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Abstract

Mathematical models of physiological processes can be used in critical care and
anaesthesia to improve the understanding of disease processes and to guide
treatment. This thesis provides a detailed description of two studies that are

related through their shared aim of modelling different aspects of brain

physiology.

The Relationship Between Transcranial Bioimpedance and Invasive Intracranial
Pressure Measurement in Traumatic Brain Injury Patients (BioTBI) Study
describes an attempt to model intracranial pressure (ICP) in patients admitted
with severe traumatic brain injury (TBI). It is introduced with a detailed
discussion of the monitoring and modelling of ICP in patients with TBI alongside
the rationale for considering transcranial bioimpedance (TCB) as a non-invasive
approach to estimating ICP. The BioTBI Study confirmed a significant
relationship between TCB and invasively measured ICP in ten patients admitted
to the neurological intensive care unit (NICU) with severe TBI. Even when using
an adjusted linear modelling technique to account for patient covariates, the
magnitude of the relationship was small (r-squared = 0.32) and on the basis of

the study, TCB is not seen as a realistic technique to monitor ICP in TBI.

Target controlled infusion (TCI) of anaesthetic drugs exploit known
pharmacokinetic pharmacodynamic (PKPD) models to achieve set concentrations
in the plasma or an effect site. Following a discussion of PKPD model
development for the anaesthetic drug propofol, the Validation Study of the
Covariates Model (VaSCoM) describes a joint PKPD study of the Covariates Model.
Pharmacokinetic validation of plasma concentrations predicted by the model in
forty patients undergoing general anaesthesia confirmed a favourable overall
bias (3%) and inaccuracy (25%) compared to established PKPD models. The first
description of the pharmacodynamic behaviour of the Covariates Model is
provided with an estimated rate constant for elimination from the effect site

compartment (keo) of 0.21 to 0.27 min™.
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1  Introduction to Mathematical Modelling in

Neurological Intensive Care and Anaesthesia

1.1 The Need for Modelling

In anaesthesia and critical care medicine, patients undergo continuous
monitoring of their physiological systems. Developments in healthcare
information systems mean that increasingly vast quantities of physiological data
are being stored. There is mounting recognition that despite the significant time
and resources that are consumed to collect these data, they are not being used
to their full potential(1). In the ideal situation, data can be used to guide
clinical management, predict outcomes and improve understanding of disease
processes. To achieve this ideal, there is a need to utilise the advances in
methods for the study of dynamic systems and in particular the techniques of

mathematical modelling (2).

1.2 The Principles of Modelling

A model is a representation of reality and can only ever be an approximation of
that reality(3). Mathematical models can be described in terms of their purpose

or in terms of the approach to the modelling process (Figure 1.1).

The approach to mathematical modelling can be to either model the data or to
model the system(4). In a data driven approach there is no need for existing
knowledge of the physiological system of interest. Instead, these models can be
considered as a “black box” where statistical modelling techniques are used to
describe available experimental data. In contrast, for a physiologically derived
model there is a requirement for existing knowledge of the system and the

model is developed to represent this knowledge.

The purpose of mathematical modelling of physiological systems can be
considered as predictive, explanatory or both. A predictive model aims to
predict the future behaviour of the system under investigation. Meanwhile, an

explanatory model aims to improve the understanding of the system of interest.



Physiologically Derived |

Predictive

MODELLING APPROACH

MODELLING PURPOSE

Figure 1.1: The relationship between modelling approach and modelling purpose.

The process of mathematical modelling involves the stages of model building,

model identification, model simulation and model validation. The details of this

process will vary significantly depending on the specific model being developed

(Table 1.1).

Model Type | Model Features Model Type | Model Features

Deterministic | Fixed model inputs Stochastic Model outputs account for
provide fixed model randomness observed in
outputs physiological systems

Static Model describes system Dynamic Model describes system as it
at single point in time changes in time

Discrete Model samples Continuous Model of physiological system

physiological data at
distinct time points

is allowed to change at any

point in time

Table 1.1: Categorisation of physiological models.

1.3 Modelling of the Brain

The clinical settings of the two studies presented in this thesis were firstly the

neurological intensive care unit (NICU) and secondly the operating theatre,

specifically in patients undergoing general anaesthesia to facilitate surgery. In




both of these settings there is a need to model either the effects of disease

processes or of specific therapies on the physiology of the brain.

The NICU provides the facilities and expertise to care for patients who suffer
severe brain injuries with a variety of aetiologies ranging from trauma and
vascular events to infection and malignancy. In these patients, specialised
devices, such as the intracranial pressure monitor, can be used to monitor the
disease process and thus inform treatment decisions. Modelling of the data
provided by these devices has led to an improved understanding of the
pathological processes following brain injury. There is an increasing demand to
develop “non-invasive” monitoring and so avoid the potential complications of

devices that require placement within the brain parenchyma.

The first study (BioTBI) is a pilot study to model the relationship between
transcranial bioimpedance (TCB) and invasively measured intracranial pressure
(ICP) in patients with traumatic brain injury (TBI). Without existing knowledge of
the relationship between TCB and ICP the model derived is primarily data

driven. It is an example of a stochastic, static, discrete model. The ultimate aim
of this study was to begin development of a non-invasive technique to estimate
ICP.

General anaesthesia can be regarded as a triad of hypnosis (or unconsciousness),
analgesia (or pain relief) and muscle relaxation. The target sites of drugs used to
achieve the hypnotic component of general anaesthesia are within the brain.
There is therefore a call for models that can predict the dosing requirements to
achieve adequate delivery of drugs to the brain and then to predict the clinical

effects of these drugs.

The second study (VaSCoM) is a validation study of a three compartment
pharmacokinetic (PK) model for the intravenous anaesthetic drug propofol. The
“Covariates Model” (5) is an update to a model (The Marsh Model(6)) in wide
clinical use that was previously adapted to account for the observed
pharmacokinetic data. It is an example of a deterministic, dynamic, continuous
model. The dual aims of this study were to firstly validate the pharmacokinetic

component of the model and secondly to expand the model to account for



pharmacodynamic behaviour. This involved the use of processed
electroencephalography (pEEG), a non-invasive brain monitoring technique, to

quantify the effect of propofol on the brain.

A narrative review of the literature and discussion of existing models relevant to
the two studies is provided in this thesis. The BioTBI and VaSCoM studies are not
only related by their shared aim of modelling aspects of the brain, but also
through the approach taken to the modelling process. All of the data collected
were converted into standardised non-proprietary formats, while all of the
analyses were performed using the open source statistical programming
environment “R”(7). The consequence of this is that all data and models can be
shared with interested research groups with diverse expertise in fields ranging

from medicine to mathematics and clinical physics to computing science.



2  Monitoring and Modelling of Intracranial Pressure in

Patients with Traumatic Brain Injury

2.1 Overview

Since Monro published his observations on the nature of the contents of the
intracranial space in 1783 there has been investigation of the unique relationship
between the contents of the skull and the intracranial pressure (ICP). This is
particularly true following traumatic brain injury (TBI), where it is clear that
elevated ICP due to the underlying pathological processes is associated with a
poorer clinical outcome. Consequently, there is considerable interest in

monitoring and manipulating ICP In patients with TBI.

The two techniques most commonly used in clinical practice to monitor ICP are
via an intraventricular or intraparenchymal catheter with a microtransducer
system. Both of these techniques are invasive and are thus associated with
complications such as haemorrhage and infection. For this reason, significant
research effort has been directed towards development of a non-invasive
method to measure ICP. In this introduction there will be a detailed review of
the existing non-invasive ICP monitoring technology. The final section will then

be an overview of the theory underlying the BioTBI study.

The principle aims of ICP monitoring in TBI are to allow early detection of
secondary haemorrhage and to guide therapies that limit intracranial
hypertension and optimise cerebral perfusion. However, information from the
ICP value and the ICP waveform can also be used to assess the intracranial
volume-pressure relationship, estimate cerebrovascular pressure reactivity and

attempt to forecast future episodes of intracranial hypertension.

The following introduction to monitoring and modelling of intracranial pressure
in patients with traumatic brain injury is an updated and extended version of a

previously published review article(8).



2.2 Introduction to Traumatic Brain Injury

The pathophysiology of TBI can divided into primary and secondary injury. The
primary injury may include focal haematomas, contusions or diffuse injury that
leads to a cycle of hypoxic ischaemic injury associated with inflammatory and
neurotoxic processes (Figure 2.1). This secondary injury is exacerbated by
secondary physiological insults such as hypoxia, hypo or hypercarbia,
hypotension, hyperthermia and hypo or hyperglycaemia. A rise in ICP, or
intracranial hypertension (ICH), is a secondary insult that can result from the
primary injury, vascular engorgement, obstruction to cerebrospinal fluid (CSF)
flow or cerebral oedema. It is known to be associated with poorer outcomes(9),
which has led to considerable interest in its monitoring and manipulation in

patients who have suffered TBI.

Figure 2.1: The inter-relationship between primary and secondary injury in TBI.
Secondary physiological insults can potentiate ischaemia and lead to exacerbation of

secondary injury. ICP = intracranial pressure. Adapted from Maas et al(10).

Normal ICP in healthy adults is usually regarded as 5 to 15 mmHg (11) and in TBI
an ICP of >20 mmHg is widely accepted as ICH(12). The principle aims of ICP
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monitoring in TBI are to allow early detection of secondary haemorrhage and to

guide therapies that limit ICH. In addition, measurement of ICP and mean

arterial pressure (MAP) allows calculation of cerebral perfusion pressure (CPP):

CPP = MAP —ICP (2.1)

Attempts can then be made to optimise cerebral perfusion pressure with the aim

of preventing cerebral ischaemia.

There is ongoing debate over the central role of ICP monitoring in the clinical
management of TBI. This is particularly relevant in the context of a recent
randomised controlled trial (RCT) that did not show an outcome benefit in
patients undergoing ICP monitoring with a treatment threshold of 20 mmHg
when compared to patients that were not monitored(13). The purpose of this
review is therefore to reconsider some of the basic science underlying ICP
monitoring and the intracranial pressure-volume relationship in adults. With this
pretext there will then be support for the arguments of other authors for the use
of ICP as “more than a number” or a generic treatment threshold(14). Instead,
the information within ICP trends and the ICP waveform can be used to provide

individualised treatment thresholds and forecast future episodes of ICH.

2.3 Concepts and Historical Perspectives

2.3.1 Intracranial Contents

The Monro-Kellie hypothesis describes the relationship between the contents of
the skull(15). In 1783, Monro published his observations that: the brain was
enclosed in a non-expandable case of bone; the substance of the brain was
nearly incompressible; the volume of the blood in the cranial cavity was
therefore constant or nearly constant; and a continuous outflow of venous blood
from the cranial cavity was required to make room for the continuous incoming
arterial blood. Experiments performed by Kellie and Abercrombie supported

these observations but they, like Monro, did not account for the role of CSF.

As the important role of CSF was recognised, the Monro-Kellie hypothesis was

revised to its current form where with an intact skull, the sum of the volumes of
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the brain, intracranial blood and CSF are constant. Therefore an increase in one

necessitates a decrease in one or both of the remaining two. As the brain
parenchyma is essentially non-compressible, compensation is achieved through

extrusion of CSF or venous blood.

2.3.2 Intracranial Pressure Measurement

Lundberg systematically described the technique of continuous ICP monitoring
using an intraventricular catheter in a series of 130 patients with suspected
intracranial space occupying lesions(16). He then went on to confirm the

feasibility of the technique in a series of 30 patients with TBI(17).

In his seminal paper, Lundberg identified three typical patterns of ICP
fluctuation which have come to be known as “A”, “B” and “C” waves. A waves
are steep rises in ICP to a plateau of 50 mmHg or more and are sustained for 5 -
20 minutes before falling rapidly. They represent a critical reduction in
intracranial compliance. B waves occur with a frequency of 0.5 to 2 waves per
minute and are rhythmic oscillations to 20-30 mmHg above the baseline but
without a sustained period of intracranial hypertension. C waves are not thought
to be of pathophysiological importance, probably a reflection of Traube-Hering
waves originating in the arterial pressure and are of much smaller amplitude to

B waves.

While Lundberg and colleagues were developing the role of ICP monitoring in
man, Langfitt’s group were examining primates to carefully characterise the
transmission of pressure across the intracranial compartments(18, 19). The
phenomenon of pressure underestimation was fully defined in experimental
studies of extradural brain compression where progressive loss of transmission of
ICP across the tentorial hiatus occurred, with the pressure in the posterior fossa
and lumbar subarachnoid space progressively under-reading the ventricular

pressure and eventually returning to normal pressure.

2.3.3 The Intracranial Volume-Pressure Relationship
The intracranial volume-pressure curve demonstrates how small increases in

volume of one of the intracranial components can be compensated by a



reduction in CSF or blood volume (Figure 2.2). However, these compensatory
measures are quickly exhausted and any subsequent increase in volume leads to
an exponential increase in ICP. Measurement of this volume-pressure
relationship is most often incorrectly referred to as intracranial compliance.
According to conventional terminology it should be referred to as elastance
(change in pressure per unit change in volume, AP/AV)(20, 21). Due to the
exponential nature of the volume-pressure relationship as depicted in Figure
2.2, being able to quantify elastance is attractive clinically as in theory it will
increase during the volume compensation phase more rapidly than ICP and

should therefore be predictive of impending volume decompensation.

100 - Compensated Decompensated
Phase Phase

~J
(&3]

Intracranial Pressure (mmHg)
(6]
o

0 10 20 30 40 50
Volume Change (ml)

Figure 2.2: Cerebral volume-pressure curve showing the exponential relationship
between ICP and an increase in volume of one of the intracranial components. The

red line marks the point of decompensation.

The first full mathematical description of the craniospinal volume-pressure
relationship was published by Marmarou in 1973(22). Since then, several
research groups have contributed physiological simulation models of ICP

dynamics of varying complexity. These models aim to improve understanding of
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ICP pathophysiology and thus assist in the development of appropriate treatment

strategies. A detailed comparative review on this subject has been provided by
Wakeland and Goldstein(23). The early work of Marmarou and colleagues shall
be discussed below as it provides an introduction to many important concepts

surrounding ICP dynamics.

Through his interest in the pathological state of hydrocephalus, Marmarou
developed a mathematical model of the CSF system that produced a general
solution for the CSF pressure(22). The model parameters were verified in a
series of experiments on adult cats(24). In these studies, the CSF pressure was
measured both intracranially at the cisterna magna and in the lumbar

subarachnoid space in response to bolus injections (Figure 2.3).

Intracranial Pressure

Pb

Time

Figure 2.3: Demonstration of intracranial pressure changes following a bolus volume

injection Vo, where: P, is the baseline ICP, P, is the peak pressure and P, refers to

the pressure point on the return trajectory at time t.

Of particular note in this work, was the introduction of the pressure-volume
index (PVI). Marmarou confirmed the non-linear relationship between changes in

craniospinal volume and pressure. However, by plotting changes in volume
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against the log to the base ten of pressure, a straight-line relationship could be

defined (Figure 2.4). The slope of this line is termed the PVI and is the notional
volume required to raise ICP tenfold. Unlike elastance or compliance, the PVI
characterises the craniospinal volume-pressure relationship over the whole

physiological range of ICP and can be calculated from:
4 (2.2)

P
logio (p_Z)

where V) is the bolus injection volume, P, is the peak pressure and P, is the

baseline ICP.

PVI =

__100-

-d
o

< PVI>

log10 (Intracranial Pressure [mmHg]
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Figure 2.4: Logo ICP vs intracranial volume relationship defined by Marmarou(22).

The pressure volume index (PVI) is the notional volume which when added to the

craniospinal volume causes a ten-fold rise in ICP.
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Marmarou’'s mathematical model developed an improved understanding not only

of craniospinal elastance but also of the inter-relationships of the static and
dynamic processess of formation, storage and absorption of CSF. Previously,
Davson had demonstrated that by withdrawing CSF at the estimated rate of CSF
production (approximately 0.3 ml/min), it was possible to determine the
cerebral venous pressure(25). This value could then be substituted into the

steady-state ICP equation:
ICP =P, + (Is XR,) (2.3)

where P, is sagital sinus pressure, If is CSF formation rate and R, is CSF outflow
resistance. Marmarou extended Davson’s work and his general solution for ICP
allowed the derivation of an equation for CSF outflow resistance based on the

bolus injection technique (Figure 2.3)(22, 24):

P, (2.4)

(P/P,) (B, — Pb)}

(PVI)lOglo{ (PZ _Pb)

R, =tXx

In TBI management, it is useful to know CSF outflow resistance when
determining the aetiology of raised ICP. In general terms, causes of ICH can be
categorised into "vascular" and "non-vascular” mechanisms. Vascular mechanisms
include active cerebral vasodilation due to stimuli such as increased arterial
carbon dioxide levels or decreased CPP with intact pressure autoregulation,
passive distension of cerebral vessels in the absence of autoregulation or venous
outflow obstruction. Non-vascular mechanisms include increased brain mass due
to cerebral edema or an expanding extradural, subdural or intracerebral mass.
A further non-vascular mechanism is an increase in CSF outflow resistance

secondary to obstruction of the normal CSF pathway.

The importance of vascular factors and the state of cerebral blood flow (CBF)
autoregulation as a determinant of craniospinal elastance was shown clearly by
the work of Gray and Rosner(26, 27). The autoregulation of CBF will be discussed
later, however, through a series of studies in adult cats, Gray and Rosner

demonstrated that with CPP levels greater than 50 mm Hg, there was a linear
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increase in PVI with increasing CPP. Similarly, with CPPs below 50 mmHg,

further reduction in CPP was also associated with increased PVI, as well as
reduced CBF. This work illustrated that the PVI is a complex function of CPP and
that the direction of the CPP-PVI relationship is dependent on whether CPP is
above or below the autoregulatory range for CBF. The importance of the state of
autoregulation on PVI has been supported recently by Lavinio et al(28). Ina
series of brain injured patients admitted to the intensive care unit (ICU), PVI
results were significantly different if a transcranial Doppler (TCD) derived
assessment of middle cerebral artery (MCA) flow velocity (FV) revealed defective

cerebral autoregulation.

Despite the potential for providing valuable information on the intracranial
pressure-volume relationship, the PVI is not routinely measured in clinical
management of severe TBI. Variability between measurements is high because of
the difficulty in rapid manual injection at a constant rate. As aresult, an
average of repeated measures is usually required. In addition, there is an
infection risk associated with injecting fluid into the subarachnoid space via an
intraventricular catheter(29-31) and a risk of provoking secondary ICP rises
following injection as a consequence of vasodilation(32). Thus, an interest in
deriving estimates of the intracranial pressure-volume relationship indirectly

through analysis of the ICP waveform has become a research focus.

2.3.4 The ICP Waveform

The ICP waveform has three consistent peaks that are related to the arterial
pulse waveform (Figure 2.5), although their exact aetiology is the subject of
some debate(33). Avezaat and van Eijndhoven systematically studied the ICP
waveform pulse amplitude (ICPpe) as a measure of craniospinal elastance(32,
34). In recognition of the limitations of the PVI related to the need for volume
injection or withdrawal, they exploited the fact that with each cardiac cycle
there is a pulsatile increase in cerebral blood volume. This is the equivalent of a
small intracranial volume injection (dV), and the ICPe is the pressure change
(dP) in response to that volume increment and should consequently be directly
related to the craniospinal elastance (dP/dV) (Figure 2.6). Therefore, as
craniospinal elastance increases (compliance decreases) the ICP e should

increase. The observation that as ICP increases so does the amplitude of the
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intracranial pressure pulsations is not a new one, having been first described in

1866 by Leyden(35).

22:45:00 (26.06.13)

Figure 2.5: ICP waveform recorded from a Raumedic intraparenchymal catheter and
displayed beneath an arterial waveform recorded from the radial artery in a patient
with TBI. CRAN = intracranial pressure, ABP = arterial blood pressure, P, =

percussion wave, P, = tidal wave, P; = dicrotic wave.

The mathematical description of the exponential craniospinal volume-pressure

relationship was extended by Avezaat and Van Eijndhoven:
ICP = P,,e"1% + P, (2.5)

where P is intracranial equilibrium pressure, E; is the elastance coefficient and
determines the elastance at a given pressure and Py is ICP at zero elastance. The
term Py was introduced into the pressure-volume equation primarily for
mathematical convenience. It allows the volume-pressure curve as a whole to
shift up or down its axis, which allows for correction of pressure transducer
reference position and postural changes. Mathematically, Py is the pressure at
zero elastance and must therefore have physiological significance as a
determinant of the normal intracranial equilibrium pressure (Peq). Lofgren

showed that alterations in central venous pressure (CVP) can shift the pressure-
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volume curve up or down its axis(36), which would suggest CVP may be a factor

determining Po.

Intracranial Pressure

Peq -

Véq

Craniospinal Volume
Figure 2.6: Craniospinal volume-pressure relationship demonstrating that for the

same increase in craniospinal volume (dV) the ICP response (dP) increases when
total craniospinal volume increases. Peq = intracranial equilibrium pressure, Veq =
intracranial equilibrium volume. Adapted from Avezaat and Van Eijndhoven(32).

To allow validation of ICPyseas a measure of elastance, Avezaat and Van
Eijndhoven compared the relationship of ICPse versus ICP and elastance, as
invasively measured by volume injection, versus ICP. This was performed in a
series of 58 patients undergoing ICP monitoring for a variety of neurosurgical
indications. A linear relationship between both ICP,s and ICP and invasively
measured elastance and ICP was confirmed, supporting the mono-exponential
relationship between intracranial volume and ICP. However, the correlation

between these relationships was weak.

Of particular note in the above study, was the observation that there was a

disproportionate increase in ICP, e during plateau waves, which was thought
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secondary to an increase in dV due to defective cerebral vascular muscle tone.

To explore this phenomenon further, they monitored ICPps While manipulating
ICP in adult dogs by inflating an epidural balloon. They found the ICPpe
increased linearly with ICP up until a pressure of around 60 mmHg (Figure 2.7).
At this pressure a breakpoint occurred and the ICP, increased more rapidly
with increasing ICP. It was postulated that the breakpoint marked the loss of

CBF autoregulation, which will be dealt with in more detail below.
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Figure 2.7: ICP, plotted against ICP, demonstrating a direct linear relationship. A
breakpoint occurs at an ICP of approximately 60 mmHg where the slope of the

relationship increases. Adapted from Avezaat and van Eijndhoven (32).

The major limitation of using ICP,ise as a measure of craniospinal elastance
(dP/dV) is the need to assume that the volume of pulsatile blood (dV) is
constant. This is unlikely to be the case in severe brain injury because of the
associated cardiovascular complications. Therefore, the clinical utility of this

technique is limited unless the pulsatile blood volume can be controlled for.
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2.3.5 Cerebral Autoregulation

2.3.5.1 Principles of Cerebral Autoregulation

As suggested earlier, one of the principle clinical reasons to monitor ICP is to
allow calculation of cerebral perfusion pressure. This is useful because, in
theory, maintenance of a CPP within the limits of cerebral autoregulation will
result in maintenance of adequate cerebral blood flow to meet the metabolic
demands of the brain(37). Regulation of flow is achieved by active dilation and
constriction of cerebral arterioles in response to changes of CPP and is
illustrated in Figure 2.8. A number of physiological mechanisms are known to be
involved in this process and Hamner and Tan have recently quantified the
relative contributions of sympathetic, cholinergic and myogenic
mechanisms(38). By measuring CBF while manipulating CPP, and utilising
pharmacological blockade of the three mechanisms, they were able to
demonstrate the effect that each had on cerebral autoregulation in healthy
volunteers. Of note, they found that 38% of the pressure-flow relationship was

unexplained by these mechanisms, implying that others must also be important.

The physiological range of autoregulation, is regarded as 50 to 150 mmHg in
healthy adults(37). When CPP is below the lower limit of the autoregulatory
range, vessels within the arterial-arteriolar bed tend to passively vasoconstrict.
Conversely, when CPP is above the upper limit, passive vasodilation occurs.
Using measures of CBF including intra-arterial xenon clearance(39) and
transcranial Doppler flow velocity of the MCA(40), it has been demonstrated that
disordered cerebral autoregulation occurs after severe TBI and is associated with

worse outcome.
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Figure 2.8: Illustration of the maintenance of cerebral blood flow across a range of

cerebral perfusion pressures.

2.3.5.2 Mathematical Models of Autoregulation

As discussed above, there is an extensive literature on the mathematical
modelling of ICP dynamics. Several of these models incorporate descriptions of
cerebral autoregulation. The models can be primarily physiology based, and aim
to improve our understanding of the interaction between ICP dynamics and
autoregulation, or they can have a more statistical basis and aim to provide an
index of the state of autoregulation. Examples of each type of model shall be

considered in turn below.

2.3.5.3 Physiological Models of Autoregulation

Ursino and Lodi published a simplified mathematical model of the interaction
between ICP and cerebral haemodynamics that is a cut down version of Ursino’s
earlier work(41-43). The model is a two compartment model which incorcopates
the hemodynamics of the arterial-arteriolar cerebrovascular bed, CSF production
and reabsorption processes, the pressure-volume relationship of the craniospinal

compartment, and a Starling resistor mechanism for the cerebral veins (Figure



19
2.9). Importantly, it includes a parameter to account for the maximum

autoregulatory gain. Using this model in a series of 20 patients with severe TBI,
Ursino et al were able to classify the state of cerebral autoregulation and

predict the response of ICP to PVI testing(42).

PICP —— CIC @ li

Figure 2.9: Reproduction of the Electrical Equivalence Circuit of the Ursino
Model(43). Capacitors are used to represent physiological compartments, resistors
restriction to flow of blood or CSF and diodes unidirectional flow. CBF (q) enters the
intracranial space at systemic arterial pressure (P,). It is subject to arterial
resistance (R,) and the cerebrovascular bed has some storage capacity (C,). CBF is
then through proximal (Ry,) and distal (R4 ) venous resistance. Venous pressure (P,)
is assumed to equal ICP (P,cp). Picp is dependent upon the volume stored in
intracranial compliance (Cc). This is dependent upon blood volume in C,, CSF inflow
(q¢) through inflow resistance (R¢) and CSF outflow (q,) through outflow resistance
(Ro), which is itself dependent upon venous sinus pressure (P,s). The system can be
disturbed by mock CSF injection (I;).

Czosnyka has also proposed compartment model of CBF and CSF circulation(44).
It is a three compartment model that consists of two vascular storage
compartments (arterial and venous) and one CSF storage compartment (Figure
2.10). Again, this model is able to simulate the state of autoregulation. Using
data taken from 82 patients admitted to ICU with moderate and severe TBI,
comparison was made between measured clinical responses and simulated model

responses to events such carotid artery compression, systemic arterial
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hypotension and ICH. The mathematical modelling results were found to be

helpful with interpretation of the clinical phenomena. In particular, the model
demonstrated that the correlation between arterial blood pressure (ABP) and ICP
is dependent on the state of autoregulation. Czosnyka exploited this fact in
development of the pressure reactivity index (PRx), which will be discussed in

the following section.

