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Abstract  

There is a growing demand for superconducting detectors with single photon sensitivity from 

near- to far infrared wavelengths. Emerging application areas include imaging, remote 

sensing, astronomy and free space communications.  Two superconducting device 

technologies, superconducting nanowire single-photon detectors (SSPDs/SNSPDs) and 

microwave kinetic inductance detectors (MKIDs) have the potential to outperform off-the-

self semiconductor technologies and offer scalability to large arrays. Fabrication of high 

efficiency superconducting detectors strongly depends on the quality of superconducting 

thin films. The original work presented in this thesis has explored the growth and 

optimization of several superconducting thin film materials for next generation 

superconducting detectors. Films have been grown in an ultra-high vacuum sputter 

deposition system and an atomic layer deposition system.  

Since its initial demonstration, NbN and NbTiN have been predominantly used as the base 

material for SNSPDs. In this work, we have explored the optimization of both the materials 

with an emphasis on NbTiN. NbTiN is optimized by heating the substrates to 800 ̊C 

achieving a Tc of 10.4 K for a film thickness of 5.5 nm on silicon substrate. Due to their 

crystalline nature superconducting properties of NbN or NbTiN thin films are strongly 

correlated with the lattice parameters of substrate properties. This causes a restriction on the 

substrate choice and integration of SNSPD devices with complex circuits. Amorphous 

superconducting materials can be promising alternatives for this purpose. We have explored 

growth and optimization of amorphous MoSi and MoGe thin films. Both the materials are 

co-sputtered to tune the composition. For 5 nm thick MoSi film on silicon substrate we 

obtain Tc of 5.5 K. For MKID fabrication, TiN can be an useful base material due to its high 

sheet resistance and widely tuneable superconducting properties. TiN thin films have been 

sputtered on heated (500 ̊C) silicon substrates with a Tc of 3.9 K for a 90 nm thick film. The 

dielectric constants of the thin films as a function of wavelength (270-2200 nm) have been 

determined via variable angle spectroscopic ellipsometry (VASE). Atomic structure and 

stoichiometry of the films have been characterized in high resolution transmission electron 

microscopy (HRTEM). This study enables us to precisely control film properties and thus 

tailor superconducting films to the requirements of specific photon-counting applications. 
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Chapter 1 

Introduction 

Single photon detection plays a significant role in a wide range of fields in science and 

technology. Sensitive photon detection at the quantum level is immensely important in the 

fields of quantum information processing [1], astronomy [2], remote sensing [3], deep space 

communication [4] or biotechnology [5]. The detection of infrared photons also has a huge 

importance in the development of next generation communication technology. On the other 

hand, low noise infrared – sub millimetre wavelength photon detection has a crucial impact 

on astronomical instrumentation and terahertz imaging [6], [7].   

In 2001, a new single photon detector was demonstrated by Gregory Gol’tsman and his 

colleagues based on superconducting niobium nitride nanowire [8]. This type of device, 

known as the superconducting nanowire single-photon detector (SNSPD/SSPD), is single-

photon sensitive at visible and infrared wavelengths. The spectral range of an SNSPD 

extends far into the infrared, with photon energies of just a fraction of an electron volt. Thus, 

SNSPDs can operate at telecom wavelengths (1310 nm or 1550 nm) providing compatibility 

with the fibre optic communications technology whereas the spectral range of traditional 

semiconductor single photon detectors is limited due to the band gap of semiconductor 

materials. That is why SNSPDs have been recognised as a promising technology for ultra-

weak optical signal detection. They operate at a temperature of ~4 K which is within the 

reach of rapidly improving closed cycle cooling technology. Hence, the operation of 

SNSPDs does not involve the use of expensive and hazardous cryogenics.  

SNSPDs, nowadays, play a significant role as an enabling technology in advanced photon 

counting applications. Its applications include quantum key distribution (QKD) [9], optical 

quantum computing [10], characterisation of quantum emitters [11], space-to-ground 

communication [12], integrated circuit testing [13], fibre sensing [14] and time-of-flight 

ranging [15] etc.  

The process of SNSPD fabrication starts with superconducting thin film deposition on 

appropriate substrates. The quality of the superconducting films is crucial to the fabrication 

of state-of-the-art SNSPDs. Understanding and controlling film quality holds the key to 

realising next generation SNSPD devices like large area multipixel arrays and waveguide 
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integrated devices. DC magnetron sputtering is the most widely used technique for 

depositing high quality superconducting thin films. NbN films are deposited by reactive 

sputtering. The superconducting properties of NbN thin films are strongly influenced by 

their crystalline structure. Their lattice constant should match well with that of the substrate 

to achieve ultrathin high quality films. Thus, the crystalline nature of NbN puts a strong 

constraint on the substrate choice. This problem sometimes restricts their range of 

applications and potential device architectures. Polycrystalline NbTiN shows good 

superconducting properties on a wider range of substrates including silicon. Recently some 

research groups have started working on the possibility of SNSPD fabrication on amorphous 

superconducting films (e.g. MoSi, MoGe or WSi). Amorphous films do not set strict 

requirements on substrate choice as the problem of lattice matching does not arise here.  

The concept of the kinetic inductance detector was first proposed by Jonas Zmuidzinas and 

his group members [16]. This specific category of cryogenic detectors gained attention due 

to the ability to detect photons with extreme sensitivity and suitability to multiplex in a large 

array [17]. Although, initially aluminium was the conventional base material for MKIDs – 

many groups have explored how various other thin films materials can be used to tune 

detector properties according to specific requirements.  

This thesis focuses on the growth and optimisation of superconducting thin films for next 

generation superconducting detector applications.   

Chapter 2 presents an in depth discussion on the various aspects of superconducting detectors 

particularly in terms of thin film materials with an emphasis on SNSPDs and MKIDs.  An 

introductory discussion on superconductivity and superconducting materials has been 

presented here. This chapter also elaborates on the theoretical models that correlate 

superconducting property and materials parameters and the influence of deposition 

parameters on the structural properties of superconducting thin films.  

Chapter 3 describes all the experimental techniques employed for this study.  

Superconducting thin films have been grown in a newly commissioned ultra-high vacuum 

sputter deposition system (manufactured by Plassys Bestek, France 

(http://www.plassys.com)) that is installed in the James Watt Nanofabrication Centre, 

University of Glasgow. A cryogen free thin film testing station has been set up to determine 

superconducting transition temperature of the films. Structural and optical properties of the 
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films have been analysed by high resolution transmission electron microscopy (HRTEM) 

and variable angle spectroscopic ellipsometry (VASE). 

Chapter 4 describes optimisation of Niobium (Nb), Niobium Nitride (NbN) and Niobium 

Titanium Nitride (NbTiN) thin films. As a part of the acceptance test of the sputter deposition 

system, the transition temperature of a 300 nm thick Nb film (9.1 K) has been reported. 

NbTiN films have been grown by co-sputtering Nb and Ti in an Ar/N2 environment. 

