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Abstract

Remote-sensing technology is widely used in Earth observation, from everyday weather fore-

casting to long-term monitoring of the air, sea and land. The remarkable coverage and

resolution of remote sensing data are extremely beneficial to the investigation of environ-

mental problems, such as the state and function of lakes under climate change. However, the

attractive features of remote-sensing data bring new challenges to statistical analysis. The

wide coverage and high resolution means that data are usually of large volume. The orbit

track of the satellite and the occasional obscuring of the instruments due to atmospheric

factors could result in substantial missing observations. Applying conventional statistical

methods to this type of data can be ineffective and computationally intensive due to its

volume and dimensionality. Modifications to existing methods are often required in order to

incorporate the missingness. There is a great need of novel statistical approaches to tackle

these challenges.

This thesis aims to investigate and develop statistical approaches that can be used in the anal-

ysis of the sparse remote-sensing image time series of environmental data. Specifically, three

aspects of the data are considered, (a) the high dimensionality, which is associated with the

volume and the dimension of data, (b) the sparsity, in the sense of high missing percentages

and (c) the spatial/temporal structures, including the patterns and the correlations.

Initially, methods for temporal and spatial modelling are explored and implemented with

care, e.g. harmonic regression and bivariate spline regression with residual correlation struc-

tures. In recognizing the drawbacks of these methods, functional data analysis is employed

as a general approach in this thesis. Specifically, functional principal component analysis

(FPCA) is used to achieve the goal of dimension reduction. Bivariate basis functions are

proposed to transform the satellite image data, which typically consists of thousands/mil-

lions of pixels, into functional data with low dimensional representations. This approach has

the advantage of identifying spatial variation patterns through the principal component (PC)

loadings, i.e. eigenfunctions. To overcome the high missing percentages that might invalidate

the standard implementation of the FPCA, the mixed model FPCA (MM-FPCA) was inves-

tigated in Chapter 3. Through estimating the PCs using a mixed effect model, the influence

of sparsity could be accounted for appropriately. Data imputation can be obtained from the



fitted model using the (truncated) Karhunen-Loéve expansion. The method’s applicability

to sparse image series is examined through a simulation study.

To incorporate the temporal dependence into the MM-FPCA, a novel spatio-temporal model

consisting of a state space component and a FPCA component is proposed in Chapter 4.

The model, referred to as SS-FPCA in the thesis, is developed based on the dynamic spatio-

temporal model framework. The SS-FPCA exploits a flexible hierarchical design with (a)

a data model consisting of a time varying mean function and random component for the

common spatial variation patterns formulated as the FPCA, (b) a process model specifying

the type of temporal dynamic of the mean function and (c) a parameter model ensuring

the identifiability of the model components. A 2-cycle alternating expectation - conditional

maximization (AECM) algorithm is proposed to estimate the SS-FPCA model. The AECM

algorithm allows different data augmentations and parameter combinations in various cycles

within an iteration, which in this case results in analytical solutions for all the MLEs of model

parameters. The algorithm uses the Kalman filter/smoother to update the system states

according to the data model and the process model. Model investigations are carried out in

Chapter 5, including a simulation study on a 1-dimensional space to assess the performance

of the model and the algorithm. This is accompanied by a brief summary of the asymptotic

results of the EM-type algorithm, some of which can be used to approximate the standard

errors of model estimates.

Applications of the MM-FPCA and SS-FPCA to the remote-sensing lake surface water tem-

perature and Chlorophyll data of Lake Victoria (obtained from the European Space Agency’s

Envisat mission) are presented at the end of Chapter 3 and 5. Remarks on the implications

and limitations of these two methods are provided in Chapter 6, along with the potential

future extensions of both methods. The Appendices provide some additional theorems, com-

putation and derivation details of the methods investigated in the thesis.
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Chapter 1

Introduction

Remote-sensing technology is widely used in Earth observation, from everyday weather fore-

casting to long-term monitoring of the air, sea and land. ‘The objective and continuous

views of our planet supplied by satellite images and data provide scientists and decision

makers with the information they need to understand and protect our environment ’ (Eu-

ropean Space Agency (ESA) Earth Observation Mission, https://earth.esa.int/web/

guest/missions). The remarkable coverage and resolution of remote sensing data are ex-

tremely beneficial in the investigation of the impacts of environmental change, especially for

those inaccessible remote areas on Earth.

In 2002, ESA launched its Earth observation mission, Envisat. It was ESA’s successor to

the European Remote Sensing satellite, which was retired in 2001. With 10 instruments

aboard and at eight tons, Envisat was the largest civilian Earth observation mission. The

advanced radio/spectrometers on board were designed to measure the ocean surface tem-

perature, atmospheric ozone, wind fields, land features, etc (https://earth.esa.int/web/

guest/missions/esa-operational-eo-missions/envisat). Unfortunately, the satellite

lost contact with the Earth in May 2012, thus ending the mission. However, during its ten-

years’ mission, Envisat has provided scientists with some of the most valuable observations

and a novel source of information for understanding environmental change. Its successors,

Sentinel-1, 2 and 3, were launched between 2014 and 2017, continuing the mission of Earth

observation.

The appealing features of remote-sensing data bring new problems to the processing and

modelling of data. The wide coverage and high resolution means the data are usually of

large volume. The occasional obscuring of the Earth due to cloud cover means that data

1
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Chapter 1. Introduction 2

can be missing from time to time. Therefore, conventional statistical methods may not be

appropriate for this new source of data and there is a great demand for novel approaches to

the analysis of the remote-sensing data. This thesis develops statistical methods to address

these challenges. The research is motivated by remote-sensing image time series data of lakes

across the world obtained by two of the radio/spectrometers on board the Envisat, Advanced

Along-Track Scanning Radiometer (AATSR) and the Medium-spectral Resolution Imaging

Spectrometer (MERIS).

1.1 Remote-sensing measurements of lakes

As described in the overview of the Globolakes project (http://www.globolakes.ac.uk),

‘the Earth’s freshwater ecosystems are vital components of the global biosphere, yet they are

vulnerable to the forces of climate and human induced change’. So far, peoples’ understanding

of lakes’ response to these changes and their impacts on the status of lakes are still limited.

Recent developments in remote-sensing and data retrieval technology provide an opportu-

nity to study the ecological condition of lakes from a brand-new perspective. Scientists are

interested in the study of various remote-sensing measurements of lake ecology, such as lake

surface water temperature (LSWT) and Chlorophyll a (Chl). LSWT reflects the physical

dynamics of lakes. The data are retrieved from the measurements of AATSR for 2002 onward

and ATSR (the predecessor of AATSR) prior to 2002 (MacCallum & Merchant, 2013). Both

ATSR and AATSR are imaging multi-spectral radiometers, primarily designed to measure

sea surface temperature (SST) and the spatial resolution of the infra red ocean channels is

1km × 1km (Hout et al., 2001) (here ‘km’ stands for kilometer). Chlorophyll a is an indicator

of lake ecosystem condition and change. The data are retrieved from the measurements of

MERIS (Doerffer & Schiller, 2008), a programmable, medium-spectral resolution, imaging

spectrometer operating in the solar reflective spectral range. The spatial resolution of the

ocean channels is 1040m × 1200m (here ‘m’ stands for meter); that of the land and coast

channels is 260m × 300m (Hout et al., 2001). The next two subsections provide a detailed

description of the LSWT and Chl data.

1.1.1 Lake surface water temperature and Chlorophyll data

First note that the phrase ‘remote-sensing data’ in this thesis refers to the satellite pro-

cessed data, such as the LSWT and Chl data. They are different from the satellite raw

http://www.globolakes.ac.uk
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measurements, which are often recorded as intensity of the radiance per unit area. These

raw measurements are transformed into ‘remote-sensing data’ using advanced retrieval al-

gorithms, which associates the radiation measurements with the reflectance characteristics

of different objects on Earth. For example, the SST retrieval algorithm requires a radiative

transfer model, accompanied by observed radiance and other calibration data, to define the

optimal retrieval coefficients (Merchant & Le Borgne, 2004). During the process of LSWT

retrieval, there is also the need for cloud detection based on a Bayesian approach (MacCal-

lum & Merchant, 2012). There are various types of uncertainty associated to this process

(Rodgers, 1990). Some of them have been quantified, but the rest are still unknown. These

uncertainties are not considered in this research, i.e. the analyses in this thesis do not account

for the measurement errors of the retrieved data due to data availability.

The LSWT data were derived from the (A)ATSR observations. The ARC-Lake project pro-

cessed the (A)ATSR data to obtain the LSWT for more than 900 lakes across the world, from

June 1995 to April 2012. The spatial resolution of the retrieved LSWT data is 0.05◦ × 0.05◦

(here ‘◦’ stands for degree in the geographical coordinates). Data sets typically consist of

monthly aggregated measurements as spatial images, spatially aggregated lake mean prod-

ucts, etc (MacCallum & Merchant, 2013). They are available from the ARC-Lake v3.0

database (http://www.geos.ed.ac.uk/arclake/data.html). Reconstructed LSWT using

geographical empirical orthogonal functions (EOFs) (Alvera-Azárate et al., 2005) are also

provided by the ARC-Lake project. The LSWT data was originally recorded in Kelvin and

can be converted to Celsius by adding 273.15. The monthly aggregated LSWT data of Lake

Victoria are used throughout the thesis. The lake, named by explorer John Hanning Speke

after Queen Victoria, is the second largest fresh water lake on Earth. It is located between

31◦39′E−34◦53′E and 03◦00′S−00◦20′N, covering an area of of 68,800 km2. The ARC-Lake

retrieved LSWT of Lake Victoria is defined on a grid of 65× 66 = 4290 pixels, among which

2313 are identified as lake pixels. For monthly aggregated LSWT, this gives a data set of

dimension 2313 × 203, or effectively an array of 65×66×203, if the entire grid is considered.

The Lake Victoria LSWT data show strong seasonality in individual pixels. In the meantime,

there is large variation across the pixels, displaying interesting spatial/temporal patterns.

The Chlorophyll data, recorded in mg/m3, were processed by the Diversity II project (http:

//www.diversity2.info/products/) using the MERIS measurements. The Diversity II

demonstration sites include 340 large perennial inland waters distributed around the world.

The spatial resolution of the monthly Chl data is 300m × 300m and the temporal coverage is

from 2002 to 2012. Monthly, yearly and decadal aggregates are available from the database

http://www.geos.ed.ac.uk/arclake/data.html
http://www.diversity2.info/products/
http://www.diversity2.info/products/
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(Brokeman Consult GmbH, 2015). The Globolakes project (http://www.globolakes.ac.

uk/) covers a wider range of lakes globally, of more than 1000 lakes over 20 years. However,

data are not fully accessible to the public currently. As the research in this thesis is associated

with the Globolakes project, permission is given to use the Chl data of Lake Victoria as

illustrations in this thesis. There are 732,585 pixels in the Lake Victoria Chl data set. The

time coverage is from July 2002 to May 2012, giving 119 months in total. While sharing

some common physical features as the LSWT data, the spatial/temporal dynamics of the

Chl data behave in a slightly different way than the LSWT data. This difference helps to

highlight some properties of the statistical methods investigated in this thesis.

1.1.2 Features of data and their influence on statistical analysis

One distinctive feature of the remote-sensing data is its dimensionality and large volume. The

data are usually recorded as 3-dimensional arrays, defined by three coordinates, longitude,

latitude and time. Observations may be densely recorded for either coordinate. The number

of observations along each coordinate, when multiplied together, could result in thousands

or millions of observations, presenting challenges to data analysis. This problem is referred

to as ‘high-dimensionality’ in this thesis, although it is actually a combination of dimension

and volume, not necessarily corresponding to data in a high dimensional space. Typically,

there are two perspectives to investigate this type of data, (i) as a collection of time series,

observed over a vast number of spatial locations, (ii) as a time series of spatial images, each

consisting of a large number of pixels. Each has its own advantages according to the purposes

of the analysis. However, neither perspective is straightforward to reveal the spatio-temporal

features of the data due to the dimensionality. It would be attractive to develop a modelling

framework to carry out the investigations of a large number of time series/images.

The second feature is the high percentage of missing observations per image/time series,

which is referred as ‘sparsity’ in this thesis. It is a result of, e.g. cloud cover and the

satellite orbit, and is common to the majority of remote-sensing data (Brokeman Consult

GmbH, 2015, MacCallum & Merchant, 2013). For example, there are 7 months without a

single observation in the Lake Victoria LSWT data set. For the rest of the months, the

average missing percentage reaches almost 50%. Table 1.1 summarises the percentage of

data available for the monthly images in the data set. 47 images show substantive missing,

where less than 30% of the data are observed. To fully illustrate the sparsity in the LSWT

data, plots using two perspectives (i) and (ii) described above, were produced. Figure 1.1

http://www.globolakes.ac.uk/
http://www.globolakes.ac.uk/
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provides examples of the time series in 4 different pixels; Figure 1.2 presents images recorded

at 8 different time points. The colours reflect the values of the LSWT, with the green end

of the palette indicating low values and the blue end indicating high valuesi. Figure 1.1

suggests that there can be long periods of no observation in certain pixel locations; whereas

Figure 1.2 suggests that the missing in space often appears as missing regions. Conventional

statistical methods may not be applicable due to the missing data. There is often a need to

modify the specification or the algorithm in order to accommodate the sparsity.

Table 1.1: A summary of the percentage of data available for 203 LSWT images of Lake
Victoria.

% data available ≤ 30% 30%− 50% 50%− 80% ≥ 80%
image counts 47 (7 blank) 50 68 38
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Figure 1.1: Examples of the sparse LSWT time series of Lake Victoria from 1995 to 2012
recorded at four different pixel locations.

Finally, the spatial/temporal dependence of the remote-sensing data is worth mentioning.

This is not a feature unique to remote-sensing data, but is common to all spatio-temporal

data. However, the dimensionality and sparsity of remote-sensing data make the spatial/tem-

poral dependence especially interesting. On the one hand, these features complicate the

modelling of the spatial/temporal correlation, as a result of the computational intensity, the

adaptability of model specification and the estimation algorithm. On the other hand, the

iThe same colour scheme is used throughout the thesis for displaying the image data (LSWT and Chl).
The ranges of the values varies from figure to figure, but the green end of the palette is always for low values
and the blue end for high values.
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Figure 1.2: Examples of the sparse LSWT images of Lake Victoria from eight different
time points. The green end of the palette indicates low values and the blue end indicates high
values. The horizontal and the vertical axes represent longitude and latitude respectively.

process of dimension reduction and missing data imputation may benefit immensely from

such a dependence structure.

1.2 Aims and objectives

The aim of this thesis is to provide novel statistical approaches to the analysis of the remote-

sensing lake environmental data, so that the results may be used by ecologists to study

the functions of lakes under climate change. It is of special interest to identify the general

spatial/temporal patterns in the remote-sensing data for individual lakes. Specifically, there

are three main objectives of this research.

(a) Dimension reduction . The aim is to reduce the complexity in the data whilst

identifying the main spatial/temporal features in the data. To achieve this, smoothing

and functional data analysis techniques, using both univariate and bivariate functions,

are investigated and developed.

(b) Missing data imputation . Reliable imputations can improve the analyses of the

data. To provide better data imputations, statistical methods based on mixed effect

models are investigated. In particular, methods that combine the mixed effect model
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and the functional data representations are developed to impute the missing values

through a lower dimensional model with higher computational efficiency.

(c) Spatial-temporal modelling . To model the spatial/temporal structures in the remote-

sensing image time series, a classic spatio-temporal modelling framework using hierar-

chical design is investigated and a novel spatio-temporal model is proposed by extending

existing models for sparse, high-dimensional data. The new model improves the data

imputation and the extraction of the spatial/temporal patterns.

In the next section, statistical methods that are fundamental to the objectives of this research

are introduced briefly.

1.3 Preliminary methodologies

1.3.1 Dimension reduction, smoothing and functional data analysis

The approaches to dimension reduction in this thesis are smoothing and functional data rep-

resentation. Smoothing is a non-parametric technique for flexible modelling of non-linearity

in curves, images, etc. Ruppert et al. (2003) described it as a method of ‘freeing oneself of

the restriction of parametric regression models’. Without loss of generality, consider a model

involving one univariate smooth function f(x), expressed through a collection of K basis

functions φk(x) and basis coefficients βk,

Zi = f(xi) + εi =
K∑
k=1

φk(xi)βk + εi , (1.1)

where Zi, i = 1, · · · , n, are the observed data and xi is the function argument associated with

Zi. Various data features can be modelled using appropriately chosen basis functions, e.g.

Fourier basis for periodical patterns, natural cubic spline and B-spline bases for curvature.

The basis coefficients are often estimated using ordinary least squares. A penalty is sometimes

added to the estimation for more flexibility on the smoothness of function f(x). In these

situations, the estimation criterion can be written as (Wood, 2006)

‖ Z −Φβ ‖2 +ωβ>Sβ (1.2)

where Z is the vector of data Zi, i = 1, · · · , n; Φ is the basis matrix, whose columns are

basis functions φk(x), k = 1, · · · ,K, evaluated at x = xi, i = 1, · · · , n; β is the vector of
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basis coefficients βk, k = 1, · · · ,K; S is a penalty matrix, such as the second derivatives

of f(x), and ω is a smoothing parameter controlling the smoothness of the fit. Typically,

ω → 0 indicates no penalty, resulting in a wiggly fit; whereas ω → ∞ would force β>Sβ to

0 so that criterion (1.2) can be minimized (as anything else would make it ∞), producing a

smooth fit. The general estimation equation for β can be written as

β̂ =
(
Φ>Φ + ωS

)−1
Φ>Z . (1.3)

Methods for selecting smoothing parameter ω include (generalized) cross validation, infor-

mation criteria, restricted maximum likelihood, etc (Reiss & Ogden, 2009, Wood, 2006).

Smoothing itself is not intended for dimension reduction. However, when it is paired with

functional data analysis (FDA), the effect of dimension reduction becomes almost instant.

FDA views the observations of individual objects in the data set as realizations of certain

smooth functions, e.g. univariate functions for curves, bivariate functions for images. In

other words, the ‘observation’ in FDA is a function and statistical analysis is carried out

at the function level. Continuing the above example, consider now that the data collection

process is carried out T times and at each time n observations are obtained, giving data Zti,

t = 1, · · · , T , i = 1, · · · , n. Treat the T repeated measures as the ‘individual objects’ and

assume that data are smooth by nature. Functions, ft(x), t = 1, · · · , T , can be obtained

by smoothing the data Zti, i = 1, · · · , n, at time t respectively using model (1.1). Applying

FDA on these functions means that a high-dimensional problem of T × n observations is

transformed into a low-dimensional problem of T smooth function. This is very appealing

for remote-sensing data, which often have much higher dimension in space than in time

(n � T ). Some frequently used FDA methods include, functional regression, functional

clustering, functional PCA, etc (Ramsay & Silverman, 1997). The technique used in this

thesis is the functional principal component analysis (FPCA). Details on the estimation and

interpretation of the FPCA are provided in Chapter 2.

1.3.2 Missing data imputation, mixed effect model and EM algorithm

There are typically regarded to be three categories of missing data, missing completely at

random (MCAR), missing at random (MAR) and not missing at random (NMAR) (Little

& Rubin, 2002). The first category assumes that the probability of an observation being

missing is independent of the observed and missing values of data. The second category
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describes a situation where the probability an observation is missing is independent of the

values that are missing, but may depend on the values of the data that are observed. In the

third category, there is often a missing data mechanism associated with the missingness. In

practice, data which are categorized as MCAR or MAR are often modelled with the missing

data mechanism ignored. Discussion on the ignorability of the missing data mechanism and

its modelling strategies can be found in Lu & Copas (2004), Seaman et al. (2013), etc.

Due to the complexity of the satellite measurements and retrieval algorithm, there is no

universal agreement on whether the missingness should be treated as random or systematic.

The missingness in the remote-sensing data considered in this thesis (LSWT and Chl) is

associated with cloud cover and satellite orbit tracks (Brokeman Consult GmbH, 2015, Mac-

Callum & Merchant, 2013), two factors that are independent of the unobserved values of the

variable. There are situations where the missingness is a result of the data retrieval algo-

rithm. As some algorithms perform better in certain spectral range than others, the value of

an observation (a realization of the observed spectrum) may actually affect the probability it

is missing. However, as the retrieval algorithms are often complicated and the data product

may even be a blend of several algorithms, it is impractical to form a missing data mechanism

based on these and incorporate it into the modelling. Therefore, the missing data mechanism

is not considered and the missing data are treated as MAR in this thesisii.

Under the scenario of MAR, the missing data mechanism may be ignored in the modelling

process (for likelihood inference and Bayesian inference alike), if the parameters governing

the missing data mechanism are distinct from the parameters in the model (Heitjan & Rubin,

1991, Lu & Copas, 2004). In this thesis, the distinctness of parameters is assumed. Statis-

tical methods based on the mixed effect modelling framework using likelihood inference are

adopted to impute data that are MAR. This approach offers the possibility of utilizing the

entire data set to improve data imputation. A general linear mixed effect model can be

written (using matrix notation) as

Z = Xfb+Xrη + ε , (1.4)

where Z is a vector of observations, Xf is matrix of the fixed effect covariates and Xr is the

design matrix of the random effect. Xr is usually specified based on the type of random effect,

such as individual effect and group effect. Distributional assumptions are often assigned

iiFor data as combinations of different algorithms, the blending process would reduce the chance of an
observation being missing due to algorithm failure. This reduces the influence of the missing data mechanism.
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to both the random effect coefficient η and the model residual ε as, η ∼ N (0,R) and

ε ∼ N (0,V ). This gives the covariance matrix of the model

Σ = Cov[Xrη + ε] = XrRX
>
r + V . (1.5)

According to Ruppert et al. (2003), given Σ, the fixed effect coefficient can be estimated

using generalized least squares; given β and Σ, the random effect η can be obtained as the

best linear predictor based on conditional distribution of η|Z. That is

b̂ =
(
X>f Σ−1Xf

)−1
X>f Σ−1Z , (1.6)

η̂ = RX>r Σ−1(Z −Xfb) . (1.7)

Model parameters R and V can be estimated using maximum likelihood (ML) or restricted

maximum likelihood (REML), which is an averaged version of ML over all possible values of

b. The corresponding log-likelihood based on the observed data are

L(Ψ;Z) = −1

2

{
ln(|Σ|) + (Z −Xfb)

>Σ−1 (Z −Xfb)
}

+ constant

for ML and

Lre(Ψ;Z) = −1

2

{
ln(|Σ|) + (Z −Xfb)

>Σ−1 (Z −Xfb) +X>f Σ−1Xf

}
+ constant ,

for REML, where Ψ = {R,V } is the parameter collection. On substituting equations (1.5)

and (1.6) into the log-likelihood functions, the maximum likelihood estimates (MLEs) of R

and V can be obtained (Ruppert et al., 2003).

In some situations, it is easier to maximize the joint log-likelihood of the observed data

and the random effect component L(Ψ;Z,η) based on f(Z,η) = f(Z|η)f(η) than the log-

likelihood of the observed data alone L(Ψ;Z). This is due to the complexity in evaluating the

derivatives of the observed log-likelihood L(Ψ;Z) to obtain the MLEs. One way to implement

the estimation using L(Ψ;Z,η) is the expectation-maximization (EM) algorithm. It is a

general method for obtaining MLEs in incomplete data problems (Little & Rubin, 2002). The

algorithm, first formalized in statistical literature by Dempster et al. (1977), consists of two

iterative steps, (a) an expectation step (E-step), where the missing information is estimated

based on a conditional distribution evaluated at the current parameter estimates and the

expectation of the complete data log-likelihood is computed accordingly, (b) a maximization
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step (M-step), where the parameters are updated through maximizing the expectation of the

complete data log-likelihood.

In terms of a mixed effect model, the complete data are often defined to be the joint of the

observations and the random effect {Z,η}, with the random effect η treated as the missing

information. This gives an incomplete data problem which can be estimated using the EM

algorithm. Specifically, in the it-th iteration, the E-step calculates the expectation of the

joint log-likelihood

Q
(

Ψ; Ψ(it−1)
)

= E
[
L(Ψ;Z,η)

∣∣∣Z,Ψ(it−1)
]
.

The M-step then updates the parameter estimation to Ψ(it), such that the condition

Q
(

Ψ(it); Ψ(it−1)
)
≥ Q

(
Ψ; Ψ(it−1)

)
, ∀ Ψ ∈ W

is satisfied, where W is the parameter space. The iteration terminates when certain con-

vergence criterion is met. Various extensions have been developed based on this general

framework. This is discussed in detail in later chapters.

1.3.3 Spatial/temporal dependence and dynamic models

The spatial/temporal patterns in environmental data are usually of great interest, as they

help to answer questions about long term change, spatial clustering of environmental vari-

ables, coherent evolution under climate change, etc. In order to model these patterns, the

spatial/temporal dependence needs to be assessed appropriately.

One way of describing the spatial/temporal dependence is through some descriptive functions

of correlation/covariance. The autocorrelation function (ACF) is one of the most important

measures of the temporal dependence. Typically, for a temporal process {Zt}, t ∈ T , a lag-τ

ACF measures the linear dependence of the series at time t on the observation at time t− τ .

For a second-order stationary process, the ACF is determined through the time lag τ only,

denoted as ρ(τ) (Shumway & Stoffer, 2006). A frequently used measure to quantify spatial

dependence is a (semi-)variogram. For a spatial process {Zs}, s ∈ D, the semi-variogram is

defined as (Cressie, 1993)

γ(s, r) =
1

2
Var[Zs − Zr] (1.8)

=
1

2
(Var[Zs] + Var[Zr]− 2Cov[Zs, Zr]) , s, r ∈ D .
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For a second order stationary spatial process, γ(s, r) is determined only through the spatial

difference h = s− r, giving

γ(h) = Var[Zs]−Cov[Zs, Zs+h] .

Furthermore, for an isotropic spatial process where the spatial correlation being the same

whichever direction it takes, the spatial lag can be replaced by the Euclidean distance ‖h‖ =

‖s − r‖. The semi-variogram can be linked to a correlation function ρ(h), which describe

the type of the spatial dependence, e.g. Gaussian, exponential and Matérn.

For a spatio-temporal process, {Z(s,t)} defined on s ∈ D, t ∈ T , the covariance function

is often written as Cov[Z(s;t), Z(r;u)] = C((s; t), (r;u)) for some positive-definite function

C((s; t), (r;u)) on Rd × R, for d-dimensional spatial domain D and 1-dimensional temporal

domain T (Cressie & Wikle, 2011). Depending on different assumptions, various types of

covariance models can be constructed, such as

Cov[Z(s;t), Z(r;u)] = C(st)(s− r; t− u)

for a second-order stationary spatio-temporal process and

Cov[Z(s;t), Z(r;u)] = C(s)(s, r)C(t)(t, u)

for a space-time separable covariance structure, where C(s)(�, �) and C(t)(�, �) are valid spatial

and temporal covariance functions respectively. A separable covariance function is perhaps

the easiest to implement, hence received extensive study over the years. However, such a

setting is not always realistic in practice. Readers are referred to Cressie & Wikle (2011) for a

review. For non-separable covariance structures, methodologies such as the spatio-temporal

variogram, spectral representation (Cressie & Huang, 1999) and Taylor’s hypothesis in fluid

dynamic (Gneiting, 2006), have been developed to model the covariance functions. However,

as pointed out in Cressie & Wikle (2011), these models usually play ‘a descriptive role in

representing the spatio-temporal dependence in the process... That is, it is very difficult

to look at a covariance function and determine the etiology of the spatio-temporal process

under study ’. An alternative method to construct a valid covariance function directly is

to model the spatial/temporal covariance structure based on a specific type of stochastic

partial differential equations (SPDE), which can be linked to the Gaussian Markov random

fields (Lindgren et al., 2011). The authors established the connections between the SPDEs
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and the precision matrices of a wide variety of spatial/temporal processes, including non-

stationary, non-separable, anisotropic processes, etc. This is a flexible approach, though its

interpretation is again non-trivial.

A slightly different way of describing the spatio-temporal dependence is through a dynamic

model, where the dependence is motivated by the evolution of, e.g. physical, chemical and

economic processes. Such models are usually built on the conditional distributions describing

how the current state behaves given the ‘nearby’ current and past values (Cressie & Wikle,

2011). For example, a general model for the dependence of a spatial process at time t on

that of time t− τ , for a positive real value τ , can be written as

Z(s;t) =Mt

(
s,Z(�;t−τ)

)
+ ε(s;t) , (1.9)

where function Mt(�, �) depends on both the spatial location s and the observations at

time t − τ , Z(�;t−τ). The function Mt(�, �) is possibly non-linear and can be either time

dependent or invariant, providing enough flexibility to generate the (non)stationary spatio-

temporal processes. Some examples of the discrete time Mt(�, �) function are first-order

vector autoregressive model, or VAR(1) model

Z(�;t) = MZ(�;t−1) + ε(�;t) ,

and stochastic integro-difference equation (IDE)

Z(s;t) =

∫
D
m(s,x)Z(x;t−1)dx+ ε(s;t) .

Note that both examples use τ = 1, which is the unit of the discretization of time. Cressie &

Wikle (2011) encourage the use of scientific knowledge to motivate the design of theMt(�, �),

in the sense of a ‘physical statistical’ model. A review on this topic can be found in Wikle

& Hooten (2010).

In this thesis, a particular type of spatio-temporal process, referred to as the ‘time series of

spatial process’ in Cressie & Wikle (2011), receives in-depth investigation. The process can

be written as

Zt(�) ≡
{
Z(s,t) : s ∈ Dt

}
, t = 1, 2, · · ·

with the index t in Dt emphasising that the spatial index set is allowed to change with time.

The dynamic model (1.9) for this type of process thus becomes
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Zt(s) =Mt (s,Zt−1(�)) + εt(s) , s ∈ Dt (1.10)

It is straightforward to see that the remote-sensing image time series can be viewed as a time

series of spatial process. Therefore, model (1.10) can be used to describe the spatio-temporal

dependence of the data studied in this thesis. Perhaps an even more attractive feature is the

model’s potential to achieve dimension reduction through appropriate design of the system

dynamics (Wikle & Cressie, 1999). Investigation with respect to this route is carried out in

Chapter 4.

1.4 Thesis structure

This remainder of the thesis is made up of five chapters. Chapter 2 presents the exploratory

analysis of the spatial and temporal features of the remote-sensing data, using the Lake

Victoria LSWT data as an example. Studies from both the temporal curves and spatial

images perspectives were carried out. Classic techniques, such as harmonic regression and

autoregressive models, spatial smoothing and covariogram models are used to investigate the

spatial and temporal properties of the data. The chapter also presents an initial investigation

of the data using FPCA. Based on the exploratory analysis, a baseline model for analysing

the sparse image time series is introduced in Chapter 3. The model inherits the specifications

of FPCA, but is parameterized as a mixed effect model. Model estimation exploits the EM

algorithm, so that the missing data problem can be overcome. However, this model assumes

that there is no temporal dependence between images, which could be problematic in some

situations. Therefore, methodologies for incorporating the temporal correlations between

the images are explored in Chapter 4. In particular, a dynamic spatio-temporal modelling

framework is investigated, with special attention paid to model specification and computa-

tion details. Based on these studies, a spatio-temporal model that updates the mixed model

FPCA is proposed to analyse the sparse image time series, along with an estimation method

making use of an extension of the EM algorithm. Chapter 5 is dedicated to the investigation

of the proposed model, using both simulated and real remote-sensing data. A study on the

asymptotic behaviors of the estimation algorithm is presented, followed by an application

of the proposed model to the Lake Victoria LSWT and Chl data. Final remarks on these

methodologies and potential future works are provided in Chapter 6.
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Before leaving this chapter, a list of subsets of the Lake Victoria LSWT and Chlorophyll

data used in the thesis for illustration purposes is presented here.

(a) The ‘Re LSWT’ data set. This is a subset of the ARC-Lake reconstructed LSWT of

Lake Victoria. It is defined on a grid of size 26×27 and consists of 203 monthly images

with no missing observations. The data set is used where complete data are required

in order to implement the method.

(b) The ‘LSWT section’ data set. This is extracted from the sparse LSWT data of Lake

Victoria. It is defined on a grid of size 34×24 and consists of 202 monthly images with

missing observations. This data set is used in the thesis for general illustrations.

(c) The ‘Artificial section ’ data set. This is constructed using the reconstructed LSWT

data of Lake Victoria. It is defined on the same grid as the ‘LSWT section’ data set,

with sparsity imposed using the missing patterns of the ‘LSWT section’ data set. This

data set is used in model investigation because it provides ‘true values’ for the missing

observations, which is helpful in assess the quality of data imputation.

(d) The ‘Chl section’ data set. This is a subset of the 3 × 3 spatially aggregated Lake

Victoria Chlorophyll data, defined on a 36 × 36 grid, including 119 monthly images.

The spatial aggregation is carried out by taking the average of the values from 9 pixels

in a 3× 3 grid and then using this averaged value as the observation of the larger pixel

which covers the 3× 3 gridiii. This data set is used in model investigations because the

Chl data display different spatio-temporal feature as compared to the LSWT data and

can thus highlight model properties that cannot be discovered using the LSWT data.

(e) The applications of the main statistical methods in this thesis are carried out on larger

date sets, for both the LSWT (size: 47×57×202) and Chlorophyll (size: 72×72×119)

data of Lake Victoria. Details of the two application data sets are provided in the

corresponding sections of Chapter 3 and 5.

iiiThis can be done using the R package raster.



Chapter 2

Exploratory analysis

Nothing puzzles me more than space and time.

Charles Lamb (1810)

This chapter presents the exploratory analysis of the remote-sensing image time series. The

data used as illustrations are the LSWT data of Lake Victoria. Standard time series and

spatial analysis are carried out to investigate the data from two perspectives (a) temporal

curves recorded for 2313 pixels in a 65× 66 grid, (b) spatial images recorded monthly from

May 1995 to April 2012. Functional principal component analysis is applied to explore

the general spatial and temporal patterns in the data set. Drawbacks of these methods on

applying to remote-sensing data are discussed and potential solutions to these problems are

reviewed at the end of the chapter.

2.1 Investigating temporal patterns

Exploratory analysis was first carried out from the temporal perspective, that is, modelling

the time series of LSWT in individual pixels. The aim was to investigate the long-term tem-

poral patterns in the time series other than the obvious seasonal patterns. The main approach

used here was harmonic regression with residual autocorrelation structure incorporated as

an auto-regressive (AR) model.

16
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2.1.1 Harmonic regression

Harmonic regression is frequently used to model periodic data (Pigorsch & Bailer, 2005). The

model considered in this analysis consists of a harmonic component and a general temporal

trend component, to capture the strong seasonal patterns and the potential long-term trend

in the data. A general harmonic regressors can be written as a sinusoid signal

A cos(2πνt+ ϕ) ,

where t is the time covariate, A represents the amplitude, ν is a parameter associated with

the frequency and ϕ is the phase parameter. Since the majority of the LSWT time series

have one peak and one trough within a 12-month cycle, ν = 1
12 was used in this problem. Ex-

panding the above sinusoid and re-parameterizing the coefficients gives the specific harmonic

regressors,

A1 cos

(
2πt

12

)
+A2 sin

(
2πt

12

)
.

The general temporal trend component can be formulated using polynomials of covariate t.

To allow more flexibility, a smoothed function of t was considered here, giving

Zt = A1 cos

(
2πt

12

)
+A2 sin

(
2πt

12

)
+ f(t) + εt . (2.1)

In the above model, Zt is the LSWT at time t. Smooth function f(t) is constructed using a

cubic spline basis as f(t) = Φ(t)β, with basis Φ(t) = (φ1(t), · · · , φK(t)) and basis coefficient

vector β. Note that the intercept term of the model is incorporated in the basis, correspond-

ing to φ1(t) = 1. The smoothness of function f(t) is penalized by the integrated squared

second derivative (Wood, 2006)

P(f) =

∫
T

[
f ′′(t)

]2
dt .

The above penalty can be written in the form of β>Sβ as described in section 1.3.2. In

this case, the matrix S is determined by the second derivative of the basis matrix Φ. The

minimization criterion of this problem thus becomes

∑
t

[
Zt −A1 cos

(
2πt

12

)
−A2 sin

(
2πt

12

)
− Φ(t)β

]2

+ ωβ>Sβ .

Additionally, the model residuals are assumed to be independently and identically distributed

(i.i.d) with εt ∼ N (0, σ2). The time point t = 0 is taken to be the January 1995, which is
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the first month of the year when the observing began.

The effective degrees of freedom (EDF) was used to measure the smoothness of function f(t)

in model (2.1). In a simple regression model, the degrees of freedom are determined by the

dimension of the design matrix. Whereas in a regression model using smooth functions, such

as Z = Φβ+ε, the dimension of the basis matrix Φ usually does not reflect the actual degrees

of freedom of the model. According to Wood (2006), ‘the basis dimension is only setting an

upper bound on the flexibility of a term: it is the smoothing parameter that controls the actual

effective degrees of freedom.’. For a smooth term Φβ, with associated penalty P(f) = β>Sβ

and smoothing parameter ω, the EDF can be computed as

EDF = tr

{
Φ
(
Φ>Φ + ωS

)−1
Φ>
}
, (2.2)

where tr{�} denotes the trace of the matrix. Due to the existence of the penalty, the EDF

is always smaller or equal to the dimension of the basis, with equality holding when ω = 0.

In addition, the above trace does not need to be an integer, neither does the EDF. In

fact, it can take any real value between 1 and the number of parameters. For example, in

terms of model (2.1), EDF = 1 would suggest a constant (or intercept) term and EDF = 2

corresponds to a linear function of t. The EDF is sometimes used in model selection for the

optimal smoothness of the fitted function.

As mentioned in section 1.3.1, the smoothing parameter ω also needs to be selected. Some

frequently used methods include cross validation,

CV(ω) =
1

T

T∑
t=1

[
Zt − f̂ [−t](t)

]2
,

and generalized cross validation,

GCV(ω) = T

∑T
t=1[Zt − f̂(t)]2

[tr{I − P̃ }]2
= T

‖ (I − P̃ )Z ‖2

[tr{I − P̃ }]2
,

where f̂ [−t](t) is the smooth function, with smoothing parameter ω, fitted to all the data

except Zt, f̂(t) is the smooth function, with smoothing parameter ω, fitted to all the data,

P̃ = Φ
(
Φ>Φ + ωS

)−1
Φ> is the influence (or projection) matrix andZ is the vector of all Zt,

t = 1, · · · , T . Alternatively, various information criteria can be used in the selection. These

criteria are often formulated as twice the negative log-likelihood of the model (a measure of

distance between the candidate model and the ‘true’ model) plus certain forms of penalty on
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the degrees of freedom. Two of the most frequently used information criteria are

AIC = −2L(Ψ̂, ω;Z) + 2q , (2.3)

BIC = −2L(Ψ̂, ω;Z) + log(n)q , (2.4)

where L(Ψ̂;Z) is the log-likelihood evaluated at Ψ̂ with smoothing parameter ω, q is the

dimension of the parameter collection Ψ and n is the number of observationsi. The ω value

minimizing equation (2.3) and (2.4) is considered as the solution. Although sometimes,

the AIC/BIC values may only be used as a guide, as the results can be misleading when the

number of observations is not large enough compared to the dimension of the model (Hurvich

et al., 1998), or when the data are highly correlated.

In this analysis, all the LSWT time series of Lake Victoria of pixels with over 50% observa-

tions available were investigated using model (2.1). Function gam in R package mgcv (Wood,

2011) was used to fit the models. The model was estimated using REML, where the smooth-

ing parameter ω was selected by re-parameterizing the higher order smooth component as

random effect and incorporating the smoothing parameter into the model covariance struc-

ture. In the package mgcv, the influence of the intercept is not counted in the output of the

EDF. It gives the value of (2.2) minus 1. That is, EDF = 1 from the gam output corresponds

to a linear function of t. It is found that 94.8% of the fitted smooth functions have EDF

between 1 and 2, the majority of which have EDF just slightly larger than 1. This means

that most of the estimated f̂(t) are nothing more than a linear function of t. Additionally,

the p-values based on the pseudo-inverse of the covariance matrix of the estimated basis

coefficient β̂ (i.e. the approximated significance of the fitted smooth function) are large in

most of the cases, suggesting that f̂(t) have very limited influence on these models.

Figure 2.1 is a map showing whether the time series in a pixel is considered to have a temporal

trend or not. The dark grey dots represent pixels with EDF < 2; the red dots represent pixels

with EDF ≥ 2. The majority of the dark grey pixels have approximated p-values greater

than 0.05, suggesting that no distinctive linear temporal trend is found in the majority of

the pixels. The red pixels may be considered as to exhibit certain non-linear temporal trend,

although some of them still have relatively large approximated p-values. Two examples of

the fitted harmonic regression models (2.1) are given in Table 2.1. The models were applied

to two dark grey pixels in the map, each with more than 80% of the data observed. Both

iNote that for a model involves smoothing, the dimension of the parameters associated with the smooth
term is determined by the effective degrees of freedom, not the number of elements in the parameter collection.
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models have EDF slightly over 1 and approximated p-values greater than 0.05. Based on

these results, it can be concluded that there is no clear long-term trend in the LSWT time

series for the majority of the pixels of Lake Victoria. Therefore, in the rest of the analysis,

the harmonic regression model (2.1) is replaced by a model without trend component,

Zt = A0 +A1 cos

(
2πt

12

)
+A2 sin

(
2πt

12

)
+ εt , (2.5)

for simplicity and ease of comparison.
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Figure 2.1: Map of pixels (with ≥ 50% data available) investigated using model (2.1). The
dark grey dots represent pixels without temporal trend and the red dots represent pixels with
a temporal trend. The horizontal and vertical axes are longitude and latitude respectively.

Table 2.1: Results from the harmonic regression model (2.1) fitted to the LSWT time
series in two pixels, located at (33.275E◦,−2.375N◦) and (33.925E◦,−0.125N◦) respectively.

Location Intercept Â1 Â2 σ̂2 EDF of f̂(t) p-value of f̂(t)

33.275E◦,−2.375N◦ 24.81 0.29 1.02 0.42 1.001 0.362
33.925E◦,−0.125N◦ 25.58 0.34 0.49 0.32 1.317 0.793

2.1.2 Temporal autocorrelation

In the previous analysis, the model residuals were assumed to be independent and identically

distributed (i.i.d.). This is an assumption made to simplify the initial investigation and could

be inappropriate to model time series data. Therefore, the autocorrelations in the residu-

als from fitting model (2.5) are examined here using empirical (or sample) autocorrelation

functions (ACF) and variograms.
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For fully observed time series, under the second-order stationary assumption, the empirical

autocorrelation function can be computed as

ρ̂(τ) =

∑T−τ
t=1

(
Zt − Z̄

) (
Zt+τ − Z̄

)∑T
t=1

(
Zt − Z̄

)2 , (2.6)

where τ is the time difference (or time lag) and Z̄ = 1
T

∑T
t=1 Zt. However, for sparse or

irregularly observed time series, the computation of the empirical ACF can be difficult.

Alternatively, a method based on the idea of the variagrom in spatial statistics may be used

(Haslett, 1997). Variograms are often constructed as a function of the distance in space

(Cressie, 1993, Pigorsch & Bailer, 2005). Recall equation (1.8) from section 1.3.3 about the

variogram of a spatial process. The same formula can be adopted to examine the correlation

between two residuals with certain time difference apart. Rescaling the variogram formula

(1.8) by the variance of the residuals, a measure of the autocorrelation between the pair of

residuals, εt and εt+τ , can be constructed as

ρ(τ) =
γ(τ)

Var[εt]
=

Var[εt] + Var[εt+τ ]− 2Cov[εt, εt+τ ]

Var[εt]
(2.7)

The component γ(τ) in equation (2.7) is referred to as the ‘temporal variogram’ in the rest

of the thesis. A general procedure to compute the empirical ‘temporal variogram’, γ̂(τ),

consists of the following steps.

