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Abstract 

The production of high premium fuel is an issue of priority to every refinery. The 

trans-hydrogenation process was devised to convert two low value refinery 

cracked products to premium products; the conversion processes involve the 

combination of dehydrogenation and hydrogenation reactions as a single step 

process. The low value refinery products (i.e. alkanes and alkynes or alkadienes) 

have been converted to alkenes (olefins) by trans-hydrogenation using catalysts 

system based on VOx, CrOx and Pt all supported on alumina. Although trans-

hydrogenation has been disclosed in many patents over decades, only little 

academic literature is available. The success of the process over various 

catalysts has been claimed in many of these patents.  However, further studies 

are still required to ascertain the actual reaction mechanism, mitigating carbon 

deposition and catalyst deactivation, and the role of different catalysts to 

optimize the reaction desired products. The current research work evaluates the 

potential of CrOx/Al2O3, K-CrOx/Al2O3, Pt/Al2O3 and K-Pt/Al2O3 to investigate the 

trans-hydrogenation of the pentane (P)/1-hexyne (1HY) system, the pentane 

(P)/1,5-hexadiene (1,5-HD) system and the pentane (P)/2,4-Hexadiene (2,4-HD) 

system over a range temperatures (523-773 K).  

The fresh catalysts were first characterised by N2 adsorption using the BET 

method, X-ray diffraction, Raman spectroscopy, Thermogravimetric analysis, 

Temperature programme oxidation (TPO), Temperature programmed reduction 

(TPR), Electron paramagnetic resonance (EPR), Atomic absorption spectroscopy 

(AAS) and colorimetric analysis. 

The Free energy (∆G) for the reaction of pentane with 1-hexyne, 1,5-hexadiene 

and 2,4-hexadiene shows that trans-hydrogenation is thermodynamically 

favoured at most temperatures for the reaction of pentane with 1-hexyne, 

however this is not always the case when hexadienes are the hydrogen 

acceptors. When 2,4-HD is the acceptor, ∆G is +ve at all the reaction 

temperatures tested. When pentane or hexyne/hexadiene or a 5:1 mixture was 

passed over the catalyst, in the temperature range of 523K -773 K, it was found 

that trans-hydrogenation process had taken place but many of the products are 

alkylated olefinic and alkylated hydrocarbons. Regarding all systems previously 

mentioned above, the ratio of olefin to alkylated olefin products was ~50:50 at 



 
 

iii 
 

773K, however, this ratio was found to vary at other temperatures. The lowest 

ratio of ~10:90 was obtained at 523K. Dissociation of the hydrocarbon reactant 

was also observed leading to production of cracked products such as CH4, C2H4 

and subsequent formation of a carbonaceous overlayer on the catalyst surface. 

This was not the case with the 2,4-hexadiene reactant, the trans-hydrogenation 

is poor, as expected from the free energies. 

The trans-hydrogenation process was shown to improve the conversion of 

pentane when co-fed with the hexyne to ~26% and to ~90% when co-fed with 

1,5HD using the chromia catalyst at 773K, both values are much higher than the 

equilibrium conversion of the pentane dehydrogenation. Higher conversions of 

the pentane were subsequently obtained with other catalysts, but the 

chromia/alumina and K-CrOx/Al2O3 catalyst exhibits greater trans-hydrogenation 

activity. With the 2,4HD acceptor, very low conversions of pentane were 

obtained with all the catalysts: in general conversions lower than when the 

pentane was run alone were obtained. 

The products observed were unique for each catalyst. However, it was observed 

that for each catalyst, only the distribution of the products changed with 

temperature. This also accounted for changes in both the cracking products and 

the carbon laydown on the catalyst. 

The deactivation regeneration cycles shows very similar conversion of both 

reactants. There is a small deactivation observed for the longer time run; 

however these were not very significant. It was observed that some of the major 

products were consumed with time, but are used for the formation of other 

major products. However, this is more prominent with pentane/hexyne run using 

the CrOx/Al2O3 catalyst 

The TGA-TPO analysis of the post reaction catalysts shows desorption of species 

from all catalyst, and analysis of the eluant gas by mass spectrometry (m/e, 44) 

confirms carbon deposition. Traces of other species (i.e H2, CH4, C2H4 and H2O) 

were also observed with some of the catalysts, more especially with the chromia 

catalyst. Evidence for the evolution of CO2 was only observed for 1,5HD and 

2,4HD and the same combustion species were observed for all catalysts. 

However, the 1HY presented different combustion species with the use of the 
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various catalysts. One and three types of carbonaceous species were evolved 

using CrOx/Al2O3 and K-CrOx/Al2O3 respectively. There is reduction to the 

amount of carbon deposition with the trans-hydrogenation process compared to 

when run individually with all the catalysts. Pentane presents very less carbon 

deposition at all temperatures compared to the hexyne/hexadienes or their 

mixed feed. 

 The Raman analysis shows both the D and G bands associated with coke 

depositions observed with the hydrogen acceptors. However, many of the trans-

hydrogenation reactions present predominantly G bands except for a few 

reactions. The formation of the D and G bands is also observed to be related to 

the amount of carbon material deposited on the catalyst.  
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1.0 Introduction 

Background 

The demand and consumption of energy is increasingly becoming a critical factor 

for development, welfare, and social activities & stability [1]. This could be 

linked to the rapid increase in human population and the associated 

development in science and technology, particularly given the emphasis to 

increased production and usage of high performance gasoline engines and 

production of petrochemical allied chemicals. Therefore devising the most 

appropriate method of upgrading and effective isolation of the petroleum 

product is an inevitable issue from both research and policy perspectives.  

The production of olefins has been of major industrial importance since World 

War II using catalysts to yield high octane aviation fuel [2].  Since then the 

petroleum industries have been constantly developing new processes for 

improved olefin production, involving new catalyst formulations and 

modifications to reactor and plant design.  This effort has also been extended to 

accommodate different hydrocarbon feeds in order to maximize production.  

Currently, olefins are produced via number of processes in oil refining industries 

to successfully maximize the production.  For example in the late 1980s, the 

CatofinTM process was designed for the on-demand production of propylene and 

isobutylene using propane and isobutene respectively [3-5]  

Gasoline is a hydrocarbon based fuel obtained from petroleum fraction.  

However its exact chemical composition can be varied by blending with other 

specific hydrocarbons to produce a very high grade fuel depending on the 

demand, applications and environmental constraints.  The major component of 

fuel used in internal combustion engines comprises of mainly straight chain and 

isomers of light and medium alkanes with specific concentrations of aromatics to 

achieve an optimum octane number [6-8].  Environmental problems associated 

with aromatics however have recently resulted in a ban on their usage due to 

health concerns [9, 10].  Even with this restriction, gasoline will remain a 

popular fuel for transportation, combustion engines and industrial applications 

[11, 12] for many years to come.  Therefore devising the most appropriate 
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method of upgrading the octane number is an important issue from both 

research and policy perspectives.  

Olefins are class of hydrocarbons that are unsaturated with a single double bond 

and general chemical formula of CnH2n.  Olefins are regarded as the building 

block of the petrochemical industry due to their relatively high reactivity, 

making the olefin molecule ideal for the conversions into valuable end products 

[13]. 

The global production of olefins is around 400 MT per year generated from one 

billion tons of various hydrocarbon feedstocks, with about 60 % of the global 

feedstock processed within the fluid catalytic cracking unit of oil refineries, 

whilst the other 40 % are processed within the steam cracking of naphtha, steam 

cracking, ethylene plants, and liquefied petroleum gas [14].  Currently this is an 

area of globally active R&D targeted at maximizing production due to worldwide 

high demands. 

The primary purpose of the trans-hydrogenation process historically has been to 

convert low-value cracked hydrocarbons into valued distillate products.  

Although trans-hydrogenation is not a new technology for production of olefins 

there is scant scientific attention toward the invention.  The trans-

hydrogenation of alkanes and alkynes (or alkadienes) into alkenes (olefins) is a 

method of converting two low value chemicals into two high value chemicals.  It 

is well known that hydrocarbon feed stock streams, such as naphtha, LPG, or gas 

oil are cracked in a furnace to produce mixtures of hydrocarbons of varying 

molecular weight [15-20], a typical percentage composition (by weight) is 

presented in Table 1.  The olefin component is generally the most important, 

used for the production of high-octane fuel and polymerization [15, 20].  

Therefore, there is a need to maximize its production as the most valuable 

product of the cracked component.  However inevitably compounds such as 

alkanes and alkynes are also products of cracking and although the alkyne can be 

hydrogenated to the respective alkene, this uses hydrogen.  Similarly the alkane 

can be dehydrogenated but there is then the need for separation.   
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Table 1: typical percentage composition by weight of naphtha cracking products 

 

Component Wt. % Composition 

Hydrogen 1 

Benzene 6 

Methane 16 

Toluene 3 

Ethene 32 

Aromatics 2 

Propene 16 

Fuel oil 4 

C4 hydrocarbons 8 

Others 12 

 

In contrast when both react via catalytic trans-hydrogenation the yield of the 

olefin is increased without the need of hydrogen or separation technology.  The 

two low value products can be mixed and fed into a simple refinery process 

(Figure 1). 

 

Figure 1: Proposed operation unit for Trans-hydrogenation process in a refinery 

Cracking

Trans-

hydrogenation

Reaction

AlkaneAlkyne

Naphtha

C5 - C10

Alkene (Olefin)
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Trans-hydrogenation has been disclosed in a numbers of patents over a period of 

decades [20-25].  However it has only recently been studied in the academic 

literature [26-28].  The trans-hydrogenation process has significance as a safe 

environmentally acceptable technique for up-grading feedstock containing C2-C5 

alkanes and alkynes/alkadienes 

1.1 Dehydrogenation and hydrogenation processes in 
trans-hydrogenation 

1.1.1 Dehydrogenation process 

Alkane dehydrogenation is endothermic (~124 kJ.mol-1) and a significant amount 

of energy is required to break C-H bonds in a molecule.  The equilibrium 

conversion of the process is limited by the reaction temperature and as that 

increases so does conversion [29].  Hence to accommodate the thermodynamic 

limitations typical reaction temperatures are ≥ 823 K: at these temperatures all 

C-H bonds in an alkane have equal chance to react [30-33].  However at such 

high temperatures secondary reactions such as cracking and carbon deposition 

are also favoured, therefore the reaction tends to get less selective as 

temperature and conversion increase.  The equilibrium conversion can also be 

increased by decreasing the pressure and indeed some on-demand 

dehydrogenation processes operate at partial pressure less than 1 atm often with 

the use of a diluent in the alkane feed [34].  Carbon deposition during 

dehydrogenation is a major process problem and limits the time on-stream for 

the catalysts.  Carbon deposition occurs via a series of progressive 

dehydrogenation, condensation, polymerisation and cyclisation processes leading 

eventually to graphitic precursors such as pyrene, perylene and fluoranthene.  

To cope with such carbon laydown all current processes operate cyclically to 

regenerate deactivated catalysts and use the heat liberated to offset the 

reaction endotherm. 

The dehydrogenation equilibrium of alkanes to alkenes shows that high 

molecular alkane need lower temperature than the low molecular alkane for 

dehydrogenation [30]. However, because of the equal chance of C-H bond 

breakage in the alkane molecule chain, if two neighbouring C-H are split a 

double bond is formed converting alkane to alkene. However, in another 
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scenario if the splitting took place in non-neighbouring carbon or other reaction 

conditions, possible other compounds different from alkene could be formed. 

These compounds are formed due to process as listed below: 

 Dehydrocyclization 

 Aromatization 

 Isomerisation 

 Oligomerization to form high molecular weight hydrocarbon 

 Hydrogen gas and coke 

These products could be formed depending on the two C-H splitting and number 

of carbon atom of the alkane reactant (Figure 2).  

 

Figure 2: Likely products during alkane dehydrogenation 

 

According to Le Chatelier's principle which shows that higher conversion is 

obtained by either high temperature or low pressure as expressed below: 

𝑋𝑒 
2 =

𝐾𝑝

𝐾𝑝 + 𝑃
 

Where: 
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Xe = equilibrium conversion  

P = total absolute pressure 

Kp = dehydrogenation constant 

Kp can be calculated from Gibb’s free energy from sources of thermodynamic 

data. 

Bhasin et al., [2] illustrated the effect of low pressure in dehydrogenation 

reaction to investigate the  equilibrium conversion of propane.  The 

investigations were performed using 1 and 0.23 atmospheric pressure. The 

results are presented in figure 3, it is observed that higher equilibrium 

conversions are obtained at the low pressure 0.23 atm abs reaction (Figure 3-1) 

compares to the higher pressure 1 atm abs reaction  (Figure 3-2).     

  

 

1)                                                        2)            

Figure 3: Propane dehydrogenation equilibrium at 1) 0.23 atm abs. pressure & 2) 1.00 atm 
abs [35] 

                           

In alkane dehydrogenation it is reported that the equilibrium constant increases 

with increasing carbon number. Figure 4 adapted from Imai, et al.,[2] shows the 

trend in the equilibrium constant with increase in carbon number for 

dehydrogenation of alkane to alkene and hydrogen. Thus, this could show that 

high molecular alkane need lower temperature that the lower alkane 

dehydrogenation. 
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Figure 4: Equilibrium constants for n-paraffin dehydrogenation at 500 ºC [2] 

 

However, based on the equilibrium constant, a temperature plot could be 

formed and used to determine a certain required equilibrium conversion. This 

shows the temperature dependence for the dehydrogenation of lighter to 

heavier alkane, lighter alkane requiring much higher temperature as illustrated 

by Bahsin et al., as presented in Figure 5. 

 

Figure 5: temperature dependency on paraffin conversion [2] 

 

1.1.2 Hydrogenation processes 

Alkyne hydrogenation in contrast is exothermic and produces a significant 

amount heat.  Alkynes are thermodynamically less stable than the respective 

alkene due to the nature of their bonding and strongly adsorb on catalyst 

surfaces.  Therefore, in catalytic hydrogenation there are significant numbers of 

hydrogenation catalysts effective in promoting the addition of hydrogen however 
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few are selective in producing the desired alkene rather than the alkane.  

Palladium is the metal of choice for selective hydrogenation of alkynes but even 

then palladium catalysts may be partially deactivated, as in Lindlar’s catalyst, or 

poisoned, as in the addition of carbon monoxide in ethyne hydrogenation, to 

limit the production of the alkane.  Although alkene hydrogenation is inhibited 

by the presence of alkynes, in the absence of the alkyne research indicates that 

the alkene will react more rapidly [36].  Research has also shown that in a 

competitive environment the alkyne can influence the reactivity of other alkynes 

and alkenes [37, 38]. However, all of these studies have been performed at low 

temperatures (typically < 373 K), whereas in trans-hydrogenation the reaction 

will take place at moderate to high temperatures (> 673 K).  Although this has 

little effect on the thermodynamics of hydrogenation, it does have a significant 

effect on the potential for side reactions due to the high reactivity of alkynes or 

alkadienes. 

Although, alkyne and alkene show different behaviours toward catalytic 

hydrogenation research indicates that alkenes react more rapidly[36]. 

Therefore, hydrogenation is done carefully because at a given point the 

produced alkene will rapidly hydrogenate to alkane. This can be explained by 

stages involved in hydrogenation reaction of alkynes as outlined below:  

CnH2n-2(ads) + 2H (ads)    CnH2n (ads)   

CnH2n (ads)     CnH2n (g)   

This can further be hydrogenated to corresponding alkane  

CnH2n (ads) + 2H (ads)  CnH2n+2(ads) 

CnH2n+2(ads)    CnH2n+2(g) 

The alkyne is first adsorbed on the catalyst surface before hydrogen can be 

added to the multiple bonds. A formation of the stable complex with the 

catalyst metal is normally achieved.  
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The reaction may encounter some problems as reported by [39, 40] in the 

hydrogenation of acetylenic bonds using platinum group metal catalyst. The 

summarized problems are outlined below: 

1. Selective production of desire intermediates could be uncontrollable 

2. Hydrogenation may be accompanied by hydropolymerization leading to 

higher hydrocarbons 

1.1.3 Trans-hydrogenation processes 

Trans-hydrogenation involves the dehydrogenation of an alkane to produce an 

alkene (olefin) and hydrogen and hydrogenation of an alkyne or alkadiene with 

the hydrogen generated from the dehydrogenation step to produce another 

alkene (Figure 6). 

 

Figure 6: General concept of a trans-hydrogenation process  

 

The dehydrogenation and hydrogenation processes should ideally occur 

simultaneously during the trans-hydrogenation reaction with the aim of 

obtaining two olefinic molecules. Dehydrogenation proceeds by the removal of 

hydrogen from the alkane in the feed using an appropriate catalyst to form the 

olefin and hydrogen.  The hydrogenation reaction involves the addition of 
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absorbed hydrogen on the catalyst surface to the alkyne or alkadiene 

hydrocarbon in the feed and producing the corresponding olefin.  A generic 

simplified mechanism is outlined below 

CnH2n+2(g)      CnH2n+1(ads)  +  H(ads) 

CnH2n+1(ads)       CnH2n(g)  +  H(ads) 

CnH2n-2(g)   +   H(ads)      CnH2n-1(ads) 

CnH2n-1(ads)   +  H(ads)      CnH2n(g)  

Overall:  CnH2n-2  +  CnH2n+2      2CnH2n 

By coupling the endothermic dehydrogenation process with the exothermic 

hydrogenation process it is possible to generate a process where the reaction 

conditions may be adjusted in order to produce a reaction that is net 

endothermic, net exothermic, or thermally stable, which can simplify and 

reduce the cost involved in the process [25].  For example with propane and 

propyne, the dehydrogenation reaction is significantly endothermic: 

C3H8      C3H6 + H2     (∆H = +124 kJ/mol) 

However the hydrogenation reaction is even more significantly exothermic: 

C3H4 + H2        C3H6      (∆H = -157 kJ/mol) 

Taken together results in an overall exothermic process 

C3H8   + C3H4        2C3H6 (∆H = -33 kJ/mol) 

However in many instances the ratio of alkane to alkyne will not be 1:1 but an 

overall heat balance can be deduced from the enthalpy of reactions and the 

number of moles of the converted reactant. This can be represented by: 

𝑛ℎ𝑦𝑑𝑟𝑜𝑔 𝑥 ∆𝐻ℎ𝑦𝑑𝑟𝑜𝑔

𝑛𝑑𝑒ℎ𝑦𝑑𝑟𝑜𝑔 𝑥 ∆𝐻𝑑𝑒ℎ𝑦𝑑𝑟𝑜𝑔
 𝑥 100 
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So for example, if 30 moles and 15 moles of propane and propyne respectively 

are converted in a trans-hydrogenation reaction, the hydrogenation reaction 

step would provide about 63 % of the heat required for the dehydrogenation 

reaction step. 

1.2 Catalytic processes for trans-hydrogenation 

Trans-hydrogenation is carried out using any catalyst system that will enable the 

dehydrogenation of the H-donor for the reaction conditions used during the 

process. This also depends on the nature of both the H-donor/acceptor reactants 

used in the process. 

1.2.1 Trans-hydrogenation catalysts 

As outlined above catalysts used in trans-hydrogenation reactions are typically 

based on dehydrogenation catalysts [21].  The logic that underlies this is the 

evidence that dehydrogenation is the more difficult reaction.  Although alkanes 

can exchange hydrogen at low temperatures on a catalyst surface [31, 32, 41] 

indicating that breaking the first C-H bond in an alkane is not necessarily 

difficult, removal of the second hydrogen is rate determining and 

thermodynamic limits ensure that high temperatures are needed [42, 43].  In 

contrast the addition of hydrogen to an alkyne or alkadiene is 

thermodynamically favoured at most temperatures. 

Although many metals and oxides are claimed in the patent examples cited 

above only two catalytically active materials are used with any regularity, these 

are Pt and chromia.  However it is interesting to note that the catalyst rarely is 

mentioned in the claims of the patents as usually they are standard commercial 

catalysts used in dehydrogenation processes.  Hence the platinum catalyst is 

typically modified with tin, while the chromia is modified with potassium.  The 

role of both these modifiers is to reduce carbon deposition and more general by-

product formation from the dehydrogenation process.  Vanadia has also been 

used in the academic literature [28].   
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1.2.1.1 Catalyst systems based on chromia catalysts 

Chromia catalysts have been subject to extensive characterisation using a 

variety of techniques such as electron spin resonance (ESR) [44, 45], infrared 

spectroscopy (IR) [46, 47], diffuse reflectance spectroscopy (DRS) [48, 49], 

photon electron spectroscopy (XPS) [50, 51], X-ray diffraction(XRD) [52-54], 

thermo-gravimetric analysis (TGA) [53, 54] and Raman spectroscopy [55, 56].  

Although in the as-prepared catalyst chromia is often in a 6+ oxidation state, the 

active phase for dehydrogenation and hydrogenation is thought to be Cr3+ in the 

form of a polychromate following reduction either by hydrogen or the reactants.  

Table 2: Surface characterization of Cr/Al2O3 catalyst as determine by several 
characterization techniques 

 

Cr oxide 

Loading 

(wt% Cr) 

XPS DRS RS ESR XRD 

0 - 1 Cr6+ Chromate Chromate; 

Polychromate 

Traces of 

Cr5+ 

No Cr 

oxide 

phase 

1-7 Cr6+ ; Cr3+ Chromate; 

Polychromate; 

Traces of Cr3+ 

Chromate; 

polychromate 

 Traces of 

Cr5+ ; Cr6+ 

No Cr 

oxide 

phase 

>7 Cr6+ ; Cr3+ Chromate 

Polychromate 

Traces of Cr3+ 

Chromate; 

Polychromate; 

Cr2O3 

Traces of 

Cr5+ 

α-Cr2O3 

XPS= X-ray proton spectroscopy, DRS= Diffuse reflectance spectroscopy, RS= Raman spectroscopy, ESR= Electron 
spin resonance, XRD= X-ray diffraction  

Wang and Hall, 1983 [57] first performed an in situ Raman study on supported 

rhenium oxide and subsequently several other Raman studies have been 

reported[58]. Ideally, in situ Raman Spectroscopy is suitable and presents no 

inherent limitation on temperature, pressure and reaction gases. However, 

sources of confusion as a result of hydration/dehydration have hampered 

progress in the understanding of the supported metal oxide catalyst. Many 

studies on the supported metal oxide [58-60], show drastic changes in the 

spectra upon dehydration. For example it is observed that a symmetric 
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stretching frequency of the metal oxygen bonds shifts upward except for 

vanadium oxide system which has been observed recently [55, 61]. Thus, same 

surface metal oxide species can be observed under hydration and dehydration 

conditions. 

One of the earliest patents relating to trans-hydrogenation was reported in 1985 

by Parris et al., [24].  In this patent the reaction between ethylene and 

isobutane was exemplified as a way of increasing isobutene yield at lower 

temperatures as part of an MTBE process.  Typical dehydrogenation catalysts 

such as chromia/alumina were used.  Here the transhydrogenation reaction was 

used to produce a more valuable olefin at the expense of a cheaper one.  

Reaction conditions were typically ~773 K and atmospheric pressure although 

temperatures between 673 and 773 K and pressures between 1 and 10 bar were 

claimed.  In one example with an inlet ratio of 1:2 ethylene:isobutene at 773 K 

and 1 bar, an outlet of 25 % ethane and 21 % isobutene was obtained. 

In another patent relating to trans-hydrogenation, granted in 1994 [62], the 

reaction of propane 80% v/v and 1,3-butadiene 20% v/v was exemplified to 

demonstrate the effectiveness of trans-hydrogenation for promoting the 

production of propene.  A typical dehydrogenation catalyst CrOx/alumina was 

used in the process.  The reaction conditions were typically 823 K temperature 

at 1 atm pressure and a WHSV of 5.4 hr-1.  About 15 % by volume of propene was 

produced after ~2 h into the reaction together with other valuable 

hydrocarbons.  The amount of carbon deposit formed during the reaction, which 

resulted in catalyst deactivation, was also determined.  Therefore, catalyst 

regeneration was performed online using an air stream to remove the deposited 

carbon.  The catalyst was then reduced in flow of hydrogen at same reaction 

temperature (823 K) and the reaction repeated again.  

There is only a very limited academic literature on trans-hydrogenation 

reactions.  However in a series of papers Jackson et al., studied the trans-

hydrogenation of propane and propyne over a chromia/alumina catalyst in a 1:1 

ratio to generate two alkenes [27].  The catalyst was activated by reducing in 

hydrogen before use and the reaction temperature varied between 773 and 873 

K.  The reactants were first passed over the catalyst individually to determine 

their reactivity in the absence of the other reactant.  When propyne was passed 
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over the catalyst all the propyne reacted and further reduced the catalyst.  

There was also a decrease in carbon deposition with increasing reaction 

temperature.  This was a surprising result, which was due to the way that 

propyne fragmented at high temperature forming a methyl fragment which was 

hydrogenated to methane faster as the temperature increased leaving less 

carbon deposit on the catalyst surface [27].  When propane was passed over the 

catalyst, almost no dehydrogenation took place at the lowest temperature (773 

K) in keeping with the thermodynamic limitations.  The dehydrogenation of 

propane increased with increasing temperature but so did by-product reactions.  

Isotopic studies revealed that each propane fragmented to produce a species 

(CH or CH2) that had an equal chance of hydrogenation to methane.  However in 

contrast, with propyne the extent of carbon deposition on the catalyst surface 

increased with increasing temperature [26]. 

Almost no trans-hydrogenation occurred when both the reactants were passed 

over the catalyst at lowest temperature of 773 K, however by 823 K trans-

hydrogenation was clearly observed.  Using isotopic labels to elucidate the 

mechanism, the trans-hydrogenation reaction was shown to produce propene 

above the equilibrium value expected from propane dehydrogenation at 823 K.  

By 873 K the conversion of propane was about 80 % however the yield of propene 

was low, which was suggested to be due to secondary reaction of the propene 

forming methane and carbon deposits.  These results suggested that at high 

temperatures a short residence time was required. 

1.2.1.2 Catalyst systems based on platinum catalysts 

In a patent by Gough et al. [22], trans-hydrogenation was disclosed for the 

processing of hydrocarbons from naphtha cracking feedstock.  Processed cracked 

products from the cracking unit were subjected to a trans-hydrogenation process 

using streams of poly-unsaturated hydrocarbons as the hydrogen acceptor and 

that of paraffins as the hydrogen donors.  Reaction between a stream containing 

butadiene and propane was exemplified in the patent.  A Pt-Sn/Alumina catalyst 

was used for the process and the reaction conditions were typically in the 773-

873 K temperature range and 1 atm pressure.  There was no clear information to 

the amount of the reactant fed during the process but a ratio around 10:1 
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paraffin to poly-unsaturated hydrocarbon was emphasised with the paraffin 

concentration always higher than the concentration of the hydrogen acceptor. 

In another patent showing trans-hydrogenation [20], a non-acidic intermediate 

pore size zeolite (ZSM-5) with a Pt active phase and a Sn modifier was used.  In 

one example from the patent, a Sn free Pt-high silica ZSM-5 catalyst was used to 

dehydrogenate isobutane at 550 oC.  The reaction was initially conducted with 

equimolar volume of helium which was subsequently replaced with ethene.  

When the ethene was added the isobutene yield fell as the ethene inhibited the 

alkane adsorption.  To mitigate against this inhibition tin was added to the 

catalyst and a subsequent example reports trans-hydrogenation of propene with 

isobutene.  The patent also reports a split bed system where the top bed has a 

single feed of alkane and is used for dehydrogenation, while just above the 

bottom bed the alkene is introduced so that the bottom bed has a feed of 

alkenes and hydrogen.   

In another patent by Turner [25], trans-hydrogenation was disclosed for the 

production of isobutene to be subsequently used in the in the production of 

methyl tertiary butyl ether (MTBE).  The catalyst employed was 1 % Pt-

Sn/alumina with a weight ratio of 1:1 Pt:Sn.  The trans-hydrogenation conditions 

employed were typically 773 K, 1 atm pressure and a WHSV of 5.5 hr-1.  The 

catalyst was first pre-treated in a flow of hydrogen to be fully reduced before 

commencement of the reaction.  An increase yield in the olefinic C4 stream was 

achieved with about 2.7 % and 98.8 % conversion of propane and butadiene 

respectively. 

In trans-hydrogenation, because hydrogen is not co-fed in the process, there is a 

high tendency for the formation of bulk coke deposit.  This happens especially 

with amorphous catalyst supports such as alumina, which have acid sites that 

promote cracking and alkylation. The use of metal doping and non-acidic 

catalyst supports are reportedly used to suppressed the effects.  A diluent such 

as steam may also be added, which leads to coke suppression and can serve to 

activate the catalyst.  Methane can also be used as a diluent [26].  Coke 

deposition is detrimental to the catalyst and leads to catalyst deactivation, 

however regeneration processes are often used to remove the deposit and 

regenerate the catalyst.  In patent number WO 1994010264 [22] the 
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regeneration of a Pt/Sn-ZSM-5 catalyst used for trans-hydrogenation was 

performed in a flow of hydrogen at 60 psi pressure and 823 K temperature for 4-

24 hr.  In another patent [25] regeneration of the catalyst was reported to be 

have been conducted in a stream of pre-heated oxygen-containing gas like air.  

Regeneration of the catalyst burned off the deposited carbon on the catalyst 

surface reactivating the catalysts and generating heat. 

The reaction stream may comprise of a mixture of reactants instead of same 

carbon number reactant. For instance, the hydrogen acceptor could be 

admixture of alkadienes and alkynes of different carbon number, equally the 

hydrogen donor stream could also be admixture of different carbon number 

atom alkanes. 

1.2.1.3 Catalyst systems based on vanadia catalyst 

In a recent study by Wigzell et al. [28] a trans-hydrogenation reaction was 

performed between propyne and butane over a 1 % vanadia/θ-alumina catalyst 

at 873 K. Propyne and butane were co-fed, which resulted in an increase 

conversion of propyne to propene compared to when it was fed singly over the 

catalyst.  The trans-hydrogenation reaction was observed to deliver a 72 % 

increase in propene yield, while all the butane reacted was converted to butene 

isomers. 

1.2.2 Role of dopants 

Trans-hydrogenation reactions over potassium doped chromia catalyst [27] have 

been reported.  However, the dopant has little direct effect on the trans-

hydrogenation process rather it is used to remove and/or neutralize acid sites on 

a support such as alumina reducing catalyst deactivation [63].  It does not 

generally change the reaction mechanism [63, 64].  Use of dopants to enhance 

trans-hydrogenation reactions has also been disclosed in patents.  Gough et al. 

[62] reported that a chromia admixture with a platinum group metal and doped 

with alkali on alumina effected good trans-hydrogenation activity.  The doped 

alkali metal was either potassium or caesium (Cr/Pt-K-Al2O3 or Cr/Pt-Cs-Al2O3).  

Catalyst modification using dopants has also been disclosed in other patents.[20, 

25, 64] 
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The effect of tin on a platinum dehydrogenation catalyst is much more 

significant as it forms an alloy changing the electronic properties of the platinum 

in such a way as to enhance dehydrogenation activity [65].  The Sn not only 

modifies the electronic properties of Pt but also reduces the carbon deposition 

on the platinum.  However the alloy is not stable during regeneration with the 

Sn segregating from the Pt/Sn alloy during coke burning.  The alloy reforms 

during hydrogen reduction but with multiple reaction/regeneration/reduction 

cycles there is a slow Sn enrichment of the alloy, resulting in a permanent 

decrease in the activity 

1.2.3 Catalyst deactivation/regeneration and stability 

Catalyst deactivation is responsible for loss of activity and/or selectivity; as a 

result, the catalyst will have a limited life time. However, the life of a catalyst 

depends on the reaction parameters upon which the catalyst is used and 

therefore, some catalyst lose their activity quickly within short period of time 

while others retained their activity for years. A long life time activity catalyst is 

always a desired due to economic viability and catalyst deactivation prevention 

cannot be over emphasised whilst numerous effort are made to avoid it. 

However, catalyst deactivation cannot be completely stopped but slow 

deactivation of catalyst has always been a priority to increase long term activity. 

The desire activity of a catalyst has be described by Hagen, 2015 [66] as 

presented in Figure 7 

 

Figure 7: Deactivation behaviour of catalyst 
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There are four main and common causes of catalyst deactivation as reported by 

Hagen, 2015 as listed below: 

i. Poisoning of catalyst (H2S, Pb, Hg, S, & P) 

ii. Deposition on catalyst (coke formation) 

iii. Thermal process and sintering (loss of active surface area) 

iv. Loss of activity by evaporation active component 

These processes are explained further by the used of schematic diagram 

presented in Figure 8 

 

Figure 8: Mechanism of catalyst deactivation (M= metal) 

 

In a trans-hydrogenation process, catalyst coking is one of the major forms of 

catalyst deactivation. Both the dehydrogenation and hydrogenation reaction 

contribute to the coke formation.  The dehydrogenation of lighter alkanes is 

performed at higher temperature of above 873 K while that of higher alkanes 

require temperature of about 673-773 K which give the catalyst long life even 

and high catalyst productivity. The temperature difference is due to equilibrium 

limitations, which reveal that lighter alkanes require higher temperatures.  

However the higher temperature conditions make the catalyst more likely to 

deactivate due to coke formation and make frequent regenerations of catalyst 
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necessary.  Carbon formations are also formed due to the alkane hydrogenation 

and reactivity of the alkyne/alkadiene which are very prone to cracking activity.    

For optimizing the CrOx/Al2O3 system and every other related catalyst, a periodic 

regeneration with air is needed to burn off the coke; in this case the catalyst 

undergoes a cycle between exposure to hydrocarbon where the coke is formed 

and then exposure to oxygen and/or steam to remove the coke periodically. The 

regeneration cycles are usually performed at a temperature of ~873 K or less. 

Hence, this enables the catalyst to retain its morphological structure, chemical 

stability in a range of high temperature conditions. 

1.3 Mechanistic understanding of trans-hydrogenation 

One of the early investigations of trans-hydrogenation process was carried-out in 

department of Chemistry, University of Glasgow by Isobel [67]. The investigation 

was conducted using pulses of unlabelled & perdeutero propane, and propyne 

over Pt/alumina and CrOx/alumina at 673, 723, 773 and 823 K. She investigated 

the dehydrogenation of the of the unlabelled & perdeutero propane over the 

listed range of temperatures using both Pt/alumina and CrOx/alumina. She then 

investigated the hydrogenation of propyne over chromia/alumina catalyst at 673 

K for analogical description. 

Dissociation of the propane was reported when alternate pulses of the 

perdeutero and unlabelled propane were passed over the Pt/alumina catalyst at 

the reaction temperature. However, reaction at 673 K presented some remained 

of the unreacted propane. The mass spectral data shows that CH4 was the most 

abundant products regardless of whether perdeutero or unlabelled propane was 

used. However, small amount of CH3D, CH2D2, CHD3 and CD4 were also observed. 

Analysis of the spent catalyst showed that both carbon and hydrogen were lost 

from the catalyst during these experiments. Treatment of the spent catalyst 

with dioxygen at 673 K produced CO2. 

When the chromia/alumina catalyst was used, dehydrogenation and some 

dissociation of the propane were both observed and propene was detected. The 

propene was detected using GC-MS when the unlabelled propane was used. 

Whilst scanning mass spectrometry technique was conducted to be able to 
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observe the alkenes produced with the perdeutero propane. The highest 

obtained presented 51% propene yield during the 2nd pulse, and increased to only 

51.2 % by the 6th pulse. This trend was observed with all the other temperatures 

except for 673 K. However, higher percentage yield of propene was obtained 

with reaction at 823 K and a good increase was observed with increase 

temperature, 19.2%, 34.7% and 51.2% obtained at 723, 773 and 823 K 

respectively. 

When using perdeutero propane as the adsorbate during alternate pulses, the 

resulting products were isotopic methanes, CH4, C3D7H and C3D8. On the other 

hand, when unlabelled propane was used as the adsorbate, isotopic methanes, 

C3H4D2, C3H5D, C3H6, C3H6D2, C3H7D, and C3H8 were the resulting products. Isobel 

deduced that either single or double deuterium/hydrogen exchange had 

contributed towards both propene and propane desorption from 

chromia/alumina catalyst. When comparing both adsorbates used, this reaction 

mainly took place using unlabelled propane at the elevated temperatures of 773 

K and 823 K. Carbon and hydrogen were lost to catalyst surface during the 

experiment and CO2 was produced when the spent catalyst was treated with O2 

at 673 K. 

When propyne was passed over the chromia/alumina catalyst, the products 

observed were, methane, carbon monoxide and small amount of propene. There 

is also significant amount of carbon and small amount of hydrogen lost to the 

catalyst on each reaction pulse. These investigations were performed with the 

view to establish conditions under which trans-hydrogenation could be affected. 

1.4 Research objectives 

The research is aimed at preparation, characterization and investigation of the 

activity of CrOx/alumina, K-CrOx/Al2O3, Pt/Al2O3 and K-Pt/Al2O3 catalysts for the 

trans-hydrogenation process of non-valuable refinery cracked products, for the 

production of alkenes. This was performed using alkane, alkyne and alkadienes 

models reactants with a view of establishing conditions under which trans-

hydrogenation could be effected. The research objectives include:  
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1. Preparation and characterisation of CrOx/alumina, K-CrOx/Al2O3, Pt/Al2O3 and 

K-Pt/Al2O3 catalysts. 

2. Investigating the alkane dehydrogenation reactions to establish detailed 

information appropriate trans-hydrogenation conditions for these catalysts and 

compare their conversions with during the trans-hydrogenation 

3. To verify the hydrogenation and dehydrogenation processes individually and 

as trans-hydrogenation using thermodynamic data, this includes the calculations 

of parameters such as ΔGº, ΔSº and ΔHº. 

4. Investigating the activity of each catalyst on the model reactants run 

individually and compared to the trans-hydrogenation process 

5. Characterization and analysis of the carbonaceous species formed on the 

spent catalyst during the individual run and as trans-hydrogenation process. 