Following the optimised process, a Tc of 7.2 K has been achieved for a 5.5 nm thick NbTiN 

film grown on silicon substrate. When we heat the substrate to 800°C, a NbTiN film with 

the same thickness shows a transition temperature of 10.4 K.  HRTEM analysis demonstrates 

the polycrystalline nature of the NbTiN thin films. It also shows that substrate heating has a 

positive impact on the structural property of the films.   

Chapter 5 describes the growth and optimisation of amorphous MoSi and MoGe films. All 

the films have been deposited by co-sputtering in an Ar environment. Variation of Tc with 

film thickness and sheet resistance has been compared using theoretical models. Material 

parameters extracted from the fit indicate the amorphous nature of the film. A detailed 

investigation has been carried out on the local structural ordering and stoichiometry of MoSi 

films using a suite of HTEM techniques. Fluctuation electron microscopy (FEM) studies 

reveal that the films assumed an A15-like medium range order. Electron energy loss 

spectroscopy (EELS) indicates that the film stoichiometry was close to Mo83Si17. Optical 

properties from ultraviolet (270 nm) to infrared (2200 nm) wavelengths were measured via 

spectroscopic ellipsometry for 5 nm thick MoSi films indicating improved long wavelength 

absorption relative to NbN or NbTiN. We also measured the current density as a function of 

temperature for nanowires patterned from these films.  The current density at 3.6 K is 3.6 x 

105A/cm2 for the widest wire studied (2003 nm), falling to 2 x 105A/cm2 for the narrowest 

(173 nm). 

Chapter 6 describes the optimisation of TiN films by sputtering and atomic layer deposition 

for microwave kinetic inductance detector (MKID) applications. For a 90 nm thick film 

grown on a hydro fluoric (HF) acid cleaned silicon substrate in the sputter system, we have 

obtained a Tc of 2.9 K. When we heat the substrate before deposition up to 500°C, an 

improved Tc of 4 K has been achieved.  A 30 nm thick TiN film grown in the ALD system 

following the optimised process shows a Tc of 2.4 K.  
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Chapter 7 reviews the main advances made in this thesis and gives an outlook on future 

developments. 
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Chapter 2 

Background Review  

 

The need for efficient low noise photon detection at the infrared wavelength is gaining 

importance in many fields of scientific endeavour. Single photon detectors based on 

superconducting nanowires (SNSPDs) offer a promising solution for this purpose. 

Microwave kinetic inductance detectors (MKIDs) are also gaining importance in the field of 

low noise infrared – sub millimetre wavelength photon detection. The fabrication process of 

SNSPD and MKID starts with the deposition of superconducting thin films. The growth and 

optimisation of superconducting thin films for next generation superconducting detectors are 

the main themes of this thesis. In this chapter, Section 2.1 presents an introduction to the 

theoretical background of superconductivity. Section 2.3 presents a brief review on the 

properties of superconducting thin films (including theoretical models correlating 

superconducting property & materials parameters and the influence of deposition parameters 

on film structures). The working principle, the main performance parameters, thin film 

materials and real life applications of SNSPDs and MKIDs have been reviewed in Section 

2.5 and 2.6.  

2.1 Superconductivity 

Superconductivity was first observed by Dutch physicist Heike Kamerling Onnes in 1911 

[1], [2] and was recognised by the award of the Nobel Prize. By 1908, Onnes had succeeded 

in producing liquid helium in his laboratory. Using liquid helium bath as a coolant, he 

proceeded to investigate the electrical resistance of metals at low temperature. He observed 

that the electrical resistance of mercury abruptly dropped to zero at 4.2 K. He reported that 

below a critical temperature (specific to the material), mercury underwent a transition to a 

new phase. The new phase was termed the superconducting state. Similar properties were 

revealed for many more materials. 

The temperature at which this phase transition occurred was termed the critical temperature 

or superconducting transition temperature (Tc). It was also observed that there was a 

threshold value of current density which could be carried by a superconducting material. If 

the current exceeded this threshold, the material would return to the normal resistive state. 

This threshold was called critical current [3]. Besides current density, applied magnetic field 
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was also observed to have a significant influence on superconductivity. Superconducting 

properties would be destroyed if the applied field exceeded a threshold value. This threshold 

value of the magnetic field was termed the critical field [4]. Both critical current and critical 

field were function of temperature.  

 

 

                                           
 

 Fig. 2.1: The discovery of superconductivity: Resistance versus Temperature plot of 

mercury when it is cooled in liquid helium bath [1]. 

 

In 1933, Walther Meissner and Robert Ochsenfeld showed that apart from the perfect 

conductivity with zero resistance there was a further characteristic property of 

superconducting materials [5]. They observed that when a magnetic field was applied to a 

superconducting material it did not conserve magnetic field (contrary to what was expected 

of a perfectly conducting material). Instead, it expelled the magnetic flux. When the applied 

magnetic field was smaller than the critical field specific to the superconducting material 

under observation (i.e. when the magnetic field was not large enough to destroy the 

superconducting state), magnetic field density was essentially zero inside the material. Thus, 

the superconducting material was seen to be perfectly diamagnetic. This effect has come to 

be called the Meissner effect.  
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Due to these two unique characteristic properties (zero DC resistance and perfect 

diamagnetism), superconducting materials have immense technological potential for real 

world applications. Since both critical field and critical current gradually increase as the 

temperature of the superconductor is further lowered below its critical temperature, 

superconducting materials need to be cooled to at least around 0.6Tc (to maximize critical 

current density) in most of the engineering applications. Thus, real world technological 

applications of superconducting materials strongly depend on advancements in cryogenic 

technology [6].  

2.1.1 Theoretical Background of Superconductivity  

 In 1935, Fritz and Heinz London proposed a pair of simple but useful equations to describe 

the electrodynamic behaviour of superconducting materials [7], [8]. Their equations are as 

follows: 

                             �⃗� =
∂

∂t
(𝛬𝐽 )                                                                                          (2.1)                                      

And, 

                  ∇ × (𝛬𝐽 ) = −𝐵 ⃗⃗  ⃗                                                                                                (2.2)  

 

[�⃗� =Applied Electric Field; 𝐽 =Superconducting Current Density; 𝛬 =
𝑚𝑒

𝑛𝑒𝑒2 (me=Mass of 

Electron, ne= Superconducting Electron Density and e=  Electronic Charge)] 

Equation (2.1) and (2.2) are called the London equations. It is to be noted that these two 

equations do not explain the physical mechanism behind superconductivity. They simply 

give a phenomenological description of the two characteristic properties of superconducting 

materials (perfect diamagnetism and zero dc resistance) in terms of electromagnetic theory. 