(a) Calculate the time difference τij between each pairs of residuals i and j; group the time

differences into M intervals, denoted as Lm, m = 1, · · · ,M .

(b) Calculate the empirical variance within each interval Lm.

γ̂m =
1

nm

∑
τij∈Lm

(εi − εj)2 ,

where nm is the number of residual pairs in interval Lm

(c) Plot γ̂m against the median of each interval Lm.

The resulting plot can be used to investigate how the temporal correlation changes with the

increasing time lag. For example, if a process displays a first order auto-regressive (or AR(1))

structure, εt = ψεt−1 + vt, then the empirical temporal variogram should be able to match

the theoretical ACF of an AR(1) process, ρ(τ) = 1−ψτ , rescaled by a factor of σ2 = Var[εt]

or its sample version (Haslett, 1997).
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Figure 2.2: (Left) The ACF plot of the residuals from model (2.5) fitted to the LSWT
time series of the pixels located at (33.275E◦,−2.375N◦). (Right) The plot of the first-order

difference between the adjacent residuals.

In this analysis, the empirical ACF as defined in equation (2.6) was used to investigate the

autocorrelations of time series from pixels with more than 75% data observed. The empirical

version of the temporal variogram (2.7) was applied to the time series with less data available.

Unfortunately, the sample variograms did not provide much useful information of correlation

structures of the LSWT time series. Most of the plots were too wiggly to draw any conclusions

from. This was the result of the relatively limited and unbalanced number of observations

within each interval Lm, m = 1, · · · ,M . Therefore, only the sample ACFs computed directly

using the R function acf from pixel locations with ≥ 75% observations were investigated.

Figure 2.2 presents the ACF plot of the residuals from fitting model (2.5) to the LSWT time

series of a pixel located at (33.275E◦,−2.375N◦) in the left panel and the corresponding plot

of the first-order difference, εt − εt−1, in the right panel. The ACF plot shows that, the

autocorrelations of the majority of the time lags τ fall within the 95% confidence interval

(indicated by the two dashed lines), apart from the lag-1 autocorrelation. This suggests that

the autocorrelations for all τ > 1 can be regarded as statistically not significant, which also

eliminates the necessity of accounting for the subtle periodic features in the ACF plot. In

this case, an AR(1) structure appears to be appropriate for the majority of the residual time

series under study.

Based on the above information, the harmonic regression model was refitted with an addi-

tional AR(1) residual correlation structure

Zt = A0 +A1 cos

(
2πt

12

)
+A2 sin

(
2πt

12

)
+ εt (2.8)

εt = ψεt−1 + vt ,
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where vt are i.i.d N (0, σ2
v) distributed. It can be easily shown that model (2.8) has a struc-

tured residual covariance matrix

Σ = σ2


1 ψ · · · ψT−1

ψ 1 · · · ψT−2

...
...

. . .
...

ψT−1 ψT−2 · · · 1

 .

This means that A0, A1, A2 can be estimated using generalized least squares described in

section 1.3.2. The MLEs of ψ and σ2 can be obtained accordingly as parameters of a mixed

effect model. In this analysis, the lme function from R package nlme (Pinheiro et al., 2016)

was used to fit model (2.8). Continuing the example of the time series in the pixel located at

(33.275E◦,−2.375N◦), the estimated AR(1) coefficient of the residual model is ψ̂ = 0.3368.

As shown in Table 2.2, the changes in the model coefficients are subtle, but estimates from

model (2.8) have larger standard deviations. These changes in standard deviations are the

result of accounting for the residual autocorrelation structure. It provides more reliable

confidence intervals for statistical inference. The same analysis was carried out on pixels

with ≥ 75% data available.

Table 2.2: A comparison of the temporal regression model (2.5) and model (2.8) fitted to
the LSWT time series from a pixel located at (33.275E◦,−2.375N◦)

Intercept/Â0 std Â0 Â1 std Â1 Â2 std Â2

model (2.5) 24.81 0.0513 0.29 0.0731 1.01 0.0715
model (2.8) 24.81 0.1551 0.31 0.0904 1.01 0.0882

2.1.3 Temporal analysis summary

In general, model (2.8) is capable of capturing the main seasonal patterns in the LSWT data

in individual pixels. An AR(1) structure is suitable for most of the residual series. However,

such an analysis does not provide much information of the spatio-temporal patterns of the

data. It is possible to compare the model results to examine how things change spatially.

For example, the estimated coefficients, A0, A1 and A2 from models fitted to different pixels

can be compared, as well as the estimated AR(1) coefficient ψ and the residual variance

σ2. However, little information about spatial patterns can be concluded from this type of

comparison. To some extent, the time series model (2.8) is only a basic interpretation of
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the data. More advanced modelling techniques are required to uncover the spatio-temporal

patterns in the LSWT data.

2.2 Investigating spatial patterns

Exploratory analysis of the remote-sensing LSWT data can also be carried out from the

second perspective of modelling the spatial images. In this section, spatial patterns for

individual LSWT images were investigated. Since most of the LSWT images are spatially

smooth, spline regression models were considered. Analogous to section 2.1, the spatial

autocorrelations were investigated using empirical variograms.

2.2.1 Bivariate spline regression

The modelling of the general spatial trend of the LSWT images was carried out using the

spline regression technique. The model can be written as

Z(x,y) = f(x, y) + ε(x,y) = Φ(x, y)β + ε(x,y) , (2.9)

where Z(x,y) represents the LSWT in the pixel indexed with geographical coordinate (x, y)ii,

f(x, y) is a smooth function, Φ(x, y) = (φ1(x, y), . . . , φK(x, y)) is a vector of bivariate basis

functions and β is the vector of basis coefficients βk, k = 1, · · · ,K. Again the intercept of

the model is included in the basis system, i.e. φ1(x, y) = 1. Various options are available

for Φ(x, y), such as tensor spline basis and 2-dimensional Fourier basis. In this exploratory

analysis, bivariate (or 2-dimensional) thin-plate regression splines were applied. Thin-plate

spline is known for its adaptability to different dimensions. In terms of a 2-dimensional

space, it has been shown to be equivalent to a kriging estimate of a spatial process with a

special covariance function (Nychka, 2000). For this reason, it is an appropriate choice for

modelling the spatial patterns.

The construction of the thin-plate regression splines begins with the basis and penalty of the

full rank thin-plate splines. The full basis is then truncated to obtain a low rank smoother

that ‘optimally’ approximates the full basis solution (Wood, 2003). Thin-plate spline smooth-

ing finds the estimation of the smooth function f(x), for x = (x1, · · · , xq), by minimizing

iiIt is appropriate to use the geographical coordinate directly here because Lake Victoria sits on the equator.
Transformation would be needed for lakes in higher latitude, such as using the spherical trigonometry.
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‖ Z − f ‖2 +ωPmq(f) , (2.10)

where Z is the vector of observations, f is the vector of evaluated smooth functions, ω is the

smoothing parameter and

Pmq(f) =

∫
· · ·
∫
Rq

∑
v1+···+vq

m!

v1! · · · vq!

(
∂mf

∂xv11 · · · ∂x
vq
q

)2

dx1 · · · dxq (2.11)

is the thin-plate penalty. Here Rq is the q-dimensional range space for x and m is chosen to

satisfy 2m > q. The minimizer of (2.10) is a function of the form

N∑
i=1

biϕmq (‖ x− xi ‖) +
J∑
j=1

ajφj(x)

with basis ϕmq(�) defined as in Wood (2003) and basis φj(�) being orthogonal to coefficient

vector b = (b1, · · · , bN )>. By further introducing matrix notations, Φ = (φ1, · · · , φJ)>,

a = (a1. · · · , aJ)> andE with the (i, j)-th element Eij = ϕmq (‖ xi − xj ‖), the minimization

criterion (2.10) becomes a constrained problem

min
b,a
‖ Z −Eb−Φa ‖2 +ωb>Eb s.t. Φ>b = 0 (2.12)

To achieve an ‘optimal’ low rank representation in the sense that minimal change is induced

in the shape of the smooth function as determined by criterion (2.12), Wood (2003) showed

that for a specific rank k, the appropriate solution is to set b = U (k)b(k), with U (k) being

the first k columns of the eigenvector matrix U from the eigen-decomposition E = UDU>.

Further constrain the vector b(k) to the space satisfying Φ>b = 0 by setting b(k) = ∆(k)b̃,

where Φ>U (k)∆(k) = 0 for a certain column orthogonal matrix ∆(k). Problem (2.12) can

then be transformed into an unconstrained problem, with D(k) denoting the top left k × k

sub matrix of D, which is

min
b̃,a
‖ Z −U (k)D(k)∆(k)b̃−Φa ‖2 +ωb̃>∆(k)>D(k)∆(k)b̃ . (2.13)

Solving this optimization problem would give the thin-plate regression spline with degrees

of freedom k. The selection of k is sometimes not very critical due to the presence of the

smoothing parameter ω (Wood, 2003), as the actual EDF would be controlled by ω, which

can be selected using methods such as (G)CV, REML and information criteria. Thin-plate

regression splines can be implemented using the function gam in R package mgcv.
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The investigation of LSWT images of Lake Victoria was carried out using model (2.9). The

default setting in gam gives q = 2, m = 2 and the thin-plate penalty

P22(f) =

∫ ∫
R2

(
∂2f

∂x2

)2

+

(
∂2f

∂x∂y

)2

+

(
∂2f

∂y2

)2

dxdy.

A maximum basis degrees of freedom of k = 20 was used as input. The model estimation

was again carried out using the REML method, where the smooth parameter was estimated

as part of the random effect component. According to Wood (2011), this method is ‘less

prone to local minima than the other criteria, and may therefore be preferable’. More details

on the REML estimation of smooth component is given in section 2.2.3. The resulting EDF

of the models range from 15 to 19, which produces a reasonable level of smoothness for the

majority of the fitted images. The variance explained by the spline regressors ranges from

50% to 80%. Figure 2.3 shows a plot of the LSWT data in June 1997 in the left panel and

the fitted LSWT from the thin-plate spline regression model in the right panel. The two

plots were created using the same colour scheme, so that comparison of the spatial patterns

can be made easier through colours. The estimated model has EDF = 18.48 and 75.1% of

the variance is captured by the spline regressors. It can be said that the thin-plate regression

spline generated a smooth image which captured the main patterns in the data.
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Figure 2.3: (Left) Image of the LSWT data in June 1997. (Right) The fitted image
from the thin-plate spline regression model (2.9). The horizontal and vertical axes represent

longitude and latitude respectively; the unit of the legend is C◦.

2.2.2 Spatial correlation

While the bivariate spline regression model accounts for a substantial part of the spatial

structure in the data, the residuals may still display a certain level of spatial correlation.
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Ignoring this may lead to an under or overestimation of the standard errors and would have

certain impact on statistical inference. Therefore, the model residuals were investigated for

spatial correlation structures. This was achieved by examining the empirical variograms,

under the second-order stationary assumption. Recall the definition of a (semi-)variogram

as equation (1.8) in section 1.3.3. Its empirical version can be produced in the same way as

that of the ‘temporal variogram’ γ̂(τ) in section 2.1.1, with the distance in time τ replaced

by the distance in space h. However, unlike τ , which can only point to one direction, h can

point to any direction in the spatial domain. That is, being the same distance apart from

the north and from the east could be different. In consequence, the spatial correlations in

different directions may have different natures. This property of a spatial process is referred

to as anisotropic. Whereas an isotropic spatial process would display the same correlation

structure for all directions.

Initially, directional variograms were produced to examine the isotropic property. Four di-

rections, 0, π/4, π/2 and 3π/4, were considered and empirical variograms were computed

for each of these directions. The left panels of Figures 2.4 and 2.5 show two examples of

the directional variograms computed using the residuals from the thin-plate spline regression

model (2.9) fitted to the LSWT data in June 1997 and September 2006. The distances are

measured using degrees in geographical coordinate. The variograms of four directions also

appear to diverge at distances ≥ 1.5◦ (i.e. 150km in the equatorial region). However, con-

sidering the distance the divergence begins and the unbalanced number of observations in

different directions at very large distances, it is perhaps appropriate to truncate the empirical

variogram and treat the spatial process as isotropic. To some extent, it makes little sense to

expect strong spatial correlation of LSWT in two pixels more than 100 km apart, especially

in a huge lake with a long retention time like Lake Victoria (Kayombo & Jorgensen, 2006).

Since most of the directional variograms of the LSWT images show similar features as in

Figures 2.4 and 2.5, the directional variograms are replaced by an isotropic variogram γ(‖h‖)

in the remainder of the analysis, where ‖ � ‖ represents the Euclidean norm. For simplicity,

denote h = ‖h‖ and γ(h) = γ(‖h‖) for all that follows.

The right panels of Figure 2.4 and 2.5 present the empirical variograms computed without

distinguishing directions. The black curves are the variograms and the red curves are the

Monte Carlo envelopes computed based on 100 permutations. The envelopes set the limits

of the behavior of a random spatial process without significant spatial correlation. As the

two variograms from the June 1997 and September 2006 models exceed the envelopes, it is

sufficient to say that there is evidence of spatial correlation in both residual processes. Again,
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Figure 2.4: (Left) The directional variograms of residuals from model (2.9) fitted to the
LSWT data in June 1997. The distances are measured in degrees. The four black curves
show the directional variograms for 0, π/4, π/2 and 3π/4. (Right) The omnidirectional
variogram of residuals from the June 1997 model. The red curves represent the Monte Carlo

envelop computed based on permutations.
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Figure 2.5: (Left) The directional variograms of residuals from the September 2006 model.
The four black curves show the directional variograms for 0, π/4, π/2 and 3π/4. (Right)
The omnidirectional variogram of residuals from the September 2006 model. The red curves

represent the Monte Carlo envelop computed based on permutations.

it is found that the majority of the variograms of the Lake Victoria LSWT images display

similar patterns. Hence, the residual spatial correlations is to be incorporated to the spatial

regression model (2.9).

There are a wide range of variogram models available for a stationary, isotropic spatial

process. The general form of a variogram model can be written as

γ(h) = σ2
ng + σ2

psρ

(
h

d

)
. (2.14)

In (2.14), σng is the nugget effect, representing the variability at distances smaller than the

sample spacing (including measurement errors). The parameter σ2
ps is sometimes referred to

as the partial sill, which is the vertical distance between the the nugget and the value of γ(h)

as the distance h → ∞. Function ρ
(
h
d

)
describes the type of spatial correlation structure,

with the range parameter d reflecting the distance from which the spatial correlation becomes

zero (Cressie, 1993, Pinheiro & Bates, 2000). The most frequently used correlation functions
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include the exponential, Gaussian, spherical and rational quadratic. A class of variogram

models that offer great flexibility in modelling is the Matérn family,

γ(h) = σ2
ng + σ2

ps

{
1− 2

Γ(ν)

(
h

2d

)ν
Kν

(
h

d

)}
. (2.15)

The model is indexed by parameter ν, which governs the shape of the curve through the

gamma function Γ(ν) and the modified Bessel function of order ν, Kν(·). Two special cases

of the Matérn model are exponential (ν = 0.5) and Gaussian (ν →∞) (Cressie, 1993).

Model (2.15) was fitted to the empirical variograms of the residuals from the spline regression

model (2.9) using function variog and variofit in the geoR package (Ribeiro Jr & Diggle,

2016). The results tend to be very sensitive to the initial inputs of ν, d and σ2
ng. However,

a relatively stable estimate can be achieved using a grid search of the optimal values of one

or two parameters, so function variofit does not need to perform the optimization of all

three parameters simultaneously. For example, to examine the residuals from the thin-plate

regression model (2.9) of June 1997, a grid search of the optimal values ν and σ2
ng was carried

out and function variofit only estimated the range parameter d.

The investigation of the LSWT images with ≥ 77.8% observations (1800 out of 2313 pixels)

available showed that the majority of the models have an estimated index of the Matérn

model at around 0.5, suggesting that an exponential correlation structure is appropriate for

most of the LSWT images. Therefore, the exponential model was taken as representative of

the residual spatial correlation structures of the Lake Victoria LSWT data. The following

equations give the correlation and covariance functions of an exponential model,

ρ(h) = exp

(
−h
d

)
, (2.16)

γ(h) = σ2
ng + σ2

ps

{
1− exp

(
−h
d

)}
.

Model (2.16) is used in the modelling of the LSWT images with added spatial covariance

structure in the next stage.

2.2.3 Bivariate spline regression with spatial covariance

In the previous model (2.9), the residuals were assumed to be i.i.d. N (0, σ2) distributed.

In this section, a spatial correlation structure was imposed on the residuals based on the
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evidence obtained from the variogram modelling, giving the new model

Z(x,y) = Φ(x, y)β + ε(x,y) = Φ(x, y)β + S(x, y) + ν(x,y) . (2.17)

Here S(x, y) is a zero mean stationary spatial process and the covariance matrix of the model

is Cov[S + ν] = Σγ , where S and ν are the vectors of S(x, y) and ν(x,y) respectively. The

(i, j)-th element of Σγ is determined by γ(hij), where hij =‖ (xi, yi)− (xj , yj) ‖. Specifically,

the covariance matrix of the nugget effect component ν is σ2
ngI and the covariance matrix of

S has its (i, j)-th element evaluated using function σ2
psρ(hij). Model (2.17) can be regarded

as a generalized additive mixed model (GAMM), which can be estimated using function

gamm in the R package mgcv. The function is capable of modelling various spatial correlation

structures, such as exponential, Gaussian, and spherical (Wood, 2011).

Some computational details are presented here. The estimation of the GAMM is carried

out under the mixed model framework (Wood, 2006). The spline regressors Φ(x, y)β are

first divided into two parts, the fixed effect component Φf (x, y)βf , which describe the linear

spatial patten, and the random effect component Φr(x, y)βr, which accounts for the spatial

variation as higher order polynomials. This gives a model of the form

Z(x,y) = Φf (x, y)βf + Φr(x, y)βr + ε(x,y) . (2.18)

The random effect coefficient is assumed to follow the distribution βr ∼ N (0, 1
ωS+), where

ω is the smoothing parameter and S+ is a matrix associated with the eigen decomposition

of the penalty matrix S. The residuals are assumed to be normally distributed as N (0,Σε).

Under this setting, the log-likelihood of the model can be written as

L (Z; · · · ) = −1

2

{
log(|Σ|) + (Z −Φfβf )>Σ−1(Z −Φfβf )

}
+ constant (2.19)

where Σ = 1
ωΦS+Φ>+ Σε. The smoothing parameter can be selected using cross validation

or the likelihood based methods. Imposing a spatial correlation structure on the residual

process is equivalent to further decomposing ε(x,y) into a spatial random component and a

noise component as S(x,y) + ν(x,y) and parameterizing the covariance matrix Σε as Σγ . For

the purpose of model fitting, S is written as a product of a random effect design matrix Γ

and coefficient vector η, where the elements of Γ are determined through a spatial correla-

tion function ρ(h) associated with γ(h) (Kammann & Wand, 2003). As a result, in practice,

model (2.17) becomes
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Z = Φfβf + Φrβr + Γη + ν (2.20)

βr ∼ N (0,
1

ω
S+)

η ∼ N (0, σ2
psI)

ν ∼ N (0, σ2
ngI) .

It can be seen that the only thing that needs to be changed in the log-likelihood function

(2.19) is the covariance matrix, which is now Σ = 1
ωΦS+Φ> + Σγ . In other words, the

additive model with spatial covariance structure as in model (2.20), or equivalently model

(2.17), can be estimated using the same approach as that of the more general additive model

(2.18). This is an elegant method, but its application to the Lake Victoria LSWT data did

not necessarily result in a conclusive model. Below are two examples from applying model

(2.17) to the LSWT images.

In the first example, model (2.17) with an exponential covariance structure was fitted to the

LSWT data in June 1997. The initial values of σ2
ng and d were gauged from the empirical

variogram. The computation time of the model was about 1 hour 15 minutes. The estimated

parameters are d̂ = 0.1194 and σ̂2
ng = 6.5 × 10−9. The EDF of the additive model is 13.3,

which is smaller than that of the spline regression model (2.9). This is expected as part of

the spatial variation has now been accounted for by the spatial covariance model. Table 2.3

provides a detailed comparison of some statistics from model (2.9) and (2.17). The fitted

LSWT images are not presented because the difference between the images is small.

Table 2.3: A comparison of the spline regression model (2.9) and the spline regression
model with spatial covariance structure (2.17), fitted to the LSWT data of June 1997.

EDF variance of ε adjusted R2 range d nugget σ2
ng

simple model (2.9) 18.48 0.0832 0.749 × ×
spatial model (2.17) 13.3 0.1155 0.739 0.1194 6.5e-9

To further assess the fit of the spatial covariance model, the normalized residuals were ex-

amined. Normalized residuals are model residuals after taking into account the covariance

structure. In terms of model (2.17), the model residuals are r̂ = Z − Φf β̂f − Φrβ̂r and

the corresponding normalized residuals are r∗ = Σ̂
−1/2
γ r̂, where r̂ are assumed to follow the

distribution N (0, Σ̂γ). If the spatial covariance structure in Σ̂γ truly reflects the spatial

structure of r̂, then the normalized residuals should follow the standard normal distribution,
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Figure 2.6: (Left) The empirical variogram of the model residuals (black dots at the
bottom) and the normalized residuals (black dots at the top). The black curve represents
the fitted variogram. (Right) The histogram of the normalized residuals. The black curve

represents the N (0, 1) density.

i.e. r∗ should be a vector of white noises. Figure 2.6 provides a comparison of the spatial

correlation structures of the model residuals and the normalized residuals for the model fitted

to the June 1997 data. The left panel shows the empirical variograms of the model residuals

(dots at the bottom) and the normalized residuals (dots at the top), with the fitted variogram

plotted as a black curve. The right panel shows the histogram of the normalized residuals,

with the imposed N (0, 1) density as the black curve. Based on the information from the

plots, it is sufficient to say that the normalized residuals are free from spatial structure and

are approximately N (0, 1) distributed.

The second example is an unsatisfactory fit as a result of the trade-off between various

model components. It is taken from applying model (2.17) to the LSWT data in May 2007.

Table 2.4 shows the comparison of the some statistics from model (2.17) and (2.9). In the

model with spatial covariance structure, the spline regressors has EDF = 2 and residual

variance 1.7043. Whereas the model without covariance structure has EDF = 18.27 and a

much smaller residual variance of 0.1068. The estimated range parameter is 1.97 (≈ 200km),

which seems rather impractical for the Lake Victoria LSWT data.

Table 2.4: A comparison of the spline regression model (2.9) and the spline regression
model with spatial covariance structure (2.17), fitted to the LSWT data of May 2007.

EDF variance of ε adjusted R2 range d nugget σ2
ng

simple model (2.9) 18.27 0.1068 0.67 × ×
spatial model (2.17) 2 1.7043 0.248 1.9727 8.9e-11

This problem is associated with the identifiability of Φfβf , Φrβr and Γη+ν, a phenomenon
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linked to the spatial confounding of the covariates and random effects. In some situations,

when spatially correlated errors (i.e. spatial random effect) are used to account for the spatial

structure not explained by the model covariates (i.e. fixed effect), the parameter estimates

would change substantially. This happens to many spatial regression models, including those

estimated using a Bayesian approach. Discussion with respect to this issue can be found in

Paciorek (2010), Reich & Hodges (2008), Wakefield (2007), etc. Hodges & Reich (2010)

summarised several different interpretations of this phenomenon, including situations where

the spatial random effects introduce or remove bias in the fixed effect coefficient, where

there exists collinearity between the design matrices of the spatial random component and

the fixed effect component, where the errors are correlated with the fixed effect, etc. It is

not easy to attribute the identifiability problem in this exploratory analysis to one of these

interpretations, especially when it applies to some, but not all LSWT images.

Strategies have been proposed over the years to deal with this issue, such as restricting

the spatial random effect in a space orthogonal to the covariate space (Hodges & Reich,

2010, Hughes & Haran, 2013), investigating the scales of spatial variations of covariates and

random effect to avoid spatial confounding (Paciorek, 2010) and the global/local smoothness

of the spatial component (Lee et al., 2014). However, it takes a lot of computational effort

to implement these methods, which might not be practical when it comes to hundreds of

high-resolution remote-sensing images. In addition, the results may not always improve the

fit of the model (Pannullo et al., 2016).

2.2.4 Spatial analysis summary

Due to the long computation time, 10 images with ≥ 65% of data observed were analysed.

Applying model (2.17) produced sensible results for most of the LSWT images investigated.

Model computation time ranges from 40 minutes to 1 hour 20 minutes. EDF of the spline

regressors ranges from 12 to 18 and is generally smaller than that of the model without

covariance structure. An exponential variogram model is appropriate for the majority of the

models. Model initialization appears to have a big influence on the final results, but robust

estimates can be reached after trial and error. However, problems as illustrated in Table 2.4

could occur. In this investigation, 3 out of 10 images appeared to have this problem, where

the fitted smooth function only contains the linear terms. The drawbacks with respect to

the application of model (2.17) to the remote-sensing data, such as the Lake Victoria LSWT

data, are summarised as follows.
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First of all, the application of this model on sparse image data can be a problem. If there is

a large area in the image without observations, then the estimation of the basis coefficients

can be difficult due to the lack of information, which could affect the entire model fitting

process. That is why the exploratory analysis was only conducted on images with relatively

low percentages of missing observations.

Secondly, the identifiability problem presents another disadvantage. To some extent, it is

hard to distinguish between the fixed and random effects due to spatial confounding and

the complexity of the algorithm, even with distinct assumptions on each model component.

Since the aim of the analysis is to understand the spatial and temporal patterns, a conclusive

result would be far more appealing than a result which only provides a good fit to the data.

Finally, with the images explained by different models as a result of varying degrees of

smoothness and covariance structures, the investigation of spatial patterns and their evolu-

tion is difficult. Just as the problems with the harmonic regression models in section 2.1.1,

it makes little sense to compare the coefficients and the residual covariance structure from

models fitted separately with no universal assumptions. Meanwhile, the computation time

for these models is relatively long. As the size of remote-sensing data scales up quickly in

both space and time, this method could eventually become computationally infeasible.

Therefore, more efficient methods are required to model the remote-sensing image time se-

ries. In particular, two aspects needs to be considered in terms of the alternative modelling

strategy. (a) It helps to seek a more flexible and computationally efficient method to describe

the covariance structure of the data. (b) It is better that the entire remote-sensing image

time series can be handled simultaneously, i.e. to build a spatio-temporal model. One could

follow the route of modelling the spatial or spatio-temporal covariance functions further.

Lindgren & Rue (2015) described a flexible and efficient method based on the connection of

the stochastic PDEs and the Gaussian fields. However, despite its fast computation using

integrated nested Laplace approximation (INLA), the interpretation of the fitted model is

not straightforward, which could be a problem of this analysis. In view of this, a different

approach to investigating the spatial/temporal variation is proposed, the functional principal

component analysis.
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2.3 Functional principal component analysis (FPCA)

As introduced in section 1.3.1, the ‘observation’ in functional data analysis (FDA) is a

smooth function representing the observations of an individual object. Statistical analysis

is carried out at the function level. In terms of the remote-sensing data, this means the

time series or images are first transformed into a collection of smooth univariate or bivariate

functions. FDA techniques are then applied to these functions. With this approach, all the

time series or images can be studied simultaneously, instead of ‘one at a time’. Examples of

the application of FDA to spatio-temporal environmental data include functional principal

component analysis (FPCA) in Di Salvo et al. (2015), functional regression in Giraldo et al.

(2009) and functional clustering in Haggarty et al. (2015). Among the statistical methods

in the FDA family, FPCA is taken as the main approach to the investigation of the remote-

sensing lake data.

FPCA is designed to provide an ‘indication of the complexity of the data’ in the sense of

the characteristics of functions (Ramsay & Silverman, 1997). This is a model-free approach

for investigating the patterns of variations in the data and is often accompanied by a lower

dimensional representation using the leading principal components (PCs). Although the in-

terpretation may not be straightforward, the method is helpful in identifying the sources of

variations in the data. The estimated results can be regarded as a non-parametric represen-

tation of the covariance structure of the data and may be used in further analysis.

2.3.1 The FPCA approach

Without loss of generality, consider data represented using univariate functions, Zi(t), i =

1, · · · , n. According to Ramsay & Silverman (1997), the analysis begins with finding such a

representation. A frequently used approach is to express the unknown function as a linear

combination of a set of known basis functions φk(t),

Zi(t) =
K∑
k=1

βikφk(t) , i = 1, . . . , n .

This representation can be written using matrix notation as Z(t) = BΦ(t), where Z(t)

is a vector of data functions Zi(t), i = 1, . . . , n, Φ(t) is a vector of basis functions φk(t),

k = 1, . . . ,K and B is a n×K coefficient matrix with its i-th row being βi = (βi1, . . . , βiK).

Different continuous and periodic constraints can be added to the basis representation. The
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coefficients βi are usually estimated by minimizing the (weighted) least squares criterion.

Some frequently used bases include the Fourier basis, spline basis, polynomial basis, wavelet

basis, etc. Attention is paid to how many features are to be retained from the data. This is

often determined by the resolution and the curvature of the data and the type of question

addressed with respect to the modelling. Model selection criteria may apply and some trade-

offs might be required as well.

Analogous to a conventional PCA, the ‘variables’ in the FPCA are Z(t) evaluated at all

possible values of t. In theory, this means the number of ‘variables’ is infinite for continuous t.

While in practice, there are usually a finite number of observations available at t1, · · · , tT , so

the ‘variables’ in the FPCA are Z(t1), . . . , Z(tT ). Assuming zero mean for Z(t1), · · · , Z(tT ),

the covariance function for each pair of ‘variables’ Z(tj) and Z(tm) can be written as

V (tj , tm) =
1

n

n∑
i=1

[Zi(tj)− 0] [Zi(tm)− 0]

=
1

n

n∑
i=1

[
K∑
k=1

βikφk(tj)×
K∑
k=1

βikφk(tm)

]
,

or in matrix notation,

V (tj , tm) =
1

n
Φ(tj)

>B>BΦ(tm) . (2.21)

The covariance matrix is then a square matrix with its elements being V (tj , tm), for j,m =

1, . . . T . The main idea of FPCA is to solve the eigenproblem

∫
V (tj , t)ξ(t)dt = λ ξ(tj) , (2.22)

subject to the orthonormal conditions,
∫
ξ(t)2dt = 1 and

∫
ξp(t)ξq(t)dt = 0 for all p 6= q.

Solving equation (2.22) requires another finite approximation of the eigenfunction ξ(t). This

is done through another basis expansion using often the same basis as the one for constructing

the functional data, i.e. ξ(t) =
∑K

k=1 ckφk(t) = Φ(t)>c. Define the K × K matrix W =∫
Φ(t)Φ(t)>dt. The left hand side of equation (2.22) can be written as

1

n

∫
Φ(tj)

>B>BΦ(t)Φ(t)>c dt =
1

n
Φ(tj)

>B>BWc .

Hence the approximated eigenproblem becomes

1

n
Φ(tj)

>B>BWc = λΦ(tj)
>c . (2.23)
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Using the fact that the above equation holds for all values of tj , along with the substitution

u = W 1/2c, the equivalent symmetric eigenproblem to equation (2.23) would be

1

n
W 1/2B>BW 1/2u = λu . (2.24)

The maximum number of eigenvalues λ and eigenfunctions ξ(t) that can be extracted from

equation (2.24) is K (the degrees of freedom of the basis). The coefficient vector c in equation

(2.23) can be obtained using c = W−1/2u and the eigenfunction using ξ(t) = Φ(t)>c. The

principal component score associated with the i-th function can be computed as

αi =

∫
ξ(t)Zi(t)dt , i = 1, . . . , n, (2.25)

In general, eigenfunctions ξ(t) would carry information about the sources of variation in the

data. Eigenvalues λ would indicate the proportion of variation explained by each princi-

pal component. Principal component scores αi, which are mathematical realizations of the

variation pattern, reflect the strength of the pattern in the i-th functional object Zi(t).

2.3.2 Extension to 2-dimensional data

The FPCA described above can be applied to 2-dimensional functional data through a

straightforward generalization. Replace the univariate basis with a bivariate basis as

Z(x, y) = BΦ(x, y)

and update the variance functions accordingly as

V (xj , yj , xm, ym) =
1

n
Φ(xj , yj)

>B>BΦ(xm, ym) .

The eigenproblem with respect to bivariate functions becomes

∫
V (xj , yj , x, y)ξ(x, y)dxdy = λ ξ(xj , yj) , (2.26)

which can be solved using exactly the same approach as that used in solving eigenproblem

(2.22). The code for computing the 2-dimensional FPCA was developed based on func-

tion pca.fd in the R package fda (Ramsay et al., 2013). The trapezoidal rule is adopted

here to approximate the double integrals essential to solving eigenproblem (2.26). Denote
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Φ(x, y)Φ(x, y)> = W (x, y), the integral can be approximated as

W =

∫ xa

x1

∫ yb

y1

W (x, y)dxdy (2.27)

≈MxMy

1

4
[W (x1, y1) +W (x1, yb) +W (xa, y1) +W (xa, yb)] +

a−1∑
i=2

b−1∑
j=2

W (xi, yj)

+
1

2

b−1∑
j=2

[W (x1, yj) +W (xa, yj)] +
1

2

a−1∑
i=2

[W (xi, y1) +W (xi, yb)]


where (x1, y1), (x2, y1), . . . , (x1, y2), (x2, y2), . . . , (xa, yb) are quadrature points and Mx and

My are the lengths of the intervals. While this is an approximation, a sensitivity analysis on

univariate functions shows that there is no significant difference between the results using

the trapezoidal rule and those using functions in package fda.

2.3.3 2-dimensional FPCA for reconstructed LSWT data

There are two ways of conducting FPCA on remote-sensing image time series data such as

the LSWT, (a) transforming the time series data in each pixel into univariate functions and

performing an analysis on the temporal curves, i.e. 1-dimensional FPCA, (b) constructing a

collection of bivariate functions for the image at each time point and conducting an analysis

on spatial images, i.e. 2-dimensional FPCA. The preference in this thesis is the second

approach, as the 2-dimensional analysis has advantages over the 1-dimensional analysis in

terms of the questions the thesis is trying to answer.

First of all, the majority of the remote-sensing images studied in this thesis are smooth by

nature, so it is feasible to find a bivariate functional representation for the data. For example,

it has been illustrated in section 2.2 that the patterns in the LSWT images can be captured

using bivariate thin-plate regression splines. The situation might be slightly different for the

Chlorophyll images with an algal bloom, but a smooth representation can be constructed for

the majority of the images.

Secondly, as the remote-sensing data analysed in this thesis are more densely recorded in

space than in time, bivariate functions are favoured in terms of dimension reduction. For

example, for the Lake Victoria LSWT data, the representation of images using bivariate

functions would result in 203 functional observations; whereas the representation of time

series using univariate functions would give 2313 functional observations.
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In addition, the influence of the basis needs to be considered. Since many environmental data

appear to have a periodic pattern, the most straightforward choice of basis for the FPCA

on temporal curves would be a Fourier basis. However, this would result in cyclical eigen-

functions that are only capable of identifying periodic patterns. Other interesting patterns,

such as the long-term trend, would be beyond the capacity of the Fourier basis. It is possible

to use other univariate bases, such as a spline basis, but this would require much higher

degrees of freedom, which can be problematic for time series that covers a long period but is

infrequently observed. This problem can be overcome by using a bivariate basis. As long as

the images are relatively smooth, the degrees of freedom of the bivariate basis can be kept

at a value much smaller than the number of observations per image. At the same time, the

resulting eigenfunctions would have the flexibility to describe various types of spatial pattern

in the data; the PC scores may also carry some information about the temporal patterns.

For an illustration, the 2-dimensional FPCA was applied to the ‘Re LSWT’ data set intro-

duced at the end of Chapter 1. It is extracted from the ARC-Lake reconstructed LSWT

data of Lake Victoria and is of dimension 26× 27× 203. It was used here to avoid the com-

putational problems brought to the FPCA by the high percentages of missing observations.

Additional information on this issue is given in section 2.3.4.

The ‘Re LSWT’ data set was first centered by removing a monthly mean. Bivariate functional

data were constructed as Zt(x, y) =
∑K

k=1 βtkφk(x, y), where Zt(x, y) is the reconstructed

LSWT in the pixel indexed by longitude x, latitude y, at time point t. The bivariate basis

used in this example is the tensor spline basis Φ(x, y), produced by meshing two univariate

B-spline bases Φx(x) and Φy(y) through the Kronecker product. That is, Φ = Φx ⊗ Φy,

where Φx and Φy are the matrices of the univariate bases Φx(x) and Φy(y) respectively. For

demonstration purpose, one knot each was placed in the median of the two coordinates x

and y. This gives degrees of freedom of 5 to both Φx(x) and Φy(y) and degrees of freedom

K = 25 to Φ(x, y). A formal way of selecting the basis dimension would involve methods such

as cross-validation, information criteria, penalized regression, etc. This topic is discussed in

detail in Chapter 3. Also note that the tensor spline basis is only one type of bases available

for the 2-dimensional FPCA; other basis systems may be used for different data. In this

example, 203 smooth bivariate functions were constructed using the tensor spline basis.

Illustrations of constructing the functional representations Zt(x, y) from the LSWT data in

June 1997 and September 2006 are shown in Figure 2.7.
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Figure 2.7: Illustrations of constructing functional representations using bivariate basis
Φ(x, y) from June 1997 (left) and September 2006 (right). The dark grey dots represent the

LSWT data and the light grey surfaces represent the functional observations.

The basis dimension K = 25 also suggests that the maximum number of PCs that can

be extracted from the FPCA is 25. Applying the 2-dimensional FPCA algorithm gave the

following results. Table 2.5 presents the eigenvalues of the first five functional PCs, along with

their contributions towards the total variance explained. In this case, the first two PCs play

a dominant role, accounting for 36.89% and 31.94% of the total variation respectively. The

first five PCs together explain 92.80% of the total variation, which is sufficient to represent

the entire data. Using the first five PCs to reconstruct the images results in a residual sum

of squares (RSS) of 0.0078. Given that the variance in the centered data is 0.3514, this RSS

value can be considered as relatively small. Note that a smaller RSS can be achieved by

increasing the number of PCs used in the reconstruction.

Table 2.5: Eigenvalues of the first five functional principal components and their contri-
bution towards the total variations evaluated in proportions.

PC1 PC2 PC3 PC4 PC5

Eigenvalues 0.0223 0.0193 0.0077 0.0049 0.0020
Variance proportions 36.89% 31.94% 12.66% 8.08% 3.23%

The top two panels of Figure 2.8 present the eigenfunctions (or PC loadings) of the first two

functional PCs, ξ1(x, y) and ξ2(x, y). In both plots, the blue end of the palette corresponds

to positive loadings and the green end corresponds to negative loadings. A straightforward

interpretation would be, the first eigenfunction displays a contrast between the north and

south of the grid; the second eigenfunction shows a contrast between the east and west. In

other words, PC1 and PC2 highlight the difference in the variation patterns between different

parts of the lake area under study. The bottom two panels of Figure 2.8 display the scores

of PC1 and PC2 obtained using the discretized version of equation (2.25). The scores can
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Figure 2.8: (Top) Illustrations of the eigenfunctions of PC1 and PC2. The horizontal and
vertical axes are longitude and latitude respectively. (Bottom) Illustrations of the scores of

PC1 and PC2 over time.

be regarded as indications of the temporal variations of the patterns shown in ξ1(x, y) and

ξ2(x, y). Time series models may be applied to the scores to detect the existence of long-

term trend, change points, etc. In this example, the score time series do not appear to show

distinctive trend or change point.

As shown above, the 2-dimensional FPCA provides an efficient way to analyse the remote-

sensing image time series. The analysis can be applied to the entire data set, not just a single

time series or image and the computation of the example above took only 1 second. Even

if the selection of the degrees of freedom of the basis is considered, the computational cost

would still be much lower than that of the spatial regression model in section 2.2. Through

functional data representation and keeping only the leading functional PCs, a dimension

reduction can be achieved. For the above analysis, if the first five PCs are retained, then all

the information required to reconstruct the original data are simply 25× 5 basis coefficients

and 5× 203 PC scores. This is a significant reduction compared to the original data, which

is of dimension 26× 27× 203. In addition, the 2-dimensional FPCA can help to identify the

common spatial patterns in the image time series using the extracted PCs. The temporal

evolution of these spatial patterns may also be investigated through the PC scores.
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2.3.4 Problems with respect to sparse data

Despite its efficiency, the FPCA described in section 2.3.1 and 2.3.2 may not be able to handle

data with a high percentage of missing observations. The problem lies in the estimation of

the coefficient matrix B. As each column of B represents the coefficient vector of one

functional data object, it could be impossible to estimate the coefficients if the observations

corresponding to certain objects are too sparse. Unfortunately, this is an inevitable problem

in the remote-sensing data, which is why the illustration in section 2.3.3 was presented using

the ARC-Lake reconstructed LSWT data, not the real measurements, because the algorithm

for FPCA simply cannot be implemented. Modifications are required to accommodate the

missing observations.

James (2011) provided a summary of how to deal with missing observations in functional

data analysis, where the approaches to FPCA were discussed in detail. Two methods widely

discussed in research papers are the ‘mixed effect model’ and the ‘local smoothing’. Both

methods are designed to extract information from the entire data set when modelling the

individual functions.

The mixed effect model approach was first proposed by James et al. (2000), where observa-

tions from individual objects are modelled as functions with random coefficients,

Zi(t) = Φ(t)β + Φ(t)ηi + εi(t) (2.28)

= Φ(t)β +
P∑
p=1

Φ(t)θpαpi + εi(t) .

The first part of (2.28) is a fixed mean function for the population; the second part of (2.28)

is a random effect component, which models the variation unique up to the i-th object.

The construction of the random effect
∑P

p=1 Φ(t)θpαpi is based on a Karhunen-Loève (K-L)

expansion of a random process using a sequence of orthogonal functions. The authors named

it the ‘reduced rank principal component model’, as only the leading P terms in the K-L

expansion are used to approximate the process. The covariance structure can be modelled

through ηi, or equivalently θpαpi. It can be shown that Φ(t)θp is the equivalence of the

eigenfunction ξp(t) and αpi is essentially the PC score (James et al., 2000). Estimation of

model (2.28) employs the EM algorithm, where αpi is treated as missing information. Further

development of the model can be found in Rice & Wu (2001), which offered more discussion

on this method, Peng & Paul (2009), which proposed a Newton-Raphson algorithm for
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model estimation, Gervini (2009), which described the model in a more general t-distribution

setting, and Zhou & Pan (2014), which extended the method to a 2-dimensional case.

The local smoothing approach was described in detail in Yao et al. (2005), where a sparse

longitudinal data set was analysed. The same idea was discussed in Di et al. (2009). The key

to this method is to model the sparse functional data as noisy sampled points from a collection

of trajectories with mean function E[Z(t)] = µ(t) and covariance function Cov[Z(t), Z(u)] =

V (t, u). First, observations Zit, i = 1, . . . , n, t = 1, . . . , Ti, are stacked into a column vector

to produce a mean function µ̂(t) using a local linear smoother (kernel). Next the element in

the raw covariance matrix is computed as

V̂ (ti, ui) = [Zit − µ̂(ti)][Ziu − µ̂(ui)]

A second kernel is then applied to V̂ (ti, ui) to produce the smoothed covariance function

Ṽ (t, u). Finally, eigenvalues λ̂p and eigenfunctions ξ̂p(t) are extracted from Ṽ (t, u). The PC

scores αpi are computed using the principal analysis by condition estimation (PACE) (Yao

et al., 2005) as

α̂pi = λ̂pξ̂
>
p Σ̂−1

i (Zi − µ̂) ,

where Σ̂i = Ṽi + σ̂2I and σ̂2 is the estimated residual variance from the kernel smoothing.