P..(t)
Rese <>

Figure 2.10: Reproduction of the Electrical Equivalent Circuit of the Czosnyka
model(44). Capacitors are used to represent physiological compartments and
resistors restriction to flow of blood or CSF. The model illustrates the presence of
three storage compartments (C, = compliance of the great cerebral arteries, C, =
compliance of capillaries and small veins, C; = compliance of the CSF containers).
Other parameters are arterial blood pressure (ABP), cerebral arterial pressure in the
small arteries (P,), pressure in the cortical veins (P,), ICP (P;), sagital sinus pressure
(Pss), resistance of great cerebral arteries (R,), cerebrovascular resistance (CVR),
resistance of cortical and bridging veins (R,), CSF outflow resistance (Rcsg) and CSF

secretion (ly).
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An example of a model bridging the gap between physiological and more

statistical or data driven models of autoregulation is provided by Daley et al(45).
The high frequencies of cerebrovascular pressure transmission of ABP to ICP are
reduced by vasoconstriction and increased by vasodilation. The highest modal
frequency (HMF) at which energy is transferred from ABP to ICP can be
calculated from digitised ABP and ICP waveforms. Pairs of ABP and ICP values
are processed using an autoregressive moving average (ARMAX) technique to
numerically define a difference equation representing the change of ICP relative
to ABP at 4 millisecond sampling epochs. The difference equation can be
converted to a continuous description of cerebrovascular pressure transmission.

The constants of this continuous model can then be used to determine HMF.

In a piglet model of raised ICP it was found that when cerebral autoregulation
was intact (as assessed by measurement of pial artery diameter), a rise in CPP
led to a decrease in HMF. In contrast, when there was autoregulatory
impairment, a rise in CPP was met with an increase in HMF (Figure 2.11). Similar

results have been seen in patients admitted to ICU with severe TBI(46).
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Figure 2.11: Examples of the relationships between HMF and CPP during challenge
with norepinephrine before and after fluid percussion injury (FPI). A) Before FPI (in
blue): challenge with norepinephrine resulted in a response consistent with active
vasoconstriction with a negative correlation value (R = -0.77) and negative slope
(m) of the regression line (m = -0.317 Hz/mm Hg) between HMF and CPP were
demonstrated. B) After FPI (in red): challenge with norepinephrine resulted in a
response consistent with passive vasodilation with a positive correlation value (R =
0.34) and positive slope of regression line (m = 0.325). Adapted from Daley et
al(45).

2.3.5.4 Data Driven Indices of Cerebral Autoregulation

The most systematically investigated of the statistical approaches to
autoregulatory assessment, using ICP as an input parameter, is the Pressure
Reactivity Index (PRx) described by Czosnyka et al(47). It is based on the
hypothesis that naturally occurring slow oscillations of arterial blood pressure
can be used to evaluate the cerebrovascular reactivity. In theory, when pressure
reactivity is intact, an increase in ABP would result in cerebral vasoconstriction
and a reduction in ICP (negative PRx). Conversely, when pressure reactivity is

absent, an increase in ABP would result in a passive rise in ICP (positive PRx).
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Pressure reactivity has a complex relationship with cerebral autoregulation

rather than the expressions being analogous.

The PRx is a moving correlation coefficient between 40 consecutive samples of
values for ABP and ICP averaged over a period of five seconds. By employing this
averaging interval, most of the frequency changes above 0.2 Hz in the ABP and
ICP recordings are filtered out. In addition, Nyquist’s sampling theorem dictates
that the highest frequency that can be represented by a signal sampled every
five seconds is 0.1 Hz or 6 oscillations per minute. As a result, the dynamical

system relationship between ABP and ICP cannot be precisely defined by PRx.

Nevertheless, PRx has been found to be a very useful tool in clinical research. In
TBI it has been demonstrated to provide a reliable index of cerebral
autoregulation as validated by TCD(47) and PET(48) derived measurements.
Clinical observations show that the PRx is high both during the occurrence of
plateau waves and also during refractory raised ICP(49). In addition, the PRx has
been used to guide proposed therapies and calculation of an “optimal CPP” for

the management of patients with TBI(50).

2.3.5.5 Comparison of Models of Cerebral Autoregulation

Despite illustrating a number of the approaches that can be taken, this is by no
means an exhaustive list of models of CBF autoregulation. It is not clear which
approach is most clinically practical or useful. The models take different input
parameters and yield different output indices, thus making comparison difficult.
In an attempt to address this issue, Shaw et al re-worked and normalized three
of the models so that a fair evaluation could be made on a standardized dataset
of ABP, ICP and MCA flow velocity readings taken from piglets pre and post fluid
percussion injury(51, 52). The state of autoregulation predicted by the models
could then be compared to changes in pial artery diameter as a direct measure
of autoregulation. One of the interesting conclusions from this work was that
before application of a number of optimization approaches, none of the models
performed particularly well. Overall, Ursino’s physiological model performed
best and after optimization of the data driven models, Daley’s HMF
autoregulatory index performed marginally better than Czosnyka’s PrX. This

work is limited by the use of only one small dataset for comparison. What is
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certain, however, is that further studies comparing autoregulatory methods and

optimization approaches are warranted before widespread clinical adoption of a

standarised autoregulation model is possible.

In recognition of this challenge, an international group of those working in both
experimental and clinical autoregulation research have setup a new consortium
called the “Cerebral AutoRegulation Network” or CAR-Net(53).

2.4 Current Controversies

2.4.1 Should ICP be Monitored in Severe TBI?

Monitoring of ICP has become a standard of care in severe TBI and its use is
supported by internationally applied guidelines. The Brain Trauma Foundation
makes a level IIb recomendation that patients with severe TBI should be
managed using information from ICP monitoring to reduce in-hospital and 2-
week post-injury mortality(54). Further, Treating ICP >22 mm Hg is
recommended because values above this level are associated with increased

mortality.

The evidence for and against ICP monitoring in TBI has been appraised in several
excellent reviews(55-57). Supporting the use of ICP monitoring are retrospective
comparisons of historical cohorts at the same centre suggesting that protocols
incorporating ICP monitoring improve outcome(58, 59). Similarly, there has been
an association between centres monitoring ICP more frequently and better
outcome(60). In contrast, a retrospective comparison of 2 trauma centres
revealed an increase in therapy levels without an improvement in outcome in
the centre that monitored ICP(61).

On the basis of the wealth of conflicting evidence, there was demand for a
randomised controlled trial (RCT) to assess the impact of ICP monitoring on
clinical outcomes. An RCT of 324 patients with severe TBI was subsequently
performed in Latin America(13). Patients were assigned to protocolised therapy
directed by either ICP monitoring or clinical examination and imaging. There was

no difference between groups in the primary outcome of a composite of survival
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time, impaired consciousness, and functional status at 3 months and 6 months

and neuro-psychological status at 6 months.

This study has been subject to extensive discussion and editorial review (62-65)
including by the lead investigator(66). Irrespective of the applicability of the
findings to the routine practice of ICP monitoring in severe TBI, the results
certainly strengthen the argument for more clearly defining the use of ICP
targeting strategies as part of an individualised and multimodal approach to this

patient group.

2.4.2 What Modality Should be Used to Monitor ICP?

2.4.2.1 Introduction

The two techniques most commonly used in clinical practice to monitor ICP are
via an intraventricular or intraparenchymal catheter with a microtransducer
system. Both of these techniques are invasive and are thus associated with
complications such as haemorrhage and infection. For this reason, significant
research effort has been directed towards development of a non-invasive

method to measure ICP.

2.4.2.2 Intraventricular Catheter

Following Lundberg’s description of the use of intraventricular catheters for the
continuous measurement of CSF pressure(16), the technique has remained the
gold standard for ICP monitoring (67). It is performed by inserting a catheter into
either lateral ventricle through a frontal burr hole. In 1960, Lundberg was
already using electronic measurement equipment by connecting the ventricular
cannula via a strain gauge transducer to a potentiometer recorder. In modern
practice, the ventricular catheter can similarly be connected to an external
strain gauge or the ICP waveform can be transduced via fibreoptic or micro

strain gauges within the catheter itself.

An advantage of measuring ICP using an intraventricular catheter is the
opportunity to perform drainage of CSF as an ICP lowering therapy. It is also
possible to recalibrate the monitor while in situ and thus retain accuracy for
several days of monitoring. However, as suggested above, the technique is not

without risk. It can be technically difficult in the case of ventricular effacement
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or midline shift. There is a risk of CSF infection but this can be kept to as low as

10% with a “Bundle” based approach to care(68). The incidence of haemorrhage
following ventriculostomy is around 1%, although the number requiring surgical

evacuation is likely to be lower(67).

2.4.2.3 Intraparenchymal Catheter

In cases where intraventricular ICP monitoring is not possible, or in many centres
as the preferred technique, an intraparenchymal device can be placed. The
principle difference with the intraparenchymal devices is the inability to
recalibrate them following insertion with the consequent problem of zero drift.
Bench testing of devices using both fibreoptic tips (Camino OLM ICP monitor;
Camino Laboratories, San Diego, CA) and micro strain gauges (Codman
Microsensor ICP Transducer; Codman & Shurtlef Inc., Randolph, MA) have shown
24 hour zero drift of <0.8 mmHg(69). Similarly, laboratory testing of an
intraparenchymal device incorporating a micro strain gauge with complete
Wheatstone bridge circuit incorporated into the tip (Raumedic AG, Helmbrechts,
Germany), demonstrated a mean zero drift of 0.6 mmHg at 5 days(70). However,
in the more demanding clinical environment, a multicentre evaluation concluded
that the zero drift rate remained a concern and catheter performance was

similar that of other manufacturers(71).

Intraparenchymal ICP monitoring devices are typically placed via a small burr
hole into the white mater of the non-dominant frontal hemisphere. These
devices measure a compartmentalised local pressure and significant
supratentorial pressure gradients have been demonstrated between monitoring

ipsi and and contralateral to the side of focal haematomas(72).

2.4.3 Non-invasive ICP Monitoring

For a non-invasive measure of ICP to replace the commonly used invasive
measures above it must provide an accurate absolute measure of ICP that can be
performed continuously at the bedside. There is no current technique that
satisfies these criteria. An in depth review of all of the available technologies is
outwith the scope of this article and has been covered in detail elsewhere(73-
75). Techniques considered include imaging based studies using CT and magnetic

resonance imaging (MRI), transcranial Doppler sonography (TCD), near-infrared
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spectroscopy (NIRS), tympanic membrane displacement (TMD), visual-evoked

potentials (VEPs), measurements of optic nerve sheath diameter (ONSD) and
other measurements of the optic nerve, retina and pupil. Of these, approaches

using TCD and ONSD have perhaps received the most clinical interest.

Using low frequency TCD, it is possible to measure flow velocity in the middle
cerebral artery (MCA)(76). Several authors have published equations using the
MCA flow velocity metrics of peak systolic velocity (PSV), mean flow velocity
(mFV), end diastolic velocity (EDV) and pulsatility index (Pl, PSV-EDV/mFV) to
estimate ICP and CPP.

Schmidtt et al examined 25 patients admitted with severe TBI and calculated
non-invasive CPP (nCPP) as MAP x EDV/mFV +14 mmHg(77). For these patients,
81% of 1 minute averages of nCPP (n = 12 275) were different from invasively
measured CPP (iCPP) by <10 mm Hg. In 81 brain injured patients, including 21
with TBI, Bellner et al calculated non-invasive ICP (nICP) as 10.93 x PI - 1.28(78).
Bland and Altman analysis of all measurements (n = 658) revealed that the
difference between nICP and invasively measured ICP was less than 4.2 mmHg
for 95% of measurements. Edouard et al calculated nCPP as [mFV/(mFV-EDV)] x
(MAP-DAP) in patients with severe TBI and bilateral injury(79). In 10 patients,
repeated measurements were made during their clinical course (n = 89) and a
significant correlation was found between nCPP and iCPP. However, in a further
10 patients in whom hypercapnoea was induced, the strength of this correlation

was reduced.

The performance of the above three equations in estimating ICP was compared
in 45 patients with severe TBI by Brandi et al(80). Under standardised
conditions, including continuous sedation, normocapnoea and normothermia,
daily nICP measurements were compared to ICP measured using an
intraparenchymal device. On the basis of Bland and Altman analysis, the authors
concluded that the equation by Bellner et al(78) was superior in assessing nlICP.
However, as has been noted elsewhere(55), the Bellner equation failed to
predict all cases of ICH in this series and is therefore not likely to be clinically

useful as a screening test in TBI.
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Like TCD measurements, assessment of ONSD using ultrasound potentially

provides a simple bedside screening test for ICH in TBI. The technique exploits
the fact that the optic nerve is part of the central nervous system and therefore,
a rise in ICP will be transmitted through the CSF surrounding the nerve. Several
studies comparing ultrasound derived ONSD assessment to ilCP(81-86) have been
included in a recent meta-analysis(87). This was limited by the fact that it
included only 231 patients, 89 of whom had suffered TBI. However, using the
ONSD thresholds reported in the individual studies, the pooled sensitivity and
specificity to detect ICH were 0.9 and 0.85 respectively. Dubourg et al are now
collecting data for an individual patient data meta-analysis with the objective of
defining the cutoff value for ultrasound derived ONSD in the detection of
ICH(88).

2.4.4 Should ICP or CPP be the Target?

Whatever modality is chosen to monitor ICP in severe TBI, the clinician must
then decide whether to primarily target therapy at attempting to optimise CPP
or lower ICP. CPP oriented therapy, as proposed by Rosner et al(89), requires
pressure autoregulation and the ability to manipulate CPP within the
autoregulatory range. During intact pressure regulation, increases of CPP cause
constriction of the arterial-arteriolar vascular bed and lowering of ICP by a
reduction in cerebral blood volume. In addition, the resulting reduction of pre-
and post-capillary pressure decreases fluid filtration and increases absorption,
thus reducing brain oedema. However, the application of CPP oriented therapy
when autoregulation has been lost may result in an imbalance of Starling forces
at the capillaries leading to increased net fluid filtration and further brain injury

by increased production of vasogenic oedema.

Avoiding vasogenic oedema is one of the underlying tennets of the “Lund”
approach to management of severe TBI based on lowering ICP(90, 91). Asgeirsson
et al, working at the University Hospital of Lund, described a protocol aimed at
inducing transcapillary fluid absorption through reduction of hydrostatic

capillary pressure and preservation of normal colloid osmotic pressure. This
included pharmacological interventions such as the reduction of systemic
hypertension with metoprolol and clonidine, and precapillary vasoconstriction

with dihydroergotamine.
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In an attempt to determine whether an ICP or CPP based approach was
preferable, Roberston et al conducted an RCT in 189 patients admitted with
severe TBI(92). Patients were randomised to an ICP based protocol or a CBF
based protocol. The major differences between the protocols were the CPP
targets (>50 mmHg in the ICP group and >70 in the CBF group) and the option to
treat ICH with hyperventilation in the ICP group. In terms of the primary
outcome of this study, cerebral ischaemia as measured by jugular venous
desaturations, the CBF based protocol was associated with a lower risk of
ischaemia. However, this did not translate into improved neurological outcome
and indeed was associated with an increased frequency of systemic

complications such as adult respiratory distress syndrome (ARDS).

It is likely that the choice of ICP or CPP based approach to ICU management of
severe TBI should be made on an individual patient basis. For this to be possible,

the state of autoregulation needs to be assessed.

Support for the clinical utility of a pressure reactivity index has been provided
by Howells et al(93). The approach of two neurosurgical ICUs to ICP management
in TBI was compared using a PRx based index, averaged over many hours per
day, and a machine learning Bayesian Neural Network (BANN) model, which
predicted the probability of good or bad clinical outcome. In one centre, the
predominant management approach was CPP targeted therapy and in the other,
the approach was ICP targeted therapy. The model showed that not only was
pressure reactivity related to clinical outcome but also that it’s relationship to
outcome was management approach dependant (Figure 2.12). From these data,
a principally CPP targeted approach was more successful when pressure
reactivity was intact, while a principally ICP targeted approach was more
successful when pressure reactivity was impaired. Of course, there could be
other factors influencing clinical outcome that were not considered in the
analysis. Nevertheless it is compelling evidence for what appears to be common

sense: a management strategy that considers the brains ability to regulate its
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blood flow is more successful than one that does not.
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Figure 2.12: Representation of BANN generated probability distribution plots for the
mean likelihood of a favourable clinical outcome for patient populations managed in
two different centres. In these data, the optimal point at which to switch from one
treatment strategy to the other in a given patient is at an MABP/ICP trend with a
slope of approximately 0.13. Adapted from Howells et al(93).

2.5 Future Directions

2.5.1 Introduction

The field of ICP research is a wide ranging one and, to date, has been the
subject of 16 international symposia embracing such diverse disciplines as
neurosurgery, intensive care, anaesthesia, radiology, biophysics, electronic and
mechanical engineering, mathematics and computer science(94). This
multidisciplinary and collaborative approach is highlighted by research groups
such as International Mission for Prognosis and Analysis of Clinical Trials in TBI
(IMPACT)(95), Brain Monitoring with Information Technology (BrainlIT) (96) and
the recently funded CENTER-TBI project(97).

At present, there is no level 1 evidence to support the targeting of a specific ICP
or CPP using clinical interventions. Indeed the recently reported RESCUEicp

study, which evaluated the role of decompressive craniectomy in treatment of
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uncontrollable ICH, concluded that the rates of good recovery were not

improved by the intervention(98). Similarly Eurotherm3235, which appraised the
role of targeted temperature therapy (32 to 35°C) for the management of ICH,
suggested that outcomes were worse with hypothermia than with standard care
alone(99).

In the face of these negative results, there is considerable effort to extract more
information, rather than simply a generic threshold value, from the ICP sighal
and use this to provide patient specific targets and to forecast secondary ICP
insults. In addition, there is ongoing effort to develop novel non-invasive
techniques to measure ICP and thus widen its clinical application. Some key

areas of current research shall be discussed below.

2.5.2 Individualised ICP and CPP Targets

As an alternative to using a universal CPP threshold for all TBI patients, a more
dynamic patient tailored CPP target, based upon the autoregulation capacity of
the cerebral vasculature, has been proposed. In retrospective analysis, Steiner
et al(50) demonstrated that by plotting PRx against CPP for the entire
monitoring period, a “U-shaped” curve could be produced in about 60% of
patients. The CPP corresponding to the minimum PRx was taken to represent the
optimal CPP (CPPopt) for each patient. Patients who were managed with CPPs

closer to CPPopt were more likely to have a good outcome.

The feasibility of using PRx to prospectively calculate CPPopt in TBI patients in a
clinical environment has subsequently been demonstrated by Aries et al(100).
Using a four hour moving window, updated every minute, CPPopt could be
calculated for 55% of the monitoring period. Again, patients were more likely to

have a good outcome if their actual CPP deviated less from CPPopt.

In similar work, Lazaridis et al(101) have used PRx to identify patient specific
ICP thresholds in TBI. By plotting PRx against ICP for the entire monitoring
period, the threshold ICP was taken to be that at which the PRx was consistently
>0.2. It was possible to calculate a threshold ICP in 68% of patients. Time spent

above an individually calculated ICP threshold was more strongly predictive of
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mortality than using a generic threshold of 20 or 25 mmHg. This further supports

the concept of patient specific targets of ICP or CPP in the management of TBI.

However, calculation of PRx and most other measures of autoregulation require
high frequency data (> 50 Hz) sampling. Capturing and processing this data
frequency is not routine in many NICUs. Consequently, Depretiere et al have
developed a new index of cerebrovascular reactivity that requires only minute
by minute data sampling(102). Known as LAX, the index is the moving median of
minute-by-minute ICP/MAP correlation coefficients over different time intervals
(3-120 min). They demonstated that not only does it correlate with PRx and GOS
but also is able to produce a CPPopt recommendation. DATACAR (Dynamic
Adaptive Target of Cerebral Autoregulation) combines different LAx values and
time windows in a weighted manner to issue a CPPopt recommendation. They
observed significant differences between PRx-based and LAx-based CPPopts.
DATACAR was able to issue a CPPopt recommendation in 92% of monitoring time,
as opposed to 44% for PRx-based CPPopt.

Certainly, a method for continuous and robust determination of a patient’s
optimal CPP, that can work with normal NICU data capture rates, is an attractive
concept. A prospective study comparing a number of these indices is warranted.
These developments show clearly the benefits possible through the combination
of sharing and analysis of large ICU datasets with the development and

application of mathematical models.

2.5.3 Prediction of Secondary ICP Insults

An interesting approach to forecasting ICH is based on preceding changes to
waveform morphology. In recognition that most clinical decision making only
takes into account the mean ICP, Hu and colleagues have proposed a technique
for automatically extracting useful information from the ICP waveform(103).
Morphological clustering and analysis of continuous intracranial pressure
(MOCAIP) detects the P4, P, and P; peaks within the ICP waveform. The
technique was developed and validated using an annotated database of ICP
waveforms collected from 66 patients admitted to an adult hydrocephalus
centre. For every 3 minute section of ICP recording, the MOCAIP algorithm

performs beat-by-beat pulse detection followed by pulse clustering to generate
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a dominant ICP pulse. Artifactual pulses are removed prior to the detection and

optimal designation of pulse peaks. This process has been generalized as
MOCAIP++ and validated on a larger dataset collected from 128 patients(104).

The application of MOCAIP to ICP monitoring in TBI has been demonstrated(105).
In a dataset from 66 patients, including 23 admitted with TBI, ICP pulse
morphological metrics were correlated with low CBF as measured by an
intravenous "**Xenon clearance technique. Of particular interest, was the
association of an elevated P; peak and low CBF. However, in this study, the
correlation of pulse morphological metrics to low CBF was less in the TBI
patients than in those admitted with other diagnoses such as subarachnoid

haemorrhage.

In the first efforts to use MOCAIP analysis to forecast episodes of elevated ICP,
an ICP waveform dataset recorded from 34 patients presenting with suspected
idiopathic intracranial hypertension, CSF shunts and Chiari malformation was
evaluated(106). Using 24 metrics of the ICP waveform it was possible to classify
recording segments as either control or pre-IH prior to episodes of elevation of
ICP to >20 mmHg over a period of at least 20 minutes. This was done with a
sensitivity of 37% and 21% and specificity of 99% and 99% for 5 and 20 minutes
respectively. These results are encouraging but may not generalise to TBI

because of the difference in underlying pathophysiological mechanisms.

An alternative approach to prediction of ICH, which has been developed using
data collected from patients admitted to NICU with TBI, is through the use of
Gaussian processes(107). Using 4 hour windows of minute-by-minute recordings
of ICP and MAP, Guiza et al generated over 1000 potential dynamic predictors
from which a subset of 73 was selected. These included median values for non-
overlapping time intervals, measures of variability, clustering of values based on
their trajectory, frequency domain analysis and correlation of ICP with MAP.
Gaussian processes are a machine learning algorithm that generate a
probabilistic prediction based on the known outcomes of similar data instances.
The model was developed in a cohort of 178 patients to predict 30 minutes in

advance of an elevation of ICP to >30 mmHg over a period of at least 10
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minutes. It was then evaluated in a further cohort of 61 patients achieving a

sensitivity of 82% and specificity of 75%.

Future predictive models may incorporate both ICP waveform features and
dynamic predictors to optimise their predictive capacity. The value of these
predictions would then need to be assessed by providing them to clinicians and

formally assessing the impact on patient management and outcome.

2.5.4 Innovative Non-Invasive ICP Monitoring

As suggested above, no methodology in current clinical use provides an accurate
absolute measure of ICP. A novel technique, which provides an absolute value of
ICP, has recently been described by Ragauskas et al(108). A two-depth TCD
device is used to identify the intracranial and extracranial components of the
ophthalmic artery (IOA and EOA). Following the assumption that the Doppler
waveform of the |I0A is dependent on compression by ICP and that of the EOA by
externally applied pressure (Pe), a ring cuff is applied to the orbit and
automatically inflated from 0 to 28 mmHg in 4 mmHg steps. The P, at which the
waveforms of the I0A and EOA are identical is taken to represent the ICP. A
comparison study of this technique to CSF pressure measured by lumbar
puncture was performed in 62 patients presenting to a neurology clinic,
including 37 with suspected IIH and 20 with multiple sclerosis. For invasively
measured CSF pressures in the range of 4 to 24, the non-invasive technique

achieved a 98% confidence interval for the absolute error of +4 mmHg.

In a study of a similar group of patients, the two-depth TCD technique was
compared to the ONSD technique in its ability to predict raised CSF pressure as
measured by LP(109). Using a CSF pressure threshold of 14.7 mmHg, and an
ONSD cut-off of 5 mm, the two-depth TCD technique outperformed the ONSD
technique with sensitivities of 0.68 and 0.37 and specificities of 0.84 and 0.59

respectively.

Further work is required to confirm the safety of the innovative two-depth TCD
technique in terms of pressure effects on the globe and exposure of the lens to
Doppler US. The applicability of the technique to the TBI population and across a

wider range of ICP values has yet to be demonstrated.
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2.6 Summary of the Current State of Intracranial Pressure

Monitoring in Traumatic Brain Injury

Despite the fact that ICP monitoring in TBI has become a standard of care, there
is no level | evidence to support its use in targeting generic ICP thresholds.
However, there can be little doubt that investigation of ICP and the intracranial
pressure-volume relationship has led to an improved understanding of cerebral
physiology. It is now time to exploit this knowledge and integrate ICP monitoring
into a multimodality and individualised approach to care. Future RCTs of ICP
monitoring should utilise autoregulatory assessment to provide patient specific
thresholds for ICP and CPP. The use of non-invasive monitors of ICP is an

attractive prospect but not yet supported by the technology.

2.7 Transcranial Bioimpedance Measurement

2.7.1 Introduction

A study investigating the relationship between transcranial bioimpedance and
invasive intracranial pressure measurement in patients with traumatic brain
injury (BioTBI) is presented in the following three chapters of this thesis. It is
therefore necessary to consider the principles of transcranial bioimpedance
(TCB) measurement and the rationale for its consideration as a surrogate

measure of ICP.

As has already been discussed in detail, elevated ICP is associated with poor
outcome following traumatic brain injury(9) and The Brain Trauma Foundation
recommends that ICP should be monitored in patients with a severe traumatic
brain injury(54). ICP is typically measured using invasive pressure monitors that
are associated with specific complications and can generally only be inserted in
specialist centres. To provide ICP monitoring to a wider clinical population,
multiple attempts have been made to develop a non-invasive technique.
Transcranial bioimpedance measurement was considered to be a potential

approach to non-invasive ICP monitoring.
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2.7.2 Fundamentals of Bioelectrical Impedance Analysis

Bioimpedance is the ability of biological tissue to impede electric current.
Techniques are available to measure bioimpedance from whole or part of the
body in a process known as bioelectrical impedance analysis (BIA). The principles
and methods of BIA have been extensively reviewed by Kyle et al(110) and shall

be summarised below.