From Maxwell’s equations, we know that ∇ × �⃗�  = μo𝐽   [Since superconductors have zero 

resistance we may neglect charge accumulation.]  
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So, combining Maxwell’s equation and the second London equation, we may write that:  

∇ × (∇ × �⃗� ) = μo(∇ × 𝐽 ) = −
μo�⃗� 

𝛬
 = −

�⃗� 

𝜆2
                                                                       (2.3) 

Using vector identity we can write:  

∇2�⃗� =
�⃗� 

𝜆2
                                                                                                                           (2.4)         

Equation (2.4) indicates that the magnetic field inside a superconductor decays exponentially 

from its surface with a characteristic penetration depth of  𝜆 = √
𝛬

μo
 . This is simply the 

Meissner effect. The parameter λ is called the London penetration depth. 

Though the London equations give a very useful description of electromagnetic properties 

of superconductors, they do not include any physical explanation of superconductivity. 

 In 1957, Bardeen, Cooper and Schrieffer proposed a microscopic quantum mechanical 

model explaining superconductivity [9], [10]. According to their theory (called BCS theory), 

electrons in superconductors form collective quantum states (bosons) that are made up of a 

pair of electrons that have opposite momentum and spin. BCS theory predicts that there 

exists an attractive force between electrons [11]. This force originates from the electrostatic 

attraction between the electron and the crystal lattice. An electron in the lattice will cause a 

slight increase in positive charges around it. This increase in positive charge will, in turn, 

attract another electron. If the energy required to bind these electrons together remains 

greater than the energy from the thermal vibrations of the lattice attempting to break them 

apart, the pair will remain bound. Such electron pairs are called Cooper pairs. When a 

superconducting material is cooled down below its critical temperature, the thermal vibration 

of its lattice becomes small enough to allow the formation of Cooper pairs. In a 

superconductor, the current is made up of these Cooper pairs rather than of the individual 

electrons. 
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Fig. 2.2: A simple illustration of BCS Theory: Negatively charged electrons induce a 

polarisation in the neighbouring crystal lattice leading to a slight increment in positive 

charge. This positive charge attracts another electron (Image taken from 

http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/coop.html). 

The length scale of the Cooper pairs (called coherence length (ξ)) is much larger than the 

lattice spacing of the material.  The interaction between a Cooper pair is transient. Each 

electron in the pair goes on to form a Cooper pair with another electron, and this process 

continues, with all the newly formed Cooper pairs. Thus, each electron is attracted to every 

other electron, resulting in the formation of a large network of Cooper pairs. This collective 

behaviour of all the electrons prevents any further collisions with the lattice and enables 

current to flow without any resistance.  

In 1950, Ginzburg and Landau proposed a phenomenological theory describing 

superconductivity in terms of a complex order parameter [8]. Later on, Gor’kov showed that 

the Ginzburg and Landau (GL) theory can be derived from the microscopic description of 

the BCS theory [12]. The GL theory assumes that in the superconducting state, the current 

is carried by super electrons of mass m*, charge e* and density ns
* [m*=2me; e

*=±2e and 

ns
*=

1

2
𝑛𝑠 ]. They also proposed the existence of an order parameter given by the following 

equation:  

                                    𝜙(𝑟) = |𝜙(𝑟)|𝑒𝑖Θ                                                                         (2.5) 

 Here, |𝜙(𝑟)|2  denotes the super electron density. The order parameter 𝜙(𝑟) has a zero value 

above Tc and continuously increases as the temperature falls below Tc. In presence of any 

external magnetic field, the order parameter would have spatial variation. According to this 

theory, near the transition temperature the Gibbs free energy per unit volume of the system 

can be expressed as a function of order parameter. 

      Lattice of Superconducting Material 

MMaMaterial  

http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/coop.html
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According to BCS theory, electrons in the Cooper pair network are bound to each other with 

energy (usually of the order of meV) specific to the material and operating temperature. This 

energy is referred to as superconducting gap energy (2Δ). Whenever it is necessary to split 

the Copper pairs in normal electrons to disrupt superconducting properties, it is imperative 

to supply more energy than the gap energy externally. The relationship between interaction 

potential of electrons and energy gap can be expressed by the following integral equation 

derived from BCS theory [8]: 

1

𝑁(0)𝑉𝐵𝐶𝑆
= ∫

𝑡𝑎𝑛ℎ
1

2
𝛽(𝜉2+∆2)1/2

(𝜉2+∆2)1/2

ℏ𝜔𝑐

0
                                                                                              (2.6) 

Here, N(0) is the density of states of electrons at absolute zero temperature, VBCS denotes the 

interactional potential, 𝜔𝑐 is the cut-off frequency at which the lattice induced attraction of 

the electrons is cancelled by the Coulomb potential and 𝛽 is the Boltzmann factor 1/kBT . 

From this integral, temperature dependence of superconducting gap energy Δ(T) can be 

computed numerically from equation (2.6) or from the approximate formula as discussed by 

Khasanov et al. or Carrington et al. [13], [14] :  

Δ(𝑇) = Δ(0)tanh {1.82[1.018(
𝑇𝑐

𝑇
− 1)]0.51}                                                                   (2.7)           

Dependence of critical current on temperature in the dirty limit can be described by the 

following relation: 

𝐼𝑐(𝑇) = 𝐼𝑐(0)
∆(𝑇)

∆(0)
tanh [

∆(𝑇)

2𝑘𝐵𝑇
]                                                                                         (2.8)    

Ic(T) is the critical current measured at a specific measurement temperature.  

    

The following figure shows the temperature dependence of superconducting energy gaps of 

niobium, tantalum & tin and how it matches with the numerical solution of equation (2.6) or 

(2.7).  
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Fig. 2.3: Temperature dependence of superconducting energy gap computed numerically 

from the BCS theory and compared with experimental data of niobium, tin and tantalum 

[15]. 

For weakly coupled superconductors (where 𝑁(0)𝑉𝐵𝐶𝑆 ≪ 1), the ratio of gap energy at 

absolute zero and Tc takes a simplified form: 

                                                    2𝛥(0) = 3.53𝑘𝐵𝑇𝑐                                            (2.9) 
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2.2 Superconducting Materials  

 

 

Fig. 2.4: Transition temperature (Tc) of superconducting materials discovered over time 

(Image taken from http://www.ccas-web.org/superconductivity). 

 

The rapid advancement of cryogenic technology has enabled widespread research on 

superconducting materials. It has been found that many elements in the periodic table show 

superconductivity (tungsten, lead, niobium, mercury, etc.). Their critical temperatures vary 

from as low as 0.01 K (tungsten in the alpha phase crystalline structure) to 9.3 K (niobium) 

[16]. Typically, metals have transition temperatures below 10 K. It is also interesting to note 

that noble metals such as gold, silver or copper, which have very high electrical conductivity, 

do not exhibit superconductivity. Several elements also show superconductivity only under 

special conditions (e.g. Ba or Y under high pressure or Li, Mg or Fe in thin film conditions) 

[16], [17]. When a superconducting element has more than one isotope, Tc decreases with 

increasing isotopic mass. This is called the isotope effect [18]. Many metallic compounds 

and alloys show superconductivity with higher transition temperature [19], [20]. From the 

following table, it is evident that for binary compounds the Tc can span from 2.6 K (B3Ru7, 

D102) to 23 K (Nb3Ge, A15) [16]. A15 structured superconducting materials have many 

commercial applications [21]. In 1987, Chu and Wu discovered that the alloy YBa2Cu3O7 

http://www.ccas-web.org/superconductivity
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has a superconducting transition temperature of 95 K which can be achieved by liquid 

nitrogen [22]. Figure 2.4 illustrates the timeline of the discovery of successive classes of 

superconducting materials and their transition temperatures. 