The subscript i indicates that Σ̂i, Ṽi are different for each i due to missing observations.

Further development of this method can be found in Di et al. (2014), Goldsmith et al. (2013),

Zipunikov et al. (2011), where topics related to modelling high-dimensional multilevel data

and constructing confidence bands for the estimated PCs were discussed.

In this thesis, the mixed model is favoured over the local smoothing approach due to the

sparse features of the remote-sensing data. Recall the discussion in section 1.3.2 on different

types of missing data mechanisms. It has been assumed that the type of missingness in the

remote-sensing data in this thesis is missing at random (MAR). That is, the probability of the

LSWT/Chl data being missing may depend on other observed variables, such as the longitude

and latitude, but it is irrelevant to the values of the unobserved data. Further assuming that

the parameters governing the missing data mechanism are distinct from the parameters in

the model, the MAR condition means that the missing data mechanism can be ignored in

the likelihood based inference process (Heitjan & Rubin, 1991, Lu & Copas, 2004). In view

of this, the mixed model approach, implemented using the maximum likelihood method,

is considered as an appropriate choice to analyse the remote-sensing data in this thesis.
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According to Allison (2009), likelihood based inference minimizes the bias, maximizes the

use of information in the data and provides asymptotic results for assessing the parameter

estimates. It also has the advantage of automatically assigning the weights to each individual

function to account for the impact of sparsity (James et al., 2000).

The mixed model FPCA is explained in full detail in the next chapter, including its estimation

method and a simulation study on the influence of sparsity on model fitting. The extension

to accounting for the temporal correlations between remote-sensing images is investigated in

Chapters 4 and 5.



Chapter 3

The mixed model FPCA for sparse

image series

At the end of Chapter 2, two different approaches for performing FPCA on sparse data were

introduced and the mixed model approach was favoured in terms of the analysis in this thesis.

In this chapter, the mixed model FPCA method and its estimation procedure are described

in detail. A comparison of the FPCA computed using direct matrix decomposition and the

mixed model framework is carried out, which is followed by a simulation study assessing the

method’s performance with respect to sparse images. Applications of the method on the

Lake Victoria LSWT and Chl data are presented at the end of the chapter.

3.1 The mixed model FPCA (MM-FPCA)

3.1.1 Model specification

Without loss of generality, consider a mixed model of n univariate random functionss Zi(t),

i = 1, . . . , n and t ∈ T ,

Zi(t) = Φ(t)β + Φ(t)ηi + εi(t), (3.1)

In this model, function Zi(t) is modelled through a collection of basis functions Φ(t), a fixed

effect coefficient vector β and a random effect coefficient vector ηi. The fixed effect Φ(t)β is

usually a mean function; whereas the random effect Φ(t)ηi describes the unique effect of the

i-th function. The covariance structure of the functions can be modelled through imposing

constraints on ηi. Based on this framework, James et al. (2000) proposed a reduced rank
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functional principal component model. The idea is to represent the random effect using a

truncated Karhunen-Loéve expansion (K-L expansion)

Zi(t) = Φ(t)β +
∞∑
p=1

ξp(t)αpi (3.2)

≈ Φ(t)β +

P∑
p=1

ξp(t)αpi + εi(t)

= Φ(t)β + Φ(t)Θαi + εi(t).

The first line of (3.2) is essentially a mean function Φ(t)β plus a infinite order K-L expansion

of a random process with zero mean and finite variance. Functions ξp(t), p = 1, . . . ,∞,

are orthonormal functions, which form the basis of the K-L expansion. The component

αpi, i = 1, . . . , n, are defined as
∫
Zi(t)ξp(t)dt following the properties of the expansion.

The inclusion of the K-L expansion suggests that the representation using ξp(t) and αpi

converges in mean square to the original random process as the expansion order goes to

infinity (Alexanderian, 2013). A truncation is then applied so that only a finite number

P of functions ξp(t) are retained. The last line of (3.2) is simply to decompose ξp(t) into

a basis Φ(t) and the corresponding coefficient vector θp, so that
∑P

p=1 ξp(t)αpi becomes∑P
p=1 Φ(t)θpαpi = Φ(t)Θαi, where Θ is a basis matrix with column vectors θp, p = 1, · · · , P ,

and αi is a vector consisting of αpi, p = 1, · · · , P . As a result, the problem becomes a mixed

model with random coefficient ηi = Θαi. To ensure that the random effect is equivalent to

a K-L expansion, the following model assumptions are required.

(a) The parameter matrix Θ and the basis matrix Φ, which consists of Φ(t) evaluated at

different values of t, are both column orthonormal, i.e. Θ>Θ = I, Φ>Φ = I. This

is to make sure that the orthonormal constraints on functions ξp(t) in eigenproblem

(2.22) are satisfied.

(b) The random coefficient αi has distribution αi ∼ N (0,Λ), where Λ is a diagonal matrix

with diagonal elements λp, p = 1, · · · , P

(c) The model residuals are i.i.d normal, i.e. εi ∼ N (0, σ2I).

(d) There is also a hidden assumption that the n functions Zi(t), i = 1, · · · , n, are supposed

to be independent.

This model is referred to as the MM-FPCA in all the content that follows, in order to

distinguish from the FPCA described in section 2.3.1 of Chapter 2.
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The connection between the MM-FPCA (3.2) and the FPCA in section 2.3.1, though not

straightforward, can be explained by the properties of the K-L expansion, reproducing kernel

Hilbert space and Mercer’s representation theorem. Additional details are given in Appendix

A.1. In general, the orthonormal function ξp(t) = Φ(t)θp is equivalent to the p-th eigenfunc-

tion; the random coefficient αpi =
∫
Zi(t)ξp(t)dt is equivalent to the score of the p-th principal

component. As Cov[αi] = Λ = diag{λ1, · · · , λP } suggests that Var[αpi] = λp, it can be

deduced that λp, p = 1, . . . , P , are equivalent to the eigenvalues of the FPCA.

James et al. (2000) described the advantages of the method as being able to estimate the

individual functions using all the observed data rather than just those from one individual

object (e.g. time series and image). At the same time, it automatically adjusts the influence

of the missing percentages for each individual object. Potential drawbacks of this method

are the large number of parameters to be estimated and the occasional failure of convergence

of the EM to a global maximum. These can sometimes be avoided by careful choice of initial

values, which is discussed later in this chapter.

As the MM-FPCA (3.2) was inspired by sparse longitudinal data sets, most of the pioneering

studies were carried out on univariate functional data, i.e. curves. However, apart from the

potential computational cost, there is no restriction on the dimension of the functions in

theory. In some situations, using multivariate functions may even be advantageous, such

as modelling of a sequence of smooth images. In this thesis, a MM-FPCA using bivariate

functions was proposed to model the sparse remote-sensing image time series. The model

generalizes equation (3.2) to

Zt(x, y) = Φ(x, y)β + Φ(x, y)Θαt + εt(x, y), (3.3)

for t = 1, · · · , T and (x, y) ∈ D. The change of the individual function index from i in model

(3.2) to t in model (3.3) is to emphasize that the model is going to be applied to a time series

of images. The basis vector Φ(x, y) is now a collection of bivariate functions defined on a

2-dimensional domain D. The same assumptions as in model (3.2) apply, which are

Φ>Φ = I , Θ>Θ = I ,

αt ∼ N (0,Λ) , εt ∼ N (0, σ2I) ,

where Λ = diag{λ1, · · · , λP } is a diagonal covariance matrix. .
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The design of the bivariate basis Φ(x, y) is usually motivated by the problem under study.

For a regular shaped field, such as a rectangular grid, the basis Φ(x, y) can be constructed by

taking the tensor product of two univariate bases and then applying an orthonormalization

process so that Φ>Φ = I is satisfied. For an irregular field, triangulation is often applied and

the bivariate basis is defined on each triangle. This technique has been presented in Ettinger

et al. (2012), Guillas & Lai (2010) for modelling the ozone concentration using functional

regression and Zhou & Pan (2014) for a 2-dimensional FPCA on Texas temperature data.

Both applications take into account the effect of irregular boundaries. Penalty matrices and

smoothing parameters may be used to control the smoothness of the functions. In Zhou

& Pan (2014), a thin-plate penalty P is used to control the smoothness of both the mean

function and the functional PCs. This gives ω1β
>Pβ + ω2

∑P
p=1 θ

>
p Pθp as an addition to

the usual estimation criterion of the model. In circumstances where selecting smoothing

parameters ω1 and ω2 is computationally intensive, alternative methods for establishing an

appropriate degrees of freedom for the basis may be required. One approach could be directly

specifying the degrees of freedom of the basis based on scientific/application background of

the problem under study.

The estimated eigenfunctions ξp(x, y), p = 1, . . . , P , are the counterparts of the PC loadings

in a PCA. In particular, the bivariate eigenfunctions assign weights to each point (x, y) in

the range of support D. It measures how much ‘load’ each point has on the p-th principal

component. Under the scenario that D is a spatial field, the eigenfunctions can be regarded

as the spatial patterns common to all functional objects. By default, ξp(x, y), p = 1, . . . , P ,

are ordered by the magnitude of the eigenvalues λp, showing their contributions to the total

variation in decreasing order. The leading eigenfunctions usually display the most distinctive

spatial variations in the data. In the MM-FPCA (3.3), the PC scores are estimated as the

random components αpt. They reflect how strong the pattern shown by ξp(x, y) is in terms

of the t-th functional objects. However, the scores need to be interpreted carefully as some

distinctive values might be induced by the high proportions of missing observations.

3.1.2 Estimation of MM-FPCA

The main approach used here to estimate the MM-FPCA is maximum likelihood. Specif-

ically, the EM algorithm is applied, with the coefficient of the random effect component

estimated as the missing information (Rice & Wu, 2001). The log-likelihood functions and

their expectations for the E-step and M-step iteration have been derived in (James et al.,
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2000). Although the authors presented their results as 1-dimensional functional data, the

extension to 2-dimensional functional data involves only a small change of the estimating

equations. However, some modifications of the computational details are required. In the

following paragraphs, the complete EM algorithm for the 2-dimensional MM-FPCA (3.3) is

presented.

The EM algorithm is a general method for obtaining MLEs in incomplete data problems

(Little & Rubin, 2002). As described in section 1.3.2 in Chapter 1, the algorithm consists of

two steps, an E-step for the conditional expectation of the complete data log-likelihood and

a M-step where the MLEs are produced by maximizing the E-step expectation with respect

to the model parameters.

For the MM-FPCA, the complete data of the problem are Zcom = {Z1:T ,α1:T }, where the

subscript 1 : T stands for the collection of data from time point 1 to T . The parameter set

is denoted as Ψ = {β,Θ,Λ, σ2}. The complete data distribution of the model is then

f(Z1:T ,α1:T ; Ψ) =
T∏
t=1

f(Zt,αt; Ψ) =
T∏
t=1

f(Zt|αt; Ψ)f(αt; Ψ) , (3.4)

where the product comes from the assumption that the functional data at different time

points are independent. The conditional distribution f(αt|Zt; Ψ) can be derived from the

joint distribution of data at time t. In the it-th iteration, the E-step calculates the expectation

of the complete data log-likelihood given the observed data Zt and the current parameter

estimate Ψ(it−1)

Q
(

Ψ; Ψ(it−1)
)

= E
[
L(Ψ;Z1:T ,α1:T )

∣∣∣Z1:T ,Ψ
(it−1)

]
, (3.5)

where the conditional expectation is taken with respect to the missing information αt, as

E[αt|Zt,Ψ(it−1)]. The M-step then updates the parameter set to Ψ(it), so that the condition

Q
(

Ψ(it); Ψ(it−1)
)
≥ Q

(
Ψ; Ψ(it−1)

)
, ∀ Ψ ∈ W , (3.6)

is satisfied. The iterations of E-step and M-step terminate when the difference between

certain measure of the fit of the model is smaller than a pre-determined threshold. Given

this outline, a detailed algorithm can be established as follows.
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Step 1: model distributions According to the model assumptions above, the distribu-

tions of Zt and Zt|αt are

Zt ∼ N (Φtβ, ΦtΘΛΘ>Φ>t + σ2I) ,

Zt|αt ∼ N (Φtβ + ΦtΘαt, σ
2I).

Here Φt is the basis matrix for the t-th function, where the subscript t is used to reflect

the impact of missing data on the model. As the observed pixels vary with the images, the

evaluated basis matrix Φt would change accordingly. The joint density function f(Zt,αt)

can be obtained using f(Zt|αt)f(αt) as

f(Zt,αt) =
1

(2π)(nt+K)/2σnt |Λ|1/2
(3.7)

exp

{
− 1

2σ2
(Zt −Φtβ −ΦtΘαt)

>(Zt −Φtβ −ΦtΘαt)−
1

2
α>t Λ−1αt

}
,

where nt is the number of observations at time t. The conditional density function f(αt|Zt)

can be derived using f(Zt,αt)/f(Zt) as

f(αt|Zt) ∝ exp

{
− 1

2σ2
(Zt −Φtβ −ΦtΘαt)

>(Zt −Φtβ −ΦtΘαt)−
1

2
α>t Λ−1αt

+
1

2
(Zt −Φtβ)>

(
ΦtΘΛΘ>Φ>t

)−1
(Zt −Φtβ)

}
.

Rearranging this with regard to random vector αt and recognizing the fact that it follows

a normal distribution, gives the conditional distribution of αt|Zt as in the supplemental

document of James et al. (2000)

N

((
σ2Λ−1 + Θ>Φ>t ΦtΘ

)−1
Θ>Φ>t (Zt −Φtβ),

(
Λ−1 +

1

σ2
Θ>Φ>t ΦtΘ

)−1
)
. (3.8)

Alternatively, conditional distribution (3.8) can be derived using the property of the following

multivariate normal distribution (Zhou & Pan, 2014)

 αt

Zt

 ∼ N
 0

Φtβ

 ,

 Λ ΛΘ>Φ>t

ΦtΘΛ ΦtΘΛΘ>Φ>t + σ2I


and then applying the Woodbury identity to the conditional expectation and variance,

E[αt|Zt] = ΛΘ>Φ>t

(
ΦtΘΛΘ>Φ>t + σ2I

)−1
(Zt −Φtβ)
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Cov[αt|Zt] = Λ−ΛΘ>Φ>t

(
ΦtΘΛΘ>Φ>t + σ2I

)−1
ΦtΘΛ .

Both the distributions in equation (3.7) and (3.8) are essential to the computation of the

expectation in the E-step, which is then passed onto the M-step to get the MLEs.

Step 2: E-step equations Based on the conditional distribution (3.8), in the it-th itera-

tion, the conditional expectations of the missing data αt and its quadratic αtα
>
t evaluated

at the current estimates of the parameter set, Ψ(it−1) = {β(it−1),Θ(it−1),Λ(it−1), σ2(it−1)},

can be computed as

α̂t = E
[
αt

∣∣∣Zt, Ψ(it−1)
]

(3.9)

=

[
σ2(it−1)

(
Λ(it−1)

)−1
+
(
ΦtΘ

(it−1)
)>

ΦtΘ
(it−1)

]−1 (
ΦtΘ

(it−1)
)> (

Zt −Φtβ
(it−1)

)

α̂tα>t = E
[
αtα

>
t

∣∣∣Zt,Ψ(it−1)
]

(3.10)

= E
[
αt

∣∣∣Zt,Ψ(it−1)
]
E
[
αt

∣∣∣Zt,Ψ(it−1)
]>

+ Cov
[
αt

∣∣∣Zt,Ψ(it−1)
]

= α̂tα̂
>
t +

[(
Λ(it−1)

)−1
+

1

σ2(it−1)

(
ΦtΘ

(it−1)
)>

ΦtΘ
(it−1)

]−1

.

Plugging in (3.9) and (3.10) to the conditional expectation of the complete data log-likelihood

at the current iteration L(Ψ(it−1);Z1:T ,α1:T )

− 1

2

T∑
t=1

{
nt log

(
σ2(it−1)

)
+ log

(∣∣∣Λ(it−1)
∣∣∣)+α>t

(
Λ(it−1)

)−1
αt (3.11)

+
1

σ2
(Zt −Φtβ

(it−1) −ΦtΘ
(it−1)αt)

>(Zt −Φtβ
(it−1) −ΦtΘ

(it−1)αt

}
+ constant

gives the target function Q(Ψ; Ψ(it−1)) as defined in equation (3.5).

Step 3: M-step equations The Q(Ψ; Ψ(it−1)) function obtained above is then maximized

with respect to each parameter component to obtain their MLEs. The estimating equations

can be derived by solving the equations of the partial derivatives with respect to each pa-

rameter being zero. Particularly, the partial derivative with respect to Θ is computed for

each column θp of Θ, because ΦtΘαt is essentially
∑P

p=1 Φtθpαpt. The partial derivative of

Λ is also derived for each diagonal element λp, p = 1, . . . , P , based on the fact that
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log (|Λ|) +α>t Λ−1αt = log

 P∏
p=1

λp

+

P∑
p=1

α2
ptλp .

As a result, the M-step equations based on the E-step predictions α̂t and α̂tα>t are

σ2(it) =
1∑
nt

T∑
t=1

[(
Zt −Φtβ

(it−1)
)> (

Zt −Φtβ
(it−1)

)
(3.12)

− 2
(
Zt −Φtβ

(it−1)
)>

ΦΘ(it−1)α̂t + tr
{

ΦΘ(it−1)α̂tα>t Θ(it−1)>Φ>
}]

,

λ(it)
p =

1

T

T∑
t=1

α̂tα>t (p,p) , (3.13)

for p = 1, . . . , P , with α̂tα>t (p,p) indicates the p-th diagonal element of α̂tα>t , and

β(it) =

(
T∑
t=1

Φ>t Φt

)−1 T∑
t=1

Φ>t

(
Zt −ΦtΘ

(it−1)α̂t

)
, (3.14)

θ(it)
p =

[
T∑
t=1

α̂tα>t (p,p)Φ
>
t Φt

]−1 T∑
t=1

Φ>t

α̂t(p) (Zt −Φtβ
(it)
)
−
∑
j 6=p

α̂tαt(p,j)Φtθ̂j

 ,
(3.15)

with α̂t(p) represents the p-th element in vector α̂t, θ̂j = θ
(it)
j for j < p and θ̂j = θ

(it−1)
j

for j > p, for the basis coefficients. Note that the estimation of θp needs to be done itera-

tively for all p = 1, . . . , P . Strictly speaking, the M-Step in this algorithm is essentially the

conditional maximization (CM) steps (Meng & Rubin, 1993) as the estimation of parameter

θp is conditioned on the estimations of θj , j 6= p. However, James et al. (2000) and some

other authors still referred to it as the M-step. This thesis chooses to follow this tradition;

whereas an explanation of the CM-steps is given in Chapter 4. After running through above

equations, the current parameter set is updated to Ψ(it) = {β(it),Θ(it),Λ(it), σ2(it)}.

Step 4: evaluate convergence Choices of convergence criteria for the EM iterations in-

clude relative changes of the expected complete data log-likelihood, RSS, specific parameters,

etc. For example, the criterion using relative change in the RSS values from two consecutive

iterations is
RSS(it) − RSS(it−1)

RSS(it−1)
≤ ε,

where ε is a pre-determined small value, such as 0.005, 0.0001.
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Step 5: orthonormalize the results According to the assumptions of the MM-FPCA

(3.3), the coefficient matrix Θ is required to be orthonormal. However, the resulting MLE

Θ∗ from the EM iterations is not guaranteed to have this property. Therefore, a final step of

orthonormalizing Θ∗ is carried out. This is done through computing the covariance matrix

of the estimated random effect component and then applying an eigen-decomposition to the

covariance matrix,

Cov[ΦΘ∗α∗] = ΦΘ∗Λ∗Θ∗>Φ> = ΞΛ(new)Ξ>.

The columns of matrix Ξ give the final estimation of the orthonormal eigenfunctions ξp(x, y)

and Λ(new) is the final approximation to the covariance matrix of the PCs. In practice, the

eigen-decomposition Θ∗Λ∗Θ∗> = Θ(new)Λ(new)Θ(new)> is computed to avoid the manipu-

lating of a very high dimensional matrix, as a result of the dimensionality of basis matrix

Φ. The results are exactly the same since Φ is orthonormal. The final version of the eigen-

functions is then computed as Ξ = ΦΘ(new). In the end, the PC scores αpt are re-estimated

with the orthonomalized matrix Θ(new).

3.1.3 MM-FPCA initialization

Due to the complexity of the complete data likelihood in equation (3.11), the choice of starting

values for the EM iterations is important. A sensible initialization method is essential to the

convergence of the algorithm. Laird et al. (1987) suggested that ‘Criteria for good starting

values are (a) initial estimates can be obtained under all configurations of data and models,

(b) if the closed form expressions of σ̂ and D̂ exist, the method of obtaining starting values

should find them’, where σ2 represents the residual variance and D represents the random

effect covariance matrix of the repeated measures model studied in the paper.

For the MM-FPCA (3.3), an initialization method based on the R package fpca is adopted

with small modifications to σ2(0) and Λ(0). The package is developed by Peng & Paul (2009)

to implement the method described in their paper. It handles only univariate functional

data, but the idea can be generalized to bivariate functional data in the following ways.

(a) The initial value of β(0) is computed through fitting the model Z = Φβ + ε using

vectorized data Z = vec(Z1, · · · ,ZT ).

(b) The residuals plus random effects are then calculated by subtracting the mean function

from the data as r̂t = ΦtΘαt + εt = Zt −Φtβ
(0).
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(c) Rewriting ΦtΘαt as Φtηt and fitting the linear model r̂t = Φtηt + εt gives the least

square estimates η̂t = (Φ>t Φt)
−1Φ>t r̂t. The fact that Cov[ηt] = ΘCov[αt]Θ

> suggests

that an eigenvalue decomposition of Cov[η̂t] = UΣαU
> can be used to initialize Θ as

Θ(0) = U . Note that a perturbation is sometimes added to the least square estimator

of ηt to prevent Φ>t Φt from being singular, i.e. η̂t = (Φ>t Φt + κI)−1Φ>t r̂t, where κ is

a small positive real number.

(d) The initial values of Λ and σ2 are obtained as Λ(0) = Σα and σ2(0) = 1∑
nt

∑T
t=1 r̂

>
t r̂t.

The main idea is to avoid setting σ2(0)Λ(0)−1 overwhelmingly larger than the product

Θ(0)>Φ>t ΦtΘ
(0). Otherwise, the conditional mean of αt|Zt in equation (3.9) would be

driven towards zero by the factor σ2(0)Λ(0)−1 and the algorithm might shortly converge

to a biased solution.

3.1.4 MM-FPCA implementation

One of the major assumptions of the MM-FPCA is that the basis functions are orthogo-

nal. There are several bivariate bases which are orthogonal by design and are capable of

incorporating the shapes of the images, such as the bivariate B-spline, simplex splines, etc.

However, building such bases usually involves complicated geometric partition of the spatial

domain, e.g. the triangulation, and the quality of result often depends on the specific geo-

metric design. As far as the problems in this thesis are concerned, the gains from using the

advanced basis systems may not compensate the costs in implementing such bases. There

are two main reasons. (a) The remote-sensing images are recorded in regularly spaced pixels,

so the basis can be evaluated without additional geometric partition of the domain. (b) Due

to the higher uncertainties in pixels towards the boundaries of the imagesi, the modelling

of the shapes of the images is not considered as a priority. Instead, the grid is trimmed to

remove pixels that are irrelevant to the lake so the influence of the shape on the model can

be minimized. A relatively simple method is then applied, which takes the tensor product

of two univariate B-spline bases to construct a bivariate basis on a rectangular grid.

Since the bivariate bases created using the above method are usually not orthogonal, a

transformation is also applied. Two bivariate functions being orthogonal refers to

∫
D
φk(x, y)φl(x, y)dxdy = 0 , for k 6= l .

iThe retrieved remote-sensing data in the boundary pixels are often considered as not very reliable,
because of the uncertainty in identifying whether a pixel is for land or water.
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This integral can be approximated as

n∑
i=1

φk(xi, yi)φl(xi, yi) MxMy, n→∞. (3.16)

The orthonormalization of basis functions φ1(x, y), . . . , φK(x, y) is carried out in discrete

forms using approximation (3.16). The process involves evaluating the basis functions on a

fine grid to obtain a basis matrix and then applying the transformation using the Cholesky

decomposition. Some details of this process are presented below.

- The transformation using the Cholesky decomposition follows two steps. First decom-

pose the product of the basis matrix as Φ>Φ = LL>, where L is an orthogonal lower

triangular matrix. Then construct the orthogonal basis matrix as Φ(L>)−1. This is the

method proposed in package fpca, which is essentially a linear transformation defined

by Cholesky decomposition.

- Unlike univariate basis functions, there are two ways of constructing the basis matrix

of bivariate basis functions φk(x, y). For basis functions defined on a 2-dimensional

range space D, the k-th column of the basis matrix Φ can be created by concatenating

the evaluations of φk(x, y) by either x or y and the results would be different. That is,

a bivariate basis matrix constructed using Φx ⊗Φy is different from that constructed

using Φy ⊗ Φx. However, it can be shown that the results after orthonormalization

are essentially the same, subject only to a permutation of rows and columns. In other

words, it will not affect the model fitting.

In order to implement the model, the values of two additional parameters need to be speci-

fied before starting the EM iterations described above. They are the degrees of freedom (or

dimension) of the basis K and the order of the K-L expansion P . These two parameters

control the smoothness of the functions and can be regarded as the ‘smoothing’ parameters

of the MM-FPCA (3.3), although they function in a slightly different way as the smoothing

parameter ω introduced in section 1.3.1. The basis dimension K can be chosen using model

selection criteria, such as AIC/BIC, cross-validation or alternatively using a penalized ap-

proach (Zhou & Pan, 2014). The expansion order P can be selected using similar methods.

James et al. (2000) also proposed the use of a plot of the expected log-likelihood evaluated

at the MLEs against the expansion order, i.e. L(Ψ∗;Z1:T ,α1:T ) ∼ P . The optimal choice is

the value of P at which the curve becomes flat. For an approach that follows the tradition
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of PCA, P can be selected by inspecting the magnitude of the variance of PCs relative to

the total variance (Rice & Wu, 2001), i.e. the variance proportion criterion.

Considering the dimension of the remote-sensing data in general, both the cross-validation

and penalized approach would be computationally expensive. Therefore, the selection of K

and P based on information criteria is preferred. The variance proportion criterion is also

considered for choosing expansion order P . Ideally, the two parameters should be selected si-

multaneously through a grid search. However, this again would be computationally intensive

if higher basis dimension is required for the problem, as it could result in numerous combina-

tions of P and K to search through. To overcome this problem, a simplified 2-stage approach

is proposed. This approach handles the choice of K and P as two successive problems.

(a) The basis dimension K is selected first using the AIC/BIC. In order to select K ini-

tially, a sufficiently large P is used and is fixed throughout this stage. In practice, the

sufficiently large P can be chosen by fitting a MM-FPCA with an arbitrary basis and

inspecting the variance explained by various numbers of PCs. This idea of selecting

the basis dimension K regardless of the expansion order P is similar to the method

used in the FPCA described in section 2.3, where the basis dimension only depends on

functional data representation and is not affected by the PCA that follows.

(b) Next the expansion order P is selected using the optimal basis decided in stage (a). The

selection using AIC/BIC is relatively straightforward. Although, in some situations, a

more practical approach may be used where a truncated expansion which provides a

high enough approximation power is used instead of the one selected by the information

criteria. The selection using variance proportion criterion is even easier to implement.

First fit a full rank (or high rank) model and then select P so that at least δ% of the

total variation is explained, i.e.

∑P
p=1 λp∑K
p=1 λp

≥ δ% , for P ≤ K . (3.17)

Another approach to the variance proportion criterion is illustrated in Zhou & Pan

(2014). The authors fitted a series of models with increasing expansion order P until

a PC with variance significantly smaller than other leading PCs appeared, then they

set the expansion order as the current P .

In general, the selection of K and P should not be treated too rigidly. It is better to adapt

the selection criteria to the purpose of statistical analysis. For example, the relative changes
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of RSS and mean integrated squared error (MISE) from the fitted model may be used as

they can be helpful in assessing whether it is signal or noise the model is trying to capture.

Scientific knowledge associated with the application background may also play a part in the

selection of the ‘optimal’ combination of K and P .

Code for implementing the MM-FPCA has been developed based on the R package fpca

(Peng & Paul, 2013). An extension from univariate functions to bivariate functions has been

made, which involves modifications of the basis matrix and its orthonomalization.

3.2 MM-FPCA investigation using image series

Several investigations on the MM-FPCA (3.3) were carried out to examine its performance on

sparse remote-sensing image series. The first two studies were based on the ‘Re LSWT’ data

set introduced at the end of Chapter 1, including a comparison between the MM-FPCA and

the FPCA by eigenvalue decomposition (referred to as ‘direct FPCA’) and an investigation

with respect to the basis dimension and expansion order. A simulation study was then carried

out to assess the performance of the model under different levels of missing percentages and

spatial missing patterns (i.e. missingness appearing as spatial regions).

3.2.1 MM-FPCA and direct FPCA

For a comparison between the MM-FPCA and the direct FPCA, model (3.3) was fitted to

the ‘Re LSWT’ data set as used in section 2.3.3. The orthonormal basis was constructed

by first creating the tensor spline basis Φ = Φx ⊗Φy, then applying the orthonormalization

process described in section 3.1.4. The same degrees of freedom K = 25 as in section 2.3.3

was used. An example with 6 out of 25 resulting orthonormal bivariate basis functions is

given in Figure 3.1. For comparison purpose, the full rank model with P = 25 was fitted.

This gives a random effect component describing a space spanned by 25 PCs. It was also

assumed that the mean function Φ(x, y)β = 0, which, after centering the data by removing

the monthly means, can be regarded as appropriate.

The computation of the MM-FPCA took 136.8 seconds. The EM algorithm converged after

7 iterations. The estimated residual variance is σ̂2 = 0.0049. The covariance matrix of

the estimated random effect was computed using the results from the EM iterations and

the final eigen-decomposition Θ∗Λ∗Θ∗> = Θ(new)Λ(new)Θ(new)> was then applied to give
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Figure 3.1: An example of six orthogonal bivariate basis functions from the basis (degrees
of freedom = 25) defined on the rectangular grid of the ‘Re LSWT’ data set.

the eigenvalues λ̂p as the diagonal elements of Λ(new) and the eigenfunctions ξ̂p(x, y) as the

column vectors of ΦΘ(new). Table 3.1 summarises the eigenvalues of the first five PCs and

their contribution to the variance in proportions. In this case, the first PC is the most

influential one, accounting for 35.54% of the total variation. The second and the third PC

appear to be equally important, accounting for 21.06% and 19.48% of the total variation

respectively. The leading five PCs in total explains 91.38% of the variation. The same

measure from the direct FPCA is 92.80%. These results from the MM-FPCA are different

from those extracted from the direct FPCA. This is understandable because the MM-FPCA

contains a residual component εt, which does not exist in the direct FPCA. This component

is certain to have some effect on the estimated eigenvalues and eigenfunctions. In this case,

the estimated residual variance is σ̂2 = 0.0049. The RSS from reconstructing the original

image using the first five PCs is 0.0081, which is almost the same as the RSS from the direct

FPCA (0.0078) in section 2.3.3.

Table 3.1: The first five eigenvalues and their variance proportions from the MM-FPCA

PC1 PC2 PC3 PC4 PC5

Eigenvalues 9.52 5.64 5.22 2.99 1.10
Variance proportions 35.54% 21.06% 19.48% 11.17% 4.11%

For a complete comparison, the eigenfunctions and scores of PC1 and PC2 extracted from
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Figure 3.2: (Top) Illustrations of the eigenfunctions of PC1 and PC2. The horizontal
and vertical axes represent longitude and latitude respectively. (Bottom) Illustrations of the

scores of PC1 and PC2 over time.

the MM-FPCA were plotted in Figure 3.2. In order to make the comparison easy, these

eigenfunctions were rescaled to match the eigenfunctions extracted from the direct FPCA in

section 2.3.3. The rescaling was carried out using the following equation,

ξ̃p(x, y) =

√√√√ λ̂
(m)
p

λ̂
(d)
p

ξ̂p(x, y) ,

where λ̂
(m)
p is the eigenvalues from the MM-FPCA and λ̂

(d)
p is the eigenvalues from the direct

FPCA. The same was done to the scores, by changing the rescaling factor to

√
λ̂

(d)
p /λ̂

(m)
p .

The resulting eigenfunctions and scores are different from their counterparts in section 2.3.3.

However, the rescaled eigenfunction ξ̃1(x, y) describes a similar contrast between the north

and south as that in the left panel of Figure 2.8. In terms of ξ̂2(x, y), although the pattern

is not exactly reflecting the contrast between East and West as the right panel in Figure 2.8,

it conveys a similar idea.

It could be difficult to examine the similarity between the results from the two methods ap-

plied to sparse data, because the direct FPCA cannot even be implemented if the missingness

is substantial. However, based on the performance of the two methods on complete data and
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their theoretical connections, it is appropriate to used the MM-FPCA as an alternative to

the direct FPCA. In fact, the MM-FPCA may even be a superior method, because it makes

optimal use of the available information (James et al., 2000). In practice, the assumption

Φ(x, y)β = 0 is not required and β is estimated within the EM iterations (section 3.1.2).

3.2.2 Basis dimension and expansion order

The basis dimension K and the K-L expansion order P need to be selected before launching

the EM algorithm. The following paragraphs continue the investigation using the ‘Re LSWT’

data set, but with emphasis put on the selection of K and P using the 2-stage approach

described in section 3.1.4 and the influence of the choices on the model.

The first step in the 2-stage approach is to choose basis dimension K. The selection procedure

starts with the 5 × 5 basis, which is the smallest possible basis with only one interior knot

along each coordinate. Then one knot is added to one of the two coordinates each time to

increase the basis dimension. That is, testing a sequence of basis of dimension 5× 5, 6× 5,

5×6, etc, until the maximum basis dimension considered is reached. For each basis tested, a

MM-FPCA is fitted with a sufficiently large initial expansion order Pini. The log-likelihood,

AIC, BIC and RSS values are recorded. In this investigation, the maximum dimension was

taken to be 7 × 7 and an initial Pini = 20 was usedii. Table 3.2 presents some detail from

this selection. In this case, the AIC and BIC failed to give an explicit answer as both criteria

gave decreasing values as the basis dimension increases. However, there is a big drop in the

AIC and BIC values after the basis dimension reaches 6×5, corresponding to a large increase

in the log-likelihood. It also appears that the rapid decrease of AIC and BIC values slows

down after the 7× 6 basis. Therefore, a 7× 6 basis is selected.

Table 3.2: The log-likelihood, AIC, BIC and RSS from the MM-FPCA fitted with increas-
ing degrees of freedom.

Basis 5× 5 6× 5 5× 6 6× 6 7× 6 6× 7 7× 7

likelihood 179470 181256 192678 197226 202064 202602 208166
AIC -357848 -361211 -384055 -392899 -402323 -403398 -414232
BIC -352461 -354788 -377631 -385232 -393413 -394488 -403872
RSS 0.0048 0.0046 0.0038 0.0035 0.0033 0.0033 0.0030

After determining the basis, the magnitude of the expansion order was investigated. For the

likelihood based approach, both the method using the information criteria and the method

iiThe maximum degrees of freedom of the basis can be chosen based on initial analysis, e.g. fitting spline
regression models to individual images and examine the smoothness. It can be increased during the selection
process, if the initial choice appears to be too low.
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using the log-likelihood against expansion order plot were considered. For the 7 × 6 basis,

models with expansion order ranging from 2 to 20 were tested. The log-likelihood, AIC,

BIC and RSS were recorded and reported in Table 3.3. Again, the AIC and BIC did not

give an explicit answer as the values keep on decreasing. However, from the plot of log-

likelihood against expansion order P in Figure 3.3, it is possible to identify a point after

which the log-likelihood curve becomes almost horizontal. Specifically, the dashed vertical

line, corresponding to P = 15, indicates the point after which the increase of log-likelihood

becomes smaller than 0.5%, i.e. (LP+1 − LP )/LP ≤ 0.5%, where LP is the log-likelihood

of the model with expansion order P . It turns out that P = 15 is also the point where the

AIC and BIC values reach an asymptotic. As a result, the expansion order P = 15 can be

regarded as an appropriate choice.

Table 3.3: The log-likelihood, AIC, BIC and RSS from the MM-FPCA fitted with increas-
ing expansion orders, when the basis dimension is fixed as 7× 6.

P 2 . . . 13 14 15 . . . 19 20

log-like 91845 . . . 196609 198863 199907 . . . 202107 202194
AIC -183432 . . . -391928 -396351 -398353 . . . -402494 -402583
BIC -182160 . . . -385564 -389563 -391140 . . . -394009 -394736
RSS 0.0159 . . . 0.0035 0.0034 0.0033 . . . 0.0033 0.0033
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Figure 3.3: Illustrations of the selection of expansion order P using the log-likelihood. The
black solid curve represents the log-likelihood; the dashed line indicates the point where the

increase of log-likelihood becomes smaller than 0.5%. The horizontal axis represents P .

An alternative way to select the expansion order P is based on considering the variance

proportion criterion, which is a method widely used in the PCA for multivariate analysis. To

implement this criterion, a high rank model with P = 30 was fitted. According to this model,

a 90% threshold for the variance explained gives expansion order P = 6; a 95% threshold

gives P = 8; a 99% threshold would require P = 15. The variance proportion criterion can

be attractive due to its computational efficiency, as it requires fitting a high rank model
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only once. In this example, if the modelling purpose is to reduce the data complexity by

retaining a small number of PCs, or to identify the PCs explaining the main patterns, then

the variance proportion criterion would be helpful. If data imputation or reconstruction is

of main interest, then the likelihood based approach might be preferred for a measure of the

fit of the data.

To examine the impacts of the selected degrees of freedom, a model with K = 7× 6, P = 15

(denoted as the P15 model) and another with K = 7 × 6, P = 6 (denoted as the P6

model) were fitted and the imputations were computed. The computation of the P15 model

took 85.6s; the timer for the P6 model showed 20.6s. The estimated σ2 for the P15 model

is 0.0035 and that of the P6 model is 0.0058. The first two eigenfunctions ξ1(x, y) and

ξ2(x, y) estimated from the P15 and P6 models are presented in Figure 3.4; examples of

reconstructions from the two models are shown in Figure 3.5. The plots were produced using

the same colour scheme for the purpose of comparison. The eigenfunctions from the two

models are very similar to each other, so are the reconstructed images, indicating there is no

substantial difference between the P15 and the P6 model.
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Figure 3.4: Examples of eigenfunctions from the MM-FPCA. The two left panels show
the first eigenfunction from the P15 and P6 models. The two right panels show the second
eigenfunction from the P15 and P6 models. TThe horizontal and vertical axes represent

longitude and latitude respectively.

The above investigation suggests that if the main interest is in dimension reduction or to

identify the dominant spatial patterns in the data, then a small model such as the P6 model

would be sufficient. If the detail of the spatial reconstruction is of interest, then a larger

model such as the P15 model may be a better choice. In addition, while the likelihood based

approach and the variance proportion approach provide some information on the selection

of the expansion order, the optimal choice in a real application may also be guided by the

scientific background of the problem. It may be essential to consider the trade-off between

the fit of the data and the identification of the actual signal, so that the dimension of the

model is not increased merely for explaining the noise. Computation time and the number of
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Figure 3.5: Examples of reconstructions from the MM-FPCA with P = 15 and P = 6 from
December 2000 (top) and January 2001 (bottom). In each row, the left panel represents the
data, the middle panel represents the P15 model and right panel represents the P6 model.

The horizontal and vertical axes are longitude and latitude respectively.

observations available are among the other factors to be considered when choosing the most

appropriate model.

3.2.3 Simulation study on missing conditions

Through its specification, the MM-FPCA handles the problem of missing observations auto-

matically. However, the proportions of missing observations and the patterns of the missing

data are presumed to have some impact on the model (Allison, 2009). The missing observa-

tions in remote sensing data are often the result of meteorological conditions and the satellite

orbit. The percentage of missing observations in satellite images can be relatively high. In

the Lake Victoria LSWT data, more than 1/5 of the images have less than 30% of the data

observed and the total percentage of missing data reaches almost 50%. Another problem

about the remote-sensing data is that missing observations often appear as spatial regions

(recall Figure 1.2). This feature is referred to as spatial missing patterns in this thesis. It

does not affect the assumption of missing at random (MAR) made earlier in the thesis as

the probability the data are missing does not depend on the unobserved values, yet these

missing regions would make recognizing the spatial patterns difficult.
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To the author’s knowledge, these issues have not received much investigation so far. There-

fore, a simulation study on the impact of various conditions of sparsity on the model was

carried out. The aim of this study is to investigate the applicability of the MM-FPCA to

sparse data such as the remote-sensing LSWT. It also attempts to find the potential threshold

for percentage of missing where the application of the MM-FPCA is not appropriate.

Part 1: simulation design Using the properties of Lake Victoria LSWT data as a guide,

a 30× 40 rectangular grid is defined and 120 images are simulated on this grid. Three levels,

0%, 30% and 50%, are assessed for the percentage of missing data. The last one is slightly

higher than the missing proportion of the Lake Victoria LSWT data. Two types of sparsity

are considered, one with spatial missing patterns and one without. The missing scenarios

are then paired with four levels of spatial variation, giving 20 different scenarios in total (see

Figure 3.6).

4 spatial variation
scenarios

nugget

0.01 0.1
range

1.5

1

I II

III IV

5 missing scenarios

none

no pattern

patterned

0%

30%

50%

Figure 3.6: A diagram showing the settings of 20 simulation scenarios

Data are simulated pixel by pixel using function (3.18)

Zt(x, y) = A(x, y) cos [2πν(t− ϕ)] + St(x, y) + εt(x, y) , (3.18)

where t = 1, 2, . . . , 120 and (x, y) ∈ D, which covers a grid of size 30 × 40. The A(x, y)

component is the main spatial pattern designed for the simulated data, which corresponds to

the leading eigenfunction. The sinusoid is used to mimic the seasonal fluctuation of the data

with cycle length 1
ν = 12. An isotropic Gaussian random field (GRF) St(x, y) adds noise in

the form of spatial variations to the data. The component εt(x, y) is the i.i.d. random noise,

which can be merged into the GRF as a nugget effect. The GRF is generated using the
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covariance function (2.14), γ(h) = σ2
ng + σ2

psρ(hd ), where σ2
ng is the nugget effect and ρ(hd ) is

the exponential correlation function. The levels of spatial variation in the simulation study

are created by varying the range and nugget parameters, d and σ2
ng.

Simulation studies in the literature have focused mainly on the MM-FPCA’s ability to iden-

tify the covariance structure and the corresponding orthogonal patterns. In Rice & Wu

(2001), orthogonal designs were introduced to the covariance matrix in the simulation study

and it has been shown that the leading eigenfunctions from their model (which is essentially

a MM-FPCA) were able to capture these orthogonal functions. Similar results can be found

in the simulation study in Peng & Paul (2009). The simulation study in this thesis does

not intend to assess the model’s ability to capture the patterns in the data covariance struc-

ture again. On the contrary, the emphasis is put on the fit of the model under different

conditions for missing data. Therefore, only one spatial pattern A(x, y) is included in the

data generating function (3.18). No other spatial pattern orthogonal to A(x, y) is involved

for simplicity. This can be regarded as a problem with only one eigenfunction, with the

GRF being responsible for the additional spatial variationiii. Efforts are made to design the

appropriate missing data scenarios in this thesis.

To mimic the missing patterns in the remote-sensing LSWT data, the spatial missing clusters

are introduced using the following method.