 6. Investigating catalyst deactivation and regeneration over series of trans-

hydrogenation processes 
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2.0 Experimental  

2.1 Introduction 

Four catalyst, chromia/alumina, platinum/alumina, chromia/alumina promoted 

with potassium (chromia/K/alumina) and platinum/alumina promoted with 

potassium (platinum/K/alumina) were prepared by incipient wet impregnations.  

The catalysts were tested for dehydrogenation, hydrogenation individually alone 

and a mixture trans-hydrogenation activity using a specially designed rig. 

Products of the reactions were analysed by GS-MS and an online ESS mass 

spectrometer. 

Characterization of the pre and post  catalyst were carried using micrometrics 

(BET), X-ray diffraction (X.R.D.) thermal gravimetric analysis (T.G.A), 

Temperature program oxidation (TPO) temperature program reduction (TPR), 

temperature program desorption (TPD) and Raman.  

2.2 Materials 

The alumina support used was a gamma-alumina extrudate supplied by Johnson 

Matthey, with a surface area 208 m2 g-1 and a pore volume 0.52 cm3 g-1. This was 

pre-dried in an oven overnight at 253 K prior to catalyst preparation. 

2.2.1 Catalyst preparation 

2.2.1.1 Chromia/alumina catalyst  

A 4 wt. % CrOx/alumina catalyst was prepared by incipient wetness impregnation 

of the γ-alumina support. An aqueous (NH4)2Cr2O7 (99+ % Aldrich) solution was 

used to prepare the catalyst with a 4% w/w loading. The amount of the liquid 

solution of the precursor require to fill the pore volume of the support was ~0.52 

cm3g-1.  After the impregnation, the samples were mixed thoroughly using a rota 

vap. for 2hr at 253K and dried at ~393 K overnight. 50g of the 4 wt. % loading 

catalyst was prepared. Finally, the samples were calcined at 873 K for 6hr. after 

the calcination the sample was ground using a mortar and pestle and sieved to a 

uniform particle size of 250-425 µm. 
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2.2.1.2 Potassium doped chromia/alumina catalyst 

50g of the potassium-doped catalyst was prepared. The amount of potassium 

used was calculated relative to the hydroxyl population of the support.  For the 

purpose of these calculations a hydroxyl density of 8 OH groups per nm2 was 

used [68-71]. Given the surface area of the catalyst it was determined that 268 

mmoles potassium should be added per g of (SBET= 203 m2 g-1). This was them 

used to calculate the appropriate amount of KOH to be used (15.008 g). This was 

prepared by incipient wetness impregnation using the above catalyst (section 

2.2.1.2). The catalyst was treated with a solution of KOH sufficient to generate 

a ~10 % loading of potassium.  This was then dried at 353 K for 2 h and then at 

393 K overnight.  Finally, the samples were calcined at 873 K for 6 h.  

3.2.1.3 Platinum/alumina catalyst 

The catalyst was a commercial catalyst supplied by Johnson Matthey (ref no: 

1074). The catalyst has a BET surface area (SBET) 119 m2 g-1 and pore volume 0.49 

cm3 g-1. The samples were calcined at 873 K for 4hr. after the calcination the 

sample catalyst were grounded using mortar and pestle and sieved to a uniform 

particle size of 250-425 µm.  

3.2.1.4 Potassium doped platinum/alumina catalyst 

50g of the potassium doped catalyst prepared. The amount of potassium used 

was calculated relative to the hydroxyl population of the support.  For the 

purpose of these calculations a hydroxyl density of 8 OH groups per nm2 was 

used [68-71]. Given the surface area of the catalyst it was determined that 158 

mmoles potassium should be added per g of catalyst (SBET = 119 m2 g-1). This was 

them used to calculate the appropriate amount of KOH to be used (8.90 g). This 

was prepared by incipient wetness impregnation using the above catalyst 

(Section 3.2.1.3). The catalyst was treated with a solution of KOH sufficient to 

generate ~6 % loading of potassium.  This was then dried at 353 K for 2 h and 

then at 393 K overnight.  Finally, the samples were calcined at 873 K for 6 h.  
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2.3 Reaction studies 

2.3.1 Reactor set-up and sampling method 

The reactions were carried out in an atmospheric, flow micro-reactor shown as a 

block schematic in Figure 9. the reactants were vaporized individually using a 

bubbler with argon as the carrier gas using 30 ml min-1 flowrate and mixed in 

mixer chamber before passing through the reactor. The vapour pressure of each 

reactant was taken into consideration using the Clapeyron equation (eqn. 1) for 

feeding the reactor. An appropriate reactants ratio was therefore achievable. 

Temperatures of the reactants were varied using ice bath for the calculation. 

The mixed reactant was then passed over the catalyst bed for the reaction and 

the products collected over a solvent while the light gases were analysed by 

online mass spectrometry (MS). The thermocouples (TC) were fixed at each 

section to monitor the temperatures. The temperature can be controlled to  ±1 

K 

 

Figure 9: Schematic diagram of the reaction rig: (continuous flow micro reactor type) 
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2.3.2 Evaluation of rig accuracy 

All flow meters were tested and calibrated to ensure an accurate flow of 

reactants was achieved. All joints and taps were properly and repeatedly 

checked for leaks, all reactants were individually introduced into the reaction 

rig through the bypass and collected over the heptane solvent for the accuracy 

of my reactant feed calculations. This was subsequently used to calculate the 

WHSV and GHSV of the process. The differential error obtained for my first and 

second collector is less than 1%. A ratio of 5:1 of alkane and alkyne/alkadiene 

was targeted and therefore the rig setup was tested for the reliability of the 

anticipated reaction mixture to tally with calculated figures. All other 

components of the rig were also similarly tested.   

2.3.3 Setting the feed ratio  

The equation was used to determine the reactant temperature required to 

achieve a given feed ratio. For example, for the ratio of 5:1 pentane to hexyne, 

1,5-hexadiene and or 2,4-hexadiene respectively, a temperature of 273 K was 

maintained for pentane while the temperature was changed for the C6H10 

reactants to obtain the desired ratios. Therefore, the temperatures were 

changed according to the C6H10 molecule in used and a right vapour pressure is 

obtained for the calculation. The ∆Hvap of each reactant could be obtained and 

then used in subsequent calculations of the vapour pressure as shown in eqn 1 

below 

ln (
𝑃2

𝑝1
⁄ ) =  −

∆𝐻𝑣𝑎𝑝

𝑅
  (

1

𝑇2
−  

1

𝑇1
) … . . 𝐸𝑞𝑛 1 
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Table 3: Reactant Clausiu clyperon parameters 

 

Reactant ∆𝑯𝒗𝒂𝒑 (J mol-1) Temperature 

(K) 

Vapour 

pressure 

(atm) 

Target ratio 

Pentane 28180 273  0.242 5 

1-Hexyne 37285 273 0.046 1 

1,5-

Hexadiene 

30142 258 0.045 1 

2,4-

Hexadiene 

30750 273 0.043 1 

 

2.3.4 Trans-hydrogenation procedure and activity evaluation 

The trans-hydrogenation of pentane (P) and 1-hexyne (1-HY)/1,5-hexadiene (1,5-

HD)/2,4-hexadiene (2,4-HD), was investigated using a glass-line u-tube 

continuous flow micro reactor. The catalyst (0.5 g) was reduced in-situ with 

hydrogen (40 ml min-1) for 2 h at 873 K. The flow was switched to Argon (40 cm3 

min-1) and the system purged for 30 min while the reactor temperature was 

reduced to the required reaction temperature (523-773 K) thereafter. After the 

reduction was completed, the reactant pentane (99+ % Aldrich), hexyne (97+ % 

Aldrich), 1,5-hexadiene (97+ % Aldrich), 2,4-hexadiene (97+ % Aldrich) was 

introduced to the reaction chamber at 30 ml min-1 flowrate using argon as 

carrier gas. This is on by-pass for 15 min to allow good saturation of reactant 

before its switched to the reactor tube. A ratio 5:1 C5H12/C6H10 was used. The 

reactions were performed using each component individually as well as the 5:1 

mixture over a temperature range of 523-773 K. The reaction products were 

collected over a solvent (25 ml heptane) for the reaction period time of 2 hr. 

From the collected reaction products 1 ml was then mixed with 10 µl toluene 

internal standard and analysed by gas chromatography (ThermoQuest CE Trace 

GC 2000 Series, FID detector) fitted with a 150 m Petrocol column. The gaseous 
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products were followed continuously over the time-period of the reaction using 

an ESS mass spectrometer. 

2.4.7 Gas Chromatography 

The samples were analysed using ThermoQuest CE Trace GC 2000 Series gas 

chromatograph fitted with a flame ionization detector (FID). The column used 

was a Petrocol column 150 m, 0.25 mm, 1 m film thickness with helium as the 

carrier gas. Samples were pre-prepared in vials and the GC automatically 

injected the sample using auto-sampler. 

2.4.7.1 GC Conditions 

Oven:  333 K held for 70 min; ramped to 453 K at 10 K min-1 

Inlet: 513 K; split flow 75 ml min-1; split ratio 50 

Detector: 523 K; H2 35 ml min-1; Air 350 ml min-1; makeup 30 ml min-1 

2.4.7.2 GC calibrations 

For the purpose of this study, calibrations were made based on the number of 

carbon atom. There is not much difference in response factor for types of 

hydrocarbons that have the same number of carbon atoms. Therefore, 

calibration factors for C5, C6, C7 and C8 hydrocarbons were obtained, which the 

major products are obtained. 

The calibration was made by measuring out a known quantity of the compound 

into solution and passing different known concentrations through the GC. This 

was done for pentene, pentane, hexane, hexyne, toluene and iso-octane, for C5, 

C6, C7 and C8 respectively. Stock solutions were made for each compound and 

diluted with heptane to 50%, 25%, 10%, 5%, 1%, 0.5% and 0.1%. The number of 

moles in each component could be calculated taking into consideration of the 

following parameters. 

 Density 
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 Molar mass 

 Volume 

 % purity 

 Mass 

 Moles 

 Moles injected 

Toluene was used as the internal standard as the retention time does not 

overlap with that of any other product. This was then used to calculate the 

response factor using internal standard (10 l v/v). Equation (2) was used to 

calculate the response factor (α). 

𝛼 =  
𝑃𝑒𝑎𝑘 𝑎𝑟𝑒𝑎 𝑜𝑓𝑟𝑒𝑓𝑟𝑒𝑛𝑐𝑒

𝑃𝑒𝑎𝑘 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
 ×  

𝑀𝑜𝑙𝑒𝑠 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

𝑀𝑜𝑙𝑒𝑠 𝑜𝑓 𝑟𝑒𝑓𝑟𝑒𝑛𝑐𝑒
… … 𝐸𝑞𝑛 2 

Using the equation above (Eqn 2), it was possible to obtain a straight line graph 

and a linear relationship of the peak intensity against moles for each of the 

reference compounds used. The resultant gradient obtained is equal to the 

response factor (α). The graphs figures of the various reference compounds used 

are presented in Figure 10-12. 
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Figure 10: Pentane calibration curve 

 

 

Figure 11: 1-Pentene calibration curve 

 

 

Figure 12: Hexane calibration curve 
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Figure 13: 1-Hexyne calibration curve 

  

 

Figure 14: Toluene calibration curve 

 

 

Figure 15: Iso-octane calibration curve 
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2.4.7.3 Response factor 

Response factor is an important parameter for both reactant and products to 

determine quantitative data from the GC-FID. The response factors used for this 

piece of work are presented in Table 4. 

Table 4: Reference factor for the various reference compounds used 

 

Reference group Unit type Response factor (α) 

Pentane C5 7.63×106 

Pentene C5 7.50×106 

Hexane C6 7.81×106 

Hexyne C6 7.68×106 

Toluene C7 8.02×106 

Iso-octane C8 1.15×107 

 

2.4.7.4 GC-MS and product identification 

The reaction products were analysed using a Shimadzu GC-MS-QP2010S coupled 

to a Shimadzu GC-2010 equipped with a PetrocolTH DH columns (100 m × 0.25 

mm × 0.5 µm) with Helium as a carrier to identify each product (GC peaks) for 

better precision. The GC-MS analysis of the products provided a means for 

identifying all the possible reaction products. Twenty one products of 

isomerization, alkylation, cyclization and further hydrogenation & 

dehydrogenation together with the trans-hydrogenation products were 

successfully identified through the mass fragment data analysis for each peak 

which was compared and identified by the software library. The mass data were 

later compared with reference standard for better precision and accuracy. For 

the purpose of the products analysis and easier graph plots, letter abbreviations 

were adopted for each identified products and this is presented in Table 5. 
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Table 5: Identified products and their unit type 

 

S/N Abbreviation products Unit type 

1 IP Iso-pentane C5 

2 T2P Trans-2-pentene C5 

3 C2P Cis-2-pentne C5 

4 MB 2-Methyl-2-butene C5 

5 4MP 4-Methylpentene C5 

6 P1 Pentene C5 

7 P2 2-Pentene C5 

8 H Hexane C6 

9 H1 1-Hexene C6 

10 H2 2-Hexene C6 

11 H3 3-Hexene C6 

12 1,3HD 1,3-Hexadiene C6 

13 3MPY 3-Methylpentyne C6 

14 3MH1 3-Methylhexene C6 

15 2MH1 2-Methylhexene C6 

16 3MH 3-Methylhexane C6 

17 3MPD 3-Methyl-1,3-
pentadiene 

C6 

18 B Benzene C6 

19 1,4HD 1,4-Hexadiene C6 

20 MCH Methylcyclohexane C7 

21 ECP Ethylcyclopentane  C8 

 

2.4.7.5 Product quantification  

Using this methodology it was possible to approximately quantify each product, 

making use of equation 3.  

𝑚𝑜𝑙𝑒𝑠 =  
𝑃𝑒𝑎𝑘 𝑎𝑟𝑒𝑎 𝑜𝑓𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑃𝑒𝑎𝑘 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
 ×  

1

𝛼
… … . . 𝐸𝑞𝑛 3 

The conversion for each reactant feed was therefore calculated as: 
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moles of reactant converted

total moles fed
×  100 … … … … . . 𝐸𝑞𝑛 4 

 The yield as:  

𝑃 𝑎𝑙𝑜𝑛𝑒 =
moles of C for each product formed

Total moles of C for P fed
 ×  100 … … … … . 𝐸𝑞𝑛 5 

 

𝐻 𝑎𝑙𝑜𝑛𝑒 =
moles of C for each product formed

Total moles of C for H fed
 ×  100 … … … … … 𝐸𝑞𝑛 6 

 

𝑃 + 𝐻 =
moles of C for each product formed

Total moles of C for (P + H)fed
 ×  100 … … … . . 𝐸𝑞𝑛 7 

Where H = 1HY, 1,5HD and 2,4HD 

In order to determine the efficacy of the trans-hydrogenation process, the 

catalysts were subjected to reaction with P, 1HY, 1,5HD and 2,4HD individually 

and as a molar mixture of P:H in the ratio (5:1). The yield of each product 

formed was calculated from the individual run and summed as the yield P+H 

theory:   

Palone +  Halone =  P + H Theory  

This is then compared to the mixed feed runs termed as trans-hydrogenation 

yield  

2.4 Catalyst characterization  

2.4.1 BET analysis 

The surface area of the catalysts was determined using a Micrometrics Gemimi 

III 2375. Approximately ~ 0.03-0.05 g of catalyst was weight into a glass tube and 

purged in a flow of N2 gas overnight at 383 K before the measurement was 

carried out. 
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The BET equation 8 can be expresses as: 

𝑃

𝑉(𝑃𝑜 − 𝑃)
=  

1

𝑉𝑚𝐶
+  

(𝐶 − 1)𝑃

𝑉𝑚𝐶𝑃𝑜
… … … … 𝐸𝑞𝑛 8 

Where: P = Pressure of adsorbate gas; Po = Saturated pressure of adsorbate 

 V = Volume of adsorbate gas; Vm = Volume of monolayer adsorbed gas 

 C = BET constant:𝐶 = 𝑒
𝑞1−𝑞2

𝑅𝑇 ; q1 = heat of adsorption on the first layer 

 q2 = heat of liquefaction on 2nd and higher layers; R = the gas constant. 

The graph plot   
𝑃

𝑉(𝑃𝑜−𝑃)
  vs. 

𝑃

𝑃𝑜
 gives a straight line with a slope of 

𝐶−1

𝑉𝑚𝐶
 and an 

intercept of 
1

𝑉𝑚𝐶
 

 

 

 

 

 

 

The Vm can be calculated by using the following equation 

𝑉𝑚 =
1

𝐼+𝐽
  Where, I & J are intercept and slope respectively. 

The surface area of the catalyst can be determined by using the following  

𝑆𝑇𝑜𝑡𝑎𝑙 =
𝑉𝑚𝑁𝜎

𝑀𝑣
  

𝑃

𝑉(𝑃𝑜 − 𝑃)
 

𝑃

𝑃𝑜
 

 𝐶 − 1

𝑉𝑚𝐶
 

1

𝑉𝑚𝐶
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Where, N = Avogadro’s number 

 Mv = Molar vol. of adsorbed gas 

 𝜎 = adsorption cross section of the adsorbed gas molecule (N2 gas) 

The surface are per unit weight of the catalyst can be calculated from the 

equation 𝑆 =
𝑆𝑇𝑜𝑡𝑎𝑙

𝑚
 where m= mass of the catalyst.   

2.4.2 XRD analysis 

The XRD diffraction patterns of the catalysts were measured using a Siemens 

D500 X-ray diffractometer (40 Kv, 40mA, monochromatised) using a CuK α source 

(1.5418 Å). The scanning range was 5-85º 2θ with a scanning rate of 1 second 

step-1 and step size of 0.02º. Crushed catalyst was placed in the sample holder 

and the sample was levelled with the aid of a glass slide. The XRD spectral 

analysis was carried out using Bruker advanced X-ray solution Diffracplus release 

2004 EVA version 10.0 rev.0 software. 

The detector moves in a circle around the sample and records at the angle 2θ 

(Figure 16). The detector record the number of scattered x-rays observed at 

each angle 2θ and the x-ray intensity is usually recorded as counts or counts per 

second. However, to keep the x-ray beam properly focused, the sample will also 

rotate. 

 

Figure 16: pattern operation of XRD 
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The Scherrer equation (Eqn 9) can be used to calculated crystal size from the 

XRD data  

𝑑 =
𝐾𝜆

𝛽𝑐𝑜𝑠𝜃
… … … 𝐸𝑞𝑛 9 

Where: d = Average crystal size 

 𝐾 = Scherrer constant  

 𝜆 = Wavelength of X-ray source (1.5418 Å) 

 𝛽 = Full width at half maximum (degree) 

 𝜃 = Diffraction angle (degree) 

X-ray diffraction is used to study the crystalline phase by powder pattern 

analysis. This provides information for identification and quantification of the 

phase composition in multi-component mixtures. The 2θ position of the peaks 

(CuK α) and intensities are therefore very important [72].  

2.4.3 TGA-MS analysis 

Thermo-gravimetric analysis was performed on the catalysts using a combined 

TGA/DSC SDT Q600 thermal analyser coupled to an ESS evolution mass 

spectrometer for evolved gas analysis. The samples (~10-30 mg) were heated 

from ambient temperature to 1273 K using a heating ramp of 15 K/min. The 

temperature profile was employed in 2% H2/N2 or O2/Ar gas. Relevant mass 

fragments were followed by online mass spectrometry. 

Thermo-gravimetric analysis is a technique in which the changes in mass of a 

particular substance are determined as a function of temperature. This can then 

be used to deduce the loss in the amount of the catalyst with temperatures and 

also the transformation that take place when the catalyst is heated at elevated 

temperatures [73, 74]. 
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The use of combined TGA & DTA provides details on the transformation 

phenomenon of the catalyst material. Thus, this could be possibly deduced when 

the catalyst material undergoes heating. The TGA is the measure of amount of 

mass change as a function of temperature while DTA is the measure of the 

amount of heat that absorbed or evolved with temperature at the point that 

changes that takes place within the catalyst.  

The couple TGA-MS helps in determining the volatiles evolved during the thermal 

degradation of the sample and has rapid scan capabilities for detection. In so 

doing, the sample weight variation could be monitored and the gaseous products 

could be monitored simultaneously during the temperature scan.  

Reduction/oxidation cycles (Red-Ox cycles) were performed on the fresh 

CrOx/Al2O3 and Pt/Al2O3 catalysts. Reduction of the catalyst was conducted by 

heating the sample in 2% H2/N2 from room temperature to 873 K using a heating 

ramp of 15 K/min and a hold for 15 min at 873 K. The sample was then cooled to 

room temperature and the gas switched to argon (100 ml min-1) to purge. This 

was followed by oxidation in 2% O2/Ar (100 ml min-1) from room temperature to 

873 K using a ramp of 15 K min-1 and hold for 15 min. The sample was then 

cooled to room temperature and gas switched to argon (100 ml min-1) to purge. 

Lastly a reduction temperature profile was then employed in 2% H2/N2 from room 

temperature to 873 K using ramp of 15 K min-1 and hold for 15 min. Relevant 

masses were followed by online mass spectrometry for the processes. 

2.4.3.1 Temperature program oxidation (TPO) 

The TPO was performed on the post reaction catalyst using the TGA-DTA-MS 

facility.  The samples were heated in a flow of 2% O2/Air (100 mlmin-1) to 1273 K 

from ambient temperature, at a ramp of 10 Kmin-1. The following masses were 

monitored for desorbed species, m/z 2(H2), 16(CH4) 18(H2O), 28 (C2H4), 44(CO2) 

and 32 (O2). 

2.4.3.2 Temperature program reduction (TPR)  

The TPR was performed on the Fresh catalyst using the TGA-DTA-MS facility.  

The samples were heated in a flow of 2% H2/ N2 (100 ml min-1) to 1273 K from 

ambient temperature, at a ramp of 10 K min-1. The following masses were 
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monitored for desorbed species, m/z 2 (H2), 16 (CH4) 18 (H2O), 28 (C2H4), 44 

(CO2) and 32 (O2). 

2.4.4 Electron paramagnetic resonance (EPR) 

The EPR analysis were performed using A Bruker ELEXSYS E500 spectrometer to 

produce the X-band EPR spectra. The experimental conditions were frequency 

9.4325 GHz; modulation 0.1 mT; power 6.3 μW, temperature 293 K. all the EPR 

analysis were carried out by Dr. Stephen Sproules at the university of Glasgow. 

2.4.5 CHN Elemental analysis 

The CHN analysis was performed by combustion using a CE-440 elemental 

analyser. All CHN analysis was carried out by Mr Gangi Reddy Ubbara at the 

University of Glasgow. 

2.4.6 Raman spectroscopy 

The Raman spectra were collected using Horiba Jobin Yvon LabRAM High 

Resolution spectrometer, with all the scattered photons collected by an 

ellipsoidal mirror focused into nitrogen cooled charge-coupled detector CCD. 

The signal from the detector was subsequently analysed by a computer using 

LabSpec5 software.  

The UV Raman spectroscopy was obtained using a helium cadmium IK3201R-F 20 

mW, 325 nm UV laser as the excitation source, focused for 10 s using a 15x UV 

objective lens and a grating of 1200 cm-1. The visible Raman spectroscopy was 

obtained using a Ventus 532 laser system, 100mW, 562 nm green laser as the 

excitation source, focused for 10 s using a 50x objective lens and a grating of 

600 cm-1. Both UV and Visible Raman were collected under ambient conditions 

on slit glass disk.  

2.4.7 UV-Vis analysis 

The wax on the catalyst was extracted using Soxhlet extractor (~0.2 g of the 

spent catalyst with ~25 ml hexane solvent) was used. This was then manipulated 

to obtain various concentrations by diluting further with the hexane solvent, 100 
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%, 50% and 25 %. The absorbance measurements of each sample were monitored 

using a UV-160A Shimadzu UV-Visible spectrophotometer in the range of 900-200 

nm. The spectra were collected in order to determine the presence or absence 

of the yellowish oil classified as wax observed during the course of the trans-

hydrogenation process.    

2.4.8 AAS analysis 

The Elemental analysis was carried out using Perkin Elmer analyst 400, atomic 

absorption spectrometer, with winlab 32. Typically 0.1g of catalyst was 

accurately measured to 0.001 g and digested with aqua regia reagent (1:3 

HNO3/HCl). This was then filtered and filled up to mark of 25 ml volumetric flask 

and used for the analysis. 

2.4.9 Colorimetric analysis 

Colorimetric analysis was conducted to determine the oxidation state of the 

chromium on the catalyst (dry catalyst, un-calcined, calcined and the reduced 

catalyst). Although this is not a precise experiment it gives a very good insight 

on the various oxidation states exist on the catalyst. This method has not been 

reported previously to have been used on catalyst samples, but it was useful in 

investigating the various oxidation states of chromium on the chromia catalyst 

even if only a qualitative result was obtained.   

Cr(VI) reacts with diphenylcarbazide in acid solution to produce a red-violet 

colour of unknown composition which is measured at 540 nm. The procedure is 

nearly specific for Cr(VI). Interferences occur due to copper, iron, mercury, 

molybdate, permanganate and vanadium which form similarly coloured products 

but the colour intensities are much weaker than the Cr complex. The acid range 

is critical, the final acidity must be between 0.7 and 1.3 M H+. 

3.4.9.1 Reagents used 

1. Sulphuric Acid 0.5M 

28 ml Analar concentrated (98%) H2SO4 was carefully added to approximately 500 

ml water in a 1 litre volumetric flask. Cool and make up to volume. 
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2. Diphenylcarbazide Solution 

250 mg 1,5-diphenylcarbazide was dissolved in  50 ml acetone. The solution 

however is only stable for few days, this is discarded when it becomes coloured. 

3. Chromium Stock Solution (1000 mg/litre Cr as dichromate) 

Analytical grade K2Cr2O7 was dried in an oven at 378 K and cool in a desiccator. 

2.829 g was carefully weighed and dissolve in water, this was then transfer 

quantitatively to a 1 litre volumetric flask and make up to the mark. 

4. Chromium Standard 5 mg Cr per litre 

5 ml of the stock Cr solution was carefully diluted to 1000 ml in a volumetric 

flask. 

3.4.9.2 Procedure 

Calibration was first made by preparing 0 to 5 ml of 5 mg/litre Cr standard and 

pipetted into a series of 50 ml volumetric flasks and diluted to approximately 40 

ml and mixed well. 5 ml 0.5 M of the prepared sulphuric acid was then added 

and mix well. 1 ml diphenylcarbazide solution also added, make up to the mark 

and further mix well. This then allow to stand 5 to 10 minutes for colour 

development and the absorbance measured at 540 nm. 

Sample containing no more than 25 μg Cr was pipetted into a 50 ml volumetric 

flask, diluted to approximately 40 ml and mix well. 5 ml 0.5 M sulphuric acid and 

Add 1 ml diphenylcarbazide solution were added, make up to the mark and mix 

well. This then allow to stand 5 to 10 minutes for colour development and the 

absorbance measured at 540 nm. 
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3.0 Results 

3.1 Thermodynamics analysis of the reactions 

3.1.1 Basic thermodynamics data 

The Gibbs free energy for the production of two alkenes via pentane and 

hexyne/hexadienes reactions were calculated in order to determine whether the 

reactions were spontaneous or not. Their basic thermodynamic data at 298 K 

were obtained from the book of Physical Chemistry [75],for pentane, 1-hexyne, 

1,5-hexadiene, 2,4-hexadiene, 1-pentene, 1-hexene and H2 are listed and 

presented in Table 6 and 7. 

Table 6: 𝚫𝐇𝒇   
𝒐 (298 K), 𝚫𝐒𝒇   

𝒐 (298 K) and 𝚫𝐆𝒇   
𝒐 (298 K) of reactants and products 

 

 ΔH𝑓   
𝑜 (298 K) (kJ 

mol-1) 

ΔS𝑓   
𝑜 (298 K) (kJ 

mol-1) 

ΔG𝑓   
𝑜 (298 K) (kJ 

mol-1) 

Pentane -146.44 348.95 -8.37 

1-Hexyne 123.64 368.74  218.57 

1,5-Hexadiene 84.06 376.98 175.32 

2,4-Hexadiene 48.11 367.77 160.08 

1-Pentene -20.92 345.80 79.08 

1-Hexene -41.67 384.64 87.45 

H2 0 130.59 0 

 

Table 7: Cp of reactants and products at various temperatures 

 

 𝐶𝑝  (cal mol-1 K-1) 

 298 K 300 K 400 K 500 K 600 K 700 K 800 K 

Pentane 28.73 28.87 36.53 43.58 49.64 54.83 59.30 
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3.1.2 Calculation of 𝚫𝐆𝒓   
𝒐 and 𝚫𝐒𝒓   

𝒐 at different temperatures 

Using these variables, the Gibbs free energy can be calculated using the 

following equations below. Equation 10 represents the Gibbs function at its non-

standard state is, whereas equation 11 represents its standard state. 

ΔG𝑟(𝑇) = ΔG𝑟   
𝑜 (𝑇) + 𝑅𝑇 ln 𝐾 … … … . . 𝐸𝑞𝑛 10 

ΔG𝑟   
𝑜 (𝑇) = ΔH𝑟   

𝑜 (𝑇) − 𝑇ΔS𝑟   
𝑜 (𝑇) … … … Eqn 11  

𝐾 =  
[𝑃(𝐶5𝐻10)/𝑃𝑜 ] [𝑃(𝐶6𝐻12)/𝑃𝑜 ]

[𝑃(𝐶5𝐻12)/𝑃𝑜 ] [𝑃(𝐶6𝐻10)/𝑃𝑜 ]
… … . . 𝐸𝑞𝑛 12 

The ΔH𝑟   
𝑜 and ΔS𝑟   

𝑜 were initially calculated at different temperatures. The 

relationship between the ΔH𝑟  
𝑜 /ΔS𝑟   

𝑜
 can be expressed in the following equations: 

d ΔH𝑟   
𝑜 / 𝑑𝑇 =  ΔC𝑝  … … … … … 𝐸𝑞𝑛 13 

d ΔS𝑟   
𝑜 / 𝑑𝑇 =  ΔC𝑝/𝑇  … … … … 𝐸𝑞𝑛 14  

Hence, this is to say that, 

ΔH𝑟   
𝑜 (𝑇𝑗) =  ∑ 𝑣𝑖ΔH𝑓   

𝑜 (𝑇𝑗−1) + ∑ 𝑣𝑖 C̅𝑝𝑖 𝑥(𝑇𝑗 −  𝑇𝑗−1) … … . 𝐸𝑞𝑛 15 

1-Hexyne 30.65 30.77 37.87 44.18 49.59 54.20 58.16 

1,5-Hexadiene 31.81 31.93 38.83 44.43 49.03 53.73 57.23 

2,4-Hexadiene 31.38 31.50 37.49 42.90 47.48 51.51 55.01 

1-Pentene 26.19 26.31 33.10 39.23 44.56 49.06 52.95 

1-Hexene 31.63 31.78 40.03 47.47 53.90 59.34 64.02 

H2 6.892 6.895 6.974 6.993 7.008 7.035 7.078 
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ΔS𝑟   
𝑜 (𝑇𝑗) =  ∑ 𝑣𝑖ΔS𝑓   

𝑜 (𝑇𝑗−1) + ∑ 𝑣𝑖 C̅𝑝𝑖 𝑥 𝑙𝑛(𝑇𝑗 −  𝑇𝑗−1) … … . . 𝐸𝑞𝑛 16 

C̅𝑝𝑖 =
C𝑝𝑖 (𝑇𝑗−1) +  C𝑝𝑖 (𝑇𝐽)

2
… … … … . . 𝐸𝑞𝑛 17 

Therefore, the variables ΔH𝑟   
𝑜 and ΔS𝑟   

𝑜 could be calculated through equations 15, 

16 and 17 at different temperatures for the basic thermodynamics data of C5H12, 

C6H10, C6H12, C5H10 and H2 in the three reaction systems outlined previously: 1HY, 

1,5HD and 2,4HD trans-hydrogenations.  

3.1.3 Equilibrium constant variations with temperature with regards 
to 𝚫𝐇𝒓   

𝒐 and 𝚫𝐒𝒓   
𝒐  

The equilibrium constant of the reaction process can equally be described by the 

equation 18 below relating the variables ΔH𝑟 
𝑜  /−𝑅𝑇  and ΔS𝑟   

𝑜 /𝑅 as outline by 

Van’t Hoff. The lnK𝑒𝑞 is calculated at different reaction temperatures with a 

plot relationship of 
1

T
 being obtained for each reaction system. This is then 

compared to the plot of the pentane dehydrogenation; where it is observed that 

the trans-hydrogenation reaction with the 2,4HD system has only slightly 

changed from the pentane dehydrogenation compared to the other systems 

where significant changes were made. This is presented Figure 17. 

 

Figure 17: Van’t Hoff plots for the comparison of the pentane dehydrogenation with the 
trans-hydrogenation over the three systems 
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lnK𝑒𝑞 =   −
∆H°

R
 
1

T
 +   

∆S°

R
… … … … 𝐸𝑞𝑛 18 

The variables ΔH𝑟 
𝑜  /−𝑅𝑇  and ΔS𝑟   

𝑜 /𝑅 are calculated for each reaction system at 

various temperatures. Meanwhile, the effect of temperature on both the 

ΔH𝑟  
𝑜 and ΔS𝑟   

𝑜  is quite small, this can also be due to the fact that the variation in 

temperature has minimal effect on the C𝑝. Therefore, the ΔG at the different 

temperatures can be calculated using equation 11. The calculated results are 

presented in table 6. It can be observed that the trans-hydrogenation is 

thermodynamically favoured at most temperatures for the reaction of alkanes 

with alkynes, however this is not always the case when alkadienes are the 

hydrogen acceptors.  According to the calculated free energies for the trans-

hydrogenation of pentane with 1-hexyne, 1,5-hexadiene and 2,4-hexadiene, we 

find that the ΔG of the process moves from negative to positive (Table 8).  

Therefore, there can be thermodynamic constraints on the process. 

Table 8: Free energy for the reaction of pentane with 1-hexyne, 1,5-hexadiene and 2,4-
hexadiene 

 

 Free energy (𝚫𝐆) of reaction of pentane with the hydrogen 

acceptors at 

 473 K 573 K 673 K  773 K  

1-Hexyne -45.83 -47.10 -48.38 -49.65 

1,5-

Hexadiene 

-2.35 -2.80 -3.25 -3.70 

2,4-

Hexadiene 

+30.34 +28.87 +27.50 +26.13 

 

3.1.4 Lifting dehydrogenation equilibrium constrain by trans-
hydrogenation 

Dehydrogenation processes of alkane to olefins have risen to a position of 

importance, especially in petroleum industries. The production of olefin by 

dehydrogenation is presented by the following typical equation below. 
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Alkane = alkene + H2 (ΔH = 124 kJmol-1) 

The equilibrium for pentane dehydrogenation is favourable at thermal cracking 

temperatures; this consequently allows the decomposition of the reactant. The 

equilibrium data calculated at various reaction temperatures (T) and the 

equilibrium conversions (α) plotted against temperature presented in Figure 18, 

shows that the equilibrium conversions are limited by the reaction temperature, 

and that reasonable conversions are obtained at a temperature >823 K. 

 

Figure 18: Equilibrium conversion with temperature of n-pentane dehydrogenation 

 

The plotted data are presented in Table 9 

Table 9: the equilibrium conversion at various temperatures over pentane dehydrogenation 

 

 298 K 400 K 500 K 600 K 700 K 800 K 900 K 

α (%) 2.1×10-6 1.4×10-3 7.0×10-2 8.8×10-1 8.76 24.0 68.0 

 

3.1.5 Equilibrium partial pressure in mixture of ideal gases phase 

As mentioned, the trans-hydrogenation process is thermodynamically favoured at 

most temperatures, this in effect also provides the advantage to push the 

equilibrium constrain of the alkane dehydrogenation as illustrated in the Fig. 19 
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below. In accordance to Le Chatelier’s principle, the continuous removal of the 

hydrogen molecule by unsaturated reactants pulls the conversion of pentane. 

 

Figure 19: Illustration for pushing the conversion of alkane dehydrogenation by trans-
hydrogenation 

 

The pressure dependence of the three reaction system is introduced in order to 

determine the reaction dependency on conversion  

Dehydrogenation system:    C5H12           ⇌       C5H10   +    H2 

 C5H12          ⇌       C5H10   +    H2 

 C5H12    C5H10 H2 

Initial moles                                      1                              0 0 

Equilibrium moles                          1 −  𝛼                         𝛼                         𝛼    

Mole fractions                                1 −  α

1 +  α 
 

 α

1 +  α 
 

 α

1 +  α 
 

Partial pressure                            
(

1 −  α

1 +  α 
)𝑃 (

α

1 +  α 
)𝑃 (

α

1 +  α 
)𝑃 

 

Equilibrium Constant (Kp)   

𝐾𝑝 =
𝑃𝐶5𝐻10 .  𝑃𝐻2  

𝑃𝐶5𝐻12 
 

Therefore, 
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𝐾𝑝 =
(

α
1 +  α ) 𝑃 .  (

α
1 +  α )𝑃

(
1 − α
1 +  α 

)𝑃
 

𝐾𝑝 = (
α

1 + α2 
) =  

K

P 
… … … … … . . 𝐸𝑞𝑛 19 

The conversion (α) is inversely dependent on pressure as illustrated in eqn 19. 

Hence 𝐾𝑝 is strongly dependent on temperature. The ideal gas equation 

(PV=nRT) shows that pressure (P) is dependent of temperature (T). Therefore, 

(α) will be a strong function of temperature. 