Bioimpedance is the sum of capacitive resistance (or reactance) and resistive
resistance (simply called resistance). The capacitive effect arises principally
from charge distributed across cell membranes (acting like the plates of a
capacitor) and the resistance from the conductance of current through the ionic
solutions in extra and intracellular fluid paths. Electric current of low frequency
will tend to be conducted through the extracellular space when the cell
membrane is acting as an insulator, whereas electric current of high frequency
will be conducted through both the extra and intracellular spaces. An electrical

circuit model of the two current paths is shown in Figure 2.13.
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Figure 2.13: A parallel electrical circuit model demonstrating extra and intracellular
current paths where Rgcw) is resistance through extracellular water, X. is impedance

from the cell membrane and Rcw) is resistance through intracellular water.

The equation relating the different factors is:
Z =R+ iX, (2.6)

where Z is overall impedance, R is resistance and iX; is reactance. The

magnitude of bioimpedance can be calculated by:
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In whole body measurements, two cutaneous electrodes are placed on the
patient’s foot and another two on the ipsilateral hand. Resistance is proportional
to length and inversely proportional to cross-sectional area of the conducting
body (Figure 2.14). This means that whole body impedance measurements are
corrected according to height (a surrogate of path length) for use in body

composition analysis.
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Figure 2.14: lllustration of the cylinder model relating resistance to geometry.

2.7.3 Bioelectrical Spectroscopy

Bioimpedance measurement obtained using devices capable of delivering a
broad band of frequencies (typically around 1 to 1000 kHz) is known as
bioelectrical spectroscopy. Under these circumstances it is possible to plot the
reactance and resistance measurements made at each frequency to construct a
Cole-Cole plot (Figure 2.15), (111). Using the impedance values extracted from
the Cole-Cole plot, body composition analysis can subsequently be performed.
Equations exist to relate resistance, reactance and impedance at a variety of
frequencies to fat free mass, body fat, total body water, extracellular water and

intracellular water.
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Figure 2.15: A graphical representation of a Cole-Cole plot with reactance plotted
against resistance, where Ro represents resistance measured with a direct current
and R sthe resistance measured with an infinitely high frequency alternating
current. Z. is the impedance measured at maximum reactance and 6 is the phase

angle.

In body composition analysis, the assumptions of homogeneous composition and
uniform distribution of current across a fixed cross-sectional area are required.
These assumptions are reasonable in healthy subjects, but are unlikely to apply
in the context of disease. In this context, the phase angle has been the most

extensively studied index of BIA. It is calculated as:

X (2.8)
_ -1 c
0 =tan™ " + <_R )

where @ is the phase angle (PhA). Calculation of PhA is typically performed at 50
Hz in single frequency BIA and at Z.in bioelectrical spectroscopy. Higher values
of PhA are thought to represent higher cellularity and efficient cell membrane

and intracellular functioning(112). Lower phase angles have been correlated
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with poor outcome and markers of increased disease severity in a number of

pathological processes including renal failure(113, 114), cardiac failure(115,

116) and several malignancies(117, 118).

2.7.4 Bioimpedance Measurements of the Brain

Application of bioimpedance measurements to the human brain is not a new
development. Indeed rheoencephalography (REG), or electrical impedance
measurement of brain circulation, has been investigated for several decades
without transitioning into clinical practice(119). The principle of REG is based on
the assumption that blood is a better conductor of electrical current than brain
parenchyma. Therefore as arterial blood flows into the cranial cavity, there is a

pulsatile reduction in continuously measured bioimpedance.

As well as REG there have been several studies using intermittent measures of
TCB in the detection of brain pathology. In a study of 100 healthy controls and
50 patients with a variety of brain pathologies, Grasso et al made TCB
measurements using a single frequency bioimpedance device(120). The
pathologies studied were tumours, intraparenchymal haemorrhage and
hydrocephalus. TCB measurements were made using pairs of cutaneous
electrodes placed on the closed eyelids and at the base of the occiput. The
relationship between resistance (R), brain water content (V) and head

circumference (HC) was modelled as:

A significant increase in V was detected between the patients with brain
pathology and the healthy controls. This supported their hypothesis that TCB
could be used to detect pathological processes associated with brain oedema

secondary to both extracellular and intracellular mechanisms.

More recently Liu et al have compared TCB measurements made in 200 healthy
controls to those made in 78 patients with haemorrhagic stroke and 51 patients
with ischaemic stroke(121). Cutaneous electrodes were placed in frontal and

occipital positions and a 50 Hz current applied using their “non-invasive
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cerebral-edema monitior”. TCB was measured and then converted into a

“perturbative index”. Unfortunately there are no details of how this index is
calculated in this paper or related publications using the same device(122-124).
The authors reported an increased perturbative index measured from the

pathological side in both haemorrhagic and ischaemic stroke.

Of particular relevance to the BioTBI study, Seonne et al have reported TCB
measurements made using the same Impedimed SFB7 Bio-impedance
Spectroscopy Unit (125). In their study of ten patients with ischaemic or
haemorrhagic stroke, they compared TCB measurements made from each
cerebral hemisphere using silver EEG electrodes. Nine out of the ten patients
demonstrated either asymmetry or values outside those measured in control
patients. It was not possible to differentiate between ischaemic and

haemorrhagic stroke.

Other authors have investigated the use of TCB measurements in TBI. Harting et
al used a controlled cortical injury rat model of TBI to demonstrate a difference
in brain impedance measurement made both post mortem and in vivo between
sham and injured animals(126). In these experiments the measurements were
made using bipolar electrodes in direct contact with the brain. Impedance
measurements were found to correlate with brain water content, supporting the

theory that bioimpedance could detect cerebral oedema following TBI.

Previous attempts have been made to determine the relationship between TCB
and ICP. Using a neonatal piglet model of brain hypoxia, Lingwood et al were
first able to demonstrate that non-invasive TCB measurements correlated well
with invasive measurements(127). They focussed on the bioimpedance
parameter of Ry on the basis that the pathophysiology of brain hypoxia was likely
to lead to intracellular oedema with a consequent reduction in the size of the
extracellular space. The reduction in the extracellular space would lead to a
significant increase in the impedance to a direct current. The presumed cerebral
oedema was also associated with an increase in the invasively measured ICP.
There was a strong correlation between the change from baseline of the non-
invasive measurements of TCB and ICP in the six animals subjected to severe

hypoxia (correlation coefficients between 0.72 and 0.97).
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In subsequent neonatal piglet experiments, Lingwood et al were able to
demonstrate that the significant changes from baseline of non-invasive TCB
measurements associated with severe hypoxia correlated well with clinical and
histological markers of poor neurological outcome(128). They suggested that TCB
measurements could therefore be used to help in prognosticating the degree of
neurological impairment following severe perinatal asphyxia. Unfortunately it
was not possible to confirm the association in a study of 24 human newborns

with evidence of severe acute intrapartum hypoxia and encephalopathy(129).

Other attempts have been made to explore the relationship between TCB and
ICP using an animal model. Shaw et al performed a series of experiments in
sheep, again using the Impedimed SFB7 device(130). TCB measurements were
made via 21G needles inserted into the scalp on either side of the head. ICP was
invasively measured with an intraventricular catheter and manipulated via the
injection of a mock CSF injection to cause a stepwise increase in ICP up to 50
mmHg. It was demonstrated that when Z. was normalised against a baseline
value for each animal, there was a clear relationship between the log of ICP and

the inverse of Z.:

ICP=exp( +b) (2.10)

norm

where Z,orm is the normalised Z.. In parallel with this animal study, Shaw et al
performed a study in healthy human volunteers to determine the normal values

for TCB recorded using transcutaneous electrodes.

In terms of previous work that has investigated TCB measurements of the brain,
it is finally necessary to mention the evolving technique of electrical impedance
tomography (EIT)(131). Using an array of surface electrodes, multiple electrical
impedance measurements can be made between rotating electrode pairs.
Advanced signal processing is then required to construct a cross sectional image
of the object being measured. An adaptation of the technique has been applied
to a porcine model of traumatic brain injury using a combination of cutaneous

electrodes and an EIT electrode incorporated onto an intraparenchymal ICP
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monitoring device(132). As a proof of concept study, it was possible to some

degree, to detect intracranial injuries in real time.

2.7.5 Postulate

It is clear that multiple studies have demonstrated a potential role for
bioimpedance measurements of the brain in clinical practice. Indeed there is
some evidence from the animal studies above that TCB measurements are
related to invasively measured ICP. As stated above, development of a reliable
non-invasive ICP monitoring technique would have wide clinical applicability in
TBI. It was therefore postulated that TCB measurements could provide an

estimate of ICP in patients admitted following a TBI.

Following TBI intracranial compliance is dependant upon the degree of
intracellular swelling and the size of the extra cellular space. Similarly in TCB
measurement, brain impedance depends upon intracellular swelling and the size
of the extra cellular space. As there is a well-defined exponential relationship
between ICP and intracranial compliance, it was proposed that there should also
be a definable relationship between ICP and TCB.
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3. Materials and Methods for the BioTBI Study

3.1 Overview

This chapter describes in detail the materials and methods for the Relationship
Between Transcranial Bioimpedance and Invasive Intracranial Pressure
Measurement in Traumatic Brain Injury Patients (BioTBI) Study. The study

protocol and related documents are available on request.

3.2 Objective

The primary objective of this study was to define the relationship between non-
invasive bioelectrical impedance measurements of the brain and skull and
intracranial pressure (ICP) in traumatic brain injury (TBI) patients. This would
act as a pilot project to assess the feasibility of transcranial bioimpedance (TCB)

as a non-invasive estimate of ICP.

3.3 Ethical Approval

Ethical approval was granted for the study by Scotland A Research Ethics
Committee following the meeting on 23" June 2011 and chaired by Dr lan
Zealley (Reference Number: 11/AL/0320). The study was sponsored by NHS
Greater Glasgow and Clyde and supported by funding from The Association of
Anaesthetists of Great Britain and Ireland/ Anaesthesia via the National Institute
of Academic Anaesthesia (WKR0-2011-0039).

3.4 Summary of Study Design

This was a single centre pilot study comparing TCB measurements to invasively
monitored ICP in patients with TBI. The aim was to enrol 15 patients with a view

to performing 300 individual TCB measurements.

3.5 Patient Recruitment

Study participants were prospectively recruited from patients admitted to the

Neurological Intensive Care Unit (NICU) at the Institute of Neurological Sciences.
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Included patients were over 16 years of age, admitted with a traumatic brain

injury and undergoing invasive ICP monitoring as part of their routine clinical
care.

Due to the nature of their injuries and ongoing intensive care, patients were
unable to consent to inclusion in the study. For this reason, the nearest relatives
were approached on their behalf. The nearest relatives were provided with a
Relative’s Information Sheet and a verbal description of the study procedure.
They were allowed time to ask questions and for consideration prior to

consenting to their relative’s participation in the study.

Patients were excluded from participation in the study if their relative refused
consent or if there was soft tissue injury preventing application of the TCB

electrodes.

3.6 Patient Monitoring

As part of their routine clinical care on the NICU, all participants were
undergoing measurement of their physiological vital signs through the Philips
IntelliVue MX700 bedside patient monitor (Philips Healthcare, Netherlands).
Vital signs recorded included, but were not limited to, pulse oximetry (Sp0,),
end-tidal carbon dioxide (ETCO;), electrocardiogram (ECG), invasive arterial

blood pressure (IABP) and core temperature.

As stated in the inclusion criteria, all patients were undergoing invasive ICP
monitoring. This was done through a Neurovent-P catheter-tip pressure sensor
(Raumedic, Germany). The sensor was typically placed in the intraparenchymal
compartment through a cranial bolt-housing overlying the frontal cortex.
Interface to the Philips IntelliVue MX700 was provided by the NPS2 Philips/HP

adapter cable.

Minute by minute summaries of all vital signs, including ICP, were recorded and
archived to the local patient management database (Microsoft SQL Server,
2008).
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3.7 Study Procedure

3.7.1 Transcranial Bioimpedance Measurement

Transcranial bioimpedance measurements were performed using the Impedimed
SFB7 Bio-impedance Spectroscopy Unit (ImpediMed, Australia). The device is a
single channel BIA unit that acquires 256 separate measurements between 4 and
1000kHz. The SFB7 device was connected through application of 3M Red Dot
Paediatric Monitoring Electrodes (3M, USA) to the scalp. In a previous study of
healthy volunteers, our group had demonstrated the ease of obtaining TCB
measurements using this device and have established a normative data set with
varying electrode position, age and gender(130). From this it was concluded that
temporal to temporal or frontal to occipital electrode positions were likely to
give equally reliable data. The temporal to temporal position was anticipated to
be the easiest to perform in TBI patients and was thus chosen as the primary

configuration (Figure 3.1).

Following patient recruitment to the study, TCB measurements were made with
at least one hour intervals so that they could be considered as discrete
measurements. There was a target of 20 measurements per participant, but this
was subject to continuation of invasive ICP monitoring and ongoing feasibility of
TCB measurement. At each measurement time point the device was programmed
to perform 40 separate TCB recordings. This process took approximately one
minute and ensured that any variation of instantaneous readings through
pulsatile changes in either brain or scalp could be accounted for at the analysis

stage.
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Figure 3.1: SFB7 device connected with electrodes in the temporal position. An

identical pair of electrodes are on the opposite side.

3.7.2 Whole Body Bioimpedance Analysis

Whole body bioimpedance measurements were anticipated to be an important
variable when modelling TCB against ICP. To enable this, whole body
bioelectrical impedance analysis (BIA) was performed six hourly during the study

period using the SFB7 device and the standard technique.

3.7.3 Waveform Data Capture

In addition to routine clinical monitoring of participants, high frequency capture
of physiological vital signs was performed throughout the study period. This was
achieved by continuously streaming data from the Philips Intellivue MX700
Medical Interface Bus (MIB) to a Dell Inspiron laptop (Dell Inc., USA) using
ixTrends software(133). The purpose of this high frequency data capture was to
allow better inspection of data for artifact and to allow future comparison of

TCB against features of the ICP waveform.

3.7.4 Additional Clinical Data

A number of participant variables were recorded in the clinical record form
(CRF) to allow data stratification for the process of modelling TCB against ICP.
These variables included age, gender, body weight and height. Additional
variables extracted from the participants computed tomography scan (CT) of

their brain for consideration in the modelling process included brain diameter
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and measurements of soft tissue swelling. To ensure that the population of

patients studied was an appropriate representation of patients admitted with
TBI, details of aetiology of TBI, primary diagnosis and any surgical procedures

were also collected in the clinical record form (CRF).

3.8 Analysis

3.8.1 Introduction

As stated in the introduction, data processing and analysis were performed using
the “R” statistical programming environment (7). Specifically R Studio Version
0.98.1102 running R Version 3.1.2 (R Core Team, 2014) was used. Individual R
Packages used for each stage of analysis are detailed in the appropriate

sections. All data visualisation was done using the package ggplot(134).

3.8.2 Data Preparation
3.8.2.1 Bioimpedance Data

TCB and whole body BIA data were downloaded from the SFB7 device using the
Biolmp Body Composition Analysis Software provided with the device. The
capabilities of this software in terms of Cole-Cole plotting and body composition
estimates were not used. Instead the downloaded comma separated value (csv)
files were imported into R for subsequent analysis. An annotated example of an

SFB7 output file is shown in Figure 3.2.
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Figure 3.2: Excerpt from a SFB7 data file, which includes header information and
resistance and reactance measurements across 256 frequencies.

Manipulation of TCB data into a standardised format for ease of repeatable
analysis was performed using the packages dplyr(135) and stringr(136). Cole-
Cole plots were then constructed for each TCB and whole body bioimpedance
measurement using a circle fitting function used in previous work (51). Summary
values for Z., Rg and Ri,s were created by performing a composite fit using data

from all of the 40 measurements made at each time point. Data were excluded
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if the circle fitting function was unable to successfully calculate all of Z., Ry and

Rinf.

3.8.2.2 ICP Data

The ICP data necessary for modelling against TCB data were extracted from the
high frequency data collected by the ixTrends software. These waveform data
were stored with a resolution of 128 Hz and were output to a csv file. The
processing of waveform data was done using techniques developed by Martin
Shaw as part of a parallel project to which the BioTBI study contributed pilot
data(137, 138). In brief, the waveform data underwent pulse detection and
subsequent summarisation to 1 Hz frequency. ICP data were then extracted and
imported into R. As for TCB data, manipulation of ICP data into a standardised
format for ease of repeatable analysis was performed using the packages
dplyr(135) and stringr(136).

In preparation for modelling their relationship, a unique ICP value was needed
for each TCB measurement. As a pragmatic sample, median ICP was calculated

for the five minutes following each TCB measurement.

3.8.3 Modelling ICP Using TCB Data

3.8.3.1 Sample Size

When calculating the appropriate sample size for the study, the range of ICP was
assumed to be 0 to 50 mmHg. In the first instance, we expected to detect a
minimum correlation between ICP and impedance of 0.2 (or 10 mmHg).
Therefore a sample size of 280 was required to achieve a power of 0.9. We
anticipated that this number of samples could easily be collected if 15 patients

were recruited and TCB measurements made every hour for 24 hours.

3.8.3.2 Modelling Process

Attempts were made to model ICP using both absolute and normalised values of
Z. and Ro. In the animal studies referred to in the introduction, Z. had an inverse
relationship with ICP, while Ry had a direct relationship(127, 130). An
unadjusted linear modelling approach was first taken to confirm some degree of
relationship between TCB and ICP.
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An adjusted linear modelling approach was subsequently taken to explore which

patient specific variables could be used to further define the relationship
between ICP and Z. or Ry. Each of the patient variables of gender, age, weight
and height, along with CT derived measurements of soft tissue swelling and
brain diameter, as well as whole body bicimpedance measurement and
temperature, were included in linear models. Patient variables that did not
significantly contribute to the model were sequentially removed. The simplified
model was then compared against the original using analysis of deviance testing

to confirm that they were not significantly different.

The final modelling approach was to use the Akaike information criterion (AIC) in
backward stepwise regression to select the models with the best balance of
goodness of fit and low complexity. All modelling was done using the stats

package in R(7).



51

4  Results for the BioTBI Study

4.1 Overview

The principle results of the transcranial Bioimpedance in Traumatic Brain Injury
study are presented. There is first a description of patient demographics and
measurements made, followed by a description of the attempts to model
intracranial pressure using transcranial bioimpedance measurements. These
results were presented in June 2016 at the 16th International Symposium on

Intracranial Pressure and Neuromonitoring, Boston, Massachusetts.

4.2 Data Collection

4.2.1 Data Collection Period

The initial plan for the BioTBI study was to recruit 15 patients to achieve a data
set of 300 independent TCB measurements. Data were collected over the period
17/12/2011 to 21/01/2014. TCB data were collected from a total of 11 patients
during this period. In one of these patients, a technical problem with the
neurological intensive care unit network led to a failure to store sufficient ICP
data to model against TCB measurements. Consequently there were 10 patients

with data suitable for inclusion in the study.

In an audit of admissions to NICU at the Institute of Neurological Sciences in
2010 there were 17 patients with TBI who underwent ICP monitoring. For this
reason, it had been felt that recruiting the sample size of 15 patients in a two
year period would be achievable. There were a number of reasons that meant
that this was ultimately not the case. These ranged from a higher than expected
number of relatives refusing consent, the unavailability of relatives to conduct
the consent process, coincident admission of patients when there was only
sufficient equipment to recruit one and short ICP monitoring periods meaning

adequate data collection would not be possible.
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4.2.2 Patient Demographics

All patients met the inclusion criteria of age over 16 years, admitted to NICU
with a traumatic brain injury and were undergoing ICP monitoring as a routine
part of their clinical care. Table 4.1 summarises the demographic characteristics
of each of the 10 final participants. There were nine male patients and one

female and the median age was 51 (29 - 61) years.

ID Gender | Age | Aetiology Primary Hospital Survivor
(Yrs) Diagnosis
001 m 45 Fall ASDH y
003 [m 54 Fall EDH y
004 |f 61 Fall EDH y
005 |[m 51 Fall ASDH y
007 |m 48 Fall ASDH y
009 |m 59 Fall Contusions y
010 m 61 Fall Contusions y
011 m 41 Assault EDH y
013 m 33 Fall Contusions y
018 |[m 29 MvC DAI n

Table 4.1: Demographic summaries for each of the ten patients included in the
BioTBI study, where MVC = motor vehicle crash, ASDH = acute subdural haematoma,

EDH = extradural haematoma, DAI = diffuse axonal injury.

The aetiology of TBI was a fall in eight cases, with one assault and one motor
vehicle crash. Most patients had several abnormalities identified on their
admission CT brain scan, but the primary diagnosis was subdural haematoma,
extradural haematoma or contusions in three cases each, with a single case of
diffuse axonal injury. Four patients underwent craniotomy for haematoma
removal prior to the period of TCB measurement. Subsequent to the study
period, one further patient underwent craniotomy, two underwent burr hole
drainage of chronic subdural haematoma and a further patient underwent
insertion of an external ventricular drain followed by decompressive
craniectomy. The extent of mixed pathology within and between patients is
likely to have been significant in terms of the ability to model ICP using TCB and

will be considered in detail later.
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Nine out of the ten patients survived until discharge from hospital. The median

length of stay in ICU was 8.6 (4.2 - 18.6) days, while the median length of acute
hospital stay was 24.6 (16.2 - 143.5) days.

4.2.3 Transcranial Bioimpedance Measurements

In the ten patients who were ultimately included in the study, 168 valid
temporal to temporal TCB measurement episodes were available. Preliminary
Cole-Cole plots could be displayed on the SFB7 device and it was therefore
possible to reject any clearly invalid measurements and repeat. In some patients
it was impossible to achieve a valid measurement and the reasons for this will be
explored in the discussion section. In the first five patients, initial attempts
were made to measure TCB in alternative electrode positions (for example
frontal to mastoid). It became clear however, that these measurements could
often not be made due to the presence of a cervical collar or due to the risk of
head position changes impacting on ICP. For each of the 168 episodes, there

were 40 separate TCB measurement sweeps across the frequency spectrum.

The TCB measurements from each measurement episode underwent Cole-Cole
analysis to fit a single composite curve as a summary measure of the data. An
example of the Cole-Cole plots for one patient is shown in Figure 4.1 and an

example of the curve fitting has already been shown in Figure 2.15.
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Figure 4.1: An example of composite Cole-Cole plots for one patient (ID = 011).

4.2.4 Whole Body Bioimpedance Measurements

A total of 39 whole body bioimpedance measurements were made. This
represented at least one measurement for every six hour period for the patients
included in the study. As for the TCB measurements, for each of the 39
episodes, there were 40 separate measurement sweeps across the frequency

spectrum.

4.2.5 Intracranial Pressure Measurements

ICP was calculated as a summary measure of two time windows surrounding each
TCB measurement. The first time window was the five minutes immediately
following the measurement, when the median value across the study period for
all patients was 16.3 (9.5 - 28.9) mmHg. Boxplots showing the distribution of ICP
for each patient are shown in Figure 4.2. The median ICP value using a second
time window from 15 minutes before to 15 minutes after each TCB measurement
was 16.2 (9.5 - 29.4) mmHg. The distributions of ICP values for each patient
were essentially identical between the first and second time windows. For this
reason, the decision was made to use only the ICP values calculated during the

first time window during the process of modelling ICP using TCB.
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Figure 4.2: Boxplots showing the distribution of ICP values measured across the

study period for each patient.

4.3 Modelling of ICP Using TCB Data

4.3.1 Introduction

A number of modelling approaches were taken in an attempt to find the most
effective technique to predict ICP using TCB measurements. The results of these
analyses shall be discussed in turn below. TCB measurements entered the
models either as the raw measured value or as a value normalised against the

overall median value for the individual patient.

4.3.2 Unadjusted Linear Models

ICP was first plotted against measured Z. and normalised Z. to allow visual
inspection for any obvious relationship (Figure 4.3). From these plots there was
no clear relationship between TCB and ICP, so the plots were then repeated for
each individual patient (Figure 4.4). In the absence of any clear visual
relationship the decision was made to use an unadjusted linear modelling

approach to explore the relationship between both measured Z. and normalised
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Z.and ICP. On the basis of the previously discussed sheep study(130), the inverse

relationship between normalised Z. and the log of ICP was also explored.

On the basis of the previously discussed neonatal piglet study(127), the
relationship between ICP and R, was also explored. Combined and individual
patient plots are displayed in Figures 4.5 and 4.6. Again there was no clear

relationship between TCB and ICP, so on the basis of the piglet experiment a

direct relationship between Ry and ICP was assumed.
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Figure 4.3: Plot of ICP against measured (A) and normalised (B) Z. for the entire

study population.
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significant relationship between ICP and normalised Z. (p < 0.001), a significant

inverse relationship between the log of ICP and normalised Z. (p < 0.01) and a

significant relationship between ICP and normalised Ry (p < 0.001). The adjusted

r-squared value for each of these relationships was small (0.09, 0.06 and 0.18

respectively). Attempts were therefore made to explore the relationship

between ICP and TCB parameters by adjusting the linear models for patient

specific variables.

4.3.3 Adjusted Linear Models

To explore which patient specific variables could be used to further define the
relationship between ICP and Z. or Ry, each of the patient variables of gender,

age, weight and height, along with CT derived measurements of soft tissue

swelling and brain diameter, as well as whole body bioimpedance measurement

and temperature, were included in linear models. Patient variables that did not

significantly contribute to the model were sequentially removed. The simplified

model was then compared against the original using analysis of deviance testing
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to confirm that they were not significantly different. The following models were

considered:

ICP == a1ZC + a2V2 ...anVn + b

a
ICP = exp (Z—1+ a,V,..a,V, + b)

C
ICP =a Ry + aya,...a,V, +b
ICP - alznom + a2V2 ...anIZn + b

a,

ICPzexp( +a2V2...anVn+b)

norm

ICP = aiRprm + a3V, ...a,V,, + b

where Z,orm and Rnorm are normalised Z. and Ry, V...V, are patient specific

(4.6)

variables and a;...a, and b are constants. To assess whether or not the inclusion

of both Z. and R strengthened the relationship between TCB parameters and

ICP, the following models were considered:
ICP=a,Z.+ ayR,y...a,V,, + b

a,

ICP = exp(Z
c

) +a,Ry...a,V,, +b

ICP = aZyprm + A2 Rnorm - anVy + b

ICP = exp(

norm

) + ayRp0rm - anVy + b
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Using measured TCB parameters, the simplified model with the greatest r-

squared value was:

ICP=a,Ry+a,G+a;W+a,H+asBD+asWBZ.+b (4.11)

where G is gender, W is weight, H is height, BD is brain diameter and WBZ, is
whole body bioimpedance (p < 0.0001, r-squared = 0.19, estimates in Table 4.2).

Estimate 95% Confidence Intervals P-value
a 0.20 0.12 to 0.29 < 0.0001
a; -5.68 -7.51to -3.85 < 0.0001
as 0.08 0.01 to 0.15 <0.05
ay 0.28 0.16 to 0.40 < 0.0001
as -0.41 -0.65 to -0.17 < 0.001
as -0.02 -0.03 to -0.01 < 0.0001
b 15.03 -4.92 to 34.98 0.14

Table 4.2: Estimates for model 4.11.