                        

Table 2.1: Superconducting materials and their respective critical temperatures in 

bulk form [16]   

Material Tc (K) 𝟐𝜟(𝟎)  (meV) 

Nb 9.1 2.77 

Ti 0.4 0.12 

Pb 7.2 2.19 

Se 6.9 2.1 

Nb3Ge 23.2 7.06 

B3Ru7 2.6 0.79 

MoC 14.3 4.35 

VRu 5.0 1.52 

MgB2 39.0 11.87 

NbN 16 4.9 

TiN 5 1.52 

Al 1.2 0.36 

YBa2Cu3O7 95.0 28.91* 

    

  (*This value has been calculated from BCS theory. High temperature superconductors have 

complicated superconducting gap structure which is far from ideal BCS theory.) 

          

 2.3 Superconducting Thin Films  

Thin film form of superconducting materials is the key to many nanoscale device 

applications [23].  Especially in the quantum sensor based technologies, superconducting 

thin films play a decisive role [24]. The relationship between low temperature and normal 

state material parameters is crucial to the exploration of the superconductivity of thin films. 

As is well documented in the literature, the superconducting property of thin films is tuned 

with film thickness and sheet resistance [16]. (The sheet resistance of a film is defined by 

 𝑅𝑠 = 
𝜌

𝑑
  where 𝜌 is the resistivity of the film and d denotes film thickness [25].) Another 

important parameter relating to the normal state and cryogenic properties of thin films is the 

residual resistivity ratio (RRR). This is defined by the ratio of sheet resistance measured at 

room temperature to that at 20 K [26]. It can give an idea about the metallic or insulating 
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nature of the films. It can also provide a qualitative idea about impurities or crystal defects 

in the thin film. For metallic films (e.g. Nb) the higher value of RRR indicates higher metallic 

purity and high crystalline structure of the film. Hence, for the metallic superconducting 

materials, we should aim for high RRR values. For the semiconducting materials (e.g. NbN 

and NbTiN) a RRR value >1 indicates the metallic nature of the superconducting film. On 

the other hand, RRR value < 1 indicates the insulating nature.  

2.3.1 Theoretical Models describing correlation of 

superconductivity and material parameters of Thin Films 

Reduction in the film thickness results in the degradation of superconducting property. In 

particular, once the film thickness reaches a value comparable to the coherence length of the 

specific material, the superconducting property of the film rapidly decreases. Since, in this 

thesis, we aim to optimise ultrathin films (< 10 nm) for superconducting detectors, it is worth 

exploring the theoretical models which describe the correlation between Tc, thickness and 

sheet resistance and explain the thickness induced destruction of superconductivity. Several 

theoretical models have been reported in the literature for this purpose [27], [28], [29]. 
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Fig. 2.5: Theoretical Models describing correlation of superconductivity and material 

parameters of thin films. (a) Finkel’stein Model: Comparison of the Finkel’stein model with 

the Tc versus Rs data collected from a series of Mo79Ge21 samples. According to this model, 

for homogeneously disordered materials suppression in Tc can be modelled as a function of 

Rs (without considering thickness as a variable) [29]. (b) Simonin Model: The figure shows 

how the Simonin model fits with the Tc vs d experimental measurements of niobium and 

lead films. Based on Ginzburg Landau theory, this model describes the correlation between 

Tc and thickness [28]. (c) Universal Scaling Law: Fitting of universal scaling law proposed 

by Ivry et al. to NbN films deposited on MgO substrates. This empirical law takes into 

consideration both thickness and sheet resistance dependence of superconducting properties 

[27]. 

Finkel’stein proposed a model using renormalisation group tools [29]. This derivation was 

based on a modified BCS equation. This model explains the destruction of superconductivity 

through the competition between Cooper-pair attraction and disorder enhanced Coulomb 

repulsion. According to this model, Tc can be expressed as a function of sheet resistance (Rs) 

a) b) 

c) 
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for homogeneously disordered superconducting materials. (No direct mention of thickness 

dependence.) According to this model,  

 

 
𝑇𝑐

𝑇𝑐𝑜
=exp(γ)[

1−X

1+X
]
1

√2r
⁄

                                                                                                      (2.10) 

 

where γ=Ln[ħ 𝜏𝑇𝑐𝑜𝑘𝐵
⁄ ] ; x=(

√𝑟/2
𝑟

4
+1/𝛾

) and  r=(𝑒
2

2𝜋2ħ
⁄ ) Rs 

Here, Tco denotes the bulk superconducting transition temperature of the specific material, ħ 

is the reduced Planck’s constant, e is the elementary charge and γ is a fitting parameter. 

Finkel’stein analysed a set of amorphous Mo79Ge21 superconducting films and compared Rs 

vs Tc data of those films with his proposed model. They have shown that equation (2.10) fits 

reasonably well with MoGe data (shown in Fig. 2.5).  

Simonin derived a simple model based on Ginzburg Landau theory to describe the 

correlation between Tc and film thickness resulting in the following equation [28]: 

 

Tc=Tco[1-dc/d]                                                                                                                (2.11) 

Here, dc is termed critical thickness. This can be defined as a threshold thickness for the 

specific material below which it will lose superconducting property. Tco denotes the bulk 

superconducting transition temperature in both the models. 

Ivry et al. proposed an empirical universal scaling law which takes into account both the 

effects of d and Rs on Tc. Although this scaling law was established by analysing data from 

the past 50 year’ of research on various superconducting materials, there was no theoretical 

derivation of this model [27]. Later, Tao et al. explored the theoretical foundation of this 

model using the renormalisation group method [30]. According to this law, film thickness, 

sheet resistance and the transition temperature scale as Tcd(Rs) lead to the following power 

law:  
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Tcd=ARs
-B                                                                                                                       (2.12) 

Here A and B are fitting parameters. Ivry et al. discussed that the numerical value of the 

exponent B can be related to structural disorder of the material. More disordered the thin 

film material is higher the value of B will be.   

2.3.2 Influence of growth conditions on film microstructures 

Superconducting properties are strongly influenced by microstructures and crystallographic 

orientation of thin films. Hence, a better understanding of the correlation between film 

microstructure and various growth parameters can be very helpful in order to design a thin 

film material for specific technological applications. Here, we have reviewed the model 

proposed by Thornton, which predicts how the structural properties of the film 

microstructure varies with the deposition parameters (e.g. substrate temperature and working 

gas pressure) in the case of any physical vapour deposition technique [31], [32]. According 

to the Thornton zone model, thin film deposition processes can be divided into three steps. 

