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Abstract

This thesis collates, extends and applies the abstract theory of W∗-bundles. Highlights

include the standard form for W∗-bundles, a bicommutant theorem for W∗-bundles, and

an investigation of completions, ideals, and quotients of W∗-bundles.

The Triviality Problem, whether all W∗-bundles with fibres isomorphic to the hyper-

finite II1 factor R are trivial, is central to this thesis. Ozawa’s Triviality Theorem is

presented, and property Γ and the McDuff property for W∗-bundles are investigated thor-

oughly. Ozawa’s Triviality Theorem is applied to some new examples such as the strict

closures of Villadsen algebras and non-trivial C(X)-algebras. The solution to the Triviality

Problem in the locally trivial case, obtained by myself and Pennig, is included.

A theory of sub-W∗-bundles is developed along the lines of Jones’ subfactor theory. A

sub-W∗-bundle N ⊂M encapsulates a tracially continuous family of subfactors in a single

object. The basic construction and the Jones tower are generalised to this new setting and

the first examples of sub-W∗-bundles are constructed.
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Chapter 1

Introduction

Operator algebras are ∗-subalgebras of B(H), the ∗-algebra of bounded linear operators

on a Hilbert space H with involution given by adjoints. C∗-algebras arise if one considers

uniformly-closed ∗-subalgebras, von Neumann algebras if one considers pointwise-closed

∗-subalgebras. Via spectral theory, commutative C∗-algebras with identity are isomorphic

to the algebras C(X) of continuous functions on some compact Hausdorff space X whereas

von Neumann algebra correspond to L∞(X) for some measure space X. Accordingly, the

study of C∗- and von Neumann algebras are often called non-commutative topology and

non-commutative measure theory respectively.

The key objects of study in this thesis, W∗-bundles, transcend the divide between von

Neumann algebras and C∗-algebras, behaving locally like the former and globally like the

later. This thesis collates, extends and applies the abstract theory of W∗-bundles. But

first, we need to set the scene.

W∗-bundles were introduced by Ozawa in [62], motivated by recent progress in the

classification programme for C∗-algebra. This background, although not logically neces-

sary for understanding the thesis, has been included for completeness, for motivation, and

to underline the importance of W∗-bundles.

Towards W∗-bundles

Questions of structure and of classification are central to the study of operator algebras.

First considered in the von Neumann setting, this goes back to the original papers of Mur-

ray and von Neumann [59]. However, the full picture only emerged after the Fields Medal

winning work of Connes in the 1970’s. In a ground-breaking combination of deep insight

and technical expertise, Connes was able to establish the uniqueness of the amenable II1

9
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factor R [11]. Subsequently, he was able to classify almost all amenable factors with the

one remaining case resolved later by Haagerup [33].

The following theorem of 2015 is the culmination of a 40 year endeavour to develop a

classification result for amenable, simple C∗-algebras analogous to the Connes–Haagerup

classification for amenable factors. This programme was spearheaded by the work and

insight of Elliott [20], and the final result encompasses and extends both the celebrated

classification theorem of Kirchberg–Philips [46] and the classification of the inductive limit

algebras considered by Elliott–Gong–Li [21].

Theorem 1.1. [22, 28, 84] The class of unital, simple, separable, infinite-dimensional

C∗-algebras of finite nuclear dimension which satisfy the universal coefficient theorem is

classified by K-theory and traces.

Of great interest here is that, in the C∗-setting, mere amenability does not suffice, as

counterexamples of Rørdam [72] and Toms [87] lay bare. The stronger hypothesis that

the nuclear dimension, a non-commutative extension of covering dimension developed by

Winter and Zacharias [97], is finite must be shown before the classification result can be

applied.

This leads to the problem of establishing finite nuclear dimension in natural examples.

Powerful but ad hoc methods exist in certain special cases. A more abstract approach

to this problem is offered by the Toms–Winter Conjecture [89], which predicts that the

dichotomy between finite and infinite nuclear dimension is also witnessed by other very

different properties.

Conjecture 1.2 (The Toms–Winter Conjecture). Let A be a unital, simple, separable,

amenable, infinite-dimensional C∗-algebra. The following are equivalent:

(i) A has finite nuclear dimension;

(ii) A absorbs the Jiang–Su algebra Z tensorially, i.e. A⊗Z ∼= A;

(iii) A has strict comparison.

Tensorial absorption properties, like condition (ii) of the Toms–Winter Conjecture,

have a long history in the theory of operator algebras. This goes back to the work of McDuff

in the von Neumann setting, who considered II1 factors that absorb the hyperfinite II1

factor R tensorially [55,56]. Tensorial absorption of the Cuntz algebra O∞, is fundamental
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in the proof of the Kirchberg–Phillips Theorem and in the study of non-simple purely

infinite C∗-algebras [46].

The Jiang–Su algebra Z arrived on the scene at the turn of the millennium, and can

be viewed as a counterexample to early forms of the Elliott conjecture because it has the

same K-theory and traces as the complex numbers yet is not isomorphic to them.1 Ten-

sorial absorption of the Jiang–Su algebra is intimately related to K-theoretic classification

because, under weak hypotheses on the C∗-algebra A, the K-theory and traces of A and

A⊗Z will be identical [37].

The third condition in the Toms–Winter Conjecture also has a genealogy dating back to

the foundation of the field, more precisely to Murray and von Neumann’s discovery that

the order on equivalence classes of projections in a II1 factor is completely determined

by the trace [59]. Whilst for finite von Neumann algebras it is always true that traces

determine the order of projections, the analogue in the C∗-setting can fail, leading to the

regularity property of strict comparison.

The implications (i)⇒ (ii)⇒ (iii) of the Toms–Winter Conjecture were proven by Win-

ter and Rørdam respectively [73,95]. It is the recent progress on the reverse implications,

which has lead to the theory of W∗-bundles.

The breakthrough came in 2012 when Matui and Sato managed to prove (iii)⇒ (ii) in

the case where A has finitely many extreme traces [52]. The key idea was to consider the

von Neumann algebras πτ (A)′′ coming from the GNS representations of A with respect

to extreme traces. The hypotheses on A suffice to show that πτ (A)′′ is an injective II1

factor with separable predual, so πτ (A)′′ ∼= R by Connes’ Theorem [11]. Matui and Sato

then developed powerful techniques to lift structural properties from R, which is well

understood, to the C∗-algebra A.

The implication (ii) ⇒ (i) was shown to hold when A has a unique trace by Sato,

White and Winter in [78], building on the work of Matui and Sato [53]. Once again, von

Neumann algebras and von Neumann algebraic ideas were fundamental, in particular the

fact that the von Neumann algebra πτ (A)′′ coming from the GNS representation of A with

respect to the unique trace is isomorphic to R by Connes’ Theorem.

The assumption of a unique trace, or even that of finitely many extreme traces, is a

strong one. In general, the trace space T (A) of a C∗-algebra A, when non-empty, is a

1Note the assumption infinite-dimensional in Theorem 1.1: the Jiang-Su algebra is infinite-dimensional,

the complex numbers are not.
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Choquet simplex, a compact convex set where every point can be uniquely represented as

the barycentre of a probability measure concentrated on the set of extreme points ∂eT (A).

Moreover, all metrisable Choquet simplices occur as the the trace space of some simple,

unital, approximately finite-dimensional (AF) C∗-algebra [29].

The concept of a W∗-bundle has its roots in the efforts to prove that (iii) ⇒ (ii) in the

Toms–Winter Conjecture for more general trace simplices. The basic idea was to view an

element a of the C∗-algebra A as a section of a bundle-like object over the space of extreme

traces ∂eT (A) with a(τ) := πτ (a). This viewpoint allowed (iii) ⇒ (ii) to be proven in the

case that ∂eT (A) was compact and of finite covering dimension [47,77,88].

Ozawa then formalised this intuition in [62]. His crucial insight was to consider not

the C∗-algebra A but a certain tracial completion A
st

. Now the fibres of the bundle were

precisely the von Neumann algebras πτ (A)′′ and so all isomorphic to R in the setting of

the Toms–Winter Conjecture. Ozawa then noticed that the tracial completions A
st

could

be studied from an axiomatic view point, the key axiom being a form of completeness. In

short, he defined W∗-bundles.

The conceptual framework of W∗-bundles bore fruit in [5], where it was proven that

(ii) ⇒ (i) in the Toms–Winter Conjecture whenever ∂eT (A) is compact. This paper also

contributed to the abstract theory of W∗-bundles, introducing morphisms, tensor products

and ultrapowers of W∗-bundles for the first time.

In the language of W∗-bundles, the role of finite covering dimension in [47,77,88] also

becomes clearer. When the base space X of a W∗-bundle with fibres R has finite covering

dimension, the bundle is in fact a trivial bundle. This trivialisation can be viewed as a

global version of Connes’ Theorem, ensuring that the isomorphisms πτ (A)′′ ∼= R for each

τ ∈ ∂eT (A) can be chosen in a consistent manner. In [62], Ozawa asks whether all W∗-

bundles with fibres R are trivial. The locally trivial case was answered positively in [23]

by myself and Pennig; the general case remains elusive.

Thesis Structure

This thesis is structured as follows. After recalling some necessary preliminary results in

Chapter 2, we set out the abstract theory of W∗-bundles in Chapter 3, building on the

work of [62] and [5], but also filling in details not contained in these papers such as the

standard form of a W∗-bundle and the theory of completions, ideals and quotients. In

Chapter 3, we also develop an alternative topological viewpoint for W∗-bundles based on
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the notion of Banach bundles from [26], expanding on the viewpoint set out in my joint

paper with Pennig [23].

Chapter 4 is devoted to the triviality problem for W∗-bundles. We present Ozawa’s

Triviality Theorem [62, Theorem 15] and investigate property Γ and the McDuff property

for W∗-bundles. We discuss the known applications of Ozawa’s Triviality Theorem to

finite-dimensional base spaces and Z-stable C∗-algebras, before applying it to some new

examples such as the strict closures of Villadsen algebras and non-trivial C(X)-algebras.

Chapter 4 ends with a discussion of the locally trivial case, which me and Pennig solved

in [23].

In Chapter 5, we leave the familiar territory of the classification programme for C∗-

algebras, in which W∗-bundle theory was born, in favour of the exciting world of subfactor

theory. After recalling the necessary background material in Section 5.1, we develop the

theory of sub-W∗-bundles following the path trodden by Jones for subfactors in his seminal

paper [38].
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Chapter 2

Preliminaries

The purpose of this chapter is to set notation and introduce some of the axillary concepts

that will be used in the course of the thesis. We assume that the reader has a solid

grasp of the fundamentals of general topology [44, 57] and functional analysis [75, 79, 98].

In particular, we assume the reader is has experience with topologies defined on vector

spaces by a norm or a family of seminorms, and they have studied the theory of Banach

and Hilbert spaces in some detail.

We also assume the reader has some familiarity with the theory of operator algebras

(for example [58, Chapters 1-6]). The material is this chapter should be viewed as supple-

mentary, not a self-contained introduction to the field.

2.1 Completeness in Topological Vector Spaces

Completeness is a fundamental concept in analysis. We assume the reader is familiar with

the definitions of completeness for metric spaces and, in particular, normed vector spaces.

However, the existence of a metric is not essential in order to define completeness. The

correct notion is that of a uniform space, which lies somewhere between that of a metric

space and a topological space. We shall suppress an in depth discussion of uniform spaces

in general, referring the interested reader to [44, Chapter 6], and focus instead on the

special case of subsets of a topological vector space.

Fix a topological vector space V . For any x0 ∈ V , the translation x 7→ x + x0 is a

homeomorphism mapping 0 to x0. This allows one to use the open neighbourhoods of 0,

to define a uniform notion of size in the topological vector space. This can be formalised

using the language of uniform spaces [44, Chapter 6] or be taken as motivation for the

15
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following definition.

Definition 2.1.1. Let A be a subset of a topological vector space V . A net (xλ)λ∈Λ in

A is Cauchy if, for any open neighbourhood U of 0 in V , there exists λ0 ∈ Λ such that

xλ1 − xλ2 ∈ U whenever λ1, λ2 ≥ λ0.

This definition is easily seen to be equivalent to the requirement that xλ − xµ → 0

as (λ, µ) → ∞, where the net is indexed by the directed set Λ × Λ. The definition of

completeness can now be given.

Definition 2.1.2. The subset A of a topological vector space V is complete if all Cauchy

nets in A converge in A.

If the topological vector space V is first countable, then there is no loss of generality

if just Cauchy sequences are considered. The definition above, therefore, extends the

standard definition of completeness for subsets of a normed vector space.

2.2 The Strong Operator Topology

Let V be a normed vector space and B(V ) denote the normed algebra of bounded operators

on V . We recall that the strong operator topology on B(V ) is the topology induced by the

family of seminorms {‖ · ‖v : v ∈ V }, where ‖T‖v = ‖Tv‖. The strong operator topology

is weaker than the topology induced by the operator norm.

It is well-known that when V is complete, then B(V ) is complete in operator norm.

The following completeness result is less well-known, perhaps because it requires the more

general notion of completeness discussed in Section 2.1.

Theorem 2.2.1. Let V be a Banach space. The unit ball of B(V ) is complete with respect

to the the strong operator topology.

Proof. Let (Tλ)λ∈Λ be a Cauchy net in the unit ball of B(V ) with respect to the the strong

operator topology. Then for all v ∈ V , (Tλv)λ∈Λ is a Cauchy net in V , so has a limit.

Define T : V → V by v 7→ limλ Tλv.

The linearity of each Tλ ensures the linearity of T . Since ‖Tλ‖ ≤ 1 for all λ ∈ Λ, we

have ‖Tλv‖ ≤ ‖v‖ for all v ∈ V and λ ∈ Λ. Hence, ‖Tv‖ ≤ ‖v‖ for all v ∈ V , and so

‖T‖ ≤ 1. Thus, T is in the unit ball of B(V ). By construction, Tλ → T in the strong

operator topology.
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From the completeness of the unit ball, the completeness of all norm-bounded sets

which are closed in the strong operator topology follows. Since we shall often be working

with the strong operator topology restricted to norm-bounded sets, we record the following

well-known result.

Proposition 2.2.2. Let V be a normed vector space and let A be a bounded subset of

B(V ). Suppose the span of S is dense in V . Then the strong operator topology on A is

induced by the family of seminorms {‖ · ‖v : v ∈ S}

Proof. We have ‖T‖λv+µw = ‖T (λv+ µw)‖ = ‖λTv+ µTw‖ ≤ |λ|‖T‖v + |µ|‖T‖w. So the

topologies induces by the families of seminnorms {‖ · ‖v : v ∈ S} and {‖ · ‖v : v ∈ span(S)}

are the same. Without loss of generality, we may, therefore, assume that S is a dense

subspace of V .

Suppose (Tλ)λ∈Λ is a net in A, T ∈ A and ‖Tλ − T‖v → 0 for all v ∈ S. Since A is

bounded there is M > 0 such that ‖Tλ‖ ≤M and ‖T‖ ≤M . Let v ∈ V and ε > 0. There

is u ∈ S such that ‖u− v‖ < ε
3M and λ0 ∈ Λ such that ‖Tλ − T‖u < ε

3 whenever λ ≥ λ0.

We then have

‖Tλ − T‖v = ‖Tλv − Tv‖ (2.2.1)

= ‖Tλv − Tλu‖+ ‖Tλu− Tu‖+ ‖Tu− Tv‖ (2.2.2)

≤ ‖Tλ‖‖v − u‖+ ‖Tλ − T‖u + ‖T‖‖u− v‖ (2.2.3)

< M
ε

3M
+
ε

3
+M

ε

3M
(2.2.4)

= ε (2.2.5)

whenever λ ≥ λ0. So Tλ → T in the strong operator topology. Since the convergence of

nets determines the topology, this completes the proof.

In fact more is true. The family of seminorms {‖·‖v : v ∈ S} induces the same uniform

structure on A as {‖ · ‖v : v ∈ V }. Since we are only interested in Cauchy sequences and

completeness, we just record the following.

Corollary 2.2.3. Let V be a normed space and let A be a bounded subset of B(V ). Suppose

the span of S is dense in V . A net (Tλ)λ∈Λ in A is Cauchy if and only if ‖Tλ−Tµ‖v → 0

as (λ, µ)→∞ for all v ∈ S.

Proof. The set of differences A − A is also bounded. So we can apply the proposition

above to the net (Tλ − Tµ)(λ,µ)∈Λ×Λ.
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2.3 Topologies on B(H)

In this thesis, all Hilbert space will be complex and the inner product will be taken to be

linear in the first entry. We shall denote the C∗-algebra of bounded operators on a Hilbert

space H by B(H).1 In preparation for our discussion of von Neumann algebras, we record

here the additional topologies on B(H) and the preferred names used in this thesis.

Definition 2.3.1. Let H be a Hilbert space. Write H(∞) =
⊕

i∈NH and T (∞) ∈ B(H(∞))

for the infinite diagonal inflation of T ∈ B(H). We make the following definitions:

• The weak (operator) topology on B(H) is induced by the family of seminorms

‖T‖v,w := |〈Tv,w〉| (v, w ∈ H). (2.3.1)

• The strong (operator) topology on B(H) is induced by the family of seminorms

‖T‖v := ‖Tv‖ (v ∈ H). (2.3.2)

• The strong∗ topology on B(H) is induced by the family of seminorms

‖T‖v := ‖Tv‖ (v ∈ H), (2.3.3)

‖T‖v,∗ := ‖T ∗v‖ (v ∈ H). (2.3.4)

• The ultraweak topology on B(H) (also called σ-weak in some references) is induced

by the family of seminorms

‖T‖v,w,∞ := |〈T (∞)v, w〉| (v, w ∈ H(∞)). (2.3.5)

• The ultrastrong topology on B(H) (also called σ-strong in some references) is induced

by the family of seminorms

‖T‖v,∞ := ‖T (∞)v‖ (v ∈ H(∞)). (2.3.6)

• The ultrastrong∗ topology on B(H) (also called σ-strong∗ in some references) is in-

duced by the family of seminorms

‖T‖v,∞ := ‖T (∞)v‖ (v ∈ H(∞)), (2.3.7)

‖T‖v,∗,∞ := ‖T (∞)∗v‖ (v ∈ H(∞)). (2.3.8)

1On occasion, we will also write L(H) for the space of bounded operators for compatability with the

notation for Hilbert modules (see Section 2.11).
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All the topologies defined in Definition 2.3.1 are weaker than the norm topology. The

relationships between the topologies are set out in the following diagram

ultraweak < ultrastrong < ultrastrong∗

∨ ∨ ∨

weak < strong < strong∗,

(2.3.9)

where < means weaker than. When restricted to norm-bounded subsets of B(H), the

weak, strong and strong∗ topologies agree with the ultraweak, ultrastrong and ultrastrong∗

topologies respectively. For a detailed examination of the properties of the topologies

defined in Definition 2.3.1, the reader is referred to [82, Section II.2] or [4, Section I.3]. We

record only the following corollary of Theorem 2.2.1, which is of particular importance to

this thesis.

Corollary 2.3.2. Let H be a Hilbert space. The unit ball of B(H) is complete with

respect to the strong operator topology, the strong∗ topology, the ultrastrong topology, and

the ultrastrong∗ topology.

Proof. On bounded sets, the ultrastrong topology agrees with the strong operator topology

and the ultrastrong∗ topology agrees with the strong∗ topology. Thus, we only need to

deduce the result for the strong∗-topology.

Let (Tλ)λ∈Λ be a Cauchy net in the unit ball of B(H) with respect to the the strong∗

topology. Apply Theorem 2.2.1 to both (Tλ)λ∈Λ and (T ∗λ )λ∈Λ, and denote the limits of the

these nets in the strong operator topology T and S respectively. Since 〈Tλv, w〉 = 〈v, T ∗λw〉

for all v, w ∈ H and λ ∈ Λ, we have, after taking limits, 〈Tv,w〉 = 〈v, Sw〉 for all v, w ∈ H.

Hence S = T ∗ and (Tλ)λ∈Λ converges to T in the strong∗ topology.

Remark 2.3.3. From the completeness of the unit ball, the completeness of all norm-

bounded, sets closed in the topology in question follows. The analogous results for the

weak operator topology and ultraweak topology also hold [4, Section I.3.2.2].

2.4 C∗-Algebras

We assume the reader is familiar the basics of C∗-algebras including the theory of inductive

limits and tensor products [58, Chapters 1-6]. All C∗-algebras in this thesis are complex.
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We shall denote the self-adjoint elements of a C∗-algebra A by Asa and the positive elements

by A+.

One basic fact about C∗-algebras that will be used particularly often is that injective

∗-homomorphisms between C∗-algebras are necessarily isometric [58, Theorem 3.14]. Also

worthy of particular emphasis is the following lifting result, which can be found in [74,

Section 2.2.10].

Proposition 2.4.1. Let A, B be C∗-algebras and φ : A→ B be a surjective ∗-homomorphism.

Given b ∈ B, call any a ∈ A with φ(a) = b a lift of b.

(i) Any b ∈ B has a lift a ∈ A with ‖a‖ = ‖b‖.

(ii) Any b ∈ Bsa has a lift a ∈ Asa with ‖a‖ = ‖b‖.

(iii) Any b ∈ B+ has a lift a ∈ A+ with ‖a‖ = ‖b‖.

Although fundamental to the classification programme for C∗-algebras, nuclearity will

only play a minor role in this thesis. The following brief overview will suffice.

A C∗-algebra A is said to be nuclear if there is a unique C∗-norm on the algebraic

tensor product A ⊗alg B, and so a unique C∗–tensor product A ⊗ B, for all C∗-algebras

B. Nuclearity can equivalently be viewed as a form of amenability [12, 32] or a finite

dimensional approximation property [9,45]. The class of nuclear C∗-algebras includes the

finite-dimensional C∗-algebras and the commutative C∗-algebras. Moreover, the class of

nuclear C∗-algebras is closed under tensor products, inductive limits, and extensions. For

further details on nuclearity, the reader is referred to [6, Chapters 2-3].

2.5 Completely Positive Maps

The most fundamental class of maps between C∗-algebras are the ∗-homomorphisms. How-

ever, for some applications, ∗-homomorphisms are too restrictive to be of use, and we turn

to the larger class of completely positive maps. In this section, we recall the basic results

about complete positive maps that will be used in this thesis. For further information on

complete positive maps, the reader should consult [64].

Definition 2.5.1. A bounded linear map φ : A → B between C∗-algebras is said to be

positive if φ(A+) ⊆ B+. We say φ is completely positive if the map φ(n) : Mn(A)→Mn(B)

given by (aij) 7→ (φ(aij)) is positive for all n ∈ N.
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The first examples of completely positive maps are the ∗-homomorphisms. Indeed,

any ∗-homomorphism φ : A → B is positive because φ(a∗a) = φ(a)∗φ(a). Moreover, if

φ : A → B is a ∗-homomorphism, then so is φ(n) : Mn(A) → Mn(B) for every n ∈ N.

Hence, φ is completely positive.

A second family of completely positive maps is the following: let A be a C∗-algebra,

b ∈ A and define φb : A → A by a 7→ b∗ab. The map φb is positive because φb(a
∗a) =

(ab)∗(ab). Moreover, for all n ∈ N, we have φ
(n)
b ((aij)) = (b∗aijb) = (bδij)

∗(aij)(bδij),

where (aij) ∈Mn(A) and δij is the Kronecker delta. Thus, φ
(n)
b is a map of the same form

as φb. Therefore, φb is completely positive.

Finally, the class of completely positive maps is closed under positive linear combina-

tions and point norm limits because the set of positive elements in a C∗-algebra is a closed

cone.

Since checking positivity of all matrix inflations of a maps, can be quite time consuming

and notationally messy, the following proposition is somewhat convenient.

Proposition 2.5.2. Let A, B be C∗-algebras with B commutative. Then a map φ : A→ B

is completely positive if and only if it is positive.

Proof. Let φ : A→ B be positive. Without loss of generality, B = C0(X) for some locally

compact Hausdorff space X. Then Mn(B) = C0(X,Mn(C)). Since f ∈ C0(X,Mn(C)) is

positive if and only if f(x) is positive for all x ∈ X, we get that φ is completely positive

if and only if evalx ◦ φ is completely positive for all x ∈ X.

Hence, we have reduced the problem to the case B = C. Let ξ = (ξ1, . . . , ξn)T ∈ Cn

and a = (aij) ∈Mn(A)+. Then

〈φ(n)(a)ξ, ξ〉 =
∑

1≤i,j≤n
ξiφ(aij)ξj (2.5.1)

= φ(
∑

1≤i,j≤n
ξiaijξj) (2.5.2)

= φ(ξ∗aξ) (2.5.3)

≥ 0. (2.5.4)

Therefore φ(n)(a) ∈Mn(C)+. Hence, φ is completely positive.

The reader should be warned that Proposition 2.5.2, fails dramatically without the

commutativity assumption. Indeed, the transpose map M2(C)→M2(C) is an example of

map that is positive but not completely positive (See [6, Proposition 3.5.1]).
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We now come to Stinespring’s Theorem, which describes the structure of a general

completely positive map.

Theorem 2.5.3. [6, Theorem 1.5.3] Let A be a unital C∗-algebra and φ : A→ B ⊆ B(H)

be a completely positive map. Then there exists a Hilbert space Ĥ, a ∗-homomorphism

π : A→ B(Ĥ) and an operator V ∈ B(H, Ĥ) such that

φ(a) = V ∗π(a)V (a ∈ A). (2.5.5)

In particular, ‖φ‖ = ‖V ∗V ‖ = ‖φ(1)‖.

Stinespring’s Theorem is proved by a generalisation of the GNS construction (see for

example [6, Theorem 1.5.3] or [64, Theorem 4.1]). An important corollary of Stinespring’s

Theorem is the following inequality.

Corollary 2.5.4. Let A be a unital C∗-algebra and φ : A → B ⊆ B(H) be a completely

positive map. Then

φ(a)∗φ(a) ≤ φ(a∗a) (a ∈ A). (2.5.6)

Proof. In the notation of Theorem 2.5.3, we have

φ(a∗a)− φ(a)∗φ(a) = V ∗π(a)∗(1
Ĥ
− V V ∗)π(a)V ≥ 0 (2.5.7)

for all a ∈ A.

Notation and Terminology 2.5.5. Following common practice, we introduce the fol-

lowing abbreviations to describe maps between C∗-algebras: cp for completely positive,

cpc for completely positive and contractive, and ucp for unital and completely positive. It

follows from Theorem 2.5.3 that ucp maps are automatically cpc.

An important result on cpc maps, which will be used on a number of occasions in

this thesis, is the following lifting theorem of Choi and Effros [8, Theorem 3.10] (see

also [6, Theorem B.3]).

Theorem 2.5.6. Let A,B,C be C∗-algebras with A nuclear and let q : B → C be a

surjective ∗-homomorphism. Given a cpc map φ : A→ C, there exists a cpc map Φ : A→

B such that φ = q ◦ Φ.

We now consider a special case of completely positive maps: the conditional expecta-

tions.
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Definition 2.5.7. Let B ⊆ A be C∗-algebras. A conditional expectation2 of A onto B is

a completely positive contractive map E : A→ B such that

E(b) = b (b ∈ B), (2.5.8)

E(bab′) = bE(a)b′ (a ∈ A; b, b′ ∈ B). (2.5.9)

The following theorem of Tomiyama is very convenient when determining if a map is

a conditional expectation. This result goes back to [85, Theorem 1]. The version stated

below is from [6, Theorem 1.5.9], where a proof can also be found.

Theorem 2.5.8. Let B ⊆ A be C∗-algebras and E : A → B be a linear map satisfying

E(b) = b for all b ∈ B. Then the following are equivalent:

(i) E is a conditional expectation.

(ii) E is completely positive and contractive.

(iii) E is contractive.

Another important class of completely positive maps are the completely positive order

zero maps. These maps were first introduced by Winter [94, Definition 2.1] in the special

case that the domain is finite dimensional. The general case of completely positive order

zero maps was investigated in [96].

Definition 2.5.9. A completely positive map φ : A → B between C∗-algebras is said to

be order zero if, for all positive elements a, b ∈ A+, φ(ab) = 0 whenever ab = 0.

In [96], Winter and Zacharias prove a structure theorem for completely positive order

zero maps [96, Theorem 3.3] and deduce the following result as a corollary [96, Corollary

4.1].

Theorem 2.5.10. Let A,B be C∗-algebras and φ : A→ B be a cpc order zero map. Then

the map given by ρφ(id(0,1]⊗a) := φ(a) induces a ∗-homomorphism ρφ : C0(0, 1]⊗A→ B.

Conversely, any ∗-homomorphism ρ : C0(0, 1] ⊗ A → B induces a cpc order zero map

φρ : A → B via φ(a) := ρ(id(0,1] ⊗ a). These mutual assignments yield a canonical

bijection between the spaces of cpc order zero maps from A to B and ∗-homomorphisms

from C0(0, 1]⊗A to B.

2The name conditional expectation is motivated by the case where A = L∞(Ω,F , µ) and B =

L∞(Ω,G, µ) for some probability triple (ω,F , µ) and G is a sub σ-algebra of F . The existence of an

expectation preserving conditional expectation A→ B is basic to advanced probability theory
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The main use of order zero maps in this thesis is the following lifting theorem, which

is taken from [88, Lemma 2.1]. It is proved by combining Theorem 2.5.10 with Loring’s

result on the projectivity of cones over finite dimensional C∗-algebras [51].

Proposition 2.5.11. Let A,B, F be C∗-algebras with F finite dimensional, and let q :

A → B be a surjective ∗-homomorphism. Suppose φ : F → B is a cpc order zero map.

Then there exists a cpc order zero map Φ : F → A such that φ = q ◦ Φ.

2.6 Representations of C∗-Algebras and the GNS construc-

tion

Every C∗-algebra has a faithful representation on a Hilbert space [27, 80]. The proof of

this fundamental result consists of two parts: firstly the Gelfand–Naimark–Segal (GNS)

construction, which builds representations out of positive linear functionals; secondly,

the existence of sufficiently many positive linear functionals, which is a Hahn–Banach

argument.

Many aspects of the GNS construction will be used and generalised in the thesis. We

therefore sketch the argument here to set up notation and record the constituent sub-

results. To avoid some (minor) technicalities, we shall stick to unital C∗-algebras and

unital representations throughout. For a full treatment of the material in this section,

see [14, Section I.9] or [58, Chapter 3].

2.6.1 States and the GNS construction

Fix a unital C∗-algebra A.

Definition 2.6.1. A representation of A is a unital ∗-homomorphism π : A → B(Hπ),

where Hπ is a Hilbert space. A representation is said to be faithful if it is injective.

Two representations π1, π2 are equivalent if there is a unitary U : Hπ1 → Hπ2 such that

π2(a) = Uπ1(a)U∗ for all a ∈ A.

The key to constructing representations of a C∗-algebras is to consider positive linear

functionals.

Definition 2.6.2. A positive linear functional on A is a bounded linear map φ : A → C

such that φ(a) ≥ 0 for all a ∈ A+ (c.f. Definition 2.5.1).
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It follows from Proposition 2.5.2 that positive linear functions are, in fact, completely

positive. We denote the set of all positive linear functionals on A by A∗+. It is a weak∗-

closed cone in A∗.

Given a positive functional φ on A, we can define a positive sesquilinear form on A via

〈a, b〉φ = φ(b∗a). We set ‖a‖2,φ = 〈a, a〉1/2. We have the Cauchy–Schwarz inequality

|〈a, b〉φ| ≤ ‖a‖2,φ‖b‖2,φ (a, b ∈ A), (2.6.1)

from which it follows that ‖ · ‖2,φ is a seminorm. A positive linear functional φ on A is

said to be faithful if φ(a∗a) > 0 for all non-zero a ∈ A, or equivalently when ‖ · ‖2,φ is a

norm.

Let a ∈ A have ‖a‖ ≤ 1. Taking b = 1 in (2.6.1), we get that

|φ(a)| ≤ φ(a∗a)1/2φ(1)1/2 (2.6.2)

≤ ‖φ‖1/2‖a∗a‖φ(1)1/2 (2.6.3)

≤ |φ‖1/2φ(1)1/2, (2.6.4)

from which we deduce that ‖φ‖ ≤ ‖φ‖1/2φ(1)1/2. Thus, ‖φ‖ = φ(1). This brings us to the

definition of a state.

Definition 2.6.3. A state on A is a positive linear function φ with ‖φ‖ = φ(1) = 1.

The set of all states, denoted by S(A), is a weak∗ closed, convex subset of the unit ball

of A∗. By the Banach–Algolou Theorem, the unit ball of A∗ is weak∗ compact. Hence,

S(A) is also weak∗ compact.

We now sketch the GNS construction which produces a representation πφ from a posi-

tive linear functional φ. Let L2(A, φ) denote the Hilbert space obtained from A by quoti-

enting out by Nφ = {b ∈ A : ‖a‖2,φ = 0} and completing in the resulting norm. We denote

the natural map A → L2(A, φ) by a 7→ â; we write ξφ for 1̂. The key technical lemma is

the following.

Lemma 2.6.4. With the notation above ‖ab‖2,φ ≤ ‖a‖‖b‖2,φ.

Proof. Since a∗a ≤ ‖a‖21A in A, we have

‖ab‖22,φ = φ(b∗a∗ab) (2.6.5)

≤ φ(b∗‖a‖2b) (2.6.6)

= ‖a‖2φ(b∗b) (2.6.7)

= ‖a‖2‖b‖22,φ. (2.6.8)
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It follows that one can define bounded linear operators on L2(A, φ) by φ(a)̂b = âb, and

the resulting map πφ : A → B(L2(A, φ)) is a representation. The original positive linear

functional is recovered via φ(a) = 〈π(a)ξφ, ξφ〉L2(A,φ). Moreover, ξφ generates L2(A, φ) as

a (Banach)-A-module in the sense that L2(A, φ) = πφ(A)ξφ. This motivates the following

definition.

Definition 2.6.5. A cyclic representation of A is a representation π together with a vector

ξπ ∈ Hπ such that Hπ = π(A)ξπ. Two cylic representations π1, π2 are equivalent if there

is a unitary U : Hπ1 → Hπ2 such that Uξπ1 = ξπ2 and π2(a) = Uπ1(a)U∗ for all a ∈ A.

The GNS construction is now one direction of a 1-1 correspondence between equiva-

lence classes of cyclic representations and positive linear functionals. The positive linear

functional associated with a cyclic representation π of A is a 7→ 〈π(a)ξπ, ξπ〉Hπ .

Theorem 2.6.6. There is a 1-1 correspondence between equivalence classes of cyclic rep-

resentations and positive linear functionals. If we require the cyclic vector ξπ of a cyclic

representation to be a unit vector, then we obtain a 1-1 correspondence with states.

To construct a faithful representation of a unital C∗-algebra A, one needs to prove the

existence of sufficiently many states. The following definition and proposition make this

precise.

Definition 2.6.7. A family of states (φi)i∈I on a unital C∗-algebra A is separating if, for

all non-zero a ∈ A, there exists i ∈ I such that φi(a
∗a) > 0.

Proposition 2.6.8. Let A be unital C∗-algebra and (φi)i∈I a separating family of states.

Then ⊕i∈Iπφi is a faithful representation.

Proof. Let a ∈ A. By hypothesis, there is j ∈ I such that φj(a
∗a) > 0. Then

‖πφj (a)ξφj‖
2 = 〈πφj (a)ξφj , πφj (a)ξφj 〉 (2.6.9)

= 〈πφj (a)∗πφj (a)ξφj , ξφj 〉 (2.6.10)

= 〈πφj (a
∗a)ξφj , ξφj 〉 (2.6.11)

= φj(a
∗a) > 0, (2.6.12)

so πφj (a) 6= 0. Therefore, ⊕i∈Iπφi(a) 6= 0.
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When end this subsection with an existence theorem for states on a unital C∗-algebra.

For a proof, see for example [58, Theorem 3.3.6].

Theorem 2.6.9. Let A be unital C∗-algebra. For all a ∈ A, there exists a state φ with

φ(a∗a) = ‖a‖2. In particular, there exists a separating family of sates for A and A has a

faithful representation on a Hilbert space.

2.6.2 The GNS Construction for Traces

In this thesis, the traces on a C∗-algebra will play a major role. Since terminology varies

in the literature, we make the following definition. In particular, note that traces for us

are normalised and defined everywhere, i.e. tracial states, unless otherwise stated.

Definition 2.6.10. A trace on a unital C∗-algebra A is a positive linear functional τ :

M → C such that

τ(ab) = τ(ba) (a, b ∈M), (2.6.13)

τ(1A) = 1. (2.6.14)

We denote the set of all traces on a unital C∗-algebra A by T (A). We can have

T (A) = ∅, but when this is not the case T (A) is a weak∗-closed, convex subset of S(A),

so is compact weak∗ compact. We now consider the GNS construction with respect to a

trace τ . The corresponding seminorm ‖ · ‖2,τ enjoys some additional properties compared

with seminorms coming from a mere state.

Proposition 2.6.11. The semi-norm ‖ ·‖2,τ arising from a trace τ on a unital C∗-algebra

A satisfies the following for all a, b ∈ A:

(i) ‖a‖2,τ ≤ ‖a‖,

(ii) |τ(a)| ≤ ‖a‖2,τ

(iii) ‖a∗‖2,τ = ‖a‖2,τ ,

(iv) ‖ab‖2,τ ≤ ‖a‖‖b‖2,τ ,

(v) ‖ab‖2,τ ≤ ‖a‖2,τ‖b‖.

Proof. (i) We have ‖a‖22,τ = τ(a∗a) ≤ ‖τ‖‖a∗a‖ = ‖a‖2.

(ii) By Cauchy-Schwarz, |τ(a)| = |τ(a.1A)| ≤ ‖a‖2,τ‖1A‖2,τ = ‖a‖2,τ .
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(iii) We have ‖a∗‖22,τ = τ(aa∗) = τ(a∗a) = ‖a‖22,τ .

(iv) This is Lemma 2.6.4.

(v) Using (iii) and (iv), we have ‖ab‖2,τ = ‖b∗a∗‖2,τ ≤ ‖b∗‖‖a∗‖2,τ = ‖a‖2,τ‖b‖.

Properties (ii) and (v) of Proposition 2.6.11 required that τ was a trace. They give rise

to additional bounded operators on L2(A, τ). Firstly, we can define a representation πop
τ

of Aop on L2(A, τ) via the formula πop
τ (a)̂b = b̂a for a, b ∈ A. Secondly, the map â 7→ â∗

extends to a conjugate-linear isometric involution J on L2(A, τ). Simple calculations give

πτ (a)πop
τ (b) = πop

τ (b)πτ (a) (a, b ∈ A), (2.6.15)

πop
τ (a) = Jπτ (a∗)J (a ∈ A). (2.6.16)

We can also describe the kernel of the GNS representation with respect to a trace

easily.

Proposition 2.6.12. We have Ker(πτ ) = Ker(πop
τ ) = {a ∈ A : ‖a‖2,τ = 0}. In particular,

Iτ = {a ∈ A : ‖a‖2,τ = 0} is an ideal. The vector state on B(Hτ ) defined by T 7→ 〈Tξτ , ξτ 〉

restricts to a faithful trace on πτ (A) and πop
τ (A).

Proof. It follows from Proposition 2.6.11(v) that a ∈ Iτ implies πτ (a)̂b = 0 for all b ∈ A.

Hence, by density, a ∈ Ker(πτ ). Conversely, if a ∈ Ker(πτ ), then â = πτ (a)ξτ = 0,

so a ∈ Iτ . Therefore, Ker(πτ ) = Iτ . Similarly, this time using Proposition 2.6.11(iv),

Ker(πop
τ ) = Iτ .

We have 〈πτ (a)ξτ , ξτ 〉 = τ(a), so the vector state T 7→ 〈Tξτ , ξτ 〉 restricts to a trace

on πτ (A). If 0 = 〈πτ (a)∗πτ (a)ξτ , ξτ 〉, then ‖a‖22,τ = τ(a∗a) = 〈πτ (a)∗πτ (a)ξτ , ξτ 〉 = 0, so

a ∈ Iτ and πτ (a) = 0. Hence, the trace on πτ (A) is faithful. The equivalent result for

πop
τ (A) is proved similarly.

Corollary 2.6.13. The map τ : A/Iτ → C given by a+Iτ 7→ τ(a) is a well-defined faithful

trace on A/Iτ

Proof. This result can be proved directly using 2.6.11(ii). Alternatively, one observes that

A/Iτ ∼= πτ (A) by the first isomorphism theorem and that τ can be obtain by following

this isomorphism with the vector state of Proposition 2.6.12.

Corollary 2.6.14. All traces on a simple C∗-algebra are faithful.
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2.7 Von Neumann Algebras

We assume that the reader is familiar with the basics of the theory of von Neumann

algebras [58, Chapter 4] and the construction of the hyperfinite II1 factor R [4, Section

III.3.1.4]. The goal of this section is to highlight the key results about von Neumann

algebras that will be used in the thesis.

Central to the theory of von Neumann algebras are von Neumann’s Bicommutant

Theorem [92, Satz 8] and the Kaplansky Density Theorem [42, Theorem 1]. We record

them in their strongest forms.3

Theorem 2.7.1 (The Bicommutant Theorem). Let H be a Hilbert space and M be a

∗-subalgebra of B(H) containing the identity. The following are equivalent:

(i) M ′′ = M ,

(ii) M is closed in all of the topologies of Definition 2.3.1,

(iii) M is closed in any of the topologies of Definition 2.3.1.

Theorem 2.7.2 (The Kaplansky Density Theorem). Let H be a Hilbert space and M be

a ∗-subalgebra of B(H) containing the identity. Then the unit ball of M is a dense subset

of the unit ball of M ′′ with respect to any of the topologies of Definition 2.3.1

The ultraweak, ultrastrong and ultrastrong∗ topologies depend only on the ∗-algebraic

structure of M [82, Corollary III.3.10]. The same can be said for weak, strong and strong∗

topologies, so long as one restricts to norm-bounded subsets, where they agree with the

ultraweak, ultrastrong and ultrastrong∗ topologies respectively.

When working with maps between von Neumann algebras, one is particularly interested

in maps that are continuous with respect to the additional topologies on von Neumann

algebras. Fortunately, we have the following result.4

Theorem 2.7.3. Let φ : M → N be a completely positive map between von Neumann

algebras. Let φ1 : B1(M) → N denote the restriction of φ to the unit ball. The following

are equivalent:

3Some textbooks don’t state theses theorems in their strongest forms. For a proof that M ′′ = M

whenever M is ultrastrong∗ closed (the weakest hypothesis), see [82, Theorem II.3.9]. For a proof that

the unit ball of M is strong∗ dense in the unit ball of M ′′, see [82, Theorem II.408], and note that the

ultrastrong∗ topology agrees with the strong∗ topology on bounded sets.
4This is essentially taken from [4, Section III.2.2]. Since cpc maps are ∗-preserving, the additional

implications (ii)⇔ (iii) and (ii)⇔ (iii) are trivial. See also [82, Theorem II.2.6(iv)].
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(i) φ is continuous with respect to the ultraweak topologies on M and N ,

(i’) φ1 continuous with respect to the weak topologies on M and N ,

(ii) φ continuous with respect to the ultrastrong topologies on M and N ,

(ii’) φ1 continuous with respect to the strong topologies on M and N ,

(iii) φ is continuous with respect to the ultrastrong∗ topologies on M and N ,

(iii’) φ1 is continuous with respect to the strong∗ topologies on M and N .

A completely positive map between W∗-algebras is said to be normal if any of the

conditions of Theorem 2.7.3 hold. An important result about normal maps is that the

image of a von Neumann algebra under a normal ∗-homomorphism is also von Neumann

algebra. We record this well-known result as a theorem for ease of future reference, as

we’ve been unable to find a precise reference.

Theorem 2.7.4. Let M and N be von Neumann algebras and φ : M → N a normal

∗-homomorphism. Then φ(M) is a von Neumann algebra.

Proof. It standard that the image of a C∗-algebra under a ∗-homomrophism is a C∗-algebra

[4, Corollary II.5.1.2]. The only difficultly is in proving that the image is ultraweakly closed.

Since unit ball B1(M) is ultraweakly compact [58, Theorem 4.2.4], φ(B1(M)) ultraweakly

compact and thus ultraweakly closed. It now follows from the Kaplansky Density Theorem

that φ(M) is ultraweakly closed and hence a von Neumann algebra.

Although von Neumann algebras come with a defining representation, at times it is

useful to consider alternative representations. The 1-1 correspondence of Theorem 2.6.6

is supplemented by the following. (See for example [4, Proposition III.2.2.3]).

Proposition 2.7.5. A state on a von Neumann algebra is normal if and only if the

corresponding GNS representation is normal.

We also record the analogue of Theorem 2.6.9 for von Neumann algebra. (See for

example [82, Theorem II.2.6(iii)]).

Theorem 2.7.6. The normal states of a von Neumann algebra M are weak∗ dense in the

state space. In particular, M has a separating family of normal states.
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A separating family of faithful states (φi)i∈I gives rise to a faithful normal repre-

sentation ⊕i∈Iπφi . Moreover, it provides us with an alternative description of the strong

topology on bounded subsets. The following result is taken from [4, Proposition III.2.2.19].

We include the proof for the benefit of the reader.

Proposition 2.7.7. Let M be a von Neumann algebra and (φi)i∈I a separating family of

normal states. The strong topology on norm-bounded subsets of M is induced by the family

of seminorms {‖ · ‖2,φi : i ∈ I}.

Proof. We may identify M with its image under the faithful normal representation ⊕i∈Iπφi
since the restriction of the strong topology to bounded subsets is a ∗-algebraic invariant.

The subset {ξφi : i ∈ I} ⊆ ⊕i∈IHφi is separating for M . Therefore, the set {yξφi : y ∈

M ′, i ∈ I} has dense span in Hφi . By Proposition 2.2.2, the strong operator topology on

norm-bounded subsets of B(⊕i∈IHφi) is induced by the family of seminorms {‖ · ‖yξφi :

y ∈M ′, i ∈ I}, where ‖T‖yξφi = ‖T (yξφi)‖.

For a ∈M ,

‖a‖yξφi = ‖a(yξφi)‖ (2.7.1)

= ‖yaξφi)‖ (2.7.2)

≤ ‖y‖‖aξφi)‖ (2.7.3)

= ‖y‖‖a‖ξφi (2.7.4)

= ‖y‖‖a‖2,φi . (2.7.5)

Therefore, on norm-bounded subsets of M the subfamily {‖ · ‖2,φi : i ∈ I} induces the

same topology as {‖ · ‖yξφi : y ∈M ′, i ∈ I}.

2.8 Finite von Neumann Algebras

This purpose of this section is to recall the main results about finite von Neumann algebras

and tracial von Neumann algebras. We begin with a brief overview of the theory of Murray–

von Neumann equivalence for projections in order to define finiteness for von Neumann

algebras and the finite part of a von Neumann algebra. The main reference for this section

is [4, Chapter III]
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2.8.1 Projections in von Neumann Algebras

In this subsection, we review the definitions of finite and properly infinite projections. The

reader who is familiar with these definition can safely skip to the next subsection. The

background material in this subsection is based on [4, Section III.1], where full proofs and

further details can be found. The original source is [59, Chapters VI-VII].

Fix a von Neumann algebra M . By a projection, we mean a self-adjoint idempotent

in M , i.e. p ∈ M such that p2 = p = p∗. Two projections p, q are Murray–von Neumann

equivalent, denoted p ∼ q, if there exists v ∈ M such that vv∗ = p and v∗v = q. The

projection p is Murray–von Neumann subequivalent to q, denoted p - q, if there exists

v ∈ M such that vv∗ = p and v∗v ≤ q, where ≤ denotes the standard partial order in a

C∗-algebra.

Theorem 2.8.1. The relation ∼ is an equivalence relation and - induces a partial order

on the equivalence classes.

Projections p and q are said to be orthogonal if pq = 0. In this case, p + q is also

a projection. An indexed family (pi)i∈I of projections is said to be pairwise orthogonal

if pipj = 0 whenever i 6= j. In this case,
∑

i∈I pi converges in the ultrastrong∗ topology

and defines a projection. The relations ∼ and - interact well with addition of orthogonal

projections.

Theorem 2.8.2. Suppose (pi)i∈I and (qi)i∈I are two families of pairwise orthogonal pro-

jections with the same index set.

(i) If pi - qi for all i ∈ I, then
∑

i∈I pi -
∑

i∈I qi.

(ii) If pi ∼ qi for all i ∈ I, then
∑

i∈I pi ∼
∑

i∈I qi.

There is a notable analogy between the above and set theory. In this analogy, projec-

tions correspond to sets, Murray–von Neumann (sub)equivalence to (sub)equinumerosity

of sets, and orthogonality to disjointness. Theorems 2.8.1 and 2.8.2 correspond to well-

known results in set theory. In particular, Theorem 2.8.1 contains an analogue of the

Cantor-Schröder-Bernstein Theorem: if p - q and q - p, then p ∼ q. The definition of

finite and infinite projections can be viewed as analogous to that of Dedekind finite and

infinite sets.

Definition 2.8.3. A projection p is finite if it is not Murray–von Neumann equivalent to

any proper subprojection, i.e. if q ≤ p and p ∼ q, then p = q.
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The following result is fundamental but somewhat tricky to prove; see [4, Proposition

III.1.3.9] or [59, Lemma 7.3.5].

Theorem 2.8.4. If p and q are orthogonal finite projections, then p+ q is finite.

We know turn our attention to infinite projections.

Definition 2.8.5. A projection p is infinite if it is Murray–von Neumann equivalent to a

proper subprojection, i.e. there exists q < p with p ∼ q.

Definition 2.8.6. An projection p is properly infinite if there exist orthogonal projections

p1, p2 ≤ p with p1 ∼ p2 ∼ p.

A non-zero, properly infinite projection is clearly infinite. According to the definitions

given here, the zero projection is properly infinite despite being finite (and therefore not

infinite)! This convention is common, but not universal, in the literature. The reason for

this apparent disregard of the English language is the clean statement of Theorem 2.8.9

which it affords.

We end this subsection with a couple of examples.

Example 2.8.7. For M = B(`2), the finite projections are those with finite-dimensional

range. The projections with infinite-dimensional range are both infinite and properly

infinite.

Example 2.8.8. For M = B(`2) ⊕ B(`2), the projection (p, q) is infinite but not prop-

erly infinite when one of p and q has infinite-dimensional range and the other has finite-

dimensional (but non-zero) range.

2.8.2 Finite von Neumann Algebras and Traces

A von Neumann algebra M is said to be finite if the unit 1M is a finite projection. In fact,

all projections in a finite von Neumann alegbra M are finite because, if p ∈M is infinite,

so is 1M = p+ (1− p) by Theorem 2.8.2. Similarly, M is said to be properly infinite if 1M

is a properly infinite projection. A general von Neumann algebra has a canonical central

decomposition into a finite part and a properly finite part (see for example [4, Section

III.1.4.1]).

Theorem 2.8.9. Let M be a von Neumann algebra. There exists a unique central pro-

jection zf ∈ Z(M) such that zf is finite and 1 − zf is properly infinite. This leads to a

central decomposition M = Mzf ⊕M(1− zf ).
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For the remainder of this subsection, we focus on finite von Neumann algebras. Finite-

ness of a von Neumann algebra is closely related to the existence of traces.

Theorem 2.8.10. A von Neumann algebra M is finite if it has a separating family of

traces.

Proof. Suppose (τi)i∈I is a separating family of traces and p is a projection in M with

1M ∼ p. Say vv∗ = 1M and v∗v = p. Then τi((1M − p)∗(1M − p)) = τi(1M − p) =

τi(vv
∗)− τi(v∗v) = 0 for all i ∈ I. Hence, p = 1M .

The converse to Theorem 2.8.10 is also true, but is highly non elementary. It follows

from the existence of the centre-valued trace [15]. The construction of the centre-valued

trace is beyond the scope of this thesis. We collect the all properties of the centre valued

trace that will be needed in the following theorem. The interested reader is referred

to [4, Section III.2.5] for proofs and further details.

Theorem 2.8.11. Let M be a finite von Neumann algebra. There exists a unique map

ctr : M → Z(M) with the following properties:

(i) ctr is a conditional expectation (in particular ucp).

(ii) ctr(ab) = ctr(ba) for all a, b ∈M .

This map ctr has the following additional properties:

(iii) ctr is normal.

(iv) ctr is faithful, i.e. for a ∈M , ctr(a∗a) = 0 only if a = 0.

(v) Every trace on M has the form ϕ ◦ ctr for a unique state ϕ on Z(M).

(iv) The center-valued trace completely determines the Murray–von Neumann comparison

theory of M , i.e. projections p, q are equivalent if and only if ctr(p) = ctr(q) and

p - q if and only if ctr(p) ≤ ctr(q).

Property (v) of the theorem, reduces the study of traces on a finite von Neumann

algebra M to that of states of Z(N). We therefore have the following corollary.

Corollary 2.8.12. A finite von Neumann algebra has a separating family of normal traces.

The normal traces are weak∗ dense in the space of all traces.

Proof. This follows from Theorem 2.8.11(v) combined with Theorem 2.7.6.
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2.8.3 Tracial von Neumann Algebras

A tracial von Neumann algebra is a von Neumann algebra together with a faithful, normal

trace. Tracial von Neumann algebras are necessarily finite by Theorem 2.8.10. In general,

a finite von Neumann algebra need not have faithful, normal traces but any separably-

acting, finite von Neumann algebra will (see for example [4, Corollary III.2.5.8]). Choosing

one such trace, we can view a separably-acting, finite von Neumann algebra as a tracial

von Neumann algebra.

In the case of II1 factors, no arbitrary choices or separability assumptions need to be

made because a II1 factor has a unique trace, which is both faithful and normal [60]. Tracial

von Neumann algebras also arise from C∗-algebras by considering the GNS construction

with respect to a trace. This is the subject of the following proposition, which uses the

notation of Section 2.6.2.

Proposition 2.8.13. Let τ be a trace on the unital C∗-algebra A. The vector state on

B(Hτ ) defined by T 7→ 〈Tξτ , ξτ 〉 restricts to a faithful trace on πτ (A)′′. Hence, the GNS

closure πτ (A)′′ is a tracial von Neumann algebra.

Proof. Let ψ be the vector state on B(Hτ ) given by T 7→ 〈Tξτ , ξτ 〉. By Proposition 2.6.12,

the restriction of ψ to πτ (A) is a faithful trace. By density, ψ is a trace on πτ (A)′′.

Normality is clear as ψ is a vector state. We need to show that it’s faithful on πτ (A)′′.

Suppose T ∈ πτ (A)′′ and ψ(T ∗T ) = 〈T ∗Tξτ , ξτ 〉 = 0. Then Tξτ = 0. Let b ∈ A. Then

T b̂ = Tπop
τ (b)ξτ = πop

τ (b)Tξτ = 0, since πop
τ (A) ⊆ πτ (A)′. Hence, by density, T = 0.

Applying Proposition 2.8.13 to Aop, we see that πop(A)′′ is also a tracial von Neumann

algebra. Taking limits in (2.6.16), we see that these two tracial von Neumann algebras are

related: πop(A)′′ = Jπτ (A)′′J . Furthermore, taking limits in (2.6.15), we get that πop(A)′′

and πτ (A)′′ commute. In fact, they are commutants of one another. This important result

can be proved in a number of ways. The slick proof given below is taken from [6, Section

6.1].

Lemma 2.8.14. Let τ be a trace on the unital C∗-algebra A. Using the notation of Section

2.6.2, we have

(i) 〈Jv,w〉 = 〈Jw, v〉 = 〈v, Jw〉 for all v, w ∈ L2(A, τ),

(ii) JTξτ = T ∗ξτ for all T ∈ πτ (A)′.
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Proof. (i) Let a, b ∈ A. Then

〈Jâ, b̂〉 = 〈â∗, b̂〉 (2.8.1)

= τ(b∗a∗) (2.8.2)

= τ(a∗b∗) (2.8.3)

= 〈b̂∗, â∗〉 (2.8.4)

= 〈Jb̂, â〉 (2.8.5)

= 〈â, J b̂〉, (2.8.6)

so the claim follows by density.

(ii) Let T ∈ πτ (A)′ and a ∈ A. Then

〈JTξτ , â〉 = 〈Jâ, T ξτ 〉 (2.8.7)

= 〈â∗, T ξτ 〉 (2.8.8)

= 〈πτ (a∗)ξτ , T ξτ 〉 (2.8.9)

= 〈T ∗πτ (a∗)ξτ , ξτ 〉 (2.8.10)

= 〈πτ (a∗)T ∗ξτ , ξτ 〉 (2.8.11)

= 〈T ∗ξτ , πτ (a)ξτ 〉 (2.8.12)

= 〈T ∗xξτ , â〉. (2.8.13)

Hence, by density, JTξτ = T ∗ξτ .

Theorem 2.8.15. Let τ be a trace on the unital C∗-algebra A. Then πτ (A)′ = πop
τ (A)′′

and πop
τ (A)′ = πτ (A)′′.

Proof. Since πop
τ (A)′′ and πτ (A)′′ commute, we have that πτ (A)′ ⊇ πop

τ (A)′′ and πop
τ (A)′ ⊇

πτ (A)′′. Therefore, it suffices to show that πτ (A)′ and πop
τ (A)′ commute.

Since J is a conjugate-linear isometric isomorphism of order 2, the map Ad(J) :

B(L2(A, τ)) → B(L2(A, τ)) given by T 7→ JTJ is a conjugate-linear ∗-isomorphism of

C∗-algebras. Since Ad(J)(πτ (A)) = πop
τ (A), we have that Ad(J)(πτ (A)′) = πop

τ (A)′.

Therefore, it suffice to show that JSJT = TJSJ , where T, S ∈ πτ (A)′. This is achieved

by the following computation.
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Let T, S ∈ πτ (A)′ and a, b ∈ A. Then

〈JSJT â, b̂〉 = 〈Jb̂, SJT â〉 (2.8.14)

= 〈S∗πτ (b∗)ξτ , JTπτ (a)ξτ 〉 (2.8.15)

= 〈πτ (b∗)S∗ξτ , Jπτ (a)Tξτ 〉 (2.8.16)

= 〈πτ (b∗)S∗ξτ , π
op
τ (a∗)JTξτ 〉 (2.8.17)

= 〈πτ (b∗)JSξτ , π
op
τ (a∗)T ∗ξτ 〉 (2.8.18)

= 〈πop
τ (a)JSξτ , πτ (b)T ∗ξτ 〉 (2.8.19)

= 〈Jπτ (a∗)Sξτ , πτ (b)T ∗ξτ 〉 (2.8.20)

= 〈JSπτ (a∗)ξτ , T
∗πτ (b)ξτ 〉 (2.8.21)

= 〈JSJâ, T ∗b̂〉 (2.8.22)

= 〈TJSJâ, b̂〉. (2.8.23)

Hence, by density, JSJT = TJSJ .

In the remainder of this section, we show how tracial von Neumann algebras can be

defined abstractly, without reference to a particular representation. This is based on the

following folklore theorem.

Theorem 2.8.16. Let τ be a faithful trace on the unital C∗-algebra A. The following are

equivalent:

(i) The unit ball {a ∈ A : ‖a‖ ≤ 1} of A is complete with respect to the norm ‖ · ‖2,τ .

