we convert the 2-D orbit to 3-D

orbit in the Geocentric Inertial GEI system. The position vector of a satellite at time t

within an orbit parametrized by the five orbital elements can be derived from a set of

equations. These equations define a position along an orbit through three anomalies.

The three anomalies include the true anomaly θ denoting the angle between the position

vector of the satellite and the position vector at perigee, the mean anomaly M given by

the constant angular speed, and an auxiliary parameter referred to as the eccentricity

anomaly E (Tsui, 2005). The mean anomaly M can be calculated by the formula

M = n(t − t0), where n denotes the angular speed required for a satellite to complete

one orbit (n = 2π
T where T is the orbital period) and t0 denotes the initial time. Kepler’s

Equation 5.1 relates the mean anomaly M to the eccentric anomaly E,

M = E − e sinE, (5.1)
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where e is the eccentricity. Since this equation does not have a closed-form solution

for E given M , the eccentric anomaly E is usually solved by numerical methods such

as the Newton-Raphson method (Curtis, 2013). The true anomaly θ and the eccentric

anomaly E are related in Equation 5.2,

cos θ =
cosE − e

1− e cosE
. (5.2)

Figure 5.3 shows an example of the relationship among the three anomalies, as a function

of the time in hours from the perigee, in a particular orbit.
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Figure 5.3: Time plots of the anomalies

An orbit must have a perigee altitude greater than the Earth radius plus the atmosphere

(7380 km) and an apogee altitude less the Earth-Moon distance (384, 000 km), thus con-

straining the values of a and e. In the emulation, we choose a from (1.16, 60) rE , with

the interval of 3 rE , and e from (0, 1) in steps of 0.1, then run the test for orbital

constraints with all possible combination of a and e, and finally end up with 127 2-D

orbits. Figure 5.5 shows an example of 16 orbits with different a and e. The black dots

represent the positions at a time interval of one hour and the red dots track the position
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of the satellites in these orbits. Panel (a) shows the initial positions, as indicated by the

red dots, of 16 satellites in the 16 orbits and Panel (b) shows the satellite positions after

several hours. The two panels confirm that satellites are moving on different path in

different orbits. The bottom panel of each plot with high eccentricities, e = 0.6 or 0.8,

shows that the hourly sampling is more sparse in space around the perigee, as satellite

moves faster at perigee.
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Figure 5.4: Plots of the speed and the flight path angle of a satellite with a particular
satellite orbit with a = 20rE and e = 0.8 as a function of time.

Figure 5.4 plots the speed and the flight path angle, (i.e. the angle between horizontal

and the velocity vector for describing whether the satellite is ascending or descending),

of a single satellite with a = 20rE and e = 0.8 against time for over an orbital period.

This demonstrates that the speed and the flight path angle are not constant in time.

The 127 orbits are converted into 3-D GEI system by a rotation matrix. The three

angular parameters can vary from (0, 2π) and each takes the values of 0, 2π
3 , 4π

3 . The

selection of angular parameters roughly split the space into a few quadrants. Further

analysis will take more values in quadrant of interests. With the rotation, there are

127× 27 = 3429 different orbits.
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Given time, position, and space weather parameters, we simulate the magnetic field

along each orbit in the GSM system. T96 model outputs are obtained as time series

data for each orbit. The T96 model is simulated under both real storm condition with

time-varying space-weather input parameters and averaged quiet condition with fixed

space-weather input parameters to allow comparison of storm and non-storm conditions.

The internal field IGRF model is not in use for analysing magnetic storm features since

the IGRF model is invariant to space weather condition. If given real-time satellite

observations, this invariance can be handled by subtracting the IGRF outputs the from

the observed magnetic field data, since Chapter 4 showed that IGRF model provides

accurate and reliable estimates of the internal magnetic field. Hence removing the con-

tribution from the internal magnetic field from the total magnetic field allows us to focus

on variations in the external magnetic field for the detection of magnetic storms.
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Figure 5.6: T96 model simulation along satellite orbits. The left panels provide
contour plots of the magnetic field strength of the z-component on the GSM x-y plane.
The right panels provide time plots of the z-component field strength as obtained along
two orbits labelled as 1 and 16. The starting positions of the two orbits are indicated
by the black dots in the contour plots. The top and the bottom panels contrast the
T96 outputs, in both the contour and the time plots, generated under storm and quiet

conditions.

Figure 5.6 left panels show snapshots of T96 model z-component under real storm (top)

and quiet (bottom) conditions and right panels give time plots of T96 z-component

along two orbits, with real on top and quiet at the bottom. It can be observed that

under quiet condition (bottom panels), there are cyclic patterns in the time series of the

z-component of the T96 model outputs as introduced by the motion of sampling. The

data simulated under the real storm condition (top panels) is more disturbed compared

to the data simulated under the averaged quiet condition.
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Figure 5.7 shows more time plots of the magnetic field data simulated along different

satellite orbits under the real storm and averaged quiet condition. The black line repre-

sents the magnetic field data under the real storm condition and the blue line represents

the magnetic field data under the quiet condition. The shaded regions show the time

span of the magnetic storm, as defined by the geomagnetic indices Kp and Dst. The

sixteen orbits have the same angular parameters but different size and shapes. The

values of the eccentricity e and the semi-major axis a are added on top of each plot. In

the right column when a = 20rE , the black lines and the blue lines overlap. This suggest

the storm data does not deviate significantly from the quiet data along these orbits. In

other columns when a = 5, 10, 15rE , the black lines deviate from the blue lines in the

shadowed regions, however, the pattern differs when the distance from the satellite to

the Earth increases. In the left column when a = 5rE , there are cyclic patterns in the

magnetic field data. This is because when the semi-major axis of the orbit is small the

orbital period that depends on the semi-major axis shortens so that the satellite orbits

around the same regions repeatedly during the storm time. The eccentricity e also has a

slight effect on the magnetic field data comparing the time series patterns in each rows.

Figure 5.8 provides the time plots of the difference between the storm magnetic field

data and the quiet magnetic field data. The time series represents the deviation of the

magnetic field from its quiet status as sampled along the orbits.
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We extend our study of the time series patterns to the magnetic field data along the

satellite orbits with different angular parameters, and then summarize the storm features

along different orbits. It has been found that the magnetic storm pattern along equatorial

satellites orbits, i.e. orbits whose inclination with respect to the equatorial plane is

nearly zero, is more obvious than the polar orbits, i.e. orbits in which a satellite passes

above or nearly above both poles of the Earth. This could be explained by the facts

that the ring current sits in the equatorial region and the storm effects on the magnetic

field mostly comes from the intensification of the ring current. Hence sampling along

equatorial orbits capture the storm signal better than sampling along the polar orbits.

5.2.3 Summary of storm features in the external field

We now summarize the simulation process from the T96 model. Estimates of the external

magnetic field can be generated by the T96 model given a time point, a location vector

and a collection of input space weather parameters. In our simulation, we take the

annual average of the space weather parameters as the inputs for the T96 model to

generated estimates of the external field under quiet space weather condition.

Since the external magnetic field BE responds to the time-varying space weather con-

ditions and appears steady in the GSM frame under quiet conditions, we expect to see

disturbances in BE that reflect changes in the space weather condition. It is known

that disturbances in BE have multi-scale features and are direct results of global mag-

netic reconnection and the ring current intensification, which happens both in magnetic

storms and sub-storm. Estimates of BE can be produced from the Tsyganenko model

given a number of parameters. Let t denote the time in hours, s denote the position

vector in the GSM frame, and O denote the orbital function that governs the motion of

the sampling and maps the time to the space, s = O(t). The two sets of space weather

parameters are the real-time condition θt and the average-quiet condition θ̄.