Trans-hydrogenation system:  C5H12   +  C6H10     ⇌     C5H10     +     C6H12       

          C5H12     +   C6H10      ⇌         C5H10     +     C6H12       

 C5H12 C6H10 C5H10 C6H12 

Initial moles 1 1 0 0 

Equilibrium moles 1- α 1- α α α 

Mole fractions 
(

1 − α

2 
) (

1 − α

2 
) (

 α

2 
) (

 α

2 
) 

Partial pressure 
(

1 − α

2 
) 𝑃 (

1 − α

2 
) 𝑃 (

 α

2 
) 𝑃 (

 α

2 
) 𝑃 

 

Equilibrium Constant    

𝐾𝑝 =
𝑃𝐶5𝐻10  .  𝑃𝐶6𝐻12 

𝑃𝐶5𝐻12 .  𝑃𝐶6𝐻10 
 

Therefore, 

𝐾𝑝 =
 (

α
2 

) 𝑃 .  (
α
2 

)𝑃

(
1 − α

2 ) 𝑃.  (
1 − α

2 ) 𝑃
 

 𝐾𝑝 =  (
α2

(1 + α)2 
) … … … … … . 𝐸𝑞𝑛 20 
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Hence conversion (α) is not dependent of the pressure as illustrated in eqn. 20. 

Thus, using the trans-hydrogenation technique, which involves the hydrogen 

acceptor, the effect of pressure is completely removed. 

3.2. CrOx/Al2O3 catalyst 

3.2.1 Pre-reaction catalyst characterisation 

3.2.1.1 BET surface area and pore volume determination 

Table 10 shows the summary of the parameters extracted from the BET analysis. 

The result indicated that the BET surface area (SBET) and the pore volume of the 

alumina support show a slight decrease upon impregnation of the metal 

precursor, which is in keeping with previous literature [76].  

Table 10: BET surface areas, pore volume and average pore diameter of the support and the 
CrOx/Al2O3 catalyst 

 

 SBET (m
2/g) Vp(cm3g-1) Dp(Å) 

Ƴ-Al2O3 208 0.52 100 

CrOx/Al2O3 203 0.46 91 

 

The adsorption isotherm for the catalyst and the support were found to be 

similar, obeying the type II model typical for mesoporous material (fig 20). 

 

Figure 20: Nitrogen adsorption isotherm at 78K for the support and the CrOx/Al2O3 catalyst 
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The pore volume distribution as measured in the mesopore range for the support 

is illustrated in Figure 21. It presents a more uniform distribution and it is very 

clear that the chromia loading slightly decreases the pore volume of both 

mesopores and micropores of the alumina support upon the impregnation. This 

shows a slight loss surface area of the alumina support after the impregnation. In 

both cases mesopores fall within range of 3-11 nm and micropores 0.5 to <2 nm.  

 

Figure 21: Pore volume distribution of the support and the CrOx/Al2O3 catalyst 

 

3.2.1.2 XRD analysis 

The XRD analysis of the catalyst and the γ- alumina both revealed the same 

diffraction pattern associated with only the alumina and no evidence observed 

for the crystalline phase of chromium oxide. This is expected for this loading, as 

it has been reported in previous studies[34] that the crystalline chromium oxide 

phases are only observed with loadings >10 %. The result is presented in Figure 

22. 
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Figure 22: XRD diffraction pattern of the support and the CrOx/Al2O3 catalyst 

 

3.2.1.3 Thermogravimetric analysis 

The standard TGA-TPR obtained from ambient temperature to 1273 K presented 

in Figure 23, is found to be consistent with the Red-Ox cycle as explained below, 

and the reduction peak observed at ~650 K perfectly match ones obtained with 

the reduction cycles. 

 

Figure 23: The standard TGA-TPR profile of the CrOx/Al2O3 catalyst 
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TPR result for the 2nd cycle showed a lower H2 consumption compared to the 1st 

cycle. The first peak obtained at ~373 K is associated to desorption of 

physisorbed H2O absorbed on the catalyst from atmosphere (Figure 24). 

 

Figure 24: The TGA-TPR profile during the Red-Ox cycles of the CrOx/Al2O3 catalyst 

 

From the TGA-TPR-MS result (m/e 2), the hydrogen consumption perfectly 

matched the reduction peak at ~650 K observed with both cycles. Trace water 

(m/e 18) was also detected during the first cycle at ~373K confirming desorption 

of the physisorbed water on the catalyst. This perfectly matches the peak at 

~373 K. There is almost no physisorbed water detected during the second cycle 

as expected, only ~1% loss was observed. The result is presented in Figure 25  

 

Figure 25: mass spectra data obtained during the TGA-TPR Red-Ox cycle of the CrOx/Al2O3 
catalyst 
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The DTA of the first reduction cycle shows one endothermic response at ~373 K 

ascribed to the removal physisorbed water corresponding to moisture loss mainly 

from the alumina support: the weight loss is ~4%. There is no obvious effect 

observed due to this, during the second cycle. The exothermic peak at ~ 650 K 

corresponds to weight loss of ~2% due to loss of oxygen; ~0.22 mg of the 25.9 mg 

of the catalyst was lost. This corresponds to the loss of ~0.5 O2 atom per 

chromium atom. This could be a reduction step of the chromium oxide between 

Cr6+ and Cr3. The result is presented in Figure 26. 

 

Figure 26: The DTA profile of the catalyst obtained during the TGA-TPR Red-Ox of the 
CrOx/Al2O3 catalyst 

 

3.2.1.4 Raman analysis 

The Raman spectrum of the catalyst is presented Figure 27.The Raman bands 

observed are assigned to the chromium oxide vibrations. The Raman spectrum 

reveals bands assigned to chromia at ~380, ~860 and ~990 cm-1. The absence of 

the band at ~550 cm-1 (i.e characteristic of crystalline Cr2O3) and ~495 cm-1 (i.e 

characteristics of crystalline CrO3) shows that the chromium oxide exists as two-

dimensional over-layer [77]. A table adapted from Vuurman et al.,[78] also 

adapted from several other sources reveals that the catalyst may exist as both 

monomer or dimer CrO4 and Cr2O7. The very high frequency band at ~990cm-1 is 

consistent with the symmetric stretching mode of CrO2, while the band at ~ 860 

cm-1 is assigned to both the stretching mode of CrO3 and stretching mode of 

94

95

96

97

98

99

100

-10

-5

0

5

10

15

20

250 350 450 550 650 750 850 950

%
 w

e
ig

h
t 

lo
ss

 

Te
m

p
e

ra
tu

re
 D

if
fe

re
n

ce
 (

µ
V

) 
 

Temperature (K)  

DTA-1st red DTA-2nd red wt loss-1st red wt loss-2nd red



 
 

53 
 

bridging Cr-O-Cr. The stretching mode of the CrO3 may be an indication of 

amorphous phase as no crystalline diffraction pattern was detected with the 

XRD, although the detection of the CrOx diffraction pattern depends on the 

catalyst loading.  

 

Figure 27: Raman spectrum of the CrOx/Al2O3 catalyst 

 

3.2.1.5 EPR analysis 

The EPR profile obtained at various treatment stages of the catalyst preparation 

are presented in Figure 28. After various treatments of the catalyst, different 

EPR spectra were observed except for the dried catalyst where no EPR spectrum 

was seen. The EPR study of the CrOx/Al2O3 catalyst was observed with the 

purpose of characterizing the Cr3+ on the catalyst which produces magnetic 

chromium species. Resonance effects for chromium oxide catalyst are usually 

reported to originate from Cr3+ subjected to varying degree of the 

antiferromagnetic exchange forces [79].  All the spectra elucidate different 

distributions of the Cr3+, and the spectrum obtained for the calcined catalyst 

may be due to charge transfer absorption of the Cr6+ and a lower interaction of 

the Cr3+ ions on the support. The decrease observed in the EPR intensity for the 

un-calcined and reduced catalyst suggest the transition of Cr6+ → Cr3+ while the 

broadening could be associated with Cr3+ clusters. Also, the shape line across the 

spectra observed for all the treatment has been thought to arise from small 

amount of Cr5+[80]. 
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Figure 28: EPR profile obtained during the various CrOx/Al2O3 catalyst treatments 

 

4.2.1.6 AAS and Colorimetric analysis  

AAS analysis and colorimetric analysis are presented in Table 11.  It is clearly 

observed that appreciable values for both +3 and +6 oxidation states of Cr are 

obtained at various treatment stages of the catalyst preparation. The dried 

catalyst contains a high percentage of Cr6+ (3.21% c.f. the total loading 3.32%). 

While the reduced catalyst, contain the lowest percentage of Cr6+ 0.22%, 

confirming that the catalyst system will still exist as a mixed oxidation state Cr 

during all the treatment stages but the percentage amount varies.  
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Table 11: Percentages of the both Cr
3+

 and Cr
6+

 obtained during various catalyst treatments 

 

Sample Total % Cr  % Cr 3+  
state 

% Cr 6+ state 

As prepared* cat 3.32 0.11 3.21 

Dried cat 3.21 1.21 2.00 

Calcined cat 2.92 1.20 1.72 

Reduced cat 3.31 3.09 0.22 

* Air dried before the oven overnight drying 

3.2.2 Pentane/Hexyne (P/1HY) system 

4.2.2.1 Reaction analysis and trans-hydrogenation activity evaluation 

The reactant conversions were followed individually and during the mixed trans-

hydrogenation reaction. There is observed an increase in the conversion of the 

pentane at all temperature, with the trans-hydrogenation process compared to 

the conversions of the pentane dehydrogenation. The dehydrogenation 

conversions of the pentane run alone is within the calculated equilibrium 

conversion of n-pentane dehydrogenation. However, ~26% conversion of pentane 

was obtained at 623 K with trans-hydrogenation, a value higher than the 

equilibrium conversion of pentane dehydrogenation at this temperature. This 

increase was also observed with other reaction temperatures (figure 29). 
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Figure 29: Conversion comparison of P, 1HY and P/1HY mixture using CrOx/Al2O3 

 

The products yields were calculated and are presented in Table 12-16. Most of 

these products are mostly alkylated and alkylated olefin products obtained with 

the trans-hydrogenation. The product distribution is pretty much the same with 

all the reaction temperatures, only the individual yield of the products changes. 

The yield of the desired products increases with mixed feeds and more valuable 

products are observed with the trans-hydrogenation process. The (P+H theory) as 

illustrated in the experimental section, is the yield summation of P and H run 

individually. 
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Table 12: Products yield of the trans-hydrogenation over CrOx/Al2O3 at 773K 

 

 P 1HY P+1HY P+1HY Theory 

 Conversion (%) 

Pentane(P) 11  19 11 

Hexyne(1HY)  98 96 98 

 Yield (%) 

Iso-pentane 1.01  0.16 1.01 

1-Pentene   0.91 0 

Trans-2-pentene 8.59   8.59 

Hexane  1.57 2.10 1.57 

1-Hexene  1.01 0.66 1.01 

2-Hexene  0.63 1.64 0.63 

3-Hexene  1.56 1.87 1.56 

Methyl-2-pentene  3.21 4.16 3.21 

3-Methylpentyne  5.18 3.26 5.18 

3-Methyl-1-hexene  7.5 5.07 7.50 

3-Methylhexane  2.5 5.41 2.51 

2-Methyl-1,3-pentadiene  1.35 9.20 1.35 

1,4-Hexadiene  13.46 16.92 13.46 

2-Methyl-1-hexene  7.37 5.12 7.37 

Methylcyclohexane 0.61 8.81 1.60 9.43 

Ethylcyclopentane 0.37   0.37 
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Table 13: Products yield of the trans-hydrogenation over CrOx/Al2O3 at 673K 

 

  P 1HY P+1HY P+1HY Theory 

 Conversion (%) 

Pentane(P) 08  13 08 

Hexyne(1HY)  97 86 97 

   Yield (%) 

Iso-pentane 0.46  0.11 0.46 

Pentene   0.01 0 

Trans-2-Pentene 0.53   0.53 

Hexane  0.38 1.95 0.38 

1-Hexene   0.27 0 

2-Hexene  0.9 6.08 0.9 

3-Hexene   0.42 0 

Methyl-2-pentene  3.42 4.61 3.42 

3-Methylpentyne  7.49 10.28 7.49 

3-Methyl-1-hexene  1.67 1.97 1.67 

3-Methylhexane  6.17 1.36 6.17 

2-Methyl-1,3-pentadiene  7.49 0.27 7.49 

1,4-Hexadiene  31.42 25.18 31.42 

Methylcyclohexane 3.91 1.8  5.17 
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Table 14: Products yield of the trans-hydrogenation over CrOx/Al2O3 at 623K 

 

 P 1HY P+1HY P+1HY Theory 

  Conversion (%) 

Pentane(P) 10  26 10 

Hexyne(1HY)  95 87 95 

  Yield (%) 

     

Pentene   0.19 0 

Trans-2-Pentene 0.08   0.08 

Hexane   0.52 0 

1-Hexene  0.33 1.81 0.33 

2-Hexene  1.21 2.06 1.21 

3-Hexene   1.46 0 

Methyl-2-pentene  2.17 2.22 2.17 

3-Methylpentyne  11.6 19.24 11.6 

3-Methyl-1-hexene  1.29 1.70 1.29 

3-Methylhexane  0.55 1.38 0.55 

2-Methyl-1,3-pentadiene   2.14 0 

1,4-Hexadiene  20.95 19.38 20.95 

Methylcyclohexane 5.23 15.19 2.42 20.42 

Ethylcyclopentane 1.25 2.77 1.12 3.92 

 

 

 



 
 

60 
 

Table 15: Products yield of the trans-hydrogenation over CrOx/Al2O3 at 573K 

 

 P 1HY P+1HY P+1HY Theory 

 Conversion (%) 

Pentane(P) 04  20 04 

Hexyne(1HY)  42 48 42 

 Yield (%) 

Iso-pentane   0.05 0 

Pentene   0.10 0 

Trans-2-Pentene 0.02   0.02 

Hexane  0.05 0.88 0.05 

1-Hexene  1.07 3.06 1.07 

2-Hexene  0.2 3.08 0.2 

3-Hexene   3.44 0 

Methyl-2-pentene   0.28 0 

3-Methylpentyne  6.18 7.75 6.18 

3-Methyl-1-hexene  1.13 0.65 1.03 

3-Methylhexane  0.45 0.34 0.41 

2-Methyl-1,3-pentadiene  0.17 0.66 0.17 

1,4-Hexadiene  9.41 5.32 9.41 

Methylcyclohexane 0.22 3.87 1.24 3.99 

Ethylcyclopentane 0.39 1.36 0.89 1.75 
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Table 16: Products yield of the trans-hydrogenation over CrOx/Al2O3 at 523K 

 

 P H P+H P+H Theory 

  Conversion (%) 

Pentane(P) 0.9  20 0.9 

Hexyne(1HY)  47 46 47 

  Yield (%) 

Iso-pentane   0 0 

Pentene    0 

Trans-2-Pentene 0.008   0.008 

Hexane  0 0 0 

1-Hexene  0.12 0 0.12 

2-Hexene  0 0 0 

3-Hexene  0 0.09 0 

Methyl-2-pentene  0.56 1.45 0.56 

3-Methylpentyne  10.55 0 10.55 

3-Methyl-1-hexene  1.65 1.81 1.5 

3-Methylhexane  0.46 0.31 0.42 

2-Methyl-1,3-pentadiene  1.64 1.58 1.64 

1,4-Hexadiene  11.51 0.56 11.51 

2-Methyl-1-1hexene  1.36 2.24 1.364 

Methylcyclohexane  11.18 2.41 11.187 
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On-going to higher temperature an increase in the total olefin yield was 

observed as shown in Figure 30.  The ratio of olefin to alkylated olefins was 

about 1:2 at most temperatures.  The olefin production is observed to be higher 

compared to the other valuable products obtained during the trans-

hydrogenation as presented in Figure 31. There is also an increase in these 

valuable products with the reaction temperature (Figure 32)   

 

Figure 30: Total olefin yield with temperature over the CrOx/Al2O3 using 1HY system 

 

 

Figure 31: Profile of valuable product in relative to the reaction temperature over CrOx/Al2O3 
using 1HY system 
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Figure 32: Relationship of the valuable products over CrOx/Al2O3 using 1HY system 

 

The eluent gas products were analysed by on-line mass spectrometry. The 

evolution of hydrogen was observed from the start of the reaction but later 

declined at ~ 40 min completely on the stream. CH4 and C2H4 were also evolved 

at almost the same time when the hydrogen start to decline from the stream 

and was maintained to the end of the reaction. This same trend was observed 

with 773-623 K temperatures run while only pulses of these gases were observed 

with 573 and 523 K temperatures. The result obtained at 773 K is presented in 

Figure 33 

 

Figure 33: Profile of the evolved gases over CrOx/Al2O3 using P only at 773 K 
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Figure 34: Profile of the evolved gases over CrOx/Al2O3 using 1HY only at 773 K 

 

 

Figure 35: Profile of the evolved gases over CrOx/Al2O3 using P/1HY at 773 K 
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Table 17: carbon balance for the P/1HY trans-hydrogenation reaction over the CrOx/Al2O3 
catalyst 

 

Temperature 

(K) 

Carbon balance (%) 

 Liquid a 

Ptds. 

CH4 b C2H4 b Coke c Pdts Non 

accounted  

773 74 3 11 0.60 11 

673 83 3 10 0.4 5.01 

623 82 3 9 0.19 6.14 

573 91 - - 0.07 4 

523 94 - - 0.02 3 

a) Obtained from the GC analysis, b) obtained from the mass spec analysis, c) obtained from the TGA analysis 

The hydrogenation reactions of hexyne/hexadiene were also performed to 

determine the catalyst efficacy on the hydrogenation and compare with the 

trans-hydrogenation reaction. This was performed using 2% H2/N2 in the ratio of 

2:1 hexyne or hexadienes/2% H2/N2.It is observed that the reaction products and 

distribution obtained were very similar to that obtained with trans-

hydrogenation process. There are also similarities observed in the major 

products obtained in the two processes, but the hydrogenation process exhibits a 

higher percentage yield of these products. The reaction obtained at 573K 

presented the best similarity and the percentage yields of the primary olefin are 

more significant. The results are presented in Table 18-20. Higher conversions of 

the reactants were obtained approximately the same with the trans-

hydrogenation process at all the tested reaction temperatures. 

 

 

 

 

 



 
 

66 
 

Table 18: Products yield during the hydrogenation of1HY over the CrOx/Al2O3 at 623K 

 

 Yield (%) 

 1HY + 2% H2/N2 P+1HY P+1HY Theory 

Iso-pentane    

Pentene  0.19 0 

Trans-2-Pentene   0.08 

Hexane 18.46 0.52 0 

1-Hexene 3.39 1.81 0.33 

2-Hexene 1.07 2.06 1.21 

3-Hexene  1.46 0 

Methyl-2-pentene 0.74 2.22 2.17 

3-Methylpentyne 23.5 19.24 11.6 

3-Methyl-1-hexene 1.44 1.70 1.29 

3-Methylhexane 0.64 1.38 0.55 

2-Methyl-1,3-pentadiene 2.05 2.14 0 

1,4-Hexadiene 18.28 19.38 20.95 

Methylcyclohexane  2.42 20.42 

Ethylcyclopentane  1.12 3.92 
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Table 19: Products yield during the hydrogenation of 1HY over the CrOx/Al2O3 at 573K 

 

 Yield (%) 

 1HY + 2% H2/N2 P+1HY P+1HY Theory 

Iso-pentane  0.05 0 

Pentene  0.10 0 

Trans-2-Pentene   0.02 

Hexane 2.19 0.88 0.05 

1-Hexene 2.55 3.06 1.07 

2-Hexene 2.61 3.08 0.2 

3-Hexene 0.57 3.44 0 

Methyl-2-pentene 4.25 0.28 0 

3-Methylpentyne 21.84 7.75 6.18 

3-Methyl-1-hexene 2.82 0.65 1.03 

3-Methylhexane 1.51 0.34 0.41 

2-Methyl-1,3-pentadiene 2.98 0.66 0.17 

1,4-Hexadiene 19.56 5.32 9.41 

Methylcyclohexane 10.69 1.24 3.99 

Ethylcyclopentane 0 0.89 1.75 
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Table 20: Products yield during the hydrogenation of1HY over the CrOx/Al2O3 at 523K 

 

 Yield (%) 

 1HY + 2% H2/N2 P+1HY P+1HY Theory 

Iso-pentane  0 0 

Pentene   0 

Trans-2-Pentene   0.008 

Hexane 0.07 0 0 

1-Hexene 0.28 0 0.12 

2-Hexene 0.23 0 0 

3-Hexene 0.22 0.09 0 

Methyl-2-pentene 0 1.45 0.56 

3-Methylpentyne 17.36 0 10.55 

3-Methyl-1-hexene 2.65 1.81 1.5 

3-Methylhexane 0.96 0.31 0.42 

2-Methyl-1,3-pentadiene 3.28 1.58 1.64 

1,4-Hexadiene 26.97 0.56 11.51 

Methylcyclohexane 3.81 2.24 1.364 

Ethylcyclopentane 10.43 2.41 11.187 

 

3.2.2.2 Post reaction characterization and analysis  

The carbonaceous deposit on the spent catalyst was studied using TGA-TPO 

analysis.  The TGA analysis shows a unique weight loss with each type of 

reactant, and the amount of lost material is seen as a function of the reaction 

temperatures. The reaction at 773 K reveals the highest weight loss with all the 

reactants and the 523K reaction the lowest weight loss. The main loss observed 

with pentane occurs at ~623 - 673 K, while with the hexyne and the mixed feeds 

the main weight loss occurred at ~ 673 – 823 K. However, a general reduction in 
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the weight loss was observed using the mixed feed trans-hydrogenation process.  

The results are presented in Figures 36, 37 and 38. 

 

Figure 36 : Weight loss profile of pentane run alone over CrOx/Al2O3 catalyst 

  

 

Figure 37: Weight loss profile of hexyne run alone over CrOx/Al2O3 catalyst 

 

92

93

94

95

96

97

98

99

100

250 450 650 850 1050 1250

%
 w

t 
lo

ss
 

Temperature (K) 

773 K 673 K 623 K 573 K 523 K

82

84

86

88

90

92

94

96

98

100

250 450 650 850 1050 1250

%
 w

t.
 lo

ss
 

Temperature (K) 

773 K 673 K 623 K 573 K 523 K



 
 

70 
 

 

Figure 38: Weight loss profile of the pentane/hexyne mixed feed over CrOx/Al2O3 catalyst 

 

TPO analysis during the TGA revealed carbon dioxide as the main desorption 

species evolved. This was determined by the mass spectrometer (m/e 44). The 

results are presented in Figure 39, 40 and 41 

 

Figure 39: TPO profile of pentane run alone over CrOx/Al2O3 catalyst 

 

82

84

86

88

90

92

94

96

98

100

250 450 650 850 1050 1250

%
 W

t.
 lo

ss
   

Temperature (K)  

773 K 673 K 623 K 573 K 523 K

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

250 450 650 850 1050 1250

Io
n

 c
u

rr
e

n
t 

(n
A

) 

Temperature (K) 

773 K 673 K 623 K 573 K 523 K



 
 

71 
 

 

Figure 40: TPO profile of hexyne run alone over CrOx/Al2O3 catalyst 

 

 

Figure 41: TPO profile of pentane/hexyne mixed feeds over CrOx/Al2O3 

 

The TPO of the spent catalyst obtained after the hydrogenation process is 

presented in Figure 42. It is observed that at each temperature the CO2 

desorption peak was virtually identical.  The TPO of the 523 K run shows a 

reduced amount of recalcitrant carbon deposit.  
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Figure 42: TPO profile of 1HY during hydrogenation over CrOx/Al2O3 catalyst 

 

In addition to this, other masses (m/e 2, 16, 18 and 28) were also monitored. 

Traces of H2 CH4 C2H4 and water were also detected in some of the samples. The 

loss of these species matches the TGA derivative weight loss profile. The result 

obtained from the spent catalyst used at 773 K is presented in Figure 43. The 

other masses obtained from the TPO of the catalyst used in the hydrogenation 

process are shown in Figure 44. 

 

Figure 43: Species obtained during the TPO-MS using hexyne/pentane system with 
CrOx/Al2O3 catalyst 
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Figure 44: Mass spectra data obtained from TPO during the 1HY hydrogenation over CrOx/Al2O3 catalyst at 623
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The amount of carbon species removed from the surface of each catalyst was 

dependent upon the reaction temperature.  The type of reactant used, either 

fed individually, or as mixed feed trans-hydrogenation process. Samples which 

had been subjected to only hexyne as the reactant showed the highest amounts 

of weight loss, but there was a reduction observed in this amount during the 

trans-hydrogenation process. However, reaction with pentane alone revealed 

less weight loss compared to hexyne or the mixed feed. The percentage carbon 

deposit for each run individually alone and as a mixed feed was determined and 

is presented in Figure 45. 

 

Figure 45: Carbon laydown of the spent CrOx/Al2O3 catalyst over the set temperatures 

 

Table 21: Total amount of carbon deposited on spent CrOx/Al2O3 catalyst at various 
temperatures 

 

Temperature (K) Carbon deposited (g/g feed) 

 P P/1HY 1HY 

523  0.0035 0.0047 0.0678 

573  0.0040 0.0128 0.0768 

623  0.0041 0.0130 0.0787 

673  0.0044 0.0150 0.0938 

773 0.0048 0.0152 0.1040 

  

0

2

4

6

8

10

12

14

523 K 573 K 623 K 673 K 773 K

C
ar

b
o

n
 la

yd
o

n
 (

%
) 

pentane only Pentane/Hexyne mix hexyne only



 
 

75 
 

The spent catalyst were further analysed using Raman spectroscopy, both UV 

and visible radiation were used for the studies to analyse the carbon deposit. 

The UV radiation was used to avoid fluorescence which provides advantages 

when studying heavily coked material [81-84].  The Raman peaks under UV 

excitation are enhanced and more intense[85]. When analysing the catalyst with 

UV radiation, it was observed that only runs with the hexyne and mixed feeds 

showed Raman bands assigned to coke deposition at ~1380 and 1600 cm-1 related 

to D and G bands respectively. However, the D band was lost using the mixed 

feed process and only G bands were observed at 523 K and 573 K. Meanwhile, 

when the same catalysts were analysed with visible radiation, they fluoresced 

and no clear bands were observed. When UV radiation was used on the spent 

catalysts that had been used with pentane, they fluoresced but when the same 

catalysts were analysed with visible radiation, Raman spectra were obtained. 

The Raman spectra reveals bands assigned to chromia ~880 and ~940 cm-1  and G 

bands assigned to coke deposition at ~1600 cm-1. The G band was only observed 

with reactions performed at 623, 673 and 773 K.  The results are presented in 

figures 46, 47 and 48 

 

Figure 46: Raman spectra of spent CrOx/Al2O3 catalyst for sole pentane obtained using the 
Visible-radiation 
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Figure 47: Raman spectra of spent CrOx/Al2O3 catalyst for sole 1HY obtained using the UV-
radiation 

 

 

Figure 48: Raman spectra of spent CrOx/Al2O3 catalyst for mixed feeds obtained using the 
UV-radiation 
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Therefore, a plot of SBET vs. Reaction Temperature was obtained .The hexyne 

reactant exhibited much higher loss while the pentane reactants present the 

lowest decrease. The results are presented in Figure 49 

 

Figure 49: Effect of temperature on the surface area on the spent CrOx/Al2O3 catalyst using 
1HY system 

 

The XRD analysis revealed only the diffraction pattern for γ-alumina and there 

are not any obvious changes observed in the diffraction pattern at any 

temperature due to these reactions. The fresh catalyst has the same diffraction 

pattern as the alumina support and there is no evidence for crystalline phases of 

chromium oxide observed for the studied catalyst due to the percentage loading 

as reported in previous studies[86].  The result is presented in Figure 50 

 

Figure 50: XRD diffraction patterns of the CrOx/Al2O3 catalyst pre- and post- reaction 
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3.2.3 Pentane/1,5-Hexdiene (P/1,5HD) system 

3.2.3.1 Reaction analysis and trans-hydrogenation activity evaluation 

The reactant conversions were followed individually and during the mixed trans-

hydrogenation reaction using the 1,5HD system. There was observed an increase 

in the conversion of the pentane at all temperatures with the trans-

hydrogenation process, compared to the conversions of the pentane 

dehydrogenation. Conversions higher than what was observed with the 1HY 

system were obtained here; ~90% was achieved and was observed with nearly all 

reaction temperatures. These are significantly higher than the equilibrium 

conversion of pentane dehydrogenation. The result is presented in Figure 51. 

 

Figure 51: Conversion comparison of P, 1,5HD and P/1,5HD mixture using CrOx/Al2O3 
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Table 22: Product yield of the trans-hydrogenation over 1,5HD system at 773 K 

 

 P H P+H P+H Theory 

  Conversion (%) 

Pentane(P) 11  91 11 

1,5-hexadiene(1,5HD)  99 99 99 

  Yield (%) 

Iso-pentane 1.01  0.23 1.01 

1-Pentene   0.15 0 

Trans-2-Pentene 8.59   8.59 

Hexane  5.47 2.66 5.47 

1-Hexene  2.03 1.36 2.03 

2-Hexene  1.87 2.55 1.87 

3-Hexene  11.75 7.37 11.75 

methyl-2-pentene  8.96 13.47 8.96 

3-Methylpentyne  0 0.92  

3-Methyl-1-hexene  5.18 20.48 5.18 

Benzene  0 4.74  

3-Methylhexane  19.65 10.41 19.65 

2-Methyl-1,3-pentadiene  12.57 23.91 12.57 

2-Methyl-1-hexene  4.59 4.54 4.59 

Methylcyclohexane 0.61 4.64 9.74 5.25 

Ethylcyclopentane 0.37 1.38  1.75 
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Table 23: Product yield of the trans-hydrogenation over 1,5HD system at 673 K 

 

 P H P+H P+H Theory 

   Conversion (%) 

Pentane(P) 08  91 91 

1,5-hexadiene(1,5HD)  99 99 99 

   Yield (%) 

Iso-pentane 0.46  0.21 0.46 

1-Pentene    0 

Trans-2-Pentene 0.53   0.13 

Hexane  1.84 0.47 1.84 

1-Hexene  0.79 1.61 0.79 

2-Hexene  0.95 1.47 0.95 

3-Hexene  2.73 5.41 2.73 

Methyl-2-pentene  6.97 8.34 6.97 

3-Methylpentyne  0  0 

3-Methyl-1-hexene  20.52 19.45 20.52 

Benzene  0.62 0.25 0.62 

3-Methylhexane  12.28 5.58 12.28 

2-Methyl-1,3-pentadiene  19.76 19.36 19.76 

2-methyl-1-1hexene  1.66 4.02 1.66 

Methylcyclohexane 3.91 1.58 9.49 5.86 
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Table 24: Product yield of the trans-hydrogenation over 1,5HD system at 623 K 

 

 P H P+H P+H Theory 

   Conversion (%) 

Pentane(P) 10  91 91 

1,5-hexadiene(1,5HD)  99 99 99 

   Yield (%) 

Iso-pentane    0 

1-Pentene   0.13 0 

Trans-2-Pentene 0.08  0.35 0.08 

Hexane  0.89 1.17 0.89 

Hexene  0.31 0.39 0.31 

2-Hexene  0.91 1.17 0.91 

3-Hexene  4.12 4.16 2.12 

Methyl-2-pentene  5.01 4.37 5.01 

3-Methylpentyne    0 

3-Methyl-1-hexene  17.53 16.53 17.53 

Benzene   0.34 0 

3-Methylhexane  11.56 6.6 11.56 

2-Methyl-1,3-pentadiene  19.85 19.84 15.85 

2-Methyl-1-1hexene  2.37 3.87 2.37 

Methylcyclohexane 5.23 6.49 10.59 11.72 

Ethylcyclopentane 1.25   1.25 
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Table 25: Product yield of the trans-hydrogenation over 1,5HD system at 573 K 

 

 P H P+H P+H Theory 

 Conversion (%) 

Pentane(P) 04  87 87.88 

1,5-Hexadiene(1,5HD)  99 99 99.81 

     

 Yield (%) 

Iso-pentane    0 

1-Pentene    0 

Trans-2-Pentene 0.02  0.24 0.02 

Hexane  0.53 0.83 0.53 

1-Hexene  0 0.23 0 

2-Hexene   1.81 0 

3-Hexene  4.56 5.37 1.56 

methyl-2-pentene  3.26 4.74 3.26 

3-Methylpentyne    0 

3-methyl-1-hexene  15.83 15.74 13.83 

Benzene    0 

3-Methylhexane  15.64 7.99 15.64 

2-Methyl-1,3-pentadiene  21.17 19.25 21.17 

2-Methyl-1-1hexene  3.31 3.48 3.31 

Methylcyclohexane 0.22 6.47 12.34 6.47 

Ethylcyclopentane 0.39   0.39 
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Table 26: Product yield of the trans-hydrogenation over 1,5HD system at 523 K 

 

  P H P+H P+H Theory 

 Conversion (%) 

Pentane(P) 0.9  89 0.9 

1,5-Hexadiene(1,5HD)  98 99.71 98 

 Yield (%) 

Iso-pentane   0.006 0 

1-Pentene    0 

2-Pentene 0.008  0.21 0.008 

Hexane  6.58 0.54 6.58 

1-Hexene  0 0.15 0 

2-Hexene  0.16 0.56 0.16 

3-Hexene  2.36 4.17 0.36 

Methyl-2-pentene  5.21 5.73 5.21 

3-Methylpentyne   0 0 

3-Methyl-1-hexene  28.45 7.67 28.45 

Benzene  0.42 0 0.42 

3-Methylhexane  8.82 3.83 8.82 

2-Methyl-1,3-pentadiene  22.5 16.58 22.5 

2-Methyl-1-1hexene  4.5 9.15 1.5 

Methylcyclohexane  4.07 21.94 4.07 
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There is an increase in the yield of the total olefins with increasing reaction 

temperature; ~50 % total olefin is obtained at 773 K. The total olefin comprises 

also the alkylated olefins, and the olefin to alkylated olefins ratio is about 1:4 at 

most temperatures. However, the total valuable product which is the summation 

of both the olefins, alkylated olefins and alkylated products is ~60% using the 

1,5HD system at 773 K. Higher yield of the valuable products were 

predominantly observed at higher temperatures as presented in Figure 52. The 

olefin production is observed to be higher than the other valuable as presented 

in Figure 53. There is also an increase in these valuable products with the 

reaction temperature (Figure 54)   

 

Figure 52: Total olefin yield with temperature over the CrOx/Al2O3 using 1,5HD system 

 

 

Figure 53: Profile of valuable product relative to the reaction temperature over CrOx/Al2O3 
using 1,5HD system 
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Figure 54: Relationship of the valuable products over CrOx/Al2O3 using 1,5HD system 

 

The eluent gas products analysis using this system also confirms the evolution of 
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this system confirming that the 1,5HD behaves differently to the 1HY on the 

catalyst surface. Although they have the same molecular formula (C6H10) they 

are of different configuration. This same gas evolution trend was observed at 
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Figure 55: Profile of the evolved gases over CrOx/Al2O3 using 1,5HD only at 723 K 

 

 

Figure 56: Profile of the evolved gases over CrOx/Al2O3 using P/1,5HD at 723K 
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Table 27: carbon balance for the trans-hydrogenation reaction over the CrOx/Al2O3 catalyst 

 

Temperature 

(K) 

Carbon balance (%) 

 Liquid a 

Ptds. 

C3H6 b C4H8 b Coke c Pdts un- 

accounted  

773 81 1.78 0.89 0.061 16.2 

673 84 1.45 0.84 0.061 13.6 

623 83 1.13 0.67 0.065 14.7 

573 89 - - 0.052 10.9 

523 91 - - 0.054 9.9 

a) Obtained from the GC analysis, b) obtained from the mass spec analysis, c) obtained from the TGA analysis 

The hydrogenation reaction of 1,5-hexadiene also show similar reaction products 

and distribution obtained during trans-hydrogenation. There are also similarities 

observed in the major products obtained in the two processes, but the 

hydrogenation process exhibits a higher percentage yield of these products and 

there is general increase in the olefin products. However, it is clearly observed 

that there is observed trans-hydrogenation comparing the two processes 

together. The results are presented in Table 28-30. Higher conversions of the 

reactants were obtained approximately the same with the trans-hydrogenation 

process at all the tested reaction temperatures. 
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Table 28: Products yield during the hydrogenation of 1,5HD over CrOx/Al2O3 at 623 K 

 

 1,5HD + 2% H2/N2 P+1,5HD P+15HD Theory 

Iso-pentane   0 

Pentene  0.13 0 

Trans-2-Pentene  0.35 0.08 

Hexane 0.75 1.17 0.89 

Hexene 5.77 0.39 0.31 

2-Hexene 0.75 1.17 0.91 

3-Hexene 3.4 4.16 2.12 

Methyl-2-pentene 4.76 4.37 5.01 

3-Methylpentyne   0 

3-Methyl-1-hexene 30.59 16.53 17.53 

Benzene  0.34 0 

3-Methylhexane 3.99 6.6 11.56 

2-Methyl-1,3-pentadiene 15.27 19.84 15.85 

2-Methyl-1-1hexene 5.86 3.87 2.37 

Methylcyclohexane 16.25 10.59 11.72 

Ethylcyclopentane   1.25 
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Table 29: Products yield during the hydrogenation of 1,5HD over CrOx/Al2O3 at 573 K 

 

 1,5HD + 2% H2/N2 P+1,5HD P+15HD Theory 

Iso-pentane   0 

Pentene   0 

Trans-2-Pentene  0.24 0.02 

Hexane 0.74 0.83 0.53 

Hexene 42.33 0.23 0 

2-Hexene 0.79 1.81 0 

3-Hexene 2.53 5.37 1.56 

Methyl-2-pentene 1.57 4.74 3.26 

3-Methylpentyne 0  0 

3-Methyl-1-hexene 18.75 15.74 13.83 

Benzene 0  0 

3-Methylhexane 1.22 7.99 15.64 

2-Methyl-1,3-pentadiene 11.82 19.25 21.17 

2-Methyl-1-1hexene 2.45 3.48 3.31 

Methylcyclohexane  12.34 6.47 

Ethylcyclopentane   0.39 
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Table 30: Products yield during the hydrogenation of 1,5HD over CrOx/Al2O3 at 523 K 

 

 1,5HD +2% H2/N2 P+1,5HD P+15HD Theory 

Iso-pentane  0.006 0 

Pentene   0 

Trans-2-Pentene  0.21 0.008 

Hexane 5.58 0.54 6.58 

Hexene 17.05 0.15 0 

2-Hexene 0.31 0.56 0.16 

3-Hexene 1.62 4.17 0.36 

Methyl-2-pentene 2.14 5.73 5.21 

3-Methylpentyne  0 0 

3-Methyl-1-hexene 19.86 7.67 28.45 

Benzene  0 0.42 

3-Methylhexane 1.74 3.83 8.82 

2-Methyl-1,3-pentadiene 8.3 16.58 22.5 

2-Methyl-1-1hexene 4.6 9.15 1.5 

Methylcyclohexane 6.25 21.94 4.07 

 

4.2.3.2 Post reaction characterization and analysis  

The TGA- weight loss analysis of the spent catalyst reveals a similar trend in the 

weight loss just like the 1HY system, where the amount of the loss material is 

observed as a function of the reaction temperature. The reaction at 773 K 

reveals a high loss with both the 1,5HD run alone and P/1,5HD trans-

hydrogenation, and the catalyst run at 523 K reveals the lowest loss. The main 

loss occurred at ~ 530 – 710 K. However, general reduction in the weight loss was 

observed using the mixed feed trans-hydrogenation process as observed with 1HY 
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system, but there is general reduction in loss material compared with the 1HY 

system.  The results are presented in Figure 57 and 58. 