(ii) The image of A under the GNS representation πτ is a von Neumann algebra, i.e.

πτ (A) = πτ (A)′′.

(iii) There exists a faithful representation π : A→ B(H) under which the image of A is a

a von Neumann algebra, i.e. π(A) = π(A)′′, and τ defines a normal trace on π(A).

Proof. (i) ⇔ (ii) Let M = πτ (A)′′. Since τ is faithful, we can view A as a subset of M

by Proposition 2.6.12. Furthermore, by 2.8.13, the vector state T 7→ 〈Tξτ , ξτ 〉 defines a

faithful trace on M which extends τ , so the strong operator topology on bounded subsets

of M is induced by the norm ‖ · ‖2,τ thanks to Proposition 2.7.7.

If the unit ball of A is complete with respect to the ‖ ·‖2,τ -norm, then it is ‖ ·‖2,τ -norm

closed, and so closed in the strong operator topology. But then M = A by the Kapansky

Density Theorem. Conversely, if A = M , then the unit ball is complete with respect to the
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strong operator topology by Corollary 2.3.2 (see also Remark 2.3.3). Hence, is complete

with respect to the ‖ · ‖2,τ -norm.

(ii) ⇒ (iii) Immediate.

(iii) ⇒ (ii) Identify A with π(A). Since τ is normal, so is the GNS representation πτ

by Proposition2.7.5. Hence πτ (A) = πτ (A)′′ by Theorem 2.7.4.

The completeness condition (i) of Theorem 2.8.16 becomes the definition of an abstract

tracial von Neumann algebra, which we record formally for future reference.

Definition 2.8.17. An abstract tracial von Neumann algebra is unital C∗-algebra A to-

gether with a faithful trace τ such that the unit ball {a ∈ A : ‖a‖ ≤ 1} of A is complete

with respect to the norm ‖ · ‖2,τ . Morphisms of tracial von Neumann algebras are unital,

trace preserving ∗-homomorphisms between the underlying C∗-algebras.

In light of Theorem 2.8.16, we will not distinguish between abstract and concrete tracial

von Neumann algebras. By Proposition 2.7.7, the strong topology agrees with the ‖ · ‖2,τ -

topology on bounded sets. Hence, normal cpc maps between tracial von Neumann algebras

are precisely those with are ‖ · ‖2,τ -continuous restricted to bounded sets. In particular,

trace-preserving ∗-homomorphisms are normal. A simple consequence of the trace being

faithful is that morphisms of tracial von Neumann algebras are always injective.

For II1 factors, all unital ∗-homomorphisms are trace preserving as the trace is unique.

So the category of II1 factor with unital ∗-homomorphisms is a full subcategory of the

category of tracial von Neumann algebras.

2.9 The Bidual of a C∗-Algebra and its Finite Part

In this section, we recall some of the key results about the bidual of a C∗-algebra and its

finite part. Good general references for the bidual of a C∗-algebra are [82, Section III.2]

and [4, Section III.5.2.1].

Fix a unital C∗-algebra A. The representation πU = ⊕φ∈S(A)πφ obtained by considering

the direct sum of all GNS representations is known as the universal representation of A.5

This name is justified by the following theorem.

Theorem 2.9.1. Any representation of A is sub-representation of an inflation of πU .

5One can also work with ⊕φ∈A∗
+
πφ, which is an equivalent representation except in the trivial case

A = C; see [4, Section III.5.2.3].
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Proof (Sketch). By Zorn’s lemma any representation π can be decomposed into a direct

sum of cyclic representations. Every cyclic representation is equivalent to πφ for some

positive linear function φ by Theorem 2.6.6. Since we can normalise the cyclic vector,

we can take φ to be a state. By taking a sufficiently large cardinal λ, the inflation π
(λ)
u

contains, up to equivalence, each of the cyclic representations in the decomposition of π

including multiplicity.

The von Neumann algebra πU (A)′′ is the universal enveloping von Neumann algebra

of A. The following corollary of Theorem 2.9.1 makes this precise. We say informally that

any representation of A has a unique normal extension to the enveloping von Neumann

algebra.

Corollary 2.9.2. Let π be any representation of A. There exists a unique normal ∗-

homomorphism Φ : πU (A)′′ → π(A)′′ such that Φ(πU (a)) = π(a).

Proof. Uniqueness is clear as A is ultraweakly dense in πU (A)′′. By Theorem 2.9.1, there

exist an isometry V : Hπ → HπU ⊗ `2(λ), for some cardinal λ, such that V ∗(πU (a) ⊗

1B(`2(λ)))V = π(a). The map Φ : B(HπU )→ B(Hπ) given by T 7→ V ∗(T ⊗ 1B(`2(λ)))V is a

∗-homomorphism, as V ∗V = idHπ , and easily seen to by ultraweakly continuous and thus

normal. It follows from normality that Φ(πU (A)′′) ⊆ π(A)′′.

Every state φ on A extends to a normal state on πU (A)′′, namely the vector state

corresponding to the GNS vector ξφ ∈ HπU = ⊕ψ∈S(A)Hψ. Since A is ultraweakly dense

in πU (A)′′, the normal extension is unique. Developing this idea, one arrives quickly at

the following result (see for example [82, Theorem III.2.4]).

Theorem 2.9.3. There is a isometric isomorphism between πU (A)′′ and the bidual A∗∗

of A (as a Banach space), which maps πU (A) to the canonical copy of A inside A∗∗.

As a result of this theorem, πU (A)′′ can be identified with the bidual A∗∗. We shall

make this identification in the sequel and identify A with it’s image in A∗∗.

Applying Theorem 2.8.9, we have a central decomposition of A∗∗ into a finite part

A∗∗fin and a properly infinite part A∗∗pi . Let ι : A → A∗∗fin denote the composition of the

embedding of A in A∗∗ and projection of A∗∗ onto the summand A∗∗fin. The map ι is, in

general, not injective but, as we shall shortly see, it preserves all the tracial information

about A. We begin with a couple of “extension” results.6 First, an extension result for

6By abuse of terminology, we use the word extension here, even though ι may not be injective.
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the GNS representations with respect to a trace.

Proposition 2.9.4. Let τ be a trace on the unital C∗-algebra A. The GNS representation

πτ : A→ πτ (A)′′ has a unique normal extension to A∗∗fin, by which we mean that there is a

unique normal ∗-homomorphism π̃τ : A∗∗fin → πτ (A)′′ such that the diagram

A∗∗fin

π̃τ

##
A

ι

OO

πτ
// πτ (A)′′

(2.9.1)

commutes.

Proof. By Theorem 2.9.1, the representation πτ : A→ πτ (A)′′ has a unique normal exten-

sion to a map π̃τ : A∗∗ → πτ (A)′′. By Proposition 2.8.13, πτ (A)′′ is a finite von Neumann

algebra, so π̃τ vanishes on A∗∗pi . This proves existence. Uniqueness follows because ι(A) is

ultraweakly dense in A∗∗fin.

Remark 2.9.5. The extension π̃τ is supported on a direct summand pτA
∗∗
fin of A∗∗fin, where

pτ is a central projection in A∗∗fin. Indeed, as Ker(π̃τ ) is an ultraweakly closed ideal in A∗∗fin,

it is equal to zτA
∗∗
fin for some central projection zτ ∈ A∗∗fin. We set pτ = 1 − zτ . One can

then identify πτ (A)′′ with pτA
∗∗
fin.

We now state a corresponding extension result for traces.

Corollary 2.9.6. Let τ be a trace on the unital C∗-algebra A. There is a unique normal

extension of τ to A∗∗fin, by which we mean that there is a unique normal trace τ̃ on A∗∗fin

such that the diagram

A∗∗fin

τ̃

  
A

ι

OO

τ
// C

(2.9.2)

commutes.

Proof. For existence, compose π̃τ of Proposition 2.9.4 with the vector state corresponding

to ξτ . Uniqueness follows because ι(A) is ultraweakly dense in A∗∗fin.

The finite part of the bidual A∗∗fin has an alternative characterisation analogous to the

characterisation of A∗∗ as πU (A)′′.
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Proposition 2.9.7. Let A be a unital C∗-algebra with T (A) 6= ∅. Then there is an

isomorphism Φ : A∗∗fin → (⊕τ∈T (A)πτ )(A)′′ such that the diagram

A∗∗fin
Φ

))
A

ι

OO

⊕τ∈T (A)πτ
// (⊕τ∈T (A)πτ )(A)′′

(2.9.3)

commutes.

Proof. Write N = (⊕τ∈T (A)πτ (A))′′. By Corollary 2.9.2, ⊕τ∈T (A)πτ has a unique normal

extension to a ∗-homomorphism Φ : A∗∗ → N . By Theorem 2.7.4, Φ is surjective.

Since N ⊆
∏
τ∈T (A) πτ (A)′′ and each πτ (A)′′ is finite by Proposition 2.8.13, N is

finite. As N is finite, it has no non-zero properly infinite vectors. Hence, Φ(A∗∗pi ) = {0}.

Therefore, we can consider Φ as a unital ∗-homomorphism A∗∗fin → N and the diagram

(2.9.3) commutes.

It remains only to prove that Φ is injective. Let a ∈ A∗∗fin be a non-zero. Then there

exists a normal trace τ on A∗∗fin such that τ(a∗a) > 0. Extending τ to be zero on A∗∗pi ,

we get a normal trace on A∗∗, which we still denote τ . Since τ |A has a unique normal

extension to A∗∗, we must have that τ(a) = 〈Φ(a)ξτ |A , ξτ |A〉 for all a ∈ A∗∗. Consequently,

Φ(a∗a) 6= 0.

Corollary 2.9.8. Let A be a unital C∗-algebra with T (A) 6= ∅. The kernel of ι : A→ A∗∗fin

is I = {a ∈ A : τ(a∗a) = 0 for all τ ∈ T (A)}.

Proof. By Proposition 2.9.7, Ker(ι) = Ker(⊕τ∈T (A)πτ ) = ∩τ∈T (A)Ker(πτ ). Now apply

Proposition 2.6.12.

Remark 2.9.9. Let A be a unital C∗-algebra with T (A) 6= ∅ and I = {a ∈ A : τ(a∗a) =

0 for all τ ∈ T (A)}. Let q : A → A/I be the quotient map and q∗ : T (A/I) → T (A) the

induced map on traces given by q∗(τ) = τ ◦ q.

The map q∗ is continuous, affine and injective. By proposition 2.6.13, we see that q∗ is

surjective. Since trace spaces are compact and Hausdorff, q∗ is an affine homeomorphism.

Furthermore, the trace pairing is preserved in the sense that q∗(τ)(a) = τ(q(a)) for all

a ∈ A, τ ∈ T (A/I).

It follows that q induces a unitary map L2(A, q∗(τ))→ L2(A/I, τ) via â 7→ q̂(a), which
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we also denote q, and the diagram

A

πq∗(τ)

��

q // A/I

πτ
��

B(L2(A, q∗(τ)))
Ad(q)

// B(L2(A/I, τ))

(2.9.4)

commutes. Hence, q induces a normal isomorphism πq∗(τ)(A)′′ ∼= πτ (A/I)′′. Since q∗ is a

bijection, we have A∗∗fin
∼= (A/I)∗∗fin using Proposition 2.9.7.

2.10 Choquet Theory and Trace Simplices

In this section, we first recall some results on the theory of compact convex sets, Choquet

simplices and Bauer simplices. We then collect some results about the trace simplex of a

unital C∗-algebra, which will be used in the thesis.

2.10.1 General Theory

A detailed account of the theory of convex sets can be found in [1] with additional material

in [66]. We summarise the basic theory in this subsection.

Let K be a compact, convex subset of locally convex topological space. Let AffR(K)

be the space of real-valued, continuous, affine functionals on K. This is a closed subspace

of the Banach space CR(K).

There is a natural partial order on AffR(K) given by f ≤ g if and only if f(x) ≤ g(x)

for all x ∈ K. We write AffR(K)+ for the positive cone, which is easily seen to be closed.

The function that takes the value 1 at all points is an order unit for AffR(K); we denote

this function by 1. The order unit determines the norm in the sense that

‖f‖∞ = inf{t ∈ R+ : −t1 ≤ f ≤ t1}. (2.10.1)

The additional structure on AffR(K) makes it a complete order unit space (See [1,

Section II.1] for more details). There is in fact a duality between compact convex subset

of locally convex topological spaces and complete order unit spaces due to Kadison [41,

Lemma 4.3] (see also [1, Theorem II.1.8]). In particular, we can recover K from AffR(K)

as the space of positive linear functionals on AffR(K) of operator norm 1, which are known

as states.

We denote the space of complex-valued, continuous, affine functionals onK by AffC(K).

This is a closed subspace of the Banach space C(K). Pointwise complex conjugation defines
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an involution on AffC(K), and we can view AffR(K) as the self-adjoint part of AffC(K).

We shall use the terminology complex complete order unit space to describe the abstract

structure of AffC(K).

A point x ∈ K is said to be extreme if it cannot be write as x = λx1 + (1 − λ)x2

for λ ∈ (0, 1) and x1, x2 ∈ K \ {x}. The set of all extreme points is denoted ∂eK.

The Krein–Millman Theorem states that K is the closed convex hull of ∂eK (see for

example [75, Theorem 3.23]). Choquet’s theorem strengthens this, asserting that every

point of K is the barycentre of some measure concentrated on the boundary. Choquet

proved this result in the under the assumption K is metrisable [10, Théorème 1], in which

case ∂eK is a Gδ set. The general case was proven by Bishop and de Leeuw in [3]. We state

the result bellow only in the metrisable case. For the full story, we recommend [1, Section

I.4].

Theorem 2.10.1. [1, Corollary I.4.9] Let K be a metrisable, compact, convex subset of

locally convex topological space. For each x0 ∈ T (A), there is a Borel probability measure

µ on ∂eT (A) such that

f(x0) =

∫
x∈∂eK

f(x)dµ(x) (2.10.2)

for all f ∈ AffC(K).

This brings us to Choquet simplices. There are a number of equivalent definitions

of this class of compact convex set (see [1, Section II.3]). We use the one in terms of

uniqueness of the measure µ in Theorem 2.10.1.

Definition 2.10.2. Let K be a metrisable, compact, convex subset of locally convex

topological space. Then K is Choquet simplex if and only if every every x ∈ K is the

barycentre of a unique Borel probability measure concentrated on ∂eK.

Let’s look at some examples.

Example 2.10.3 (Finite Dimensional Choquet simplicities). If K is a Choquet simplex,

then ∂eK must be affinely independent. So, if K is a subspace of a finite dimensional

space, then ∂eK is a finite set {x1, . . . xk} and the map (λ1, . . . , λk) 7→
∑k

i=1 λixi is an

isomorphism of K with 4(k−1) = {(λ1, . . . , λk) ∈ Rn : 0 ≤ λi ≤ 1,
∑k

i=1 λi = 1}.

Example 2.10.4 (Bauer simplicies). A Bauer simplex K is a metrisable Choquet simplex

for which ∂eK is compact [1, Section II.4]. For each metrisable compact space X, there is
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upto isomorphism a unique Bauer simplex K with ∂eK = X, namely the space M+
1 (X)

of Radon probability measures on X [1, Corollary II.4.2].

Example 2.10.5 (A non-Bauer simplex). Let X = N ∪ {∞} be the one point compact-

ification of N, and let V = C(X)∗ be the space of Radon measures on X considered

with the weak∗ topology. Let µ1, µ2, µ3 . . . and µ∞ be the Dirac measures on X. Let

W = span{µ∞− 1
2(µ1+µ2)}. Let q : V → V/W be the quotient map. Set K = q(M+

1 (X)).

One can then show that ∂eK = {q(µi) : i ∈ N} and K is a Choquet simplex. However,

limi→∞ q(µi) = q(µ∞) = 1
2(q(µ1) + q(µ2)), so ∂eK is not closed in K. Hence, ∂eK is not

compact. See [1, Proposition II.7.17] for full details.

By the Krein–Milman Theorem, a continuous, affine functional on K is completely

determined by its values at the extreme points. We, therefore, introduce the notation

AffR(K) = {f |∂eK : f ∈ AffR(K)}, (2.10.3)

AffC(K) = {f |∂eK : f ∈ AffC(K)}. (2.10.4)

These are subspaces of the Banach spaces Cb,R(∂eK) and Cb(∂eK) respectively and in-

herit the additional structure of complete ordered unit spaces from AffR(K) and AffC(K)

respectively. In the case of Bauer simplicies, we have the following.

Theorem 2.10.6. [1, Theorem II.4.3] Let K be a Bauer simplex. Then AffC(K) = C(K)

and AffR(K) = CR(K).

In the further theory of Choquet simplicies, the central affine functionals play an

important role [1, Section II.7]. By definition, we have

Z(AffR(K)) = {f ∈ AffR(K) : fg ∈ AffR(K) for all g ∈ AffR(K)}, (2.10.5)

Z(AffC(K)) = {f ∈ AffC(K) : fg ∈ AffC(K) for all g ∈ AffC(K)}. (2.10.6)

All we shall need in this thesis, is the following corollary of Theorem 2.10.6.

Corollary 2.10.7. Let K be a Bauer simplex. Then Z(AffC(K)) = C(K) and Z(AffR(K)) =

CR(K)).

2.10.2 The Trace Simplex

Let A be a unital C∗-algebra with non-empty trace space T (A). From Section 2.6.2, we

know that T (A) is weak∗-closed in the state space S(A), so it weak∗ compact. The trace
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space is also clearly convex and is metrisable whenever A is separable. By the Krein–

Milman Theorem T (A) is the closed convex hull of the set of extreme points ∂eT (A). In

this context, we call elements of ∂eT (A) extreme traces.

In fact, more is true.

Theorem 2.10.8. [76, Theorem 3.1.18] Let A be a unital C∗-algebra. Then T (A) is a

Choquet simplex whenever it is non-empty.

Since A∗∗fin is also a unital C∗-algebra, T (A∗∗fin) is also a Choquet simplex, though typi-

cally a non-metrisable one. We now discuss the relationship between these two simplices.

By Proposition 2.9.6, the traces on A can be identified with the normal trace on A∗∗fin.

Hence, we can view T (A) ⊆ T (A∗∗fin). However, one must be very careful with the topolo-

gies. With respect to the weak∗ topology on T (A∗∗fin) coming from the pairing with A∗∗fin,

hereinafter the A∗∗fin-weak∗ topology, T (A) is a dense subset of T (A∗∗fin). With respect to

the A-weak∗ topology on T (A), T (A) is compact. Therefore, the inclusion T (A) ⊆ T (A∗∗fin)

is only a homeomorphism onto its image when T (A) = T (A∗∗fin).

We now consider the extremal traces. If a normal trace τ ∈ T (A∗∗fin) is a non-trivial

convex combination of traces τ = λτ1 + (1 − λ)τ2, then τ1 ≤ λ−1τ and τ2 ≤ (1 − λ)−1τ ,

so τ1 and τ2 are normal too. Hence, we have ∂eT (A) ⊆ ∂eT (A∗∗fin). Once again though, we

shouldn’t expect the topologies to coincide.

We now investigate the centre of A∗∗fin for a separable, unital C∗-algebra A with non-

empty trace space. Each element a ∈ A∗∗fin, defines a function â on ∂e(T (A)) via â(τ) =

τ(a). Since â = ĉtr(a) for all a ∈ A∗∗fin by Theorem 2.8.11, it suffices to understand ẑ for

z ∈ Z(A∗∗fin). The following theorem of Ozawa gives a partial inverse to the map z 7→ ẑ

for z ∈ Z(N). In the statement of the theorem, B(∂eT (A)) denotes the C∗-algebra of

bounded Borel functions on ∂eT (A).

Theorem 2.10.9. [62, Theorem 3] Let A be a unital separable C∗-algebra with non-empty

trace space T (A). There is a unique unital ∗-homomorphism θ : B(∂eT (A))→ Z(A∗∗fin) with

ultraweakly dense range such that θ(â) = ctr(a) and

τ(θ(f)a) =

∫
λ∈∂eT (A)

f(λ)λ(a)dµτ (λ) (2.10.7)

for every a ∈ A, τ ∈ T (A) and f ∈ B(∂eT (A)).

Proof (Sketch). Ozawa first shows that for every τ ∈ T (A), there is a normal ∗-isomorphism
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θτ : L∞(∂eT (A), µτ )→ Z(πτ (A)′′) such that

τ(θτ (f)a) =

∫
λ∈∂eT (A)

f(λ)λ(a)dµτ (λ) (2.10.8)

for all a ∈ A [62, Lemma 10]. The key step is an application of Sakai’s non-commutative

Radon–Nikodym Theorem, observing that the left hand side of (2.10.8) defines a tracial

function of A dominated by ‖f‖∞τ in modulus.

One can identify πτ (A)′′ with a direct summand pτA
∗∗
fin of A∗∗fin; see Remark 2.9.5. The

space T (A) becomes a directed set with the direction given by τ - σ if and only if τ ≤ Cσ

for some C > 1. An upper bounded for τ, σ ∈ T (A) is (τ + σ)/2. One easily checks that

pτ ∧ pσ = p(τ+σ)/2 and supτ pτ = 1.

The idea is to define θ to be the pointwise ultraweak limit of θτ as τ → ∞. This

limit exists as a Radon–Nikodym computation shows that θτ (f) = pτθσ(f) for all f ∈

B(∂eT (A)) whenever τ - σ. The validity of (2.10.7) then follows from (2.10.8). Since

τ(θ(â)) =
∫
â(λ)dµτ (λ) = τ(a) for a ∈ A, τ ∈ T (A), we get that θ(â) = ctr(a).

2.11 Hilbert-C(X)-Modules and Adjointable Operators

Hilbert modules generalise Hilbert spaces by replacing the C-action by scalar multiplication

and the C-valued inner product by an A-action and an A-valued inner product for some

C∗-algebra A. Hilbert modules were first introduce by in [43] in the commutative case and

in [63] in general. A good basic reference is [50].

In this thesis, only the commutative case will be required. Therefore, we only consider

Hilbert-C(X)-modules in this section. For compatibility with the standard conventions for

Hilbert spaces, we shall work with left-modules and inner products that are linear in the

first place. The results in this section are mostly well-known, but are developed carefully

from the first principles for completeness.

2.11.1 Hilbert-C(X)-Modules

We begin with the definition of a pre-Hilbert-C(X)-module and some of its elementary

consequences.

Definition 2.11.1. Let X be a compact Hausdorff space. A pre-Hilbert-C(X)-module is

a left C(X)-module H together with a map 〈·, ·〉 : H ×H → C(X) satisfying the following
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axioms:

〈fu+ gv, w〉 = f〈u,w〉+ g〈v, w〉 (f, g ∈ C(X), u, v, w ∈ H), (2.11.1)

〈u, v〉 = 〈v, u〉∗ (u, v ∈ H), (2.11.2)

〈u, u〉 = 0 =⇒ u = 0 (u ∈ H). (2.11.3)

Proposition 2.11.2. Let H be a pre-Hilbert-C(X)-module. Set ‖u‖H = ‖〈u, u〉1/2‖C(X).

(a) ‖ · ‖H defines a norm on H.

(b) Addition on H and the multiplication map C(X) × H → H are continuous with

respect to the ‖ · ‖H-norm.

(c) The map 〈·, ·〉 : H ×H → C(X) is continuous with respect to the ‖ · ‖H-norm, and

the following identities hold:

|〈u, v〉| ≤ 〈u, u〉1/2〈v, v〉1/2 (u, v ∈ H), (2.11.4)

‖〈u, v〉‖C(X) ≤ ‖u‖H‖v‖H (u, v ∈ H). (2.11.5)

Proof. (a) For all x ∈ X, the map (u, v) 7→ 〈u, v〉(x) is a hermitian form on H, so

u 7→ 〈u, u〉(x)1/2 is a seminorm. It follows that ‖u‖H = supx∈X〈u, u〉(x)1/2 is a

seminorm and, by axiom (2.11.3), a norm.

(b) Continuity of addition follows from the triangle inequality for ‖ · ‖H . A simple

consequence of (2.11.1) and (2.11.2) is that ‖fu‖H ≤ ‖f‖C(X)‖u‖H , from which

continuity of the multiplication follows.

(c) The Cauchy-Schwarz inequality for the hermitian form (u, v) 7→ 〈u, v〉(x) gives

(2.11.4). Taking suprema in (2.11.4) gives (2.11.5). Continuity of 〈·, ·〉 follows easily.

We can now give the definition of Hilbert-C(X)-modules.

Definition 2.11.3. A Hilbert-C(X)-module is a pre-Hilbert-C(X)-module H for which

the norm ‖ · ‖H is complete.

Remark 2.11.4. Let X = {∗} be a one point space. Identifying C(X) with C, we see that

Hilbert-C(X)-modules are precisely Hilbert spaces.

Our first goal is to show that Hilbert-C(X)-modules fibre over the base space X with

each fibre being a Hilbert spaces. In the following proposition, we construct the fibres.
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Proposition 2.11.5. Let H be a Hilbert-C(X)-module and x ∈ X. Set Nx = {u ∈ H :

〈u, u〉(x) = 0}.

(a) Nx is a closed subspace of H.

(b) Nx = C0(X \ {x})H.

(c) H/Nx is a Hilbert space with inner product 〈u+Nx, v +Nx〉 = 〈u, v〉(x).

Proof. (a) The map (u, v) 7→ 〈u, v〉(x) is a hermitian form on H, so ‖u‖2,x = 〈u, u〉(x)1/2

defines a seminorm on H. Clearly 0 ∈ Nx. Let u, v ∈ Nx and λ, µ ∈ C. Then

‖λu+ µv‖2,x ≤ |λ|‖u‖2,x + |µ|‖v‖2,x = 0 so λu+ µv ∈ Nx. Since 〈·, ·〉 is continuous

with respect to the ‖ · ‖H -norm, Nx is closed.

(b) The inclusion Nx ⊇ C0(X \ {x})H follows from (2.11.1). For the reverse inclusion,

let u ∈ Nx. Let f = 〈u, u〉1/4 ∈ C0(X \ {x}). We show that the limit

lim
n→∞

1

f + 1
n

u (2.11.6)

exists in H. Let ε > 0. Choose N > 2
ε . Suppose n,m > N . Then∥∥∥∥∥ 1

f + 1
n

u− 1

f + 1
m

u

∥∥∥∥∥
H

=

∥∥∥∥∥ 1
m −

1
n

(f + 1
n)(f + 1

m)
f2

∥∥∥∥∥
C(X)

(2.11.7)

Let y ∈ X. Then we have∣∣∣∣∣ 1
m −

1
n

(f(y) + 1
n)(f(y) + 1

m)
f(y)2

∣∣∣∣∣ ≤ 2

N
, (2.11.8)

noting that when f(y) = 0 the left hand side vanishes. Hence,∥∥∥∥∥ 1

f + 1
n

u− 1

f + 1
m

u

∥∥∥∥∥
H

≤ ε. (2.11.9)

Since H is complete, the limit (2.11.6) exists in H. Denoting this limit by v, we get

that u = fv ∈ C0(X \ {x})H by the continuity of the C(X)-action.

(c) It’s a consequence of the Cauchy-Schwarz inequality for the hermitian form (u, v) 7→

〈u, v〉(x), that 〈u, v〉(x) = 0 whenever one of u, v lies in Nx. It follows that 〈u +

Nx, v + Nx〉 = 〈u, v〉(x) is a well-defined inner product on H/Nx. We need to show

that the quotient norm on the Banach space H/Nx is induced by this inner product,

i.e. that, for all u ∈ H,

inf
v∈Nx

‖u+ v‖H = 〈u, u〉(x)1/2. (2.11.10)
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Let u ∈ H and v ∈ Nx. Then ‖u+v‖2H ≥ 〈u+v, u+v〉(x) = 〈u, u〉(x). Consequently,

inf
v∈Nx

‖u+ v‖H ≥ 〈u, u〉(x)1/2. (2.11.11)

Conversely, let u ∈ H. Define f ∈ C(X) by

f(y) =


〈u,u〉(x)1/2

〈u,u〉(y)1/2 if 〈u, u〉(y)1/2 > 〈u, u〉(x)1/2,

1, if 〈u, u〉(y)1/2 ≤ 〈u, u〉(x)1/2.

(2.11.12)

Set v = (1 − f)u. Then v ∈ Nx and ‖u + v‖H = ‖fu‖H = 〈u, u〉(x)1/2. Hence,

(2.11.10) holds.

Given a Hilbert-C(X)-module H, we shall write Hx for the Hilbert space H/Nx for

each x ∈ X. The canonical quotient map H → Hx will be denoted by v 7→ v(x). This

notation is justified by the following proposition.

Proposition 2.11.6. Let H be a Hilbert-C(X)-module. Then

〈u(x), v(x)〉Hx = 〈u, v〉H(x) (u, v ∈ H,x ∈ X), (2.11.13)

‖u‖H = sup
x∈X
‖u‖Hx (u ∈ H), (2.11.14)

(fu)(x) = f(x)u(x) (u ∈ H, f ∈ C(X), x ∈ X). (2.11.15)

Proof. Equation (2.11.13) is just the definition of the inner product on Hx defined in

Proposition 2.11.5. Equation (2.11.14) follows from (2.11.13) by taking suprema and

square roots. Let u ∈ H, f ∈ C(X) and x ∈ X. Then f − f(x) ∈ C0(X \ {x}), so

(f − f(x))u ∈ Nx by Proposition 2.11.5. Therefore, (2.11.15) holds.

Next, we introduce a notion of morphism, which is applicable to Hilbert-modules over

different base spaces.

Definition 2.11.7. A morphism between the Hilbert-C(X1)-module H1 and the Hilbert-

C(X2)-module H2 is a bounded linear map α : H1 → H2 together with a ∗-homomorphism

β : C(X1)→ C(X2) such that

〈α(u), α(v)〉H2 = β(〈u, v〉H1) (u, v ∈ H1), (2.11.16)

α(fu) = β(f)α(u) (f ∈ C(X), u ∈ H1). (2.11.17)



50 CHAPTER 2. PRELIMINARIES

Remark 2.11.8. By abuse of notation, the same letter will be used to denote the morphism

H1 → H2 and the underlying bounded linear map.

Example 2.11.9. Let H be a Hilbert-C(X)-module and x ∈ X. View the Hilbert space

Hx = H/Nx as a Hilbert-C({x})-module. Let αx : H → Hx be the quotient map and

βx : C(X) → C({x}) the transpose of the inclusion {x} → X. Then αx and βx define a

morphism H → Hx by Proposition 2.11.6.

We now introduce conjugate Hilbert-C(X)-modules.

Definition 2.11.10. Let H be a Hilbert-C(X)-module. The conjugate Hilbert-C(X)-

module H has the same underlying set and addition as H but scalar multiplication and

the inner product are defined as follows:

f ·H v = f∗v (f ∈ C(X), v ∈ H), (2.11.18)

〈v, w〉H = 〈w, v〉∗H (v, w ∈ H). (2.11.19)

We omit the elementary verification that H is a Hilbert-C(X)-module, remarking only

that ‖v‖H = ‖v‖H , so completeness of H follows from that of H. Specialising to the case

where X is a one point space, we recover the definition of a conjugate Hilbert space.

Definition 2.11.11. Let H be a Hilbert space. The conjugate Hilbert space H has the

same underlying set and addition as H but scalar multiplication and the inner product

are defined as follows:

λ ·H v = λv (λ ∈ C, v ∈ H), (2.11.20)

〈v, w〉H = 〈w, v〉H (v, w ∈ H). (2.11.21)

We now show that passing to conjugate space commutes with passing to fibres.

Proposition 2.11.12. Let H be a Hilbert-C(X)-module and x ∈ X. Then (H)x = (Hx).

Proof. Since 〈u, u〉H(x) = 〈u, u〉∗H(x) = 〈u, u〉H(x), we see that {u ∈ H : 〈u, u〉H(x) =

0} = {u ∈ H : 〈u, u〉H(x) = 0}. Hence, (H)x = (Hx) as abelian groups.
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Let u, v ∈ H and f ∈ C(X). Then

〈u(x), v(x)〉
(Hx)

= 〈v(x), u(x)〉Hx (2.11.22)

= 〈v, u〉H(x) (2.11.23)

= 〈v, u〉∗H(x) (2.11.24)

= 〈u, v〉H(x) (2.11.25)

= 〈u(x), v(x)〉(H)x
(2.11.26)

and f(x) ·
(Hx)

u(x) = f(x)u(x) = f∗(x)u(x) = (f∗u)(x) = (f ·H u)(x) = f(x) ·(H)x
u(x).

Hence, (H)x = (Hx) as Hilbert spaces.

2.11.2 Adjointable Operators

We now turn to the theory of adjointable operators between Hilbert-C(X)-modules.

Definition 2.11.13. Let H1, H2 be Hilbert-C(X)-modules. A bounded linear operator

T : H1 → H2 is said to be adjointable if there is a bounded linear operator T ∗ : H2 → H1

such that

〈Tu, v〉H2 = 〈u, T ∗v〉H1 (u ∈ H1, v ∈ H2). (2.11.27)

The operator T ∗ is uniquely determined by T due to (2.11.3) and called the adjoint of T .

The set of all adjointable functions H1 → H2 is denoted L(H1, H2). We write L(H1) for

L(H1, H1).

We now show that adjointable operators are automatically C(X)-linear.

Proposition 2.11.14. Let T : H1 → H2 be an adjointable operator between Hilbert-C(X)-

modules. Then T (fv) = fTv for all v ∈ H1 and f ∈ C(X).

Proof. Let T ∗ : H2 → H1 be the adjoint of T . Let v ∈ H1 and f ∈ C(X). Then

〈T (fu), v〉H2 = 〈fu, T ∗v〉H1 (2.11.28)

= f〈u, T ∗v〉H1 (2.11.29)

= f〈Tu, v〉H2 (2.11.30)

= 〈fTu, v〉H2 (2.11.31)

for all u ∈ H1, v ∈ H2. Taking v = T (fu) − fTu and appealing to (2.11.3) gives the

result.
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Proposition 2.11.15. Let H be a Hilbert-C(X)-module. Then L(H) is a C∗-algebra.

Proof. Write B(H) for the Banach algebra of all bounded linear operators H → H. We

show that L(H) is a closed subalgebra of B(H) and the the adjoint structure on L(H)

makes L(H) a C∗-algebra. Let T, S ∈ L(H) and λ, µ ∈ C. Then λT + µS is adjointable

with adjoint λT ∗+µS∗, TS is adjointable with adjoint (S∗T ∗) and T ∗ is adjointable with

adjoint T . Hence L(H) is a ∗-algebra. Moreover,

‖T‖2 = sup
‖v‖H≤1

〈Tv, Tv〉H (2.11.32)

= sup
‖v‖H≤1

〈T ∗Tv, v〉H (2.11.33)

≤ sup
‖v‖H≤1

‖T ∗Tv‖H‖v‖H (2.11.34)

= ‖T ∗T‖ (2.11.35)

≤ ‖T‖‖T ∗‖. (2.11.36)

We deduce that ‖T‖ ≤ ‖T ∗‖, noting that the the case ‖T‖ = 0 is trivial. By replacing T

with T ∗, we get the reverse inequality; hence, ‖T‖ = ‖T ∗‖. Substituting this into (2.11.36),

we get ‖T‖2 = ‖T ∗T‖. So the C∗-identity holds for L(H).

Suppose (Tn) ⊆ L(H) converges in operator norm to T ∈ B(H). Since ‖T ∗n − T ∗m‖ =

‖Tn−Tm‖, the sequence (T ∗n) ⊆ B(H) is Cauchy hence convergent. It now follows from the

continuity of the C(X)-valued inner product that T is adjointable with adjoint limn→∞ T
∗
n .

The next Proposition shows how the fibration of a Hilbert-C(X)-module H into Hilbert

spaces {Hx}x∈X induces a fibration of L(H).

Proposition 2.11.16. Let H be a Hilbert-C(X)-module.

(a) Let T ∈ L(H) and x ∈ X. There exists a uniquely determined bounded linear

operator Tx : Hx → Hx such that the diagram

H
T //

��

H

��
Hx

Tx // Hx

(2.11.37)

commutes, where the vertical arrows are the canonical quotient maps, i.e. (Tu)(x) =

Tx(u(x)) for all u ∈ H.
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(b) The map T 7→ Tx defined above is a ∗-homomorphism L(H) → B(Hx) for each

x ∈ X.

(c) The diagonal map

Φ : L(H)→
∏
x∈X

B(Hx)

T 7→ (Tx)x∈X

is an isometric ∗-homomorphism. In particular,

‖T‖ = sup
x∈X
‖Tx‖. (2.11.38)

Proof. (a) Fix x ∈ X. By combining Proposition 2.11.14 with Proposition 2.11.5, we

see that T (Nx) ⊆ Nx. Hence, there is a unique bounded linear operator Tx of norm

at most ‖T‖ such that Tx(u(x)) = (Tu)(x) for all u ∈ H.

(b) Fix x ∈ X. Let T, S ∈ L(H), λ, µ ∈ C and u ∈ H. Then

(λS + µT )(u)(x) = (λ(Su) + µ(Tu))(x) (2.11.39)

= λ(Su)(x) + µ(Tu)(x) (2.11.40)

= λSx(u(x)) + µTx((u(x)) (2.11.41)

= (λSx + µTx)(u(x)). (2.11.42)

Hence, by uniqueness, (λS + µT )x = (λSx + µTx). The proof that (ST )x = SxTx

runs similarly.

Let u, v ∈ H then

〈Tx(u(x)), v(x)〉Hx = 〈(Tu)(x), v(x)〉Hx (2.11.43)

= 〈Tu, v〉H(x) (2.11.44)

= 〈u, T ∗v〉H(x) (2.11.45)

= 〈u(x), (T ∗v)(x)〉Hx (2.11.46)

= 〈u(x), (T ∗)x(v(x))〉Hx . (2.11.47)

Hence, by uniqueness of the adjoint, (T ∗)x = T ∗x .

(c) Since each map T 7→ Tx is a ∗-homomorphism, so is Φ. Suppose Φ(T ) = 0 for some

T ∈ L(H). Then, for all u ∈ H and x ∈ X, (Tu)(x) = Tx(u(x)) = 0. Hence, by
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(2.11.14) together with (2.11.3), Tu = 0. Therefore, T = 0. Since Φ is an injective

∗-homomorphism between C∗-algebras, it is norm preserving.

We now turn to conjugate-adjointable operators. These are best defined in terms of

conjugate Hilbert-C(X)-modules.

Definition 2.11.17. Let H be a Hilbert C(X)-module. A map T : H → H is conjugate-

adjointable if T is adjointable when viewed as a map T : H → H.

Specialising to the case where X is a one point space, we get bounded conjugate-linear

operators.

It an easy consequence of Definition 2.11.11, conjugate-adjointable maps satisfy

〈Tu, v〉H = λu, T ∗v〉∗H (u, v ∈ H). (2.11.48)

From Proposition 2.11.14 together with Definition 2.11.11, we see that conjugate-adjointable

operators are conjugate-C(X)-linear. We record this as a proposition for ease of reference.

Proposition 2.11.18. Let H be a Hilbert C(X)-module and T : H → H a conjugate-

adjointable map. Then

T (fv) = f∗Tv. (2.11.49)

for all f ∈ C(X) and v ∈ H.

If T, S : H → H are both conjugate-adjointable, then the products ST and TS are

adjointable maps; if T is conjugate-adjointable and S is adjointable, then the products ST

and TS are conjugate-adjointable.

We now state a version of Proposition 2.11.16 conjugate-adjointable operators.

Proposition 2.11.19. Let H be a Hilbert-C(X)-module.

(a) Let T : H → H be conjugate-adjointable and x ∈ X. There exists a uniquely

determined bounded conjugate-linear operator Tx : Hx → Hx such that the diagram

H
T //

��

H

��
Hx

Tx // Hx

(2.11.50)

commutes, where the vertical arrows are the canonical quotient maps, i.e. (Tu)(x) =

Tx(u(x)) for all u ∈ H.
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(b) Let x ∈ X. Suppose T, S : H → H are either conjugate-agjointable or adjointable.

Then (TS)x = TxSx.

Proof. (a) By (2.11.49) together with Propositions 2.11.5 and 2.11.12, we see that T (Nx) ⊆

Nx. Hence, there is a unique bounded conjugate-linear operator Tx of norm at most

‖T‖ such that Tx(u(x)) = (Tu)(x) for all u ∈ H.

(b) Fix x ∈ X and u ∈ H. Suppose T, S : H → H are either conjugate-agjointable or

adjointable. Then, using (a) and Proposition 2.11.16(a), we get

(TS)x(u(x) = (TSu)(x) (2.11.51)

= Tx((Su)(x)) (2.11.52)

= Tx(Sx(u(x)) (2.11.53)

= (TxSx)(u(x)) (2.11.54)

Hence, by uniqueness, (TS)x = TxSx.

2.11.3 The Strict Topology

Definition 2.11.20. Let H be a Hilbert-C(X)-module. The strict topology on L(H) is

given by the seminorms

‖T‖v = ‖Tv‖H (v ∈ H), (2.11.55)

‖T‖v,∗ = ‖T ∗v‖H (v ∈ H). (2.11.56)

In the case X = {∗} is a one point space, the strict topology is just the strong∗ topology.

A few of useful properties of the strong∗-topology carry over to the strict topology with

essentially the same proofs.

Proposition 2.11.21. Let H be a Hilbert-C(X)-module.

(a) Addition L(H)× L(H)→ L(H) is strictly continuous.

(b) Scalar multiplication C× L(H)→ L(H) is strictly continuous.

(c) The involution L(H)→ L(H) is strictly continuous.

(d) Multiplication L(H)× L(H) → L(H) is strictly continuous when restricted to ‖ · ‖-

bounded regions.
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(e) The strict topology is weaker than the norm topology.

Proof. Addition and scalar multiplication are strictly continuous since the strict topology

is defined by a set of seminorms, and the continuity of the involution is built into the

definition. For multiplication we have the estimates

‖(S1T1 − S2T2)v‖H ≤ ‖S1‖‖(T1 − T2)v‖H + ‖(S1 − S2)T2v‖H , (2.11.57)

‖(T ∗1 S∗1 − T ∗2 S∗2)v‖H ≤ ‖T ∗1 ‖‖(S1 − S2)∗v‖H + ‖(T1 − T2)∗S∗2v‖H (2.11.58)

for all v ∈ H, from which the strict continuity of multiplication on ‖ · ‖-bounded regions

follows. Finally, since ‖Tv‖ and ‖T ∗v‖ are both dominated by ‖T‖‖v‖H , the strict topology

is weaker than the norm topology.

We now state the analogues of Theorem 2.2.1 and Proposition 2.2.2 for the strict

topology.

Proposition 2.11.22. Let H be a Hilbert-C(X)-module. The closed unit ball of L(H) is

complete with respect to the strict topology.

Proof. Since H is Banach space, we can use Theorem 2.2.1. Suppose (Tλ)λ∈Λ is Cauchy

with respect to the strict topology and ‖Tλ‖ ≤ 1 for all λ ∈ Λ. Then (Tλ)λ∈Λ and (T ∗λ )λ∈Λ

are Cauchy sequences with respect to the strong operator topology on B(H). By Theorem

2.2.1, there exist bounded linear operators T, S in the closed unit ball of B(H) such that

Tλ → T and T ∗λ → S with respect to the strong operator topology on B(H).

By Proposition 2.11.2, we have 〈Tv,w〉 = limλ〈Tλv, w〉 = limλ〈v, T ∗λw〉 = 〈v, Sw〉.

Hence T ∈ L(H) with T ∗ = S. Since Tλ → T and T ∗λ → T with respect to the strong

operator topology on B(H), Tλ → T with respect to the strict topology.

Proposition 2.11.23. Let H be a Hilbert-C(X)-module and let A be a bounded subset

of L(H). Suppose the C(X)-span of S is dense in V . Then the strict topology on A is

induced by the family of seminorms {‖ · ‖v, ‖ · ‖v,∗ : v ∈ S}.

Proof. It follows from Proposition 2.11.2, that the families of seminorms {‖ · ‖v, ‖ · ‖v,∗ :

v ∈ S} and {‖ · ‖v, ‖ · ‖v,∗ : v ∈ spanC(X)(S)} induce the same topology on A. So we may

assume without loss of generality that S is dense in H. Now Proposition 2.2.2, can be

applied to see that {‖ · ‖v : v ∈ S} induces the strong operator topology on L(H) ⊆ B(H).

Therefore, {‖ · ‖v, ‖ · ‖v,∗ : v ∈ S} induces the strict topology on L(H).
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We now extend Proposition 2.11.16(b) by showing that the map L(H)→ L(Hx) given

by T 7→ Tx is continuous from the strict topology on L(H) to the strong∗ topology on

B(Hx).

Proposition 2.11.24. Let H be a Hilbert-C(X)-module. The map L(H)→ B(Hx) given

by T 7→ Tx defined in Proposition 2.11.16 is continuous from the strict topology on L(H)

to the strong∗ topology on B(Hx).

Proof. Fix x ∈ X. Let (T (λ))λ∈Λ be a net in L(H) converging strictly to T . Let vx ∈ Hx.

By definition, there is v ∈ H such that v(x) = vx. By Proposition 2.11.16(b), we have

‖(T (λ)
x − Tx)vx‖Hx = ‖(T (λ) − T )xvx‖Hx (2.11.59)

= ‖((T (λ) − T )v)(x)‖Hx (2.11.60)

≤ ‖‖((T (λ) − T )v‖H . (2.11.61)

Hence ‖(T (λ)
x − Tx)vx‖Hx → 0. Similarly ‖(T (λ)

x − Tx)∗vx‖Hx → 0.

In the case that the Hilbert module is countably generated, the strict topology on

bounded subsets of L(H) is described by a C(X)-valued metric.

Proposition 2.11.25. Let H be a Hilbert C(X)-module. Suppose H = spanC(X){vi : i ∈

N}, where vi ∈ H and ‖vi‖H ≤ 1 for all i ∈ N. Set

d(T, S) =

∞∑
i=0

1

2i

(
〈(T − S)vi, (T − S)vi〉1/2 + 〈(T − S)∗vi, (T − S)∗vi〉1/2

)
(2.11.62)

for T, S ∈ L(H).

(a) For all T, S ∈ L(H), d(T, S) ∈ C(X)+.

(b) For all T, S,R ∈ L(H)

(i) d(T, S) = 0 if and only if S = T ,

(ii) d(T, S) = d(T, S),

(iii) d(T, S) ≤ d(T,R) + d(R, T ).

(c) If (Tλ) is a uniformly bounded net in L(H) and T ∈ L(H), then Tλ → T strictly if

and only if d(Tλ, T )→ 0 uniformly.



58 CHAPTER 2. PRELIMINARIES

Proof. (a) For each i ∈ N, 〈(T −S)vi, (T −S)vi〉1/2 + 〈(T −S)∗vi, (T −S)∗vi〉1/2 ∈ C(X)

and ‖〈(T −S)vi, (T −S)vi〉1/2 + 〈(T −S)∗vi, (T −S)∗vi〉1/2‖C(X) ≤ 2‖T −S‖. Hence,

the series defining d(T, S) is absolutely convergent in C(X). All terms of the series

are positive by (2.11.3), so d(T, S) ∈ C(X)+.

(b) (i) Clearly d(T, T ) = 0. Suppose, d(T, S) = 0. Then 〈(T −S)vi, (T −S)vi〉 = 0 for

all i ∈ N by positivity, so Tvi = Svi for all for all i ∈ N by (2.11.3). By density,

T = S.

(ii) We have 〈(S − T )vi, (S − T )vi〉 = 〈(T − S)vi, (T − S)vi〉 and 〈(S − T )∗vi, (S −

T )∗vi〉 = 〈(T − S)∗vi, (T − S)∗vi〉 for all i ∈ N by (2.11.1).

(iii) Let x ∈ X. The map (S, T ) 7→ 〈Svi, T vi〉1/2(x) is a hermitian form, so T 7→

〈Tvi, T vi〉1/2(x) is a seminorm. By the triangle inequality, we get 〈(T−S)vi, (T−

S)vi〉1/2(x) ≤ 〈(T−R)vi, (T−R)vi〉1/2(x)+〈(R−S)vi, (R−S)vi〉1/2(x) and sim-

ilarly for the stared terms. Consequently, d(T, S)(x) ≤ d(T,R)(x)+d(R,S)(x).

(c) Let (Tλ) be a uniformly bounded net in L(H) and T ∈ L(H). Choose K > 0 such

that ‖T‖, ‖Tλ‖ ≤ K. Suppose Tλ → T strictly. Let ε > 0. Choose N ∈ N such that∑
i>N

1
2n ≤

ε
8K . Since Tλ → T strictly, there exist λ0 such that

N∑
i=0

1

2n

(
〈(Tλ − T )vi, (Tλ − T )vi〉1/2 + 〈(Tλ − T )∗vi, (Tλ − T )∗vi〉1/2

)
≤ ε

2
(2.11.63)

whenever λ ≥ λ0. Then

d(Tλ, T ) ≤ ε

2
+

∞∑
i=N+1

1

2n

(
〈(Tλ − T )vi, (Tλ − T )vi〉1/2 + 〈(Tλ − T )∗vi, (Tλ − T )∗vi〉1/2

)
(2.11.64)

≤ ε

2
+

∞∑
i=N+1

2‖Tλ − T‖
2n

(2.11.65)

≤ ε

2
+ 4K

∞∑
i=N+1

1

2n
(2.11.66)

< ε (2.11.67)

whenever λ ≥ λ0.

Conversely, suppose d(Tλ, T )→ 0 uniformly. For i ∈ N, 〈(Tλ−T )vi, (Tλ−T )vi〉1/2 ≤

2id(Tλ, T ). Hence, ‖(Tλ−T )vi‖H → 0 for all i ∈ N. It follows that ‖(Tλ−T )vi‖H → 0

for all v ∈ spanC(X){vi : i ∈ N} by Proposition 2.11.2. Since (Tλ) is uniformly
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bounded, Proposition 2.2.2 implies that ‖(Tλ−T )vi‖H → 0 for all v ∈ H. Similarly,

‖(Tλ − T )∗vi‖H → 0 for all v ∈ H. Therefore, Tλ → T strictly.

Remark 2.11.26. Proposition 2.11.25 allows us to relate in the strict topology on L(H)

to the strong∗ topology on the fibres. If H = spanC(X){vi : i ∈ N}, where vi ∈ H and

‖vi‖H ≤ 1. Then Hx = spanC{vi(x) : i ∈ N} for all x ∈ H. Hence, the metric

dx(t, s) =

∞∑
i=0

1

2i
(‖(t− s)vi(x)‖Hx + ‖(t− s)∗vi(x)‖Hx) (2.11.68)

for t, s ∈ B(Hx), induces the strong∗ topology on bounded subsets. By Propositions 2.11.6

and 2.11.16, we have d(T, S)(x) = dx(Tx, Sx) for all T, S ∈ L(H).

We now turn to the Kaplansky Density Theorem [42, Theorem 1] for the strict topology.

This is proved by the same argument as in the Hilbert space case. We adapt the proof

from [58, Section 4.3]. Fix a Hilbert C(X)-module H.7 The key definition is the following:

Definition 2.11.27. A continuous function f : R → C is strictly continuous if f(Tλ) →

f(T ) strictly whenever (Tλ) ⊆ L(H) is a net of self-adjoint operators with Tλ → T strictly.

Equivalently, strictly continuous functions are those for which the functional calculus

for the function f defines a strictly continuous map L(H)sa → L(H).

Lemma 2.11.28. Let f : R → C be a bounded continuous function. Then f is strictly

continuous

Proof. Let A be the set of strictly continuous functions R → C. By Proposition 2.11.21,

A is a vector space and closed under complex conjugation. Moreover, if f, g ∈ A and one

of them is bounded, then fg = gf ∈ A using the estimates (2.11.57) and (2.11.58). Let

A0 = A∩C0(R). We shall show, using the Stone–Weierstrass Theorem, that A0 = C0(R).

Consider the functions f, g : R→ C given by f(x) = (1+x2)−1 and g(x) = x(1+x2)−1.

Note that ‖f‖C0(R, ‖f‖C0(R ≤ 1. Let T, S ∈ L(H)sa. We compute that

g(T )− g(S) = T (1 + T 2)−1 − S(1 + S2)−1 (2.11.69)

= (1 + T 2)−1(T (1 + S2)− (1 + T 2)S)(1 + S2)−1 (2.11.70)

= (1 + T 2)−1(T − S − T (S − T )S)(1 + S2)−1. (2.11.71)

7In fact, the Kaplansky Density Theorem for the strict topology holds for general Hilbert-A-modules

by essentially the same proof, but we state the result in the commutative case only.
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Therefore, if v ∈ H, then

‖g(T )− g(S)‖v ≤ ‖(1 + T 2)−1(T − S)(1 + S2)−1(v)‖H (2.11.72)

+ ‖(1 + T 2)−1T (S − T )S)(1 + S2)−1(v)‖H (2.11.73)

≤ ‖(1 + T 2)−1‖L(H)‖T − S‖(1+S2)−1(v) (2.11.74)

+ ‖(1 + T 2)−1T‖L(H)‖S − T‖S(1+S2)−1(v) (2.11.75)

≤ ‖T − S‖(1+S2)−1(v) + ‖S − T‖S(1+S2)−1(v). (2.11.76)

Noting that ‖g(T )− g(S)‖v,∗ = ‖g(T )− g(S)‖v, as g is real valued, we see that g ∈ A0.

Since the map x 7→ x is is strictly continuous, we get that f = 1− xg ∈ A0.

The set {f, g} separates the points of R and f(t) > 0 for all t ∈ R. Therefore, f and g

generate the C∗-algebra C0(R) by the Stone–Weierstrass Theorem. Thus, A0 = C0(R).

Suppose h ∈ Cb(R). Then hf, hg ∈ C0(R), so hf, hg ∈ A. Therefore, h = hf + xhg ∈

A.

Theorem 2.11.29 (The Kaplansky Density Theorem for the strict topology). Let H be

a Hilbert-C(X)-module. Let A be a C∗-subalgebra of L(H) with strict closure B.

(i) Asa is strictly dense in Bsa.

(ii) The closed unit ball of Asa is strictly dense in the closed unit ball of Bsa.

(iii) The closed unit ball of A is strictly dense in the closed unit ball of B.

Proof. (i) Let b ∈ Bsa and (aλ) be a net in A converging strictly to b. Then (1
2(aλ+a∗λ))

is a net in Asa and converges strictly to 1
2(b+ b∗) = b by Proposition 2.11.21.

(ii) Let b ∈ Bsa with ‖b‖ ≤ 1 and (aλ) be a net in Asa converging strictly to b. Let

f : R→ C be the bounded, continuous function given by

f(x) =


−1, x ≤ 1,

x, −1 ≤ x ≤ 1,

1, x ≥ 1.

(2.11.77)

Then (f(aλ)) is a net in the closed unit ball of Asa converging strictly to b by Lemma

2.11.28.

(iii) This follows from a matrix inflation trick. The direct sum H ⊕ H has a natu-

ral Hilbert-C(X)-structure where 〈(u1, u2), (v1, v2)〉H⊕H = 〈u1, v1〉H + 〈u2, v2〉H in
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analogy with the Hilbert space direct sum. On can easily show that L(H ⊕ H) ∼=

M2(L(H)) and that strict convergence on L(H⊕H) corresponds to strict convergence

in each entry of M2(L(H)). From this, it follows that M2(A) is a C∗-subalgebra of

L(H ⊕H) with strict closure M2(B) and we can apply (ii) to this inflation.

Suppose b ∈ B has ‖b‖ ≤ 1. Then
(

0 b

b∗ 0

)
∈ M2(B)sa and has norm at most

1. There is a net (aλ) in the closed unit ball of M2(A)sa converging strictly to(
0 b

b∗ 0

)
∈ M2(B)sa. Taking the (1, 2)-th entries of this net gives a net in the closed

unit ball of A converging strictly to b.

Corollary 2.11.30. Let H be a Hilbert-C(X)-module. Let A be a C∗-subalgebra of L(H).

Then A is strictly separable if and only if the closed unit ball of A is strictly separable.

Proof. If the closed unit ball of A is strictly separable with countable dense subset D, then⋃
n∈N nD is a countable dense subset of A for the strict topology.

Suppose A is strictly separable with countable dense subset D. Let B be the C∗-algebra

generated by D. The unit ball of B is strictly dense in the unit ball of A by Theorem

2.11.29. Since B is countably generated it is ‖ · ‖-separable. Hence the unit ball of B is

also ‖ · ‖-separable. Let D′ be a countable ‖ · ‖-dense subset of the unit ball of B. Since

D′
st ⊇ D

‖·‖
, D′

st
contains the unital ball of B. Therefore, D′

st
contains the unit ball of

A.

2.12 General Topological Bundles

In this section, we develop a very general notion of a bundle over a topological space. This

definition will not require that the bundle is locally trivial or even that the isomorphism

class of the fibre is locally constant. The reason for introducing this general notation of

bundle is that the bundle-like objects that occur naturally in functional analysis aren’t

necessarily locally trivial.

This section is heavy inspired by the book [26], in particular its treatment of Banach

bundles [26, Chapter 2, Section 13.4]. Unfortunately, tracial von Neumann algebras are

not Banach spaces with respect to the ‖·‖2-norm because only the ‖·‖-unit ball is complete

in ‖·‖2-norm not the whole space. Thus, the results of [26, Chapter 2, Section 13.4] cannot

be applied directly to the study of W∗-bundles in Section 3.6. We, therefore, work with

bundles of normed spaces in Section 2.12.2 and carefully explain what can additionally be

proved if the fibres are complete.
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2.12.1 Bundles and Sections

Definition 2.12.1. A bundle over a Hausdorff topological space X is a pair (B, p) where

B is a Hausdorff topological space and p : B → X is a continuous, open surjection. The

fibre at x ∈ X is the set p−1(x).

We say that the bundle (B1, p1) over X1 is isomorphic to the bundle (B2, p2) over X2

if there are homeomorphisms ψ and ϕ such that the diagram

B1
ϕ //

p1

��

B2

p2

��
X1

ψ // X2

(2.12.1)

commutes.

The standard example of a bundle overX is the product spaceX×Y for some Hausdorff

space Y together with the projection map p on to the first co-ordinate. Note that, in this

example, each fibre p−1(x) is canonically homeomorphic to Y via the map (x, y) 7→ y.

We call this bundle the trivial bundle over X with fibre Y ; any bundle isomorphic to this

bundle is deemed trivial.

If (B, p) is a bundle over X and A ⊆ X then (p−1(A), p|p−1(A)) is also a bundle and

is known as the restriction of (B, p) to A. In algebraic topology, one considers almost

exclusively bundles that are locally trivial, that is bundles (B, p) with the property that

for all points x in the base space X have an open neighbourhood U such that the bundle

restricted to U is trivial.

In functional analysis, non-locally trivial bundles arise naturally. Indeed, the isomor-

phism class of the fibre may not be locally constant. The general definition of bundle given

above allows for such possibilities.

We now come to the definition of the sections of a bundle.

Definition 2.12.2. Let (B, p) be a bundle over X. A section of (B, p) is a map f : X → B

such that p ◦ f = idX .