Along each orbit O at time t, we obtain

dBt = BE(t,O(t),θt)−BE(t,O(t), θ̄),

where dBt denotes the deviation of the external magnetic field under real condition

from the field under averaged quiet condition at time t and at location O(t). dBt =
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{dBxt, dByt, dBzt} the magnetic field data are vectors that have three components in the

GSM frame, and each component is a univariate time series of magnetic field strengths

deviations in the x-, y- or z-components.

We manipulate the orbital function O through changing the orbital parameters in the

trajectory equation so that the external magnetic field is sampled along the orbits in

various different regions. The angular parameters in the orbital function were chosen to

attain equatorial orbits, and the eccentricity is set to be around 0.8 so that the orbits are

not highly elliptical. Then we compare storm features along satellite orbits that have

different semi-major axes. Figure 5.9 shows the typical behaviour of the orbital storm

features when sampling along relatively low orbits (a = 5 rE). Time plots of dBx, dBy,

dBz are given for two storm periods. The left column shows the plots in the 2003 May

storm and the right column shows the plots in the 2003 Oct storm. Figure 5.10 shows

the orbital storm features when a = 10 rE and Figure 5.11 shows the the features when

a = 15 rE .

Figure 5.9: Time plot of dBx, dBy, dBz in two storm periods along orbits with a = 5
rE . Units of the y-axis are nT .

These plots suggest that the storm features of the two storms are along the same orbits

in the same components. The level of disturbances in the 2003 Oct storm is higher than

that of the 2003 May storm, and the changes in the 2003 Oct storm time series signals
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Figure 5.10: Time plot of dBx, dBy, dBz in two storm periods along orbits with
a = 10 rE

Figure 5.11: Time plot of dBx, dBy, dBz in two storm periods along orbits with
a = 15 rE

have larger scale and are more obvious than the changes in the 2003 May storm signals,

especially in the high orbit with a = 15 rE . As for cross-orbit comparison, the low

orbits with a = 5 rE displays the patterns that are different from those of high orbits.



Chapter 5. Detecting magnetic storms in space 129

Figure 5.9 shows that along the low orbits the x- and y- components have mean zero and

change in variance, and the z-components have values that drop below zero and than

recover to their original levels. Figure 5.10 and Figure 5.11 show that along the higher

orbits, there are peaks and troughs in all three components, and that the pattern differs

in the two storm periods. The right column of the 2003 Oct storm exhibit repetitive

patterns whereas the left column of the 2003 May storm only has a single pattern. Since

these high orbits are not passing through the ring current region that has a distance of

3-5 rE from the Earth, the signals picked up by these orbits are possibly signatures of

magnetic reconnection which was happening in a broad region. The repetitive patterns

in the October 2003 storm could be the results of multiple substorms within the major

magnetic storm, as substorms tend to be more frequent and stronger during the main

phase of magnetic storms.

Based on the typical features observed along satellite orbits during magnetic storms, we

now consider detection methods that recognize the changes in the magnetic signal along

the orbits. A review of change-point detection methods follows in the next subsection.

5.3 Review of change-point detection

Time series data describes temporal variations in a system or an environment, and such

variations can be systematic and non-systematic. In environmental science, systematic

change mostly comes from the intrinsic behaviours environment while non-systematic

change comes from effects external to the environment. Change-point detection has

been developed to recognize non-systematic changes in time series. The times at which

non-systematic changes occur are regarded as change points and the change points, once

detected, then can be associated with external events. In our study of space weather, we

obtained the deviation of the external magnetic field from its quiet state as a time series

and explored the magnetic storm patterns that are present in these time series. We

aim to look for changes in the magnetic field time series signals for detecting magnetic

storms as early and quickly as possible. This requires the use of change-point analysis.

In this section, we provide a review of change-point detection methods relevant to our

problem.
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5.3.1 The problem settings

Change-point detection problem first appeared in quality control for detecting a change

from the in-control to the out-of-control state given time-indexed observations. The

early problem is originated in the work of Page (1955), Shiryaev (1963), and Lorden

(1971). Change point detection in a sequence of random variables was first proposed by

Page (1954). Subsequent investigations are in Hinkley (1970). More generally complete

theoretical optimality results about the likelihood approach to change detection are

obtained in Deshayes and Picard (1985). Csörgö and Horváth (1997) provided a review

of the earlier probabilistic methods for detecting various types of possible changes in the

distribution of time-dependent observations.

Methods of change-point detection have been developed for different purposes, e.g.

analysing, monitoring, and forecasting, in various disciplines, such as finance, engineer-

ing, genetics, and environmental sciences. The general problem of change point is to

investigate whether the pattern of a time series change over time. In discrete time series,

the problem can be formulated as follows: Let {x1, x2, · · · , xn} be a sequence of variables

with probability distribution {F1, F2, · · · , Fn}, respectively. The change point problem

tests the null hypothesis H0 “no change points” versus the alternative hypothesis H1:

“there exists a change point”, by testing more formally

• H0 : F1 = F2 = · · · = Fn, versus

• H1 : F1 = · · · = Fk 6= Fk+1 = · · · = Fn

where k (1 < k < n) is the location at which the change point occurs. The change-point

k is often assumed to be unknown and various statistical tests of the null hypothesis H0

against the alternative H1 for some k > 1 have been suggested. In this framework, the

problem is to evaluate if probability distributions from which data in the two intervals are

generated differ from each other and to estimate the time point k if the two distributions

are significantly different.

In the case where there is more than one change point, the problem becomes the fol-

lowing: Let {x1, x2, · · · , xn} be a sequence of variables with probability distribution

{F1, F2, · · · , Fn}, respectively. The change point problem tests the null hypothesis H0

“no change points” versus the alternative hypothesis H1: “there exist m change points”
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• H0 : F1 = F2 = · · · = Fn, versus

• H1 : F1 = · · · = Fk1 6= Fk1+1 = · · · = Fk2 6= Fk2+1 = · · · = Fkq 6= Fkq+1 = · · · = Fn

where 1 < k1 < k2 < · · · < km < n, and m is the unknown number of change points and

k1, k2, · · · , km are the respective unknown locations at which change points occur.

The change-point detection methods that involve testing and estimation procedures in

statistics can be classified in different ways. The problem can be split further into

single change-point or multiple change-point detection as illustrated above. There are

classical and Bayesian approaches for dealing with data that are discrete or continuous

in time. Also different assumptions such as the time series being stationary or non-

stationary can be made for detecting change-points in the time series. Furthermore, the

problem can be expressed as a parametric or non-parametric statistical problem. More

importantly, the analysis of change-points can include retrospective analysis in which

cases all observations are given at one time and sequential analysis when observations

are given one at a time.

• Retrospective analysis is also called batch or offline detection. Given a fixed num-

ber n of observations, we test the hypotheses for θi the unknown parameters,

H0 : Xi ∼ F0(x; θ0), i = 1, · · · , n, versus

H1 : Xi ∼


F0(x; θ0), i = 1, · · · , k

F1(x; θ1), i = k + 1, · · · , n

• Sequential analysis, also named online detection, is as follows. When new obser-

vations are received, xt for t ∈ {1, 2, · · · }, we obtain Dt, the test statistics, for

{x1, · · · , xt} and choose ht the threshold. If Dt > ht, a change-point is detected;

if not, Dt+1 is computed with a new observation xt+1 and is then compared with

the threshold ht+1. The threshold is chosen to guarantee a constant false positive

detection rate. Hence under the null hypothesis that there is no change-point in

{x1, · · · , xt} , the threshold ht satisfies the following

P (D1 > h1) = α

P (Dt > ht|Dt−1 ≤ ht−1, · · · , D1 ≤ h1) = α, t > 1.
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where α is the probability of false positive detection. This means that, on average,

a number of 1/α observations will be received before the detection method falsely

rejecting a true null hypothesis. The quantity 1/α is known as the average run

length (Ross, 2014).