First, the arriving atoms transfer their kinetic energy to the lattice and become loosely 

bonded adsorbed atoms (transport step). In the next step, they diffuse over the surface until 

they either are desorbed or become incorporated in the film (surface diffusion step). Finally, 

diffusion occurs within the bulk of the film and with the substrate (bulk diffusion step). The 

thermal motion of atoms in the growing film strongly depends on the ratio between substrate 

temperature Ts and the binding energy of atoms in the solid. As the melting point (Tm) of a 

solid depends largely on the binding energy of its atoms, thermal motion of atoms scales 

with the ratio of Ts to Tm (in K), (termed as the reduced temperature). Thus, each of the three 

basic processes (transport, surface diffusion and bulk diffusion) can be expected to dominate 

film growth over different ranges of Ts/Tm, which results in different film structures. The 

diffusion length Λ of the adsorbed atoms at the time t is given by Λ = 𝑎√𝑘𝑑𝑡 whereas 𝑘𝑑 

denotes the frequency at which an individual adsorbate atom jumps to another adjacent site 

and a is the distance between two sites [33]. As is shown in the Fig. 2.6, three structural 

zones (Zone 1, 2 & 3) and a transitional zone (zone T) can be identified in the sputter 

deposition process.  

For room temperature deposition or deposition on the cooled substrate – i.e. low reduced 

temperature (Ts/Tm<0.3) – the thermal motion of the adsorbed material is negligible. [Λ <

𝑎 in this condition.] Hence, surface diffusion does not have time to occur before the 

deposition of the next atomic layer. In this regime, known as the quenched growth (QG) 
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regime, it is the transport process that dominates film growth, meaning that atoms become 

immobilised where they land. Films resulting from these quenched growth processes exhibit 

amorphous or poor crystalline microstructure (Zone 1 and zone T in Fig. 2.6): 

 

 

Fig. 2.6: Influence of deposition parameters on structural properties of thin films deposited 

by any physical vapour deposition technique as explained by Thornton’s structure zone 

model [34]. 

When we start to heat the substrate during film deposition (i.e. at intermediate reduced 

temperatures (0.3<Ts/Tm<0.5)), film growth gradually becomes dominated by ad-atom 

surface diffusion. Films resulting from this growth regime consist of columns having tight 

grain boundaries between them (Zone 2 in Fig. 2.6). Grain sizes increase with Ts/Tm. Hence, 

films grown on the heated substrate have improved crystalline property in comparison to the 

films grown at room temperature. If we heat substrates further to higher temperature ( i.e at 

high reduced temperatures (Ts/Tm>0.5)) bulk diffusion dominates the film growth and its 

structure is dominated by more isotropic and equiaxed grains (Zone 3 in Fig. 2.6 ).  Zone 3 

is rarely experimentally observed.  
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From the above general description of structures, it can be inferred that for amorphous films 

it would be useful to grow the films at low temperatures (at room temperature or even on 

cooled substrates). On the hand, for crystalline or polycrystalline materials substrate heating 

would improve the structural properties of the films.  

                      

2.4 Detection of electromagnetic energy in 
superconductors 

 

Due to its unique properties, superconductivity can be utilised in the detection of 

electromagnetic energy. Based on Max Planck’s mathematical formulation, Einstein 

postulated that electromagnetic radiation may be described as a collection of quantised 

particles called photons [35], [36]. According to Planck's law, the energy of each single 

photon is characterised by its frequency (E=hυ). Photon detection is immensely important in 

many scientific and technological applications [37]. For instance, low energy, long 

wavelength photons are particularly relevant in cosmology and astrophysics where the 

Doppler shift has influenced the radiation across billions of light years [38]. In 

telecommunications, fibre optic cables are used to transmit information with low attenuation 

at infrared wavelength [39]. In quantum cryptography, secure cryptographic keys are created 

by encoding information on the phase or polarisation of single photons [40]. Thus, infrared 

photon detection is essential to the development of next generation communication 

technology. Photons in the mid and far infrared are also highly relevant in the field of 

atmospheric science and remote sensing [41]. In the following sections, we summarise how 

superconductivity has been used to develop novel photon detection technology.  

 

2.4.1 Superconducting Tunnel Junction 

A Superconducting Tunnel Junction (STJ) consists of a thin insulating barrier layer (e.g. 

Al2O3) sandwiched between two thin superconducting absorbers (e.g. Nb or Ta) [42]. When 

a photon is incident on the superconducting absorber, which is maintained well below its 

critical temperature (usually below 1 K), charge carriers (hot electrons) are generated as 

Cooper pairs are broken. These charge carriers tunnel across the thin barrier layer resulting 

in a measurable current. The magnitude of this tunnelling current depends upon the 
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tunnelling, recombination and scattering of charge carriers in the system. STJs have very 

high energy resolution. For photon energies between 1 eV and 1 keV, Nb based STJ has 

energy resolution between 0.13 eV and 4.3 eV full width half maximum (FWHM). Due to 

their high energy resolution, STJs are of interest in the field of infrared astronomy. However, 

since STJs need ultralow operational temperature and require an applied magnetic field to 

suppress other tunnelling effects (Josephson current), they are too expensive and impractical 

for widespread use in other applications. 

 

 

 

                        
 

Fig. 2.7: Schematic Diagram of a Superconducting Tunnel Junction (STJ): incident photons 

generate quasi particles (hot electrons) in the superconducting absorber layer. They tunnel 

through the insulating Al2O3 barrier to generate a measurable current signal. Tunnelling of 

Cooper pairs (Josephson tunnelling) is suppressed by the application of a magnetic field 

[43]. 

  2.4.2 Superconducting Transition-Edge Sensors 

A Superconducting Transition-Edge Sensor (STES) consists of a thin layer of 

superconducting material (e.g. tungsten) placed on an insulating substrate. The STES 

operates near the transition temperature of the superconducting thin film [44], [45]. When a 

photon is incident on the sensor, the superconducting material absorbs the photon, and its 

temperature slightly increases above its transition temperature. Hence, it generates a sharp 
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change in resistance. Gradually, it cools down by dissipating heat to the weakly coupled heat 

sink and the STES returns to the superconducting state again. The resistance fluctuation is 

measured via electronics read-out and is recorded as a photon detection event. STES devices 

measure the energy deposited and hence have spectral and photon number resolving 

capability. 

 

                                                             

Fig. 2.8: Schematic of Superconducting Transition Edge Sensor (STES): superconducting 

absorber weakly coupled to refrigerator heat sink (Image taken from 

http://space.mit.edu/micro-x/science/tes-science/tes-science.html).                      