 

Figure 57: Weight loss profile of 1,5HD run alone over CrOx/Al2O3 catalyst 

 

 

Figure 58: Weight loss profile of P/1,5HD mixed feed over CrOx/Al2O3 catalyst 
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with reaction temperature using this system. The results are presented in Figure 

59 and 60. A similar effect of the shift in the CO2 evolution with the reaction 

temperature was observed with the hydrogenation spent catalyst. The results 

are presented in Figure 61. 

 

Figure 59: TPO profile of 1,5HD run alone over CrOx/Al2O3 catalyst 

 

 

Figure 60: TPO profile of P/1,5HD mixed feed over CrOx/Al2O3 catalyst 
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Figure 61: TPO profile during 1,5HD hydrogenation over CrOx/Al2O3 catalyst 

 

The loss of these species matches the TGA derivative weight loss profile and 

their evolution masses and loss can be assigned to CO2. The result obtained at 

723 K is presented in Figure 62. m/e 2 was detectable in the eluant of the 

hydrogenation spent catalyst. The result is presented in Figure 63. 

 

Figure 62: Species obtained during the TPO-MS using 1,5 HD system with CrOx/Al2O3 
catalyst 
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Figure 63: Mass spectra data obtained from TPO during the 1,5HD hydrogenation over 
CrOx/Al2O3 catalyst at 623 K 
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Figure 64: Carbon laydown of the spent CrOx/Al2O3 catalyst over the set temperatures 

 

The amount of carbon formed related to the reactant feed were summarized and 

presented in Table 31. It is observed that there is clear reduction of the carbon 

formation with the trans-hydrogenation system. 

Table 31: Total amount of carbon deposited on spent CrOx/Al2O3 catalyst at various 
temperatures using 1,5HD system 

 

Temperature (K) Carbon deposited (g/g feed) 

 P P/1,5HD 1,5HD 

523 K 0.0035 0.0045 0.0054 

573 K 0.0040 0.0044 0.0054 

623 K 0.0041 0.0054 0.0071 

673 K 0.0044 0.0052 0.0098 

773 K 0.0048 0.0051 0.0105 

 

The Raman spectroscopic analysis of the spent catalysts was obtained using UV 

radiation for the studies of the carbon deposit similar to the 1HY system. The 

Raman spectrum shows Raman bands assigned to coke deposition at ~1380 and 
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1,5HD feed at 773 K, only G bands were observed at low temperature (573-523 

K) as there is no clear evidence for the D bands. The D band was lost using the 
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mixed feed process and only G bands are observed at all the reaction 

temperatures. This behaviour is similar to the 1HY system. The results are 

presented in Figure 65 and 66 

 

Figure 65: Raman spectra of spent CrOx/Al2O3 catalyst for sole 1,5HD obtained using the UV-
radiation 

 

 

Figure 66: Raman spectra of spent CrOx/Al2O3 catalyst for mixed feeds obtained using the 
UV-radiation 

 

The BET analysis performed on the spent catalyst also suggests that the 

formation of coke on the catalyst surface decreases the SBET and the pore 

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000 3500

In
te

n
si

ty
 (

a.
u

) 

Wavelenght (cm-1) 

773 K 673 K 623 K 573 K 523 K

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500 3000 3500

In
tn

si
ty

 (
a.

u
) 

Wavelenght (cm-1) 

773 K 673 K 623 K 573 K 523 K



 
 

97 
 

volume. Significant loss in the SBET observed with all the samples, just like with 

the 1HY system. Samples which had been subjected to the pentane run showed 

less surface area loss compared to the 1,5HD and the mixed feed. The SBET 

reduction is observed as a function of temperature the losses are more 

significant at high reaction temperature. A plot of SBET vs. reaction temperature 

was obtained to relate the effect of reaction temperature on the catalyst BET 

surface area. However, the 1HY system exhibit much higher loss compared to 

the 1,5HD system at all reaction temperatures. The result is presented in Figure 

67 

 

Figure 67: Effect of temperature on the surface area on the spent CrOx/Al2O3 catalyst using 
1,5HD system 
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3.2.4 Pentane/2,4-Hexadiene (P/2,4HD) system 

3.2.4.1 Reaction analysis and trans-hydrogenation activity evaluation 

Reactant conversions were followed individually and during the mixed trans-

hydrogenation reaction using the 2,4HD system. The conversion of pentane was 

poorer, and conversions lower than when pentane was run individually except at 

623 K. Slightly higher conversion (~17 %) was obtained compared to when 

pentane was run individually (~10 %).  The trans-hydrogenation process does not 

improve the conversion of the pentane dehydrogenation and there is no 

significant increase in the equilibrium conversion of pentane dehydrogenation 

unlike with the 1HY and 1,5HD systems. This is consistent with the 

thermodynamic limitation as explained in (section 3.1), reaction with 2,4-HD is 

not expected to lift this limitation. The result is presented in Figure 68 

 

Figure 68: Conversion comparison of P, 2,4HD and P/2,4HD mixture using CrOx/Al2O3 
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Figure 69: Conversion comparison of cis/trans 2,4HD using CrOx/Al2O3 

  

The products yields were calculated and presented in Table 32-36. Low 

percentage yield of the valuable products obtained with this system. Most of the 
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changes.  
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Table 32: Products yield of the trans-hydrogenation over CrOx/Al2O3 using 2,4HD system at 
773 K 

 

 P H P+H P+H Theory 

 Conversion (%) 

Pentane(P) 11  9.4 11 

2,4-Hexadiene(2,4HD)  82 81 82 

Cis-2,4HD  75 74  

Trans-2,4HD  86 85  

 Yield (%) 

Iso-pentane 1.01   1.01 

Pentene   0.03 0 

Trans-2-Pentene 8.59  0.1 8.59 

Hexane  1.99 2.55 1.99 

1-Hexene  0.42 0.23 0.42 

2-Hexene  0.93 0.53 0.93 

3-Hexene  2.53 3.65 2.53 

Methyl-2-pentene  6.89 7.11 6.89 

Benzene  2.25  2.25 

2-Methyl-1,3-pentadiene  22.5 5.58 22.5 

Methylcyclohexane 0.61 12.64 12.33 13.25 

Ethylcyclopentane 0.37   0.37 
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Table 33: Products yield of the trans-hydrogenation over CrOx/Al2O3 using 2,4HD system at 
673 K 

 

 P H P+H P+H Theory 

 Conversion (%) 

Pentane(P) 08  07 08 

2,4-Hexadiene(2,4HD)  74 64 74 

Cis-2,4HD  74 48  

Trans-2,4HD  78 66  

 Yield (%) 

Iso-pentane 0.46   0.46 

Pentene   0.09 0 

Trans-2-Pentene 0.53   0.13 

Hexane  1.92 0.86 0.92 

1-Hexene  0.3 0.26 0.3 

2-Hexene  0.87 2.6 0.87 

3-Hexene  2.35 2.17 2.35 

Methyl-2-pentene  4.18 5.97 4.18 

2-Methyl-1,3-pentadiene  21.52 10.58 21.52 

Methylcyclohexane 3.91 11.87 10.12 15.78 
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Table 34: Products yield of the trans-hydrogenation over CrOx/Al2O3 using 2,4HD system at 
623 K 

 

 P H P+H P+H Theory 

   Conversion (%) 

Pentane(P) 10  17 10 

2,4-Hexadiene (2,4HD)  50 63 50 

Cis-2,4HD  64 61  

Trans-2,4HD  57 37  

   Yield (%) 

Iso-pentane   0.41  

Pentene   0.12 0 

Trans-2-Pentene 0.08   0.08 

Hexane  2.4 1.18 0.4 

1-Hexene  0.14 0 0.14 

2-Hexene  0.45 0.21 0.45 

3-Hexene  1.4 2.43 1.4 

Methyl-2-pentene  4.03 6.21 4.03 

2-Methyl-1,3-pentadiene  18.52 7.14 21.52 

Methylcyclohexane 5.23 10.87 9.21 16.10 

Ethylcyclopentane 1.25   1.25 
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Table 35: Products yield of the trans-hydrogenation over CrOx/Al2O3 using 2,4HD system at 
573 K 

 

 P H P+H P+H Theory 

 Conversion (%) 

Pentane(P) 4  1.6 4 

2,4-Hexadiene(2,4HD)  34 20 34 

Cis-2,4HD  31 0  

Trans-2,4HD  41 21  

 Yield (%) 

Iso-pentane   0.04 0 

Pentene   0.12 0 

Trans-2-Pentene 0.02   0.02 

Hexane  1.07 0.4 0.07 

1-Hexene  0 0.14 0 

2-Hexene  0.15 0.49 0.15 

3-Hexene  0.48 1.56 0.48 

Methyl-2-pentene  5.89 6.95 6.89 

3-Methylhexane   2.2 0.41 

2-Methyl-1,3-pentadiene  8.52 0 8.52 

Methylcyclohexane 0.22 5.76 5.45 5.98 

Ethylcyclopentane 0.39   0.39 
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Table 36: Products yield of the trans-hydrogenation over CrOx/Al2O3 using 2,4HD system at 
523 K 

 

 P H P+H P+H Theory 

 Conversion (%) 

Pentane(P) 1  1.5 1 

2,4-Hexadiene(2,4HD)  32 20 32 

Cis-2,4HD  30 0  

Trans-2,4HD  40 20  

 Yield (%) 

Iso-pentane   0.01 0 

Pentene    0 

Trans-2-Pentene 0.008   0.008 

Hexane  1.18 0.09 0.18 

1-Hexene  0.04 0 0.04 

2-Hexene  0.22 0.13 0.22 

3-Hexene  0.73 1.48 0.73 

Methyl-2-pentene  4.2 4.54 4.2 

3-Methylhexane  3.82 4.08 3.82 

2-Methyl-1,3-pentadiene  7.69 0 7.69 

Methylcyclohexane  4.55 3.83 4.55 
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The total olefin yield obtained with the 2,4HD system is very low (~13%) at 773 

K, compared with the other two systems. The result is presented in Figure 70. 

There is no clear difference in the olefin production compared to the other 

valuable products as presented in Figure 71 but there is an increase in these 

valuable products with the reaction temperature (Figure 72)   

 

Figure 70: Total olefin yield with temperature over the CrOx/Al2O3 using 2,4HD system 

 

 

Figure 71: Profile of valuable product relative to the reaction temperature over CrOx/Al2O3 
using 2,4HD system 
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Figure 72: Relationship of the valuable products over CrOx/Al2O3 using 2,4HD system 

 

The eluent gas products analysis using 2,4 HD system also confirm the evolution 

of hydrogen from the start of the reaction. The hydrogen evolution also 

gradually declined but was maintained in the reaction stream similar to the 

1,5HD system. There is a significant reduction of the hydrogen at ~20 min before 

the gradual decline. C3H6 and C4H8 evolution were observed also with this 

system, and increased and maintained on stream for the reaction period after 

the hydrogen declined from the reaction stream. C3H8 and C4H8 were evolved, 

which shows similar fragmentation with 1,5HD on the catalyst surface.  

 

Figure 73: Profile of the evolved gases over CrOx/Al2O3 using 2,4HD only at 723 K 
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2,4HD and 1,5HD are of the same class hexadiene but only that the arrangement 

of the two double bonds is different, so there is high tendency they might 

fragmented in the same way. The result obtained at 723 K is presented in Figure 

73 and 74 

 

Figure 74: Profile of the evolved gases over CrOx/Al2O3 using P/2,4HD mixed feed at 723 K 

 

Table 37: carbon balance for the trans-hydrogenation reaction over the CrOx/Al2O3 catalyst 

 

Temperature 

(K) 

Carbon balance (%) 

 Liquid a 

Ptds. 

C3H6 b C4H8 b Coke c Pdts un- 

accounted  

773 86 0.66 0.76 0.048 12.5 

673 87 0.61 0.81 0.053 11.3 

623 86 0.65 0.69 0.040 12.6 

573 90 - - 0.038 9.9 

523 94 - - 0.034 6.9 

a) Obtained from the GC analysis, b) obtained from the mass spec analysis, c) obtained from the TGA analysis 
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Table 38: Products yield during the hydrogenation of 2,4HD over CrOx/Al2O3 at 623 K 

 

 2,4HD + 2% H2/N2 P+H P+H Theory 

  Conversion (%) 

2,4-Hexadiene (2,4HD) 69 63 50 

 Yield (%) 

Iso-pentane  0.41  

Pentene  0.12 0 

Cis-2-Pentene 1.21   

Trans-2-Pentene   0.08 

Hexane 1.25 1.18 0.4 

1-Hexene 3.45 0 0.14 

2-Hexene  0.21 0.45 

3-Hexene 2.53 2.43 1.4 

Methyl-2-pentene 4.34 6.21 4.03 

2-Methyl-1,3-pentadiene 20.52 7.14 21.52 

Methylcyclohexane 14.82 9.21 16.1 

Ethylcyclopentane   1.25 
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Table 39: Products yield during the hydrogenation of 2,4HD over CrOx/Al2O3 at 573 K 

 

 2,4HD + 2% H2/N2 P+H P+H Theory 

 Conversion (%) 

2,4-hexadiene(2,4HD) 64 20 34 

 Yield (%)   

Iso-pentane  0.04 0 

Pentene  0.12 0 

cis-2-Pentene    

Trans-2-Pentene 1.26  0.02 

Hexane 2.01 0.4 0.07 

1-Hexene 1.54 0.14 0 

2-Hexene 1.15 0.49 0.15 

3-Hexene 4.81 1.56 0.48 

methyl-2-pentene 6.29 6.95 6.89 

3-Methylhexane  2.2 0.41 

2-Methyl-1,3-pentadiene 18.52 0 8.52 

Methylcyclohexane 12.76 5.45 5.98 

Ethylcyclopentane   0.39 
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Table 40: Products yield during the hydrogenation of 2,4HD over CrOx/Al2O3 at 523 K 

 

 2,4HD + 2% H2/N2 P+H P+H Theory 

 Conversion (%) 

2,4-Hexadiene(2,4HD) 51 20 32 

 Yield (%) 

Iso-pentane  0.01 0 

Pentene   0 

Cis-2-Pentene 0.32   

Trans-2-Pentene   0.008 

Hexane 2.18 0.09 0.18 

1-Hexene 1.04 0 0.04 

2-Hexene 1.22 0.13 0.22 

3-Hexene 3.63 1.48 0.73 

Methyl-2-pentene 4.83 4.54 4.2 

3-Methylhexane 3.88 4.08 3.82 

2-Methyl-1,3-pentadiene 9.72 0 7.69 

Methylcyclohexane 10.53 3.83 4.55 

 

4.2.4.2 Post reaction characterization and analysis  

The TGA weight loss analysis of the spent catalyst shows a weight loss with the 

2,4HD system, and the amount of lost material is also a function of the reaction 

temperature. There is also difference in the material loss across the reaction 

temperatures when the 2,4HD was fed individually compared to trans-

hydrogenation where all the reaction temperatures exhibit similar weight loss. 

The reaction at 773 K present high loss with both the 2,4HD run alone and 

P/2,4HD trans-hydrogenation: the 523 K presents the lowest loss. The main loss 

of 2,4HD and the mixed feeds occurred at ~ 530 – 710 K. There is also evidence 

for another weight loss at higher temperature with some of the reaction 

temperatures. However, there is no clear reduction in the weight loss observed 

using the mixed feed trans-hydrogenation process as observed with both 1HY and 

1,5HD systems, but there is general reduction in the amount of deposited 

material.  The results are presented in Figure 75 and 76 
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Figure 75: Weight loss profile of 2,4HD run alone over CrOx/Al2O3 catalyst 

 

 

Figure 76: Weight loss profile of P/2,4HD mixed feed over CrOx/Al2O3 catalyst 

 

2,4HD desorption is similar to that of 1,5HD except for the evidence of 

additional desorbed species at higher temperature. However, the DTA analysis 

obtained the catalysts used at all reaction temperatures are the same with those 

obtained with the 1,5HD system and there is no peak associated with the higher 

temperature desorption species suggesting very minimal desorption. The DTA 

result exhibit one exothermic peak at ~673 K and one endothermic peak at ~420 
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K observed with both 1,5HD and 2,4 HD systems. The 1HY system exhibit an 

endothermic peak at ~523 K temperature. These two peaks were the main 

features observed with the whole three systems. The result is presented in 

Figure 77 

 

Figure 77: TGA/DTA profile of 2,4HD system over CrOx/Al2O3 catalyst 

 

The TPO analysis during the TGA revealed carbon dioxide as the main desorption 

species evolved with the 2,4HD system. This was determined by mass 

spectrometry (m/e 44). However, in addition to this, fragments (m/e 2, 16, 18 

and 28) were also monitored and like the 1,5HD system, only traces of water was 

detected in some of the samples. Unlike the 1,5HD system there is an observed 

shift in the CO2 desorption peak with reaction temperature between the 773 K 

temperature and the other reaction temperatures. There is observed another 

evolution CO2 at a higher temperature with 623-523 K reaction temperatures. 

The results are presented in Figure 78 and79. Similar TPO profiles were obtained 

during the hydrogenation process (Figure 80).  
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Figure 78: TPO profile of P/2,4HD mixed feed over CrOx/Al2O3 catalyst 

  

 

Figure 79: TPO profile of 2,4HD run alone over CrOx/Al2O3 catalyst 

 

 

Figure 80: TPO profile of 2,4HD during hydrogenation over CrOx/Al2O3 catalyst 
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Figure 81: Mass spectra data obtained from TPO during the 2,4HD hydrogenation over 
CrOx/Al2O3 catalyst at 623 K 

 

2,4HD exhibited no clear changes in the amount of the carbon species deposited 

on the surface of the catalyst, over the reaction temperatures range.  The 

amount of the carbon species desorbed is less than what was observed with both 

1HY and 1,5HD systems and there are no clear changes in the amount of weight 

loss during the trans-hydrogenation process and when reactants are fed 

individually. The percentage carbon deposit for each run individually and as a 

mixed feed is determined and presented in Figure 82 

 

Figure 82: Carbon laydown of the spent CrOx/Al2O3 catalyst over the set temperatures 
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The amount of the carbon formed related to the reactant feed is summarized 

and presented in Table 41. Although there are no clear changes obtained in the 

% deposition of the carbon during both the trans-hydrogenation and when fed 

alone, it is observed that there is clear reduction of the carbon formation with 

the trans-hydrogenation system related to amount of the reactant fed. 

Table 41: Total amount of carbon deposited on spent CrOx/Al2O3 catalyst at various 
temperatures using 2,4HD system 

 

Temperature (K) Carbon deposited (µmol/g) 

 

P P/2,4HD 2,4HD 

523  0.0035 0.0028 0.016 

573  0.0040 0.0032 0.016 

623  0.0041 0.0033 0.016 

673  0.0044 0.0044 0.023 

773  0.0048 0.0040 0.022 

 

The Raman spectroscopic analysis of the spent catalysts was obtained using UV 

radiation for the studies of the carbon deposit in a manner similar to that used 

with the 1HY and 1,5HD systems. The Raman spectra reveal Raman bands 

assigned to coke deposition at ~1380 and 1600 cm-1 related to D and G bands 

respectively this was only observed with 2,4HD feed at all reaction 

temperatures. This was also observed during the trans-hydrogenation system but 

there is no any Raman band obtained at low temperature between (573-523 K). 

The results are presented in Figure 83 and 84 
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Figure 83: Raman spectra of spent CrOx/Al2O3 catalyst for sole 2,4HD obtained using the UV-
radiation 

 

 

Figure 84: Raman spectra of spent CrOx/Al2O3 catalyst for 2,4HD mixed feeds obtained using 
the UV-radiation 
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with all the samples. Although, the results were very similar to 1,5HD system, 

there is slightly smaller decrease in the SBET with the 2,4HD.  

The XRD analysis of the spent catalyst using the 2,4HD system also revealed only 

the diffraction pattern for γ-alumina and there was not any obvious changes 

observed in the diffraction pattern of the spent catalyst at all temperatures due 

to these reactions. 

The CHN analysis obtained over the chromia catalyst with three reaction systems 

is presented in Table 42 

Table 42: Elemental analysis over chromia catalyst with the three reaction systems 

 

 wt. % C Wt. % H wt. % C Wt. % H wt. % C Wt. % H 

 1HY 1,5HD 2,4HD 

773 K 7.91 1.55 2.55 0.66 2.55 0.74 

673 K 9.49 1.82 2.91 0.71 2.21 0.61 

623 K 9.51 1.71 3.21 0.69 1.91 0.46 

573 K 11.1 1.95 5.11 1.05 3.11 0.74 

523 K 12.01 1.62 5.94 1.42 2.94 0.61 
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3.3 K-CrOx/Al2O3 catalyst 

3.3.1 Pre-reaction catalyst characterisation 

3.3.1.1 BET surface area and pore volume determination 

The summary of the parameters extracted from the BET analysis result indicated 

that the SBET and the pore volume of the chromia catalyst further decreased 

upon impregnation of the doping metal precursor as presented in Table 43 

Table 43: b SBET, pore volume and pore diameter of the support and K-CrOx/Al2O3 catalyst 

 

 SBET (m
2/g) Vp(cm3g-1) Dp(Å) 

Ƴ-Al2O3 208 0.52 100 

CrOx/Al2O3 203 0.46 91 

K- CrOx/Al2O3 151 0.36 93 

 
The adsorption isotherm for the catalyst is the type II model. The result is 

presented in Figure 85 

 

Figure 85: Nitrogen adsorption isotherm at 78 K for the support and the K-CrOx/Al2O3 
catalyst 
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decrease in the pore volume of the chromia catalyst upon impregnation of the 

doped alkali but there is observed a slight shift in the pore diameter after 

impregnation, suggesting that the small pores are filled with the potassium salt.   

 

Figure 86: Pore volume distribution of the support and the K-CrOx/Al2O3 catalyst 

 

3.3.1.2 XRD analysis 

The XRD analysis of the catalyst revealed additional diffraction pattern upon 

loading of the potassium, associated with both α-K2O and β-K2O crystalline 

phases. No evidence of the chromium oxide crystalline phase is observed; 

instead the diffraction pattern for the starting γ-alumina support is retained. 

This is expected as was previously explained with the chromia catalyst. The 

result is presented in Figure 87 

 

Figure 87: XRD diffraction pattern of the CrOx/Al2O3 and the K-CrOx/Al2O3 catalyst 
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3.3.1.3 Thermogravimetric analysis 

The standard TGA-TPR obtained from ambient temperature to 1273 K showed 

three distinct weight losses at, ~540, ~760, and ~1050 K. the weight losses at 

~540 and ~760 K were found to be consistent with the Red-Ox cycles.  

  

Figure 88: The standard TGA-TPR profile of the K-CrOx/Al2O3 catalyst 

 

All the three weight losses presented in Figure 88 were due to hydrogen uptakes 

as confirmed by the mass spec data (m/e 2) presented in Figure 89. This is 

indicative of multiple reduction stages observed with the doped chromia catalyst 

compared to the chromia catalyst where only a single reduction process was 

observed. 

 

Figure 89: mass spectra data (m/e 2) obtained during the standard TGA-TPR 
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The first weight loss at ~ 540 K is a single event that uses hydrogen. It could be 

that KOH interacting with the alumina support or the decomposition of the K2O 

species. This is because the oxide of potassium decomposes at ~ 623 K. the 

weight loss at ~760 K could be assigned to the reductive stage of the chromia, 

this is similar to what was observed with the chromia catalyst except that this is 

shifted to a higher temperature suggesting that the presence of the potassium 

may have had an effect on the reduction stage of the chromia.  The weight loss 

at ~ 1050 K corresponding to ~ 2% could be assigned to the loss of volatile 

potassium due to high temperature effect, the melting point of potassium is 

~1033 K and is about the same temperature the loss was observed.  

The Red-Ox profile presented in Figure 90 shows two peaks during the 1st cycle 

~540 K and ~760 K, and only loss at ~760 K was observed during the 2nd cycle. 

The peak observed with both cycles corresponding to ~ 2% weight loss in both 

cases is associated with hydrogen consumption which would suggest an indicative 

reduction of the chromia and its reproducibility.  If the weight loss of ~2% was 

due to loss of oxygen; ~0.36 mg of the 26.59 mg of the catalyst was lost. This 

corresponds to ~1.49: 1 Cr: O lost, which shows that for about every one atom of 

the chromium, ~0.66 atoms of oxygen is removed. This is very similar to what 

was observed with the chromia catalyst. This as explained previously could be a 

reduction step of the chromium oxide between Cr6+ and Cr3+.The peak at ~ 540 K 

corresponding to ~2 %, is observed only with the 1st cycle suggesting a 

decomposition stage of the K2O plus a partial reduction stage of the K2O. The 

first peak obtained at ~373 K is associated to desorption of physisorbed H2O 

absorbed on the catalyst from atmosphere.  There is slight endothermic effect 

observed at ~540 K due to ~2 % weight loss during the 1st cycle; ~ 0.38 mg of the 

26.59 mg of the catalyst was lost. This correspond to ~ 2.8:1 K:O lost, which 

shows that for every one atom of the potassium ~0.35 atom of the oxygen is lost. 

This could be reduction process of the potassium oxide to peroxides and super 

oxide and leading to the decomposition process.  The result is presented in 

Figure 90 
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Figure 90: The TGA-TPR profile of the K-CrOx/Al2O3 during the Red-Ox cycles 

 

From the TGA-TPR-MS result (m/e 2), the hydrogen consumption perfectly 

matched the reduction peak at ~760 K observed with both cycles. There is no 

obvious consumption observed for the peak at -540 K during the first cycle. The 

result is presented in Figure 91 

 

Figure 91: mass spectra data obtained during the TGA-TPR Ox-Red cycle 

 

The DTA profile of both 1st and 2nd reduction cycles shows an exothermic peak at 

~ 760 K.  The results between the two cycles were consistent with the other TGA 

results shown above. The result is presented in Figure 92 
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Figure 92: The DTA profile of the K-CrOx/Al2O3 catalyst obtained during the TGA-TPR Red- 
Ox cycle 

 

4.3.3.4 Raman analysis 

The Raman spectrum of the catalyst is presented in figure? The Raman bands 

observed are assigned to chromium oxide vibrations. The Raman spectrum 

reveals bands assigned to chromia at 348, 383, 850, 870 and 904 cm-1. The 

alumina support does not show any Raman feature in the region studied and no 

feature for the potassium species is observed, thus, the loading of potassium salt 

onto the catalyst had no effect on the Raman spectra of the chromia. The result 

is presented in Figure 93 

 

Figure 93: Raman spectrum of the K-CrOx/Al2O3 catalyst 
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3.3.2 Pentane/Hexyne (P/1HY) system 

3.3.2.1 Reaction analysis and trans-hydrogenation activity evaluation 

Increased conversions were obtained on using the doped chromia catalyst. When 

pentane was run individually at all temperatures, conversions above the 

calculated equilibrium conversion for pentane dehydrogenation were obtained 

(~35 % conversion observed above ~11 % at 723K). More significantly, during the 

trans-hydrogenation processes, higher conversions were obtained at all the 

reaction temperatures compared to ones obtained with the chromia catalyst. 

About ~90 % conversion was obtained at 723 K. The results are presented in 

Figure 94 

 

Figure 94: Conversion comparison of P, 1HY and P/1HY mixed feeds over K-CrOx/Al2O3 
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Table 44: Products yield of the trans-hydrogenation over K-CrOx/Al2O3 at 773K 

 

  P H P+H P+H Theory 

 Conversion (%) 

Pentane(P) 35.7  91 35.7 

Hexyne(1HY)  98 97 98 

 Yield (%) 

Iso-pentane 10.48  0.21 0.48 

Pentene   1.81 0 

Trans-2-Pentene 0.2   0.2 

4-Methylpentene  0.03  0.03 

Hexane  0.77 0.66 0.77 

1-Hexene  2.58 1.60 2.58 

2-Hexene  0.9 3.56 0.9 

3-Hexene  3.24 4.04 3.24 

Methyl-2-pentene  10.65 8.58 10.65 

3-Methyl-1-hexene  21.06 15.29 21.06 

Benzene  4.09 2.86 4.09 

3-Methylhexane  6.27 4.59 6.27 

2-Methyl-1,3-pentadiene  23.3 17.05 23.3 

methylcyclohexane 17.69 6.20 18.94 23.89 
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Table 45: Products yield of the trans-hydrogenation over K-CrOx/Al2O3 at 673K 

 

 P H P+H P+H Theory 

   Conversion (%) 

Pentane(P) 43.58  87 43.58 

Hexyne(1HY)  97 100 97 

   Yield (%) 

Iso-pentane   0.04 0 

Pentene 22.82   22.82 

Trans-2-Pentene 0.22   0.22 

Cis-2-pentene 0.57   0.57 

Hexane  0.4 10.76 0.4 

1-Hexene  1.3 2.72 1.3 

2-Hexene  0.22 5.29 0.22 

3-Hexene  1.23 12.35 1.23 

Methyl-2-pentene  9.89 1.26 9.89 

3-Methyl-1-hexene  28.16 14.64 28.16 

Benzene  1.45 0.52 1.45 

3-Methylhexane  6.88 1.28 6.88 

2-Methyl-1,3-pentadiene  27.7 4.96 27.7 

Methylcyclohexane 11.6 2.58 14.06 14.18 
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Table 46: Products yield of the trans-hydrogenation over K-CrOx/Al2O3 at 623K 

 

 P H P+H P+H Theory 

  Conversion (%) 

Pentane(P) 37.58  85 85 

Hexyne(1HY)  97 99 99 

  Yield (%) 

Iso-pentane 10.38  0.07 10.38 

Pentene   0.27 0 

Trans-2-Pentene 0.46  0.42 0.46 

Cis-2-pentene 0.33  0.14 0.33 

Hexane  0.75 0.34 0.75 

1-Hexene   0.49 0 

2-Hexene   5.17 0 

3-Hexene   0.72 0 

Methyl-2-pentene  3.55 5.58 3.55 

3-Methyl-1-hexene  17.32 16.17 17.32 

Benzene  1.45 1.03 1.45 

3-Methylhexane  4.86 3.28 0 

2-Methyl-1,3-pentadiene  6.8 15.00 6.8 

1,4-Hexadiene  31.67  31.67 

Methylcyclohexane 11.76 10.95 16.45 22.71 
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Table 47: Products yield of the trans-hydrogenation over K-CrOx/Al2O3 at 573K 

 

 P H P+H P+H Theory 

  Conversion (%) 

Pentane(P) 36.59  77 36.59 

Hexyne(1HY)  98 99 98 

  Yield (%) 

Iso-pentane 10.38  0.18 10.38 

Pentene   0.10 0 

Trans-2-Pentene 0.42   0.42 

Cis-2-pentene 0.71   0.71 

Hexane   0.80 0 

1-Hexene   0.13 0 

2-Hexene   3.17 0 

3-Hexene  0.4 0.63 0.4 

Methyl-2-pentene  4.47 2.35 4.47 

3-Methyl-1-hexene  18.5 17.05 18.5 

Benzene  5.3 0 5.3 

3-Methylhexane   2.03 0 

2-Methyl-1,3-pentadiene  16.13 9.07 16.13 

2-Methyl-1-1hexene   0.89 0 

1,4-Hexadiene  35.56 0 35.56 

Methylcyclohexane 13.37 12.54 14.87 15.91 
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Table 48: Products yield of the trans-hydrogenation over K-CrOx/Al2O3 at 523K 

  

 P H P+H P+H Theory 

   Conversion (%) 

Pentane(P) 38.22  73 38.22 

Hexyne(1HY)  94 98 94 

   Yield (%) 

Iso-pentane 26.74   26.74 

Pentene 8.12  0.06 8.12 

Trans-2-Pentene   0.26 0 

Cis-2-pentene   0.42 0 

Hexane   0.29 0 

1-Hexene   0.20 0 

2-Hexene   0.07 0 

3-Hexene   0.27 0 

Methyl-2-pentene  6.23 6.25 6.23 

3-Methylpentyne  33.42   33.42 

3-Methyl-1-hexene   19.36 0 

3-Methylhexane  3.91 3.16 3.91 

2-Methyl-1,3-pentadiene  25.89 16.43 25.89 

Methylcyclohexane 3.72 11.86 13.19 3.7236 

 

There is also an increase in the yield of the valuable products observed with the 

K-CrOx/Al2O3 compared to the CrOx/Al2O3 catalyst; ~35 % total olefin is obtained 

at 723 K but the ratio of the olefin to alkylated olefins is ~1:4 at most 

temperatures. The total valuable products are summed up to ~50% which 

includes other alkylated products. The result is presented in Figure 95. The 

olefin production is also observed to be higher compared to the other valuable 

products obtained during the trans-hydrogenation over the K-CrOx/Al2O3 as 

presented in Figure 96. There is also an increase in these valuable products with 

the reaction temperature Figure 97 
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Figure 95: Total olefin yield with temperature over the K-CrOx/Al2O3 

 

 

Figure 96: Profile of valuable product in relative to the reaction temperature over K-
CrOx/Al2O3 

 

 

Figure 97: Relationship of the valuable products over the K-CrOx/Al2O3 
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The evolved gases observed with the doped catalyst are the same (H2, CH4 and 

C2H4) with the evolved ones observed with the chromia catalyst. However, CH4 

and C2H4 were initially observed at ~10 min of the reaction on stream, but later 

completely declined at ~ 30 min, showing less cracking activity compared to the 

chromia catalyst. Pulse of hydrogen was only observed at the beginning of the 

reaction, the hydrogen then evolved back again at ~15 min and decline gradually 

through the reaction period time on stream. The result at 723 K is presented in 

figures 98, 99 and 100 

 

Figure 98: Profile of the evolved gases over K-CrOx/Al2O3
 
using P only at 723 K 

 

 

Figure 99: profile of the evolved gases over K-CrOx/Al2O3
 
using 1HY only at 723 K 
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Figure 100: profile of the evolved gases over K-CrOx/Al2O3
 
using P/1HY at 723 K 

 

Table 49: carbon balance for the trans-hydrogenation reaction over the K-CrOx/Al2O3 
catalyst 

 

Temperature 

(K) 

Carbon balance (%) 

 Liquida 

Ptds. 

CH4b C2H6b cokec Pdts un- 

accounted  

773 78 2.86 17.38 0.43  

673 77 2.74 7.77 0.36  

623 76 2.66 10.16 0.15  

573 82 - - 0.01 10 

523 84 - - 0.003 11 

a) Obtained from the GC analysis, b) obtained from the mass spec analysis, c) obtained from the 
TGA analysis: Pdts = products 

4.2.2.2 Post reaction characterization and analysis  

The catalysts were analysed after use by TGA.  The weight losses for the doped 

catalysts were less than those observed with the chromia catalyst. The main loss 

observed with the catalyst used for pentane dehydrogenation occurs at ~673 K. 