- First assign the missing percentages to each individual image. Assume that the cold

season (1
4 of all time points) contributes 40% to the total missing percentage, the

transitional period (1
2 of all time points) contributes 50% and the warm season (1

4 of all

time points) contributes 10% to the total missing percentage. Under the 30% missing in

total scenario, this is equivalent to assigning the missing percentage (30%×40%)÷(1
4) =

48% to the images corresponding to the cold season. The same applies to the rest of

the seasons and the resulting missing percentages per image are shown in Table 3.4.

- Based on the above structure, the spatial missing clusters are created using probability

maps. The maps are created by first generating several Gaussian random fields and

then assigning different missing probabilities to different regions in the fields. For

example, to create spatial clusters with three levels of missingness and a total of 48%

missing observations, divide the GRF into regions using the 40-th and 65-th percentiles.

iiiIt is possible to include more than one eigenfunctions. There are several ways of generating orthogonal
bivariate functions as described in literatures. Alternatively, eigenfunctions from a real problem may be used.
Data can then be generated using the corresponding covariance matrix. This method is not used here due to
different priority. A version of simulation using three bivariate eigenfunctions is available upon request.
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Then assign probability 0.9 to regions with values below the 40-th percentile, 0.48 to

regions with values between the 40-th and 65-th percentile and 0 to regions with values

greater than the 65-th percentile. Table 3.4 summarises the critical percentiles and

probabilities used to create the missing probability maps.

Table 3.4: Missing percentages per image, critical percentiles and probabilities used to
create the missing probability maps.

Total % 30% 50%

Cold per image 48% 80%
percentile 40-th 65-th 100-th 20-th 80-th 100-th
probability 0.9 0.48 0 1 0.9 0.3

Transitional per image 30% 50%
percentile 25-th 50-th 100-th 35-th 68-th 100-th
probability 0.9 0.3 0 0.9 0.6 0

Warm per image 12% 20%
percentile 10-th 30-th 100-th 15-th 40-th 100-th
probability 0.9 0.15 0 0.9 0.26 0

- Five missing probability maps are created for the missing 30% and 50% with spa-

tial missing patterns scenarios respectively. Examples are shown in Figure 3.7, where

the darker areas have higher missing probabilities and lighter areas have better data

availability. The cold and transitional seasons are both assigned with two missing

probability maps; whereas the warm season receives one map.

Using this design, the sparse images can be simulated. Figure 3.8 shows some examples of

the generated images under the spatial variation scenario d = 1, σ2
ng = 0.01 and the total

missing percentage of 30%.

For each of the 20 scenarios, 200 replicates were simulated by varying St(x, y)+εt(x, y), where

St(x, y) were generated using the R package RandomFields (Schlather et al., 2016). The MM-

FPCA was fitted to each replicate. The number of replicates is chosen for computational

efficiency. Evidence showing that 200 replicates are enough to produce robust estimation is

given in Appendix A.2. The selection of basis and expansion order is not addressed in this

study. Instead, a basis with degrees of freedom K = 5×5 and an expansion order P = 20 are

used throughout the replicates. Initial analysis show that P = 20 is sufficiently large for the

simulated data under various scenarios. The number of PCs used in the data reconstruction is

chosen using the variance proportion criteria, which in this case is δ% = 90%. The following

quantities are recorded for comparing the simulation scenarios,
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Figure 3.7: Missing probability maps for the 30% missing with spatial pattern scenarios.
The legends show the probability that an observation is available. This means, the darker
areas have higher missing probabilities and lighter areas have better data availability. The

horizontal and vertical axes are longitude and latitude respectively.
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Figure 3.8: Examples of four simulated images from spatial scenario I, d = 1, σng = 0.01.
The missing condition is 30% missing with spatial pattern. The horizontal and vertical axes

are longitude and latitude respectively.

(a) the estimated residual variance σ̂2 and the coefficient of the first eigenfunction θ̂1;

(b) the number of functional PCs kept for data reconstruction, P , which gives a minimum

of 90% of the total variation;

(c) the mean integrated squared error (MISE) from reconstructing Ẑt(x, y) using P func-

tional PCs (Cardot, 2000, Ivanescu, 2013) for a global measure of the model perfor-

mance. The detailed expression of the MISE can be written as
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E

[∫
D

{
Ẑ(x, y)− Z(x, y)

}2
dxdy

]
≈ 1

T

T∑
t=1

∫
D

{
Ẑt(x, y)− Zt(x, y)

}2
dxdy . (3.19)

The means and standard deviations of these quantities based on the 200 replicates are then

produced. In addition, the coefficient of the sinusoidal A(x, y) at pixel location (x, y) is

estimated from the reconstructions Ẑt(x, y) using a linear regression model

Ẑt,(x,y) = A(x,y) cos [2πν(t− ϕ)] + εt,(x,y) .

The resulting Â(x,y) can be regarded as an approximation of function A(x, y) evaluated at

(x, y). A version of normed bias can be computed as

∆̂(x,y) =
1

200

200∑
m=1

∣∣∣Âm,(x,y) −A(x, y)
∣∣∣ (3.20)

where m is the index of replicate. This measure is helpful in examining the impact of the

spatial missing patterns.

Part 2: simulation results Table 3.5 summarises the means/medians and standard

deviations of σ̂2, P , MISE for all 20 scenarios. The means of σ̂2 reflect the scale of the

nugget effects. The small standard deviations of σ̂2 suggest that the estimates are robust in

all 20 scenarios. The means and medians of P are consistent with the complexities in the

simulation designs. The level of spatial variation appears to be the most influential on the

expansion order. The larger the spatial variation (smaller d, larger σ2
ng), the more PCs are

required to reach a specified percentage of total variance. Meanwhile, the spatial missing

patterns further weaken the signal, resulting in higher expansion orders being included in

corresponding scenarios. The standard deviations of P turn out to vary greatly among 20

scenarios. This can be explained by the fact that P is chosen by a threshold. If the expansion

order P happens to give a variance proportion at around the critical point, e.g. 89.9% and

90.1%, then a case with 89.9% would need to settle for (P + 1) PCs despite the small

discrepancy in percentage values. The occurrences of the two cases out of 200 repetitions

would affect the standard deviation of P .

After fitting the MM-FPCA, the data reconstructions are computed using P principal com-

ponents. The MISE is then computed using these reconstructions. The results are also shown
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Table 3.5: Means, medians (numbers in italics) and standard deviations (numbers in
brackets) of σ̂2, expansion order P and MISE, rounded to three decimal places.

spatial I spatial II spatial III spatial IV
d = 1.5, σ2

ng = 0.01 d = 1.5, σ2
ng = 0.1 d = 1, σ2

ng = 0.01 d = 1, σ2
ng = 0.1

None
σ̂2 0.011 0.101 0.020 0.110

(≤ 0.001) (≤ 0.001) (≤ 0.001) (≤ 0.001)
P 6.010, 6 6.005, 6 9.445, 9 9.540, 10

(0.099) (0.122) (0.498) (0.499)
MISE 0.257 1.155 0.377 1.266

(0.007) (0.010) (0.018) (0.020)
No pattern 30%

σ̂2 0.011 0.101 0.020 0.110
(≤ 0.001) (≤ 0.001) (≤ 0.001) (≤ 0.001)

P 6.010, 6 6.005, 6 9.455, 9 9.495, 9
(0.099) (0.122) (0.499) (0.501)

MISE 0.258 1.153 0.378 1.273
(0.007) (0.010) (0.018) (0.020)

No pattern 50%
σ̂2 0.011 0.101 0.020 0.110

(≤ 0.001) (≤ 0.001) (≤ 0.001) (≤ 0.001)
P 6.000, 6 6.000, 6 9.380, 9 9.355, 9

(0.000) (0.141) (0.486) (0.473)
MISE 0.259 1.162 0.384 1.293

(0.007) (0.010) (0.018) (0.019)
Pattern 30%

σ̂2 0.011 0.101 0.019 0.109
(≤ 0.001) (≤ 0.001) (≤ 0.001) (≤ 0.001)

P 6.985, 7 6.945, 7 10.275, 10 10.205, 10
(0.121) (0.228) (0.447) (0.404)

MISE 0.260 1.162 0.406 1.310
(0.009) (0.013) (0.018) (0.016)

Pattern 50%
σ̂2 0.011 0.101 0.019 0.109

(≤ 0.001) (≤ 0.001) (≤ 0.001) (≤ 0.001)
P 7.000, 7 6.985, 7 10.670, 10 10.360, 10

(0.100) (0.157) (0.471) (0.481)
MISE 0.304 1.238 0.491 1.429

(0.014) (0.021) (0.024) (0.025)

in Table 3.5. The means of MISE do not appear to increase significantly in the missing with-

out spatial pattern scenarios. However, the means of MISE do tend to inflate when the

spatial missing patterns are introduced, especially in the missing 50% with spatial pattern

scenario. This is highlighted in Table 3.6, where the percentage increments of the mean of

MISE under different missing data scenarios from the complete data scenario are presented.

The percentage increments under the missing 50% with pattern scenario are much higher

than those from the rest of the scenarios. If the main purpose of the analysis is data imputa-

tion or prediction, then a 30% increase in the MISE may not be satisfactory. Although the

MISE can be made smaller with a higher expansion order P , fitting a larger model using a
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limited amount of data may itself be problematic.

Table 3.6: The percentage increments in the mean of MISE under different missing sce-
narios from the complete data scenario.

spatial I spatial II spatial III spatial IV
d = 1.5, σ2

ng = 0.01 d = 1.5, σ2
ng = 0.1 d = 1, σ2

ng = 0.01 d = 1, σ2
ng = 0.1

No pattern
30% 0.17% 0.26% 0.19% 0.57%
50% 0.79% 0.89% 1.84% 2.10%

Pattern
30% 1.07% 0.91% 7.58% 3.50%
50% 18.02% 7.52% 30.07% 12.87%

The simulated results of ∆̂(x,y), which is the bias of estimated coefficient Â(x,y) from 200

replicates, are presented as box plots in Figure 3.9. The two panels correspond to spatial

variation levels I and IV respectively. The boxes show the distributions of the bias from all

1200 pixels and are ordered from left to right according to the complexity in the missing

pattern design. The medians of bias from different scenarios are similar, but the chances of

getting large values of ∆̂(x,y) increase substantially in the missing 50% with spatial pattern

scenario. The left panel of Figure 3.10 flags the the pixels with large bias from the spatial

variation level IV plus missing 50% with spatial pattern scenario. The locations of these

pixels match the darkest areas in the missing probability map of the season with the highest

missing probability (i.e. the cold season), shown in the right panel of Figure 3.10. Since

Â(x,y) was estimated through a linear model with covariate, cos [2πν(t− ϕ)], the high missing

probability in these areas during the cold season would make the estimation less accurate,

introducing a large bias to Â(x,y). Things can be worse for areas with few observations

throughout the time. Inferences with respect to very sparse regions need to be carried out

with extreme caution.

In addition to the above, the estimates of the first eigenfunction from all 20 scenarios are

investigated via θ̂1 and the results tend to be robust throughout the simulation replicates.

In particular, the first eigenfunction appear to show a similar pattern as the main spatial

pattern A(x, y) after rescaling using the standard deviation of the first PC. Some details

can be found in Appendix A.2. In general, this study shows that the estimates from the

MM-FPCA are robust throughout the simulation replicates. The analysis of MISE and the

bias ∆̂(x,y) suggests that the spatial missing patterns tend to be more influential than the

percentages of missing. This is highlighted by the statistics from the missing 50% with
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Figure 3.9: Box plots of the bias ∆̂(x,y) from spatial scenarios I (left) and spatial scenarios
IV (right). In each panel, from left to right are complete data, missing 30% without pattern,

missing 50% without pattern, missing 30% with pattern and missing 50% with pattern.
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Figure 3.10: (Left) A map indicating pixels with large bias of refitted coefficient Â(x,y) from
the spatial variation VI and missing 50% with spatial pattern scenario. (Right) The missing
probability map of the season with the highest missing percentage under this scenario. The

horizontal and vertical axes are longitude and latitude respectively.

pattern scenario. The results also suggest that the MM-FPCA be applied with caution if the

data set has ≥ 50% observations missing with clear spatial pattern.

3.3 Application to the sparse Lake Victoria data

Application 1: LSWT The MM-FPCA was applied to the sparse Lake Victoria LSWT

data. Before applying the model, the grid was trimmed to remove the redundant land pixels.

The trimming involves removing 2 pixels to the left, 14 pixels to the right, 5 pixels to the

top and 4 pixels to the bottom of the original 65 × 66 grid. The left panel of Figure 3.11

shows this trimming, where the target area is inside the four red lines. The last image of
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April 2012 is not considered in this application as the observations are clearly outliers due

to a satellite breakdown. The resulting data set is of dimension 49× 57× 202. The missing

percentage in the lake pixels is 46.8%, which is lower than the worst case scenario tested in

the simulation study. The right panel of Figure 3.11 shows the proportion of data missing

in each pixel. The darker areas have more data available and the pale areas display higher

missing percentages. The pixels marked with red cross have more than 70% data missing.

In general, the situation with respect to the main body of the lake is much less problematic

than the boundary of the lake. Considering that the interest of this analysis lies in the lake

body, it is appropriate to apply the MM-FPCA in spite of the poorly observed lake borders

(refer to explanations in section 3.2.3).
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Figure 3.11: (Left) The trimming of the grid of the Lake Victoria LSWT data. (Right)
The map of proportion of data available in each pixel in the trimmed Lake Victoria data set.
The red corsses indicate the pixels with ≤ 30% data available. The horizontal and vertical

axes are longitude and latitude respectively.

The monthly mean was removed from the LSWT data before the analysis. The centered

images are assumed to be independent realizations from a random spatial process. This is

not the most appropriate assumption, but can be justified since the main temporal structure

in the LSWT data, which is the seasonality, has been removed. The influence of the remaining

temporal dependence is not supposed to be substantive. A tensor spline basis was used to

construct the bivariate functions representing the images. A transformation was applied to

the tensor spline basis matrix, giving the orthonormal Φ(x, y). The selection of K and P was

processed using the two-stage approach described in section 3.1.3. The variance proportion

criterion was used to choose the expansion order. In this application, the basis selected by

the AIC and BIC criteria is of dimension 7 × 7, i.e. 3 knots each along the longitude and

the latitude coordinates. Figure 3.12 shows some details of this selection, where the dip can
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be found at index 7 on the vertical axis, corresponding to a 7 × 7 basisiv. The threshold of

variance proportion 95% suggests that P = 4 is appropriate for this problem.
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Figure 3.12: The selection of basis dimension for the MM-FPCA applied to the sparse
Lake Victoria LSWT data. The three panels are the log-likelihood (left), AIC (middle) and
BIC (right) against the index of basis of increasing degrees of freedom, from 5× 5 to 8× 8.

The estimated residual variance of the mixed model is σ̂2 = 0.1165. Two principal compo-

nents with relatively large eigenvalues were identified. They contribute 66.7%, 29.2% each

and a sum of 95.9% to the total variations. The plots of the leading two eigenfunctions,

along with their scores are given in Figure 3.13. The first eigenfunction displays a contrast

between the northeast and the southeast/northwest edge of the lake. The 66.7% variance

contribution indicates that this is the dominant spatial pattern in the data over the moni-

toring period. The second eigenfunction shows a contract between the middle/south of the

lake and the north half, plus the southeast corner of the lake. The PC scores are measures

of the strength of the corresponding spatial patterns at each time point, which in this case

can be interpreted as the evolution of the spatial patterns throughout time. In this example,

there is no sign of clear temporal trend or change point in the PC scores.

The reconstructions of LSWT were then produced using the estimated PCs. An example

of two imputed LSWT images along with the observed images is given in Figure 3.14. The

images were plotted using the same colour scheme for ease of comparison. The reconstruc-

tions have captured the main spatial patterns in the data. The RSS from the MM-FPCA

reconstructions is compared to those from the reconstructions provided by ARC-Lake, which

are derived using EOF-based techniques MacCallum & Merchant (2013). The RSS from the

MM-FPCA with four PCs is 0.1207, which is smaller than the RSS value 0.1571 from the

ivThe indexes of the bases are, 1 for the 5× 5 basis, 2 for the 6× 5 basis, 3 for the 5× 6 basis, 4 for the
6× 6 basis, so on and so forth until 10 for the 8× 8 basis.
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Figure 3.13: The plots of the eigenfunctions and the scores of the PC1 (top) and PC2
(bottom). The horizontal and vertical axes of the eigenimages represent longitude and

latitude respectively.
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Figure 3.14: Examples of the MM-FPCA reconstructions of the Lake Victoria LSWT
data. From left to right are the data and the imputation of June 1997 and July 1997. The

horizontal and vertical axes are longitude and latitude respectively.

ARC-Lake reconstructions. However, since the EOF analysis is essentially a PCA, the resid-

uals from the ARC-Lake reconstruction can also be made smaller by increasing the number

of EOFs involved in the data imputation. A comparison purely based on RSS measures is

not always convincing. Therefore, the regional fit of the MM-FPCA is also investigated. In

particular, the RSS for individual pixels is computed and the results are shown in Figure 3.15.

For the ease of comparison, the two RSS images are plotted using the same color scheme.
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Figure 3.15: Images of the RSS of each pixel in the grid from the MM-FPCA (left) and
the ARC-Lake reconstructions (right). The legend is for both images. The horizontal and

vertical axes of the two images are longitude and latitude respectively.

Although the RSS in pixels with higher missing percentage are generally larger, it appears

that the discrepancies between the RSS in these pixels and the better observed pixels are

smaller in the MM-FPCA imputation (the left panel) than in the ARC-Lake reconstructions

(the right panel). In fact, both the largest and the smallest RSS values come from the ARC-

Lake reconstructions. This result shows the potential advantage of the MM-FPCA in terms

of data imputation due to improved smoothness as compared to the EOF method. At the

same time, information from neighbouring areas and time points can be ‘borrowed’ in the

MM-FPCA to improve the estimation of the less observed area.

Application 2: Chlorophyll For additional information, an application of the MM-FPCA

to the Lake Victoria Chlorophyll data is presented here. The data used in this analysis are

the spatially aggregated Chl data, i.e. the average value of the Chl observations in a 3 × 3

grid is used as the observation of the lager pixel covering the 3× 3 grid (see the explanation

at the end of Chapter 1). Due to the massive size of the data set, only a subset defined on

the grid from 32.8◦E to 33.4◦E, −1.6◦N to −1◦N is investigated. As the first 7 images were

not observed due to a satellite problem, they were excluded from the analysis. This gives a

data set of dimension 72 × 72 × 112. The total missing percentage of this data set is 5.3%,

which is substantially less than the LSWT data set.

The data was first transformed to the log scale and then centered by a monthly mean. The

MM-FPCA using a 7 × 6 tensor basis and an expansion order of P = 9 was fitted. The

computation time was 624.89s. The model identified two dominant PCs, explaining 34.62%

and 33.42% of the total variation respectively, showing contrasts between the northeast
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versus southwest and northwest versus the southeast corner. The rest of the PCs describe

the variation patterns at relatively smaller spatial scales, yet are still common to the data.

The resulting model has RSS of 0.0539. The reconstructed images captured the general

patterns in the original data. However, the fitted model could not capture the occasional

discontinuities in an image as a result of an algal bloom. This is highlighted by two panels

on the left in Figure 3.16. To some extent, the discontinuities are beyond the capacity of

the MM-FPCA as it is designed for modelling smooth data. It might not be a problem

if the emphasis is on the general pattern, but would be problematic if the discontinuities

are themselves of interest. Under such circumstances, the MM-FPCA might not be an

appropriate choice for data that are not smooth by nature. However, if the discontinuity can

be accounted for before applying the MM-FPCA, then the results from the MM-FPCA may

still be able to provide some useful information.
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Figure 3.16: Examples of the MM-FPCA reconstructions of the Lake Victoria Chlorophyll
data. From left to right are the data and the imputations of July 2006 and August 2006.

The horizontal and vertical axes of are longitude and latitude respectively.

3.4 Remarks

This chapter presents the mixed model FPCA for the analysis of sparse remote-sensing image

time series, when the direct FPCA cannot be implemented due to missing observations. The

method treats the principal components as the random effect in a mixed effect model and

estimates eigenfunctions and PC scores using maximum likelihood within an EM framework.

The test using complete reconstructed LSWT data in section 3.2 shows that the results

estimated by the MM-FPCA are comparable to the results extracted from the direct FPCA.

The simulation study in 3.2.3 suggests that the MM-FPCA is capable of modelling the sparse

data, provided there is no substantive missing and no region in the grid with extremely low

data availability. The application of the method to the sparse LSWT data of Lake Victoria
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shows encouraging results in terms of data imputation and the RSS values. The application

to the Chl data suggests that the smoothness of the data is an important assumption for the

MM-FPCA model.

The MM-FPCA is still a relatively new method, especially for image data. There are several

interesting aspects for further investigation, e.g. the influence of the independent assumption

of the individual functions, the irregular boundaries of the images and the level of smoothness

of the original data. Among these, the most intriguing problem with respect to the modelling

of time series of remote sensing images is the independence assumption. This is one of the

fundamental assumptions of the FPCA, or in fact of any PCA. However, temporal correlations

are almost unavoidable in time series data, be it point observations or images. Ignoring their

influence would affect the statistical inference based on the model results (Zhou & Pan, 2014),

such as the standard errors of the estimated model parameters. Investigating the effect of

the temporal correlation is crucial to the generalization of the model for other applications.

This problem is investigated in the next chapter.



Chapter 4

Towards a spatio-temporal

framework

This chapter explores the statistical approaches that are essential to extending the MM-

FPCA to temporally correlated data. These include the general spatio-temporal modelling

framework, the temporal dynamic structures, the model distributional assumptions and the

estimation methods. Following this investigation, a spatio-temporal model consisting of a

state space component and a FPCA component is proposed based on the classic literature

and the more recent development of spatio-temporal analysis.

4.1 The spatio-temporal modelling framework: DSTM

The dynamic spatio-temporal model (DSTM) framework is investigated initially. The DSTM

is a family of widely used models for spatio-temporal data analysis. Cressie & Wikle (2011)

describes the essence of this type of models as the ‘hierarchical state space framework ’.

It is assumed that the true process of interest cannot be observed perfectly, so the first

level employs ‘a mapping that relates a set of observations to the true process of interest ’.

The second level would then specify ‘a model for this true (hidden/latent/state) process’,

which typically involves some forms of Markovian-dependency. There is usually a third level

providing assumptions on the model parameters.

Following Cressie & Wikle (2011), the DSTM can be written schematically in terms of a

data model, a process model and a parameter model. At the top level is the data model,

78
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which associates the observed data Z(x; r) in spatial domain D (x ∈ D) and time domain T

(r ∈ T ) to a latent/hidden process Y (s; t),

[{Z(x; r) : x ∈ D , r ∈ T } | {Y (s; t) : s ∈ Bs , t ∈ Bt} , ΨD] .

Here Bs, Bt represents the neighbourhoods of s and t respectively; ΨD is the collection of

parameters of this mapping. In the middle level is the process model,

[
Y (s; t)

∣∣∣{Y (w; t− τ1) : w ∈ B(1)
s

}
, · · · ,

{
Y (w; t− τq) : w ∈ B(q)

s

}
, ΨP

]
,

where τ1, · · · , τq are the time lags, B(1)
s , · · · ,B(q)

s represent the neighbourhoods of s at dif-

ferent time lags and ΨP is the collection of process model parameters. The process model

describes the spatio-temporal dynamic of the hidden process. Finally, the parameter model

at the bottom level is,

[ΨD, ΨP |ΨH ] ,

with ΨH representing the collection of ‘hyperparameters’. Various types of models can be

built based on this framework, through specifications of the data, process and parameter

models and the associated hierarchy (Cressie & Wikle, 2011, Wikle & Hooten, 2010).

For the data model written specifically as

Z(�; t) = AtY (�; t) + ε(�, t) ,

both linear and non-linear mapping between the observations Z(�; t) and the latent process

Y (�; t) can be considered through the design ofAt. It also provide the possibility of dimension

reduction (Wikle & Cressie, 1999) through the basis representation of Y (�; t) as

Y (�; t) = Φ(�)βt + ω(�; t) .

Typical choices of the basis functions Φ(�) are Fourier, empirical orthogonal functions (EOF),

wavelet, splines, bi-square, etc. A related approach using the idea of low rank representation

can be found in Mardia et al. (1998), for the Kriged Kalman filter.

For the process model, a Markov-type dynamic is often used to describe the evolution of the

latent process,

Y (�; t) = MY (�; t− 1) + u(�; t) ,
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where M is the propagator matrix. This has the advantage of avoiding the specification of a

joint spatial-temporal covariance structure, which is usually impractical in real life (Cressie

& Wikle, 2011). There are various designs of matrix M , e.g. spatio-temporal random walk,

‘lagged nearest-neighbour’ models, vector auto-regressive (VAR) models, PDE/IDE based

models and non-linear specifications (Wikle & Hooten, 2010). It is worthwhile pointing out

that the estimation of M can be difficult for a high dimensional process, especially if the

number of time points T is small. So parameterization is often considered to reduce the

estimation complexity.

The specification of the parameter model is usually associated with the hierarchical designs of

the DSTM. An example is parameterizing the error covariance matrix in the data or process

model level (Xu & Wikle, 2007). Priors may be assigned to the parameters in a Bayesian

setting. It is also possible to incorporate random parameters, since the deterministic model

might not be able to describe a complex process. However, one needs to be aware of the

interpretation and identifiability issues of such settings (Cressie & Wikle, 2011). In general, a

sensible design of the parameter model can simplify the evaluation of the model distribution

and its computation at the same time.

The estimation of the DSTM model falls into two general categories. Cressie & Wikle (2011)

summarised them as empirical hierarchical modelling (EHM) and Bayesian hierarchical mod-

elling (BHM). Both approaches estimate the models using sequential implementation in an

iterative manner. In terms of the inference of the model parameters, EHM often adopts

an EM-type algorithm; whereas BHM applies Gibbs samplers, MCMC or other sampling

techniques to assist the inference. For the update of system states, EHM often uses Kalman

filter/smoother in linear Gaussian models. BHM implementation usually involves sampling

from the filtering and prediction distributions. A Kalman filter step can be added to the

sampling procedure to update the system states and speed up convergence, provided the

dependencies between the current states and previous states are relatively strong.

The DSTM has wide application in remote-sensing data, ranging from research on ocean

water temperature by Berliner et al. (2000), Stroud et al. (2001), tropical ocean surface wind

by Wikle et al. (2001), Wikle & Berliner. (2005), to global CO2 by Katzfuss & Cressie (2011,

2012), Nguyen et al. (2014) and many others. The method shows distinctive advantages in

terms of these applications, e.g. its power in dimensional reduction, flexibility in describing

the system dynamics and ability to accommodate different spatial resolutions.

This thesis considers one particular type of DSTM, consisting of three levels.
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(a) A data model exploits a ‘dimension reduction’ through basis representation, similar to

the one proposed in Wikle & Cressie (1999),

Z(s; t) = Y (s; t) + ε(s; t) , (4.1)

with the latent process Y (s; t) specified using basis function representation

Y (s; t) = Φβ(s)βt + ζ(s; t) . (4.2)

(b) A process model describing the dynamics through lagged temporal dependence, such

as in a vector auto-regressive model

βt =
∑
q

Mqβt−τq + ut . (4.3)

(c) A parameter model putting constraints/priors on ε(s; t), ζ(s; t), Mq and ut, which

completes the hierarchical design and makes the model identifiable.

Note that the component ζ(s; t) in equation (4.2) is introduced to the model to account

for the remaining spatial or spatio-temporal variations which cannot be accommodated by

the system dynamic component Φβ(s)βt. It is sometimes assumed that ζ(s; t) is a random

component and only depends on the data at time t. This type of model is often referred

to as a spatio-temporal random effect (STRE) model. The STRE model has received great

interest in recent years, research on this model can be found in Cressie et al. (2010), Kang

& Cressie (2010), Katzfuss & Cressie (2011), to name just a few.

It is possible to further decompose ζ(s; t) as

ζ(s; t) = Φη(s)ηt + ω(s; t) ,

where the basis representation Φη(s)ηt is used to transform a high-dimensional process into a

low-dimensional one. The choice of basis Φη can be different from Φβ to reflect different spa-

tial contents, such as the macro and micro spatial scales in Wikle et al. (2001). Alternatively,

using the same basis yields the following,

Z(s; t) = Y (s; t) + ε(s; t) (4.4)

= Φ(s)βt + Φ(s)ηt + ε∗(s; t) ,
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where ε∗(s; t) = ω(s; t) + ε(s; t).

There are two reasons why this approach is of interest. First of all, it is flexible in design.

The model above allows dimension reduction through basis/spectral representation, as de-

scribed in Wikle & Cressie (1999). Specifically, the state transition equation with respect

to the high-dimensional vector, Yt = (Y (s1; t), · · · , Y (sn; t))>, can be transformed into a

low-dimensional transition equation of βt without loss of information. This means, the func-

tional representation used in Chapter 3 can be carried into this new setting. Meanwhile, the

system dynamic Φβ(s)βt can be efficiently estimated using the classical Kalman filter and

smoother. All the parameters associated with the system dynamic can be estimated using

an EM-type algorithm (Katzfuss & Cressie, 2011).

The DSTM described here is in its most general form. Various models can be built based on

this framework through the specification of model components, which provides the possibility

of describing many different spatio-temporal contents. Associated with these models are a

variety of estimation methods. In the next two sections, several aspects of the DSTM frame-

work are investigated, including its connection with the state space model, its estimation

using the Kalman filter/smoother within the EM algorithm and the frequently used model

specifications. These are crucial to the development of the spatio-temporal model for the

remote-sensing image time series.

4.2 State space model and Kalman filter/smoother

4.2.1 The state space model and its estimation

As the DSTM is closely related to the state space model, the essentials of the state space

modellig framework and the Kalman filter/smoother (KF/KS) are introduced first. Without

loss of generality, consider a simple state space model,

Zt = Φtβt + εt, εt ∼ N (0,G) (4.5)

βt = Mβt−1 + ut, ut ∼ N (0,H). (4.6)

It consists of an observation equation (4.5) and a state transition equation (4.6), which are

equivalent to the data model and the process model described in section 4.1. Note that

if the design matrix Φt is taken to be a basis matrix, then the model above becomes a

dimension-reduced state space model (Wikle & Cressie, 1999), where the dimension of the
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hidden process, Yt = Φtβt, is reduced to the dimension of the basis coefficient vector βt.

The state space model can be estimated using the EM algorithm, where the E-step computes

the expectation of βt conditioned on all the data Z1:T = {Z1, · · · ,ZT } through the Kalman

filter/smoother and the M-step produces the MLEs of M , G and H.

Following the derivation in Shumway & Stoffer (2006), denote Z1:t as the collection of data

{Z1, · · · ,Zt} and assume that βt|Z1:t−1 has distribution N (βt|t−1, Bt|t−1). The mean and

variance of Zt|Z1:t−1 can be written as Φtβt|t−1 and ΦtBt|t−1Φ
>
t +G respectively. The joint

conditional distribution of βt,Zt given the information up to time point t− 1 is thus

 βt

Zt

∣∣∣∣∣∣Z1:t−1 ∼ N

 βt|t−1

Φtβt|t−1

 ,

 Bt|t−1 Bt|t−1Φ
>
t

ΦtBt|t−1 ΦtBt|t−1Φ
>
t +G

 . (4.7)

From the above multivariate normal distribution, the filtering equations can be obtained by

the well-known conditional distribution results as

βt|t = βt|t−1 +Kt

(
Zt −Φtβt|t−1

)
(4.8)

Bt|t = (I −KtΦt)Bt|t−1 ,

where Kt = Bt|t−1Φ
>
t

(
ΦtBt|t−1Φ

>
t +G

)−1
is the Kalman gain. With the filtering results,

the forecasting equations can be obtained as

βt|t−1 = Mβt−1|t−1 (4.9)

Bt|t−1 = MBt−1|t−1M
> +H .

The above equations defines the famous Kalman filter algorithm. The Kalman smoother is

derived based on the distribution of βt|Z1:T as

βt−1|T = βt−1|t−1 + Jt−1

(
βt|T − βt|t−1

)
(4.10)

Bt−1|T = Bt−1|t−1 + Jt−1

(
Bt|T −Bt|t−1

)
J>t−1 ,

where Jt−1 = Bt−1|t−1M
>B−1

t|t−1. See Ansley & Kohn (1982) for more details. The filtering

and forecasting algorithm is a forward process (from 1 to T ); whereas the smoothing algo-

rithm is a backward process (from T to 1). In Durbin & Koopman (2001), the smoothed

versions of ut and εt are also derived to compute the expectation of the log-likelihood. This is

not considered in this thesis as it requires a more complicated version of derivation; whereas

the same expected log-likelihood can be computed using the smoothed βt.
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The parameters of the state space model (4.5) and (4.6), M , G and H, are often estimated

using the EM-algorithm. This is out of the concern for the difficulty of evaluating the observed

log-likelihood L(Z1:T ; Ψ). To be specific, the derivation of L(Z1:T ; Ψ) requires the conditional

distribution of Zt|Z1:(t−1) because of the dependence βt|βt−1. The derivation itself might

not be difficult, but evaluating the inverse and determinant of the conditional variance of

Zt, which are crucial to L(Z1:T ; Ψ), can be computationally infeasible for high-dimensional

data. As a result, the complete data log-likelihood L(Z1:T ,β0:T ; Ψ) is used instead (Cressie

& Wikle, 2011, Shumway & Stoffer, 2006). This function inherits the advantage of the

hierarchical model, resulting in a much simpler expression.

Denote the distribution of Zt given βt as f(Zt|βt), βt given βt−1 as f(βt|βt−1) and that

of the initial state β0 as f(β0). The joint distribution of {Z1, · · · ,ZT ;β0, · · · ,βT } can be

written as

f(Z1:T ,β0:T ) = f(β0)
T∏
t=1

f(Zt|βt)f(βt|βt−1) . (4.11)

This gives the expectation of the complete data log-likelihood in the E-step,

E
[
−2L (Ψ;Z1:T ,β0:T )|Z1:T ,Ψ

(it−1)
]

(4.12)

= T log(|G|) +

T∑
t=1

{
E
[

(Zt −Φtβt)
>G−1 (Zt −Φtβt)

∣∣∣Z1:T ,Ψ
(it−1)

]}
+ T log(|H|) +

T∑
t=1

{
E
[

(βt −Mβt−1)>H−1 (βt −Mβt−1)
∣∣∣Z1:T ,Ψ

(it−1)
]}

+ log(|B0|) + E
[

(β0 − β)>B−1
0 (β0 − β)

∣∣∣Z1:T ,Ψ
(it−1)

]
+ constant ,

where Ψ(it−1) = {M (it−1),H(it−1),G(it−1)} is the collection of parameter estimates at the

current iteration. Note that β and B0, which characterize the distribution β0 ∼ N (β, B0),

are not considered as model parameters. Replacing the expectations in (4.12) by the smoothed

states {βt|T }Tt=1 and the variances {Bt|T }Tt=1 based on Ψ(it−1), the computational form of

the E-step equation is derived in Cressie & Wikle (2011) and Shumway & Stoffer (2006) as

E
[
−2L (Ψ;Z1:T ,β0:T )

∣∣∣Z1:T ,Ψ
(it−1)

]
(4.13)

= T log(|G|) +
T∑
t=1

tr
{
G−1

[
ΦtBt|TΦ>t +

(
Zt −Φtβt|T

) (
Zt −Φtβt|T

)>]}
+ T log(|H|) + tr

{
H−1

[
V11 − V10M

> −MV >10 +MV00M
>
]}

+ log(|B0|) + tr
{
B−1

0

[
B0|T +

(
β0|T − β

) (
β0|T − β

)>]}
+ constant ,
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where

V11 =

T∑
t=1

(
Bt|T + βt|Tβ

>
t|T

)
V00 =

T∑
t=1

(
Bt−1|T + βt−1|Tβ

>
t−1|T

)
V10 =

T∑
t=1

(
Bt,t−1|T + βt|Tβ

>
t−1|T

)

A sequence of the lag-1 covariance smoother defined as

Bt,t−1|T = E
[
(βt − βt|T )(βt−1 − βt−1|T )

]
, (4.14)

is required here. It is not part of the KF/KS routine, but can be computed using the output

of KF/KS through a backward recursion starting with the last time point T (Shumway &

Stoffer, 2006), which is

BT,T−1|T = (I −KTΦT )MBT−1|T−1

Bt−1,t−2|T = Bt−1|t−1J
>
t−2 + Jt−1

(
Bt,t−1|T −MBt−1|t−1

)
J>t−2 .

In standard cases where no special parameterization is involved, all three parameters have

analytical solutions for their MLEs, giving the M-step equations as

M̂ (it) = V10V
−1

00 (4.15)

Ĥ(it) =
1

T

(
V11 − V10V

−1
00 V

>
10

)
(4.16)

Ĝ(it) =
1

T

T∑
t=1

[
ΦtBt|TΦ>t +

(
Zt −Φtβt|T

) (
Zt −Φtβt|T

)>]
. (4.17)

The algorithm then iterates until the log-likelihood and/or the parameter estimates converge.

4.2.2 Computational challenges of the Kalman filter

Despite being a classic approach that has been used for over 60 years since Kalman (1960),

there are some computational challenges when the Kalman filter is applied to the sparse

remote-sensing image time series. Two of these challenges with respect to the high dimen-

sionality and the sparsity are discussed here.
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(a) In terms of the filtering of high-dimensional data, although a dimension-reduced form

can be used (Wikle & Cressie, 1999), the computation of some elements of the Kalman

filter and the log-likelihood in the corresponding EM algorithm may still be difficult.

To ease the computation burden, the Sherman-Morrison-Woodbury identity is used to

simplify the matrix inversion as part of the Kalman gain,

(
ΦtBt|t−1Φ

>
t +G

)−1
= G−1 −G−1Φt

(
B−1
t|t−1 + Φ>t G

−1Φt

)−1
Φ>t G

−1. (4.18)

The advantage of this identity lies in the dimension reduction of the matrix to be

inverted. Provided that matrix ΦtBt|t−1Φ
>
t + G is of much higher dimension (i.e.

the dimension of the data) than the matrix B−1
t|t−1 + Φ>t G

−1Φt (i.e. the dimension

of the basis matrix), this could result in a substantial improvement in computational

efficiency. In terms of the remote-sensing image data, this means a reduction from, for

example, 2000×2000 to 25×25. The computation of the conditional expectation of the

log-likelihood (4.12) can also be made easier through some matrix algebra results. For

example, the Cholesky decomposition of matrix G and H may be used to improve the

stability of the computation of the matrix inverse and the logarithm of determinant.

Take matrix G, this is

G−1 = G−1
c

(
G−1
c

)>
log (|G|) = log

(∏
i

g2
i

)
= 2

∑
i

log (gi) ,

where Gc is the Cholesky factor of matrix G and gi is the i-th diagonal element of Gc.

This treatment would also reduce the risk of getting a singular matrix as a result of

system rounding errors.

(b) When it comes to the filtering of sparse images, the missing data Kalman filter, which

is described in Shumway & Stoffer (2006), is required. There are two different situa-

tions, each adopts different filtering equations. The first one applies to the situation

where there is no data observed at time t. The solution to this problem is almost

straightforward. According to Petris et al. (2009), simply replace the standard filter

equations

βt|t = βt|t−1 +Kt

(
Zt −Φtβt|t−1

)
with βt|t = βt|t−1 (4.19)

Bt|t = (I −KtΦt)Bt|t−1 with Bt|t = Bt|t−1 ,
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and carry out the prediction step in the same way as

βt+1|t = Mβt|t = Mβt|t−1 (4.20)

Bt+1|t = MBt|tM
> = MBt|t−1M

> .

The second one applies to the situation where the data are partly observed at time t.

According to Shumway & Stoffer (2006), the adjustment here is to filter with only the

observed part of Zt and change the likelihood accordingly with a prior distribution on

the missing data. This means, the last line in equation (4.12) becomes

T∑
t=1

{
E

[(
Z

(o)
t −Φ

(o)
t βt

)> (
G(o)

)−1 (
Z

(o)
t −Φ

(o)
t βt

)∣∣∣∣ Z(o)
1:T ,Ψ

(it−1)

]}
, (4.21)

where Z
(o)
t and Φ

(o)
t are the reordered Zt and Φt whose leading rows are observed and

the rest are missing. The covariance matrix G(o) is often assumed to be block diagonal,

diag{Gobs,Gmis}, indicating that the missing elements and the non-missing elements

are not correlated (which is consistent with the assumption of missing at random).

This gives the following equation as the explicit form of (4.21),

T∑
t=1

tr

{(
G(o)

)−1
[(
Z

(o)
t −Φ

(o)
t βt|T

)(
Z

(o)
t −Φ

(o)
t βt|T

)>
(4.22)

+Φ
(o)
t Bt|TΦ

(o)>
t +

 0 0

0 Gmis

 .

Details of the derivation can be found in Shumway & Stoffer (2006). The log-likelihood

of the model with partly unobserved Zt requires a prior distribution on the missing

data to initialize the filter. In practice, the mean vector of the unobserved data is often

set to zero. As for covariance matrix Gmis, a simple approach is provided in Shumway

& Stoffer (1982), where Gmis in the it-th iteration consists of the corresponding rows

and columns in the estimated G(it−1) from the (it− 1)-th iteration. This algorithm is

of great importance to the problem in this thesis because the remote sensing images

are usually only partly observed. R functions for the missing data filter have been

developed based on the functions in package dlm (Petris, 2010).

The Kalman filter is a powerful tool to estimate the system states. However, there could be

a problem of over-fitting when the filter is applied to extremely sparse images. The example

highlighting this problem was carried out on a subset of the ARC-Lake reconstructed LSWT
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data of Lake Victoria. It is defined on the same grid as the ‘LSWT section’ data set, which

is introduced at the end of Chapter 1, and is of dimension 34 × 24 × 202. To highlight the

problem, about 25% of the images were replaced with their sparse counterparts in the ‘LSWT

section’ data set.

The dimension-reduced state space model consisting of equation (4.5) and (4.6) was fitted

to this data set. A comparison of the filtered states βt|t and fitted values Ẑt at t− 1, t, t+ 1,

where t is the time point corresponding to a sparse image, shows that the data at time t

can play an important role in the filtered results due to the Kalman gain. Sometimes, this

impact is much larger than the temporal dynamics specified in the state transition equation.

This could result in over-fitting if there are only a few observations, possibly in very different

scales, scattered across the space. To illustrate this phenomenon, a tensor spline basis, where

the basis functions have compact support, was used. If there is no observation in the area

covered by the k-th basis function φk(x, y), the corresponding basis coefficient βk,t|t (i.e. the

k-th element of vector βt|t) is supposed to be more or less similar to its temporal neighbours,

βk,t−1|t−1 and βk,t+1|t+1. Whereas for the observed areas, the coefficients are more likely to be

governed by the data. Note that since there are overlaps in the compact support of different

basis functions, the data in observed areas can affect more than one basis coefficients, so

the connection between βk,t|t−1 and βk,t−1|t−1, βk,t+1|t+1 is not always clear. Nonetheless,

information can be obtained from this comparison.
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Figure 4.1: Example of the filtered states βt−1|t−1 (red dashed), βt|t (black solid) and
βt+1|t+1 (blue dashed), where the data at t = 10 are completely missing. The horizontal

axis represents the index of the elements in the filtered state vector.