We are, of course, mostly interested in continuous sections, but will on occasion have

need for non-continuous sections. We shall also speak of local sections, that is sections

which are defined only on a subset of X or equivalently sections of an appropriate restric-

tion of the bundle.

Definition 2.12.3. A bundle (B, p) over X is said to have sufficiently many continuous

sections if for every b ∈ B there is a continuous section f : X → B with f(p(b)) = b.
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Note that, if the bundle (B, p) over X is has sufficiently many continuous sections

and U is a neigbourhood of b ∈ B, then p(U) ⊇ f−1(U), so p(U) is a neighbourhood of

p(b). Consequently, the openness of the map p is necessary for there to be sufficiently map

continuous sections.

2.12.2 Bundles of Normed Spaces

The bundles that arise in functional analysis, tend to have fibres which are normed vector

spaces (or even Banach spaces). Denoting the bundle (B, p) and the base space X, this

gives rise to the following global functions: addition + : D → B, where D = {(b1, b2) :

B ×B : p(b1) = p(b2)}; scalar multiplication · : C×B → B; and norm ‖ · ‖ : B → [0,∞).

Moreover, each fibre contains a distinguished zero element 0x ∈ p−1(x), and the map

x 7→ 0x is a distinguished section of the bundle. We can now state some axioms for such

bundles.

Definition 2.12.4. A bundle of normed spaces (respectively Banach spaces) is a bundle

(B, p) over X where each fibre p−1(x) has the additional structure of a normed vector

space (respectively Banach spaces) and the following axioms are satisfied:

(i) The global norm ‖ · ‖ : B → [0,∞) is continuous.

(ii) The global addition + : D → B is continuous.

(iii) For each λ ∈ C, that map B → B : b 7→ λb is continuous.

(iv) A net (bi) in B converges to 0x provided both ‖bi‖ → 0 and p(bi)→ x.

We say that the bundle (B1, p1) over X1 is isomorphic to the bundle (B2, p2) over X2

if there are homeomorphisms ψ and ϕ such that the diagram

B1
ϕ //

p1

��

B2

p2

��
X1

ψ // X2

(2.12.2)

commutes, and for all x1 ∈ X1, ϕ|p−1
1 (x1) : p−1

1 (x1) → p−1
2 (ψ(x1)) is an isomorphism of

normed vector spaces.8

8One could also consider the stronger notion of isometric isomorphism, where each ϕ|
p−1
1 (x1)

: p−1
1 (x1)→

p−1
2 (ψ(x1)) is required to be norm preserving.
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Proposition 2.12.5. The zero section B → B : x 7→ 0x and the global scalar multiplica-

tion map · : C×B → B are continuous.

Proof. Let (xi) be a net in X converging to x. Since p(0xi) = xi → x and ‖0xi‖ = 0→ 0,

Axiom (iv) ensures that 0xi → 0x.

Let (λi) be a net in C converging to λ and (bi) a net in B converging to B. (Without

loss of generality, we assume they have the same indexing set I.) Then p(λibi − λbi) =

p(bi) → p(b) and ‖λibi − λbi‖ = |λi − λ|‖bi‖ → 0, since by Axiom (i) ‖bi‖ → ‖b‖. Hence,

by Axiom (iv) λibi − λbi → 0p(b). Since λbi → λb by Axiom (iii) and since addition is

continuous by Axiom (ii), we have λibi → λb.

Example 2.12.6. If (B, p) is the trivial bundle over of X with fibre Y and Y is a normed

vector space, then we get an induced normed vector space structure on all the fibres via

the canonical homomorphism. The veracity of the Axioms (i-iv) is an easy consequence

of the definition of the product topology. The restriction of a bundle of normed space is

also a bundle of normed space, and we can define locally trivial bundles of normed vector

spaces.

Remark 2.12.7. Axiom (iv) can be reformulated as follows: Given x ∈ X, the setsB(U, ε) =

{b ∈ B : p(b) ∈ U, ‖b‖ < ε} as U ranges over open neighbourhood of x and ε ranges over

positive real numbers are a neighbourhood basis for 0x. One can view this axiom, as a

weakening of local triviality.

We now turn to the sections of a bundle (B, p) of normed spaces over X. A consequence

of Axioms (ii) and (iii) together with the continuity of the zero section is that the set

Γ(B, p) of all continuous section of a bundle of (B, p) is a vector space under fibrewise

operations. If one wishes to have a normed space of continuous sections, one must restrict

attention to the subspace Γb(B, p) of bounded, continuous sections, that is sections f :

X → B of a bundle such that supx∈X ‖f(x)‖ < ∞. One can then define a uniform norm

‖f‖∞ = supx∈X ‖f(x)‖. In the case X compact, then Γ(B, p) = Γb(B, p).

In the following proposition, we show that continuity of sections is preserved under

uniform limits. The proof is essentially that of [26, Corollary II.13.13].

Proposition 2.12.8. Let (B, p) be a bundle of normed spaces over X. Suppose the sections

fn : X → B converge uniformly to the section f : X → B. If each fn is continuous, then

so is f .
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Proof. Let (xλ)λ∈Λ be a net in X converging to x ∈ X. Then p(f(xλ)) = xλ → x = p(f(x))

as λ → ∞. Since p is an open map, there exists a subnet (x′µ)µ∈M of (xλ)λ∈Λ and a net

(bµ)µ∈M in B such that

p(bµ) = x′µ (µ ∈M), (2.12.3)

lim
µ→∞

bµ = f(x). (2.12.4)

Indeed, let M = Λ × Nf(x), where Nf(x) is the net of open neighbourhoods of f(x)

with the direction given by reverse inclusion. For µ = (λ,U) ∈ M , choose λ′ ∈ Λ such

that λ′ ≥ λ and xλ′ ∈ p(U), existence of such a λ′ being guaranteed as p is open, and

set x′µ = xλ′ . By construction (x′µ)µ∈M is a subnet of of (xλ)λ∈Λ and both (2.12.3) and

(2.12.4) hold.

Let ε > 0. Choose n ∈ N such that ‖fn(y) − f(y)‖ < ε
2 for all y ∈ X. The continuity

of fn together with Axioms (i-iii) ensures that ‖fn(x′µ)− bµ‖ → ‖fn(x)− f(x)‖ as µ→∞.

Hence, there is µ0 ∈M such that ‖fn(x′µ)− bµ‖ < ε
2 whenever µ ≥ µ0. Therefore,

‖f(x′µ)− bµ‖ ≤ ‖f(x′µ)− fn(bµ)‖+ ‖fn(x′µ)− bµ‖ (2.12.5)

≤ ε

2
+
ε

2
(2.12.6)

= ε (2.12.7)

whenever µ ≥ µ0. Thus, we have shown that ‖f(x′µ) − bµ‖ → 0 as µ → ∞. Invoking

Axiom (iv), we find that f(x′µ) − bµ → 0x in B as µ → ∞. By Axiom (i), f(x′µ) =

(f(x′µ)− bµ) + bµ → f(x) as µ→∞.

This proves that f is continuous for, if not, there would exist x ∈ X, an open neighbour-

hood V of f(x) and a net (xλ)λ∈Λ converging to x ∈ X such that f(xλ) 6∈ V for all λ ∈ Λ;

hence, no subnet (x′µ)µ∈M of (xλ)λ∈Λ could have the property limµ→∞ f(x′µ) = f(x).

Corollary 2.12.9. Suppose (B, p) is a bundle of Banach spaces over X. Then Γb(B, p)

is a Banach space.

Proof. The space of all bounded sections of (B,P ), is a Banach space isomorphic to the

product
∏
x∈X p

−1(x). By Proposition 2.12.8, Γb(B, p) is a closed subspace of the Banach

space of all bounded sections.

Finally, we come to the question of whether a bundle has sufficiently many sections. If

a bundle of normed space has sufficiently many continuous sections, then its topology is

completely determined by these continuous sections, as the following result shows.
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Proposition 2.12.10. Let (B, p) be a bundle of normed vector spaces over X with suffi-

ciently many continuous sections. Then a basis for the topology of B is given by the the

sets B(U, f, ε) = {b ∈ B : p(b) ∈ U, ‖f(p(b)) − b‖ < ε} as U ranges over all open sets in

X, f ranges over all continuous sections, and ε ranges over all positive real numbers.

Proof. Let b0 ∈ B and x0 = p(b). Since (B, p) has sufficiently many continuous sections,

there is a continuous section f0 such that f0(x0) = b0. Since f is continuous, the map

Φ : B → B given by b 7→ b − f(p(b)) is a homeomorphism with inverse given by b 7→

b+ f(p(b)). Since Φ(b0) = 0x0 , we deduce from Remark 2.12.7 that the sets B(U, f0, ε) =

{b ∈ B : p(b) ∈ U, ‖f0(p(b)) − b‖ < ε} as U ranges over open neighbourhood of x0, and ε

ranges over positive real numbers are a neighbourhood basis for b0.

Directly from the axioms, one can only deduce the existence of a single continuous

section: the zero section. However, if one makes some assumptions on the base space,

progress can be made. The follow result is due to Douady and dal Soglio-Herault and

appears as an appendix to [25] and in [26, Appendix C].

Theorem 2.12.11. Let X be either paracompact or locally compact. The any bundle of

Banach spaces over X has sufficiently many continuous sections.

2.12.3 Constructing Continuous Sections

This section is devoted to providing an overview of the proof of Theorem 2.12.11. It is

heavily based on the extremely detailed presentation found in [26, Appendix C]. However,

since we shall later wish to adapt the construction, special effort will be made to isolate

where completeness of the fibres comes into the picture. Hereinafter, let X be a Hausdorff

space and (B, p) a bundle of normed spaces over X.

The key concepts introduced by Douady and dal Soglio-Herault are ε-thin sets and

ε-continuous sections.

Definition 2.12.12. Let ε > 0. A subset U of B is ε-thin if ‖b − b′‖ < ε whenever

b1, b2 ∈ U and p(b1) = p(b2).

Definition 2.12.13. Let x ∈ X. A section f : X → B is ε-continuous at x if there is

a neighbourhood V of x and an ε-thin neighbourhood U of f(x) such that f(V ) ⊆ U . A

section f : X → B is ε-continuous if it is ε-continuous at all points x ∈ X.

We begin with the basic existence results.
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Proposition 2.12.14. For all ε > 0, every b ∈ B has an ε-thin open neighbourhood.

Proof. Let b ∈ B. The map σ : D → B given by (b1, b2) 7→ b1 − b2 is continuous on its

domain D = {(b1, b2) : B × B : p(b1) = p(b2)}. Applying the definition of continuity of σ

at (b, b), there is an open set U containing b such that σ((U × U) ∩D) ⊆ B(X, ε2). The

set U is an open ε-thin neighbourhood of b.

Proposition 2.12.15. Suppose X is completely regular. For all ε > 0, x0 ∈ X and

b0 ∈ p−1(x0), there is an ε-continuous section f with f(x0) = b0.

Proof. Let U be an open ε-thin neighbourhood of b0. The set V = p(U) is an open

neighbourhood of x0. By the axiom of choice, there is a local section fV : V → B such

that fV (V ) ⊆ U . Complete regularity of X implies the existence of a continuous bump

function φ : X → [0, 1] supported on a closed set F ⊆ V and with φ(x0) = 1. We can

define f : X → B by

f(x) =


φ(x)fV (x), x ∈ V,

0, x 6∈ V.
(2.12.8)

The function f is easily seen to be an ε-continuous section.

The following lemma uses the concept of ε-thin sets to describe neighbourhood bases

in B.

Lemma 2.12.16. Let b ∈ B and let (Ui)i∈I be a decreasing net of open neighbourhoods of

b such that

(i) {p(Ui) : i ∈ I} is a neighbourhood basis for p(b),

(ii) Ui is εi-thin and limi εi = 0.

Then {Ui : i ∈ I} is a neighbourhood basis for b.

Proof. Write x = p(b) and Vi = p(Ui) for i ∈ I. Using the notation of Remark 2.12.7, the

sets B(Vi, εi) form a neighbourhood basis for 0x.

Let W be an open neighbourhood of b in B. By Axiom (i), there is an open neighbour-

hood W ′ of b and an index i ∈ I such that b′ + b′′ ∈ W whenever b′ ∈ W ′, b′′ ∈ V (Vi, εi)

and p(b′) = p(b′′).

Since p(W ′∩Ui) is an open neighbourhood of x, there is j ≥ i such that Uj ⊆ p(W ′∩Ui).

Since (Ui)i∈I is decreasing, Uj ⊆ Ui ∩ p−1p(W ′ ∩ Ui).
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Let c ∈ Uj . Then c ∈ Ui and there exists c′ ∈ W ′ ∩ Ui with p(c′) = p(c). As Ui is

εi-thin, ‖c − c′‖ < εi, i.e. c − c′ ∈ B(Vi, εi). Therefore, c = c′ + (c − c′) ∈ W , and hence

Uj ⊆W .

We now can give one of the key lemmas of Douady and dal Soglio-Herault.

Lemma 2.12.17. Suppose the section f is ε-continuous for all ε > 0. Then f is continu-

ous.

Proof. Let x ∈ X. For each n ∈ N, there is an open neighbourhood Vn of x and an

n−1-thin open open neighbourhood Un of f(x) such that f(Vn) ⊆ Un. Replacing Un with

Un ∩ p−1(Vn), we may assume without lose of generality that f(p(Un)) ⊆ Un. Replacing

Un with U1 ∩ · · · ∩ Un, we may further assume that the Un are decreasing.

It now follows from Lemma 2.12.16 that the sets Un ∩ p−1(V ) form a neighbourhood

basis for f(x) as n ranges over the natural numbers and V ranges over a neighbourhood

basis for x. Since f−1(Un ∩ p−1(V )) ⊇ p(Un) ∩ V , f is continuous at x.

The following result combined with the previous lemma indicate how one could con-

struct continuous sections.

Lemma 2.12.18. Let ε > 0. Suppose the sections fn are all ε-continuous and converge

uniformly to f . Then f is ε′-continuous for all ε′ > ε.

Proof. Let ε′ > ε. Choose n ∈ N such that ‖fn(y) − f(y)‖ < ε′−ε
2 for all y ∈ X. Now let

x ∈ X. Since fn is ε-continuous there is an ε-thin open neighbourhood U of fn(x) and an

open neighbourhood V of x such that fn(V ) ⊆ U . Replacing U with U ∩ p−1(V ), we may

assume that p(U) = V .

Set W = {b + c : b ∈ U, c ∈ B(V, ε
′−ε
2 ), p(b) = p(c)}. Then f(x) = fn(x) + (f(x) −

fn(x)) ∈W whenever x ∈ V , and the following calculation shows that W is ε′-thin:

‖(b1 + c1)− (b2 + c2)‖ ≤ ‖b1 − b2‖+ ‖c1‖+ ‖c2‖ (2.12.9)

< ε+
ε′ − ε

2
+
ε′ − ε

2
(2.12.10)

= ε′, (2.12.11)

where b1, b2 ∈ U , c1, c2 ∈ B(V, ε
′−ε
2 ) and p(b1) = p(b2) = p(c1) = p(c2).

It remains to show that W is an open set. Write D = {(b1, b2) : B×B : p(b1) = p(b2)}.

Then the map Φ : D → D given by (b1, b2)→ (b1 + b2, b1 − b2) is a homeomorphism, and
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the map Ψ : D → B given by (b1, b2) 7→ b1 is open and continuous. The set W is the

image of the open set D ∩ (U × B(V, ε
′−ε
2 )), which is open in D, under the composition

Ψ ◦ Φ. Hence, W is open in B.

Key to the proof of Theorem 2.12.11, is a partition of unity argument. This step is

isolated in Proposition 2.12.20 and the following technical lemma.

Lemma 2.12.19. Let φ1, . . . , φn : X → [0, 1] be a continuous partition of unity. Then∑n
i=1 φifi is ε-continuous whenever the fi are all ε-continuous.

Proof. Let x0 ∈ X. Then some φi0 is non-zero on a neighbourhood V0 of x0. Without loss

of generality, assume i0 = 1. For i = 1, . . . , n, there is an open neighbourhood Vi of X and

an ε-thin open neighbourhood Ui of fi(x) such that fi(Vi) ⊆ Ui. Set V = V0∩ · · · ∩Vn and

replace each Ui with Ui ∩ p−1(V ).

Set W = {
∑n

i=1 φi(x)bi : x ∈ V, bi ∈ Ui, p(bi) = x}. Then
∑n

i=1 φi(x)fi(x) ∈ W

whenever x ∈ V and W is ε-thin since

‖
n∑
i=1

φi(x)bi −
n∑
i=1

φi(x)b′i‖ ≤
n∑
i=1

φi(x)‖bi − b′i‖ (2.12.12)

<
n∑
i=1

φi(x)ε (2.12.13)

= ε, (2.12.14)

where x ∈ V , bi, b
′
i ∈ Ui and p(bi) = p(b′i) = x.

It remains to prove that W is open in B. Write E = {(b1, b2 . . . , bn) ∈ Bn : p(b1) =

p(b2) = · · · = p(bn) ∈ V }. Then the map Φ : E → E given by (b1, b2, . . . , bn) →

(
∑n

i=1 φi(x)bi, b2 . . . , bn), where x = p(b1), is a homeomorphism9, and the map Ψ : E →

p−1(V ) given by (b1, b2, . . . , bn) 7→ b1 is open and continuous. The set W is the image of

the open set E ∩ (U1 × U2 × · · · × Un), which is open in D, under the composition Ψ ◦ Φ.

Hence, W is open in B.

Proposition 2.12.20. Assume X is paracompact. Let ε > 0, x0 ∈ X and let f : X → B

be an ε-continuous section. Then there is an ε
2 -continuous section f ′ : X → B such that

‖f(x)− f ′(x)‖ < 3
2ε for all x ∈ X and f ′(x0) = f(x0).

Proof. Let x ∈ X. Let U1 be an ε-thin open neighbourhood of f(x) such that f(p(U1)) ⊆

U1. By Lemma 2.12.15, there exists an ε
2 -continuous function f (x) such that f (x)(x) = f(x).

Let U2 be an ε
2 -thin open neighbourhood of f (x)(x) = f(x) such that f (x)(p(U2)) ⊆ U2.

9The inverse is given by (b1, b2, . . . , bn)→ (φ1(x)−1
(
b1 −

∑n
i=2 φi(x)bi

)
, b2 . . . , bn)
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Set V (x) = p(U1 ∩ U2). Let y ∈ V (x). Then there exist b ∈ U1 ∩ U2 with p(b) = y and

‖f(y)− b‖ < ε, since U1 is ε-thin, and ‖f (x)(y)− b‖ < ε
2 , since U2 is ε

2 -thin. Consequently,

‖f(y)− f (x)(y)‖ < 3

2
ε (y ∈ V (x)). (2.12.15)

Since X is paracompact there is a locally finite refinement {Vi : i ∈ I} of the open

cover {V (x) : x ∈ X}. Suppose x0 ∈ Vi0 . As X is paracompact, X is regular. Hence, there

is an open neighbourhood Z of x0 such that Z ⊆ Vi0 . Replacing Vi with Vi \ Z for i 6= i0,

we may assume that x0 6∈ Vi for i 6= i0. Let fi0 = f (x0) and, for i 6= i0, let fi denote one

of the f (x) for which Vi ⊆ V (x).

Let (φi)i∈I be a partition of unity subordinate to {Vi : i ∈ I}. Set f ′ =
∑

i∈I φifi.

Since in a neighbourhood of any point only finitely many terms of the sum are non-zero,

Lemma 2.12.19 ensures that f ′ is ε
2 -continuous. Furthermore, if y ∈ X, then

‖f(y)− f ′(y)‖ = ‖
∑
i∈I

φi(y)(f(y)− fi(y))‖ (2.12.16)

≤
∑
i∈I

φi(y)‖f(y)− fi(y)‖ (2.12.17)

<
∑
i∈I

φi(y)
3

2
ε (2.12.18)

=
3

2
ε. (2.12.19)

Finally, since x0 6∈ Vi for i 6= i0, f ′(x0) = f (x0)(x0) = f(x0).

We can now give the proof of Theorem 2.12.11.

Proof of Theorem 2.12.11. We first prove the result for X paracompact. Fix x0 ∈ X and

b0 ∈ p−1(x). By Proposition 2.12.15, there is 1-continuous section f0 with f0(x0) = b0.

Using Proposition 2.12.20, we inductively construct a sequence of sections fn : X → B

with fn(x0) = b0 such that fn is 1
2n -continuous and ‖fn(x)− fn−1(x)‖ < 3

2n for all x ∈ X

and n ∈ N.

Since the series
∑∞

i=0
3
2i

converges, the sequence of section (fn)∞n=1 is uniformly Cauchy,

i.e. for all ε > 0, there exists N ∈ N such that

‖fn(x)− fm(x)‖ < ε (2.12.20)

whenever x ∈ X and m,n ≥ N .

As fibres of the bundle are Banach spaces, fn converges pointwise to some section f .

Fixing x while letting m→∞ in (2.12.20), we see that fn converges uniformly to f . This
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section will by ε-continuous for all ε > 0 by Lemma 2.12.18 and thus continuous by Lemma

2.12.17.

The result for X locally compact is deduced by working first on a compact neighbour-

hood of b0, applying the result for the paracompact case, then multiplying by a suitable

bump function.
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Chapter 3

An Introduction to W∗-Bundles

W∗-bundles were introduced by Ozawa in [62], motivated by work on the Toms–Winter

Conjecture in the classification programme for C∗-algebras (see Chapter 1). The abstract

theory of W∗-bundles was then developed further in [5] and [23]. In this chapter, we

present the axiomatic definition of W∗-bundles, their basic theory and the key examples.

We also systematically study the standard form of a W∗-bundle and morphisms between

W∗-bundles, culminating in a bicommutant theorem for W∗-bundles in standard form. In

the final section of this chapter, we provide an alternative picture of W∗-bundles, where

one considers bundle spaces rather than algebras of sections.

3.1 Definitions and Examples

The purpose of this section is to present the formal definition of a W∗-bundle and illuminate

this somewhat abstract definition with the help of some examples. The definition given

below is essentially that of [62, Section 5].1

Definition 3.1.1. A tracially continuous W∗-bundle over a compact Hausdorff space X

is a unital C∗-algebraM together with a unital embedding of C(X) into the centre Z(M)

of M and a conditional expectation E : M → C(X) such that the the following axioms

are satisfied:

(T) E(a1a2) = E(a2a1), for all a1, a2 ∈M.

(F) E(a∗a) = 0⇒ a = 0, for all a ∈M.

1We follow the conventions of [5] and [23] and do not require X to be a metric space.

73
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(C) The unit ball {a ∈ M : ‖a‖ ≤ 1} is complete with respect to the norm defined by

‖a‖2,u = ‖E(a∗a)1/2‖C(X).
2

We now take the opportunity to fix some terminology and notational conventions that

will be used throughout this thesis. We also state formally the definition of a pre-W∗-

bundle, a concept that will be useful from time to time in this thesis.

Notation and Terminology 3.1.2. We abbreviate tracially continuous W∗-bundle to

W∗-bundle. In the notation of Definition 3.1.1, we call X the base space of the bundle,

M the section algebra, and E the conditional expectation. The unital embedding of C(X)

into Z(M) is typically suppressed in the notation, but will on occasion be denoted by

ι. By abuse of notation, the same symbol M is used to denote both the W∗-bundle as

a whole and its section algebra. The axioms listed in Definition 3.1.1 are referred to as

the tracial axiom, the faithfulness axiom and the completeness axiom respectively. By the

unit ball of a W∗-bundle M, we always mean {a ∈ M : ‖a‖ ≤ 1}, i.e the closed unit ball

with respect to the ‖ · ‖-norm.

Definition 3.1.3. A pre-W∗-bundle over a compact Hausdorff space X is a unital C∗-

algebra M together with a unital embedding of C(X) into the centre Z(M) of M and a

conditional expectation E :M→ C(X) such that the the following axioms are satisfied:

(T) E(a1a2) = E(a2a1), for all a1, a2 ∈M.

(F) E(a∗a) = 0⇒ a = 0, for all a ∈M.

We now turn to the basic examples of W∗-bundles: tracial von Neumann algebras, finite

von Neumann algebras, trivial W∗-bundles and subtrivial W∗-bundles. The motivating

examples of W∗-bundles, namely those arising from C∗-algebras, will be introduced in

Section 3.3 after we’ve developed some of the basic theory of W∗-bundles in Section 3.2.

Example 3.1.4 (Tracial von Neumann algebras). A pre-W∗-bundle over a one point space

X = {∗} is nothing more than a unital C∗-algebra M = A together with a faithful trace

E = τ , provided we make the obvious identifications C ∼= C1A ∼= C({∗}). In this case,

Axiom (C) holds if and only if (A, τ) is a tracial von Neumann algebra; see Definition

2.8.17 and Theorem 2.8.16.

2For each x ∈ X, a 7→ E(a)(x) is a trace, so x 7→ E(a∗a)(x)1/2 is a seminorm. Taking suprema, we see

that ‖ · ‖2,u is a seminorm. Axiom (F) ensures it’s a norm.
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Example 3.1.5 (Finite von Neumann algebras3). Fix a finite von Neumann algebra M.

Let X be the hyperstonian space such that Z(M) ∼= C(X) and identify these two alge-

bras. Note, that X is typically non-metrisable. Let E be the centre valued trace (see

Theorem 2.8.11). Since all traces on M factor though the centre valued trace, we have

‖a‖2,u = ‖E(a∗a)1/2‖C(X) = supτ∈T (M) ‖a‖2,τ . A consequence of Corollary 2.8.12 is that

the supremum can equally well be taken over the normal traces of M . Axioms (T) and

(F), are basic properties of the centre valued trace. Axiom (C) is verified below.

Proposition 3.1.6. The unit ball of a finite von Neumann algebra M is complete with

respect to the ‖ · ‖2,u-norm.

Proof. Suppose the sequence (an) is a ‖ · ‖2,u-Cauchy sequence inM with ‖an‖ ≤ 1 for all

n ∈ N. Since the ‖ · ‖2,u-norm dominates the ‖ · ‖2,τ -norm for any trace τ ∈ T (M), (an) is

Cauchy with respect to the ‖ · ‖2,τ -norm for any trace τ ∈ T (M). The family of all normal

traces is separating by Corollary 2.8.12, so by Proposition 2.7.7 the family of seminorms

{‖ · ‖2,τ : τ ∈ T (M), τ normal} induces the strong operator topology on bounded subsets

of M. Hence, (an) is Cauchy with respect to the strong operator topology. However, the

unit ball of M is complete in the strong operator topology by Theorem 2.2.1, so there

exists a ∈M with ‖a‖ ≤ 1 such that an → a strongly as n→∞.

Let ε > 0. As (an) is Cauchy with respect to the ‖·‖2,u-norm, there is N ∈ N such that

‖an − am‖2,u ≤ ε whenever n,m ≥ N . Hence, for all normal traces τ , ‖an − am‖2,τ ≤ ε

whenever n,m ≥ N . However, am → a strongly as m → ∞ and the strong operator

topology on bounded sets is induced by family of seminorms {‖·‖2,τ : τ ∈ T (M), τ normal}.

Thus, for all normal traces τ , ‖an − a‖2,τ ≤ ε whenever n ≥ N . Since the normal traces

are dense in T (M), we have ‖an − a‖2,u ≤ ε. Therefore, (an) converges to a with respect

to the ‖ · ‖2,u-norm.

Example 3.1.7 (Trivial W∗-Bundles c.f. [62, Section 5]). Let X be a compact Hausdorff

space and (M, τ) be a tracial von Neumann algebra. The trivial W∗-bundle over X with

fibre M is the unital C∗-algebra

Cσ(X,M) = {f : X → (M, τ) : f is ‖ · ‖-bounded, f is ‖ · ‖2,τ -continuous} (3.1.1)

together with the embedding ι : C(X) → Z(Cσ(X,M)) and the conditional expectation

3This family of examples of W∗-bundles was suggested to me by George Elliott during a talk I gave at

the Isaac Newton Institute in Cambridge. Later, in Glasgow, I was able to prove that Axiom (C) holds.
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E : Cσ(X,M)→ C(X) defined by

ι(φ)(x) = φ(x)1M (x ∈ X,φ ∈ C(X)), (3.1.2)

E(f)(x) = τ(f(x)) (x ∈ X, f ∈ Cσ(X,M)). (3.1.3)

We check the axioms (T), (F) and (C) in the proposition below.

Proposition 3.1.8. For the trivial W∗-bundle over X with fibre M defined above, the

axioms (T), (F) and (C) are satisfied.

Proof. Axioms (T) and (F) follow from the fact that τ is a faithful trace on M . We now

show Axiom (C) holds. Let (fn) ⊆ Cσ(X,M) be a sequence such that ‖fn‖ ≤ 1 for all

n ∈ N and which is a Cauchy sequence with respect to the ‖ · ‖2,u-norm. Let x ∈ X. Since

‖fn(x)− fm(x)‖2,τ ≤ ‖fn − fm‖2,u for all n,m ∈ N and ‖fn(x)‖ ≤ ‖fn‖ for all n ∈ N, we

have that (fn(x)) is a ‖ · ‖2,τ -Cauchy sequence in the unit ball of the tracial von Neumann

algebra M and so has a ‖·‖2,τ -limit in the unit ball of M . Hence, we can define a pointwise

‖ · ‖2,τ -limit f of the sequence of functions (fn) and supx∈X ‖f(x)‖ ≤ 1.

Let ε > 0. There is N ∈ N such that ‖fn− fm‖2,u < ε whenever n,m ≥ N . Fix x ∈ X.

Then ‖fn(x)− fm(x)‖2,τ < ε for n,m ≥ N . Letting m → ∞ gives ‖fn(x)− f(x)‖2,τ ≤ ε.

Hence,

sup
x∈X
‖fn(x)− f(x)‖2,τ ≤ ε (3.1.4)

whenever n ≥ N . Therefore, (fn) converges uniformly to f in ‖ · ‖2,τ -norm.

A standard 3ε-argument now gives that f is ‖ · ‖2,τ -continuous. Indeed, let ε > 0 and

x0 ∈ X. Choose N ∈ N as above, so that (3.1.4) holds whenever n ≥ N . Since fN is

‖·‖2,τ -continuous, there is an open neighbourhood U of x0 such that ‖fN (x0)−fN (x1)‖ ≤ ε

whenever x1 ∈ U . Using (3.1.4) twice, we compute that

‖f(x0)− f(x1)‖2,τ ≤ ‖f(x0)− fN (x0)‖2,τ + ‖fN (x0)− fN (x1)‖2,τ (3.1.5)

+ ‖fN (x1)− f(x1)‖2,τ (3.1.6)

≤ 3ε. (3.1.7)

Hence, f is ‖ · ‖2,τ -continuous. Therefore, f is in the unit ball of Cσ(X,M). As (fn)

converges uniformly to f in ‖ · ‖2,τ -norm, (fn) converges to f in ‖ · ‖2,u-norm. This

completes the proof of Axiom (C).

Example 3.1.9 (Subtrivial W∗-bundles). Let M = Cσ(X,M) be a trivial W∗-bundle.

For each x ∈ X, let Nx be a von Neumann subalgebra of M containing the identity. Set
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N = {f ∈ Cσ(X,M) : f(x) ∈ Nx for all x ∈ X}, with the embedding and conditional

expectation inherited from Cσ(X,M). Since each Nx is ‖ · ‖2,τ -closed in M , we get that

M is ‖ · ‖2,u-closed in Cσ(X,M), and so also ‖ · ‖-closed. Hence, N is a unital C∗-algebra

and axiom (C) is satisfied. Axioms (T) and (F) are inherited from Cσ(X,M). Therefore,

N is a W∗-bundle over X.

For each x ∈ X, let evalx : Cσ(X,M) → M be the ∗-homomorphism coming from

evaluating a function at the point x. By definition, we have evalx(N ) ⊆ Nx. In order

to have equality, one must make a continuity assumption on the family {Nx}x∈X . The

precise necessary and sufficient condition is given in the following proposition, which is

inspired by [19, Proposition 11].

Proposition 3.1.10. Let M = Cσ(X,M) be a trivial W∗-bundle and N the subtrival

bundle defined by the family of von Neumann subalgebras {Nx}x∈X . Then the following

are equivalent:

(i) For all x ∈ X, evalx(N ) = Nx.

(ii) For all b ∈M , the map x 7→ dist‖·‖2,τ (b,Nx) is upper-semicontinuous, where dist‖·‖2,τ (b,Nx) =

inf{‖b− c‖2,τ : c ∈ Nx}.

Proof. Hereinafter, we drop subscripts and write dist(·, ·) instead of dist‖·‖2,τ (·, ·).

(i) ⇒ (ii) Let b ∈M,x0 ∈ X, and ε > 0. There exists c ∈ Nx0 such that ‖b− c‖2,τx0
<

dist(b,Nx0) + ε. Since evalx(N ) = Nx for all x ∈ X, there is f ∈ N such that f(x0) = c.

Since x 7→ ‖b − f(x)‖2,τ is continuous, there is neighbourhood U of x0 such that

‖b − f(x)‖2,τ < dist(b,Nx0) + ε for all x ∈ U . Since f(x) ∈ Nx for all x, it follows

that dist(b,Nx) < dist(b,Nx0) + ε for all x ∈ U . Hence, x 7→ dist‖·‖2,τ (b,Nx) is upper-

semicontinuous.

(ii) ⇒ (i) We need to prove that for all x0 ∈ X and b ∈ Nx0 there is some f ∈ N with

f(x0) = b. We construct such an f as the limit of a sequence (fn) ⊆ Cσ(X,M) with the

following properties:

‖fn‖ ≤ ‖b‖, (3.1.8)

fn(x0) = b, (3.1.9)

‖fn − fn−1‖2,u <
1

2n−1
, (3.1.10)

sup
x∈X

dist(fn(x), Nx) <
1

2n
. (3.1.11)



78 CHAPTER 3. AN INTRODUCTION TO W∗-BUNDLES

Assume for now that such a sequence exists. Axiom (C) together with (3.1.8) and (3.1.10)

ensures that (fn) has a ‖ · ‖2,u-limit f ∈ Cσ(X,M). Taking limits in (3.1.9) ensures

that f(x0) = b. Finally, property (3.1.11) ensures that, for each x ∈ X, f(x) lies in the

‖ · ‖2,τ -closure of Nx, so f(x) ∈ Nx; hence, f ∈ N .

We now show how to construct the sequence (fn). This is done by induction. First we

construct f1. Since x 7→ dist(b,Nx) is upper-semicontinuous there is an open neighbour-

hood U of x0 such that supy∈U dist(b,Ny) <
1
2 . Choose a continuous function φ : X → [0, 1]

such that φ(x0) = 1 and φ(X \ U) ⊆ {0}. Set f1 = φb. Properties (3.1.8) and (3.1.9) are

clearly satisfied, property (3.1.10) is void, and property (3.1.11) comes from considering

the cases x ∈ U and x ∈ X \ U separately.

Suppose now that f1, . . . , fn−1 have been constructed with the desired properties. We

construct fn. By (3.1.11), there is, for all x ∈ X, b(x) ∈ Nx such that ‖fn−1(x)− b(x)‖2,τ <
1

2n−1 . In fact, we can take b(x) = ENx(fn−1(x)), where ENx is the canonical conditional

expectation M → Nx. This ensures that we also have ‖b(x)‖ ≤ ‖fn−1(x)‖ ≤ ‖b‖ and

b(x0) = b.

Fix x ∈ X. By the continuity of fn and the upper-semicontinuity of y 7→ dist(b(x), Ny),

there is an open neighbourhood U (x) 3 x such that

sup
y∈U(x)

‖fn−1(y)− b(x)‖ < 1

2n−1
, (3.1.12)

sup
y∈U(x)

dist(b(x),My) <
1

2n
. (3.1.13)

The open cover {U (x) : x ∈ X} of X has a finite subcover. We write this subcover as

U1, . . . , Um and the corresponding elements of {b(x) : x ∈ X} as b1, . . . , bm. We may

assume that U1 = U (x0) and b1 = b. Let φ1, . . . , φm be a partition of unity subordinate to

U1, . . . , Um with φ1(x0) = 1. Set fn =
∑m

i=1 φibi. Property (3.1.8) follows since we ensured

that ‖b(x)‖ ≤ ‖b‖ for all x ∈ X and φ1, . . . , φm is a partition of unity. Property (3.1.9)

follows by construction. Properties (3.1.10) (3.1.11) follow from (3.1.12) and (3.1.13)

respectively because φ1, . . . , φm is a partition of unity. This completes the proof.

3.2 The Basic Theory of W∗-Bundles

In this section, we develop the basic theory of W∗-bundles. First, we consider the fibration

of a W∗-bundle over its base space, formalising the intuition that the elements of a W∗-

bundle can be viewed as the sections of a bundle of tracial von Neumann algebras. We shall
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then show that every W∗-bundle has a natural representation on a Hilbert-C(X)-module.

We call this representation the standard form of a W∗-bundle by analogy with the case for

tracial von Neumann algebras. Finally, we investigate the strict topology on a W∗-bundle

coming from the standard form representation and its relation to the ‖ · ‖2,u-topology.

The main results on the fibration of a W∗-bundle are due to Ozawa [62, Section 5],

though the approach in this thesis is different and more easily generalised. The standard

form representation and the strict topology are discussed briefly in [62, Section 5] and [5,

Section 3.1]; we investigate them fully here.

3.2.1 The Fibres of a W∗-Bundle

The idea behind the construction of this section is to generalise the family of ∗-homomorphisms

evalx : Cσ(X,M) → M of a trivial W∗-bundle given by f 7→ f(x) to the setting of pre-

W∗-bundles. This is done by means of a quotient construction.

Let M be a pre-W∗-bundle over the compact Hausdorff space X with conditional

expectation E, and let x ∈ X. By Proposition 2.6.12, Ix = {a ∈M : E(a∗a)(x) = 0} is an

ideal of M. Set Mx =M/Ix. By Corollary 2.6.13, the trace evalx ◦ E induces a faithful

trace τx on the quotientMx. The fibre ofM at x is the C∗-algebraMx together with the

trace τx.4

In [62, Section 5], Ozawa defines the fibre of M at x to be πx(M), where πx is the

GNS representation corresponding to the trace evalx ◦ E. In this thesis, we favour the

definition as an abstract quotient so as not to favour a certain representation. In any case,

Proposition 2.6.12 together with the first isomorphism theorem for C∗-algebras gives us

an isomorphism ϕ such that the diagram

M
πx

$$
qx

��
Mx ϕ

// πx(M)

(3.2.1)

commutes, where qx is the quotient map. Moreover, under the isomorphism ϕ, the trace

τx on Mx corresponds to the GNS trace on πx(M). Hence, the definition of fibres given

here is equivalent to that of Ozawa in [62, Section 5].

Now for some examples.

Example 3.2.1 (Trivial W∗-bundles). In the case of a trivial W∗-bundle, the evaluation

map evalx : Cσ(X,M) → M is a ∗-homomorphisms with kernel Ix = {a ∈ Cσ(X,M) :

4However, by abuse of notation, we shall often write Mx for the fibre instead of (Mx, τx).
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E(a∗a)(x) = 0}, so the first isomorphism theorem gives us an isomorphism ϕ such that

the diagram

Cσ(X,M)

qx

��

evalx

%%
Cσ(X,M)x ϕ

//M

(3.2.2)

commutes. Moreover, under the isomorphism ϕ, the trace τx corresponds to the trace

on M . Hence, the general definition of the fibration of a pre-W∗-bundle generalises the

evaluation maps of a trivial W∗-bundle. In particular, the fibres of Cσ(X,M) are all

isomorphic to M .

Example 3.2.2 (Subtrivial W∗-bundles). If N ⊆ Cσ(X,M) is a subtrivial W∗-bundle

defined by a family {Nx}x∈X of von Neumann subalgebras of M as in Example 3.1.9, then

the first isomorphism theorem gives an isomorphism ϕ such that the diagram

N
qx

��

evalx

$$
Nx ϕ

// evalx(N )

(3.2.3)

commutes and which sends the trace τx to that of M . Hence, Proposition 3.1.10 provides

the necessary and sufficient conditions for being able to define a subtrivial W∗-bundle with

specified fibres.

In particular, one could consider the subtrivial W∗-bundle N ⊆ Cσ([0, 1],R) defined

by the family of von Neumann subalgebras

Nx =


R, x 6= 1,

C1R, x = 1.

(3.2.4)

For any b ∈ R, the map x 7→ dist‖·‖τ,2(b,Nx) is upper-semiconituous. So the fibre of N at

x is Nx. In this way, one can produce many examples of W∗-bundle whose fibres are not

all isomorphic.

In the following proposition, we give an alternative characterisation of the ideal Ix.

Note the appearance of the ‖ · ‖2,u-closure. In general, Ix is strictly larger than C0(X \

{x})M. Consequently, the fibres of a pre-W∗-bundle M are in general not the same as

the fibres of M when viewed as a C(X)-algebra.5

5Indeed, the map x 7→ ‖a+ Ix‖ need not be upper-semicontinuous; see (3.2.7).
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Proposition 3.2.3. Let M be a pre-W∗-bundle over the compact Hausdorff space X with

conditional expectation E. Let x ∈ X. Then Ix = C0(X \ {x})M‖·‖2,u.

Proof. The inclusion Ix ⊇ C0(X \ {x})M‖·‖2,u is clear, since E is a conditional expectation

and Ix is ‖·‖2,u-closed. For the reverse inclusion, let ε > 0 and a ∈ Ix. Since E(a∗a)(x) = 0,

there is an open neighbourhood U of x such that E(a∗a)(y) ≤ ε2 for all y ∈ U . Let

f : X → [0, 1] be a continuous function with f(x) = 0 and f(X \ U) ⊆ {1}. Then

‖a− fa‖2,u = sup
x∈X
|1− f(x)|E(a∗a)(x)1/2. (3.2.5)

By considering separately the cases x ∈ U and x ∈ X \ U in this supremum, we obtain

‖a− fa‖2,u ≤ ε. Therefore, Ix ⊆ C0(X \ {x})M‖·‖2,u .

Notation and Terminology 3.2.4. An important intuition for pre-W∗-bundles is to

view an element of a pre-W∗-bundleM as a section of a bundle-like object over X taking

the value a+ Ix in the fibreMx. To this end, we introduce the notation a 7→ a(x) for the

canonical quotient map M→Mx. It follows immediately from Proposition 3.2.3 that, if

f ∈ C(X) ⊆M, then f − f(x)1M ∈ Ix, so the image of f in Mx is f(x)1Mx . Hence, the

notation introduced here is consistent with evaluating elements of C(X) at points of X.

We now verify that an element of a pre-W∗-bundle is completely determined its images

in all fibres, as is clearly the case for trivial W∗-bundles. We also obtain an important

formula for the ‖ · ‖-norm of elements.

Proposition 3.2.5. Let M be a pre-W∗-bundle over the compact Hausdorff space X with

conditional expectation E. The map

Φ :M→
∏
x∈X
Mx

a 7→ (a(x))x∈X

is an isometric ∗-homomorphism. In particular,

‖a‖M = sup
x∈X
‖a(x)‖Mx . (3.2.6)

Proof. For each x ∈ X, the map a 7→ a(x) is a ∗-homomorphism. Hence, Φ is a ∗-

homomorphism. Suppose a ∈ M satisfies a(x) = 0 for all x ∈ X. Then a ∈ Ix for all

x ∈ X. Hence, E(a∗a) = 0. Consequently, a = 0 by the faithfulness axiom. Thus, Φ is an

injective ∗-homomorphism of C∗-algebras, and so is isometric by [58, Theorem 3.14].
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Its extremely important to note that the map x 7→ ‖a(x)‖ is typically not continuous.

For example, consider the element of the trivial W∗-bundle a ∈ Cσ([0, 1], L∞[0, 1]) given

by a(t) = χ[0,t]. Then

‖a(x)‖ =


1, x > 0,

0, x = 0.

(3.2.7)

In this respect, the ‖ · ‖2,u-norm is better behaved than the ‖ · ‖-norm. Not only

do we get a formula for the ‖ · ‖2,u-norm of an element of a W∗-bundle in terms of the

‖ · ‖2,τx-norms of its images in the fibres, we also get that the map x 7→ ‖a(x)‖2,τx is

continuous.

Proposition 3.2.6. Let M be a pre-W∗-bundle over the compact Hausdorff space X with

conditional expectation E. For fixed a ∈ M, the map x 7→ ‖a(x)‖2,τx is continuous.

Furthermore, we have

‖a‖2,u = sup
x∈X
‖a(x)‖2,τx . (3.2.8)

Proof. The proposition follows from the observation that ‖a(x)‖2,τx = E(a∗a)(x)1/2 and

the fact that E takes its values in C(X).

Next, we collect a number of useful norm estimates. These results can be seen as

analogues of the estimates obtained in Proposition 2.6.11. They can be either be deduced

from the corresponding results in Proposition 2.6.11 using the formulas (3.2.6) and (3.2.8),

or proved by calculations similar to those for Proposition 2.6.11.

Proposition 3.2.7. Let M be a W∗-bundle over the compact Hausdorff space X with

conditional expectation E. Then for a, b ∈M

(i) ‖a‖2,u ≤ ‖a‖,

(ii) ‖E(a)‖C(X) ≤ ‖a‖2,u

(iii) ‖a∗‖2,u = ‖a‖2,u,

(iv) ‖ab‖2,u ≤ ‖a‖‖b‖2,u,

(v) ‖ab‖2,u ≤ ‖a‖2,u‖b‖,

(vi) ‖E(ab)‖C(X) ≤ ‖a‖2,u‖b‖2,u.

Proof. (i) We have ‖a‖22,u = ‖E(a∗a)‖C(X) ≤ ‖E‖‖a∗a‖ = ‖a‖2.
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(ii) For any x ∈ X, we have |E(a)(x)| = |τx(a(x))| ≤ ‖a(x)‖2,τ by Proposition 2.6.11.

Now take suprema.

(iii) We have ‖a∗‖22,u = ‖E(aa∗)‖C(X) = ‖E(a∗a)‖C(X) = ‖a‖22,u.

(iv) We have ‖ab‖22,u = ‖E(b∗a∗ab)‖C(X) ≤ ‖E(b∗‖a‖2b)‖C(X) = ‖a‖2‖E(b∗b)‖C(X) =

‖a‖2‖b‖22,u.

(v) Using (iii) and (iv), we have ‖ab‖2,u = ‖b∗a∗‖2,u ≤ ‖b∗‖‖a∗‖2,u = ‖a‖2,u‖b‖.

(vi) The Cauchy-Schwarz inequality gives |τx(a(x)b(x))| ≤ ‖a(x)‖2,τx‖b(x)‖2,τx for all

x ∈ X. Now take suprema.

Corollary 3.2.8. Let M be a W∗-bundle over the compact Hausdorff space X with con-

ditional expectation E.

(i) Addition M×M→M is ‖ · ‖2,u-continuous.

(ii) Scalar multiplication C×M→ L(H) is ‖ · ‖2,u-continuous.

(iii) The involution M→M is ‖ · ‖2,u-continuous.

(iv) Multiplication M×M →M is ‖ · ‖2,u-continuous when restricted to ‖ · ‖-bounded

sets.

(v) The conditional expectation M→ C(X) is ‖ · ‖2,u-continuous.

Proof. Addition and scalar multiplication are ‖ · ‖2,u-continuous since ‖ · ‖2,u is a norm.

The ‖ · ‖2,u-continuity of the involution follows from Proposition 3.2.7(iii), and the ‖ · ‖2,u-

continuity of E from Proposition 3.2.7(ii). For multiplication, we have the estimate

‖a1b1 − a2b2‖2,u = ‖a1b1 − a1b2 + a1b2 − a2b2‖2,u (3.2.9)

≤ ‖a1b1 − a1b2‖2,u + ‖a1b2 − a2b2‖2,u (3.2.10)

≤ ‖a1‖‖b1 − b2‖2,u + ‖a1 − a2‖2,u‖b2‖ (3.2.11)

for a1, a2, b1, b2 ∈ M, using 3.2.7(iv) and (v). The ‖ · ‖2,u-continuity of multiplication on

‖ · ‖-bounded regions follows.

We end this section with two results due to Ozawa (see [62, Theorem 11]). Both

results make crucial use of the completeness axiom. The first is fundamental: the fibres

of W∗-bundles are tracial von Neumann algebras.
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Theorem 3.2.9. Let M be a W∗-bundle over the compact Hausdorff space X with con-

ditional expectation E. Let x ∈ X. Then Mx is a tracial von Neumann algebra.

Proof. Let (bn) ⊆ Mx be a sequence that satisfies ‖bn‖ ≤ 1 for all n ∈ N and is a

Cauchy sequence with respect to the ‖ · ‖2,τx-norm on Mx. We need to find b ∈ Mx

with ‖b‖ ≤ 1 such that (bn) converges to b in the ‖ · ‖2,τx-norm on Mx. Since a Cauchy

sequence will converge to the limit of any convergent sub-sequence, we may assume that

‖bn+1 − bn‖2,τx < 1
2n without loss of generality.

We shall construct a sequence (an) ⊆M inductively such that

an(x) = bn, (3.2.12)

‖an‖ ≤ 1, (3.2.13)

‖an+1 − an‖2,τx <
1

2n
(3.2.14)

for all n ∈ N. Recall that with C∗-algebras we may always lift elements from quotient

algebras without increasing the norm [74, Section 2.2.10]. Let a1 be any such lift of b1.

Suppose now that a1, . . . , an have been defined and have the desired properties. Let a′n+1

be any lift of bn+1 with ‖a′n+1‖ ≤ 1. Since

‖a′n+1(x)− an(x)‖2,τx <
1

2n
, (3.2.15)

we can, by continuity, find an open neighbourhood U of x such that

sup
y∈U
‖a′n+1(y)− an(y)‖2,τy <

1

2n
. (3.2.16)

We then take a continuous function f : X → [0, 1] such that f(x) = 1 and f(X \U) ⊆ {0},

and set an+1 = fa′n+1 + (1 − f)an. We have that an+1(x) = bn+1 and, using Proposition

3.2.5, we see that ‖an+1‖ ≤ 1. Finally, we have that

‖an+1(y)− an(y)‖2,τy = |f(y)|‖a′n+1(y)− an(y)‖2,τy (3.2.17)

for y ∈ X. By considering the cases y ∈ U and y ∈ X \ U separately in (3.2.8) of

Proposition 3.2.6, we get that ‖an+1−an‖2,u < 1
2n . This completes the inductive definition

of the sequence (an).

The sequence (an) convergences to some a ∈M with ‖a‖ ≤ 1 because the unit ball of

M is complete in the ‖ · ‖2,u-norm. We set b = a(x). The convergence of (bn) to b follows

by Proposition 3.2.6.
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The proof of Theorem 3.2.9 given here, which also appears in [23], is a modification of

the original. Ozawa’s use of Pedersen’s up-down theorem in [62, Theorem 11] is avoided

by showing completeness of the unit ball via the argument in [18, Proposition 10.1.12].

This proof is more accessable to generalisations, as we will see later in this thesis.

We now present Ozawa’s second result (see also [62, Theorem 11]). This theorem

provides us with a useful way of proving the existence of an element of a W∗-bundle with

certain properties.

Theorem 3.2.10. Let M be a W∗-bundle over X with conditional expectation E. Let

f : X → tx∈XMx be a function such that f(x) ∈ Mx for all x ∈ X. Suppose that

supx∈X ‖f(x)‖ <∞ and, for all x ∈ X and ε > 0, there is an open neighbourhood U (x) 3 x

and c(x) ∈M such that

sup
y∈U(x)

‖f(y)− c(x)(y)‖2,τy < ε. (3.2.18)

Then there is a ∈M such that f(x) = a(x) for all x ∈ X.

Proof. For the moment, fix n ∈ N. Let x ∈ X. Choose b(x) ∈M such that ‖b(x)‖ ≤ ‖f(x)‖

and b(x)(x) = f(x), and choose c(x) ∈ M together with an open neighbourhood U (x) of

x such that supy∈U(x) ‖f(y) − c(x)(y)‖2,τy < 1
n . Due to the continuity of y 7→ ‖b(x)(y) −

c(x)(y)‖2,τy , we may, after shrinking U (x), assume that supy∈U(x) ‖f(y) − b(x)(y)‖ < 1
n .

The family of open sets {U (x) : x ∈ X} form an open cover for X. By compactness,

a finite subcover exists. Denote the open sets in this finite subcover by U1, . . . , Um and

the corresponding elements of M by b1, . . . , bm. Let f1, . . . , fm be a partition of unity

subordinate to U1, . . . , Um. Set an =
∑m

i=1 fibi. Using the fact that f1, . . . , fm form a

partition of unity, we find that

sup
y∈X
‖an(y)− f(y)‖2,τy < 1

n . (3.2.19)

It follows from Proposition 3.2.6 that (an) is a Cauchy sequence with respect to the ‖·‖2,u-

norm. It follows from Proposition 3.2.5 that ‖an‖ ≤ supx∈X ‖f(x)‖ for all n ∈ N. Hence,

Axiom (C) implies that (an) has a ‖ · ‖2,u-norm limit a. That a(y) = f(y) for all y ∈ X is

an easy consequence of (3.2.19).

3.2.2 The Standard Form of a W∗-Bundle

In this section, we show that every pre-W∗-bundle has a natural representation as an alge-

bra of adjointable operators on a Hilbert-C(X)-module. The idea is to perform the GNS
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construction with respect to the “C(X)-valued trace” E. This generalises the standard

form of a tracial von Neumann algebra.

Definition 3.2.11. Let M be a pre-W∗-bundle over a compact Hausdorff space X with

conditional expectation E. Let L2(M) be the Banach space obtained by completing M

with respect to the ‖ · ‖2,u-norm. Write ‖ · ‖L2(M) for the norm on L2(M). Write b̂ for the

image of b ∈M in L2(M) and M̂ for the image ofM in L2(M). Define La, Ra : M̂ → M̂

(for a ∈M), J : M̂ → M̂, and 〈·, ·〉 : M̂ × M̂ → C(X) as follows:

La(̂b) = âb, (3.2.20)

Ra(̂b) = b̂a, (3.2.21)

J (̂b) = b̂∗, (3.2.22)

〈̂b, ĉ〉 = E(bc∗), (3.2.23)

where a, b, c ∈M.

We now show that La, Ra (for a ∈ M), J and 〈·, ·〉 have the desired (conjugate)-

linearity properties and extend uniquely to the whole space. To avoid needless repetition,

we use the notation of Definition 3.2.11 for the remainder of this section.

Proposition 3.2.12. The maps La, Ra (for a ∈ M) are linear, J is conjugate-linear,

〈·, ·〉 is linear in the first place and conjugate-linear in the second. Moreover, the following

estimates hold:

‖La(̂b)‖L2(M) ≤ ‖a‖‖b̂‖L2(M), (3.2.24)

‖Ra(̂b)‖L2(M) ≤ ‖a‖‖b̂‖L2(M), (3.2.25)

‖J (̂b)‖L2(M) = ‖b̂∗‖L2(M), (3.2.26)

‖〈̂b, ĉ〉‖C(X) ≤ ‖b̂‖L2(M)‖ĉ‖L2(M), (3.2.27)

where a, b, c ∈M.

Proof. The linearity and conjugate-linearity claims for La, Ra (for a ∈ M), J and 〈·, ·〉

follow from the axioms for a C∗-algebra and, in the case of 〈·, ·〉, the linearity of E. The

estimates follow from Proposition 3.2.7.

Corollary 3.2.13. The maps La, Ra extend to bounded linear operators on L2(M) for all

a ∈M . The map J extends to a isometric, conjugate-linear, self-inverse isomorphism on

L2(M). The map 〈·, ·〉 extends to a bounded sequilinear map (linear in the first variable,

conjugate-linear in the second) L2(M)× L2(M)→ C(X).
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Finally, we systematically check that L2(M) becomes a Hilbert-C(X)-module and the

operators coming from left and right multiplication define representations ofM andMop

respectively.

Proposition 3.2.14. For f ∈ C(X) ⊆ Z(M), we have Lf = Rf . This defines a C(X)-

action on L2(M) such that (L2(M), 〈·, ·〉) is a Hilbert-C(X)-module. Moreover, we have

the following:

(i) For all a ∈ M, the map La (resp. Ra) is adjointable with adjoint La∗ (resp. Ra∗).

In particular La and Ra are C(X)-linear.

(ii) The map J is conjugate-selfadjoint in the sense that 〈Jv,w〉 = 〈Jw, v〉 = 〈v, Jw〉∗ for

v, w ∈ L2(M). In particular J is C(X)-conjugate-linear in the sense that J(fv) =

f∗J(v) for f ∈ C(X), v ∈ L2(M).

(iii) The map L :M→ L(L2(M)) defined by a 7→ La and the map R :Mop → L(L2(M))

defined by a 7→ Ra are injective ∗-homomorphisms of C∗-algebras. Moreover, we have

L(a)R(b) = R(b)L(a) (a, b ∈M), (3.2.28)

JL(a)J = R(a∗) (a ∈M). (3.2.29)

Proof. Let f ∈ C(X) ⊆ Z(M). For b ∈M, Lf (̂b) = f̂ b = b̂f = Rf (̂b). Hence, Lf = Rf by

density. In the sequel, we write fv instead of Lf (v) or Rf (v). We now check the conditions

for a Hilbert-C(X)-bundle as in Section 2.11.1.

Let b, c, d ∈M and f, g ∈ C(X). Since E is a conditional expectation onto C(X),

〈f b̂+ gĉ, d̂〉 = E(fbd∗ + gcd∗) (3.2.30)

= fE(bd∗) + gE(cd∗) (3.2.31)

= f 〈̂b, d̂〉+ g〈ĉ, d̂〉. (3.2.32)

Since E is ∗-preserving, 〈̂b, ĉ〉 = E(bc∗) = E(cb∗)∗ = 〈ĉ, b̂〉∗. By density, we get (2.11.1)

and (2.11.2).

Since ‖b‖2,u = ‖〈̂b, b̂〉1/2‖C(X) for all b ∈M, we get that ‖v‖L2(M) = ‖〈v, v〉1/2‖C(X) for

all v ∈ L2(M) by density. Since ‖ · ‖L2(M) is a norm on L2(M) by construction, (2.11.3)

follows.
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(i) Fix a ∈M. We have

〈La(̂b), ĉ〉 = 〈âb, ĉ〉 (3.2.33)

= E(abc∗) (3.2.34)

= E(bc∗a) (3.2.35)

= E(b(a∗c)∗) (3.2.36)

= 〈̂b, â∗c〉 (3.2.37)

= 〈̂b, La∗(ĉ)〉, (3.2.38)

where b, c ∈ M. So, by density, 〈La(v), w〉 = 〈v, La∗(w)〉 for v, w ∈ L2(M). Hence,

La is adjointable with L∗a = La∗ . By Proposition 2.11.14, La is C(X)-linear. The

corresponding result for Ra is proved similarly.