Unlike the chromia catalyst, there are differences observed with the hexyne and 

mixed feed reactants. The main loss using both feeds occurs ~573 K, but the 

mixed feed has extended loss to ~ 723 K, while the hexyne feeds has extended 

loss to ~773 K. the results are presented in figures 101, 102 and 103 

0.00E+00

5.00E-10

1.00E-09

1.50E-09

2.00E-09

2.50E-09

3.00E-09

3.50E-09

4.00E-09

0.00E+00

5.00E-11

1.00E-10

1.50E-10

2.00E-10

2.50E-10

3.00E-10

0 20 40 60 80 100 120

Io
n

 c
u

rr
e

n
t 

(n
A

) 

TOS (min) 

H2 CH4 C2H4



 
 

133 
 

 

Figure 101: Weight loss profile of pentane run alone over K-CrOx/Al2O3 catalyst 

  

 

Figure 102: Weight loss profile of hexyne alone over K-CrOx/Al2O3 catalyst 
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Figure 103: Weight loss profile of the mixed feeds over CrOx/Al2O3 catalyst 

 

The derivative weight analysis plot is observed to be the same for all reaction 

temperatures for each reactant, three different weight losses were observed 

with the K-chromia catalyst suggesting three different carbon species when the 

catalyst was subjected to either the hexyne or mixed feeds. The results are 

presented in Figure 104 and 105 

 

Figure 104: Derivative weight loss profile pentane over K-CrOx/Al2O3 catalyst 
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Figure 105: Derivative weight loss profile of hexyne and the mixed feeds over K-CrOx/Al2O3 
catalyst 

 

The TPO analysis also revealed carbon dioxide as the main desorption species 

evolved at all temperatures. However, only trace of water was detected in some 

of the samples when other (m/e 2, 16 and 28) were monitored. All the profiles 

show three main evolutions of CO2 suggesting three different carbonaceous 

deposits. However, this is not observed with the mixed feed apart from the 723 

K, instead a broader peak was observed. Meanwhile, there is almost no 

desorption using the pentane. This could be due to less significant weight loss 

observed with the pentane reactants. The results are presented in Figure 106 

and 107 

 

Figure 106: TPO profile of hexyne run alone over K-CrOx/Al2O3 catalyst 
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Figure 107: TPO profile of pentane/hexyne mixed feeds over K-CrOx/Al2O3 catalyst 

 

The losses of both the CO2 and H2O, matches the TGA derivative weight loss 

profile of the sample. The result is presented in Figure 108 

 

Figure 108: Species obtained during the TPO-MS using hexyne/pentane system with K-
CrOx/Al2O3 catalyst 

 

There is not much difference to the amount the carbon material deposited 

during the mixed feed trans-hydrogenation and the hexyne single feed unlike 

with the chromia catalyst. Meanwhile, there is a general reduction in the 

amount of the carbon desorption observed with this catalyst compared to the 

chromia catalyst at all the temperatures,~ 4% reduction observed at 723 K 
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between the two catalysts. The pentane reactant presents almost no deposition 

of carbon material, with ~1 % laydown at 723 K. The result is shown in Figure 109 

 

Figure 109: Carbon laydown on spent K-CrOx/Al2O3 catalyst  

 

Table 50: Total amount of carbon deposited on spent K-CrOx/Al2O3 catalyst at various 
temperatures   

 

Temperature (K) Amount of carbon deposited (g/g feed) 

P P/1HY 1HY 

523  0.0002 0.007 0.032 

573  0.0009 0.010 0.045 

623  0.0016 0.010 0.050 

673  0.0025 0.011 0.055 

773  0.0029 0.011 0.065 

 

The Raman spectra obtained with K-CrOx/Al2O3, reveals only a G-band mode with 

the hexyne reactant using the visible radiation source, no evidence for D bands 

were observed. Meanwhile, the bands obtained at from catalysts run at 573 and 

523K reaction temperatures with hexyne as the feed were very noisy. Also, the 

pentane run shows very noisy spectra using both the UV and Visible radiation 

sources. The results are presented in figures 110, 111 and 112 
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Figure 110: Raman spectra of spent K-CrOx/Al2O3 catalyst for sole pentane obtained using 
the Vis-radiation 

 

 

Figure 111: Raman spectra of spent K-CrOx/Al2O3 catalyst for sole hexyne obtained using 
the UV-radiation 
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Figure 112: Raman spectra of spent CrOx/Al2O3 catalyst for mixed feeds obtained using the 
UV-radiation 

 

The SBET analysis performed on the spent catalyst shows that, the reaction after 

pentane dehydrogenation a loss of BET surface area from ~151 m2/g to ~23 m2/g 

was measured. However, when hexyne was present as a reactant alone or used 

as the co-reactant, only a small decrease in the surface area was observed (~133 

m2/g).  

3.3.3. Pentane/1,5-Hexdiene (P/1,5HD) system 

3.3.3.1 Reaction analysis and trans-hydrogenation activity evaluation 

Similar conversions were obtained on using the potassium-doped chromia 

catalyst with the P/1,5HD system as had been observed with the non-doped 

catalyst. There is a significant increase in the conversion of pentane during the 

trans-hydrogenation.  The results are presented in Figure 113 
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Figure 113: Conversion comparison of P, 1,5HD and P/1,5HD mixture using K-CrOx/Al2O3 

 

The product distributions obtained with the doped catalyst are the same with 

chromia catalyst using this system. However, there are more shifts to the 

production of valuable products here. The results are presented in Table 51 and 

52  
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Table 51: Products yield of the trans-hydrogenation over K-CrOx/Al2O3 using 1,5HD system 
at 673K 

 

 P H P+H P+H Theory 

  Conversion (%) 

Pentane(P) 43  89 43 

1,5-Hexadiene (1,5HD)  100 100 100 

  Yield (%) 

Iso-pentane   31.15 0 

Pentene 22.82  4.06 22.82 

Trans-2-Pentene 0.22   0.22 

Cis-2-pentene 0.57   0.57 

Hexane  1.93 0.72 1.93 

1-Hexene  1.32 2.25 1.32 

2-Hexene    0 

3-Hexene  2.01  2.01 

Methyl-2-pentene  9.79 2.41 9.79 

3-Methyl-1-hexene  19.62 14.98 19.62 

Benzene  1.08  1.08 

3-Methylhexane  4.81 1.08 4.81 

2-Methyl-1,3-pentadiene  19.49 4.85 19.49 

2-Methyl-1-1hexene  6 2.98 6 

Methylcyclohexane 11.6 13.53 10.08 25.13 
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Table 52: Products yield of the trans-hydrogenation over K-CrOx/Al2O3 using 1,5HD system 
at 573K 

 

 P H P+H P+H Theory 

  Conversion (%) 

Pentane(P) 37.58  82 85 

Hexyne(H)  99 99 99 

  Yield (%) 

Iso-pentane 10.38 0.41 6.14 10.79 

Pentene   1.81 0 

Trans-2-Pentene 0.42   0.42 

Cis-2-pentene 0.71   0.71 

Hexane  0.92 1.35 0.92 

1-Hexene   2.23 0 

2-Hexene  0.27  0.27 

3-Hexene  0.61 5.43 0.61 

Methyl-2-pentene  7.55 14.95 7.55 

3-Methyl-1-hexene  15.95 17.55 15.95 

Benzene    0 

3-Methylhexane   1.48 0 

2-Methyl-1,3-pentadiene  37.67 14.93 37.67 

2-methyl-1-1hexene  2.24 4.72 2.24 

Methylcyclohexane 13.37 13.53 9.1 26.90 

 

3.3.3.2 Post reaction characterization and analysis  

The doped catalyst revealed less weight loss than the non-doped catalyst. There 

is evidence for changes in the losses with the trans-hydrogenation process and a 

reduction in the weight loss is observed with reduced temperature. This is 

consistent with previous results.  The results are presented in Figure 114 and 115 
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Figure 114: Weight loss profile of 1,5HD run alone over K-CrOx/Al2O3 catalyst 

 

 

Figure 115: Weight loss profile of P/1,5HD mixed feed over K-CrOx/Al2O3 catalyst  

 

The TPO analysis of the catalysts used for pentane dehydrogenation, 1,5HD 

reaction and transhydrogenation revealed carbon dioxide as the main desorption 

species evolved at all the run temperatures. The TPO profiles show two main 

weight losses, unlike the three observed with the 1HY system. All the losses are 

associated with CO2 and are from different carbonaceous deposits. Meanwhile, 

there is almost no evolution of carbon dioxide from the catalyst used for 

pentane dehydrogenation. However, there are observed changes in the 

temperature of the carbon dioxide evolution with changes in the reaction 

temperature. This shows that temperature the formation of the carbonaceous 
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deposits could be influential. The evolution at ~608 K is more predominant when 

the catalyst has been run under high temperature conditions while the evolution 

at ~700 K is more predominant when the catalyst has been run under low 

temperature conditions with the 608 K evolution almost vanishing. This is the 

opposite case observed with the 1HY system (Figure 116 and 117)  

 

Figure 116 TPO profile of 2,4HD run alone over K-CrOx/Al2O3 catalyst 

 

 

Figure 117: TPO profile of P/2,4HD mixed feed over K-CrOx/Al2O3 catalyst 

 

There is less carbon formation on the surface of the doped catalyst compared to 

the chromia catalyst, with an ~2% reduction. The Raman spectra confirm the 

deposition of carbon on the spent catalyst; the spectra reveals only G-band 

mode: no evidence for the D bands were observed 
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3.3.4 Pentane/2,4-Hexadiene (P/2,4HD) system 

3.3.4.1 Reaction analysis and trans-hydrogenation activity evaluation 

The conversion of pentane was poorer, during the trans-hydrogenation with this 

catalyst. This shows that the doping of the catalyst does not improve the activity 

of the catalyst. This is consistent with the thermodynamic limitation as 

mentioned above. Reaction with the 2,4-HD does not seems to influence the 

lifting of this limitations. The result is presented in Figure 118 

 

Figure 118: Conversion comparison of P, 2,4HD and P/2,4HD mixture using K-CrOx/Al2O3 

 

The product distribution is similar to what was observed with the chromia 

catalyst. However, there is a little improvement in the yield of the products on 

using the doped catalyst. The result are presented in Table 53 and 54 
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Table 53: Products yield of the trans-hydrogenation over K-CrOx/Al2O3 using 2,4HD system 
at 673 K 

 

 P H P+H P+H Theory 

  Conversion (%) 

Pentane(P) 43  11 43 

2,4-Hexadiene (2,4HD)  68 76 76 

   Yield (%) 

Iso-pentane    0 

Pentene 22.82   22.82 

Trans-2-Pentene 0.22   0.22 

Cis-2-pentene 0.57    

Hexane    0 

1-Hexene    0 

2-Hexene    0 

3-Hexene  2.88 3.87 2.88 

1,3-Hexadiene    0 

methyl-2-pentene  7.93 2.05 7.93 

3-Methylhexane  2.02 11.4 2.02 

2-Methyl-1,3-pentadiene  18.03 10.42 18.03 

Methylcyclohexane 11.6 19.31 18.15 19.31 
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Table 54: Products yield of the trans-hydrogenation over K-CrOx/Al2O3 using 2,4HD system 
at 573 K 

 

 P H P+H P+H Theory 

  Conversion (%) 

Pentane(P) 38  15 38 

2,4-Hexadiene (2,4HD)  66 45 66 

  Yield (%) 

iso-pentane 10.38   0.38 

Pentene    0 

Trans-2-Pentene 0.42   0 

Cis-2-pentene 0.71    

Hexane    0 

1-Hexene    0 

2-Hexene    0 

3-Hexene  0.22 2.91 0.22 

1,3-Hexadiene    0 

methyl-2-pentene  3.45 5.94 3.45 

3-Methylhexane  2.21 3.75 2.21 

2-Methyl-1,3-pentadiene  10.85  10.85 

2-methyl-1-1hexene  13.63 12.33 13.63 

Methylcyclohexane 13.37 13.21 12.78 13.21 

 

3.3.4.2 Post reaction characterization and analysis  

The doped catalyst presents less weight loss with the 2,4HD system. The weight 

losses are very similar those observed with 1,5H system when the doped catalyst 

was used. There is also evidence for changes in these losses with the trans-

hydrogenation process and a reduction in the weight loss is observed with a 

lower reaction temperature. This is consistent with previous results.  The results 

are presented in Figure 119 and 120 
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Figure 119: Weight loss profile of 2,4HD run alone over K-CrOx/Al2O3 catalyst 

 

 

Figure 120: Weight loss profile of P/2,4HD mixed feed over K-CrOx/Al2O3 catalyst 

 

The TPO analysis here also revealed carbon dioxide as the main desorption 

species evolved at all the run temperatures. The TPO profiles reveal two main 

weight losses similar to the 1,5HD feed. All the losses are associated with the 

CO2 but may be from different carbonaceous deposits. The peak ~608 K is more 

predominant at all reaction temperatures while the peak at ~700 K starts to 

disappear during the trans-hydrogenation and completely disappears at low 

reaction temperatures. The results are presented in Figure 121 and 122 
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Figure 121: TPO profile of 2,4HD run alone over K-CrOx/Al2O3 catalyst 

 

  

 

Figure 122: TPO profile of P/2,4HD mixed feed over CrOx/Al2O3 catalyst 

 

There is less carbon formation on the surface of the catalyst compared to the 

chromia catalyst. The Raman spectra also confirm the deposition of carbon on 

the spent catalyst; the spectra reveal only G-band mode and no evidence for the 

D bands were observed 
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3.4 Pt/Al2O3 catalyst  

3.4.1 Pre-reaction catalyst characterisation 

3.4.1.1 BET surface area and pore volume determination 

The Pt/Al2O3 catalyst used in this work was a commercial 1wt. % supplied by 

Johnson Matthey (ref no: 1074). 

Table 55 shows the summary of the parameters extracted from the BET analysis. 

The table result indicated the SBET, pore volume and the pore diameter of the 

catalyst  

Table 55: SBET, pore volume and average pore diameter of the Pt/Al2O3 catalyst 

 

 SBET (m
2 g-1) Vp(cm3g-1) Dp(Å) 

Pt/Ƴ-Al2O3 119 0.49 154 

 

The adsorption isotherm for the catalyst was found to obey the type II model. 

The result is presented in Figure 123 

 

Figure 123: Nitrogen adsorption isotherm at 78 K for the support and the Pt/Al2O3 catalyst 
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Figure 124: Pore volume distribution of the support and the Pt/Al2O3 catalyst 

 

The pore volume distribution as measured in the mesopores range for the 

support is presented in Figure 124.  

4.4.1.2 XRD analysis 

The XRD analysis of the catalyst revealed a diffraction pattern associated with 

mixed theta and gamma alumina and no evidence was observed for the 

crystalline phase of the PtO, due to the low metal loading[87, 88]. The result is 

presented in Figure 125 

 

Figure 125: XRD diffraction pattern of the Pt/Al2O3 catalyst 
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4.4.1.3 Thermogravimetric analysis 

The standard TGA-TPR obtained from ambient temperature to 1273 K is found to 

be consistent with the Ox-Red cycles and the reduction peak observed at ~473 K 

and ~510 K perfectly matches ones obtained with the reduction cycles. The 

result is presented in Figure 126 

 

Figure 126: The standard TGA-TPR profile of the Pt/Al2O3 catalyst 

 

The TGA-TPR obtained during the Ox-Red cycles showed two shouldered peaks at 

~473 K and ~510 K obtained during the 1st cycle. It is not clear if the two peaks 

are associated with H2 consumption, because the 2nd cycle presented no peaks.  

The first peak obtained at ~373 K is associated to desorption of physiosorbed H2O 

from atmosphere. The result is presented in Figure 127. 

 

Figure 127: The TGA-TPR profile during the Red-OX cycles of the Pt/Al2O3 catalyst 
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The DTA of the reduction 1st and 2nd cycles shows one endothermic effect in the 

temperature ~373 K ascribed to the removal of physiosorbed water 

corresponding to moisture lost mainly from the alumina support and the weight 

loss is ~2% and ~1% respectively. An endothermic peak was also observed at ~ 

510 K corresponding to weight loss of ~4% and was not observed during the 

second cycle. This confirms that there is uptake of heat energy due to the loss 

and therefore the weight loss can be predominantly assigned to the thermal 

decomposition of the platinum complex, and obviously a small hydrogen uptake 

for the reduction process. The result is presented in Figure 128 

 

Figure 128: The DTA profile of the catalyst obtained during the TGA-TPR Ox-Red cycle of 
the Pt/Al2O3 catalyst 

 

4.4.3.4 Raman analysis 

The Raman spectrum obtained from the Pt/γ-Al2O3 catalyst is presented in 

Figure 129. The Raman spectrum contained a broad band at ~600 cm-1 assigned 

to an amorphous platinum oxide vibration, similar to the one obtained with 

EUROPT-1 [89]. The alumina support does not show any Raman feature in the 

region studied. However, the sharp band at ~300 cm-1 may have arisen due to 

residual Cl which may be present in the Pt/γ-Al2O3 catalyst. The chlorine could 

be from the precursor salt during the catalyst preparation as argued by Graham 

et al. [90]    
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Figure 129: Raman spectrum of the Pt/Al2O3 catalyst 

 

3.4.2 Pentane/Hexyne (P/1HY) system 

3.4.2.1 Reaction analysis and trans-hydrogenation activity evaluation 

The reactant conversions were followed individually and during the mixed trans-

hydrogenation reaction, as in previous reactions with the chromia catalyst. 

There is an observed increase in the conversion of the pentane at all 

temperatures in the trans-hydrogenation process. There is a 10% increase on 

average, for dehydrogenation conversions of the pentane, when run alone with 

the platinum catalyst compared to chromia catalyst. This value is also higher 

than the equilibrium conversion of n-pentane dehydrogenation (~14 %). 

However, the ratio in the conversions of the pentane obtained during the 

dehydrogenation with that obtained during the trans-hydrogenation using the 

platinum is about the same as with the chromia catalyst (~1:2). The result is 

presented in Figure 130. 
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Figure 130: Conversion comparison of P, 1HY and P/1HY mixture using Pt/Al2O3 

 

The products yields are presented in Table 56-60. Most of these products are 

alkylated and alkylated olefin products obtained with the trans-hydrogenation. 

The product distribution is similar at all the reaction temperatures, only the 

individual yield of the products changes. There is similarity here with the 

chromia catalyst. However, the individual yields were observed to either 

increase or decrease across the temperature range. The pentane 

dehydrogenation presented more valuable products, but lower hydrocarbon 

products were observed with hexyne run alone at higher temperature.  The yield 

of the desired products increases with mixed feeds and more valuable products 

are observed with the trans-hydrogenation process. 
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Table 56: Products yield of the trans-hydrogenation over Pt/Al2O3 at 773 K 

 

 P H P+H P+H Theory 

  Conversion (%) 

Pentane(P) 37  71 37 

1-Hexyne(1HY)  71 85 71 

   Yield (%) 

Iso-pentane 1.67 0.23 0.23 1.9 

Pentene 4.01  0.36 4.01 

Trans-2-Pentene 5.27 8.03 3.15 13.3 

Cis-2-pentene 2.64  0.18 2.64 

4-methylpentene 0.52   0.52 

hexane  0.31 0.3 0.31 

1-Hexene  1.18 2.79 1.18 

2-Hexene  0.61 0.36 0.61 

3-Hexene  0.6 2.25 0.6 

Methyl-2-pentene  10.31 3.3 10.31 

3-Methylpentyne  27.53 30.98 27.53 

3-Methyl-1-hexene   8.68 0 

Benzene   0.9 0 

3-Methylhexane  2.5 1.44 2.5 

2-Methyl-1,3-pentadiene  0.46 5.98 0.46 

Methylcyclohexane 17.03 14.62 9.32 31.65 
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Table 57: Products yield of the trans-hydrogenation over Pt/Al2O3 at 673 K 

 

 P H P+H P+H Theory 

  Conversion (%) 

Pentane(P) 34  56 34 

1-Hexyne(1HY)  74 77 74 

   Yield (%) 

Iso-pentane 1.18 1.22 2.21 2.4 

Pentene 2.59 0.33  2.92 

Trans-2-Pentene 1.92 0.2  2.12 

Cis-2-pentene 1.93 2.87  3.8 

4-Methylpentene  5.38  5.38 

Hexane  0.98  0.98 

1-Hexene  3.67 3.06 3.67 

2-Hexene  1.58 1.11 1.58 

3-Hexene  4.83 4.02 4.83 

Methyl-2-pentene  7.77 10.99 7.77 

3-Methylpentyne  1.97 13.54 1.97 

3-Methyl-1-hexene  9.52 1.11 9.52 

Benzene  6.95  6.95 

3-Methylhexane  3.21  3.21 

2-Methyl-1,3-pentadiene  13.25 16.99 13.25 

Methylcyclohexane 17.03 3.06 9.44 20.09 
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Table 58: Products yield of the trans-hydrogenation over Pt/Al2O3 at 623 K 

 

 P H P+H P+H Theory 

  Conversion (%) 

Pentane(P) 35  41 35 

1Hexyne(1HY)  64 55 64 

   Yield (%) 

Iso-pentane 1.27 13.93 0.86 15.2 

Pentene 0.16   0.16 

Trans-2-Pentene 3.45   3.45 

Cis-2-pentene 1.56   1.56 

Hexane  0.17  0.17 

1-Hexene  0.74 3.06 0.74 

2-Hexene  0.39 1.84 0.39 

3-Hexene  0.67 1.38 0.67 

Methyl-2-pentene  6.61 11.52 6.61 

3-Methylpentyne  18.41 14.54 18.41 

3-methyl-1-hexene  2.39  2.39 

Benzene    0 

3-Methylhexane  0.71  0.71 

2-Methyl-1,3-pentadiene  8.95 12.55 8.95 

Methylcyclohexane 14.83 2.82 10.65 17.65 
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Table 59: Products yield of the trans-hydrogenation over Pt/Al2O3 at 573 K 

 

 P H P+H P+H Theory 

   Conversion (%) 

Pentane(P) 25  37 25 

1-Hexyne(1HY)  47 51 47 

  Yield (%) 

Iso-pentane 1.51  0.22 1.51 

Pentene 0.11  0.31 0.11 

Trans-2-Pentene 0.69  0.2 0.69 

Cis-2-pentene 0.23   0.23 

Hexane   0.33 0 

1-Hexene  1.29 3.64 1.29 

2-Hexene  0.39 1.91 0.39 

3-Hexene  0.5 4.29 0.5 

Methyl-2-pentene   1.04 0 

3-Methylpentyne  12.67 13.99 12.67 

3-Methyl-1-hexene   8.09 0 

Benzene    0 

3-Methylhexane  0.71 1.30 0.71 

2-Methyl-1,3-pentadiene  0.47 19.7 0.47 

Methylcyclohexane 14.83 4.85 12.51 9.68 
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Table 60: Products yield of the trans-hydrogenation over Pt/Al2O3 at 523 K 

 

 P H P+H P+H Theory 

   Conversion (%) 

Pentane(P) 25  26 25 

1-Hexyne(1HY)  37 29 37 

   Yield (%) 

Iso-pentane 1.08  2.01 1.08 

Pentene 0.01   0.01 

Trans-2-Pentene 2.04   2.04 

Cis-2-pentene 0.01   0.01 

Hexane  0.11  0.11 

1-Hexene  0.52 0.15 0.52 

2-Hexene  0.13  0.13 

3-Hexene  1.28  1.28 

Methyl-2-pentene  0.61 4.21 0.61 

3-Methylpentyne    0 

3-Methyl-1-hexene  1.84 1.71 1.84 

Benzene    0 

3-Methylhexane  0.38  0.38 

2-Methyl-1,3-pentadiene  1.64 0.59 1.64 

Methylcyclohexane 12.21 11.59 11.99 23.8 

 

The total olefin yield is shown in Figure 131. The yield ~20% at 773 K obtained 

using the Pt/Al2O3 catalyst was similar to that found with the chromia catalyst. 

The ratio of olefin to alkylated olefins was about 1:1.5 at most temperatures.  

The olefin production was observed to be higher compared to the other valuable 

products obtained during the trans-hydrogenation as presented in Figure 132. 

There was also an increase in these valuable products with the reaction 

temperature (Figure 133)   
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Figure 131: Total olefin yield with temperature over the Pt/Al2O3 using 1HY system 

 

 

Figure 132: Profile of valuable product in relative to the reaction temperature over Pt/Al2O3 
using 1HY system 

 

 

Figure 133: Relationship of the valuable products over Pt/Al2O3 using 1HY system 
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The analysis of the eluent gas products during pentane dehydrogenation confirms 

the evolution of H2, CH4 and C2H4. Evolution of hydrogen was observed from the 

start of the reaction and maintained for the reaction period. Pulses of CH4 and 

C2H4 were also evolved but completely declined by ~20 min. The result obtained 

at 773 K is presented in Figure 134. Only pulses of hydrogen, methane and 

ethene were observed during the hexyne run (Figure 135).  Whilst during the 

trans-hydrogenation, there hydrogen was still observed at all times on stream 

but it was gradually consumed in the process (Figure 136) 

 

Figure 134: Profile of the evolved gases over Pt/Al2O3 using P only at 773 K 

 

 

Figure 135: Profile of the evolved gases over Pt/Al2O3 using 1HY only at 773 K 
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Figure 136: Profile of the evolved gases over Pt/Al2O3 using P/1HY at 773 K 

 

Table 61: carbon balance for the P/1HY trans-hydrogenation reaction over the Pt/Al2O3 
catalyst 

 

Temperature 

(K) 

Carbon balance (%) 

 Liquid 

Ptds. 

CH4 C2H4 coke Pdts Non 

accounted  

773 89 - - 0.31 10.69 

673 90 - - 0.29 9.08 

623 93 - - 0.26 6.74 

573 92 - - 0.11 7.89 

523 94 - - 0.09 5.91 

 

The hydrogenation reactions were performed over the 623-523 K temperature. 

The reaction products and distribution obtained were observed to be similar to 

that obtained with trans-hydrogenation process but the hydrogenation process 

exhibits a higher percentage yield of these products. Unlike the chromia 

catalyst, there is also increase in the conversion of the hexyne during the 

hydrogenation process. Although there are similarities, but the hydrogenation 

process exhibited higher olefinic products and more value added products were 

obtained than with the chromia catalyst. The results are presented in Tables 62, 
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63 and 64. There hydrogenation results presented higher olefins value but these 

values were observed to have increase during the trans-hydrogenation compared 

to when the hexyne is run alone.  

Table 62: Products yield during the hydrogenation of1HY over the Pt/Al2O3 at 623 K 

 

 1HY P+H P+H Theory 

1-Hexyne(1HY) Conversion (%) 

 76 55 64 

 Yield (%) 

Iso-pentane 6.73 0.86 15.2 

Pentene   0.16 

Trans-2-Pentene   3.45 

Cis-2-pentene   1.56 

Hexane 1.37  0.17 

1-Hexene 16.86 3.06 0.74 

2-Hexene 3.12 1.84 0.39 

3-Hexene 2.41 1.38 0.67 

Methyl-2-pentene 3.63 11.52 6.61 

3-Methylpentyne 4.46 14.54 18.41 

3-Methyl-1-hexene 0.6  2.39 

Benzene   0 

3-Methylhexane   0.71 

2-Methyl-1,3-pentadiene 3.24 12.55 8.95 

Methylcyclohexane 8.69 10.65 17.65 
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Table 63: Products yield during the hydrogenation of1HY over the Pt/Al2O3 at 573 K 

 

 1HY P+H P+H Theory 

 Conversion (%) 

1-Hexyne(1HY) 68 51 47 

 Yield (%) 

Iso-pentane  0.22 1.51 

Pentene  0.31 0.11 

Trans-2-Pentene  0.2 0.69 

Cis-2-pentene   0.23 

Hexane 4.01 0.33 0 

Hexene 14.09 3.64 1.29 

2-Hexene 4.21 1.91 0.39 

3-Hexene 6.42 4.29 0.5 

Methyl-2-pentene 1.38 1.04 0 

3-Methylpentyne  13.99 12.67 

3-Methyl-1-hexene 1.2 8.09 0 

Benzene   0 

3-Methylhexane  1.3 0.71 

2-Methyl-1,3-pentadiene 3.42 19.7 0.47 

Methylcyclohexane 14.81 12.51 9.68 
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Table 64: Products yield during the hydrogenation of1HY over the Pt/Al2O3 at 523 K 

 

 1HY P+H P+H Theory 

 Conversion (%) 

1-Hexyne(1HY) 69 29 37 

 Yield (%) 

Iso-pentane 4.7 2.01 1.08 

Pentene   0.01 

Trans-2-Pentene   2.04 

Cis-2-pentene   0.01 

Hexane 3.7  0.11 

1-Hexene 12.05 0.15 0.52 

2-Hexene 3.31  0.13 

3-Hexene 3.74  1.28 

Methyl-2-pentene 0.82 4.21 0.61 

3-Methylpentyne   0 

3-Methyl-1-hexene 0.71 1.71 1.84 

Benzene   0 

3-Methylhexane 0.38  0.38 

2-Methyl-1,3-pentadiene 3.12 0.59 1.64 

Methylcyclohexane 23.64 11.99 23.8 

 

The TGA analysis of the spent catalyst shows a unique weight loss with each type 

of reactant using the platinum catalyst with variation in the amount of the loss 

with lower temperature. The amount of lost material is also observed to vary as 

a function of the reaction temperatures. The pentane run presented very small 

differences across the temperature range. The reaction at 773 K, 673 K and 623 

K during the hexnye run revealed about the same weight loss while reaction at 

573 K and 523 K revealed a similar weight loss, there is also a very significant 

difference in the weight loss between the two temperature groups. The main 

loss observed with pentane was observed at ~373 K and there was no obvious 

loss after that. Whilst with hexyne and the mixed feeds there were two distinct 

main weight losses, the first occurred at ~ 375 – 480 K and the second loss 
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occurred at ~510-800 K. However, a general reduction in the weight loss was 

observed using the mixed feed trans-hydrogenation process.  The results are 

presented in figures 137, 138 and 139 

 

Figure 137: Weight loss profile of pentane run alone over Pt/Al2O3 catalyst 

 

 

Figure 138: Weight loss profile of hexyne run alone over Pt/Al2O3 catalyst 
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Figure 139: Weight loss profile of P/1HY mixed feed over Pt/Al2O3 catalyst 

 

TPO analysis of the spent catalyst during the TGA revealed carbon dioxide as the 

main desorption species evolved with all the reactions. However, there was no 

clear and obvious evidence for this during the pentane run. There is also 

confirmed two different carbon species during the trans-hydrogenation and the 

hexyne run, with observed changes during the two processes. This was 

determined by the mass spectrometer (m/e 44). The results are presented in 

figure 140, 141 and 142 

 

Figure 140: TPO profile of pentane over Pt/Al2O3 catalyst 
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Figure 141: TPO profile of hexyne over Pt/Al2O3 catalyst 

 

 

Figure 142: TPO profile of P/1HY mixed feed over Pt/Al2O3 catalyst 
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Figure 143: TPO profile during 1HY hydrogenation over Pt/Al2O3 catalyst 

 

In addition to this, fragments (m/e 2, 16, 18 and 28) were also monitored. 

However, apart from the CO2 only trace levels of CO were detected in some of 

the samples. The evolution of the CO species matches the two peaks observed 

with the TGA derivative weight loss profile and could be a fragmentation species 

of the CO2 desorption. The result obtained from the hydrogenation process also 

presented same type of species  

The carbon laydown analysis is presented in Figure 144. It is observed that the 

extent of carbon deposition was only half of that observed with the CrOx/Al2O3. 

However, unlike the CrOx/Al2O3 system, only a slight reduction from the 

catalysts run at 773-623 K in carbon laydown was observed during the mixed 

feed trans-hydrogenation, whilst slightly higher laydowns were obtained from 

the catalysts run at 573 and 523 K. Samples which had been subjected to hexyne 

reactant only showed higher amounts of weight loss except for the reactions at 

573 and 523 K. Reaction with pentane alone revealed less weight loss compared 

to hexyne or the mixed feed. There was observed significant reduction in carbon 

deposition compared to when hexyne and the mixed feed were used, only ~0.3% 

was obtained at 773 K. This is also significantly less compared to what was 

obtained with the chromia catalyst (~2.4%).   The percentage carbon deposit for 

each run individually and as a mixed feed is determined and presented in Figure 

144 
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Figure 144: Carbon laydown of the spent Pt/Al2O3 catalyst over the set temperatures using 
P/1HY system 

 

Table 65: Total amount of carbon deposited on spent Pt/Al2O3 catalyst at various 
temperatures 

 

Temperature (K) Carbon deposited (g/g feed) 

 P P/1HY 1HY 

523  0.00039 0.0029 0.0132 

573  0.00035 0.0037 0.0166 

623 0.00041 0.0067 0.0391 

673  0.00045 0.0074 0.0416 

773  0.00061 0.0083 0.0440 

 

The analysis of the spent catalyst using Raman spectroscopy was performed 

using both UV and visible radiation to study the carbon deposit. The UV radiation 

has been used to avoid fluorescence which provides advantages to study heavily 

coke material as previously explained [81, 82] and has also been successfully 

used to study either fresh or heavily coke material in this regards,[83, 84] 

because the Raman peaks under UV excitation are enhanced and more intense 

[85]. We were unable to detect any Raman band with the spent platinum 

catalyst from either the pentane or hexyne runs or their mixed feed with the 

visible radiation. However, analysing the spent catalyst from the pentane 
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except for the 773 K presenting a slightly more intense G-band at ~1600 cm-1 

associated with carbon deposit. Raman bands assigned to coke deposition at 

~1380 and 1600 cm-1 related to D and G bands respectively were observed with 

the hexyne runs and the mixed feed. However, the D band was lost in the 

spectra obtained from the catalysts used at 523 and 573 K with hexyne feed, 

whilst the D-band was observed only with the catalyst run at 773 K using the 

mixed feed trans-hydrogenation process. Meanwhile, when the catalysts were 

analysed with visible radiation, they fluoresced and no clear bands were 

observed. There were no Raman spectra bands assigned to Platinum observed 

with the spent catalyst.  The results are presented in figures 145, 146 and 147 

 

Figure 145: Raman spectra of spent Pt/Al2O3 catalyst for sole pentane obtained using the 
UV-radiation 

 

 

Figure 146: Raman spectra of spent Pt/Al2O3 catalyst for sole hexyne obtained using the UV-
radiation 
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Figure 147: Raman spectra of spent Pt/Al2O3 catalyst for mixed feeds obtained using the UV-
radiation 

 

The BET analysis performed on the spent catalyst reveals no clear changes in the 

surface area of the spent catalyst after the reaction at all temperature. Unlike 

the chromia catalyst where a slight reduction in surface area as a function of 

temperature was observed, the platinum catalyst still maintains its initial 

surface area after the reaction with ~±5 m2 g-1 which is within the variability of 

the measurement. The formation of coke on the platinum catalyst does not show 

effects on the SBET area and the pore volume, although only a small carbon 

deposit was observed with the platinum compared to the chromia catalyst.  

The XRD analysis of the spent catalyst revealed only the diffraction pattern for 

γ-alumina and there was not any obvious changes observed in the diffraction 

pattern at any temperature due to these reactions (Figure 148) 

 

Figure 148: XRD diffraction patterns of the Pt/Al2O3 catalyst pre- and post- reaction 
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3.4.3 Pentane/1,5-Hexdiene (P/1,5HD) system 

3.4.3.1 Reaction analysis and trans-hydrogenation activity evaluation 

The reactant conversions were followed individually and during the mixed trans-

hydrogenation reaction also here using the 1,5HD system. There is observed an 

increase in the conversion of pentane at all temperatures (except for 523 K), 

with the trans-hydrogenation process compared to the conversions of the 

pentane dehydrogenation. However, conversion lower than what was observed 

with the chromia catalyst were obtained, ~60% at 773 K compared to ~90% 

obtained with the chromia catalyst. The result is presented in Figure 149. 

 

Figure 149: Conversion comparison of P, 1,5HD and P/1,5HD mixture using Pt/Al2O3 

 

The product yields were calculated and presented in Table 66-70. Most of these 

products are also alkylated and alkylated olefin products obtained with trans-

hydrogenation similar to the chromia catalyst. The product distribution is the 

same across the temperature range, but the individual yield of the products 

changes with the temperature. The yield of the desired products increases with 

mixed feeds and more valuable products are observed during the trans-

hydrogenation process. Although most of the products were the same as the 1HY 

system, except for 3-methylpentyne which is not observed here, there are also 
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Table 66: Products yield of the trans-hydrogenation over 1,5HD system at 773 K using 
Pt/Al2O3 

 

  P H P+H P+H Theory 

  Conversion (%)  

Pentane(P) 37  59 37 

1,5-Hexadiene(1,5HD)  64 69 64 

   Yield (%) 

Iso-pentane 1.67  2.51 1.67 

Pentene 4.01  0.01 4.01 

Trans-2-Pentene 5.27  2.02 5.27 

Cis-2-pentene 2.64 0.07 2.08 2.71 

2-Methyl-2-butene 0.52 0.16 0.01 0.68 

4-Methylpentene 1.67 0.02  1.69 

Hexane   1.95 0 

1-Hexene  0.27 1.05 0.27 

2-Hexene  0.09  0.09 

3-Hexene  2.89 7.8 2.89 

Methyl-2-pentene  3.64 3.8 3.64 

3-Methyl-1-hexene  5.8 5.24 5.8 

Benzene  0.84 0.26 0.84 

3-Methylhexane  1.86 1.31 1.86 

2-Methyl-1,3-pentadiene  3.9 2.23 3.9 

2-Methyl-1-1hexene  0.45  0.45 

Methylcyclohexane 17.03 12.75 19.75 29.78 
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Table 67: Products yield of the trans-hydrogenation over 1,5HD system at 673 K using 
Pt/Al2O3 

 

 P H P+H P+H Theory 

   Conversion (%) 

Pentane(P) 34  54 34 

1,5-hexadiene (1,5HD)  56 65 56 

   Yield (%) 

Iso-pentane 1.18  1.03 1.18 

Pentene 2.59   2.59 

Trans-2-Pentene 1.92   1.92 

Cis-2-pentene 1.93 0.05  1.98 

2-Methyl-2-butene 1.18 0.12 0.01 1.30 

Hexane  1.18 3.1 1.18 

1-Hexene  1.77 2.31 1.77 

2-Hexene  1.27 1.13 1.27 

3-Hexene  5.16 6.35 5.16 

Methyl-2-pentene  2.51 1.59 2.51 

3-Methyl-1-hexene  4.76 4.61 4.76 

Benzene  0.43  0.43 

3-Methylhexane  2.12 3.45 2.12 

2-Methyl-1,3-pentadiene  6.57 4.71 6.57 

2-Methyl-1-1hexene  2.56  2.56 

Methylcyclohexane 17.03 14.76 15.61 32.64 
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Table 68: Products yield of the trans-hydrogenation over 1,5HD system at 623 K using 
Pt/Al2O3 

 

 P H P+H P+H Theory 

   Conversion (%) 

Pentane(P) 35  46 35 

1,5-hexadiene (1,5HD)  29 57 29 

   Yield (%) 

Iso-pentane 1.27  1.03 1.27 

Pentene 0.16   0.16 

Trans-2-Pentene 3.45   3.45 

Cis-2-pentene 1.56   1.56 

2-Methyl-2-butene  0.13 0.04 0.13 

Hexane  0.43 0.1 0.43 

1-Hexene  1.74 2.65 1.74 

2-Hexene  0.79 0.25 0.79 

3-Hexene  3.36 6.36 3.36 

Methyl-2-pentene  1.41 1.11 1.41 

3-Methyl-1-hexene  3.08 4.62 3.08 

Benzene   0.23 0 

3-Methylhexane  0.98 2.91 0.98 

2-Methyl-1,3-pentadiene  3.19 3.57 3.19 

2-Methyl-1-1hexene  0.54 2.67 0.54 

Methylcyclohexane 14.83 4.51 17.21 19.34 
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Table 69: Products yield of the trans-hydrogenation over 1,5HD system at 573 K using 
Pt/Al2O3  

 

 

 P H P+H P+H Theory 

   Conversion (%) 

Pentane(P) 25  47 25 

1,5-hexadiene (1,5HD)  30 44 30 

   Yield (%) 

Iso-pentane 1.51  1.03  

Pentene 0.11  2.01 1.51 

Trans-2-Pentene 0.69   0.11 

Cis-2-pentene 0.23   0.69 

2-Methyl-2-butene    0.23 

Hexane  0.22  0.22 

1-Hexene  0.98 1.1 0.98 

2-Hexene  1.39  1.39 

3-Hexene  2.51 5.3 2.51 

Methyl-2-pentene  0.53 0.2 0.53 

3-Methyl-1-hexene  3.85 4.68 3.85 

3-Methylhexane  1.38 2.65 1.38 

2-Methyl-1,3-pentadiene  3.72 3.62 3.72 

2-Methyl-1-1hexene  1.54 2.76 1.54 

Methylcyclohexane 14.83 4.96 14.1 19.79 
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Table 70: Products yield of the trans-hydrogenation over 1,5HD system at 523 K using 
Pt/Al2O3 

 

 P H P+H P+H Theory 

   Conversion (%) 

Pentane(P) 24  22 24 

1,5-hexadiene (1,5HD)  31 46 31 

   Yield (%) 

Iso-pentane 1.08  2.01 1.08 

Pentene 0.01   0.01 

Trans-2-Pentene 2.04   2.04 

Cis-2-pentene 0.01   0.01 

Hexane  0.11  0.11 

1-Hexene  1.52 2.15 1.52 

2-Hexene  1.13  1.13 

3-Hexene  3.28 3.79 3.28 

Methyl-2-pentene  0.61 0.21 0.61 

3-Methyl-1-hexene  2.84 2.71 2.84 

3-Methylhexane  1.38 2.84 1.38 

2-Methyl-1,3-pentadiene  1.64 1.59 1.64 

2-Methyl-1-hexene  2.65 3.46 2.65 

Methylcyclohexane 12.21 6.59 11.99 18.80 

 

There was an increase in the yield of the total olefin with increasing reaction 

temperature; ~22 % total olefin was obtained at 723 K which is ~25% lower than 

the chromia catalyst. The total olefin comprises also the alkylated olefins, and 

the olefin to alkylated olefins ratio is about 1:1 at most temperatures. However, 

the total valuable product which is the summation of both the olefins, alkylated 

olefins and alkylated products is ~45% using the 1,5HD system at 773 K which is 

less than the chromia catalyst. Higher yield of the valuable products were 

predominantly observed at higher temperatures as presented in Figure 150. The 

olefin production is observed to be higher than the other valuable as presented 

in Figure 151. There is also an increase in these valuable products with the 

reaction temperature (Figure 152)   
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Figure 150: Total olefin yield with temperature over the Pt/Al2O3 using 1,5HD system 

 

 

Figure 151: Profile of valuable product relative to the reaction temperature over Pt/Al2O3 

using 1,5HD system 

 

 

Figure 152: Relationship of the valuable products over Pt/Al2O3 using 1,5HD system 
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Figure 153: Profile of the evolved gases over Pt/Al2O3 using 1,5HD only at 773 K 

 

 

 

Figure 154: Profile of the evolved gases over Pt/Al2O3 using P/1,5HD at 773 K 

 

The eluent gas analysis using this system also confirms the evolution of hydrogen 

from the start of the reaction during the trans-hydrogenation. The hydrogen 

evolution here was gradually declining but was maintained in the reaction 

stream. There was evolution of C3H6 and C4H8 which increased and maintained 

on stream for the reaction period. C3H8 and C4H8 were evolved using this system 

confirming that the 1,5HD behaved differently to the 1HY on the catalyst 
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surface; this same trend was also observed with the chromia catalyst. There are 

only pulses of these gases observed with the 1,5HD run only and there was no 

evidence that these are maintained in the reaction stream. The result obtained 

at 723 K is presented in Figure 153 and 154 

Table 71: carbon balance for the P/1HY trans-hydrogenation reaction over the Pt/Al2O3 
catalyst 

 

Temperature 

(K) 

Carbon balance (%) 

 Liquid 

Ptds. 

