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Abstract

Cardiovascular disease is one of the main causes of death in the world and among vari-
ous cardiovascular diseases, the coronary artery disease is considered to be the leading
cause of death. Atherosclerosis is the primary cause of coronary artery disease. Dif-
ferent diagnostic methods have been developed for the assessment of coronary artery
function. Coronary Thermodilution is one of the most recent methods used to find
blood flow, temperature and assess resistance. A diagnostic coronary guidewire with a
pressure and temperature sensor is used to measure temperature and pressure of blood
simultaneously. For a continuous temperature signal, the rapid reduction in tempera-
ture and afterwards recovery in seconds creates a temperature curve which is displayed
on the haemodynamic monitoring device.

The objectives of this study were to evaluate the thermodilution waveforms in order
to understand microvascular disease of the heart. To investigate these thermodilution
curves, a Matlab program was written to assess and to identify the key features of the
thermodilution waveforms and different patterns of thermodilution curves were found.

In order to calculate the origin of the features of the double peaks and other thermodi-
lution curves, a simplified computational model of tube with catheter was implemented
in Fluent. We observed the temperature curves similar to the thermodilution curves
when we took the measurement at the centre of the coronary artery and did not see
any pulsatility due to the probe lies within the central axis and lies within the region
of cold fluid and may be diffusion is too slow to absorb heat from the surroundings.
Double peaks are found if the probe is off-axis. Stenosis is placed inside the coro-
nary artery and the calculations were performed off-axis which resulted in the different
shapes as we observed in the actual thermodilution data. Misalignment of the catheter
may result in the errors of thermodilution data which may affect the health care cost.
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Chapter 1

Introduction

1.1 Introduction

Coronary heart disease (CHD) is one of the main causes of death throughout the

world [1–3] and more than 73,000 people die in UK due to this disease every year [4].

The ratio of heart disease is more common in men than women and almost one out of

six men and one out of ten women die due to coronary heart disease [4]. About 1% of

visits have been noticed of patients having chest pain to the general practitioners [5,6],

5% to all emergency department and 40% to emergency admissions to hospitals [7]. It

is estimated that about 2.3 million people living in the UK are suffering from CHD out

of which 2 million people are affected by Angina, a chest pain of cardiac origin [4].

Angina happens due to insufficient supply of myocardial oxygen and is triggered by

physical activity and stress. Sometimes angina is referred to obstructive coronary

artery disease which may be due to the absence of flow limiting stenosis [8–13]. It

is recommended by European clinical guidelines that the patients having more possi-

bility of angina should be referred directly for invasive coronary angiography without

any prior stress testing [1, 2]. Coronary disease severity is calculated with the help

of coronary angiogram and most of the decisions like medical therapy, Percutaneous

Coronary Intervention (PCI) or Coronary artery bypass surgery (CABG) [14], depend

on graphical analysis and interpretation of coronary angiograms. These decisions may

be inaccurate due to the individual's clinical judgement and interpretation of the coro-

nary angiogram and may lead to misdiagnosis [15, 16]. Furthermore, it is difficult to

make decision about the patients having multiple narrowings with the help of coronary

angiogram because culprit stenosis identification and discrimination of flow limiting
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from non-culprit flow disease is subjective and therefore unreliable [14–17]. Therefore,

false interpretations of angiograms could result in wrong decisions, substandard health

outcomes and forthcoming health care costs as these decisions are prognostically im-

portant [15–17].

Different diagnostic methods have been developed for the assessment of coronary

artery function in recent years. New diagnostic possibilities have been provided by

the guidewire based measurement of coronary blood pressure, temperature and resis-

tance [18–21]. Guidewire technology has enabled the cardiologist to measure the lesion

level ischaemia, coronary collateral supply and other parameters of microvascular func-

tion [21–23].

A diagnostic coronary guidewire with a pressure and temperature sensor is used to

measure blood temperature and pressure simultaneously. In fact, by injecting a small

(3 ml) volume of room temperature saline via the catheter into the heart artery, the

mixing of the saline with the blood (37 0C) causes a transient reduction in temper-

ature that is detected by the thermistor on the wire. This technique is known as

coronary thermodilution. For a continuous temperature signal, the rapid reduction in

temperature and recovery in the seconds afterwards creates a temperature curve. This

thermodilution exponential decay curve is displayed on the haemodynamic monitoring

device. In fact, this change in temperature is the inverse of flow velocity. The shape

of the coronary thermodilution curve may also contain information as suggested by

recent research [24, 25]. This research is aimed at quantifying the data (waveforms)

using Matlab and providing biomarkers for clinical use, so that the disease could be

specified and diagnosed easily.

1.2 Coronary Artery Disease

Sudden cardiac death is by far the most dangerous outcome of coronary artery disease

and with the advancement of age it has become more common reason of death [26].

Sudden cardiac deaths, in the young, are mostly caused by hypertrophic cardiomy-

opathy (HCM), genetic arrhythmias and to a lesser extent, Wolf-Parkinson-White syn-

drome (WPW) [27–30]. An estimated 10,000 new patients of angina pectoris have been

recorded every year [31]. Coronary artery disease starts developing with the formation

18



Chapter 1. Introduction

of pathological changes in the wall of one or more than one coronary arteries i.e. hard-

ening of the arteries, which results into acute myocardial infarction or unstable angina

pectoris [32].

1.3 Common Causes of Arterial Disease

1.3.1 Atherosclerosis

Acute coronary artery disease is mostly caused by atherosclerosis. Hardening of ar-

teries starts from the inner most layer of wall, which is made of endothelial cells,

storing of blood fats begin between the endothelial cells where inflammatory cells and

macrophages ingest the fat. Lipids have been ingested by macrophages which burst

and become so called foam cells. A fibrous mass starts developing around foam cell

and forms a plaque. These atherosclerotic plaques appear in form of patches [33, 34].

Figures 1.1 and 1.2 are showing the accumulation of fats, cholesterol and other sub-

stances in the walls of arteries, making them less flexible and at last their breaking

apart.

Figure 1.1: Cut-section of artery [35]
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Figure 1.2: Fats deposited in artery [36]

1.3.2 Intimal Hyperplasia (Vein Graft Occlusion)

It is a phenomena associated with vein graft occlusion, reduced flow in the bypass

graft due to reduced lumen and ultimate graft occlusion is attributed to the intimal

hyperplasia (IH). In the first two months of implantation into the arterial circulation

the bypass grafts remain open, development of IH takes place after two months of

surgery [37]. It is the basic cause of vein graft atherosclerosis [37] because it blocks

vein graft by abnormal proliferation of smooth muscle cells in the intimal layer of vein

graft [37]. The failure of the vein and bypass graft due to intimal hyperplasia takes

place between 2 and 24 months post-surgery. Intimal hyperplasia leads to vein graft

atherosclerosis which leads to the occlusion of vein, it creates an emergency situation in

which the CO has to be measured and often a resurgery has to be conducted to reopen

the blockage. The factors triggering intimal hyperplasia are injury, inflammation, and

hemodynamic factors [38]. Recurrent ischemic complaints due to vein graft occlusion

have been reported by 30% to 50% [37].
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1.4 Symptoms of Coronary Disease

The frequently found symptom is central chest pain and includes both unstable angina

and acute myocardial infarction. Stable angina pectoris lasts for a few weeks without

signs of worsening. Effort angina has been produced by physical or mental stress and

ceases to exist when situation is relieved [31]. Variant angina is induced by contraction

of an artery that lasts so long that heart muscles start suffering from shortage of

oxygen. Variant angina can be induced even in resting position and its mixed types

are not uncommon [31]. Fissuring or rupture of an atherosclerotic plaque in a coronary

artery is the cause of the acute element of coronary artery disease [33]. Then the

activation of thrombocytes and coagulation of blood leads to formation of a blood clot

that completely or partially blocks the artery. On the complete or partial blockage of

an artery that supplies blood, the ischaemia occurs and it leads to reduced availability

of oxygen and nutrients. A gradual change towards cardiac death cell occurs in a

blocked artery that depends on the degree of ischaema and how long it remains [39].

1.5 Diagnosis

Many tests are used to diagnose possible heart disease. The choice of which tests

to be performed depends on the patients risk factors, history of heart problems, and

current symptoms. Usually diagnosis begins with the simplest test and progresses to the

more complicated ones. According to American Heart Association there are different

methods for diagnosing heart disease and cardiac output monitoring, the non-invasive

methods, e.g. ECG, oesophageal Doppler, trans-oesophageal echocardiography, lithium

dilution, pulse contour, partial CO2 rebreathing and thoracic electrical bioimpedance

whereas invasive methods are Fick method and thermodilution [40].

1.6 Computational Fluid Dynamics

The properties and flow of blood are very vital areas to be focused while studying the

atherogenesis and intimal hyperplasia haemodynamics [41]. Numerical simulations of

fluid flow have been carried out in computational fluid dynamics. Simulated outputs

are the result of numerical solution of the differential equations which have been derived

from physical conservation laws for flows [42]. CFD is used to resolve many problems

concerned to haemodynamics. Apart from this, CFD can also be used in scrutiny of
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time-varying, 3-D flow patterns in a complex geometrical model. CFD also helps in

studying atering Model and flow parameters like inlet velocity and wall conditions. If

boundary condition information is correct, high resolution results can be produced by

CFD [42].

Performing a Computational Fluid Dynamics (CFD) analysis is the option other than

constructing a physical experiment. It generally involves taking a meshed geometry

and simulations resembling the real world flow are created by using CFD software pack-

age. There can be diversified differences between the use of CFD analysis and physical

experiment when any type of flow is analysed [42, 43]. Despite all the advancements

of CFD Package, there are certain limitations of the same because it cannot deal with

the physical variables playing a role in a real world simulation. The results of CFD

present the idealized state of fluid flow behaviour in contrast to their actual behaviour

in the real world simulation. Resultantly, a variation is found in the results produced

in a physical experiment and the those found in CFD analysis. Hence, in order to

authenticate the validity of CFD analysis, both results found in CFD simulation and

during actual experiment are generally compared [42,43].

However, benefits of CFD analysis are more as compared to that of physical exper-

iment because the former is much cheaper and faster and various CFD Models can be

run at a time due to its lesser cost. The saving of time and cost at the same time allows

applying CFD approach in the conduct of research questions requiring substantial data

for analysis of various problems. The analysis of CFD results is much easier than those

of experiment. Moreover, CFD enables to monitor detailed physical behaviour of flow

at any location within the flow making it easier to observe the effects of geometry on

the behaviour of flow. Those physical properties which are difficult to be analysed

experimentally, can easily be carried while using CFD such as turbulance, shear stress

and flow patterns of stream lines [43].

A solid 3D-coronary artery was designed in CFD software to measure the blood flow,

pressure and temperature at different positions in the coronary artery. The purpose of

using CFD analysis was to identify the reasons of different shapes of the thermodilution

curves.
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1.7 Purpose of the Study

Thermodilution is used clinically to assess coronary circulation after an adverse event

but is assessed visually. The principal aim of this research project is to quantify the data

(waveforms) using Matlab and provide biomarkers for clinical use. For this purpose,

we will

1. Assess the shape of the coronary thermodilution waveforms in patients with ST-

elevation Myocardial Infarction, NSTEMI and stable angina as given in Section

4.4.

2. Determine whether there are different patterns of thermodilution curves as given

in Section 4.6.

3. Relate the shape of the coronary thermodilution waveforms to the coronary phys-

iology parameters used by clinicians (CFR, FFR, IMR) as given in Section 4.4.

4. CFD studies of flow in a simplified model artery undergoing the thermodilution

procedure as given in Chapter 5.
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Background

2.1 Cardiovascular System

The cardiovascular system consists of the heart and circulatory system. The heart

works as a pump to keep the blood circulating in the body. It expands and contracts

to send and receive blood respectively. The components that take part in distribution

and receiving of blood are arteries, capillaries, venules and veins [44]. There are three

types of blood vessels: arteries, veins and capillaries. Blood is carried away from the

heart by arteries and it is sent back to the heart by veins. Capillaries are small blood

vessels used for transferring oxygen from the blood to the body tissues. The walls of

blood vessels are elastic and porus, due to these characteristics they can expand and

contract and can transfer nutrients from the blood to the surrounding tissues [45].

Cardiovascular system has two major circulatory paths; the system circulating blood

between the heart and lungs is pulmonary circulatory system and the system carrying

blood away from the heart, through the body and then bringing it back to the heart

is called systemic circulatory system. Pulmonary veins provide oxygenated blood to

the left atrium which is then transferred to the left ventricle. Left ventricle transfers

blood to the largest artery of the body aorta and veins bring back the blood to the

right atrium [44].

The continuous expansion and contraction of heart creates pulsatile blood flow, moving

blood through the body in form of pressure waves. In each heartbeat heart completes a

cardiac cycle, which consists of two types of motions; the contraction of heart is called

systole whereas expansion is called diastole [44].
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2.2 Blood

An average human body contains more than 5 litres of blood, it transports oxygen and

nutrients to all living cells of the body. Blood is a precious fluid, providing immune

cells to the infections and adopting to the body needs of a man; platelets help to form

a plug in a damaged cell of body to prevent bleeding. Blood has three types, the

straw coloured fluid is called plasma, it is mainly water but contains proteins (used

for clotting), sugars and fats that form 60% of the blood by volume. The other types

are red blood cells, white blood cells and platelets. Red blood cells are responsible for

transport of oxygen, their deficiency causes a condition called anemia. White blood

cells play a vital role in body’s immune system; they detect the signals of any damage

to the body and begin healing process. An increased risk of bleeding is caused by

the thrombocytopenia, a condition of low level of platelets and high levels of platelets

(thrombocythemia) can increase the risk of formation of blood clots which can block

blood supply to heart and brain causing heart attack and stroke respectively [46].

2.3 Morphology of Coronary Arteries

The two coronary arteries emanate from the ascending aorta. Further LCA is divided

into the left anterior descending (LAD) and circumflex artery (CX). The blood is

provided to the heart muscles by these arteries and myocardial infarction or heart

attack are due to the blockage in these arteries [47]. Figure 4.25 shows the different

types of coronary arteries.

Figure 2.1: Coronary Arteries [48]
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Numerous studies had been conducted to analyse the morphology of the coronary

arteries. Arterial wall consists of three main layers of tissues as shown in Figure 2.2.

These are known as tunica intima, tunica media, and tunica adventitia [49,50].

Figure 2.2: Anatomy of arterial wall [51]

2.3.1 Tunica Intima

This is the inner layer which is directly in contact with the blood flow and covers the

complete surface of arteries. It is made up of an elastic membrane and endothelial

cells and its function is to exchange the compounds between blood and underlying

tissues [49, 50].

2.3.2 Tunica Media

This middle layer consists of smooth muscles which are capable to contract and their

function is to mediate vasoconstriction and vasodilatation so that the blood pressure

is maintained [49,50].

2.3.3 Tunica Media

This is the strong outer layer which is composed of mostly fibroblasts [49, 50].

2.4 Right Coronary Artery

Right coronary artery has a large right dominance when three branches arise beyond the

distal bifurcation of the right coronary artery (RCA) which supplies the septum and the
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inferior-posterior walls. The three branches of RCA are the right posterior descending

artery, which supplies the inferior septum, the second branch is right inferior branch

which supplies the infero-posterior wall. The third branch is called the right posterior

and it supplies the infero-posterior wall [52]. Figure 2.3 shows the branches of large

right dominance of right coronary artery.

Figure 2.3: Large right dominant coronary artery [52]

2.5 Left Anterior Descending Artery

At first it passes behind the pulmonary artery and then comes between that vessel and

the left auricula. There it reaches the anterior interventricular sulcus then it descends

to the incisura apicis cordis. It branches out into two parts, septals and diagonals.

This can be divided into four segments (L1, L2, L3 and L4). At 900 from the surface

of heart, septal originates from LAD, supplying the intraventricular septum. The three

largest septal arteries that branch from LAD are S1, S2 and S3.The 2nd branch of the

LAD runs along the surface of the heart .The lateral wall of the LV and the anterolateral

papillary muscle have been supplied by diagonal arteries. The three longest diagonal
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arteries are D1, D2 and D3 [53]. The septal and diagonal branches of the LAD are

shown in Figures 2.4 and 2.5.

Figure 2.4: Left Anterior Descending Artery [53]

Figure 2.5: Different segments of the LAD [53]
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2.6 Circumflex Artery

From the left coronary artery branches off the circumflex artery; it supplies to the left

atrium. A variable number of left marginal branches is given off by the circumflex

artery to supply the left ventricle. The largest of all branches is the terminal branch;

the posterior wall of the left ventricle and the posterior papillary muscle of the bicuspid

valve are more likely to be supplied by the circumflex artery through the AV sulcus [54].

2.7 Blood Pressure

The contraction of the left ventricle generates an axial pressure gradient. The pressure

gradient along vessels drives the circulation of blood in the whole body and transports

oxygen to every part of it. The oxygenated blood passes through arteries which are

elastic and can with stand even high pressure but for the healthy arteries blood pressure

should remain within a healthy limit [55]. High blood pressure means higher pressure

of blood on the vessels. Blood pressure consists of two numbers, systolic and diastolic;

systolic reading is the pressure measurements when heart beats and diastolic is when

the heart rests. A blood pressure more than 139 mmHg systolic or 89 mmHg dias-

tolic is considered as a high blood pressure. High blood pressure increases the chances

of a heart attack, angina, heart failure, kidney failure and peripheral artery disease [56].