Offline algorithms consider the entire data set at once, and look back in time to recog-

nize where the change occurred, without constraint on the run time. Online detection

algorithms run concurrently with the process they are monitoring, processing each data

point as it becomes available, with a goal of detecting a change point as soon as possi-

ble after it occurs, ideally before the next data point arrives (Downey, 2008). In both

cases, the aims of change-point detection are detecting true change-points (sensitivity)

and avoiding false detection (specificity). Online change point problems have been pre-

sented in statistical quality control, public health surveillance, and signal processing

(Mei, 2006). The problem is well understood and has been solved under a variety of

criteria. Some popular schemes are Shewhart’s control charts (Shewhart, 1931), moving

average control charts, Page’s cumulative sums of squares (CUSUM) procedure (Page,

1954) and the Shiryayev-Roberts procedure (Shiryaev, 1963). Inclan and Tiao (1994)

used the CUSUM for retrospective detection of changes of variance under the assumption

of independent normal distribution.

Recent contributions to the change-point problem are summarized as follows. Kawahara

and Sugiyama (2012) presented a non-parametric approach to detecting the change of

probability distributions of sequence data, estimating the ratio of probability densities.

Adams and MacKay (2007) implemented a Bayesian online approach. Aminikhang-

hahi and Cook (2016) reviewed recent advances in online detection methods, including

parametric, non-parametric, Bayesian, and non-Bayesian, and categorized the methods

into supervised and non-supervised. In a multi-sensor situation, there are structured

and unstructured problems. For structured problems there exists a profile determining

the relative magnitudes of the changes observed by different sensors, according to their

distance from the location of a signal. Mei (2006) proposed a multi-sensor procedure

based on sums of the CUSUM statistic from individual sensors. The procedure fails to

be asymptotically optimal when the specified distributions are incorrect. Tartakovsky
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and Veeravalli (2008) proposed a different procedure that sums the local likelihood ra-

tio statistics before forming CUSUM statistics, assuming that the change-point is ob-

served by all sensors. Xie and Siegmund (2013) develops a mixture procedure using the

generalized likelihood ratio in the case of an unknown subset of affected sensors and

incompletely specified post-change distributions, under the assumption the individual

observations are independent and normally distributed with unit variance, and that the

changes occur in their mean values.

5.3.2 Change-point problem in environmental science

In environmental sciences, Jaruskova (1997) provides a review of change-point methodol-

ogy with a discussion of typical features in environmental data, including seasonality. For

finding systematic changes in the mean under the assumptions of independent normal

distribution, Jaruskova argued that seasonality and skewed distribution can be reduced

by averaging or taking the quotient or difference of the reference series, and dependence

in the form of an ARMA model can be dealt with by incorporating the spectral density

of the corresponding ARMA process in the test statistics for change-point detection.

Kim (2000) derived a statistics for testing changes in ARMA model parameters.

Reeves et al. (2007) compares methods for detecting undocumented change points in

climate data series under the same assumptions that the series are homogeneous and

can be adequately described by a regression equation with i.i.d. Gaussian errors, or

that the series has at most one change point. The standard normal homogeneity (SNH)

test and its parametric and non-parametric variants were compared. The non-parametric

variants of the SNH test remove the effects of outliers by applying parametric procedures

to the relative ranks of the data rather than directly to the observed data. Two-phase

regression (TPR) models and their two recent versions were introduced. The original

form of TPR proposed by Hinkley (1970) then applied by Solow (1987) has the drawback

that the model allows change in slope, i.e. the coefficient parameter in the TPR, but

fixes the mean with a continuity constraint, causing inaccuracy of the percentiles of

the test statistics under null hypothesis. Lund and Reeves (2002) improved the model

by allowing change in both mean and slope and presented simulated critical values of

the test statistics that enable one to reach statistically valid conclusions. Wang (2003)

noted the likelihood ratio model may be unrealistic in climate setting and modified the
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model by assuming no trend. Two hierarchical methods and two information approaches

were also mentioned in the review. The study used four measures of model adequacy to

compare the detection methods. Reeves concluded that incorporating a good reference

series, when available, can boost change point detection power, non-parametric and

parametric change point procedures can be used in tandem for dealing with outliers,

periodicities can be easy to remove but autocorrelation would result in false detection.

According to Reeves et al. (2007), the common trend TPR and and Sawa’s Bayes criteria

procedures seen optimal for most climate time series, whereas the SNH procedure and

its non-parametric variant are probably best when trend and periodic effects can be

diminished by using homogeneous reference series.

Lund et al. (2007) modified classical change-point test to take into account autocorrela-

tions and periodicities for testing undocumented change-point (mean change) in climate

data. Methods started with detecting changes in the mean of a sequence of independent

random variables and were then extended to dependent sequences. Gombay (2008) used

test statistics based on the efficient score vector for detecting changes in AR model pa-

rameters. Spokoiny (2009), based on the assumption of local homogeneity, offered a new

approach to modelling and forecasting of non-stationary time series with applications to

volatility modelling for financial data. Verbesselt et al. (2010) demonstrated the pheno-

logical change detection ability of a method that integrates the decomposition of time

series into trend, seasonal, and remainder components for detecting change. Beaulieu

et al. (2012) reviewed the detection methods for climate science and gave a detailed ex-

planation of change-point methodology based on the information approach and provided

an extension to take into account mth-order autocorrelation in the detection of a shift

in the mean and of a shift in the coefficients of a simple linear regression, and to detect

a shift in the mean and in the autocorrelation.

5.4 Prospective methods for storm detection

Various change-point detection algorithms have been implemented in different R pack-

ages. The R package changepoint by Killick and Eckley (2014) provides methods

for retrospectively detecting multiple and single change points using different search

methods in a likelihood based framework. The cpm package by Ross et al. (2013) in-

cludes parametric and non-parametric methods for both batch and sequential detection
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of changes in mean or variance. The framework of the change point model used in the

package is based on the work of Hawkins et al. (2003), Hawkins and Zamba (2005),

Hawkins and Deng (2010), Ross et al. (2012), and Ross (2014). The parametric meth-

ods in the package are for sequences with a known distribution, including Caussian,

Bernoulli, and Exponential distribution. Non-parametric change detection is for non-

Gaussian sequences or sequences whose distributional forms are unknown. The bcp

package by Erdman et al. (2007) implemented a Bayesian approach for change point

problem. The difference between Bayesian and frequentist procedures for change point

analysis was that frequentist approaches estimate specific locations of change points and

Bayesian approaches estimate the probability of a change point at each data point in a

time series.

Our analysis of the time series magnetic signal involve the use of the changepoint

package and the cpm package. We start with a retrospective single change-point de-

tection using the general likelihood ratio based approach implemented in changepoint

and then move on to online detection using various different approaches in cpm. These

methods will be presented in this section.

5.4.1 Batch detection methods

In the changepoint package, the general likelihood ratio (GLR) tests were implemented

for batch detection of change in mean, variance, and both.

Let {x1, x2, · · · , xn} denote a sequence of variables. Assuming there is a single change-

point τ , τ ∈ {1, 2, · · · , n− 1}, that divides the sequence into two segments, {x1, · · · , xτ}

and {xτ+1, · · ·xn}, let θ0 and θ1 denote the parameters for the two segments. If there is

no such change-points, let θ denote the parameter for the original sequence.

The maximum log-likelihood for a given τ can be written as

ML(τ) = log p(x1, · · · , xτ |θ̂1) + log p(xτ+1, · · ·xn|θ̂2),

where p(.) is the probability density function and θ̂1 and θ̂2 are the two estimated

parameters. The test statistic is given by

λ = 2
[

max
τ1

ML(τ)− log p(x1, x2, · · · , xn|θ̂)
]
,
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where max
τ1

ML(τ1) is the maximum evaluated at all possible change-point locations.