 

STESs have very high detection efficiency at visible and near infrared wavelengths. Lita et 

al. [45] have demonstrated detection efficiency of η= 95% at 1556 nm (with an energy 

resolution of 0.29 eV FWHM). They have used tungsten as a superconducting thin film and 

integrated it within an optimised optical structure to enhance optical absorption. The dark 

count rate of these devices is very low (1/1000 s). They also show excellent photon energy 

resolution. On the other hand, STESs have some crucial disadvantages. First, it is very 

difficult to match their noise to amplifiers (an STES’s normal resistance is typically a few 

ohms or less). Secondly, there is the problem regarding the operation of the STES at very 

narrow superconducting to normal transition region. [Voltage biased operations with a 

SQUID (superconducting quantum interference device) electronic read-out have been 

introduced to eliminate these problems.] Thirdly, STESs need expensive electronics read-

out and a weak link with a refrigerator operating at a very low temperature (40 to 300 mK). 

Finally, they are also susceptible to triggering by background black body radiation. 

http://space.mit.edu/micro-x/science/tes-science/tes-science.html
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2.5 Infrared single photon detection: Superconducting 
Nanowire Single Photon Detector (SNSPD) 

In 2001, Gol'tsman et al. first demonstrated that nano structures patterned on a 

superconducting thin film may be used for single photon detection [46], [47]. They used a 

bridge structure that was well below a micrometre in width and patterned via electron beam 

lithography and etching in a 5 nm thick NbN superconducting film. A nanowire patterned 

superconducting detector was cooled down well below its superconducting transition 

temperature, and it was DC-biased with a current close to its critical current.  

The nanowire absorbs incident photons depending upon the optical properties of the 

superconducting material. If photons have sufficient energy (greater than the 

superconducting gap energy of the material) Cooper pairs will be broken, creating hot 

electrons or quasiparticles. For NbN at infrared wavelengths the absorbed photon will disrupt 

hundreds of Cooper pairs in the nanowire, resulting in the formation of a resistive region as 

the breaking of Cooper pairs will lead to the transition to a normal state. This small resistive 

region is called a ‘hotspot’ [48]. The hotspot resistance forces the super current in the 

superconducting nanowire to bypass this region. Since the width of the nanowire is very 

small (~100 nm), this diversion causes the local current density around the hotspot to 

increase quickly (within few picosecond) beyond the critical current density of the material, 

creating a resistive barrier across the nanowire. Thus, the bias current is diverted in a parallel 

path across shunt resistance [49]. As is shown in Fig. 2.10, the electrons in the hotspot region 

exchange their energy with phonons in the nanowire via electron-phonon scattering with a 

time a constant of 𝜏𝑒−𝑝ℎ (~ 10 ps). Then, this energy is coupled to the substrate through 

phonon-phonon scattering with a time constant of 𝜏𝑝ℎ−𝑠𝑢𝑏. A small fraction of the energy 

is reflected back into the electron system of the nanowire due to the lattice mismatch between 

the superconducting nanowire and the substrate. Thus, the substrate (which is remained cold 

at Tsubstrate) acts as a heat sink for the ‘hot’ electrons absorbing their energy [50]. In this way, 

the hotspot region gradually cools down and recovers to a superconducting state and the wire 

starts carrying bias currents normally. Hence, we get a measurable output voltage pulse as a 

signal of the photon detection event. Recently, Engel et al. have compared the existing 

theoretical descriptions of the detection mechanism of the SNSPD with the experimental 

data, and they have predicted that a magnetic vortices based model may improve accuracy 

of theoretical description [51]. 
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Fig. 2.9: The working principle of the Superconducting Nanowire Single Photon Detector 

(SNSPD): 1. The nanowire is cooled down below the superconducting transition temperature 

and externally DC biased just below the critical current specific to the device. 2. A photon 

is incident on the nanowire and a hotspot region is created as incident photons break the 

Cooper pairs inside the material. 3. The hotspot expands to the edges of the nanowire as 

supercurrent is diverted around the edges, increasing the local current density above the 

critical current level 4. This hotspot region grows in size due to Joule heating and eventually 

creates a resistive barrier across the nanowire. This resistive region causes the bias current 

to be diverted to the external shunt. 5. The nanowire is able to cool down below the 

superconducting transition temperature and the bias current returns to the nanowire at the 

same level as in 1 [47], [37]. 
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Fig. 2.10: Schematic of the energy dissipation process after photon absorption in a 

superconductor: Te and Tph denote the temperature of the electron system and phonon system 

of superconducting nanowires respectively.  Electrons in the nanowire absorb energy from 

the incident photon and a hotspot is created there (Te). The energy in the electron system is 

coupled to the phonons of the superconducting material via electron-phonon scattering, with 

a time constant of 𝜏𝑒−𝑝ℎ. The phonons then couple the energy to the substrate (which remains 

cold at Tsubstrate ) via phonon-phonon scattering, with a time constant of 𝜏𝑝ℎ−𝑠𝑢𝑏 . 

2.5.1 Performance Parameters for SNSPDs 

An ideal single photon detector will generate an electrical signal whenever it absorbs a 

photon. In practical scenarios, SNSPDs have non-ideal performance characteristics. The 

following parameters benchmark the practical performance of SNSPD as a single photon 

detector.   

 

𝝉𝒆−𝒑𝒉 

 

 𝝉𝒑𝒉−𝒆 

𝝉𝒑𝒉−𝒆 
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Fig. 2.11: An ideal single photon detector will generate a fast, well defined electrical signal 

for every photon incident on it. 

(a) Detection Efficiency: Detection efficiency (η) is the most crucial performance parameter 

of an SNSPD. It is defined by the probability that a photon will be detected (by taking the 

photon all the way through the experimental system and generating an output signal in the 

read-out electronics) once a photon is incident on the detector system [52], [53]. In real life 

applications, η is usually less than 100% and strongly depends on device design, uniformity 

and the spectral wavelength of incident photons. Efficiency is usually measured by recording 

device counts per second and comparing that to the number of incident photons. 

  

Detection efficiency can be broken into several constituent elements. First, in any real life 

application, photons can be lost before reaching the detector due to absorption, scattering or 

reflection within the experimental environment. Thus, the probability of coupling incident 

light with a detector is defined as the coupling efficiency (ηCoupling). Secondly, the optical 

absorption property of the detector (depending on wavelength, material and geometry) 

defines the number of photons which will actually be absorbed by the detector. Absorption 

efficiency (ηAbsorption) gives the probability that an incident photon which is coupled with the 

detector is absorbed by the SNSPD. Finally, there may be a non-unity probability that the 

detector generates an output electrical signal at the read-out electronics after photon 

absorption. We define this as the registering probability (ηRegistering).  
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Taking all these into account, we can write the following: 

η=ηCoupling X ηAbsorption X ηRegistering                                                                                   (2.13) 

 

(b) Dark Counts: An SNSPD may produce spurious signal pulses in addition to photon 

detection signals due to stray light, black body radiation or electrical noise [37]. Since these 

detectors are highly sensitive, they can be triggered by stray light in the experimental 

environment and also by black body radiation of the experimental system. Dark counts can 

be reduced by encapsulating the detectors in a radiation shield and by eliminating as much 

light from the laboratory as possible. The dark count rate (DCR) is measured in terms of 

counts per second (cps) or Hertz (Hz).  