Two examples are presented here. Figure 4.1 shows an extreme case where data at time point

t = 10 are completely missing. Without a doubt, the filtered βt|t (black curve) follows its

neighbours βt−1|t−1,βt+1|t+1 (red and blue dashed curves) closely, for the only information

available for time point t is Zt−1 and Zt+1. Situations are different when there are a few
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Figure 4.2: (Top) Example of the filtered states βt−1|t−1 (red dashed), βt|t (black solid)
and βt+1|t+1 (blue dashed), where the majority of data at t = 29 are missing. (Bottom)
Images of the data Zt−1,Zt,Zt+1 and their filtered counterparts. The horizontal and vertical

axes of the images are longitude and latitude respectively.

observations scattered over space, as illustrated in Figure 4.2. The top panel shows the

filtered states βt−1|t−1,βt|t and βt+1|t+1, where the majority of the data at t = 29 are missing.

The middle three panels represent the data Zt−1,Zt,Zt+1 and the bottom three panels show

their filtered counterparts. There are clear discrepancies in some parts of the curves, which

is most likely induced by the sparse observations. Meanwhile, the filtered Ẑt displays a large

contrast between the southeast and the northwest, which appears too dramatic considering

the high missing percentage and the smoother patterns in its neighbouring images.

The over-fitting of very sparse images could be a problem in data imputation. In remote-

sensing, extremely sparse images may be associated with very high uncertainty in data

retrievals. Therefore, a wiggly interpolation based on only a few anomalies may be less

attractive than a smooth imputation reflecting the more average situation. One solution to
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this problem is to introduce a threshold to the filtering algorithm based on the percentage of

missing data per image. If the missing percentage surpasses the threshold, omit the filtering

step and use local smoothing to estimate βt|t and Bt|t. There are various approaches to local

smoothing, such as simple averaging of βt−1|t−1 and βt+1|t+1, prediction based on the system

transition equation βt|t = Mβt−1|t−1 and the n-step backward smoothing. In this thesis,

a filtering algorithm with threshold on the missing percentage, combined with the n-step

backward smoothing, was proposed. The algorithm consists of the following steps.

(a) Compute the missing percentage of the data at time point t, denoted as pt%.

(b) If pt% is greater than the threshold χ%, apply the filtering equations in (4.19) as if no

observation is available for time point t.

(c) Go to time t+ 1 and repeat steps (a) and (b).

(d) Continue repeating steps (a) to (c) until there is an image with pt∗% ≤ χ% and apply

the standard filtering equations in (4.8) and then the n-step (n = t∗ − t) backward

smoothing.

(e) Go to the next time point t∗ + 1 and repeat steps (a) to (d).

4.2.3 Simulation study on the Kalman filter with threshold

An important issue with respect to the above algorithm is the selection of the threshold and

its effect. A simulation study was carried out to investigate this problem.

Part 1: simulation design

- Data are simulated on a regular 30 × 30 grid, where images are recorded at 120 time

points to mimic a 10-year observing period.

- The same data generating function (3.18) as in section 3.2.3 is used. However, this

simulation study only considers one spatial variation scenario for the Gaussian random

field (GRF), which has d = 1. Three noise levels are considered, controlled by the

nugget effect parameter σ2
ng of the GRF,

σ2
ng = {0.01, 0.05, 0.1} .
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- Only one missing condition is considered: the high missing percentage with spatial

patterns scenario. A new design of extremely sparse images is added to the missing

pattern design in section 3.2.3. To create the extremely sparse images, 12 out of 120

simulated images are selected. These images are then divided into two categories, 6

images with observations gathered in a small area and 6 images with observations

scattered over space. The missing percentage of the images with gathered observations

is set to be 99%; the missing percentage of the images with scattered observations

is 92%. These two missing percentages are used to create images with high levels of

missingness, so that the high filtering thresholds (i.e. 95% and 100%) can take effect

on these images. With these extremely sparse images, the total missing percentage in

the simulated data set is about 48%.

- The filtering thresholds investigated in this simulation study are

χ% = {70%, 80%, 90%, 95%, 100%} ,

where χ% = 100% means filtering every single image in the data set.

- This gives 15 simulation scenarios in total.

The following statistics are recorded in this simulation study.

(a) The filtered {βt|t} and the smoothed {βt|T } from the KF/KS with five different thresh-

olds, the estimated Ĝt (diagonal elements only) and Ĥt matrices.

(b) The RSS of both the sparse observations (denoted as RSS1) and the complete observa-

tions (denoted as RSS2), for the entire data set and the images with more than 70%,

80% and 90% of data missing. This helps to assess the influence of the thresholding on

the spatial interpolation.

For each scenario, 200 replicates are run. To speed up the computation, the EM algorithm is

only run for the χ% = 100% threshold for each replicate. The converged estimations of Ĝt

and Ĥt are carried into the Kalman filtering with thresholds χ% = {70%, 80%, 90%, 95%}.

To initialize the EM algorithm, the variance of the data σ2
z is used as the starting point. For

the first replicate, set G
(0)
t = σ2

zI and H
(0)
t = κσ2

zI, where κ is a scaling factor. For the

remaining 199 replicates, the converged results from the first replicate, Ĝ1∗
t and Ĥ1∗

t , are

used to initialize the parameters as
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G
(0)
t = σ2

gI, σ2
g =

1

n

n∑
i=1

diag{Ĝ1∗
t } ,

H
(0)
t = σ2

hI, σ2
h =

1

K

K∑
k=1

diag{Ĥ1∗
t } .

Part 2: simulation results To illustrate some interesting features of the Kalman filter

with a threshold, RSS1 and RSS2 with respect to two different groups of images are compared,

one consisting of all 120 simulated images and the other including 42 images which have more

than 70% data missing. Tables 4.1 and 4.2 present the mean and the 95% confidence intervals

(obtained using the quantiles of the simulation estimates) of RSS1 and RSS2 from different

filters, based on 120 and 42 images. In general, it is better to filter the image than to leave

them to the smoother. This is reflected by the decreasing RSS1 and RSS2 values with the

increasing thresholds in all scenarios. The decrease in RSS1 and RSS2 values from a 70%

threshold to a 80% threshold is distinctive, but the decrease from a 95% threshold to a 100%

threshold is almost negligible. The changes are much more distinctive in the results computed

using 42 images. These decreasing patterns can be seen clearer in Figure 4.3, which shows the

boxplots of the RSS1 and RSS2 from different filters, based on all 120 images. These results

suggest that the relative changes of RSS, computed as RSSχ1%/RSSχ2%−1, can be used as a

criterion to select the filtering threshold. For example, if the relative changes in RSS1 values

based on all the images are assessed, then a criterion of ≤ 5% would suggest χ% = 95% for

the small noise scenario, χ% = 90% for the medium noise scenario and χ% = 80% for the

large noise scenario.

In addition, there is also evidence that, sometimes filtering without thresholding produces

larger RSS2 values. This is illustrated by the plots of the differences between the RSS2 based

on all 120 images from the filter with the 95% threshold and the filter without threshold

(RSS295% − RSS2100%) in Figure 4.4. The differences from 200 replicates under the small,

medium and large noise scenarios are displayed in three panels. The plots also show that

the occurrence of the negative differences becomes higher as the noise level increases. In this

case, occurrences in three different scenarios are 22, 53 and 67 (out of 200) respectively.

In conclusion, this simulation study reveals some features of the Kalman filter with an addi-

tional threshold based on missing percentages. The results suggest that it is usually better

to use a relatively high threshold than a low threshold, e.g. 90% versus 70%. However, if

there is concern of over-fitting due to high uncertainties in the observations, then it would
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Table 4.1: The mean and 95% confidence interval of RSS1 computed using all 120 images
and 42 images (with more than 70% observations missing), from the small, medium and

large noise scenarios, with Kalman filters of increasing filtering threshold χ%.

χ% = 70% χ% = 80% χ% = 90% χ% = 95% χ% = 100%

120 images
Small

0.0487 0.0208 0.0162 0.0139 0.0136
(0.0406, 0.0577) (0.0182, 0.0242) (0.0150, 0.0179) (0.0133, 0.0145) (0.0131, 0.0141)

Medium
0.0882 0.0598 0.0552 0.0528 0.0525

(0.0807, 0.0976) (0.0571, 0.0642) (0.0538, 0.0570) (0.0519, 0.0537) (0.0515, 0.0533)
Large

0.1369 0.1086 0.1041 0.1018 0.1015
(0.1301, 0.1451) (0.1055, 0.1116) (0.1023, 0.1060) (0.1003, 0.1032) (0.1000, 0.1029)

42 images
(≥ 70% miss)

Small
0.3142 0.0746 0.0349 0.0148 0.0120

(0.2452, 0.3910) (0.0505, 0.1031) (0.0251, 0.0491) (0.0131, 0.0178) (0.0113, 0.0128)
Medium

0.3575 0.1134 0.0731 0.0530 0.0503
(0.2941, 0.4382) (0.0905, 0.1508) (0.0633, 0.0864) (0.0505, 0.0559) (0.0484, 0.0523)

Large
0.4040 0.1596 0.1209 0.1013 0.0986

(0.3431, 0.4699) (0.1374, 0.1831) (0.1113, 0.1322) (0.096y, 0.1054) (0.0943, 0.1022)

Table 4.2: The mean and 95% confidence interval of RSS2 computed using all 120 images
and 42 images (with more than 70% observations missing), from the small, medium and

large noise scenarios, with Kalman filters of increasing filtering threshold χ%.

χ% = 70% χ% = 80% χ% = 90% χ% = 95% χ% = 100%

120 images
Small

0.1241 0.0600 0.0485 0.0387 0.0356
(0.1051, 0.1441) (0.0506, 0.0692) (0.0403, 0.0573) (0.0328, 0.0460) (0.0305, 0.0423)

Medium
0.1659 0.1022 0.0913 0.0819 0.0803

(0.1483, 0.1866) (0.0924, 0.1151) (0.0833, 0.1013) (0.0760, 0.0891) ( 0.0742, 0.0879)
Large

0.2149 0.1536 0.1433 0.1349 0.1340
(0.1987, 0.2322) (0.1454, 0.1632) (0.1365, 0.1514) (0.1296, 0.1430) (0.1276, 0.1418)

42 images
(≥ 70% miss)

Small
0.3232 0.1400 0.1073 0.0793 0.0705

(0.269, 0.3806) (0.1131, 0.1654) (0.0851, 0.1307) (0.0626, 0.1007) ( 0.0563, 0.0889)
Medium

0.3665 0.1844 0.1533 0.1267 0.1219
(0.3166, 0.4247) (0.1568, 0.2204) (0.1310, 0.1825) (0.1090, 0.1466) (0.1051, 0.1443)

Large
0.4113 0.2361 0.2066 0.1827 0.1801

(0.3653, 0.4630) (0.2136, 0.2642) (0.1873, 0.2285) (0.1672, 0.2057) (0.1626, 0.2017)
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Figure 4.3: The boxplot of RSS1 (top) and RSS2 (bottom) based on all 120 images using
Kalman filters with the increasing thresholds. In each row, from left to right are plots from
the small, medium and large noise scenarios. The horizontal axis represents the threshold

χ% = 70%, 80%, 90%, 95% and 100%.
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Figure 4.4: The difference in RSS2 (based on 120 images) between the filter with a 95% and
a 100% threshold. The three panels show results from the small (left), medium (middle) and
large (right) noise scenarios. The dashed horizontal line indicates RSS95% − RSS100% = 0.

be beneficial to avoid filtering the extremely sparse data at certain time points. In addition,

the selection of the threshold can be made using the relative change in the RSS values from

filters with different thresholds i.

iDuring the PhD viva, the examiners suggested that, as the best fit usually comes from the filtering with
a 100% threshold, it might be helpful to introduce certain types of penalty into the selection criterion of the
threshold. The penalty could be based on the desired smoothness of the very sparse images.
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4.3 Spatio-temporal model development

4.3.1 Preliminaries on parameterization & estimation

The above sections have laid the foundations of the development of the spatio-temporal

model. In the following paragraphs, two more specific aspects in terms of the DSTM frame-

work are presented, including the widely-used approaches to parameterize the data/process

model and a specific algorithm used to estimate a spatio-temporal random effect (STRE)

model. These two aspects provide details that are directly linked to the proposal of the

spatio-temporal model for sparse remote-sensing image time series.

Preliminary 1: parameterizing the data/process models Spatio-temporal processes

are usually of high dimensionality, probably also with missing observations across space and

time. As a result, estimation of model components can be problematic, especially if the

model parameters are unconstrained. A helpful solution to this problem is to parameterize

the model components based on ‘prior scientific knowledge and/or common spatial models’

(Xu & Wikle, 2007). Some frequently used parameterizations of the data model and process

model covariance matrices are summarised in Xu & Wikle (2007).

(a) Assume the residuals of the data model are i.i.d. random noises, i.e. G = σ2
ε I.

(b) Use an empirical orthogonal function (EOF) expansion to parameterize the data model

residual covariance matrix, i.e. G = σ2I +
∑P

p=a+1 λpξpξ
>
p , where ξp are the EOFs

and λp are corresponding eigenvalues.

(c) Specify an exponential covariance function for the process model covariance matrix,

i.e. H = σ2 V (h; d), where the elements in matrix V (h; d) is determined by correlation

function ρ(h) = exp(−h/d) with d being the parameter.

(d) Use a conditional auto-regressive (CAR) model for the residuals of the process model,

i.e. u(si)|u(sj) ∼ N
(
b
∑

j 6=i ciju(sj), σ
2
i

)
, where b is the CAR model parameter, cij

describes the adjacency of u(si) and u(sj).

Note that the last parameterization only applies to a process model describing the evolution

of the actual spatial process. It does not apply to the dimension-reduced state space model

as defined in equation (4.1) and (4.3).
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Among the four parameterizations above, the EOF expansion is the most interesting for the

aims of this thesis. The concept of EOF in atmospheric and meteorological science is similar

to the concept of principal component in statistics. Therefore, parameterizing the residual

covariance matrix G using EOFs is associated with the PCA based on the covariance matrix

G. Furthermore, if a basis representation is used for the data Zt and the EOFs, then this

parameterization could be linked to a FPCA in that

Zt =

a∑
p=1

ξpαpt + εt (4.23)

εt ∼ N (0,G) , G = σ2I +
P∑

p=a+1

λpξpξ
>
p ,

where λp is the eigenvalue and ξp is the vector of the evaluated eigenfunction ξp(�). Both

of them can be extracted from the FPCA. Unfortunately, the MLE of σ2 has no analytical

solution, so numerical methods are required for the estimation. Specifically, it is done by

numerically equating the score function of σ2 to zero. (Xu & Wikle, 2007) derived the score

function,

F (σ2) =
Tn

σ2
+ T

P∑
p=a+1

(
1

σ2 + λp
− 1

σ2

)
tr
{
ξpξ
>
p

}
(4.24)

− tr{A}
σ4

−
P∑

p=a+1

[
1

(σ2 + λp)2
− 1

σ4

]
tr
{
ξpξ
>
p A
}
,

where A =
∑T

t=1

[
ΦtBt|TΦ>t +

(
Zt −Φtβt|T

) (
Zt −Φtβt|T

)>]
. The R function uniroot

can be used to solve the score function.

The parameterization of the residual covariance matrix G and the estimation method of

the parameter σ2 given the eigenvalues and eigenfunctions are important to the development

and estimation of the spatio-temporal model in this thesis. The disadvantage of this method,

however, is that the EOFs are estimated before fitting the state space model, i.e. the esti-

mation is based on potentially correlated data. Whereas ideally, the estimation should use

independent data. Therefore, this approach does not solve the problem put forward at the

end of Chapter 3. There are also criticisms that the leading EOFs may not be adequate to

explain the dominant system dynamics, despite their power in describing the variation in

the data (Cressie & Wikle, 2011). On the contrary, the dynamics might be governed by a

component that accounts for only a small proportion of the variance.
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Preliminary 2: the STRE model and FRF One type of STRE model for very large

spatio-temporal data sets has a data model for dimension reduction,

Z(s; t) = Y (s; t) + ε(s; t) (4.25)

Y (s; t) = µt(s) + St(s)
>βt + ζ(s; t) .

Here Z(s; t) is the observation and Y (s; t) is the true underlying process, which is fur-

ther decomposed into a spatial mean function µt(s), a spatio-temporal dynamic component

St(s)
>βt and an additional random component ζ(s; t). Dimension reduction comes with the

basis representation of the dynamic component as a spatial basis St(s) multiplied by the

time-varying basis coefficient vector βt. The process model of βt is specified as

βt = Mtβt−1 + ut ,

with propagator matrix Mt and residual ut. It is assumed that the series {ζt}Tt=1, where ζt =

(ζ(s1; t), · · · , ζ(sn; t))>, is not temporally correlated and only depends on the observations

at time t. It is also assumed that the series {ζt}Tt=1 is independent of the series {βt}Tt=1.

Both {βt}Tt=1 and {ζt}Tt=1 are independent from the measurement error process {εt}Tt=1.

The estimation of model components βt and ζt uses the fixed rank filtering (FRF), where

‘rank’ refers to the dimension of the basis matrix St(s). It was proposed by Cressie et

al. (2010), based on the fixed rank kriging method (Cressie & Johannesson, 2008) by in-

corporating the temporal component through a process model estimated using the Kalman

filter/smoother. One thing worth pointing out is that, although ζt is independent of βt, its

estimation is accomplished by a filter based on the conditional distribution of (ζt,βt) given

data Z1:T as

ζt|t = C>t

(
StBt|t−1S

>
t +Dt

)−1 (
Zt − µt − Stβt|t−1

)
. (4.26)

Here Ct = Cov[Zt, ζt] is the covariance matrix, Dt = σ2
ζIt + σ2

εWt is the covariance matrix

of ζt+ εt and βt|t−1, Bt|t−1 come from the Kalman filtering of βt. This suggests that, ζt and

βt are no longer independent after conditioning on the data Z1:T .

What is enlightening about this method are the dependence/independence assumptions on

the model components and its estimation using FRF embedded in an EM algorithm (Katzfuss

& Cressie, 2011). To some extent, the conditional dependence of the two random components

βt and ζt is crucial in terms of model estimation. However, the random component ζt, while

accounting for the variation not covered by the system dynamic, cannot provide a conclusive
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summary of the spatial variation. Unlike the eigenfunction and scores from a FPCA, ζt can

hardly be used as a measure of the spatial variation patterns in the data or their evolution.

Therefore, it is not the optimal solution for the analysis in this thesis, where the spatial

variation patterns are also of interest.

4.3.2 The proposed state space FPCA model (SS-FPCA)

Based on the above two preliminaries and all the basic elements introduced in previous

sections, a spatio-temporal model with a system dynamic component and a FPCA component

was proposed. The same notation as in Chapter 3 is used here, with subscript t indicating

the time point and (x, y) indicating the spatial coordinates. The same hierarchies as in the

STRE model (4.25) are used here, giving the following three levels.

(a) At the top level is a data model, which involves a dimension reduction of the underlying

process through a basis representation,

Zt(x, y) = Yt(x, y) + εt(x, y)

Yt(x, y) = µt(x, y) + Φ(x, y)βt +

P∑
p=1

Φ(x, y)θpαpt

= µt(x, y) + Φ(x, y)βt + Φ(x, y)Θαt ,

where µt(x, y) is a fixed mean component, Φ(x, y)βt is the system dynamic component

(also referred to as the state space, or SS component) and Φ(x, y)Θαt is a K-L ex-

pansion of order P with orthonormal Φ(x, y)Θ (referred to as a FPCA component),

accounting for the remaining spatial variations in the data.

(b) In the middle level is a process model, which assumes a random walk (or local level

model) for the system dynamic,

βt = βt−1 + ut .

The motivation is, after appropriate detrending, this first order dependence structure

would be adequate for most of the remote-sensing image time series considered in this

thesis. Recall the exploratory analysis in section 2.1, where it suggested that an AR(1)

structure is appropriate for the majority of the LSWT time series after accounting

for the seasonal structure. In addition, even though the above model means that the
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element of βt follows separate temporal evolution, the spatio-temporal dependence can

be incorporated by the covariance structure of ut. More details on this issue are given

in the paragraphs explaining the model assumptions.

(c) At the bottom level, the following distributions are assigned to the data and process

model components. The measurement errors εt(x, y) are assumed to be i.i.d. normally

distributed as N (0, σ2). The residuals of the process model ut are assumed to be

normally distributed as N (0,H), where H is symmetric, positive definite, but not

necessarily diagonal. Finally, random coefficient vector αt is required to satisfy the

assumptions of the PC scores as defined in Chapter 3. That is, αt ∼ N (0,Λ) with

Λ = diag{λ1, · · · , λP }. Particularly, λp, p = 1, · · · , P , are arranged in decreasing order.

Putting (a), (b) and (c) together, the proposed model (using matrix notation) is

Zt = µt + Φtβt + ΦtΘαt + εt (4.27)

βt = βt−1 + ut

where

Φ>Φ = I, Θ>Θ = I

αt ∼ N (0,Λ) , Λ = diag{λ1, · · · , λP }

εt ∼ N (0, σ2I)

ut ∼ N (0,H) .

In model (4.27), Zt is the data vector, Φt is a (bivariate) basis matrix and εt and ut are

residual vectors of the data and process models. Model (4.27) is referred to as the state space

functional principal component analysis and is abbreviated as the SS-FPCA model. Note

that the subscript t in Φt is used to reflect the influence of the missing data at time point t.

The same notation was used in Chapter 3 for the MM-FPCA. In the following sections, the

subscript t is dropped only when it is referred to the fitted results or a general case without

emphasizing on the sparsity.

The SS-FPCA model extends the MM-FPCA in James et al. (2000) by incorporating the

temporal dependence through a hierarchical design. The time invariant mean function Φtβ

in the MM-FPCA is replaced by a time dependent mean function Φtβt. The dynamic of

this function is governed by a first order random walk process in a lower hierarchy. With the
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system dynamic component accounting for the temporal correlation, the FPCA component

would be estimated based on (nearly) temporally independent data.

The SS-FPCA model also modifies the STRE model in Cressie et al. (2010) by allowing more

than one non-dynamic random component (ζt in model (4.25)). In addition, the SS-FPCA

imposes structures on these non-dynamic random components so that they can provide a

summary of the spatial variation patterns. As the constraints follow the assumptions of the

MM-FPCA, the resulting random component would consist of spatial variation patterns of

the corresponding PCs. In consequence, the random components in the SS-FPCA model

would be more informative than their counterpart in the STRE model (4.25) and would

fit the problem in this thesis better. Finally, dimension reduction is achieved through the

functional representation of the random components and the truncation of the number of

functional PCs. The mixed effect nature of the model suggests that the missing observations

can be accommodated in a straightforward way. Both are desirable properties in terms of

the application to high dimensional, sparse remote-sensing data.

The details of the model specifications are listed below.

(a) It should be pointed out that using a local level model for the system transition equation

in model (4.27) is out of concern for computational simplicity. It is possible to assume

βt = Mβt−1 + ut for M 6= I (Cressie et al., 2010, Katzfuss & Cressie, 2011), such as

M = diag{m1, · · · ,mK}. However, estimating such a propagator matrix M can be

difficult and computationally intensive. It usually requires prior information to get a

suitable design of M and sensible estimation result (Cressie & Wikle, 2011). This can

be hard for image time series, especially when βt is a vector of basis coefficient. On

the other hand, the local level model assumption, though being non-stationary, can be

appropriate for the remote-sensing environmental measurements, as many of them are

indeed non-stationary in reality.

(b) No special structure is imposed on the residual covariance matrix in the process model,

H. The only requirement is it being positive definite. It is possible to parameterize the

H matrix, as suggested in section 4.3.1. This typically involves imposing certain spatial

structure on theH matrix, such as a covariogram model and a CAR model. In this way,

the spatio-temporal dynamic of the process can be modelled. Specifically, imposing a

diagonal structure on H would suggest separate evolution of the elements in βt. It

can significantly simplify the estimation, but is often unrealistic in practice. This is
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because most of the basis functions are not spatially ‘separable’, in the sense that their

compact supports often overlap in space. Due to this overlapping, the elements in the

basis coefficient vector βt would not be independent. There might be some cases where

the diagonal assumption is adequate, but this relies on a strong assumption of space-

time separability and a spatially non-overlapping basis. To avoid setting too many

impractical constraints, the H matrix is left unstructured for the SS-FPCA model, so

that the residual process ut can be used to account for the (unknown) spatio-temporal

dependence.

(c) It is required that Φ(x, y) is a orthonormal basis and Θ is a column orthonormal matrix.

This is to ensure that the estimated results are valid eigenvalues and eigenfunctions

from a FPCA. The rationals for these assumptions have already been explained in

Chapter 3. Depending on the estimation methods, a final orthonormalization might be

applied to the estimated Θ̂ as in James et al. (2000).

(d) To ensure the identifiability of the model, further assumptions are made on the random

components βt, αt and model residuals εt, ut. It is assumed that {βt}Tt=1 and {αt}Tt=1

are independent; {βt}Tt=1 is independent of {εt}Tt=1; {αt}Tt=1 is independent of {ut}Tt=1

and {εt}Tt=1. In addition, it is assumed that the estimation of βt at time point t relies

on information from all the observed data {Zt}Tt=1. Whereas the prediction of αt at

time point t requires only the information from Zt as in a FPCA. This assumption is

similar to that of ζt in the STRE model (4.25) in Cressie et al. (2010). The difference

between the two models is that, while βt and ζt are independent but not conditionally

independent given Z1:T in the STRE model (4.25), βt and αt are assumed to be also

conditionally independent given Z1:T in the SS-FPCA.

It should be acknowledged at this stage that, it is always better to take into account

the conditional dependence of αt and βt, wherever possible. However, the conditional

independence assumption could be justified through the fact that αt are essentially PC

scores. In a FPCA computed using matrix decomposition, the PC scores are obtained

after the eigen-decomposition of the covariance matrix. In other words, they are not

directly related to the extraction of the eigenfunctions and eigenvalues. Although

the estimation of the SS-FPCA model would inevitably involve iterative steps, the

conditional correlation between αt and βt is not presumed to have a large influence

on model estimation if the algorithm is designed sensibly. Moreover, the evaluation of

the conditional distribution for αt,βt|Z1:T is extremely difficult due to the different

temporal dependence structures of βt and αt. To be specific, βt is governed by a
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first-order Markov structure through βt|βt−1, which means the distribution of f(βt)

for each time point t cannot be separated from the joint distribution of f(β1:T ) due to

the dependence. Whereas αt does not depend on its temporal neighbours and relies

solely on the information at time t. Considering the complexity in determining the

joint distribution f(αt,βt|Z1:T ), this thesis assumes that αt and βt are conditionally

independent.

(e) As mentioned in section 4.1, it is sometimes sensible to use different bases for the state

space and the FPCA component, such as

Zt(x, y) = µt(x, y) + Φβ(x, y)βt + Φξ(x, y)Θαt + εt(x, y) .

This would offer more flexibility in describing the spatial/temporal variations. For

example, basis Φβ(x, y) may be designed to capture the large scale temporal variation;

whereas Φξ(x, y) is intended to explain the smaller scale spatial variation via the FPCA.

However, this could complicate the estimation of the model, as some simplifications (e.g.

the matrix identity used in inverting high-dimensional matrix) may not be plausible if

two different bases are used. As far as the problem in this thesis is concerned, the gain

from specifying two different bases may not compensate the loss in the computational

cost. Therefore, it is assumed that Φβ(x, y) = Φξ(x, y).

4.4 Spatio-temporal model estimation

The SS-FPCA model is a mixed effect model with fixed effect component µt and random

effect components Φtβt and ΦtΘαt. The fixed effect µt can be estimated as a constant or as

an overall mean function Xb using the generalized least squares as in Cressie et al. (2010).

Without loss of generality, it is assumed that µt = 0 in the following content. Under this

setting, the observed information of the model is {Zt}Tt=1 and the unobserved information

is {βt}Tt=1 and {αt}Tt=1. Then the parameter set of the model becomes Ψ = {H,Θ,Λ, σ2}.

Fitting the SS-FPCA model involves both the estimation of Ψ and the prediction of {βt}Tt=1,

{αt}Tt=1 based on the observed data {Zt}Tt=1. Despite the simplification of distributional

assumptions brought by the hierarchical design, the observed data and the complete data log-

likelihood functions of the model are still non-trivial. This brings computational challenges

to model estimation.
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The first challenge is associated with the high dimensionality (i.e. large volume) of the data.

For a time series of remote-sensing images, even with a low-dimensional representation, the

estimation of some model components can be computationally intensive. Hence, when it

comes to the choice between the EHM (empirical hierarchical modelling) and the BHM

(Bayesian hierarchical modelling) frameworks (refer to section 4.1), the problems brought

by the data dimension must be taken into account. In general, it is believed that the EHM

using an EM-based algorithm would require less computational cost than the BHM ap-

proach. Implementation using the BHM could encounter difficulties, e.g. sampling from

high-dimensional posterior distributions and monitoring convergence. Although it is slightly

restricted in terms of the types of model it can handle, the EHM approach is more computa-

tional friendly. As far as the SS-FPCA model is concerned, implementation using the EHM

can be done with analytical solutions or low-dimensional numerical optimizations. It also

maintains consistency with the estimation method used in the MM-FPCA, which has been

shown to be reliable in literature such as James et al. (2000), Peng & Paul (2009). Therefore,

in this thesis, the EHM approach is adopted.

The second challenge is the identifiability of the model components. The SS-FPCA model

consists of two random effect components. Despite the distributional assumptions on Φtβt,

ΦtΘαt and εt to help distinguish them from each other, there is still ambiguity in some

measures used in the estimation. For example, the covariance matrix of the data model,

Cov[Zt] = ΦtBtΦ
>
t + ΦtΘΛΘ>Φ>t + σ2I ,

where Bt = Cov[βt], involves both random components and measurement errors. It is hard

to identify the influence of each component on Cov[Zt]. Therefore, it is ideal to exploit an

algorithm that can avoid the (frequent) use of such identification.

The above two challenges lead to the problem of the design of the EM-type algorithm. It is

preferable to have analytical solutions in both the E-step and M-step estimations. This is

not always possible for a complex model. However, by augmenting the data appropriately,

that is, by purposefully defining the ‘missing information’, the computation of the E-step

and M-step can be simplified. Even if an analytical solution is not available, there could be

a gain in computational efficiency by transforming a high-dimensional optimization problem

to a low-dimensional one. Therefore, a flexible algorithm with a suitable data augmentation

scheme is required.
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4.4.1 The proposed estimation framework: AECM

One algorithm satisfying the requirements is the Alternating Expectation - Conditional Max-

imization (AECM) algorithm. This algorithm was first proposed by Meng & Van Dyk (1997)

and was developed based on various extensions of the classic EM algorithm formalized by

Dempster et al. (1977). It makes use of both data augmentation and model reduction to

create a more efficient algorithm for models with complex structures. Under this framework,

the estimation of the SS-FPCA model can be done using only analytical solutions, or simple

1-dimensional numerical optimizations.

Two concepts inspiring the development of the EM-type algorithms are data augmentation

and model reduction. Specifically, data augmentation refers to the ‘methods for construct-

ing iterative optimization or sampling algorithms via the introduction of unobserved data or

latent variables’ (Van Dyk & Meng, 2001). Model reduction refers to ‘using a set of condi-

tional distributions in a computation method designed to learn about the corresponding joint

distribution’ (Van Dyk & Meng, 2010). Both data augmentation and model reduction, when

appropriately applied, lead to an improved algorithm. Various methods are developed based

on these two concepts. A diagram showing the development of the EM-type algorithms is

given in Figure 4.5. The diagram was originally created by Van Dyk & Meng (2010), which

categorizes the extended algorithms based on different modelling techniques.

Figure 4.5: The family tree of the EM-type method. This figure is originally created by
Van Dyk & Meng (2010).

The category associated with the AECM algorithm is shown in the middle branch, labeled

as ‘model reduction’. It begins with the Expectation - Conditional Maximization (ECM)
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algorithm. This algorithm divides the M-step into several conditional maximization (CM)

steps by partitioning the parameter space, to ease the computational burden in the M-

step (Meng & Rubin, 1993). The Expectation - Conditional Maximization Either (ECME)

algorithm goes a step further. It allows the maximization of either the actual data likelihood

function L(Ψ;Zobs), or the target function Q(Ψ; Ψ(it)), depending on different CM-steps

(Liu & Rubin, 1994). The Space Alternating Generalized EM (SAGE) algorithm, though

not shown in the diagram, is another important step in the development of the middle branch.

The algorithm was proposed at the same time as ECME, but takes a different route by using

different target function Qs(Ψ; Ψ(it)), s = 1, · · · , S, according to the design of the parameter

subspaces and their corresponding hidden data spaces (Fessler & Hero, 1994). Finally, the

AECM algorithm merges the ECME and the SAGE into a more general method (Meng &

Van Dyk, 1997). It consists of C (C ≥ 1) cycles within each iteration. Each cycle corresponds

to one type of data augmentation and is paired with Sc (Sc ≥ 1) CM-steps. The subscript

c of S indicates that the number of CM-steps is allowed to vary with cycles (Meng & Van

Dyk, 1997), giving full flexibility to the design of the algorithm.

Specifically, omitting the iteration index (it), the target function in the E-step of the (c+1)-th

cycle of the AECM algorithm can be written as (Meng & Van Dyk, 1997)

Q[c+1]
(

Ψ; Ψ[c]
)

= E
[
L
(

Ψ;Z [c+1]
aug

) ∣∣∣Zobs,Ψ[c]
]

; (4.28)

then the s-th CM-step in cycle c+ 1 calculates Ψ
[c+ s

Sc+1
]

such that

Q[c+1]
(

Ψ
[c+ s

Sc+1
]
; Ψ[c]

)
≥ Q[c+1]

(
Ψ; Ψ[c]

)
(4.29)

∀ Ψ ∈ W [c+1]
s ≡

{
Ψ ∈ W : g[c+1]

s (Ψ) = g[c+1]
s

(
Ψ

[c+ s
Sc+1

]
)}

where g
[c+1]
s (Ψ) is the constraint function of the s-th CM-step in cycle c + 1. Due to its

flexibility, the AECM algorithm has seen wide applications. Examples include the estimation

of mixture models (McLachlan et al., 2003, McNicholas & Murphy, 2008), fitting mixed

models with non-exponential family distributions (Ho & Lin, 2010), etc.

4.4.2 The 2-cycle AECM algorithm for the SS-FPCA model

The AECM algorithm for the SS-FPCA model consists of two cycles, each with its own data

augmentation scheme. See the flow chart in Figure 4.6. Specifically, the first cycle estimates

the parameter H and random coefficient βt for the dynamic component; the second cycle
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estimates the parameters and random effects associated with the FPCA component, Θ, Λ

and αt. The residual variance σ2 can be estimated in both cycles; the preference here is

to estimate it in the second cycle. In terms of notation, the subscripts obs, mis and aug

indicate the observed, missing and augmented data respectively. The superscript [1], [2] are

the cycle indexes and superscript (it) is the iteration index. The subscript 1 : t refers to the

time series from time point 1 to t, e.g. Z1:T = {Z1, · · · ,ZT } = {Zt}Tt=1.

AECM - CYCLE 1

- The observed data in this cycle are Zobs = {Z1, · · · ,ZT }; the missing data are Zmis =

{β0, · · · ,βT }. Combining the observed and missing data generates the augmented data

as Zaug = {Z1, · · · ,ZT ; β0, · · · ,βT }, which is denoted as Z [1].

- The parameter set to be updated in this cycle is Ψ[1] = {H}; the parameter set fixed

at current value in this cycle is Ψ̃[1] = {Θ,Λ, σ2}

- In the it-th iteration, the current estimates of the parameters in this cycle are denoted

as Ψ(it−1) = {H(it−1),Θ(it−1),Λ(it−1), σ2(it−1)}

- The estimation of {βt}Tt=1 uses the Kalman filter/smoother (with threshold).

- The estimation of {αt}Tt=1 is not considered in this cycle. The component ΦtΘαt is

treated as part of the model residual, with its influence reflected in the covariance

matrix Cov[ΦtΘαt + εt]

- Based on the state-process evolution of the model and the idea of ‘sequential implemen-

tation’ (i.e. to update the previous filtering distribution each time new data become

available) in Cressie & Wikle (2011), the complete data distribution in this cycle is

f(Z1:T ,β0:T ; Ψ) = f (Z1:T |β0:T ; Ψ) f (β0:T ; Ψ) (4.30)

=
T∏
t=1

f (Zt|βt; Ψ) f (βt|βt−1; Ψ) f (β0; Ψ) .

The Q-function (i.e. the target function) from the E-Step in this cycle is

Q[1]
(

Ψ[1] ; Ψ(it−1)
)

= E
[
−2L

(
Ψ[1];Z [1], Ψ̃[1]

)∣∣∣Z1:T ,Ψ
(it−1)

]
(4.31)

= E
[
−2 log f

(
Z1:T ,β0:T ; Ψ[1], Ψ̃[1]

)∣∣∣Z1:T ,Ψ
(it−1)

]
= E

[
−2 log f

(
Z1:T ,β0:T ; H,Θ(it−1),Λ(it−1), σ2(it−1)

)∣∣∣Z1:T ,Ψ
(it−1)

]
.
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Initialization
Ψ(0) =

{
H(0),Θ(0),Λ(0), σ2(0)

}
;

β
(0)
0 , B

(0)
0 , {α(0)

t }Tt=1

Iterations while L̃(Ψ(it))−L̃(Ψ(it−1))

L̃(Ψ(it−1))
≥ ε

Cycle 1
the state space component

Ψ[1] = {H}
Ψ(it−1) = {H(it−1),Θ(it−1),Λ(it−1), σ2(it)}

Z
[1]
aug = {Z1:T ,β1;T }

E-step
E[βt|Z1:T ,Ψ

(it−1)]
E[βtβ

>
t |Z1:T ,Ψ

(it−1)]
Q[1](Ψ[1]; Ψ(it−1))

M-step MLE: H(it)

Cycle 2

the FPCA component

Ψ[2] = {Θ,Λ, σ2},
Ψ(it,it−1) = {H(it),Θ(it−1),Λ(it−1), σ2(it−1)}

Z
[2]
aug = {Z1:T ,β1;T ,α1:T }

E-step
E[βt|Z1:T ,Ψ

(it,it−1)]
E[βtβ

>
t |Z1:T ,Ψ

(it,it−1)]
E[αt|Z1:T ,Ψ

(it,it−1)]
E[αtα

>
t |Z1:T ,Ψ

(it,it−1)]
E[αtβ

>
t |Z1:T ,Ψ

(it,it−1)]
Q[2](Ψ[2]; Ψ(it,it−1))

M-step MLEs: Θ(it), Λ(it), σ2(it)

Update
compute L̃(Ψ(it))

it⇐ it+ 1

Figure 4.6: A diagram showing the 2-cycle AECM algorithm for the SS-FPCA model. It
features the basic settings of the two cycles, the conditional expectations and MLEs to be

computed in each cycle.
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The detailed expression of the Q[1] function follows the same form as the E-step equations

(4.12) with the propagator matrix being M = I, which is

Q[1] =

T∑
t=1

{
log(|Gt|) + E

[
(Zt −Φtβt)

>G−1
t (Zt −Φtβt)

∣∣∣Z1:T ,Ψ
(it−1)

]}
(4.32)

+

T∑
t=1

{
log(|H|) + E

[
(βt − βt−1)>H−1 (βt − βt−1)

∣∣∣Z1:T ,Ψ
(it−1)

]}
+
{

log(|B0|) + E
[

(β0 − β)>B−1
0 (β0 − β)

∣∣∣Z1:T ,Ψ
(it−1)

]}
+ constant .

Specifically, the covariance matrix Gt in the it-th iteration is parameterized as

G
(it)
t = Cov

[
ΦtΘαt + εt

∣∣∣Ψ(it−1)
]

= ΦtΘ
(it−1)Λ(it−1)Θ(it−1)>Φ>t + σ2(it−1)I ,

which is implied by the fact that the entire ΦtΘαt+εt is treated as the model residual. The

computational form of the Q[1] function is the same as equation (4.13) in section 4.2.1, with

{βt|T }Tt=1 obtained using the KF/KS under the current parameter estimates Ψ(it−1). Details

can be found in Appendix B.1.

In the M-Step, the MLE of H can be shown to follow the expression

H(it) =
1

T

(
V11 − 2V10 + V >00

)
, (4.33)

where V11, V10 and V00 are defined in the same way as in equation (4.13). This is essentially

the same as the MLE derived in Shumway & Stoffer (2006), with M = I plugged in.

AECM - CYCLE 2

- The observed data in this cycle are Zobs = {Z1, · · · ,ZT }; the missing data are Zmis =

{β0, · · · ,βT ; α1, · · · ,αT }. Hence, the augmented data become Zaug = {Z1, · · · ,ZT ;

β0, · · · ,βT ; α1, · · · , αT }, which is denoted as Z [2].

- The parameter set to be updated in this cycle is Ψ[2] = {Θ,Λ, σ2}; the parameter set

fixed at current value in this cycle is Ψ̃[2] = {H}

- In the it-th iteration, the current estimates of the parameters in this cycle are denoted as

Ψ(it,it−1) = {H(it),Θ(it−1),Λ(it−1), σ2(it−1)}. Note that the superscript for parameter

H is (it) instead of (it− 1), for it has been updated in cycle 1
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- The estimation of {βt}Tt=1 proceeds using the KF/KS (with threshold), with the up-

to-date estimate of H(it)

- The estimation of {αt}Tt=1 is carried out using the FPCA algorithm, but some details

are subject to changes due to the presence of {βt}Tt=1.

- Under the assumption that {αt}Tt=1 and {βt}Tt=1 are independent, the complete data

distribution in this cycle can be written as

f(Z1:T ,β0:T ,α1:T ; Ψ) = f (Z1:T |β0:T ,α1:T ; Ψ) f (α1:T ,β0:T ; Ψ) (4.34)

=
T∏
t=1

f (Zt|βt,αt; Ψ) f (βt|βt−1; Ψ) f (αt; Ψ) f (β0; Ψ)

The Q-function from the E-Step in this cycle is

Q[2]
(

Ψ[2] ; Ψ(it,it−1)
)

= E
[
−2L

(
Ψ[2];Z [2], Ψ̃[2]

)∣∣∣Z1:T ,Ψ
(it,it−1)

]
(4.35)

= E
[
−2 log f

(
Z1:T ,β0:T ,α1:T ; Ψ[2], Ψ̃[2]

)∣∣∣Z1:T ,Ψ
(it,it−1)

]
= E

[
−2 log f

(
Z1:T ,β0:T ,α1:T ; Θ,Λ, σ2,H(it)

)∣∣∣Z1:T ,Ψ
(it,it−1)

]
,

which can be written explicitly as

T∑
t=1

{
nt log

(
σ2
)

+ E

[
1

σ2
(Zt −Φtβt −ΦtΘαt)

> (Zt −Φtβt −ΦtΘαt)

∣∣∣∣Z1:T ,Ψ
(it,it−1)

]}

+
T∑
t=1

{
log(|H|) + E

[
(βt − βt−1)>H−1(βt − βt−1)

∣∣∣Z1:T ,Ψ
(it,it−1)

]}
+ log(|B0|) + E

[
(β0 − β)>B−1

0 (β0 − β)
∣∣∣Z1:T ,Ψ

(it,it−1)
]

+

T∑
t=1

{
log(|Λ|) + E

[
α>t Λ−1αt

∣∣∣Z1:T ,Ψ
(it,it−1)

]}
+ constant , (4.36)

where nt is the number of observations at time t. The computational form of function (4.36)

requires the conditional expectations of αt, βt and their cross products. In particular, the

expectations of βt|Z1:T is obtained using the standard KF/KS under the current parameter

estimate Ψ(it,it−1), without considering the estimation of αt. The expectation of αt|Z1:T can

be computed using a method similar to the one used in the MM-FPCA described in section

3.1.2. The difference is that βt in the SS-FPCA is no longer the fixed effect coefficient vector,

but the random coefficient of the state space component. Hence its influence needs to be

accounted for in a different way. First of all, the covariance matrix of Zt, which is used in
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calculating the distribution of αt|Z1:T , becomes

Cov[Zt] = ΦtCov[βt]Φ
>
t + ΦtΘΛΘ>Φ>t + σ2I .