High blood pressure damages the arteries and increases the work load of heart, work

load often leads to enlargement of heart and eventually a damage to the whole circu-

latory system. Atherosclerosis, the hardening of arteries due to deposits of fats, is also

a condition caused by high blood pressure [55].

2.8 Angina

Angina is a symptom of an underlying problem; when heart muscle does not get enough

oxygen-rich blood, the person feels pressure in chest which indicates a coronary heart

disease (CHD). The pressure and pain is often felt in shoulders, arms, neck, jaw or

back. It usually happens when one or more of the coronary arteries are blocked, which

is called ischemia [57].

Besides coronary arteries blockage, angina can be a sign of coronary microvascular

disease (MVD). It damages the smallest coronary arteries [52]. Angina has many
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types, three of which are stable angina / angina pectoris, unstable angina and variant

(Prinzmetal) angina [57].

2.8.1 Stable Angina

This situation is created by an imbalance between the oxygen rich blood the heart

requires and the amount available. It happens every time due to same causes and its

symptoms are also same every time, therefore, it is called stable angina. Rest and oral

medication relieve the pain. Stable angina is a signal alarming about heart disease, a

doctor should be consulted in case of angina attack. If there occurs any change in the

symptoms and patterns then this can progress to unstable angina [57,58].

2.8.2 Unstable Angina

It can be a changed form of stable angina. This occurs frequently and occurs when

person is at rest; it lasts for a longer period. Oral medications often relieved the pain

but it is an alarm of a heart attack and intense care is needed for medical treatment

[57,58].

2.8.3 Variant Angina (Prinzmetal’s Angina or Coronary Spasm)

A coronary artery can lead to spasm which causes blockage of blood flow to the heart

muscle. About two third of the people having variant angina have spasm at the site

of blockage. This angina often happens when a person is taking rest and the risk of

disease increases if one has a coronary artery disease or one is using stimulants or drugs.

A heart attack can be a potential danger when coronary artery spasm is intense and

lasts for longer time [57,58].

2.9 Stenosis

Stenosis is used to describe an abnormal narrowing in a blood vessel or other tubular

organ, stricture is also a name given to it. When narrowing is the result of contraction

of smooth muscles, it is called a stricture. When narrowing is the result of lesion

which reduces the space of lumen (e.g. atherosclerosis), it is called a stenosis [59].

Unusual blood sounds resulting from the turbulent flow in the narrowed blood vessel

is associated with the vascular type of stenosis. A stethoscope can help detect this
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sound. Beside other causes, atherosclerosis is the biggest cause of stenotic lesions in

arteries. Vascular stenotic lesions include the intermittent claudication, Angina, and

Carotid artery stenosis. Heart valves suffer four types of stenosis, pulmonary valve

stenosis, Mitral valve stenosis, Tricuspid valve stenosis and Aortic valve stenosis [60].

Figure 2.6 shows Coronary Stenosis in which a coronary artery has become partially

blocked by cholesterol or fat [61].

Figure 2.6: Left Coronary Artery Stenosis

2.10 Non-ST-Segment Elevation Myocardial Infarc-

tion

Non-ST Segment Elevation Myocardial Infarction (NSTEMI) is a medical emergency

just like STEMI. It happens when a plaque ruptures in a coronary artery. The ruptured

plaque partially blocks the artery and the heart muscle supplied by the artery starts

dying; in STEMI the cardiac enzyme blood tests are abnormal, which indicates that

some heart muscles have actually been damaged. The patient of NSTEMI has greater

risk of a ”full” myocardial infarction [62]. The electrocardiogram of NSTEMI does not

show any change in the ST segment elevation. Patient suffering NSTEMI tests positive

for a protein troponin which is released by the heart muscle which is damaged [63]. The
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diagnosis of NSTEMI can be made when a patient has symptoms of unstable angina

and non ST-segment elevation but has troponin in blood [63].

2.11 ST-Segment Elevation Myocardial Infarction

When one of the arteries supplying blood to the heart muscles is completely blocked,

a serious heart attack is caused, which is called ST-Elevation Myocardial Infarction.

It is often a result of atherosclerosis. Patients suffering STEMI have greater risk of ar-

rhythmias like ventricular fibrillation causing sudden cardiac arrest. Cardiopulmonary

resuscitation (CPR) and defibrillation, a shock is used to restore the heart rhythm of

the patient [64]. STEMI causes a full- blown heart attack and due to its seriousness,

it is called STEMI alert. This heart attack has a particular EKG heart-tracing pat-

tern [65]. ST-elevation is an abnormality detected on the 12-lead ECG [64] as shown

in Figure 2.7.

Figure 2.7: ST-Segment Elevation Miocardial Infarction [64]

2.12 Percutaneous Coronary Intervention

This process is used to improve blood flow to the heart, it is a non-surgical procedure

and requires cardiac catheterization. A catheter tube and injection of contrast dye is

inserted into the coronary artery; this method is used to unblock narrowed or blocked

coronary arteries. It is also helpful in reducing damage after a heart attack. During
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PCI, the patient stays awake. The patient receives medicines through an intravenous

(IV) line in arm to prevent blood clots. A catheter is inserted into a blood vessel, live

x-ray helps the doctor guide the catheter into the heart, where doctor injects special

contrast dye which highlights the blockage. After locating the blockage, the doctor

inserts another catheter and inflates a balloon at the tip of the catheter to unblock the

blockage and then put a stent to keep the artery opened. PPCI and STEMI are asso-

ciated with microvascular damage e.g. due to oedema and microvascular spasm [66].

The purpose of this study was to assess the thermodilution waveforms of three groups of

patients with different haemodynamic conditions, i.e. ST-elevation Myocardial infarc-

tion (STEMI), Non-STEMI and stable angina, and divide them into different groups

on the basis of waveforms.
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Cardiac Output Measurement

Cardiac Output (CO) monitoring is an important tool for measuring cardiac output

in critically ill patients in whom large fluid shifts are expected along with bleeding

and haemodynamic instability [67]. An ideal CO should be continuous, minimally or

non-invasive, reproducible, cost effective, have fast response time and reliable during

various physiological states [68]. There are various methods of CO monitoring based

on Fick's principle, thermodilution, Doppler, pulse contour analysis and bioimpedance.

Each method has its own merits and demerits.

3.1 Non-Invasive Methods

3.1.1 Electrocardiogram

According to the American Heart Association, electrocardiogram is the most commonly

used non-invasive method to record the electrical activity of the heart but up to half

of people suffering from angina or ischemia have normal ECG. The record of depressed

or horizontal ST wave by Electrocardiogram suggests some blockage and existence of

artery disease even if there is no angina present but this wave pattern can occur even

without heart problems. The most important wave patterns in diagnosing and deter-

mining heart disease are ST elevations and Q waves. ST segment elevations imply that

an artery to the heart is blocked, however, they do not always a sign of heart attack [69].

According to the American Heart Association, echocardiogram uses ultrasound images

of the heart. It is used to identify whether there is damage to the heart muscle and

the extent of heart muscle damage. But ECG shows even in the asymptomatic people
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the characteristic signs of Hypertrophic cardio myopathy [70], long QT-syndrome [71],

short QT- syndrome, arrhythmogenic right ventricular cardiac myopathy [72], Brugada

syndrome [73], early repolarization [74] or Wolf-Parkinson-White syndrome [75]. Figure

3.1 shows the ECG tracing and equipement used for the measuring cardiac output.

Figure 3.1: Electrocardiogram (ECG) [76]

3.1.2 Pulse Power Analysis

The principle that change of blood pressure about the mean is directly related to SV is

the base of this method. The accuracy of this method is affected by many factors like

wave reflection, compliance of the arterial tree, aortic systolic flow and dampening of

the transducer [77]. This minimally invasive technique was first described in 1993 [77].

In venous line, a bolus of lithium chloride is injected and arterial concentration is

find by thinning blood across disposable lithium sensitive sensor having an ionophore

selectively permeable to Li. The calculation of CO is based on the dose of Li and area

according to the concentration time circulation [78]. Pearse et al, after studying this

method revealed fewer complications [79].

3.1.3 Pulse Contour Analysis

Erlanger and Hooker first described this method in 1904 [80]. The basic principle

on which this method is based is that the area lying under the systolic part of the

arterial pressure waveform is proportional to the SV [81]. The area in this method is

measured post diastole to end of ejection phase that is divided by aortic impedance

measuring SV. SVV and pulse pressure variation is also measured by this method. The
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maximum and minimum difference between the SV over the respiratory cycle is called

SVV and the changes in preload with alteration in intrathoracic pressure produces this

difference [81].

3.1.4 Esophageal Doppler

A flexible probe with transducer at the tip is used in this process. This flexible probe

can be placed for longer periods in intubated patients. As it is presumed to be parallel

to the descending aorta it measures flow at the midthoracic level. SV is measured

by Doppler ultrasound. After obtaining an optimal flow profile the velocity of blood

flow is determined from the shift in frequency of red blood cells. Ultrasound processor

performs this action by using the Doppler equation [82,83].

V =
fd c

2f0 cos Θ

V = velocity of blood, fd = Doppler shift in frequency, c = speed of ultrasound in

tissue (1540 m s−1), fo= initial ultrasound frequency, and Θ = the angle of ultrasound

beam in relation to the blood flow. Figure 3.2 displays the nasal and oral positioning

of oesophageal probe in relation to aorta [83].

Figure 3.2: Nasal and oral positioning of oesophageal probe in relation to aorta [83]

A Meta analysis reveals ED as a reliable method having low bias and limited efficacy

[84]. ED was also used in GDT and it showed greater improvement in SV and CO with

faster recovery and shorter length of stay [85]. The use of ED has also decreased

hospital and ICU stay with decreased incidence of gut mucosal perfusion [86]. This

device was studied in patients undergoing OPCAB and it was found that in comparison
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with PAC, ED cannot be used as a sole method for monitoring cardiac output [87].

3.1.5 Partial Gas Rebreathing

This method is used in patients under mechanical ventilation. Amount of CO2 entering

the lungs, at steady rate, is proportional to the cardiac output and the CO2 exiting

the lungs. CO is calculated according to this formula [88].

Cardiac Output =
V CO2

CvCO2 − CaCO2

V CO2 is a Carbon dioxide elimination and is calculated by adding the product of

carbon dioxide concentration and flow during each breathing cycle and CvCO2 and

CaCO2 represent mixed venous and arterial carbon dioxide content respectively. Its

major limitation is requirement of tracheal intubation with fixed ventilator setting. It

does not produce accurate results in patients suffering severe chest trauma, significant

intrapulmonary shunt, high CO states and low minute ventilation [88]. Thus, its use

as compare to PAC is limited.

3.1.6 Thoraic Bioimpedance

This method was first used by astronauts in 1960s [89]. In this method the thorax

is considered as a cylinder filled with fluid with specific resistivity. The electrical

resistance of the thorax to a high frequency is measured by it [88]. However, many

limitations affect its accuracy. Inaccurate readings in the post operative periods have

been found due to presence of sternal wires and orarrythmia [90]. Furthemore, it has

been found as trend analysis monitor rather than a diagnostic one [91].

3.1.7 Thoracic Bioreactance

The changes in the phase of electrical voltage signal to the current applied across the

thorax have been analysed in this method. Two dual electrodes are placed on either

side of the thorax. One electrode transmits sine-wave high frequency (75 kHz) current

into the body and the other electrode is used by the voltage input amplifies. The final

value will be found by the mean of two [92]. Good correlation has been found between

this method and PAC with minimal bias [90].
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3.1.8 Endotracheal Cardiac Output Monitoring (ECOM)

Electrodes are attached to endotracheal tube shaft and cuff and current is passed

through them. Current passes from electrode on the shaft of endotracheal tube (ETT)

and change in impedance secondary to aortic blood flow is detected by electrode on

the cuff of ETT. Aortic blood flow affects impedance [93]. Its accuracy is affected by

electrocautery and coronary blood flow is not calculated.

3.2 Invasive Methods

3.2.1 The Fick Method

Adolph Fick in 1870s founded the principles on which cardiac output determination is

based. He proposed that the substance released by an organ is the product of the blood

flowing through the organ and the difference between the same substance's arterial and

venous values. In Fick method the oxygen is used as substance and lungs are taken

as organ. To obtain the difference (a− V O2), the arterial and venous oxygen contents

are measured. Inspired minus expired oxygen content and ventilation rate can be used

to calculate consumption of oxygen. This formula can help determining the cardiac

output [94].

Cardiac Output =
Oxygen Consumption in ml/min

(a− V O2 Difference in vol %)

volume % =
1 ml oxygen

100 cc

Normal (CaO2) arterial oxygen content: 20 volume %

Normal (CvO2) mixed venous oxygen content: 15 volume%

Normal (V O2) oxygen consumption: 250 ml/min

Inserting these values into the equation:

CO =
250

(20− 15)× 100
=

250

5× 100
= 5000

ml

min
= 5

l

min

Accurate measurement of oxygenation variables is required to calculate cardiac output

with Fick equation. Large errors in the oxygen consumption results can be produced by

slight errors in the content values. Ranging between (200-250) ml/min is the normal

consumption of oxygen. (110-130) ml/min/m2 is the indexed normal value of V O2.

Critically ill patients have abnormal consumption of oxygen and putting the normal
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values of oxygen consumption in Fick equation can give out errors in cardiac output

values [94].

3.2.2 Dye Indicator Dilution Method

Stewart in 1890s proposed the principles for the indicator dilution method and later

Hamilton refined it. The basic principle of dye dilution is addition of a known concen-

tration of an indicator to a body of fluid. After allowing the dye to adequately mix,

an amount of fluid will be produced by the diluted indicator to which it was added.

The concentration of indicator and dye in the blood after injecting a known sample

upstream can be found by densimeter. A time-concentration plot can be found by

taking continuous blood samples. Once the time-concentration plot has been found,

the cardiac output can be found by using the Stewart-Hamilton equation [94].

CO =
I × 60

(Cm × t)
× 1

k

where CO= cardiac output(I/min), I = amount of dye injected (mg)

60 = 60 sec/min), Cm = mean indicator concentration (mg/l)

t = total curve duration (sec), k = calibration factor (mg/ml/mm)

Indicator dilution curve is shown in Figure 3.3.

Figure 3.3: Indicator Dilution Curve [36]

3.2.3 Cardiac Output Measurement by Pulmonary Artery Catheter

Dexter developed Pulmonary artery catheter as a monitor to measure flow and pres-

sure [95] and later Swan modified it [96] to measure central filling pressures and CO.

Since 1970s, it is considered as gold standard monitor to measure CO [97]. However,

many complications leading to embolism have been associated to it, like pneumothorax,

39



Chapter 3. Cardiac Output Measurement

arrhythmia, infection, pulmonary artery rupture, valve injury, knotting and thrombo-

sis [98, 99]. Furthermore, various technical errors are associated with this process like

loss of injectate, variability of temperature, thermistor malfunction, clot over catheter

tip, coiling of catheter or timing of injectate [98, 99].

3.2.4 Continuous CO Measurement by PAC

The modification in Pulmonary artery catheter (PAC) with copper filament in the

catheter that remains in the right ventricle is called Continuous CO. The filament in-

termittently heats the blood in right heart and thermistor lying near the tip of catheter

captures the resultant signals. Avoidance of repeated boluses thus reduces the infec-

tion risk and operator errors making CCO preferable over PAC [98]. The use of PAC

involves both benefits and risks. Gore et al [100] revealed that the use of PAC increased

mortality after myocardial infarction. Due to complications, many authors called for

complete ban on the use of PAC [101]. Later on, the Escape trial showed functional

improvement in patients of congestive heart failure due to the use of PAC guided ther-

apy [102]. Despite risks PAC is still considered as the Gold Standard for monitoring

of CO.

3.3 Theories of Thermodilution Method

3.3.1 Fractional Flow Reserve

FFR is a method of calculating an absolute value that is an indication of the pressure

difference between the flow of blood downstream and upstream of the stenosis. Stenosis

causes narrowing of the vessel which impedes the oxygen delivery to the heart muscles

resulting in a drop in blood pressure. FFR accounts for the accurate region of lesions

responsible for the ischemia in the blood vessels which are generally not detected or

correctly evaluated by angiography or intravascular ultrasound [103].

FFR is independent of pressure changes and the interpreted pressure values are sup-

ported by the collateral flow and myocardial perfusion. The theoretical normal value

of FFR equivalent to 1 is well defined and can be assigned to any patient without the

need of a normal distribution data. The numerical index of FFR has been validated

after several experiments and therefore has a reliable scientific basis [104].
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The ratio of the perfusion pressures can be calculated by the following equation:

FFRcor =
pd − pw
pa − pw

where pd is the distal coronary pressure in the stenotic artery and the pa is the aortic

pressure in the normal artery. pw is the wedge pressure and its value is calculated

when the balloon inflates and occludes the artery. The pressure stabilizes in front of

the balloon after several seconds and the recorded pressure is the same as the distal

branches of the occluded artery. FFRcor can only be calculated during percutaneous

transluminal coronary angioplasty (PTCA) due to its direct relation to pw [104, 105].