The simplified model with the greatest r-squared value using normalised

bioimpedance measurements was:

Icp (4.12)
a

= exp( ) + a,R,0rm + 3G + a, ST + asT + a,WBZ,ypm + b

Znorm

where ST is soft tissue thickness and T is temperature (p < 0.0001, r-squared =
0.32, estimates in Table 4.3).
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Estimate 95% Confidence Intervals P-value
ay 2.92 1.07 to 4.78 < 0.01
a; 9.60 6.10 to 13.09 < 0.0001
az -3.81 -5.40to -2.22 < 0.0001
ay 0.13 0.08 to 0.19 < 0.0001
as 0.90 0.29 to 1.51 < 0.01
as 12.12 2.21to 22.03 <0.05
b -48.50 -74.51to -22.49 < 0.001

Table 4.3: Estimates for model 4.12.

4.3.4 Backward Stepwise Regression

The models selected and their r-squared values calculated using a backward

stepwise regression approach were essentially the same as those selected using

the adjusted linear modelling approach.
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5 Discussion and Conclusions for the BioTBI Study

5.1 Overview

A discussion of the results of the BioTBI Study is presented below. Limitations of
the study are addressed and the results are considered in terms of those of
similar studies attempting to model intracranial pressure (ICP) using a non-
invasive technique. There is then a description of work performed as a direct
result of the BioTBI Study with suggestions for future directions of research into

the modelling of ICP in patients with traumatic brain injury (TBI).

5.2 Rationale for the Study

Monitoring of ICP is well established in the clinical management of TBI and the
practise is supported by international guidelines(54). ICP monitoring is typically
performed using an intraventricular or intraparenchymal catheter with a
microtransducer system. Both of these techniques are associated with significant
complications such as bleeding and infection and their availability in TBI is
largely restricted to specialist neurosurgical centres. A safe, simple and accurate
non-invasive device would therefore increase the clinical availability of ICP

monitoring.

Transcranial bioimpedance (TCB) has been considered for the early detection of
multiple brain pathologies in humans(120, 121, 125). In addition, previous
animal experiments have shown a relationship between TCB and ICP(127, 130).
Based on the known relationship between bioimpedance and the volume of the
intracellular and extracellular spaces, the potential use of TCB was investigated

as an estimate of ICP in TBI.

5.3 Data Collection

5.3.1 Study Population
All study patients were recruited from the neurological intensive care unit

(NICU) and had been admitted with severe TBI. The patients were representative
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of the typical population of patients suffering a TBI in terms of age range and

the diverse pathologies identified on computed tomography (CT) scanning of the
brain. While the range of pathologies was a strength of the study in terms of its

clinical applicability it may have limited the prospects of successfully identifying
a relationship between TCB and ICP.

In the animal studies that had previously defined a relationship between TCB
and ICP, the experimental models resulted in a uniform pathological process
that would effect TCB measurements in a predictable manner. In the neonatal
piglet model described by Lingwood et al(127), brain hypoxia was presumed to
lead to intracellular swelling and a consequent decrease in the extra-cellular
fluid space that was associated with a rise in ICP. In the sheep model described
by Shaw et al(130), intracranial hypertension (ICH) was induced by injection of
mock cerebrospinal fluid (CSF) into the ventricle. The nature of the brain
injuries in the patients recruited to the BioTBI study meant that there were
likely to be multiple pathological processes evolving, even within an individual
patient. The aetiology of increases in ICP could include intracellular or vasogenic
oedema, expansion of intra or extra-axial haematoma or a disruption to CSF
flow. All of these pathologies are likely to have had different influences upon

TCB measurements that complicated the process of modelling ICP.

A failure to translate promising animal research into successful human studies
has been a very well recognised problem in TBI(139) and over the past 30 years
more than 20 large phase Il trials have failed to show a significant treatment
effect of a neuroprotective agent(140). Many of the issues related to therapeutic
trials relate equally well to monitoring studies. One of the primary problems in
converting positive findings in animal models of TBI into positive findings in the
clinical environment is believed to be the heterogeneity of human TBI compared
to that in controlled animal models(141). The International Mission on Prognosis
and Clinical Trial Design in TBI (IMPACT) study group was initiated in 2003(142).
They were given access to individual patient data from several large randomised
controlled trials (RCTs) with the aim of optimising the design and analysis of
trials in TBI. Proposed techniques for dealing with heterogeneity in TBI have
been to maintain broad inclusion criteria but to pre-specify covariate

adjustment into analyses(143).
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As already detailed in the results section, recruitment to the BioTBI Study was

slower than had been anticipated. Although the intended sample size was not
achieved, the number of patients and individual TCB measurements should have

been sufficient to detect a strong relationship between TCB and ICP if it existed.

5.3.2 TCB Measurements

Measurement of TCB proved to have a number of technical difficulties in the
population of TBI patients studied. The presence of rigid collars to immobilise
the cervical spine in a number of patients meant that positioning the electrodes
in mastoid or occipital positions was not feasible. Similarly the risk of
undiagnosed cervical spine injury in this patient population means that the head

and neck can only be moved with caution to allow electrode attachment.

In several patients the application of electrodes was complicated by the position
of dressings following cranial surgery or because of associated maxillo-facial
injuries. Indeed the presence of significant soft-tissue swelling in some cases
made the successful measurement of TCB difficult. In these cases there was the
concern that a significant portion of the current path would be extra-cranial and
therefore impedance would not necessarily reflect intra-cranial pathology.
Attempts were made to mitigate this risk by measuring soft tissue thickness and
brain diameter on CT scan and including these measurements in the adjusted

models.

5.3.3 ICP Measurements

In the BioTBI Study, only patients who were undergoing ICP monitoring as part of
their routine clinical care following severe TBI were recruited. In these patients,
one of the principle aims of NICU care is to prevent ICH and thus intervene when
ICP is rising. As can be seen from Figure 4.2, the vast majority of ICP summary
measures from all patients were in the range of 10 to 25 mmHg. Therefore there
were a limited number of extreme ICP values to facilitate model building. All
studies investigating non-invasive ICP devices in the real clinical environment
face a similar problem. For example in the study by Brandi et al, comparing

multiple transcranial Doppler sonography (TCD) derived models of ICP, across
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601 measurements in 45 patients, there were only four values above 25

mmHg(80).

ICP values used for modelling purposes were taken as a median of ICP in the five
minutes following a TCD measurement. This time window was chosen as being

long enough to provide a stable value but short enough to reflect any changes in
pathophysiology. The R code used to provide the summary measure would allow

the window length to be easily adjusted in any future studies.

5.4 Modelling of ICP Using TCB Data

5.4.1 Unadjusted Linear Models

The TCB parameters selected for modelling were based upon the animal studies
referred to above. Shaw et al had demonstrated an inverse relationship between
the log of ICP and Z.(130), while Lingwood et al had demonstrated a direct
relationship between ICP and Ro(127). Visual inspection of plots of ICP against
the Z. and Ry (Figures 4.3 and 4.5) did not suggest any strong relationship. Given
the low sample size, plots were performed for each individual patient (Figures
4.4 and 4.6) but even on an individual patient basis there was no clear trend

between either Z. or Rpand ICP.

The lack of a strong relationship was then supported by the results of the linear

modelling approach, where there was no demonstrable relationship between the
measured values of either Z. or Rg and ICP. When TCB variables were normalised
per patient (as was done in the previous animal studies) there was a small but

significant relationship.

5.4.2 Adjusted Models

In an attempt to account for some of the patient heterogeneity in the study
population, a number of patient specific variables were used in adjusted linear
models and backward stepwise regression. Using measured values, the TCB
parameter Ryin combination with the variables of gender, age, weight, height,
brain diameter and whole body Z. provided the adjusted linear model of ICP
(4.11) with the largest adjusted r-squared value (0.19). Using normalised values,

the TCB parameters of 1/Z. and Ry in combination with the variables of gender,



66
soft tissue thickness, temperature and whole body Z. provide the model of ICP

(4.12) with the largest adjusted r-squared value (0.32). The models and values

calculated using backward stepwise regression were almost identical.

The relatively low r-squared values in the above models mean that a large
component of ICP is unexplained by the model incorporating TCB measurements.
This is particularly relevant given that there is a significant risk of model over
fitting to the small study population. Therefore the likelihood that either of the
models could be generalised to provide clinically meaningful estimates of ICP in

a population of patients admitted with severe TBI is low.

5.4 Results in the Context of Similar Studies

5.4.1 Non-Invasive ICP Measurement

The two most extensively investigated non-invasive techniques to estimate ICP
are TCD and optic nerve sheath diameter (ONSD) derived measures, as already
discussed. The complexity of TCB measurements and the training required to
perform them would be less than either of these ultrasound-derived measures.
On the basis of the BioTBI study however, TCB does not show more potential

overall.

It is not possible to perform an exact comparison of the techniques, but the r-
squared value of 0.19 achieved by modelling ICP using measured values of TCB
suggests the technique would be far inferior to either TCD or ONSD. The TCD
technique proposed by Bellner et al(78) and recommended by Brandi et al(80)
was initially demonstrated to detect an ICP of over 20 mmHg with a sensitivity of
0.83 and specificity of 0.99. It is worth mention that in the comparative study by
Brandi et al, the technique failed to detect all cases of intracranial
hypertension. In the meta-analysis of ONSD techniques performed by Dubourg et
al, the pooled sensitivity and specificity to detect ICH were 0.9 and 0.85
respectively(87).

The TCB, TCD and ONSD techniques all share the disadvantage of providing a
surrogate measure of ICP, rather than an absolute measure. The technique

described by Ragauskas et al(108), based on detecting ophthalmic artery pulse
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waveforms following increments of intra-occular pressure, provides an

interesting alternative. The safety and applicability to a wide range of clinical

situations are yet to be demonstrated for this technique.

5.4.2 Clinical Application of TCB

The BioTBI study suggests that TCB techniques will require considerable
development before application to estimation of ICP in TBI. Other authors have
proposed the use of TCB to detect alternative pathologies. Both of Liu et al(121)
and Seonne et al(125) have studied the use of TCB measurement in the early
detection of stroke. The use of TCB in this population does not face the same
difficulties in terms of movement of the head and neck or electrode application

in the context of soft tissue injury that are encountered in TBI.

There is no detailed description of the TCB measurements made by Liu et al. In
the study by Seonne et al, comparison was made between TCB measurements
made with central and lateral electrode positions and with left and right
electrode positions. The ratios of resistance in these electrode positions was
found to be outside the range of healthy controls in nine out of ten stroke
patients. This is an interesting result and does support the hypothesis that TCB
measurements can help to identify a patient with brain injury. It is difficult
however to envisage how TCB would be applied in the acute care of stroke,
where the requirement for early diagnostic imaging is already established in

national guidelines(144).

5.5 Related and Future Work

5.5.1 Introduction

Despite disappointing results in terms of modelling ICP, the ICP and ABP
waveform data collected as part of the BioTBI Study have been a valuable
research resource. They have been used as pilot data to test some of the models
described in the introductory chapter and bring them closer to implementation
in clinical practice. Examples of recent and ongoing projects that are using the
data to develop novel ICP analysis, address issues related to artifact in high
volume data capture and embed these complex analyses into the clinical

environment are provided below.
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5.5.2 Multi-resolution Convolution Analysis of the ICP Waveform

From the database of ICP waveforms collected as part of the BioTBI Study,
examples of the recognised ICP states of high and low compliance and ‘a’ and
‘b’ waves were selected(145). Multi-resolution convolution analysis was used to
identify features of the ICP waveform associated with each of the clinical states
that could then be used to create an impulse function. It was then possible to
identify these waveform features in a separate study dataset. These pilot results
require further optimisation on a larger ICP waveform dataset. As with the
previously discussed work on morphological clustering and analysis of continuous
intracranial pressure (MOCAIP)(103), they do suggest that automated analysis of

the ICP waveform may be able to identify clinically important ICP states.

5.5.3 Calculation of Optimal CPP

There has already been detailed discussion of the potential use of indices of
cerebral autoregulation (CA) to calculate optimal cerebral perfusion pressure
(CPPopt) in TBI. One of the potential limitations of this approach is the fact that
the most established techniques to calculate CPPopt fail to successfully find a
value in a significant percentage of monitoring episodes(100). Arterial blood
pressure (ABP) and ICP waveforms collected during the BioTBI Study have been
used to compare indices of CA(146) and explore alternative methods of
estimating CPPopt(147). If targeting of CPPopt in the management of TBI is to be
tested by RCT, there will need to be consensus agreement on the most

appropriate means of its estimation.

5.5.4 Detecting Artifact in Physiological Waveforms

The BioTBI Study tested a new system for high frequency data capture on the
NICU (ixTrends(133)). One of the well recognised problems with automatic high
frequency data capture is the inadvertent collection of artifactual data(148).
The ABP data collected during the BioTBI Study were used as pilot data for a
Chief Scientist Office (Scotland) funded project (CHZ/4/801) into the automatic
detection of artifactual events in vital signs monitoring data(149, 150). As high
frequency data capture becomes the norm in ICU there will be a requirement for

systems to ensure the quality of these data.
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5.5.5 Embedding Automatic Data Analysis into the NICU

At around the same time that the IMPACT Group were addressing issues
surrounding the failure of multiple large RCTs to confirm the efficacy of
promising therapies in TBI, the Brain monitoring with Information Technology
(BrainlT) Group were suggesting an alternative solution(96). As a collaboration
across 22 NICUs in 11 European countries (coordinated from the Institute of
Neurological Sciences in Glasgow), the group have worked towards development
of more information technology based tools for collection and analysis of
standardised high resolution data in TBI. By sharing and analysing these high
resolution data it is expected that a better understanding of variations in patient

physiology and treatment will lead to more targeted therapies in the future.

In the BrainIT projects, the data collection frequency was 1 Hz. In the BioTBI
project, the data collection frequency of the ICP and ABP waveforms was 128
Hz, while the frequency for the electrocardiogram (ECG) signal was 512 Hz. The
collection of this resolution of data means that analyses of brain physiology, for
example the assessments of cerebral autoregulation mentioned above, can be
performed. However, the vast quantities of data generated require specialised
infrastructure for transfer, storage and analysis. The Connecting Healthcare and
Research Through A Data-Analysis Provisioning Technology (CHART-ADAPT)
Project has been funded by Innovate UK (Reference: 102113) to address these
issues along with the unique challenge of returning results to the patient bedside

in a clinically useful timeframe(151).

5.5.6 Alternative Monitors of Brain Physiology

In the context of managing TBI, the importance of ICP monitoring relates to the
information it can provide clinicians in terms of indicating the extent of the
pathological process and guiding interventions. The interventions can be
targeted at reducing ICP and optimising CPP as a means of ensuring adequate
cerebral blood flow (CBF) and consequently maintaining oxygen and nutrient
delivery to the injured brain. Direct measures of these endpoints exist but a
review of their function and efficacy is outwith the scope of this thesis. The
Brain Trauma Foundation (BTF) guidelines acknowledge the current low level of
evidence surrounding devices designed to monitor CBF, brain oxygenation and

the metabolic state of the brain. Despite this, the future of TBI care will
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potentially involve integrating ICP measurement with multiple additional

monitors of brain physiology.

5.5.7 Alternative Applications for TCB Measurement

All of the applications of TCB measurement described above have been in the
monitoring and investigation of acute pathologies. As an estimate of ICP it may
be more appropriate in future studies to consider a role for TCB in monitoring
more chronic conditions. For example, idiopathic intracranial hypertension (lIH)
is a syndrome of raised intracranial pressure without identifiable aetiology(152)
and hydrocephalus is a disorder of excessive accumulation of CSF with multiple
aetiologies(153). In both of these clinical conditions there is often an indication
for measurement of CSF pressure in individuals over a long period of time,
frequently resulting in multiple invasive procedures. Therefore the need for new
techniques to assist with the diagnosis of hydrocephalus is recognised as an
opportunity for hydrocephalus research(154). In IIH and hydrocephalus, TCB
would benefit from the lack of soft tissue injury, the potential to make a
calibrating invasive measurement at the time of diagnosis, followed by the

ability to trend non-invasive measures over time.

5.6 Conclusions

The pilot results from the BioTBI Study confirm some degree of relationship
between TCB parameters and invasively measured ICP. The magnitude of this
relationship is small and on the basis of the study, TCB is unlikely to provide a

clinically useful estimate of ICP in patients admitted with TBI.
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6 Pharmacokinetic Pharmacodynamic Modelling in

Anaesthesia

6.1 Overview

Target controlled infusion (TCl) systems deliver intravenous drugs with the aim
of achieving and maintaining set levels of drug in either the plasma or an effect
site. In anaesthetic practice the effect site of interest is most commonly the
brain. TCI systems apply population based pharmacokinetic (PK) models that
attempt to account for inter-individual variability by adjusting model
parameters according to covariates such as age, sex and weight(155). Most PK
models in anaesthesia are compartment models, where drug is infused into a
central compartment and can re-distribute to peripheral compartments as
described by the rate constants. The delay between measured or predicted
plasma concentrations and clinical effect can be accounted for by the
incorporation of an effect site compartment, with an associated rate constant
for elimination from this compartment (kep). The resulting model is known as a

pharmacokinetic pharmacodynamic, or PKPD model (Figure 6.1).

In anaesthetic practice, the drug most commonly administered by TCl is
propofol. A detailed discussion of the pharmacodynamic and pharmacokinetic
features of propofol that make it ideally suited for TCl is provided below. There
is a description of the PKPD models for propofol that are commonly used in
clinical practice, alongside a consideration of their most significant differences.
This is followed by an introduction of the Covariates Model, which is the subject
of the PKPD study (VaSCoM) that forms the subsequent sections of this thesis.
Finally there is a discussion of the modelling techniques available to determine

the appropriate ke to use with a given PK model.
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Propofol
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- Site -
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Figure 6.1: Three compartment mammillary model with model parameters V
(compartment volumes) and k (microrate constants). The effect site is assumed to
be infinitely small and does not effect the disposition of drug from the central
compartment. Keo is the model parameter that describes the time course of clinical

effect.

6.2 Total Intravenous Anaesthesia

Total intravenous anaesthesia (TIVA) has a number of theoretical advantages
over inhalational anaesthesia that relate both to the drug delivery mechanism
(Table 6.1) and the pharmacodynamic properties of the drugs used. TIVA is most
commonly provided using a combination of a hypnotic agent (typically propofol)
and a short acting opioid analgesic (typically remifentanil). In an audit of
National Health Service (NHS) activity performed in 2013, 5.8% of anaesthetics in
the United Kingdom are delivered by propofol infusion(156). The establishment
of TIVA in routine anaesthetic practice has been facilitated by the development

of PKPD models for propofol to allow its delivery via TCl systems.
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Selected Advantages of Total Intravenous Anaesthesia

No requirement for anaesthetic machine with vapourisers

No risk of atmospheric pollution

Continuous delivery of anaesthesia during airway surgery

Continuous delivery of anaesthesia during patient transfer

Safe for use in patients with malignant hyperthermia

Table 6.1: Advantages of TIVA

6.3 Propofol

6.3.1 Chemistry

Propofol (2, 6-diisopropylphenol) is the most commonly used intravenous
anaesthetic agent. It is a highly lipophylic compound and was initially introduced
during the late 1970s formulated in Cremophor EL(157). Due to an association
between Cremophor EL and anapylactoid reactions, this preparation of the drug
was withdrawn and propofol has been subsequently formulated as a lipid
emulsion. The first preparation chosen for development (Diprivan®) was based
on the composition of the parenteral fat formulation Intralipid® (10% soybean
oil, 2.25% glycerol, 1.2% egg yolk lecithin) with the pH adjusted by sodium
hydroxide. The soybean emulsion in Diprivan® contains long chain triglycerides
and these are thought to be responsible for the associated pain on injection.
Alternative formulations containing mixed long and medium chain triglycerides
(Propofol-Lipuro®) have been associated with similar pharmacokinetic and

pharmacodynamic properties but with less injection pain(158).
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Selected Effects of Propofol

Airway U} Haemodynamic response to intubation

Respiratory U Central inspiratory drive

YU Minute volume

U Tidal volume

U Ventilatory response to increased ETCO,

Cardiovascular U Arterial blood pressure

U Systemic vascular resistance

U Cardiac output

U Stroke volume

Cerebral physiology U CMRO,

M Vascular reactivity

M Autoregulation

UU Blood flow

UJU Blood volume

icp

Uy cpp

Table 6.2: Selected Effects of Propofol. JU = consistently reduced across multiple
studies, | = tendency towards reduction or a less significant effect, l = no change
or conflicting evidence, ETCO, = end tidal carbon dioxide, CMRO, = cerebral
metabolic rate for oxygen consumption, ICP = intracranial pressure, CPP = cerebral

perfusion pressure.

6.3.2 Pharmacodynamics

Propofol induces unconsciousness through activity on the y-Aminobutyric acid A
receptor (GABA,) on cortical and subcortical inhibitory interneurones(159). The
systemic effects of propofol have been well documented (160-162) and are
summarised in Table 6.2. Propofol meets a number of the requirements of the
ideal drug for intravenous anaesthesia by providing a rapid, smooth induction
without excitation or respiratory distress and quick recovery to clear

consciousness without post-operative nausea and vomiting.
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6.3.3 General Pharmacokinetics

The decline of plasma propofol concentration following an intravenous bolus
dose or infusion has been well described and will be discussed in detail below in

the context of disposition kinetics and existing PK models.

Propofol is highly bound to plasma proteins with 97-98% binding (predominantly
to albumin) in both control patients and patients with known cirrhosis but
maintained plasma albumin levels(163). In contrast, clinical situations resulting
in a reduction in the plasma protein concentration, such as cardiopulmonary
bypass, have been associated with a rise in the concentration of unbound
propofol(164). This rise in the free fraction of the drug is thought to result in
increased pharmacodynamic effect despite a stable whole blood

concentration(165).

As well as being highly bound to plasma proteins, propofol is bound to
erythrocytes. In whole blood samples, propofol has been shown to be 50% bound

to erythrocytes, 48% bound to plasma protein and 2% free drug(166).

The metabolism of propofol is thought to be primarily hepatic. There is likely to
be at least some contribution from other organs due to the fact that apparent
systemic clearance only reduced by around 40% during the anhepatic phase of
liver transplant(167). Some authors have argued for a significant role of the
kidney in propofol metabolism(168), although this could not be confirmed
through measurement of propofol concentration in renal artery and vein in a
swine experiment(169). Similarly there is some discussion over the relative
contributions of the small intestine, lung and brain in propofol metabolism (167,
170).

Analysis of the urine metabolite profile for propofol has demonstrated an
important contribution of both glucoronidation and hydroxylation prior to
excretion(171). Only a small amount of propofol is excreted unchanged in the

urine.
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6.3.4 Disposition Kinetics

The decline of the plasma concentration of propofol following an intravenous
bolus dose can be mathematically modelled. The most commonly described
pharmacokinetic model is the mammillary model(172). In this type of modelling,
drug is delivered into a central compartment and then can either be
redistributed to other tissue compartments or can be eliminated. The
compartments do not represent real anatomical regions but rather groups of
tissues that have similar blood flow and affinity for drug. Assumptions made by
this type of modelling are that there is instantaneous mixing of drug delivered to
the central compartment and there is uniform drug distribution within each

peripheral compartment.

Several early studies investigated the disposition kinetics of propofol following
an intravenous bolus dose and all described the kinetics using a three-
compartment model(163, 173-175). These are a heterogeneous group of studies
in that blood sampling was done from either arterial or venous systems, young
and old patients were studied and propofol was either given alone or in
combination with other drugs. However, key pharmacokinetic parameters were

of a consistent magnitude and are summarised in Table 6.3.

The structure of a three-compartment mammillary model has already been
shown in Figure 6.1. A three compartment model was selected because of the
triphasic decline of propofol concentration (Figure 6.2). The first phase
represents rapid decline due to a combination of elimination, redistribution to
the second compartment and slower redistribution to the third compartment.
The second phase represent slower decline due to a combination of elimination
and redistribution to the third compartment when the central and second
compartments are in equilibrium. The third phase represents a terminal
elimination phase when the central compartment is in equilibrium with both the

second and third compartments.
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Reference Sampling | Group (n) Vi) [Cl({min") [ Cl(mIlmin" kg)
Kay(173) Venous Males (6) 42.3 | 1.81 23.6

Females (6) 36.1 1.8 29.1
Cockshott(174) | Venous Control (6) 41.3 | 1.91 32.9

Fentanyl (6) 21.8 [ 1.29 23.7

Halothane (6) [34.5 [1.79 30.4
Kirkpatrick(175) | Venous Young (12) 26.3 | NA 27.7

Elderly (12) 19.6 | NA 23.2
Servin(163) Arterial Control (10) 20.6 |2.30 NA

Cirrhosis (10) [20.2 | 1.99 NA

Table 6.3: Key pharmacokinetic parameters from studies of the disposition
pharmacokinetics of propofol following an intravenous bolus. n = number of
patients, V; = central compartment volume, Cl = clearance from the central

compartment.

Concentration

Time
Figure 6.2: Simulated plot of the decline of propofol concentration following an

intravenous bolus dose.
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The tri-exponential decline of plasma propofol concentration according to the

three compartment model can be described by the following equation:

C,=Ae ™ +Be Pt + Ce (6.1)
where C, is the plasma concentration and t is time. Following fitting of the curve
to identify the constants A, B, C and a, b, ¢, these can then be used to calculate
the compartment volumes and the rate constants that predict the rate of
elimination from the central compartment and transfer of drug between the

central and peripheral compartments. For example:

A (6.2)
" A+B+C
a.b.c(A+B+C) (6.3)

|
0" A.b.c+B.ac+C.a.b

where V; is the volume of the central compartment and Dy is the bolus dose of
propofol administered and k4o is the rate constant for elimination from the
central compartment (C, or Cy). Clearance from the central compartment (Cl)

can subsequently be calculated as:
Cl = kyio.Vy (6.4)

The two models currently available for TCl of propofol in clinical practice are
the Marsh(6) and Schnider (176, 177) models. The development of these models

and their significant differences shall be discussed in detail below.

6.4 Pharmacokinetic Models for Propofol

6.4.1 The Marsh Model

The Marsh Model is an adaptation of the pharmacokinetic parameters described
by Gepts et al in two studies investigating the disposition kinetics of propofol
following fixed rate infusions(178, 179). In the first of these studies(178), 18



79
patients were allocated to receive propofol at 3, 6 or 9 mg/kg/hr (in

combination with regional anaesthesia) depending on the perceived clinical
need. A radial artery cannula was inserted in the contralateral arm to the
intravenous access and arterial blood samples were taken for quantification of
whole blood propofol concentrations at regular time intervals. The tri-
exponential model (Equation 6.1) was then fitted to the individual blood
concentration datasets. Mean values calculated for V. and Cl were 16.9 | and

1.77 /min respectively.