It turns out that E[βt] = E[βt|T ] and hence Cov[βt] = E[Bt|T ] from applying the property

of double expectation. Therefore, Bt|T could be used as an estimator of Cov[βt] in the

evaluation of Cov[Zt]. Similarly, βt|T can be used as an estimator of E[βt]. Secondly, the

expectation E[αtβ
>
t |Z1:T ,Ψ

(it,it−1)] is required. Recall from section 4.3.2 that αt and βt are

assumed to be independent given all the observed data Z1:T , i.e. Cov[αt,βt|Z1:T ] = 0. As

a result, the expectation can be simplified to

E
[
αtβ

>
t

∣∣∣Z1:T ,Ψ
(it,it−1)

]
= E

[
αt

∣∣∣Z1:T ,Ψ
(it,it−1)

]
E
[
βt

∣∣∣Z1:T ,Ψ
(it,it−1)

]>
.

Finally, knowing Z1:T and Ψ(it,it−1) essentially means that βt|T and Bt|T are also known.

Using these results, the following E-step prediction equations can be derived,

α̂t = E
[
αt

∣∣∣Z1:T ,Ψ
(it,it−1)

]
(4.37)

=
(
ΦtΘ

(it−1)Λ(it−1)
)> (

Σ(it)
)−1 (

Zt −Φtβt|T
)

=
1

σ2(it−1)

(
ΦtΘ

(it−1)Λ(it−1)
)> (

Zt −Φtβt|T
)

− 1

σ2(it−1)

(
ΦtΘ

(it−1)Λ(it−1)
)>

Φt

(
R(it) + Φ>t Φt

)−1
Φ>t

(
Zt −Φtβt|T

)
,

α̂tα>t = E
[
αtα

>
t

∣∣∣Z1:T ,Ψ
(it,it−1)

]
(4.38)

= α̂tα̂
>
t + Λ(it−1) −

(
ΦtΘ

(it−1)Λ(it−1)
)> (

Σ(it)
)−1

ΦtΘ
(it−1)Λ(it−1)

= α̂tα̂
>
t + Λ(it−1) − 1

σ2(it−1)

(
ΦtΘ

(it−1)Λ(it−1)
)>

ΦtΘ
(it−1)Λ(it−1)

+
1

σ2(it−1)

(
ΦtΘ

(it−1)Λ(it−1)
)>

Φt

(
R(it) + Φ>t Φt

)−1
Φ>t ΦtΘ

(it−1)Λ(it−1) ,

α̂tβ>t = E
[
αtβ

>
t

∣∣∣Z1:T ,Ψ
(it,it−1)

]
= α̂tβ

>
t|T . (4.39)

In equation (4.37) and (4.38), Σ(it) = ΦtBt|TΦ>t + ΦtΘ
(it−1)Λ(it−1)Θ(it−1)>Φ>t + σ2(it−1)I

andR(it) = σ2(it−1)
(
Bt|T + Θ(it−1)Λ(it−1)Θ(it−1)>)−1

, which comes from applying the Wood-

bury identity to reduce the dimension of the matrix inversion. Further simplification can be

made if Φ is an orthonormal basis matrix, i.e. Φ>Φ = I. However, in situations where there
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are missing observations, even if Φ is orthonormal by design, the evaluated basis Φt for data

at time t would not be orthonormal. Eventually, the computational form of function Q[2]

can be obtained by putting all the results from (4.36) to (4.39) together. More details of the

above derivations are given in Appendix B.1.

The M-step functions for the MLEs are obtained from the Q[2] function as

σ2(it) =
1

N

T∑
t=1

E
[
ε>t εt

∣∣∣Z1:T ,Ψ
(it,it−1)

]
(4.40)

=
1

N

T∑
t=1

E
[

(Zt −Φtβt −ΦtΘαt)
> (Zt −Φtβt −ΦtΘαt)

∣∣∣Z1:T ,Ψ
(it,it−1)

]
=

1

N

T∑
t=1

[
tr
{

ΦtBt|TΦ>t +
(
Zt −Φtβt|T

) (
Zt −Φtβt|T

)>}
+ tr

{
ΦtΘα̂tα>t Θ>Φ>t

}
−2 tr

{
ΦtΘα̂tZ

>
t −ΦtΘα̂tβ>t Φ>t

}]
where N =

∑T
t=1 nt is the sum of the number of observations at each time point t, and for

p = 1, · · · , P ,

λ(it)
p =

1

T

T∑
t=1

α̂tα>t (p,p) , (4.41)

θ(it)
p =

[
T∑
t=1

α̂tα>t (p,p)Φ
>
t Φt

]−1 T∑
t=1

Φ>t

α̂t(p)Zt −Φt

(
α̂tβ>t (p,�)

)>
−
∑
j 6=p

α̂tα>t (p,j)Φtθ̂j

 ,
(4.42)

where α̂t(p) is the p-th element in vector α̂t, α̂tα>t (p,j) is the (p, j)-th element in α̂tα>t

and α̂tβ>t (p,�) represents the p-th row of α̂tβ>t . Note that θ
(it)
p is updated sequentially with

θ̂j = θ
(it)
j for j < p and θ̂j = θ

(it−1)
j for j > p.

AECM - evaluate convergence After running through cycle 1 and cycle 2, the parameter

set is updated to Ψ(it) = {H(it),Θ(it),Λ(it), σ2(it)}, completing one iteration of the AECM

algorithm. The current estimate of Ψ(it) and the predictions of {βt}, {αt} are then used to

evaluate the log-likelihood of the model, giving

L̃
(

Ψ(it);Z1:T ,β1:T ,α1:T

)
(4.43)

= − 1

2

T∑
t=1

{
nt log

(
σ2(it)

)
+

1

σ2(it)

(
Zt −Φtβt|T −ΦtΘ

(it)α̂t

)> (
Zt −Φtβt|T −ΦtΘ

(it)α̂t

)}

− 1

2

T∑
t=1

{
log
(∣∣∣H(it)

∣∣∣)+
(
βt|T − βt−1|T

)> (
H(it)

)−1 (
βt|T − βt−1|T

)}
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− 1

2

{
log (|B0|) +

(
β0|T − β

)>
B−1

0

(
β0|T − β

)}
− 1

2

T∑
t=1

{
log
(∣∣∣Λ(it)

∣∣∣)+ α̂t
>
(
Λ(it)

)−1
α̂t

}
+ constant .

Function (4.43) can be used to evaluate the convergence of the 2-cycle AECM algorithm.

The strategy here is to stop the iterations when the relative change of the L̃
(
Ψ(it) ; · · ·

)
values from two successive iterations is smaller than a threshold,

L̃
(
Ψ(it) ; · · ·

)
− L̃

(
Ψ(it−1) ; · · ·

)
L̃
(
Ψ(it−1) ; · · ·

) ≤ ε ,

where ε is a pre-determined small number. Alternatively, the updated target function Q[2]

and/or some crucial parameters can be used to evaluate the convergence of the algorithm.

Estimate σ2 in cycle 1 In the above design of the AECM algorithm, the residual vari-

ance σ2 is estimated in cycle 2 as part of the FPCA component. The same parameter can

be estimated in cycle 1, without changing the data augmentation scheme. However, the

estimation equation for σ2 changes and, unfortunately, no analytical solution is available. In

particular, the MLE of σ2 can be obtained using the same method as in Xu & Wikle (2007),

which involves a 1-dimensional numerical optimization of the score function (4.24).

The algorithm can be implemented using R with code developed especially for it. Some

simplifications with respect to the matrix inversion using the Sherman-Morrison-Woodbury

identity are presented in Appendix B.2.

4.4.3 Initialization and finalization of the algorithm

The initialization of the state space component adopts the procedure in section 4.2.1.

(a) The initial state β0 follows a normal distribution, β0 ∼ N
(
0, τ2I

)
, where τ2 is set to

a relatively large number to reflect the lack of knowledge of the initial situation, e.g.

τ2 = 100. The initial value of β0 is set to zero.

(b) The initial value of the covariance matrix of the state transition equationH is initialized

as H(0) = σ2
hI, where σ2

h = 1
n

∑n
i=1 Var[Zt(xi, yi)]. Some other values of σ2

h may be

used depending on the features of the data.

To initialize the FPCA component, the same procedure as used in the MM-FPCA is used.
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(a) Before the launch of the 2-cycle AECM algorithm, no information on the state space

component Φtβt is available. In order to get a mean function, a fixed mean component

Φtβ is produced to represent the time-varying mean in this stage. The initial value

of β is computed through fitting the linear regression model Z = Φβ using vectorized

data, Z = vec(Z1, · · · ,ZT ), and is denoted as β(0).

(b) The sum of the residuals and the random effects are then calculated as r̂t = ΦtΘαt +

εt = Zt−Φtβ
(0). Rewriting ΦtΘαt as Φtηt and fitting the model r̂t = Φtηt + εt gives

the least square estimate η̂t = (Φ>t Φt)
−1Φ>t r̂t. Apply the eigenvalue decomposition

Cov[η̂t] = UΣαU
>. The initial value of Θ can be obtained as Θ(0) = U .

(c) Set the initial value of Λ as Λ(0) = Σα.

For the initial value of σ2, two different approaches can be considered

(a) Initializing as σ2(0) = 1
N

∑T
t=1 r̂

>
t r̂t, where r̂t is obtained from the initialization proce-

dure of the FPCA component and N =
∑

t nt.

(b) Initializing as σ2(0) = Var[Zt(x, y)], which is a rough guage of the variance of the data.

It is widely recognized that the EM-type algorithm may be sensitive to initial values. So the

influence of the above initialization methods on model estimation needs to be investigated.

This is carried out later in Chapter 5.

Similar to the MM-FPCA in Chapter 3, the eigenfunctions estimated from the 2-cycle AECM

algorithm are not necessarily orthonormal, which is the key assumption of the K-L expansion.

Therefore, a final orthonormalization step is added to the converged AECM estimations, to

transform ΦΘ∗ into an orthonormal matrix. The approach used here is the same as the

final orthogonalization of the MM-FPCA given in section 3.1.2, which involves the eigen-

decomposition Θ∗Λ∗Θ∗> = Θ(new)Λ(new)Θ(new)>. Finally, the column vectors of Θ(new) are

reported as the coefficients of the eigenfunctions and the diagonal elements of Λ(new) as the

variances of the principal components.

4.4.4 Selecting ‘smoothing’ parameters

Strictly speaking, the three parameters controlling the smoothness of the SS-FPCA model,

namely, the degrees of freedom of the basis K, the K-L expansion order P and the Kalman
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filter threshold χ%, are not the actual smoothing parameters as in a penalized regression

model. However, the term ‘smoothing’ parameter is adopted here, with the quotation mark

indicating the difference.

Considering the computational burdens of a cross-validation approach or a penalized ap-

proach, a method similar to the two-stage approach of the MM-FPCA is proposed to select

the degrees of freedom of the basis K and the expansion order P . Specifically, two options

can be considered for selecting K.

(a) Choosing K based on the MM-FPCA. In this approach, the degrees of freedom are

considered as the level of smoothness associated with the functional data analysis,

hence the main focus is on the FPCA component, ΦΘαt. The state space component,

Φβt, though fitted using the same basis, is considered as the counterpart of Φβ in the

MM-FPCA and hence its influence is not considered in this selection.

(b) Choosing K based on the SS-FPCA. That is, both the levels of smoothness in the state

space and the FPCA components are considered, which appears to be more sensible

than method (a). It also introduces the flexibility to the selection when different bases

for different model components are considered. However, the computation time of this

method is much longer and therefore might not be practical in some situations.

The decision on K can be made using information criteria such as AIC, BIC or their modified

versions, which intend to correct the potential bias, such as the conditional AIC (Greven &

Kneib, 2010) and the adaptive AIC (Zhang et al., 2012). Alternatively, the choice can be

made based on the background of the application, if relevant information is available. The

selection of the expansion order P follows the choice of the basis dimension K. Similar to

the method used in the MM-FPCA, there are also two approaches to this problem.

(a) Fit a series of models with different expansion orders, then choose the optimal expansion

order based on information criteria.

(b) Fit a high rank or full rank model, then choose the expansion order based on the

magnitudes of the variances of the PCs, which is similar to the selection based on the

percentage of variation explained by the leading PCs.

Note that due to the inclusion of the state space component, part of the variation in the data

would be accounted for by this component. What remains to be explained by the FPCA
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component is not the total variation in the data. Therefore, the concept of ‘percentage of

variance explained by the PCs’ in the SS-FPCA model is different from that in the MM-

FPCA or the PCA. The proportions of variance described by the state space component and

the FPCA component thus need to be handled carefully. Further explanation is given in

Chapter 5.

Finally, the filtering threshold χ% needs to be selected. It has previously been noted that the

Kalman filter would sometimes give a very wiggly interpolation of an image, when there are

only a few observations scattered around the grid and they happened to be in very different

scales. So the filtering threshold is included to impose some restrictions on the filtering of

the extremely sparse images in the series. The relative change/ratio of the RSS of the fitted

models with different filtering thresholds can be used as a selection criterion. In general, the

RSS value would keep on decreasing as the filtering threshold increases, but there may be a

point from which the increase of the threshold ceases to make a big difference on the RSS

values. Such a point can be taken as the filtering threshold, because a higher threshold is

less likely to improve the fit of the data significantly and is more likely to over-interpolate

some extremely sparse images.

4.5 Summary

So far, all elements contributing to the development and estimation of the spatio-temporal

model, the SS-FPCA, have been introduced. The model provides a way of addressing the

three challenges of modelling sparse remote-sensing image time series, dimension reduction,

missing data imputation and analysing the spatial/temporal dependence. It also offers an

answer to the question raised at the end of Chapter 3 to improve the MM-FPCA by ac-

counting for temporal dependence between remote-sensing images. The SS-FPCA inherits

the advantages of both the MM-FPCA and the STRE models and is able to describe the

spatio-temporal dependence in a flexible way. The 2-cycle AECM algorithm is designed so

that analytical solutions are available for all model parameters. R functions have been de-

veloped to implement this method. In the next chapter, features of the SS-FPCA and the

asymptotic results of the estimation algorithm are investigated, along with two applications

using the Lake Victoria data, to complete the ‘portrait’ of this new model.



Chapter 5

The SS-FPCA model investigation

... there is no need to ask the question ‘Is the model true?’. If ‘truth’ is to be the ‘whole

truth’ the answer must be ‘No’. The only question of interest is ‘Is the model illuminating

and useful?’

George Box (1978)

This chapter carries out the investigation of the proposed SS-FPCA model, including a study

of the influence of initial values and model degrees of freedom, a simulation study on the 2-

cycle AECM algorithm using 1-dimensional data and an exploratory analysis on the variance

components. Specific asymptotic results with respect to the algorithm and model estimates

are presented, offering a method to assess the performance of the SS-FPCA. Applications to

the Lake Victoria data are given at the end of the chapter.

5.1 Investigation of initial values and ‘smoothing’ parameters

5.1.1 Model sensitivity with respect to initial values

One criticism of the EM-type algorithm is that the results can be sensitive to the initial

values. To check if this is a problem for the SS-FPCA model estimated using the 2-cycle

AECM algorithm, an assessment of the sensitivity of the model parameter estimates in terms

of the initial values was carried out. In particular, the influences of the initial values of σ2
h

116
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and σ2 were assessed. The investigation on σ2
h was carried out due to the fact that the

initial value of H = σ2
hI is selected in a somewhat arbitrarily way. The motivation of the

investigation on σ2 was that two different methods are proposed in section 4.4.3 to initialize

σ2, but their impacts are yet to be assessed. The initial values of the rest of the parameters

are not examined because their initialization methods are the same as those used in the MM-

FPCA, which have already been justified in literature. For this investigation, the ‘LSWT

section’ data set, first introduced at the end of Chapter 1, was used. This is a subset of the

Lake Victoria LSWT data set and is of dimension 34× 24× 202. As usual, a monthly mean

was removed first. A tensor spline basis with degrees of freedom K = 5 × 5 = 25 was used

and an orthogonalization was applied to obtain the basis matrix Φ. The order of the K-L

expansion was set to be P = 6.

To assess the impact of the initial values of H = σ2
hI, a sequence of increasing σ

2(0)
h values

was considered. The lower and upper bounds of the sequence are the 5-th and 95-th quantiles

of Var[Zt(xi, yi)], i = 1, · · · , n, which are 0.114 and 0.231 in this case. A series of 10 values

was then take from this interval and the 2-cycle AECM algorithm was run 10 times, each

with a different σ
2(0)
h . Under the convergence criterion of ε ≤ 0.001, the approximated joint

log-likelihood values are within the range of 69741 to 70640. These may not be regarded

as converged under the threshold of ε ≤ 0.001, but the estimated model parameters show

small discrepancies. The estimated σ̂2 differs from the third decimal place. The estimated

λ̂p, θ̂p, p = 1, · · · , 6, (before final orthogonalization) and the diagonal elements of Ĥ are also

similarly close. The results are plotted in Figure 5.1 and 5.2. In some panels, the 10 curves

representing the estimates from 10 runs are almost identical. It suggests that the parameter

estimates from the 2-cycle AECM algorithm with different initial values of σ
2(0)
h are relatively

robust, i.e. σ
2(0)
h does not have a substantial influence on model fitting.

To assess the impact of two different versions of σ2(0) introduced in section 4.4.3, two runs of

the AECM algorithms were processed. The first one used σ2(0) = 1∑
t nt

∑T
t=1 r̂

>
t r̂t, denoted

as the FPCA version; the second one used σ2(0) = Var[Zt(x, y)], denoted as the data version.

In this case, the initial value from the FPCA version is σ2(0) = 0.0862 and that from the

data version is σ2(0) = 0.1725. The log-likelihood values and the MLEs of the parameters

after convergence (ε ≤ 0.001) are shown in Table 5.1. The two log-likelihood values differ by

a factor smaller than the convergence threshold 0.001; the discrepancy in the estimated σ̂2,

λ̂p and θ̂p (not presented in the table), p = 1, · · · , 6, are also negligible. Therefore, it may

be concluded that despite the difference in initializing method, the proposed 2-cycle AECM

algorithm is capable of generating robust estimates of the model parameters.
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Figure 5.1: (Left) The MLEs of λ̂p, p = 1, · · · , 6, from 10 runs of the AECM algorithm

shown as 10 curves. (Right) The diagonal elements of the MLEs of Ĥ, ĥk, k = 1, · · · , 25
from 10 runs of the algorithm shown as 10 curves. The indexes on the horizontal axis of the

left panel are p = 1, · · · , 6 and those of the right panel are k = 1, · · · , 25.
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Figure 5.2: (Left to right, top to bottom) The MLEs of the basis coefficient vectors

θ̂1, · · · , θ̂6 from the 10 runs of the AECM algorithm shown as 10 curves. The horizontal
axis represents the index of the 25 elements in vector θ̂p.

Table 5.1: The log-likelihood and MLEs of σ2 and λp, p = 1, · · · , 6, from 2 runs of the
AECM algorithm with different initial values of σ2.

loglike σ̂2 λ̂1 λ̂2 λ̂3 λ̂4 λ̂5 λ̂6

FPCA version 70174 0.0822 31.24 13.63 4.90 2.00 1.74 1.47
Data version 70167 0.0822 31.30 13.65 4.94 2.03 1.76 1.50
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5.1.2 Basis dimension, expansion order and filtering threshold

Choosing the appropriate level of smoothness is an important task for almost all functional

data analysis problems. The selection methods, though not a main theme of this thesis, are

worth considering. The approaches to the selection of basis dimension K, expansion order

P and filtering threshold χ% introduced in section 4.4.4 are relatively easy to implement.

However, as discussed in Chapter 3 for the MM-FPCA, the process and the criteria should

not be treated too rigidly. The final decision might benefit from other relevant information,

such as the scientific background of the application, practical knowledge and the purpose of

the analysis. To illustrate this point, an example of selecting the ‘smoothing’ parameters of

the SS-FPCA model applied to the ‘LSWT section’ data set is presented here.

The selection of the degrees of freedom of the basis K was investigated initially. Both

methods based on the MM-FPCA and the SS-FPCA were implemented. The number of

knots considered in this study ranges from 1 to 4 knots each along the longitude and latitude

coordinates. This, combined with a spline basis of order 4, gives a sequence of the candidate

bases with degrees of freedom from 5 × 5 to 8 × 8. The knots are placed evenly along the

coordinates. Every time, one knot was added to one dimension (longitude first, then latitude).

The initial expansion order used at this stage was P = 15 and the filtering threshold was not

considered in this investigation. The log-likelihood, AIC and BIC values from the selection

using the MM-FPCA are shown in Figure 5.3; those from the process using SS-FPCA model

are shown in Figure 5.4. Note that the index on the horizontal axis represents the index of

the basis with dimensions from 5× 5 to 8× 8i. Chances are the information may not always

be clear based on different criteria. Therefore, it is better not to make the decision based one

single measure. Rather, several different aspects of the model need to be considered, such

as the application background and the modelling purpose. For example, since dimension

reduction is a priority in this analysis, the 6 × 6 basis, as suggested by the BIC plot in the

right panel of Figure 5.3, may be an appropriate choice.

Next, the investigation of the selection of P was carried out using the 6 × 6 basis selected

from the previous stage. Both the information criteria approach and the variance proportion

approach were applied. For the selection using information criteria, a sequence of expansion

order ranging from 2 to 10 was considered. Figure 5.5 presents the log-likelihood, AIC and

BIC values from fitting the SS-FPCA model using P = 2, · · · , 10. For the selection using

iThe index system is: 1 for the 5× 5 basis, 2 for the 6× 5 basis, 3 for the 5× 6 basis, 4 for the 6× 6 basis,
so on and so forth until 10 for the 8× 8 basis
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Figure 5.3: An example of selecting basis dimension using the MM-FPCA. The three
panels are the log-likelihood (left), AIC (middle) and BIC (right) against the index of basis

of increasing degrees of freedom, from 5× 5 to 8× 8.
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Figure 5.4: An example of selecting basis dimension using the SS-FPCA. The three panels
are the log-likelihood (left), AIC (middle) and BIC (right) against the index of basis of

increasing degrees of freedom, from 5× 5 to 8× 8.

variance proportion criteria, a high rank SS-FPCA model with P = 20 was fitted first. Then

the accumulated variances were computed and an appropriate value of P was chosen based on

a specified threshold δ%. In this illustration, the results in Figure 5.5 did not provide much

information in terms of the choice of the optimal expansion order, as a boundary solution

was not necessarily appropriate. As for the variance proportion criterion, a 80% threshold

would suggest P = 6 and a 90% threshold would indicate P = 9. Similar to the selection of

the basis dimension, the final decision need to be made by considering the test results and

other related metrics. In this case, P = 6 could be a reasonable choice.

Sometimes, there may be an interval within which all choices seem to make sense. In these

situations, a decision could be made based on how sensitive the final results are to the change

of P in such an interval. If the differences are not substantial, then a parsimonious choice

could be appropriate. As an illustration, two SS-FPCA models using the same 6 × 6 basis,
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Figure 5.5: An example of selecting the K-L expansion order through fitting a series of
SS-FPCA models with increasing expansion order P . The three panels are the log-likelihood

(left), AIC (middle) and BIC (right) against P = 2, · · · , 10.

but different expansion orders, one with P = 6 (for ≥ 80% variance) and the other with

P = 9 (for ≥ 90% variance), were fitted. The estimated σ̂2, λp, p = 1, · · · , 6, and the RSS

values were recorded in Table 5.2. The majority of the estimates from the two models appear

to be similar, suggesting a minor change moving from a lower rank model to a higher rank

model. In addition, the log-likelihood value from the P = 6 model is larger (when using the

same convergence criterion), making it a better choice, especially when dimension reduction

and data imputation are among the priorities of this analysis.

Table 5.2: The sensitivities of final results to the change of expansion orders of the SS-
FPCA models fitted to the ‘LSWT section’ data set.

loglike σ̂2 λ̂1 λ̂2 λ̂3 λ̂4 λ̂5 λ̂6

P = 6 79750 0.0709 34.84 13.23 5.88 2.23 1.02 0.66
P = 9 79504 0.0730 34.29 14.21 6.54 3.67 2.06 1.43

Finally, the selection of the filtering threshold χ% was processed, through testing a sequence

of increasing filtering thresholds. For an illustration, a series of thresholds, 90%, 92.5%, 95%,

97.5% and 100%, were used in the selection. The log-likelihood and the RSS of the models

using five different thresholds were recorded. Results were plotted in two panels of Figure

5.6. Both plots appear to have a ‘jump’ from the χ% = 92.5% to the χ% = 95%; whereas

the curves before and after these two points are relatively flat. Therefore, it seems to be

appropriate to take χ% = 95% in this case.

The above illustration highlighted a potential issue of the selection procedure proposed in

section 4.4.3. Sometimes, there might not be straightforward choices of the parameters

K and P from the two-stage method, or of χ% from the test of a sequence of increasing
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Figure 5.6: An example of selecting the filtering threshold χ% through fitting a series of
SS-FPCA models with increasing thresholds. The two panels are the log-likelihood (left)

and the RSS (right) against χ% = 90%, 92.5%, 95%, 97.5% and 100%.

thresholds. However, a justifiable decision can usually be reached with the consideration of

the application background and/or the priorities of the problem under study. Alternatively,

an investigation on the sensitivity of the model results to different ‘smoothing’ parameters

may be used to select values from candidate intervals.

5.2 Investigation on the performance of the SS-FPCA

This section explores several aspects of the SS-FPCA model to see whether this complex

model is capable of achieving what it is intended to do. A simulation study and a comparison

of the SS-FPCA to other two models were carried out to asses the model performance. An

investigation on the variances of the model components was also conducted to highlight some

interesting features of the model.

5.2.1 Simulation study on 1-dimensional data

The purpose of this simulation study is to test if the SS-FPCA model estimated using the

2-cycle AECM algorithm can identify the temporal and spatial structure in the data. For

computational efficiency and ease of interpretation, this simulation study was conducted on 1-

dimensional data. This, though different from the application, would not result in significant

loss of generality as the model assumptions and the estimation method remain the same. A

similar investigation on a STRE model of the form (4.25) has been carried out in Katzfuss

& Cressie (2011), where data defined on a 1-dimensional space was used in their simulation
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study. Simulation studies on models equivalent to the MM-FPCA using 1-dimensional data

can be found in Gervini (2009), James et al. (2000), Peng & Paul (2009).

Part 1: simulation design The SS-FPCA for 1-dimensional data can be written as

Zt(x) = Φ(x)βt +
P∑
p=1

Φ(x)θpαtp + εt(x) (5.1)

βt = βt−1 + ut ,

with model assumptions

αt ∼ N (0,Λ), Λ = diag{λ1, · · · , λP }

εt ∼ N (0, σ2I)

ut ∼ N (0,H), H = diag{h1, · · · , hK} .

It is also assumed that functions ξp(x) = Φ(x)θp, p = 1, · · · , P , are orthonormal eigenfunc-

tions, satisfying

∫
ξp(x)ξq(x) dx =

 1, p = q

0, p 6= q
.

Model (5.1) is used as the data generating function in this simulation. Specifically, the FPCA

component
∑P

p=1 Φ(x)θpαpt has P = 2 and functions ξp(x) = Φ(x)θp are generated using

the eigenfunctions from the MM-FPCA applied to a subset of the Lake Victoria Chlorophyll

data. This subset is defined on a stripe in the Chl image, with longitude fixed at 33.0957◦E

and latitude stretching from 1.1521◦S to 1.5661◦S. The Chl data are used here because its

missing percentage is substantially smaller than the LSWT data, which helps to provide a

better estimation of the eigenfuntions.

A few key aspects of the simulation design are listed below.

- The dimension of the simulated data is 50×100, where n = 50 is the number of observa-

tions (indexed by i) at each time point in the 1-dimensional space D = [1.1521, 1.5661]

and T = 100 is the total number of time points (indexed by t). The function argument

x represents the spatial location in the 1-dimensional space. This means, the data are

Zt(xi), xi ∈ D, for i = 1, · · · , 50 and t = 1, · · · , 100.
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- A cubic B-spline basis with 3 equally spaced interior knots is used as Φ(x). This gives

the basis dimension of K = 3 + 3 + 1 = 7.

- The basis coefficient vector series {βt = (β1t · · · βKt)>}Tt=1 are generated using K = 7

random walk processes {ukt}Tt=1, k = 1, · · · , 7, each with distribution ukt ∼ N (0, hk),

and a random zero mean starting point. In this case

{h1, · · · , h7} = {0.33, 0.25, 0.42, 0.25, 0.27, 0.62, 0.28} .

This gives the dynamic component (using matrix notation) Z
(d)
t = Φβt.

- To obtain the FPCA component, first use eigenfunctions, ξ1(x), ξ2(x) and eigenvalues,

λ1 = 9.64, λ2 = 1.80, from the MM-FPCA applied to the subset of the Lake Victo-

ria Chl data, to obtain an approximation of the data covariance matrix Σchl. Then

generate a sequence of random realizations Yt = (Yt1, · · · , Ytn)> from the N (0, I) dis-

tribution and transform them to get Z
(s)
t = Σ

1
2
chl Yt. Finally, multiply Z

(s)
t with a

factor κ (κ ≥ 1) to control the strength of the spatial signal. In this simulation study,

κ = 1.25 and κ = 1.5 are considered.

- The residual component εt is generated from the normal distribution N (0, σ2I). In

this simulation study σ2 = 0.01 and σ2 = 0.25 are considered.

- The dynamic, FPCA and residual components are then combined to obtain the simu-

lated data as Zt = Z
(d)
t + κZ

(s)
t + εt.

Note that the square root of the inverse Σ
1
2
chl is obtained through a singular value decompo-

sition of the matrix ΞΛ
1
2 , where Ξ is the matrix of the eigenfunctions and Λ

1
2 is the square

root of the eigenvalue matrix Λ. In addition, to mimic the sparsity in the real life data, the

following procedure is used to create the missing patterns.

- First generate a series of 100 missing proportions pt, t = 1, · · · , 100, from the uniform

U(0, 1) distribution

- Then for each t, generate 50 binomial random variables from distribution B(1, pt).

Assign the locations corresponding to 1 with observations and regard the locations

corresponding to 0 as missing points.

Two factors of interest in this simulation study are the strength of the spatial signal and the

initialization method of the 2-cycle AECM. The first factor consists of two levels, weak signal
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κ = 1.25 and strong signal κ = 1.5. The second factor considers two initialization methods,

the standard method as described in section 4.4.3 and a separate methods which uses Z
(d)
t +εt

to initialize the dynamic component and Z
(s)
t + εt to initialize the FPCA component. The

separate method is supposed to provide initial values with higher precision. These two factors

are paired to create three combinations, weak + standard, weak + separate and strong +

standard. For each combination, four different situations based on noise levels (small or

large) and missing conditions (complete or missing) are created, generating 12 scenarios in

total. The diagram in Figure 5.7 presents the factors and the 12 scenarios, denoted as S1

to S12 respectively. An example of simulated data with weak spatial signal κ = 1.25, small

noise σ2 = 0.01 and missing observations is given in Figure 5.8.

strength of signal

weak

strong

κ = 1.25

κ = 1.5

initialization

standard

separate

standard

S1 - S4

S5 - S8

S9 - S12

noise & sparsity

S+C

L+C

S+M

L+M

Figure 5.7: A diagram showing the settings of 12 simulation scenarios. The abbreviations
used in the diagram are S for small noise, L for large noise, C for complete data and M for

missing data.
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Figure 5.8: The time series of curves from one simulated replicate. These curves are
generated using weak spatial signal κ = 1.25, small noise σ2 = 0.01 with missing patterns.

Each curve consists of observations at one time point.
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Part 2: simulation results 500 replicates were run for each scenario. The computation

times varies, depending on the number of iterations involved (from ≤ 10 to 500) in each

replicate. On average, one iteration took 0.25 - 0.5 seconds. Some details of the simulation

results are presented below.

First of all, the fitted models are capable of recovering the patterns of the dynamic (i.e.

state space) and the FPCA components. The top three panels in Figure 5.9 represent the

estimated first eigenfunction ξ1(x) from scenarios S4, S8 and S12, with the true eigenfunction

plotted as the red curve. S4, S8 and S12 represent three simulation scenarios labeled as

weak + standard, weak + separate, strong + standard, each paired with large noises and

missing observations. Clearly, the pattern in ξ1(x) is very well identified. All 500 replicates

produced curves bearing the feature of the true eigenfunction. The situation with the second

eigenfunction is slightly worse, with occasional miss of the target (see bottom three panels

in Figure 5.9). However, considering that the first PC is dominant and the magnitude of

the variance of the second PC is less than one-fifth of the variance of the first PC, it is not

surprising that the pattern in ξ2(x) is harder to capture.

The patterns in the time series of the coefficient vector were also captured by the smoothed

series {βt|T }Tt=1. Figure 5.10 gives an example of the smoothed series of each component

of βt, βkt, k = 1, · · · , 7, taken from scenario S1 (the weak + standard, paired with small

noises and complete data scenario). It is straightforward to see that the smoothed series

(grey curves) track the true simulated series (red curves) in the majority of the cases. As the

plots are produced using the same scale, the variation of the estimates of each component

can be compared easily. There seems to be a relatively large difference in the variations,

with the 3rd component having the largest variation and the 7th component varying the

least. This result could be attributed to the feature of the data. One explanation would

be that the variation is larger in the range of support of the third basis function φ3(x) in

Φ(x) = (φ1(x), · · · , φ7(x))>. In terms of the 12 simulation scenarios, the variations of the

estimates appear to be determined mainly by noise levels; the influence from sparsity and

initialization method seems to be much smaller.

However, the estimation of the variances of three model components appears to be more

difficult. The boxplots in Figure 5.11 show the distribution of the estimated eigenvalues λ1

and λ2 (subject to the signal adjusting factor κ) from three scenarios, S4, S8 and S12, with

the red dots indicating the true values. These boxplots show an underestimation of λ1 and

λ2, especially for λ2. The increase in the strength of the spatial signal and the more precise
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Figure 5.9: (Top) The estimated (black curves) and the true (red curve) values of eigen-
function of PC1, from scenario S4, S8 and S12. (Bottom) The estimated (black curves) and

the true (red curve) values of eigenfunction of PC2, from scenarios S4, S8 and S12.
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Figure 5.10: The Kalman smoothed {βt|T }Tt=1 from scenario S1. From left to right, top
to bottom are the smoothed βkt|T , k = 1, · · · , 7 curves (black) and the true curves (red).
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separate initialization method did not seem to improve the estimation, which can be seen

from the middle and right panels.

●

●
●
●●
●

●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

lambda 1 lambda2

0
5

10
15

20

S4 Lambda

●

●

●

●
●●
●
●

●

●●

●●●●●●●

lambda 1 lambda2
0

5
10

15
20

S8 Lambda

●

●

●

●
●●
●
●

●

●

●
●●

●●

●

●

●

●●●●

●

lambda 1 lambda2

0
5

10
15

20
25

30

S12 Lambda

●

●

Figure 5.11: The boxplots of the estimated eigenvalues λ1 and λ2 from 500 repetitions,
with the red dots representing the true values of the two eigenvalues. The three panels

represent scenario S4, S8 and S12 respectively.
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Figure 5.12: The boxplots of the estimated h1, · · · , h7 from scenario S4, S8 and S12 (top)
and S1, S5 and S9 (bottom), with the red dots representing the true values.

Figure 5.12 presents the boxplots of the estimated hk, k = 1, · · · , 7, from scenarios S4, S8, S12

(top panels) and S1, S5, S9 (bottom panels). S1, S5 and S9 represent the scenarios labeled

as weak + standard, weak + separate, strong + standard, all paired with small noises and

complete data. The boxplots show that the patterns in hk, k = 1, · · · , 7, were captured by
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the model. Yet the fitted models appear to underestimate some of the hk. Again, making

the spatial signal stronger did not help to distinguish the temporal signal, neither did the

separate initialization method. However, the separate initialization method seems to have

the potential of avoiding extreme estimates, as highlighted by the bottom middle panel.

As for the residual variances, there appears to be an overestimation of σ2 in all 12 scenarios

(see Table 5.3). The true values are not included in the 95% confidence intervals estimated

from the 500 replicates. Nevertheless, the RSS values of the reconstructions are small and

they seem to be consistent with the true variance of the residuals. In addition, introducing

sparsity to the data did not make a big difference in the RSS values.

Table 5.3: The means and the 95% confidence intervals of the MLEs of σ2 and the means
of RSS (numbers in italics) based on the 500 replicates from 12 simulation scenarios.

small σ2 = 0.01 large σ2 = 0.25
complete sparse complete sparse

weak + MLE 0.0690 0.0708 0.3114 0.3136
standard CI (0.0589, 0.0782) (0.0600, 0.0808) (0.2956, 0.3281) (0.2933, 0.3320)

RSS 0.0132 0.0139 0.2365 0.2323

weak + MLE 0.0689 0.0709 0.3117 0.3140
separate CI (0.0591, 0.0782) (0.0606, 0.0806) (0.2965, 0.3281) (0.2963, 0.3330)

RSS 0.0132 0.0139 0.2366 0.2323

strong + MLE 0.0816 0.0838 0.3250 0.3276
standard CI (0.0700, 0.0928) (0.0716, 0.0957) (0.3061, 0.3429) (0.3063, 0.3488)

RSS 0.0136 0.0145 0.2367 0.2322

To summarize, this simulation study illustrated some interesting properties of the SS-FPCA

model estimated using the 2-cycle AECM algorithm. First of all, the study show that the

SS-FPCA model is capable of identifying the temporal and spatial patterns in the data.

Particularly, two PCs were used in the data generating function and the model identified the

eigenfunction of the dominant PC in almost all replicates. The RSS of the model appears

to be in a comparable scale to the noise level specified in the corresponding scenario. The

SS-FPCA model appears to lack precision in estimating the variance components. Strength-

ening the spatial signal and changing the initialization method did not improve the results

in this case. This can be explained by the identifiability of the model components. As the

dynamic component Φβt describes a space-time non-separable process, it could be spatially

confounded with the FPCA component ΦΘαt, which is a linear combination of the orthog-

onal spatial patterns. A similar situation has been discussed in section 2.2.3 for the spline

regression model with spatially correlated residuals. The confounding problem is common to

spatial or spatio-temporal models. Discussion and solutions can be found in Hodges & Reich
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(2010), Hughes & Haran (2013), Paciorek (2010), Wakefield (2007), etc. Solutions to the

problem of the SS-FPCA model might be more complicated than those proposed for spatial

models in existing literature. Nonetheless, it helps to examine the scales and features of the

variation of the data. It is also important to bear in mind that the truth is always unknown

in practice. Hence any effort made to improve identifiability and any interpretation with

respect to this issue need to be carefully considered.

5.2.2 A comparison of three models

In this investigation, the SS-FPCA model was compared to the MM-FPCA introduced in

Chapter 3 and the dimension-reduced state space model introduced in Chapter 4. As the SS-

FPCA model can be regarded as the combination of these two models, it is straightforward

to propose this comparison as an approach to the model investigation. For clarity, the MM-

FPCA is referred to as the ‘FPCA-only’ method; the dimension-reduced state space model

is denoted as the ‘SS-only’ method. The investigation used the ‘synthetic section’ data set,

which is a subset of the reconstructed LSWT data of Lake Victoria, with imposed missing

patterns from the ‘LSWT section’ data set (see Chapter 1). Since the data set provides

the ‘true values’ for the imposed missing observations, RSS can be calculated in both the

observed and unobserved areas to examine the fit of the models from different aspects. In

particular, three different types of RSS were considered, (a) the RSS of the observed part

of the data, denoted as RSSo, (b) the RSS of the unobserved part of the data, denoted as

RSSu, and (c) the overall RSS, which considers the entire data set, denoted as RSSa.

The data set was first centered by a monthly mean. The three models were then applied to

the centered data, using the same basis and the same K-L expansion order. The degrees of

freedom of the basis K and the expansion order P were selected using the methods described

in section 4.4.4. With some practical concern on dimension reduction and computational

cost, the choice was taken to be K = 5 × 6 = 30 and P = 5. A filtering threshold of

χ% = 95% was used and the convergence criteria for the EM and AECM algorithm was set

to be ε ≤ 0.0005. Table 5.4 presents some information and summary statistics from the three

fitted models. In this case, the SS-FPCA method took the longest time to estimate due to

the complexity of the AECM algorithm. The FPCA-only method is the fastest among the

three, as it does not involve the Kalman filter and smoother, which took up the majority

of computation time in the AECM iterations. The SS-FPCA model also took the largest

number of iterations to converge.
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In terms of three different RSS measures, the FPCA-only method produced the largest RSSo,

RSSu and RSSa. The SS-FPCA model generated much smaller RSS measures than those

from the FPCA-only method, suggesting the improvement as a result of taking into account

the temporal structure. The SS-only method outperformed the SS-FPCA model in RSSo (the

RSS from the observed part) by a tiny margin. However, the SS-FPCA model appears to

have some advantage in interpolating the unobserved part of the data, which is shown by the

values of RSSu and RSSa in Table 5.4. This phenomenon can be explained by the Kalman

filter/smoother’s tendency to over-fit the extremely sparse data as described in section 4.2.2

and 4.2.3. On the contrary, the SS-FPCA model overcomes this problem through the balance

of the state space and the FPCA components. This is illustrated in Figure 5.13 by the images

of the sparse/complete data and three reconstructed images using the FPCA-only, SS-only

and SS-FPCA model respectively. The figure provides an example of over-fitting of the SS-

only model (shown as the 4th panel in each row). In practice, when a large amount of data

are missing, a relatively smoother interpolation may be preferred.

Table 5.4: The comparison of the FPCA-only, SS-only and the SS-FPCA models applied
to the ‘synthetic section’ LSWT data

Iterations σ̂2 RSSo RSSu RSSa

FPCA-only 7 0.0057 0.0030 0.0125 0.0095
SS-only 12 0.0026 0.0015 0.0110 0.0095
SS-FPCA 19 0.0051 0.0016 0.0084 0.0068

To complete the investigation, the estimated state transition equation residual covariance

matrix Ĥ from the SS-FPCA model and the SS-only method are presented in Figure 5.14.

The estimated eigenvalues λ̂p and coefficient vectors θ̂p from the SS-FPCA model and the

FPCA-only method are given in Table 5.5 and Figure 5.15. In this example, the estimated

covariance matrix Ĥ in the SS-FPCA and the SS-only models display different patterns;

whereas the estimated FPCA components in the SS-FPCA and the FPCA-only models share

more similarities. The variances of the functional PCs λ̂p from the SS-FPCA model are

smaller than those from the FPCA-only method, because part of the variation in the data

has been accounted for by the state space component in the SS-FPCA model.

In general, it is difficult to tell whether the estimated model components are telling the ‘truth’

of the spatio-temporal structure in the data. The best solution is probably to examine the

variation explained by different model components and see if it matches the science behind
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Figure 5.13: Examples of the data and the fitted images from November 1997 (top) and
December 2003 (bottom), using three different models. In each row, from left to right are
the sparse data, the complete data, the reconstructed images from the FPCA-only method,
the SS-only method and the SS-FPCA model. The horizontal and vertical axes are latitude

and longitude respectively.
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method (right). The horizontal and vertical axes represent the index of the elements in

matrix Ĥ, k = 1, · · · , 30.

Table 5.5: The comparison of the estimated λ̂p, p = 1, · · · , 5, from the FPCA-only model
and the SS-FPCA model

λ̂1 λ̂2 λ̂3 λ̂4 λ̂5

FPCA-only 10.1815 4.3488 3.3909 3.0826 1.8347
SS-FPCA 9.3476 3.6101 2.3287 1.5567 0.5149



Chapter 5. The SS-FPCA model 133

0 5 10 20 30

−
0.