Figure 3.4 shows the position of measuring the distal and aortic pressure.

Figure 3.4: CFR = coronary flow reserve; FFR = fractional flow reserve; IMR = index
of microvascular resistance; Pd = pressure distal to the lesion; Pa = pressure proximal
to the lesion; Pv = the central venous pressure [105].

At maximum Hyperaemia (i.e. increased blood flow)

FFR =
pd
pa

FFR < 0.8 is an indication of obstructive coronary artery and requires percutaneous

coronary intervention (PCI). FFR > 0.8 requires no PCI. The ratio of FFRmyo de-

fines the maximum myocardial blood flow distal to an epicardial stenosis againt the

myocardial blood flow in the absence of the stenosis [104].

FFRmyo =
pd − pv
pa − pv

pv is venous pressure, the right atrial pressure, measured at maximum vasodilation. It
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is an important parameter which determines the filling pressure of the right ventricle.

FFRmyo is an important flow index from clinical perspective as it exhibits both ante-

grade and collateral contribution to maximum myocardial perfusion. Also when wedge

and venous pressure are not available [106] then

FFRcor = 1.34× FFRmyo − 0.32

3.3.2 Coronary Flow Reserve

Coronary Flow Reserve (CFR) is the ability of the coronary flow to increase with

metabolic demands of the body. By definition it is the ratio between maximum coro-

nary blood flow to the resting blood flow. It is evaluated by measuring coronary flow

or flow velocity at catheter. Relative CFR is the ratio of the stress flow in a diseased

artery and stress flow in a normal artery. CFR has the potential to detect symptoms

of balanced ischemia and possible condition of microvascular dysfunction. Attempts

have been made to identify the effect of epicardial coronary stenosis and to assess the

results of angioplasty and coronary artery bypass surgery [107,108].

CFR =
Qmax

Qrest

We know that Flow = volume
Time

, therefore

CFR =
[volume

Tmn
]Hyp

[volume
Tmn

]Rest

As epicardial volume is considered to be unchanged, therefore, CFR is measured by

the ratio of mean transit time during rest to mean transit time in vasodilation.

CFR =
[Tmn]Hyp

[Tmn]Rest

Figure 3.5 indicates the mean transit time on thermodilution curve.
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Figure 3.5: Calculation of mean transit time (Tmn) from thermodilution curve (sensor)
and injection signal (shaft) [109]

Figure 3.6 shows the diagnosis and treatment based on FFR and CFR values [105].

Figure 3.6: Diagnosis and treatment based on FFR and CFR values [105]

The mean transit time Tmn is calculated by the following equation [110].

Tmn =

∫∞
0
t.C(t).dt∫∞

0
C(t).dt

where C(t) represents the thermodilution curve shown by the distal thermistor and

t = 0 is defined as the time halfway the injection as shown in Figure 3.5.

3.3.2.1 Limitations of CFR

During measurement of CFR, basal and maximal flows are assessed. Due to major

shortcomings of the measuring methods remains doubtful the accuracy that whether

the maximal flow has been achieved or not.

Replica of flow is created to overcome the uncertainty; the flow velocities are evaluated

by the Doppler Wire and mean transit time assessed by the Pressure Wire.
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Regardless of the method used to measure CFR, this technique has following limitations

[107].

1. Resting flow is highly variable.

2. Hyperaemic flow is in direct relation to the systemic blood pressure.

3. The hyperaemic and resting calculations are made successively and not simulta-

neously.

4. CFR value depends on both epicardial vessels and microcirculation and is not spe-

cific for an epicardial stenosis. At low CFR value it is impossible to differentiate

whether this value is related to an epicardial artery stenosis or microcirculatory

dysfunction alone, or a combination of both.

3.3.3 Index of Microvascular Resistance

Index of Microvascular Resistance measures the coronary microvascular function and

can be used to study the pathophysiology of microvascular function in both stable

and acute MI patients. IMR < 20 lies in the normal range and IMR > 30 indicates

microvascular dysfunction [105] as shown in Figure 3.7.

Figure 3.7: Index of Microvascular Resistance [105]

Myocardial resistance is mainly determined by the microcirculation. IMR is a

coronary guidewire-based measure of coronary microvascular function [111, 112]. IMR

provides information on microvascular dysfunction that could be informative both in

stable patients and also in patients with acute or recent MI. The resistance of the

44



Chapter 3. Cardiac Output Measurement

vascular system is defined as the ratio of the pressure gradient to the flow across that

particular system [112].

IMR =
∆Pressure

Flow

Resistance R is equivalent to R =
(
pd−pv
Q

)
where pd represents distal coronary arterial

pressure, pv represents the venous pressure, or pressure in the right atrium and Q de-

notes the blood flow through the myocardial vascular bed [107].

IMR can be derived by a simplified formula when there is no presence of epicardial

disease. IMRapp is equivalent to the ratio between distal coronary pressure divided by

coronary flow while assuming collateral flow is negligible [112].

IMRapp =
Distal Coronay Pressure

Coronary Flow

IMRapp =
(pd − pv)

Q

IMRapp =
(pd − pv)

1
Tmn

IMRapp = pd × Tmn

Thus apparent IMR is calculated by multiplying the distal coronary pressure by the

mean transit time of a 3 ml bolus of saline at room temperature during coronary hy-

peraemia as shown in Figure 3.8.

Figure 3.8: The Index of Microcirculatory Resistance Measurement [113]
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When the blood flows through an epicardial stenosis myocardial flow is backed by

the collateral flow while the coronary flow decreases. Collateral flow also increases

the distal coronary pressure and hence in the presence of significant epicardial stenosis

IMRapp will overemphasize the microcirculatory resistance. Additional calculations of

the coronary wedge is mandatory for the calculation of the IMR and requires balloon

inflation within the coronary arteries. Hence IMR measurement in patients diagnosed

with epicardial stenosis is generally confined to those who are undergoing percutaneous

coronary intervention (PCI) [114–117].

Calculation of IMR [117] in obstructive coronary artery is given by:

IMRapp = [(pa − pv)× Tmn]× (pd − pw)

pa − pw

When wedge and venous pressure are not available, IMR may be estimated using this

equation [52].

IMR = pa × Tmn × FFRcor

where

FFRcor = 1.34× FFRmyo − 0.32

3.4 Thermodilution Curves

When cardiac output is low, the temperature takes more time to reach to the base line

which results in larger area under the curve because the thermistor senses this change

in temperature over a long period of time. Similarly in case of high cardiac output,

the blood flows faster through the heart and less time is required for the temperature

to return to the base line which results in smaller area under the curve [94, 118]. The

thermodilution curve normally has a rapid smooth upstroke and a gradual exponential

decay [119]. The last portion of the curve is not used in finding the area due to the

recirculation [118]. The curve varies with the health condition of patients and according

to the techniques used to find the cardiac output. Figure 3.9 shows the different types

of curves according to the variation in the shape of curves [119].
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Figure 3.9: Variation in normal cardiac output curve [118]

.

3.4.1 Thermodilution Method

Different techniques are used to measure the cardiac output [120]. Thermodilution is

one of the methods that are used now days by the clinicians to determine the cardiac

output. This method calculates the blood flow by using the same techniques as used by
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other indicator dilution methods [118]. A special thermistor tipped catheter which is

known as Swan-Ganz balloon flotation catheter is used in this technique. The catheter

is inserted into the pulmonary artery from the peripheral vein [120]. An injection of

known quantity (volume and temperature) of cold saline solution that is colder than

the blood temperature is injected into the right atrium with the catheter [118, 120].

Due to this injectate blood temperature decreases and this change in temperature is

recorded as it flows over the thermistor located 3 cm from the end of the catheter

tip [119]. The thermistor then sends this recorded information to the computer that

displays this information in the shape of curve which shows the change in temperature

over time [94,120] and calculates the area under the curve [119]. This area is inversely

proportional to the flow rate and this flow rate is taken to be the cardiac output if

there are no intracardiac stunts [94]. An ideal thermodilution curve is shown in Figure

3.10. The characteristics of the administration of injectate are determined by a rapid

upward slope to a peak, a stepwise downslope and an exponential-like deterioration of

the thermal signal. Integration of the area under the thermodilution curve begins at

the instant of injection and the cardiac output computer terminates the integration

when a value of about 30% has been reached by the exponential decay. Then the

decay is extrapolated by the computer to baseline. In this way, artifacts introduced by

recirculation of indicator can be minimised as shown in Figure 3.10 [118].

Figure 3.10: An ideal thermodilution curve [118]

.

3.4.1.1 Radi Analyser/Pressure Wire System

Radi analyser which is a commercial system is used to display the thermodilution

results sent by the guide-wire catheter. The guide wire is almost the same as the

conventional guide wire but with an exception of three microsensor elements which
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are located at 3cm away from the distal tip at the transition of the radiopaque and

radiolucent segments. The functions of each of these three sensors are specific. For

instance, one measures the pressure /FFR, the second sensor measures the thermodi-

lution derived CFR whereas the third one is designed to measure the temperature [121].

The piezoresistive pressure sensor is made of silicon and is coupled in a Wheatstone

bridge having range of -30 to 300 mmHg. The Radi pressure wire having length of 170

cm or 300 cm is connected to Radi Analyser by a 6 foot adapter or a contact cable

during pressure measurements and can easily be disconnected during the placement of

wire and manipulation [121].

A portable computer system, Radi Analyser, is mounted on an IV pole and interfaces

with the CCL haemodynamic system. The purpose of this computer is to collect and

interprets the information sent by the guide wire catheter. Furthermore, it also displays

the arterial waveform and pressure waveform on Radi Analyser and the catheter lab

hemodynamic system simultaneously. A remote control is used for input of patients

data and operation of the system. A thermal printer is also attached for printing the

hardcopy of the patients measurement in the form of chart. A number of Patients

recording is stored in the Radi Analyser system. The digital information is transferred

by optional Radiview software into the personal computers for visualising, reporting

and testing for future use [121] as shown in Figure 3.11.

Figure 3.11: Radi Analyser Monitor for displaying reports [122]

A lightweight and durable instrument, Radi Analyser, is very easy to use which not

only helps in clinical decision making in everyday life but also supports the advanced
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research. Radi Analyser is integrated with the catheter lab table and provides a quick

access to FFR measurements without any delay. Radi Analyzer along with the Pres-

sure WireTM CertusTM enables the assessment of FFR, CFR, IMR and intravascular

temperature by using only one wire [122].

3.4.2 Thermodilution Measurement Errors

Thermodilution cardiac output measurement method has many advantages over other

methods with respect to accuracy. However, there may be measurement errors due to

technical reasons and pathological condition of patients.

3.4.2.1 Temperature and Volume of Injectate

In 1961, Evonuk et al. stated there is a closed correlation between the cardiac out-

put values determined by thermodilution and dye dilution by using injectate at 23 0C

to 26 0C. According to them, accurate temperature of the supplied iced injectate is

not only difficult to maintain and determine but also affect heart and other cardiopul-

monary haemodynamic variables [123]. In 1971, the clinical use of 10 ml iced injectate

in adults containing 5% dextrose in water was reported by Ganz et al. for the first

time and this has been used for more than ten years [124]. Mostly [125–131] but not

all [132–134] reports showed no difference in accuracy or reproducibility (ratio of stan-

dard deviation to mean value of multiple measurements) between the uses of iced or

room temperature injectate. The cardiac output values were estimated by using injec-

tate of different volume and temperature i.e 5 ml, iced, 10 ml, room-temperature, or

10 ml, iced and comparable reproducibility was reported by Elkayam et al [125]. The

use of 10 ml iced or room temperature injectate is recommended because it produces

less variability than 3 or 5 ml injectate [126]. The blood flow is not affected by the

small volume of the injectate [135, 136]. However, an increased blood flow is reported

in the region of thermistor [137]. Furthermore, due to the cold injectae, the change in

systemic and pulmonary arterial pressures, right arterial pressure and pulmonary blood

flow (right ventricular output) is shown in clinical practice [138–140] and the amount

of change is depending upon the temperature and volume of the cold injectate [141].

3.4.2.2 Rewarming Injectate

Errors in measurement can be introduced due to rewarming the injectate before it is

injected [142] and by heat transfer as it is passed through the catheter [124, 143–145].
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The temperature of the 10 ml iced injectate syringe will be increased by 1 0C in every

13 seconds when it is held in warm hands having temperature 36 0C which results

in overestimation of cardiac output by 2.86% for each 0C. Cardiac output can be

overestimated due to the indicator loss during the passage of the injectate through the

pulmonary artery catheter. 17% of the potential signal is assumed to be lost before

the 10 ml injectate leaves the catheter at 0 0C and the factor of 0.83 for the correction

of this loss is used in the thermodilution equation [146].

3.4.2.3 Timing of Injection and Respiration

The accurate assessment of the area under the thermodilution curve is affected by

the fluctuation of the baseline temperature in the pulmonary artery with respiration

(0.01− 0.1 0C) [147–153] which is also called physiological noise [124,151] as shown in

Figure 3.12.

Figure 3.12: Timing of injection and respiration

The production mechanism of these temperature variations has not been fully clar-

ified; the direction of the change in temperature may be influenced by humidity [153],

the variation in blood flow and temperature changes during the respiratory cycle in

the superior and inferior vena cava or it may be due to the unintentional effects of

respiration on the system of circulation [152].

The cardiac output will be underestimated because of increase in baseline tempera-

ture in the pulmonary artery during spontaneous breathing and overestimated because
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of decrease in temperature during intermitted positive pressure ventilation (IPPV)

[150,152,153] at expiration which is shown in some animal experiments. However, the

risk of baseline temperature drift due to the respiration is alleviated by cardiac output

computers by taking the average of blood temperature for a short period of time before

indicator injection [150,154].

3.4.2.4 Speed and Mode of Injection

For an injectate volume of 5 or 10 ml the injection time of 4 seconds may be acceptable.

If the injection time prolongs, poor thermdilution curves may render the CO values

unreliable [155]. Automatic injector may work effectively [156,157] but small variations

can occur in the time, flow and consistency in the injection powered by gas. Manually

reproducing the CO values using an experienced operator may not be fruitful. Speed

of injection is secondary when the consistency of injection is being measured [158].

3.4.2.5 Intravenous Fluid Administration

After cardiopulmonary bypass the calculation of CO in adults may be underestimated

if a rapid peripheral intravenous infusion of 90 ml to 220 ml fluid is injected before

measuring [159]. This is mainly caused by the change in temperature which is a direct

consequence of the infusion augmenting the area of the thermodilution curve. Constant

infusion of fluid should either be maintained or discontinued half a minute before

recording the CO value [159]. During CO calculations of fluids through the side-port

should be stopped [160].

3.4.2.6 Low Flow

To check the correctness of thermodilution, the values of CO have been noted in Vitro

experiments when the CO is low even less than 1 to 2 l min−1 [161,162]. Before the com-

pletion of computed analysis, the recirculation of indicator occurs and a considerable

loss of thermal indicator happens which may contribute to the variable cardiac output

values. If the thermodilution curve and variations in clinical variables are observed the

risk of clinical errors can be reduced [163].

3.4.2.7 Catheter Dysfunction and Position

PA catheter dysfunction is caused by the formation of thrombus around the catheter

and the obstruction of the proximal lumen [164]. With the increase in the size of

52



Chapter 3. Cardiac Output Measurement

catheter thrombus the value of CO is progressively underestimated, which is the re-

sult of the overestimation of thermodilution curve area by rewarming thermistor for a

protracted period [165]. The catheter should be removed when improper perfusion ob-

structs the proximal lumen opening of the PA catheter. The injection of cold injectate

into the lower portion of the superior vena cava through a central venous catheter is

helpful in finding the measurements of CO [164]. It can be done by using PA catheter’s

right ventricular port whose original function is introduction of pacemaker or fluid ad-

ministration [166]. There are three reports in which overestimation of CO is attributed

to the use of the proximal port within the introducer sheath, it happens because of the

reflux of thermal indicator within the introducer and failed to properly mix with venous

blood flow [167–169]. To avoid this problem and to allow a useable length of catheter,

the sheath should be withdrawn [169,170]. When non-dependent lung contains the PA

catheter’s thermistor during thoracotomy then less may be warmed the injectate on

the side of the thoracotomy [171] and in pulmonary circulation around vessels in the

non-dependent zone occurs a different rate of thermal dissipation [172].

3.4.2.8 lntra and Extra-Cardiac Shunts

Recirculation occurs early in a patient with left-to-right intracardiac shunt and this

recirculation can be seen on the downslope of the thermodilution curve which inter-

rupted. By obtaining the ratio of the area under the entire thermodilution curve to the

area under the first portion of the curve, we can calculate the shunt ratio [173, 174].

The values found with the Fick technique(r = 0.89), correlate with the values found by

this method [173]. In infants and children with atrial septal defects and with transpo-

sition of the great arteries, the output of the left and right ventricles can be measured

by the process of thermodilution [175]. The ratio of the calculations of pulmonary sys-

tematic flow made by this method correlates with the values found by Fick method (r

= 0.91). So the magnitude of left to right intracardiac shunts can be accurately deter-

mined by thermodilution conditioned that the indicator mixes well in the main stream

of blood [176–178]. Measuring CO with this method suggests the presence of left to

right shunting, which shows falsely high values of CO in patients with congestive heart

failure [179]. But if there is an additional shunt at the ductus level or in the presence

of a right to left shunt then this method cannot be used [174]. Unless the thermodi-

lution curve appears, the existence of a left-to-right shunt may be missed [163]. The

computed CO can be similar to systematic blood flow when due to high shunt flow
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recirculation may not be seen on the thermodilution curve [180]. When there exists

a right to left shunt, thermistor is bypassed by indicator to reach the left side of the

heart and it results in overly estimated cardiac output [181].