(ii) We have

〈J (̂b), ĉ〉 = 〈b̂∗, ĉ〉 (3.2.39)

= E(b∗c∗) (3.2.40)

= E(c∗b∗) (3.2.41)

= 〈ĉ∗, b̂〉 (3.2.42)

= 〈J(ĉ), b̂〉, (3.2.43)

where b, c ∈ M. So, by density, 〈J(v), w〉 = 〈J(w), v〉 for v, w ∈ L2(M) and, by

(2.11.2), 〈J(w), v〉 = 〈v, J(w)〉∗. So J is conjugate-adjointable with J∗ = J (see

Definition 2.11.17). By Proposition 2.11.18, we see that J is C(X)-conjugate-linear.

(iii) We have

〈L(λ1a1 + λ2a2)(̂b) = [(λ1a1 + λ2a2)b]̂ (3.2.44)

= λ1â1b+ λ2â2b (3.2.45)

= (λ1L(a1) + λ2L(a2))(̂b), (3.2.46)

where a1, a2, b ∈M and λ1, λ2 ∈ C. So, by density, L is linear. Furthermore,

〈L(a1a2)(̂b) = [(a1a2)b]̂ (3.2.47)

= [a1(a2b)]
̂ (3.2.48)

= L(a1)L(a2)(̂b), (3.2.49)
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where a1, a2, b ∈ M. So, by density, L is multiplicative. Finally, by (i), L preserves

the involution. Therefore L is a ∗-homomorphism. If L(a) = 0 for some a ∈ M,

then â = L(a)(1̂M) = 0, so a = 0. Hence L is an injective ∗-homomorphism. The

corresponding result for R is proved similarly.

Let a, b, c ∈M. Then L(a)R(b)ĉ = âcb = R(b)L(a)ĉ. Also JL(a)J (̂b) = JL(a)(b̂∗) =

J(âb∗) = b̂a∗ = R(a∗)(̂b). Hence, by density L(a)R(b) = R(b)L(a) and JL(a)J =

R(a∗).

3.2.3 The Strict Topology on a W∗-Bundle

The representation of a pre-W∗-bundleM on the Hilbert module L2(M) provides us with

an additional topology on M: the restriction to M of the strict topology on L(L2(M))

(see Section 2.11.2). In this section, we shall investigate the relation between this topology

and the ‖ · ‖2,u-topology. The notation of Section 3.2.2 will be used throughout.

Proposition 3.2.15. Let M be a pre-W∗-bundle over the compact Hausdorff space X

with conditional expectation E. The strict topology and the ‖ · ‖2,u-topology agree on any

‖ · ‖-bounded subset of M.

Proof. Fix K > 0. Let (aλ) ⊆ M be a net with ‖aλ‖ ≤ K for all λ. Let a ∈ M with

‖a‖ ≤ K.

Suppose first that aλ → a with respect to the ‖ · ‖2,u-topology. That is ‖aλ−a‖2,u → 0

as λ→∞. We have

‖L(aλ)(̂b)− L(a)(̂b)‖L2(M) = ‖[(aλ − a)b]̂‖L2(M) (3.2.50)

= ‖(aλ − a)b‖2,u (3.2.51)

≤ ‖aλ − a‖2,u‖b‖ (3.2.52)

for all b ∈ M. Hence, L(aλ)(̂b) → L(a)(̂b) as λ → ∞. Since (L(aλ)) is a bounded net,

L(aλ)→ L(a) strictly in L(L2(M)) by Proposition 2.11.23.

Now let us consider the converse. Suppose L(aλ) → L(a) in the strict topology on

L(L2(M)). Then

‖aλ − a‖2,u = ‖âλ − â‖L2(M) (3.2.53)

= ‖L(aλ)(1̂)− L(a)(1̂)‖L2(M), (3.2.54)

which converges to 0 as λ→∞.
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For unbounded nets, convergence in the strict topology still implies convergence in the

‖ · ‖2,u-topology, as can be seen from the proof of Proposition 3.2.15 above. Counterexam-

ples showing that ‖·‖2,u-convergence need not imply strict convergence can be constructed

in the tracial von Neumann algebra (L∞[0, 1], τ leb), where τ leb is integration with respect

to Lebesgue measure.6

Nevertheless, the ‖ · ‖2,u-closed ∗-subalegbras of M are precisely the strictly closed

∗-subalgebras. This is because there are versions of the Kaplansky Density Theorem for

both the strict topology and the ‖·‖2,u-topology. The Kaplansky Density Theorem for the

strict topology was Theorem 2.11.29. We now prove the corresponding result for ‖ · ‖2,u-

topology. As for Theorem 2.11.29, we follow the method of proof set out in [58, Section

4.3]. However, the crucial estimates are justified differently.

Lemma 3.2.16 (c.f. Lemma 2.11.28). LetM be a pre-W∗-bundle over the compact Haus-

dorff space X with conditional expectation E and let f : R → C be a bounded continuous

function. Suppose (an) is a sequence of selfadjoint elements in M converging to a ∈M in

‖ · ‖2,u-norm. Then f(an)→ f(a) in ‖ · ‖2,u-norm.

Proof. Let A be the set of continuous functions R → C for which the conclusion holds

for all sequences (an). By Corollary 3.2.8, A is a vector space closed under complex

conjugation. Moreover, if f, g ∈ A and one of them is bounded, then fg ∈ A using the

estimate (3.2.11). Let A0 = A ∩ C0(R). We shall show, using the Stone–Weierstrass

Theorem, that A0 = C0(R).

Consider the functions f, g : R→ C given by f(x) = (1+x2)−1 and g(x) = x(1+x2)−1.

Note that ‖f‖C0(R), ‖g‖C0(R) ≤ 1. Let a, b ∈Msa. We compute that

g(a)− g(b) = a(1 + a2)−1 − b(1 + b2)−1 (3.2.55)

= (1 + a2)−1(a(1 + b2)− (1 + a2)b)(1 + b2)−1 (3.2.56)

= (1 + a2)−1(a− b− a(b− a)b)(1 + b2)−1. (3.2.57)

6For example, let an = nχ[0,1/n3] ∈ L∞[0, 1] and v ∈ L2[0, 1] be given by v(x) = 1/x1/4. Then

‖an‖2 → 0 but ‖anv‖2 →∞.
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Therefore, using Proposition 3.2.7(iv-v),

‖g(a)− g(b)‖2,u ≤ ‖(1 + a2)−1(a− b)(1 + b2)−1‖2,u (3.2.58)

+ ‖(1 + a2)−1a(b− a)b)(1 + b2)−1‖2,u

≤ ‖(1 + a2)−1‖‖a− b‖2,u‖(1 + b2)−1‖ (3.2.59)

+ ‖(1 + a2)−1a‖‖b− a‖2,u‖b(1 + b2)−1‖

≤ 2‖a− b‖2,u. (3.2.60)

Hence, g ∈ A0. Since the map x 7→ x is in A, we get that f = 1− xg ∈ A0.

The set {f, g} separates the points of R and f(t) > 0 for all t ∈ R. Therefore, f and g

generate the C∗-algebra C0(R) by the Stone–Weierstrass Theorem. Thus, A0 = C0(R).

Suppose h ∈ Cb(R). Then hf, hg ∈ C0(R), so hf, hg ∈ A. Therefore, h = hf + xhg ∈

A.

Theorem 3.2.17 (The Kaplansky Density Theorem for ‖ · ‖2,u-topology). Let M be a

pre-W∗-bundle over the compact Hausdorff space X with conditional expectation E. Let A

be a C∗-subalgebra of M with ‖ · ‖2,u-closure B. Then we have the following:

(i) Asa is ‖ · ‖2,u-dense in Bsa.

(ii) The closed unit ball of Asa is ‖ · ‖2,u-dense in the closed unit ball of Bsa.

(iii) The closed unit ball of A is ‖ · ‖2,u-dense in the closed unit ball of B.

Proof. (i) Let b ∈ Bsa and (an) be a sequence in A converging to b in ‖ · ‖2,u. Then

(1
2(aλ+a∗λ)) is a sequence in Asa and converges to 1

2(b+b∗) = b in ‖·‖2,u by Corollary

3.2.8.

(ii) Let b ∈ Bsa with ‖b‖ ≤ 1 and (an) be a sequence in Asa converging to b in ‖ · ‖2,u.

Let f : R→ C be the bounded, continuous function given by

f(x) =


−1, x ≤ 1,

x, −1 ≤ x ≤ 1,

1, x ≥ 1.

(3.2.61)

Then (f(an)) is a sequence in the closed unit ball of Asa converging to b in ‖ · ‖2,u

by Lemma 3.2.16.
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(iii) This follows from a matrix inflation trick. For any n ∈ N, the unital C∗-algebra

Mn(C)⊗M with C(X) identified with 1n⊗C(X) and with conditional expectation

trn⊗E is also a pre-W∗-algebra. Indeed, Axiom (T) is clear from computations with

elementary tensors, and we compute that

(trn ⊗ E)((aij)
∗(aij)) =

∑
1≤i,j≤nE(a∗ijaij)

n
, (3.2.62)

from which Axiom (F) follows and we see that ‖ · ‖2,u-convergence in Mn(C)⊗M is

precisely component-wise ‖ · ‖2,u-convergence.

It follows that M2(C) ⊗ A is a C∗-subalgebra of M2(C) ⊗M with ‖ · ‖2,u-closure

M2(C)⊗B and we can apply (ii) to this inflation.

Suppose b ∈ B has ‖b‖ ≤ 1. Then
(

0 b

b∗ 0

)
∈ (M2(C) ⊗ B)sa and has norm at most

1. There is a sequence (an) in the closed unit ball of (M2(C) ⊗ A)sa converging

to
(

0 b

b∗ 0

)
∈ (M2(C) ⊗ B)sa. Taking the (1, 2)-th entries of this sequence gives a

sequence in the closed unit ball of A converging to b in ‖ · ‖2,u.

Corollary 3.2.18. Let M be a pre-W∗-bundle over the compact Hausdorff space X with

conditional expectation E. Let N be a C∗-subalgebra of M then N ‖·‖2,u = N st
In particu-

lar, N is ‖ · ‖2,u-closed if and only if N is strictly closed.

Proof. Suppose a ∈ N st
. Then by the Kaplansky Density Theorem for the strict topology,

there is a net (aλ) converging to a strictly with ‖aλ‖ ≤ ‖a‖. By Proposition 3.2.15, aλ → a

in ‖ · ‖2,u-norm, so a ∈ N ‖·‖2,u . For the converse, we use the Kaplansky Density Theorem

for the ‖ · ‖2,u-topology and Proposition 3.2.15.

Corollary 3.2.19. Let M be a pre-W∗-bundle. Then M is strictly separable if and only

if it is ‖ · ‖2,u-separable.

Proof. They are both equivalent to the existence of a countably generated C∗-subalgebra

whose closure in both the strict topology and the ‖ · ‖2,u-topology is M.

The original definition of a W∗-bundle in [62] requires that the base space is a compact

metric space. This requirement was relaxed in [5], where the base space was only re-

quired to be compact Hausdorff, as in Definition 3.1.1. For strictly separable W∗-bundles,

metrisability of the base space can be proved.
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Proposition 3.2.20. Let M be a strictly separable pre-W∗-bundle over a compact Haus-

dorff space X. Then X is metrisable and separable.

Proof. By Proposition 3.2.15,M is ‖ · ‖2,u-separable. As separability passes to subspaces,

so is C(X) ⊆M. Since ‖f‖2,u = ‖f‖ for f ∈ C(X), C(X) is separable in ‖·‖. Hence, X is

metrisable (see for example [7, Corollary 12.19]). As compact metric spaces are necessarily

separable, the proof is now complete.

3.3 W∗-Bundles from C∗-Algebras

In this section, we consider the motivating example of a W∗-bundle, namely the strict

closure A
st

of a unital, separable C∗-algebra with a non-empty Bauer simplex of traces.

This construction is due to Ozawa [62, Theorem 3].

The ambient space for the construction of A
st

, is the finite part of the bidual A∗∗fin

(see Section 2.9). For ease of notation, we shall assume hereinafter that the natural map

ι : A → A∗∗fin is injective and identify A with its image. If this is not the case, one can

always pass to the quotient of A by the kernel of ι; see Remark 2.9.9.

As a finite von Neumann algebra, A∗∗fin can be viewed as a W∗-bundle over the spectrum

of its centre (Example 3.1.5). In particular, A∗∗fin has a natural strict topology. We set A
st

to

be strict closure of A inside A∗∗fin, which by Corollary 3.2.18 agrees with the ‖ · ‖2,u-closure.

Each a ∈ A defines a continuous affine map evala ∈ AffC(T (A)) via evala(τ) = τ(a).

In fact, this is also true for a ∈ A
st

. We set evala(τ) = τ̃(a), where τ̃ is the unique normal

extension of τ to A∗∗fin (see Corollary 2.9.6). Since any a ∈ A
st

is a ‖·‖2,u-limit of a sequence

(an) in A, we have that evalan → evala uniformly on T (A). Hence, evala ∈ AffC(T (A)).

The base space for the W∗-bundle A
st

is the extreme boundary of the trace simplex

X = ∂eT (A) endowed with the weak∗ topology, which is compact by hypothesis. We define

a ucp map E : A
st → C(X) via a 7→ evala|X . The central embedding of C(X) in A

st
will

be obtained from the map θ of Theorem 2.10.9, but we must check θ(C(X)) ⊆ Z(A
st

).

This follows from the following theorem of Ozawa.

Theorem 3.3.1. [62, Theorem 3] Let A be a unital, separable C∗-algebra with non-empty

trace space T (A). Let θ : B(∂eT (A))→ Z(A∗∗fin) be the unital ∗-homomorphism constructed

in Theorem 2.10.9 with ultraweakly dense range and with θ(â) = ctr(a) and

τ(θ(f)a) =

∫
λ∈∂eT (A)

f(λ)λ(a)dµτ (λ) (3.3.1)
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for a ∈ A, τ ∈ T (A) and f ∈ B(∂eT (A)). Then, one has

A
st

= {a ∈ A∗∗fin : ctr(aA) ⊆ θ(AffC(T (A))), ctr(a∗a) ∈ θ(AffC(T (A)))}, (3.3.2)

and, in particular,

Z(A
st

) = A
st ∩ Z(A∗∗fin) = {θ(f) : f ∈ Z(AffC(T (A)))}, (3.3.3)

where (c.f. Section 2.10.1)

AffC(T (A)) = {f |∂eT (A) : f ∈ AffC(T (A))}, (3.3.4)

Z(AffC(T (A))) = {f ∈ AffC(T (A)) : fg ∈ AffC(T (A)) for all g ∈ AffC(T (A))}. (3.3.5)

Proof. The right hand side of (3.3.2) is ‖ · ‖2,u-closed and contains A. Hence, it contains

A
st

. Proving the reverse inclusion is more involved.

Let a be in the right hand side of (3.3.2). Let (bλ)λ∈Λ be a net in A converging to

a in the ultrastrong∗ topology of A∗∗fin. The hypotheses on a ensure that, for all λ ∈ Λ,

ctr((bλ − a)∗(bλ − a)) ∈ θ(AffC(T (A)). Hence, we can identify ctr((bλ − a)∗(bλ − a)) with

the function it defines on ∂eT (A) via the pairing with extreme normal traces.

Since AffC(T (A)) ∼= AffC(T (A)) as complex complete order unit spaces, the general

theory of compact convex sets (see Section 2.10.1) tells us that every positive linear func-

tional on AffC(T (A)) corresponds to evaluation at some trace τ ∈ T (A). Hence, the

ultrastrong∗ convergence of (bλ) to a implies that ctr((bλ − a)∗(bλ − a)) → 0 weakly in

AffC(T (A)). We are now in a position to apply the Hahn–Banach Theorem, and deduce

that the norm-closed convex hull of {ctr((bλ − a)∗(bλ − a)) : λ ∈ Λ} contains 0.7

Let ε > 0. Then there exist λ1 . . . λk ∈ Λ and α1, . . . , αk ∈ [0, 1] with
∑k

i=1 αi = 1 such

that

‖
k∑
i=1

αictr((bλi − a)∗(bλi − a))‖ < ε. (3.3.6)

Set b =
∑k

i=1 αibλi . Then b∗b = c∗r∗rc ≤ ‖r‖2c∗c =
∑k

i=1 αib
∗
λi
bλi , where r =(

α
1/2
1 · · · α

1/2
k

)
and c =

(
α

1/2
1 bλ1 · · · α

1/2
k bλk

)T
. Therefore,

ctr((b− a)∗(b− a)) = ctr(b∗b− b∗a− a∗b+ a∗a) (3.3.7)

≤ ctr

(
k∑
i=1

αib
∗
λi
bλi −

k∑
i=1

αib
∗
λi
a−

k∑
i=1

αia
∗bλi + a∗a

)
(3.3.8)

= ctr

(
k∑
i=1

αi(bλi − a)∗(bλi − a)

)
. (3.3.9)

7The norm of ctr((bλ−a)∗(bλ−a)) in AffC(T (A)) agrees with its ‖ · ‖-norm in A∗∗fin by Corollary 2.8.12.
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Hence, ‖ctr((b−a)∗(b−a))‖ < ε. Since ε is arbitrary, we have that a is in the ‖·‖2,u-closure

of A, which is A
st

. This proves (3.3.2).

The inclusion A
st∩Z(A∗∗fin) ⊆ Z(A

st
) is immediate. The reverse inclusion follows as A

st

is ultrastrong∗ dense in A∗∗fin. Suppose a ∈ Ast∩Z(A∗∗fin). Then a = ctr(a) ∈ θ(AffC(T (A)))

by (3.3.2). So a = θ(f) for some f ∈ AffC(T (A)). Since ctr(θ(f)b) = θ(f)ctr(b) = θ(f)θ(̂b)

for all b ∈ A by the bimodule property of conditional expectations, the requirement that

ctr(aA) ⊆ θ(AffC(T (A))) forces f ∈ Z(AffC(T (A))) because every element of AffC(T (A))

is of the form b̂ for some b ∈ A by [13, Proposition 2.7].

Conversely, suppose f ∈ Z(AffC(T (A))) and let b ∈ B. Then f∗f, f b̂ ∈ AffC(T (A)).

Hence, using the bimodule property of conditional expectations, we have

ctr(θ(f)b) = θ(f)ctr(b) (3.3.10)

= θ(f)θ(̂b) (3.3.11)

= θ(f b̂) (3.3.12)

∈ θ(AffC(T (A))) (3.3.13)

and ctr(θ(f)∗θ(f)) = θ(f)∗θ(f) = θ(f∗f) ∈ θ(AffC(T (A))). Therefore, θ(f) ∈ A
st ∩

Z(A∗∗fin). This proves (3.3.3).

We now are in a position to check that A
st

together with the additional structure

defined above is a W∗-bundle over X = ∂eT (A).

Theorem 3.3.2. Let A be a unital, separable C∗-algebra with a non-empty Bauer simplex

of traces. Let X = ∂eT (A). Then the map θ of Theorem 2.10.9 restricts to a central

embedding of C(X) into A
st

; the map E defines a conditional expectation from A
st

onto

this embedded copy of C(X); and, with this additional structure, A
st

is a W∗-bundle over

X.

Proof. For ease of notation, we shall assume hereinafter that the natural map ι : A→ A∗∗fin

is injective and identify A with its image. If this is not the case, one can always pass to

the quotient of A by the kernel of ι; see Remark 2.9.9.

Since T (A) is a Bauer simplex, Z(AffC(T (A))) = C(X) by Corollary 2.10.7. Hence,

θ(C(X)) = Z(A
st

) by (3.3.3).

By (3.3.1), we have τ(θ(f)) = f(τ) for all τ ∈ X, so E(θ(f)) = f . Hence, the ucp map

E is a conditional expectation onto the embedded copy of C(X) by Theorem 2.5.8.
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Axiom (T) is clear from the definition of E. Suppose E(a∗a) = 0 for some a ∈ Ast
.

Then evala∗a|X = 0. Since evala∗a ∈ AffC(T (A)) and T (A) is the closed convex hull of X,

evala∗a = 0. It follows that τ(a∗a) = 0 for all normal traces τ ∈ T (A∗∗fin). Hence, a = 0 by

Corollary 2.8.12. This proves Axiom (F).

For Axiom (C), we observe that for a ∈ Ast

‖E(a∗a)1/2‖C(X) = sup
τ∈X

τ̃(a∗a)1/2 (3.3.14)

= sup
τ∈T (A)

τ̃(a∗a)1/2 (3.3.15)

= sup
τ∈T (A∗∗fin)

τ(a∗a)1/2 (3.3.16)

= ‖ctr(a∗a)‖Z(A∗∗fin), (3.3.17)

where τ̃ denotes the unique normal extension of τ ∈ T (A) to a trace on A∗∗fin. Indeed,

(3.3.15) holds as evala∗a ∈ AffC(T (A)) and T (A) is the closed convex hull of X, (3.3.16)

holds by density (Corollary 2.8.12), and (3.3.16) holds as all traces on A∗∗fin factor through

the centre valued trace (Theorem 2.8.11).

It follows that the ‖ · ‖2,u-norm on the pre-W∗-bundle A
st

coincides with the ‖ · ‖2,u-

norm on the W∗-bundle A∗∗fin. Since A
st

is ‖ · ‖2,u-closed in A∗∗fin, A
st

satisfies Axiom (C) by

virtue of the fact that A∗∗fin does.

Finally, we determine the fibres of A
st

.

Theorem 3.3.3. Let A be a unital, separable C∗-algebra with non-empty Bauer simplex

of traces. The fibre of the W∗-bundle A
st

at τ ∈ ∂eT (A) is isomorphic to πτ (A)′′.

Proof. By Proposition 2.9.4, there exists a unique normal ∗-homomorphism π̃τ : A∗∗fin →

πτ (A)′′ such that the diagram

A∗∗fin

π̃τ

##
A

ι

OO

πτ
// πτ (A)′′

(3.3.18)

commutes and, by the proof of Corollary 2.9.6, composing π̃τ with the vector state corre-

sponding to ξτ gives the unique normal trace τ̃ such that the diagram

A∗∗fin

τ̃

  
A

ι

OO

τ
// C

(3.3.19)
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commutes.

Let a ∈ A
st

. Then π̃τ (a) = 0 if and only if 〈π̃τ (a)∗π̃τ (a)ξτ , ξτ 〉 = 0 by Proposition

2.8.13. But 〈π̃τ (a)∗π̃τ (a)ξτ , ξτ 〉 = τ(a∗a) = E(a∗a)(τ), so

Ker(π̃τ |Ast) = {a ∈ Ast
: E(a∗a)(τ) = 0}. (3.3.20)

Therefore, by the first isomorphism theorem for C∗-algebras, the fibre of the W∗-bundle

A
st

at τ ∈ ∂eT (A) is isomorphic to π̃τ (A
st

).

Under this isomorphism, the trace on (A
st

)τ corresponds to the GNS trace on πτ (A)′′.

Hence, the unit ball of π̃τ (A
st

) is ‖ · ‖2-complete in πτ (A)′′ by Theorem 3.2.9. Therefore,

π̃τ (A
st

) = πτ (A)′′ by Theorem 2.8.16.

3.4 Further Theory of W∗-Bundles

In this section, we return to the abstract theory of W∗-bundles, building on and extending

the results of [5, 23,62]. We begin by investigating morphisms between W∗-bundles. This

leads naturally to an investigation of the ideals of W∗-bundles and to quotient W∗-bundles.

An important application of quotient W∗-bundles is to define the restriction of a W∗-bundle

to an arbitrary closed set, which in turn facilitates the definition of local triviality, which

will be investigated in Section 4.7. Finally, we investigate the completion of pre-W∗-

bundles.

3.4.1 Morphisms

Although the concept of isomorphic W∗-bundles appears in [62], the definition of a mor-

phisms between W∗-bundles first appears in [5]. The definition was then simplified to

its present form in [23].8 We state this definition in the more general setting of pre-W∗-

bundles.

Definition 3.4.1. Let Mi be a pre-W∗-bundle over Xi with conditional expectation

Ei for i = 1, 2. A morphism is a unital ∗-homomorphism α : M1 → M2 such that

α(C(X1)) ⊆ C(X2) and the diagram

M1
α //

E1

��

M2

E2

��
C(X1)

α // C(X2)

(3.4.1)

8A proof that the definitions of [5, Section 3.1] and [23, Definition 2.3] agree can be found at the end

of this section.
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commutes.

The key novelty of the definition of a morphism between pre-W∗-bundles is that the

base spaces of the two pre-W∗-bundles are not assumed to be the same. The following

example shows that the morphisms between bundles over different spaces occur naturally.

Example 3.4.2. Let M be a W∗-bundle over X with conditional expectation E. For

x ∈ M, view the fibre Mx as a W∗-bundle over the one point space {x} by identifying

C1Mx with C({x}) and viewing τx as a conditional expectation onto C1Mx . Then the

quotient map M→Mx is a morphism of W∗-bundles.

One reason for introducing morphisms of pre-W∗-bundles is to clarify the notion of iso-

morphism for pre-W∗-bundles: two pre-W∗-bundles (Mi, Xi, Ei) for i = 1, 2 are isomorphic

if there are mutually inverse morphisms M1 → M2 and M2 → M1. Equivalently, they

are isomorphic if there is an isomorphism of the the C∗-algebras α :M1 →M2 such that

α(C(X1)) = C(X2) and the diagram

M1
α //

E1

��

M2

E2

��
C(X1)

α // C(X2)

(3.4.2)

commutes.9 Note that this implies X1 and X2 are homeomorphic, via the transpose map

X2 → X1 of the restriction α|C(X1).

If M1 and M2 are are isomorphic W∗-bundles over the same space X, one might ask

whether we can choose α to extend the identity on C(X). In the important case where

M2 is the trivial bundle Cσ(X,M), we can always arrange this to be the case. Indeed,

if ϕ is the homeomorphism X → X transpose to α|C(X), then we define a isomorphism

of W∗-bundles Φ : Cσ(X,M) → Cσ(X,M) by f 7→ f ◦ φ, then replace α with α ◦ Φ−1.

However, the following example shows that we cannot always find an isomorphism which

extends the identity on C(X).

Example 3.4.3. Consider the two subtrivial W∗-bundles N , Ñ ⊆ Cσ([0, 1],R) with fibres

given by

Nx =


R, x 6= 1,

C1R, x = 1,

Ñx =


R, x 6= 0,

C1R, x = 0

(3.4.3)

9In fact, a bijective morphism α of pre-W∗-bundles is an isomorphism. This is well-known at the level

of C∗-algebras and one easily checks that α−1 is a morphism of pre-W∗-bundles.
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(c.f. Example 3.1.5). Then the map α : N → Ñ given by f 7→ f ◦ s where s(x) = 1 − x

is a (self-inverse) isomorphism of W∗-bundles. However, there is no isomorphism which

extends the identity on [0, 1] as this would imply that that Nx ∼= Ñx for all x ∈ [0, 1] (see

Proposition 3.4.5).

Another reason for introducing morphisms of W∗-bundles is to study the functorial

nature of some of the constructions that one can do with W∗-bundles. In Section 3.5,

we’ll see that the standard form construction is indeed functorial. Unfortunately, the

construction of Section 3.3, which associates a W∗-bundle A
st

to a unital, separable C∗-

algebra A with a Bauer simplex of traces, is not functorial. This is not a flaw in the

definition of morphism but a reflection of the fact that ∗-homomorphisms of C∗-algebras

don’t necessarily map extremal traces to extremal traces.10

We now collect together some important results about morphisms of pre-W∗-bundles.

To avoid unnecessary repetition, we fix pre-W∗-bundles M1 and M2, writing X1 and X2

for their respective base space and E1 and E2 for their respective conditional expectations.

We begin with some norm estimates.

Proposition 3.4.4. Let α :M1 →M2 be a morphism of pre-W∗-bundles. Then, for all

a ∈M1,

‖α(a)‖ ≤ ‖a‖, (3.4.4)

‖α(a)‖2,u ≤ ‖a‖2,u, (3.4.5)

with equality when α is injective.

Proof. We recall that a ∗-homomorphism between C∗-algebras is automatically contractive

[58, Theorem 2.1.7]. The first inequality is a direct application of this result; the second

follows from the computation

‖α(a)‖22,u = ‖E2(α(a)∗α(a))‖C(X2) (3.4.6)

= ‖E2(α(a∗a))‖C(X2) (3.4.7)

= ‖α(E1(a∗a))‖C(X2) (3.4.8)

≤ ‖E1(a∗a)‖C(X1) (3.4.9)

= ‖a‖22,u, (3.4.10)

10Isomorphism, of course, is preserved: if A ∼= B as C∗-algebras, then A
st ∼= B

st
as W∗-bundles. This is

clear from the construction of Section 3.3.
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where a ∈M1 and the contractivity of the ∗-homomorphism α|C(X1) is used in the fourth

line. Injective ∗-homomorphisms between C∗-algebras are isometric. Therefore, we get

equality in the forth line of the computation above and hence in (3.4.4).

In particular, we see that morphisms are both ‖·‖-continuous and ‖·‖2,u-continuous. We

now show that a morphism of W∗-bundles induces trace preserving, unital ∗-homomorphism

between the fibres.

Proposition 3.4.5. Let α : M1 → M2 be a morphism of pre-W∗-bundles. Write αt :

X2 → X1 for the transpose of the ∗-homomorphism α|C(X1) : C(X1) → C(X2). For each

x1 ∈ X1 and x2 ∈ X2 with αt(x2) = x1, there is an induced, trace preserving, unital

∗-homomorphism α : (M1)x1 → (M2)x2 given by a(x1) 7→ α(a)(x2) for all a ∈M1.

Proof. Let x1 ∈ X1, x2 ∈ X2 with αt(x2) = x1. We have E2(α(a))(x2) = α(E1(a))(x2) =

E1(a)(αt(x2)) = E1(a)(x1) for all a ∈ M1. It follows that α(I1) ⊆ I2, where Ii = {a ∈

Mi : Ei(a
∗a)(xi) = 0} for i = 1, 2. Hence, we get an induced unital ∗-homomorphism

of the quotient C∗-algebras α : (M1)x1 → (M2)x2 via a(x1) 7→ α(a)(x2) for all a ∈ M1.

This map is trace preserving since E1(a)(x1) = E2(α(a))(x2).

In particular, an isomorphism α :M1 →M2 of pre-W∗-bundle induces an homeomor-

phism αt : X2 → X1 of the base spaces and an isomorphism between the fibres (M1)αt(x)

and (M2)x for all x ∈ X2.

We now turn to results on norm-preserving lifts, which build on the proof techniques

of Theorems 3.2.9 and 3.2.10. First, we lift a single element.

Proposition 3.4.6. Let α : M1 → M2 be a morphism of pre-W∗-bundles. Let b ∈ M2

be in the image of α. Then there is a ∈M1 such that

α(a) = b (3.4.11)

‖a‖ = ‖b‖ (3.4.12)

‖a‖2,u = ‖b‖2,u. (3.4.13)

Proof. If b = 0, then one simply takes a = 0, so we assume ‖b‖2,u > 0 in the sequel. We

recall that given a ∗-homomorphism between C∗-algebras is with can lift elements of the

image without increasing the norm [74, Section 2.2.10]. Hence we can find a′ ∈ M1 such
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that ‖a′‖ = ‖b‖ and α(a′) = b. By the Gluing Lemma, the function f : X1 → C given by

f(x1) =


‖b‖2,u‖a′(x1)‖−1

2,τx1
, ‖a′(x1)‖2,τx1

≥ ‖b‖2,u,

1, ‖a′(x1)‖2,τx1
≤ ‖b‖2,u,

(3.4.14)

is continuous.11 Set a = fa′. We show by a fibrewise argument that a has the required

properties. Let x2 ∈ X2. Let αt and α be as in Proposition 3.4.5. We have

α(a)(x2) = α(a(αt(x2))) (3.4.15)

= α(f(αt(x2))a′(αt(x2))) (3.4.16)

= α(a′(αt(x2))) (3.4.17)

= α(a′)(x2), (3.4.18)

where in the third line we’ve use the fact that

‖a′(αt(x2))‖2,ταt(x2)
= ‖α(a′)(x2)‖2,τx2

(3.4.19)

≤ ‖b‖2,u, (3.4.20)

so f(αt(x2)) = 1. Hence, by Proposition 3.2.5, we have α(a) = α(a′) = b.

Furthermore, we have

‖a(x1)‖ = |f(x1)|‖a′(x1)‖ (3.4.21)

‖a(x1)‖2,τx1
= |f(x1)|‖a′(x1)‖2,τx1

(3.4.22)

for x1 ∈ X1. By considering the possible values of f(x1), we see that ‖a(x1)‖ ≤ ‖b‖ and

‖a(x1)‖2,τx1
≤ ‖b‖2,u for all x1 ∈ X1, from which ‖a‖ ≤ ‖b‖ and ‖a‖2,u ≤ ‖b‖2,u follow by

(3.2.6) and (3.2.8) respectively. The reverse inequalities are clear from Proposition 3.4.4

as α(a) = b.

This time, we lift a sequence of elements.

Proposition 3.4.7. Let α :M1 →M2 be a morphism of pre-W∗-bundles. Let (bn) be a

sequence in the image of α. Then there exists a sequence (an) in M1 such that

α(an) = bn (3.4.23)

‖an+1 − an‖2,u = ‖bn+1 − bn‖2,u. (3.4.24)

Moreover, if there is K > 0 such that ‖bn‖ ≤ K for all n ∈ N, then we can take ‖an‖ ≤ K

for all n ∈ N.

11Let X,Y be topological spaces. Suppose X = A∪B for closed subsets A,B. A function f : X → Y is

continuous if and only if f |A and f |B are continuous. See for example [57, Theorem 18.3].
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Proof. We recall that given a ∗-homomorphism between C∗-algebras, we can lift elements

of the image without increasing the norm. Let a1 be any such lift of b1. Suppose now that

a1, . . . , an have been defined and have the desired properties. If bn+1 = bn, then one can

simply take an+1 = an, so we may assume in the sequel that ‖bn+1− bn‖2,u > 0. Let a′n+1

be any lift of bn+1 with ‖a′n+1‖ = ‖bn+1‖. By the Gluing Lemma, the function f : X1 → C

given by

f(x1) =


‖bn+1−bn‖2,u

‖a′n+1(x1)−an(x1)‖2,τx1

, ‖a′n+1(x1)− an(x1)‖2,τx1
≥ ‖bn+1 − bn‖2,u,

1, ‖a′n+1(x1)− an(x1)‖2,τx1
≤ ‖bn+1 − bn‖2,u,

(3.4.25)

is continuous. Set an+1 = fa′n+1 + (1− f)an.

Let x2 ∈ X2. Let αt and α be as in Proposition 3.4.5. We have

α(an+1)(x2) = α(an+1(αt(x2))) (3.4.26)

= α(f(αt(x2))a′n+1(αt(x2)) + (1− f(αt(x2)))an(αt(x2))) (3.4.27)

= α(a′n+1(αt(x2))) (3.4.28)

= α(a′n+1)(x2), (3.4.29)

where in the third line we’ve use the fact that

‖(a′n+1 − an)(αt(x2))‖2,ταt(x2)
= ‖α(a′n+1 − an)(x2)‖2,τx2

(3.4.30)

≤ ‖bn+1 − bn‖2,u, (3.4.31)

so f(αt(x2)) = 1. Hence, by Proposition 3.2.5, we have α(an+1) = α(a′n+1) = bn+1.

Furthermore, we have that

‖an+1(x1)− an(x1)‖2,τy = |f(x1)|‖a′n+1(x1)− an(x1)‖2,τx1
(3.4.32)

for x1 ∈ X1. By considering the possible values for f(x1) and applying (3.2.6), we get that

‖an+1 − an‖2,u ≤ ‖bn+1 − bn‖2,u.

Moreover, if there is K > 0 such that ‖bn‖ ≤ K for all n ∈ N, then ‖an+1‖ ≤ K since

an+1(x1) is a convex combination of two elements of norm at most K for all x1 ∈ X1. This

completes the inductive construction of the sequence (an).

As an application of Proposition 3.4.7, we show that images of morphism of W∗-bundles

are ‖ · ‖2,u-closed.

Theorem 3.4.8. A morphism of W∗-bundles α :M1 →M2 has ‖ · ‖2,u-closed image.
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Proof. Suppose (bn) is a sequence in α(M1) converging to b ∈ M2. By the Kaplansky

Density Theorem for the ‖ · ‖2,u-norm (Theorem 3.2.17), we may assume that ‖bn‖ ≤ ‖b‖

for all n ∈ N. Passing to a subsequence, we may assume that ‖bn+1 − bn‖2,u < 1
2n for all

n ∈ N. By Lemma 3.4.7, there is a sequence (an) inM1 such that α(an) = bn, ‖an‖ ≤ ‖b‖

and ‖an+1 − an‖2,u < 1
2n . It follows that (an) is ‖ · ‖2,u-Cauchy and so, by Axiom (C),

converges to some a ∈M1. By Proposition 3.4.4, we have that α(a) = b.

Equivalent Definitions of Morphisms

The definition of morphisms used in this thesis is that of [23, Definition 2.3]. We show

that this definition agrees with the definition found in [5, Section 3.1]. For the benefit of

the reader, we recall the definition of [5].

Definition 3.4.9. Given W∗-bundlesM andN over spaces K and L respectively and with

conditional expectations EM and EN respectively. A morphism of W∗-bundles θ :M→N

is a ∗-homomorphismM→N (also denoted θ) together with a continuous map σ : L→ K

such that the diagram

M θ //

EM
��

N

EN
��

C(K)
σ̃ // C(L)

(3.4.33)

commutes, where σ̃ : C(K)→ C(L) is the transpose of σ.

We formulate the equivalence of Definitions 3.4.9 and 3.4.1 as a proposition.

Proposition 3.4.10. In Definition 3.4.1, θ is necessarily unital and σ̃ = θ|C(K). In

particular, σ is uniquely determined by θ.

Proof. The map σ̃ is unital as it is the transpose of a continuous map. Hence, θ(1M)

is a projection in N with EN (θ(1M)) = σ̃(EM(1M)) = σ̃(1C(L)) = 1C(K). Therefore,

EN ((1N − θ(1M)∗(1N − θ(1M)) = EN (1N − θ(1M)) = 0. By Axiom (F), θ(1M) = 1N .

Now let a ∈M and x ∈ L. By (3.4.1),

EM(a∗a)(σ(x)) = σ̃(EM(a∗a))(x) (3.4.34)

= EN (θ(a∗a))(x) (3.4.35)

= EN (θ(a)∗θ(a))(x). (3.4.36)

Hence, θ induces a unital ∗-homomorphism θ :Mσ(x) → Nx via a(σ(x)) 7→ θ(a)(x).
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Let f ∈ C(K). Then

θ(f)(x) = θ(f(σ(x))) (3.4.37)

= θ(f(σ(x))1Mσ(x)
) (3.4.38)

= f(σ(x))θ(1Mσ(x)
) (3.4.39)

= f(σ(x))1Nx (3.4.40)

= f(σ(x)). (3.4.41)

Hence, θ(f) = σ̃(f).

3.4.2 Ideals and Quotients

In this section, we define the ideals of pre-W∗-bundles and construct quotient bundles. It

turns out that the ideals of a pre-W∗-bundle are in 1-1 correspondence with the closed

subspaces of the base space and that passing to the quotient is like restricting sections to

the corresponding closed set. Furthermore, we prove that the completeness axiom passes

to quotients, so quotients of W∗-bundles are W∗-bundles. Finally, we discuss the first

isomorphism theorem in the setting of W∗-bundles.

We begin with the definition of ideals.

Definition 3.4.11. LetM be a pre-W∗-bundle over the compact Hausdorff space X with

conditional expectation E. An ideal I of the pre-W∗-bundle M is a (two-sided, closed)

ideal of the C∗-algebraM which is additionally ‖ · ‖2,u-norm closed and satisfies E(I) ⊆ I.

The motivation for this definition of the ideals of pre-W∗-bundles is that ideals should

be precisely the kernels of morphisms. The following result proves one direction of this

motivating assertion. The converse will follow once we’ve defined the quotient of a pre-W∗-

bundle since passing to the corresponding quotient will be a morphism with the desired

kernel.

Proposition 3.4.12. Let α :M1 →M2 be a morphism of pre-W∗-bundles. Then Ker(α)

is an ideal of M1.

Proof. From the general theory of C∗-algebras, Ker(α) is a norm-closed, two-sided ideal

of the C∗-algebraM1. From Proposition 3.4.4, we can deduce that Ker(α) is ‖ · ‖2,u-norm

closed. Finally, writing Ei for the conditional expectation of Mi, we have E2(α(a)) =

α(E1(a)) for all a ∈M1. Hence, if α(a) = 0, then α(E1(a)) = E2(0) = 0.
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We now show that ideals are in 1-1 correspondence with closed subspaces of the base

space.

Proposition 3.4.13. LetM be a pre-W∗bundle over the compact Hausdorff space X with

conditional expectation E.

(i) Let Y be a closed subset of X. Then

IY = {a ∈M : a(y) = 0 for all y ∈ Y } (3.4.42)

is an ideal of the pre-W∗-bundle M.

(ii) Let I be an ideal of the pre-W∗-bundle M. There exist a closed set Y ⊆ X such that

I = IY .

Proof. (i) Let y ∈ Y . Since passing to the fibre at y is a morphism of W∗-bundles

(Example 3.4.2), Iy = {a ∈ M : a(y) = 0} is an ideal of M by Proposition 3.4.12.

It’s straightforward that intersections of ideals are ideals. Hence, IY =
⋂
x∈Y Ix is

an ideal.

(ii) The intersection I ∩ C(X) is an ideal of the C∗-algebra C(X). Hence, there is a

closed subset Y ⊆ X such that

I ∩ C(X) = {f ∈ C(X) : f(y) = 0 for all y ∈ Y }. (3.4.43)

Let a ∈ I and y ∈ Y . Then E(a∗a) ∈ I ∩ C(X), so E(a∗a)(y) = 0, and so a(y) = 0.

Hence I ⊆ IY .

Conversely, suppose a ∈ M with a(y) = 0 for all y ∈ Y . Let ε > 0. Set Z = {x ∈

X : ‖a(x)‖2,τx ≥ ε}. By Proposition 3.2.6, Z is closed. Applying Urysohn’s lemma

to the closed sets Y and Z, we obtain a continuous function f : X → [0, 1] such that

f(Y ) ⊆ {0} and f(Z) ⊆ {1}. In particular, f ∈ I and so fa ∈ I. For x ∈ X, we

have

‖(a− fa)(x)‖2,τx = |1− f(x)|‖a(x)‖2,τx . (3.4.44)

By considering the cases x ∈ Z and x ∈ X \ Z separately, we get that ‖(a −

fa)(x)‖2,τx ≤ ε for all x ∈ X. Hence, by Proposition 3.2.6, ‖a− fa‖2,u ≤ ε. Since ε

was arbitrary and I is ‖ · ‖2,u-norm closed, a ∈ I.

Next, we construct the quotient of a pre-W∗-bundle by an ideal and verify that the

quotient is also a pre-W∗-bundle. We then prove that the completeness axiom passes to

the quotient.
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Proposition 3.4.14. Let M be a pre-W∗-bundle over the compact Hausdorff space X.

Write ι : C(X) → M for the central embedding and E : M → C(X) for the conditional

expectation of M. Let IY = {a ∈ M : E(a∗a)(y) = 0 for all y ∈ Y } for a closed subset

Y ⊆ X. Write M/IY for the quotient C∗-algebra.

(i) There is a central embedding ιY : C(Y )→M/IY such that the diagram

M q //M/IY

C(X)
r //

ι

OO

C(Y )

ιY

OO
(3.4.45)

commutes, where q denotes the quotient map and r : C(X)→ C(Y ) is restriction of

functions.

(ii) Identifying C(Y ) with its image under ιY , there is a conditional expectation EY :

M/IY → C(Y ) such that the diagram

M q //

E
��

M/IY

EY
��

C(X)
r // C(Y )

(3.4.46)

commutes, where q denotes the quotient map and r : C(X)→ C(Y ) is restriction of

functions.

(iii) The C∗-algebra M/IY together with the central embedding ιY and the conditional

expectation EY defines a pre-W∗-bundle over Y and the quotient map q is a mor-

phism.

Proof. (i) The composition q ◦ ι : C(X)→M/IY has kernel ι−1(IY ) = C0(X \ Y ). By

the first isomorphism theorem, q ◦ ι factors through the quotient C(X)/C0(X \ Y ).

This gives the commuting diagram

M q //M/IY

C(X)
q′ //

ι

OO

C(X)/C0(X \ Y ),

ι′

OO
(3.4.47)

where the horizontal maps are the quotient maps. The ∗-homomorphism ι′ is injective

thus an embedding. Since both q and q′ are surjective, centrality of ι′ follows from

that of ι.
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The map r : C(X) → C(Y ) given by restriction of functions is surjective by the

Tietze Extension Theorem and has kernel C0(X\Y ). Hence, there is an isomorphism

of C∗-algebras ϕ : C(Y ) → C(X)/C0(X \ Y ) which intertwines r and the quotient

map C(X)→ C(X)/C0(X \ Y ). Set ιY = ι′ ◦ ϕ−1.

(ii) Let a ∈ I. Then ι(E(a)) ∈ IY . Hence, E(a) ∈ C0(X \Y ) = Ker(r). Therefore, there

is a ucp map EY :M/IY → C(Y ) such that E ◦r = EY ◦q. This gives us (3.4.46). It

remains to show that EY is a conditional expectation. Let f ∈ C(Y ). Let g ∈ C(X)

be an extension of f . Then

f = r(g) (3.4.48)

= r(E(ι(g)) (3.4.49)

= EY (q(ι(g)) (3.4.50)

= EY (ιY (r(g)) (3.4.51)

= EY (ιY (f)). (3.4.52)

(iii) Axioms (T) and (F) are verified by simple lifting arguments. Let b1, b2 ∈M/IY . Let

a1, a2 ∈ M be lifts of b1, b2. We have EY (b1b2) = E(a1a2) = E(a2a1) = EY (b2b1).

This proves that (T) holds for M/IY . Suppose now that b ∈ M/IY is such that

EY (b∗b) = 0. Let a ∈ M be a lift of b. Then r(E(a∗a)) = EY (b∗b) = 0, so

E(a∗a)(y) = 0 for all y ∈ Y . Hence, a ∈ IY and b = 0 in M/IY .

It follows that M/IY is a pre-W∗-bundle over Y . From the diagram (3.4.45), q

induces the restriction map r on the centrally embedded copies of C(X) and C(Y )

in M and M/IY respectively. Consequently, the diagram (3.4.46) shows that q is a

morphism of pre-W∗-bundles.

Theorem 3.4.15. Let M be a W∗-bundle over the compact Hausdorff space X, and let

I = IY be the ideal of the W∗-bundle M corresponding to the closed subset Y of X. Then

the quotient M/IY is a W∗-bundle over Y .

Proof. It remains to prove Axiom (C). Let (bn) be a Cauchy sequence in M/IY with

respect to the ‖ · ‖2,u-norm and with ‖bn‖ ≤ 1 for all n ∈ N. Pass to a subsequence

(bnk) such that ‖bnk+1
− bnk‖2,u < 1

2k
. By Proposition 3.4.7, we can find (ank) in M with

‖ank‖ ≤ 1, q(ank) = bnk and such that ‖ank+1
− ank‖2,u < 1

2k
for all k ∈ N. Since the

series
∑∞

k=1
1
2k

converges, (ank) is ‖ · ‖2,u-Cauchy in M. Hence, by axiom (C), (ank) has
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a ‖ · ‖2,u-limit a ∈ M with ‖a‖ ≤ 1. By Proposition 3.4.4, b = q(a) satisfies ‖b‖ ≤ 1

and (bnk) has ‖ · ‖2,u-limit b. Since (bn) is a ‖ · ‖2,u-norm Cauchy sequence, (bn) also has

‖ · ‖2,u-limit b.

We now show that one can quotient out the kernel of a morphism and obtain an

injective morphism. In the remark following the theorem, we explain how this can be

viewed as a first isomorphism theorem in the category of pre-W∗-bundles.

Theorem 3.4.16. Let α : M1 → M2 be a morphism of pre-W∗-bundles. Suppose

Ker(α) = IY1 for the closed subspace Y1 ⊆ X1. Then there is a unique morphism

α : M1/IY1 → M2 such that α = α ◦ q, where q : M1 → M1/IY1 is the quotient

morphism, and this morphism α is injective.

Proof. By the first isomorphism theorem for C∗-algebras, there is a unique ∗-homomorphism

α :M1/IY1 →M2 such that α = α ◦ q and this ∗-homomorphism α is injective. We need

only show that α is a morphism of pre-W∗-bundles.

Firstly, let f ∈ C(Y1) ⊆ M1/IY1 and let g ∈ C(X1) ⊆ M1 be some extension of f .

Then f = q(g) by (3.4.45), so α(f) = α(q(g)) = α(g) ∈ C(X2). Hence, α(C(Y1)) ⊆ C(X2).

Secondly, let a ∈M1. Then

E2(α(q(a)) = E2(α(a)) (3.4.53)

= α(E1(a)) (3.4.54)

= α(q(E1(a)) (3.4.55)

= α(EY1(q(a)), (3.4.56)

where EY1 denotes the conditional expectation of the quotient bundle. Therefore, α is an

injective morphism of pre-W∗-bundles.

Remark 3.4.17. If M is a pre-W∗-bundle over X with conditional expectation E, and N

is a unital C∗-subalgebra of M satisfying E(N ) ⊆ N , then N inherits the structure of a

pre-W∗-bundle from M in the following manner. The intersection N ∩ C(X) is a unital,

commutative C∗-algebra, so can be identified with C(Y ) for some compact Hausdorff space

Y . Dualising the inclusion C(Y ) → C(X), we see that Y is a Hausdorff quotient of X.

Since E(N ) ⊆ N , the conditional expectation E mapsN into C(Y ). In this way, the image

of a morphism α : M1 → M2 inherits a pre-W∗-bundle structure from M2. It follows

from Theorem 3.4.16 that this pre-W∗-bundle is isomorphic to the quotient pre-W∗-bundle

M1/Ker(α).
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After all this theory, it’s time for an example.

Example 3.4.18 (Restriction for Trivial Bundles). Let M be a tracial von Neumann

algebra, X be a compact Hausdorff space and Y a closed subspace of X. Then the map

RestY : Cσ(X,M)→ Cσ(Y,M) given by f 7→ f |Y is a morphism of W∗-bundles. Moreover,

we have that Ker(RestY ) = IY . Hence, by Theorem 3.4.16, there is an injective morphism

RestY : Cσ(X,M)/IY → Cσ(Y,M).

To show that RestY is an isomorphism, it suffices to show that it’s surjective. By

Theorem 3.4.8, it suffices to show that the image is ‖ ·‖2,u-dense. However, this is a simple

partition of unity argument. One approximates f ∈ Cσ(Y,M) by a function of the form

y 7→
∑k

i=0 φi(y)bi for some bi ∈ M and continuous functions φ1, . . . , φk ∈ C(Y ). Since

each φi has a continuous extension to X,
∑k

i=0 φibi lies in the image of RestY .

Motivated by Example 3.4.18, we make the following definition.

Definition 3.4.19. SupposeM is a pre-W∗-bundle over X and Y is a closed subspace of

X. The quotient W∗-bundle MY =M/IY is called the restriction of M to Y .

This in turn facilitates the definition of a locally trivial W∗-bundle, which we will study

further in Sections 3.6 and 4.7.

Definition 3.4.20. A W∗-bundleM over the compact Hausdorff space X is locally trivial

if every point x ∈ X has a closed neighbourhood Y such that MY
∼= Cσ(Y,M) for for

some tracial von Neumann algebra M .

3.4.3 Completions

In this section, we show that one can always complete a pre-W∗-bundle to a W∗-bundle

over the same base space and that this completion is essentially unique.

The reason that we cannot appeal to standard results on the completion of normed

space is that we only want to complete the ‖ · ‖-closed unit ball of the pre-W∗-bundle with

respect to the ‖·‖2,u-norm not the whole space. Nevertheless, one can modify the standard

construction of the completion of a normed space using Cauchy sequences, taking this into

account.12

The main benefit of this abstract construction of the completion is that the essential

uniqueness is easy to prove, as is the fact that morphisms of pre-W∗-bundles extend to

12This modification is motivated by the definition of the C∗-completion A
u

of a unital C∗-algebras A

with respect to uniform 2-norm, as appears in [62, Section 1].
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morphisms of the completions. A more concrete approach to the completion of a pre-W∗-

bundle is also possible using the standard form. We include this construction at the end

of the section.

Proposition 3.4.21. Let M be a pre-W∗-bundle over the compact Hausdorff space X

with conditional expectation E. Set

M =
{(ai)∞i=1 ∈ `∞(M) : (ai)

∞
i=1 is ‖ · ‖2,u-Cauchy}

{(ai)∞i=1 ∈ `∞(M) : (ai)∞i=1 is ‖ · ‖2,u-null}
. (3.4.57)

Embed M, and hence C(X), into M via a 7→ [(a)∞i=1] for a ∈ M, and define E : M →

C(X) by [(ai)
∞
i=1] 7→ limi→∞E(ai), where square brackets denote the equivalence class of

the sequence.

(i) The map E is a well-defined conditional expectation onto C(X) ⊆ Z(M) making M

W∗-bundle. Moreover, the embedding of M in M has ‖ · ‖2,u-dense image.

(ii) Suppose M̃ is a W∗-bundle over X with a ‖ · ‖2,u-dense embedding of M. Then

M̃ ∼=M as W∗-bundles and the isomorphism can be taken to be the identity on the

embedded copies of M.

Proof. (i) It follows from the basic properties of the ‖·‖2,u-norm established in Proposi-

tion 3.2.7 that the collection of ‖·‖2,u-Cauchy sequences forms a unital C∗-subalgebra

of `∞(M) which contains the set of ‖ · ‖2,u-null sequences as a closed ideal. SoM is

a well-defined unital C∗-algebra.

We have ‖E(ai) − E(aj)‖C(X) = ‖E(ai − aj)‖C(X) ≤ ‖a1 − aj‖2,u by Proposition

3.2.7(ii). So, by the completeness of C(X), the limit defining E exists whenever

(ai)
∞
i=1 is ‖ · ‖2,u-Cauchy. If (ai)

∞
i=1 is ‖ · ‖2,u-null, then limi→∞ ‖E(an)‖C(X) = 0

by Proposition 3.2.7(ii), so E is well-defined on the quotient M. The positivity of

E follows easily from that of E. Indeed, E([(ai)
∞
i=1]∗[(ai)

∞
i=1]) = limi→∞E(a∗i ai)

and the positive cone of a C∗-algebra is closed. Complete positivity now follows

by Proposition 2.5.2. It is clear that E is the identity on C(X) ⊆ M, so E is a

well-defined conditional expectation onto C(X) ⊆M by Theorem 2.5.8.

The tracial axiom is easily checked and the faithfulness axiom is built into the defi-

nition of M because E([(ai)
∞
i=1]∗[(ai)

∞
i=1]) = 0 if and only if (ai)

∞
i=1 is ‖ · ‖2,u-null.

Before proving the completeness axiom holds for M, we prove the ‖ · ‖2,u-density

of M in M. This follows from the Cauchy condition. Indeed, if [(ai)
∞
i=1] ∈ M and
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ε > 0 are given, there is N ∈ N such that ‖ai − aj‖2,u < ε whenever i, j ≥ N . We

then have that ‖[(ai)∞i=1]− [(aN )∞i=1]‖2,u = limi→∞ ‖ai−aN‖2,u ≤ ε. Furthermore, by

taking a norm-preserving lift from the quotient [74, Section 2.2.10], we may assume

that ‖(ai)∞i=1‖ = ‖[(ai)∞i=1]‖. In this case, ‖aN‖ ≤ ‖[(ai)∞i=1]‖.

Now, we return to the completeness axiom. Firstly, we show that a ‖ · ‖2,u-Cauchy

sequence in the unit ball ofM has a ‖ · ‖2,u-limit in the unit ball ofM. Let (an) be

a ‖ · ‖2,u-Cauchy sequence inM with ‖an‖ ≤ 1 for all n ∈ N. Let a = [(ai)
∞
i=1] ∈M.

Then ‖a‖ ≤ 1. Let ε > 0. There isN ∈ N such that ‖an−am‖2,u ≤ ε whenever n,m ≥

N . Hence, in M, ‖an − a‖2,u = ‖[(an)∞i=1]− [(ai)
∞
i=1]‖2,u = limi→∞ ‖an − ai‖2,u ≤ ε

whenever n ≥ N . So (an) has ‖ · ‖2,u-limit a in M.

Let (an) be a ‖ · ‖2,u-Cauchy sequence in M with ‖an‖ ≤ 1 for all n ∈ N. Then, by

density, we can construct a sequence (a′n) in M with ‖a′n‖ ≤ 1 and ‖an − a′n‖ ≤ 1
n

for all n ∈ N. It follows that (a′n) is is a ‖ · ‖2,u-Cauchy sequence in M, so has a

‖ · ‖2,u-limit a ∈ M with ‖a‖ ≤ 1. But ‖an − a‖2,u ≤ ‖a′n − a‖+ 1
n for all n ∈ N, so

(an) also converges to a in ‖ · ‖2,u-norm.

(ii) Suppose M̃ is a W∗-bundle over X andM is embedded ‖·‖2,u-densely in M̃. Define

a ∗-homomorphism {(ai)∞i=1 ∈ `∞(M) : (ai)
∞
i=1 is ‖ · ‖2,u-Cauchy} → M̃ by mapping

each ‖ · ‖-bounded, ‖ · ‖2,u-Cauchy sequence inM to its limit in M̃, which exists by

Axiom (C). The kernel of this homomorphism is the ideal of ‖·‖2,u-null sequences and

the image is M̃ by the Kaplansky Density Theorem for the ‖ · ‖2,u-norm (Theorem

3.2.17). Thus, we get a ∗-homomorphism α : M→ M̃, which, after identifying M

with its image in M, extends the identity map on M. Since M is dense in both

M and M̃, we have Ẽ ◦ α = α ◦ E and E ◦ α−1 = α−1 ◦ Ẽ, where Ẽ denotes the

conditional expectation on M̃. Therefore, α is an isomorphism of W∗-bundles.

Proposition 3.4.22. Let α : M1 → M2 be a morphism of pre-W∗-bundles. There is a

unique extension of α to a morphism of W∗-bundles α : M1 → M2, which is injective

whenever α is injective and surjective whenever α is surjective.

Proof. By Proposition 3.4.4, we have ‖α(a)‖ ≤ ‖a‖ and ‖α(a)‖2,u ≤ ‖a‖2,u for all a ∈M1.

Hence, αmaps ‖·‖-bounded, ‖·‖2,u-Cauchy sequences inM1 to ‖·‖-bounded, ‖·‖2,u-Cauchy

sequences inM2, and α maps ‖ · ‖-bounded, ‖ · ‖2,u-null sequences inM1 to ‖ · ‖-bounded,

‖ · ‖2,u-null sequences in M2. This defines a ∗-homomorphism α :M1 →M2. Identifying
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Mi with the image of constant sequences in Mi, α extends α. Since M1 is ‖ · ‖2,u-dense

in M1, a density argument shows that α is a morphism of W∗-bundles.

If α is injective, then we have ‖α(a)‖2,u = ‖a‖2,u for all a ∈ M by Proposition 3.4.4.