For a chosen threshold c, we reject the null hypothesis if λ > c and estimate τ̂1 that

maximizes ML(τ1) as the detected change-point.

Hinkley (1970) first proposed this GLR-based approach and derived the asymptotic

distribution of the likelihood ratio test statistics for a change in the mean for time series

data that follows a normal distribution. Gupta and Tang (1984) extended the approach

to detect change in variance for normally distributed data. Eckley et al. (2011), Silva

and Teixeira (2008) provided more comprehensive review of this approach. Discussion

of the choice of c can be found in Birgé and Massart (2007), Chen and Gupta (2011),

Guyon and Yao (1999), Lavielle (2005).

5.4.2 Sequential detection methods

In the cpm package, parametric and non-parametric tests were implemented for se-

quential detection. The parametric methods for data with Gaussian distribution, i.e.

normally distributed data, include the following. The GLR can be used detect both

change in mean and variance. The Student-t test is for detecting change in mean and the

Bartlett’s test (Sokal and Rohlf, 1969) for detecting change in variance. Non-parametric

methods come into use when no assumption are made about the distribution of the

data. These include the Mann-Whitney, Mood, and Lepage statistics for detecting loca-

tion changes, scale changes, and location and scale changes (Hawkins and Deng, 2010,

Ross et al., 2011).

Here we present the parametric Bartlett’s test under Gaussian assumption and its non-

parametric equivalence Mood test. The Bartlett’s test was first proposed to test if k

samples have equal variances. Let {X1, · · · , Xk} denote the k samples that follow normal

distribution and have the variances {σ2
1, σ

2
2, · · · , σ2

k}

H0 :σ2
1 = σ2

2 = · · · = σ2
k

H1 :σ2
i 6= σ2

j i, j ∈ {1, 2, · · · , k}

The test statistic is given as

T =
(N − k) ln s2

p −
∑k

i=1(Ni − 1) ln s2
i

1 + (1/(3(k − 1)))((
∑k

i=1 1/(Ni − 1))− 1/(N − k))
(5.3)
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where s2
i is the variance of the ith group, N is the total sample size, Ni is the sample

size of the ithe group, k is the number of groups, and s2
p is the pooled variance, s2

p =∑k
i=1(Ni − 1)s2

i /(N − k).

The Mood test statistic for a sequence of variables {X1, X2, · · · , Xt} can be written as

Dk,t =

k∑
i=1

(Ri − (n+ 1)/2)2, (5.4)

where Ri is the rank of Xi within X1, X2, · · · , Xt.

The Kolmogorov-Smirnov (KS) and Cramer-von-Mises (CvM) statistics are for detecting

arbitrary changes (Ross and Adams, 2012). Data are partitioned into S1 = {X1, · · · , Xk}

and S1 = {Xk+1, · · · , Xt} if there is a change-point at k and have the empirical distri-

butions,

F̂S1 =
1

k

k∑
i=1

I(Xi ≤ x)

F̂S2 =
1

t− k

t∑
i=k+1

I(Xi ≤ x)

where I(Xi ≤ x) is the indicator function that has the following form,

I(Xi ≤ x) =


1 if Xi < x

0 otherwise.

The KS statistics can be written as

Dk,t = sup
x
|F̂S1(x)− F̂S2(x)|, (5.5)

and the CvM statistics is given by

Wk,t =

ˆ ∞
−∞
|F̂S1 − F̂S1 |2dFt(x). (5.6)
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5.5 Application to the magnetic data

Our initial impression from the T96 model simulation was that the orbital time series

magnetic field data exhibit different storm pattern in its x-, y- and z-components. The x-

components, {dBxt} for t ∈ {1, 2, · · · }, have constant mean zero and change in variance

during the selected storm period; the y-components {dByt} also have change in vari-

ance but variation in their mean values throughout the storm period; the z-components

{dBzt} display a pattern that resembles the variations in the Dst index, which behaves

like a sharp decrease followed by a slow recovery and could be regarded as an arbitrary

change or a change in both mean and variance.

In this section, we starts with retrospective analysis using the GLR approach for de-

tecting the changes in mean, variance, and mean and variance of the data in the three

components. The detection results would give information on the type of changes in

{dBxt}, {dByt} and {dBzt}. Then we perform sequential analysis for the types of

changes determined for data of each component. Comparison of different detection

methods will be made in the sequential analysis.

5.5.1 Identifying types of changes in the data of the three components

Assuming the three sets of time series data {dBxt, dByt, dBzt} are Gaussian, we apply

the retrospective single detection method with GLR from the changepoint package to

the time series data of each storm period. The storm periods are determined by the

ground monitoring based on the Kp and the Dst index. Since the detection methods

look for a single change-point, we expect to see one change-point detected either at the

beginning or the end of each storm period if the change at the beginning is not significant.

Figure 5.12, 5.13, and 5.14 show examples of applying the detection methods for change

in mean, variance, and mean variance for {dBxt, dByt, dBzt} of the 2003 May and the

2003 Oct storms. The figure gives the time plots of the data against the time in hour

and the estimated change-points. The shadowed regions in each plot marked the storm

periods as defined by the geomagnetic indices. The left column in each figure plots

{dBxt, dByt, dBzt} of the 2003 May storm from top to bottom and the right column

plots the data of of the 2003 Oct.
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Figure 5.12: GLR detection for change in mean. The curves represent the time
series magnetic signal of the x-, y-, and z-components (from top to bottom) obtained
along selected orbits during two magnetic storms (left and right). The horizontal lines

indicate the estimated mean values. The shaded regions show the storm periods

Figure 5.12 shows the detected change in the mean assuming there exists a single change-

point in the time series. The horizontal blue lines fitted to each time plot represent the

mean values estimated in each segment. The break points in the blue line indicate where

the changes occur. As shown by the plots on the top panels, there are no changes in

the x-components. The plots on the middle panel suggest there exists a change point

in the y-component during the two storms. The changes were detected about 10 hours

after the onset of the storm. The plots on the bottom panel suggest that changes in

mean were detected in the z-component. The changes take place a few hours quicker in

the z-components than in the y-components, as the z-components reflect the decrease

in the equatorial ring current regions along the particular orbit. The left plot for the

May storm suggests the change was detected just after the onset of the storm, or the

observation of the storm on the ground of the Earth. The right plot for the Oct storm

suggests the change in mean was detected a few hours before the observation of storm

on the ground.
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Figure 5.13: GLR detection for change in variance

Figure 5.14: GLR detection for change in mean and variance
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Figure 5.13 shows the detected change in the variance assuming a single change-point

exists. The vertical red lines indicate the time at which detected changes occur. The

top left plot, the middle left plot, and the bottom right plot of the dBxt, dByt in the

May storm and the dBzt in the Oct storm suggest that the times at which changes

occur in near-Earth space coincide with the time at which storms were observed on the

ground. The top right plot of the dBxt in the Oct storm has change detected before the

observation was made on the ground. In dBzt in the May storm (bottom left) and dByt

in the Oct storm (middle right), the changes were detected more than 20 hours later the

storms happened.

Figure 5.14 shows the detected change in both mean and variance, again with the same

single change-point assumption. Except for the time plot of dByt in the Oct storm

(middle left) in which no change was detected, other time plots suggested a change was

detected at times close to the onset of the storms.

To investigate how the time of detection differs in components, we produce box-plots of

the time of detection in the x-, y-, and z- components of the two storms in Figure 5.15.

The results are obtained from the application of the single change-point detection to all

the orbits emulated in the previous section. The y-axes show the hours in the selected

time periods and the interval between the two red lines in each plot indicates the time

span of the storm. For the May storm, as shown by the plot on the left panel, most of

the change-point detected falls in the time range of the storm but the results differ in

the x-component and the other two components. The plot of the Oct storm on the right

panel suggests there is not much difference across the three components and half of the

change-points detected are prior to the storm onset as observed on the Earth.