C3H6 C4H8 coke Pdts Non 

accounted  

773 88 1.81 1.03 0.09 9.07 

673 87 1.68 0.98 0.08 10.26 

623 90 1.24 0.86 0.08 7.82 

573 91 1.35 0.71 0.079 6.15 

523 93 - - 0.071 6.29 

 

The hydrogenation reactions were performed over the 623-523 K temperature 

range. The result are presented in Table 71-73 
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Table 72: Products yield during the hydrogenation of 1,5HD over the Pt/Al2O3 at 623 K 

 

 H P+H P+H Theory 

 Conversion (%) 

1,5-Hexadiene (1,5HD) 73 57 29 

 Yield (%) 

Iso-pentane 2.55 1.03 1.27 

Pentene   0.16 

Trans-2-Pentene   3.45 

Cis-2-pentene   1.56 

2-Methyl-2-butene  0.04 0.13 

Hexane 3.23 0.1 0.43 

1-Hexene 10.72 2.65 1.74 

2-Hexene 3.96 0.25 0.79 

3-Hexene 9.6 6.36 3.36 

Methyl-2-pentene 2.55 1.11 1.41 

3-Methyl-1-hexene 0.68 4.62 3.08 

Benzene  0.23 0 

3-Methylhexane  2.91 0.98 

2-Methyl-1,3-pentadiene 8.12 3.57 3.19 

2-Methyl-1-1hexene  2.67 0.54 

Methylcyclohexane 18.16 17.21 19.34 
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Table 73: Products yield during the hydrogenation of 1,5HD over the Pt/Al2O3 at 573 K 

 

 H P+H P+H Theory 

 Conversion (%)   

1,5 Hexadiene (1,5HD) 61 44 30 

 Yield (%)   

Iso-pentane 8.12 2.01 1.51 

Pentene   0.11 

Trans-2-Pentene   0.69 

Cis-2-pentene   0.23 

Hexane 3.46  0.22 

1-Hexene 7.92 1.1 0.98 

2-Hexene 2.41  1.39 

3-Hexene 6.5 5.3 2.51 

Methyl-2-pentene 0.61 0.2 0.53 

3-Methyl-1-hexene 2.38 4.68 3.85 

3-Methylhexane  2.65 1.38 

2-Methyl-1,3-pentadiene 5.24 3.62 3.72 

2-Methyl-1-1hexene  2.76 1.54 

Methylcyclohexane 12.24 14.1 19.79 
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Table 74: Products yield during the hydrogenation of 1,5HD over the Pt/Al2O3 at 523 K 

 

 H P+H P+H Theory 

 Conversion (%) 

1,5 Hexadiene (1,5HD) 62 46 31 

 Yield (%) 

Iso-pentane 19.54 2.01 1.08 

Pentene   0.01 

Trans-2-Pentene   2.04 

Cis-2-pentene   0.01 

Hexane 2.68  0.11 

1-Hexene 1.76 2.15 1.52 

2-Hexene 3.13  1.13 

3-Hexene 6.41 3.79 3.28 

Methyl-2-pentene 0.27 0.21 0.61 

3-Methyl-1-hexene 2.53 2.71 2.84 

3-Methylhexane  2.84 1.38 

2-Methyl-1,3-pentadiene 1.4 1.59 1.64 

2-Methyl-1-1hexene  3.46 2.65 

Methylcyclohexane 12 11.99 18.8 

 

4.4.3.2 Post reaction characterization and analysis  

The TGA- weight loss analysis of the spent catalyst shows the amount of lost 

material is a function of the reaction temperatures, but there is not much 

difference in the weight loss across the temperature range.  This is the same 

trend observed both with the 1,5HD run alone and P/1,5HD trans-hydrogenation. 

Although the catalyst used at 523 K presented the lowest loss there is not much 

difference with the 773 K experiment. The main weight loss from the catalysts 

used with 1,5HD and the mixed feeds occurred at ~ 530 – 811 K, the peak 

extended to higher temperature when compare to the equivalent chromia 

catalyst (530-710 K).  The results are presented in Figure 155 and 156 
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Figure 155: Weight loss profile of 1,5HD run alone over Pt/Al2O3 catalyst 

 

 

Figure 156: Weight loss profile of P/1,5HD mixed feed over Pt/Al2O3 catalyst 

 

The derivative weight analysis plot is observed to show almost no difference 

between the 1,5HD run only, and the trans-hydrogenation process (Figure 157) 

 

Figure 157: Derivative wt. loss profile of 1,5HD and the mixed feeds over Pt/Al2O3 catalyst 
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The TPO analysis during the TGA revealed carbon dioxide as the main desorption 

species evolved with the 1,5HD system using the platinum catalyst. This was 

determined by the mass spectrometer (m/e 44). However, in addition to this, 

fragments (m/e 2, 16, 18 and 28) were also monitored. There were no traces of 

any of these fragments detected in the samples. There is observed evidence for 

possibly two forms of surface carbon with this reaction system, one ~400 K and 

predominantly at 570-861 K during the trans-hydrogenation, there is no clear 

distinction between the two evolutions instead an extended CO2 peak is 

observed (400-860 K)  The results are presented in Figure 158 and 159 

 

Figure 158: TPO profile of 1,5HD run alone over Pt/Al2O3 catalyst 

 

 

Figure 159: TPO profile of P/1,5HD mixed feed over Pt/Al2O3 catalyst 
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The TPO of the catalysts after use in the 1,5HD hydrogenation shows two/three 

peaks associated with CO2 evolution. This profile is different to what was 

observed during trans-hydrogenation but the evolution starts at about the same 

temperature. The result is presented in Figure 160 

 

Figure 160: TPO profile of catalysts after 1,5HD hydrogenation over Pt/Al2O3 catalyst 

 

The carbon dioxide TPO profile matches the TGA derivative weight loss profile 

confirming the weight loss occurred from retained carbon combustion. The 

result obtained at 723 K is presented in Figure 161 

 

Figure 161: Comparison of derivative weight loss and carbon dioxide evolution obtained 
from the TPO-MS using P/1,5HD system with the Pt/Al2O3 catalyst 
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There is little change observed in the amount of the carbon species desorbed 

from the surface of each catalyst over the reaction temperatures range using the 

1,5HD system over the platinum catalyst. There is no dependency in the amount 

of the carbon species desorbed when either the 1,5HD was fed individually or as 

mixed feed trans-hydrogenation process: the % carbon laydown is almost the 

same. However, there is a significant reduction in the amount of carbon 

deposited compared to the 1HY system.  The % laydown is <3% with all the 

reaction temperatures 773-523 K and is about 65% less than the 1HY system. The 

percentage carbon deposit for each run was determined and is presented in 

Figure 162 

 

Figure 162: Carbon laydown of the spent Pt/Al2O3 catalyst over the set temperatures 

 

Table 75: Total amount of carbon deposited on spent Pt/Al2O3 catalyst at various 
temperatures 

 

Temperature (K) Carbon deposited (g/g feed) 

 P P/1,5HD 1,5HD 

523  0.00039 0.00142 0.00813 

573  0.00035 0.00164 0.00821 

623 0.00041 0.00176 0.00821 

673  0.00045 0.00175 0.00927 

773  0.00061 0.00180 0.00919 
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The amount of the carbon formed related to the reactant feed is summarized 

and presented in table. It is observed that there is clear reduction of the carbon 

formation with the trans-hydrogenation system. 

The Raman spectroscopic analysis of the spent catalysts was obtained using UV 

radiation for the studies of the carbon deposit. The Raman spectra show Raman 

bands assigned to coke deposition at ~1380 and 1600 cm-1 related to D and G 

bands respectively. This was observed with 1,5HD feed for all the reaction 

temperatures except 523 K and 573 K, where only G band was observed. G-band 

was only observed with the P/1,5HD trans-hydrogenation at all reaction 

temperatures except 773 K where both D and G bands were observed. The D 

band was lost using the mixed feed process and only G bands are observed at 

most reaction temperatures. The results are presented in Figure 163 and 164 

 

Figure 163: Raman spectra of spent Pt/Al2O3 catalyst for sole 1,5HD obtained using the UV-
radiation 
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Figure 164: Raman spectra of spent Pt/Al2O3 catalyst for mixed feeds obtained using the 
UV-radiation 

 

The BET analysis performed on the spent catalysts also suggests that the 

formation of coke on the catalyst has no effect on the BET surface area and the 

pore volume. There is no significant loss in the SBET, only small changes were 

observed. This is very similar to P/1HY system.  The 1HY system exhibit much 

higher carbon deposit compared to the 1,5HD system at all reaction 

temperatures but neither reaction showed any change in the SBET.  

The XRD analysis of the spent catalyst using the 1,5HD system also revealed only 

the diffraction pattern for γ-alumina  
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3.4.4 Pentane/2,4-Hexadiene (P/2,4HD) system 

3.4.4.1 Reaction analysis and trans-hydrogenation activity evaluation 

The reactant conversions were followed individually and during the mixed trans-

hydrogenation reaction using the 2,4HD system over the platinum catalyst. The 

conversion of pentane was only ~1-2 % increase observed during the trans-

hydrogenation compared to the pentane dehydrogenation except for 773 K 

reaction temperature. Slightly higher conversion ~46% was obtained compared to 

~37% when pentane was run individually. Only ~1-2 % values are within the 

experimental error so it can be assumed that the trans-hydrogenation process 

does not really improve the conversion of the pentane dehydrogenation 

compared to 1HY and 1,5HD systems. This is similar to what was observed with 

the chromia catalyst and is consistent with the thermodynamic suggestion with 

this 2,4HD reactant as explained in section 3.1. The result is presented in Figure 

165 

 

Figure 165: Conversion comparison of P, 2,4HD and P/2,4HD mixture using PtAl2O3 

 

The products yields were calculated and presented in Table 75-79. Low 

percentage yields of the valuable products were obtained with this system 

compared with to the other systems. The product distribution is pretty much the 
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Table 76: Products yield of the trans-hydrogenation over 2,4HD system at 773 K using 
Pt/Al2O3 

 

 P H P+H P+H Theory 

  Conversion (%) 

Pentane(P) 37  46 37 

2,4-Hexadiene (2,4HD)  63 63 63 

   Yield (%) 

Iso-pentane 1.67  20.7 1.67 

Pentene 4.01  1.49 4.01 

Trans-2-Pentene 5.27  0.44 5.27 

Cis-2-pentene 2.64   2.64 

2-Methyl-2-butene 0.52   0.52 

4-Methylpentene 1.67   1.67 

hexane  5.94 3.78 5.94 

Methyl-2-pentene  14.26 4.04 14.26 

Benzene   5.21 0 

3-Methylhexane  5.76  5.76 

2-Methyl-1,3-pentadiene  6.19 7.21 6.19 

Methylcyclohexane 17.03 18.57 13.03 35.60 
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Table 77: Products yield of the trans-hydrogenation over 2,4HD system at 673 K using 
Pt/Al2O3 

 

 P H P+H P+H Theory 

  Conversion (%) 

Pentane(P) 34  36 34 

2,4-Hexadiene (2,4HD)  58 64 58 

   Yield (%) 

Iso-pentane 1.18  4.76 1.18 

Pentene 2.59   2.59 

Trans-2-Pentene 1.92   1.92 

Cis-2-pentene 1.93  0.43 1.93 

2-methyl-2-butene 1.18   1.18 

Hexane   2.91  

3-Hexene  2.88  2.88 

Methyl-2-pentene  10.93 4.05 10.93 

3-Methylhexane  4.31 5.69 4.31 

2-Methyl-1,3-pentadiene  4.03 9.05 4.03 

Methylcyclohexane 17.03 16.02 12.40 33.05 
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Table 78: Products yield of the trans-hydrogenation over 2,4HD system at 623K using 
Pt/Al2O3 

 

 P H P+H P+H Theory 

  Conversion (%) 

Pentane(P) 35  36 56 

2,4-Hexadiene (2,4HD)  49 44 52 

   Yield (%) 

Iso-pentane 1.27  4.25 1.27 

Pentene 0.16   0.16 

Trans-2-Pentene 3.45   3.45 

Cis-2-pentene 1.56   1.56 

2-methyl-2-butene  3.68  3.68 

Hexane  2.33  2.33 

3-Hexene  7.89 4.81 7.89 

Methyl-2-pentene   3.51  

3-Methylhexane  2.13 8.18 2.13 

2-Methyl-1,3-pentadiene  4.94  4.94 

Methylcyclohexane 14.83 19.11 8.94 33.94 
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Table 79: Products yield of the trans-hydrogenation over 2,4HD system at 573K using 
Pt/Al2O3 

 

 P H P+H P+H Theory 

   Conversion (%) 

Pentane(P) 25  28 25 

2,4-Hexadiene (2,4HD)  42 49 42 

   Yield (%) 

Iso-pentane 1.51  8.97 1.51 

Pentene 0.11   0.11 

Trans-2-Pentene 0.69   0.69 

Cis-2-pentene 0.23   0.23 

Hexane  10.93 3.3 10.93 

Methyl-2-pentene  4.28 5.18 4.28 

3-Methylhexane   1.14 0 

2-Methyl-1,3-pentadiene   10.93 0 

2-Methyl-1-1hexene  3.21  3.21 

Methylcyclohexane 14.83 14.55 7.61 29.38 
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Table 80: Products yield of the trans-hydrogenation over 2,4HD system at 523 K using 
Pt/Al2O3 

 

 

 P H P+H P+H Theory 

  Conversion (%) 

Pentane(P) 24  27 24 

2,4-Hexadiene (2,4HD)  32 36 32 

   Yield (%) 

Iso-pentane 1.08 0.66  1.74 

Pentene 0.01   1.08 

Trans-2-Pentene 2.04   0.01 

Cis-2-pentene 0.01   2.04 

Hexane  1.03 3.4 1.03 

1-Hexene  0.41  0.41 

2-Hexene  0.4  0.4 

3-Hexene  1.85  1.85 

Methyl-2-pentene  4.06 5.98 4.06 

3-Methylhexane  1.92 1.76 1.92 

2-Methyl-1,3-pentadiene  0.97 11.98 0.97 

Methylcyclohexane 12.21 12.52 8 7.73 

  

The total olefin yield obtained with the 2,4HD system is very low (~6%) at 773 K, 

this is a value lower that the chromia catalyst and lower compared with the 

values obtained over the platinum catalyst with the other two systems. The 

result is presented in Figure 166. The olefin production is lower than the other 

valuable products as presented in Figure 167, but there is an increase in these 

valuable products with the reaction temperature (Figure 168)   
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Figure 166: Total olefin yield with temperature over the Pt/Al2O3 using 2,4HD system 

 

 

Figure 167: Profile of valuable product relative to the reaction temperature over Pt/Al2O3 
using 2,4HD system 

 

 

Figure 168: Relationship of the valuable products over Pt/Al2O3 using 2,4HD system 
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The eluent gas products analysis using 2,4 HD system also shows pulses  of H2, 

C3H6 and C4H8 from the start of the reaction. The hydrogen evolution here was 

slightly maintained in the reaction stream but gradually declined with the 2,4HD 

run. There is a significant reduction of the hydrogen at ~30 min during the trans-

hydrogenation. C3H8 and C4H8 were evolved using this system which shows similar 

fragmentation with 1,5HD using the platinum catalyst. This is also the same 

eluent gases observed using the chromia catalyst. The result obtained at 723 K is 

presented in Figure 169 and 170 

 

Figure 169: Profile of the evolved gases over Pt/Al2O3 using 2,4HD only at 723 K 

 

 

Figure 170: Profile of the evolved gases over Pt/Al2O3 using P/2,4HD mixed feed at 723 K 

 

The hydrogenation reaction processes were performed over the 623-523 K 

temperature. The result are presented in 80-82 
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Table 81: Products yield during the hydrogenation of 2,4HD over the Pt/Al2O3 at 623 K 

 

 2,4HD +2% H2/N2 P+H P+H Theory 

 Conversion (%) 

2,4-Hexadiene (2,4HD) 63 44 52 

  Yield (%) 

Iso-pentane  4.25 1.27 

Pentene   0.16 

Trans-2-Pentene   3.45 

Cis-2-pentene   1.56 

Cexane 9.85  3.68 

1-Hexene 3.47   

2-Hexene 5.72   

3-Hexene 9.86  2.33 

Methyl-2-pentene 1.85 4.81 7.89 

3-Methylhexane 1.42 3.51  

3-Methyl-1-hexene 0.24   

2-Methyl-1,3-pentadiene  8.18 2.13 

2-Methyl-1-1hexene   4.94 

Methylcyclohexane 5.26 8.94 33.94 
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Table 82: Products yield during the hydrogenation of 2,4HD over the Pt/Al2O3 at 573 K 

 

 2,4HD +2% H2/N2 P+H P+H Theory 

   Conversion (%) 

2,4-Hexadiene (2,4HD) 60 49 42 

  Yield (%) 

Iso-pentane  8.97 1.51 

Pentene   0.11 

Trans-2-Pentene   0.69 

Cis-2-pentene   0.23 

Hexane 12.49 3.3 10.93 

1-Hexene 5.01   

2-Hexene 8.24   

3-Hexene 13.16   

methyl-2-pentene 1.23 5.18 4.28 

3-Methylhexane 1.32 1.14 0 

2-Methyl-1,3-pentadiene 0.23 10.93 0 

2-Methyl-1-1hexene   3.21 

Methylcyclohexane 11.16 7.61 29.38 

 

 

 

 

 

 

 

 

 



 
 

202 
 

Table 83: Products yield during the hydrogenation of 2,4HD over the Pt/Al2O3 at 523 K 

 

 2,4HD +2% H2/N2 P+H P+H Theory 

 Conversion (%) 

2,4hexadiene (2,4HD) 62 36 32 

  Yield (%) 

Iso-pentane   1.74 

Pentene   1.08 

Trans-2-Pentene   0.01 

Cis-2-pentene   2.04 

Hexane 10.59 3.4 1.03 

1-Hexene 5.31  0.41 

2-Hexene 8.04  0.4 

3-Hexene 15.21  1.85 

Methyl-2-pentene 1.64 5.98 4.06 

3-Methylhexane 1.93 1.76 1.92 

2-Methyl-1,3-pentadiene 0.32 11.98 0.97 

Methylcyclohexane 13.45 8 7.73 

 

4.2.4.2 Post reaction characterization and analysis  

The TGA- weight loss analysis of the spent catalyst shows a weight loss with all 

2,4HD systems, with the amount of weight lost increasing as a function of the 

reaction temperatures. Although there are only small differences in the amount 

of material lost across the reaction temperature range. The catalyst used at a 

reaction temperature of 773 K presents the highest loss with both the 2,4HD run 

alone and P/2,4HD trans-hydrogenation, and the catalyst used at a reaction 

temperature of 523 K presented the lowest loss. Two weight losses were 

observed in both processes, first loss occurred at ~ 390 – 500 K while the second 

loss occurred at ~505-840 K. The results are presented in Figure 171 and 172 
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Figure 171: Weight loss profile of 2,4HD run alone over Pt/Al2O3 catalyst 

 

 

Figure 172: Weight loss profile of P/2,4HD mixed feed over Pt/Al2O3 catalyst 

 

The derivative weight analysis plots show that the two process presented 

different profiles. Nevertheless evidence for two types of surface deposit was 

observed with both processes. During the trans-hydrogenation, the intensity of 

the first peak is higher than the second peak and the second peak is broader, 

whereas the two peaks have about the same intensities during the 2,4HD run 

alone. Evidence for three desorption peaks could also be argued with the 2,4 HD 

run, but this is only observed with the 773 K run. The results are presented in 

Figure 173 and 174 
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Figure 173: Derivative weight loss profile of 2,4HD feeds over Pt/Al2O3 catalyst at 773 K 

 

 

Figure 174: Derivative wt. loss profile of 2,4HD mixed feeds over Pt/Al2O3 catalyst at 773 K 
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processes. The results are presented in Fig 175 and 176. A different TPO profile 

was obtained from the catalyst used in the hydrogenation process (Fig177).  

 

Figure 175: TPO profile of 2,4HD run alone over Pt/Al2O3 catalyst 

 

 

Figure 176: TPO profile of P/2,4HD mixed feed over Pt/Al2O3 catalyst 

 

 

Figure 177: TPO profile during 2,4HD hydrogenation over Pt/Al2O3 catalyst 
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Compared with the 1,5 HD system, the 2,4HD exhibited a higher amount of 

carbon species deposited on the surface of the spent catalyst. The amount of 

the carbon laydown is less than what was observed with 1HY systems. At the 

higher reaction temperatures there is observed a slight reduction in the amount 

of carbon laydown during the trans-hydrogenation process compared to the 

2,4HD run alone. The result is presented in Figure 178 

 

Figure 178: Carbon laydown of the spent Pt/Al2O3 catalyst over the set temperatures 

 

The amount of the carbon formed relative to the reactant feed is summarized 

and presented in Table 84. Lower carbon deposition was obtained during the 

trans-hydrogenation and there is a clear reduction of the carbon formation with 

the trans-hydrogenation system relative to the amount of the reactant fed. 

Table 84: Total amount of carbon deposited on spent Pt/Al2O3 catalyst at various 
temperatures using 2,4HD system 

 

Temperature (K) Carbon deposited (µmol/g) 

 

P P/2,4HD 2,4HD 

523  0.0035 0.0014 0.0098 

573  0.0040 0.0030 0.0151 

623  0.0041 0.0043 0.0221 

673  0.0044 0.0038 0.0236 

773  0.0048 0.0046 0.0308 
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The Raman spectroscopic analysis of the spent catalysts for the two processes 

was obtained using UV radiation. The Raman spectra reveals bands assigned to 

coke deposition  predominantly at ~ 1600 cm-1 related to G bands, except for the 

catalyst used for the 2,4HD alone run at 773 K, where a ~1300 cm-1  band was 

assigned as a D-band. No Raman bands were observed from the catalyst used at 

523 K with the mixed feed. The results are presented in Figure 179 and 180 

 

Figure 179: Raman spectra of spent Pt/Al2O3 catalyst for sole 2,4HD obtained using the UV-
radiation 

 

 

Figure 180: Raman spectra of spent Pt/Al2O3 catalyst for 2,4HD mixed feeds obtained using 
the UV-radiation 
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The BET analysis performed on the spent catalyst also suggests that the 

formation of coke on the catalyst surface using 2,4HD system does not affect the 

BET surface area and the pore volume. No obvious loss in the SBET was observed 

with all the samples just similar to 1HY and 1,5 HD systems. 

The XRD analysis of the spent catalyst using the 2,4HD system revealed only the 

diffraction pattern for the alumina support. 

The CHN analysis obtained over the platinum catalyst with three reaction 

systems is presented in Table 85 

Table 85: Elemental analysis over platinum catalyst with the three reaction systems 

 

 wt. % C Wt. % H wt. % C Wt. % H wt. % C Wt. % H 

 1HY 1,5HD 2,4HD 

773 K 1.41 0.39 1 0.76 1.13 0.41 

673 K 1.91 0.53 0.99 0.76 1.72 0.55 

623 K 4.21 0.99 1.21 0.89 2.91 0.87 

573 K 5.39 1.04 1.21 0.91 2.81 0.82 

523 K 5.33 0.94 1.23 0.93 3.86 0.94 
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3.5 K-Pt/Al2O3 catalyst 

3.5.1 Pre-reaction catalyst characterisation 

3.5.1.1 BET surface area and pore volume determination 

Table 86 shows the summary of the parameters extracted from the BET analysis. 

The result indicated that the SBET is about the same after impregnation of the 

doped potassium. But, there is a slight decrease in the pore volume and the pore 

diameter of the platinum catalyst upon impregnation of the potassium  

Table 86: BET surface areas, pore volume and average pore diameter of the Pt/Al2O3 and K-
Pt/Al2O3 catalyst 

 

 SBET (m
2/g) Vp(cm3g-1) Dp(Å) 

Pt/Ƴ-Al2O3 119 0.54 182 

K-Pt/ Ƴ-Al2O3 120 0.47 157 

 

The adsorption isotherm for the catalyst and the support were found to be 

similar, obeying the type II model. The result is presented in Figure 181 

 

Figure 181: Nitrogen adsorption isotherm at 78K for the K- Pt/Al2O3 catalyst 
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is no clear decrease in the pore volume of both mesorpores and microspores of 

the platinum catalyst upon impregnation of the alkali. 

 

Figure 182: Pore volume distribution of the Pt/Al2O3 and the K- Pt/Al2O3 catalyst 

 

3.5.1.2 XRD analysis 

The XRD analysis of the platinum catalyst and the doped catalyst both revealed 

same diffraction pattern associated with only the alumina support and no 

evidence was observed for the crystalline phase of the platinum oxide and or the 

diffraction pattern of the potassium, associated with both α-K2O/ β-K2O 

crystalline phases as observed with K-CrOx/Al2O3 (Figure 183). This is expected 

for potassium loading (< 10%)  

 

Figure 183: XRD diffraction pattern of the support and the Pt/Al2O3 catalyst 
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The standard TGA-TPR obtained from ambient temperature to 1273 K revealed 

an additional peak at ~1120 K. This peak was not observed with the Pt/Al2O3 

catalyst and was also not observed during the Red/OX cycles, although the Red-

Ox cycles were only run to 873 K. The peaks at ~517 and 552 K although at a bit 

higher temperature, correspond to ones obtained with the platinum catalyst at 

~470 and ~506 K. This standard TGA-TPR peak is also consistent with the Red-Ox 

cycles. This as explained previously could be due to a thermal effect associated 

with dehydroxylation process that yields platinum oxide species and the thermal 

decomposition of the platinum complex, plus the reduction of the platinum 

oxide [91-93]. The oxides of potassium decompose at ~623-773 K and could react 

with the alumina to form a strong base. However, the potassium itself boils at 

~1033 K, and therefore the weight loss (~2 %) at ~1050 K could probably be a loss 

of the potassium itself due to high temperature effect (Figure 184) 

 

Figure 184: The standard TGA-TPR profile of the K- Pt/Al2O3 catalyst 

 

The Ox-red cycles reduction profiles perfectly matches the peaks at ~517 and 

552 K. This corresponds to ~4 % weight loss, the peak was only observed with the 

first reduction cycle which confirms that the loss associated with the peak could 

be as result of thermal decomposition of the platinum complex and removal of 

the ligands from the catalyst. The result is presented in Figure 185 

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

88

90

92

94

96

98

100

250 450 650 850 1050 1250

D
er

iv
. W

ei
gh

t 
(%

/°
C

) 
 

 w
t 

lo
ss

 (
%

) 

Temperature (K) 

wt. loss Drv wt. loss



 
 

212 
 

 

Figure 185: The TGA-TPR profile during the OX-Red cycles of the K-Pt/Al2O3 catalyst 

 

The DTA profile during reduction 1st and 2nd cycles showed one endothermic 

effect in the temperature at ~373 K ascribed to the removal of physiosorbed 

water corresponding to moisture lost mainly from the alumina support and the 

weight loss was ~2% and ~1% respectively. Endothermic peaks were also observed 

at ~517 and 552 corresponding to a weight loss of ~4% similar to the platinum 

catalyst. This confirms that there is uptake of heat energy due to this loss, and 

therefore the lost can be assigned predominantly to the thermal effect 

decomposition of the platinum complex, and obviously a small hydrogen uptake 

for the reduction process.  

 

Figure 186: The DTA profile of the catalyst obtained during the TGA-TPR Ox-Red cycle of 
the K- Pt/Al2O3 catalyst 
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3.5.2 Pentane/Hexyne (P/1HY) system 

3.5.2.1 Reaction analysis and trans-hydrogenation activity evaluation 

The reactant conversions were followed individually and during the mixed trans-

hydrogenation reaction. There was observed an increase in the conversion of the 

pentane during the trans-hydrogenation, conversion slightly higher (~3 %) than 

the pentane dehydrogenation at the two temperatures tested was. However, all 

of the conversions obtained were higher than the equilibrium conversion of n-

pentane at that temperature.  This slight increase in conversions was also 

observed with the hexyne reactant during the trans-hydrogenation. The result is 

presented in Figure 187. 

 

Figure 187: Conversion comparison of P, 1HY and P/1HY mixture using K-Pt/ Pt/Al2O3 

 

The products yields are presented in Table 87 and 88. The product distributions 

are similar to those observed with the Pt/Al2O3 catalyst but with a slight 

increase in the products yields. Like the Pt/Al2O3 catalyst, most of the products 

obtained are alkylated and alkylated olefinic hydrocarbons. 
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Table 87: Products yield of the trans-hydrogenation over K-Pt/Al2O3 at 673 K 

 

 P H P+H P+H Theory 

 Conversion (%) 

Pentane(P) 39  43 39 

1-Hexyne(1HY)  77 85 77 

   Yield (%)  

Iso-pentane 0.69  2.7 0.69 

Pentene 0.84   0.84 

Trans-2-Pentene 1.74   1.74 

Cis-2-pentene 0.84   0.84 

Hexane  2.98 1.62 2.98 

1-Hexene  1.46 2.71 1.46 

2-Hexene  1.41 0.29 1.41 

3-Hexene  3.19 0 3.19 

Methyl-2-pentene  7.21 10.59 7.21 

3-Methylpentyne  8.6 3.16 8.6 

3-methyl-1-hexene  14.23 18.02 14.23 

Benzene   0.9 0 

3-Methylhexane  1.8 6.39 1.8 

2-Methyl-1,3-pentadiene  14.38 18.2 14.38 

Methylcyclohexane 29.8 14.56 9.32 44.36 
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Table 88: Products yield of the trans-hydrogenation over K-Pt/Al2O3 at 573 K 

 

 P H P+H P+H Theory 

  Conversion (%) 

Pentane(P) 37  42 80.54 

1-Hexyne(1HY)  80 84 85.4 

   Yield (%) 

Iso-pentane 0.32  1.42 0.32 

Pentene 1.39   0.39 

Trans-2-Pentene 1.8   0.8 

Cis-2-pentene 0.38   0.38 

Hexane  0.63 3.91 0.63 

1-Hexene  1.03 0.71 1.03 

2-Hexene  0.37 0.11 0.37 

3-Hexene   0.34 0 

Methyl-2-pentene  3.52 6.36 3.52 

3-Methylpentyne  19.8 24.12 19.8 

3-Methyl-1-hexene  6.4 12.9 6.4 

Benzene   0.96 0 

3-Methylhexane  6.85 11.43 6.85 

2-Methyl-1,3-pentadiene  21.2 12.55 21.2 

Methylcyclohexane 21.18 4.59 10.17 25.77 

 

3.5.2.2 Post reaction characterization and analysis  

The TGA analysis of the spent catalysts show unique weight loss with each type 

of reactant using the potassium doped platinum catalyst. Variation in the 

amount of the loss was also observed as a function of reaction temperature. In 

general there was less weight loss with pentane compared to hexyne and the 

mixed feed. With the catalyst from pentane only reaction < 2% loss at 673 K and 

~1 % loss at 573 K was detected, whilst the catalysts from the hexyne and the 

mixed feed experiments gave a higher weight loss of ~ 4 % and ~3 % at 673 K 

respectively, < 1% weight loss was obtained in both cases from the catalysts used 

at 573 K.  As expected, the values are slightly less than the one obtained with 
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the Pt/Al2O3 catalyst. The main loss observed at ~373K with all the three 

systems could be just due to physiosorbed water and was a similar loss in all the 

three systems. The other mass losses are due to evolution of CO2 as confirmed 

from the TPO analysis. The results are presented in figures 188, 189 and 190 

 

Figure 188: Weight loss profile of pentane run alone over K- Pt/A2O3 catalyst 

 

 

Figure 189: Weight loss profile of hexyne run alone over K- Pt/A2O3 catalyst 
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Figure 190: Weight loss profile of P/1HY mixed feed over K-Pt/Al2O3 catalyst 

 

The TPO analysis revealed CO2 as the main desorption species as confirmed by 

mass spectrometry. Two peaks were observed both with hexyne and the mixed 

feed. There was a peak at ~560 K and one around 580 K; the peak at lower 

temperature represented a greater weight loss in both cases except for the run 

at 573 K using the mixed feed where both carbon dioxide evolutions were about 

the same. This same effect was observed with the platinum catalyst. Only one 

obvious carbon dioxide peak was observed with the pentane reactant and it 

tallied with the second peak when using hexyne or the mixed feed at ~580 K. 

Possibly, two form of carbonaceous deposit were obtained with the hexyne and 

the mixed feed and one with the pentane reactant. The results are presented in 

figures 191, 192 and 193 

 

Figure 191:  TPO profile of pentane run alone over K-Pt/Al2O3 catalyst 
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Figure 192: TPO profile of hexyne run alone over K-Pt/Al2O3 catalyst 

 

 

Figure 193: TPO profile of P/1HY mixed feed over K-Pt/Al2O3 catalyst 
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3.5.3 Pentane/1,5-Hexdiene (P/1,5HD) system 

3.5.3.1 Reaction analysis and trans-hydrogenation activity evaluation 

There is a slight increase in the conversions of pentane using the doped platinum 

catalyst with the 1,5HD system. More significant increase in conversion (~65 % 

conversion) of pentane was observed with the trans-hydrogenation and this was 

about double the conversion obtained with pentane dehydrogenation using this 

catalyst. Unlike the 1HY system, a decrease in the conversion of the 1,5HD was 

observed during the trans-hydrogenation of ~8 % at 673 K and ~3 % at 573 K. 

Higher conversions of pentane were obtained with the doped catalyst compared 

to the non-doped platinum catalyst.  The results are presented in Figure 194 

 

Figure 194: Conversion comparison of P, 1,5HD and P/1,5HD mixture using K-Pt/Al2O3 

 

The product yields are presented in table 89 and 90; similar product 

distributions were obtained using the platinum catalyst with this system. 