Hence,

‖α([(ai)
∞
i=1])‖2,u = lim

i→∞
‖α(ai)‖2,u (3.4.58)

= lim
i→∞
‖ai‖2,u (3.4.59)

= ‖[(ai)∞i=1]‖2,u, (3.4.60)

which ensures that α is injective. If α is surjective, then combining Theorem 3.4.8 and

Proposition 3.4.21(a), we find that α is surjective.

We now turn to the construction of the completion of a pre-W∗-bundle using the

standard form.

Proposition 3.4.23. LetM be a pre-W∗-bundle over the compact Hausdorff space X with

conditional expectation E. Let L :M→ L(L2(M)) be the standard form representation.

Set M̃ = L(M)
st ⊆ L(L2(M)). Embed M, and hence C(X), in M̃ via L and extend E

to Ẽ : M̃ → C(X) via T 7→ 〈T 1̂, 1̂〉L2(M). Then M̃ with the given central embedding and

conditional expectation is a W∗-bundle completion of M.

Proof. We must check that M̃ with the given central embedding and conditional expec-

tation is a well-defined W∗-bundle and show thatM is ‖ · ‖2,u-dense inM. Let T, S ∈ M̃

and λ, µ ∈ C. There are nets (ai), (bi) inM such that L(ai)→ T and L(bi)→ S strictly as

i→∞, where we take the indexing set in each case to be a neighbourhood basis of 0. By

the Kapansky Density Theorem (see Theorem 2.11.29), we may assume that the nets are

bounded. We can now make use of Proposition 2.11.21 to show that λT+µS, TS, T ∗ ∈ M̃.

Since the strict topology is weaker than the norm topology, we have that M̃ is norm closed.

Thus, M̃ is a unital C∗-algebra.

By Proposition 3.2.14, L is injective, so it defines a embedding of M and C(X) into

M̃. Let f ∈ C(X) and T ∈ M̃. Since C(X) is central in M, we have L(f)T =

limi→∞ L(f)L(ai) = limi→∞ L(fai) = limi→∞ L(aif) = limi→∞ L(ai)L(f) = TL(f),

where (L(ai)) is a bounded net converging strictly to T . Hence, C(X) embeds centrally

in M̃.

Let T ∈ M̃. Let (ai) be a net in M such that (L(ai)) converges strictly to T . Then

‖L(ai)− T‖22,u = 〈(L(ai)− T )∗(L(ai)− T )1̂, 1̂〉L2(M) = ‖(L(ai)− T )1̂‖L2(M) → 0. Hence,
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M embeds densely in M̃. In fact, by Theorem 2.11.29, the closed unit ball ofM is dense

in the closed unit ball of M̃.

For a ∈ M, we have Ẽ(a) = 〈L(a)1̂, 1̂〉L2(M) = 〈â, 1̂〉L2(M) = E(a), so Ẽ really does

extend E. We have Ẽ(T ∗T ) = 〈T ∗T 1̂, 1̂〉L2(M) = 〈T 1̂, T 1̂〉L2(M) ≥ 0 for all T ∈ M̃, so E is

positive. Complete positivity then follows by Proposition 2.5.2. Thus, Ẽ is a conditional

expectation on to C(X) ⊆ M̃ by Theorem 2.5.8.

Since the inner product on a Hilbert-C(X)-module is continuous, Ẽ is strictly contin-

uous. Let T, S ∈ M̃. Then Ẽ(TS) = limi→∞E(aibi) = limi→∞E(biai) = Ẽ(ST ), where

(L(ai)) and (L(bi)) are bounded nets converging strictly to T and S respectively. This

proves Axiom (T).

Let T ∈ M̃ and a ∈M. Since L(M) commutes with R(M) by Proposition 3.2.14(iii),

we have TR(a) = limi→∞ L(ai)R(a) = lim→∞R(a)R(ai) = R(a)T , where (L(ai)) is a

bounded net converging strictly to T . Hence, M̃ commutes with R(M).

Let T ∈ M̃ such that E(T ∗T ) = 0. Then 0 = 〈T ∗T 1̂, 1̂〉L2(M) = 〈T 1̂, T 1̂〉L2(M). By

(2.11.3), we have T 1̂ = 0. Consequently, T â = TR(a)1̂ = R(a)T 1̂ = 0 for all a ∈ M.

Hence, T = 0 since M̂ is dense in L2(M). This proves Axiom (F).

Let (an) ⊆M be a ‖·‖2,u-Cauchy sequence inM with ‖an‖ ≤ 1. Then ‖an−am‖2,u → 0

as n,m→∞ and ‖an− am‖ ≤ 2 for all n,m ∈ N. By Proposition 3.2.15, L(an− am)→ 0

strictly as n,m → ∞. Hence, by Proposition 2.11.22, (L(an)) has a strict limit T ∈ M̃

with ‖T‖ ≤ 1. We compute that ‖L(an)− T‖22,u = 〈(L(an)− T )∗(L(an)− T )1̂, 1̂〉L2(M) =

‖(L(ai)− T )1̂‖2L2(M) → 0. Therefore, (an) ⊆M has a ‖ · ‖2,u-limit in M̃.

Now suppose (Tn) is a ‖ · ‖2,u-Cauchy sequence in M̃ with ‖Tn‖ ≤ 1. For each n ∈ N,

there is an ∈ M with ‖an‖ ≤ 1 and ‖an − Tn‖2,u < 1
n . Then (an) is a ‖ · ‖2,u-Cauchy

sequence in M with ‖an‖ ≤ 1, so has a ‖ · ‖2,u-limit T ∈ M̃ with ‖T‖ ≤ 1. But,

‖Tn − T‖2,u = ‖Tn − an‖2,u + ‖an − T‖2,u, which converges to 0. So (Tn) converges to T

in ‖ · ‖2,u-norm.

3.5 Standard Form Revisited

In this section, we return to the topic of the standard form of a pre-W∗-bundle. We

show that the standard form construction is functorial. In particular, the standard form

of a pre-W∗-bundle can be understood in terms of the standard form of the fibres. We

also prove that the fibration of a pre-W∗-bundle M is consistent with the fibration of
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Hilbert-C(X)-module L2(M) and its algebra of adjointable operators L(L2(M)). As an

application of these techniques, we prove that the left and right regular representation

of a W∗-bundle are commutants of one another, and so, when in standard form, a W∗-

bundle equals its bicommutant. This can be viewed as a generalisation of von Neumann’s

Bicommutant Theorem [92, Satz 8] (see also [58, Theorem 4.1.5]) from the setting of von

Neumann algebras to W∗-bundles.13

3.5.1 Functoriality

We begin by showing that a morphism of pre-W∗-bundles induces a morphism between the

respective L2(M) spaces which is compatible with left regular representations, the right

regular representations and the involutions of the respective standard forms.

Proposition 3.5.1. LetMi be a pre-W∗-bundle over the compact Hausdorff space Xi with

conditional expectation Ei for i = 1, 2. Let L(Mi), R(Mi), J (Mi) denote respectively the left

regular representation, right regular representation and the involution for the standard

form of Mi.

(i) A morphism of pre-W∗-bundles α :M1 →M2 induces a morphism of Hilbert mod-

ules L2α : L2(M1)→ L2(M2) such that

(L2α)L(M1)(a) = L(M2)(α(a))(L2α), (a ∈M1), (3.5.1)

(L2α)R(M1)(a) = R(M2)(α(a))(L2α), (a ∈M1), (3.5.2)

(L2α)J (M1) = J (M2)(L2α) (3.5.3)

(ii) If α is injective, then so is L2α.

(iii) If α is surjective, then so is L2α.

Proof. (i) Let α :M1 →M2 be a morphism of pre-W∗-bundles. By Proposition 3.4.4,

we have ‖α(a)‖2,u ≤ ‖a‖2,u for all a ∈ M1. It follows that α, viewed now as a map

M̂1 → M̂2, extends to a bounded linear operator L2α : L2(M1)→ L2(M2).

We now check that L2α, together with α|C(X1) : C(X1)→ C(X2), is a morphism of

13However, in the setting of W∗-bundles, it is important to use the standard form representation; see

Example 5.6.7.
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Hilbert modules. We have

〈L2α(â), L2α(̂b)〉L2(M2) = E2(α(a)α(b)∗) (3.5.4)

= E2(α(ab∗)) (3.5.5)

= α(E1(ab∗)) (3.5.6)

= α(〈â, b̂〉L2(M1)) (3.5.7)

for all a, b ∈M1. So, by density,

〈L2α(v), L2α(w)〉L2(M2) = α(〈v, w〉L2(M1)) (3.5.8)

for all v, w ∈ L2(M1). Furthermore,

L2α(fâ) = L2α(f̂a) (3.5.9)

= α̂(fa) (3.5.10)

= ̂α(f)α(a) (3.5.11)

= α(f)α̂(a) (3.5.12)

= α(f)L2α(â) (3.5.13)

for all a ∈ M1 and f ∈ C(X1). So, by density, L2α(fv) = α(f)L2α(v) for all

v ∈ L2(M1) and f ∈ C(X1). This completes the proof that L2α, together with

α|C(X1), is a morphism of Hilbert modules.

Let a, b ∈M1. Then

(L2α)L(M1)(a)(̂b) = L2α(âb) (3.5.14)

= α̂(ab) (3.5.15)

= ̂α(a)α(b) (3.5.16)

= L(M2)(α(a))(α̂(b)) (3.5.17)

= L(M2)(α(a))(L2α(̂b)). (3.5.18)

This, together with a density argument, gives (3.5.1). The proof of (3.5.2) is similar.

The third relation (3.5.3) follows from the following computation and a density
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argument:

(L2α)J (M1)(â) = L2α(â∗) (3.5.19)

= α̂(a∗) (3.5.20)

= α̂(a)∗ (3.5.21)

= J (M2)(α̂(a)) (3.5.22)

= J (M2)(L2α(â)), (3.5.23)

where a ∈M1.

(ii) Let α : M1 → M2 be an injective morphism of pre-W∗-bundles. By Proposition

3.4.4, we have ‖α(a)‖2,u = ‖a‖2,u for all a ∈M1. It follows that α, viewed now as a

map M̂1 → M̂2, extends to a isometric linear operator L2α : L2(M1) → L2(M2).

In particular, L2α is injective.

(iii) Let α : M1 → M2 be a surjective morphism of pre-W∗-bundles. We know that

L2α(M̂1) = M̂2. Let v ∈ L2(M2) and (bn) be a sequence inM1 such that b̂n → v in

L2(M2) as n→∞. Passing to a subsequence, we may assume that ‖bn+1− bn‖2,u <
1

2n . By Proposition 3.4.7, there is a sequence (an) in M2 such that α(an) = bn

and ‖an+1 − an‖2,u < 1
2n . The sequence (ân) in L2(M1) is therefore Cauchy and so

converges to some u ∈ L2(M1). By continuity, L2α(u) = v.

Remark 3.5.2. Applying Proposition 3.5.1 to the morphism of pre-W∗-bundles evalx :

M→Mx coming from passing from the W∗-bundleM over X to the fibreMx at x ∈ X,

we see that the standard form of the W∗-bundleM is compatible with the standard form

of the fibre Mx.

The remainder of this section is devoted to establishing the connection between the

fibration of a pre-W∗-bundleM, the fibration of the Hilbert module L2(M) (see Proposi-

tions 2.11.5 and 2.11.6) and the induced fibration of the algebra of adjointable operators

L(L2(M)) (see Proposition 2.11.16). We fix a W∗-bundle M over a compact Hausdorff

space X and an x ∈ X. For simplicity of notation, we identity C({x}) with C and C1Mx .

We also shall make no distinction between Hilbert C({x})-modules and Hilbert spaces.

First, we consider the relationship between the morphism of Hilbert modules L2(evalx) :

L2(M) → L2(Mx) and the morphism αx : L2(M) → L2(M)x defined in Example 2.11.9

by passing from a Hilbert C(X)-module to its fibres.
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Proposition 3.5.3. There is a unique isomorphism of Hilbert spaces θx : L2(M)x →

L2(Mx) such that following diagram

L2(M)
L2(evalx)

%%
αx
��

L2(M)x
θx
// L2(Mx)

(3.5.24)

commutes.

Proof. By (3.5.8), we have

〈L2(evalx)(v), L2(evalx)(w)〉L2(Mx) = evalx(〈v, w〉L2(M)) (3.5.25)

= 〈v, w〉L2(M)(x) (3.5.26)

for all u, v ∈ L2(M), where the last equality makes use of the identification of C({x}) with

C. From this, we deduce that the kernel of L2(evalx) is precisely {v ∈ L2(M) : 〈v, v〉(x) =

0}. Hence, there is an injective bounded linear map θx : L2(M)x → L2(Mx) such that

the diagram (3.5.24) commutes. Uniqueness of θx is clear from the commuting diagram,

since αx is surjective by construction.

Since evalx is surjective, so is L2(evalx) by Proposition 3.5.1(iii) and, hence, so is θx.

Moreover,

〈θx(αx(v)), θx(αx(w))〉L2(Mx) = 〈L2(evalx)(v), L2(evalx)(w)〉L2(Mx) (3.5.27)

= evalx(〈v, w〉L2(M)) (3.5.28)

= 〈v, w〉L2(M)(x) (3.5.29)

= 〈αx(v), αx(w)〉L2(M)x (3.5.30)

for all v, w ∈ L2(M). Hence, θx is an isomorphism of Hilbert spaces.

We can now relate the fibration of the pre-W∗-bundleM with the fibration of L(L2(M))

coming from Proposition 2.11.16.

Proposition 3.5.4. Identifying L2(M)x with L2(Mx) via the cannonical isomorphism

θx, defined in Proposition 3.5.3, we have the following commuting diagrams for all a ∈M

and x ∈ X:

L2(M)

αx
��

L(M)(a) // L2(M)

αx
��

L2(M)x ∼= L2(Mx)
L(Mx)(a(x))

// L2(Mx) ∼= L2(M)x,

(3.5.31)
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L2(M)

αx
��

R(M)(a) // L2(M)

αx
��

L2(M)x ∼= L2(Mx)
R(Mx)(a(x))

// L2(Mx) ∼= L2(M)x,

(3.5.32)

L2(M)

αx
��

J(M)
// L2(M)

αx
��

L2(M)x ∼= L2(Mx)
J(Mx)

// L2(Mx) ∼= L2(M)x.

(3.5.33)

Hence, in the notation of Propositions 2.11.16 and 2.11.19, L(M)(a)x = L(Mx)(a(x)),

R(M)(a)x = R(Mx)(a(x)) and J
(M)
x = J (Mx).

Proof. We apply Proposition 3.5.1 to the morphism evalx : M →Mx together with the

result of Proposition 3.5.3, which says that L2(evalx) = θx ◦ αx. We obtain

θx ◦ αx ◦ L(M)(a) = L(Mx)(evalx(a)) ◦ θx ◦ αx, (3.5.34)

θx ◦ αx ◦R(M)(a) = R(Mx)(evalx(a)) ◦ θx ◦ αx, (3.5.35)

θx ◦ αx ◦ J (M) = J (Mx) ◦ θx ◦ αx, (3.5.36)

which is what is required because evalx(a) = a(x).

3.5.2 Commutant Theorems

In this section, we use a fibrewise argument to show that the image of the left regular

representation of a W∗-bundle in standard form is the commutant of the right regular

representation and vice versa. We use notation of the previous section but drop the

superscripts when they can be inferred from the context. For example, we write L(a)

instead of L(M)(a) for a ∈ M, and we write L(a(x)) instead of L(Mx)(a(x)) for a ∈ M

and x ∈ X.

Theorem 3.5.5. Let M be a W∗-bundle over the compact Hausdorff space X. Then

L(M) = R(M)′ and R(M) = L(M)′.

Proof. By Proposition 3.2.14(iii), we have L(M) ⊆ R(M)′ and R(M) ⊆ L(M)′. Let

T ∈ R(M)′. Then by Proposition 2.11.16 and 3.5.4, Tx ∈ R(Mx)′ for all x ∈ X. But

R(Mx)′ = L(Mx)′′ by Theorem 2.8.15 and L(Mx)′′ = L(Mx) by Theorem 3.2.9 and

von Neumann’s Bicommutant Theorem [92, Satz 8]. Hence, T defines a function f :

X → tx∈XMx with f(x) ∈ Mx for all x ∈ X, as in Theorem 3.2.10, via the condition

Tx = L(f(x)) for all x ∈ X. Note that supx∈X ‖f(x)‖ ≤ ‖T‖.
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Fix x ∈ X. There exists c(x) ∈M such that f(x) = c(x)(x). For y ∈ X we have,

‖f(y)− c(x)(y)‖22,τy = ‖f̂(y)− ĉ(x)(y)‖2L2(My) (3.5.37)

= 〈[L(f(y))− L(c(x)(y))]1̂y, [L(f(y))− L(c(x)(y))]1̂y〉L2(My) (3.5.38)

= 〈[Ty − L(c(x))y]1̂y, [Ty − L(c(x)(y))]1̂y〉L2(My) (3.5.39)

= 〈[T − L(c(x))]1̂, [T − L(c(x))]1̂〉L2(M)(y). (3.5.40)

Therefore, the map y 7→ ‖f(y) − c(x)(y)‖22,τy is continuous. Since it vanishes at x, given

ε > 0, there is a neighbourhood U of x such that ‖f(y)− c(x)(y)‖2,τy < ε whenever y ∈ U .

Hence, Theorem 3.2.10 applies and there is a ∈ M such that a(x) = f(x) for all x ∈ X.

Therefore, L(a) = T .

This completes the proof that L(M) = R(M)′. The proof that R(M) = L(M)′ is

similar.

Corollary 3.5.6. Let M be a W∗-bundle represented on L2(M) in standard form. Then

M′′ =M.

3.6 The Topological Viewpoint

In this section, we shall show how to combine the fibres of a W∗-bundle to produce a

bundle (B, p) in the sense of Section 2.12. The W∗-bundle, more precisely its section

algebra, can be recovered as the collection of bounded, continuous sections of (B, p). This

builds on known results in the context of continuous fields of Hilbert spaces [19, Section

1.2] and Banach bundles [26, Chapter 2, Section 13.4].

The results of Sections 3.6.1 and 3.6.2 appear in my joint paper with Ulrich Pennig [23,

Section 3]. Section 3.6.3 has be added in this thesis to remove a technical hypothesis from

Theorem 3.6.11.

3.6.1 Bundles of Tracial von Neumann Algebras

Suppose (B, p) is a bundle in the sense of Definition 2.12.1 over the Hausdorff space X

with each fibre p−1(x) having the additional structure of a tracial von Neumann algebra

(see Definition 2.8.17). Then addition and multiplication define maps D → B, where

D = {(b1, b2) : B × B : p(b1) = p(b2)}; scalar multiplication defines a map C × B → B;

the involution defines a map B → B; and the trace on each fibre define a map τ : B → C.

Furthermore, there are two “global norms” ‖ · ‖, ‖ · ‖2 : B → [0,∞), coming from the
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C∗-norm and the in 2-norm in each fibre respectively. Finally, there are two distinguished

sections x 7→ 0x and x 7→ 1x, which pick out the additive and multiplicative identity

elements in each fibre.

We can now state some axioms for such bundles. We shall write B≤r for the subspace

{b ∈ B : ‖b‖ ≤ r} of B for r > 0.

Definition 3.6.1. A bundle of tracial von Neumann algebras over the Hausdorff space X

is a bundle (B, p) over X together with operations, norms and traces making each fibre

p−1(x) a tracial von Neumann algebra and satisfying the axioms listed below:

(i) Addition, viewed as a map D → B, is continuous.

(ii) Scalar multiplication, viewed as a map C×B → B, is continuous.

(iii) The involution, viewed as a map B → B, is continuous.

(iv) The map X → B which sends x to the to the additive identity 0x of p−1(x) is

continuous and so is the map X → B which sends x to the to the multiplicative

identity 1x of p−1(x).

(v) The map ‖ · ‖2 : B → C arising from combining the 2-norms from each fibre is

continuous, as is the map τ : B → C obtained by combining the traces on each fibre.

(vi) A net (bλ) ⊆ B converges to 0x whenever p(bλ)→ x and ‖bλ‖2 → 0.

(vii) Multiplication, viewed as a map D → B, is continuous on ‖ · ‖-bounded subsets.

(viii) The restriction p|B≤1
: B≤1 → X is open.14

We say that two bundles of tracial von Neumann algebras (Bi, pi) for i = 1, 2 are

isomorphic if there are homeomorphisms ψ and ϕ such that the diagram

B1
ϕ //

p1

��

B2

p2

��
X1

ψ // X2

(3.6.1)

commutes and, for each x1 ∈ X1, ϕ|p−1
1 (x1) : p−1

1 (x1) → p−1
2 (ψ(x1)) is an isomorphism of

tracial von Neumann algebras.

14This is a strengthening of the requirement of Definition 2.12.1, which requires that p : B → X be open.
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Remark 3.6.2. Bundles of tracial von Neumann algebras are bundles of normed spaces in

the sense of Definition 2.12.4 with respect to the global ‖ · ‖2-norm. They are not bundles

of Banach spaces because one only has ‖ · ‖2-norm completeness of the ‖ · ‖-norm closed

unit ball in each fibre.

The basic example of a bundle of tracial von Neumann algebras is (X×M,π1) , where

X is a Hausdorff space, M is a tracial von Neumann algebra, the topology on X ×M is

the product of the topology of X and the 2-norm topology on M , and π1 : X ×M → X

is the projection onto the first coordinate. The veracity of the Axioms (i-viii) is an easy

consequence of the definition of the product topology. This is the trivial bundle of tracial

von Neumann algebras over X with fibre M . We can now define local triviality for bundles

of tracial von Neumann algebras.

Definition 3.6.3. Let (B, p) be a bundle of tracial von Neumann algebras over the Haus-

dorff space X. We say (B, p) is locally trivial if every x ∈ X has an open neighbourhood

U such that (p−1(U), p|p−1(U)) is isomorphic to a trivial bundle over U .

Remark 3.6.4. Note that when X is compact Hausdorff, we can work with closed neigh-

bourhoods in place of open neighbourhoods. This observation is important when it comes

to prove compatibility with local triviality for W∗-bundles (Definition 3.4.20).

3.6.2 W∗-Bundles vs Bundles of Tracial von Neumann Algebras

Let M be a W∗-bundle over the compact Hausdorff space X. Set B =
⊔
x∈XMx and

define p : B → X by p(b) = x whenever b ∈ Mx. Note that, for each x ∈ X, the fibre

p−1(x) can be identified with Mx and, therefore, endowed with operations, a norm and a

trace that make it a tracial von Neumann algebra. In the following proposition, we define

a topology on B such that (B, p) is a bundle of tracial von Neumann algebras. We then

check that isomorphic W∗-bundles give rise to isomorphic bundles of tracial von Neumann

algebras.

Proposition 3.6.5. Let M be a W∗-bundle over the compact Hausdorff space X. Set

B =
⊔
x∈XMx and define p : B → X by p(b) = x whenever b ∈ Mx. For a ∈ M, ε > 0

and U open in X, we set V (a, ε, U) = {b ∈ B : p(b) ∈ U, ‖a(p(b))− b‖2 < ε}.

(a) The collection B of all such V (a, ε, U) form a basis for a topology on B. Moreover,

if b ∈ B and a ∈ M is chosen with a(p(b)) = b, then the collection of V (a, ε, U)
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as ε ranges over positive reals and U ranges over a neighbourhood basis of p(b) is a

neighbourhood basis of b.

(b) When B is endowed with the topology generated by B, (B, p) is a bundle of tracial

von Neumann algebras.

Proof. (a) Given b ∈ B, let x = p(b), so b ∈ Mx. Let a ∈ M be a lift of b. Then, for any

open neighbourhood U of x and ε > 0, b ∈ V (a, ε, U). Therefore,
⋃
V ∈B V = B.

Suppose b ∈ V (a1, ε1, U1) ∩ V (a2, ε2, U2). Set x = p(b), and let a ∈ M be a lift of

b ∈Mx. We have x ∈ U1 ∩ U2 and

δ1 := ‖a(x)− a1(x)‖2 < ε1 (3.6.2)

δ2 := ‖a(x)− a2(x)‖2 < ε2

Choose, by continuity, an open set U such that x ∈ U ⊆ U1 ∩ U2, and such that

‖a(x′)− a1(x′)‖2 <
ε1 + δ1

2
(3.6.3)

‖a(x′)− a2(x′)‖2 <
ε2 + δ2

2

for all x′ ∈ U . Set ε = min( ε1−δ12 , ε2−δ22 ). Now, if b′ ∈ V (a, ε, U), then, for i ∈ {1, 2},

x′ := p(b′) ∈ Ui and

‖ai(x′)− b′‖2 ≤ ‖ai(x′)− a(x′)‖2 + ‖a(x′)− b′‖2 (3.6.4)

<
εi + δi

2
+ ε

≤ εi.

So, b′ ∈ V (ai, εi, Ui). Hence, b ∈ V (a, ε, U) ⊆ V (a1, ε1, U1) ∩ V (a2, ε2, U2).

This proves that B does form the basis for a topology on B, and also gives the required

neighbourhood basis for b ∈ B.

(b) The topology defined by B is easily seen to be Hausdorff. Let U be open in X. Let

b ∈ p−1(U) with x = p(b). Choose a ∈ M with a(x) = b. Then b ∈ V (a, 1, U) ⊆ p−1(U).

So p−1(U) is open in B. Hence p is continuous. It is clearly surjective. We now check

the axioms of Definition 3.6.1 in turn, noting that a simple scaling argument shows that

axioms (ii) and (viii) imply that the map p : B → X is open.

(i) Let b1, b2 ∈ B with x = p(b1) = p(b2). Let a1, a2 ∈ M be lifts of b1, b2 ∈ Mx.

A basic open neighbourhood of b1 + b2 has the form V (a1 + a2, ε, U) for some ε > 0 and
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open neighbourhood U of x. Let b′1 ∈ V (a1,
ε
2 , U) and b′2 ∈ V (a2,

ε
2 , U), and suppose

x′ = p(b′1) = p(b′2) ∈ U . We have

‖(a1(x′) + a2(x′))− (b′1 + b′2)‖2 ≤ ‖a1(x′)− b′1‖2 + ‖a2(x′)− b′2‖2 (3.6.5)

<
ε

2
+
ε

2

= ε.

So, b′1 + b′2 ∈ V (a1 + a2, ε, U).

(ii) Let λ ∈ C and b ∈ B with x = p(b). Choose a ∈ M with a(x) = b. A basic

neighbourhood of λb has the form V (λa, ε, U) for some ε > 0 and some open neighbourhood

U of x in B. Set K = max(‖a‖2,u, |λ|) + 1 and δ = min( ε
2K , 1). Let |λ′ − λ| < δ and

b′ ∈ V (a, δ, U) with x′ = p(b′). Then

‖λ′b′ − λa(x′)‖2 ≤ |λ′|‖b′ − a(x′)‖2 + |λ′ − λ|‖a(x′)‖2 (3.6.6)

≤ (|λ|+ 1)‖b′ − a(x′)‖2 + |λ′ − λ|‖a(x′)‖2

< Kδ + δK

≤ ε.

(iii) This follows from the observation V (a, ε, U)∗ = V (a∗, ε, U).

(iv) For the continuity of the map x 7→ 1x it suffices to observe that the open set

V (1, ε, U) has preimage U under this map for any ε > 0. The continuity of x 7→ 0x is

similar.

(v) We show the continuity of ‖ · ‖2 on B. Continuity of τ then follows by the polari-

sation identity together with the continuity of x 7→ 1x. Let b ∈ B and x = p(b). Choose

a ∈ M such that a(x) = b. Let ε > 0. By Proposition 3.2.6, the map y 7→ ‖a(y)‖2 is

continuous. Hence, there is an open set U 3 x such that∣∣∣‖a(y)‖2 − ‖a(x)‖2
∣∣∣ < ε

2
(3.6.7)

for all y ∈ U . Let b′ ∈ V (a, ε2 , U). Writing x′ = p(b′), we have∣∣∣‖b′‖2 − ‖b‖2∣∣∣ ≤ ∣∣∣‖b′‖2 − ‖a(x′)‖2
∣∣∣+
∣∣∣‖a(x′)‖2 − ‖a(x)‖2

∣∣∣ (3.6.8)

<
ε

2
+
ε

2

= ε.

(vi) This follows from the fact that a basic open neighbourhood of 0x has the form

V (0, ε, U) for some ε > 0 and some open neighbourhood U of x in X.
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(vii) Fix K > 0. Let b1, b2 ∈ B with ‖ · ‖-norm bounded by K. Suppose x = p(b1) =

p(b2). Let a1, a2 ∈M be norm-preserving lifts of b1, b2 ∈Mx. A basic open neighbourhood

of b1b2 has the form V (a1a2, ε, U) for some ε > 0 and open neighbourhood U of x. Let

b′1 ∈ V (a1,
ε

2K , U) and b′2 ∈ V (a2,
ε

2K , U). Assume b′1 and b′2 are ‖ · ‖-norm bounded by K,

and that x′ = p(b′1) = p(b′2) ∈ U . We have

‖a1(x′)a2(x′)− b′1b′2‖2 ≤ ‖a1(x′)‖‖a2(x′)− b′2‖2 + ‖a1(x′)− b′1‖2‖b′2‖ (3.6.9)

≤ K‖a2(x′)− b′2‖2 +K‖a1(x′)− b′1‖2

< K
( ε

2K
+

ε

2K

)
= ε.

So, b′1b
′
2 ∈ V (a1a2, ε, U).

(viii) Let W be open in B with W ∩ B|≤1 6= ∅. Let x ∈ p(W ∩ B|≤1). Choose

b ∈ W ∩ B|≤1 such that p(b) = x. Lift b ∈ Mx to an element a ∈ M of the same norm.

The open set W contains a basic open neighbourhood of the form V (a, ε, U), where ε > 0

and U is a neighbourhood of x in X. Hence, for all x′ ∈ U , it follows that a(x′) ∈W and

‖a(x′)‖Mx′ ≤ 1. Therefore U ⊆ p(W ∩B|≤1) and so p|B≤1
: B≤1 → X is open.

Proposition 3.6.6. Let Mi be a W∗-bundle over Xi with conditional expectation Ei for

i = 1, 2. Let (Bi, pi) be the corresponding bundle of tracial von Neumann algebras for

i = 1, 2. If the W∗-bundles are isomorphic, then the bundles of tracial von Neumann

algebras are isomorphic.

Proof. Assume α : M1 → M2 is an isomorphism of the W∗-bundles. Then α restricts

to an isomorphism C(X1) → C(X2), so induces a homeomorphism αt : X2 → X1. Since

E2(α(a))(x2) = α(E1(a))(x2) = E1(a)(αt(x2)) for all a ∈ M1 and x2 ∈ X2, α induces

an isomorphism between the fibres (M1)αt(x2) and (M2)x2 for each x2 ∈ X2. Combining

all these isomorphisms, we get a bijection ϕ : B1 → B2 such that (3.6.1) holds with

ψ = (αt)−1. By considering the basic open neighbourhoods in B1 and B2, we see that ϕ is

a homeomorphism. Indeed, ϕ(VM1(a, ε, U)) = VM2(α(a), ε, ψ(U)) for all a ∈ M1, ε > 0,

and U open in X1.

In the other direction, given a bundle of tracial von Neumann algebras over a compact

Hausdorff space, we can define a W∗-bundle by considering sections. Recall from Section

2.12.1 that a section of a general topological bundle (B, p) over X is a map s : X → B
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such that p ◦ s = idX (Definition 2.12.2). We now define what it means for a section of a

bundle of tracial von Neumann algebras to be bounded.

Definition 3.6.7. A section s : X → B of a bundle of tracial von Neumann algebras

(B, p) over X is said to be bounded if supx∈X ‖s(x)‖ <∞.

Remark 3.6.8. Note that boundedness of sections always refers to ‖ · ‖-norm. Since it

is not required that ‖ · ‖ be continuous on B, continuous sections s : X → B are not

automatically bounded in the sense of Definition 3.6.7 even when X is compact.

Let (B, p) be a bundle of tracial von Neumann algebras over the compact Hausdorff

space X. The set of bounded sections of (B, p) endowed with fibrewise-defined operations

and the uniform norm ‖s‖ = supx∈X ‖s(x)‖ is a C∗-algebra isomorphic to the product∏
x∈X p

−1(x). Since the fibres are tracial von Neumann algebras, the uniform 2-norm

‖s‖2,u = supx∈X ‖s(x)‖2 is complete when restricted to the closed unit ball in uniform

norm. Let M be the collection of bounded, continuous sections. Axioms (i)–(viii) ensure

that M is a unital ∗-subalgebra of the C∗-algebra of all bounded sections. It follows from

Proposition 2.12.8 that continuity of sections is preserved under uniform-2-norm limits and,

a fortiori, under uniform-norm limits. Therefore, M inherits the completeness properties

of the algebra of bounded sections, in particular M is a C∗-algebra.

The additional data for a W∗-bundle over X with section algebraM can now be easily

defined and the axioms verified. We identify f ∈ C(X) with the scalar valued section x 7→

f(x)1x. Such scalar valued sections are clearly bounded and are continuous since scalar

multiplication and the section x 7→ 1x are continuous. This gives an inclusion C(X) ⊆

Z(M). We define E :M→ C(X) by s 7→ τ ◦ s. This is a conditional expectation fromM

onto the image of C(X) inM and induces the uniform 2-norm onM. Axiom (C) follows

from Proposition 2.12.8. Axioms (T) and (F) follow fibrewise from the corresponding

properties of a faithful trace.

As before, we check that our construction is compatible with our notions of isomor-

phism.

Proposition 3.6.9. Let (Bi, pi) be a bundle of tracial von Neumann algebras over the

compact Hausdorff space Xi for i = 1, 2. LetMi be the W∗-bundle over Xi with conditional

expectation Ei that comes from (Bi, pi). If the bundles of tracial von Neumann algebras

are isomorphic, then the W∗-bundles are isomorphic.
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Proof. If the bundles are isomorphic and ϕ and ψ are as in (3.6.1) then s 7→ ϕ ◦ s ◦ ψ−1

defines a bijection between the bounded, continuous sections of p1 : B1 → X1 and those

of p2 : B2 → X2, that is a map α :M1 →M2.

Since for each x1 ∈ X1, ϕ|p−1
1 (x1) : p−1

1 (x1) → p−1
2 (ψ(x1)) is an isomorphism of tracial

von Neumann algebras, α is a ∗-homomorphism of C∗-algebras. Furthermore, the following

computations show that α is a morphism of W∗-bundles. Firstly, let f1 ∈ C(X1) ⊆ Z(M1)

and x2 ∈ X2. Then

α(f1)(x2) = ϕ(f1(ψ−1(x2))1ψ−1(x2)) (3.6.10)

= f1(ψ−1(x2))1x2 ,

so α(f1) = f1 ◦ ψ−1 ∈ C(X2) ⊆ Z(M2). Secondly, let s ∈M1 and x2 ∈ X. Then

E2(α(s))(x2) = τp−1
2 (x2)(α(s)(x2)) (3.6.11)

= τp−1
2 (x2)(ϕ(s(ψ−1(x2))))

= τp−1
1 (ψ−1(x2))(s(ψ

−1(x2)))

= E1(s)(ψ−1(x2))

= α(E1(s))(x2),

so E2 ◦ α = α ◦ E1.

We now investigate the inverse nature of the two constructions considered in this

section. The following theorem deals with the case where one starts with a W∗-bundle

M, constructs the associate bundle of tracial von Neumann algebras (B, p), and then

constructs a second W∗-bundle from the bounded, continuous sections of (B, p).

Theorem 3.6.10. LetM be a W∗-bundle over the compact Hausdorff space X. Let (B, p)

be the bundle of tracial von Neumann algebras constructed from M.

(a) For each a ∈ M, the map sa : X → B given by x 7→ a(x) ∈ Mx defines a bounded,

continuous section of (B, p).

(b) Every bounded, continuous section of (B, p) has the form sa for some a ∈M.

(c) The map a 7→ sa is an isomorphism between the W∗-bundle M and the W∗-bundle

constructed from (B, p).



3.6. THE TOPOLOGICAL VIEWPOINT 127

Proof. (a) Let a ∈ M. By construction sa is a section of (B, p). We have ‖a(x)‖Mx ≤

‖a‖M for all x ∈ X, so the section sa is bounded. Let W be open in B and x ∈ s−1
a (W ).

Then sa(x) = a(x) ∈ W . By Proposition 3.6.5(a), there exists ε > 0 and an open

neighbourhood U of x in X such that a(x) ∈ V (a, ε, U) ⊆ W . It follows that x ∈ U ⊆

s−1
a (W ). Hence, sa is continuous.

(b) Assume s : X → B is a continuous and bounded section. Let x0 ∈ X and ε > 0.

Choose a0 ∈ M such that a0(x0) = s(x0). Since the function x 7→ ‖s(x) − a0(x)‖2 is

continuous, there is a neighbourhood U of x0 such that

sup
x∈U
‖s(x)− a0(x)‖2 < ε. (3.6.12)

By Theorem 3.2.10, there exists a ∈M such that a(x) = s(x) for all x ∈ X.

(c) The map a 7→ sa is a unital homomorphism of C∗-algebras. It is injective by

Proposition 3.2.5 and surjective by (b). For f ∈ C(X) ⊆ Z(M), sf is the scalar section

x 7→ f(x)1x and, for arbitrary a ∈ M and x ∈ X, τ(sa(x)) = τx(a(x)) = E(a)(x).

Therefore, a 7→ sa is an isomorphism of W∗-bundles.

We now consider the reverse direction. Namely, we start with a bundle of tracial von

Neumann algebras (B, p) over a compact Hausdorff space, construct a W∗-bundle M by

considering bounded, continuous sections of (B, p), and then construct a second bundle of

tracial von Neumann algebras (B̃, p̃) from the fibres of M.

Theorem 3.6.11. Let (B, p) be a bundle of tracial von Neumann algebras over the compact

Hausdorff space X. Let M be the W∗-bundle defined by considering bounded, continuous

sections of (B, p). Let (B̃, p̃) be the bundle of tracial von Neumann algebras constructed

from the fibres of M. Suppose that

(∗) For all b ∈ B, there is s ∈M with s(p(b)) = b.15

Then the bundles of tracial von Neumann algebras (B, p) and (B̃, p̃) are isomorphic.

Proof. Write E for the conditional expectation of M. For each x ∈ X, consider the

evaluation map ϕx : M → p−1(x) given by s 7→ s(x). This is a homomorphism of C∗-

algebras and, by our assumption, it is surjective. Since τ(s(x)) = E(s)(x) for all s ∈ M

and the trace on p−1(x) is faithful, we get an induced isomorphism of tracial von Neumann

15We show in the next section that this conditional is in fact automatically satisfied.
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algebras ϕx : Mx → p−1(x). Combining all such maps, we get a bijection ϕ : B̃ → B,

such that the diagram

B̃
ϕ //

p̃
��

B

p

��
X

idX // X

(3.6.13)

commutes. It remains to show that ϕ is a homeomorphism. Note that, via our convention

of writing s(x) for the image of s ∈ M in Mx, ϕ can be viewed as the identity map on

B. Thus proving that ϕ is a homeomorphism amounts to showing that the topology on

B, satisfying the axioms for a bundle, has a basis consisting of the sets V (s, ε, U) = {b ∈

B : p(b) ∈ U, ‖s(p(b))− b‖2 < ε} for s ∈M, ε > 0 and U open in X.

Each such set V (s, ε, U) is open in B because the axioms for a bundle ensure that the

map F : B → R ×X given by b 7→ (‖s(p(b)) − b‖2, p(b)) is continuous. We complete the

proof by showing that the set of all such V (s, ε, U) contains a neighbourhood basis for

each point of B. Axiom (vi) of Definition 3.6.1 gives that V (0, ε, U) as ε ranges over the

positive reals and U ranges over a neighbourhood basis for x ∈ X form a neighbourhood

basis for 0x. Let b0 ∈ B and s0 be a bounded, continuous section with s0(p(b0)) = b0.

Since the map G : B → B given by b 7→ s0(p(b))−b is a homeomorphism of B, we see that

V (s0, ε, U) as ε ranges over the positive reals and U ranges over a neighbourhood basis for

p(b0) form a neighbourhood basis for b0.

We observe that the bundle of tracial von Neumann algebras corresponding to a trivial

W∗-bundle Cσ(X,M), where M is a fixed tracial von Neumann algebra and X is a compact

Hausdorff space, is (X×M,π1), where the topology onX×M is the product of the topology

of X and the 2-norm topology on M and π1 : X ×M → X is the projection onto the first

coordinate. Thus, the notion of triviality for a bundle of tracial von Neumann algebras

matches up with that for a W∗-bundle. We show below that the notions of restriction to

a closed subset also match up and, therefore, so do the natural notions of local triviality

(Definitions 3.4.20 and 3.6.3).

Proposition 3.6.12. Let X be a compact Hausdorff space and Y a closed subset.

(a) Let M be a W∗-bundle over X and (B, p) the corresponding bundle of tracial von

Neumann algebras. Let (BY , pY ) be the bundle of tracial von Neumann algebras

corresponding to the quotient W∗-bundle MY = M/IY (Definition 3.4.19). There
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exists a homeomorphism ϕ such that the diagram

BY
ϕ //

pY
��

p−1(Y )

p|p−1(Y )

��
Y

idY // Y

commutes, which induces an isomorphism of tracial von Neumann algebras in each

fibre.

(b) Let (B, p) be a bundle of tracial von Neumann algebras over X. Let M be the W∗-

bundle arising from bounded, continuous sections of (B, p). Then MY is isomorphic

to the W∗-bundle M̃ of bounded, continuous sections of (p−1(Y ), p|p−1(Y )).

Proof. (a) Write a 7→ a|Y for the quotient morphism M → MY . For y ∈ Y , the fibre

(MY )y of MY can be identified with the fibre My of M, via the map a|Y (y) 7→ a(y).

Combining all these maps, we obtain a bijection ϕ such that the diagram commutes.

Considering basic open neighbourhoods we see that ϕ is a homeomorphism. Indeed,

ϕ(VMY
(a|Y , ε, U ∩ Y )) = VM(a, ε, U) ∩ p−1(Y ) for all a ∈ M, ε > 0, and U open in

X.

(b) Write E for the conditional expectation ofM and Ẽ for the conditional expectation

on M̃. Restricting a bounded, continuous section s : X → B of p to Y gives a continuous

bounded section of (p−1(Y ), p|p−1(Y )). This defines a homomorphism of C∗-algebrasM→

M̃. The kernel of this homomorphism is the ideal IY = {s ∈M : E(s∗s)(y) = 0 for all y ∈

Y }. So we get an induced isometric homomorphism of C∗-algebras α : MY → M̃. This

homomorphism restricts to the identity map on the central copies of C(Y ) inMY and M̃,

and the diagram

MY
α //

EY
��

M̃

Ẽ
��

C(Y )
id // C(Y )

(3.6.14)

commutes. In particular, α preserves the uniform 2-norm. The argument to show that α

is surjective has two parts. First, using a partition of unity argument as in [18, Lemma

10.1.11], one shows that, for any continuous section s : Y → B with ‖s(y)‖ ≤ 1 for all

y ∈ Y and any ε > 0, there is a bounded, continuous section s : X → B with ‖s(x)‖ ≤ 1

for all x ∈ X and ‖s(y) − s(y)‖2 < ε. This implies that the ‖ · ‖-norm closed unit ball of

MY has ‖ · ‖2,u-dense image in the ‖ · ‖-norm closed unit ball of M̃ . The completeness of

the ‖ · ‖-norm closed units balls in ‖ · ‖2,u-norm then implies that α is surjective.
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3.6.3 Constructing Continuous Sections

This section is devoted to proving that Axioms (i-viii) for a bundle of tracial von Neumann

algebras ensure the existence of sufficiently many bounded, continuous sections under

suitable assumptions on the base space. The main result of this section, Theorem 3.6.18,

implies that the additional hypothesis (∗) of Theorem 3.6.11 is, in fact, automatically

satisfied. Hence, there is a perfect 1-1 correspondence between isomorphism classes of

W∗-bundles and isomorphism classes of bundles of tracial von Neumann algebras over

compact Hausdorff spaces.

The methodology is to adapt the proof of the analogous result for bundles of Banach

spaces, due to Douady and dal Soglio-Herault, presented in Section 2.12.3, to account for

the fact that the ‖ · ‖2-norm is only complete on the ‖ · ‖-norm unit ball of each fibre.

We begin by establishing some notation and terminology for the remainder of this

section. Let (B, p) denote a bundle of tracial von Neumann algebras over the Hausdorff

space X. Since (B, p) is a bundle of normed vector spaces with respect to the global

‖ ·‖2-norm, the definitions of ε-thin sets and ε-continuous sections (Definitions 2.12.12 and

2.12.13) carry over to bundles of tracial von Neumann algebra as ‖ · ‖2-norm properties.

For the benefit of the reader, we repeat the definitions here.

Definition 3.6.13. Let ε > 0. A subset U of (B, p) is ε-thin if ‖b − b′‖2 < ε whenever

b1, b2 ∈ U and p(b1) = p(b2).

Definition 3.6.14. Let x ∈ X. A section f : X → B is ε-continuous at x if there is a

neighbourhood V of x and an ε-thin neighbourhood U of f(x) such that f(V ) ⊆ U . A

section f : X → B is ε-continuous if it is ε-continuous at all points x ∈ X.

We supplement the definition of ε-continuity, a ‖ · ‖2-norm property, with that of M -

boundedness, a ‖ · ‖-norm property.

Definition 3.6.15. Let M ≥ 0. A section f : X → B is M -bounded if ‖f(x)‖ ≤ M for

all x ∈ X.

We now state analogues of Propositions 2.12.15 and 2.12.20 for bundles of tracial von

Neumann algebras.

Proposition 3.6.16. Suppose X is completely regular. For all ε > 0, x0 ∈ X and

b0 ∈ p−1(x0), there is an ε-continuous, ‖b0‖-bounded section f with f(x0) = b0.
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Proof. If ‖b0‖ = 0, then take f to be the zero section. Hereinafter, assume ‖b0‖ > 0.

By Proposition 2.12.14, there is an ε-thin, open neighbourhood U of b0. Set M = ‖b0‖.

By Axiom (viii), the set V = p(U ∩ B≤M ) is an open neighbourhood of x0. By the

axiom of choice, there is a local section fV : V → B such that fV (V ) ⊆ U ∩ B≤M .

Complete regularity of X implies the existence of a continuous bump function φ : X →

[0, 1] supported on a closed set F ⊆ V and with φ(x0) = 1. We can define f : X → B by

f(x) =


φ(x)fV (x), x ∈ V,

0, x 6∈ V.
(3.6.15)

The function f is an ε-continuous section because U is ε-thin and is M -bounded by con-

struction.

Proposition 3.6.17. Assume X is paracompact. Let ε > 0,M > 0 and x0 ∈ X. Suppose

f : X → B is an M -bounded, ε-continuous section. Then there is an M -bounded, ε
2 -

continuous section f ′ : X → B such that ‖f(x) − f ′(x)‖2 < 3
2ε for all x ∈ X and

f ′(x0) = f(x0).

Proof. The proof is essentially the same as that of Proposition 2.12.20 except that we

use Proposition 3.6.16 to ensure that each f (x) is M -bounded. With this amendment the

function f ′, as constructed in the proof of Proposition 2.12.20, will also be M -bounded.

Indeed, f ′ =
∑

i∈I φifi, where the φi are a partition of unity and each fi is some f (x).

Therefore, as ‖fi(x)‖ ≤M for all x ∈ X and i = 1, . . . , n, we have

‖f(y)‖ = ‖
∑
i∈I

φi(y)fi(y)‖ (3.6.16)

≤
∑
i∈I

φi(y)‖fi(y)‖ (3.6.17)

≤
∑
i∈I

φi(y)M (3.6.18)

= M.

Finally, we state and prove the analogue of Theorem 2.12.11 for bundles of tracial von

Neumann algebras.

Theorem 3.6.18. Let (B, p) be a bundle of tracial von Neumann algebras over a space

X which is either paracompact or locally compact. Then for every b0 ∈ B, there exists a

bounded, continuous section f : X → B with f(p(b0)) = b0.
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Proof. We first prove the result for X paracompact. Fix b0 ∈ B. Set x0 = p(b) and

M = ‖b0‖. By Proposition 3.6.16, there is an M -bounded, 1-continuous section f0 with

f0(x0) = b0. Using Proposition 3.6.17, we inductively construct a sequence of M -bounded

sections fn : X → B with fn(x0) = b0 such that fn is 1
2n -continuous and ‖fn(x) −

fn−1(x)‖2 < 3
2n for all x ∈ X and n ∈ N.

Since the series
∑∞

i=0
3
2i

converges, the sequence of sections (fn)∞n=1 is uniformly

Cauchy, i.e. for all ε > 0, there exists N ∈ N such that

‖fn(x)− fm(x)‖2 < ε (3.6.19)

whenever x ∈ X and m,n ≥ N . Moreover, ‖fn(x)‖ ≤M for all x ∈ X and n ∈ N.

As fibres of the bundle are tracial von Neumann algebras, fn converges pointwise to

some section f in ‖ · ‖2-norm. Fixing x while letting m → ∞ in (3.6.19), we see that fn

converges uniformly to f in ‖ · ‖2-norm. This section will be ε-continuous for all ε > 0 by

Lemma 2.12.18 and thus continuous by Lemma 2.12.17.

The result for X locally compact is deduced by working first on a compact neighbour-

hood of b0, applying the result for the paracompact case, then multiplying by a suitable

bump function.



Chapter 4

The Triviality Problem for

W∗-Bundles

The key problem in the field of W∗-bundles is the following: Is every W∗-bundle with all

fibres isomorphic to the hyperfinite II1 factor R a trivial W∗-bundle?

The reason for the special interest in the case where the fibres are R comes from the

classification programme for C∗-algebras. This is because if A is a simple, separable, unital,

nuclear, infinite-dimensional C∗-algebra with a non-empty Bauer simplex of traces, then

A
st

is a W∗-bundle with all fibres isomorphic to the hyperfinite II1 factor R. Moreover,

triviality of the W∗-bundle A
st

enables one to prove that strict comparison implies tensorial

absorption of the Jiang–Su algebra Z, which is one part of the Toms–Winter Conjecture

(see Chapter 1).

In this chapter, we present Ozawa’s Triviality Theorem [62, Theorem 15] and its corol-

laries. This theorem provides equivalent conditions for a strictly separable W∗-bundle

with fibres R to be trivial. As observed by Ozawa [62, Corollary 12], one can show that

these conditions are satisfied when the base space has finite covering dimension using the

techniques of [47, Section 7] (or [77,88]). It also follows from Ozawa’s Triviality Theorem

that A
st

is trivial whenever A is Z-stable in addition to the aforementioned hypotheses,

an observation first made in [5, Theorem 3.15].

Using Ozawa’s Triviality Theorem, we can also prove that A
st

is trivial for some C∗-

algebras not covered by the results mentioned above, for example when A is a Villadsen

algebra.1. This is discussed in Section 4.6.

1These results stem from an idea suggested by Aaron Tikuisis

133
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In the final section of this chapter, we consider the case of locally trivial W∗-bundles,

proving that local triviality implies triviality in the case where the fibres are all isomorphic

to R. This result comes from my joint work with Ulrich Pennig and appears in our

paper [23].

4.1 Ozawa’s Triviality Theorem

We begin our presentation of Ozawa’s Triviality Theorem by stating the theorem in its

original form.

Theorem 4.1.1. [62, Theorem 15] Let M be a strictly separable W∗-bundle over X with

Mx
∼= R for all x ∈ X. Then the following are equivalent:

(i) M is isomorphic to the trivial W∗-bundle Cσ(X,R).

(ii) There is a sequence of positive contractions (pn) in M such that, as n→∞,

‖[pn, a]‖2,u → 0 (a ∈M), (4.1.1)

‖pn − p2
n‖2,u → 0, (4.1.2)

‖E(pn)− 1
2‖C(X) → 0. (4.1.3)

(iii) For each k ∈ N, there is a sequence of cpc maps ϕn : Mk(C) → M such that, as

n→∞,

‖[ϕn(b), a]‖2,u → 0 (a ∈M, b ∈Mk(C)), (4.1.4)

‖ϕn(b1b2)− ϕn(b1)ϕn(b2)‖2,u → 0 (b1, b2 ∈Mk(C), (4.1.5)

‖ϕn(1)− 1‖2,u → 0. (4.1.6)

The proof of Ozawa’s Triviality Theorem is deferred until Section 4.5. Beforehand, we

shall discuss the conditions (ii) and (iii) of the theorem.

Condition (ii) can be viewed as the W∗-bundle analogue of Murray and von Neumann’s

property Γ for II1 factors. It asserts the existence of an approximately central sequence of

approximate projections of trace 1
2 in a uniform sense. In Section 4.3, after we’ve defined

the ultrapower of a W∗-bundle, we will be able to make this reformulation precise.

Condition (iii) can be viewed as the W∗-bundle analogue of the McDuff property

for II1 factors. It asserts the existence of approximately central embeddings of matrix
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algebras. This condition is studied extensively in [5, Section 3.2] and we shall present

the key results in Section 4.4. In particular, one has that condition (iii) is equivalent to

tensorial absorption of R in a W∗-bundle sense.

4.2 Tensor Products and Ultrapowers of W∗-bundles

In this section, we recall the definitions and key properties of two very useful W∗-bundle

constructions: tensor products and ultrapowers. Both these constructions were first intro-

duced in [5, Section 3.2]. In addition, we define inductive limits of W∗-bundles and infinite

tensor products.

4.2.1 Tensor Products

The key to the construction of the tensor product of W∗-bundles is the observation that

the minimal tensor product of C∗-algebras is compatible with the additional structure of

a pre-W∗-bundle.2 We formulate this as a proposition.

Proposition 4.2.1. Let Mi be a pre-W∗-bundle over Xi with conditional expectation Ei

for i = 1, 2. Write ιi for the embedding of C(Xi) in Z(Mi). Then M1 ⊗M2 together

with the embedding ι1⊗ ι2 and the conditional expectation E1⊗E2 is a pre-W∗-bundle over

X1 ×X2.

Proof. Identify C(X1)⊗C(X2) with C(X1×X2). First, note that ι1⊗ ι2 : C(X1×X2)→

M1⊗M2 remains an embedding since we are working with the minimal tensor product [6,

Proposition 3.6.1]. The embedding is clearly central. Next, note that E1⊗E2 :M1⊗M2 →

C(X1 × X2) is a unital completely positive map [6, Theorem 3.5.3]. Computing with

elementary tensors shows that E1⊗E2 is a conditional expectation and satisfies the tracial

property (T).

To prove the faithfulness property (F), we use Kirchberg’s Slice Lemma [71, Lemma

4.1.9]. The set I = {a ∈M1⊗M2 : (E1⊗E2)(a∗a) = 0} is an ideal because E1⊗E2 satisfies

the tracial axiom (T).3 In particular, I is a hereditary subalgebra of M1 ⊗M2. Assume

I is non-zero. Then, by Kirchberg’s Slice Lemma, there exists a non-zero z ∈ M1 ⊗M2

such that zz∗ ∈ I and z∗z = a1 ⊗ a2 for some a1 ∈M1 and a2 ∈M2. By taking absolute

values, we may assume a1 and a2 are positive. Since I is an ideal (zz∗)1/2 ∈ I. Hence,

2We write ⊗ for the minimal tensor product of C∗-algebras.
3For example, compose E1 ⊗ E2 with evaluation maps to get traces, and apply Proposition 2.6.12.
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we have (E1 ⊗ E2)(zz∗) = 0. By Axiom (T), 0 = (E1 ⊗ E2)(z∗z) = E(a1)⊗ E(a2). Since

E(a1) and E(a2) are positive, this forces either E1(a) = 0 or E2(a2) = 0. Since a1 and a2

are positive, Axiom (F) forM1 andM2 implies either a1 = 0 or a2 = 0. Therefore, z = 0.

This contradiction implies that I must be zero. Thus, axiom (F) holds forM1⊗M2.

We can now make the following definition.

Definition 4.2.2. Let Mi be W∗-bundle over Xi with conditional expectation Ei and

central embedding ιi for i = 1, 2. The tensor product of the W∗-bundlesM1 andM2 is the

completion of the pre-W∗-bundle with section algebraM1 ⊗M2, conditional expectation

E1 ⊗ E2 and central embedding ι1 ⊗ ι2. We denote this tensor product by M1⊗M2 and

write E1⊗E2 for the conditional expectation.

This definition agrees with [5, Definition 3.4.5], where the construction of the comple-

tion using standard form is preferred (see Proposition 3.4.23). The Hilbert-C(X1 ×X2)-

module L2(M1 ⊗M2), which is the same as L2(M1⊗M2), is isomorphic to the external

tensor product (see [50, Chapter 4]) of the Hilbert modules L2(M1) and L2(M2) as can

be verified from the identity

〈â1 ⊗ a2, b̂1 ⊗ b2〉L2(M1⊗M2) = 〈â1, b̂1〉L2(M1)〈â2, b̂2〉L2(M2). (4.2.1)

Remark 4.2.3. In fact, one could construct M1⊗M2 by starting with the external tensor

product L2(M1)⊗L2(M2), considering the tensor product action ofM1⊗M2 and taking

the strict closure. This construction avoids the use of Kirchberg’s Slice Lemma at the

expense of showing that the inner product for the external tensor product is positive

definite, which is equally non-trivial.

Now for some examples.

Example 4.2.4 (Tracial von Neumann Algebras). If we view tracial von Neumann alge-

bras as W∗-bundles over a one point space, then the tensor product of the W∗-bundles

agrees with that of the tracial von Neumann algebras. Indeed, if (M1, τ1) and (M2, τ2) are

tracial von Neumann algebras, then the minimal tensor product M1 ⊗M2 embeds in the

von Neumann tensor product M1⊗M2 because the minimal tensor product is the spatial

tensor product. Moreover, M1 ⊗M2 is ‖ · ‖2,τ1⊗τ2-dense in M1⊗M2, so its completion is

isomorphic to M1⊗M2.

Example 4.2.5 (Trivial Bundles). The trivial W∗-bundle Cσ(X,M) can be viewed as

the W∗-bundle tensor product of C(X), viewed a W∗-bundle over X, with M viewed as a



4.2. TENSOR PRODUCTS AND ULTRAPOWERS OF W∗-BUNDLES 137

W∗-bundle over a one point space. Indeed, since C(X) is nuclear, the map f ⊗ a 7→ f(·)a

defines an embedding C(X) ⊗M → Cσ(X,M). A simple partition of unity argument

shows that this embedding is ‖ · ‖2,u-dense. Verifying that this gives an isomorphism of

W∗-bundles is straightforward.

Next, we record the following result of [5], which shows that the tensor product of W∗-

bundles is compatible with the construction of Section 3.3. A particularly nice corollary

of this proposition is that, if additionally A is Z-stable, then the W∗-bundle A
st

will be

McDuff.

Proposition 4.2.6. [5, Proposition 3.6] Let A and B be simple, separable, unital, stably

finite C∗-algebras with compact extreme tracial boundaries ∂eT (A) and ∂eT (B) respectively.