Given that the Oct 2003 storm was larger in magnitude and lasted longer than the May

2003 storm, it is reasonable to deduce that the near-Earth magnetic field environment

was more disturbed in the time period when the Oct 2003 storm was about to impact

on Earth than the environment was prior to the May 2003 storm. This might explain

why the changes for the onset of the Oct storm, in general, was recognized earlier in the

time series of the near-Earth magnetic field signals than the changes for the onset of the

May storm.
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Figure 5.15: Boxplots of the time of the detection for the May and Oct storm in 2003

5.5.2 Detecting changes in variance online for data of the x-component

It has been identified in the retrospective analysis that {dBxt}, the time series magnetic

signal in the x-component, has constant mean and change in variance. Here we apply

both the parametric and the non-parametric tests, namely Bartlett’s test and Mood

test, for change in variance to {dBxt} and compare the online detection results.

Figure 5.16 shows the results of the non-parametric Mood test on {dBxt} during the

2003 Oct storm. The test statistic measures the extent to which the rank of each points

deviates from its expected value. Figure 5.17 shows the results of Bartlett test, the

parametric test that assumes equal variance under normality, on the time series data.

The top panel of each figure has the time plot of {dBxt} on the left and the time plot

of the estimate of variance on the left. The bottom panel has the the time plot of the

Kp index. Red vertical lines shown on every plot indicate the change-points detected

from {dBxt} using the two tests. The results suggest a few change-points were detected

during one storm period using the two tests and more change-points are detected using

the parametric test.
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In Figure 5.16, the Kp index time plot shows one out of the six change-points was

detected when the Kp index was high. The space weather condition is considered to be

highly disturbed when Kp > 8. The time plots of the estimate of variance on the top

right panel shows that the first and the second change-points capture a minor increase

in variance, the third and the fourth change-points both mark a sudden increase in the

variance, and the fifth and sixth change-points capture a minor decrease in the variance.

In Figure 5.17, the three time plots of {dBxt}, the estimate of variance, and the Kp

index suggest some of the change-points detected {dBxt} do not correspond to significant

change in either the estimated variance or the storm level observed on the Earth. The

Average Run Length (ARL), the expected time between false positive detections, is set

to be the same with the value of 500, in the two tests. This means a false detection

in every 500 observations. In sequential analysis, false detection rate can be reduced

by increasing the ARL. However, this does not provide an immediate solution to our

problem.

Comparison of the detection results from the parametric Bartlett’s test and the non-

parametric Mood test suggests that the Mood test outperforms the Bartlett’s test in the

online detection of changes in variances for the time series magnetic signals, since some

change-points identified by the Bartlett’s test do not correspond to either a substantial

change in the estimated variance, i.e. change observed in near-Earth space, or a high

Kp value for change observed on Earth, and can thus be regarded as false detections.

As previously mentioned the false positive rate was set to be the same in the two tests,

hence the unsatisfactory results from the Bartlett’s test can be attributed to the fact

that Bartlett’s test is sensitive to departures from normality. This implies that normality

might be a dubious assumption to hold for the time series magnetic data.

As for the results from the Mood test, the beginning and the end of a major disturbance

in {dBxt} seem to be picked up well by two of the detected change-points. However,

minor fluctuations other than the major disturbance have also been identified by the

Mood test. These fluctuations in the time series magnetic signals correspond to small but

noticeable changes in the estimates of the variances and relatively high Kp values (Kp >

6). Therefore, the minor disturbances detected by the online Mood test, though remain

unclear as to identifying the magnetic storm, are considered as non-trivial changes.
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5.5.3 Detecting arbitrary changes online for data of the three compo-

nents

The time series of the magnetic signal in the y- and z-components, do not appear to

have structural pattern, hence we consider the KS and CvM tests for detecting arbitrary

change in the {dByt} and {dBzt}. The arbitrary change tests can also be used for {dBxt}

which clearly has a change in variance.

Figure 5.18 and 5.19 show the online detection results of the CvM test and the KS test

on {dBxt}, {dByt}, and {dBzt} under the Oct storm. Time plots of {dBxt}, {dByt},

and {dBzt} are given from top to bottom in each figure. The red dashed lines in each

plot indicate the change-points that were detected and the black solid lines indicate the

time points at which the change-points were detected. The space between the each pair

of the dashed and the solid lines represent the time delay of detection. The ARL was

set to be 500 in the two tests.

The tests performs well on {dBxt}, the magnetic signal on the x-component. Two

change-points corresponding to the start and the end of the storm were detected. De-

tection with the CvM test has a longer delay than detection with the KS test. For

{dByt}, and {dBzt} there are too many change-points detected and it is hard to as-

sociate the change-points with the storm period. Therefore {dBxt} seems to be more

appropriate for recognizing changes related to the main storm periods. The online de-

tection with the KS algorithm is considered to be better as it produces more timely

detection than the CvM algorithm.
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5.6 Results and discussion

In this chapter, the T96 model is used to generate estimates of the external field under

storm and non-storm conditions for extracting the storm patterns in the near-Earth

magnetic field. Real-time space weather parameters during five storm periods in 2003-

2005 are input into the T96 model for generating the storm-time magnetic field data.

The five storm periods are all major storms but differ in magnitude. The 2003 October

storm is the most severe and the longest among the five storms. Annual averages of

these space weather parameters are used to produce the quiet-time magnetic field data.

Comparison of the storm-time and quiet-time over near-Earth space shows distinct storm

patterns in the equatorial ring current regions during all of the five storm periods. Time

series data are sampled from the storm-time and the quiet-time magnetic fields along

different sets of satellite orbit trajectories. Taking the difference between the sampled

time series data gives time series of external magnetic field deviations along the orbit

trajectories. Visualization of these time series magnetic field deviations suggest storm

patterns are most obvious along orbits that travel through the equatorial ring current

regions. The time series of external magnetic field deviation obtained from T96 model

simulation along satellite orbits exhibit different storm features in its x-, y- and z-

components. Typical features from the ring current crossing orbits can be summarized

as follows. The x-component has a constant mean and change in variance. The y-, and

z- components seem to have patterns other than simply change in mean or variance.

Change-point methods are considered for recognizing magnetic storms in these time se-

ries magnetic field signals in two scenarios for batch detection and online detection. The

batch approach processes data all at once and searchs for single or multiple changes-

points. The online approach possesses data in a sequential manner with the aim of

identifying storm onset as accurately and quickly as possible. In the retrospective anal-

ysis, GLR test is used for detecting single change in mean, variance, or mean and

variance of the time series signals of the x-, y- and z-components. The batch detection

with GLR works the best for detecting changes in variance of the x-component magnetic

signal, since the detected change-points correspond to the time of the magnetic storm

onset as determined by the geomagnetic indices. Comparison of the detection results in

the five storm periods suggests that the detection of the 2003 October storm, which is

the largest among the five storms, works the best, since along most of the select orbits



Chapter 5. Detecting magnetic storms in space 150

the change-points are detected prior to the arrival of the storm onto Earth. In the se-

quential analysis, the parametric Bartlett’s test and the non-parametric Mood test for

detecting changes in variance of the x-components, and two non-parametric tests for

arbitrary changes are applied to the time series magnetic field signal of the all three

components. The online detection for change in variance of the x-component suggests

the non-parametric test outperforms the parametric test, making the assumption of the

parametric test dubious. For arbitrary changes in the x-, y- and z-components, more

change-points are detected in the y-, and z- components than the x-component. Com-

parisons of the two test (KS and CvM) results shows that the online KS test detects the

change-points about 10 hours after the change occurs and the CvM detects the changes

with a longer delay. This is because the CvM test uses a smoothing in the computation

of the test statistics.