In the second Gepts study(179), 11 patients received a constant rate propofol
infusion (6 mg/kg/hr) in combination with an exponentially decreasing infusion
of alfentanil to achieve general anaesthesia. As before, arterial blood samples
were taken for propofol quantification and the tri-exponential model fitted.
Mean values calculated for V. and Cl were 19.7 L and 1.91 /min respectively.
White and Kenny described the process of incorporating a PK model into a
computer controlled infusion device and using it to deliver propofol anaesthesia
in 33 patients undergoing general surgery(180). In this publication they referred
to the second Gepts paper(179) as the source of their PK model but did not print
the exact model parameters. The publication by Marsh et al, the first paper to
state the model parameters, was in fact a follow up study using the adult model
to anaesthetise children(6). This “Marsh Model” was identical to the PK model
published in the first Gepts paper(178), with the exception of a typographical
error where the ki, was changed from 0.114 min™ to 0.112 min™" and a weight

based value for V. was incorporated (Table 6.3).

The ‘Diprifusor™’ was the first commercially available TCl device and used the
Marsh Model (with a ki, of 0.114 min™"). The technological challenges of
developing this system and the rationale for selecting the Marsh Model over
other published PK models have been discussed in detail by Glen(181). To allow
predictions of effect site concentration, a ke of 0.26 min™' was implemented

with the model, although the reasoning for this decision was never published.

6.4.2 The Schnider Model
The development of the Schnider Model for propofol was entirely different from
that of the Marsh Model. It was derived from a combined PKPD study in 24
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healthy adult volunteers and published as separate PK(176) and PD(177) papers.

Each individual received a 2 mg/kg bolus of propofol (or 1 mg/kg if aged over 65
years) and then one hour later received a randomly allocated fixed rate infusion
of 25, 50, 100 or 200 mcg/kg/min for 60 minutes. Blood samples to quantify
plasma propofol concentrations were taken from a radial artery cannula at
frequent intervals following the bolus dose and during and after the fixed rate
infusion. To assess the pharmacodynamic effects of propofol, the timing of loss
of consciousness and return of consciousness were recorded along with a novel
electroencephalogram (EEG) processing technique, known as semilinear
canonical correlation, leading to calculation of a canonical univariate parameter

for propofol CUPpgpofol-

One of the end points of this study was to compare the pharmacokinetics of
propofol with and without Ethylenediaminetetraacetic acid (EDTA). All
individuals were therefore studied on two separate occasions. The PK model was
constructed using plasma propofol concentrations collected during the infusions
phase of the EDTA containing preparation. Fitting of a three compartment model
to the data and the influence of subjects’ covariates were calculated using non-
linear mixed effect modelling (NONMEM)(182). The final model had a fixed
central compartment volume, while compartment two was adjusted according to
subjects’ age (Table 6.4). kqowas adjusted according to subjects’ weight, lean
body mass (LBM) and height, while k4, was adjusted according to subjects’ age.

Calculation of LBM was done using the James formula:

Females:

Weight>2 (6.5)

LBM = 1.07 X wei ht—148><<
welg height

Males:

Weight)2 (6.6)

LBM = 1.1 X weight — 128><<
wetg height
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and the implications of this will be discussed below(183). The PK study

demonstrated that the pharmacokinetics of propofol differ after a bolus dose
compared to an infusion. The presence or absence of EDTA did not effect

propofol pharmacokinetics.

One of the primary purposes of the PD study was to develop a rate constant for
equilibration between the plasma and effect site (kep). keo Was calculated using
both non-parametric and parametric techniques for each individual and then the
median taken to represent the population value. For the non-parametric
technique, measured plasma propofol concentrations were compared to the
calculated CUPpopofol. FOr the parametric technique, plasma propofol
concentrations predicted by their PK model were compared to the calculated
CUP,rpofol- The non-parametric kep was estimated to be 0.316 min™' while the
parametric kep was estimated to be 0.456 min™. It was this parametric ke that

the authors recommended for use with their PK model.

6.4.3 Significant Differences Between the Marsh and Schnider Models

There is considerable debate in the anaesthesia community over whether the
Marsh or the Schnider PK Model is best suited to provide TCl of propofol in
clinical practice. As mentioned above, the Diprifusor™ was the first
commercially available TCI device and was programmed with the Marsh model to
be used in a plasma targeting mode. The device only accepted specially
designed syringes pre-filled with the Diprivan® formulation of propofol.
Following the expiry of Diprivan® patent protection in Europe, a new generation
of “Open TCI” devices were developed that could accept any syringe(184). These
devices allowed the user to select different drugs to deliver along with a choice
of PKPD model. It thus became possible to select either the Marsh or Schnider

Model to be used in a plasma or effect site targeting mode.

The differences between the Marsh and Schnider Models have been discussed
previously by Absalom et al(185). The structural components of the models are
summarised in Table 6.3 and the most significant differences will be discussed in

order below:
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1. Central compartment volume (V)

The central compartment volume of the Marsh Model is proportional to total
body weight. This means that the bolus dose of propofol required to achieve a
chosen plasma target concentration will increase with weight. In the Schnider
Model, the central compartment volume is fixed, meaning that for a chosen
plasma target concentration, the bolus dose will be the same irrespective of

weight, age or gender.

2. Adjustment for multiple patient covariates

The Marsh Model is a relatively simplistic PK model, where all body compartment
volumes are proportional to weight, and all rate constants are fixed. The
Schnider Model is a more complex model, which accounts for more patient
covariates. The only compartment volume that varies with patient covariates is
V,, which is adjusted according to patient age. Similarly the rate constants ki,
and k;¢ are influenced by patient age. The elimination rate constant kg is
adjusted according to body weight, lean body mass (and thus indirectly by
gender, weight and height) and height. By accounting for more patient
covariates, the Schnider Model could theoretically enable a more individualised

dosing strategy.

3. LBM calculation

As mentioned above, the Schnider Model adjusts the elimination rate constant
according to both body weight and LBM. A feature of the James formula for
calculating LBM means that as body weight increases into the obese range, there
is a paradoxical decrease in the calculated LBM. The consequence of this for the
Schnider Model is that for a body mass index (BMI) of greater than 42 kg m2 in
males and 37 kg m? in females, there is an exponential increase in the
magnitude of kyo. The ways that pump manufacturers have compensated for this
irregularity in the model, that could lead to dangerous overdosing in obese

patients, is summarised in a letter by Engbers et al(186).

4. Rate constant for effect site elimination (keo)
In their original, clinically implemented forms, the Marsh Model has a ke of 0.26
min”', while the Schnider Model has a keo of 0.456 min™". The consequence of this

difference is that the Schnider Model predicts more rapid equilibration between
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the plasma and the effect site. This means that when using the Schnider Model

in effect site targeting mode, TCl devices make more gentle manipulations of
the predicted plasma concentration to achieve a desired effect site

concentration.

Model Parameter | Marsh Schnider

V, 0.228 litre kg™ | 4.27 litre

' 0.463 Tlitre kg™ | 18.9 - 0.391 x (age - 53) litre

V; 2.893 litre kg™ | 238 litre

kio (Min™ ) 0.119 0.443 + 0.0107 x (weight - 77) -
0.0159 x[(LBM-59) + 0.0062 x[I(height-177)

K1z (min™ ) 0.112 0.302 - 0.0056! 'x (age - 53)

Ki; (min™) 0.042 0.196

kyy (Min™ ) 0.055 [1.29 - 0.0247x (age - 53)] /
[18.9 - 0.39101x (age - 53)]

k3; (min™ ) 0.0033 0.0035

Keo (Min™" ) 0.26 0.456

Table 6.4: Structural parameters of the Marsh and Schnider Models for propofol. V =
compartment volume, k = rate constant, LBM = lean body mass as calculated by the

James formula. Age is measured in years, weight in kg and height in cm.

A pragmatic approach recommended by most experts is to use the Marsh Model
in plasma targeting mode and the Schnider Model in effect site targeting mode.
Anaesthetists are encouraged to use the model with which they are most
familiar and with caution if using TCl in a population of patients in whom the

models have not been successfully validated.

6.4.4 The Covariates Model

The Marsh Model has been criticised for not taking into account patient
covariates such as age and gender. Age is well known to have significant effects
on body composition and hepatic and renal function, which influence the
disposition and elimination of drugs(187). Indeed in one of the early studies of
propofol pharmacokinetics following a bolus dose, Kirkpatrick et al compared
patients aged 18 to 35 years old to those aged 65 to 80(175). The older patients

had a significantly smaller central compartment volume and reduced clearance
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of propofol. In a study of patients aged 65 to 91 years, who received a bolus

followed by a fixed rate infusion of propofol, Vuyk et al demonstrated that
compartment volumes and clearances were affected by gender(188) in this older

age group.

In an attempt to further improve the understanding of the effects of age and
gender on the pharmacokinetics of propofol, White et al conducted a large
population study in patients undergoing anaesthesia using TCl propfol(5). The
study will be described in some detail, as a validation of the PK model proposed

by the authors is presented later in this thesis.

In 113 patients undergoing elective general surgery, anaesthesia was
administered using the Marsh Model as implemented by the Diprifusor™ TCI
device. Precise details of the propofol infusion required for anaesthesia were
automatically archived. Patients also received an infusion of alfentanil,
breathed a mixture of 66% nitrous oxide in oxygen and were given a single bolus
of atracurium if endotracheal intubation was required. After induction of
anaesthesia, a cannula was inserted into the arm contralateral to the propofol
infusion to allow removal of intravenous blood samples at regular intervals.
Whole blood propofol concentrations were measured using a gas liquid

chromatography-mass spectrometry technique.

Using a NONMEM technique, the parameters of the Marsh model were optimised
for each individual patient to provide the best prediction of the measured blood
propofol concentrations. Only the volume of the central compartment and the
clearance from the central compartment were adjusted as none of the other
model parameters improved the goodness of fit by more than 2.5%. The
relationship between age and central compartment volume for male and female
patients volume is shown in Figure 6.3. The slopes of these regression lines are

as follows:

Females:

V, = 191.78 — 0.669 X Age (6.7)
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Males:

V; =175.54+0.046 X Age (6.8)
where V; is measured in ml kg and age in years. In this population there was a

very clear decline in central compartment volume with age in females but not in

males.
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Figure 6.3: Simulated plot of V, against age for the Covariates Model in female (A)

and male (B) patients.

Similarly, the relationship between age and clearance from the central
compartment is shown in Figure 6.4 for females and males. The slopes of these

regression lines are as follows:
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Females:

Clearance = 37.87 — 0.198 X Age (6.9)
Males:

Clearance = 26.88 — 0.029 X Age (6.10)

where clearance is measured in mlkg™' min™ and age in years. Again there is a
very clear decline in clearance from the central compartment with age in

females but not in males.
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Figure 6.4: Simulated plot of clearance against age for The Covariates Model in
female (A) and male (B) patients.

The revised “Covariates Model” thus maintained the original Marsh Model
parameters but was optimised by the addition of gender and age covariates to

adjust central compartment volume and clearance. The propofol infusion data
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for each patient were then used to perform pharmacokinetic simulation of the

blood concentrations predicted by the new model. In the study population, the
predictions made by the Covariates Model were closer to the measured blood
propofol concentrations than those predicted by the Marsh Model. The VASCoM
Study had the primary objective of confirming this robust performance of the

Covariates Model.

6.4.5 Physiologically Based Pharmacokinetic Models

Despite attempts to optimise compartmental PK models, it is well known that in
the early phase after a bolus dose, they do not perform well in predicting
plasma concentrations of anaesthetic drugs(189, 190). This is in part due to the
erroneous assumption that there is instantaneous mixing of drug within the
central compartment. There is also a failure to consider the effects of cardiac
output and differing blood flow between organ groups. The development of
physiologically based PK (PBPK) models attempts to address these deficiencies

and thus improve the understanding of drug disposition.

An example of a PBPK model for propofol has been developed by Upton and
Ludbrook(191). Their initial work was done using a chronically instrumented
sheep model, where propofol concentrations were measured from the carotid
artery and the sagital sinus following bolus injection into the right atrium (192,
193). The effects of propofol on cerebral blood flow and metabolism were
measured by Doppler flow of the sagital sinus and oxygen extraction between
the carotid artery and sagital sinus. Analysis of the data from these experiments
allowed them to build a six compartment model that could explain the kinetics

and dynamics of induction of anaesthesia with propofol(194, 195).

They subsequently developed the principles of their animal model using human
data to define propofol kinetics and dynamics in a “standard” man. This model
was a simplified version of the PBPK model, known as a recirculatory model. The
necessary estimates of organ blood volume and blood flow for a 30 year old, 69
kg man were averaged from those derived from the Third National Health and
Nutrition Examination Survey(196). The final model consisted of brain and lung
sub-models in parallel with liver and fast and slow distribution compartments.

The brain sub-model represented cerebral kinetics and dynamics derived from
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experiments where arterial and jugular venous propofol concentrations were

measured, along with processed EEG following a propofol infusion in man(197).
To derive the lung sub-model, data from a study involving simultaneous
measurement of pulmonary and radial artery concentrations of propofol
following a central venous infusion were used(198). The remainder of the
systemic model was built to fit the propofol concentrations predicted by the

Schnider Model following rapid and slow infusions in a standard man.

One of the most interesting possibilities for PBPK models in general and for
Upton and Ludbrook’s model in particular, is the potential to improve our
understanding of how changes in cardiac output or regional blood flow can
effect the kinetics and dynamics of anaesthetic drugs. The approach used by
Upton and Ludbrook also introduces many of the concepts that are explored in
this thesis including data sharing between research groups and the continuous

evolution and optimisation of physiological models.

6.4.6 Methodology for Pharmacokinetic Model Comparison

If one PK model for propofol was clearly superior in all clinical situations, then it
can be assumed that all TCI devices would exclusively implement this model. As
this has not been the case, it is necessary to have a framework to allow PK
model comparison so that newly defined models can be compared against those
already used in clinical practice in terms of their predictive performance.
Following such a comparison, if the performance of the new model was
significantly better than the existing models, there would be a reasonable case

to support its introduction into clinical practice.

Varvel et al proposed an approach to allow systematic comparison of PK models
used in TCI devices, referred to in the paper as computer controlled infusion
pumps (CCIPs), that has become widely adopted in the anaesthetic
literature(199). They tested their approach using a dataset collected during a
study of CCIPs comparing the performance of two PK models for alfentanil(200).
For 51 patients they had between 10 and 24 blood samples with measured
alfentanil concentrations to compare to the concentrations predicted by the
CCIP.
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Central to their methodology was measurement of the performance error (PE).

The PE represents the difference between the drug concentration measured in
blood and the drug concentration predicted by the TCI device. It is calculated

using the equation:

where PEj;is the percentage performance error i in the jth patient, Cb is the
concentration measured in blood and Cp is the concentration predicted by the
TCI device.

The PE is expressed as a percentage of the predicted concentration because this
is felt to be of more clinical utility. If a summary measure for the size of the PE
is known, then for a given predicted concentration the clinician can estimate the
range of the associated blood concentration. The same would not apply
expressing the PE as a percentage of the measured concentration, which is not

known at the time the TCl device is being used in clinical practice.

Following calculation of the PEs for each sample in each individual, the authors
advocate the calculation of four summary measures in each individual to
describe the clinical utility of CCIPs. Firstly the median performance error
(MDPE) represents the bias, or overall direction of the PEs, and thus the
tendency of a CCIP to over or under-predict the blood concentration. Secondly
the median absolute performance error (MWDAPE) represents the inaccuracy, or
overall magnitude of the PEs, and is not affected by the direction of the PEs.
Thirdly divergence represents the tendency of PEs to either increase or decrease
with time and is calculated from the slope of the linear regression of an
individual’s PEs against time. Finally wobble represents the variability of an
individual’s PEs and is calculated as the median absolute deviation of PEs from
the MDPE.

The overall population performance of a CCIP requires further summarisation of
the four summary measures described above. This can be done using either a

two stage, pooled data or variance weighted approach. The two stage approach
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simply takes a mean (or median) of all of the individuals summary measures.

This inappropriately weights results towards individuals with fewer blood
samples. The pooled data approach uses the number of samples for an individual
to weight the contribution of that individual to the overall summary. Finally the
variance weighted approach accounts for the intra-individual variability in PEs
by weighting the contribution of an individual to the overall summary by the
variance of the estimates for that individual. The authors suggest that in their
analysis of several large datasets there is actually little difference in the

summary measures calculated using each of the three approaches.

6.4.7 Pharmacokinetic Model Comparison Studies

The above methodology has been utilised in a number of studies to compare
published PK models for propofol in their predictive performance. Coetzee et al
randomly assigned 30 patients to receive propofol TCl by one of either the
Tackley(201), Marsh or Dyck models(202). These were the same three models
evaluated during the development of the Diprifusor™ in 1993. Arterial and
venous blood samples were collected at regular intervals and the summary
measures of MDPE, MDAPE, divergence and wobble calculated. Although all
models provided adequate clinical anaesthesia, the Tackley and Marsh Models
were superior in terms of MDPE and MDAPEs. It was noted that arterial propofol
concentrations were significantly greater than venous concentrations but that

this difference decreased with time.

Three recent simulation studies have compared the performance of the two PK
models in common clinical use (Marsh and Schnider) and two of these included
the Covariates Model introduced above(203-205). In the first, Glen et al used the
standardised propofol infusion profiles from nine control patients (6 male and 3
female) in a previous PK study(163) to simulate the plasma concentrations
predicted by each of the Marsh, Schnider, Covariates and Schuttler (206)
Models(203). PEs were then calculated for a total 286 arterial propofol
concentration measurements. In terms of overall performance there was little to
differentiate between the four models. In this group, the Covariates Model had a
tendency to over-predict the plasma concentrations compared to the Marsh
Model but compared favourably in terms of MDAPE. Although the Schnider Model
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showed negligible overall bias, there was a tendency to over-predict during the

early phases of infusion and under-predict during the recovery phase.

In the second simulation study, Matsui et al used PK data from four previous
studies, with distinct propofol infusion regimen(204). A total of 108 patients
contributed PK data to the study, who had received propofol by either
bolus(207), short infusion(208), long infusion(209) or TCI(202). Simulation studies
were performed to calculate the plasma propofol concentrations predicted by
each of the Marsh, Schnider and Schuttler PK models and an adaptation of the
Upton physiologically based recirculation model(191). When all infusion regimen
were taken into account, the Schnider Model more often displayed significantly
better performance in terms of MDPE and MDAPE compared to the other models.
This was particularly true when compared to the Marsh Model using data from
the bolus and short infusion studies. All of the models performed with similar

bias and inaccuracy when compared using data from the TCI study.

In the third simulation study, Glen and White(205) used data from 41 patients in
a previous study evaluating the predictive performance of the Diprifusor TClI
system(210). Predicted plasma propofol concentrations for each of the Marsh,
Schnider and Covariates Models were calculated and PEs measured for a total of
530 arterial propofol samples. In this study, the MDPE of the Covariates Model
was significantly improved compared to the Marsh and Schnider Models and the
MDAPE was significantly improved compared to the Marsh Model. An important
observation made by the authors was that for all three models, bias varied
depending on whether plasma propofol concentration was increasing, steady or

decreasing.

6.5 Pharmacodynamic Models for Propofol

6.5.1 Modelling the Effect Site

As part of their review “Contributions of PK/PD Modelling to Intravenous
Anesthesia”, Minto and Schnider described the theory of the effect site
compartment in detail(155). The principles of the effect site and the techniques
available to model its behaviour are central to the PD component of the VaSCoM

study and will be considered below.
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In response to the observation that the clinical effects of a drug are delayed

relative to the plasma concentration (a fact that is well recognised by all
practising anaesthetists), Sheiner et al proposed the concept of a hypothetical
effect site compartment(211). The model parameter ke, was introduced to
characterise the delay between C, and effect and therefore accounts for the
processes of perfusion, diffusion, partition, drug-receptor interaction and the
relationship between receptor occupancy and effect. In the original publication
the nomenclature of ke, was chosen to represent the rate constant for
equilibration between the effect site compartment and “outside”. It is now
more generally referred to using more standardised PKPD terminology as ke or
the rate constant for elimination from the effect site. The structural model
proposed has been illustrated in Figure 6.1 and the association between drug
infusion rate and predicted plasma and effect site concentrations illustrated in

Figure 6.5.
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Figure 6.5: Lower panel provides details of propofol infusion regimen. Upper panel
demonstrates associated plasma and effect site concentrations predicted by
combined PKPD model.

Sheiner et al applied their PKPD model to three datasets containing plasma
concentrations and associated measures of effect for the drug d-tubocurarine.
They modelled the relationship between concentration of drug in the effect site
compartment and clinical effect using the adaptation of the “Hill Equation”

previously proposed by Wagner(212):

. c,” (6.12)
-~ CY+C,(50)
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where E is the intensity of pharmacological effect expressed as a fraction of

maximal effect, C. is the concentration in the effect site, C¢(50) is a constant
giving the value of C. at 50% effect and y describes the sigmoidicity of the C. to
E relationship. For hypnotic anaesthetic drugs with an inhibitory effect on brain

activity this can be expressed as:

EmaxCey (6.13)
Cey + C,(50)Y

E:EO

where Ej is the baseline effect with no drug present and E, 4 is the maximum

difference from baseline. This sigmoid-Em.x curve is demonstrated in Figure 6.6.
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Figure 6.6: Sigmoid-E,.x Concentration-Effect relationship for a hypnotic anaesthetic
drug where EO = baseline effect with no drug present, Emax =the maximum
difference from baseline, ec50 = a constant giving the value of Ce at 50% effect i.e.
Ce(50).
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The differential equation used to model the temporal relationship between C,

(or C4) and C¢ was:

6C, (6.14)
E = k1eC; — keoCe

where k. is the rate constant for movement of drug between the plasma and
the effect site. The effect site is considered to be of negligible volume and
therefore does not influence the behaviour of any associated PK model. For this
reason the rate constant ki, is inconsequential and the characterisation of the

relationship between C, and C. can be described in terms of ke alone:

5C, (6.15)
E = keoC1 — keoCe

In their study of d-tubocurarine, Sheiner et al successfully fitted a two-
compartment PK model to the data and determined the ke to describe the time
course of the observed PD data. This is an example of parametric determination
of the keo, Where the effect site is related to the plasma concentration predicted
by a contemporaneous PK model and the magnitude of effect is modelled as a

known function of Ce.

It is also possible to determine key using a non-parametric approach that makes
no assumptions regarding the underlying PK model or the relationship between
effect and C..(213). In this technique, ke is adjusted to account for the
difference between measured plasma drug concentration and clinical effect. As
for the parametric approach described above, this has the requirement to
measure both plasma concentrations and pharmacodynamic effect within the

same study.

An alternative approach, referred to as the ‘time to peak effect site
concentration’ (tpeak), has been proposed by Minto et al and allows PD
parameters from one study to be combined with PK parameters from
another(214). Following a submaximal intravenous bolus dose, tpeak i measured

as the time taken to reach the maximum observed clinical effect (and thus
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maximum C.). Using an existing PK model, it is then possible to adjust the

associated value of ke to preserve the measured tpeak. Minto et al performed a
number of simulation studies using data from previous PKPD studies of
thiopental, remifentanil and propofol and demonstrated that the t e method
provided a better estimate of ke than simply extending a new PK model by

combining a ke value from a previous PKPD study.

In the Open TCI devices currently commercially available there are a number of
very different implementations of ke. A recent editorial by Cortinez has
acknowledged the confusion that this can cause in the clinical use of TCl and
discussed the implications of differing kegs on the effect site concentrations
predicted by these devices(215). In most of the studies estimating ke, an index
of the electroencephalogram (EEG) has been used as a surrogate for the clinical
hypnotic effect of propofol. The use of differing EEG indices is likely to account

for at least some of the difference in the calculated kegs.

As indicated above, a keg of 0.26 min~' for the Marsh Model was implemented in
the original Diprifusor TCI device. Although the rationale for selection of this kg
was never published, it was very similar to the kep of 0.2 min™ calculated by
Billard et al when comparing the Bispectral Index (BIS) to other indices of the
EEG using a dataset from 12 patients who received a fixed rate propofol infusion
(216). In a study using auditory evoked potentials (AEP) as a measure of the CNS
effects of propofol, White et al used both parametric and non-parametric
techniques to determine keo. Successful fits of keO could be achieved in 14 of the
22 patients using the population parametric approach and 15 of the 22 patients
using the individual parametric approach. Mean ks for the parametric and non-
parametric approaches were 0.2 min™' (median 0.16 min™') and 0.22 min™

(median 0.24 min™).

The ‘adjusted’ ke often implemented with the Marsh Model is 1.21 min~' and
thus predicts much faster equilibration between the plasma and effect site
compartments. This comes from using a tyeak for propofol of 1.6 minutes as
reported by Schnider(177) to adjust the keo. In a short TCl infusion study of 120

female patients, with no period of decreasing plasma concentration, Struys et al
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demonstrated that this adjusted ke more accurately predicts the measured

changes in BIS(217).

As has been outlined previously, the parametric ke of 0.456 min™ is suggested

for effect site TCl using the Schnider Model. With the common availability of two
PK models and three Kes clinicians must exercise caution during the use of Open
TCI to ensure that they are aware of the pharmacokinetic and pharmacodynamic

consequences of their model selection.

The PD component of the VaSCoM Study used the EEG index of BIS to estimate
the appropriate ke to extend the Covariates PK Model. For this reason a brief

summary of processed EEG (pEEG) and specifically BIS are provided below.

6.5.2 Processed Electroencephalography

The EEG is the measurement of bioelectric potentials resulting from the
postsynaptic potentials produced by the dendrites of pyramidal neurones in the
cerebral cortex(218). Needle or gel electrodes are required as transducers to
convert the physiological ionic current to an electrical current for further
processing by the EEG monitoring equipment. A formal EEG for diagnostic
purposes uses a montage of electrodes attached across the whole scalp. For the
purposes of monitoring the effect of anaesthetic drugs, gel electrodes connected

across the forehead and temple are most commonly used.

Unlike the electrocardiogram (ECG), the EEG has no fixed repeating pattern. If
the signal is processed in terms of its time and frequency domain characteristics,
there are however some constant statistical properties that can be correlated
with differing levels of wakefulness or anaesthesia. A number of depth of
anaesthesia monitors (DoA) have been developed in an attempt to quantify the
hypnotic component of anaesthetic drugs on the EEG. (219, 220). An effective
device would help to prevent awareness under anaesthesia and avoid relative
overdosing of anaesthetic drugs. Most DoA monitors attempt to provide an index
of anaesthetic depth between 100 (fully awake) to 0 (no brain activity), with
values of 40 to 60 often proposed to be adequate for surgical anaesthesia. In the
ideal situation, these indices would correlate with clinical measures of

anaesthetic effect and be stable across different anaesthetic drugs and clinical



98
populations. No DoA monitor yet meets these requirements but the BIS has

become widely used in anaesthetic practice. Processing of the EEG signal is

considered below in terms of BIS.