3.4.2.9 Valvular Heart Diseases

There is a report that shows the pulmonary valve insufficiency due to the surgical

valvectomy but in dogs the measurement of CO was not affected by it, however, there

occured a change in the magnitude of peak temperature and a decrease also happened

in the downslope of the thermodilution curve due to mixing of indicator with a larger

volume of blood and the transit time of indicator had prolonged [182]. However, the

association of pulmonary regurgiration with a low CO makes impossible the determi-

nation of the area under the thermodilution curve [182]. The determination of cardiac

output by thermodilution was reported as an impossibility or an unreliable action in

patients with tricuspid regurgitation [183–185]. A recent animal investigation [186]

reveals that there is a correlation in the values of CO estimated by thermodilution

and the blood flow measured in dogs with tricuspid regugiration by an electromagnetic

flowmeter and it suggests that thermodilution is more accurate method for determining

CO, especially in low CO states. However, in the presence of tricuspid regurgitation,

Fick method for determining CO appears to be superior to the thermodilution tech-

nique [183–185]. The indicator dilution technique may be rendered inaccurate due to

aortic or mitral regurgitation [187–190]. Sampling dye in the right heart can alleviate

the distortion of the dye dilution curves in people suffering severe aortic or mitral re-

gurgitation [188–190]. However, no disparity could be found by a recent investigation

between the measurements calculated by Fick method and thermodilution and inves-

tigation suggested that in patients with aortic or mitral regurgitation, thermodilution

should be preferred to dye dilution [187].

3.4.2.10 Paediatric Patients

Values of CO excellently correlates when it is found by thermodilution using iced

injectate of 1 ml to 3 ml with values determined by using Fick technique in new born

and children [181,191–194]. Before injection, the withdrawl of blood into the injection

lumen of the catheter may lead to overestimated value of CO because the small volumes

of cold injectate gains heat while passing through the catheter [195]. Pre-aspiration

of blood should be avoided if accurate measurement has to be found in infants and
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children [195] and the liquid filled in the catheter lumen should be at the injectate’s

temperature [195]. Also, a factor [195–197] should be used which rectifies the loss of

thermal indicator when injectate is passing through the intravascular portion of the

injectate catheter.

3.4.2.11 Electrocautery

The electrical noise created by electrocautery affects the pulmonary artery baseline

temperature, so values should not be determined while electrocautery is applied [163].

3.4.2.12 Pressure Measurement Errors in Vessels

The measurement accuracy of blood pressure in the cardiovascular system is impor-

tant because it provides sufficient information to identify the severity of many heart

diseases [198]. In spite of so many advancements in non-invasive techniques, catheteri-

zation is the most common method to measure the pressure in the blood vessels [198].

However, the accurate measurement of cardiac output by the catheter can be affected

by technical factors like pressure wave reflection at the tip and wave distortion in fluid-

filled catheter [198, 199]. Distortion effect is due to the columns of fluid that fills the

catheter, which is required to pass on the pressure to the external transducer [200,201].

This design can cause the inertial artifacts due to which the shape of the waveforms

is changed as it goes downstream inside the catheter. The dynamic response of the

cathetertransducer system is becoming a matter of great concern because it is required

to reproduce the realistic pressure waveforms [202]. The catheter usually serves as a

low-pass filter to reduce all frequencies above normal frequencies and also the system

starts giving errors when the signal frequency becomes equal to natural frequency.

Therefore, the catheter must have an accurate amalgamation of diameter, length and

the compliance of the material to increase the accuracy in the signal upto maximum

level. The properties and dimensions of catheters must be carefully selected to supply

the highest possible natural frequency which results in maximizing the flat frequency re-

sponse essential to give an accurate measurement [203–205]. Generally, stiffer catheters

add to the accuracy of the measurements. However, for better navigation in complex

structures, more compliant materials are required. Air bubbles can be present if the

catheter is too long or the diameter of the catheter is very small which also weakens

the dynamic response [202]. The signal distortion which is derived from the pulse wave

velocity (PWV) and the ratio of the stroke volume to the pulse pressure has significant
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potential to compromise important clinical markers [206]. Abnormal pulse pressure,

waveform shape, and pulse wave velocity are the factors that can contribute to increase

cardiovascular risk [207]. A high value of the radius ratio between the catheter and the

vessels (a comparatively large catheter size as compared to the vessel) is also consider-

able source of measurement error which can create partial hindrance of the lumen. As a

result of this obstruction, pressure in comparatively smaller vessels including coronary

arteries, peripheral circulation, and pediatric cases is overestimated [208, 209]. It is

shown in the analytical flow models of a straight catheterized tube that, for the radius

ratios from 0.3 to 0.7, the flow resistance increases by a factor of 3 to 33 due to the

partial blockage [210]. This also effects the disease evaluation relying on the catheter

data. Pressure measurements play an important role for risk stratifications in pul-

monary hypertension patients who need the heart transplantation in which pulmonary

vascular resistance, pulmonary artery systolic pressure, and transpulmonary pressure

gradient are major factors for preoperative evaluation [211, 212]. The measurement

errors of these parameters not only affect the cost but also the treatment options.

3.4.3 Technical Considerations

3.4.3.1 Patient Position

In the supine position, cardiac arrest is 30% more as compared to in the semierect

setting. Hence, the consecutive cardiac results should be registered with the patient

in a static position or the position of the patient should be recorded with each cardiac

results [213].

3.4.3.2 Indicator Solution

5% dextorse in water or normal saline (0.9% sodium chloride) injection gives the most

relevant assessments. Various others solutions give variable outputs (due to their dif-

ferent specific heats) and are not endorsed [213].

3.4.3.3 Volume and Temperature of the Injectate

The solution can be injected at room temperature or cooled in ice before administering

in 5 ml or 10 ml volume. Generally, low temperature and high volume solutions injected

bring about highest signal to noise ratios and therefore the most precise calculations.

On the other hand, injectates administered at room temperature produce more reliable
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outputs in most critically ill patients. Indicator fluid at room temperature produces

reliable outcome when administered in large volume (10 ml) whereas iced injectates

when injected in small volume give better results. Small volume of injectates at room

temperature are not recommended due to inaccurate outcomes [213].

3.4.3.4 Injection Timing

Randomly obtained thermodilution outcomes in different respiratory cycles can differ,

but timing the bolus injections with the respiratory cycle can enhance the reproducibil-

ity of the values of cardiac output obtained by the thermodilution technique [214].

Patients suffering with rapid breathing can have longer injection times than the respi-

ratory cycles. Therefore, the indicator solution should be injected with each respiratory

cycle for better results [213].

3.4.3.5 Alternative Injection Ports

The injectate can be expired through an alternative infusion port on the catheter If

the proximal (right atrial) port of the PA catheter is blocked [213].

3.4.4 Recommendations

1. The volume and the temperature of the injectate is selected according to the age

and pathological condition of the patients. In adults, the use of 10 ml injectate

at room temperature is preferred to 10 ml iced injectate [125, 126] under most

circumstances and for maintenance of temperature [129,131]. 5 ml injectate can

be used in patients suffering with pulmonary oedema secondary to congestive

heart failure or renal failure to prevent the volume overload [125, 126]. Fur-

thermore, approximately 0.15 ml kg−1 injectate is recommended for infants and

children [181,191,192].

2. A single standardized syringe which is designed to supply known and constant

volume of injectate should be used instead of disposable plastic syringes [215].

3. The uniform cooling of the injectate must be maintained for an accurate estimate

of cardiac output [216].

4. The temperature of the injectate should be observed at the point of entry into

the circulation [135,217].
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5. Room temperature injectate is preffered to iced injectate because it does not need

cooling of syringe before use and negative heat loss can be minimised during the

passage through the catheter.

6. Two to four calculations may be made at equal interval of ventilation cycle i.e.

at end-inspiration [218], mid-inspiration [219, 220] or end-expiration [220, 221]

during the intermitted positive pressure ventilation [157,218–223] as the injections

timing increases the reproducibility of cardiac output values with the respiratory

cycle [133,150,157,218–221,223].
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Statistical Analysis of

Thermodilution

4.1 Data Collection

We analysed ethically-approved clinical data of coronary thermodilution of 12 patients

(Berry,C.(2016).RadiView data[DAT file extension]) from Prof. Colin Berry (Univer-

sity of Glasgow). DAT files contain generic data which stores the information specific

to the referred application and require a specific program to open. There is no specific

program through which all the DAT files can be opened. For viewing the DAT file,

it is required to find out which program created the file [224]. All patients presented

with stable angina were subsequently referred for invasive coronary angiography. Any

patient with an epicardial stenosis of 40% to 90% underwent pressure wire and ther-

modilution measurement as per the study protocol. Furthermore, there is a mixture

of patients with evidence of obstructive epicardial coronary disease (FFR < 0.80), evi-

dence of increased microvascular resistance (IMR > 25), evidence of reduced vasodila-

tory capacity (CFR < 2.5), and those with normal coronary physiology parameters.

4.2 Data Analysis

The data sets of 12 patients having DAT file extension were converted in spread sheets

through Radiview software (see section A) so that we can better understand the read

out data and can analyse it in the best possible way.
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4.2.1 Thermodilution Records

The spreadsheet file for a thermodilution recording contains first 12 columns of sensor

and cable temperature, one pair for each of three injections at room temperature saline

respectively as shown in Figure 4.1. For a full Coronary Flow Reserve (CFR), there are

3 injections in baseline and 3 injections in hyperaemia, i.e. 6 injections which result in 6

pairs of sensor and cable temperature thermodilution data respectively. The following

5 columns contain pressure data, including aortic pressure (pa), pa average, resting

distal coronary pressure (pd), pd average and resting distal coronary pressure to aortic

pressure ratio ( pd
pa

) as shown in Figure 4.1.

Figure 4.1: Spread sheet of thermodilution data having 12 columns of sensor and cable
temperature followed by 5 columns of pressure

Figure 4.2 shows the display of thermodilution curve on Radiview software window.
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Figure 4.2: Radiview software window displaying the thermodilution data

Cable temperature refers to the temperature in the wire shaft used to detect the

temperature when an injection occurs and trigger recording and mean transit time

(Tmn) calculation whereas Sensor temperature is the temperature from the distal sensor

itself, this is the classical thermo-dilution tracing recorded at the wire tip and is seen

as a light blue tracing on the Xpress system. Tmn is calculated as the time between the

trigger point in the cable temperature and the mid-point of the temperature decline in

the sensor temperature as shown in Figure 4.3.

Figure 4.3: Calculation of mean transit time (Tmn) from thermodilution curve (sensor)
and injection signal (shaft). Inj indicates injection of saline; t=0 is defined halfway
injection [105].
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4.3 MATLAB Programming

A program in Matlab software was designed to analyse the spreadsheet data of ther-

modlilution curves and to identify its key features. The program was written in such

a way which not only read the spreadsheet data of one patient but also counted the

number of rows after culminating the program if the consecutive number of zeros in

a column exceeds from 20 by using ‘Load’ command and conditional statement re-

spectively (Appendix B). Furthermore, we also plotted sensor and cable temperature

(0C) against time (ms) by using ‘plot’ command. The first plot of sensor and cable

temperature of first patient is shown in Figure 4.4 and Figure 4.5.

Figure 4.4: Sensor temperature-1 of patient-1

Figure 4.5: Cable temperature-1 of patient-1
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After checking the functionality of the program for one patient, we then modified

it in such a way that it can load the data of 12 patients at a time and can display their

results to see the difference between the curves of each patient for further analysis.

The next aim after plotting the results was to fit the best suitable curve on the actual

sensor and cable temperature data of twelve patients to find the peak value of the curve.

So, in order to find the best fit curve for a series of data we used the Least Squared

curve fitting approach which will help us analyse the actual mathematical function,

after which we can find the peak and other significant values of the curve easily. So,

with the help of the Matlab curve fitting tool, we found that the Gaussian function of

degree 8 (see Figure 4.9) is the most suitable fit function on all the sensor and cable

temperature thermodilution data. The procedure for curve fitting is as follows.

1. Load the data through Matlab program on which you want to fit the curve.

2. After loading, go to the ‘Curve Fitting’ tool of Matlab Apps Menu. When you

will double click on the curve fitting tool, a window appears as shown in Figure

4.6.

Figure 4.6: Curve fitting procedure-1

3. Choose the value of X data and Y data (see Figure 4.6).

4. When you choose the values, Matlab program will show the plotted result on the

same screen as shown in Figure 4.7.
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Figure 4.7: Curve fitting procedure-2

5. Choose the best suitable function and degree that fits on the curve as in my case

Gaussian function of degree 8 is the best fit function as shown in Figure 4.8.

Figure 4.8: Curve fitting procedure-3
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6. After fitting the function one can see the mathematical form of the fitted function

along with the values of the constants appears on left side of the same screen as

shown in Figure 4.9.

Figure 4.9: Curve fitting procedure-4 guess the definition of the Gaussian curve of
degree 8

The general Gausian model fits the peak is defined as

y =
n∑
i=1

aie
[−(

x−bi
ci

)2]
, (4.1)

where ai is the amplitude of each peak, bi is the centroid, ci is related to the peak

width and n is the number of peaks where 1 ≤ n ≤ 8 [225].

The values of ai, bi and ci are calculated such that the error for the data points are
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minimum which can be achieved by using non-linear Least Squares procedures with tol-

erance function 10−6. The interval shows lower and upper bound of fitting co-efficients

with the confidence interval of 95% [225].

Sum Squared Error =
n∑
i=1

(yi − y)2 , (4.2)

where yi are the data points and y are the values of the function at that point. If the

value of SSE is close to 0, it indicates that the model has smaller random error compo-

nent and the fit is useful. In Figure 4.9, SSR is 1.25 shows the usefulness of the fit [226].

R2 can be defined as the square of the correlation between the response values and

the predicted response values.

R2 =
n∑
i=1

(ŷi − ȳ)2 . (4.3)

A value of R2 close to 1 shows that a greater proportion of variance is accounted for

by the model. In our case of Gausian 8 fit, the value of R2 is 0.9938 means that the

curve fit explains 82.34% of the total variation in the data about the mean [226].

The adjusted R2 is useful when a series of models have to compare that are nested

and its value closer to 1 indicates the best fit and the root mean squared error R̄

estimates the standard deviation of random component in the data and is known as

standard fit error.

R̄ =
√

R̄2 , (4.4)

which is the mean square error which is also known as the residual mean square. A

value of
√

R̄2 closest to 0 indicates the best fit as shown in Figure 4.9 [226].

Overfitting of a curve fitting technique occurs when a statistical model describes ran-

dom error or noise instead of the underlying relationship. Overfitting generally occurs

when a model is excessively complex, such as having too many parameters relative to

the number of observations. It is a modeling error which occurs when a function is too

closely fit to a limited set of data points [227,228].

Cross-validation is a technique, among many others, to evaluate predictive models
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for overfitting. It is carried out by partitioning the original sample into a training set

to train the model, and a test set to evaluate it. In k-fold cross-validation, the original

sample is randomly partitioned into k equal-sized subsamples [227,228].

Another facet of overfitting is the biasvariance tradeoff. It is the problem of simul-

taneously minimizing two sources of error that prevent supervised learning algorithms

from generalizing beyond their training set. The bias is error from erroneous assump-

tions in the learning algorithm [227,228].

We then generated the Matlab program code of the fitted curve through ‘Generate Code’

command in the file menu of the same curve fitted screen, to include that code in the

same program instead of doing all the procedure again and again (Appendix B).

The main purpose of the curve fitting was to find the peak, prominence, width (half

prominence) and the time at which the peak occurs in the sensor and cable tempera-

ture of the thermodilution data. Therefore, in order to find these values of the fitted

function, we then added Malab function ‘findpeaks’. Furthermore, we also included the

‘xlswrite’ command in the program to save data directly in the form of spread sheets

for further analysis. Additionally, we also made a separate function for subplot to get

rid of 12 separate plots which are used to be displayed on twelve different screens. We

used ‘subplot’ Matlab function to display 6 plots (before hyperaemia) on one screen

and remaning 6 plots (after hyperaemia) on another screen for better visualisation of

results. The first two results of each before and after hyperaemia of the 1st patient are

shown in Figures 4.10 and 4.11 respectivily.

Figure 4.10: Subplot of patient-1 before hyperaemia
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Figure 4.11: Subplot of patient-1 after hyperaemia showing the sudden increase in the
peak value of sensor temperature whereas the cable temperature remains the same.

Cable temperature curve remains the same because it detects the temperature

within the catheter but we can clearly observe that arrival of the peak of sensor data

in hyperaemic condition which is due to increase in flow rates as shown in Figure 4.10

and Figure 4.11.