Then A⊗Bst ∼= A
st⊗Bst

as W∗-bundles over ∂eT (A⊗B) ∼= ∂eT (A)× ∂eT (B).

We now turn to the tensor product of morphisms. The following result shows that the

tensor product of W∗-bundles behaves like the the minimal tensor product of C∗-algebra.

Proposition 4.2.7. Let αi : Mi → Ni be a morphism of W∗-bundles for i = 1, 2. The

tensor product map α1⊗α2 :M1⊗M2 → N1⊗N2 extends to a morphism of W∗-bundles

α1⊗α2 : M1⊗M2 → N1⊗N2. This morphism is injective if the αi are injective and

surjective if the αi are surjective.

Proof. LetMi have base space Xi and conditional expectation Ei. Let Ni have base space

Yi and conditional expectation Fi. Computing with elementary tensors shows that α1⊗α2

maps C(X1)⊗ C(X2) into C(Y1)⊗ C(Y2) and that the diagram

M1 ⊗M2
α1⊗α2 //

E1⊗E2

��

N1 ⊗N2

F1⊗F2

��
C(X1)⊗ C(X2)

α1⊗α2 // C(Y1)⊗ C(Y2)

(4.2.2)

commutes. Hence, α1 ⊗ α2 defines a morphism of pre-W∗-bundles. This extends to a

morphism of the completions α1⊗α2 :M1⊗M2 → N1⊗N2 by Proposition 3.4.22.

If α1 and α2 are injective then α1 ⊗ α2 :M1 ⊗M2 → N1 ⊗N2 is also injective since

we are using the minimal tensor product [6, Proposition 3.6.1]. Hence, α1⊗α2 is injective

by Proposition 3.4.22.

If α1 and α2 are surjective then (α1 ⊗ α2)(M1 ⊗algM2) = N1 ⊗alg N2 by considering

elementary tensors. Since the image of a C∗-algebra under a ∗-homomorphism is closed,

α1 ⊗ α2 :M1 ⊗M2 → N1 ⊗N2 is surjective. Hence, α1⊗α2 is surjective by Proposition

3.4.22.
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We can now verify that the fibres of a tensor product of W∗-bundles are the tensor

products of the fibres. We remark that in the setting of continuous C(X)-algebras the

analogous result can fail in the absence of exactness (see [48]).

Proposition 4.2.8. Let Mi be a W∗-bundle over Xi with conditional expectation Ei for

i = 1, 2. Let (x1, x2) ∈ X1×X2. Then (M1⊗M2)(x1,x2)
∼= (M1)x1⊗(M2)x2 as tracial von

Neumann algebras.

Proof. Let αi :Mi → (Mi)xi denote the fibre evaluation a 7→ a(xi). Viewing (Mi)xi as a

W∗-bundle over a one point space, αi is a surjective morphism of W∗-bundles. We apply

Proposition 4.2.7 to obtain a surjective morphism α1⊗α2 such that the diagram

M1⊗M2
α1⊗α2 //

E1⊗E2

��

(M1)x1⊗(M2)x2

τx1⊗τx2

��
C(X1 ×X2)

eval(x1,x2) // C.

(4.2.3)

commutes.

From the commuting diagram, we have, for a ∈M1⊗M2,

(α1⊗α2)(a) = 0⇔ (τx1⊗τx2)(α1⊗α2)(a∗a) = 0 (4.2.4)

⇔ (E1⊗E2)(a∗a)(x1, x2) = 0. (4.2.5)

So α1⊗α2 induces an injective ∗-homomorphism (M1⊗M2)(x1,x2) → (M1)x1⊗(M2)x2 .

This map is trace preserving by (4.2.3) and is surjective as α1⊗α2 is surjective.

4.2.2 Inductive Limits and Infinite Tensor Products

In this section, we define the inductive limit of a system of W∗-bundles and morphisms.

The main application of this is to facilitate the definition of the infinite tensor product,

though the construction may be of independent interest.

As with tensor products, the key to the construction is the observation that inductive

limits in the category of unital C∗-algebras with ∗-homomorphisms as morphisms are

compatible with the additional structure of a pre-W∗-bundle. We assume familiarity, with

inductive limits of C∗-algebras as outlined in [74, Section 6.2].

Proposition 4.2.9. Let Mi be a W∗-bundle over Xi with conditional expectation Ei

and central embedding ιi for i ∈ N. Let αi : Mi → Mi+1 be a morphism for i ∈ N.

Set M = lim→(Mi, αi) be the C∗-inductive limit and X = lim←(Xi, α
t
i) the projective
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limit of compact Hausdorff spaces. Then there exist a unique unital ∗-homomorphism

ι : C(X) → M and a unique ucp map E : M → X such that the following diagrams

commute:

M1
α1 //M2

α2 //M3
α3 // · · · //M

C(X1)

ι1

OO

α1 // C(X2)

ι2

OO

α2 // C(X3)

ι3

OO

α3 // · · · // C(X),

ι

OO (4.2.6)

M1
α1 //

E1

��

M2

E2

��

α2 //M3

E3

��

α3 // · · · //M

E
��

C(X1)
α1 // C(X2)

α2 // C(X3)
α3 // · · · // C(X).

(4.2.7)

Moreover, M together with ι and E is a pre-W∗-bundle over X and the canonical ∗-

homomorphism µi :Mi →M is a morphism of pre-W∗-bundles.

Proof. The existence and uniqueness of ι such that (4.2.6) commutes follows from the

universal property for the inductive limits in the category of unital C∗-algebras with ∗-

homomorphisms. Since each ιi is isometric, the map ι is isometric, so is an embedding. A

simple density argument shows that ι(C(X)) lies in the centre of M.

One could similarly deduce the existence and uniqueness of E from the universal prop-

erty for the inductive limits in the category of operator systems with ucp maps as the

morphism (see for example [54]), but we favour a direct proof.

Let µi : Mi → M and νi : C(Xi) → C(X) denote the canonical maps into the

inductive limit. We define E on the dense subspace
⋃
i∈N µi(Mi) by µi(ai) 7→ νi(Ei(ai))

for ai ∈ Mi. This is well defined as Ei+1 ◦ αi = αi+1 ◦ Ei. On this dense subspace, E

is clearly linear. To prove that E is bounded, we use that fact that, if a ∈ µi(Mi), then

there is ai ∈ Mi with ‖ai‖ = ‖a‖ and µi(ai) = a [74, Section 2.2.10]. We then have

‖E(a)‖ = ‖νi(Ei(ai)‖ ≤ ‖ai‖ ≤ ‖a‖. Hence, E has a unique extension to a bounded linear

operator M→ C(X).

We now show that E is a ucp map. By construction, E(1) = 1. By Proposition 2.5.2,

it suffices to show that E is positive. However, this follows since
⋃
i∈N µi((Mi)+) is dense

in M+ and each Ei is positive. This completes the proof of the existence of a ucp map

such that (4.2.7) commutes. Uniqueness follows by a simple density argument.

Identify C(X) with its image under ι. A simple density argument shows that E is a

conditional expectation onto C(X) and that the tracial axiom (T) holds. It only remains
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to show that the faithfulness axiom (F) holds. Here, the key observation is that I =

{a ∈ M : E(a∗a) = 0} is an ideal of the C∗-algebra M because E satisfies the tracial

axiom (T).4 Hence, we have I =
⋃
i∈N µi(Mi) ∩ I (see for example [4, II.8.2.3]). However,

µi(Mi) ∩ I = {0} for all i ∈ N by the faithfulness axiom (F) for the W∗-bundle Mi. This

completes the proof that M endowed with the central embedding ι and the conditional

expectation E is a pre-W∗-bundle. It follows from the commuting diagrams (4.2.6) and

(4.2.7) that µi :Mi →M is a morphism of pre-W∗-bundles for all i ∈ N.

We can now define the inductive limit of an inductive system of W∗-bundles and prove

that it satisfies the appropriate universal property.

Definition 4.2.10. The inductive limit of a inductive system of W∗-bundles and mor-

phisms

M1
α1 //M2

α2 //M3
α3 // · · · (4.2.8)

is the completion M of the pre-W∗-bundle M constructed in Proposition 4.2.9 together

with the canonical morphisms µi :Mi →M⊆M.

Proposition 4.2.11. Let

M1
α1 //M2

α2 //M3
α3 // · · · (4.2.9)

be an inductive system of W∗-bundles and morphisms. Let M be the completion of the

pre-W∗-bundle M constructed in Proposition 4.2.9 and let µi : Mi → M ⊆ M be the

canonical morphisms.

Suppose N is a W∗-bundle and there are morphisms βi : Mi → N such that the

following diagram commutes:

M1
α1 //

β1
++

M2

β2

((

α2 //M3

β3

""

α3 // · · ·

N .

(4.2.10)

Then there exists a unique morphism β :M→N such that β ◦ µi = βi for all i ∈ N.

Proof. Uniqueness follows by diagram chasing and a density argument. We shall focus

on proving the existence of β. We shall use the notation of Proposition 4.2.9 for the

conditional expectations and base spaces of the Mi and M but treat the embeddings

4For example, compose E with evaluation maps to get traces, and apply Proposition 2.6.12.
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as identifications. Furthermore, we shall write Y for the base space of N and F for the

conditional expectation F : N → C(Y ).

By the universal property for C∗-inductive limits, there is a ∗-homomorphism β :

M → N such that β ◦ µi = βi. Since each βi is a morphism of W∗-bundles, we have

β(µi(C(Xi))) = βi((C(Xi)) ⊆ C(Y ) and

F (β(µi(ai))) = F (βi(ai)) (4.2.11)

= βi(Ei(ai)) (4.2.12)

= β(µi(Ei(ai))) (4.2.13)

= β(E(µi(ai)) (4.2.14)

for ai ∈ Mi. Hence, by density, β(C(X)) ⊆ C(Y ) and F ◦ β = β ◦ E. Therefore,

β : M → N is a morphism of pre-W∗-bundles. By Proposition 3.4.22, β extends to a

morphism M→N = N . We still have that β ◦ µi = βi for all i ∈ N.

Finally, we can give the definition of the infinite tensor product of W∗-bundles.

Definition 4.2.12. The infinite tensor product of W∗-bundles
⊗∞

i=1Mi is defined to be

the inductive limit of the system

M1
id⊗1 //

⊗2

i=1Mi
id⊗1 //

⊗3

i=1Mi
id⊗1 // · · · . (4.2.15)

4.2.3 Ultrapowers

Ultrapowers are an extremely useful technical tool in operator algebras. They allow us to

turn approximate properties, that is conditions satisfied in the limit, into exactly satisfied

properties at the expense of working in a larger algebra. In order to define ultrapowers,

we require a free ultrafilter on the natural numbers ω ∈ βN \N. The existence of such an

ultrafilter follows from the Axiom of Choice.

We first recall the definition of the ultrapower of a C∗-algebra and the (tracial) ultra-

power of a tracial von Neumann algebra before moving onto the ultrapowers of W∗-bundles.

Definition 4.2.13. Let A be a C∗-algebra. The ultrapower of A with respect to ω ∈ βN\N

is defined to be

Aω =
`∞(A)

{(an) ∈ `∞(A) : limn→ω ‖an‖ = 0}
. (4.2.16)
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Definition 4.2.14. Let (M, τ) be a tracial von Neumann algebra. The (tracial) ultrapower

of M with respect to ω ∈ βN \ N is defined to be

Mω =
`∞(M)

{(an) ∈ `∞(M) : limn→ω ‖an‖2,τ = 0}
(4.2.17)

together with the trace τω induced on the quotient by the map (an) 7→ limn→ω τ(an).

For a proof that the tracial ultrapower (Mω, τω) is a tracial von Neumann algebra, i.e.

that the unit ball is ‖ · ‖2,τω -complete, see [81, Theorem A.3.5].

Notation and Terminology 4.2.15. We follow the now standard conventions of using

a superscript for the tracial ultrapower and a subscript for the the C∗-ultrapower. The

adjective tracial is dropped when there is no chance of confusion. We shall often speak of

the ultrapower, ignoring the potential dependence on the choice of ultrafilter, since we shall

not be interested in properties of ultrapowers that depend on the choice of ultrafilter. We

write [(an)] for the element in an ultrapower coming from the sequence (an). We identify

A (respectively M) with the images of constant sequence in Aω (respectively Mω).

We now turn to the ultrapowers of W∗-bundles. We first consider the base space.

If X is a compact Hausdorff space then C(X)ω is a commutative unital C∗-algebra, so

there exists a compact Hausdorff space
∑

ωX, unique up to homeomorphism, such that

C(X)ω ∼= C(
∑

ωX). The space
∑

ωX is the ultra-copoduct of X (see [2, Section 1]). We

shall identify C(
∑

ωX) with C(X)ω.

A dense subspace of
∑

ωX can be identified with the set-theoretic ultrapower
∏
ωX

defined to be the set of sequences in X modulo the relation (xn) ∼ (yn) if and only if

{n ∈ N : xn = yn} ∈ ω. Indeed, given a point [(xn)]∼ in
∏
ωX, we can define a character

on C(X)ω via [(fn)] 7→ limn→ω fn(xn), and the collection of all such characters determines

the norm of [(fn)] ∈ C(X)ω, so forms a dense subspace of
∑

ωX.

We can now give the definition of the ultrapower of a W∗-bundle, which is a special

case of [5, Definition 3.7].

Definition 4.2.16. Let M be a W∗-bundle over X with conditional expectation E and

central embedding ι. The ultrapower of M with respect to ω ∈ βN \ N is the W∗-bundle

over the ultra-coproduct
∑

ωX with section algebra

Mω =
`∞(M)

{(an) ∈ `∞(M) : limn→ω ‖an‖2,u = 0}
, (4.2.18)
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the central embedding ιω : C(X)ω →Mω induced by the product map
∏∞
n=1 ι : `∞(C(X))→

`∞(M), and the conditional expectation Eω :Mω → C(X)ω induced by the product map∏∞
n=1E : `∞(M)→ `∞(C(X)).

For a proof that Mω is a W∗-bundle, see [5, Proposition 3.9].

4.3 Property Γ for W∗-Bundles

In this section, we consider condition (ii) of Ozawa’s Triviality Theorem (Theorem 4.1.1).

This condition and its consequences are sufficiently important to merit the following defi-

nition.

Definition 4.3.1. Let M be a strictly separable W∗-bundle over the compact Hausdorff

space X with conditional expectation E. We say that M has property Γ if there is a

sequence of positive contractions (pn) in M such that, as n→∞,

‖[pn, a]‖2,u → 0 (a ∈M), (4.3.1)

‖pn − p2
n‖2,u → 0, (4.3.2)

‖E(pn)− 1
2‖C(X) → 0. (4.3.3)

Remark 4.3.2. Murray and von Neumann introduced property Γ for II1 factors in [61,

Chapter VI] in order to prove that there exist separably acting II1 factors other than the

hyperfinite II1 factor (see Example 4.3.3 below). They used a slightly different formulation

of property Γ, requiring a sequence of trace zero unitaries (un) in the separably acting II1

factor (M, τ) such that ‖[un, a]‖2,τ → 0 for all a ∈M . Thanks to the work of Dixmier [17,

Proposition 1.10], this is equivalent to the existence of a sequence of positive contractions

(pn) such that ‖[pn, a]‖2,τ → 0 for all a ∈ M , ‖p2
n − p‖2,τ → 0 and τ(pn) → 1/2, so is

compatible with Definition 4.3.1.

Example 4.3.3 (Tracial von Neumann algebras). The hyperfinite II1 factor R has prop-

erty Γ because, writing R =
⊗∞

i=1(M2(C), tr2), we can take pn to be a projection of trace

1/2 in the n-th tensor factor. In contrast, the group algebras of non-abelian free groups

L(Fn) do not have property Γ by the 14ε-Argument (see for example [81, Theorem A.7.2]).

Example 4.3.4 (Trivial Bundles). If the tracial von Neumann algebra (M, τ) has property

Γ, then so does the trivial bundle Cσ(X,M). Indeed, if (pn) is a sequence of positive

contractions in M with ‖[pn, a]‖2,τ → 0 for all a ∈ M , ‖p2
n − p‖2,τ → 0 and τ(pn)→ 1/2,
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then the same sequence, viewed as constant functions in Cσ(X,M), satisfies the conditions

of Definition 4.3.1 as the following argument shows.

Let f ∈ Cσ(X,M) and ε > 0. By continuity of f and the compactness of X, there

exists a continuous partition of unity φ1, . . . , φk : X → [0, 1] and x1, . . . , xk ∈ X such that

‖f − g‖2,u < ε, where g(x) =
∑k

i=1 φi(x)f(xi) for x ∈ X. Furthermore, there exists N ∈ N

such that ‖[pn, f(xi)]‖2,τ < ε whenever n ≥ N . Let n ≥ N and x ∈ X. Then

‖[pn, f(x)]‖2,τ ≤ ‖[pn, f(x)− g(x)]‖2,τ + ‖[pn, g(x)]‖2,τ (4.3.4)

< 2‖pn‖‖f(x)− g(x)‖2,τ +

k∑
i=1

φi(x)‖[pn, f(xi)]‖2,τ (4.3.5)

< 2ε+
k∑
i=1

φi(x)ε (4.3.6)

= 3ε. (4.3.7)

Therefore, ‖[pn, f ]‖2,u → 0.

The goal of this section is to show that for strictly separable W∗-bundles with facto-

rial fibres property Γ implies the existence of a large number of central sequences. The

hypothesis of factorial fibres is used in the next lemma to approximate the conditional

expectation by a C(X)-convex combination of unitaries.

Lemma 4.3.5. Let M be a W∗-bundle over the compact Hausdorff space X with condi-

tional expectation E. Suppose Mx is a factor for all x ∈ X. Then, for all a ∈ M and

ε > 0, there exist k ∈ N, unitaries u1, . . . , uk ∈ M, and a continuous partition of unity

g1, . . . , gk : X → [0, 1] such that

‖E(a)−
k∑
i=1

giuiau
∗
i ‖2,u < ε. (4.3.8)

Proof. Let a ∈ M and ε > 0. Fix x ∈ X. By the Dixmier Approximation Theorem [16,

Theorem III.5.1], there exist k ∈ N and unitaries w1, . . . , wk ∈Mx such that

‖τx(a(x))1x −
1

k

k∑
j=1

wja(x)w∗j‖ < ε. (4.3.9)

Furthermore, asMx is a von Neumann algebra, we can lift the unitaries w1, . . . , wk ∈Mx

to unitaries u1, . . . , uk ∈M.5 We have

‖E(a)(x)− 1

k

k∑
j=1

uj(x)a(x)uj(x)∗‖2,τx < ε (4.3.10)

5Using Borel functional calculus, all unitaries in a von Neumann algebra are of the form eih for self-

adjoint h, and one can lift self-adjoint elements to self-adjoint elements.
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since the ‖ · ‖ norm onMx dominates the ‖ · ‖2,τx-norm. By Proposition 3.2.6, there is an

open neighbourhood V (x) of x such that

‖E(a)(y)− 1

k

k∑
j=1

uj(y)a(y)uj(y)∗‖2,τx < ε (4.3.11)

whenever y ∈ V (x).

As x varies, the V (x) form an open cover of X. By compactness, there is a finite

subcover. Denote this subcover V1, . . . , Vn. Each Vi comes with a ki ∈ N and unitaries

ui1, . . . , uiki ∈ M. Let ψ1, . . . , ψn : X → [0, 1] be a continuous partition of unity subordi-

nate to V1, . . . , Vn. We form a second partition of unity

1 =

n∑
i=1

ki∑
j=1

1

ki
ψi, (4.3.12)

i.e. the functions occurring in the partition of unitary are 1
ki
ψi for i = 1, . . . , n but 1

ki
ψi

occurs with multiplicity ki. Set

b =
n∑
i=1

ki∑
j=1

1

ki
ψiuijau

∗
ij . (4.3.13)

Let x ∈ X. Then

‖E(a)(x)− b(x)‖2,τx =

∥∥∥∥∥∥
n∑
i=1

ψi(x)

E(a)(x)− 1

ki

ki∑
j=1

uij(x)a(x)uij(x)∗

∥∥∥∥∥∥
2,τx

(4.3.14)

≤
n∑
i=1

ψi(x)

∥∥∥∥∥∥E(a)(x)− 1

ki

ki∑
j=1

uij(x)a(x)uij(x)∗

∥∥∥∥∥∥
2,τx

(4.3.15)

<

n∑
i=1

ψi(x)ε (4.3.16)

= ε. (4.3.17)

Therefore, ∥∥∥∥∥∥E(a)−
n∑
i=1

ki∑
j=1

1

ki
ψiuijau

∗
ij

∥∥∥∥∥∥
2,u

< ε. (4.3.18)

After reindexing the sum, this gives (4.3.8).

Using Lemma 4.3.5, we are now able to prove an important result about tracial fac-

torisation.
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Proposition 4.3.6. Let M be a W∗-bundle over the compact Hausdorff space X with

conditional expectation E. Suppose Mx is a factor for all x ∈ X. Suppose (bn) is a

‖ · ‖-bounded sequence in M such that ‖[bn, a]‖2,u → 0 for all a ∈M. Then

‖E(bna)− E(bn)E(a)‖C(X) → 0 (4.3.19)

for all a ∈M.

Proof. Suppose ‖bn‖ ≤M for all n ∈ N. In the sequel, we shall use the notation a1 ≈η a2

to denote ‖a1 − a2‖2,u ≤ η.

Let a ∈ M and ε > 0. By Lemma 4.3.5, there are k ∈ N, unitaries u1, . . . , uk ∈ M,

and a continuous partition of unity g1, . . . , gk : X → [0, 1] such that

E(a) ≈ε
k∑
i=1

giuiau
∗
i . (4.3.20)

We choose N ∈ N such that

k∑
i=1

giuibnau
∗
i ≈ε bn

k∑
i=1

giuiau
∗
i (4.3.21)

whenever n ≥ N .

Let n ≥ N . Since E is tracial, it is unitary invariant. Using this and Proposition

3.2.7(ii), we compute that

E(bna) =

k∑
i=1

giE(uibnau
∗
i ) (4.3.22)

= E

(
k∑
i=1

giuibnau
∗
i

)
(4.3.23)

≈ε E

(
bn

(
k∑
i=1

giuiau
∗
i

))
(4.3.24)

≈Mε E(bnE(a)) (4.3.25)

= E(bn)E(a). (4.3.26)

Hence E(bna) ≈(M+1)ε E(bn)E(a). Therefore, ‖E(bna)− E(bn)E(a)‖C(X) → 0.

Next, we reformulate property Γ and the tracial factorisation result in the language of

ultrapowers. This will require some additional notation. Firstly, if S is ‖ · ‖2,u-separable

subalgebra of the W∗-bundle Mω we write Mω ∩ S′ for the commutant of S in Mω. The

algebraMω ∩ S′ inherits the structure of a W∗-bundle fromMω. Secondly, we denote by

τ1/2 the trace on C2 with τ1/2((1, 0)) = τ1/2((0, 1)) = 1
2 .
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Proposition 4.3.7. Let M be a strictly separable W∗-bundle over the compact Hausdorff

space X with conditional expectation E. Then the following are equivalent:

(i) M has property Γ.

(ii) For any ‖ · ‖2,u-separable subalgebra S ⊆ Mω, there is a morphism of W∗-bundles

ϕ : (C2, τ1/2)→Mω ∩ S′.

Moreover, if Mx is a factor for all x ∈ M, then ϕ can be taken to have the tracial

factorisation property

Eω(ϕ(b)a) = τ1/2(b)Eω(a) (4.3.27)

for all b ∈ C2 and a ∈ S.

Proof. Firstly, assume that M satisfies (ii). Take S = M. Let p = ϕ((1, 0)). Since ϕ is

a morphism of W∗-bundles, we have that p ∈ Mω ∩M, p2 = p∗ = p is a projection, and

Eω(p) = τ1/2((1, 0)) = 1
2 .

We lift p to a positive contraction (pn)∞n=1 in `∞(M). The properties of p established

above imply that, as n→ ω,

‖[pn, a]‖2,u → 0 (a ∈M), (4.3.28)

‖pn − p2
n‖2,u → 0, (4.3.29)

‖E(pn)− 1
2‖C(X) → 0. (4.3.30)

At the expense of passing to a subsequence, we can replace the limits as n → ω above

with limits as n→∞. Although this argument is fairly standard, we present it in full on

this occasion for the benefit of the reader.

SinceM is strictly separable, there is a ‖ · ‖2,u-dense sequence (ai) inM by Corollary

3.2.19. We inductively choose a subsequence (pnk)∞k=1 of (pn)∞n=1 such that

‖[pnk , ai]‖2,u < 1
k (i = 1, . . . , k), (4.3.31)

‖pnk − p
2
nk
‖2,u < 1

k , (4.3.32)

‖E(pnk)− 1
2‖C(X) <

1
k . (4.3.33)

then, as k →∞,

‖[pnk , ai]‖2,u → 0 (i ∈ N), (4.3.34)

‖pnk − p
2
nk
‖2,u → 0, (4.3.35)

‖E(pnk)− 1
2‖C(X) → 0. (4.3.36)
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Let a ∈ M and ε > 0. Choose i ∈ N such that ‖a − ai‖2,u < ε. Then, using Proposition

3.2.7,

‖[pnk , a− ai]‖2,u ≤ ‖pnk‖‖a− ai‖2,u + ‖a− ai‖2,u‖pnk‖ (4.3.37)

< 2ε. (4.3.38)

Let K ∈ N be chosen such that ‖[pnk , ai]‖2,u < ε whenever k ≥ K. Then

‖[pnk , a]‖2,u ≤ ‖[pnk , ai]‖2,u + ‖[pnk , a− ai]‖2,u (4.3.39)

< 3ε (4.3.40)

whenever k ≥ K.

Therefore, as k →∞,

‖[pnk , a]‖2,u → 0 (a ∈M), (4.3.41)

‖pnk − p
2
nk
‖2,u → 0, (4.3.42)

‖E(pnk)− 1
2‖C(X) → 0. (4.3.43)

Hence, M has property Γ.

Conversely, supposeM has property Γ. Since S is ‖·‖2,u-separable, there is a sequence

(si) such that {si : i ∈ N} is ‖ · ‖2,u-dense in S. For each i ∈ N, si ∈ Mω, so can be

represented by a sequence (sin)∞n=1 ∈ `∞(M). For each n ∈ N, let pn ∈M be chosen with

0 ≤ pn ≤ 1 such that

‖[pn, sin]‖2,u < 1
n (i = 1, . . . , n), (4.3.44)

‖p2
n − pn‖2,u < 1

n , (4.3.45)

‖E(pn)− 1
2‖C(X) <

1
n . (4.3.46)

Let p be the element of Mω corresponding to the sequence (pn). Firstly, p commutes

with si for all i ∈ N. Hence, p ∈ Mω ∩ S′. Secondly, p2 = p, so p is a projection.

Thirdly, Eω(p) = 1
2 . Indeed, for any point x = [(xn)]∼ ∈

∏
ωX, we have Eω(p)(x) =

limn→ω E(pn)(xn) = 1
2 because E(pn) converges uniformly to 1

2 . Since
∏
ωX is dense in∑

ωX, we have Eω(p) = 1
2 .

We define ϕ : (C2, τ1/2) → Mω ∩ S′ by (λ, µ) 7→ λp + µ(1 − p). The properties of p

established above ensure that this is a morphism of W∗-bundles. Hence, M satisfies (ii).

Suppose additionally that Mx is a factor for all x ∈M. By Proposition 4.3.6, we can

additionally take pn to satisfy

‖E(pnsin)− E(pn)E(sin)‖C(X) <
1
n (i = 1, . . . , n). (4.3.47)
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Now p = [pn] ∈Mω, satisfies Eω(psi) = Eω(p)Eω(si) for all i ∈ N. Indeed, if x = [(xn)]∼ ∈∏
ωX, we have Eω(psi)(x) = limn→ω E(pnsin)(xn) = limn→ω E(pn)(xn)E(sin)(xn) be-

cause E(pnsin)−E(pn)E(sin) converges uniformly to zero. Since
∏
ωX is dense in

∑
ωX,

we have Eω(psi) = Eω(p)Eω(si) for all i ∈ N.

Since p and 1− p span ϕ(C2) and {si : i ∈ N} is ‖ · ‖2,u-dense in S, we have

Eω(ϕ(b)a) = τ1/2(b)Eω(a) (4.3.48)

for all b ∈ C2 and a ∈ S.

We can now deduce that a W∗-bundle with property Γ and factorial fibres has a large

number of central sequences.

Theorem 4.3.8. Let M be a strictly separable W∗-bundle over the compact Hausdorff

space X. Suppose Mx is a factor for all x ∈ X and that M has property Γ. Then for

any ‖ · ‖2,u-separable subalgebra S ⊆Mω, there exists a embedding ϕ : Cσ(X,L∞[0, 1])→

Mω ∩ S′. Moreover, we have the tracial factorisation property

Eω(ϕ(b)a) = Eσ(b)Eω(a) (4.3.49)

for all b ∈ Cσ(X,L∞[0, 1]) and a ∈ S, where Eσ denote the conditional expectation of the

trivial bundle Cσ(X,L∞[0, 1]).6

Proof. Fix a ‖ · ‖2,u-separable subalgebra S ⊆ Mω. By Proposition 4.3.7, there exists an

embedding ϕ1 : (C2, τ1/2) → Mω ∩ S′ such that Eω(ϕ(b)a) = τ1/2(b)Eω(a) for all a ∈ S

and b ∈ C2.

We shall recursively define embeddings ϕn :
⊗n

i=1(C2, τ1/2) → Mω ∩ S′ such that

ϕn+1 ◦ ιn = ϕn, where ιn :
⊗n

i=1(C2, τ1/2) →
⊗n+1

i=1 (C2, τ1/2) is the canonical inclusion

a 7→ a⊗ 1, and

Eω(ϕn(b)a) = τn(b)Eω(a) (4.3.50)

for all a ∈ S and b ∈
⊗n

i=1C2, where τn is the n-fold tensor product of τ1/2.

Indeed, if ϕn has already been constructed and has the desired properties, then let

Sn be the ‖ · ‖2,u-separable subalgebra of Mω generated by S and ϕn(
⊗n

i=1C2). By

Proposition 4.3.7, there exists an embedding ϕ(n+1) : (C2, τ1/2)→Mω ∩ S′n such that

Eω(ϕ(n+1)(c)a) = τ1/2(c)Eω(a) (4.3.51)

6In (4.3.49), note that C(X) is identified with the subalgebra of C(
∑
ωX) ∼= C(X)ω coming from

constant sequences.
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for all a ∈ Sn and c ∈ C2.

We can then define ϕn+1 by b ⊗ c 7→ ϕ(n+1)(c)ϕn(b) for b ∈
⊗n

i=1C2 and c ∈ C2. Let

a ∈ S, b ∈
⊗n

i=1C2 and c ∈ C2. Since ϕn(b)a ∈ Sn, it follows readily from (4.3.51) and

(4.3.50) that

Eω(ϕn+1(b⊗ c)a) = Eω(ϕ(n+1)(c)ϕn(b)a) (4.3.52)

= τ1/2(c)Eω(ϕn(b)a) (4.3.53)

= τ1/2(c)τn(b)Eω(a) (4.3.54)

= τn+1(b⊗ c)Eω(a). (4.3.55)

This shows that ϕn+1 is a morphism of W∗-bundles and satisfies the appropriate tracial

factorisation property.

By the universal property of inductive limits (Proposition 4.2.11), we get an induced

map ϕ∞ :
⊗∞

i=1(C2, τ1/2)→Mω ∩ S′. By density, we have

Eω(ϕ∞(b)a) = τ∞(b)Eω(a) (4.3.56)

for all a ∈ S and b ∈
⊗∞

i=1(C2, τ1/2), where τ∞ denote the trace of the infinite tensor

product.

The commutative tracial von Neumann algebra
⊗∞

i=1(C2, τ1/2) is well known to be

isomorphic to L∞[0, 1] with the Lebesgue trace and we identify these tracial von Neumann

algebras.

Since the image of ϕ∞ commutes with C(X) ⊆ C(X)ω ⊆ Z(Mω), and C(X) is nuclear,

we get a ∗-homomorphism ϕ : C(X)⊗ L∞[0, 1]→Mω ∩ S′. Moreover, we have

Eω(ϕ(f ⊗ b)a) = Eω(fϕ∞(b)a) (4.3.57)

= fEω(ϕ∞(b)a) (4.3.58)

= fτ∞(b)Eω(a) (4.3.59)

for all a ∈ S, b ∈ L∞[0, 1] and f ∈ C(X). Taking a = 1, we see that ϕ is a morphism of the

pre-W∗-bundles, where C(X)⊗L∞[0, 1] is viewed as a pre-W∗-bundle via the construction

of Proposition 4.2.1. Hence, ϕ extends to a morphism of the W∗-bundle tensor product

C(X)⊗L∞[0, 1] intoMω∩S′, which we also denote by ϕ. By Example 4.2.5, the W∗-bundle

tensor product C(X)⊗L∞[0, 1] is isomorphic to Cσ(X,L∞[0, 1]). Finally, by (4.3.59) and

density, we obtain (4.3.49).
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The main use of Theorem 4.3.8 will be to facilitate orthogonal partition of unity argu-

ments. We formulate this as a corollary for ease of reference.

Corollary 4.3.9. Let M be a strictly separable W∗-bundle over the compact Hausdorff

space X with conditional expectation E. Suppose Mx is a factor for all x ∈ X and that

M has property Γ. Let g1, . . . , gk : X → [0, 1] be a continuous partition of unity. Then

there exist sequences of mutually orthogonal positive contractions (e
(n)
1 ), . . . , (e

(n)
k ) in M

such that

‖[e(n)
i , a]‖2,u → 0 (a ∈M, i = 1, . . . , k), (4.3.60)

‖(e(n)
i )2 − ei‖2,u → 0 (i = 1, . . . , k), (4.3.61)∥∥∥∥∥

k∑
i=1

(e
(n)
i )2 − 1

∥∥∥∥∥
2,u

→ 0 (4.3.62)

as n→∞, and, for any a1, . . . , ak ∈M,∥∥∥∥∥
k∑
i=1

(e
(n)
i aie

(n)
i )(x)

∥∥∥∥∥
2

2,τMx

→
k∑
i=1

gi(x)‖ai(x)‖22,τMx
(4.3.63)

uniformly over x ∈ X as n→∞.

Proof. Let hi =
∑i

j=1 gj for i = 1, . . . , k and set h0 = 0. Let pi ∈ Cσ(X,L∞[0, 1]) be given

by x 7→ χ[hi−1(x),hi(x)] for i = 1, . . . , k, where we write χS for the indicator function of the

set S. By construction p1, . . . , pk are mutually orthogonal projections in Cσ(X,L∞[0, 1])

which sum to 1 and satisfy Eσ(pi) = gi for i = 1, . . . , k.

By Theorem 4.3.8, there exists a morphism ϕ : Cσ(X,L∞[0, 1])→Mω ∩M′ such that

Eω(ϕ(b)a) = Eσ(b)Eω(a) for all b ∈ Cσ(X,L∞[0, 1]) and a ∈ M. In particular, we have

Eω(ϕ(pi)a) = giEω(a) for all a ∈M. We compute that

Eω

∣∣∣∣∣
k∑
i=1

ϕ(pi)aiϕ(pi)

∣∣∣∣∣
2
 =

k∑
i=1

Eω(ϕ(pi)a
∗
i ai) (4.3.64)

=

k∑
i=1

giEω(a∗i ai) (4.3.65)

for any a1, . . . , ak ∈M.

Restricting ϕ to the span of p1, . . . , pn, we get a ∗-homomorphism Cn → Mω. By

Proposition 2.5.11, we may take a cpc order zero lifting ϕ′ : Cn → `∞(M) and get

sequences of mutually orthogonal positive contractions (e
(n)
1 ), . . . , (e

(n)
k ) ∈ `∞(M) repre-
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senting ϕ(p1), . . . , ϕ(pn) ∈Mω. By the definition of the ultrapower, we have

‖[e(n)
i , a]‖2,u → 0 (a ∈M, i = 1, . . . , k), (4.3.66)

‖(e(n)
i )2 − ei(n)‖2,u → 0 (i = 1, . . . , k), (4.3.67)∥∥∥∥∥
k∑
i=1

e
(n)
i − 1

∥∥∥∥∥
2,u

→ 0. (4.3.68)

as n→ ω, and, for any a1, . . . , ak ∈M,∥∥∥∥∥
k∑
i=1

(e
(n)
i aie

(n)
i )(x)

∥∥∥∥∥
2

2,τMx

→
k∑
i=1

gi(x)‖ai(x)‖22,τMx
(4.3.69)

uniformly for x ∈ X as n→ ω. At the expense of passing to a subsequence, we can replace

the limits along the ultrafilter ω with limits as n→∞.

4.4 The McDuff Property for W∗-Bundles

McDuff was able to prove the existence of uncountably many isomorphism classes of II1

factors with separable predual by a detailed study of their central sequences [55]. In the

course of her work, she showed that II1 factors with separable predual that absorb the

hyperfinite II1 factor tensorially can be identified by their central sequence algebras [56].

Indeed, a II1 factor M with separable predual satisfies M⊗R ∼= M if and only if the matrix

algebra Mk(C) embeds unitally in Mω ∩M ′ for all k ∈ N.

Condition (iii) of Ozawa’s Triviality Theorem, can therefore be viewed as a W∗-bundle

analogue of the McDuff property. This observation was made in [5, Section 3], where the

McDuff property for W∗-bundles was first defined. The many equivalent definitions of the

McDuff property in the setting of II1 factors carry over to the setting of W∗-bundles. A

proof of the following proposition can be found in [5].

Proposition 4.4.1. [5, Proposition 3.11] LetM be a strictly separable W∗-bundle. Then

the following are equivalent:

(i) M⊗R ∼=M as W∗-bundles.

(ii) R embeds unitally into Mω ∩M′.

(iii) Mk(C) embeds unitally into Mω ∩M′ for some k ≥ 2

(iii’) Mk(C) embeds unitally into Mω ∩M′ for all k ≥ 2.
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(iv) There exists k ≥ 2 such that, for any ‖ · ‖2,u-separable subalgebra S ⊆ Mω, there

exists a unital embedding Mk(C)→Mω ∩ S′.

(iv’) For all k ≥ 2 and for any ‖ · ‖2,u-separable subalgebra S ⊆Mω, there exists a unital

embedding Mk(C)→Mω ∩ S′.

Definition 4.4.2. [5, Definition 3.12] We call a strictly separable W∗-bundle McDuff if

it satisfies any of the equivalent conditions of Proposition 4.4.1 .

Remark 4.4.3. Condition (iii’) of Proposition 4.4.1 is an ultrapower formulation of con-

dition (iii) of Ozawa’s Triviality Theorem (Theorem 4.1.1). A sequence of cpc maps

ϕn : Mk(C)→M satisfying condition (iii) of Ozawa’s Triviality Theorem induce a unital

∗-homomorphism ϕ : Mk(C) → Mω ∩M′. Conversely, applying the Choi–Effros Lifting

Theorem to a unital ∗-homomorphism ϕ : Mk(C)→Mω ∩M′, one gets a sequence of cpc

maps ϕn : Mk(C)→M satisfying condition (iii) of Ozawa’s Triviality Theorem as n→ ω.

At the expense of passing to a subsequence, we can replace limits as n→ ω with limits as

n→∞.7

We now prove that the McDuff property implies property Γ. In particular, this proves

that (iii) ⇒ (ii) in Ozawa’s Triviality Theorem.

Proposition 4.4.4. Let M be a strictly separable, McDuff W∗-bundle. Then M has

property Γ.

Proof. By Proposition 4.4.1, there is a untial ∗-homomorphism M2(C)→Mω ∩S′ for any

‖ · ‖2,u separable subalgebra S ⊆ Mω. Since M2(C) has a unique trace, this will be a

morphism of W∗-bundles. Restricting to the diagonal, gives a morphism of W∗-bundles

(C2, τ1/2)→Mω ∩ S′. Therefore, M has property Γ by Proposition 4.3.7.

In [5], the McDuff property is used to facilitate orthogonal partition of unity arguments

and thereby deduce properties of the W∗-bundle from properties of the fibres (see [5,

Lemma 3.16]). In this thesis, we have taken an alternative approach, using Corollary

4.3.9, which assumes property Γ and factorial fibres, as the basis for orthogonal partition

of unity arguments.

Using such an orthogonal partition of unity argument, we prove that property Γ to-

gether with all fibres being McDuff II1 factors implies that the W∗-bundle is McDuff. In

particular, we prove that (ii) ⇒ (iii) in Ozawa’s Triviality Theorem.

7See the proof of Proposition 4.3.7 for an explicit example of replacing limits as n → ω with limits as

n→∞.
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Proposition 4.4.5. Let M be a strictly separable W∗-bundle over the compact Hausdorff

space X with conditional expectation E. Suppose that M has property Γ and that Mx is

a McDuff factor for each x ∈ X. Then M is McDuff.

Proof. Let F0 be a finite set of contractions inM and G0 be a finite set of contractions in

M2(C). Let ε > 0.

For the moment fix x ∈ X. SinceMx is McDuff, there exists a cpc map ϕx : M2(C)→

Mx such that

‖[ϕx(b), a(x)]‖2,τx < ε (a ∈ F0, b ∈ G0), (4.4.1)

‖ϕx(b1b2)− ϕx(b1)ϕx(b2)‖2,τx < ε (b1, b2 ∈ G0), (4.4.2)

‖ϕx(1)− 1‖2,τx < ε. (4.4.3)

By the Choi-Effros Lifting Theorem, we can lift ϕx to a cpc map Φx : M2(C) → M.

By Proposition 3.2.6, there exists an open neighbourhood V (x) of x such that

‖[Φx(b)(y), a(y)]‖2,τy < ε (y ∈ V (x), a ∈ F0, b ∈ G0), (4.4.4)

‖Φx(b1b2)(y)− Φx(b1)(y)Φx(b2)(y)‖2,τy < ε (y ∈ V (x), b1, b2 ∈ G0), (4.4.5)

‖Φx(1)(y)− 1y‖2,τy < ε (y ∈ V (x)). (4.4.6)

As x varies, the collection of all V (x) forms an open cover of X. By compactness,

there is a finite subcover. Denote the finite subcover V1, . . . , Vk and let Φ1, . . . ,Φk be

the corresponding cpc maps M2(C) → M. Let g1, . . . , gk : X → [0, 1] be a continuous

partition of unity subordinate to V1, . . . , Vk. By Corollary 4.3.9, there are sequences of

mutually orthogonal contractions (e
(n)
1 ), . . . , (e

(n)
k ) in M such that

‖[e(n)
i , a]‖2,u → 0 (a ∈M, i = 1, . . . , k), (4.4.7)

‖(e(n)
i )2 − ei‖2,u → 0 (i = 1, . . . , k), (4.4.8)∥∥∥∥∥

k∑
i=1

(e
(n)
i )2 − 1

∥∥∥∥∥
2,u

→ 0 (4.4.9)

as n→∞, and, for any a1, . . . , ak ∈M,∥∥∥∥∥
k∑
i=1

(e
(n)
i aie

(n)
i )(x)

∥∥∥∥∥
2

2,τMx

→
k∑
i=1

gi(x)‖ai(x)‖22,τMx
(4.4.10)

uniformly over x ∈ X as n→∞.
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Define Φ(n) : M2(C) → M by b 7→
∑k

i=1 e
(n)
i Φi(b)e

(n)
i . As each Φi is cpc and

e
(n)
1 , . . . , e

(n)
k are orthogonal, Φ(n) is cpc for all n ∈ N. We claim that

lim sup
n→∞

‖[Φ(n)(b), a]‖2,u < ε (a ∈ F0, b ∈ G0), (4.4.11)

lim sup
n→∞

‖Φ(n)(b1b2)− Φ(n)(b1)Φ(n)(b2)‖2,u < ε (b1, b2 ∈ G0), (4.4.12)

lim sup
n→∞

‖Φ(n)(1)− 1‖2,u < ε. (4.4.13)

Each of these estimates will now be justified in turn. We begin with (4.4.11). Let a ∈ F0

and b ∈ G0. We have

lim sup
n→∞

‖[Φ(n)(b), a]‖22,u = lim sup
n→∞

∥∥∥∥∥
k∑
i=1

[e
(n)
i Φi(b)e

(n)
i , a]

∥∥∥∥∥
2

2,u

(4.4.14)

(4.4.7)
= lim sup

n→∞

∥∥∥∥∥
k∑
i=1

e
(n)
i [Φi(b), a]e

(n)
i

∥∥∥∥∥
2

2,u

(4.4.15)

(3.2.8)
= lim sup

n→∞
sup
x∈X

∥∥∥∥∥
k∑
i=1

(e
(n)
i [Φi(b), a]e

(n)
i )(x)

∥∥∥∥∥
2

2,τMx

(4.4.16)

(4.4.10)
= sup

x∈X

k∑
i=1

gi(x)‖([Φi(b), a])(x)‖22,τMx
(4.4.17)

(4.4.4)
< sup

x∈X

k∑
i=1

gi(x)ε2 (4.4.18)

= ε2. (4.4.19)

Next, we turn to (4.4.12). Let b1, b2 ∈ G0. Since e
(n)
1 , . . . , e

(n)
k are orthogonal, we have

Φ(n)(b1)Φ(n)(b2) =

(
k∑
i=1

e
(n)
i Φi(b1)e

(n)
i

) k∑
j=1

e
(n)
j Φj(b2)e

(n)
j

 (4.4.20)

=
∑
i,j

e
(n)
i Φi(b1)e

(n)
i e

(n)
j Φj(b2)e

(n)
j (4.4.21)

=

k∑
i=1

e
(n)
i Φi(b1)(e

(n)
i )2Φi(b2)e

(n)
i . (4.4.22)
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Therefore, writing γ(n) := ‖Φ(n)(b1b2)− Φ(n)(b1)Φ(n)(b2)‖2,u, we have

lim sup
n→∞

(γ(n))2 = lim sup
n→∞

∥∥∥∥∥
k∑
i=1

e
(n)
i Φi(b1b2)e

(n)
i − e

(n)
i Φi(b1)(e

(n)
i )2Φi(b2)e

(n)
i

∥∥∥∥∥
2

2,u

(4.4.23)

(4.4.7),(4.4.8)
= lim sup

n→∞

∥∥∥∥∥
k∑
i=1

e
(n)
i (Φi(b1b2)− Φi(b1)Φi(b2))e

(n)
i

∥∥∥∥∥
2

2,u

(4.4.24)

(3.2.8)
= lim sup

n→∞
sup
x∈X

∥∥∥∥∥
k∑
i=1

(e
(n)
i (Φi(b1b2)− Φi(b1)Φi(b2))e

(n)
i )(x)

∥∥∥∥∥
2

2,τMx

(4.4.25)

(4.4.10)
= sup

x∈X

k∑
i=1

gi(x)‖(Φi(b1b2)− Φi(b1)Φi(b2))(x)‖22,τMx
(4.4.26)

(4.4.5)
< sup

x∈X

k∑
i=1

gi(x)ε2 (4.4.27)

= ε2. (4.4.28)

Finally, we justify (4.4.13). We have

lim sup
n→∞

‖Φ(n)(1)− 1‖22,u = lim sup
n→∞

∥∥∥∥∥
k∑
i=1

e
(n)
i Φi(1)e

(n)
i − 1

∥∥∥∥∥
2

2,u

(4.4.29)

(4.4.9)
= lim sup

n→∞

∥∥∥∥∥
k∑
i=1

e
(n)
i (Φi(1)− 1)e

(n)
i

∥∥∥∥∥
2

2,u

(4.4.30)

(3.2.8)
= lim sup

n→∞
sup
x∈X

∥∥∥∥∥
k∑
i=1

(e
(n)
i (Φi(1)− 1)e

(n)
i )(x)

∥∥∥∥∥
2

2,τMx

(4.4.31)

(4.4.10)
= sup

x∈X

k∑
i=1

gi(x)‖(Φi(1)− 1)(x)‖22,τMx
(4.4.32)

(4.4.6)
< sup

x∈X

k∑
i=1

gi(x)ε2 (4.4.33)

= ε2. (4.4.34)

Therefore, taking Φ = Φ(n) for sufficiently large n, we have

‖[Φ(b), a]‖2,u < ε (a ∈ F0, b ∈ G0), (4.4.35)

‖Φ(b1b2)− Φ(b1)Φ(b2)‖2,u < ε (b1, b2 ∈ G0), (4.4.36)

‖Φ(1)− 1‖2,u < ε, (4.4.37)

from which we deduce that M is McDuff.
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4.5 A Proof of Ozawa’s Triviality Theorem

Now, at last, we come to the proof of Ozawa’s Triviality Theorem (Theorem 4.1.1). The

easier implications of this theorem, have already been dealt with. In Example 4.3.4, we

observed that a trivial W∗-bundle Cσ(X,M) has property Γ whenever the tracial von

Neumann algebra M has property Γ. Since R, has property Γ, as verified in Example

4.3.3, it follows that Cσ(X,R) has property Γ. This completes the proof that (i) ⇒ (ii) in

Ozawa’s Triviality Theorem. The implications (ii) ⇔ (iii) follow from Propositions 4.4.4

and 4.4.5, noting that R is McDuff.

This leaves the implication (iii) ⇒ (i). In this section, we shall discuss Ozawa’s proof

of this. The proof is relatively long and technical, so we will sketch the main argument

first before filling in some of the more technical details in two technical appendices at the

end of the section.

A key tool in the proof is the following pseudometric.

Definition 4.5.1. Let P and Q be two copies of the hyperfinite II1 factor R. Suppose

a1, . . . , an ∈ P and b1, . . . , bn ∈ Q. We define

d((a1, . . . , an), (b1, . . . , bn)) = inf
ϕ,ψ

max
i
‖ϕ(ai)− ψ(bi)‖2,trR , (4.5.1)

where the infimum is taken over all isomorphisms ϕ : P → R and ψ : Q→ R.

Note, we are intentionally refraining from identifying P with Q because typically there

will be no canonical choice of isomorphism P ∼= Q. Thus, our use of the word pseduometric

is a slight abuse of terminology. Nevertheless, d satisfies the properties one expects of a

pseudometric. Positivity and symmetry of d follow easily from the fact that ‖ · ‖2,trR is a

norm. The triangle inequality also holds for the d-pseudometric but we defer the proof to

Technical Appendix A (Proposition 4.5.3).

Crucially, the d-pseudometric is compatible with the tracial continuity of W∗-bundles

(Theorem 4.5.9, Technical Appendix A) and, if d((a1, . . . , an), (b1, . . . , bn)) = 0, then there

is a trace-preserving isomorphism between the tracial von Neumann algebrasW ∗{a1, . . . , an}

and W ∗{b1, . . . , bn} sending ai to bi for i = 1, . . . , n. (Proposition 4.5.5, Technical Ap-

pendix A).

An orthogonal partition of unity argument, using the assumption that N is McDuff,

gives the following lemma.
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Lemma 4.5.2 (c.f. Lemma 14 in [62]). Let N and M be W∗-bundles over a compact

Hausdorff space X with fibres all isomorphic to R. Suppose that N is McDuff. Let

F0 ⊆ F1 be finite subsets of the unit ball of M, and let ε > 0. Assume there exists a map

θ0 from F0 into the unit ball of N such that

sup
x∈X

d({a(x)}a∈F0 , {θ0(a)(x)}a∈F0) < ε.8 (4.5.2)

Then, for any δ > 0, there is a map θ1 from F1 into the unit ball of N such that

max
a∈F0

‖θ1(a)− θ0(a)‖2,u < ε, (4.5.3)

sup
x∈X

d({a(x)}a∈F1 , {θ1(a)(x)}a∈F1) < δ. (4.5.4)

We sketch a proof of Lemma 4.5.2 in Technical Appendix B. Beforehand, we show how

Lemma 4.5.2 is used in the proof of Ozawa’s Triviality Theorem.

Proof of Ozawa’s Triviality Theorem 4.1.1 (iii) ⇒ (i). Let (an) be a strictly dense sequence

in the unit ball of M, and (bn) be a strictly dense sequence in the unit ball of N =

Cσ(X,R). We shall construct, by recursion, finite sets F1 ⊆ F2 ⊂ · · · of the unit ball of

M and maps θn from Fn into the unit ball of N such that

{a1, . . . , an} ⊆ Fn, (4.5.5)

{b1, . . . , bn} ⊆ θn(Fn), (4.5.6)

max
a∈Fn−1

‖θn(a)− θn−1(a)‖2,u < 2−(n−1), (4.5.7)

sup
x∈X

d({a(x)}a∈Fn , {θn(a)(x)}a∈Fn) < 2−n (4.5.8)

for all n ∈ N. The recursion begins with F0 = ∅. Suppose now that Fi and θi for i ≤ n−1

have been constructed. We shall apply Lemma 4.5.2 twice in total interchanging the roles

of N and M, noting that both are McDuff. Firstly, we set F ′n = Fn−1 ∪ {an} and apply

Lemma 4.5.2 to get θ′n : F ′n → N such that

max
a∈Fn−1

‖θ′n(a)− θn−1(a)‖2,u < 2−(n−1), (4.5.9)

sup
x∈X

d({a(x)}a∈F ′n , {θ
′
n(a)(x)}a∈F ′n) < 2−(n+1). (4.5.10)

By perturbing θ′n if necessary, we may assume that θ′n is injective and θ′n(F ′n) doesn’t

contain any of b1 . . . , bn. We now apply Lemma 4.5.2 to F̃n = θ′n(F ′n) ∪ {b1, . . . , bn} and

8For notational convience, we apply the d-pseudometric to finite sequences indexed by F0 instead of

fixing an enumeration of F0.
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(θ′n)−1. The result is a map ψ : F̃n →M such that

max
a∈F ′n

‖a− ψ(θ′n(a))‖2,u < 2−(n+1), (4.5.11)

sup
x∈X

d({b(x)}
b∈F̃n , {ψ(b)(x)}

b∈F̃n) < 2−(n+1). (4.5.12)

Finally, we set Fn = F ′n ∪{{ψ(b1), . . . , ψ(bn)}, perturbing ψ slightly if necessary to ensure

that this union is disjoint, and we define θn : Fn → N to be equal to θ′n on F ′n and

by θn(ψ(bi)) = bi for i = 1, . . . , n. The required properties (4.5.5) and (4.5.6) hold by

construction. Property (4.5.7) is just (4.5.9). The last property (4.5.8) follows since

sup
x∈X

d({a(x)}a∈Fn , {θn(a)(x)}a∈F1) ≤ sup
x∈X

d({b(x)}
b∈F̃n , {ψ(b)(x)}

b∈F̃n)

+ max
a∈F ′n

‖a− ψ(θ′n(a))‖2,u (4.5.13)

< 2−(n+1) + 2−(n+1) (4.5.14)

= 2−n. (4.5.15)

With the inductive definition of the θn now complete, we observe that, for any a ∈ Fi

the sequence (θn(a))∞n=i is a ‖ · ‖2,u-Cauchy sequence in the unit ball of N by (4.5.7), so

converges by the completeness axiom. Hence, we have a map θ from D =
⋃∞
i=1Fi into the

unit ball of N , coming from taking the pointwise limit of (θn).

Moreover, by taking limits in (4.5.8), for any n ∈ N and x ∈ X,

d({a(x)}a∈Fn , {θ(a)(x)}a∈Fn) = 0. (4.5.16)

Thus, θ induces a trace-preserving isomorphism in each fibre between the von Neumann

algebra generated by {a(x) : a ∈ Fn} and that generated by {θ(a)(x) : a ∈ Fn} for each

n ∈ N (see Proposition 4.5.5, Technical Appendix A). Hence, it induces a trace-preserving

isomorphism in each fibre between the von Neumann algebra generated by {a(x) : a ∈ D}

and that generated by {θ(a)(x) : a ∈ D}. Therefore, using Propositions 3.2.5 and 3.2.6, we

see that θ extends to a ‖ · ‖2,u-preserving, ‖ · ‖-preserving ∗-homomorphism from ∗alg(D)

into N . Since D ⊇ {ai : i ∈ N}, D is dense inM, so θ extends further to ∗-homomorphism

M→N , which we shall also denote θ.

That θ is an injective morphism of W∗-bundles follows from the fact that it induces

a traces-preserving injective ∗-homomorphism Mx → Nx for each x. Surjectivity of θ

follows from (4.5.6) and the density of θ(D) ⊇ {bi : i ∈ N} in N .
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Technical Appendix A

In this technical appendix, we establish some of the important properties of the d-pseudometric,

and show that it is compatible with the tracial continuity of W∗-bundles.

We begin by verifying the triangle inequality for the d-pseudometric.

Proposition 4.5.3. Let P,Q,R be copies of the hyperfinite II1 factor R. Let a =

(a1, . . . , an) ∈ Pn, b = (b1, . . . , bn) ∈ Qn and c = (c1, . . . , cn) ∈ Rn. Then

d(a, c) ≤ d(a,b) + d(b, c) (4.5.17)

Proof. Let ε > 0. There exist isomorphisms ϕ : P → R, ψ1 : Q→ R such that

max
i
‖ϕ(ai)− ψ1(bi)‖2,trR ≤ d(a,b) + ε. (4.5.18)

and there exist isomorphisms ψ2 : Q→ R, χ : R→ R such that

max
i
‖ψ2(bi)− χ(ci)‖2,trR ≤ d(b, c) + ε. (4.5.19)

The map ψ1 ◦ψ−1
2 : R → R is an automorphism, and hence is trace preserving. Therefore

max
i
‖ψ1(bi)− ψ1(ψ−1

2 (χ(ci)))‖2,trR ≤ d(b, c) + ε. (4.5.20)

Hence, by the triangle inequality for the ‖ · ‖2,trR-norm, we have

d(a, c) ≤ max
i
‖ϕ(ai)− ψ1(ψ−1

2 (χ(ci)))‖2,trR (4.5.21)

≤ max
i
‖ϕ(ai)− ψ1(bi)‖2,trR + max

i
‖ψ1(bi)− ψ1(ψ−1

2 (χ(ci)))‖2,trR (4.5.22)

≤ d(a,b) + d(b, c) + 2ε. (4.5.23)

As ε was arbitrary, this completes the proof.

We now investigate what the vanishing of the d-pseudometric means. For this, we need

the following folklore lemma.

Lemma 4.5.4. Let (A, trA) be a tracial von Neumann algebra generated by a1, . . . , an.

Let (B, trB) be another tracial von Neumann algebra. Suppose b1, . . . , bn ∈ B, satisfy

trB(p(b1, . . . , bn)) = trA(p(a1, . . . , an)) (4.5.24)

for all non-commutative ∗-polynomials p in n variables. Then there exists a trace-preserving

∗-homomorphism ϕ : A→ B satisfying ϕ(ai) = bi for i = 1, . . . , n.
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Proof. Let Pn = C〈X1, . . . , Xn, X
∗
1 , . . . , X

∗
n〉 be the ∗-algebra of non-commutative ∗-polynomials

in n variables. Let p1, p2 ∈ Pn. Since trA is a faithful trace, we have that p1(a1, . . . , an) =

p2(a1, . . . , an) if and only if trA(p(a1, . . . , an)) = 0, where p = (p1 − p2)∗(p2 − p1). Ap-

plying the same reasoning to B, we see that there is a well-defined ∗-homomorphism

ϕ0 : DA → B, where DA is the dense ∗-subalgebra generated by a1, . . . , an, given by

p(a1, . . . , an) 7→ p(b1, . . . , bn) for all p ∈ Pn. Moreover, ϕ0 is an isomorphism onto its

image.