6.5.3 Calculating the Bispectral Index

The Bispectral Index is a complex parameter that integrates several separate
descriptors of the EEG signal to provide a single index as above. It was
developed by Aspect Medical Systems (subsequently owned by Covidien and now
Medtronic) using data from 1500 anaesthetic administrations and was introduced
in 1994. It uses a specialised four electrode sensor placed on the patients
forehead to collect the raw EEG from one cerebral hemisphere. The underlying
proprietary algorithm has never been published and has undergone continuous
update, but the underlying principles of the signal processing have been
described in detail by Sigl et al(221) and Rampil(218). The stages involved in

calculating BIS are summarised in Figure 6.7.

EEG Signal
Artifact
Filtering

Time Frequency Bispectral
Domain Domain Domain

BSR Beta Synch-Fast-
QUAZI Ratio Slow

S i 7
o - ,,/
LN \4 ’

\-*| BIS |‘-"

Figure 6.7: Summary of the processing steps involved in calculation of the Bispectral

Index (BIS). BSR = burst suppression ratio, QUAZI detects burst suppression in the

context of a wandering baseline voltage.
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The first stage of EEG processing in BIS calculation involves filtering of high and

low frequency artifacts and division of the signhal into 2-s epochs. Further
artifact filtering is then performed on these epochs to remove signals such as
the ECG and electromyogram (EMG). Time domain analysis then uses two
measures of burst suppression. During deep anaesthesia the EEG may develop
the pattern of periods of normal or high voltage activity followed by periods of
low voltage or isoelectricity. The burst suppression ratio (BSR) reports the
periods of suppression of greater than 0.5 seconds as a fraction of the epoch
length. In circumstances with a wandering baseline voltage, the “QUAZI”
suppression index incorporates slow wave information to detect burst

suppression that would be missed by the original BSR algorithm.

Fourier’s theorem states that any complex repetitive waveform can be
decomposed into the sum of simple sine or cosine waves (Figure 6.8). A
computationally efficient method of performing this is known as the Fast Fourier
transform (FFT). Each frequency component of the complex wave has an
associated amplitude and phase component that can then be used for frequency
domain analysis of the EEG. The frequency bands in the spectrum are named

according to a generally accepted convention (Table 6.5).
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Name Frequency Range (Hertz)
Slow <1

Delta 1-4

Theta 5-8

Alpha 9-12

Beta 13-25

Gamma 26-80

Table 6.5: Spectral frequency bands of the EEG

The two measures of frequency domain analysis that contribute to the BIS Index

are “BetaRatio” and “SynchFastSlow”. BetaRatio is the log ratio of power in the

frequency bands 30-47 Hz and 11-20 Hz. SynchFastSlow is the contribution from

bispectral analysis. The bispectrum is a complex measurement of the phase

relationships between selected frequencies identified following FFT. It has been

suggested that strong phase relationships are inversely related to the number of

EEG pacemaker elements.
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The BIS Index results from a combination of the subparameters of BSR, QUAZI,

BetaRatio and SynchFastSlow, each of which was selected to have a specific
range of anaesthetic depth where it performs best. SynchFastSlow predominates
during the excitation phase and during surgical levels of hypnosis. BetaRatio is
weighted more heavily during light sedation and BSR and QUAZI detect deep
levels of anaesthesia. Ultimately a single number (BIS) is continuously produced

using averaging of preceding epochs, which predicts the depth of anaesthesia.

6.5.4 Clinical Validity of the Bispectral Index

In the United Kingdom, use of BIS in anaesthetic practice is supported by
guidance from the National Institute of Health and Care Excellence (NICE)(222).
In the diagnostics guidance (DG6, 2012), pEEG depth of anaesthesia monitors,
with specific reference to BIS, are recommended as an option during the

following clinical situations:

1. In patient groups at higher of risk of unintended awareness during general
anaesthesia. These patients would include, but are not limited to,
patients with a previous history of unintended awareness, patients with a
history of drug or alcohol abuse or patients undergoing certain types of

surgery such as airway surgery.

2. In patient groups at higher risk of excessively deep levels of anaesthesia.
These patients would include older patients and patients with a history of

cardiac, renal or liver disease.

3. In patients receiving total intravenous anaesthesia.

In the NICE guidance, the recommendations regarding BIS were based on a
Cochrane review on “Bispectral Index for improving anaesthetic delivery and
post-operative recovery”(223). It included 31 randomised controlled trials (RCTs)
of BIS monitoring compared with standard clinical practice, but the NICE
guidance acknowledged a large amount of heterogeneity between the trials with
unintended awareness as an end-point. Two of these trials, on the basis of being

the largest and most influential, merit further discussion.
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The B-Aware trial was a multicenter RCT of 2463 surgical patients aged 18 yr or

older who were at higher risk of awareness(224). Patients were randomized to
BIS monitoring with target range of 40 to 60 or routine care. BIS values were
manually recorded by the anaesthetist in the intervention group and there was
no BIS monitoring in the control group. The primary outcome measure was the
incidence of confirmed awareness by use of a structured questionnaire. Until 30
days after enrolment, the number of patients who reported awareness under
anaesthesia was significantly less in the BIS group (2, 0.17%) than in the routine
care group (11, 0.91%). This represented an odds ratio of 0.18 (95% confidence
interval 0.02 to 0.84, p = 0.022) and absolute reduction in the risk of awareness
of 0.74%, Therefore the number of high risk patients needed to treat to prevent
one episode of awareness was 138. The rates of total intravenous anaesthesia

with propofol were similar in the intervention and control groups (43% and 42%).

The BAG-RECALL trial(225) was itself a follow up to the B-Unaware trial which
was criticised for being single centre and underpowered to exclude a clinically
significant benefit attributable to BIS(226). Therefore BAG-RECALL was a
multicentre RCT of 5713 surgical patients aged 18 yr or older who were at higher
risk of awareness. Patients were randomized to BIS monitoring with a target
range of 40 to 60 or volatile anaesthesia with a targeted minimum alveolar
concentration (MAC) of 0.7 to 1.3. BIS and MAC values were recorded at
minimum intervals of 1 minute by means of an electronic recording of
anaesthesia data. The primary outcome measure was the incidence of
intraoperative awareness. Until 30 days after extubation, the number of patients
who reported awareness under anaesthesia was not significantly less in the BIS
group (7, 0.24%) than in the control group (2, 0.07%). This represented an
absolute difference of 0.17% (95% confidence intervals -0.03 to 0.38, p = 0.98)

and thus superiority for the the BIS protocol was not demonstrated.

The BAG-RECALL study was performed only in patients undergoing volatile-based
anaesthesia and thus does not exclude the possibility that BIS monitoring would
lead to lower levels of unintended awareness during total intravenous
anaesthesia. Indeed during the recently reported national audit project (NAP5),
conducted by the Royal College of Anaesthetists, there was an approximate two-

fold over-representation of awareness cases where a propofol infusion was used
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for maintenance than would have been expected(227). This led the report

authors to suggest that depth of anaesthesia monitors should be considered in

patients undergoing TIVA with associated neuromuscular blockade.

One of the major limitations of all pEEG techniques used to monitor the depth of
anaesthesia is the underlying assumption that all anaesthetic agents have the
same effect on the EEG. Increasing doses of GABAergic anaesthetics (for
example propofol) cause a shift in the spontaneous EEG from higher to lower
frequency components and an increase in synchronisation. This is not necessarily
the case for other agents that are known to increase the clinical depth of
anaesthesia (for example ketamine and opioids). The EEG signatures of
commonly used anaesthetic drugs and their neurophysiological bases have

recently been reviewed in detail(228).

On the basis of the variable effects of anaesthetic drugs on the EEG, some
commentators have suggested that it would be more valuable for anaesthetists
to be trained to observe the raw EEG waveform than be dependent on the
output of a pEEG device(229). Barnard et al demonstrated that anaesthetists
could be taught to recognise the basic EEG changes associated with GABAergic
anaesthetic drugs(230). Following a 15 minute tutorial, anaesthetists were able
to categorize EEGs as awake, sedated, or anesthetized with comparable
accuracy to the BIS monitor. The authors therefore suggested that the
combination of pEEG and a clinician able to interpret the raw waveform would

be of more value than a DoA monitor alone.

Despite the recognised limitations of BIS, the continuous nature of its output and
its relatively well established place in clinical anaesthesia, mean that it was

selected for monitoring of the effect site in the VaSCoM study.

6.5.5 Non-linear Mixed Effect Modelling

The standard technique used for the development of a PKPD model is known as
non-linear mixed effect modelling (NONMEM)(231). The NONMEM® software,
now distributed by ICON Development Solutions, was initially released by Lewis
Sheiner and Stuart Beal at the University of California and has been in use for

over 30 years(232). There is an extensive product literature explaining the
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ongoing development and instructions on the use of NONMEM®(233). Owen and

Fielder-Kelly have provided an excellent non-technical introduction to the

principles underlying NONMEM analysis(234).

Non-linear mixed effects models involve both fixed and random effects. The
fixed effects are the structural parameters of the PKPD model (such as
compartment volumes and rate constants) and can be scaled according to
patient covariates. The random effects account for unexplained inter-patient
variability and the difference between the individual predicted values and the

observations.

Therefore at the population level, the model predicted value (F) can be

represented as a function:

F=f(6,nx) (6.16)

where the model parameter 6, is scaled according to the covariates x, with
inter-individual random variation 7. At the individual level, the observation (Y)

can be represented as a function of F:

Y = f(F,¢) (6.17)

where ¢ is the intra-individual variability. NONMEM® estimates the fixed and

random effects parameters using a maximum likelihood approach(235).

While NONMEM® remains the industry standard for PKPD modelling, open source
alternatives are becoming increasingly refined. Using a standard PK dataset,
Tornoe et al have demonstrated that the R package nlmeODE(236) provides
accurate parameter estimates, which are consistent with NONMEM®(237). This
package was used in the VaSCoM study to provide population and individual

estimates of the ke for the Covariates Model.
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6.6 Summary of PKPD Modelling in the Context of the Covariates

Model for Propofol

Target controlled infusion of propofol represents a significant component of
anaesthetic practice in the United Kingdom. While the physicochemical
properties and clinical effects of propofol make it particularly suitable for
intravenous infusion, it is the development of pharmacokinetic
pharmacodynamic models that has been instrumental in facilitating its clinical
use in TCl. There is considerable debate over whether the Marsh or Schnider
PKPD model for propofol is better. The Covariates Model represents a potential
alternative to these models and has the advantage over the Marsh Model of
adjusting for the additional patient factors of age and gender. The VaSCoM Study
presented in the coming chapters provides a systematic validation of the

Covariates Model and comparison to the Marsh and Schnider Models.

There has so far been no description of the pharmacodynamic component of the
Covariates Model. The standard technique for extending a PK model to predict
clinical effect is to describe the delay between plasma concentrations and
clinical effect using the parameter of ke, or the rate constant for elimination
from a theoretical effect site. Quantifying the magnitude of anaesthetic effect is
typically performed using depth of anaesthesia monitors that use specialised
algorithms to process the raw electroencephalogram. BIS is the most established
of these monitors and has been used is conjunction with a non-linear mixed

effects modelling approach to determine the k¢ for the Covariates Model.
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7  Materials and Methods for the VaSCoM Study

7.1 Overview

This chapter provides a detailed description of the patients and methods used in
the Validation Study of the Covariates Model (VaSCoM). The study protocol and

related documents are available on request.

7.2 Objectives

The primary objective of this study was to prospectively validate the predictive
performance of the Covariates Pharmacokinetic Model for propofol in the study

population.

The secondary objectives were:
a. Effect site modelling to obtain a k¢ value for the Covariate Model.
b. Comparison of propofol concentrations measured in simultaneously

sampled arterial and venous blood.

Comparison of the Covariates Model performance to that of the commonly used
Marsh and Schnider models was not a stated objective of this study. Throughout
the course of the study the question of which model is “best” did naturally arise.
For this reason, simulation studies were performed to compare the three

models.

7.3 Ethical Approval

Ethical approval was granted for the study by the West of Scotland Research
Ethics Service on 9 April 2010 (Reference Number: 10/50709/8). The study was
sponsored by The Golden Jubilee National Hospital and supported by funding
from The Department of Anaesthesia and Peri-operative Medicine Endowment
Fund.
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7.4 Summary of Study Design

The study was a single centre, randomised, non-comparative, validation study of
the Covariates Model. The Medicines and Healthcare products Regulatory Agency
confirmed that the study was not a Clinical Trial of an Investigational Medicinal
Product. The aim was to enrol up to 50 adults with a goal of 30 completed cases.
At least ten patients aged over 65 years were required to assess the validity of
the model in an older population. The study protocol is summarised in Figure
7.1.

7.5 Patient Recruitment

Study participants were prospectively recruited from patients attending the
Golden Jubilee National Hospital, Glasgow for elective surgery between 26"
January 2011 and 10" June 2014. Included patients were over 18 years of age
and undergoing non-cardiac surgery requiring general anaesthesia and expected

to last more than 30 minutes.

Patients were approached during their pre-operative clinic attendance and
provided with a Participant Information Sheet and a verbal description of the
study procedure. They were either consented at this stage or allowed further

time to consider their involvement prior to attendance on the day of surgery.

Patients were excluded from the study if they refused consent or were unable to
consent on the basis of lack of capacity. If a patient was due to receive pre-
medication or had received sedative or anaesthetic agents the preceding 12
hours they were excluded because of the potential impact on depth of
anaesthesia monitoring. For similar reasons, patients with a history of excessive
alcohol intake or illicit drug use were excluded. Patients were excluded if they
had a body mass index (BMI) of greater than 35, predictors of a difficult airway

or a history of allergy to any of the constituents of propofol.

7.6 Patient Monitoring

During conduct of the study protocol, all patients were cared for in either an
anaesthetic room or operating theatre by a minimum of two anaesthetists or one

anaesthetist and one appropriately trained physician’s assistant for anaesthesia.
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A skilled anaesthetic assistant was present at all times. Standards of monitoring

provided by the Association of Anaesthetists of Great Britain and Northern
Ireland (AAGBI) were followed(238). Monitoring was performed using the Draeger
Primus anaesthetic machine with integrated monitoring (Draeger Medical UK
Ltd.).

7.7 Study Procedure

7.7.1 Intravenous and Intra-arterial Access

Following confirmation of stable vital signs, all patients had an 18G or 20G
intravenous cannula inserted into a large forearm vein to allow infusion of
propofol. In the contra-lateral arm, a second 18G intravenous cannula was
inserted to allow sampling of venous blood. A further cannula was then inserted
into the radial artery on this side to allow sampling of arterial blood and beat -

to-beat measurement of arterial blood pressure.

7.7.2 Electroencephalographic Monitoring

To allow modelling of the effect site, processed electroencephalography (pEEG)
monitoring was performed. The monitor used in the study was the Bispectral
Index (BIS XP A2000, Medtronic, Ireland) running software version 3.11 and with

a smoothing rate of 15 seconds.

7.7.3 Synchronised Electronic Data Capture

Prior to initiation of the study protocol, the collection of continuous
physiological data was confirmed. All routinely collected AAGBI standard
monitoring data, invasive arterial blood pressure and details of all medications
administered were recorded using the Recall digital anaesthetic record
(Informatics, UK). pEEG data were streamed directly to a Dell Latitude
Toughbook (Dell, USA) using the Anaesthesia Synchronisation Software
(ASYS)(239) (provided by Nadja Bressan).

7.7.4 Propofol Infusion Regime
Propofol (Propofol Lipuro 2%, B. Braun Medical Ltd., UK) was infused using an

Injectomat TIVA Agilia syringe pump (Fresinius Kabi, France) programmed with
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the Covariates Model. Patency of the intravenous cannula was confirmed by

concomitant slow infusion of compound sodium lactate solution. As described in
the study protocol (Figure 7.1), patients were alternately randomised to either a
2-5-2 infusion or a 5-2-5 infusion. In the 2-5-2 group, an initial propofol plasma
target concentration of 2 ug/ml was maintained for 15 minutes prior to an
increase to 5 ug/ml for 15 minutes and finally a reduction to 2 ug/ml for 15

minutes. The reverse was performed in the 5-2-5 group.

The study procedure lasted around 45 minutes in total and was performed prior
to the initiation of surgery. During this time, the patient remained
spontaneously breathing via a face mask and the concentration of oxygen was
titrated to maintain arterial oxygen saturations of at least 95%. Intravenous
boluses of metaraminol 0.1 mg and glycopyrrolate 200 mcg were used to treat
hypotension and bradycardia as clinically indicated. No medications that could
interfere with the pharmacodynamics of propofol, such as volatile anaesthetics
agents, benzodiazepines or opioids, were administered during the study

procedure.

7.7.5 Blood Sampling Schedule

Throughout the study procedure, arterial and venous blood samples were drawn
at pre-specified time points as indicated in Table 7.1. The sampling schedule
was designed to allow comparison of arterial and venous propofol concentrations
as well as to allow model validation close to plasma target changes and during

stable anaesthesia.

Following collection of the final blood sample, the patient was prepared for
their surgical procedure. Anaesthetic management from this stage onwards
followed local procedures and guidelines and participation in the study did not

influence the patient’s ongoing clinical care.
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Figure 7.1 (previous page): VaSCoM study algorithm. AAGBI = Association of

Anaesthetists of Great Britain and Ireland, BIS = Bispectral Index, TCI = target

controlled infusion, GA = general anaesthesia, Cp = target plasma concentration.

Venous Samples Arterial Samples
Sample 1 90 seconds Sample 1 90 seconds
Sample 2 5 minutes Sample 2 5 minutes
Sample 3 60 - 90 seconds Sample 3 60 - 90 seconds
after change of after change of
target 1 target 1
Sample 4 20 minutes Sample 4 20 minutes
Sample 5 60 - 90 seconds
after change of
target 2
Sample 6 35 minutes
Sample 7 45 to 60 minutes

Table 7.1: Schedule for sampling of venous and arterial blood

7.7.6 Processing of Blood Samples

Arterial and venous blood samples were collected into a blood gas syringe to
heparinise. The sample was then transferred into a fluoride oxalate sample
bottle to provide stability prior to storage at 4°C. Propofol concentrations in
whole blood samples were analysed by C3P Analysis using a validated whole

blood high performance liquid chromatography (HPLC) technique(231).

7.8 Analysis

7.8.1 Introduction
The majority of data processing and analysis were performed using RStudio
Version 0.98.1102 running R Version 3.1.2 (R Core Team, 2014) (7). Individual R

Packages used for each stage of analysis are detailed in the appropriate
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sections. The rationale for using R has already been discussed in the introduction

to this thesis. All summary measures are reported as median (range).

7.8.2 Data Preparation

Infusion profiles from the Injectomat TIVA Agilia syringe pump were downloaded
into Microsoft Excel (2007) using the software provided (Partner Agilia, Fresenius
Kabi, France). The BIS recordings were exported from the ASYS software into
Microsoft Excel. Similarly all arterial and venous blood results and individual
patient demographic details were stored in Microsoft Excel. Data were then
imported into R using the package gdata(240). Manipulation of data into a
standardised format for ease of repeatable analysis was performed using the

packages dplyr(135) and stringr(136).

7.8.3 Approach to Pharmacokinetic Model Validation

7.8.3.1 Introduction

The approach to pharmacokinetic model validation published by Varvel et al and
discussed in the introduction to this thesis was adapted for use in this
study(199). The measures of performance felt to be most relevant were “bias”
and “precision”. The calculations of these metrics as performed in this study are

outlined below.

7.8.3.2 Percentage Performance Error
Prior to the calculation of bias and precision, it was first necessary to measure
the percentage performance error for each of the arterial and venous blood

samples. It was calculated using the equation:

T Cpy

(7.1)

PE, X 100

where PEj;is the percentage performance error i in the jth patient, Cb is the
concentration measured in blood and Cp is the concentration predicted by the
TCI device.
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7.8.3.3 Bias

The bias of a TCl device is its tendency to over or under predict the actual drug
concentration. For each individual this was measured through the median

performance error (MDPE), calculated as:
MDPE; = median{PE;;,j = 1, ..., N;} (7.2)

where N; is the number of performance errors in the ith individual.

7.8.3.4 Inaccuracy

In a situation where a TCl device has the tendency to both under and over
predict drug concentrations at different stages of the infusion, these PEs may
compensate for each other and the bias may be negligible. The overall size of
the PEs is thus better represented by the median absolute performance error
(MDAPE), calculated as:

MDAPE; = median{|PE;;|,j = 1, ..., N;} (7.3)

7.8.3.5 Population estimates
Following calculation of MDPE and MDAPE for each individual, the TCl device

performance was measured for the entire population by finding the overall

medians:

MDPE = median{MDPE;,i =1, ..., M} (7.4)
and

MDAPE = median{MDAPE;,i = 1, ..., M} (7.5)

where M represents the number of study participants. The disadvantage of this
two stage approach to finding the population estimates is that MDPE and MDAPE
may be known in some participants with more certainty than others. This was

accounted for by weighting the calculation by the number of blood samples
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performed in each patient, but without adjustment for the intra-patient

variability.

7.8.3.6 Sample Size

There is no consensus agreement on the required sample size for this type of PK
validation study. Similar published studies have recruited around 30
patients(241) and the same number was determined to be appropriate in this

study.

7.8.4 Model Simulation

The TCI device infusion profile for each participant was used to simulate the
propofol plasma concentrations predicted by each of the Covariates, Marsh and
Schnider Models. For the interim analysis described below, this was first
performed using the Tivatrainer software (Version 8.1)(242) to simulate the
predictions made by the Covariates Model. Tivatrainer is a specialised
pharmacokinetic simulation programme that has been used extensively in
anaesthetic pharmacokinetic research. It does not however provide the
flexibility of data manipulation and integration of multiple analyses that is
provided by R. For this reason, the remainder of the simulation studies were
performed using the deSolve Package in R, which provides the functions to solve

ordinary differential equations as required in compartmental PK modelling (243).

The models were represented in R based on the standard three compartment

open model:

6Cy (7.6)
E = dOS€ + kZICZ + k31€3 - (kl() + k12 + k13)Cl

6C, (7.7)
E = k1,0 — k.G,

oC (7.8)

3
E = k13C1 - k31C3
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where dose is the quantity of propofol delivered, C;, C;and C; are the

concentrations of propofolin the first, second and third compartments, k1, k3,
k,; and k3, are the intercompartmental rate constants and ko is the rate

constant for elimination.

To ensure that the deSolve Package was providing accurate solutions to the
modelling studies, the predicted plasma concentrations for the Covariates Model
in the interim analysis were compared to the predictions provided by
Tivatrainer. This was done using the same methodology as described with

calculation of MDPE and MDAPE as measures of bias and inaccuracy.

7.8.5 Interim Analysis

An interim analysis of the study was performed following recruitment of ten
male and ten female patients to the study to ensure that MDPE and MDAPE for
the Covariates Model were within the expected ranges. This analysis revealed
that the PEs were markedly higher in female patients than was anticipated. The
decision was therefore made to perform a simulation study at this stage to
ensure that the implementation of the Covariates Model by the Fresenius
Injectomat TIVA Agilia syringe pump was accurate. Simulation study using both
Tivatrainer software and the desolve Package revealed that the TCl device
programming had been mis-specified and was therefore not appropriately
implementing the Covariates Model in female patients (details are provided in
the results section). This mis-specification was corrected by the manufacturer
and following discussion with the Research Ethics Service, an additional ten

female patients were recruited to the study.

7.8.6 Validation Study

Validation of the Covariates Model as implemented by the syringe pump was
performed only in the participants who received the correctly specified model.
Overall values for bias (MDPE) and inaccuracy (MDAPE) were calculated.
Wilcoxon Sighed Rank Tests were performed to compare PEs measured using

arterial and venous sampling. A p-value of < 0.05 was regarded as significant.
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Again using the Wilcoxon Signed Rank Test, specific comparisons were made

between male and female patients and younger and older patients to confirm
that adjusting the model by the covariates of age and gender resulted in

consistent bias.

Finally, the effect of time since a change in target plasma concentration was
explored. For arterial and venous samples, linear models were constructed to
identify if there was a systematic change in bias with increasing time from a
change in target concentration. The absolute difference was then calculated
between each pair of PEs from arterial and venous samples (the a-v PE
difference) and the magnitude of this difference modelled against time. All
modelling was done using the stats Package in R(7) and details of the models

selected are provided in the results section.

7.8.7 Model Comparison Study

Simulation studies were performed in the desolve Package using data from all
patients to compare predictions made by the Covariates, Marsh and Schnider
Models. Following calculation of the predicted plasma concentrations for each
participant according to each of the models, their performances were compared
using MDPE and MDAPE. The Friedman Rank Sum Test was used to compare all of
the Covariates, Marsh and Schnider Models for a statistically significant
difference in inaccuracy. The Nemenyi Multiple Comparison Test could then be
used to determine which, if any, models were statistically different. Use of the
Nemenyi multiple comparison test removes the need for post-hoc adjustment of

p-values and therefore a p-value of <0.05 was regarded as significant.

For each of the models, similar comparisons as for the validation study were
performed between female and male and younger and older patients to

determine if there were any systematic differences in bias.

For arterial and venous blood sampling, models were compared at early (< 2.5
minutes), intermediate (> 2.5 minutes) and late (> 5.5 minutes) time intervals
following a change in target plasma concentration. As above, statistical
comparisons of model inaccuracies were performed using the Friedman Rank

Sum Test with Nemenyi Multiple Comparison Test. For each of the PK models
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there was then construction of linear models to determine systematic changes in

bias with time and for a systematic change in the a-v PE difference.

7.8.8 Effect Site Modelling

The central role of the k¢ in effect site modelling and its determination using
non-linear effect site modelling has been discussed in detail in the introduction.
The appropriate ke for the Covariates Model had not been determined prior to
this study. To perform effect site modelling using the standard parametric
approach, it is necessary to simultaneously perform monitoring of the
anaesthetic effect site while delivering anaesthesia using a validated PK model.
In the first instance this meant using only data from patients in whom the
correctly specified Covariates Model was delivered and an effect site monitoring
profile (i.e. BIS) was available. The analysis was subsequently repeated using
simulated PK data in all patients who had an effect site monitoring profile

available.

The relationship between anaesthetic effect and the effect site concentration
was assumed to be represented by the sigmoid En.x model described by
Hill(244):

Emaxcey (7.9)
Cey + C,(50)7

E =E,

where E is drug effect, Epis the baseline effect with no drug present, Enq is the
maximum difference from baseline, C. is the effect site concentration, C¢(50) is
the drug concentration producing 50% of the maximum effect and y describes the
slope of the concentration-effect relationship. To describe the relationship
between the predicted plasma concentration and the effect site concentration,

a further differential equation was added to the existing three-compartment

model:

¢, (7.10)
E = keO(Cl - Ce)
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where kg is the rate constant for elimination from the effect site and models

the delay between changes in C; and clinical effect.

The standard software used for PKPD analysis, and thus estimation of the best
keo to describe drug behaviour in a population is NONMEM® (ICON Plc, Ireland).
In this study, the R package nlmeODE(236) was used to perform non-linear mixed
effect modelling using differential equations. As discussed earlier, this package
has been shown to provide accurate parameter estimates, which are consistent
with NONMEM estimates(237).