To sum up, this chapter tested online detection algorithms that recognise changes as-

sociated with storms in spatio-temporal magnetic field data. The data are obtained as

numerical values of the near-Earth field under different space weather conditions using

a physically-based semi-empirical model, given satellite trajectory data as time and po-

sition inputs. The x-components of the magnetic field data are ideal for recognizing

the major storm periods. The results of detection on the x-components indicates that

for detecting change in scale Mood the non-parametric test outperforms its paramet-

ric equivalence Bartlett test under Gaussian assumption. However, the online Mood

test on the x-components also picked up changes irrelevant to the storm periods. Non-

parametric tests for detecting such as Kolmogorov-Smirnov and Cramer-von-Mises for

arbitrary changes perform well on the x-components as the major storms periods are

picked up by the detected change-points. Two criteria for comparing the detection meth-

ods are the average run length and the mean delay. The average run length is associated

with the false positive rate and is set to be the same in all the tests. Based on the criteria

of the mean delay, we conclude that the Kolmogorov-Simrnov test performs better than

the Cramer-von-Mises test. Based on the detection results, we would be able to consider

physical constraints for optimizing the design of a monitoring network that consists of

a reasonable number of Earth-orbiting satellites in future.
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Conclusion

Space weather describes the changing environment in the Sun-Earth system and has

been characterized as electromagnetic disturbances in near-Earth space. Severe space

weather events such as magnetic storms pose growing risk to our modern society, as they

have the potential of disrupting a variety of technologies that rely on a stable magnetic

field environment. Space weather monitoring and early magnetic storm detection can

be used to mitigate risk in sensitive technological systems.

Magnetic storms, as introduced in Chapter 1, are driven by solar activity such as coro-

nal mass ejections or corotating interaction regions. A general description of magnetic

storms has been given as an intensification of the equatorial ring current, at a distance of

3-5 rE from Earth, in the magnetosphere. The magnetosphere is formed by the interac-

tion between the solar wind and the Earth’s magnetic field and the principle mechanism

that controls the dynamics of the magnetosphere is magnetic reconnection happening

at both the magnetopause, where the terrestrial magnetic field is compressed by the

solar wind on the day-side, and the magnetotail, where the terrestrial magnetic field is

stretched in to hundreds of rE on the night-side. The rate at which magnetic reconnec-

tion occurs in the magnetosphere is closely related to magnetic storms and substorms.

When solar wind drives the interplanetary magnetic field southward, substorm activity

will be enhanced by magnetic reconnection and, if the solar wind last for a prolonged

time period, the substorms can develop into a magnetic storm, during which a noticeable

change in the magnetic field strength occurs in the near-Earth equatorial regions as a
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result of ring current intensification. A quantitative statistical approach has been con-

sidered for studying the spatio-temporal behaviour of the near-Earth magnetic field for

the purpose of monitoring space weather and forecasting magnetic storms. The overall

aim of this thesis has been to develop and use statistical methodologies to investigate the

detectability of magnetic storms in near-Earth space, the environment of which responds

to the time-varying space weather condition.

Data of the near-Earth magnetic field were collected as time- and space-dependent vec-

tors in the GSM coordinate systems, and each vector has three magnetic field strengths

measured in the x-, y- and z-directions of the GSM system. The data were sampled

from the in-situ satellite measurements and the computer model outputs. The Cluster

II mission directed by ESA and NASA launched four identical satellites into similar

elliptical polar orbits in 2001. The initial orbits had perigees around 4rE and apogees

around 19.6rE . These orbits were changing throughout the years, and the four Cluster

satellite provide in-situ measurements of the near-Earth magnetic field at time-varying

locations along their orbit trajectories. The computer model consists of an internal part

that calculates the magnetic field sourced from Earth itself and an external part that

estimates the magnetic field resulted from the Sun-Earth interaction. These magnetic

fields, termed as the internal field and the external field, add up to the total magnetic

field. Numerical estimates of the internal field and the external field are obtained from

the IGRF-11 model and the Tysganenko-96 (T96) model given the times and the loca-

tions as inputs. The IGRF model based on Gauss’s harmonic expansion of a magnetic

scalar potential serves as a seasonal approximation of the internal field in near-Earth

space. A series of semi-empirical Tsyganenko models, including T96, calculate the mag-

netic field contribution from the magnetospheric currents in near-Earth space and are

considered as the best-fit representations for the external field. The IGRF model out-

puts are invariant to space weather conditions whereas the T96 model outputs change

with the input space weather parameters. The time-varying space weather parameters

for T96 model include the solar wind ram pressure, the y and the z-components of the

IMF, and the Dst index. These parameters are the estimated time series of the solar

wind conditions at the magnetopause, i.e. the boundary of the magnetosphere on the

day-side. A detailed description of space weather data sources and the process of col-

lecting magnetic field data from the Cluster satellite measurements, the IGRF model,

and the T96 model for our study of the near-Earth magnetic field was documented in
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Chapter 2.

In this thesis, our work has been devoted to (i) statistical modelling of the near-Earth

magnetic field utilizing the in-situ satellite measurements and the computer model out-

puts for charactering the magnetic field variations and quantifying the biases and un-

certainties in the satellite measurements and computer models; (ii) investigation of

satellite-based sampling strategies for recognizing magnetic storm signals in the near-

Earth space using change-point detection methods for time series data generated along

feasible satellite orbits. This chapter summarizes the main finding of the work shown in

the thesis and their implication for (iii) the construction for a magnetic storm warning

system, i.e. the optimization of the sampling strategies in the near-Earth space given

the physical constraints and the design of satellite-based sensor network to detect and

predict magnetic storm events in space weather.

6.1 Understanding variations in the near-Earth magnetic

field

An exploratory analysis of the in-situ satellite magnetic field observations was conducted

in Chapter 3, in which regression analysis and time series analysis were used to under-

stand the variations in the hourly magnetic field data sampled at time-varying locations

along the Cluster satellite orbits. The trajectories of the Cluster satellite have been

visualized in the GSM coordinate system, in which the satellite orbits have a wobbling

effect and sweep through the space completing a full scan every year. Letting an orbital

function specify the movement of the satellite in space and time, we converted the spatio-

temporal magnetic field into time series data with the spatial information incorporated

into time-varying covariates. The time series of the magnetic field strengths in the x-,

y- and z-directions, observed in the GSM spatial frame, displayed seasonal and cyclic

variations mainly due to the changes in sampling locations over space. Even though the

distances between the Cluster satellites vary over the study period, the magnetic field

measurements from the four different satellites have similar statistical features.

Regression analysis has been applied to the time series of magnetic field strengths for

each direction from the four satellites. We related the satellite measurements to the

internal field IGRF and the external field T96 model outputs in a regression model.
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Results from the regression analysis have suggested that the computer model outputs

explain most of the variability in the observed magnetic field but the residuals from the

regression model appears to be dependent locally in time, indicating that there are small

scale features of the magnetic field that are not captured by the large scale computer

models.

This suggest the use of time series analysis on the residuals to understand the dis-

crepancies between the observed magnetic field strengths and the model outputs. Two

distinctive features in the residuals series is temporal autocorrelation, i.e. the errors

are correlated with their past values, and changing variance. Time series methods for

dealing with autocorrelation and changing variance often require the assumption that

the time series being stationary. Segmenting the regression residuals into orbital resid-

uals, i.e. residuals within each satellite orbit, generates time series which are piecewise

stationary. ARMA models have been considered for the temporal autocorrelation and

ARCH/GARCH models for the changing-variance. The sample ac.f and p.ac.f of the or-

bital residuals have suggested an AR(1) model for capturing the autocorrelation and the

sample ac.f and p.ac.f of squared AR(1) model residuals have suggested an ARCH(1) for

accounting the changing variance. In the presence of missing values, the AR(1) model

for the regression residuals and the ARCH(1) model for the AR(1) model were both es-

timated using a ML approach. The AR(1)-ARCH(1) structure for the regression errors

within each satellite orbits means that the error term is correlated with its past (hourly)

value and has a conditional variance that is also dependent on this past value.