The map ϕ0 is trace preserving by (4.5.24). We show that it also preserves the ‖ · ‖-

norm. The key observation here is that

‖a‖ = sup{‖av‖2,trA : v ∈ DA, ‖v‖2,trA ≤ 1} (4.5.25)

for all a ∈ DA. This follows by considering the standard form representation of (A, trA)

and the density of D̂A in L2(A, trA). Working in the tracial von Neumann subalgebra

generated by b1, . . . , bn, by same reasoning,

‖b‖ = sup{‖bw‖2,trB : w ∈ DB, ‖w‖2,trB ≤ 1}, (4.5.26)

for all b ∈ DB, where DB is the ∗-subalgebra generated by b1, . . . , bn.

Since ϕ0 trace preserving, it is ‖ · ‖2-norm preserving. It now follows from (4.5.25) and

(4.5.26) that ‖ϕ0(a)‖ = ‖ϕ0(b)‖. Therefore, ϕ0 extends uniquely to a trace preserving ∗-

homomorphism ϕ : A→ B, where ϕ(a) = limλ ϕ0(aλ) for any ‖·‖-bounded net converging

to a in ‖ · ‖2.

We now show that the conditions of Lemma 4.5.4 are satisfied, when the d-pseudometric

vanishes.

Proposition 4.5.5. Let P and Q be two copies of the hyperfinite II1 factor R. Let

a1, . . . , an ∈ P and b1, . . . , bn ∈ Q. Suppose

d((a1, . . . , an), (b1, . . . , bn)) = 0. (4.5.27)

Then there exists a trace-preserving isomorphism between the tracial von Neumann algebras

W ∗{a1, . . . , an} and W ∗{b1, . . . , bn} sending ai to bi.

Proof. There exist sequences of isomorphisms ϕk : P → R and ψk : Q→ R such that

‖ϕk(ai)− ψk(bi)‖2,trR → 0 (4.5.28)
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as k →∞ for i = 1, . . . , n. Let p be a non-commutative ∗-polynomial in n variables. Since

isomorphisms of II1 factors are trace-preserving.

trP (p(a1, . . . , an)) = lim
k→∞

trR(p(ϕk(a1), . . . , ϕk(an))) (4.5.29)

= lim
k→∞

trR(p(ψk(b1), . . . , ψk(bn))) (4.5.30)

= lim
k→∞

trQ(p(b1, . . . , bn)). (4.5.31)

The result now follows from Lemma 4.5.4.

To prove that the d-pseudometric is compatible with the tracial continuity of a W∗-

bundle, the additional flexibility of working in the ultrapowerRω instead ofR is important.

Here, the following uniqueness result is crucial. This result is well known to experts and is

discussed, together with a partial converse, in [40]. For completeness, we include a proof.

Theorem 4.5.6. Let (N, trN ) be a hyperfinite tracial von Neumann algebra with separable

predual. Suppose ϕ,ψ : N → Rω are trace preserving ∗-homomorphisms. Then ϕ and ψ

are unitary equivalent in Rω.

Proof. We first consider the case where N is a finite-dimensional von Neumann algebra.

Say N =
⊕K

k=1 Mnk(C) and write e
(k)
ij for the matrix units of the k-th summand for

k = 1, . . . ,K and i, j = 1, . . . , nk. Since ϕ and ψ are trace-preserving, trRω(ϕ(e
(k)
ii )) =

trRω(ψ(e
(k)
ii )) for all k = 1, . . . ,K and i = 1, . . . , nk. Since Rω is a II1 factor [81, Lemma

A.4.2], ϕ(e
(k)
11 ) and ψ(e

(k)
11 ) are Murray–von Neumann equivalent in Rω. Let v

(k)
1 be a

partial isometry implementing this equivalence. Then u =
∑K

k=1

∑nk
i=1 ϕ(e

(k)
i1 )v

(k)
1 ψ(e

(k)
1i )

is the required unitary.

Now suppose that N is hyperfinite. Then N =
⋃∞
i=1 Fi

‖·‖2
for an increasing sequence

of finite dimensional von Neumann algebras 1N ∈ F1 ⊆ F2 ⊆ · · · . For each i, there exists a

unitary ui which implements a unitary equivalence between ϕ|Fi and ψ|Fi . It follows that

ϕ and ψ are ‖ · ‖2-approximately unitary equivalent via the sequence of unitaries (ui). A

standard reindexing argument, now gives that ϕ and ψ are unitary equivalent in Rω.

We now show that in the definition of the d-pseudometric, we can work with trace-

preserving embeddings into Rω instead of isomorphisms with R.

Proposition 4.5.7. Let P and Q be two copies of the hyperfinite II1 factor R. Suppose

a1, . . . , an ∈ P and b1, . . . , bn ∈ Q. Then

d((a1, . . . , an), (b1, . . . , bn)) = inf
ϕ,ψ

max
i
‖ϕ(ai)− ψ(bi)‖2,trRω , (4.5.32)
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where the infimum is taken over all trace preserving embeddings ϕ : W ∗{a1, . . . , an} → Rω

and ψ : W ∗{b1, . . . , bn} → Rω

Proof. For the moment, denote the right hand side of (4.5.32), by ρ((a1, . . . , an), (b1, . . . , bn)).

By composing any isomorphisms P ∼= R and Q ∼= R with the canonical, trace-preserving

embedding j : R → Rω and restricting, we see that

d((a1, . . . , an), (b1, . . . , bn)) ≥ ρ((a1, . . . , an), (b1, . . . , bn)) (4.5.33)

Fix isomorphisms ιP : P → R and ιQ : Q → R. Let A = W ∗{a1, . . . , an} ⊆ P and

B = W ∗{b1, . . . , bn} ⊆ Q. By Connes’ Theorem, A and B are hyperfinite.

By Theorem 4.5.6, any trace-preserving embeddings ϕ : A→ Rω has the form Ad(u) ◦

j ◦ ιP , where j : R → Rω is the canonical embedding and u is a unitary in Rω, and

similarly for ψ : B → Rω. Hence, we have

ρ((a1, . . . , an), (b1, . . . , bn)) = inf
u,v∈U(Rω)

max
i
‖uj(ιP (ai))u

∗ − vj(ιQ(bi))v
∗‖2,trRω (4.5.34)

= inf
u,v∈U(Rω)

max
i
‖v∗uj(ιP (ai))u

∗v − j(ιQ(bi))‖2,trRω (4.5.35)

= inf
u∈U(Rω)

max
i
‖uj(ιP (ai))u

∗ − j(ιQ(bi))‖2,trRω . (4.5.36)

Since every unitary u ∈ Rω can be represented by a sequence of unitaries (uk) in

R [81, Theorem A.5.2], we have

ρ((a1, . . . , an), (b1, . . . , bn)) = inf
u∈U(R)

max
i
‖uιP (ai)u

∗ − ιQ(bi)‖2,trR (4.5.37)

≤ d((a1, . . . , an), (b1, . . . , bn)). (4.5.38)

Therefore, d((a1, . . . , an), (b1, . . . , bn)) = ρ((a1, . . . , an), (b1, . . . , bn)).

We isolate the main technical step in the proof that the d-pseudometric is compatible

with the tracial continuity of W∗-bundles in the following proposition.

Proposition 4.5.8. Fix K > 0 and a1, . . . , an ∈ R with each ‖ai‖ ≤ K. Let ε > 0. Then

there exist δ > 0 and a finite set G of non-commutative ∗-polynomials in n variables such

that, for any b1, . . . , bn ∈ R with each ‖bi‖ ≤ K that satisfy

|trR(p(b1, . . . , bn))− trR(p(a1, . . . , an))| < δ (4.5.39)

for all p ∈ G, there exists a unitary u ∈ R such that

max
i
‖uaiu∗ − bi‖2 < ε. (4.5.40)
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Proof. Let N be the von Neumann subalgebra of R generated by a1, . . . , an. By the work

of Connes, hyperfiniteness passes from R to N . Since N is finitely generated, it has a

separable predual.

For each k ∈ N, let δk = 1
k and Gk be the set of all non-commutative ∗-mononomials

in n variables of length at most k.

Suppose the proposition doesn’t hold. Then there is ε > 0 such that for each k ∈ N

one can find b
(k)
1 , . . . , b

(k)
n ∈ R with each ‖b(k)

i ‖ ≤ K that satisfy

|trR(p(b
(k)
1 , . . . , b(k)

n ))− trR(p(a1, . . . , an))| < δk (4.5.41)

for all p ∈ Gk yet, for any unitary u ∈ R,

‖uaiu∗ − b(k)
i ‖2 ≥ ε (4.5.42)

for some i ∈ {1, . . . , n}.

Let bi = [(b
(k)
i )∞k=1] ∈ Rω for i = 1, . . . , n. Then

trRω(p(b1, . . . , bn)) = trR(p(a1, . . . , an)) (4.5.43)

for all non-commutative ∗-polynomials in n variables.

By Lemma 4.5.4, there is a trace-preserving embedding ψ : N → Rω which satisfies

ϕ(ai) = bi for i = 1, . . . , n. Let ψ : N → Rω be the embedding coming from the inclusion

N ⊆ R and the canonical inclusion R → Rω. By Theorem 4.5.6, there exists a unitary

w ∈ Rω such that ϕ = Ad(u) ◦ ψ. Let (uk) be a sequence of unitaries in R representing

w. Then, for sufficiently large k,

‖ukaiu∗k − b
(k)
i ‖2 < ε (4.5.44)

for all i ∈ {1, . . . , n}. This contradiction completes the proof.

Finally, we arrive that the main result of this Appendix.

Theorem 4.5.9. Let M be a W∗-bundle over a compact Hausdorff space X with condi-

tional expectation E. Suppose all the fibres ofM are isomorphic to R. Let a1, . . . , an ∈M.

The map x 7→ (a1(x), . . . , an(x)) is continuous with respect to the d-pseduometric in the

following sense: for any x0 ∈ X and ε > 0, there exists an open neighbourhood U of x0

such that

d((a1(x), . . . , an(x)), (a1(x0), . . . , an(x0))) < ε (4.5.45)

whenever x ∈ U .
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Proof. Set K = maxi ‖ai‖. Let x0 ∈ X and ε > 0. In order to apply Proposition 4.5.8, fix

an isomorphism Mx0
∼= R and view a1(x0), . . . , an(x0) ∈ R. Let δ > 0 and G be a finite

set of ∗-polynomials such that the conclusion of Proposition 4.5.8 holds. For each p ∈ G,

E(p(a1, . . . , an)) is continuous. Since G is finite, there is an open neighbourhood U of x0

such that, for all p ∈ G,

|τx(p(a1(x), . . . , an(x))− τx0(p(a1(x0), . . . , an(x0))| < δ (4.5.46)

whenever x ∈ U .

Let x ∈ U . Let ι : Mx → R be an isomorphism. Then there exists a unitary u ∈ R

such that

max
i
‖uai(x0)u∗ − ι(ai(x))‖2 < ε. (4.5.47)

It follows that d((a1(x), . . . , an(x)), (a1(x0), . . . , an(x0))) < ε.

Corollary 4.5.10. Let M be a W∗-bundle over a compact Hausdorff space X with all

fibres Mx isomorphic to R. Let a1, . . . , an ∈ M. Let N be a W∗-bundle over a compact

Hausdorff space Y with all fibres Ny isomorphic to R. Let b1, . . . , bn ∈ N . Then the map

(x, y) 7→ d((a1(x), . . . , an(x)), (b1(y), . . . , bn(y)) is continuous.

Proof. For brevity, we shall use vector notation for the n-tuples, for example we write a

for (a1, . . . , an) and a(x) for (a1(x), . . . , an(x)).

Fix (x0, y0) ∈ X × Y . Let ε > 0. By Theorem 4.5.9, there are open neighbourhoods U

of x and V of y such that

d(a(x),a(x0)) < ε
2 (4.5.48)

d(b(y),b(y0)) < ε
2 (4.5.49)

whenever x ∈ U and y ∈ V . Let (x, y) ∈ U × V . Using Proposition 4.5.3, we have

|d(a(x),b(y))− d(a(x0),b(y0))| < d(a(x),a(x0)) + d(b(y0),b(y)) (4.5.50)

< ε
2 + ε

2 (4.5.51)

= ε.

Technical Appendix B

For completeness, we sketch a proof of Lemma 4.5.2 in this technical appendix. Lemma

4.5.2 is essentially the same as [62, Lemma 14] and the proof sketched here is essentially
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the same as occurs in that paper. Notation has be changed to reflect that of this thesis

and a few additional comments have been added to explain aspects of the proof.

Sketch proof of Lemma 4.5.2. Since N is McDuff, there exists, for each k ∈ N, a sequence

of cpc maps ϕn,k : Mk(C)→ N such that

lim
n→∞

‖[ϕn,k(b), a]‖2,u = 0 (a ∈ N , b ∈Mk(C)), (4.5.52)

lim
n→∞

‖ϕn,k(b1b2)− ϕn,k(b1)ϕn,k(b2)‖2,u = 0 (b1, b2 ∈Mk(C), (4.5.53)

lim
n→∞

‖ϕn,k(1)− 1‖2,u = 0. (4.5.54)

In fact, since the unit ball of Mk(C) is compact, the convergence in (4.5.52) is uniform

over the unit ball of Mk(C), i.e

lim
n→∞

sup
‖b‖≤1

‖[ϕn,k(b), a]‖2,u = 0 (a ∈ N ). (4.5.55)

Fix x ∈ X. Since d({a(x)}a∈F0 , {θ0(a)(x)}a∈F0) < ε, there is an isomorphism ρx :

Mx → Nx such that

max
a∈F0

‖ρx(a(x))− θ0(a)(x)‖2,τNx < ε. (4.5.56)

For each a ∈ F1, let θ(x)(a) ∈ N be a norm-preserving lift of ρx(a(x)) ∈ Nx. By Proposi-

tion 3.2.6 and Corollary 4.5.10, there is an open neighbourhood U (x) of x such that

max
a∈F0

‖θ(x)(a)(y)− θ0(a)(y)‖2,τNx < ε, (4.5.57)

d({a(y)}a∈F1 , {θ(x)(a)(y)}a∈F1) < δ (4.5.58)

whenever y ∈ U (x).

By compactness ofX, finitely many of the U (x) coverX. Denote these sets U (1), . . . , U (`)

and the corresponding maps by θ(1), . . . , θ(`). Let g1, . . . , g` : X → [0, 1] be a continu-

ous partition of unity subordinate to U (1), . . . , U (`). Set h0 = 0 and hj =
∑j

i=1 gi for

j = 1 . . . , `.

Define p : [0, 1] → Mk(C) by setting p(i/k) = diag(1, . . . , 1, 0, . . . , 0), the diagonal

matrix with i ones and k − i zeros on the diagonal, for i = 0, . . . , k and interpolating

linearly. Then t 7→ p(t) is continuous, trk(p(t)) = t, and trk(p(t)− p(t)2) ≤ (4k)−1, where

trk denotes the normalised trace on Mk(C).

For k, n ∈ N and j = 1, . . . , `. Let fk,n,j ∈ N be the element such that fk,n,j(x) =

ϕn,k(p(hj) − p(hj−1))(x) for all x ∈ X. The existence of fk,n,j follows from Theorem



4.6. APPLICATIONS OF THE TRIVIALITY THEOREM 167

3.2.10. The point of the construction is that for large k and n, fk,n,1, . . . , fk,n,` are approx-

imately orthogonal projections summing to 1 commuting with a given finite set and we

have the (approximate) tracial factorisation τNx(fk,n,j(x)a(x)) ≈ trk(fk,n,j(x))τNx(a(x)) =

fj(x)τNx(a(x)) for a ∈ N due to the fact that Mk(C) has a unique trace.

Set θk,n1 (a) =
∑`

j=1 f
1/2
k,n,jθ

(j)(a)f
1/2
k,n,j for a ∈ F1. Since the set {θ(j)(a) : a ∈ F0, j =

1, . . . , `} is finite, we get

lim sup
k→∞

lim sup
n→∞

max
a∈F0

‖θk,n1 (a)− θ0(a)‖2,u < ε (4.5.59)

using the asymptotic properties of the fn,k,j .
9 The more subtle estimate is

lim sup
k→∞

lim sup
n→∞

sup
x∈X

d({a(x)}a∈F1 , {θ
n,k
1 (a)(x)}a∈F1) < δ, (4.5.60)

which is derived step by step in [62, Lemma 14]. Hence, θ1 = θk,n1 will have the required

properties for sufficiently large k, n.

4.6 Applications of the Triviality Theorem

Ozawa’s Triviality Theorem is an extremely powerful tool for proving that certain strictly

separable W∗-bundles with fibres R are trivial. Indeed, the reason why there are no

known examples of non-trivial, strictly separable W∗-bundles with fibres R is because

Ozawa’s Triviality Theorem rules out most candidates. In particular, we have the following

corollaries:

Corollary 4.6.1. [62, Corollary 16] Let M be a strictly separable W∗-bundle over a

compact Hausdorff space X. Suppose that Mx
∼= R for each x ∈ X and X has finite

covering dimension. Then M is trivial.

Corollary 4.6.2. [5, Theorem 3.15] Let A be a separable, nuclear, unital C∗-algebra with

a Bauer simplex of traces and no finite dimensional quotients. If additionally A tensorialy

absorbs the Jiang–Su algebra Z, then A
st

is trivial.

We shall briefly discus these two corollaries but the main purpose of this section is to

prove the triviality of A
st

for some C∗-algebras not covered by these results by directly

verifying that A
st

has property Γ.

9The estimates used here are, in fact, very similar to those used in Proposition 4.4.5.
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4.6.1 Finite-Dimensional Base Spaces and Jiang–Su Stability

There are a number of approaches to defining the dimension of a topological space X. The

most common are the small inductive dimension, the large inductive dimension, and the

covering dimension. Whilst there are topological spaces for which these different dimension

theories give different values for dim(X), they agree for all separable metrisable spaces, and

give the expected value when X is, say, a CW-complex. A good reference for dimension

theory is [65].

The most natural dimension theory to work with in the context of operator algebras

is the covering dimension, which we define below.

Definition 4.6.3. Let X be a set. The order of a collection U of subsets of X is defined

to be the largest integer n for which there exist distinct elements U0, U1, . . . , Un ∈ U such

that
⋂n
k=0 Uk 6= ∅. If there is no largest such integer, then the order of U is infinite.

Definition 4.6.4. The covering dimension of a topological space X, is the smallest integer

n such that every open cover of X has an open refinement of order at most n. If no such

integer exists, then the covering dimension of X is said to be infinite. Write dim(X) for

the covering dimension of X.

Corollary 4.6.1 follows by combining Ozawa’s Triviality Theorem with the following

proposition.

Proposition 4.6.5. Let M be a strictly separable W∗-bundle over a compact Hausdorff

space X. Suppose thatMx is a McDuff II1 factor for each x ∈ X and dim(X) <∞. Then

M is McDuff.

Proposition 4.6.5, appears in [62] as Corollary 12 with the remark that it is essen-

tially the same as [47, Proposition 7.7]. The full details of the proof of Proposition 4.6.5

require techniques beyond the scope of this thesis. We shall give a proof just in the

zero-dimensional case and discuss briefly how it generalises to the finite dimensional case.

Proof of Proposition 4.6.5 (zero-dimensional case). Let F be a finite subset ofM, G be a

finite subset of M2(C), and ε > 0. Fix x ∈ X. Since Mx is McDuff, there is a ucp map

ϕx : M2(C)→Mx such that

‖[ϕx(b), a(x)]‖2,τx < ε (a ∈ F , b ∈ G), (4.6.1)

‖ϕx(b1b2)− ϕx(b1)ϕx(b2)‖2,τx < ε (b1, b2 ∈ G). (4.6.2)
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By the Choi–Effros lifting theorem, ϕx has a ucp lift Φx : M2(C) →M. By Proposition

3.2.6, there is an open neighbourhood U (x) of x such that

‖[Φx(b)(y), a(y)]‖2,τy < ε (y ∈ U (x), a ∈ F , b ∈ G), (4.6.3)

‖Φx(b1b2)(y)− Φx(b1)(y)Φx(b2)(y)‖2,τy < ε (y ∈ U (x), b1, b2 ∈ G). (4.6.4)

As x varies, the U (x) form an open cover of X. By compactness, there is a finite

subcover U1, . . . , Uk. Because X is assumed to be zero dimensional, these sets can be

assumed disjoint. Let Φ1, . . . ,Φk denote the ucp maps corresponding to the finite subcover

U1, . . . , Uk. As U1, . . . , Uk are disjoint open sets that cover X, the indicator functions χUi

form a continuous partition of unity.

Define a ucp map Φ : M2(C) → M by Φ =
∑k

i=1 χUiΦi. Each x ∈ X lies in exactly

one Ui and Φ(x) = Φi(x) for this i. Therefore, we have

‖[Φ(b), a]‖2,u < ε (a ∈ F , b ∈ G), (4.6.5)

‖Φ(b1b2)− Φ(b1)Φ(b2)‖2,u < ε (b1, b2 ∈ G). (4.6.6)

Since F ,G and ε where arbitrary, there is a unital ∗-homomorphism M2(C)→Mω∩M′.

Hence, M is McDuff.

Remark 4.6.6. If X has finite but non-zero covering dimension, one cannot assume the

open sets U1, . . . , Uk in the proof above are disjoint. However, after refinement, they

can be coloured by n + 1 colours such that any two open sets with the same colour

are disjoint. This allows one to construct n + 1 completely positive order zero maps

Φ(0),Φ(1), . . . ,Φ(n) : M2(C) → Mω ∩M′ with commuting images and
∑n

i=0 Φ(i)(1) = 1.

One can then construct a ∗-homomorphism M2(C)→Mω ∩M′ using the theory of order

zero maps (see [47, Lemma 7.6]).

We now turn to Corollary 4.6.2. As mentioned in Chapter 1, the Jiang–Su algebra

Z is a simple, separable, unital, nuclear, infinite-dimensional C∗-algebra with the same

K-theory and traces as the complex numbers, and we shall only use these properties of the

Jiang–Su algebra in the sequel. The details of the construction of the Jiang–Su algebra are

beyond the scope of this thesis (see [37]). A C∗-algebra A is said to absorb the Jiang–Su

algebra tensorially if A ∼= A⊗Z. Absorbing the Jiang–Su algebra tensorially is one of the

regularity properties of the Toms–Winter Conjecture (see Chapter 1).

We now proceed with the proof of Corollary 4.6.2.
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Proof of Proposition 4.6.2. By Theorem 3.3.3, the fibres of A
st

are πτ (A)′′ for τ ∈ ∂eT (A).

The hypotheses that A is separable, nuclear and has no finite dimensional quotients ensure

that πτ (A)′′ is an injective II1 factor with separable predual and, hence, isomorphic to R

by Connes’ Theorem. The separability of A ensures the strict separably of A
st

. Hence,

Ozawa’s Triviality Theorem applies.

Since the Jiang–Su algebra has a unique trace τZ , Zst
is a W∗-bundle over a one point

space and can be identified with πτZ (Z)′′. Since the Jiang–Su algebra is separable and

nuclear with no finite-dimensional quotients10, πτZ (Z)′′ ∼= R by Connes’ Theorem.

Using Proposition 4.2.6, we compute that

A
st ∼= A⊗Zst

(4.6.7)

∼= A
st⊗Zst

(4.6.8)

∼= A
st⊗R. (4.6.9)

Hence, A
st

is McDuff. By Ozawa’s Triviality Theorem, A
st

is trivial.

4.6.2 AH Algebras with Diagonal Connecting Maps

In this section, we show that if A is an AH algebra with particularly simple connecting

maps, then there is an approximately central sequence of projections (pn) in A such that

τ(pn)→ 1
2 uniformly for τ ∈ T (A). It follows that, whenever T (A) is a Bauer simplex, the

W∗-bundle A
st

has property Γ. Ozawa’s Triviality Theorem will then imply that A
st

is

trivial whenever A has no finite-dimensional quotients. The class of AH algebras studied

contains the class of Villadsen algebras of the first type defined in [89], which includes

some non-Z-stable C∗-algebras with ∂eT (A) compact and infinite dimensional.

The allowed connecting maps for the class of AH algebras that we study are the

diagonal maps, which we now define.

Definition 4.6.7. A ∗-homomorphism

φ : C(X)→Mk(C)⊗ C(Y ) (4.6.10)

is called diagonal of multiplicity k if it has the form

f 7→ diag(f ◦ λ1, . . . , f ◦ λk), (4.6.11)

where λ1, . . . , λk : Y → X are continuous maps. We call the λi the eigenvalue maps of φ.

Matrix amplifications of diagonal maps are also said to be diagonal.

10by virtue of being simple and infinite dimensional
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We now proceed to the main proposition of this section.

Proposition 4.6.8. Let A be the inductive limit of the an inductive system

Mm1(C)⊗ C(X1)
φ1 //Mm2(C)⊗ C(X2)

φ2 //Mm3(C)⊗ C(X3)
φ3 // · · · (4.6.12)

with each φi a diagonal map and mi → ∞. Then there is a sequence of projections (pn)

in A such that, as n→∞,

‖[pn, a]‖ → 0 (a ∈ A), (4.6.13)

sup
τ∈T (A)

|τ(pn)− 1
2 | → 0. (4.6.14)

Proof. Since the composition of diagonal maps is a diagonal map, we may refine the induc-

tive system without loss of generality. The connecting maps are unital, so one obtains a

unital homomorphism Mmi(C)→Mmi+1(C) by restricting φi to Mmi(C)⊗ 1 and compos-

ing with a evaluation map. Hence, mi|mi+1 for each i ∈ N. Since additionally mi → ∞,

we can pass to subsequence of (mi), refine the inductive system to this subsequence, and

assume that ki = mi+1

mi
→∞ as i→∞.

We now introduce some notation. Let Ai = Mmi(C)⊗C(Xi) and write φi,∞ : Ai → A

for the canonical map into the inductive limit for each i ∈ N.

Fix i ∈ N. Since φi is diagonal, it has the form

φi : C(Xi,Mmi(C))→Mki(C)⊗ C(Xi+1,Mmi(C)) (4.6.15)

F 7→ diag(F ◦ λ(i)
1 , . . . , F ◦ λ(i)

ki
), (4.6.16)

for some continuous functions λ
(i)
1 , . . . , λ

(i)
ki

: Xi+1 → Xi, where we have made the iden-

tification Ai+1
∼= Mki(C) ⊗ C(Xi+1,Mmi(C)). Let qi = diag(Imi , . . . , Imi , 0mi , . . . , 0mi) ∈

Ai+1 where Imi has multiplicity bki2 c and 0mi has multiplicity dki2 e. Set pi = φi+1,∞(qi).

By construction, qi is a projection in Ai+1 that commutes with φi(Ai). Hence, pi is

a projection in A that commutes with φi,∞(Ai). It follows that limi→∞ ‖[pi, a]‖ = 0 for

all a ∈
⋃∞
i=1 φi,∞(Ai). Since ‖pi‖ ≤ 1 for all i ∈ N, a simple density argument gives that

‖[pi, a]‖ → 0 for all a ∈ A.

We now consider traces. Let τ ∈ T (Ai). Then there exists a Radon probability measure

µτ on Xi+1 such that

τ(F ) =
1

mi+1

∫
x∈Xi+1

Tr(F (x))dµτ (x) (4.6.17)
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for all F ∈ Ai+1
∼= C(Xi+1,Mmi+1(C)). Therefore, τ(qi) ∈ [1

2 −
1
ki
, 1

2 ] for all τ ∈ T (Ai+1).

Since every trace on T (A) pulls back to a trace on C(Xi+1)⊗Mmi+1(C), we have τ(pi) ∈

[1
2 −

1
ki
, 1

2 ] for all τ ∈ T (A). Therefore, supτ∈T (A) |τ(pi)− 1
2 | → 0 as i→∞.

Corollary 4.6.9. Let A be as in Proposition 4.6.8. Suppose T (A) is a non-empty Bauer

simplex. Then A
st

is a W∗-Bundle over ∂eT (A) with property Γ. Furthermore, if A has

no finite dimensional quotients, then A
st

is a trivial W∗-Bundle over ∂eT (A).

Proof. It follows from the inductive limit structure, that A is separable, unital. So, under

the additional assumption that T (A) is Bauer, A
st

has the structure of a W∗-bundle by

Theorem 3.3.2.

Let ι : A → A
st

be the canonical map and (pn) be the sequence of projections con-

structed in Proposition 4.6.8. Then (ι(pn)) is a sequence of projections in A
st

. Since

ι(A) is ‖ · ‖2,u-dense in A
st

, we get that ‖[ι(pn), a]‖2,u → 0 for all a ∈ A, using the fact

that ‖ι(pn)‖ ≤ 1 for all n ∈ N. Since limn→∞ supτ∈T (A) |τ(pn) − 1
2 | = 0, we have that

‖E(ι(pn))− 1
2‖C(∂eT (A)) → 0 as n→∞.

Since A is separable, A
st

is strictly separable. So in order to apply Ozawa’s Triviality

Theorem to A
st

, we just need to know that the fibres of A
st

are all isomorphic to R. By

Theorem 3.3.3, the fibre of A
st

at τ ∈ ∂eT (A) is πτ (A)′′. Since τ is an extreme trace, this

is a finite factor. Since A is separable and nuclear, πτ (A)′′ is injective and has separable

predual. If A has no finite quotients, then πτ (A)′′ cannot be a matrix algebra, so must be

a II1 factor. Therefore, πτ (A)′′ ∼= R by Connes’ Theorem.

We now apply the results obtained in this section to the Villadsen algebras of the first

type.

Definition 4.6.10. [89, Definition 3.1] A ∗-homomorphism

φ : Mm(C)⊗ C(X)→Mk(C)⊗Mm(C)⊗ C(Xn) (4.6.18)

is called a VI map if it is a diagonal map of multiplicity k whose eigenvalue maps λ1, . . . , λk :

Xn → X are either coordinate projections or have range equal to a single point.

Definition 4.6.11. [89, Definition 3.2] A C∗-algebra A is a Villadsen algebra of the first

type or a VI algebra if it can be written as an inductive limit

A ∼= lim
i→∞

(Mmi(C)⊗ C(Xni), φi), (4.6.19)
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where (ni) and (mi) are sequence of natural numbers, X is a compact Hausdorff space,

and each φi is a VI map. We call the inductive system (Mmi(C)⊗C(Xni), φi) the standard

decomposition of A with seed space X.

By virtue of their inductive limit structure, all VI algebras are separable, nuclear, uni-

tal, stably finite with at least one trace. If the point evaluations are chosen appropriately,

the resulting Villadsen algebra will be simple (see [91]). If the seed space is a CW-complex

of dimension at least one, simplicity of the inductive limit algebra forces mi →∞.

A simple VI algebra will fail to have strict comparison, and therefore not be Z-stable,

whenever the seed space is a CW-complex of dimension at least one and, informally speak-

ing, the connecting maps contain vastly more coordinate projections than point evalua-

tions. More precisely (c.f. [89, Lemma 4.1]), suppose the VI algebra has standard decom-

position (Mmi(C)⊗C(Xni), φi) with seed space X. Let Mi,j be the multiplicity of the VI

map φj−1 ◦ · · · ◦ φi+1 ◦ φi and let Ni,j be the number of distinct coordinate projections

occurring as eigenvalue functions. Then A will fail to be Z-stable whenever the seed space

is a CW complex of dimension at least one and

lim
i→∞

lim
j→∞

Ni,j

Mi,j
= 1. (4.6.20)

Under the condition (4.6.20), the trace simplex of A will be the Bauer simplex with extreme

boundary
∏
i∈NX (See [89, Section 8] together with the computations in [86, Theorem

4.1]).

Corollary 4.6.9, applies to the simple, non-Z-stable VI algebras described above, and we

deduce that A
st

is a trivial bundle for these C∗-algebras A, even though neither Corollary

4.6.1 nor Corollary 4.6.2 applies.

4.6.3 Non-Trivial C(X)-Algebras

In [34, Example 4.7], a non-trivial C(X)-algebra A with all fibres isomorphic to the CAR

algebra M2∞ =
⊗

i∈NM2(C) is constructed. The base space is X =
∏
i∈N S

2 and the

algebra A is constructed as an infinite tensor product of 2-homogeneous C∗-algebras. In

[34, Example 4.8], the construction is modified, producing a C(X)-algebra A that is not

Z-stable, even though all its fibres are.

It’s reasonable to expect that such example in the C(X)-algebra setting could give rise

to non-trivial W∗-bundles over X =
∏
i∈N S

2 with all fibres isomorphic to R. Alas, this

is not the case. As in the previous section, one can, in each case, directly construct an
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asymptotically central sequence of projections (pn) in A such that τ(pn) = 1
2 for all n ∈ N

and τ ∈ T (A). It then follows that the W∗-bundle A
st

have property Γ. Triviality of the

W∗-bundles then follows by Ozawa’s Triviality Theorem.

We sketch the argument for [34, Example 4.7] below. The argument for the case

of [34, Example 4.8] is similar.

Example 4.6.12 (c.f. Example 4.7 in [34]). Let B = (e + f)M3(C(S2))(e + f) be the

2-homogeneous C∗-algebra where e and f are orthogonal projections in M3(C(S2)) with

e a trivial projection and f equivalent to the Bott projection. Set A =
⊗∞

i=1B. By [34,

Lemma 1.8], A is a C(X)-algebra over X =
∏
i∈N S

2 with all fibres isomorphic to the

CAR algebra M2∞ . In [34, Example 4.7], A is shown to be not isomorphic to the trivial

C(X)-algebra C(X,M2∞) by a K-theoretic computation.

Since B is a locally trivial 2-homogeneous algebra, every normalised trace τ on B has

the form

τ(b) =
1

2

∫
x∈S2

Tr(b(x)) dµτ (x) (4.6.21)

for b ∈ B ⊆ M3(C(S2)), where µτ is a Radon probability measure on S2. So T (B) is

the Bauer simplex with extreme boundary S2. By [5, Proposition 3.5], ∂eT (
⊗n

i=1B) ∼=∏n
i=1 ∂eT (B) with (τ1, . . . , τn) ∈

∏n
i=1 ∂eT (B) corresponding to trace b1 ⊗ · · · ⊗ bn 7→

τ1(b1) · · · τn(bb) on
⊗n

i=1B. Thus, the canonical inclusion of
⊗n

i=1B in
⊗n+1

i=1 B induces

the canonical projection
∏n+1
i=1 S

2 →
∏n
i=1 S

2 at the level of extreme traces. Therefore,

T (A) is the Bauer simplex with extreme boundary
∏∞
i=1 S

2.

By (4.6.21), τ(e) = τ(f) = 1
2 for all τ ∈ B. Let pn = 1B ⊗ · · ·⊗ 1B ⊗ e ∈

⊗n+1
i=1 B ⊆ A,

where 1B occurs in the first n tensor factors. Then pn is a projection in A commuting with⊗n
i=1B ⊆ A. Since ‖pn‖ = 1 for all n ∈ N, a simple density argument gives ‖[pn, a]‖ → 0

for all a ∈ A. If τ ∈ T (A) then the map b 7→ τ(1B ⊗ · · · ⊗ 1B ⊗ b), where 1B occurs n

times, defines a trace on B, so τ(pn) = 1
2 . The argument of Corollary 4.6.9 gives that A

st

has property Γ. Therefore, A is trivial by Ozawa’s Triviality Theorem.

4.7 Locally Trivial W∗-Bundles

A discussion of the triviality problem for W∗-bundles would not be complete without

consideration of the locally trivial case, which was solved by myself and Pennig. Here, the

powerful methods of algebraic topology can be brought to bear. The main result is the

following.
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Theorem 4.7.1. A locally trivial W∗-bundle with all fibres isomorphic to the hyperfinite

II1 factor R is trivial.

In fact, the only property of the II1 factor R that is needed is that its automorphism

group is contractible, which was proved in [70, Theorem 4]. After a brief discussion of

topologies on automorphism groups in Section 4.7.1, we turn to proving Theorem 4.7.1 in

Section 4.7.2. In Section 4.7.3, we show that there are II1 factors M for which there exist

non-trivial, locally trivial W∗-bundles with fibres all isomorphic to M .

The results of this section are from joint work with Ulrich Pennig and appear in our

paper [23].

4.7.1 The Automorphism Group of a II1 Factor

In this short subsection, we discuss some of the possible topologies on the automorphism

group Aut(M) of a tracial von Neumann algebra M . We then show that for II1 factors

they coincide.

Definition 4.7.2. [31, Definition 3.4] Let M be a von Neumann algebra with a faithful,

normal trace τ : M → C. Let B∗(M) be the set of bounded σ-weakly continuous operators

on M .

• The u-topology on B∗(M) is the topology generated by the seminorms ‖T‖uϕ = ‖ϕ◦T‖

for all ϕ ∈M∗.

• The p-topology on B∗(M) is defined via the seminorms ‖T‖pϕ,a = |(ϕ ◦ T )(a)| for all

a ∈M and ϕ ∈M∗.

• The pointwise 2-norm topology on B∗(M) is induced by the seminorms ‖T‖2,τa =

τ(T (a)∗T (a))1/2 for all a ∈M .

Lemma 4.7.3. Let M be a II1-factor and denote the faithful, normal trace by τ . The

three topologies from Definition 4.7.2 agree on Aut(M).

Proof. It was proven in [31, Corollary 3.8] that the p- and the u-topology coincide on

Aut(M). By Proposition 2.7.7, the ‖ · ‖2,τ -topology agrees with the strong operator topol-

ogy on bounded sets. In fact, as the involution ‖·‖2,τ -continuous, the ‖·‖2,τ -topology agrees

with the strong∗ on bounded sets, which in turn agrees with the ultrastrong∗ topology on

bounded sets.



176 CHAPTER 4. THE TRIVIALITY PROBLEM FOR W∗-BUNDLES

Since an automorphism maps bounded subsets of M to bounded subsets, the pointwise

2-norm topology agrees with the pointwise ultrastrong∗ topology, which in turn agrees with

the p-topology on Aut(M) as stated in [93, Section 1.4].

4.7.2 Locally Trivial W∗-Bundles and Principal Bundles

Now fix a locally trivial W∗-bundle M over X with all fibres isomorphic to a II1 factor

M . Let (B, p) be the bundle of tracial von Neumann algebras associated to M. By the

definition of local triviality (Definition 3.4.20) together with Proposition 3.6.12 and the

discussion preceding it, we have the following: for any x ∈ X there is a closed neighbour-

hood Y 3 x such that MY is trivial. Hence, there are homeomorphisms ϕ and ψ such

that the diagram

p−1(Y )
ϕ //

p

��

Y ×M

π

��
Y

ψ // Y

(4.7.1)

commutes, where π : Y ×M → Y is the projection onto the first coordinate. By replacing

ϕ with ϕ ◦ (ψ−1 × idM ) and Y with U = Y ◦, we get a commuting diagram of the form

p−1(U)
∼= //

p

��

U ×M

π

��
U

idU // U.

(4.7.2)

We call such a U a trivialising neighbourhood for B → X. We shall use these trivialising

neighbourhoods to associate a principal Aut(M)-bundle PB → X to our locally trivial

bundle. The following lemma will be crucial.

Lemma 4.7.4. Let U be a topological space and let M be a II1-factor. Consider M to be

equipped with the 2-norm topology. Then there is a bijection between the continuous maps

ϕ : U ×M → M , such that a 7→ ϕ(x, a) is an automorphism of M for all x ∈ U and the

continuous maps ϕ̂ : U → Aut(M), where Aut(M) is equipped with the u-topology. It is

defined by ϕ̂(x) = ϕ(x, · )

Proof. It is clear that the construction yields a bijection. The only issue to check is

continuity. By Lemma 4.7.3, the u-topology agrees with the pointwise 2-norm topology.

Suppose first that ϕ̂ is continuous, i.e. ϕ̂(xn) converges to ϕ̂(x) pointwise in 2-norm for

every net (xn) in U that converges to x ∈ U . Let (am) be a net in M converging to a ∈M
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in 2-norm. We have

‖ϕ(xn, am)− ϕ(x, a)‖2 ≤ ‖ϕ(xn, am − a)‖2 + ‖ϕ̂(xn)(a)− ϕ̂(x)(a)‖2

≤ ‖am − a‖2 + ‖ϕ̂(xn)(a)− ϕ̂(x)(a)‖2

where we used that an automorphism preserves the trace and is therefore isometric for the

2-norm. This proves that ϕ is continuous. Now suppose that ϕ is continuous. Let (xn)

be net in U converging to x and let a ∈ M . Then we have that ‖ϕ̂(xn)(a)− ϕ̂(x)(a)‖2 =

‖ϕ(xn, a)− ϕ(x, a)‖2 → 0. Therefore, ϕ̂ is continuous.

We will now construct the principal Aut(M)-bundle PB → X associated to the locally

trivial bundle of tracial von Neumann algebras (B, p). Since we do not assume that the

reader is familiar with the notion of a principal G-bundles for a topological group G, we

highlight the main points below. A good reference for this material is [35, Section 4].

Definition 4.7.5. Let X be a topological space and let G be a topological group. A

(right) G-space P together with a continuous G-map q : P → X (where G acts trivially on

X) is called a principal G-bundle, if every point x ∈ X has a neighbourhood U 3 x, such

that there exists a G-equivariant homeomorphism φU : q−1(U)→ U ×G with prU ◦ φU =

q|q−1(U).

Let (B, p) be a locally trivial bundle of tracial von Neumann algebras over X with fibre

M . Consider Aut(M) as a topological group equipped with the u-topology. The principal

Aut(M)-bundle PB is obtained by replacing the fibre M of B by the group Aut(M) while

preserving the transition maps. Write Bx = p−1(x) for the fibre at x and Iso(M1,M2) for

the set of isomorphisms between two von Neumann algebras. As a set we define

PB =
∐
x∈X

Iso(M,Bx).

Denote the canonical quotient map PB → X by q. A local trivialisation ϕU : U ×M →

p−1(U) induces a bijection

ψU : U ×Aut(M)→ q−1(U) = PB|U =
∐
x∈U

Iso(M,Bx).

Let V ⊆ X be another subset with U ∩ V 6= ∅ and such that there is a local trivialisation

ϕV : V ×M → p−1(V ). Note that

ϕ−1
V ◦ ϕU

∣∣
(U∩V )×M : (U ∩ V )×M → (U ∩ V )×M
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is of the form (x, a) 7→ (x, ϕUV (a)) for a continuous map ϕUV : (U ∩ V ) ×M → M and

ϕ−1
V U (x, a) = ϕUV (x, a). We have

ψ−1
V ◦ ψU

∣∣
(U∩V )×Aut(M)

(x, α) = (x, ϕ̂UV (x) ◦ α).

By Corollary 4.7.4 and the continuity of composition these maps are homeomorphisms.

Now equip PB with the following topology: Cover X by trivialising neighbourhoods

(Ui)i∈I for B. A set V ⊆ PB is open if and only if for every point y ∈ V there exists an

i ∈ I and a subset y ∈ V ′ ⊆ V ∩ q−1(Ui), such that ψ−1
Ui

(V ′) ⊆ Ui × Aut(M) is an open

neighbourhood of ψ−1
Ui

(y). Since the transition maps ψ−1
Uj
◦ ψUi : (Ui ∩ Uj) × Aut(M) →

(Ui∩Uj)×Aut(M) are homeomorphisms, this definition is consistent. With this topology

all maps ψUi : Ui × Aut(M) → q−1(Ui) become homeomorphisms. It is straightforward

to check that this topology does not depend on the choice of trivialising cover and that

q : PB → X is a principal Aut(M)-bundle.

Conversely, given a principal Aut(M)-bundle q : P → X the quotient (P × M)/ ∼

with respect to the equivalence relation (p · α, a) ∼ (p, α(a)) for α ∈ Aut(M) is called the

associated bundle of tracial von Neumann algebras.

We shall show that these two constructions are inverse to one another. We need the

following well-known fact about principal bundles.

Lemma 4.7.6. Let X be a topological space and let G be a topological group. Let q : P → X

be a principal G-bundle. Suppose there exists a continuous section σ : X → P . Then P is

isomorphic to the trivial principal G-bundle X ×G.

Proof. The trivialisation of P is given by ψ : X × G → P with ψ(x, g) = σ(x)g, which is

clearly G-equivariant. To construct an inverse, let P ×q P = {(p1, p2) ∈ P × P | q(p1) =

q(p2)} ⊆ P × P and note that the map κ : P ×q P → G given by κ(p1, p2) = g12 with

p1g12 = p2 is well-defined and continuous, which can be checked using the local triviality

of P . The inverse of ψ is then φ : P → X ×G where φ(p) = (q(p), κ(σ(q(p)), p)).

Remark 4.7.7. In a similar fashion, one can show that any G-equivariant map ϕ : P → P ′

between principal bundles q : P → X and q′ : P ′ → X such that q′ ◦ ϕ = q is in fact an

isomorphism. Such a map is said to cover the identity on X.

Proposition 4.7.8. Let M be a II1-factor and let X be a topological space. The associated

bundle construction yields a bijection between isomorphism classes of locally trivial bundles
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of tracial von Neumann algebras with fibre M over X and isomorphism classes of principal

Aut(M)-bundles over X.

Proof. Let (B, p) be a locally trivial bundle of tracial von Neumann algebras and denote

by PB the corresponding principal Aut(M)-bundle. We need to check that the bundle

of tracial von Neumann algebras associated to PB agrees with B. Consider the map

(PB ×M)/∼ → B given by [r, a] 7→ r(a), where r ∈ Iso(M,Bq(r)) and a ∈M . To see that

this is a homeomorphism, it suffices to check that it is a bijective local homeomorphism.

It is straightforward to see that it is bijective. Any choice of local trivialisation of B, over

U ⊆ X say, induces a corresponding trivialisation of PB and we have

(PB ×M)/∼|U
∼=
��

// B|U
∼=
��

U × (Aut(M)×M)/∼ ∼=
// U ×M

where the inverse of the lower horizontal map is given by (x, a) 7→ (x, [idM , a]).

Let P be a principal Aut(M)-bundle. We have to check that the principal Aut(M)-

bundle PB obtained from B = (P ×M)/∼ agrees with P . By Remark 4.7.7 it suffices to

construct a continuous Aut(M)-equivariant map P → PB covering the identity on X. This

is defined by sending r ∈ P to the isomorphism in Iso(M,Bq(r)) that maps a to [r, a] ∈ B.

Continuity is again easy to check in local trivialisations.

Now that we have rephrased the classification of locally trivial W∗-bundles in terms

of principal G-bundles, we can now make use of tools from algebraic topology and sheaf

theory for classifying principal G-bundles. For a general overview of such methods, see for

example [35, Section 12]. For our purpose, we need only the following theorem.

Theorem 4.7.9. Let X be a paracompact Hausdorff space and let G be a contractible

topological group. Let q : P → X be a principal G-bundle. Then P is trivialisable.

Proof. The assumptions about P , X and G imply that P → X has a global section

by [19, Lemma 4]. Now apply Lemma 4.7.6.

Corollary 4.7.10. Let M be a locally trivial W∗-bundle with all fibres isomorphic to the

II1 factor M . Assume Aut(M) is contractible with respect to the u-topology. Then M is

trivial.
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Proof. By the results of Section 3.6.2 and Proposition 4.7.8, it suffices to show the corre-

sponding principal Aut(M)-bundle is trivial. This follows from Theorem 4.7.9, since by

assumption Aut(M) is contractible.

Corollary 4.7.10 together with Popa and Takesaki’s result that Aut(R) is contractible

in the u-topology [70, Theorem 4] gives Theorem 4.7.1.

4.7.3 Non-Trivial, Locally Trivial W∗-Bundles

In this section, we construct examples of non-trivial, but still locally trivial, W∗-bundles

over the circle S1. This construction is due to myself and Ulrich Pennig and appears

in [23, Section 5].

The construction is based on the idea that the isomorphism classes of locally trivial

bundles of tracial von Neumann algebras with fibre the II1 factor M are in bijection with

the homotopy classes of continuous maps S1 → BAut(M), where BAut(M) denotes the

classifying space of the automorphism group. This space of homotopy classes is in turn

isomorphic to the set of conjugacy classes in π0(Aut(M)). Since π0(Aut(M)) surjects

onto π0(Out(M)), it suffices to find II1 factors for which Out(M) is not path-connected

to obtain non-trivial examples. Examples of II1 factors with Out(M) isomorphic to a

prescribed compact group have been constructed by Ioana, Peterson and Popa in [36] in

the abelian case and by Vaes and Falguières in [24] for general compact groups.

We shall use the construction from [24]. LetG be a non-trivial finite group. As sketched

at the end of [24, Section 2], there exists a minimal action of G on R. By [24, Corollary

2.2] the group Γ = SL(3,Z) acts on the fixed point algebra RG. Let M = (RGoΓ)∗RGR.

The natural map G → Aut(M) induces an isomorphism G ∼= Out(M) by [24, Corollary

2.2]. Since M is full, Out(M) is Hausdorff. Therefore, the bijection G→ Out(M) induced

by the action is a homeomorphism. Let θ : Aut(M) → Out(M) ∼= G be induced by the

quotient map and the above identification.

Fix g ∈ G and let α ∈ Aut(M) be an automorphism with θ(α) = g. This choice

induces a group homomorphism Z→ Aut(M), which will also be denoted by α. Let

B = R×αM (4.7.3)

that is, take the product R×M modulo the equivalence relation (t+n,m) ∼ (t, α(n)(m))

for all n ∈ Z. Together with the canonical quotient map B → S1, this is a bundle of

tracial von Neumann algebras over S1 in the sense of Definition 3.6.1 with trivialising
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neighbourhoods as in (4.7.2). We can, therefore, via Theorem 3.6.11, define a locally

trivial W∗-bundle M which induces B.

Lemma 4.7.11. Let G be a non-trivial finite group, let M be the II1-factor with Out(M) ∼=

G constructed above, let α ∈ Aut(M) and g = θ(α), such that g 6= e. Then the W∗-bundle

M associated to the bundle of tracial von Neumann algebras B given by (4.7.3) is non-

trivial.

Proof. Let q : P → S1 be the principal Aut(M)-bundle of B. Suppose for a contradiction

that M is trivial. By the results of Section 3.6.2 and Proposition 4.7.8, P is trivialisable.

Consider Q = P ×θ G defined as the quotient of the product P × G with respect to the

equivalence relation (p · β, g) ∼ (p, θ(β) · g) for β ∈ Aut(M). If P is trivialisable, so is Q,

but Q→ S1 is a principal G-bundle over S1 for the finite group G. By elementary covering

space theory, the isomorphism classes of these are in correspondence with the conjugacy

classes of G.

More precisely, the conjugacy class associated to Q can be obtained as follows. Choose

a basepoint q0 ∈ Q and lift the quotient map [0, 1]→ S1 to a continuous path γ : [0, 1]→ Q

with γ(0) = q0. By the path lifting property such a lift exists and is unique. Since γ(0)

and γ(1) lie in the same fibre, there is a unique h ∈ G, such that γ(0) = γ(1) · h. The

conjugacy class of h ∈ G is independent of q0.

The bundle Q constructed above corresponds to the class of g ∈ G, whereas the trivial

bundle corresponds to the conjugacy class of the neutral element e ∈ G, which only

contains e, in contradiction with g 6= e. Therefore M can not be trivial.

The above construction can easily be extended to construct non-trivial, but locally

trivial, W∗-bundles over more general spaces than S1; see [23, Remark 5.2].
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Chapter 5

The Theory of Sub-W∗-Bundles

Vaughan Jones’ discovery of the rich combinatorial structure arising from a pair of II1

factors N ⊂M earned him a Fields Medal in 1990 and founded a new branch of operator

algebras: subfactor theory.

Subsequently, a variety of methods for constructing subfactors were developed and

investigated. Often, such constructions produce not just one subfactor but a whole

parametrised family of subfactors. In this chapter, we use W∗-bundles to encode a family

of subfactors as a single inclusion of W∗-bundles N ⊂ M. As we develop the theory of

these sub-W∗-bundles, following the path set by Jones in [38] for subfactors, we shall see

that tracial continuity properties of the family of subfactors will play a crucial role.

5.1 A Primer on Subfactor Theory

Before beginning our study of sub-W∗-bundles, we recall the landscape of subfactor theory

as developed by Jones in [38]. We begin by defining the object of study.

Definition 5.1.1. A subfactor is a unital inclusion of II1 factors N ⊂M .1

Simple examples of subfactors arise from matrix inflations 1⊗N ⊂Mk(C)⊗N , where

N is a II1 factor; from cross products N ⊂ N nαG, for suitable group actions α : Gy N ;

and by considering the inclusion of the group von Neumann algebras L(H) ⊂ L(G) coming

from an inclusion of ICC groups H ⊂ G. See [38, Section 2.3] for more details.

The first and most fundamental invariant of a subfactor is its index. The index is

defined using the theory of Murray–von Neumann coupling constants, which goes back

1Type III subfactors can also be studied (see [49]) but they will not be considered here. We follow

common practice and use the symbol ⊂ for subfactors instead of ⊆. The inclusion need not be strict.

183
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to [60]. In [38, Section 2.1], Jones defines the index of a subfactor N ⊂M by considering

the ratio of the Murray–von Neumann coupling constants dimM (H) and dimN (H) for a

normal representation H of M and its restriction to N . He then shows that it suffices to

consider the the Murray–von Neumann coupling constant for the representation of N on

L2(M). We take this as our definition.

Definition 5.1.2. [38, Section 2.1] The index of a subfactor N ⊂M is given by

[M : N ] = dimNL
2(M) (5.1.1)

Using the basic properties of Murray–von Neumann coupling constants, it not hard to

verify that [Mk(C) ⊗ N : 1 ⊗ N ] = k2. Moreover, we have [N nα G : N ] = |G|, under

reasonable assumptions on that action α, and [L(G) : L(H)] = |G : H|, the index of H

in the group G. See [38, Section 2.3] for more details. The index of a subfactor can be

infinite, for example 1⊗R ⊂ R⊗R, and can also be non-integral, as will see shortly.

Given a subfactor, N ⊂ M there is a unique trace-preserving conditional expectation

EN : M → N [90, Theorem 1]. This conditional expectation extends to a self-adjoint

projection eN ∈ B(L2(M)) [38, Section 3.1]. The von Neumann algebra generated by M

together with eN is called the basic construction for the subfactor N ⊂ M and denoted

〈M, eN 〉. The key result of Jones, which makes the general study of subfactors possible, is

the following.

Proposition 5.1.3. [38, Proposition 3.1.7] Let N ⊂M is a subfactor of finite index, then

the basic construction 〈M, eN 〉 is a II1 factor containing M and [〈M, eN 〉 : M ] = [M : N ].

It follows that, starting with a subfactor N ⊂M of finite index, the basic construction

can be iterated, producing a nested sequence of II1 factors

N ⊂M0 ⊂M1 ⊂M2 ⊂M3 ⊂ · · · , (5.1.2)

where M0 = M , M1 = 〈M, eN 〉 and Mi+1 = 〈Mi, eMi−1〉 for i ≥ 1. We call (5.1.2) the

Jones tower of the subfactor N ⊂ M . The sequence of projections with e0 = eN and

ei = eMi−1 for i ≥ 1 are called the Jones projections. We can view the Jones projections

as living in the II1 factor M∞ = (
⋃
i=1Mi)

′′.2

2Since II1 factors have a unique trace, there is a unique trace on the union
⋃∞
i=1 Mi. We take the

bicommutant in the GNS representation corresponding to this trace.
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The Jones projections satisfy the following relations

ei = ei
∗ = ei

2 (i ∈ N0) (5.1.3)

eiej = ejei (i, j ∈ N0, |i− j| ≥ 2), (5.1.4)

eiei±1ei = β−1ei (i ∈ N0), (5.1.5)

tr(wen) = β−1tr(w) (n ∈ N0, w ∈ Alg{1, e0, . . . , en−1}), (5.1.6)

where β = [M : N ]. These relations are sometimes refereed to as the Temperly–Lieb

relations [83], although conventions differ. To avoid ambiguity, we shall use the terminology

Jones relations.

The Jones relations together with the requirement that the trace on a II1 factor is a

positive functional lead to a restriction on the possible values for the index of a subfactor.

This is the main result of [38].

Theorem 5.1.4. [38, Theorem 4.3.1] If N ⊂M is a subfactor, then either [M : N ] > 4

or [M : N ] = 4 cos2(πn) for some n ≥ 3.

We call {4 cos2(πn) : n = 3, 4, . . .} ∪ [4,∞] the Jones set of allowed indices. The Jones

set can be viewed as the union of a discrete part {4 cos2(πn) : n = 3, 4, . . .} and a continuous

part [4,∞].

If β < ∞ is in the Jones set, then one can construct a subfactor N ⊂ M of index

β starting with the Jones relations for that β. The idea is that M is the von Neumann

algebra generated by all the Jones projections {ei : i ≥ 0} and N is the von Neumann

algebra generated by all the Jones projections bar the zero-th {ei : i ≥ 1} (see [38, Theorem

Theorem 4.1.1]).

The difficult part is to show that the Jones relations can be realised in a tracial von

Neumann algebra whenever β is in the Jones set. This is shown in [38, Theorem 4.3.2]

by considering inclusions of finite dimensional algebras in the case β < 4. A more direct

approach is set out in [30, Sections 2.8-9].

5.2 Basic Definitions

We now begin the study of sub-W∗-bundles. Informally, a sub-W∗-bundle over the com-

pact Hausdorff space X will be a pair of W∗-bundles N ⊂ M with the same base space

X sharing a common, centrally-embedded copy of C(X) and with the same conditional
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expectation E, by which we mean that the conditional expectation E(N ) of the W∗-bundle

N is the restriction to N of the conditional expectation E(M) of the W∗-bundle M.

In what follows, we give an a priori more general definition, that of a C(X)-preserving

inclusion of W∗-bundles, and show that it agrees with the informal definition of sub-W∗-

bundles given above.

Definition 5.2.1. LetM,N be W∗-bundles over a common compact Hausdorff space X.

A C(X)-preserving inclusion is a morphism of W∗-bundles ι : N →M which extends the

identity on C(X), i.e. the following diagram commutes:

N ι //

E(N )

��

M

E(M)

��
C(X)

id // C(X),

(5.2.1)

where E(N ) and E(M) are the conditional expectations of the respective W∗-bundles.

Proposition 5.2.2. A C(X)-preserving inclusion is injective.

Proof. This follows from (5.2.1) and the faithfulness of E(N ). Indeed, for a ∈ N ,

ι(a) = 0⇔ ι(a)∗ι(a) = 0 (5.2.2)

⇔ E(M)(ι(a)∗ι(a)) = 0 (5.2.3)

⇔ E(M)(ι(a∗a)) = 0 (5.2.4)

⇔ E(N )(a∗a) = 0 (5.2.5)

⇔ a = 0. (5.2.6)

As a consequence of Proposition 5.2.2, given a C(X)-preserving inclusion ι : N →M,

we can identify N with a ‖ · ‖2,u-closed subalgebra of M containing C(X) and view E(N )

the restriction of E(M) to N . This shows that C(X)-preserving inclusions and sub-W∗-

bundles are essentially the same thing.