However, there was a slight increase in the yield of the products obtained 

similar to the 1HY system. 
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Table 89: Products yield of the trans-hydrogenation: 1,5HD system at 673 K using K-Pt/Al2O3 

 

 P H P+H P+H Theory 

 Conversion (%) 

Pentane(P) 39  65 74 

1,5-Hexadiene (1,5HD)  82 74 82 

 Yield (%) 

Iso-pentane 0.69  0.16 0.69 

Pentene 0.84   0.84 

trans-2-Pentene 1.74   1.74 

Cis-2-pentene 0.84   0.84 

Hexane  0.97 1.22 0.97 

1-Hexene  0.86 0.17 0.86 

2-Hexene  0.34 0.91 0.34 

3-Hexene  1.62 1.34 1.62 

Methyl-2-pentene  9.44 4.53 9.44 

3-Methyl-1-hexene  10.88 5.41 10.88 

Benzene  0.82  0.82 

3-Methylhexane  4.54 3.83 4.54 

2-Methyl-1,3-pentadiene  10.53 10.65 10.53 

2-Methyl-1-1hexene  6.96 9.38 6.96 

Methylcyclohexane 29.8 17.34 12.47 47.14 
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Table 90: Products yield of the trans-hydrogenation: 1,5HD system at 573 K using K-Pt/Al2O3 

 

 P H P+H P+H Theory 

 Conversion (%) 

Pentane(P) 37  63 37 

1,5-Hexadiene (1,5HD)  74 71 85.4 

 Yield (%) 

Iso-pentane 0.32  0.13 0.32 

Pentene 1.39   0.39 

Trans-2-Pentene 1.8   0.8 

Cis-2-pentene 0.38   0.38 

Hexane  0.31 0.22 0.31 

1-Hexene  1.18 0.28 1.18 

2-Hexene  0.61 1.09 0.61 

3-Hexene  0.6  0.6 

Methyl-2-pentene  6.24 4.17 6.24 

3-Methyl-1-hexene  9.48 8.51 9.48 

3-Methylhexane  2.59 1.82 2.59 

2-Methyl-1,3-pentadiene  8.45 8 8.45 

2-methyl-1-1hexene   8.95 0 

Methylcyclohexane 21.18 17.2 16.62 38.38 

 

3.5.3.2 Post reaction characterization and analysis  

The TGA analysis of the spent catalysts with the 1,5HD system also shows a 

weight loss. There are two weight losses with both the 1,5HD run and the mixed 

feed. However, there is not much difference in total weight loss between the 

two catalysts used at the different reaction temperatures during the mixed feed. 

The results are presented in Figure 195 and 196 
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Figure 195: Weight loss profile of 1,5HD run alone over K-Pt/Al2O3 catalyst 

 

 

Figure 196: Weight loss profile of P/1,5HD mixed feed over K-Pt/Al2O3 catalyst 

 

The TPO analysis of the spent catalyst reveals CO2 as the main evolved species. 

However, two forms of carbonaceous deposits were observed with both 

reactions. There is also observed shift in the evolution of the CO2 peaks with 

catalyst reaction temperature, this was only observed with the first peak while 

the second peak evolved at the same temperature. This peak shift was observed 

with the 1,5HD system with all the catalysts. The results are presented Figure 

197 and 198 
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Figure 197: TPO profile of 1,5HD run alone over K-Pt/Al2O3 catalyst 

 

 

Figure 198: TPO profile of P/1,5HD mixed feed over K-Pt/Al2O3 catalyst 
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3.5.4 Pentane/2,4-Hexadiene (P/2,4HD) system 

3.5.4.1 Reaction analysis and trans-hydrogenation activity evaluation 

The conversion of pentane was lower during the trans-hydrogenation with this 

catalyst compared with pentane dehydrogenation. This shows that the doping of 

the catalyst does not improve the activity of the catalyst. This is very similar to 

what was observed with the doped chromia catalyst. This is consistent with the 

thermodynamic limitation as mentioned above. The result is presented Figure 

199 

 

Figure 199: Conversion comparison of P, 2,4HD and P/2,4HD mixture using K-Pt/Al2O3 

  

The products yields are presented in table 91 and 92  

Table 91: Products yield of the trans-hydrogenation: 2,4HD system at 673 K using K-Pt/Al2O3 

 

 P H P+H P+H 

Theory 

 Conversion (%) 

Pentane(P) 39  35 39 

2,4-Hexadiene (2,4HD)  61 68 61 

 Yield (%) 

Iso-pentane 0.69  1.18 0.69 
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Cis-2-pentene 0.84   0.84 

Hexane  3.65 4.51 3.65 

1-Hexene  0.68 0.49 0.68 

2-Hexene    0 

3-Hexene    0 

Methyl-2-pentene  5.03 4.61 5.03 

3-Methylhexane  3.28 2.23 3.28 

2-Methyl-1,3-pentadiene  18.56  18.56 

2-Methyl-1-1hexene  3.5 5.77 3.5 

Methylcyclohexane 29.8 12.96 21.16 27.59 

 

Table 92: Products yield of the trans-hydrogenation: 2,4HD system at 573 K using K-Pt/Al2O3 

 

 P H P+H P+H 

Theory 

 Conversion (%) 

Pentane(P) 37  26 37 

2,4-Hexadiene (2,4HD)  63 54 63 

 Yield (%) 

Iso-pentane 0.32   0.32 

Pentene 1.39   1.39 

Trans-2-Pentene 1.8   1.8 

Cis-2-pentene 0.38   0.38 

Hexane  3.59 2.12 3.59 

1-Hexene    0 

2-Hexene    0 

3-Hexene    0 

Methyl-2-pentene  6.54 2.48 6.54 

3-Methyl-1-hexene   4.51 0 

3-Methylhexane  0.92 1.61 0.92 

2-Methyl-1,3-pentadiene  18.45  18.45 

2-Methyl-1-1hexene  5.45 5.98 5.45 

Methylcyclohexane 21.18 10.05 19.08 31.23 
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3.5.4.2 Post reaction characterization and analysis  

The TGA analysis of the spent catalyst shows a weight loss with the 2,4HD 

system. There are two weight losses from the catalysts used with both the 2,4HD 

run and the mixed feed just like the 1,5HD system but there is less difference in 

the total weight loss between the two reaction temperatures during the mixed 

feed compared to both hexyne and the 1,5HD systems. The results are presented 

in Figure 200, and 201 

 

Figure 200: Weight loss profile of 2,4HD run alone over K-Pt/Al2O3 catalyst 

 

 

Figure 201: Weight loss profile of P/2,4HD mixed feed over K-Pt/Al2O3 catalyst 
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The TPO analysis of the spent catalyst reveals CO2 as the main evolved species. 

However, possible two forms of carbonaceous deposits were observed with both 

reactions with the 2,4HD system. Unlike the 1,5HD there is no observed shift in 

the CO2 peaks. The results are presented in Figure 202 and 203 

 

Figure 202: TPO profile of 2,4HD run alone over K-Pt/Al2O3 catalyst 

 

 

Figure 203: TPO profile of P/2,4HD mixed feed over K-Pt/Al2O3 catalyst 
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3.6 Reaction involving deactivation and regeneration 
cycles 

The catalysts were further analysed for any possible deactivation over an 

extended period of 8 h. This involved testing of the trans-hydrogenation mixture 

at 673 K and 573 K. Analyses were taken every 2 h. Any possible deactivation 

was recorded and the catalysts were regenerated afterwards by flushing the 

reactor with Ar (30 ml/min) overnight, in order to remove any species remaining 

in the reactor, before switching the flow to 2% O2/Ar (100 ml/min) for the in-

situ TPO of the spent catalysts. The catalysts were heated from ambient 

temperature to 873 K at a ramp of 10 K/min, the reactor temperature was held 

at 873 K until evolution of all gases other than O2 and Ar ceased. The eluent 

gases from the TPO were analysed by the online mass spectrometer (m/e 2, 16, 

28, 32 and 44), for detailed investigation of the deposited carbonaceous 

material. In this rector configuration, the catalysts could therefore be cycled 

through this process of reduction/reaction/regeneration. 

3.6.1 CrOx/Al2O3 Catalyst 

3.6.1.1 Pentane/Hexyne (P/1HY) system 

There is less severe reduction in hexyne conversion at 673 K; the conversion only 

decreases from ~96% to ~80% after 2 hr TOS during the first cycle. Only a slight 

difference was observed between the two cycles except that the catalyst is 

more stable after 2 hr during the 2nd cycle (regenerated catalyst). At the lower 

reaction temperature (573 K), significant deactivation is observed, the 

conversion of hexyne decreases with time on stream (TOS), from ~50 % observed 

at 2 h TOS to ~25 % after 8 h.  After regeneration hexyne conversion is slightly 

down from the initial run, whereas the pentane conversion slightly increases. 

However, at 673 K there is no loss in activity related to pentane conversion and 

after regeneration conversion of both reactants is slightly higher.  The results 

are presented in Figure 204 and 205 
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Figure 204: CrOx/Al2O3 catalyst regeneration profile over P/1HY at 673 K 

 

 

Figure 205: CrOx/Al2O3 catalyst regeneration profile over P/1HY at 573 K 

 

The yield of total olefin (total olefin formed/total feed fed) versus time on 

stream plots are presented in Figure 206 and 207, for both temperature runs. It 

indicates that after the first cycle a reduction of the olefin yield is observed 

after 2 hr during the second cycle. The activity/selectivity of the catalysts is 

more reproducible with TOS afterward for the period of 8 hrs. It is clearly 

observed that in both cycles there is approximately the same olefin yield after 4 

hr.  
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Figure 206: Effect of operating cycles on CrOx/Al2O3 catalyst olefin yield over P/1HY at 673 K 

 

 

Figure 207: Effect of operating cycles on CrOx/Al2O3 catalyst olefin yield over P/1HY at 573 K 
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production of the alkylates and the cyclics. However, there is a slight change in 
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Figure 208: profile of the valuable product during first cycle over CrOx/Al2O3 at 673 K 

 

 

Figure 209: profile of the valuable product during second cycle over CrOx/Al2O3 at 673 K 

 

The two major products 1,4HD and 3MPY obtained using this system follow the 
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Figure 210: Profile of the two major products at 673 K over CrOx/Al2O3 

 

The reaction at 573 K did not follow the same trend as the reaction at 673 K in 

regards to the valuable production distribution. There is possible deactivation 

observed in the production of the both olefin and the cyclic products, whereas 

the alkylates revealed less consistent effect to the reaction time as illustrated in 

Figure 211 and 212. Both cycles present the same pattern but only that general 

reduction in the product yield is observed during the second cycle.  

 

Figure 211: profile of the valuable product during second cycle over CrOx/Al2O3 at 573 K 
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Figure 212: profile of the valuable product during second cycle over CrOx/Al2O3 at 573 K 

 

Figure 213 illustrates the profile of the major products at 573 K, although there 

is a good similarity with the reaction at 673 K there is observed a general 

reduction in their yield, which could be related to the differences in the 

conversion of the reactants using the two temperatures. Only ~8 % 1,4HD with a 

significant deactivation after 4 hr TOS was obtained at 573 K compared to ~25 % 

at 673 K. The production of 3MPY was also much more stable during the second 

cycle at the 573 K   

 

Figure 213: Profile of the two major products at 573 K over CrOx/Al2O3  
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deposition at both reaction temperatures and CO2 evolution was observed. In 

addition, traces of H2, CO and H2O were also detected in the course of the TPO. 

There are possibly two types of carbonaceous material that have formed at both 

reaction temperatures and all desorption species perfectly matches with the 

evolution of the CO2 as two clear distinct evolutions were observed. This 

suggests that they were formed as a result of combustion of two different types 

of carbon deposit. Desorption of all these species also matches the consumption 

of oxygen suggesting that they are from combustion of the carbon deposit. The 

first CO2 evolution at ~750 K could be a kind of soft carbon species and hydro-

carbonaceous type, while the second CO2 evolution at the isothermal 

temperature 873 K after ramping could be a kind of hard carbon species that is 

less hydro-carbonaceous.  This effect is similar to what was observed during the 

2 hr short run.  

 

Figure 214: Evolution of CO2 and other species during the TPO on CrOx/Al2O3 spent catalyst 
over P/1HY at 673 K 
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Figure 215: Evolution of CO2 and other species during the TPO on CrOx/Al2O3 spent catalyst 
over P/1HY at 573 K 

 

Two clear distinct hydrogen evolutions were observed from the catalysts used at 

673 K and 573 K, their evolution matches the CO2 evolution suggesting that the 

hydrogen evolution could be related to incomplete combustion probably due to 

high percentage deposition. This distinct hydrogen evolution was not observed 

during the 2 hr short run. Although the evolution of all the other species were 

observed in the TPOs from the catalysts used at both reaction. The result is 

presented in Figure 216 

 

Figure 216: Evolution of hydrogen specie during the TPO on CrOx/Al2O3 spent catalyst over 
P/1HY 
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3.6.1.2 Pentane/1,5-hexadiene (P/1,5HD) system 

Less severe deactivation was observed with the 1,5HD system over both cycles at 

673 K, the activity of the catalyst was observed to be similar during the two 

cycles. The conversions of the 1,5HD obtained were similar with the 2 hr 

analysis. The activity of the catalyst only reduced to ~80 % in 8 hr compared to 

~96 % obtained in 2 hr observed with 1,5HD reactant at 673 K. However, 

significant deactivation was only observed with the 2nd cycle during the 573 K 

reaction. Although the conversion of 1,5HD was maintained at ~80 % in 8 hr 

during the 1st cycle, severe activity loss was observed in 8 hr during the 2nd cycle 

(regenerated catalyst) 

In general, lower activity was observed with the regenerated catalyst at both 

reaction temperatures compared to the fresh catalyst. The result are presented 

in Figure 217 and 218  

 

Figure 217: CrOx/Al2O3 catalyst regeneration profile over P/1,5HD at 673 K 
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Figure 218: CrOx/Al2O3 catalyst regeneration profile over P/1,5HD at 673 K 

 

The total olefin yield as a function of reaction temperature suggests that, there 

is a loss in activity/selectivity with time at both temperatures. Significant 

activity loss down from ~ 55 % after 2 hr to ~ 27% after 8 hr was observed during 

reaction at 673 K during the 1st cycle. The activity/selectivity is more stable 

during the 2nd cycle with about same olefin yield obtained in the first 4 hrs and 

before slightly reducing in the second 4 hrs. The same trend was observed with 

the test at 573 K. The results are presented in Figure 219 and 220 

 

Figure 219: Effect of operating cycles on CrOx/Al2O3 catalyst olefin yield over P/1,5HD at 673 
K 
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Figure 220: Effect of operating cycles on CrOx/Al2O3 catalyst olefin yield over P/1,5HD at 573 
K 

 

The distribution of the valuable products for the reaction at 673 K is presented 

in Figure 221 and 222 reveals a slight deactivation in regards to the olefin and 

alkylates with both cycles. Whilst a slight increase in the activity of the catalyst 

was observed with the regards to the cyclics.  

 

Figure 221: Profile of the valuable product during first cycle using P/1,5HD over CrOx/Al2O3 
at 673K 
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Figure 222: profile of the valuable product during second cycle using P/1,5HD over 
CrOx/Al2O3 at 673K 

 

The valuable product distribution observed from the reaction at 573 K was 

similar to the one observed at 673 K. However, there is general reduction in the 

product yields and the cyclics does not really show a relationship with respect to 

TOS but they mostly show a stable production. Their production is also most 

stable during the second cycle. The results are presented in Figure 223 and 224 

 

Figure 223: profile of the valuable products during first cycle using P/1,5HD over CrOx/Al2O3 
at 573K 
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Figure 224: Profile of the valuable product during second cycle using P/1,5HD over 
CrOx/Al2O3 at 573K 

 

The TPO profile revealed CO2 as the main evolved species. The TPOs from 

catalysts at each reaction temperature showed similar TPO profiles. However, 

there is observed a slight shift in the desorption peaks with reaction 

temperature. The CO2 evolution peaks at ~650 K  from the catalyst used in the 

573 K reaction while the catalyst used in the 673 K reaction evolved carbon 

dioxide at ~ 740 K  revealing that this deposit was harder to burn. This similar to 

what was observed during the short 2 hr reaction where shifts in the CO2 

evolution peaks with reaction temperature were observed. The lower reaction 

temperature catalysts have carbonaceous deposits that are easier to burn 

compared to the deposits on catalysts used in the high temperature reactions. In 

addition to CO2 evolution, only traces of H2O and CO were only observed. There 

is slight evolution of H2 although this may be from the cracking pattern of the 

H2O. However, during the short 2 hr run CO was not observed during the TPO 

analysis but only trace of water was detected in some of the samples. It could 

also be observed that not all of the oxygen is taken up compared to the 1HY 

system, which is related to the extent of the coke formation. The result are 

presented in Figure 225 and 226 
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Figure 225: Evolution of CO2 and other species during the TPO on CrOx/Al2O3 spent catalyst 
over P/1,5HD at 673 K 

 

 

Figure 226: Evolution of CO2 and other species during the TPO on CrOx/Al2O3 spent catalyst 
over P/1,5HD at 573 K 

 

3.6.1.3 Pentane/2,4-hexadiene (P/2,4HD) system 

Slight deactivation is also observed with pentane/2,4-hexadiene over the 8 hr 

time-on-stream with ~20 % reduction in the conversion of the 2,4HD. This 

amount of deactivation was observed with the 2,4HD at both reaction 

temperatures during the 1st cycle. However, the catalyst was much more stable 

during the 2nd cycle and the conversions were generally stable for the period of 

the 8 hr run. There is slight deactivation during the experiment at 573 K. The 

results are presented in Figure 227 and 228 
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Figure 227: CrOx/Al2O3 catalyst regeneration profile over P/2,4HD at 673 K 

 

 

Figure 228: CrOx/Al2O3 catalyst regeneration profile over P/1,5HD at 5 73 K 

 

The total olefin yield was observed to be similar during both cycles at 673 K and 

there is no evident loss of activity for the generation of the olefin. There is a 

slight increase in activity after the regeneration with a reaction temperature of 

573 K and the yield of the olefin slightly increased during the second cycle. The 

results are presented in Figure 229 and 230 
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Figure 229: Effect of operating cycles on CrOx/Al2O3 catalyst olefin yield over P/2,4HD at 673 
K 

 

 

Figure 230: Effect of operating cycles on CrOx/Al2O3 catalyst olefin yield over P/2,4HD at 573 
K 

 

Figure 231 and 232 illustrate the valuable products distribution. There is 

deactivation observed but this is small. Both cycles present the same pattern 

and a similar product yield.  
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Figure 231: profile of the valuable product during first cycle using P/2,4HD over CrOx/Al2O3 

 

 

Figure 232: profile of the valuable product during second cycle using P/2,4HD over 
CrOx/Al2O3 at 673 K 

 

The valuable products distribution during the reaction at 573 K reveals a very 

similar yield distribution with the reaction at 673 K. The results illustrated in 

Figure 233 and 234 show that there is a slight increase in the activity of the 

catalyst after regeneration and the production of alkylates at 563 K is almost 

stable.  
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Figure 233: profile of the valuable product during first cycle using P/2,4HD over CrOx/Al2O3 
at 573 K 

 

 

Figure 234: profile of the valuable product during second cycle using P/2,4HD over 
CrOx/Al2O3 at 573K 

 

The TPO profiles of both catalysts run at 573 K and 673 K show similar desorption 

species. In addition to the CO2 peaks, trace CO and H2O were also observed. 

However, it is observed that the oxygen consumption is less during the 573 K 

reaction and could be associated with the amount of carbon deposit being lower 

than the reaction at 673 K. The results are presented in Figure 235 and 236 
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Figure 235: Evolution of CO2 and other species during the TPO on CrOx/Al2O3 spent catalyst 
over P/2,4HD at 673 K 

 

 

Figure 236: Evolution of CO2 and other species during the TPO on CrOx/Al2O3 spent catalyst 
over P/2,4HD at 573 K 

 

3.6.2 Pt/Al2O3 Catalyst 

3.6.2.1 Pentane/Hexyne (P/1HY) system 

The catalyst only slightly deactivated at both reaction temperatures. More 

deactivation was however observed after 6 hr TOS with the 1HY. There is no 

obvious deactivation related to the pentane reactant and the conversion is 

almost stable with both cycles with the reaction at 673 K. The results are 

presented in Figure 237 and 238 
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Figure 237: Pt/Al2O3 catalyst regeneration profile over P/1HY at 673 K 

 

 

Figure 238: Pt/Al2O3 catalyst regeneration profile over P/1HY at 573 K 

 

The total olefin yield analysis suggests that there is a loss of selectivity with 

time at both reaction temperatures during the first cycle. The olefin yield was 

reduced by half after 8 hrs TOS with the reaction at 673 K, and an even more 

severe reduction was observed with the reaction at 573 K. An Increase in 

selectivity was observed during the 2nd cycle at 673 K, the olefin yield was most 

stable during the second cycle at 573 K although slight deactivation was 

observed.  The results are presented in Figure 239 and 240 
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Figure 239: Effect of operating cycles on Pt/Al2O3 catalyst olefin yield over P/1HY at 673 K 

  

 

Figure 240: Effect of operating cycles on Pt/Al2O3 catalyst olefin yield over P/1HY at 573 K 

 

The valuable products distribution is presented in Figure 241 and 241. It reveals 

that the production of both the cyclics and the alkylates are about the same for 

the TOS and there is no obvious deactivation over these products. 
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Figure 241: profile of the valuable product during first cycle using P/1HY over Pt/Al2O3 at 
673 K 

 

 

Figure 242: profile of the valuable product during second cycle using P/1HY over Pt/Al2O3 at 
673 K 

 

Figure 243 illustrates that the profile of the major product 3MPY is similar to 

that obtained with the chromia catalyst even though 1,4HD product was not 

observed with this catalyst. Only ~20% was produce with the Pt/Al2O3 compared 

to ~25% with CrOx/Al2O3 catalyst.  
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Figure 243: Profile of the 3MPY product at 673 K over Pt/Al2O3 

 

The production during the 3MPY at 573 K during first cycle is very similar to that 

observed at 673 K, but the yield reduced during the second cycle. The result is 

presented in Figure 244 

 

Figure 244: Profile of the 3MPY major products at 573 K over Pt/Al2O3 
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uptake in all the three places. The TPO profiles at both reaction temperatures 

present similar evolution profiles. However, there is difference in the evolution 
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of each CO2 to the uptake of the oxygen via the two reaction temperatures. For 

instance, the TPO profile from the catalyst used at 673 K reveals that the oxygen 

uptake due to CO2 evolution at 533 K is less, compared to 633 K and 763 K CO2 

evolutions. This suggests that the CO2 at 533K is a soft carbon specie and the 

deposition is less, while the carbon species at 763 K are harder carbon species 

and the deposition is higher. The H2O evolution is very high at 533 K and smaller 

at 763 K suggesting that the soft carbon is more of hydro-carbonaceous. 

However, the higher CO evolution was observed with the carbon species at 633 K 

and could associate with incomplete combustion. All the other observed species 

perfectly matches the cracking pattern of the CO2 evolutions.  The TPO profile 

observed with the catalyst that was used for reaction at 573 K shows that the 

soft carbon species (533 K) has the highest oxygen uptake and could suggest that 

this form of carbon is the main deposit on the surface. However, there is general 

reduction in the oxygen uptakes compared to the TPO of the catalyst that had a 

reaction temperature of 673 K due to the extent of the carbon deposition. The 

evolution of other desorbed species perfectly matches the cracking pattern of 

the CO2 evolution. The results are presented in Figure 245 and 246 

 

Figure 245: Evolution of CO2 and other species during the TPO on Pt/Al2O3 spent catalyst 
over P/1HY at 673 K 
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Figure 246: Evolution of CO2 and other species during the TPO on Pt/Al2O3 spent catalyst 
over P/1HY at 573 K 

 

3.6.2.2 Pentane/1,5-hexadiene (P/1,5HD) system 

The fresh catalyst run at 673 K, showed a slight increase in activity. There is 

slight deactivation during the second cycle resulting in a reduction in the 

conversion of 1,5HD with TOS. Generally, at both reaction temperatures, there 

is slight deactivation during the second cycle compared to the fresh catalyst. 

The activity of the catalyst is almost stable with respect to pentane conversion 

with very similar activity during both cycles. The results are presented in figure 

247 and 248 

 

Figure 247: Pt/Al2O3 catalyst regeneration profile over P/1,5HD at 673 K 
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Figure 248: Pt/Al2O3 catalyst regeneration profile over P/1,5HD at 573 K 

 

The olefin analysis suggests a similar trend with the P/1HY system. There is 

observed a decrease in the olefin yield during the first cycle observed with both 

reaction temperatures, whereas the catalyst activity to olefins is almost stable 

with the regenerated one. The results are presented in Figure 249 and 250 

 

Figure 249: Effect of operating cycles on Pt/Al2O3 catalyst olefin yield over P/1,5HD at 673 K 
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Figure 250: Effect of operating cycles on Pt/Al2O3 catalyst olefin yield over P/1,5HD at 573 K 

 

The valuable products distribution illustrated in Figure 251 and 252 reveals that 

slight deactivation is observed with the alkylates and the cyclics products during 

the first cycle while production is much more stable during the second cycle. 

However, there is general reduction observed in the products yield during the 

second cycle except for the alkylates. 

 

Figure 251: profile of the valuable product during first cycle using P/1,5HD over Pt/Al2O3 at 
673 K 
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Figure 252: profile of the valuable product during second cycle using P/1,5HD over Pt/Al2O3 
at 673K 

 

A similar trend was observed with the reaction at 573 K. the results are 

presented in Figure 253 and 254 

 

Figure 253: profile of the valuable product during first cycle using P/1,5HD over Pt/Al2O3 at 
573 K 
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Figure 254: profile of the valuable product during second cycle using P/1,5HD over Pt/Al2O3 
at 573K 

 

The TPO analysis indicates CO2 as the main evolved species with both reaction 

temperatures. Unlike other previously discussed system there is less CO2 

evolution here. There are possibly two types of carbon specie observed in the 

TPO from the catalyst run at 673 K but it is not clearly observed with the 

catalyst used at 573 K but this could be due to lower carbon deposition expected 

with low temperature. The evolution profile also suggests lower carbon 

deposition with both catalysts with this system compared to the 1HY system. 

Very small carbon deposition was also observed during the 2 hr short run.  The 

results are presented in Figure 255 and 256 

 

Figure 255: Evolution of CO2 and other species during the TPO on Pt/Al2O3 spent catalyst 
over P/1,5HD at 673 K 
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Figure 256: Evolution of CO2 and other species during the TPO on Pt/Al2O3 spent catalyst 
over P/1,5HD at 573 K 

 

3.6.2.3 Pentane/2,4-hexadiene (P/2,4HD) system 

Slight deactivation is also observed with pentane/2,4-hexadiene similar to the 

chromia catalyst. The activity of the catalyst is reproducible with both pentane 

and 2,4HD with similar activity observed during the 1st and 2nd cycle. The results 

are presented in Figure 257 and 258 

 

Figure 257: Pt/Al2O3 catalyst regeneration profile over P/2,4HD at 673 K 
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Figure 258: Pt/Al2O3 catalyst regeneration profile over P/2,4HD at 573 K 

 

There is deactivation over the total olefin yield. Only ~4 % was observed during 

the 2nd cycles compared to ~7 % during the 1st cycle at a reaction temperature of 

673 K showing a loss activity after regeneration of the catalyst. The production 

of olefin is generally poorer with this system compared to the other two systems 

as explained previously. The results are presented in Figure 259 and 260 

 

Figure 259: Effect of operating cycles on Pt/Al2O3 catalyst olefin yield over P/2,4HD at 673 K 

 

 

0

5

10

15

20

25

30

35

40

45

50

2 4 6 8

C
o

n
ve

rs
io

n
 (

%
) 

TOS (hr) 

P-cycle1 P-cycle2 2,4 HD-cycle1 2,4 HD-cycle2

0

5

10

15

20

2 4 6 8

Y
ie

ld
 (

%
) 

TOS (hr) 

1 cycle 2 cycle



 
 

259 
 

 

Figure 260: Effect of operating cycles on Pt/Al2O3 catalyst olefin yield over P/2,4HD at 573 K 

 

The valuable product distribution presented in Figure 261 and 262 reveals that 

the production of alkylates and cyclics is almost stable over the reaction TOS 

with both cycles. The yield of these products is about the same with both cycles.  

 

Figure 261: profile of valuable product during first cycle using P/2,4HD over Pt/Al2O3 at 673K 
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nd

 cycle using P/2,4HD over Pt/Al2O3 at 673K 

0

5

10

15

20

2 4 6 8

Y
ie

ld
 (

%
) 

TOS (hr) 

1 cycle 2 cycle

0

2

4

6

8

10

12

14

2 4 6 8

Y
ie

ld
 (

%
) 

TOS (hr) 

olefins alkylates cyclics

0

2

4

6

8

10

12

14

2 4 6 8

Y
ie

ld
 (

%
) 

TOS (hr) 

olefins alkylates cyclics



 
 

260 
 

The distribution of the valuable product at 573 K is almost similar to the 

observed at 673 K reactions and the correlation between the two cycles in 

respect to the alkylates and the cyclic production is about the same. There is no 

evidence of the activation regarding to these products over the reaction TOS. 

The result are presented in Figure 263 and 264 

 

Figure 263: profile of the valuable product during first cycle using P/2,4HD over Pt/Al2O3 at 
573 K 

 

 

Figure 264: profile of the valuable product during second cycle using P/2,4HD over Pt/Al2O3 
at 573 K 
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harder carbon species (~853 K) compared to the uptake observed with the soft 

carbon species (~600 K). In addition to the CO2 peaks, traces of CO and H2O 

were also observed with both catalysts. The soft carbon species is more 

predominant with the Pt/Al2O3 catalyst, and it is observed with all the reaction 

systems. The results are presented in Figure 265 and 266 

 

Figure 265: Evolution of CO2 and other species during the TPO on Pt/Al2O3 spent catalyst 
over P/2,4HD at 573 K 

 

 

Figure 266: Evolution of CO2 and other species during the TPO on Pt/Al2O3 spent catalyst 
over P/2,4HD at 573 K 
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4. Discussion  

4.1 Reaction analysis and trans-hydrogenation activity 
evaluation 

4.1.1 Catalyst efficacy on trans-hydrogenation 

Catalyst efficacy for trans-hydrogenation has been observed at all temperatures. 

However, this is more pronounced at high temperatures. Unique product 

distributions were observed during the trans-hydrogenation compared to the [P + 

HY] theory with all reaction and catalyst systems. As illustrated (Table 12-16) 

using the CrOx/Al2O3 catalyst with 1HY system, it is evident that there is a clear 

trans-hydrogenation process occurring. It could be observed that the primary 

olefin products were either initially not produced or only traces were produced 

when the reactants were feed individually over the catalyst. Pentene, 2-hexene 

and their isomers initially produced from pentane and hexyne respectively 

increase during the trans-hydrogenation process. For instance, (Table 14), the 

yield of 2-hexene increased from 0.33% to 1.81% in the mixed feed and this trend 

could also be observed with all other temperatures. However these figures were 

subject to change with temperature, but in general, a clear trans-hydrogenation 

process were observed. Meanwhile, the olefin product initially produced from 

the pentane dehydrogenation experiments were sometimes consumed in the 

trans-hydrogenation process, 8.59% trans-2-pentene was observed with pentane 

dehydrogenation (Table 13) and was totally consumed during the trans-

hydrogenation. However, this may be related to the formation of other products. 

This type of effect where the olefins initially produced with dehydrogenation 

process were consumed in the trans-hydrogenation has also been observed with 

other alkane molecules [26, 27]. Similar behaviour was also observed with the 

1,5HD system (Table 22-26), nevertheless all the yield of valuable products 

increased during trans-hydrogenation. In general, more valuable products were 

observed with P/1,5HD system and the efficacy of the catalyst is obviously more 

predominant here. This activity was not observed with the P/2,4HD system; 

instead the general production of the valuable product is poorer (Table 32-36). 

In (Table 33) the yield of hexene reduces from 0.3% to 0.26% and 3-hexene from 

2.35 to 2.17%.  Overall, the yields of these products are either similar or lower 

during the trans-hydrogenation process compared to the (P+H) theory. This is 
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associated with the thermodynamics of the reaction (section 3.1). There is 

almost about the same efficacy observed with the Pt/Al2O3 catalyst as the 

CrOx/Al2O3 catalyst. Clear increases in the production of valuable products were 

observed with all the reaction systems. However, more of the primary targeted 

products were observed with the platinum catalyst. For instance, at 773 K using 

the chromia catalyst, 0.66% hexene was obtained (Table 12); while, 2.79% 

hexene was obtained with the same system using the platinum catalyst (table 

56). This trend could also be observed at other reaction temperatures. However, 

although the efficacy of the two catalysts for trans-hydrogenation with the 1HY 

system is about the same, the platinum catalyst is less efficient with the 

P/1,5HD system and the reaction with P/2,4HD is also poorer. Therefore, it 

could be suggested that there is higher trans-hydrogenation activity with the 

chromia catalyst than the platinum catalyst.  

Although, the total olefin yields were observed to have generally increased 

during the trans-hydrogenation process most of them are isomers of the primary 

target product and their alkylated olefins. Other alkylation products were also 

observed. However, much of this chemistry may take place over the alumina 

support as it is known to promote alkylation and isomerization on its acid site 

[94-96]. This phenomenon was observed to have reduced with the doped 

catalysts, and increases in the target primary products were observed, for 

instance, (Table 12), 0.27% hexene was produced with the chromia catalyst and 

2.72% (Table 44) was obtained with the doped catalyst. The same trend was also 

observed with the P/1,5HD system (Table 23) 1.61% hexene was produced with 

the chromia catalyst and 2.23% (Table 52) was obtained with the doped catalyst. 

The two catalyst systems exhibited different major products, 3-methylpentyne 

and 1,4-hexadiene were the major products using CrOx/Al2O3 and 3-

methylhexene and methyl-2-pentene were the major products with K-

CrOx/Al2O3. However these major products mentioned above were observed to 

be consumed and producing other products across the reaction temperature 

range. This could be that temperature may have effect changing the mechanism 

of the reaction. Like the doped chromia system, there is observed an increase in 

target products with the K-Pt/Al2O3 catalyst using the P/1HY system. However, 

in contrast, less activity was observed with the doped platinum catalyst using 
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the P/1,5HD system. There is little improvement with both doped catalysts when 

using the P/2,4HD system.  

Hexyne is very reactive[36, 97], and when run individually in the absence of 

hydrogen, it is expected to undergo cracking and dehydrogenation[28]. It can 

also influence the reactivity of alkenes and other alkynes in a competitive 

environment [37, 38]. Some products were initially formed when hexyne was fed 

alone over the catalyst but increased in the mixed feed cf. in (table 14) 11.6% of 

3-methylpentyne was obtained with hexyne alone but increased to 19.24% in the 

mixed feed using the CrOx/Al2O3 catalyst. This was also observed with the doped 

catalyst.  Other products from cyclization and further dehydrogenation were also 

observed. In principle, a unique product distribution has been observed for each 

of the reaction systems. The product distribution is summarized and presented 

in Figure 267. There were five possible reaction processes occurring in addition 

to the trans-hydrogenation (TH) as listed below: 

i. Dehydrogenation (D) 

ii. Hydrogenation (H) 

iii. Isomerisation (I) 

iv. Alkylation (A) 

v. Cyclisation (C)
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Figure 267: The product distribution showing multiple processes occurring 
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As expected the product yield varies with reaction temperature. This could be 

the distribution pattern changes with the reaction temperature but generally the 

effect of the trans-hydrogenation can easily be depicted despite the pattern 

change. Partial differences were both observed in the products patterns and 

distribution comparing the K-CrOx/ Al2O3 with CrOx/ Al2O3 and Pt/ Al2O3 with K- 

Pt/ Al2O3. The efficacy of the catalyst in general, for trans-hydrogenation was 

observed to decline at the lower temperatures, 573 K and 523 K. The doped 

catalysts provided more selectivity and more appreciable yield as could clearly 

be seen in tables presented in the result chapter. It could be suggested that the 

activity of the tested catalyst on trans-hydrogenation follow the order below. 

 K-Pt/Al2O3 < Pt/ Al2O3 < CrOx/ Al2O3 < K-CrOx/ Al2O3  

4.1.2 Reactant conversions and products yield 

One of the aims of trans-hydrogenation is to lift the conversion limitations posed 

on the dehydrogenation process of the pentane reactant. The conversions of 

pentane was obtained individually and compared to the mixed feed. There is an 

increase in the conversion of pentane at all temperatures during trans-

hydrogenation, indicating removal of the constraint. A maximum increase of 

~26% conversion of pentane was observed with the mixed trans-hydrogenation 

feed compared to ~10% conversion with the single feed at 623 K using the 

CrOx/Al2O3 catalyst. However, the constraint is specific to the pentane 

dehydrogenation reaction. Thus, if other products are formed, then conversions 

higher than the thermodynamic limits for the dehydrogenation reaction are 

easily obtainable.  

A ratio of pentane conversion during trans-hydrogenation (P+H) to the 

dehydrogenation (P) noted as (P+H: P) was calculated. The result indicates a 

ratio of ~2 with the P/1HY system at 773 K using the CrOx/Al2O3. This ratio was 

found to increase with decreasing reaction temperature with the same P/1HY 

system. On using the P/1,5HD over the same catalyst system, a significant 

increase in the pentane conversion was observed, ~91% during trans-

hydrogenation at 773K. The P+H: P ratio was found to be ~10 for the P/1,5HD 

system, and, in contrast to the P/1HY system, where higher ratios were obtained 

at lower reaction temperatures (~80 at 523K). A ratio (P+H: P) of only ~ 0.8 was 
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observed for the 2,4HD system over the chromia catalyst and, it is almost stable 

with reaction temperature. The analysis with the various reaction temperatures 

is presented in Figure 268. All the conversions obtained for the pentane run 

using the chromia catalyst are around the equilibrium conversions of pentane 

dehydrogenation.  