4.4 Thermodilution Curve Analysis

The next step after finding the values of peaks, prominence, width (half prominence)

and the time of the peak occurrence of the sensor and cable temperature data curves

of the thermodilution recordings of the twelve patients, was to analyse the spread

sheet data during basal and hyperaemic conditions separately. In order to find the

correlation between the data before and after hyperaemia, we calculated the mean and

the percentage difference of sensor and cable temperature of patient-1 separately and

plotted the results as given in Figure 4.12. Spreadsheet given in Table 4.1 shows the

first three readings of sensor and cable temperature during basal conditions and the

remaining three during hyperaemia.
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Table 4.1: Spreadsheet of mean and percentage difference of Patient-1 data

Figure 4.12: Plotted results of mean peak, prominence, width and time before and
after hyperaemia showing the relationship between them.

Furthermore, in order to find significant differences between the peak values, as well

as the width values before and after hyperaemia, the best suitable statistical approach

“Paired T-Test” was used. For this purpose, we calculated the mean values of peak

and width of twelve patients' sensor data before and after the hyperaemia, as shown

in Table 4.2.
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Table 4.2: Spreadsheet of mean values of peak and width of 12 patients

The collected data was tested statistically under paired t-test with the following

hypotheses;

Null Hypothesis: There is no significant difference between the peaks of two samples

µ1 − µ2 = 0 .

Alternate Hypothesis: There is significant difference between the peaks of two samples

µ1 − µ2 6= 0 .

Using the sample size n = 12 patients, the following results were obtained:

Table 4.3: Spreadsheet of mean difference values of peak and width of 12 patients
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We then calculated the mean and standard deviation of the differences of peak and

width values using SPSS Statistics Data Editor as shown in Figure 4.13

Figure 4.13: Paired T-Test results of the mean peak and width values of 12 patients

The data has been tested at the 0.05 significance level. The p-value of the paired

t-test is less than the 0.05; it leads to rejection of null hypothesis. Consequently, it is

concluded that there is a significant difference between the peak values as well as the

width values of 12 patients before and after the hyperaemia. On the other hand, the

Pearson Correlation (0.88) shows that the peaks have strong relationship as compared

to the widths whose Pearson Correlation is 0.72 as shown in Figure 4.13.

To find the change in the complete thermodilution waveforms, we calculated the mean

hyperaemic over mean control ratios of the peaks, width and the time at which the

peak occurs of sensor temperature data with the help of Matlab program. The program

was designed to separate even and odd columns data where even columns represent the

cable temperature and odd ones represent the sensor temperature. After making them

separate, we then calculated the mean values of the first and last three odd and even

columns respectively by using ‘mean’ command because first and last three columns

of each even and odd columns represent the values taken before and after hyperaemia.

The purpose was to find the mean hyperaemic to control or basal ratio. For this pur-
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pose, we used the Matlab command ‘Ratio’ for finding the required ratios and saved

the required data in the form of two spread sheets; one for sensor and the other one

for cable temperature (Appendix B.3). Table 4.4 shows the mean hyperaemic to basal

ratios of peak, width, time and prominence of the sensor temperature data of twelve

patients.

Table 4.4: Mean hyperaemic to basal ratios of peak, width, time and prominence of
the sensor temperature data of 12 patients

Figure 4.14: Plotted results of mean hyperaemic to basal ratios of peak, width and
time of 12 patients data
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From Figure 4.14 one can easily observe that there is a significant difference in peak

values with respect to width ratios. We then rearranged the data into descending order

with respect to peak values as shown in Figure 4.15, from which we can visualize that

in almost half of the data the peak value is more than the double value of the width.

On the basis of this analysis, we split the data mutually into two groups with peak

values > or < 1.5.

Figure 4.15: Results plotted in descending order of mean hyperaemic to basal ratios of
peak, width and time

The next we found the correlation (strength of relationship) between the peak and

width so that we can better understand if there is some relation which might be useful

for the clinical purpose. The formulae for finding the correlation coefficient (r) are

shown in equation (4.5).

r =

∑
(x− x̄)(y − ȳ)√

[
∑

(x− x̄)2][
∑

(y − ȳ)2]
=

n
∑

(xy)−
∑
x
∑
y√

[n
∑

(x2)−
∑

(x)2][n
∑

(y2)−
∑

(y)2]
(4.5)

where

r= sample correlation coefficient

n = number of patients

x = peak value
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y = width value

We calculated the correlation coefficient between peak value and the width value using

equation (4.5).

Table 4.5: Spreadsheet showing the calculations for finding the correlation coefficient

r = −0.533894

r2 = 0.2850

If the value of r is +1 or -1, it means both variables have a perfect positive or negative

relationship. For instance, if one variable increases or decreases, the other variable will

also increase or decrease and vice versa. The closer the value of r to +1 or -1, the

stronger the relationship between two variables and the value of r equal to 0 shows

that there is no relationship. The value of r in our case is -0.53 which signifies a weak

relationship between peak and width values and can also be visualised in the scattered

plot (Figure 4.16).
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Figure 4.16: Scatter plot between peak and width values of 12 patients

Another simple method is to find the correlation with the help of Microsoft spread-

sheet directly without any mathematical calculations.

1. Open the Microsoft spreadsheet and go to the data menu.

2. Click on the data analysis short cut and select the correlation.

3. Select the pair of data to find the correlation between them.

The result is shown in Figure 4.17.

Figure 4.17: Spreadsheet showing the value of correlation coefficient

It was observed from the above calculations that there was a weak relationship be-

tween peak and width values of the sensor temperature thermodilution data. However,
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visual inspection of Figure 4.16 shows that we can qualitatively assign the data into

two cluster groups as shown in Figure 4.18, which is useful for further analysis.

Figure 4.18: Cluster data plot between peak and width ratios of sensor temperature

After observing the scatted plot between peak and width values, next step was to

compare the peak values with CFR, FFR, IMR. For this purpose we noted the values

of CFR, FFR, and IMR from Radiview software screen for each patient and made a

separate spreadsheet for these values. We then put the values of mean hyperaemic to

basal ratio of peak in the next column to IMR for further analysis of data as shown in

Table 4.6.

Table 4.6: Comparison table of CFR, FFR and IMR with peak, width and time ratios
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The plotted results of CFR, FFR and IMR against peak values are shown in Figures

4.19, 4.20 and 4.21 respectivily.

Figure 4.19: CFR Vs Peak

Figure 4.20: FFR Vs Peak
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Figure 4.21: IMR Vs Peak

We then plotted the scatter graph to see the correlation between peak ratios and

CFR, FFR and IMR and also calculated the value of correlation coefficient between

them to check the relationship.

Figure 4.22: Scatter plot between CFR and peak values showing that there are two
groups of cluster data with peak values > 1.5 and < 1.5
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Figure 4.23: Scatter plot between FFR and peak values showing that there are two
groups of cluster data with peak values > 1.5 and < 1.5

Figure 4.24: Scatter plot between IMR and peak values showing that there are two
groups of cluster data with peak values > 1.5 and < 1.5

The value of correlation coefficient shows the week relationships between the peak

values and CFR, FFR and IMR. However if we look at the scatter plots we can divide

the data into two groups with peak values > 1.5 and < 1.5 as shown in Figures 4.22,

4.23 and 4.24. As coronary artery flow is pulsatile i.e. reduced in systole and increased

79



Chapter 4. Statistical Analysis of Thermodilution

during diastole, we did not see any evidence of pulsatility in the thermodilution data.

4.5 Analysis of Data from CE-MARC2 Study

Following the analysis of the initial data sets of 12 patients, the study was extended

to all of the large CE-MARC2 data set which has 66 patients including the unfixed 12

(Appendix B.1). CE-MARC2 study pressure wire data set is from a group of patients

with stable anginal symptoms who attended for invasive coronary angiography. Ther-

modilution was performed in an epicardial artery > 2.5 mm diameter with a stenosis

of 40% to 90%.

The data includes an excel spreadsheet in which next to each patient's study num-

ber was the coronary vessel from which the measurement was obtained (LAD = left

anterior descending artery, Cx = circumflex artery, RCA = right coronary artery), the

data obtained from the Radiview pressure wire recordings (eg. FFR, IMR, CFR). Addi-

tionally, some patients had thermodilution recordings repeated after coronary stenting

(percutaneous coronary intervention, PCI) and these recordings were also noted in the

spreadsheet.

Figure 4.25: Coronary Arteries [48]

We converted thermodilution data of 66 patients into spreadsheets with the help
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of Radiview software and loaded that data into Matlab program for further analysis.

With the help of same, we calculated the values of peaks, width and the time at which

the peaks occurs and the data was saved into separate spreadsheets (Appendix B).

We then separated the data of patients according to different coronary arteries (LAD,

RCA and CX) in which thermodilution was performed and plotted the results.

Figure 4.26: Comparison betweeen mean hyperaemic to basal ratio of peak, width and
time in Right Coronary Artery

Figure 4.27: Comparison betweeen mean hyperaemic to basal ratio of peak, width and
time in Circumflex Artery
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Figure 4.28: Comparison betweeen mean hyperaemic to basal ratio of peak, width and
time in Left Anterior Decending Artery
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Furthermore, some patients had thermodilution recordings repeated after coronary

stenting (percutaneous coronary intervention, PCI). The plotted result is shown in

Figure 4.29.

Figure 4.29: Comparison betweeen mean hyperaemic to basal ratio of peak, width and
time in coronary arteries after PCI

After a careful observation of the shapes of the thermodilution data of 66 patients,

we divided the sensor temperature data into different categories and plotted the results

so that we can better analyse the data and can deduce some useful results.

Figure 4.30: Sensor temperature data of the patients having double peak curves
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Figure 4.31: Sensor temperature data of the patients having normal thermodilution
curves

84



Chapter 4. Statistical Analysis of Thermodilution

Figure 4.32: Sensor temperature data of the patients having high oscillation in the
curves

Figure 4.33: Sensor temperature data of the patients having abnormal curves that may
be due to the catheter misalignment

We then calculated the correlation coefficient for the sensor temperature data of

patients having normal curves without any double peak or oscillation and plotted the

scatter plot to see the correlation between the peak and width hyperaemic to basal
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ratios as shown in Figure 4.34.

Figure 4.34: Scatter plot showing a weak relationship between the hyperaemic to basal
ratios of peak and width of sensor temperature data of patients having normal curves

We also plotted the scatter plot between the peak ratios and CFR, FFR and IMR

of the normal patients data but no significant correlation was found. The scatter plots

are given below:-

Figure 4.35: Scatter plot showing a weak relationship between between peak ratios and
CFR values of sensor temperature data of patients having normal curves
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Figure 4.36: Scatter plot showing a weak relationship between peak ratios and FFR
values of sensor temperature data of patients having normal curves

Figure 4.37: Scatter plot showing a weak relationship between peak ratios and IMR
values of sensor temperature data of patients having normal curves

The analysis on the full data sets shows no significant correlation between peak and

width ratios, peak and CFR, peak and FFR and peak and IMR values. The analysis

of 66 patients'data shows no significant correlation between peakn and width ratios,

peak and CFR, peak and FFR and peak and IMR values. The preliminary study
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indicates that the patients are divided into two groups. However, if we analyse the

whole data set, it does not divide the patients' data into two groups. This highlights

the importance of testing the statistical hypothesis on larger data sets.

4.6 Curve Categories

Motivated by the suggestions from our clinical colleagues that particular features of

some typical thermodilution curves are of clinical significance, we attempted to iden-

tify and analyse these features. After visualizing the data curves, we divided these into

different categories:-

4.6.1 Normal Curve

We observed in most of the data sets that the curve has a smooth upstoke towards

peak and a gradual downslope towards base line. There is no clear gap indicating

compromise of the microcirculation but the relative height of the temperature peaks

seems to be the strongest signal and one can set threshold values. Some typical results

are shown in Figures 4.38, 4.39 and 4.40.

Figure 4.38: Sensor temperature data of patient-4 showing the increase in peak value
during hyperaemic condition due to the increase in blood flow rate.
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Figure 4.39: Sensor temperature data of patient-82 shows that there is not too much
increase in peak value during hyperaemic condition

Figure 4.40: Sensor temperature data of patient-31 shows that the early arrival of the
peak during hyperaemic condition due to the increase in blood flow rate.

4.6.2 Double Peak

We have observed a few with a double peak but these are not usually reproduced in

all three tests in a set, so they do not seem to be significant as shown in Figures 4.41,

4.42 and 4.43.
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Figure 4.41: Sensor temperature data of patient-88 showing small double peak near
the shoulder during basal condition but there is no double peak during hyperaemia.

Figure 4.42: Sensor temperature data of patient-47 showing double peak during basal
condition.
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Figure 4.43: Sensor temperature data of patient-64 shows the double peak at the end
of curve during hyperaemic condition.

4.6.3 Misalignment of Guide Catheter

We have observed high frequency oscillations in about 15 of the data sets. These

look to be a fluid mechanical origin due to a misaligned outlet. Professor Colin Berry

advised that it is a plausible sporadic set-up problem at the time of the thermodilution

protocol with misalignment of guide catheter non-coaxial with the long axis of the

coronary artery.

Figure 4.44: Sensor temperature data of patient-32 showing high oscillations due to
the misalignment of the guide catheter.
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Figure 4.45: Sensor temperature data of patient-41 showing high oscillations at the
down stream curve due to the misalignment of the guide catheter.

Figure 4.46: Sensor temperature data of patient-19 showing high oscillations at the
start and the end of the curve due to the misalignment of the guide catheter.
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Figure 4.47: Sensor temperature data of patient-78 showing double peak and oscilla-
tions due to the wrong positioning of the guide catheter.

4.6.4 Curves with High/Low Starting/Final Temperature

Finally, we have also observed a few with high or low starting or final temperatures and

discussed with Professor Colin Berry. He suggested that inadvertent spilling of a small

amount of room temperature saline could explain a negative start point or spilling to

cool then mixing of warm blood may explain a positive start point (reset of baseline

with saline). Furthermore, he also explained that the artery is actually warmer at the

location of the sensor.

Figure 4.48: Sensor temperature data of patient-62 showing curves with high and low
starting temperature
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Figure 4.49: Sensor temperature data of patient-103 showing curves with high and low
starting temperature

4.7 Conclusion

1. The data sets show no significant correlation between peak and width, CFR, FFR

and IMR values.

2. Almost 70% of data sets have normal thermodilution profiles but a number have

different features.

3. Double peaks are not reproduced in all of 3 readings, taken before hyperaemia

or the 3 taken during hyperaemia, which might be caused by an error in the

measurement technique.

4. High frequency variations in the thermodilution plot seem likely to have a fluid

mechanical origin associated with e.g. vortex shedding or are associated with

collapse of a vessel due to Bernoulli effects. This may occur when the catheter is

positioned very close to a vessel wall.

To understand the possible causes for results with double peaks, we proceeded to a

CFD study the clinical measurement which is reported in Chapter 5.
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Chapter 5

Simulation of Coronary Artery

Thermodilution

5.1 Introduction

Pressure and flow behaviour taking place in the coronary arteries has generally been

under the discussion and being researched frequently as well. Generally, in order to

determine the flow, a model based on coronary arteries is built through which the fluid

is made to pass resembling with the flow during normal conditions. Calculations on the

basis of empirical data are made for estimating the features of flow. If such experiment

is carried out appropriately, it can produce accurate results. At the same time, due

to the complexity of mentioned experiment, there are number of things that could go

wrong and hence can affect the overall accuracy of results [229].

5.2 Governing Equations

Computational Fluid Dynamics (CFD) programs solve the fundamental equations of

the fluid dynamics (continuity, momentum and energy equations). Blood flow through

the coronary arteries is 3-dimensional. The unsteady incompressible Navier-Stokes

equation holds for any 3-dimensional Newtonian fluid and the blood flowing the coro-

nary arteries is thought to be well-approximated as a Newtonian fluid provided that

the shear rate exceeds 100 s−1 [230].

The equation for the conservation of mass is

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (5.1)
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where u, v and w represent the component of velocity along x-, y- and z-axes.

Further, the equations representing the conservation of momentum along x-, y- and

z-axes respectively are:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂2x
+
∂2u

∂2y
+
∂2u

∂2z

)
+ Fx (5.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂2x
+
∂2v

∂2y
+
∂2v

∂2z

)
+ Fy (5.3)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ ν

(
∂2w

∂2x
+
∂2w

∂2y
+
∂2w

∂2z

)
+ Fz (5.4)

In the above equations t represents time, p the pressure, ν kinematic viscosity and

F = (Fx, Fy, Fz)
T the external body force. Since in our case there is no external force,

therefore it will be zero.

With u = (u, v, w)T , these equations can also be written as

∇ · u = 0 (5.5)

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u (5.6)

The energy equation for the heat transfer is given below

ρCp
∂T

∂t
+ (u · ∇)T = ∇ · (K∇T ) (5.7)

where Cp is the specific heat of blood and T is the temperature in Kelvin and k is the

thermal conductivity [231].