3
0.

0
0.

2

SS−FPCA Theta 1

0 5 10 20 30

−
0.

3
0.

0
0.

2

Theta 2

0 5 10 20 30

−
0.

3
0.

0
0.

3

Theta 3

0 5 10 20 30

−
0.

4
−

0.
1

0.
2

Theta 4

0 5 10 20 30

−
0.

4
0.

0

Theta 5

0 5 10 20 30

−
0.

3
0.

0
0.

2

FPCA−only Theta 1

0 5 10 20 30

−
0.

3
0.

0
0.

2

Theta 2

0 5 10 20 30

−
0.

2
0.

2

Theta 3

0 5 10 20 30

−
0.

4
−

0.
1

0.
2

Theta 4

0 5 10 20 30

−
0.

3
0.

0
0.

3

Theta 5

Figure 5.15: The estimated θ̂p vectors, p = 1, · · · , 5, from the SS-FPCA model (top) and
the FPCA-only model (bottom). The horizontal axis shows the index of the elements in

vector θ̂p, k = 1, · · · , 30.

the problem. An investigation to explore the variations of the model components is carried

out in the next section.

5.2.3 An investigation of model variance components

In the SS-FPCA model (4.27), the variation of the data Zt(x, y) comes from three different

parts, the dynamic component, the FPCA component and the residual, i.e.

Cov[Zt] = ΦtCov[βt]Φ
>
t + ΦtΘΛΘ>Φ>t + σ2I .

In this section, the estimated variance components ΦBt|TΦ>, ΦΘ̂Λ̂Θ̂>Φ> and σ̂2I are in-

vestigated. Specifically, three different residuals are computed. They are the model residuals

εt = εmt , the residuals when only the state space component (the dynamic) is considered εdt

and the residuals when only the FPCA component (the spatial pattern) is included εst . The

three types of residuals are computed as

εmt = Zt −
(
Φβt|T + ΦΘ̂α̂t

)
(5.2)

εdt = Zt −Φβt|T

εst = Zt −ΦΘ̂α̂t .

Their corresponding RSS can be regarded as a measure of the contribution of the two model

components, Φβt and ΦΘαt, to the fit of the model. Alternatively, the diagonal elements of



Chapter 5. The SS-FPCA model 134

ΦBt|TΦ> and ΦΘ̂Λ̂Θ̂>Φ> and the estimated residual variance σ̂2 can be used to evaluate

the contribution of different components to the total variation.

The investigation used the ‘Chl section’ data set. It is a subset of the spatially aggregated

(using the average of the values in a 3 × 3 grid) Lake Victoria Chlorophyll data and is of

dimension 36 × 36 × 119. The Chl data were used here due to their different features from

the LSWT data in both space and time. By applying two centering methods, one using a

monthly mean and the other using a simple overall mean, two data sets with very different

total variations can be created. The SS-FPCA model was fitted to both data sets, using a

basis of dimension K = 5×5 = 25 and expansion orders P = 6 and P = 2 respectively (both

explaining 95% of the variance of the FPCA component). The filtering threshold was set to

95% and the convergence criterion was ε ≤ 0.0005.

Table 5.6: The comparison of the RSS computed from three different types of residuals,
εm, εd and εs, from the SS-FPCA model applied to the ‘Chl section’ data set with different

centering methods.

Variation in data σ̂2 RSS of εm RSS of εd RSS of εs

Monthly mean 0.0829 0.0314 0.0226 0.0654 0.0314
Overall mean 0.5733 0.0483 0.0228 0.4603 0.0706

Table 5.6 shows the total variation of the data, the estimated residual variance and the

three types of RSS from the fitted models. Despite the difference in the total variation, the

discrepancy in the estimated residual variance σ̂2 between two models is relatively small, so

are the RSS of εm and εs. However, a large gap is found in the RSS of εd, which are the

residuals of the imputation using only the state space component. In the model centered by

a monthly mean, the RSS of εd is 0.0654; whereas in the model centered by an overall mean,

it is 0.4603 and is about 6 times larger. Given that the RSS of εm and εs are similar in

two models, this suggests that a large amount of the variation was explained by the FPCA

component in the model centered by an overall mean. This can also be seen in Figure 5.16,

which plots the diagonal elements of ΦΘ̂Λ̂Θ̂>Φ>. The left panel, representing the model

using a monthly mean, has the majority of the pixels coloured red, corresponding to values at

about 0.1. The right panel, representing the model using an overall mean, has the majority

of pixels coloured amber and yellow, corresponding to values of 0.5 - 0.6.

As the majority of the variation in the Chl data centered by an overall mean was explained

by the FPCA components, the expansion order P may have a relatively large impact on

the model. Table 5.7 presents the MLEs of σ̂2 and the RSS of different types of model
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Figure 5.16: The diagonal elements in matrix ΦΘ̂Λ̂Θ̂>Φ> plotted as images, from the
SS-FPCA applied to the ‘Chl section’ data centered by monthly mean (left) and by overall

mean (right). The horizontal and vertical axes are latitude and longitude respectively.

residuals from two SS-FPCA models fitted with expansion order P = 2 and 4 respectively.

The difference in expansion order does appear to introduce discrepancies in σ̂2 and the RSS

values, especially for εs. This suggest that the selection of expansion order P in this case

may require more attention. On the contrary, if the dynamic component is more influential,

then the selection of P may be less crucial.

Table 5.7: Example of changing expansion orders and the corresponding RSS computed
using different model components of the SS-FPCA model applied to the ‘Chl section’ data.

σ̂2 RSS of εm RSS of εd RSS of εs

P = 2 0.0483 0.0228 0.4603 0.0706
P = 4 0.0525 0.0230 0.4792 0.0504

To summarise, the above investigation provided insight into the characteristics of the state

space component and the FPCA components in the SS-FPCA model. The investigation using

the ‘Chl section’ data centered by two different mean functions shows that pre-processing of

the data, such as centering and de-trending, can play an important part in the final results.

The scales of the variance of different model components may also provide some information

on the selection of expansion order.

5.3 Convergence properties of the SS-FPCA

The above investigation may be helpful in providing measures on the general fit of the

SS-FPCA model. However, the standard errors of the estimates or the convergence of the
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algorithm cannot be obtained from this type of analysis. Fortunately, there are several useful

asymptotic properties associated with EM-type algorithms which have been developed over

the past 40 years (McLachlan & Krishnan, 1997). These asymptotic results could be used to

approximate the standard errors of the MLEs of the SS-FPCA model.

5.3.1 Convergence properties of the AECM algorithm

Given the complexity of the SS-FPCA model, the evaluation of the parameter estimates

and the convergence of the algorithm is often difficult. Approaches such as cross validation,

bootstrap and simulation study can be computationally challenging for very large data set.

However, through the empirical estimates of the theoretical convergence measures, indica-

tions of the asymptotic behaviors of the estimated model might be extracted.

The monotonic and convergence properties of the EM-type algorithm have been studied in

detail ever since the earlier years of the development of the algorithm. Dempster et al.

(1977) showed that the (incomplete data) likelihood function does not decrease after each

EM iteration. McLachlan & Krishnan (1997) explained in their book that, ‘in the case where

the likelihood function L(Ψ) is unimodal in Ω (and a certain differentiability condition is

satisfied), any EM sequence converges to the unique MLE, irrespective of its starting point

Ψ(0)’ and ‘if L(Ψ) has several stationary points, convergence of the EM sequence to either

type (local or global maximizers, saddle points) depends on the choice of starting point’ ii. The

two authors also introduced a series of convergence theorems with respect to a generalized

EM (GEM) algorithm, some of which can be traced back to Wu (1983). For extensions,

such as ECM, SAGE and AECM, related convergence properties have also been derived and

evaluated in various literatures (Fessler & Hero, 1994, Liu & Rubin, 1994, Meng & Rubin,

1993, Meng & Van Dyk, 1997).

To present the convergence of a GEM algorithm (EM, ECM, AECM are all in this family), a

set of notation is introduced. These notations follow mainly McLachlan & Krishnan (1997),

with a few changes to maintain the consistency with the rest of the thesis.

- Denote Z as the observed data and Zc as the complete data (or the augmented data),

where the subscript c stands for ‘complete’.

- Denote Ψ as the set of parameters and Ψ ∈ W. The observed data log-likelihood is L(Ψ)

and the complete data log-likelihood is Lc(Ψ). This is slightly different from McLachlan

iiThe notation Ω used in the quotation is the same as W in this thesis, referring to the parameter space.
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& Krishnan (1997) where L(�) represents the likelihood function. Also define Ψ(it) as

the estimated values after the it-th GEM iteration and Ψ∗ as the stationary point of

the log-likelihood functions L(Ψ) and Lc(Ψ).

- The density functions for the observed and the complete data are denoted as f(Z; Ψ)

and fc(Zc; Ψ) respectively. The conditional density of the complete data given the

observed data is f(Zc|Z; Ψ) = fc(Zc; Ψ)/f(Z; Ψ).

- The target function computed in the E-step and used in the M-step is

Q
(

Ψ; Ψ(it)
)

= E
[
Lc(Ψ)

∣∣∣Z; Ψ(it)
]
.

A function associated with the conditional density of f(Zc|Z; Ψ) is

H
(

Ψ; Ψ(it)
)

= E
[
log f(Zc|Z; Ψ)

∣∣∣Z; Ψ(it)
]
.

- The observed/complete data score statistics, which are the first derivative of the ob-

served/complete data log-likelihood with respect to Ψ, are denoted as F (Z; Ψ) and

Fc(Zc; Ψ).

- The observed/complete data Fisher information matrices, which are the expectations

of the negative second derivatives of the observed/complete data log-likelihood, are

denoted as I(Ψ,Z) and I(Ψ;Zc).

All the results below are associated with the GEM algorithm, in which the M-step is to

choose a value of Ψ(it+1) such that Q(Ψ(it+1); Ψ(it)) ≥ Q(Ψ(it); Ψ(it)). Only a brief summary

is presented here; whereas detailed proofs can be found in McLachlan & Krishnan (1997).

The first key statement is, the observed data log-likelihood is not decreased after a GEM

iteration. To see this, write the observed data log-likelihood as

L(Ψ) = Q
(

Ψ; Ψ(it)
)
−H

(
Ψ; Ψ(it)

)
,

which is from the result f(Z; Ψ) = fc(Zc; Ψ)/f(Zc|Z; Ψ). Then the difference between the

log-likelihood from two iterations would be

L
(

Ψ(it+1)
)
− L

(
Ψ(it)

)
=
{
Q
(

Ψ; Ψ(it+1)
)
−Q

(
Ψ; Ψ(it)

)}
−
{
H
(

Ψ; Ψ(it+1)
)
−H

(
Ψ; Ψ(it)

)}
.
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The first curly bracket in the above equation is non-negative by definition of the GEM; the

second curly bracket is non-positive by Jensen’s inequality (McLachlan & Krishnan, 1997).

Hence the observed data log-likelihood is non-decreasing.

Then there is the theorem with respect to the convergence of a GEM sequence to a stationary

point. It is based on the regularity conditions of Wu (1983), which are

(a) W is a subset of the d-dimensional Euclidean space Rd, where d is the dimension of

the parameter set;

(b) WΨ0 = {Ψ ∈ W : L(Ψ) ≥ L(Ψ0)} is a compact set for any L(Ψ0) > −∞;

(c) L(Ψ) is continuous in W and differentiable in the interior of W;

(d) each Ψ(it) is in the interior of W, i.e. Ψ(it+1) is the solution of ∂Q(Ψ; Ψ(it))/∂Ψ = 0.

Theorem 5.1. Let {Ψ(it)} be an instance of a GEM algorithm generated by Ψ(it+1) ∈

F(Ψ(it)). Suppose that the mapping F(Ψ(it)) is closed over the complement of A, which is

the set of stationary points in the interior of W, and

L
(

Ψ(it+1)
)
> L

(
Ψ(it)

)
, ∀ Ψ(it) /∈ A .

Then all the limit points of {Ψ(it)} are stationary points and L(Ψ(it)) converges monotonically

to L∗ = L(Ψ∗) for some stationary point Ψ∗ ∈ A (McLachlan & Krishnan, 1997).

Following the above theorem, the convergence of a GEM sequence of iterates {Ψ(it)} to a

stationary point Ψ∗ can also be established (McLachlan & Krishnan, 1997). The additional

conditions required are either

A(L∗) = {Ψ∗} ,

i.e. set A(L∗) consists of single point Ψ∗, or

∥∥∥Ψ(it+1) −Ψ(it)
∥∥∥ → 0, as it→∞ ,

if set A(L∗) consists of multiple elements and they are discrete.

Since there are more than one cycles of the E-step and M-step iteration in the AECM

algorithm, an additional condition is required to ensure the convergence of the algorithm.

This condition is called ‘space-filling’ and was first put forward by Meng & Rubin (1993) for
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the CM-steps in the ECM algorithm. Its extension to the AECM algorithm was made in

Meng & Van Dyk (1997).

The space-filling condition. Let c = 1, · · · , C be the index of the cycles in the AECM

algorithm and s = 1, · · · , Sc be the index of the CM-steps in the c-th cycle within one

iteration. Denote {g[c]
s (Ψ), s = 1, · · · , Sc} as a collection of pre-selected constraint functions

for the CM-steps in the c-th cycle. The updating criterion in the s-th CM-step of the (c+1)-th

cycle in the it-th iteration can be written, by omitting the iteration index (it), as

Q[c+1]
(

Ψ[c+ s
Sc

]; Ψ[c]
)
≥ Q[c+1]

(
Ψ; Ψ[c]

)
, ∀ Ψ ∈ Ws

(
Ψ[c+1]

)
,

where

Ws

(
Ψ[c+1]

)
≡
{

Ψ ∈ W : g[c+1]
s (Ψ) = g[c+1]

s

(
Ψ[c+ s−1

Sc
]
)}

is the parameter space for the s-th CM step of the (c+1)-th cycle determined by the constraint

function g
[c+1]
s (Ψ). Then the space-filling condition can be written as

C⋂
c=1

Sc⋂
s=1

G[c]
s (Ψ) = {0} , (5.3)

where

G[c]
s (Ψ) ≡

{
5g[c]

s (Ψ)a : a ∈ Rd
[c]
s

}
is the column space of the gradient vectors 5g[c]

s (Ψ). The space-filling condition should be

fulfilled after all the cycles are completed (Meng & Van Dyk, 1997).

McLachlan & Krishnan (1997) interpreted the space-filling condition for an ECM algorithm

in terms of its complement. That is ‘the convex hull of all feasible directions determined

by the constraint spaces ... is the whole Euclidean space Rd’. Similar interpretation can

be made on the AECM algorithm. In fact, the directions defined in G[c]
s (Ψ) are directions

restricted to the search; whereas its compliment contains the feasible directions. Therefore,

the compliments of (5.3),
⋃C
c=1

⋃Sc
s=1 G

[c]
s (Ψ) = Rd\{0}, inclines that the search of optimal

solutions in the CM-steps within different cycles can be carried out in the entire parameter

space. Based on this condition, the convergence theorems of the AECM algorithm were

established (Meng & Van Dyk, 1997). As they have little difference from those of the GEM

algorithm, the theorems are not listed here to avoid redundancy. Readers are referred to

Appendix C.1 for more details.
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Liu & Rubin (1994) described an example using the partition of the parameter space in the

CM-steps to verify the space-filling condition. In that case, it is straightforward to show that

gs(Ψ) = {ψ1, · · · , ψs−1, ψs+1, · · · , ψS} and
⋂S
s=1 Gs(Ψ) = {0}. The fact that the CM-steps in

the 2-cycle AECM algorithm for the SS-FPCA model also uses a partition of the parameter

space suggests that the space-filling condition is supposed to hold.

The results presented in this subsection may be giving the impression of being hard to verify

in practice and hence are somewhat redundant. However, in some situations, it helps even

just to demonstrate that some essential conditions ensuring the convergence of the algorithm

are satisfied, because monitoring convergence can be extremely difficult for a complex EM-

type algorithm. Meanwhile, these results offer a way of investigating if the design of the new

algorithm (the 2-cycle AECM for the SS-FPCA model in this case) is sensible.

5.3.2 Approximation of the standard errors of the MLEs

Among the various measures of the convergence of the EM-type algorithm, the standard

error of the estimated parameter is one of the most interesting in application. Unfortunately,

there is no direct solution from the implementation of an EM-type algorithm. It is possible

to bootstrap the standard errors, but the computation can be challenging for a large data

set or a complicated model. Alternatively, the inverse of the observed information matrix

I(Ψ)−1 can be used as an approximation to the standard errors of Ψ. To obtain the observed

information matrix, the expectation of the observed log-likelihood L(Ψ) is required. This is

no easy task and is the reason why the EM-type algorithm is used in the first place. As a

result, approximations to I(Ψ)−1 need to be considered.

The reason the observed information matrix I(Ψ) is favoured over the complete data Fisher

information Ic(Ψ) in the estimation of the standard errors is that, Ic(Ψ) tends to underes-

timate the standard errors. That is

I(Ψ)−1 = Ic(Ψ)−1 +4V , (5.4)

4V = [I − J (Ψ)]−1 J (Ψ)Ic(Ψ)−1 .

The quantity 4V measures the increase in the asymptotic variance due to missing informa-

tion (McLachlan & Krishnan, 1997, Meng & Rubin, 1991) . It is determined by the rate of

convergence matrix J (Ψ) and the complete data information Ic(Ψ).
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The rate of convergence matrix J (Ψ) is a measure of the convergence speed of the algorithm.

The derivation of the rate matrix J (Ψ) begins with a Taylor expansion of the mapping

function Ψ(it+1) = F(Ψ(it)) at the point Ψ(it) = Ψ∗,

F
(

Ψ(it)
)
≈ F(Ψ∗) +

[
∂F
(

Ψ(it)
)
/∂Ψ(it)

]
Ψ(it)=Ψ∗

(
Ψ(it) −Ψ∗

)
,

which then gives

Ψ(it+1) −Ψ∗ ≈
[
∂F
(

Ψ(it)
)
/∂Ψ(it)

]
Ψ(it)=Ψ∗

(
Ψ(it) −Ψ∗

)
.

= J (Ψ∗)
(

Ψ(it) −Ψ∗
)
, (5.5)

where J (Ψ∗) is the rate matrix evaluated at Ψ∗ (McLachlan & Krishnan, 1997). However,

the computation of the rate matrix is usually difficult, which complicates the evaluation of

the observed information I(Ψ) using equation (5.4). As a result, the approximation of the

standard errors of parameter estimates becomes challenging.

Over the years, various approximation methods have been proposed in the literature to obtain

the observed information I(Ψ). Among these methods, two of them are of direct relevance

to this thesis.

(a) The first method avoids the computation of the rate of convergence J (Ψ) and ap-

proximates the observed information matrix using the score statistics. According to

McLachlan & Krishnan (1997), I(Ψ) can be approximated using the conditional expec-

tation of the gradient vector (i.e. the score statistic). The resulting matrix is called the

empirical information matrix and is denoted as Ie(Ψ;Z). Under the i.i.d. assumption

of the data Zt, matrix Ie(Ψ;Z) is constructed as

Ie(Ψ;Z) =

T∑
t=1

I(Ψ;Zt)

=

T∑
t=1

F (Zt; Ψ)F (Zt; Ψ)> − 1

T

[
T∑
t=1

F (Zt; Ψ)

][
T∑
t=1

F (Zt; Ψ)

]>
,

where I(Ψ;Zt) and F (Zt; Ψ) are the observed information and score statistic for the

t-th observation. On evaluating the equation at the MLE Ψ∗, the second term can be

treated as approximately zero, giving the approximation
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Ie(Ψ∗;Z) ≈
T∑
t=1

F (Zt; Ψ∗)F (Zt; Ψ∗)> . (5.6)

In addition, it has been shown in McLachlan & Krishnan (1997) that F (Zt; Ψ) can be

obtained using the complete data log-likelihood as

F (Zt; Ψ) = E

[
∂Lc(Ψ;Zt)

∂Ψ

∣∣∣∣Z; Ψ

]
. (5.7)

This means, the computation of the empirical information matrix could be carried out

with just a little extra work in addition to the GEM procedure.

(b) The second method adopts a supplemented algorithm alongside the EM-type algorithm

to approximate the rate of convergence matrix J (Ψ). Then the information matrix can

be obtained using equation (5.4). Depending on the algorithms, J (Ψ) is linked to the

observed information matrix I(Ψ) in specific ways (Liu & Rubin, 1994, McLachlan

& Krishnan, 1997, Meng & Van Dyk, 1997). For example, equation (5.4) is for the

standard EM algorithm; whereas the rate of convergence matrix of the AECM was

derived in Meng & Van Dyk (1997) as

J AECM (Ψ) =
C∏
c=1

I − I(Ψ)I [c]
c (Ψ)−1

I − S[c]∏
s=1

P [c]
s

 (5.8)

where

P [c]
s = 5[c]

s

{(
5[c]
s

)>
I [c]
c (Ψ)−1

(
5[c]
s

)}−1 (
5[c]
s

)>
I [c]
c (Ψ)−1

5[c]
s = 5g[c]

s (Ψ∗) ,

and g
[c]
s (�) are constraint functions associated with the space-filling conditions. Based on

these connections, supplemented algorithms were proposed to approximate the elements

in the rate of convergence matrix through numerical differentiation (Meng & Rubin,

1991, Van Dyk et al., 1995). Define r∗mn as the (m,n)-th element of the matrix J (Ψ).

After the EM-type algorithm converges, run a few more iterations beginning with a

parameter vector Ψ(it) whose elements are close to, but slightly different from the

converged Ψ∗. Compute

r(it)
m,n =

ψ̃
(it+1)
n − ψ∗n
ψ

(it)
m − ψ∗m

(5.9)
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for m, n = 1, · · · , q, where q is the dimension of the parameter set Ψ. The estimates

ψ̃
(it+1)
m in equation (5.9) can be obtained from the output of one iteration of the EM-

type alorithm with input

Ψ(it)(m) =
(
ψ∗1, · · · , ψ∗m−1, ψ

(it)
m , ψ∗m+1, · · · , ψ∗M

)
.

The iteration stops if a discrepancy measure δ(r
(it+1)
m.n , r

(it)
m.n) is less than certain thresh-

old. After convergence, set r∗mn = r
(it+1)
mn . It is easy to see the connection between the

supplemented algorithm and the derivation of J (Ψ) using the Taylor expansion (5.5).

With the supplemented algorithms, the entire matrix J (Ψ) can be approximated. The

observed information I(Ψ) can therefore be obtained.

The supplemented algorithm can be used to obtain the observed information matrix I(Ψ)

of the AECM algorithm from equation (5.8). However, the implementation is non-trivial,

especially when the algorithm involves multiple cycles, i.e. C ≥ 2. Meng & Van Dyk (1997)

mentioned using a corresponding C = 1 algorithm (provided it exists) in conjunction with

the supplemented ECM algorithm to compute I(Ψ). Alternatively, for the specific case of

C = 2, I(Ψ) might be obtained by solving a quadratic matrix equation

XAX +BX +CX = D ,

where X = I(Ψ) and A,B,C,D are constructed using elements associated with I [1]
c (Ψ),

I [2]
c (Ψ), J (Ψ) and gs(Ψ). See Appendix C.1 for more explanation.

5.3.3 Practical results of the SS-FPCA

The two methods introduced in section 5.3.2 for approximating the observed information

matrix I(Ψ) can be used to estimate the standard errors of MLEs of the parameters in the

SS-FPCA model. In particular, the first method using Ie(Ψ) as defined in (5.6) is adopted in

this thesis. Both method can suffer from numerical inaccuracies and instability, especially in

high-dimensional settings (McLachlan & Krishnan, 1997). However, evaluating Ie(Ψ) based

on the score statistics is supposed to be computationally more efficient than the supplemented

algorithm, especially when the number of parameters is large. It is also easier to implement,

provided there are neat analytical solutions to the partial derivatives of the complete data

log-likelihood and the corresponding conditional expectations.
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The complete data log-likelihood of the SS-FPCA model (4.27) is

Lc(Ψ;Z1:T ,β1:T ,α1:T ) (5.10)

= − 1

2

T∑
t=1

{
nt log

(
σ2
)

+
1

σ2
(Zt −Φtβt −ΦtΘαt)

> (Zt −Φtβt −ΦtΘαt)

}

− 1

2

T∑
t=1

{
log (|H|) + (βt − βt−1)>H−1 (βt − βt−1)

}
− 1

2

{
log (|B0|) + (β0 − β)>B−1

0 (β0 − β)
}

− 1

2

T∑
t=1

{
log (|Λ|) +α>t Λ−1αt

}
+ constant .

The corresponding information matrix is block diagonal, consisting of one block for the

second order partial derivatives with respect to σ2 and θp, p = 1, · · · , P , one block with

respect to the second derivatives of λp, p = 1, · · · , P , and one block associated with H (see

Appendix C.2). Each block needs to be evaluated and inverted separately, in order to get

the estimation of the standard errors. Specifically, the first and second derivatives of log-

likelihood (5.10) with respect to σ2, λp, θp (the vector as an entity) and H (the matrix as

an entity) can be derived as follows.

∂Lc(Ψ)

∂σ2
= −1

2

T∑
t=1

{
nt
σ2
− 1

σ4
(Zt −Φtβt −ΦtΘαt)

> (Zt −Φtβt −ΦtΘαt)

}
, (5.11)

∂2Lc(Ψ)

∂σ2∂σ2
=

1

2

T∑
t=1

{
nt
σ4
− 2

σ6
(Zt −Φtβt −ΦtΘαt)

> (Zt −Φtβt −ΦtΘαt)

}
, (5.12)

∂Lc(Ψ)

∂θp
=

1

σ2

T∑
t=1

Φ>t (Zt −Φtβt)αpt − α2
ptΦ
>
t Φtθp −

∑
q 6=p

αptαqtΦ
>
t Φtθq

 , (5.13)

∂2Lc(Ψ)

∂θp∂θ>p
= − 1

σ2

T∑
t=1

{
α2
ptΦ
>
t Φt

}
, (5.14)

∂2Lc(Ψ)

∂θp∂θ>q
= − 1

σ2

T∑
t=1

{
αptαqtΦ

>
t Φt

}
, (5.15)

∂2Lc(Ψ)

∂θp∂σ2
= − 1

σ4
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Φ>t (Zt −Φtβt)αpt − α2
ptΦ
>
t Φtθp −

∑
q 6=p

αptαqtΦ
>
t Φtθq

 , (5.16)
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∂Lc(Ψ)

∂λp
= −1

2

T∑
t=1

{
1

λp
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pt

}
, (5.17)

∂2Lc(Ψ)
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1
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λ2
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, (5.18)

∂Lc(Ψ)

∂H
=− 1

2

T∑
t=1

{
vec(H−>)> +

[
(βt − βt−1)> ⊗ (βt − βt−1)>

]
(5.19)(

−H−> ⊗H−1
)}

,

∂2Lc(Ψ)

∂H∂H>
=

1

2

T∑
t=1

{
IK2 − IK2 ⊗

[
(βt − βt−1)> ⊗ (βt − βt−1)>

]
(5.20)[

(IK ⊗ TK,K ⊗ IK)
(
vec

(
H−>

)
⊗ IK2

)]}(
H−> ⊗H−1

)
,

where IK , IK2 are identity matrices of dimension K and K2 (K is the basis dimension)

respectively and TK,K is the permutation matrix which satisfies vec(H)TK,K = vec(H>).

The evaluation of the conditional expectations of derivatives (5.11) to (5.18) uses the E-

step outputs from cycle 2 of the AECM algorithm in section 4.4.2. By recognizing that

(βt − βt−1)> ⊗ (βt − βt−1)> = vec
[
(βt − βt−1) (βt − βt−1)>

]
, the only thing required for

the conditional expectation of derivatives (5.19) and (5.20) is the expectation of matrix

(βt − βt−1) (βt − βt−1)> given all the data Z1:T , which is part of the routine of cycle 1.

More details can be found in Appendix C.2

As an illustration of the approximation of the standard errors using the Fisher information

matrix, an example based on the simulated data in section 5.2.1 is presented. This example

does not intend to assess the asymptotic properties of the SS-FPCA model, but to provide

some practical results only. Standard errors of the variance parameters, σ2, λp, p = 1, 2, and

hk, k = 1, · · · , 7, are investigated. Despite the fact that the MLEs of these parameters are

biased in the majority of the simulation scenarios, it is interesting to investigate the behavior

of their approximated standard errors. In this example, the Fisher information based on

both the complete data log-likelihood and the score statistics, i.e. Ic(Ψ) and Ie(Ψ), were

computed. The standard errors σ(Ψ) were estimated using the negative inverse of the two.

The lengths of the approximated 95% confidence intervals [−1.96σ(Ψ), 1.96σ(Ψ)] (referred

to as the approximated CI) were compared to the lengths of the 95% confidence intervals

obtained from the 500 simulation replicates (referred to as the simulation CI). Tables 5.8

and 5.9 present the results from the replicates of simulation scenario S1 and S12. These two
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scenarios correspond to a ‘good’ and a ‘bad’ cases respectively according to the sparsity and

noise levels, so the results are somewhat representative.

Table 5.8: The lengths of the 95% confidence interval (CI) of the MLEs of σ2, λ1 and λ2,
based on the 500 replicates and on the approximations using information matrices Ic(Ψ)

and Ie(Ψ) from the 100th, 300th and 500th replicates, from scenario 1 and 12.

S1 S12
σ2 λ1 λ2 σ2 λ1 λ2

True value 0.0100 15.0633 2.8196 0.2500 15.0633 2.8196

CI Simulation 0.0192 8.0067 2.1039 0.0425 11.5399 2.5345

MLE (100th rep) 0.0669 12.7253 1.6715 0.3332 18.0375 2.7422
CI from Ic 0.0052 7.1368 0.9472 0.0316 10.1313 1.5528
CI from Ie 0.0110 8.0725 1.0786 0.0450 11.7779 2.2763

MLE (300th rep) 0.0636 11.2393 1.6222 0.3199 16.7336 2.1976
CI from Ic 0.0049 6.3891 0.9173 0.0303 6.3199 0.7165
CI from Ie 0.0102 7.7386 1.1547 0.0482 7.3977 1.2379

MLE (500th rep) 0.0717 11.2594 3.0367 0.3280 16.2105 4.2377
CI from Ic 0.0056 6.3440 1.7190 0.0311 9.1179 2.4128
CI from Ie 0.0111 7.4402 1.7612 0.0477 10.4642 2.7803

It can be seen in Table 5.8 and 5.9 that, the lengths of the 95% confidence intervals obtained

from the complete data information matrix Ic(Ψ) are shorter than those obtained from

the empirical observed information matrix Ie(Ψ). This is expected as the complete data

information matrix tends to underestimate the standard errors of the MLEs. The differences

between Ic(Ψ) and Ie(Ψ) are relatively larger in scenario S12 (see Table 5.9). A possible

explanation is that, although ‘missing information’ in the AECM algorithm are in fact ‘latent

variables’, the higher proportion of missing observations means the ratio of unknown versus

known is larger. Therefore Ic(Ψ) tends to deviate more from Ie(Ψ).

There is no clear pattern in terms of the lengths of the 95% simulation CIs as compared to

the lengths of the two approximated CIs. In the case of σ̂2, the simulation CIs are wider

than the two approximated CIs. The simulation CIs of λ̂1 and λ̂2 tend to be wider than the

approximated CIs, but with some exceptions. The situation with respect to ĥk, k = 1, · · · , 7,

is even more unpredictable. In addition, the lengths of the 95% confidence intervals for σ̂2,

λ̂1 and λ̂2 using three different methods are comparable, but those for ĥk, k = 1, · · · , 7,

appear to vary greatly.

A possible explanation for the discrepancies in the 95% CIs of hk from three different methods

is as follows. Information matrices Ic(ĥk) and Ie(ĥk) were computed using the MLE of hk

and the Kalman smoothed series {βt|T }Tt=1, based on the current replicate. As the Kalman
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Table 5.9: The lengths of the 95% confidence interval (CI) of the MLEs of h1, · · · , h7,
based on the on the 500 replicates and on the approximations using information matrices
Ic(Ψ) and Ie(Ψ) from the 100th, 300th and 500th replicates, from scenario S1 and S12.

S1
h1 h2 h3 h4 h5 h6 h7

True value 0.3364 0.2500 0.4225 0.2500 0.2704 0.6241 0.2809

CI Simulation 0.4356 0.2376 0.3551 0.0807 0.1552 0.1477 0.0595

MLE (100th rep) 0.2017 0.1659 0.2213 0.2162 0.3003 0.5631 0.2050
CI from Ic 0.1141 0.0938 0.1260 0.1221 0.1698 0.3182 0.1159
CI from Ie 0.3149 0.2030 0.6490 0.2004 0.2605 0.4117 0.2043

MLE (300th rep) 0.2034 0.1858 0.2053 0.1889 0.3024 0.5602 0.2189
CI from Ic 0.1150 0.1050 0.1169 0.1067 0.1710 0.3166 0.1237
CI from Ie 0.3393 0.2594 0.5483 0.2035 0.2682 0.4102 0.1970

MLE (500th rep) 0.1705 0.2172 0.2835 0.1779 0.2749 0.4940 0.1904
CI from Ic 0.0967 0.1229 0.1612 0.1005 0.1554 0.2791 0.1076
CI from Ie 0.3418 0.2384 0.5341 0.2090 0.2552 0.3630 0.2022

S12
h1 h2 h3 h4 h5 h6 h7

True value 0.3364 0.2500 0.4225 0.2500 0.2704 0.6241 0.2809

CI Simulation 0.2804 0.2518 0.5149 0.1847 0.3099 0.4057 0.1696

MLE (100th rep) 0.2638 0.1923 0.2540 0.2707 0.3624 0.6548 0.2497
CI from Ic 0.1492 0.1088 0.1446 0.1529 0.2050 0.3701 0.1412
CI from Ie 0.5797 0.5611 1.4697 0.5379 0.8082 0.8377 0.4743

MLE (300th rep) 0.2454 0.2461 0.1749 0.1911 0.3246 0.5702 0.1811
CI from Ic 0.1389 0.1392 0.0999 0.1079 0.1835 0.3223 0.1024
CI from Ie 0.6556 0.6426 0.9923 0.3674 0.6735 0.6533 0.3540

MLE (500th rep) 0.1690 0.2690 0.3856 0.2798 0.2599 0.5223 0.1952
CI from Ic 0.0957 0.1522 0.2184 0.1582 0.1470 0.2954 0.1104
CI from Ie 0.5695 0.6760 1.0130 0.6466 0.5515 0.6493 0.4679

filter/smoother relies heavily on the data, matrices Ic(ĥk) and Ie(ĥk) would also be closely

related to the data in the current replicate, perhaps more so than the information matrices of

σ̂2, λ̂1 and λ̂2. As a result, the approximated CIs vary across the replicates. On the contrary,

the simulation CI is a summary of 500 data sets, which accommodates the variation of all

the replicates. Therefore, the large discrepancies are not unrealistic due to the variations

brought by the random noises in the simulated data sets.

Finally, turn to the question of whether the approximated CIs from the information matrices

can be used as approximations of the standard errors of the MLEs of the SS-FPCA model.

The answer based on the above results would be, ‘yes, but with caution’. In particular, when

the proportion of missing information (in terms of the latent variables) is large, the dis-

crepancy between the complete data information matrix and the observed data information
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matrix would also be large. Hence the reliability of the approximation using (5.6) becomes

questionable. In practice, if it is computationally feasible to obtain the bootstrap standard

errors or the simulated confidence intervals, then it should be considered as a better solution.

Otherwise, the asymptotic results may be used.

5.4 Application to the sparse Lake Victoria data

Application 1: LSWT The SS-FPCA model was applied to the sparse Lake Victoria

LSWT data. The same data were modelled using the mixed model FPCA in Chapter 3, with

the LSWT images assumed to be independent from each other. Now with the SS-FPCA

model, both the temporal and spatial patterns can be taken into account. As a reminder,

the data set is a subset of the Lake Victoria LSWT data, consisting of 202 monthly images,

each defined on a grid of 49 × 57. The grid is constructed by trimming off boundary pixels

and some extensions of the water body at the edge of the lake (see section 3.3 for a detailed

description). The data were centered using a monthly mean initially.

First of all, the basis dimension K and the K-L expansion order P were chosen using the

two stage method described in section 5.1.2. The selection of the basis used the MM-FPCA

approach and the appropriate basis according to the AIC and BIC values is of dimension

K = 7 × 7 (refer to Figure 3.12 in Chapter 3). In terms of the expansion order, both the

selection through fitting the SS-FPCA model and the one using the variance proportion of

δ% ≥ 95% suggested P = 4. A filtering threshold of χ% = 95% was used. That is, any

images with less than 5% data available would not be filtered and would only be smoothed

based on the information from their neighbouring images.

The procedure described in section 4.4.3 was used to initialize the model parameters. In

particular, the initial values of the state space component are β0 = 0 and H(0) = σ2
hI, where

σ2
h = 1

n

∑n
i=1 Var[Zt(xi, yi)]. The initial values of the FPCA component, Λ(0) and Θ(0) are

computed using the decomposition of the covariance matrix of the column stacked data. The

initial value of the residual variance σ2(0) was set to the estimated residual variance from the

initialization of the FPCA component, σ2(0) = 1∑
t nt

∑T
t=1 r̂

>
t r̂t.

The AECM algorithm converged after 8 iterations, under the convergence criterion of the

change of the estimated log-likelihood being ≤ 0.025%. The average computation time

for one AECM iteration was about 38 minutes. The estimated residual variance of the

model is σ̂2 = 0.0872. The four eigenvalues after ortho-normalization are λ̂1 = 6704.36.7,
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Figure 5.17: Time series plot of the spatial means of the element in the covariance matrix
of the dynamic component (or SS component) ΦBt|TΦ>.

λ̂2 = 1466.46, λ̂3 = 319.43 and λ̂4 = 166.51. A time series plot of the spatial means of

the variance of the dynamic component, which are computed as the average of the elements

in ΦBt|TΦ> at each time point t, is displayed in Figure 5.17. This helps to examine the

relative scales of the variance of Φβt. In this case, the variances at the beginning of the

observing period appear to be larger than the rest of the time. This can be explained by the

higher missing percentages in this period, which includes months with no observation. In

addition, the dynamic component Φβt appears to have greater influence in explaining the

total variation than the FPCA component ΦΘαt. This can be seen from the RSS using three

different residuals defined in (5.2), with RSS of the model residuals εm being 0.0811, RSS

of residuals after accounting for dynamic component εd being 0.1253 and that of residuals

after accounting the FPCA component εs being 0.2166.

Figure 5.18 shows the image of the eigenfunctions and the scores of the leading two principal

components. The first PC accounts for 77.44% of the variation captured by the FPCA

component; the second PC explains about 16.94% of the variation. The third and fourth

PC each explain less than 4% of the variation, and therefore are regarded as less important

in this case. Specifically, the first eigenfunction (top left) displays a spatial pattern with

positive loadings in the middle, northeast of the lake and negative loadings in the south,

northwest of the lake. The second eigenfunction (bottom left) shows a contrast between the

west and east half of the lake. As in the MM-FPCA, the times series of PC scores can be

viewed as the evolution of the spatial pattern. In this example, no distinctive temporal trend

is found in the time series of PC score (two panels on the right).

Then the reconstructions were computed using the fitted SS-FPCA model. Figure 5.19
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Figure 5.18: The plots of the eigenfunctions and the scores of the PC1 (top) and PC2
(bottom). The horizontal and vertical axes of the eigenimages represent longitude and

latitude respectively.
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Figure 5.19: Observations, dynamic component, FPCA component and data reconstruc-
tion using the SS-FPCA model for the July 1998 data (top) and the October 2007 data

(bottom). The horizontal and vertical axes are longitude and latitude respectively.
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presents, from left to right, the images of the observed data, the estimated dynamic compo-

nent, the estimated FPCA component and the data reconstruction, from July 1998 (upper

panels) and October 2007 (lower panels). Images in each row were plotted using the same

colour scheme, so that the comparison can be made easily. In general, data reconstructions

can be regarded as the joint contribution of the dynamic and the FPCA component, each

accounting for different variation patterns in the data. For instance, in the October 2007

model, the dynamic and the FPCA components both show the contract between the north-

east and the southwest of the lake. However, the combination of the two results in a smooth

image which reflects the spatial patterns in the original data.
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Figure 5.20: Maps of the RSS of each individual pixel from the MM-FPCA (left) and the
SS-FPCA (right). The horizontal and vertical axes are longitude and latitude respectively.

Finally, a comparison of the SS-FPCA to the MM-FPCA was carried out to see if there

is any actual improvement from incorporating the temporal dependence. The same 7 × 7

tensor spline basis was used in the MM-FPCA. The expansion order was set to P = 4 to be

consistent with the SS-FPCA model. The MM-FPCA has σ̂2 = 0.1211 and RSS = 0.1207

from image reconstruction, larger than the RSS of the SS-FPCA model.

In terms of data imputation, the SS-FPCA is able to catch more detail in the observed

data. This may be difficult to spot from the reconstructed images, but can be illustrated

by the RSS computed using residuals in individual pixels (or pixel RSS). The same measure

has been used in Chapter 3 for a comparison between the MM-FPCA reconstruction and

the ARC-Lake reconstruction. Figure 5.20 presents two plots of the pixel RSS, where the

left panel shows the MM-FPCA and right panel shows the SS-FPCA. The two images were

produced using the same colour scheme for the ease of comparison. The cyan end of the

palette corresponds to small RSS values and the blue end corresponds to high RSS values.

It can be seen that RSS in the left panel are slightly larger than those in the right panel,
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especially in the northwest corner where the missing percentages are higher, indicating an

improvement brought by incorporating the temporal dependence.

In terms of the computation time, applying the MM-FPCA took much less time than fitting

the SS-FPCA model, especially for lower expansion order cases. In this application, the

computation of the MM-FPCA took only 62.84 seconds. However, the MM-FPCA ignores

the potential temporal correlations among the images, which can be inappropriate in some

situations. Whereas the SS-FPCA model accounts for it. The advantages of accounting for

temporal dependence may not be seen straightforwardly in the above comparison, but the

potential of obtaining a more reliable estimation of the functional PCs and a better data

imputation is still attractive.

Application 2: Chlorophyll Analogous to the demonstration at the end of section 3.3,

an application of the SS-FPCA model to the Lake Victoria Chlorophyll data is presented.

The same subset taken from the 3 × 3 spatially aggregated Lake Victoria Chl data set was

investigated here. This subset is of dimension 72 × 72 × 112 and the missing percentage is

5.3%. The log transformation was applied to the data initially and they were then centered

by a monthly mean. The same 7 × 6 basis as in section 3.3 was used. The expansion order

was taken to be P = 8. The filtering threshold was set to χ% = 95%.

Under the convergence criterion of ε ≤ 0.01%, the SS-FPCA model converged after 4 itera-

tions, each taking about 20 minutes. Two dominant PCs were identified in this case, each

explaining 37.30% and 34.49% of the variation in the FPCA component. The eigenfunctions

of the two leading PCs show the contrast between northwest and southeast, northeast and

southwest as the first two eigenfunctions from the MM-FPCA. However, the detailed patterns

are different. The fitted model has RSS of 0.0376, smaller than the RSS from the MM-FPCA,

which is 0.0539. There are still problems with respect to the discontinuities in certain images,

but the reconstructions from the SS-FPCA model capture more details than the MM-FPCA,

even with a smaller expansion order. This can be regarded as a benefit from incorporating

the temporal dependence. An analysis on the three different types of model residuals shows

that the contributions from the dynamic component and the FPCA component to the total

variation are comparable. Neither is dominant in explaining the total variation. In general,

the SS-FPCA appears to provide a better fit to the data than the MM-FPCA. However, it

should be noted that the discontinuities in the data need to be handled with caution. Similar
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to the MM-FPCA, the SS-FPCA tend to smooth over the rough images, which could result

in a loss of information if the discontinuity is the interest of the analysis.