The next proposition shows how a sub-W∗-bundle encodes a family of inclusions of

tracial von Neumann algebras parametrised by the base space.

Proposition 5.2.3. A C(X)-preserving inclusion ι : N → M induces a unital, trace-

preserving inclusion ιx : Nx →Mx for all x ∈ X.
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Proof. Fix x ∈ X. From (5.2.1) it follows that E(M)(ι(a)∗ι(a))(x) = E(N )(a∗a)(x) for all

a ∈ N . Hence, the inclusion ι : N →M descends to a trace preserving map between the

corresponding quotients ιx : Nx →Mx (see Section 3.2.1).

We end this section with some notational conventions for the rest of the chapter.

Notation and Terminology 5.2.4. Fix a compact Hausdorff space X to be the base

space for all W∗-bundles. We write N ⊂M to denote a sub-W∗-bundle and typically write

E for the conditional expectations of N andM onto C(X), saving the notation E(N ) and

E(M) for cases where additional clarity is helpful. Since in later sections there will be a

plethora of conditional expectations, we will refer to the conditional expectation E as the

C(X)-valued trace. We write Nx ⊂ Mx for the induced trace-preserving inclusion of the

fibres.

5.3 An Existence Theorem

We have already constructed many examples of sub-W∗-bundles, namely the subtrivial W∗-

bundles of Section 3.1. The main result of this section is a generalisation of Proposition

3.1.10 to the case where M is not necessarily a trivial bundle.

Proposition 5.3.1. Let M be a W∗-bundle over X. For each x ∈ X, let Nx be a

von Neumann subalgebra of Mx containing the identity. Set N = {a ∈ M : a(x) ∈

Nx for all x ∈ X}. Then N ⊂M is a sub-W∗-bundle and the following are equivalent:

(i) For all x ∈ X, Nx = Nx.

(ii) For all a ∈M, the map x 7→ dist‖·‖2,τx (a(x), Nx) is upper-semicontinuous.

Proof. Hereinafter, we drop subscripts and write dist(·, ·) instead of dist‖·‖2,τx (·, ·). The

fibre Mx will be clear from the context.

Using the fact that passing to fibres of a W∗-bundle is a ∗-homomorphism, it’s straight-

forward to show that N is a ‖ · ‖2,u-closed ∗-subalgebra ofM containing C(X), so is itself

a W∗-bundle when endowed with the restriction of the conditional expectation E(M).

(i) ⇒ (ii) Let a ∈ M, x0 ∈ X, and ε > 0. There exists c ∈ Nx0 such that ‖a(x0) −

c‖2,τx0
< dist(a(x0), Nx0) + ε. Since Nx = Nx for all x ∈ x, there is b ∈ N such that

b(x0) = c.

Since x 7→ ‖a(x)− b(x)‖2,τx is continuous by Proposition 3.2.6, there is neighbourhood

U of x0 such that ‖a(x) − b(x)‖2,τx < dist(a(x0), Nx0) + ε for all x ∈ U . Since b(x) ∈ Nx
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for all x, it follows that dist(a(x), Nx) < dist(a(x0), Nx0) + ε for all x ∈ U . Therefore, the

map x 7→ dist‖·‖2,τx (a(x), Nx) is upper-semicontinuous.

(ii) ⇒ (i) By definition Nx ⊆ Nx. We need to show equality. In other words, we need

to prove that for all x0 ∈ X and c ∈ Nx0 there is some a ∈ N with a(x0) = c.

We construct such an a as the limit of a sequence (an) ⊆ M with the following

properties:

‖an‖ ≤ ‖c‖, (5.3.1)

an(x0) = c, (5.3.2)

‖an − an−1‖2,u <
1

2n−1
, (5.3.3)

sup
x∈X

dist(an(x), Nx) <
1

2n
. (5.3.4)

Assuming for now that such a sequence exists. Axiom (C) together with (5.3.1) and (5.3.3)

ensure that (an) has a ‖ ·‖2,u-limit a ∈M. Taking limits in (5.3.2) ensures that a(x0) = c.

Finally, property (5.3.4) ensures that, for each x ∈ X, a(x) lies in the ‖ · ‖2,τx-closure of

Nx, so a(x) ∈ Nx; hence, a ∈ N .

We now construct the sequence (an). This is done by induction. First, we construct

a1. Let b ∈M be any norm preserving lift of c ∈Mx0 . Since x 7→ dist(b(x), Nx) is upper-

semicontinuous, there is an open neighbourhood U 3 x0 such that supy∈U dist(b(y), Ny) <

1
2 . Choose a continuous function φ : X → [0, 1] such that φ(x0) = 1 and φ(X \ U) ⊆ {0}.

Set a1 = φb. Properties (5.3.1) and (5.3.2) are clearly satisfied, property (5.3.3) is void,

and property (5.3.4) comes from considering the cases x ∈ U and x ∈ X \ U separately.

Suppose now that a1, . . . , an−1 have been constructed with the desired properties. We

construct an. By (5.3.4), there is, for all x ∈ X, c(x) ∈ Nx such that ‖an−1(x)− c(x)‖2,τx <
1

2n−1 . In fact we can take c(x) = ENx(an−1(x)), where ENx is the canonical conditional

expectation Mx → Nx. This ensures that we also have ‖c(x)‖ ≤ ‖an−1(x)‖ ≤ ‖c‖ and

c(x0) = c. Let b(x) ∈M be any norm preserving lift of c(x) ∈Mx.

By Proposition 3.2.6 and the upper-semicontinuity of y 7→ dist(b(x)(y), Ny), there is an

open neighbourhood U (x) 3 x such that

sup
y∈U(x)

‖an−1(y)− b(x)(y)‖2,τy <
1

2n−1
, (5.3.5)

sup
y∈U(x)

dist(b(x)(y), Ny) <
1

2n
. (5.3.6)

The open cover {U (x) : x ∈ X} of X has a finite subcover by compactness of X. We

write this subcover as U1, . . . , Um and the corresponding elements of {b(x) : x ∈ X} as
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b1, . . . , bm. We may assume that U1 = U (x0) and b1 = b(x0). Let φ1, . . . , φm be a partition

of unity subordinate to U1, . . . , Um with φ1(x0) = 1. Set an =
∑m

i=1 φibi. Property (5.3.1)

follows since we ensured that ‖b(x)‖ ≤ ‖c‖ for all x ∈ X and φ1, . . . , φm is a partition of

unity. Property (5.3.2) follows by construction. Properties (5.3.3) and (5.3.4) follow from

(5.3.5) and (5.3.6) respectively because φ1, . . . , φm is a partition of unity. This completes

the proof.

Remark 5.3.2. Since dist(a1(x), Nx) ≤ dist(a2(x), Nx)+‖a1(x)−a2(x)‖2,τx for a1, a2 ∈M,

it suffices to check condition (ii) in Proposition 5.3.1 for all a ∈ Γ, where Γ is a subset of

M with the property that for all x ∈ X and b ∈ Mx there is a ∈ Γ such that a(x) = b.

In particular, when M = Cσ(X,M) is a trivial bundle, we may take Γ to be the constant

functions and, thereby, deduce Proposition 3.1.10.

5.4 Expected Sub-W∗-Bundles

For a unital inclusion of tracial von Neumann algebras N ⊂ M , there is always a unique

trace-preserving conditional expectation EN : M → N . In this section, we provide a

necessary and sufficient condition on an sub-W∗-bundle N ⊂ M for the existence of a

conditional expectation EN :M→N which preserves the C(X)-valued trace E.

The following proposition implies that there is only one candidate for a C(X)-trace–

preserving conditional expectation EN : M → N : we must have EN (a)(x) = ENx(a(x)),

where ENx is the canonical trace-preserving conditional expectation Mx → Nx.

Proposition 5.4.1. Let N ⊂ M be a sub-W∗-bundle over X. Suppose there is a con-

ditional expectation EN : M → N such that E(M) = E(N ) ◦ EN . Then for each x ∈ X,

there is an induced trace-preserving conditional expectation (EN )x : Mx → Nx given by

a(x) 7→ EN (a)(x).

Proof. Let a ∈M. Since E is a cpc map, we have the Schwarz inequality 0 ≤ E(a)∗E(a) ≤

E(a∗a) (see Corollary 2.5.4). Suppose now that E(M)(a∗a)(x) = 0 for some x ∈ X. Then

0 ≤ E(N )(EN (a)∗EN (a))(x) ≤ E(N )(EN (a∗a))(x) = E(M)(a∗a) = 0. (5.4.1)

So E(N )(EN (a)∗EN (a))(x) = 0. Hence, there is a bounded linear map between the respec-
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tive quotients (EN )x :Mx → Nx such that the diagram

M E //

evalx
��

N

evalx
��

Mx
(EN )x // Nx,

(5.4.2)

commutes. Basic lifting arguments show that (EN )x is a conditional expectation. Since

E(M)(a)(x) = E(N )(EN (a))(x), we see that (EN )x is trace preserving.

Now that we know that there is only one candidate for an E-preserving conditional

expectation EN , we simply have to determine when the fibrewise definition EN (a)(x) =

ENx(a(x)) is well defined. The point here is that, for a given a ∈ M, there need not be

an element EN (a) ∈ N with EN (a)(x) = ENx(a(x)).

Theorem 5.4.2. Let N ⊂M be a sub-W∗-bundle over X. The following are equivalent:

(i) There exists a conditional expectation EN :M→N such that E(M) = E(N ) ◦ EN .

(ii) For all a ∈M, the map x 7→ dist‖·‖2,τx (a(x),Nx) is continuous.

Proof. Hereinafter, we drop subscripts and write dist(·, ·) instead of dist‖·‖2,τx (·, ·). The

fibre Mx will be clear from the context.

(i) ⇒ (ii) Suppose such a conditional expectation exists. Then by Proposition 5.4.1,

EN (a)(x) = ENx(a(x)) for all a ∈ M and x ∈ X. Hence, for all a ∈ M and x ∈ X, we

have

dist(a(x),Nx) = ‖a(x)− ENx(a(x))‖2,τx = ‖(a− EN (a))(x)‖2,τx , (5.4.3)

which is continuous in x by Proposition 3.2.6.

(ii)⇒ (i) This makes use of Theorem 3.2.10. Let a ∈M, x0 ∈ X and ε > 0. Let b ∈ N

be a norm-preserving lift of ENx0
(a(x0)) ∈ Nx0 . Let x ∈ X. Since a(x)− ENx(a(x)) and

ENx(a(x))− b(x) ∈ Nx are orthogonal in L2(Mx), we have

‖a(x)− b(x)‖22,τx = ‖a(x)− ENx(a(x))‖22,τx + ‖ENx(a(x))− b(x)‖22,τx (5.4.4)

= dist(a(x),Nx)2 + ‖ENx(a(x))− b(x)‖22,τx . (5.4.5)

Suppose the map x 7→ dist(a(x),Nx) is continuous. Since x 7→ ‖a(x) − b(x)‖2,τx is also

continuous by Proposition 3.2.6, it follows from (5.4.5) that the map x 7→ ‖ENx(a(x)) −

b(x)‖2,τx is continuous. Hence, there exists an open neighbourhood U of x0 such that

‖ENx(a(x))− b(x)‖2,τx < ε (5.4.6)
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for all x ∈ U . By Theorem 3.2.10, there exists EN (a) ∈ N such that EN (a)(x) = ENx(a(x))

for all x ∈ X. That the map EN : M → N , thus defined, is a conditional expectation

satisfying E(M) = E(N ) ◦ EN follows from the fact that for each x ∈ X, ENx is a trace-

preserving conditional expectation Mx → Nx together with Propositions 3.2.5 and 3.2.6.

It is noteworthy that condition (ii) of Theorem 5.4.2 is missing half of continuity from

condition (ii) of Proposition 5.3.1. Indeed, in order to define a sub-W∗-bundle N ⊂ M

by specifying a family of {Nx}x∈X of von Neumann subalgebras, one only needs upper-

semicontinuity of x 7→ dist‖·‖2,τx (a(x), Nx) for all a ∈ M. For the bundle to have a

conditional expectation EN : M → N such that E(M) = E(N ) ◦ EN , however, lower-

semicontinuity is also needed.

In light of this, it is easy to give an example of a sub-W∗-bundle with no E-preserving

conditional expectation.

Example 5.4.3. Let M be a tracial von Neumann algebra and N a von Neumann

subalgebra containing 1M . We can define a sub-W∗-bundle N of the trivial bundle

M = Cσ([0, 1],M) with Nx = M for x ∈ [0, 1) and N1 = N . Indeed, we have

dist(a(x),Nx) =


0 x 6= 1

dist(a(1), N) x = 1

(5.4.7)

for a ∈M, which is upper semicontinuous. When N 6= M , there will not be a conditional

expectation E :M→ N since, choosing a ∈ M with a(1) 6∈ N , x 7→ dist(a(x),Nx) is not

continuous.

The existence of an E-preserving conditional expectation is vital for the further devel-

opment of a Jones theory for sub-W∗-bundles. We therefore make the following definition.

Definition 5.4.4. An expected sub-W∗-bundle is a sub-W∗-bundle for which an E-preserving

conditional expectation exists. We write N ⊂EN M for an expected sub-W∗-bundle.

5.5 Standard Form and the Basic Construction

In this section, we mimic Jones’ basic construction from [38, Section 3] for an expected

sub-W∗-bundle N ⊂EN M (over a base space X which is compact Hausdorff and fixed for

this section).
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Jones’ basic construction relies on the standard form for a tracial von Neumann algebra;

hence, we shall be using the results of Sections 3.2.2 and 3.5. In order to cut down on

excessive notation, we make the following conventions. If M is a W∗-bundle over X,

then we represent M on the Hilbert-C(X)-module L2(M) via left multiplication (see

Definition 3.2.11) and identify M with its image under this representation. We obtain

induced representations of the fibres Mx on L2(Mx) (see Remark 3.5.2), which we also

view as identifications. By Proposition 3.5.4, the fibration ofM is consistent with that of

L2(M) and L(L2(M)). We use the notation of Section 3.2.2, writing b̂ for the image of

b ∈M in L2(M) and M̂ for the image of M in L2(M).

Now suppose N ⊂M is sub-W∗-bundle. Since E(M) extends E(N ), we simply write E

for the C(X)-valued trace. Since the inclusion N ⊂M is ‖ · ‖2,u preserving, it induces an

inclusion of Hilbert-C(X)-modules L2(N ) ⊂ L2(M). We write 〈·, ·〉 for the C(X)–inner

product on L2(N ) and its extension to L2(M).

The first thing to do is to show that the conditional expectation EN of an expected

sub-bundle N ⊂EN M defines a self-adjoint projection on L2(M).

Proposition 5.5.1. Let N ⊂EN M be an expected sub-bundle. The conditional expectation

EN :M→N extends to a self-adjoint projection eN : L2(M)→ L2(N ) ⊂ L2(M).

Proof. Since EN is a cpc map, we have the Schwarz inequality 0 ≤ EN (a)∗EN (a) ≤ EN (a∗a)

for all a ∈ M (see Corollary 2.5.4). It follows that ‖EN (a)‖2,u ≤ ‖a‖2,u for all a ∈ M.

Hence, the densely defined operator eN : M̂ → N̂ given by â 7→ ÊN (a) is bounded and,

therefore, extends to a bounded operator L2(M) → L2(N ) ⊂ L2(M). Since EN is a

conditional expectation, we have

〈eN â, b̂〉 = E(EN (a)b∗) (5.5.1)

= E(EN (EN (a)b∗)) (5.5.2)

= E(EN (a)EN (b)∗) (5.5.3)

= E(EN (aEN (b)∗)) (5.5.4)

= E(aEN (b)∗) (5.5.5)

= 〈â, eN b̂〉, (5.5.6)

where a, b ∈ M. So, by density, eN is an adjointable operator on L2(M) with e∗N = eN .

As EN is a conditional expectation, EN (EN (a)) = a. By density, it follows that e2
N = eN .

Hence, eN is a self-adjoint projection.



5.5. STANDARD FORM AND THE BASIC CONSTRUCTION 193

Inspired by Jones, we make the following definition.

Definition 5.5.2. Let N ⊂EN M be an expected sub-bundle. The basic construction is

the strictly closed ∗-subalgebra M1 of L(L2(M)) generated by M and eN of Proposition

5.5.1. We write M1 = 〈M, eN 〉.

Some of the algebraic features of Jones’ basic construction from [38, Section 3.1] carry

over to the new setting with the same proof. We record them in the following proposition.

Proposition 5.5.3. Let N ⊂EN M be an expected sub-W∗-bundle and M1 = 〈M, eN 〉 be

the basic construction.

(i) Let a ∈ N . Then eNaeN = EN (a)eN .

(ii) Let a ∈M. Then a ∈ N if and only if eNa = aeN .

(iii) Let J be the involution on L2(M). Then JeN = eNJ .

(iv) The set {a+
∑

finite aieN bi : a, ai, bi ∈M} is a strictly dense subalgebra of M1.

Proof. (i) Let a, b ∈M. Then

eNaeN b̂ = eNa(ÊN (b)) (5.5.7)

= eN (aEN (b))̂ (5.5.8)

= (EN (aEN (b)))̂ (5.5.9)

= (EN (a)EN (b))̂ (5.5.10)

= EN (a)eN b̂. (5.5.11)

The result now follows by density.

(ii) Let x ∈ M. Suppose eNa = aeN . Then â = aeN 1̂ = eNa1̂ = ÊN (a). So, a =

EN (a) ∈ N . Conversely, suppose a ∈ N . Then eNab̂ = ÊN (ab) = âEN (b) = aeN b̂ for

all b ∈M. Hence, by density, eNa = aeN .

(iii) Let a ∈ M. Then JeN â = ÊN (a)∗ = ÊN (a∗) = eNJâ. Hence, by density, eNJ =

JeN .

(iv) It follows from (i) that {a +
∑

finite aieN bi : a, ai, bi ∈ M} is a ∗-subalgebra of

L(L2(M)) containing M and eN . It is clearly contained in M1. Hence, M1 is the

strict closure of this subalgebra.
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The basic construction M1 = 〈M, eN 〉 corresponding to an expected sub-W∗-bundle

N ⊂EN M is a subalgebra of L(L2(M)), so inherits a fibration over the base space X. We

shall typically write a 7→ a(x) for evaluating at the fibre (M1)x as for W∗-bundles.

One would expect that (M1)x is the basic construction corresponding to the inclusion

Nx ⊂Mx. Half of this intuition is dealt with by the following proposition.

Proposition 5.5.4. Let N ⊂EN M be an expected sub-bundle over the base space X and

M1 the basic construction. Then (M1)x ⊆ 〈Mx, eNx〉 for any x ∈ X.

Proof. Let x ∈ X. By Proposition 5.4.1, we have eN (x)â(x) = (eN â)(x) = ̂E(a)(x) =

ENx(a(x))̂ for a ∈M. So, by density, eN (x) = eNx .

By Propositions 2.11.16 and 2.11.24, passing to fibres is a ∗-homomorphism which is

continuous for the strict topology on L(L2(M)) and the strong∗ topology on L(L2(Mx)).

Hence, (M1)x is contained in the von Neumann subalgebra of L(L2(Mx)) generated by

Mx and eNx , which is 〈Mx, eNx〉 by definition.

The reverse inclusion would follow if one could show that (M1)x is a von Neumann

algebra. In the next section, we prove this under the additional hypothesis that M is

strictly separable. Under the same additional hypothesis, we are able to show that M1

and JNJ are commutants of each other.

5.6 Generalised W∗-Bundles

Investigating the basic construction for an expected sub-W∗-bundle forces us to consider

a generalisation of W∗-bundles.

Definition 5.6.1. Let X be a compact Hausdorff space. A generalised W∗-bundle over

X is a strictly closed subalgebra of L(H), for some Hilbert-C(X)-module H, containing

the canonical copy of C(X) ⊆ L(H).3

This definition of generalised W∗-bundles encompasses the original by identifying a

W∗-bundle with its standard form.

Proposition 5.6.2. Let M be a W∗-bundle over X. Write L : M → L(L2(M) for the

standard form representation. Then L(M) is a strictly closed subalgebra of L(L2(M))

containing the canonical copy of C(X).

3The canonical copy of C(X) ⊆ L(H) means the operators fIdH for f ∈ C(X).
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Proof. It follows from Proposition 3.2.14 that L(M) is a C∗-subalgebra of L(L2(M))

containing the canonical copy of C(X). We show that it is strictly closed.

By the Kaplansky Density Theorem, it suffices to show that the unit ball of L(M) is

strictly closed. Hence, it suffices to show that the unit ball L(M) is complete with respect

to the strict topology. However, this follows from Proposition 3.2.15 and the fact that

the unit ball of M is complete with respect to the ‖ · ‖2,u-norm because, if (aλ)λ∈Λ is a

bounded net in M, so is (aλ − aµ)(λ,µ)∈Λ×Λ.

The fibration of L(H), where H is a Hilbert-C(X)-module, defined in Proposition

2.11.16 induces a fibration of a generalised W∗-bundle. By Proposition 3.5.4, this definition

of the fibres of a generalised W∗-bundle extends that of W∗-bundles. We denote the fibre

of a generalised W∗-bundle M at the point x ∈ X by Mx as with standard W∗-bundles.

For Definition 5.6.1 to be an appropriate definition, it should be required that the

fibres of a generalised W∗-bundle are von Neumann algebras. This can be shown in the

case that the Hilbert-C(X)-module is countably generated using the C(X)-valued metrics

introduced in Proposition 2.11.25. The proof is closely modelled on that of Theorem 3.2.9.

Theorem 5.6.3. Let M ⊆ L(H) be a generalised W∗-bundle over X with H countably

generated. Then Mx is a von Neumann algebra for all x ∈ X.

Proof. Let x ∈ X. Suppose H = spanC(X){vi : i ∈ N}, where vi ∈ H and ‖vi‖H ≤ 1 for

all i ∈ N. Define a C(X)-valued metric on L(H) by

d(T, S) =

∞∑
i=0

1

2i

(
〈(T − S)vi, (T − S)vi〉1/2 + 〈(T − S)∗vi, (T − S)∗vi〉1/2

)
(5.6.1)

for T, S ∈ L(H) as in Proposition 2.11.25, and consider also the metric on L(Hx) given by

dx(t, s) =

∞∑
i=0

1

2i
(‖(t− s)vi(x)‖Hx + ‖(t− s)∗vi(x)‖Hx) , (5.6.2)

for t, s ∈ L(Hx) as in Remark 2.11.26.

We need to show that Mx is strong∗ closed in L(L2(M)x). By the Kaplansky Den-

sity Theorem, it suffices to show that the unit ball of Mx is closed in the unit ball of

L(L2(M)x). Since dx induces the strong∗ topology on bounded sets, it suffices to show

that dx restricted to the unit ball of Mx is a complete metric.

Let (tn) ⊆ Mx be a sequence that satisfies ‖tn‖ ≤ 1 for all n ∈ N and is a Cauchy

sequence with respect to the dx metric on Mx. We need to find t ∈ Mx with ‖t‖ ≤ 1

such that (tn) converges to t with respect to the dx metric on Mx. Since a Cauchy
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sequence will converge to the limit of any convergent sub-sequence, we may assume that

dx(tn+1, tn) < 1
2n without loss of generality.

We shall construct a sequence (T (n)) ⊆M inductively such that

T (n)
x = tn, (5.6.3)

‖T (n)‖ ≤ 1, (5.6.4)

d(T (n), T (n+1)) <
1

2n
(5.6.5)

for all n ∈ N. Recall that with C∗-algebras we may always lift elements from quotient

algebras without increasing the norm [74, Section 2.2.10]. Let T (1) be any such lift of

t1. Suppose now that T (1), . . . , T (n) have been defined and have the desired properties.

Let T ′(n+1) be any lift of tn+1 with ‖T ′(n+1)‖ ≤ 1. The map y 7→ dy(T
′(n+1)
y , T

(n)
y ) =

d(T ′(n+1), T (n))(y) is continuous by Proposition 2.11.25(a). Since

dx(T ′(n+1)
x , T (n)

x ) <
1

2n
, (5.6.6)

we can find an open neighbourhood U of x such that

sup
y∈U

dy(T
′(n+1)
y , T (n)

y ) <
1

2n
. (5.6.7)

We then take a continuous function φ : X → [0, 1] such that φ(x) = {1} and φ(X \ U) ⊆

{0}, and set T (n+1) = φT ′(n+1) + (1 − φ)T (n). We have that T
(n+1)
x = tn+1 and, using

Proposition 2.11.16, we see that ‖T (n+1)‖ ≤ 1. Finally, we have that

dy(T
(n+1)
y , T (n)

y ) =

∞∑
i=0

‖(T (n+1)
y − T (n)

y )vi(y)‖Hy + ‖(T (n+1)
y − T (n)

y )∗vi(y)‖Hy
2i

(5.6.8)

=
∞∑
i=0

‖φ(y)(T
′(n+1)
y − T (n)

y )vi(y)‖Hy + ‖φ(y)(T
′(n+1)
y − T (n)

y )∗vi(y)‖Hy
2i

(5.6.9)

= |φ(y)|dy(T ′(n+1)
y , T (n)

y ) (5.6.10)

for y ∈ X. By considering the cases y ∈ U and y ∈ X \ U separately, we get that

d(T (n), T (n+1)) < 1
2n . This completes the inductive definition of the sequence (T (n)).

Since the C(X)-valued metric d induces the strict topology on bounded sets, (T (n))

is strictly Cauchy, so convergences to some T ∈ L(H) with ‖T‖ ≤ 1 because the unit

ball of L(H) is complete with respect to the strict topology (Proposition 2.11.22). Since

M is strictly closed T ∈ M. We set t = Tx. The convergence of (tn) to t follows since

dx(tn, t) = d(T (n), T )(x).
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Corollary 5.6.4. Let N ⊂E M be an expected sub-W∗-bundle over X with M strictly

separable. Then the basic construction M1 is a generalised W∗-bundle and (M1)x is the

basic construction 〈Mx, eNx〉 for Nx ⊂Mx for a x ∈ X.

Proof. By Proposition 5.5.4, (M1)x ⊆ 〈Mx, eNx〉. Strict separability ofM implies ‖ ·‖2,u-

separability of M by Corollary 3.2.19 and in turn that L2(M) is countably generated.

Hence, we may apply Theorem 5.6.3 to get that (M1)x is as von Neumann algebra. Since

(M1)x contains M and eNx = eN (x), it follows that (M1)x ⊇ 〈Mx, eNx〉.

We can also prove a analogue of Theorem 3.2.10 for generalised W∗-bundles represented

on countably generated Hilbert modules by mimicking the proof of Theorem 3.2.10 but

using a C(X)-valued metric instead of the C(X)-valued trace E.

Theorem 5.6.5. LetM⊆ L(H) be a generalised W∗-bundle over X with H = spanC(X){vi :

i ∈ N}, where vi ∈ H and ‖vi‖H ≤ 1 for all i ∈ N.

Let f : X → tx∈XMx be a function such that f(x) ∈ Mx for all x ∈ X. Suppose

that supx∈X ‖f(x)‖ < ∞ and, for all x ∈ X and ε > 0, there is an open neighbourhood

U (x) 3 x and T (x) ∈M such that

sup
y∈U(x)

dy(f(y), T (x)
y ) < ε, (5.6.11)

where dy is the metric on L(Hy) defined in Remark 2.11.26. Then there is T ∈ M such

f(x) = Tx for all x ∈ X.

Proof. Fix n ∈ N. Let x ∈ X. Choose S(x) ∈ M such that ‖S(x)‖ ≤ ‖f(x)‖ and

S
(x)
x = f(x), and choose T (x) ∈ M together with an open neighbourhood U (x) of x such

that supy∈U(x) dy(f(y), T
(x)
y ) < 1

n . Due to the continuity of y 7→ dy(T
(x)
y , S

(x)
y ), we may,

after shrinking U (x), assume that supy∈U(x) dy(f(y), S
(x)
y ) < 1

n . The family of open sets

{U (x) : x ∈ X} form an open cover for X. By compactness, a finite subcover exists.

Denote the open sets in this finite subcover by U1, . . . , Um and the corresponding elements

ofM by S1, . . . , Sm. Let φ1, . . . , φm be a partition of unity subordinate to U1, . . . , Um. Set
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R(n) =
∑m

j=1 φjS
(j). Using the fact that φ1, . . . , φm form a partition of unity, we compute

dy(f(y), R(n)
y ) =

∞∑
i=0

1

2i
(‖

m∑
j=1

φj(y)(f(y)− S(j)
y )vi(y)‖H + ‖

m∑
j=1

φj(y)(f(y)− S(j)
y )∗vi(y)‖H)

(5.6.12)

=
m∑
j=1

φj(y)(
∞∑
i=0

1

2i
(‖(f(y)− S(j)

y )vi(y)‖H + ‖(f(y)− S(j)
y )∗vi(y)‖H)

(5.6.13)

=
m∑
j=1

φj(y)dy(f(y), S(j)
y ) (5.6.14)

<
1

n
. (5.6.15)

It follows that (R(n)) is a Cauchy sequence with respect to the C(X)-metric d. It follows

from Proposition 2.11.16 that ‖R(n)‖ ≤ supx∈X ‖f(x)‖ for all n ∈ N. Now Propositions

2.11.22 and 2.11.25 together ensure that that (R(n)) has a strict limit T ∈ L(H). As M

is strictly closed, T ∈ M. That Ty = f(y) for all y ∈ Y follows from uniqueness of limits

as R
(n)
y → Ty and R

(n)
y → f(y).

Corollary 5.6.6. Let N ⊂E M be an expected sub-W∗-bundle over X with M strictly

separable. Let M1 be the basic construction. Then M1 and JNJ are commutants of one

another.

Proof. The algebra JNJ ⊆ JMJ = R(M) commutes with M = L(M) by Proposition

3.2.14 together with Theorem 3.5.5. Furthermore, JNJ commutes with eN by Propo-

sition 5.5.3(ii-iii). Hence, M1 ⊆ (JNJ)′ and JNJ ⊆ M′1, making use of the fact that

commutants are strictly closed. The reverse inclusions use Theorem 5.6.5 together with

the fact that the result holds fibrewise [38, Proposition 3.15]. As in the proof of Corollary

5.6.4, the strict separability of M ensures that L2(M) is countably generated.

Let T ∈ (JNJ)′, x ∈ X and ε > 0. Since passing to fibres is a ∗-homomorphism

(Proposition 2.11.16), Tx ∈ ((JNJ)x)′, and (JNJ)x = JxNxJx by Proposition 3.5.4.

Since (M1)x is the basic construction for Nx ⊂Mx, we have (JxNxJx)′ = (M1)x by [38,

Proposition 3.15]. Hence, there is S(x) ∈M1 with S
(x)
x = Tx. As the map y 7→ dy(Ty, S

(x)
y )

is continuous, there is an open neighbourhood U (x) of x such that supy∈U(x) dy(Ty, S
(x)
y ) <

ε. By Theorem 5.6.5, there is R ∈M1 with Ry = Ty for all y ∈ X. Therefore, T = R and

T ∈M1.
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Similarly, if T ∈ M′1, x ∈ X and ε > 0, then Tx ∈ (M1)′x = (JxNxJx) = (JNJ)x.

Hence, there is S(x) ∈ N with S
(x)
x = (JTJ)x. As the map y 7→ dy((JTJ)y, S

(x)
y ) is contin-

uous, there is an open neighbourhood U (x) of x such that supy∈U(x) dy((JTJ)y, S
(x)
y ) < ε.

By Theorem 5.6.5, there is R ∈ N with Ry = (JTJ)y for all y ∈ X. Therefore, JTJ = R

and T = JRJ ∈ JNJ .

Theorem 3.5.5 and Corollary 5.6.6 give two examples of cases where generalised W∗-

bundles are equal to their own bicommutant. This is not always the case. We end this

section with an example of a generalised W∗-bundle which is strictly contained in its

bicommutant.

Example 5.6.7. Let H = C([0, 1],C2) be the trivial Hilbert-C([0, 1])-module with fibre

C2. Then L(H) = C([0, 1],M2(C)) acting by pointwise multiplication.

Let M = {f ∈ C([0, 1],M2(C)) : f(1) ∈ C1M2(C)}. Then M ⊆ L(H) is a generalised

W∗-bundle over [0, 1]. Suppose g ∈ M′ ⊆ L(H). Then, for x ∈ [0, 1), g(x) ∈ M2(C)′,

so g(x) ∈ C1M2(C). By continuity, g(1) ∈ C1M2(C). Hence, M′ = C([0, 1],C1M2(C)) and

M′′ = L(H) )M.

Note, M is also a W∗-bundle, so can be viewed as a generalised W∗-bundle M ⊆

L2(M). In this representation, M =M′′ by Theorem 3.5.5.

5.7 The Iterated Basic Construction

If N ⊂M is a subfactor of finite index, then the basic construction M1 is a II1 factor and

M ⊂ M1 is a subfactor of the same index as N ⊂ M [38, Proposition 3.1.7]. Hence, the

basic construction can be iterated, producing a tower of subfactors

N ⊂M ⊂M1 ⊂M2 ⊂M3 ⊂ · · · . (5.7.1)

In this section, we investigate when the basic construction for sub-W∗-bundles can be

iterated. Attempts at a global argument based on Jones’ proof run into difficulties due to

the lack of a suitable comparison theory for W∗-bundles. Fibrewise arguments, building

on the results of Jones, have proven more successful.

The set up for this section is the following: suppose N ⊂EN M is a expected sub-W∗-

bundle over the compact Hausdorff space X with M strictly separable and Nx ⊂ Mx a

finite index subfactor for all x ∈ X, and let M1 = 〈M, eN 〉 be the basic construction.

The assumptions on the sub-W∗-bundle ensure that, for each x ∈ X, (M1)x is the basic
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construction for the subfactor Nx ⊂Mx, that (M1)x is a II1 factor and thatMx ⊂ (M1)x

is a subfactor of that same index as Nx ⊂Mx.

We wish to determine when the C(X)-valued trace E can be extended fromM toM1

giving rise to a W∗-bundle structure on M1. In order for the basic construction to be

iterated, it is further necessary that the resulting sub-W∗-bundleM⊂M1 is an expected

sub-W∗-bundle. Also, we will need to show that M1 is strictly separable.4

The necessary and sufficient condition for M1 to be a W∗-bundle and M ⊂ M1 an

expected sub-W∗-bundle is that the index function x 7→ [Mx : Nx] is continuous. Proving

that this condition is necessary is straightforward and given in Proposition 5.7.1; proving

the reverse implication is more technical and will be handled in a number of steps.

Proposition 5.7.1. Suppose N ⊂EN M is a expected sub-W∗-bundle with M strictly

separable and Nx ⊂ Mx a finite index subfactor for all x ∈ X. Let M1 = 〈M, eN 〉 be

the basic construction. Suppose the C(X)-valued trace E can be extended from M to M1

giving rise to a W∗-bundle structure on M1. Then the map x 7→ [Mx : Nx] is continuous.

Proof. Fix x ∈ X. By Proposition 5.2.3, Mx ⊂ (M1)x is a subfactor and, by Proposition

5.6.4, is the basic construction for the subfactor Nx ⊂Mx. Let τx denote the extension of

the trace on Mx to (M1)x. Then [Mx : Nx] = τx(eNx)−1 by [38, Proposition 3.1.7]. By

hypothesis E can be extended fromM toM1 giving rise to a W∗-bundle structure onM1.

Therefore, E(a)(x) = τx(a(x)) for all a ∈ M1. In particular, [Mx,Nx] = τx(eNx)−1 =

E(eN )(x)−1. But E is C(X)-valued. So x 7→ [Mx,Nx] is continuous.

For the remainder of this section, fix an expected sub-W∗-bundle N ⊂EN M with M

strictly separable and Nx ⊂ Mx a finite index subfactor for all x ∈ X, and let M1 =

〈M, eN 〉 be the basic construction. Assume further that the index map x 7→ [Mx, Nx] is

continuous. Denote this continuous map [M : N ].

In light of Propositions 5.2.3 and 5.4.1, there is only one candidate for the extension

of the C(X)-valued trace E to M1: we must have that E(a)(x) = τx(a(x)), where τx is

the trace on (M1)x. It is, however, not clear with this definition whether E(a) ∈ C(X)

for all a ∈M1.

4It follows from Proposition 5.5.3(iv) that M1 is a strictly separable subalgebra of L(L2(M)), but we

need to show thatM1 is a strictly separable subalgebra of L(L2(M1)). Unlike with von Neumann algebras,

we can’t rely on general results saying that the strict topology on ‖ · ‖-norm bounded sets is independent

of the representation.



5.7. THE ITERATED BASIC CONSTRUCTION 201

Similarly, there is only one candidate for an E-preserving conditional expectation EM :

M1 → M: we must have EM(a)(x) = EMx(a(x)), where EMx is the trace-preserving

conditional expectation (M1)x →Mx. It is, however, not clear that with this definition

that there actually exist EM(a) ∈M with EM(a)(x) = EMx(a(x)).

First, let us consider the the problem of extending the C(X)-valued trace E to M1.

We begin by showing that E is C(X)-valued on a certain subalgebra of M1.

Lemma 5.7.2. Let A be the ‖ · ‖-norm closure of {a +
∑

finite aieN bi : a, ai, bi ∈ M} in

M1. Then A is a pre-W∗-bundle with respect the conditional expectation E defined above.

Proof. Let a, ai, bi ∈M for i = 0, . . . ,m. We have

E(a+

m∑
i=0

aieN bi)(x) = τx(a(x) +

m∑
i=0

ai(x)eN (x)bi(x)) (5.7.2)

= τx(a(x)) +
m∑
i=0

τx(eN (x)bi(x)ai(x)) (5.7.3)

= τx((a(x)) +
m∑
i=0

[Mx,Nx]−1τx(bi(x)ai(x)) (5.7.4)

= E(a)(x) +
m∑
i=0

[Mx,Nx]−1E(biai)(x), (5.7.5)

where in the third line we use [38, Proposition 3.1.7].

Since E is C(X)-valued on M and the index map x 7→ [Mx : Nx] is continuous

by hypothesis, E is C(X)-valued on the subalgebra {a +
∑

finite aieN bi : a, ai, bi ∈ M}.

Furthermore, we have |E(a)(x)| = |τx(a(x))| ≤ ‖a(x)‖ ≤ ‖a‖, so E is C(X)-valued on the

‖ · ‖-norm closure of {a+
∑

finite aieN bi : a, ai, bi ∈M}, which is A.

Since τx is a faithful trace on (M1)x for each x, it follows that E is a conditional

expectation onto C(X) ⊆M ⊆ A and that the axioms (T) and (F) hold.

The pre-W∗-bundle A has two natural representations: the representation on L2(M),

which comes from that fact that A ⊆M1 andM1 is defined as a subalgebra of L(L2(M)),

and the standard form representation on L2(A) = L2(A,E). There are, therefore, two

strict topologies on A. We will show that these strict topologies agree on bounded sets.

Lemma 5.7.3. Let B = {
∑

finite aieN bi : ai, bi ∈ M} ⊆ A. Then B is ‖ · ‖L2(A,E)-dense

in L2(A,E).

Proof. Since B is closed under right multiplication by elements of M, it’s enough to

show that 1M lies in the ‖ · ‖L2(A,E)-closure of B. This is shown using the machin-

ery from the proof of Theorem 3.2.10. Let ε > 0 and x ∈ X. By [67, Lemma 1.1],
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{
∑

finite ai(x)eN (x)bi(x) : ai, bi ∈ M} is a dense ∗-subalgbera of (M1)x. Hence, there is

b(x) ∈ B with ‖b(x)(x) − 1x‖2,τx < ε. The map y 7→ ‖1y − b(x)(y)‖2,τy is continuous by

Lemma 5.7.2 as 1− b(x) ∈ A. Hence, there is an open neighbourhood U (x) of x such that

supy∈U(x) ‖1y − b(x)(y)‖2,τy < ε.

Then open sets {U (x) : x ∈ X} form an open cover for X. By compactness, a finite

subcover exists. Denote the open sets in this finite subcover by U1, . . . , Um and the corre-

sponding elements ofM by b1, . . . , bm. Let φ1, . . . , φm be a partition of unity subordinate

to U1, . . . , Um. Set b =
∑m

i=1 φibi ∈ B. Using the fact that φ1, . . . , φn form a partition of

unity, we find that

sup
y∈X
‖1y − b(y)‖2,τy < ε. (5.7.6)

Therefore, ‖1M − b‖2,u < ε. As ε was arbitrary, we see that 1M is in the ‖ · ‖L2(A,E)-norm

closure of B in L2(A,E).

Proposition 5.7.4. Let (aλ) be a ‖ · ‖-bounded net in A and a ∈ A. The following are

equivalent:

(i) aλ → a in the strict topology on L(L2(M)),

(ii) aλ → a in the strict topology on L(L2(A)),

(iii) aλ → a in ‖ · ‖2,u.

Proof. The equivalence of (ii) and (iii) was shown in Proposition 3.2.15. We prove that (i)

and (ii) are equivalent. We write ·̂ for the inclusion ofM in L2(M) and ·̃ for the inclusion

of A in L2(A).

Let ai, bi, b, c, d ∈M for i = 0, . . . ,m. Using Proposition 5.5.3(i), we compute that

(b+
m∑
i=0

aieN bi)ĉ = b̂c+
m∑
i=0

(aiEN (bic))
̂, (5.7.7)

(b+
m∑
i=0

aieN bi)c̃eNd = (bceNd)˜ +
m∑
i=0

(aiEN (bic)eNd)˜. (5.7.8)

Hence, ‖T c̃eNd‖ ≤ ‖T ĉ‖‖eNd‖ for all T ∈ A.

Suppose aλ → a in the strict topology on L(L2(M)). Then ‖(aλ−a)c̃eNd‖ → 0 for all

c, d ∈ M. By Lemma 5.7.3 and Proposition 2.11.23, it follows that aλ → a in the strict

topology on L(L2(A)).
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Conversely, suppose aλ → a in the strict topology on L(L2(A)). Let [M : N ] denote

the continuous function x 7→ [Mx : Nx]. The map θ : L2(M) → L2(A)eN given by

ĉ 7→ [M : N ]1/2c̃eN is a well-defined isomorphism of Hilbert modules since

〈c̃eN , c̃eN 〉L2(A) = E(ceN e
∗
N c
∗) (5.7.9)

= E(eN c
∗c) (5.7.10)

= [M : N ]−1E(c∗c) (5.7.11)

= [M : N ]−1〈ĉ, ĉ〉L2(M). (5.7.12)

From (5.7.7) and (5.7.8) with d = 1, we see that θ intertwines the left A actions. Hence,

aλ → a in the strict topology on L(L2(M)).

We now apply Proposition 5.7.4 to show that ‖ · ‖-bounded sequences in A are ‖ · ‖2,u-

Cauchy if and and only if they are Cauchy with respect to either of the strict topologies

on A. This allows us to identify the completion A of the pre-W∗-bundle A with the strict

closure of A in either of the representations, in particular with M1.

Proposition 5.7.5. Let A be the completion of the pre-W∗-bundle A. The inclusions

A ⊆ L(L2(M)) and A ⊆ L(L2(A)) extend to embeddings ι1 : A → L(L2(M)) and ι2 :

A → L(L2(A)) with ι1(A) = A
st ⊆ L(L2(M)) and ι2(A) = A

st ⊆ L(L2(A)). On bounded

subsets of A, the ‖ · ‖2,u-topology agrees with the strict topologies coming from L(L2(M))

and L(L2(A)).

Proof. From Proposition 3.4.21,

A =
{(ai)∞i=1 ∈ `∞(A) : (ai)

∞
i=1 is ‖ · ‖2,u-Cauchy}

{(ai)∞i=1 ∈ `∞(M) : (ai)∞i=1 is ‖ · ‖2,u-null}
. (5.7.13)

The maps ι1 and ι2 are the maps induced on the quotient by (an) 7→ limn→∞ an, where the

limit is taken in the respective strict topology. Since (an − am)(n,m)∈N2 is a bounded net

whenever (an) is a bounded sequence, Proposition 5.7.4 together with the strict complete-

ness of the unit balls of L(L2(M)) and L(L2(A)) ensures that these limits exist. A second

application of Proposition 5.7.4, shows that ι1 and ι2 are well-defined on the quotient and

injective.

The proof of Proposition 5.7.4 can now be applied to A. Since ‖ab‖2,u ≤ ‖a‖2,u‖b‖, we

can take limits to obtain that ‖T c̃eNd‖ ≤ ‖T ĉ‖‖eNd‖ for all T ∈ A and that that the map

θ : L2(M) → L2(A)e intertwines the left A-actions. It follows that, on bounded subsets

of A, the ‖ · ‖2,u-topology agrees with the strict topologies coming from L(L2(M)) and

L(L2(A)).



204 CHAPTER 5. THE THEORY OF SUB-W∗-BUNDLES

Proving that the sub-W∗-bundle M ⊂ M1 is an expected sub-W∗-bundle is now

relatively simple.

Theorem 5.7.6. Suppose N ⊂EN M is a expected sub-W∗-bundle withM strictly separa-

ble and Nx ⊂Mx a finite index subfactor for all x ∈ X. Let M1 = 〈M, eN 〉 be the basic

construction. Suppose the map x 7→ [Mx : Nx] is continuous. Then the sub-W∗-bundle

M ⊂ M1 is an expected sub-W∗-bundle, [(M1)x : Mx] = [Mx : Nx] for all x ∈ X, and

M1 is strictly separable.

Proof. By Proposition 5.7.5, M1 is a W∗-bundle. So M ⊂M1 is a sub-W∗-bundle. Let

a, ai, bi ∈ M for i = 0, . . . ,m. We have EMx(a(x) +
∑m

i=0 ai(x)eN (x)bi(x)) = a(x) +∑m
i=0[Mx : Nx]−1ai(x)bi(x). Since an element of M1 is determined by its images in all

fibres, we can define EM on the subalgebra {a +
∑

finite aiebi : a, ai, bi ∈ M} by EM(a +∑m
i=0 aieNbi) = a +

∑m
i=0[M : N ]−1aibi, where [M : N ] ∈ C(X) denotes the map x 7→

[Mx : Nx]. Note that EM(a) ∈M for all a for which it is defined.

Each EMx is a trace-preserving conditional expectation, so EM is E-preserving. By

Corollary 2.5.4, we have ‖EM(a)‖2,u ≤ ‖a‖2,u. Moreover, ‖EM(a)‖ ≤ ‖a‖ for all a for which

it is defined by Proposition 3.2.5 because ‖EMx‖ ≤ 1 for each x ∈ X. By Proposition

5.5.3(iv) together with Proposition 5.7.5, {a+
∑

finite aiebi : a, ai, bi ∈M} is ‖ · ‖2,u-dense

in M1. It follows that EM extends continuously to a bounded linear map M1 → M.

Passing to fibres, we see that EM(a)(x) = EMx(a(x)) for all a ∈M1. Since each EMx is a

trace-preserving conditional expectation, EM is an E-preserving conditional expectation.

This proves thatM⊂M1 is an expected sub-W∗-bundle. ThatM1 is strictly separa-

ble follows from 5.5.3(iv) together with Proposition 5.7.5. That [(M1)x :Mx] = [Mx : Nx]

for all x ∈ X follows from Corollary 5.6.4 and [38, Proposition 3.1.7].

Theorem 5.7.6 provides conditions under which the basic construction for sub-W∗-

bundles can be iterated. This allows us to build a Jones tower of W∗-bundles

N ⊂M ⊂M1 ⊂M2 ⊂M3 ⊂ · · · (5.7.14)

and define the relative commutants (M′i ∩Mj)i≤j for such sub-W∗-bundles N ⊂EN M.

We will pick up this line of investigation in the final section of this chapter.
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5.8 Continuity of Index

In the previous section, we proved that the continuity of the index is the crucial necessary

and sufficient condition for the basic construction for an expected sub-W∗-bundle N ⊂EN
M to be iterated. In this section, we investigate to what extent continuity of index is

automatic. We show, using a result of Pimsner and Popa, that lower-semicontinuity of

the index is automatic, but provide an example of an expected W∗-bundle for which the

index is not continuous.

First, the automatic lower-semicontinuity.

Theorem 5.8.1. Let N ⊂EN M be an expected sub-W∗-bundle over X with Nx ⊂Mx a

subfactor for all x ∈ X. Then the map x 7→ [Mx : Nx] is lower-semicontinuous.

Proof. By [67, Theorem 2.2], we have that

[Mx : Nx]−1 = inf

{
‖ENx(a(x))‖22,τx
‖a(x)‖22,τx

: a ∈M, a(x) 6= 0

}
(5.8.1)

for all x ∈ X.5

Fix x0 ∈ X, γ > 0 and suppose [Mx0 : Nx0 ] > γ. Then there exists a ∈ M with

a(x0) 6= 0 such that

[Mx0 : Nx0 ]−1 ≤
‖ENx0

(a(x0))‖22,τx0

‖a(x0)‖22,τx0

<
1

γ
. (5.8.2)

By Proposition 5.4.1, ENx(a(x)) = EN (a)(x) for all x ∈ X. Hence, by applying Propo-

sition 3.2.6, the map x 7→ ‖ENx(a(x))‖22,τx/‖a(x)‖22,τx is well-defined and continuous in a

neighbourhood of x0.

Therefore, there exists an open neighbourhood U of x0 such that a(x) 6= 0 and

‖ENx(a(x))‖22,τx
‖a(x)‖22,τx

<
1

γ
(5.8.3)

whenever x ∈ U . Thus, by (5.8.1), [Mx : Nx]−1 < 1
γ whenever x ∈ U , so [Mx : Nx] > γ

whenever x ∈ U .

Now, the counterexample.

Example 5.8.2. Let X = N ∪ {∞} be the one point compactification of the natural

numbers. Let M =
⊗∞

1 R ∼= R and αk be the automorphism of M which transposes the

5This formula is also valid when [Mx : Nx] =∞ provided one makes the convention ∞−1 = 0.
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k-th and (k + 1)-th tensor factors for k ∈ N. Set Nk = Mαk to be the fix point set of M

under the automorphism αk for k ∈ N, and set N∞ = M .

We consider the sub-W∗-bundle N of the trivial bundleM = Cσ(X,M) defined by the

family of von Neumann subalgebras {Nk}k∈X . We now check the continuity conditions of

Proposition 5.3.1 and Theorem 5.4.2 to show that N ⊂M is an expected sub-W∗-bundle

with Nk = Nk for all k ∈ X.

Let a ∈ M and ε > 0. There exists K1 ∈ N and b ∈
⊗K1

1 R ⊆
⊗∞

1 R such that

‖a(∞) − b‖2,τM < ε
2 . Since a ∈ M, there is K2 ∈ N such that ‖a(∞) − a(k)‖2,τM < ε

2

whenever k > K2. Let k > max(K1,K2). Then αk(b) = b and

‖a(k)− b‖2,τM ≤ ‖a(k)− a(∞)‖2,τM + ‖a(∞)− b‖2,τM (5.8.4)

<
ε

2
+
ε

2
(5.8.5)

= ε. (5.8.6)

Hence, b ∈ Nk and dist‖·‖2,τM (a(k), Nk) < ε. This proves that the map k 7→ dist‖·‖2,τM (a(k), Nk)

is continuous at k =∞, which is the only point that must be checked.

We have now shown that N ⊂M is an expected sub-W∗-bundle and turn to the index

function. Since αk is an outer automorphism of M of order 2, the fixed point subalgebra

Nk ⊂M has index 2 by [38, Example 2.3.3]. Hence, we have

[Mk : Nk] =


2, k ∈ N,

1, k =∞,
(5.8.7)

which is lower-semicontinuous but not upper-semicontinuous.

5.9 The Family of Subfactors Rβ ⊂ R

This sections is devoted to the construction of a particular sub-W∗-bundle. This sub-W∗-

bundle combines the family of subfactors obtained by considering the algebras generated

by Jones projections e
(β)
0 , e

(β)
1 , e

(β)
2 , . . . for a subfactor of finite index β (see [38, Theorem

4.1.1]. These projections satisfy the following relations:

e
(β)
i = e

(β)
i

∗
= e

(β)
i

2
(i ∈ N0) (5.9.1)

e
(β)
i e

(β)
j = e

(β)
j e

(β)
i (i, j ∈ N0, |i− j| ≥ 2), (5.9.2)

e
(β)
i e

(β)
i±1e

(β)
i = β−1e

(β)
i (i ∈ N0), (5.9.3)

tr(we(β)
n ) = β−1tr(w) (n ∈ N0, w ∈ Alg{1, e(β)

0 , . . . , e
(β)
n−1}). (5.9.4)
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We follow the notation of [30, Section 3.4], writing R = {1, e(β)
0 , e

(β)
1 , e

(β)
2 , . . .}′′ and

Rβ = {1, e(β)
1 , e

(β)
2 , . . .}′′. In [38], this family of subfactors is denoted Pτ ⊂ P , where

τ = β−1.

Let J = {4 cos2(πn) : n = 3, 4, . . .}∪ [4,∞) be the set of allowed finite indices [38, Theo-

rem 4.3.1], and let X be a compact subset of J . For each β ∈ X, let e
(β)
0 , e

(β)
1 , e

(β)
2 , . . . ∈ R

be a sequence of Jones projections for a subfactor of index β ∈ J .

The sub-W∗-bundle N ⊂ M will be constructed in the ambient space
∏
β∈X R. We

embed `∞(X) into
∏
β∈X R diagonally via the map g 7→ (g(β))β∈X and define a conditional

expectation E :
∏
β∈X R → `∞(X) via (aβ)β∈X 7→ (τR(aβ)).

Set ei = (e
(β)
i )β∈X for all i ∈ N0. LetM0 be the C∗-algebra generated by the continuous

functions C(X) ⊆ `∞(X) ⊆
∏
β∈X R together with {e0, e1, e2, . . .} and let N0 be the C∗-

algebra generated by C(X) together with {e1, e2, . . .}.

Proposition 5.9.1. For all a ∈M0, E(a) ∈ C(X).

Proof. Let A = {a ∈M0 : E(a) ∈ C(X)}. We first observe that A is a ‖·‖-closed subspace

of M0. Furthermore, we have E(ga)(β) = τR(g(β)aβ) = g(β)τR(aβ) = g(β)E(a)(β).

Hence, A is a C(X)-submodule of M0.

It suffices, therefore, to show that all words in {ei : i ∈ N0} are in A. Let w be a word

in e0, . . . , en. Following the technique of [38, Lemmas 4.1.2 and 4.16], we can compute

the trace of w in each fibre by converting w into a totally reduced word by a sequence

of cyclic permutations together with the rules eiej ↔ ejei for |i − j| ≥ 2, eiei ↔ ei and

eiei±1ei ↔ ei. We find that τR(w(β)) = β−rτR(e
(β)
i1
e

(β)
i2
. . . e

(β)
ik

) for some r ∈ N0 and

indices i1, i2 . . . , ik with |is − it| ≥ 2 for s 6= t. Consequently, τR(w(β)) = β−r−k by

(5.9.4). Hence, E(w) ∈ C(X).

It follows that M0 is a pre-W∗-bundle and can be completed to a W∗-bundle M over

X.6 Let N be the ‖·‖2,u-norm closure of N0 inM. Passing to fibres, we see that Nβ ⊂Mβ

is isomorphic to the subfactor Rβ ⊂ R.

The sub-W∗-bundle N ⊂M is an expected sub-W∗-bundle. By [38, Corollary 4.1.12],

we have that ENx(e
(β)
0 ) = β−11R. Together with the bimodule property of conditional

expectations, it follows that, if w is a word in e
(β)
0 , . . . , e

(β)
n , then ENx(w) = β−rw′, where

r is the number of occurrences of e
(β)
0 in the word w and w′ is the word obtained from w by

deleting all occurrences of e
(β)
0 . Since β 7→ β−r is continuous on X, the fibrewise-defined

6In fact, we can just take the ‖ · ‖2,u-norm closure of M0 in
∏
β∈X R.
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conditional expectation EN (a)(x) = ENx(a(x)) does map M0 into N0. Hence, EN is a

well-defined E-preserving conditional expectation M→N .

A slight modification of the construction, gives the following result of independent

interest.

Theorem 5.9.2. Let X be a compact Hausdorff space. For any continuous function

f : X → J , where J is the Jones set of allowable finite indices, there is an expected

sub-W∗-bundle N ⊂EN M with index function [M : N ] = f .

Proof. The sub-W∗-bundle N ⊂M will be constructed in the ambient space
∏
x∈X R. We

embed `∞(X) into
∏
x∈X R diagonally via the map g 7→ (g(x))x∈X and define a conditional

expectation E :
∏
x∈X R → `∞(X) via (ax)x∈X 7→ (τR(ax)).

We define ei = (e
(f(x))
i )x∈X , where e

(β)
0 , e

(β)
1 , e

(β)
2 , . . . ∈ R are Jones projections for a

subfactor of index β ∈ J . As in the main construction of this section, we letM0 be the C∗-

algebra generated by the continuous functions C(X) ⊆ `∞(X) ⊆
∏
β∈X R together with

{e0, e1, e2, . . .} and let N0 be the C∗-algebra generated by C(X) together with {e1, e2, . . .}.

We then complete to give the required expected sub-W∗-bundle N ⊂EN M as in the main

construction of this section.

Passing to the fibre at x ∈ X, we see that Nx ⊂ Mx is isomorphic to the subfactor

Rf(x) ⊂ R, which has index f(x). Hence, the index function of the sub-W∗-bundle N ⊂EN
M is [M : N ] = f .

5.10 Outlook

The results of this chapter are just the foundations of the theory of sub-W∗-bundles. We

end this chapter by highlighting future directions for research on sub-W∗-bundles.

The next goal for the abstract theory of sub-W∗-bundles is to define and investigate an

analogue of the standard invariant for sub-W∗-bundles. In the setting of finite index subfac-

tors, the standard invariant can be viewed as the collection of higher relative commutants

endowed with the additional structure of a planar algebra (see [39]). Under amenability

hypotheses on the subfactor, the standard invariant is a complete invariant [68, Theorem

2]. Moreover, there is a reconstruction theorem that, given a suitable planar algebra,

builds a subfactor with this planar algebra as its standard invariant [69, Theorem 3.1]. To

what extent does all this carry over to the world of sub-W∗-bundles?
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The further development of the abstract theory of sub-W∗-bundles should go hand in

hand with the construction of new examples. The example of the previous section encodes

the family of subfactors Rβ ⊂ R as a sub-W∗-bundle. This family has the property that

R′β∩R = C1R for β ≤ 4 but R′β∩R 6= C1R for β > 4 [38, Corollary 2.2.4 and Section 5.3].

We say that Rβ ⊂ R is an irreducible subfactor for β ≤ 4 and a reducible subfactor for

β > 4. This leads to the following question: can a sub-W∗-bundle be constructed which

is irreducible in each fibre and encompasses both the discrete and continuous parts of the

Jones set of allowed indices?
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(3), 66:209–261, 1949.
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