In order to non-dimensionalise Navier-Stokes equation (5.6), suppose l is the length

of the artery (i.e. its diameter) and U is the velocity of the blood flow. As velocity

has the dimension of length per time thus, l
U

has the dimension of time. Hence we can

rescale x, u and t to obtain the dimensionless quantities [232–235].

x̃ =
x

l

t̃ =
tU

l
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ũ(x̃, t̃) =
1

U
u(x(x̃), t(t̃)) =

1

U
u

(
lx̃,

l

U
t̃

)
From the above relation we can also rewrite

x = lx̃

t =
l

U
t̃

By taking the partial derivatives of ũ with respect to t̃, x̃, ỹ and z̃, we get

∂ũ

∂t̃
=

1

U

∂u

∂t

∂t

∂t̃
=

l

U2

∂u

∂t

∂ũ

∂x̃
=

1

U

∂u

∂x

∂x

∂x̃
=

l

U

∂u

∂x

∂ũ

∂ỹ
=

1

U

∂u

∂y

∂y

∂ỹ
=

l

U

∂u

∂y

∂ũ

∂z̃
=

1

U

∂u

∂z

∂z

∂z̃
=

l

U

∂u

∂z

From the above equation, we conclude that

∂ũ

∂t̃
=

l

U2

∂u

∂t

5x̃ũ =
l

U
5x u

52
x̃ũ =

l2

U
52
x u

(ũ.5x̃)ũ =
l

U2
(u.5x)u

We know that 5p has the same dimension as acceleration (i.e. l
t2

), therefore, the dimen-

sion of pressure is l2

t2
(i.e.U2). Equation (5.8) represents the non-dimensional pressure.

p̃(x̃, t̃) =
1

U2
p(x(x̃), t(t̃)) (5.8)

The pressure term in the dimensionless variable with the help of chain rule is

5x̃p̃ =
l

U2
5x p

Replacing all the above values in (5.6), we will get the Navier-Stokes equation in terms
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of dimensionless quantities.

U2

l

∂ũ

∂t̃
+
U2

l
(ũ.5x̃)ũ = −U

2

l
5x̃ p̃+ ν

U

l2
52
x̃ ũ (5.9)

By dividing the equation (5.9) with U2

l
, we get

∂ũ

∂t̃
+ (ũ.5x̃)ũ = −5x̃ p̃+

ν

lU
52
x̃ ũ (5.10)

The dimensionless quantity

Re =
lU

ν
or Re =

lUρ

µ
(ν =

µ

ρ
) (5.11)

is called the Reynolds number of the flow. By replacing the value of Reynolds number

in (5.10), the dimensionless Navier-stokes equation becomes

∂ũ

∂t̃
+ (ũ.5x̃)ũ = −5x̃ p̃+

1

Re

52
x̃ ũ (5.12)

The term 1
Re
52
x̃ ũ is called the diffusion or dissipation term and the term (ũ.5x̃)ũ is

called the inertia or convection term. Thus Reynolds number gives us a measure of the

ratio between inertia term and the dissipation term. We have noticed by the definition

of Reynolds number that Re and ν have opposite tendencies [232–235].

1. Re � 1 corresponds to low viscosity flow. The fluid in this case is well approxi-

mated by an ideal fluid. Formally, for ν � 1 Navier-Stokes equation reduces to

the Euler equation and in this case the inertia term is dominant.

2. If Re � 1, then fluids are very viscous and the diffusion term is domination.

Blood flow is normally considered to be laminar in the body. However, in case of

high flow especially in the ascending aorta, the flow can be disturbed and therefore

becomes turbulent. For example, the blood flow in large arteries at branch point and in

diseased and narrowed arteries can also be turbulent as shown in Figure 5.1 [236,237].
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Figure 5.1: Laminar and Turbulent Flow. [236]

High velocity results the turbulence in the laminar flow of blood vessels. In fact,

turbulence occurs when Reynolds number is exceeded to certain limit (Re > 2000)

[236,237].

The critical Reynolds number is comparatively high in long, straight and smooth blood

vessels under ideal conditions whereas low in case of branch vessels or the vessels with

atherosclerotic plaques. The critical Reynolds number is lower which can result in

turbulence even at normal physiological flow velocities [236].

5.2.1 Boundary Conditions

There is no blood flow through the wall and the flow satisfies the no slip boundary

condition at the wall. Therefore at the wall:

u = 0 and v = 0 and w = 0

The boundary conditions at the inlets are:

u(x, y, x, t) = uin(t) =

uMain(t) = 0.1× sin(πt) and T = 300K if t ≥ 0

uCatheter(t) = 0.2× sin
(

π
2.0×(t−1.0)

)
and T = 295K if 1 ≤ t ≤ 3

The pressure is considered to be unidirectional and zero (constant) at the outlet. There-

fore

pout = 0 Pa, and T = 300 K and
∂u

∂n
= 0

where n = (nx, ny, nz) is the normal pointing outward at the boundary. At the inlet the

fluid will take time to be fully developed and flat profile will tend to become parabolic
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(i.e. Poiseuille) in downstream.

5.2.2 Poiseuille Flow

Jean Louis Marie Poiseuille, a French physicist and physiologist who worked in the

field of human blood flow and derived a law for the flow in the cylindrical pipes which

is considered to be very useful for all kinds of hydrodynamics. Because of him, it is

generally known as Poiseuille flow [238].

This is one of the special cases of the Navier-Stokes equation. Consider the flow

between the plates is unidirectional, steady and incompressible. Thus u = w = 0 and

∂u
∂t

= 0. The geometry is shown in Figure 5.2 below [239]:

Figure 5.2: Poiseuille flow between parallel plates [239]

The continuity equation in this case is

∂u

∂x
= 0 u = u(y) (5.13)

Thus the Navier-Stokes equation becomes

−∂p
∂x

+ µ
∂2u

∂y2
= 0

(
∂p

∂y
=
∂p

∂z
= 0

)
(5.14)

dp

dx
= µ

d2u

dy2

Also
dp

dx
= 0 ⇒ p = c1x+ c2 (5.15)
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The boundary conditions are [239]

x = 0, p = p1 ⇒ c2 = p1

x = L, p = p2 ⇒ c1 = −∆p
L

(5.16)

Therefore,

p = p1 −
∆px
L

(5.17)

µ
∂2u

∂y2
= c1 = −∆p

L

∂2u

∂y2
= −∆p

µL

∂u

∂y
= −

(
∆p

µL

)
y + c3

u = −
(

∆p

µL

)
y2 + c3y + c4 (5.18)

The no slip boundary conditions at top and bottom plates are [239]

Top plate y = d
2
, u = 0

Bottom plate y = −d
2
, u = 0

Replacing these values in the above equation, we get

0 = −
(

∆p

8µL

)
d2 + c3

d

2
+ c4 (5.19)

c4 =

(
∆p

8µL

)
d2 (as c3 = 0)

u =
∆p

2µL

[
d2

4
− y2

]
(5.20)

which is a parabolic profile [239].
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Figure 5.3: Laminar pipe flow - Numerical results [240]

Figure 5.3 shows the developing parabolic profile in which red colour shows the

highest velocity which is at the centre of the pipe whereas blue colour represents the

lowest velocity which is near the walls.

5.3 Simulation

The purpose of the study was to set out the physical conditions in an in silico exper-

iment that might simulate the patterns of the thermodilution curves of the coronary

arteries and to determine the validity by using CFD software Fluent to monitor or

analyse flow patterns in coronary arteries. The first step in conducting the experiment

was the creation of a physical model. After constructing the model, the next step was

to determine the type of fluid and boundary conditions for simulating the flow through

the model.
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5.3.1 Numerical Procedure

After making the geometry, the second task is the numerical solution procedure to

solve the mathematical model. The mathematical model as a boundary value problem

is solved through the finite volume method in Fluent software which has a control

volume analysis for each cell. It derives a set of algebraic equations and relating ve-

locity and pressure at neighbouring cell-centred values. These algebraic equations are

non-linear because these contain the terms like u2 arising from the non-linear terms in

the Navier Stokes equation. To solve the non-linear algebraic equations, these equa-

tions are linearised about the guess values and then solved iteratively. The commercial

software Fluent is based on the finite volume method which solves the equations auto-

matically and displays the results. Figure 5.4 shows the numerical procedure to solve

the mathematical model through finite volume method [240].

Figure 5.4: Numerical procedure to solve the mathematical model through finite volume
method [240].

5.3.2 ANSYS Fluent

ANSYS fluent is the most reliable and powerful computaional fluid dynamics software

which has the modelling capabilities and provides the accurate results of not only com-

putational fluid dynamics applications but also multiphysics applications [241].
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It contains the broad physical modeling capabilities needed to model flow, turbulence,

heat transfer, and reactions for industrial applications ranging from air flow over an

aircraft wing to combustion in a furnace, from bubble columns to oil platforms, from

blood flow to semiconductor manufacturing, and from clean room design to wastewater

treatment plants. Fluent covers a broad reach, including special models with capabil-

ities to model in-cylinder combustion, aero-acoustics, turbomachinery and multiphase

systems [241]. The above model can directly be solved in Fluent software as per the

procedure shown in Figure 5.5.

Figure 5.5: Procedure in Fluent software to solve the mathematical boundary value
problem [240].

5.3.3 2D Geometry

First of all, a simple 2D geometry was created with dimensions 50 mm×4 mm and then

a mesh was generated with 9800 nodes and 9552 quadrilateral elements (Appendix C.1).

The blood flow was taken to be unsteady, incompressible and laminar. The FLUENT

software package was used for this simulation. Standard no-slip boundary conditions

were set at the wall. A user defined function for unsteady velocity was used in the

main inlet (Section 5.2) and zero outlet pressure was prescribed. The blood density
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and viscosity were taken to be 1068 kg m−3 and 0.003 kg m−1s−1. The specific heat and

thermal conductivity were assumed to be the same as of water i.e. 4182 J kg−1K−1 and

0.6 W m−1K−1 as shown in Figure 5.6.

Figure 5.6: Computational geometry of 2D simple model without catheter.

The computational domain was solved using the solver settings for two-dimensional

inlets and an unsteady state condition. The numerical simulation of the Navier-Stokes

equations, which govern the fluid flow and heat transfer, make use of the finite volume

method. The code was solved for temperature, pressure and flow velocity at every cell.

Heat transfer was modelled through the energy equation. For this unsteady simulation,

the residual criterion for convergence was set to 10−3, except for the energy equation

for which the residual convergence criterion was set to 10−6. The calculations were run

for 6 cycles with time step size of 0.04.
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Figure 5.7: Scaled residuals for 2D unsteady flow

The simulation is deemed to have convergeal when the residuals decrease to 10−3

for continuity, u and v, and the energy residual is below 10−6. In Figure 5.7, the

residuals are plotted against the total iteration number, which is
∑

i ni, i is the time

step and ni is the iteration number for a time step. When continuity, u and v residuals

are below 10−3, and energy residual is less than 10−6, the simulation will step forward

with updated boundary conditions. The peaks above the convergence criteria are at

the beginning of a time step; with more iterations, the residuals decrease towards the

specified values.

5.3.3.1 Residuals

Error magnitudes for the equations during the process of iterations are knows as resid-

uals. The basic equations which are used during simulations include the momentum

equations for each direction, the continuity equation (conservation of mass) and the

energy equation, if the heat transfer is applicable. The equations of the turbulence

model can also be included. The difference between the previous results and current

result is also called the residual. If the equation's results are changing less and less

due to the low residuals, the solution is said to be converged and if the errors start to

increase, the solution is said to be diverged [242].
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We calculated the velocity and pressure profiles with respect to time at four differ-

ent locations with a difference of 10 mm distance at the centre of the 2D coronary

artery model for six seconds to check the prescribed flow and pressure. Simulations

were run in Fluent software and the data was plotted in Tecplot360 software which is

very efficient, easy to use and produces visual powerful output results to analyse data

more effectively. The profiles of velocity and pressure at 4 different locations are shown

in Figure 5.8 and Figure 5.9 respectivily. The profile of velocity and pressure does not

change as we go downstream.

Figure 5.8: Velocity profiles at 4 different locations in the absence of catheter. The
Poiseuille Flow is expected along the central axis of the channel for each heart beat.
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Figure 5.9: Pressure profiles at 4 different locations in the absence of catheter. The
pressure decreases as we go down stream along the central axis.

5.3.4 2D Geometry With Catheter

We then modified the 2D geometry and inserted the catheter at the centre of artery.

The blood is considered to be unsteady, incomressible and laminar. The diameter and

length of the catheter is taken as D = 0.002 m and L = 0.012 m respectivily. The

mesh was generated with 103602 number of cells, 208149 number of faces and 104546

number of nodes and applied the boundary conditions (Section 5.2).
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Figure 5.10: Diagram of the computational fluid domain of 2D channel with catheter
inside the artery on the central axis for each heart beat.

In this case, we set the temperature of the catheter to be 295 K (i.e. room tem-

perature) and 300 K in the main artery to see the temperature profiles between one

and three seconds. The results of blood flow, pressure and temperature are shown in

Figures 5.11, 5.12 and 5.12 respectivily.
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Figure 5.11: Velocity profiles at 4 different locations of the 2D channel with catheter
along the central axis for each heart beat.

In Figure 5.11 we can observe the increase in velocity near the catheter end then

with the passage of time it becomes smooth. Furthermore, the velocity also decreases

as change in the location is given in the remaining three profiles. At the catheter end

the peak velocity is almost 0.3 m s−1 whereas at a distance of 42 mm it becomes less

than 0.2 m s−1.
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Figure 5.12: Pressure profiles at 4 different location of the 2D channel with catheter
along the central axis for each heart beat.

We observe the increase in pressure at the catheter end but with the passage of

time the pressure difference remain very less and profiles become smooth.
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Figure 5.13: Temperature profiles at 4 different location of the 2D channel with catheter
at the centre showing the rectangular shape near the catheter end whereas it becomes
smooth down stream.

After visualising the temperature profiles shown in Figure 5.13, we can observe

the sudden decrease in temperature after one second and then being smooth for two

seconds and then increases sharply until it reaches at 300 K again.
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Figure 5.14: Thermodilution temperature profile of patient-82 showing the same curve
as found during the CFD experiment (see Figure 5.13) with minnor differences.

If we compare the CFD results with the actual thermodilution data, there is no

difference in the curves except the curve becomes smooth for a while in the CFR

results as shown in Figure 5.14. If we compare the velocity and temperature profiles

we can observe that as the velocity increases, the temperature decreases. Moreover, we

did not see any pulsatility in the temperature profiles because the probe lies along the

central axis and lies within the bolus of cold fluid over several periods. The conductivity

of the fluid is sufficiently low that the bolus does not gain significant heat from the

surrounding warm fluid.

5.3.5 3D Geometry

Thermodilution is performed in the cornonary arteries which are 3-dimensional. In

order to do the same, we created a simple 3-dimensional computational model of the

left coronary artery in the SolidWorks software which is very efficient tool for making

complex geometries. We considered blood flowing through simple model of a typical

left coronary artery, of constant diameter D = 0.004 m and length L = 0.050 m, to be
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unsteady, incompressible and laminar. The diameter and length of the catheter is D

= 0.002 m and L = 0.012 m respectivily. We set the temperature at the catheter inlet

to be 295 K as the cold saline solution is injected into the artery through the catheter

and the temperature inside the artery is considered to be 300 K. We used a simple

velocity function at the artery and catheter inlet (Section 5.2.1) to see the behaviour

of flow as shown in Figure 5.15 and and compared the results with 2D model.

Figure 5.15: Diagram of the computational fluid domain.

The computations were performed in the Fluent software and the results of velocity,

pressure and temperature were plotted in Tecplot software which is most efficient tool to

visualise and analyse of CFD results. The profiles of velocity, pressure and temperature

are shown in Figures 5.16, 5.17 and 5.18.
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Figure 5.16: Velocity profiles at 4 different locations along the central axis of the tube
in the presence of catheter for each heart beat.

The peak velocity at the end of the catheter along the central axix is 0.35 m s−1

however, the profiles become smooth after 3 s as we go downstream in the tube with

constant peak velocity of 0.15 m s−1 which in case of 2D is 0.07 m s−1 (Figure 5.11).

However, the shape for both the cases remains the same.
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Figure 5.17: Pressure profiles at 4 different locations along the central axis of the tube
in the presence of catheter showing the decrease in pressure as we go downstream.

The peak pressure near the catheter end is 35 Pa which decreases with the passage

of time and the pressure difference remain very less near the end of the catheter and

profiles become smooth. We did not observe the significant difference in the profiles of

pressure in both cases of 2D and 3D geometries.
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Figure 5.18: Temperature profiles at 4 different locations along the central axis of the
tube in the presence of catheter for each heart beat.

Temperature profiles of 3D are also the same as in case of 2D geometry with a small

difference of oscillations at the end. We did not see any oscillations at the end of the

curves in 3D and the curves become straight line when temperature reaches back to

300 K.
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5.4 Off-Axis Temperature Measurements in the 3D

Tube

We observed the normal curves if the catheter remain at the central axis. To investigate

the changes in temprature, we supposed that the probe is lying near the vessel wall

instead of lying at the central axis. We then calculated the temperature at different

position of the artery near the wall instead of centre to see the effects. We observed

different shapes of the curves which also include the double peak. The temperature

results are shown in Figures 5.20 and 5.22.

Figure 5.19: Temperature profile at a different location in the 3D coronary artery with
probe away from the central axis. In this case the probe is in-line to the wall of the
catheter at a distance of 32 mm.

Figure 5.20: Thermodilution waveform of patient-11 showing the same double peak as
we obtained during CFD simulations with an off-axis probe.
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Figure 5.21: Temperature profile at a different location in the 3D coronary artery with
probe away from the central axis. In this case the probe is closer to the vessel wall.