 

(c) Dead Time: During the generation of the voltage signal, superconducting nanowires are 

unable to register another incoming photon [47]. This time period is known as dead time. As 

discussed above, upon absorption of a photon, a small resistive hotspot is created in the 

nanowire. This grows very quickly to form a resistive barrier across the wire with a time 

constant of τ1. This defines the rise time of the leading edge of the output voltage pulse. 

Then, the nanowire slowly cools down to a superconducting state, dissipating heat to the 

substrate with a time constant of τ2. This time constant defines the trailing edge of the pulse. 

The total duration of (τ1+τ2) is defined as the dead time. After this time, the detector returns 

to superconducting state and becomes ready for photon detection.  

 

(d) Timing Jitter: Timing jitter is the intrinsic timing resolution between the arrival of the 

photon at the SNSPD and the generation of the output pulse [54], [55]. The jitter of a detector 

is measured by calculating the Full Width at Half Maximum (FWHM) from the plot of the 

statistical distribution of time delay between the arrival of a photon at the detector and the 

observation of an output signal from the detector. The lower the timing jitter of a device, the 

better timing precision it has for the arrival of the photon. This sets a limit on the maximum 

count rate of the detector or the maximum possible clock speed that the device can be used 
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at. Low timing jitter enables high-clock-rate quantum communication experiments and leads 

to improved signal-to-noise ratio (SNR) in gated photon counting experiments.  

Figure of Merit: Noise equivalent power (NEP) has been widely used as a figure of merit 

of photon detectors. It is measured by the input optical power, which is necessary to generate 

a signal-to-noise ratio of 1 Hz output bandwidth at a given data-signaling rate or modulation 

frequency, operating wavelength and effective noise bandwidth [56]. For single photon 

detectors, it is given by 
ℎ𝜈

𝜂
√2𝐷𝐶𝑅 (DCR denotes dark count of the device). However, NEP 

does not take into account the timing jitter of the detector. Hadfield et al. proposed a 

dimentionless figure of merit of the SNSPD considering all the perforance paramters [37]. 

It is defined by H=
𝜂

𝐷𝐶𝑅Δ𝑡
 . (Δ𝑡 denotes the timing jitter of the device.) It should be noted 

that if we operate the detector at a lower bias current we will get very low dark count leading 

to a low value of NEP. However, it will also reduce the detection efficiency of the device.  

2.5.2 Evolution of Device Design 

Since its initial demonstration, many research groups around the world have been working 

to improve the performance parameters of SNSPDs. Focussing an optical spot on a ~100-

200 nm wide nanowire (well below the wavelength of infrared light) may not be feasible for 

practical experiments or will lead to very poor coupling efficiency. One approach used to 

solve this is to pattern the superconducting nanowire in a large square area (several microns 

along each side) meander in order to increase the coupling efficiency of the incoming light. 

To enhance the optical absorption in the detector, researchers have tried to integrate the 

device inside an optical cavity or waveguide circuit or to deposit an anti-reflection coating 

on top of the device (e.g. detectors have been fabricated on the top of SiO2/Si or 

GaAs/AlGaAS distributed Bragg reflectors or Au mirrors have been used to form an optical 

cavity). This reduces optical losses due to transmission or reflection from the device and 

thereby increases the probability of photon absorption in the nanowire [57], [58]. Zhang et 

al. have shown that a 60% system detection efficiency at a wavelength of 940 nm can be 

achieved with a NbN based meander device fabricated on the top of a Si based DBR 

substrate. To enhance the device’s active area so that detectors can be optically coupled 

through free space or using multi-mode fibres, the concept of large area multi pixel SNSPD 

array has been proposed. Allman et al. have reported the performance of free-space-coupled 

64 pixel WSi based SNSPD array [59].  
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Fig. 2.12: Recent advances in SNSPD device designs from international groups (a) SNSPD 

fabricated on the top of GaAS based waveguide structure to to improve optical coupling 

efficency (TU Eindhoven) [60] (b) NbN based SNSPD integrated in optical cavity (MIT) 

[58]  (c) 64 pixel SNSPD array based on NbTiN film (NICT Japan) [61]. 

2.5.3 Superconducting thin films for SNSPD 

The first and the most crucial step in superconducting detector fabrication is to deposit 

superconducting thin film on appropriate substrates. For SNSPD operation we need ultrathin 

(< 10 nm) superconducting films which can be cooled down using refrigerators. For thicker 

films, the hotspot will not be able to create a resistive barrier across the nanowire. Rather, it 

will decay, dissipating heat in the surroundings. Hence, the device will not be able to 

generate a signal indicating photon detection. Gol’tsman et al. used 4 nm thick NbN in their 

initial detectors [46]. NbN has a crucial advantage of having a comparatively higher critical 
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temperature (17 K for bulk) and shorter coherence length (~ 5 nm) [62]. Thus, it is possible 

to deposit thin NbN (~ 6nm or 8nm) films which will superconduct even at 4 K [63]. Being 

a very hard refractory transition metal nitride, NbN has the advantage of having stability 

even over repeated thermal cycling between room temperature and cryogenic temperatures 

[64]. With subsequent development, SNSPDs with NbTiN (a polycrystalline material having 

properties similar to NbN) films have been evolved. NbTiN nanowire devices have been 

shown to possess a shorter dead time compared to NbN devices since they have lower kinetic 

inductance [65]. NbN and NbTiN have been widely employed as the base material for 

SNSPD fabrication.  

Since NbN or NbTiN films used in SNSPDs are very thin, the crystalline quality of the films 

becomes a crucial issue. Poor crystalline quality may lead to non-uniformity in the film or 

to degradation  of the film's superconducting property. The lattice structure of the film 

material should match well with that of the substrate to achieve ultrathin films with high 

crystalline properties. Since lattice parameters of MgO (0.421 nm) [66] or sapphire (0.471 

nm) [67] are very close to that of NbN (0.439 nm) [68] and NbTiN (0.434 nm) [69], these 

are widely used substrates for SNSPD. Marsili et al. have reported a Tc of 8.6 K  for a 3 nm 

NbN film deposited on an MgO substrate [63].  

However, crystalline nature of NbN & NbTiN makes substrate choice of superconducting 

detectors very limited, which sometimes restricts their efficiency and range of applications. 

Especially, for integration in waveguide circuits or optical cavities we need to fabricate 

detectors on substrates like GaAs or silicon.  Though enough research has been carried out 

to heat the substrate up to a few hundred degrees centigrade during the thin film deposition 

or to control film growth parameters, deposition of NbN or NbTiN on lattice mismatched 

substrates or complicated optical structures is still a challenging problem [70]. Miki et al. 

have demonstrated high efficiency fiber-coupled NbTiN based SNSPDs fabricated on 

thermally oxidised silicon substrates (the best performing device have an SDE of 74%) [71].  