Challenges in the exploratory analysis thus dealt with the space-time dependence and

multi-dimensional structure of the magnetic field data. The temporal resolution of the

magnetic field data is limited by the availability of the space weather parameters for

the T96 model. The multi-dimensional structure refers to the magnetic field vectors

having three field strength components in the x-, y-, and z-directions. Analysing the

time series of the magnetic field strengths in isolation could be limiting since in this

case the field strength of one direction was not allowed to propagate to field strengths

of other directions. In the future, a vector autoregression model could be used to link

the time-series variables together and examine the contemporaneous relationship among

the three time series. This would allow for a more comprehensive comparison between

the observed satellite measurements and the computer model output.
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6.2 Calibrating magnetic field models with satellite mea-

surements

Following the results from Chapter 3, a time-series-based regression model was proposed

in Chapter 4 for quantifying the relationship between the in-situ magnetic field mea-

surements and the magnetic field model outputs. The regression model has an AR(1)-

ARCH(1) structure for its error term, and the AR(1)-ARCH(1) model parameters were

obtained simultaneously using maximum likelihood estimation in the presence of miss-

ing data. The variance-covariance structure of the error term were then parametrized

with the estimated AR(1)-ARCH(1) model parameters. General least square theory

was applied to deal with the autocorrelation and the changing variance identied in the

error term. This method was then used to provide estimates of the regression model

parameters and to construct the confidence interval for the estimates given the variance-

covariance structure of the error term. This time-series-based regression model was fitted

to the magnetic field data of the three directions and across the four Cluster satellites.

The time series of model parameter estimates, by orbit, were then analysed to examine

any long term patterns, variations and associations to storm indices using a mixed-

effects model. In calibrating the computer models against in-situ satellite measurements

across orbits, our primary interest has been to investigate if the reliability of the two

computer model outputs vary across space and if the performance of T96 the external

field model differs under the time-varying space weather conditions. It would be natural

to analyse the regression model parameters estimated from the satellite orbits with

proxy variables for the spatial information contained in the satellite orbits and the space

weather conditions during the time periods of the orbits. For this reason, the spatial

coverage of the satellite orbits were converted into a continuous variable in terms of

the mean orbital distances, and the space weather conditions were categorized into a

factor variable of quiet, moderate, and storm levels based on the geomagnetic indices.

Since the parameter estimates were obtained from the regression models for magnetic

field strengths sampled along four Cluster satellite in three directions, the estimates

were grouped by the satellite numbers, 1 − 4, and the direction labels, x, y, z. These

grouping effects, though not of primary interest, should also be examined in the analysis

of the estimated regression model parameters. Mixed-effects models that includes the

spatial information and the space weather condition as fixed effects and the satellite and
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direction effects as random effects were fitted to the estimates of the regression model

parameters. The random effects were included to accounted for the possible correlation

in error within the groups, which include the four-level satellite groups and the three-

level direction groups nested within each of the satellite groups. In the mixed-effect

models, fixed effect parameters inform on the means given the spatial information and

the space weather conditions while the random effect parameters suggest the general

variability among the satellite groups and the direction groups.

The calibration results have suggested that the IGRF and the T96 model provide reliable

estimates of the internal and the external magnetic fields in general. The performance

of the T96 model did not seem to be affected by the space weather conditions. Hence

we infer that the T96 model can be used to produce reliable estimates of the external

magnetic field at potentially unobserved times and locations. This is critical to under-

standing the general behaviour of the external magnetic field for different space weather

conditions, under different satellite paths than the ones taken by the Cluster mission.

6.3 Detecting magnetic storms in the near-Earth space

Chapter 5 investigated the patterns of magnetic storms in the near-Earth magnetic field

and explored various change-point detection methods for recognizing the occurrence of

a (major) magnetic storm in time series measurements along feasible satellite orbits.

As described in Chapter 4, we explored magnetic storms using a proxy for the external

magnetic field – the T96 model output. Five major storm periods in 2003-2005 has been

identified using the geomagnetic indices Kp and Dst. These storms, though differing in

magnitude, have similar spatio-temporal patterns based on visual analysis of the external

magnetic field from the T96 model run. The storm patterns have been summarized as

gradual changes in the magnetospheric boundary and distinctive variations in equatorial

regions. We emulated satellite orbits along which magnetic field data were sample from

the T96 model under the magnetic storms and the averaged space weather conditions.

This allowed us to make comparison of the storm and non-storm behaviours of the

external magnetic field as observed by satellite at time-varying locations. The results

suggested that time series magnetic field data generated along the same orbits under

both storm and non-storm condition have similar cyclic patterns as a result of the orbital

effects and the time series under storm condition appears to be noisier than the time
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series under non-storm condition. Taking the difference between the storm series and the

non-storm series produced a series that represents the deviation of the external magnetic

field from its quiet status along pre-dened orbits. Change-point statistical procedures

were performed on these deviation series.

The orbits were manipulated so that the external magnetic field could be sampled across

different regions of space. Results of the orbital sampling showed that the storm signals

can be captured by equatorial orbits with a reasonable size and shape. In x-, y- and

z-directions the deviation series captured the storm features differently. In the x- and

y- directions, storms were expressed as changes in the variance, but not in the mean

of the series. In the z-direction both the mean and variance of the deviation series

tended to change when a storm was present. Retrospective and sequential analysis have

been performed using various detection methods on the time series magnetic signals.

In the retrospective analysis where the full time series were given at one time, the

detection of a change in the variance of the x-component outperformed the detection

on the y- and z- components, since the change-points detected from the x-components

in the storm periods corresponded to the onset of the magnetic storms as observed on

Earth well in comparison with the change-points detected from the y- and z-components.

In the sequential detection where new observations were received one hour at a time,

change-points in the x-components were detected in correspondence to magnetic storms.

The detection on the x-component still outperformed the detection on the y- and z-

components in the sense that the change-points detected in the x-components picked

up non-trivial changes for the major storm periods. However, with a delay of about 10

hours, the time of online detection was considered to be a bit late for immediate storm

recognition. Hence further development of detecting algorithm or higher resolution of

magnetic field data would be considered in future work for online detection of magnetic

storms in near-Earth space.

Work in this chapter identified the ring current crossing orbits as the trajectories along

which storm can be easily detected, the x-component as the direction which display

clear storm patterns, and the Kolmogorov-Smirnov test as the detection method most

suitable for recognizing the storms along the selected orbit trajectories. Another impor-

tant finding for the change-point detection results was that for some orbits, usually for

high-orbits under severe storm, there exist repetitive patterns within one storm period.

The repetitive patterns were believed to be associated with the multiple occurrences of
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substorms with a single storm. This conjecture can be validated through comparing the

multiple change-points with substorm indices.

6.4 Discussions and Future work

Contradicting to the conventional idea of focusing the z-component (in the GSM) of the

magnetic field in the study of magnetic storms and substorms, our work has identified

the possibility of recognizing magnetic storms in the x-component of the deviated ex-

ternal field, given time series data collected along equatorial orbits passing through the

ring current regions. Possible extensions to this project include developing detection

algorithm for achieving faster detection, given the orbital storm patterns found in our

study, and a design of satellite network to allow multi-sensor monitoring of the near-

Earth magnetic field along multiple satellite orbits. Faster detection of magnetic storms

would greatly help mitigating the risks of magnetic storms in sensitive technologies, and

can be achieved by refining the detection algorithm, using real-time data of higher res-

olution, or considering multivariable methods that take all magnetic field components

into account. The required network parameters must then be set against what is achiev-

able in terms of sensor quality and satellite numbers, satellite orbits and formations

and satellite communication restrictions to arrive at an optimal sensor network solution.