Figure 5.22: Thermodilution waveform of patient-25 showing the same result as we
obtained during CFD simulations when the probe is closer to the vessel wall.
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Figure 5.23: Temperature profile at a different location in the 3D coronary artery with
probe near to the central axis showing the normal thermodilution curve (Section 4.6.1).

After analysing and correlating the results with the thermodilution waveforms, we

can conclude that if we go near the vessel wall to calculate the temperature, double

peak and other types of waveforms appear which we observed in Sections 4.6.2 and

4.6.1.

5.4.1 Flow in a Stenosed Channel

After finding some fruitful results, we decided to include 45% stenosis inside the 2D

model coronary artery to further investigate the waveforms. The boundary conditions

and the geometry were kept same as given in Section 5.3.4. The mesh was generated

with 118561 number of nodes and 117257 number of quadrilaterals. The CFD silula-

tions were run in the Fluent software and results were plotted using Tecplot software.
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Figure 5.24: Computational geometry of 2D simple model in the presence of stenosis

We calculated the temperature on and off the central axis at different locations

before and after stenosis. Few results are shown in Figure 5.25.

Figure 5.25: Temperature profiles at a different location in the 2D coronary artery with
probe away from the central axis in the presence of stenosis shows double peaks and
other shapes as we observed in Sections 4.6.2 and 4.6.3 whereas it remains normal at
the central axis.
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From Figure 5.25, we can observe that double peaks and other types of curves

appear if the probe is away from the central axis or near the vessel wall and behaves

normal at the central axis.

Figure 5.26: Velocity profiles at a different location in the 2D coronary artery with
probe away from the central axis in the presence of stenosis shows the negative velocity
profiles on the other side of the stenosis.

5.5 Results

The results of the simulations in the 2D and 3D model geometries are almost same at

the centre of the artery and we have not seen any significant differences between the

results of both geometries. If we compare the simulation results with the experimental

results of thermodilution waveforms, we observed the same normal thermodilution

curves if the probe remains at the centre of the coronary artery (see Section 4.6.1).

However, if we calculate the temperature near the vessel wall, the shape of the curve
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changes and it also shows the double peaks that are observed in some cases of actual

thermodilution data in Section 4.6.2. Furthermore, we also observed the poor quality

waveforms when the probe is off centre in case of 2D model geometry with stenosis

(Section 4.6.3). Thus, we can say that the misalignment of the catheter inside the

coronary artery affects badly on the thermodilution waveform's results which may

affect clinical diagnosis.
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Discussion

6.1 Summary of Findings

A Matlab program was written to assess the thermodilution waveforms. We observed

different shapes of waveforms in the thermodilution data. We tried to find the corre-

lation between the thermodilution peak values and its half prominence but no strong

relationship was found. Furthermore, we also tried to find the relationship between

ratio of the mean values of the hyperaemic to basal peak temperature and CFR, FFR

and IMR values for 66 patients but no statistically significant correlations were found.

We observed few double peaks and high oscillations in the thermodilution curves and

to investigate these curves, we set up a simple CFD model and experiments were per-

formed using the commercial CFD software Fluent. We did not see pulsatility because

the probe lies along the central axis and lies within the bolus of cold fluid over sev-

eral periods and diffusion is too slow to affect the measurements. We observed normal

thermodilution curves if the probe lies at the central axis but results with double peaks

and other shapes if the probe lies off–axis or near the vessel wall. High frequency varia-

tions in the thermodilution plot seem likely to have a fluid mechanical origin associated

with e.g. vortex shedding, or are associated with collapse of a vessel due to Bernoulli

effects. This may occur when the catheter is positioned very close to a vessel wall.

The misalignment of the catheter in case of stenosis badly affects the thermodilution

waveforms which we also observed in the actual thermodilution data.
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6.2 Suggestions for Future Research

In this project, different waveforms of thermodilution have been observed and criti-

cally analysed. We made a simple 3D cylindrical shape of the coronary artery with a

catheter at the centre of artery and used the simple boundary conditions to provoke the

pattern of the thermodilution waveforms and got some good results. We also include

the stenosis inside the 2D model of coronary artery and found some fruitful results.

However, further improvements can be made to observe the actual waveforms more

critically. Following are some suggestions that can be adopted.

1. The stenosis can be incorporated with simple 3D geometry to get actual results

as the patients were presented having a stenosis severity of (45%− 90%).

2. An elasticity model can be included in the geometry as we have used simple 3D

rigid cylindrical tube.

3. Boundary conditions can be improved which are more realistic in flow profiles.

4. The location of the catheter may be misaligned in the 3-dimensional model artery

to see the difference in results.

6.3 Conclusion

Thermodilution technique is so far the best technique to measure the flow in the coro-

nary arteries after myocardial infarction. However, intense care is needed during the

procedure. The person who is performing thermodilution must be aware of the er-

rors and pathalogical conditions of the patient. A misaligned catheter can result in

incorrect flow estimate and hence incorrect treatment. The results obtained from the

simple model can be further improved to better understand the different waveform

results of thermodilution and the comparison of CFD results with the experimental

thermodilution waveforms can improve the diagnostic procedures.
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Radiview Software

Radiview software is used to convert and visualise the patients data for clinical use and

research purposes. The thermodilution waveform data of patients is loaded into the

Radiview software and following procedure is adopted to convert the data into spread

sheets for further analysis.

1. The first procedure after the installation of software on the system is to load the

data into software. For this very purpose, first of all we will go to start menu

and will open the Radiview 2.2 software in the program menu. The window will

appear on the screen as shown in Figure A.1.

Figure A.1: Step-1 after installation of software sackage

2. Click on ‘SEARCH’, the left most corner of Figure A.1, the screen will display

as given in the right top corner side of Figure A.2. Then click on ‘IMPORT’ to
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select the data you want to load which is already saved into your system. The

window as given in Figure A.2 will appear when you will open the required folder.

Figure A.2: Step-2 Loading of data into Radiview Software package

3. Select the patient data from the screen and then click on export to convert into

spread sheet or JPEG screen image.

Figure A.3: Step-3 Exporting and saving data into spreadsheet

4. When you will click export as given in Figure A.3, the following window will

appear to save the data into desired location as shown in Figure A.4.
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Figure A.4: Step-4 Exporting and saving data into spreadsheet
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Matlab Program

Listing B.1: Matlab program which can load one patient data
1 c l e a r a l l ; c l o s e a l l ; c l c ;
2 A=load ( ’ a (1 ) . asc ’ ) ;
3 channel = [ ’ SensorTemp 1 ’ ;
4 ’ CableTemp 1 ’ ;
5 ’ SensorTemp 2 ’ ;
6 ’ CableTemp 2 ’ ;
7 ’ SensorTemp 3 ’ ;
8 ’ CableTemp 3 ’ ;
9 ’ SensorTemp 4 ’ ;

10 ’ CableTemp 4 ’ ;
11 ’ SensorTemp 5 ’ ;
12 ’ CableTemp 5 ’ ;
13 ’ SensorTemp 6 ’ ;
14 ’ CableTemp 6 ’ ;
15 ’Pa ’ ;
16 ’ Pa {mean} ’ ;
17 ’Pd ’ ;
18 ’ Pd {mean} ’ ;
19 ’Pd/Pa ’ ] ;
20 S i z e=s i z e (A) ;
21 n=S i z e (1 ) ;
22 m=Si z e (2 ) ;
23 count=ze ro s (1 ,m) ;
24 R=count ;
25 f o r j =1:12;
26 f o r i =1:n−17
27 i f i+7>n
28 [ rows , columns ] = s i z e (A( : , j ) ) ;
29 count ( j )=rows ;
30 break
31 end
32 i f (A( i , j )==0 && A( i +1, j )==0 && A( i +2, j )==0 && A( i +3, j )==0 && A( i +4, j )==0 . . .
33 && A( i +5, j )==0 && A( i +6, j )==0 && A( i +7, j )==0 && A( i +8, j )==0 && A( i +9, j )==0

. . .
34 && A( i +10, j )==0 && A( i +11, j )==0 && A( i +12, j )==0 && A( i +13, j )==0 && A( i +14, j )

==0 . . .
35 && A( i +15, j )==0 && A( i +16, j )==0 && A( i +17, j )==0 && A( i +18, j )==0 && A( i +19, j )

==0 . . .
36 && A( i +20, j )==0)
37 count ( j )=i −1;
38 end
39 i f count ( j ) ˜=0;
40 break
41 end
42 end
43
44
45 end
46 b=count ;
47
48 f o r i = 1 :12
49 f i g u r e ;
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50 p l o t (−A( 1 : b( i ) , i ) /1000) ;
51 x l a b e l ( ’ Time (ms) ’ ) ; y l a b e l ( ’−Temperature ˆoC ’ ) ; t i t l e ( channel ( i , : ) ) ;
52 end ;

Listing B.2: Input function which is used to calculate the values of Peak
1 c l c ;
2 c l e a r a l l ;
3 c l o s e a l l ;
4 patnum=12;
5 data=zero s (12 ,4 , patnum) ;
6 f o r i =1:patnum
7 s t r =[ ’ a ( ’ , num2str ( i ) , ’ ) . asc ’ ] ;
8 A=load ( s t r ) ;
9 [ data ( : , 1 , i ) ,data ( : , 2 , i ) ,data ( : , 3 , i ) ,data ( : , 4 , i ) ]= heartdata (A) ;

10 x l s w r i t e ( ’data . x l s ’ , data ( : , : , i ) , [ ’ Sheet ’ , num2str ( i ) ] ) ;
11
12 i
13 end

1 func t i on [ pks , l o c s , width , prom ] = heartdata (A)
2 pks=ze ro s (103 ,1 ) ;
3 l o c s=pks ;
4 width=pks ;
5 prom=pks ;
6
7 channel = [ ’ SensorTemp 1 ’ ;
8 ’ CableTemp 1 ’ ;
9 ’ SensorTemp 2 ’ ;

10 ’ CableTemp 2 ’ ;
11 ’ SensorTemp 3 ’ ;
12 ’ CableTemp 3 ’ ;
13 ’ SensorTemp 4 ’ ;
14 ’ CableTemp 4 ’ ;
15 ’ SensorTemp 5 ’ ;
16 ’ CableTemp 5 ’ ;
17 ’ SensorTemp 6 ’ ;
18 ’ CableTemp 6 ’ ;
19 ’Pa ’ ;
20 ’ Pa {mean} ’ ;
21 ’Pd ’ ;
22 ’ Pd {mean} ’ ;
23 ’Pd/Pa ’ ] ;
24 S i z e=s i z e (A) ;
25 n=S i z e (1 ) ;
26 m=Si z e (2 ) ;
27 count=ze ro s (1 ,m) ;
28 R=count ;
29 f o r j =1:12;
30 f o r i =1:n−20
31 i f i+7>n
32 [ rows , columns ] = s i z e (A( : , j ) ) ;
33 count ( j )=rows ;
34 break
35 end
36 i f (A( i , j )==0 && A( i +1, j )==0 && A( i +2, j )==0 && A( i +3, j )==0 && . . .
37 A( i +4, j )==0 && A( i +5, j )==0 && A( i +6, j )==0 && A( i +7, j )==0 . . .
38 && A( i +8, j )==0 && A( i +9, j )==0 && A( i +10, j )==0 && A( i +11, j )==0 . . .
39 && A( i +12, j )==0 && A( i +13, j )==0 && A( i +14, j )==0 && A( i +15, j )==0 . . .
40 && A( i +16, j )==0 && A( i +17, j )==0 && A( i +18, j )==0 && A( i +19, j )==0 . . .
41 && A( i +20, j )==0)
42
43 count ( j )=i −1;
44 end
45 i f count ( j ) ˜=0;
46 break
47 end
48 end
49
50
51 end
52 b=count ;
53
54 f o r i = 1 :12
55 % f i g u r e ;
56 % p lo t (−A( 1 : b( i ) , i ) /1000) ;
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57 %x l a b e l ( ’ Time (ms) ’ ) ; y l a b e l ( ’−Temperature ˆoC ’ ) ; t i t l e ( channel ( i , : ) ) ;
58 % print −djpeg . . . ;
59 xdata=−A( 1 : b( i ) , i ) /1000 ;
60 ydata =[1:b( i ) ] ’ ;
61 %% Fit : ’ u n t i t l e d f i t 1 ’ .
62 [ xData , yData ] = prepareCurveData ( ydata , xdata ) ;
63
64 % Set up f i t t y p e and opt ions .
65 f t = f i t t y p e ( ’ gauss8 ’ ) ;
66 opts = f i t o p t i o n s ( ’Method ’ , ’ Nonl inearLeastSquares ’ ) ;
67 opts . Display = ’ Off ’ ;
68 opts . Lower = [− I n f −I n f 0 −I n f −I n f 0 −I n f −I n f 0 −I n f −I n f . . .
69 0 −I n f −I n f 0 −I n f −I n f 0 −I n f −I n f 0 −I n f −I n f 0 ] ;
70 opts . Star tPo int = [ 0 74.4444444444444 73.4444444444444 0 . . .
71 147.888888888889 73.4444444444444 0 221.333333333333 . . .
72 73.4444444444444 0 294.777777777778 73.4444444444444 0 . . .
73 368.222222222222 73.4444444444444 0 441.666666666667 . . .
74 73.4444444444444 0 515.111111111111 73.4444444444444 0 . . .
75 588.555555555556 73 .4444444444444 ] ;
76
77 % Fit model to data .
78 [ f i t r e s u l t , go f ] = f i t ( xData , yData , f t , opts ) ;
79
80 % Plot f i t with data .
81 % f i g u r e ( ’Name’ , ’ u n t i t l e d f i t 1 ’ ) ;
82 % h = p lo t ( f i t r e s u l t , xData , yData ) ;
83 % legend ( h , ’ xdata vs . ydata ’ , ’ u n t i t l e d f i t 1 ’ , ’ Location ’ , ’ NorthEast ’ ) ;
84 % % Label axes
85 % x l a b e l ( ’ ydata ’ ) ;
86 % y l a b e l ( ’ xdata ’ ) ;
87 % gr id on
88 % % f i g u r e (2* i ) ;
89 [ pks ( i ) , l o c s ( i ) , width ( i ) ,prom( i ) ] =f indpeaks ( f i t r e s u l t ( xData ) , . . .
90 ’ MinPeakProminence ’ , 0 . 7 , ’ NPeaks ’ , 1 ) ;
91 % [ pks ( i ) , l o c s ( i ) , width ( i ) ,prom( i ) ] =f indpeaks ( f i t r e s u l t ( xData ) , . . .
92 ’ Annotate ’ , ’ extents ’ , ’ MinPeakDistance ’ , 3 1 0 , ’ MinPeakProminence ’ , 0 . 7 ) ;%−A( 1 : b( i ) , i ) /1000
93 % hold on
94 % f indpeaks (−A( 1 : b( i ) , i ) /1000 , ’ Annotate ’ , ’ extents ’ , ’ MinPeakDistance ’ , 2 0 . 0 , . . .
95 ’ MinPeakProminence ’ , 0 . 5 )
96 % hold o f f
97
98 %pks = f indpeaks (−A( 1 : 6 6 2 , i ) /1000 , ’ MinPeakDistance ’ , 2 0 . 0 , ’ MinPeakHeight ’ , 0 . 5 )
99

100 end ;
101
102 end

Listing B.3: Function used to find the mean hyperaemic to basal ratios of peak
1 c l c ;
2 c l e a r a l l ;
3 c l o s e a l l ;
4 patnum=103;
5 data=zero s (103 ,4 , patnum) ;
6 RatioS=ze ro s (patnum , 5 ) ;
7 RatioS ( : , 1 )=l i n s p a c e (1 , patnum , patnum) ’ ;
8 RatioC=RatioS ;
9 f o r i =1:patnum

10 % i =103
11 s t r =[ ’ a ( ’ , num2str ( i ) , ’ ) . asc ’ ] ;
12 A=load ( s t r ) ;
13 [ data ( : , 1 , i ) ,data ( : , 2 , i ) ,data ( : , 3 , i ) ,data ( : , 4 , i ) ]= heartdata (A) ;
14 M=data ( : , : , i ) ;
15 B = M( 1 : 2 : end , : ) ; % odd matrix
16 C = M( 2 : 2 : end , : ) ; % even matrix
17 O1=mean(B( 1 : 3 , : ) ) ;
18 O2=mean(B( 4 : 6 , : ) ) ;
19 E1=mean(C( 1 : 3 , : ) ) ;
20 E2=mean(C( 4 : 6 , : ) ) ;
21 RatioS ( i , 2 : 5 )=O2. /O1 ;
22 RatioC ( i , 2 : 5 )=E2 . / E1 ;
23
24 x l s w r i t e ( ’ pat ientdata ’ , RatioS , ’ Sheet1 ’ ) ;
25 x l s w r i t e ( ’ pat ientdata ’ , RatioC , ’ Sheet2 ’ ) ;
26 i
27 end
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Listing B.4: A function used to find the pictorial view of thermodilution curves of own
choice.