5.5 Remarks

The SS-FPCA model is designed to handle tasks such as dimension reduction, imputing

missing observations and modelling spatial/temporal patterns in the data. It provides a

solution to the three challenges presented at the beginning of the thesis with respect to

the high-dimensional, sparse remote-sensing data. It is possible to gauge the scales of the

spatial/temporal variations of the data through computing the variance of the dynamic and

the FPCA components. The estimated coefficients of the dynamic component, the eigen-

functions and PC scores may also help to identify the dominant spatial/temporal patterns,

provided they exist. All of these are of interest in terms of the analysis of remote-sensing

environmental data. In general, the SS-FPCA is a useful model.

The criticisms of this method include the relatively high computational cost and slow conver-

gence of the AECM algorithm in some situations. In particular, the computation time of the

SS-FPCA model can be significantly longer than the MM-FPCA; whereas the convergence of

the algorithm can be slow if the initial values are selected inappropriately. A detailed timer

shows that the majority of the computation time is consumed by the Kalman filter, where

high-dimensional matrix inversions are sometimes involved. Another problem is the identi-

fication of the dynamic and the FPCA components. The simulation study in section 5.2.1

showed that SS-FPCA model fitted using the 2-cycle AECM algorithm, while capturing the

main patterns in the dynamic and the FPCA components, appeared to under/over-estimate

the variances of the model components. This problem is associated with the spatial confound-

ing, which is common to many spatial and spatio-temporal models and has been investigated

in literature for various types of analysis (Hodges & Reich, 2010, Hughes & Haran, 2013,

Paciorek, 2010). The situation for the SS-FPCA model is prone to be non-trivial. Detailed

investigations are required to help improve the identifiability of the model.

The SS-FPCA model presented in Chapter 4 and 5 is in its basic form. Extensions can be

made by modifying the specifications of various model components, e.g. the design of system

dynamic and the dependence of random components. In model (4.27), the system dynamic is

supposed to follow a local level model. Alternatively, vector AR models, PDE and IDE can

be used if there are evidences supporting such a specification (Cressie & Wikle, 2011). The
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covariance matrix H of the state transition equation may also be parameterized to reflect

a more structured temporal dependence. Parameterizations summarised in section 4.3.1

provide some handy options. As for the dependence of the random components, it would be

interesting to investigate the influence of the independence assumption of βt and αt given

data Z1:T . The challenge lies in the derivation and evaluation of the conditional distribution

of αt, βt|Z1:T , if the independence assumption is dropped. The fixed rank filtering method

by Cressie et al. (2010) offers some intuitions to this problem. It is generally believed that

accounting for this dependence would improve the model estimation and the subsequent

statistical inferences.



Chapter 6

Conclusion

In this thesis, statistical methodologies for the analysis of remote-sensing image time series

were investigated and developed, including methods for dimension reduction, missing data

imputation and spatio-temporal modelling. The analyses in this research were motivated by

the practical problems presented by the features of high-resolution, sparse remote-sensing

image time series.

The research began with the exploratory analysis of the remote-sensing image time series of

the Lake Victoria LSWT data, where drawbacks of investigations using conventional statis-

tical methods were identified. To seek a more efficient way of analysing the data, statistical

methods in the field of smoothing and functional data analysis were carefully studied. Con-

sidering the relatively high missing percentages of the remote-sensing images, the mixed

model FPCA (MM-FPCA) was adopted to tackle this problem. However, the MM-FPCA

did not account for the temporal dependence between the spatial images, which may be

problematic in some situations. Therefore, methods for incorporating temporal dependence

were explored. A new spatio-temporal model, SS-FPCA, consisting of a state space compo-

nent (or dynamic component) and a FPCA component, was developed based on the dynamic

spatio-temporal modelling framework. An estimation method based on the AECM algorithm

was proposed and implemented using code developed in Ri. A detailed investigation of the

new model, including a simulation study on model performance, were carried out. The new

model was shown to have the potential of identifying general spatial/temporal patterns in

the image time series, improving data imputation while handling the task of dimension re-

duction. The MM-FPCA and SS-FPCA were applied to the sparse LSWT and Chlorophyll

iThe R scripts for implementing the MM-SPCA, the Kalman filter with threshold and the SS-FPCA are
all available on request.
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data of Lake Victoria obtained from the AATSR and MERIS sensors on the European Space

Agency’s Envisat satellite.

6.1 General comments

6.1.1 On the MM-FPCA

The MM-FPCA was originally developed by James et al. (2000) for the analysis of longitu-

dinal data. Zhou & Pan (2014) extended the methods to spatial data and showed that it is

a powerful tool to extract principal components in irregularly sampled or sparse data sets.

This thesis applied this method to the series of high resolution, sparse remote-sensing images

of LSWT and Chl of Lake Victoria. The motivation was to conducting dimension reduction

of the data set, while accounting for the missing observations. The implementation of the

MM-FPCA using the EM algorithm was carried out with the R code developed based on

package fpca (Peng & Paul, 2013). The estimation of the model using the EM algorithm

has already been shown to be robust in earlier literature (James et al., 2000, Rice & Wu,

2001), but the application of the model on sparse remote-sensing images has so far received

little attention. Therefore, a simulation study was carried out to examine the influence of

missing percentages and spatial missing patterns on the performance of the MM-FPCA. The

results suggested that model estimates were robust and the RSS of the data reconstruction

was relatively small, provided the missing percentage was moderate. However, statistical

inference with respect to certain regions with substantive missingness throughout time needs

to be interpreted with caution.

Implications The MM-FPCA was considered as the baseline model for the analysis of

remote-sensing image time series. Its effectiveness in reducing data dimension and imputing

missing observations has been demonstrated. First of all, FPCA provides two levels of

dimension reduction, one through the functional data representation and the other through

the truncation of functional PCs. The mixed effect model specification accounts for the

missing observations by making use of the entire data set in the estimation of the overall

mean function and the random effect of each individual subject. In the application to the

Lake Victoria LSWT data in section 3.3, four PCs using a basis of degrees of freedom

49 were retained to reconstruct the original data set of size over 500,000, to a precision

of RSS = 0.1207. The computation of the model took about one minute, which was far
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more efficient than the thin-plate spline regression model with spatial covariance structure

investigated in section 2.2. The results from the application to the Chl data may be less

satisfactory due to the lack of smoothness of the data, but the MM-FPCA captured the

general spatial patterns in the Chl images. Therefore, it is sufficient to say that the MM-

FPCA offers an appealing solution to two challenges addressed at the beginning of the thesis,

i.e. dimension reduction and missing data imputation.

The MM-FPCA also has the potential of identifying important spatial patterns in the data.

These patterns are often reflected by the eigenfunctions of the leading PCs. This is a different

way of describing the spatial patterns as compared to the covariogram models. To some

extent, the FPCA offers more flexibility than the parameter models used in covariogram

fitting, such as Gussian, exponential and Matérn models. The problem with FPCA, however,

is that the interpretation of the PCs may not always be easy and the existence of leading

PCs is not guaranteed. In the situation where the dominant spatial variation patterns can

be extracted, the mathematical realizations of these patterns (i.e. PC scores) could be used

for further analysis. In terms of remote-sensing image time series, the functional PC scores

would reflect the strength of the patterns in different images. The changes in the scores can

be interpreted as the evolution of the spatial pattern over time. It is possible to apply time

series models to the scores to detect temporal trend, change points, etc.

The main drawback of the MM-FPCA is that it assumes independence for all individual

subjects (images in this case). This may not be a problem for some remote-sensing image

data after trend and seasonality are removed appropriately. However, neglecting temporal

correlations in spatio-temporal data is generally not recommended, because it may lead to

over or underestimated standard errors, resulting in inefficient statistical inference. It is

essential to account for the temporal dependence where appropriate. Another issue that has

not been tackled in this thesis is the shapes of the images, i.e. the irregular lake boundaries.

The strategy in this thesis was to trim the grid to get a rectangle which contains as few

redundant land pixels as possible and then apply a tensor spline basis. This was justified by

the substantially larger retrieval errors towards the lake boundaries and the computational

complexity of a shape adapted basis. The ideal solution would be to take care of the shapes

of the images and the boundary uncertainties simultaneously. However, for the problem in

this thesis, it might not be worthwhile modelling the shapes unless the retrieval errors in

boundary pixels can be dealt with first.
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6.1.2 On the SS-FPCA

The SS-FPCA model was proposed to account for the temporal dependence between indi-

vidual images, which has not been considered in the MM-FPCA. The thesis approached this

problem by developing a spatio-temporal model using FPCA based on the spatio-temporal

random effect (STRE) model framework. In particular, the fixed mean function in the MM-

FPCA was updated to a time-varying mean function (i.e. from Φβ to Φβt), with a dynamic

structure specified to the coefficient vector βt to describe the spatio-temporal dynamic of

the process. The proposed model falls into the category of dynamic spatio-temporal models

(DSTM) as described in Cressie & Wikle (2011), which has the advantage of covering a wide

range of spatio-temporal structures through flexible dynamic and hierarchical design.

The development of the SS-FPCA model was motivated by the STRE model presented in

Cressie et al. (2010), from which valuable information with respect to the specification of

the SS-FPCA model was acquired. The STRE model consists of a dynamic component ac-

counting for the spatio-temporal dynamic of the data and a non-dynamic random component

accounting for the remaining spatial variations. The proposed SS-FPCA model uses the same

dynamic specification as in the STRE model, with a first-order random walk categorizing the

evolution of the time varying coefficient, βt = βt−1 +ut. Whereas the unstructured random

effect in the STRE was replaced by a truncated K-L expansion,
∑P

p=1 Φθpαpt, inheriting the

same assumptions as in the MM-FPCA. This modification allows the non-dynamic random

component to reflect more informative spatial patterns (in the form of the FPCA) than the

somewhat vague ‘remaining spatial variation’.

The estimation method of the SS-FPCA was motivated by that of the STRE model in Katz-

fuss & Cressie (2011), where the Kalman filter/smoother was used to estimate the system

dynamic component and the EM algorithm was proposed to estimate the model parameters.

However, due to the complexity of the SS-FPCA model, the standard EM algorithm was

extended to the more powerful AECM algorithm. The AECM algorithm exploits several dif-

ferent data-augmentation schemes in the iterations to simplify the computation of the MLEs

in a complex structured model. In this thesis, a 2-cycle AECM algorithm was developed such

that analytical solutions are available for the MLEs of all parameters in the SS-FPCA model.

The algorithm inherits the favourable properties of the classic Kalman filter/smoother and

the robust MM-FPCA estimation method. The simulation study conducted on 1-dimensional

data in section 5.2.1 suggested that the estimated results from the SS-FPCA model using the
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2-cycle AECM algorithm was robust under different simulation scenarios, e.g. noise levels,

sparsity and initial values.

The simulation study also showed that the SS-FPCA model was able to capture the dynamic

structures and the FPCA components with a desirable precision. However, the estimation of

the variances of different model components appeared to be biased. This phenomenon could

be interpreted as the confounding between various model components, an issue common to

many spatial and spatio-temporal models. A summary of explanations to this problem can

be found in Hodges & Reich (2010). Further investigations are required to obtain a better

understanding of the problem with respect to the SS-FPCA, so that the estimation precision

can be improved. This might not be easy, because ‘truth’ is often unknown in reality and it

is somehow impossible to judge whether the variances are under or over estimated.

Implications With the time-varying mean function describing the dynamic of the data,

the SS-FPCA model was able to account for the spatio-temporal dependence in the remote-

sensing image time series. It provided a solution to the potential limitation of the MM-FPCA,

where individual functions were assumed to be independent. After removing the influence

of the temporal structure through the dynamic component, the remainder of the variation

explained by the FPCA component could be regarded as temporally independent. In other

words, the fundamental assumption of the FPCA, or in fact any PCA would be fulfilled.

Different types of variation patterns can be identified from the SS-FPCA model. For instance,

the spatio-temporal pattern may be interpreted from the system transition model, βt =

βt−1 + ut, and its residual covariance matrix H; pure spatial variation patterns may be

displayed by the eigenfunctions of the functional PCs, with their evolution reflected by the

PC scores. In view of these, the SS-FPCA model can be regarded as a suitable approach to

the spatio-temporal modelling problem, which is of great interest in this research.

It is also believed that data imputation would be improved, as the SS-FPCA combines

information from both space and time to enhance model fitting. The application of the

SS-FPCA model to the Lake Victoria LSWT data suggested that, using the same basis

dimension and expansion order, the RSS from the SS-FPCA model was smaller than its

counterpart from the MM-FPCA (0.0811 v.s. 0.1207). Similar improvement was found in

the application to the Lake Victoria Chl data. This means, a better data reconstruction can

be achieved without sacrificing the degrees of freedom of the model. The pixel-wise RSS

showed evidence of improvement in individual pixels, especially those with higher missing
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percentages. This is no doubt a desirable feature concerning the objective of missing data

imputation in this research.

One critical aspect of the SS-FPCA model is its relatively long computation time. The

application to the Lake Victoria LSWT data took more than 5 hours, compared to only 1

minute using the MM-FPCA. It might be challenged whether it is worthwhile spending so

much effort when the improvement in the results is not necessarily substantive. The answer

based on the investigation in this thesis would be, ‘Yes, in situations where there is evidence of

temporal correlation’. Even if the temporal dependence is not as strong, there might still be

gains in terms of the accuracy of data reconstruction. For example, if missing data imputation

is crucial to the problem under study, then the effort spent in estimating the model might

pay off. In addition, a detailed timer indicated that the majority of the computation time

of the 2-cycle AECM algorithm was consumed by the Kalman filter, where high-dimensional

matrix inversions might still be required. Therefore, if the code for the Kalman filter can be

made more efficient, the computation time might be significantly reduced.

Another issue is related to the model inference. The parameters estimated using the EM-

type algorithm do not come with standard errors or confidence intervals. So it is difficult

to assess the uncertainty associated with the estimates. There are methods to obtain the

confidence intervals, such as bootstrap and simulation, but the computation burden can be

a problem for the SS-FPCA applied to a massive data set. This thesis proposed the use

of asymptotic results, such as the inverse of the observed Fisher information matrix I(Ψ),

which can be approximated using complete data score functions or the rate of convergence

matrix. However, the precision of both approximations can be problematic. Based on the

investigation, this thesis suggested that the asymptotic results to be used when bootstrap or

simulation are considered as (computationally) infeasible.

6.2 Future work

The MM-FPCA and the SS-FPCA have been shown to be effective in the analysis of the

sparse remote-sensing image time series in this thesis. However, they can still be improved

in many ways.

An important future work with respect to the SS-FPCA model is to improve the identifiability

of the model components, Φβt, ΦΘαt and εt. The simulation study in Chapter 5 showed that

the model could under or overestimate the variances of these components. This problem has
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been attributed to the spatial confounding, but detailed investigations are yet to be carried

out. It would be interesting to explore the causes of the problem and to find some potential

solutions, if possible.

In the meantime, various extensions can be made to the SS-FPCA model, by exploiting its

flexible design, to describe different spatio-temporal structures.

(a) A straightforward extension of the SS-FPCA is to specify a more advanced model for

the system dynamic, βt = Mβt−1 + ut. This thesis used M = I for a random walk

process, but other designs of propagator matrix M can be used, such as the vector

auto-regressive model and PDE/IDE based on physical/chemical laws. Reviews of dif-

ferent designs can be found in Cressie & Wikle (2011), Wikle & Hooten (2010). It is

recommended that scientific based designs to be used, wherever possible, to inform the

type of system dynamic. One thing to bear in mind is the identifiability of the param-

eters in matrix M and the computational cost. As the algorithm for estimating the

SS-FPCA model is relatively complicated, the additional computation burden brought

by a parameterized M needs to be handled carefully.

(b) Closely related to the above extension is the specification of the covariance matrix

of the residuals in the system transition equation, H = Cov[ut]. No restraint was

imposed on matrix H in this thesis, apart from the essential symmetric, non-negative

definite requirement. However, it would be of interest to parameterize this matrix,

so that specific spatio-temporal dynamic structure might be captured. Xu & Wikle

(2007) presented some examples on parameterizing H, such as the diagonal and the

conditional auto-regressive settings. The structure imposed on H matrix may improve

its estimation and inference.

(c) Another extension with respect to the specification of the SS-FPCA model is to use

different bases for different model components. For example, Φβ for the state space

component and Φξ for the FPCA component. This would be beneficial to the modelling

of the variations in different spatial scales (Berliner et al., 2000) or variations of very

different natures, e.g. smooth trend and waves. It might also improve the identifiability

of different model components and generate more meaningful results. The difficulty

of this extension lies in the selection of the basis and the computation of the model,

because using two bases might invalidate the simplification used in the computation of

the current SS-FPCA.
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(d) In this thesis, it was assumed that the components αt and βt in the SS-FPCA are

independent and conditionally independent on data Z1:T . This assumption was meant

for computational efficiency initially and was verified in section 4.3.2. In general, it

is better to relax the conditional independence assumption due to the iterative nature

of the estimation method. Unfortunately, this is non-trivial, because the derivation

of the joint posterior distribution αt,βt|Z1:T is prone to be difficult. In order to get

the conditional expectation of E[αtβt|Z1:T ], sampling techniques such as importance

sampling, Metropolis-Hastings may be required. However, this could be complicated

and the computation time might increase immensely. This extension would involve a

great amount of effort, but the results could be influential.

(e) As discussed in section 6.1.1, it is sometimes helpful to use a basis that accounts for

the shapes of the images. The applications of the MM-FPCA and SS-FPCA model

in this thesis both used tensor spline basis on a rectangular grid. Alternatively, spline

bases defined on triangulation as described in Ettinger et al. (2012), Zhou & Pan (2014)

could be used to model the shapes of the images. This could be further extended to

a manifold as in Lindgren et al. (2011) for modelling the global temperature surface.

The soap film penalty proposed in Wood et al. (2008) could be another option. These

methods should be able to minimize the influence of pixels that are irrelevant to the

images in a regular grid. In terms of the remote-sensing lake measurements, it is also

important to account for the higher retrieval uncertainties towards the lake boundaries.

Otherwise, the efforts spent in modelling the shapes might end up having limited gains

because the data close to the boundaries are far less reliable.

(f) Both the MM-FPCA and the SS-FPCA are designed for analysing smooth data. Their

applications to data that involves discontinuities may be problematic. This was illus-

trated in the application of the two methods on the Lake Victoria Chl data, where

the general patterns in the images were captured, but the edges of the discontinuity

were blurred. This is not a desirable feature of the discontinuity is of main concern,

e.g. the algae bloom, the boundaries of the pollution in the lakes. The MM-FPCA

and the SS-FPCA may not be suitable in such situations. However, instead of aban-

doning the two methods completely, it may be interesting to investigate the potential

modifications so that the discontinuities could be taken care of. Pre-processing of data

that are not smooth by nature could be one approach. Alternatively, seeking a type

of localized basis functions that automatically handles the discontinuities in the data

could be another solution.
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Finally, there is the issue of speeding up computation and monitoring convergence. Two

directions to be considered in order to speed up the computation are, enhancing the R code

and improving the design of the algorithm. As mentioned above, the majority of the com-

putation time is taken up by the Kalman filter. Hence, it would be attractive if the code for

the filter (for partially missing data) can be accelerated. As for monitoring convergence, one

approach is to examine the structure of the rate of convergence matrix J (Ψ). McLachlan

& Krishnan (1997) presents a summary of how the matrix and its eigenvalues can be inter-

preted to inform the convergence of the algorithm to a local maximum, saddle point, etc.

Although obtaining J (Ψ) of the SS-FPCA model using numerical differentiation is compu-

tationally demanding, putting this idea into practice would certainly benefit the assessment

of the model performance.
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Appendix for Chapter 3

A.1 Hilbert-Schmidt operator, Mercer’s theorem & Karhunen-

Loève expansion

Hilbert-Schmidt operator. Let D ⊂ Rn be a bounded domain. A function k : D×D → R

is a Hilbert-Schmidt kernel if

∫
D

∫
D
|k(x, y)|2dxdy <∞ .

That is, k ∈ L2(D × D), where L2(�) represents the L2 norm. Define the integral operator,

K : v → Kv, for v ∈ L2(D), as

[Kv](x) =

∫
D
k(x, y)v(y)dy . (A.1)

The mapping K is then called a Hilbert-Schmidt operator. It can be shown that K : L2(D)→

L2(D). The eigenproblem of the functional PCA is based on this operator, with the covari-

ance function, if exist (i.e. finite), being the Hilbert-Schmidt kernel.

Mercer’s theorem. Let k : D × D → R be a continuous function on D = [a, b] ⊂ R.

Suppose further that the corresponding Hilbert-Schmidt operator K : L2(D)→ L2(D) of k is

positive. If {λi} and {ei} are the eigenvalues and the corresponding eigenvectors of K, then

for all s, t ∈ D,

k(s, t) =

∞∑
i=1

λiei(s)ei(t) , (A.2)

where convergence is absolute and uniform on D ×D.
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Karhunen-Loève expansion. Define the covariance function of a zero mean continuous

stochastic process {Xt}t∈D as V (s, t) = E[XsXt] where s, t ∈ D. Let K be defined as in

equation (A.1) with k(s, t) = V (s, t). Then using Mercer’s theorem (A.2), it can be shown

that K has a complete set of real eigenvalues {λi} and eigenvfunctions {ei} in L2(D) such

that Kei = λiei, and the stochastic process {Xt} can be expanded as follows

X(t) =
∞∑
i=1

fiei(t), fi =

∫
D
X(t)ei(t)dt . (A.3)

The K-L expansion converges in mean square to the original process as i→∞ (Alexanderian,

2013). The expansion used in the mixed model for functional PCA is a truncated version

of expansion (A.3) where the summation is operated on a finite set of eigenfunctions. The

dimensions of the eigenfunction space is determined by the dimensions of the basis functions

used in creating the functional data.

A.2 Additional information on the simulation study

The simulation study in section 3.2.3 considered 20 scenarios with different missing percent-

ages and spatial missing patterns. Each scenario was repeated 200 times. The reason for

this study to choose 200 replicates is the computational cost. The simulation study was run

on the ‘Dual 8 core HT Intel(R) Xeon(R) CPU E5-2640 v3’ server. The computation time

for each single replicates ranged from 19s to 60s. The total running time was 34.53 hours i.

A re-sampling procedure is used to examine if the estimations from 200 replicates are robust

(Law & Kelton, 1984). First, 50 replicates are randomly selected from 200 replicates. Then

the same measures as in the simulation study (σ2, MISE, etc) are computed using the 50

re-sampled repetitions. Repeat this for 10 times and compare the results to those estimated

from 200 replicates. If 200 replicates are enough to give a robust estimation of a quantity

θ using estimator θ̂, then the sample mean and sample variance should provide a good

approximation to E[θ̂] and Var[θ̂]. It is also presumed that the estimation from the re-

sampled 50 replicates should have sample variance being approximately 1
50Var[θ̂]. Therefore,

the following statistics from the 200 replicates are computed

E[θ̂] ≈ ¯̂
θ =

1

200

200∑
r=1

θ̂r

iThe computation can be made much faster now as the R code has been improved two times since then.
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Var[θ̂] ≈ 1

200

200∑
r=1

{
θ̂r −E[θ̂]

}2
≈ 1

200

200∑
r=1

[
θ̂r − ¯̂

θ
]2

A 95% confidence interval of the estimator using the 50 re-sampled replicates, θ̂50, can be

constructed as

[
E[θ̂]± 1.96×

√
1

50
Var[θ̂]

]
≈

 ¯̂
θ ± 1.96×

√√√√ 1

50
× 1

200

200∑
i=1

[
θ̂r − ¯̂

θ
]2


Check how many θ̂50 out of M samples lie outside this interval. If the majority of θ̂50 falls in

the interval, then it can be concluded that the estimations of E[θ̂] and Var[θ̂] based on 200

replicates are reliable. In other words, 200 replicates are sufficient. The results show that all

the estimates of σ̂2
50 from the re-sampled sets of 50 replicates fall within the 95% confidence

intervals. The majority of the M̂ISE50 also fall within the 95% confidence intervals. Table

A.1 shows the 95% confidence intervals of M̂ISE50, together with the sample means from

four re-sampled sets of 50 replicates. Red colour indicates an excess of the 95% confidence

interval. Therefore, it can be concluded that 200 replicates are sufficient to produce robust

results to be used in inference.

As mentioned in section 3.2.3, the estimations of the coefficient vectors of the first eigen-

function, θ̂1, throughout the simulation scenarios are robust. This can be seen from the five

panels in Figure A.1, which display the estimated θ̂1 from 200 replicates under five different

missing specifications, all paired with the spatial variation scenario I. The point-wise 95%

confidence intervals were also produced and plotted as the dashed curves in each panel. The

general patterns of the values of elements in vector θ̂1 do not appear to vary substantively

across the scenarios. The last panel, corresponding to 50% missing with spatial clusters,

appear to be slightly different from the first four panel, but the difference is not distinctive.

The same applies to the rest three spatial variation scenarios. Related plots are omitted here

to avoid redundancy.
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Table A.1: The 95% confidence intervals of M̂ISE50 from the re-sampled replicates of
sample size 50, together with the sample means from four of the re-sampled data sets. The

numbers in red indicate those exceeding the confidence intervals.

spatial I spatial II spatial III spatial IV
d = 1.5, σ2

ng = 0.01 d = 1.5, σ2
ng = 0.1 d = 1, σ2

ng = 0.01 d = 1, σ2
ng = 0.1

none (0.2557, 0.2600) (1.1494, 1.1550) (0.3729, 0.3830) (1.2610, 1.2721)
0.2575 1.1537 0.3790 1.2635
0.2576 1.1531 0.3727 1.2664
0.2585 1.1514 0.3780 1.2633
0.2586 1.1530 0.3782 1.2664

no pattern (0.2562, 0.2604) (1.1525, 1.1581) (0.3737, 0.3838) (1.2683, 1.2793)
30% 0.2580 1.1567 0.3794 1.2722

0.2580 1.1562 0.3731 1.2745
0.2590 1.1545 0.3783 1.2678
0.2591 1.1561 0.3794 1.2760

no pattern (0.2579, 0.2619) (1.1597, 1.1655) (0.3798, 0.3901) (1.2879, 1.2986)
50% 0.2599 1.1638 0.3882 1.2911

0.2601 1.1633 0.3818 1.2902
0.2610 1.1607 0.3864 1.2899
0.2602 1.1631 0.3859 1.2944

pattern (0.2580, 0.2633) (1.1590, 1.1664) (0.4016, 0.4117) (1.3064, 1.3154)
30% 0.2617 1.1627 0.4068 1.3085

0.2609 1.1659 0.4056 1.3087
0.2605 1.1612 0.4090 1.3089
0.2604 1.1622 0.4081 1.3113

pattern (0.3002, 0.3084) (1.2331, 1.2449) (0.4850, 0.4984) (1.4226, 1.4366)
50% 0.3079 1.2386 0.4901 1.4326

0.3019 1.2452 0.4885 1.4250
0.3059 1.2318 0.4948 1.4306
0.3063 1.2386 0.4908 1.4314
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Figure A.1: The estimated coefficient vector of the first eigenfunction θ̂1 from 200 repli-
cates under spatial variation scenario I. From top left to bottom middle are no missing,
missing 30%, 50% without pattern, missing 30%, 50% with pattern respectively. The dashed

curves indicate the point-wise 95% confidence intervals.
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Appendix for Chapter 4

B.1 The target functions of the 2-cycle AECM algorithm

This section provides some details on the E-step functions of the 2-cycle AECM algorithm

developed in section 4.4.2. The computational form of target function Q[1](Ψ[1]; Ψ(it)) is

Q[1]
(

Ψ[1] ; Ψ(it−1)
)

(B.1)

= E
[
−2L

(
Ψ[1];Z [1], Ψ̃[1]

)∣∣∣Z1:T ,Ψ
(it−1)

]
= E

[
−2 log f

(
Z1:T ,β0:T ; H,Θ(it−1),Λ(it−1), σ2(it−1)

)∣∣∣Z1:T ,Ψ
(it−1)

]
=

T∑
t=1

[
log
(∣∣∣G(it)

t

∣∣∣)+ tr

{(
G

(it)
t

)−1 (
ΦtBt|TΦ>t +

(
Zt −Φtβt|T

) (
Zt −Φtβt|T

)>)}]
+ log(|B0|) + tr

{
B−1

0

(
B0|T +

(
β0|T − β

) (
β0|T − β

)>)}
+ T log(|H|) + tr

{
H−1 (V11 − 2V10 + V00)

}
+ constant

where

G
(it)
t = ΦtΘ

(it−1)Λ(it−1)Θ(it−1)>Φ>t + σ2(it−1)I

V11 =

T∑
t=1

(
Bt|T + βt|Tβ

>
t|T

)
V00 =

T∑
t=1

(
Bt−1|T + βt−1|Tβ

>
t−1|T

)
V10 =

T∑
t=1

(
Bt,t−1|T + βt|Tβ

>
t−1|T

)
.
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The smoothed states {βt|T }Tt=1 are obtained by Kalman filter/smoother with H(it−1) and

G
(it)
t . This is essentially the same as the target function of the EM algorithm of the reduced

rank state space model in Cressie & Wikle (2011), with propagator matrix M = I.

The computational form of target function Q[2](Ψ[2]; Ψ(it,it−1)) is

Q[2]
(

Ψ[2] ; Ψ(it,it−1)
)

(B.2)

= E
[
−2L

(
Ψ[2];Z [2], Ψ̃[2]

)∣∣∣Z1:T ,Ψ
(it,it−1)

]
= E

[
−2 log f

(
Z1:T ,β0:T ,α1:T ; Θ,Λ, σ2,H(it)

)∣∣∣Z1:T ,Ψ
(it,it−1)

]
=

T∑
t=1

[
nt log

(
σ2
)

+
1

σ2
tr
{

ΦtBt|TΦ>t +
(
Zt −Φtβt|T

) (
Zt −Φtβt|T

)>}
+

1

σ2
tr
{

ΦtΘα̂tα>t Θ>Φ>t

}
− 2

σ2
tr
{

ΦtΘα̂tZ
>
t −ΦtΘα̂tβ>t Φ>t

}]
+ T log

(∣∣∣H(it)
∣∣∣)+ tr

{(
H(it)

)−1
(V11 − 2V10 + V00)

}
+ log(|B0|) + tr

{
B−1

0

(
B0|T +

(
β0|T − β

) (
β0|T − β

)>)}
+ T log(|Λ|) +

T∑
t=1

tr
{

Λ−1α̂tα>t

}
+ constant .

The smoothed states {βt|T }Tt=1 are obtained with H(it) and G
(it)
t , which are obtained from

the previous cycle. The estimation of α̂t and α̂tα>t are based on the conditional distribution

of αt|Z1:T ,Ψ
(it,it−1), with the influence of βt accounted for. α̂tβ>t is estimated under the

independent assumption of αt and βt.

Specifically, the conditional distribution of αt|Z1:T under the current parameter estimates

Ψ(it,it−1) can be derived in a similar way as that of the MM-FPCA model. However, βt in

the SS-FPCA is no longer the fixed effect coefficient vector, but the random coefficient of

the state space component. Hence, its influence needs to be accounted for appropriately.

(a) The covariance matrix of Zt is now ΦCov[βt]Φ
>
t + ΦtΘΛΘ>Φ>t + σ2I.

(b) As βt|T is obtained knowing only the variance, not the value, of αt, giving information

of Z1:T ,Ψ
(it,it−1) is sufficient to determine the values of βt|T and Bt|T . Meanwhile, αt

is assumed to be independent from βt and is only related to Zt, not the observations at

the rest of the time points. In consequence, the following dependence can be deduced,

[
αt

∣∣∣Z1:T ,Ψ
(it,it−1)

]
=
[
αt

∣∣∣Z1:T ,βt|T ,Bt|T ,Ψ
(it,it−1)

]
=
[
αt

∣∣∣Zt,βt|T ,Bt|T ,Ψ
(it,it−1)

]
.
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(c) It is relatively easy to figure out the conditional distribution of αt|Zt, given the mul-

tivariate normal distribution of (αt,Zt)
>, which is

N

 0

ΦtE[βt]

 ,

 Λ ΛΘ>Φ>t

ΦtΘΛ ΦtCov[βt]Φ
>
t + ΦtΘΛΘ>Φ>t + σ2I

 ,

but the task remains to find E[βt] and Cov[βt]. This can be done using the property

of double expectation in basic probability, resulting in E[βt] = E[βt|T ] and Cov[βt] =

E[Bt|T ]. That is, the smoothed state βt|T and its covariance matrix Bt|T could be used

as the estimates of E[βt] and Cov[βt].

Putting all the information in (a), (b) and (c) together gives the following distributional

results,

E
[
αt|Z1:T ,Ψ

(it,it−1)
]

=
(
ΦtΘ

(it−1)Λ(it−1)
)> (

Σ(it)
)−1 (

Zt − Φβt|T
)
,

Cov
[
αt|Z1:T ,Ψ

(it,it−1)
]

= Λ(it−1) −
(
ΦtΘ

(it−1)Λ(it−1)
)> (

Σ(it)
)−1

ΦtΘ
(it−1)Λ(it−1) ,

where Σ(it) = ΦtBt|TΦ>t + ΦtΘ
(it−1)Λ(it−1)Θ(it−1)>Φ>t + σ2(it−1)I. Using the above condi-

tional expectation and variance, both α̂t and α̂tα>t can be obtained.

B.2 The Kalman filter/smoother in the 2-cycle AECM algo-

rithm

This section provides some information on the matrix operations used for simplifying the

computation of the missing observation Kalman filter. First recall that the Kalman gain in

a standard Kalman filtering process is defined as

Kt = Bt|t−1Φ
>
(
ΦBt|t−1Φ

> +G
)−1

. (B.3)

The part that need to be simplified in actual computation is the inverse
(
ΦBt|t−1Φ

> +G
)−1

.

This inverse could be of very high dimension even in the reduced rank Kalman filtering/s-

moothing algorithm. One important matrix identity used in the computation is the Wood-

bury identity

(
A+CDC>

)−1
= A−1 −A−1C

(
D−1 +C>A−1C

)−1
C>A−1 , (B.4)
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which is very attractive if the A is a diagonal matrix, or if the inverse of A and D−1 +

C>A−1C can be obtained in an easy way.

In cycle 1 of the AECM algorithm, G = ΦΘΛΘ>Φ>+σ2I in the Kalman gain (B.3), giving

(
ΦBt|t−1Φ

> +G
)−1

=
(
ΦBt|t−1Φ

> + ΦΘΛΘ>Φ> + σ2I
)−1

(B.5)

=
{

Φ
(
Bt|t−1 + ΘΛΘ>

)
Φ> + σ2I

}−1

=
1

σ2

{
Φ

[
1

σ2

(
Bt|t−1 + ΘΛΘ>

)]
Φ> + I

}−1

.

Applying the matrix identity (B.4) directly to the above and using the fact that Φ>Φ = I

when the observations at time t are complete gives

1

σ2

{
Φ

[
1

σ2

(
Bt|t−1 + ΘΛΘ>

)]
Φ> + I

}−1

(B.6)

=
1

σ2

{
I −Φ

[
σ2
(
Bt|t−1 + ΘΛΘ>

)−1
+ Φ>Φ

]−1

Φ>

}

=
1

σ2

{
I −Φ

[
σ2
(
Bt|t−1 + ΘΛΘ>

)−1
+ I

]−1

Φ>

}
.

This is very simple to compute and involves only low dimension (equals to the degrees of

freedom of the basis function K) matrix inversion.

The situation with respect to the partially missing data case is more complicated. Only

limited simplification can be achieved, which is determined by the proportion of missing ob-

servations at each time point. However, it is still better than computing the high-dimensional

matrix inverse directly. Define Φyes as the matrix consists of the rows in Φ corresponding

to the observed locations, Φno as the matrix consists of the rows in Φ corresponding to the

unobserved locations. Define Φobs = (Φ>yes 0)> which has the same dimension as matrix Φ.

Also define

Gobs =

 Gyes 0

0 Gno

 ,

where Gyes and Gno are matrices consist of rows and columns in matrix G, corresponding to

the observed and unobserved locations respectively. Then the Kalman gain for a time point

t with missing observations can be written as (Shumway & Stoffer, 2006)

Kt = Bt|t−1Φ
>
obs

(
ΦobsBt|t−1Φ

>
obs +Gobs

)−1
. (B.7)
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Since

ΦobsBt|t−1Φ
>
obs =

 Φyes

0

Bt|t−1

(
Φ>yes 0

)
and

Gobs =

 ΦyesΘΛΘ>Φ>yes + σ2I 0

0 ΦnoΘΛΘ>Φ>no + σ2I


the matrix to be inverted in the Kalman gain (B.7) becomes

ΦobsBt|t−1Φ
>
obs +Gobs (B.8)

=

 Φyes

0

(Bt|t−1 + ΘΛΘ>
)(

Φ>yes 0
)

+

 σ2I 0

0 ΦnoΘΛΘ>Φ>no + σ2I


= Φobs

(
Bt|t−1 + ΘΛΘ>

)
Φ>obs +

 σ2I 0

0 ΦnoΘΛΘ>Φ>no + σ2I

 .

Applying the Woodbury identity (B.4) again, the inverse of Gobs can be resolved using the

inverse of ΦnoΘΛΘ>Φ>no + σ2I, which is of much lower dimension than Gobs if the missing

percentage is low. In particular, the entire inverse is

(
ΦobsBt|t−1Φ

>
obs +Gobs

)−1
(B.9)

=
1

σ2

{
O−1 −O−1Φobs

[
σ2
(
Bt|t−1 + ΘΛΘ>

)−1
+ ΦobsO

−1Φ>obs

]
Φ>obsO

−1

}
,

where

O =

 σ2I 0

0 ΦnoΘΛΘ>Φ>no + σ2I


The above results are used in the computation of the missing data Kalman filter in the

AECM algorithm. The R functions developed for the models in this thesis were based on

these results.
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Appendix for Chapter 5

C.1 Convergence properties of the AECM algorithm

The convergence theorems with respect to the AECM algorithm are derived in Meng & Van

Dyk (1997). The result comes from the convergence theorems of the GEM algorithm, with

the additional space-filling condition.

Theorem C.1. Any AECM sequence increases (or maintains) L(Ψ) at every cycle and thus

increases (or maintains) L(Ψ) at every iteration.

Theorem C.2. In addition to the regularity conditions in Wu (1983), suppose that (a) all

the CM-steps are unique, (b) the AECM iteration mapping, F : Ψ(it) → Ψ(it+1), does not

depend on it. Then all the limit points of an AECM sequence {Ψ(it)} are stationary points

of L(Ψ).

Theorem C.3. Suppose that the AECM iteration mapping is a composition of C fixed cycle

mappings, all the CM-steps satisfy the Lagrange multiplier equations and Ψ
(it,c−1+ s

S[c]
) → Ψ∗

as it→∞. Then the rate matrix of convergence of the AECM iteration is

J AECM (Ψ) =
C∏
c=1

I − I(Ψ)I [c]
c (Ψ)−1

I − S[c]∏
s=1

P [c]
s

 , (C.1)

P [c]
s = 5[c]

s

{(
5[c]
s

)>
I [c]
c (Ψ)−1

(
5[c]
s

)}−1 (
5[c]
s

)>
I [c]
c (Ψ)−1

5[c]
s = 5g[c]

s (Ψ∗) .
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Based on equation (C.1), it can be deducted that the observed information matrix I(Ψ) for

a 2-cycle AECM algorithm (i.e. C = 2) is the solution of the matrix quadratic equation

D = I −XA−XB +XAXB , (C.2)

where X = I(Ψ) is the unknown matrix to be solved, D = J AECM (Ψ) is the rate matrix of

convergence and

A = I(Ψ)I [1]
c (Ψ)−1

I − S[1]∏
s=1

P [1]
s


B = I(Ψ)I [2]

c (Ψ)−1

I − S[2]∏
s=1

P [2]
s

 .

Under the condition that B is invertible, equation (C.2) can be written as

(D − I)B−1 = XAX −X −XAB−1 .

This is essentially the same as

D∗ = XAX +B∗X +XC∗ , (C.3)

with D∗ = (D − I)B−1, B∗ = −I and C∗ = −AB−1. The solution of equation (C.3)

exists if matrices A,B∗,C∗ and D∗ satisfy certain conditions These conditions and detailed

solutions were described in Shurbet et al. (1974).

C.2 Derivatives of the complete data log-likelihood of the SS-

FPCA

First of all, the information matrix with respect to the complete data log-likelihood of the

SS-FPCA is block diagonal. In particular, the corresponding second derivative matrix takes

the following form, 

∂2Lc(·)
∂σ2∂σ2

∂2Lc(·)
∂σ2∂Θ>

0 0

∂2Lc(·)
∂Θ∂σ2

∂2Lc(·)
∂Θ∂Θ>

0 0

0 0 ∂2Lc(·)
∂Λ∂Λ>

0

0 0 0 ∂2Lc(·)
∂H∂H>

 . (C.4)
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The component ∂2Lc(·)
∂Θ∂Θ>

consists of ∂2Lc(·)
∂θp∂θ>p

, p = 1, · · · , P , and ∂2Lc(·)
∂θp∂θ>q

, p 6= q. The compo-

nent ∂2Lc(·)
∂σ2∂Θ>

consists of ∂2Lc(·)
∂σ2∂θ>p

, p = 1, · · · , P . In the approximation using score functions,

however, only the first derivatives will be used.

To obtain the first and second derivatives with respect to matrix H, first introduce some

matrix derivative results used in the derivation,

∂ log(|H|)
∂H

= vec
(
H−>

)>
(C.5)

∂vec
(
H−>

)>
∂H

=
∂H−1

∂H
= −H−> ⊗H−1 (C.6)

∂A>

∂A
= Tnm (C.7)

∂AH

∂H
= I ⊗A (C.8)

∂AHB

∂H
= B> ⊗A (C.9)

∂(A⊗B)

∂B
= (Im ⊗ Tqn ⊗ Ip) (vec(A)⊗ Ipq) (C.10)

where matrixA is of dimension m×n, matrixB is of dimension p×q and Tqn is a permutation

matrix satisfying vec(X>) = Tqnvec(X) with X an n× q matrix.

The part of the complete data log-likelihood that involves matrix H is

− 1

2

T∑
t=1

{
log(|H|) + (βt − βt−1)>H−1 (βt − βt−1)

}
. (C.11)

From equation (C.11), using property (C.5) and (C.9), it is straightforward to see that

∂Lc(Ψ)

∂H
= −1

2

T∑
t=1

{
vec(H−>)> +

[
(βt − βt−1)> ⊗ (βt − βt−1)>

] (
−H−> ⊗H−1

)}
.

(C.12)

The derivation of the second derivative begins with equation (C.12). The derivative of

vec(H−>)> w.r.t H can be obtained by directly applying property (C.6). The derivative of

−H−> ⊗H−1 is obtained by first applying the chain rule to get

∂
(
−H−> ⊗H−1

)
∂H

= −
∂
(
H−> ⊗H−1

)
∂H−1

∂H−1

∂H

Then with property (C.10), it can be shown that

∂
(
H−> ⊗H−1

)
∂H−1

= (IK ⊗ TK,K ⊗ IK)
(
vec

(
H−>

)
⊗ IK2

)
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The above results, together with property (C.6) and (C.8), would give

∂2Lc(Ψ)

∂H∂H>
=

1

2

T∑
t=1

{
IK2 − IK2 ⊗

[
(βt − βt−1)> ⊗ (βt − βt−1)>

]
(C.13)[

(IK ⊗ TK,K ⊗ IK)
(
vec

(
H−>

)
⊗ IK2

)]}(
H−> ⊗H−1

)
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