This can be investigated following the methods present in Chapter 5, by generating time

series external magnetic field signals along simultaneous multi-orbits and optimizing the

online detection of change-points. For application onto real-time satellite data, the dis-

crepancy between the T96 model and the satellite measurement must be dealt with.

As Chapter 3 and 4 suggested, there exists temporal autocorrelation and volatility in

the residuals of the regression model which relates the satellite data to the T96 model

outputs. Therefore the detection methods need to be modified for detecting changes in

the presence of temporal autocorrelation and volatility.

The novelty of thesis lies in the application of change-point methods to spatio-temporal

magnetic field data for magnetic storm detection, which necessitates the statistical cali-

bration of magnetic field models under time-varying space weather conditions. The next

stage of work would consider how, as technology of cube-satellite develops, the knowl-

edge of this thesis could inform design of a network of cube-satellites to efficiently, and

in a likely manner, detect magnetic storms. A very brief review of traditional network
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design follows. Banjevic and Switzer (2004) considered network design of observation

and locations in a spatial domain and presented an example of optimal network design

for measuring maximum temperatures in Mojave desert. Design strategies based on si-

multaneous simulated annealing and sequential point selection algorithms are compared

by using criteria such as minimum estimation variance, maximum conditional variance

and maximum entropy. The process is modelled by a spatial random field, incorporat-

ing prior knowledge and selecting the best subset of points of desired cardinality to best

represent the field in question. Volkmann et al. (2010) showed an example of optimiz-

ing the network in a multi-objective setting using radiation monitoring stations in the

Netherlands and parts of Germany. The network is designed to monitor both routine

and emergency conditions, which requires minimizing prediction error under routine

conditions and maximizing calamity detection capability in emergency cases. The ob-

jective function combined two criteria, namely average kriging prediction error variance

and network detection capability. The study implemented spatial simulated annealing

(SSA) to optimize the monitoring design by iteratively moving stations around and ac-

cepting all designs that improved a weighted sum of average spatial prediction error

and calamity detection capability. The probability with which the worse design were ac-

cepted decreases to zero as iteration goes on. Networks were optimized using a combined

variance-based and simulation approach. Melles et al. (2011) considered the problem

of optimal sensor network design for monitoring precipitation and predicting flash flood

in semiarid region. A small number of rain gauges are used to acquire data on rainfall

depth and spatio-temporal variability of intensity during storm events. Optimizing the

placement of rain gauges by using a multi-criteria strategy consists of three simultane-

ous steps: minimize the residual percent bias, maximize the coefficient of correlation

between the estimated and true mean areal rainfall and minimize the normalized spatial

mean squared error between the estimated and true spatio-temporal rainfall distribution.

By comparing the performance of the optimized rain gauge network against randomly

designed network, the paper concludes that the multi-criteria strategy provide a robust

design.

Overall these classical designs deal with fixed monitoring locations, however, the mag-

netic storm problem must address sensor moving in 3-D space and time, adding con-

siderable additional complexity. The work constitutes the early knowledge concerns the

volatility in the measurements and fusion of measurements and computer models, which
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will form part of any future design criteria.



Appendix A

Coordinate Transformations

Different coordinate systems are used in studies of the geomagnetic field and Sun-Earth

connections. Geocentric solar magnetospheric (GSM) system, which has its X axis to-

wards the Sun and its Z axis is the projection of the Earth’s magnetic dipole axis on to

the plane perpendicular to the X axis, is considered the best system to use when studying

the effects of solar wind, in particular, the orientation and strength of the interplane-

tary magnetic field interplanetary magnetic field components, on magnetospheric and

ionospheric phenomena.

The measurements from Cluster are recorded in Geocentric solar ecliptic (GSE) system.

Therefore coordinates transformations are required to put the data in the appropriate

system. Four geocentric coordinates systems are introduced and the possible conversions

among them are defined based on Kivelson and Russell (1995).

Table A.1: Geocentric Coordinate Systems

System Definition of axes

Geocentric equatorial inertial GEI X = First Point of Aries
Z = Geographic North Pole

Geographic GEO X = Intersection of Greenwich meridian
and geographic equator
Z = Geographic North Pole

Geocentric solar ecliptic GSE X = Earth-Sun line
Z = Ecliptic North Pole

Geocentric solar magnetospheric GSM X = Earth-Sun line
Z = Projection of the magnetic dipole
on the GSE YZ plane
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A.1 GSE to GSM

The geocentric solar magnetospheric (GSM) system, like the GSE system, has its x-axis

from the earth to the sun. The transformation from GSE to GSM is a rotation around

x-axis, and the transformation matrix is of the form,


1 0 0

0 cosψ − sinψ

0 sinψ cosψ


where ψ is the angle between the GSE z-axis and projection of the magnetic dipole axis

on the GSE Y Z plane (the GSM z-axis). Since ψ is not easily derivable, we decompose

GSE to GSM into two steps: GSE to GEI and GEI to GSM. And the transformation

from GEO to GEI is needed for GEI to GSM.
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A.2 GEO to GEI

Because the GEO and GEI coordinate systems have the z-axis in common, the trans-

formation matrix from GEO to GEI corresponds to a rotation around z-axis. VGEI =

Rz(θ) · VGEO, i.e.


Vx

Vy

Vz


GEI

=


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 ·

Vx

Vy

Vz


GEO

The rotation angle θ, called Greenwich mean sidereal time (GMST), is the angle between

the Greenwich meridian (the x-axis of GEO) and the first point of Aries (the x-axis of

GEI). This can be calculated in hours (0h to 24h) then converted to degrees using the

following formula:

θ = mod(6.697374558+0.06570982441908·D0+1.00273790935·H+...0.000026·(T 2), 24)·15

where T is the number of centuries since 12:00 UT on 1 January (J2000), D0 is the

number of days since J2000, and H is time in hours past previous midnight.
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A.3 GSE to GEI

The transformation matrix from GEI to GSE has x-axis, y-axis, z-axis of GSE in GEI

systems as row vectors.

• The x-axis of GSE is pointing the direction of the sun, and can be obtained in

GEI as (S1, S2, S3).

• The direction of the ecliptic pole, same as the z-axis of GSE, is constant in GEI

(0, 0.3978, 0.9175).

• Then the y-axis of GSE in GEI is (y1, y2, y3) = (0, 0.3978, 0.9175)× (S1, S2, S3).

So the transformation from GEI to GSE is
Vx

Vy

Vz


GSE

=


S1 S2 S3

y1 y2 y3

0 −0.3978 0.9175

 ·

Vx

Vy

Vz


GEI

And the inverse transformation is


Vx

Vy

Vz


GEI

=


S1 S2 S3

y1 y2 y3

0 −0.3978 0.9175


−1

·


Vx

Vy

Vz


GSE



Appendix A. Coordinate Transformations 165

A.4 GEI to GSM

The transformation matrix from GEI to GSM has x-axis, y-axis, z-axis of GSM in GEI

systems as row vectors.

• The x-axis of GSM is pointing the direction of the sun, and can be obtained in

GEI as (S1, S2, S3).

• The y-axis of GSM in GEI can be obtained as follow:

y =
D′ × S
|D′ × S|

where D′ is D = (0.06252,−0.18060, 0.98157), the direction of dipole in GEO,

transformed into GEI.

• Then the z-axis of GSM in GEI is (z1, z2, z3) = (S1, S2, S3)× (y1, y2, y3).

Thus the transformation from GEI to GSM is
Vx

Vy

Vz


GSM

=


S1 S2 S3

y1 y2 y3

z1 z2 z3

 ·

Vx

Vy

Vz


GEI
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