1 func t i on [ output args ] = drawGraphs ( patientNum , Columns )
2 %% −−l oad pa t i en t f i l e −−
3 s t r =[ ’ a ( ’ , num2str ( patientNum ) , ’ ) . asc ’ ] ;
4 A=load ( s t r ) ;
5
6 %% −−determine the rows and columns−−
7 S i z e=s i z e (A) ;
8 c u t o f f=S i z e (1 ) ;
9 f o r k=1: S i z e (1 )−20

10 i f (A(k , Columns )==0 && A( k+1,Columns )==0 && A( k+2,Columns )==0 . . .
11 && A( k+3,Columns )==0 && A( k+4,Columns )==0 && A( k+5,Columns )==0 . . .
12 && A( k+6,Columns )==0 && A( k+7,Columns )==0 && A( k+8,Columns )==0 . . .
13 && A( k+9,Columns )==0 && A( k+10,Columns )==0 && A( k+11,Columns )==0 . . .
14 && A( k+12,Columns )==0 && A( k+13,Columns )==0 && A( k+14,Columns )==0 . . .
15 && A( k+15,Columns )==0 && A( k+16,Columns )==0 && A( k+17,Columns )==0 . . .
16 && A( k+18,Columns )==0 && A( k+19,Columns )==0 && A( k+20,Columns )==0)
17 c u t o f f=k ;
18 break ;
19 end
20 end
21 Temp=−A( 1 : cu to f f , Columns ) /1000 ;
22 Time=[1: c u t o f f ] ’ ;
23
24 %% Fit : ’ u n t i t l e d f i t 1 ’ .
25 [Temp, Time ] = prepareCurveData ( Time , Temp ) ;
26
27 %% Set up f i t t y p e and opt ions .
28 f t = f i t t y p e ( ’ gauss8 ’ ) ;
29 opts = f i t o p t i o n s ( ’Method ’ , ’ Nonl inearLeastSquares ’ ) ;
30 opts . Display = ’ Off ’ ;
31 opts . Lower = [− I n f −I n f 0 −I n f −I n f 0 −I n f −I n f 0 −I n f −I n f . . .
32 0 −I n f −I n f 0 −I n f −I n f 0 −I n f −I n f 0 −I n f −I n f 0 ] ;
33 opts . Star tPo int = [ 0 74.4444444444444 73.4444444444444 0 147.888888888889 . . .
34 73.4444444444444 0 221.333333333333 73.4444444444444 0 294.777777777778 . . .
35 73.4444444444444 0 368.222222222222 73.4444444444444 0 441.666666666667 . . .
36 73.4444444444444 0 515.111111111111 73.4444444444444 0 588.555555555556 . . .
37 73 .4444444444444 ] ;
38
39
40 %%
41 switch Columns
42 case 1
43 t i t l =’SensorTemp 1 ’ ;
44 case 2
45 t i t l =’CableTemp 1 ’ ;
46 case 3
47 t i t l =’SensorTemp 2 ’ ;
48 case 4
49 t i t l =’CableTemp 2 ’ ;
50 case 5
51 t i t l =’SensorTemp 3 ’ ;
52 case 6
53 t i t l =’CableTemp 3 ’ ;
54 case 7
55 t i t l =’SensorTemp 4 ’ ;
56 case 8
57 t i t l =’CableTemp 4 ’ ;
58 case 9
59 t i t l =’SensorTemp 5 ’ ;
60 case 10
61 t i t l =’CableTemp 5 ’ ;
62 case 11
63 t i t l =’SensorTemp 6 ’ ;
64 otherwise
65 t i t l =’CableTemp 6 ’ ;
66 end
67
68
69 %%
70 [ f i t r e s u l t , go f ] = f i t ( Temp, Time , f t , opts ) ;
71 [ pks , l o c s , width , prom ] =f indpeaks ( f i t r e s u l t (Temp) , ’ Annotate ’ , ’ extents ’ , ’ MinPeakDistance

’ , 3 2 0 , ’ MinPeakProminence ’ , 0 . 5 ) ;
72 % f indpeaks ( f i t r e s u l t (Temp) , ’ Annotate ’ , ’ extents ’ , ’ MinPeakDistance ’ , 4 5 0 , ’

MinPeakProminence ’ , 0 . 5 )
73 f indpeaks ( f i t r e s u l t (Temp) , ’ Annotate ’ , ’ extents ’ , ’ MinPeakProminence ’ , 0 . 7 , ’ NPeaks ’ , 1 )
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74 hold on
75 p lo t (Temp, Time , ’ . r ’ ) ;
76 t i t l e ( t i t l ) ;
77 ylim ([−2 1 2 ] ) ;
78 %legend ( ’ a c tua l data ’ , ’ f i t t e d data ’ ) ;
79 s t r = { [ ’ peak = ’ , num2str ( pks ) ] , [ ’ l o c a t i o n = ’ , num2str ( l o c s ) ] , [ ’ width = ’ , num2str ( width ) ] , [ ’

prominance = ’ , num2str (prom) ] } ;
80 t ext ( cu to f f −250 ,7 .0 ,0 , s t r ) ;
81 % Label axes
82 x l a b e l ( ’Time ( msec ) ’ ) ;
83 y l a b e l ( ’−Temperature ˆoC ’ ) ;
84 g r id on
85 hold o f f

Listing B.5: Function used to find the subgraphs and show 6 curves at a time.
1
2 func t i on [ output args ] = Subplot ( PatNum )
3
4 % f i g u r e ( ’Name’ , ’ Pat ient Number ’ , ’ NumberTitle ’ , ’ o f f ’ )
5 s c r s z = get ( groot , ’ ScreenSize ’ ) ;
6 F1=f i g u r e ( ’ Pos i t ion ’ , [ 1 1 s c r s z (3 ) s c r s z (4 ) ] ) ;
7 subp lot ( 2 , 3 , 1 ) ;
8 drawGraphs (PatNum, 1 ) ;
9

10 subplot ( 2 , 3 , 2 ) ;
11 drawGraphs (PatNum, 2 ) ;
12
13 subplot ( 2 , 3 , 3 ) ;
14 drawGraphs (PatNum, 3 ) ;
15
16 subplot ( 2 , 3 , 4 ) ;
17 drawGraphs (PatNum, 4 ) ;
18
19 subplot ( 2 , 3 , 5 ) ;
20 drawGraphs (PatNum, 5 ) ;
21
22 subplot ( 2 , 3 , 6 ) ;
23 drawGraphs (PatNum, 6 ) ;
24 saveas (F1 , [ ’ Patient ’ , num2str (PatNum) , ’ −1 ’ ] , ’ jpg ’ ) ;
25
26 % f i g u r e ( ’Name’ , ’ Pat ient Number ’ , ’ NumberTitle ’ , ’ o f f ’ )
27
28 F2=f i g u r e ( ’ Pos i t ion ’ , [ 1 1 s c r s z (3 ) s c r s z (4 ) ] ) ;
29 subplot ( 2 , 3 , 1 ) ;
30 drawGraphs (PatNum, 7 ) ;
31
32 subplot ( 2 , 3 , 2 ) ;
33 drawGraphs (PatNum, 8 ) ;
34
35 subplot ( 2 , 3 , 3 ) ;
36 drawGraphs (PatNum, 9 ) ;
37
38 subplot ( 2 , 3 , 4 ) ;
39 drawGraphs (PatNum, 1 0 ) ;
40
41 subplot ( 2 , 3 , 5 ) ;
42 drawGraphs (PatNum, 1 1 ) ;
43
44 subplot ( 2 , 3 , 6 ) ;
45 drawGraphs (PatNum, 1 2 ) ;
46 saveas (F2 , [ ’ Patient ’ , num2str (PatNum) , ’ −2 ’ ] , ’ jpg ’ ) ;
47 end
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B.1 CE-MARC2 Study Folder

Figure B.1: Thermodilution data of 66 patients with their study number
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Appendix C

Computational Fluid Domains

C.1 2-Dimensional Geometry

C.1.1 Fluid Domain (Geometry)

Following procedure was adopted to make 2D model geometry for blood flow in arteries.

1. Go to the start menu and open the ICEM CFD 14.5.7. Figure C.1 will appear.

Figure C.1

2. Right click on model and click on geometric units. At the bottom of window,
select the appropriate unit i.e. millimetre in our case.
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Figure C.2

3. Go to the file menu and click on the change working directory and save the file
as shown in Figure C.3.

Figure C.3

4. Create the initial points by using following procedure.

� Click on Geometry tab.

� Click on create point icon under the Geometry tab for creating points.

� Part name GEOM will remain same.

� Select locations

� Choose Create 1 Point in the list.

� Input x y z coordinates. In this case it is 2-dimensional (i.e. x, y).

� Click on apply for creation of one point.

� Create other points using steps.
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� Click dismiss after creating all points.

� The coordinates for the 4 points are in mm: P1: 0, -2 P2: 0, 2 P3: 50, -2
P4: 50, 2

Figure C.4

Figure C.5

5. The points will appear on screen as shown in Figure C.6 (Note: Click on fit
window icon if points are not visible).
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Figure C.6

6. Create the lines by adopting following steps.

� Click on geometry.

� Go to the lines.

� GEOM part will remain as it is.

� Select the point icon.

� Click on points and choose any two points from the main window.

� Click apply and repeat this step for the four points. Figure C.8 will appear.

Figure C.7
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Figure C.8

7. Define the fluid domain by choosing the body icon from the geometry tab.

� Change the name of BODY.

� Click on the material points.

� Select the any two locations on the window screen.

� Click on apply to create body.

Figure C.9
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8. In model control tree view, right click on the parts.

� Figure C.10 will appear at the bottom of the screen.

� Write inlet in parts.

� Click on entities and select the line of inlet from the main screen and then
apply.

� Repeat this procedure to give the name of other parts.

Figure C.10

9. Click on the model tree to view to confirm that all parts have been created as
shown in Figure C.11 and then save the geometry.

Figure C.11
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C.1.2 Mesh Generation

Following procedure was implemented to generate the mesh.

1. Click on the block icon under the geometric tab.

� Choose BODY from the list.

� Click on initialise block icon

� Select 2D Planer type and click ok.

Figure C.12

2. Associate the created block with geometry, a one to one map was made for the
edges in block and curves in the geometry. Procedure is shown in Figure C.13.

� Choose associate icon.

� Choose associate edge to Curve.

� Click on edge icon and then select the edge in the main window and press
the middle button of mouse.

� Click the curve icon and then select the same edge which was selected before.
When it is highlighted then press the middle button of mouse to associate.

� Click on apply and repeat the same procedure for the remaining edges.
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Figure C.13

3. Apply the mesh as described and shown in Figure C.14

� Choose the curve mesh set up

� Method will remain General

� Select the curve icon and then click on the any edge of geometry in the main
window and press the middle button of mouse. The name will appear in the
window.

� Insert the number of nodes (i.e. 50).

� Click ok and repeat the same procedure for all edges.

Figure C.14
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4. Initialize the mesh generation

� Choose the pre-mesh icon from the blocking tab.

� Choose the update size

� Select update all and then click on apply.

Figure C.15

5. Go to the blocking tree and turn on the pre-mesh. When you will click on the
pre-mesh, a new window will appear. Select yes when the message appears to
re-compute. Further, to view the mesh, switch off edges and vertices from the
display control tree.
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Figure C.16

6. Go to the blocking display control tree and right click on pre-mesh and select the
un-structured mesh to generate the domain file and save the project file.

Figure C.17

7. To export the mesh, go to output tab and select solver. Select the output solver
as Fluent V6 and common structural solver with remain ANSYS (Figure B.22).
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Figure C.18

8. Click on write input icon and save the project first. Then a file open window will
appear. Save the mesh file (*.uns), which is the same name as the project name
saved earlier as shown in Figure C.19

Figure C.19

9. Select 2D and change the name of the output mesh file as shown in Figure C.20
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Figure C.20

10. The mesh file will be saved in the working directory with .msh extension .

C.1.3 Simulation in Fluent Software

11. Go to the All programs option in the start menu and click on the FLUENT in
the ANSYS folder. A FLUENT Launcher window will appear as shown in Figure
C.21.

Figure C.21
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12. Click on 2D and Double Percesion for more accurate results. Select the working
directory to save the data at the specific location.

13. Figure C.22 will appear when we click ok

Figure C.22

14. Go to the file menu and click read the mesh as shown in Figures B.29 and B.30.

Figure C.23

15. Go to the display menu and click on mesh and select all surfaces, the mesh will
be displayed on the main screen as shown in Figure C.25
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Figure C.24

Figure C.25

16. Click on General and change the steady flow to transient flow as shown in Figure
C.26
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Figure C.26

17. Go to Viscous-Laminar model and then click on edit and select the Laminar as
shown in Figure C.27

Figure C.27

18. Define material as blood using the procedure shown in Figure C.28. When we
click on change, a new window will appear. Click no to save both the settings.
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Figure C.28

19. Define the cell zone conditions as shown in Figure C.29

Figure C.29
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20. Define the boundary conditions. First of all upload the user defined function
which we have made for the unsteady flow in the main artery as shown in Figure
C.30.

Figure C.30

21. Set the boundary conditions for the fluid flow as shown in Figure C.31. The inlet
velocity is defined by UDF and shown in Figure C.32.
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Figure C.31

Figure C.32

22. The boundary conditions at outlet are shown in Figure C.33.
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Figure C.33

23. No slip and stationary boundary conditions are applied at the wall (C.34).

Figure C.34

24. We used the simple solver method, one can change the method to get high reso-
lution results.
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Figure C.35

25. Set up the solver control and use the default setting.

Figure C.36

26. Set the solver monitors and keep the default settings.
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Figure C.37

27. Initialise the flow field by using the boundary conditions at the inlet which is the
starting point.

Figure C.38

28. Data is auto saved for every three iterations as shown in C.39.
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Figure C.39

29. We run the calculation for six cycles as shown in C.40.

Figure C.40
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Figure C.41

30. We saved the case and data files and the results were plotted in Tecplot 360
Software for better visualisation [243].

C.2 2-Dimensional Geometry with Catheter

C.2.1 Fluid Domain (Geometry)

Following procedure was adopted to make 2D model geometry with catheter at the
central axis for blood flow in the arteries in addition to 2D geometry.

The points will appear on screen as shown in C.43 (Note: Click on fit window if
points are not visible. Following are the points P1: 0, -1 P2: 0, 1 P3: 2, -1 P4:
2, 1 P5: 2, -2 P6: 2, 2 P7: 12, -1 P8: 12, 1 P9: 52, 2 P10: 52, -2

Figure C.42

C.2.2 Meshing Procedure

(a) In order to delete these extra block, we used the following procedure.
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Figure C.43

� Select the split block from the Blocking tab.

� Choose the split block icon

� Click to All visible option

� Click on the edge option and then click on the upper line on the main
window and drag it until it comes equal to the block where you want
to split and then click on the middle button of mouse to accept the
creation. Same procedure is done on the left line as well.

Figure C.44

(b) Go to the delete block option of Blocking tab and select the icon. After
selecting click on the block which you want to delete. When you will click
the block, it will be highlighted then press the middle button of mouse to
delete the blocks.
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Figure C.45

(c) The remaining procedure of meshing is same as described in 2D Geometry.

C.2.3 Simulation in Fluent Software

Following changes will be adopted along with the 2D Catheter geometry proce-
dure.

(a) 1. The energy equation is turned on.

Figure C.46

(b) Because of the energy equation, specific heat and thermal conductivity val-
ues have been added.
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Figure C.47

(c) UDF have been modified for the catheter inlet whereas the UDF for main
inlet is same as we used previously. Further, the values of temperature have
been included.

Figure C.48

(d) The velocity and temperature at the catheter is also included.
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Figure C.49

(e) The remaining procedure remains the same as 2D Geometry.

C.3 Flow In Stenosed Channel

C.3.1 Fluid Domain (Geometry)

Following procedure was adopted to include 45% stenosis to 2D geometry with
catheter in addition to the previously done.

(a) The points will appear on screen as shown in Figure B.1 (Note: Click on fit
window if points are not visible. Following are the points P1: 0, -1 P2: 0, 1
P3: 2, -1 P4: 2, 1 P5: 2, -2 P6: 2, 2 P7: 12, -1 P8: 12, 1 P9: 52, 2 P10: 52,
-2 P11: 20, 2 P12: 20, -2 P13: 25, -1.1 P14: 25, 1.1 P15: 30, 2 P16: 30, -2

Figure C.50

(b) We used arc to join three points instead of straight line curve to make
stenosis.
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Figure C.51

(c) The remaining procedure is same for meshing and for simulations.

C.4 3-Dimensional Geometry with Catheter

C.4.1 Fluid Domain (Geometry)

Following procedure was adopted to make 3D geometry with catheter at the
central axis to measure the blood flow in the arteries.

(a) 3D cylinderically tube was created in SolidWorks software with length of 50
mm and diameter 2 mm.

Figure C.52

(b) A small cylinder of length 10 mm with diameter 1 mm is inserted into that
cylinderical tube and intersection was created between them.
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Figure C.53

(c) After making the intersection, a catheter of length 12 mm was also inserted.

Figure C.54

(d) The geometry was saved and opened in ICEM where we gave the names of
different parts of geometry.

C.4.2 Meshing Procedure)

(a) Mesh was created using options shown in C.56.

Figure C.55
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Figure C.56

(b) There is no change in the procedure of simulations expect the geometry was
selected 3D.
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