A trend was observed using the Pt/Al2O3 catalyst. For instance, the increase in 

the conversion of pentane using the P/1HY system indicates a ratio (P+H: P) of ~ 

2 at 773 K. Higher pentane conversions were achievable with Pt/Al2O3; ~71% was 

observed during the trans-hydrogenation and ~37% during the pentane 

dehydrogenation. However, the trend is in opposite of what was observed with 

the chromia catalyst. Similarly, unlike the chromia catalyst, the ratio only 

slightly reduces with reaction temperature here, a ratio of only ~1 was observed 

at 523 K. This could suggest that the platinum catalyst exhibited lower trans-

hydrogenation activity compared to the chromia catalyst. Slightly lower ratios 

were observed for reaction with P/1,5HD and 2,4HD system. The result is 

presented in Figure 269 

 

Figure 268: profile of the (P+H: P) ratio with reaction temperature over the three reaction 
systems with CrOx/Al2O3 catalyst 
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Figure 269: Figure: profile of the (P+H: P) ratio with reaction temperature over the three 
reaction systems with Pt/Al2O3 catalyst 

 

However, the platinum catalyst has higher dehydrogenation activity compared to 

the chromia catalyst and it makes more alkene products. It could be observed 

that all the pentane conversions with the platinum are higher than the 

equilibrium conversions (~19% for n-pentane). There is ~37% pentane conversion 

obtained with the platinum catalyst and only ~11% with the chromia catalyst at 

773K, suggesting that the platinum is active for the conversion of pentane to 

more than just pentene.  

Unlike the chromia catalyst, the platinum catalyst was less active with the 

P/1,5HD system. About 59% (table 93) conversion of pentane was obtained 

during the trans-hydrogenation at 773 K, which is lower than that observed with 

the P/1HY system, whereas with the chromia catalyst, the reaction with the 

1,5HD gave higher pentane conversion than reaction with P/1HY system. 

Meanwhile the activity of the platinum catalyst only slightly reduces with 

reaction temperature, and a conversion of ~47% was still achieved at 573 K 

during the trans-hydrogenation using the 1,5HD system.  In contrast the activity 

was almost maintained over the range of reaction temperature using the 
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trans-hydrogenation using the chromia catalyst are about the same or lower than 

the pentane dehydrogenation. However, higher pentane conversion was obtained 

during the trans-hydrogenation using the platinum catalyst which suggests a 

lifting of the thermodynamic constraint using the platinum catalyst with the 

2,4HD system. The result is presented in table 93. 

Table 93: Summary of the conversions result obtained at 773 K over CrOx/Al2O3 and 
Pt/Al2O3 

 

 Conversions (%) 

 P P/1HY P/1,5HD P/2,4HD 

CrOx/Al2O3 11 19 91 9 

Pt/Al2O3 37 71 59 46 

 

Interestingly, ~90% pentane conversion was obtained with the doped chromia 

catalyst using the P/1HY system at 673 K compared to 13% with the chromia 

catalyst. Also, when the pentane was run individually over the doped catalyst, 

conversions higher than the equilibrium conversion of the pentane were 

obtained (~43% at 673 K), indicating a poor selectivity to the dehydrogenation 

reaction. Similarly, about the same conversions of pentane were obtained with 

the P/1,5HD system (~89% at 673K) just like the 1HY system. This suggests that 

the trans-hydrogenation activity over the K-CrOx/Al2O3 catalyst is about the 

same based on pentane conversion with both P/1HY and P/1,5HD systems. This 

is in contrast to the chromia catalyst where reaction with P/1,5HD gave a better 

activity compared to P/1HY. Reaction using K-CrOx/Al2O3 does not indicate that 

there has been a lifting of the thermodynamic constraint with the 2,4HD. Only 

~11% was observed with the trans-hydrogenation compared to ~43% with pentane 

dehydrogenation. Summary comparison of the two catalysts using the three 

systems at 673 K is presented in table 94    
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Table 94: Summary of the conversions result obtained at 673 K over CrOx/Al2O3 and K- CrOx 
/Al2O3 

 

 Conversions (%) 

 P P/1HY P/1,5HD P/2,4HD 

CrOx/Al2O3 8 13 91 7 

K-CrOx/Al2O3 43 87 89 11 

 

In contrast, the trans-hydrogenation process only slightly increased the 

conversion of pentane with the doped platinum catalyst. With the P/1HY system 

only ~ 42% pentane conversion was observed at 673K during the trans-

hydrogenation, compared to ~39% conversion for pentane dehydrogenation. 

Slightly higher conversion was obtained using the P/1,5HD system (~65 % at 673 

K) while the P/2,4HD revealed poorer conversion (~35 % at 673 K). The 

remarkable increase in activity observed with the doped chromia catalyst 

compared to the chromia catalyst was not observed with the doped platinum 

catalyst compared to the platinum catalyst  

With the exception of Pt/Al2O3 catalyst, the reaction with P/2,4HD exhibited 

poor pentane conversions during the trans-hydrogenation. This is expected with 

P/2,4HD system as the thermodynamics of the trans-hydrogenation reaction with 

2,4HD suggested that it would be under severe equilibrium control (see section). 

The increase in the conversion of the pentane with the trans-hydrogenation is 

related to the Free energy (∆G) of reaction of pentane with the hydrogen 

acceptors [98]. The trans-hydrogenation reaction of pentane with 1- hexyne is 

thermodynamically favoured at most temperatures (∆G = -50 kJ/mol at 773 K) 

while, dehydrogenation of n-pentane is under thermodynamic constraint (∆G = 

+27 kJ/mol at 773 K).  

The differences in the conversion of pentane obtained with the chromia 

catalysts and the doped catalyst was expected because the potassium doped 

catalyst would block the acid site of the catalyst preventing coke deposition 

deactivating the catalyst[99, 100]. There is a slight reduction in hexyne 

conversion observed in the mixed feed compared to when it was fed alone. The 
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conversion of hexyne feed alone at the various run temperature is ~95% at 773 K, 

which reduced to ~87 % with mixed feed, over the CrOx/Al2O3 system. This 

reduction could be due to a reduction in cracking because of the trans-

hydrogenation process, because alkynes are very reactive and 

thermodynamically less stable [101]. The conversion of 1HY, 1,5HD and the 

2,4HD with doped catalyst was almost constant when either fed alone or as part 

of the trans-hydrogenation process  

4.1.3 Side reactions 

The primary aim of trans-hydrogenation is to produce pentenes and hexenes 

from the three systems (i.e. P/1HY, P/1,5HD and P/2,4HD). However, side 

reactions are expected. Isomerisation products were clearly observed from three 

mentioned systems. These isomers add to the production of total olefin which is 

either not initially formed when the reactants were passed alone, or the yield 

increased during the trans-hydrogenation. For instance, 3.08% cis/trans 2-

hexene and 3.44% cis/trans 3-hexene were obtained during the trans-

hydrogenation compared to 0.81% cis/trans 2-hexene and 2.34% cis/trans 3-

hexene obtained when hexyne was run alone using the CrOx/Al2O3 catalyst (table 

6 Cr chapter). A similar trend was also observed with the same catalyst using the 

P/1,5HD system, but more alkylated olefins were observed, with 20% of 3-

methylhexene obtained at 773 K. The 3-methylhexene product was not observed 

using the P/1HY system. It is observed that in both reaction systems, there is 

increase in the total olefin yield during the trans-hydrogenation, but the 

P/1,5HD system presented higher alkylated olefinic products. This could be a 

reason why the total olefin yield was observed to be higher with the P/1,5HD 

system  

There are also observed side reactions due to isomerism and alkylation using the 

platinum catalyst; it is the same trend with the chromia catalyst where the 

isomers formed increase during the trans-hydrogenation. However, unlike the 

chromia catalyst, more of the primary olefins are observed with the platinum 

catalyst, 2.79% 1-hexene was observed with the platinum catalyst compared to 

the 0.66% obtained with the chromia catalyst using the P/1HY system at 773 K.  
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Meanwhile, it is also observed that more of the primary olefins are obtained at 

lower reaction temperatures during the trans-hydrogenation with both catalysts; 

3.06 and 3.64% 1-hexene were observed with chromia and platinum catalysts at 

573 K respectively. This is a higher yield if compared with the reaction at 773 K 

highlighted above, but the total olefin yield (primary olefin + secondary olefin + 

alkylated olefin) was observed to be higher with high reaction temperatures, 

suggesting that the side reactions predominate at higher reaction temperatures 

This same trend was also observed using the doped, K-CrOx/Al2O3 and K-Pt/Al2O3 

catalysts, with more significant yields obtained in the case of the K-CrOx/Al2O3 

catalyst compared to the chromia counterpart. Generally, there are fewer 

isomers of pentene observed compared to hexene isomers, and presumably the 

pentenes may have been consumed in the by-product reactions.  

Alkylated species are major products observed in most of the reaction systems. 

However, most of these alkylation products are olefin alkylated. This suggests 

that in essence, rapid isomerization and alkylation occurs immediately when the 

trans-hydrogenation process occurs. The olefin produced in (a) could be re-

adsorbed on the catalyst and used in the formation of surface carbeniun ion 

intermediate on the acid site of the catalyst (b), which could either isomerize 

(c), or undergo alkylation (d) 

a) metal side dehydrogenation/hydrogenation) 

n-CnH2n-2 /n-CnH2n+2      n-CnH2n  +H2 /-H2  

b) Carbenium ion intermediate 

n-CnH2n  n-CnH
+
2n+1   

C) Alumina acid site isomerization 

n-CnH
+
2n+1   i-CnH2n   

d) Alumina acid site alkylation 
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n-CnH
+
2n+1  + R  R-CnH2n+1  

As expected there are variations and differences in the yield of the side reaction 

products, dependent on the catalyst system, the reaction system and the 

reaction temperatures. Thus, the trans-hydrogenation could be masked by 

subsequent isomerisation and alkylation as highlighted previously above. (Figure 

270). The illustrated process in figure is dependent on, the catalyst system, 

reaction temperature, GHSV and reaction time.  

 

Figure 270: Suggested reaction path-way during the trans-hydrogenation 

 

One may speculate that in the case of the trans-hydrogenation, (k1) is fast. 

Therefore, one may expect more of the targeted primary product (olefin) as in 

the case of the Platinum. The rate at which each product occurs varies and 

summarized below are three possible causes for these differences: 

1. The isomerisation activity (i.e rate constant K4 or k5) is much lower on the 

Pt than the Cr catalyst 

2. The reactants and the products adsorption competition is more on the Cr 

than on the Pt catalyst 

3. The site reaction competition with unreacted compound making (i.e. rate 

constant K2, K3, K7 or K8) faster, in the case of 1,5HD system with both 

catalysts 
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4.1.4 Evolved gas analysis 

The evolved gas products occur due to cracking processes on the surface of the 

catalyst. Hydrocarbon molecules are said to crack at elevated temperatures on 

acid sites of a catalyst through β-scission into smaller fragments [102-104]. 

Methane, ethylene, propylene, and butylene are the main cracked products 

observed. The reactants are suggested to have cracked with the stoichiometric 

ratios as illustrated bellow: 

Methane 

C5H12      3CH4   + 2C 

C6H10      2CH4   + 2HCC 

Ethylene 

C5H12      2C2H4   + CH4 

C6H10      2C2H4   + 2HC 

Propylene 

C5H12      C3H6   + CH4 + C 

C6H10      C3H6   + CH4 +2C 

Butylene  

C5H12      C4H8   + HHC 

C6H10      C4H8   + 2HC 

During pentane dehydrogenation over the CrOx/Al2O3 catalyst, CH4 and C2H6 were 

both observed. The gases evolved after ~40 min of the reaction on stream and 

were maintained for the whole 2 h reaction period. This is the same time when 

the hydrogen completely declined from the reaction stream. Thus, this could 
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suggest that the catalyst could have died with respect to dehydrogenation 

activity. A similar trend observed with the trans-hydrogenation using the P/1HY 

system and it could be that the hydrogen is completely taken up for the trans-

hydrogenation process or the trans-hydrogenation could have stopped when 

there is no hydrogen on the stream. C3H6 and C4H8 were observed with the 

P/1,5HD system. Unlike the P/1HY system, hydrogen was observed to gradually 

decrease from the reaction with TOS and was maintained to ~80 min before it 

completely declined from the stream. This is similar to what was observed with 

the P/2,4HD system but the hydrogen production was only maintained to ~70 

min before ceasing.  

However, only pulses of these gases were observed with the platinum catalyst 

with all the reaction systems and they were maintained only for ~20-30 min TOS, 

whereas the hydrogen production was maintained in the reaction stream for the 

period time of the reaction (2 hr). The gases productions are highlighted in 

Table 95.  

Pulses of both methane and ethylene were observed using the potassium doped 

catalysts but were only maintained for ~30 min after which they declined from 

the stream. A similar trend was observed with the doped platinum but only 

maintained for ~20 min of the reaction. The pulse of hydrogen was also observed 

and was at the highest intensity at ~20 min but subsequently decreased with 

time for the duration of the reaction with both catalyst systems. This is 

expected as the potassium reduces the acid site formations and so did the 

gaseous species. All other followed masses (m/z 30, 40, 44, 54, 58, 72 & 84) 

were not observed but only their pulses were seen at the beginning of the 

reaction. There were five suggested postulation that could possible occurs: 

1. The trans-hydrogenation stops when the hydrogen completely declined 

from the reaction stream 

2. The hydrogen completely taken up for the trans-hydrogenation and was 

not observed on the stream  

3. There could be good hydrogen production which may been used in the 

trans-hydrogenation and also still maintained in the reaction stream 
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4. The trans-hydrogenation stops when the dehydrogenation activity dies up 

5. The hydrogen could also be taken up by the C, -CH3 and -C2H5 

intermediates to produce the methane, ethylene  

Table 95: Summary of the gases formed with reaction system and catalyst 

 

 1HY 1,5HD 2,4HD 

CrOx/Al2O3 CH4/C2H4 C3H6/C4H8 C3H6/C4H8 

K-CrOx/Al2O3 CH4/C2H4 pulses C3H6/C4H8 pulses C3H6/C4H8 pulses 

Pt/Al2O3 CH4/C2H4 pulses CH4/C2H4 pulses CH4/C2H4 pulses 

K-Pt/Al2O3 CH4/C2H4 pulses CH4/C2H4 pulses CH4/C2H4 pulses 

 

4.1.5 Effect of changing the reaction temperatures on olefin 
products  

In order to determine the effect of reaction temperatures on the trans-

hydrogenation process, the reaction was run for at temperatures of 523, 573, 

623, 673, and 773 K as indicated previously. Significant changes were observed 

in the yield of the olefinic products with reaction temperatures. This also 

depended on either the reaction system or the catalyst used. However, there 

are no significant changes observed in the products distribution pattern. It was 

previously highlighted that the use of temperature does not really change the 

product distribution pattern. Nevertheless there is observed a relationship 

between the yield of olefin products and reaction temperature. In each reaction 

system, it is observed that the reaction gets more selective to the production of 

these olefin products with the higher reaction temperatures as presented in 

Figure 271-273 
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Figure 271: comparison of the olefin yield with the various catalysts using 1HY system 

 

 

Figure 272: comparison of the olefin yield with the various catalysts using 1,5HD system 

 

 

Figure 273: comparison of the olefin yield with the various catalysts using 2,4HD system 
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It could be observed that an overall higher product yield was obtained with the 

chromia systems compared to the platinum systems even though the platinum 

gave better reactant conversions during the trans-hydrogenation. Taking 

individual systems and relating to activity of each tested catalyst, it can be 

suggested that the selectivity to the total olefinic products follow the order as 

below: 

For 1HY system 

K-CrOx/Al2O3 > K-Pt/Al2O3 > Pt/Al2O3 > CrOx/Al2O3 

For the 1,5HD system 

CrOx/Al2O3 > K-Pt/Al2O3 > K-CrOx/Al2O3 > Pt/Al2O3  

For the 2,4HD system 

CrOx/ Al2O3 > K-CrOx/ Al2O3 = K-Pt/ Al2O3 >Pt/ Al2O3 

4.1.6 Effect of using alternative catalyst on the valuable products 
yields 

Generally, the result analysis of the valuable products from each reaction 

system shows that there is good relationship with the yield of these products and 

the reaction temperatures. An increase in the valuable products was observed 

with higher reaction temperature and with different catalysts. The reaction at 

673 K was used to obtain this comparison and we can clearly see which catalyst 

gives a higher valuable products yield. This is presented in Figure 274. 
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Figure 274: effect of the alternative catalyst on the yield of the valuable products 

 

4.1.7 Comparisons of the trans-hydrogenation products with 
hydrogenation of hexyne/hexadienes 

The trans-hydrogenation process is limited by the dehydrogenation of the alkane 

as highlighted previously in the introduction chapter. Therefore, the activity of 

the trans-hydrogenation could be determined by the available hydrogen species 

made available during the process. However, in comparison with the 

hydrogenation of the alkyne and the alkadienes, it was observed that the 

reaction product distribution remain almost the same for both hydrogenation 

and trans-hydrogenation, only that the yield of the valuable products changes 

(i.e. olefins, alkylates olefins, alkylates and cyclics), as more of these products 

were observed during the hydrogenation process. Meanwhile, there was a 

significant similarity in the product distribution obtained during both the trans-

hydrogenation and the hydrogenation compared to when the reaction was 

observed individually. In essence, there is an appreciable increase in the product 

yield/selectivity to the valuable products obtained during the trans-

hydrogenation compared to when the reactants were run individually, even 

though higher selective was achievable with the hydrogenation. This suggests a 

clear indication that there is a trans-hydrogenation process occurring. For 

instant, (table 14), only 0.33% 1-hexene was observed during when the hexyne 

was run individually, this then increased to 1.81% with the trans-hydrogenation 

and 3.39% with the hydrogenation. This is the same trend observed with other 
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products and with the other reaction systems. Thus you can clearly depict the 

change as a result of trans-hydrogenation. However, products sometimes got 

more selective with hydrogenation compared to trans-hydrogenation by a factor 

of ~2-3. This could be related to that the amount of hydrogen available.  

4.2 Post reaction characterization and analysis 

4.2.1 TGA-TPO analysis of the post reaction catalysts 

The TGA-TPO-MS analysis on the catalysts confirms presence of carbon 

deposition with all the reaction systems. However, changes were observed in the 

type of carbon deposit. For instance, from the derivative weight loss/MS profile 

plot of the CrOx/Al2O3 spent catalyst used for the P/1HY reaction reveals 

evolution of carbon species at ~515 K and further evolution up to ~890 K 

indicating that the carbonaceous deposit is complex. The spent catalyst obtained 

with the P/1,5HD system reveals evolution of CO2 at ~515-775 K indicating the 

absence of a more recalcitrant coke with this system compared to the P/1HY. 

There is also a observed shift of the CO2 evolution with reaction temperature. A 

~8 K reduction with reducing reaction temperature was observed; suggesting 

that softer coke is formed with a lower reaction temperature. The spent catalyst 

obtained with the P/2,4HD system reveals a similar coke formation to the 

P/1,5HD system except for the observed additional CO2 evolutions at higher 

temperature with reactions at 623 K and 573K, suggesting possible formation of 

harder coke. However, two clear distinct evolution peaks were observed unlike 

what was observed with the P/1HY system. 

The TGA-TPO profile obtained with the Pt/Al2O3 catalyst showed similar 

formation of deposited surface species with all three reaction systems. Two 

types of carbonaceous deposit were formed with this catalyst, one at lower 

temperature and a higher temperature species. However, little changes were 

observed between the systems. For instant, using the 1HY system, the low 

temperature evolution was observed at ~510 K and the high temperature 

evolution at ~540-850 K with hexyne alone. A similar profile was observed during 

the P/1HY trans-hydrogenation except for that the low temperature evolution 

was lost from the catalyst used in the 523 K reaction, suggesting temperature 

influences in the formation of this carbonaceous species. With the 2,4HD system 
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the low temperature evolution was observed at ~450 K and the higher 

temperature broad evolution at ~523-850 K. There is also a clear shift in the 

evolution with the reaction temperature similar to that observed with P/1,5HD 

using the chromia catalyst. The TPO profile from the used Pt/alumina catalyst 

after P/1,5HD trans-hydrogenation does not clearly showed the distinction 

between the two, evolutions which could be attributed to a smaller amount of 

carbon deposit compared to the P/2,4HD system. This is confirmed from the 

carbon laydown analysis. The first CO2 evolution could be derived from the more 

hydrogen rich coke attributed to the formation of “soft coke”. The second broad 

peak of the CO2 evolution could be attributed to the reaction of hard coke-

hydrogen deficient/aromatic species which are considered as intermediates for 

the formation of hard coke [105-107], and/or coke deposited in the deep pores 

of the catalyst 

The TGA-TPO-MS profile of the K-CrOx/Al2O3 spent catalysts used with the 1HY 

reaction system reveal a sharp weight loss at ~547 K and two further weight 

losses at ~631 K and ~707 K indicating that three form of carbonaceous deposit 

have been formed. The low temperature carbon dioxide evolution may be 

attributed to a soft form of coke similar to that observed with the Pt/Al2O3 

catalyst. The subsequent weight loss could be related to graphitic aromatic 

precursors of different types, as carbon deposition occurs due to progressive 

condensation and cyclisation of hydrocarbons that leads to this type of coke. 

Only two CO2 evolutions were observed with the 2,4HD and 1,5HD systems at 

~608 K and ~700K and are similar the two broad carbon dioxide evolutions 

observed with the 1HY system. The doped platinum catalyst reveals also two CO2 

evolutions, the first evolution at ~600 K could be a similar carbon species to that 

found with the K-CrOx/Al2O3 catalyst while the second weight loss is very broad 

and the combustion is only completed at ~1050 indicating the presence of a hard 

carbon species that is not observed with the other catalyst systems. 

 Meanwhile, the pentane dehydrogenation reveals a different profile with the 

weight loss associated with the evolution of the CO2 observed at ~ 605 K using 

CrOx/Al2O3. No obvious carbon dioxide evolution was observed using the K-

CrOx/Al2O3 catalyst or the Pt/Al2O3 catalyst. However, the doped platinum 

catalyst shows a CO2 evolution similar to the one obtained during reactions with 
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the mixed feeds at ~1050 K. All the spent catalysts show a weight loss at ~373 K 

associated with physisorbed water evolution. Detailed analysis on how many CO2 

evolutions are observed with different systems and catalyst is presented in table 

96  

Table 96: Forms of the carbonaceous species formed over three system using different 
catalyst 

 

 1HY system 1,5HD system 2,4HD system 

CrOx/Al2O3 1 1 1 or 2 

Pt/Al2O3 2 2 2 or 3 

K-CrOx/Al2O3 3 2 2 

K-Pt/Al2O3 2 2 2 

 

4.2.3 TGA-TPO-MS desorbed species analysis   

Desorbed species including H2, CH4, CO and predominantly CO2 were observed 

with the 1HY system during the TPOs from the chromia catalyst. Formation of 

this kind of species can occur during burning of hydrocarbons in limited supply of 

air. The CH4 could be generated from aliphatic species and aliphatic side chains 

attached to aromatic coke [107]. This type of behaviour is observed only with 

this system and the CrOx/Al2O3 catalyst. The spent catalyst from the 1HY 

hydrogenation reaction also presented this same behaviour suggesting that the 

carbon deposit formed from the 1-hexyne reactant plays a major role in their 

formation. There is not much of the carbon deposition and there is no 

competitive C and H reaction with the oxygen and hence complete combustion 

In general, it is clearly observed that the potassium reduces the total amount of 

the carbon formation on the catalyst compared to the chromia and the platinum 
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catalysts and could be attributed to the removal of the support acid site that 

promote cracking activities [108].  

4.2.4 The coke formation and deposition 

For a generic trans-hydrogenation reaction it is suggested that, the reactant can 

form the olefin product via the H2 transfer and the resulting olefin could also be 

adsorbed on the catalyst, undergoing oligomerization and polymerization after 

forming radical species. This leads to the production of coke precursors and 

finally to coke formation.  

4.2.5 CHN elemental analysis 

On the basis of CHN elemental analysis, the composition of the carbon deposit 

likely varies with the reaction temperature and nature of the reactants. Over 

the chromia catalyst, the carbonaceous deposit formed during the hexyne 

reaction feeds presented a more hydrogen deficient carbonaceous deposit, a 1.6 

H:C atomic ratio was observed at 773K. There is general increase in these ratios 

observed with the 1,5HD and 2,4HD systems, with ratio ranges from 3.1-2.3 and 

3.5-2.6 respectively. This suggests that the coke formation with the 1,5HD and 

2,4HD systems is a more hydrogenated coke compared to the 1HY system. A 

slightly higher ratio was observed with both the 1HY and 2,4HD system 3.3-2.1 

and 4.1-2.9 respectively using the Pt/Al2O3 catalyst. Unexpectedly, ~9 H/C ratio 

similar to what was observed with pentane run was obtained with the 1,5HD 

system and could be attributed to low carbon laydown observed with this 

system. Hence, this could suggest that the more hydrogenated coke is formed 

with the Pt/ Al2O3 catalyst and more hydrogen deficient were formed with the 

chromia catalyst especially with the 1HY system.  The results are presented in 

figures 275 and 276  
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Figure 275: H:C atomic ratio of the coke formed over the CrOx/Al2O3 catalyst using the three 
reaction system at different reaction temperatures 

 

 

Figure 276: H:C atomic ratio of the coke formed over the Pt/Al2O3 catalyst using the three 
reaction system at different reaction temperatures 

 

Similarly, the significance of potassium doping has been observed with a higher 

H/C ratio observed with the doped chromia catalyst. The data is presented in 

table 97. The Lower H:C ratio suggests more hydrogenated coke and a lower 

carbon formation. This could be observed with all reaction temperatures 

compared to the chromia catalyst. 
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Table 97: H/C ratio of coke obtained over CrOx/Al2O3 and K-CrOx/Al2O3 using 1HY system  

 

Temperature (K) H/C ratio of coke 

P 1HY P/1HY 

CrOx/Al2O3 

773 9.2 1.60 1.80 

673 10.1 2.08 2.20 

623 9.4 2.15 2.30 

573 9.1 2.30 2.50 

523 9.6 2.31 2.50 

K-CrOx/Al2O3 

773 7.20 3.31 3.61 

673 9.32 4.05 3.96 

623 9.46 4.57 4.20 

573 9.21 4.71 4.31 

523 10.10 5.01 5.12 

 

4.2.6 Effect of the reaction temperatures on the carbon formation  

Higher carbon formation was always observed with higher reaction 

temperatures. However, higher carbon formation was obtained with the chromia 

catalyst as presented in Figure 277.  
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Figure 277: comparison of the carbon laydown over the catalysts at different reaction 
temperatures 

 

There is clear different between the chromia catalyst and the potassium doped 

counterpart. This difference is suggested to have linked to the reduction of the 

carbonaceous formation with doped catalyst. However, if the data is plotted as a 

pseudo-Arrhenius plot (fig 278) then, the carbon laydown formation shows about 

the same gradients for both the K- CrOx/Al2O3 and CrOx/Al2O3 catalyst. Using the 

gradient it is poosible to generate a pseudo-Ea number, so the reactions with K- 

CrOx/Al2O3 have activation energy (~59 kJmol-1) whilst reactions with CrOx/Al2O3 

also have activation energy (~59 kJmol-1). Both catalysts show a good linearity of 

the plots for the reaction temperature range (Figure 278). This suggests that the 

potassium doping as expected, does not change the mechanism of the reaction 

but have only reduce the acid site of the catalyst  
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Figure 278:  Coke formation during trans-hydrogenation over ■ CrOx/Al2O3 ♦K- CrOx/Al2O3 

 

4.2.7 Raman analysis 

The Raman spectrum obtained from all the catalyst system confirms the 

presence of graphitic species. Spectra showing two overlapping bands with peaks 

at ~1380 cm-1 and ~1600 cm-1 were observed on the chromia catalyst after use 

with hexyne and the mixed feed trans-hydrogenation. These bands are 

associated with coke deposition and are the D and G bands respectively related 

to graphite. The graphene G band at ~1600 cm-1 is a graphitic lattice vibrational 

mode mainly of an aromatic nature[109].  While the D type at ~1380 cm-1 is 

related to defects characteristic of disorder of the graphene[110]. The degree of 

disorder in the graphitic structure [106, 111] denoted as (ID/IG) can be measured 

and the ratio of D and G band intensities are presented in table (11). However, 

for the reaction systems that are not presented, they have zero ratios. The ID/IG 

shows that the intensity and the disorder in the graphitic type carbon with all 

the catalysts increases as temperature increases. However, this ratio was found 

to reduce with the trans-hydrogenation process (Figure 279). There is also a 

reduction in the ID/IG ratio observed between the 1HY and 1,5HD/2,4HD systems 

suggesting that the carbon deposits obtained with 1HY are more disordered 

while 1,5HD and 2,4HD presented about the same ID/IG ratios. 
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Figure 279:  Raman ID/I G Ratio ratios of the three systems over the chromia catalyst at 623 K 

 

The similarities between 1,5HD and 2,4HD reactant have been observed in some 

of the spent catalyst characterization and could be attributed that 1,5HD and 

2,4HD both have two double bond compared to hexyne which has triple bond. 

The microcrystalline planar size of the carbon was evaluated using the 

relationship La(nm) = 4.4[ID/IG]-1 [112] and it is observed that the carbon species 

are more crystalline with trans-hydrogenation and with the 1,5HD and 2,4HD 

feeds compared to the 1HY feed as presented in table 98 

Table 98: Microcrystalline planar size (La) of carbon at 623 K using CrOx/Al2O3 

 

  La (nm) = 4.4[ID/IG]-1 

  1HY 1,5HD 2,4HD 

 Mixed feed with 

pentane 

6.4 7.9 8.6 

Single feed 6.2 7.7 8.0 

 

The D-band was not observed on catalysts used at the low reaction temperatures 

of 573 K and 523 K with most of the reaction systems during trans-hydrogenation 

suggesting that the effect of temperature is in making the carbon species less 

disordered during the trans-hydrogenation. The Raman spectra obtained using 

pentane alone over the CrOx/Al2O3 catalyst, shows that the spent catalyst still 
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reveals bands ~357, ~ 836 and ~973 cm-1 due to bending modes and symmetric 

stretch of CrO2 suggesting that the deposited coke is not enough to cover the 

surface of the chromia on the catalyst.  

Table 99: Ratio of D and G band intensities obtained from the various reactions   

 

Catalyst/Reactants D:G Ratio 

523 K 573 K 623 K 673 K 773 K 

CrOx/Al2O3      

P 0 0 0 0 0 

1HY 0.64 0.64 0.68 0.70 0.72 

P/1HY 0 0 0.65 0.68 0.71 

1,5HD 0 0 0.57 0.61 0.65 

P/1,5HD   0.56 0.59 0.61 

2,4HD   0.55 0.57 0.59 

P/2,4HD   0.51 0.54 0.57 

Pt/Al2O3      

P 0 0 0 0 0 

1HY 0 0 0.58 0.71 0.72 

P/1HY 0 0 0 0 0.71 

1,5HD 0 0 0.66 0.73 0.74 

P/1,5HD 0 0 0 0 0.69 

      

 

4.2.8 Formation of yellow oil (wax-like species) 

The formation of the polycyclic aromatics is of considerable importance for 

understanding the mechanism involved in the carbon deposition and coke 

formation [113-115]. Yellow oil was observed to build up in the reactor tube 

with time and a considerable amount was made visible after a series of trans-

hydrogenation reactions. Hence all the material carbon which goes to produce 

this material will be normally considered and classified under carbon deposition. 

The chromia and the platinum catalysts, and the alumina support were 

noticeable to produce this material. These materials are believed to be poly 
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aromatic species of C16-C22 as listed in the table 100 below. There is also a 

possibility that the material could also have attachment of aliphatic side chain. 

Therefore, it could also range to >C22 

Table 100: Typical analysis of the yellow wax deposit 

 

component Molecular formula 

Pyrene C16H10 

Fluoranthene C16H10 

Methyl Pyrenes C17H12 

Benzo (GHI) Flouranthene C18H10 

Benzo Anthracene C18H12 

Benzo (K) Fluoranthene C22H12 

Perylene  C20H12 

Benzo Perylene C22H12 

    

Such species are often postulated as intermediates in coke formation but are 

rarely detected. Therefore, series of experiments have to be conducted to allow 

a large enough of the sufficient material to be produce and collected. These 

materials only volatilize at temperatures >723 K and hence there is a high 

probability that they can be retained on the catalyst surface. The formation of 

this coke precursor and the final coke, have been previously studied in both 

reflection and transmittance using UV-Visible spectroscopy [116-119]. Absorption 

at the highest energies (200-240 nm) are assigned to neutral molecules having 

single aromatic ring such as alkylated benzenes, while absorptions in the region 

between (250-500 nm) are assigned to carbocationic and neutral species (poly-

aromatic but also linear having an extensive conjugated double bond 

system)[116]. The UV-Visible spectra obtained from both the yellow oil (wax) 

and the extract of the catalyst surface reveal absorption bands between 200-400 

nm. Similar absorption spectra were obtained for both catalyst systems and wax 

as presented in Figure 280 
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Table 101: CHN elemental analysis of the yellow wax deposit 

 

 Elemental analysis 

 %C %H H/C Ratio 

Wax  64.6 4.52 ~1.2 

 

This may suggest that the wax is a product that could have desorbed off the 

catalyst surface and of course a precursor to the coke formation as highlighted 

previously. Similarly the CHN elemental analysis of the wax reveals that the H/C 

atomic ratio is ~1.2 suggesting that unsaturated forms of hydrocarbon species 

probably of a poly-aromatic type are formed. Note that this ratio is similar to 

the figure obtained from the coke observed with 1HY system using the chromia 

catalyst (~1.6 at 773K). The result is presented in table 101 
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Figure 280 UV-Visible analysis of the yellow wax in comparison with the catalyst extracts 

 

ESI mass spectroscopy has been proposed to be viable for the investigation of the 

oil deposit. Thus it makes it an attractive possibility for the determination of 

molecular weight of the species formed. The ESI-MS spectra shows multiple peak 

cluster for a possible higher hydrocarbon of molecular weight up to (m/e ~330) 

and are similar to that of higher hydrocarbons of possibly poly-fused ring or poly-

aromatic as presented in Figure 281 
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Figure 281: ESI mass spectrometry analysis of the yellow wax 

 



 
 

294 
 

Multiple line EPR spectra and a broad signal with a linewidth ∆H ≥ 0.8 mT would 

suggest the formation of oligomeric olefinic or allylic and hydrogen rich species, 

whereas a narrow single line EPR spectrum with a linewidth ∆H ≥ 0.5 mT and g = 

~2, would be due to highly condensed aromatic coke[120]. The calculated 

linewith from both EPR spectra reveals (∆H ~ 0.5 mT and geff  = ~2) suggesting 

similar species to that of the yellow deposit are formed. This also suggests a 

highly condensed aromatic coke. 

 

Figure 282: The EPR spectra obtained from alumina spent catalyst  

  

The graph is presented below on a smaller range. 
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5. Conclusion 

In the initial stage of the research project work, the fresh catalysts were 

characterized using BET, XRD, Raman and TGA-MS to investigate the morphology 

of each catalyst. The catalyst were then used to performed the trans-

hydrogenation reactions over 523-773 K temperature range. From the XRD result, 

it was observed that the Al2O3 existed as either gamma for the chromia catalysts 

or as mixed gamma and theta for the platinum catalyst, and the impregnation of 

the Al2O3 with the metal precursor has no observable effect on the structure of 

the Al2O3 support.   

The reactions were initially performed with the alumina support to evaluate its 

effect on the various reactants.  The results were mainly cracking and alkylation 

products with ~50 % and ~1 % conversion at 623 K for the hexyne and pentane 

respectively.  There was only a slight difference obtained in the trans-

hydrogenation over the alumina, with conversion of hexyne still ~50 % but the 

pentane conversion was ~2 % showing an increase of 1 % compared to when it 

was run alone.  The product distribution was very similar to when hexyne was 

run alone.  This behaviour of alumina has been reported elsewhere in literature 

[121-123]. Therefore, the alumina support on its own does not performed well 

for the trans-hydrogenation process. The addition of the metals reduces the 

propensity for both cracking and alkylation observed with the support and added 

dehydrogenation activity 

The primary aim of this thesis was to study the trans-hydrogenation of 1-hexyne 

(1HY), 1,5-hexadiene (1,5HD) and 2,4-hexadiene (2,4HD) with pentane (P) using 

heterogeneous catalysis. In-line with the research objectives as outlined in 

section… , the following conclusions can be made. 

 The results obtained clearly showed a promising trans-hydrogenation 

processes occurring with the P/1HY and P/1,5HD, while results obtained 

for the P/2,4HD system were poorer due to thermodynamic constraints. 

The trans-hydrogenation of 1HY, 15HD and 2,4HD to hexene was detected 

with an enhanced yield of hexene when the pentane/hexyne mix was 

passed over the catalyst. The yield of the olefin increases during the 

trans-hydrogenation. The conversion of pentane to value-added products 
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ceis also enhanced with all the increase in pentane conversion accounted 

for in the production of the isomers, alkylates and the cyclic products. 

 Instead of the targeted primary olefinic product, most of the products 

observed are secondary products. These secondary products are however, 

products from isomerisation, alkylation and cyclisation and accounted as 

valuable products. Most of the generated olefin were cis/trans 2-hexene, 

cis/trans 3-hexene and alkylated olefins (3-methyl-1-hexene, 2-methyl-1-

hexene). However, the addition of the alkali reduced secondary alkylation 

and more of the primary olefins were produced with the doped catalyst. 

 Catalyst deactivation was attributed to coke deposition from poly 

aromatic type species. Only slight deactivation was observed over the 8 hr 

time reaction period, but the carbon deposition could lead to severe 

deactivation with longer reaction time. There is an increase in the 

amount of the coke deposition with increased reaction temperature with 

all the catalyst except reaction with 1,5HD using the Pt/Al2O3 catalyst 

which shows about the same deposition with all reaction temperatures. 

The coke deposition could be on the metal, metal-support interface, 

doped alkali and or the support. All the types of the coke deposited were 

clearly distinguishable except with the CrOx/Al2O3 catalyst. The Raman 

spectroscopy results show that carbon formed was graphitic in type and 

present on all the catalyst, the disorder in the graphitic carbon increased 

with increasing reaction temperature 

 Finally, It has proved that it is possible to up-grade mixed hydrocarbon 

feed streams with this methodology as most of the reaction products are 

valuable products used in the daily activities of petrochemical industries.     
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