The analysis was performed in three stages. Firstly by allowing nlmeODE to fit
the data by finding the best estimates of Keo, Eo, Emax, ECsoand y. Secondly by
fixing Emax to 100, as this is the maximum anaesthetic effect measurable by the
BIS device. Finally by fixing both En.x and Eg to 100, as the theoretical BIS in all
patients prior to starting anaesthesia is also 100. In each scenario, an overall
population estimate (or fixed effect) as well as an individualised estimate (or

random effect) for ke wWas provided.
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8 Results of the VaSCoM Study

8.1 Overview

The principle results of the Validation Study of the Covariates Model (VaSCoM)
for target controlled infusion of propofol are presented. The results are in four
sections, relating firstly to an interim analysis, secondly to the pharmacokinetic
(PK) validation study, thirdly to a pharmacokinetic PK comparison study and

finally to the pharmacodynamic (PD) analysis.

8.2 Data Collection

8.2.1 Data Collection Period

The initial plan for the VaSCoM study was to recruit up to 50 patients to achieve
datasets for 30 patients. Data collection took place during the period 26
January 2011 and 10" June 2014. Recruitment was significantly slower than
expected for two reasons. The first was the fact that the vast majority of
patients undergoing non-cardiac surgery at the Golden Jubilee National Hospital
are anaesthetised using regional rather than general anaesthetic techniques.
This reduced the pool of eligible patients. The second reason related to the
complex logistics of the study requiring three clinicians and a separate clinical
area to complete the study procedure without impacting on the efficient running
of the theatre list.

As discussed in the methods section, the initial target sample size was increased
to 40 to compensate for a calculation error programmed into the TCI device
used. One patient was withdrawn from the study prior to any blood samples
being collected because airway management became a priority. In addition,
there was one female participant who was anaesthetised using the male
algorithm. Ultimately there were 40 patients studied, with 29 participants

anaesthetised using the correctly specified Covariates Model.
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8.2.2 Patient Demographics

25 female patients were studied with median age of 45 (38 - 63) years and
median weight of 63 (61 - 71) kg. For the 14 females anaesthetised using the
correctly specified Covariates Model, these values were 45.5 (43.25 - 65.25)
years and 63 (60.25 - 73.25) kg. There were 15 male patients studied with
median age of 51 (43 - 66) years and median weight of 86 (78 - 97) kg. Table 8.1
summarises the demographic characteristics of each of the 40 participants and

the infusion protocol that was used.

8.2.3 Blood Samples and BIS Profiles

Whole blood propofol concentrations were measured in 160 arterial blood
samples and 274 venous blood samples. For patients who were anaesthetised
using the correctly specified Covariates Model, there were 116 arterial samples
and 199 venous samples. Bispectral index (BIS) profiles were available for 33
patients, 24 of whom were anaesthetised using the correctly specified

Covariates Model.



D | Model Gender | Age (Yrs) | Weight (kg) | Height (cm) | Protocol
1 Mis_spec f 54 66 160 a
11 Covariates m 32 79 175 a
20 | Covariates m 29 86 180 b
21 Covariates m 238 93 1381 a
23 | Mis_spec f 43 62 161 b
27 | Mis_spec f 35 66 159 a
30 | Covariates m 53 117 185 b
35 Covariates m 41 99 T35 a
39 Covariates m o1 99 175 b
47 | Mis_spec f 29 59 169 b
49 | Mis_spec f 52 62 166 a
55 | Covariates m 58 79 180 a
56 Covariates m 46 95 175 b
60 [ Mis_spec f 32 73 175 a
61 Mis_spec f 49 80 171 b
62 | Covariates m 47 80 182 a
63~ | Covariates m 45 TZ0 197 5)
65 Mis_spec T 38 67 T64 b
71 Mis_spec f 30 61 171 a
72 | Mis_spec f 73 66 174 a
/8 | Covariates f 51 49 156 a
81 Covariates T 43 60 168 5)
83 Covariates T 46 58 71 a
84 | Covariates f 40 76 161 b
85 | Covariates f 45 63 162 a
g/ Covariates T 45 3838 174 b
88 [ Covariates T 44 63 T59 a
90 | Covariates male | f 69 51 164 a
95 | Covariates f 70 69 169 b
101 | Covariates m 65 68 173 b
107 | Covariates T 66 /1 151 a
TO8 | Covariates m 75 75 177 5)
110 | Covariates f 63 74 155 b
112 | Covariates f 35 62 167 a
114 | Covariates m 68 77 170 a
117 | Covariates m 6/ 95 179 a
119 | Covariates f 32 82 176 b
130 | Covariates m 67 73 177 b
132 | Covariates f 70 61 160 b
137 | Covariates [ 68 24 158 a

Table 8.1: Demographics, PK model details and study protocol for each of the 40

patients studied in the VaSCoM study.
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8.3 Interim Analysis

An interim analysis of data from the first ten male and ten female patients
studied was performed and these were presented in June 2012 at the
Anaesthetic Research Society Meeting, Aberdeen(245). MDPE and MDAPE were
first calculated for the full cohort of patients. MDPE and MDAPE for venous
samples were 10 (-49 to 52) and 23 (9 to 54), while MDPE and MDAPE for arterial
samples were 27 (-33 to 89) and 34 (13 to 89). The bias and inaccuracy
calculated were of a greater magnitude than was anticipated given the
optimisation of the Covariates Model through the inclusion of age and gender
covariates. To explore this further, separate analyses of male and female
patients were performed and the results revealed a much larger performance

error in female patients (Table 8.2 and Figure 8.1).

Measure Female Male

MDPE Arterial | 49 (-33 to 89) | 16 (-11 to 72)

MDAPE Arterial | 49 (26 to 89) 310 72)

23 (
MDPE Venous | 8 (-49to 52) [ 15 (-6 to 29)
MDAPE Venous | 40 (12 to 54) | 23 (9 to 31)

Table 8.2: Interim results with MDPEs and MDAPEs for venous and arterial sampling

in males and females.
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Figure 8.1: Boxplots demonstrating the range of MDPEs and MDAPEs for arterial and
venous sampling for females (A) and males (B) in the interim analysis of pump

performance.

On the evidence of the MDPE for arterial sampling in females there seemed to be
a systematic under prediction of the measured propofol concentrations by the
Covariates Model as implemented by the Fresenius Injectomat TIVA Agilia syringe
pump. Sample plots of predicted concentrations with measured arterial and
venous blood concentrations for female patients anaesthetised using both
protocol a (2-5-2) and protocol b (5-2-5) supported this hypothesis (Figure 8.2).
This systematic error could be related to either a bias within the Covariates
Model itself, or a mis-specification of the Covariates Model within the syringe
pump. To elucidate this further, it was necessary to perform simulation studies
for each of the patients so far recruited and compare the predicted
concentrations from the simulations to those downloaded from the syringe pump
(Figure 8.2).
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Figure 8.2: Predicted concentration profiles for female patients who had propofol
infusions delivered according to protocol a (A) and b (B) for the mis-specified
Covariates Model. The measured arterial and venous blood concentrations have
been plotted to indicate the significant discrepancy between measured and
predicted values. The concentrations predicted by a simulation of the correctly

specified Covariates Model are plotted for comparison.

The simulation studies were performed using both the Tivatrainer software and
the deSolve Package in R with identical input parameters. Performance errors
between the concentration predictions made by Tivatrainer and those made by
the syringe pump were plotted against time (Figure 8.3). It became immediately
clear that in female patients the syringe pump was systematically predicting
lower concentrations than those expected by Tivatrainer. This was supported by
a MDPE of 35 (23 to 69) and a MDAPE of 35 (23 to 69) in females. There was
systematic under prediction of concentrations in males but to a much smaller
degree with a MDPE of 5 (3 to 6) and a MDAPE of 5 (3 to 6) (Figure 8.4).
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Figure 8.3: Performance error plotted against time for ten male and ten female
patients comparing simulated predictions made by Tivatrainer and (A) the
predictions made by the syringe pump and (B) the simulated predictions made by
the deSolve Package.
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Figure 8.4: Comparison of MDPE and MDAPE for female and male patients between
predictions made by Tivatrainer and (A) the predictions made by the syringe pump
and (B) the simulated predictions made by the deSolve package.

On the basis of the significant and systematic error between propofol
concentration predictions made by the syringe pump and both the measured
values and the predictions made by Tivatrainer, the VaSCoM study was put on
hold. A review of the input parameters to the Covariates Model as implemented
by the syringe pump was performed and revealed a simple arithmetic error.
Calculation of the central compartment volume should have been implemented

as:

V, = 191.78 — 0.669 X Age (8.1)

but had instead been implemented as:

V, = 191.78 4+ 0.669 x Age (8.2)
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with the consequence of increased doses of propofol being delivered to fill the

larger compartment volume. All of the syringe pumps used in the study were re-
programmed with the correctly implemented model, and following liaison with
the Research Ethics Committee a plan was made to recruit an additional 10

female patients to the study.

The results of the simulation studies performed comparing the predictions made
by the deSolve Package to those made by the syringe pump gave essentially
identical results to those using Tivatrainer. Indeed when the performance error
between predictions made by Tivatrainer and those made by deSolve were
plotted against time there was no real systematic difference identified (Figure
8.3). This conclusion was supported by calculation of a MDPE of 0 (-2 to 1) and
MDAPE of 1 (0 to 2) (Figure 8.4). On the basis of these results, all subsequent
simulation studies were performed using the deSolve Package due to the ability

to more quickly and efficiently perform multiple simulations.

8.4 Validation Study Results

8.4.1 Overall Validation Results

The results presented below relate to a comparison between the measured
arterial and venous propofol concentrations and the concentrations predicted by
the syringe pump. Only data from the 29 patients anaesthetised using the
correctly specified Covariates Model with the correctly implemented Covariates
Model were included in the analysis. These results were presented in part in
September 2016 at the World Congress of Anesthesiologists, Hong Kong(246).
Overall the implemented model seemed to perform with a reasonable degree of
bias and inaccuracy with a MDPE of 9 (-45 to 82) and MDAPE of 24 (9 to 82) for
arterial samples and MDPE of -8 (-64 to 70) and MDAPE of 23 (9 to 70) for venous
samples (Figure 8.5). There was a statistically significant difference between PEs
for each arterial and venous blood sample (p < 0.0001) and between the arterial
and venous MDPEs for each patient (p < 0.001) as tested by the Wilcoxon Signed
Rank Test.
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Figure 8.5: Validation study results showing MDPE and MDAPE for arterial and venous

samples in (A) the overall population, (B) female patients and (C) male patients.

8.4.2 Female and Male Patient Comparison

On examination of the results for female and male patients, there appeared to
be a tendency for the predicted concentrations to be higher than the measured
concentrations in female patients but lower than predicted concentrations in
male patients (Table 8.3 and Figure 8.5). This was confirmed by significant
Wilcoxon Signed Rank Tests comparing MDPEs for female and male patients on
arterial (p < 0.001) and venous (p < 0.0001) samples. The result of these
opposing biases (over prediction in females and under prediction in males) was

that the overall population bias was reduced to nearer to zero.
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Measure Female Male

MDPE Arterial | -14 (-45 to 28)* | 19 (-11 to 82)°

MDAPE Arterial | 23 (9 to 45) 13 to 82)

24 (
MDPE Venous | -20 (-64 to -8)* | 12 (-9 to 70)*
MDAPE Venous | 21 (11 to 64) 23 (9 to 70)

Table 8.3: Final validation results with MDPEs and MDAPEs for venous and arterial
sampling in females and males. * Denotes statistically significant difference between

MDPEs in females and males.

8.4.3 Younger and Older Patient Comparison

There was no clear systematic difference in the bias of model predictions
between younger (aged under 65 years) and older patients (Table 8.4). This was
confirmed by non-significant Wilcoxon Signed Rank Tests comparing MDPEs for
younger and older patients on arterial (p = 0.36) and venous (p = 0.80) samples.
There was a tendency for older age to emphasise existing differences in bias
between female and male patients as supported by arterial MDPEs of -12 (-43 to
18) and -23 (-45 to 28) in younger and older females and 16 (-11 to 72) and 27
(13 to 82) in younger and older males (Figure 8.6).

Measure Younger Older

MDPE Arterial | 1 (-43 to 72) | 20 (-45 to 82)

MDAPE Arterial | 2Z (9 to 72) | 27 (13 to 82)

MDPE Venous | -6 (-64 to 29) | -9 (-51 to /0)

MDAPE Venous | 22 (9 to 64) | 24 (10 to 70)

Table 8.4: Final validation results with MDPEs and MDAPEs for venous and arterial

sampling in younger and older patients.
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Figure 8.6: Validation study results showing MDPE for arterial and venous samples in

(A) younger females, (B) younger males, (C) older females and (D) older males.

8.4.4 Early and Late Sampling Comparison

On visual inspection of the data, there appeared to be a systematic change of
PEs with increasing time from an increase in the target plasma concentration.
With increasing, time arterial PEs appeared to become more negative and
venous PEs appeared to become more positive. This was formally investigated

using a linear modelling technique with the model:

PE = a;At+a,G+ (8.3)

where PE is the arterial or venous PE, At is the time since an increase in plasma
target concentration and G is gender (Table 8.5 and Figure 8.7). There was a

significant negative correlation between time from an increase in target plasma
concentration and the performance errors measured using arterial samples (p <
0.0001, r-squared = 0.29). In contrast, using performance errors measured using

venous samples, the overall model demonstrated statistical significance (p <
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0.0001, r-squared = 0.23) but there was no significant relationship between

performance errors and time (¢ p = 0.302).

Sampling Constant Estimate Lower Upper p-value

Arterial B 0.37 -0.26 15.61 0.946
oy -0.03 -0.05 -0.02 0.001
oy 38.10 16.92 37.31 0.000

Venous B -32.98 -42.41 -23.55 0.000
oy 0.01 0.00 0.02 0.302
o 40.00 29.69 20.3 0.000

Table 8.5: Estimates for constants in Equation 8.3 for venous and arterial sampling

with upper and lower 95% confidence intervals and associated p-values.
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Figure 8.7: Plots of PE against time since an increase in the target plasma

concentration for arterial (A) and venous (B) samples. Linear models are displayed

as fit +/- 95% confidence interval. The lighter shaded area represents 95%

confidence interval of model predictions.
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From Figure 8.7, there is a suggestion that the differences between PEs

calculated using arterial and venous sampling reduce with time from an increase
in plasma target concentration. To explore this further, the difference was
calculated between every pair of arterial and venous blood samples (Figure 8.8).

After visual inspection of the data, the following linear model was fitted:

log(PE, — PE,) = alAt+ (8.4)

where PE, is performance error calculated from arterial sampling, PE, is
performance error calculated from arterial sampling and At is the time since an
increase in plasma target concentration (Table 8.6). There was a significant
relationship between log(PE, - PE,) and time since an increase in target plasma

concentration (p < 0.0001, r-squared = 0.32).
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Figure 8.8: Plot of the difference between arterial and venous PEs against time
since an increase in target plasma concentration. Linear models are displayed as fit
+/- 95% confidence interval. The dashed line represents 95% confidence interval of

model predictions.
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Constant | Estimate | Lower | Upper | p.value

o 3.643 3.385 | 3.847 | 0.000

-0.002 -0.002 | -0.001 | 0.000

Table 8.6: Estimates for constants in Equation 8.4 with upper and lower 95%
confidence intervals and associated p-values.

8.5 Model Comparison Results

8.5.1 Introduction

All of the validation study results presented above have used the Fresenius
implementation of the Covariates Model. For consistency in comparison, the
Covariates Model, Marsh Model and Schnider Model were all re-simulated using
the deSolve Package in R from the Fresenius Agilia Pump infusion profile for all
40 patients. In the simulations performed for the interim analysis results above,
predictions made using deSolve were very close to those made by the well-

established Tivatrainer software.

8.5.2 Model Comparison Based on Overall Performance Error

Comparison was first made between the arterial and venous blood propofol
concentrations and the concentrations predicted by each of the Covariates,
Marsh and Schnider Model Simulations in all study patients and at all study time
points. The summary results for these simulations are displayed in Table 8.7 and
Figures 8.9 and 8.10. On the basis of arterial sampling, the overall bias of the
Covariates Model was closest to zero, with accuracy similar to that of the
Schnider Model. The Marsh Model tended to over-predict with lower accuracy
than the other two models. This was confirmed statistically using a Friedman
Rank Sum Test to confirm a difference between the MDAPEs for each of the
models (p < 0.0001). Pairwise comparisons using Nemenyi Multiple Comparison
Test confirmed the similarity of the Covariates and Schnider Models, but a
significant difference between the Marsh Model and the Covariates and Schnider
Models respectively (p < 0.01 and p < 0.0001). On the basis of venous sampling,
the Covariates Model had a greater tendency to under-predict but there was no

significant difference in the accuracies of the models (p = 0.20).
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Model MDPE Art MDAPE Art MDPE Ven MDAPE Ven
Covariates | 3 (45 to 73) 25 (3to 73 1 (-64t0 56) | 20 (9 to 64)
Marsh 18 (44 to 112) 34 (9to 112 | -5 (-56 to 84) 75 (9 to 84)
Schnider 9 (-40 to 68) 77 (7 t0 68)° 6 (-59 to 40) 76 (9 to 59)

Table 8.7: Summary of results for prediction errors in simulation studies for each of

the Covariates, Marsh and Schnider Models. * Denotes statistically significant

difference between MDAPEs calculated for each model.
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Figure 8.9: Summary of results for prediction errors based on arterial blood

sampling in simulation studies for each of the Covariates, Marsh and Schnider Models

in all patients (A), females (B) and males (C).
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Figure 8.10: Summary of results for prediction errors based on venous blood
sampling in simulation studies for each of the Covariates, Marsh and Schnider Models
in all patients (A), females (B) and males (C).

8.5.3 Model Comparison By Gender

The predictive performance of the Covariates, Marsh and Schnider Models in
female and male patients was compared. The results are summarised in Table
8.8 and Figures 8.9 and 8.10. In line with the Validation Study results, the
simulation studies using the Covariates Model confirmed the tendency to over-
predict in females and under-predict in males. Again this was confirmed by
significant Wilcoxon Signed Rank Tests comparing MDPEs for female and male
patients on arterial (p < 0.0001) and venous (p < 0.0001) samples. The tendency
for the Marsh Model to under-predict was consistent across both female and
male patients on arterial but not venous samples. There was a statistically
significant difference in bias between female and male patients in both arterial
(p < 0.0001) and venous samples (p < 0.0001). In contrast, there was no
significant difference in bias between female and male patients in the
predictions made by the Schnider Model in either arterial (p = 0.55) or venous

samples (p = 0.12).



Model Gender | MDPE Art MDAPE Art | MDPE Ven MDAPE Ven
Covariates | Female | -7 (-45to 47)* | 24 3to 47) | -26 (-64 to 16)* | 26 (12 to 64)
Male 14 (-15t0 73)* [ 25 (8to 73) | 3 (-18to 56)* | 18 (9 to 56)
Marsh Female | 12 (-44 to 74) | 32 (10 to 74) | -13 (-56 to 27)* | 25 (9 to 56)
Male 36 (Oto 112)* | 36 (9to 112) | 20 (-7 to 84)* |24 (17 to 84)
Schnider | Female | 7 (-40 to 43) 24(7to48) [ -6(-59to33) [27(9to59)
Male 11 (-21t0 68) [ 20(9to 68) | -7 (-26to 40) |24 (10 to 59)
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Table 8.8: Results for prediction errors in simulation studies for each of the
Covariates, Marsh and Schnider Models for female and male patients. * Denotes
statistically significant difference between MDPEs in females and males.

8.5.4 Model Comparison By Age

The predictive performance of the Covariates, Marsh and Schnider Models was
compared between older and younger patients. The results are summarised in
Table 8.9 and Figures 8.11 and 8.12. With the exception of the Schnider Model
as assessed on venous blood sampling (p < 0.05), there was no statistical
difference between the model biases in younger and older patients. There was a
non-significant trend for increased under-prediction in older patients for the
Marsh Model.

Model Age Group | MDPE Art MDAPE Art MDPE Ven MDAPE Ven
Covariates | Younger 4 (-45 to 67) 25 (3 to 67) -8 (-64to 24) | 20 (11 to 64)
Older 1(-45to 73) 24 (8to 73) -15 (-51 to 56) | 21 (9 to 56)
Marsh Younger 15 (-44t097) |34 (9to 97) -6 (-56 to 47) |25 (9 to 56)
Older 31 (-23to 112) [ 36 (10to 112) | 5(-43to 84) |22 (10 to 84)
Schnider | Younger 11 (-34to43) | 19 (8to 46) -7 (-59to 27)* |24 (9 to 39)
Older -4 (-40 to 68) | 29 (7 to 68) 3 (-31to 40)* | 33 (13 to 58)

Table 8.9: Results for prediction errors in simulation studies for each of the
Covariates, Marsh and Schnider Models for younger and older patients. * Denotes
statistically significant difference between MDPEs in younger and older patients.
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Figure 8.11: Summary of results for prediction errors based on arterial blood
sampling in simulation studies for each of the Covariates, Marsh and Schnider Models
in all patients (A), younger patients (B) and older patients (C).
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Figure 8.12: Summary of results for prediction errors based on venous blood
sampling in simulation studies for each of the Covariates, Marsh and Schnider Models
in all patients (A), younger patients (B) and older patients (C).

8.5.5 Model Comparison By Timing Of Blood Sampling

At set times following an increase in plasma target concentration, the predictive
performances of the Covariates, Marsh and Schnider Models were compared. The
time periods selected were less than 2.5 minutes, greater than 2.5 minutes and
greater than 5.5 minutes. The results are summarised in Table 8.10 and Figure
8.13.

For both the Covariates and the Marsh Models there was a trend from the early
to the late time window from model under-prediction to over-prediction on the
basis of arterial sampling. The reverse was true for the Schnider Model and these

trends were explored in detail through linear modelling.
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Time Measure Covariates Marsh Schnider
<2.5Mins | MDPE Art 9 (-46 to 113) 43 (-22 to 166) -15 (-50 to 44)
MDAPE Art 31 (0 to 113)* 47 (2 to 166)* 27 (1 to 50)*
MDPE Ven -20 (-79 to 61) T(-73to 95) -34(-77 to 18)
MDAPE Ven 53 (7 to 79)* 56 (9 to 95)* 47 (7 to 77)*
>2.5Mins | MDPE Art 0 (-52 to 80) 2 (-55to 118) 11 (-34to 93)
MDAPE Art 25 (8 to 80)* 30 (5 to 118)* 25 (4 to 93)*
MDPE Ven -12 (-58 to 56) -4.5 (-56 to 84) 3.5(-52to 54)
MDAPE Ven 18 (2 to 58) 21 (6 to 84) 22 (6 to 59)
>5.5Mins | MDPE Art -22 (-53 to 59) -17 (-58 to 80) 26 (-29 to 135)
MDAPE Art 26 (6 to 59) 22 (3to 80) 29 (6 to 135)
MDPE Ven -14 (-53 to 50) -8.5 (-56 to 74) 13 (-27 to 107)
MDAPE Ven 18 (Zto 53) 2T (6 to 74) 25 (3to 107)

Table 8.10: Results for prediction errors at specified time intervals in simulation

studies for each of the Covariates, Marsh and Schnider Models. * Denotes statistically

significant difference between MDAPEs calculated for each model at given time

interval.

At the early time window, on the basis of arterial sampling there was a

significant difference between the accuracy of the three models as assessed by

Friedman Rank Sum Test of the MDAPEs (p < 0.0001). Pairwise comparisons using

Nemenyi Multiple Comparison Tests confirmed the similarity of the Covariates

and Schnider Models, but a significant difference between the Marsh Model and

the Covariates and Schnider Models respectively (p < 0.001 and p < 0.01). A

significant difference was also seen between the accuracy of the three models

on the basis of venous sampling (p < 0.01). Again the similarity of the Covariates

and Schnider Models was confirmed, with a significant difference between the

Marsh Model and each of the Covariates and Schnider Models (p < 0.01 and p <

0.05).
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Figure 8.13: Summary of results for prediction errors based on arterial (A) and
venous (B) blood sampling in simulation studies for each of the Covariates (red),
Marsh (green) and Schnider (blue) Models at set time points following an increase in
target plasma concentration.

At the intermediate time window, there was a persisting statistically significant
difference in the accuracies of the three models on the basis of arterial (p <
0.05) but not venous sampling (p = 0.50). On pairwise comparison, the statistical
difference on the basis of arterial sampling was only present between the Marsh
and Schnider Models (p < 0/05).

At the later time window there was no statistically significant difference
between accuracies of the three models on arterial (p = 0.25) or venous

sampling (p = 0.71).

As for the Fresenius implementation of the Covariates Model, there was further
exploration of the relationship between increasing time from a plasma target
increase and bias for each of the three simulated models. The same linear model
described in Equation 8.3 was used with estimated constants in Table 8.11 and
fits in Figures 8.14 and 8.15.
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Sampling Model Constant Estimate Lower Upper p-value
Arterial Covariates B 7.67 -0.26 15.61 0.058
oy -0.03 -0.05 -0.02 0.000
o 27.12 16.92 37.31 0.000
Marsh B 37.73 28.3 47.15 0.000
Ry -0.06 -0.07 -0.04 0.000
o 30.97 18.86 43.08 0.000
Schnider B -11.09 -19.41 -2.78 0.009
oy 0.04 0.02 0.05 0.000
oy 0.49 -10.2 11.17 0.928
Venous Covariates B -29.19 -36.51 -21.86 0.000
ol 0.00 0.00 0.01 0.398
0y 30.31 21.45 39.17 0.000
Marsh B -12.71 -21.37 -4.06 0.004
Ry -0.01 -0.02 0.00 0.135
oy 36.79 26.31 47.26 0.000
Schnider B -35.16 -43.51 -26.81 0.000
oLy 0.04 0.03 0.05 0.000
oy 12.76 2.66 22.86 0.014

Table 8.11: Estimates for constants in Equation 8.3 for venous and arterial sampling

with upper and lower 95% confidence intervals and associated p-values.

Using arterial sampling, there was a significant negative correlation between the

time since an increase in the target concentration and the performance error for
the Covariates and Marsh Models, (p < 0.0001, r-squared = 0.24 and p < 0.0001,

r-squared = 0.33). The opposite was true for the Schnider Model, where there

was a significant positive correlation (p < 0.0001, r-squared = 0.14).

Using venous sampling the overall model demonstrated statistical significance
for the Covariates and Marsh Models (p < 0.0001, r-squared = 0.14 and p < 0.0001

and r-squared 0.15) but there was no significant relationship between

performance errors and time (oq p = 0.398 and 0.135). There remained a

significant positive correlation for the Schnider Model (p < 0.0001, r-squared =
0.21 and a1 p = 0.000).
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Figure 8.14: Plots of PE for arterial samples against time since an increase in the

target plasma concentration for the Covariates (A), Marsh (B) and Schnider (C)
Models. Linear models are displayed as fit +/- 95% confidence interval. The lighter

shaded area represents 95% confidence interval of model predictions.
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Figure 8.15: Plots of PE for venous samples against time since an increase in the
target plasma concentration for the Covariates (A), Marsh (B) and Schnider (C)
Models. Linear models are displayed as fit +/- 95% confidence interval. The lighter

shaded area represents 95% confidence interval of model predictions.

The difference was calculated between every pair of arterial and venous PEs for
each of the three simulated models. The linear model from Equation 8.4 was
fitted and demonstrated a significant relationship in each of the Covariates (p <
0.0001 and r-squared 0.32), Marsh (p < 0.0001 and r-squared 0.37) and Schnider
Models (p < 0.0001 and r-squared 0.15), (Table 8.12 and Figure 8.16).
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Model Constant Estimate Lower Upper p-value
Covariates B 3.616 3.385 3.847 0.000

o -0.002 -0.002 -0.001 0.000
Marsh B 3.875 3.385 3.847 0.000

o -0.002 -0.002 -0.001 0.000
Schnider B 3.34 3.385 3.847 0.000

a -0.001 -0.002 -0.001 0.000

Table 8.12: Estimates for constants in Equation 8.4 for each of the simulated models

with upper and lower 95% confidence intervals and associated p-values.
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interval. The dashed line represents 95% confidence interval of model predictions.
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8.6 Pharmacodynamic Model Development

8.6.1 Introduction

The Covariates Pharmacokinetic Model was extended to a pharmacokinetic
pharmacodynamic (PKPD) model by calculation of an overall population estimate
for keo. As described in the methods section, this was performed firstly for the
patients who received the correctly specified Fresenius implementation of the
Covariates Model and secondly for all patients using predicted plasma propofol
concentrations simulated by the Covariates Model. The results were presented in
part in September 2016 at the World Congress of Anesthesiologists, Hong
Kong(247).

8.6.2 Fresenius Implementation

Of the 29 patients who were anaesthetised according to the correctly specified
Covariates Model, there were 24 with BIS data available for PKPD model
development. Using the nlmeODE Package it was possible to successfully provide
a population based estimate for keo with or without fixed values for Eyg and Enax.
Table 8.13 provides a summary of the population variable estimates in each of
the three scenarios. Estimates for keo were all similar and ranged from 0.21 to
0.25 min™".
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Model Variable Estimate | Lower | Upper p-value
Fresenius Keo (Min™) 0.25 0.20 0.31 0.00
Eo (BIS) 106 102 110 0.00
Ernax (BIS) 144 0 2.07e+63 [ 0.94
ECso (ug/ml) | 4.39 0.00 | 9.65e+85 | 0.99
v 2.36 0.00 1.19e+07 | 0.91
Fresenius with fixed Ey and Eac | keo (Min™) 0.22 0.18 0.27 0.00
Eo (BIS) 105 101 108 0.00
ECso (ug/ml) | 2.48 2.14 | 2.86 0.00
v 2.80 2.37 3.31 0.00
Fresenius with fixed Eqax Keo (Min™) 0.21 0.18 0.25 0.00
ECso (ng/ml) | 2.83 2.53 3.17 0.00
v 2.33 1.78 3.07 0.00

Table 8.13: Estimates for variables in Equation n for each of the described scenarios

with upper and lower 95% confidence intervals and associated p-values.

8.6.3 Covariates Simulation

There were 33 patients with BIS data available for PKPD model development
using simulated plasma propofol predictions for the Covariates Model. It was
again possible to successfully provide a population based estimate for ke with or
without fixed values for Ey and Eq .. Table 8.14 provides a summary of the
population variable estimates in each of the three scenarios. Estimates for keg
were similar to those calculated using the Fresenius implementation of the
Covariates Model and ranged from 0.22 to 0.27 min™". Figure 8.17 displays the
fits achieved for population (fixed) and individual (random) estimates for keg
without fixed values for Ey and Enax. Figure 8.18 provides a more detailed display

of the fits for a single patient (ID = 137).
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Model Variable Estimate | Lower | Upper | p-value
Covariates Keo (Min™) 0.27 0.23 0.32 0.00
Eo (BIS) 104 102 106 0.00
Emax (BIS) 124 96 160 0.00
ECso (ug/ml) | 4.13 2.50 6.82 0.00
y 2.56 1.77 3.70 0.00
Covariates with fixed Enx Keo (Min™) 0.24 0.22 0.27 [0.00
Eo (BIS) 104 101 107 0.00
ECso (ug/ml) | 2.77 2.53 3.04 0.00
y 2.21 1.94 2.53 0.00
Covariates with fixed Eg and Eax | Keg (Min™) 0.22 0.20 0.25 0.00
ECso (ng/ml) | 3.05 2.81 3.30 0.00
2.40 1.89 3.05 0.00

Y

Table 8.14: Estimates for variables in Equation n for each of the described scenarios

with upper and lower 95% confidence intervals and associated p-values.
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Figure 8.17 (preceding page): Fixed (red) and random (blue) nlmeODE fits for all

patients with suitable BIS data. Model fits are plotted over the measured BIS values

for each patient.
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Figure 8.18: Upper panel shows fixed (red) and random (blue) nlmeODE fits for an

[Fropofal] (mafml)

example patient (137). Model fits are plotted over the measured BIS values for each
patient. Lower panel shows the associated Covariates Model predictions for plasma

propofol concentration.
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9 Discussion and Conclusions for the VaSCoM Study

9.1 Overview

A discussion of the results from the VaSCoM Study is presented below.
Limitations of the study are addressed and the results are considered in terms of
those of similar pharmacokinetic (PK) and pharmacodynamic (PD) studies of
propofol. There is then a description of work performed as a direct result of the
VaSCoM Study with suggestions for future directions of pharmacokinetic

pharmacodynamic (PKPD) modelling in anaesthesia.

9.2 Rationale for the Study

The relative advantages and disadvantages of the Marsh and Schnider Models for
target controlled infusion (TCI) of propofol have been discussed in the
introductory section. There is currently no overall consensus on which is the
more generally applicable model to a wide range of clinical situations. The
Covariates Model described by White et al represents an update to the Marsh
Model that adjusts for the patient covariates of age and gender(5). The VaSCoM
Study aimed to prospectively validate the PK component of the Covariates
Model, while extending the model to include a PD component by estimating the

rate constant for elimination from the effect site (keo).

9.3 Data Collection

9.3.1 Study Population

All study patients were undergoing anaesthesia to facilitate elective non-cardiac
surgery. In this respect they were representative of the population of patients in
whom TCI of propofol is used in clinical practice. While patients with significant
co-morbidities were excluded, the study was designed to recruit a reasonable
number of patients who were aged over 65 years. This was particularly
important as firstly this age group represents a significant proportion of
anaesthetic caseload(156) and secondly it allowed comparison of model

performance in younger and older age groups.
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9.3.2 Infusion Regime and Blood Sampling

The infusion regime used in the VaSCoM Study was chosen to be representative
of the use of TCl in clinical practice. There were multiple step changes in target
plasma concentration of propofol with patients randomised to either a 2-5-2
ug/ml protocol or 5-2-5 ug/ml protocol. Therefore model performance was
tested at several target plasma concentrations and also while plasma
concentration was both increasing and decreasing. Following a change in target
plasma concentration, there were no further target changes for at least 15
minutes to allow time for PD effects to reach a steady state and thus assist with

modelling of the effect site compartment.

During the study period there was no administration of any other hypnotic drugs
or analgesic drugs. Therefore the risk of other drugs influencing the distribution
and metabolism of propofol or modulating the pharmacodynamic effects of

propofol were minimised.

In previous studies comparing PK models for propofol, both arterial and venous
blood-sampling methods have been used. Some commentators believe that
arterial sampling is of more value in PK modelling on the basis of the ‘front-end
kinetics’ delivering the drug to its sites of action. Front-end kinetics refers to
early drug distribution following intravenous administration and determines the
relationship between the plasma concentration of drug delivered to various
tissue groups and time(190). Three compartment PK models, such as the
Covariates, Marsh and Schnider Models, ignore the complexity of this early phase
and assume instantaneous mixing of drug within the whole of the central (i.e.
plasma) compartment. To effectively model this dynamic phase of drug
disposition, physiology based pharmacokinetic (PBPK) or recirculatory models,
for example the model described by Upton and Ludbrook(191), are required.
PBPK models are far more complex and are yet to be implemented in clinical

practice.

The development of the Covariates Model was based on venous blood samples
taken during anaesthesia delivered using the Marsh Model(5). In the VaSCoM
Study, the decision was made to collect a combination of arterial and venous

samples. This allowed the comparison of the performance errors (PEs) between
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sampling methods and also, as is discussed below, an examination of how

arterial and venous PEs change with time. The study schedule involved sampling
arterial blood at four specified time points during the first 20 minutes of
anaesthesia and sampling venous blood at seven specified time points during the
45 to 60 minutes of the study. In retrospect, a schedule involving paired arterial
and venous sampling for the entire duration of the study would have allowed

better comparison of the two methods.

9.3.3 BIS Monitoring

The most commonly used approach to modelling the effect site concentration
(Ce) of a hypnotic anaesthetic drug in PKPD studies is through processed
electroencephalography (pEEG). On the basis of endorsement by national
guidelines(222) and use in routine clinical practice at the Golden Jubilee
National Hospital, the Bispectral Index (BIS) was selected for the VaSCoM Study.
The disadvantages of using BIS to model C. include the fact that it is a surrogate
marker of clinical effects and, as is the case with all pEEG monitors, there is a
time delay associated with processing the EEG signal(248). There was no attempt

to account for this time delay in the PD modelling study.

Alternative approaches using clinical end-points to estimate the magnitude of
the effect site concentration in PKPD studies have been suggested. For example,
Lim used the loss of eyelash reflex during different propofol administration
regimes to derive a keo of 0.8 min'(249). Use of a fixed end-point means that
the PKPD model will be dependent upon a single clinical observation in each

individual.

More recently Thomson et al have described a novel technique for estimating keo
while assessing clinical effect using visual reaction time (VRT)(250). This is an
attractive technique as it provides a continuous measure of a true clinical end-
point. Unfortunately it is only practical at sedating doses of propofol and cannot

be applied to the recovery phase from deeper anaesthesia.

Using the above approach, Thomson et al tested several keos with the Marsh
Model in effect site controlled TCI to see which provided the highest probability

of achieving stable clinical effect(250). A keo of 0.61 min'was most likely to
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maintain a stable VRT when a fixed C. was programmed. In a subsequent

randomised study, they demonstrated that compared to TCl with the Marsh
Model in plasma controlled mode or effect site controlled mode with a ke of 1.2
min' and the Schnider Model in effect site controlled mode, the Marsh Model
with a ke of 0.6 min" achieved faster induction but with no associated increase

in haemodynamic instability(251).

9.4 Interim Analysis

In the interim analysis performed of data collected in the VaSCoM Study, a
marked deviation from expected PEs was identified in female patients. Further
investigation revealed a significant Covariates Model mis-specification in the
Injectomat TIVA Agilia syringe pump based on a typographical error. Following
discussion with the device manufacturer, the model was adjusted and
subsequent female patients were anaesthetised using the correct specification
of the model. Events like this underline the need for formal testing of PK models
in a clinical context before implementation in Open TCl devices and introduction

to clinical practice.

Interestingly the plasma concentrations predicted for male patients by the TCl
device were not identical to those estimated by the Tivatrainer software (Figure
8.3). However, the deviations were within an acceptable margin of error
following import of infusion rates into an external program along with the

necessary interpolations of missing values.

Outputs for Covariates Model predictions provided by Tivatrainer were compared
to those provided the desolve Package in R. The results suggested that this open
source alternative provides a suitable means of accurately simulating predictions
for multiple PK models from infusion profiles. desolve is more suited to batch
processing than Tivatrainer and should therefore be considered for future

comparative PK studies.
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9.5 Validation Study

9.5.1 Overall Validation

Schuttler et al suggested that a mean variation in measured drug plasma
concentrations of 20 to 30%, with a total bias of 10 to 20% from TCI device
predictions, represented acceptable performance(252). At the time of this
publication, the use of PEs and the summary measures of median performance
error (MDPE) and median absolute performance error (WDAPE) had not yet
become established but similar ranges have been suggested by subsequent
authors(202). Therefore the VaSCoM Study has demonstrated that the Injectomat
TIVA Agilia syringe pump implementation of the Covariates Model achieved an
acceptable level of predictive performance, as assessed by both arterial and
venous sampling, for use in clinical practice. Whether or not there is a sufficient
improvement in performance compared to the Marsh and Schnider Models to
justify a shift towards usage of the Covariates Model shall be discussed with

consideration of the comparison study results below.

9.5.2 Specific Patient Populations

The overall minimal bias of the Covariates Model (MDPE of 9 for arterial samples
and -8 for venous samples) was not consistent across patient subgroups. On both
sampling methods there was a consistent and statistically significant tendency to
under-predict plasma concentrations in females and over-predict in males. This
is a disappointing finding, given that in the development of the Covariates Model
the Marsh Model was updated with a specific aim to account for gender
differences. The Covariates Model was more successful in adjusting for the
covariate of age and there was no significant difference in bias between younger

and older patients.

9.5.3 Relationship Between PE and Time

The importance of the choice of blood sampling site (arterial or venous) and the
influence of timing since dose on measured drug concentrations has undergone
detailed general discussion elsewhere (253, 254). In their comparative study of
PK models for propofol, Coetzee et al noted marked differences in calculated

model performance based on arterial or venous sampling and changes in the
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differences between arterial and venous propofol concentrations over time(202).

Similar results were noted in the VaSCoM Study.

When explored with a linear modelling technique, performance errors based on
arterial samples showed a statistically significant tendency to change from more
positive to more negative with time. There was no significant relationship
observed for venous samples, although PEs tended to change in the opposite
direction. In line with these observations, the difference between arterial and
venous PEs (a-v PE difference) could be fitted with an exponentially decreasing
model over time. From Figure 8.8 it can be suggested that by between 15 and 20
minutes after an increase in target plasma concentration, arterial and venous
PEs will have reached some sort of equilibrium. This has significant implications
for planning blood sampling site and sampling schedule for future PK studies of

TCI of propofol.

9.6 Model Comparison

9.6.1 Overall Comparison

Simulations of the plasma concentrations predicted by the Covariates, Marsh and
Schnider Models were performed using the propofol infusion profile from each
patient. This allowed a comparison of each of the model’s predictions to the
measured blood propofol concentrations. As suggested from the above results,
the model biases were different depending on whether venous or arterial
sampling was used. On arterial sampling, the Covariates Model had the bias
closest to zero, suggesting the least tendency to over or under-predict plasma
concentrations. The opposite was true for venous sampling. Statistical
comparison between models was performed on the basis of inaccuracy (MDAPEs).
This meant that the direction of any bias was irrelevant and models were
compared only on the overall magnitude of PEs. The Marsh Model was
significantly more likely to provide PEs of greater magnitude than either the

Covariates or Schnider Models based on arterial sampling.

9.6.2 Comparison by Specific Patient Population
Statistical comparisons between female and male patients and between younger

and older patients were performed for each model based on bias. The reason for
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this was that when using a PK model clinically it is important to know if it has a

difference in tendency towards over or under-prediction depending on the
covariates of the individual patient. Both of the Covariates and Marsh Models, on
the basis of both arterial and venous sampling, showed a significant tendency
towards more positive bias in male patients. The Schnider Model did not
demonstrate any significant difference in bias between female and male
patients and therefore can be considered to more effectively account for the

covariate of gender than the other models.

In contrast, only the Schnider Model, on the basis of venous sampling, showed a
significant tendency towards increased positive bias in older patients. The Marsh
Model had a non-significant tendency towards more positive bias in older
patients on the basis of arterial sampling. This difference in bias is negligible in
the Covariates Model and supports the rationale for adjustment of the central

compartment volume (V4) and clearance (Cl) for age.

9.6.3 Comparison of Relationships Between PE and Time

In the simulation studies, both of the Covariates and Marsh Models showed a
similar pattern of arterial and venous PE changes over time as described above
for the validation study. The Schnider Model showed distinctly different results.
As assessed by linear modelling, on the basis of both arterial and venous
sampling, PEs showed a significant tendency to become more positive over time.
This is likely related to the fact that the relatively small fixed central
compartment volume specified by the Schnider Model resulted in over-prediction
of plasma concentrations in the early phase after an increase in target

concentration.

Comparisons between model performances were made at early, intermediate
and late sampling periods. During the early sampling period, on the basis of both
arterial and venous samples, the Marsh Model was associated with significantly
increased inaccuracy compared to the other two models. By the late sampling
period this difference is no longer significant and indeed the Schnider Model is

trending towards increased inaccuracy.
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For all three PK models, the relationship between a-v PE difference and time

can be fitted with an exponentially decreasing model. The a-v PE difference is
relatively smaller for the Schnider Model in the early phases because the model

tends to over-predict both arterial and venous blood concentrations.

All of the above results need consideration when using any of the above models
in clinical practice. The anaesthetist must be aware of how the bias of the
selected model will change with time and be prepared to adjust target plasma

or effect site concentrations based on this knowledge.

9.7 Pharmacodynamic Model

The VaSCoM Study has provided a range of estimates for the appropriate k¢ to
use with the Covariates Model using an adaptation of the parametric approach.
In the classic study by Sheiner et al, they described fitting a PK model for d-
tubocurarine while explaining the time course of the PD effects with the
keo(211). In the current study there was no new PK model fitted to the available
data but there was simultaneous validation of the predictions made by the

Covariates Model.

Depending on whether the analysis was restricted to patients who had received
the correctly specified Covariates Model or performed in all patients with
simulated plasma propofol concentrations predicted by the Covariates Model,
the range of keo estimations were 0.21 to 0.25 min™' and 0.22 to 0.27 min”
respectively. There was minimal effect in restricting the allowed BIS values for
Eo (baseline value with no drug present) and Enax (maximum change from
baseline). Indeed all estimates were around the value of 0.26 min™' that was
originally implemented with the Marsh Model in the Diprifusor™. This is
reassuring given that the non-linear mixed effect modelling (NONMEM) was not
performed using the standard NONMEM® software but instead the nlmeODE
Package in R. Further reassurance comes from Figures 8.17 and 8.18 that show
the fixed and random effects models provide good fits to the available BIS data.
The nlmeODE Package therefore provides a realistic alternative to NONMEM® for

PKPD modelling that avoids the need to purchase proprietary software.
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9.8 Results in the Context of Similar Studies

9.8.1 PK Model Comparison

There are only two prior studies that have compared performance of the
Covariates Model to that of Marsh and Schnider Models (203, 205). The first of
these studies used data from nine patients who had received a propofol infusion
and the second used data from 42 patients undergoing surgery with TCI of

propofol via the Diprifusor™.

In terms of assessing the performance of the Covariates Model, the VaSCoM
Study has several theoretical advantages over the previous studies. To begin
with, the VaSCoM Study is the first to provide a new PK dataset and validated
the Covariates Model by directly testing it with a demanding schedule of
increasing and decreasing target plasma concentrations. Patients recruited to
the VaSCoM Study received no pre-medication and during the study period,
anaesthesia was provided only by TCI of propofol. In the two prior studies,
patients were routinely pre-medicated and received multiple other drugs that

could potentially affect the PK profile of propofol.

Despite the technical differences between the studies, there are important
similarities in the results. In common with both the infusion and TCI studies
above, the VaSCoM Study highlighted the favourable overall performance of the
Covariates Model as assessed by MDAPE compared to the Marsh Model. As was
demonstrated in the previous TCl study, the tendency of the Marsh Model to
under-predict in males relative to females remained present (albeit to a lesser
degree) in the Covariates Model despite the adjustments made to the model on

the basis of gender.

The VaSCoM Study confirmed the observation of both earlier studies that the
Schnider Model tends to over-predict in the induction phases and under-predict
in the later phases of anaesthesia. Indeed the VaSCoM Study also agreed with
the finding of the previous TCl study that the bias of all three models did not
remain constant across increasing, stable or decreasing target plasma

concentrations.
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In recognition that all of the published PK models for propofol have been derived

from quite distinct patient or volunteer populations, Eleveld et al attempted to
derive a general purpose PK model with robust performance across multiple
patient populations(255). They used PK data from 21 previous studies, obtained
either from the Open TCI Initiative or through personal communication with
authors. The Open TCI Initiative provides a forum for the discussion of issues
related to PKPD modelling and a platform for the sharing of open source code
and data for model development(256). A comment on the importance of this

type of initiative is included in the concluding remarks of this thesis.

The final PK model constructed by Eleveld et al could theoretically be used to
deliver propofol TCI in patient groups ranging from neonates to the elderly and
from normal to high to body mass index (BMI). To remain applicable across such
a diverse population, the model was necessarily complex and accounted for the
patient covariates of gender, age and weight in a scaled manner. The model also
distinguished between individuals depending on whether they were patients or
healthy volunteers. Despite the complexity, and assessing predictive
performance in the same population it was derived from, the Eleveld model
actually showed only modest improvement in inaccuracy in an adult population

compared to the Covariates Model.

9.8.2 PD Model Development

As stated above, the range of ke estimates calculated in the VaSCoM Study are
very similar to the k¢ implemented with the Marsh Model in the Diprifusor™.
Furthermore, the range is also similar to the ke of 0.2 min™ calculated by Billard
et al using BIS to monitor drug effect during increasing and decreasing plasma

concentrations of propofol(216).

Studies using different methodology to calculate ke have provided markedly
different estimates. For example in the study by Thomson et al outlined above
the ke was faster than calculated in the VaSCoM Study. The Thomson study has
the strength of having used a clinical measure of drug effect. However, in terms
of general applicability, the VaSCoM Study monitored drug effect at a wider
range of predicted effect site concentrations and also studied the decline in

drug effect with decreasing concentrations. Only patients between the ages of
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21 and 65 years were recruited to the Thomson study and therefore the

applicability of the ke to an older population cannot be assumed(250).

Minto et al advocated a ‘time to peak effect site concentration’ (tpeak) approach
to estimating keo(155) and Struys et al used the technique to estimate an
‘adjusted ke’ for the Marsh Model of 1.2 min™'(217). By definition the tpeak
approach only accounts for the pharmacodynamics relating to onset of drug
effect and therefore is unlikely to provide as full a description of PD behaviour

as the more detailed approach adopted in the VaSCoM Study.

Inter-individual variation of pharmacokinetics and pharmacodynamics means
that a single ke value will not accurately predict effect site compartment
concentrations in all patients. It remains the responsibility of the anaesthetist to

monitor the clinical effects of target C, or Ce and adjust infusions appropriately.

9.9 Related and Future Work

9.9.1 Introduction

In similar with the BioTBI Study, the high-resolution data collected as part of the
VaSCoM Study have become a valuable research resource. Examples of recent
and ongoing projects that are using the data in PKPD analysis are provided

below.

9.9.2 Non-Parametric Estimation of Ke0

To confirm the parametric ke estimated in the VaSCoM Study, the arterial blood
propofol concentrations and BIS profiles were used to estimate a non-parametric
keo(257). The overall population estimate was 0.27 and thus within the range
estimated in the VaSCoM Study.

9.9.3 Unique Modelling Approaches to PKPD

Physiology based pharmacokinetic models provide an alternative to
compartmental PK models by attempting to incorporate existing knowledge of
physiological behaviour. The opposite of this approach is a purely data driven or

‘machine learning’ system (Figure 1.1). Data from the VaSCoM Study have been
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used in an input-output non-linear dynamical system to model pharmacodynamic

behaviour of multiple physiological effects in individual patients(258). The need
to consider multiple effect site compartments was acknowledged in early work
by Fuseau and Sheiner(213) and the delay between hypnotic and haemodynamic
effects of propofol has previously been explored(217, 259). Attempts to apply
input-output non-linear dynamical systems beyond the individual patient level

are currently underway.

9.9.4 The Future of PKPD Modelling in Anaesthesia

The Food and Drug Administration (FDA) has never approved the use of TCI
devices to deliver anaesthesia in the United States of America. A recent series of
editorials in Anesthesia and Analgesia detailed the history, technology and
safety of TCl and concluded with a review of the potential pathways to FDA
approval(184, 260-262). Licensing of TCl in the United States would undoubtedly
lead to a substantial rise in usage and further increase the demand for more

refined and generally applicable PKPD models.

One approach to this challenge, as demonstrated in the Eleveld study above, is
to use bigger datasets with more patients, to develop increasingly complex
compartmental models. Alternative modelling approaches may include the
adaptation of PBPK models or machine learning models for clinical practice. A
final methodology that is likely to influence the future of PKPD modelling in
anaesthesia is the concept of ‘feedback control’ (263). Closed-loop TCI for
hypnotic drugs in anaesthesia would involve using the PK models as the starting
point for drug delivery and adapting the infusion rate based on some observation
of the system. The observations may be pharmacodynamic, for example a pEEG
measure of hypnosis, or pharmacokinetic, for example bed-side measurement of
blood propofol concentration(264). A suitable measurement device has been
evaluated in comparison to reference techniques(265, 266) but it is as yet
unclear if it will become adopted into clinical practice. Similarly, for any closed-
loop control systems to be introduced into routine use in anaesthesia there will

need to be extensive assessment of their safety and value.
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9.10 Conclusions

The VaSCoM Study has validated the Covariates Model for target controlled
infusion of propofol and confirmed that it improves inaccuracy compared to the
Marsh Model. There remains a difference in bias between female and male
patients such that anaesthetists would need to respect this if using the model in
clinical practice. A keo in the range of 0.21 to 0.27 min™" has been estimated for

implementation with the Covariates Model.
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10 Overall Conclusions to the Thesis

The management of patients with traumatic brain injury (TBI) on the
neurological intensive care unit (NICU) and the use of target controlled infusions
(TCl) in the operating theatre provide two excellent examples of how
mathematical modelling can enhance knowledge and influence the practice of
anaesthesia and critical care. As has been demonstrated with the BioTBI and
VaSCoM Studies the modelling approaches and techniques can be adapted to suit
the particular clinical questions. There is however one underlying theme that
can unite all modelling studies of critically ill patients. An increasing quantity of
high-frequency physiological data are collected from these patients with a
correspondingly high financial and resource cost. It is therefore imperative that

these data are appropriately used.

To facilitate the most effective exploitation of physiological data, networks of
clinicians and scientists must share the data and the associated analytic
techniques. Examples of such networks have already been discussed in terms of
TBI (BrainlT(96), CENTER-TBI(97), IMPACT(142)) and TCI (Open TCI
Initiative(256)). The most well established repository for sharing data and code
in the critical care domain is the Medical Information Mart for Intensive Care
(MIMIC) Database (267, 268). Now onto its third iteration it is an openly available
dataset comprising de-identified health data associated with around 40,000
patients. Collaboration such as this represents one of the keys to leveraging

technology to improve the care of critically ill patients.

In support of the above theme, all of the analyses in this thesis have been
performed using the open source statistical programming environment ‘R’ (7).
Ultimately the code will be made available via BrainIT for the BioTBI Study and
via the Open TClI Initiative for the VaSCoM Study.
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