Recently, several amorphous transition metal (TM) based Type II superconducting materials 

(MoSi, MoGe or WSi) have been demonstrated to be highly promising alternatives for this 

purpose. These materials offer various advantages to SNSPD fabrication [72]. (Type II 

superconductors are a specific class of superconducting materials where there are two 

differenct critical magnetic fields. At the onset of the first one, the material enter a mixed 

region of normal and superconducting state, named as vortex state. At the second one, 

superconducting property is completely destroyed.) They do not have strict substrate 
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requirements and also have lower superconducting gap energies which give higher intrinsic 

single photon detection efficiency at long wavelengths [73]. Though they have lower critical 

current density compared to NbN due to lower free carrier concentration but that also leads 

to larger hotspot size during absorption of an incident photon [74].  

From the eqn. 2.9 it is evident that the advantage of the lower superconducting gap (2Δ(0)) 

comes with a lower superconducting transition temperature. Molybdenum silicide, with a 

composition of Mo75Si25, has a bulk Tc of ~7.5 K [62], which is comparatively much higher 

than what other transition metal based superconducting material allows. On the other hand, 

its bulk superconducting energy gap is ~ 2.28 meV [62] which is almost half of the energy 

gap of NbN (4.9 meV) [73]. The following table presents a comparison between 

superconducting properties of various TM based amorphous alloys and traditional SNSPD 

materials. Amorphous alloys such as WSi (which is until now the most commonly used 

amorphous thin film for high efficiency SNSPDs) or NbSi have very low bulk Tc. Hence, we 

need an expensive and complicated cooling system to run WSi based SNSPDs below 1 K to 

achieve high system detection efficiency (SDE) and low timing jitter. MoSi has a Tc > 4K 

even in the thin film form although its superconducting energy gap is comparable to that of 

WSi. So, it can be an ideal base material for high performance SNSPDs which can be 

operated at a temperature >2K with relatively cheap, less complex closed cycle cryogenic 

systems.  

Table 2.2: Comparison of the superconducting properties of amorphous transition 

metal (TM) based alloy materials with conventional SNSPD material 

 NbN MoSi MoGe WSi NbSi 

Bulk Tc  (K) 16 [73] 7.5 [73] 5 [62] 7.4 [62] 3.1 [75] 

Thin Film 

Tc  (K) 

8.6 (3 nm) 

[63] 

4.2 (4 nm) 

[73] 

4.4 (7.5 nm) 

[62] 

3.7 (4.5 nm) 

[62] 

2 (10 nm) [76] 

Energy 

Gap 2Δ(0)  

(meV) 

4.9 [73] 2.28 [62] 2.2 [62] 1.52 [62] 0.94 

 

SNSPDs fabricated from WSi amorphous thin films have demonstrated better than 90% 

SDE. The first MoSi based SNSPD was reported by Korneeva et al. achieving 18% 

efficiency at 1200 nm wavelength [77]. Verma et al. have recently shown by integrating 
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detectors in an optical cavity, an enhanced efficiency of 87% at 1542 nm can be obtained 

with 76 ps timing jitter [78]. 

Though high temperature superconductors (HTS) could be interesting material for SNSPDs 

in terms of cryogenics, they have significant disadvantages. These materials have large 

superconducting energy gaps compared to low temperature superconductors [79]. (As shown 

by equation 2.9 superconducting energy gap is a linear function of Tc . Though HTSs are far 

from ideal BCS superconductors its energy gap is larger due to its comparetively higher Tc 

.) Hence, it is really difficult to design high efficiency SNSPDs for infrared single photon 

detection based on HTS films. Ultrathin films with optimal superconducting properties based 

on HTS materials are hard to produce and are subject to rapid degradation. Moreover, 

complicated crystal structure and grain boundaries lead to suppresion of critical current and 

formation of grain boundary based josphson junstions. It would be very challenging to 

deposit uniform HTS films over a large area and fabricate nanowire based devices on them 

[80].  

  2.5.4  Applications    

SNSPDs have been demonstrated to be highly a promising alternative solution for advanced 

photon counting applications. Potential applications include quantum key distribution 

(QKD) [81], linear optical quantum computing [82], characterisation of quantum emitters 

[83], space-to-ground communications [84], integrated circuit testing [85] and single oxygen 

luminescence dosimetry for laser based cancer treatment [86]. As shown in the following 

figure, the spectral sensitivity of an SNSPD covers a wide range (200 nm -  >> 2µm) due to  

smaller superconducting energy gap (meV instead of eV).  At infrared wavelengths SNSPDs 

operate with high system detection efficiency, low dark count rate and tens of picoseconds 

timing jitter. On the other hand, the performance of semiconductor based single photon 

detectors is restricted by material properties (e.g. for infrared photon detection SPAD 

development is very complicated due to competing requirements of a material with good IR 

absorption and low noise gain). Though the requirement of cryogenic operation brings 

additional complexity to measurement set up, it is possible to design and fabricate high 

performance SNSPDs which can be operated at a temperature >2 K using relatively cheap, 

less complex closed cycle cryogenic systems. Hence, SNSPDs can be promoted as an 

attractive substitute technology for single photon detection especially in the infrared spectral 

domain.  
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Fig. 2.13: The compatibility between single photon counting technologies and applications 

in terms of operating wavelength; the figure also demonstrates the advantage of 

superconducting detectors as an alternative choice for ultrasensitive photon detection due to 

its smaller energy gap (meV instead of eV).  
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2.6 Terahertz radiation detection: Microwave Kinetic 
Inductance Detector (MKID) 

In spite of having zero DC resistance, superconductors have non-zero complex surface 

impedance for alternating current (AC). When an electric field is applied on a 

superconductor, Cooper pairs are accelerated storing kinetic energy in them. Energy may 

also be stored in the magnetic field inside the superconductor (within the short penetration 

depth). Thus, a superconductor has a complex surface impedance due to the energy flow 

between the superconductor and the applied electromagnetic field [87], [88]. 

Superconducting kinetic inductance sensors utilise this property. When a photon is incident 

on the sensor, some Cooper pairs are broken leading to the creation of a cascade of 

quasiparticles having energy slightly greater than the superconducting gap energy. The 

number of quasiparticles is given by Nqp=hquasihn/Δ (hquasi is the efficiency of the device to 

generate quasiparticles.) These particles persist until two quasiparticles meet and emit a 

phonon, recombining into a Cooper pair again. These quasiparticles induce a change in the 

surface impedance of the superconducting thin film (Zs=Rs+iωLs) as the kinetic inductance 

of a superconductor is inversely proportional to the density of Cooper pairs. This change in 

surface impedance is detected through proper read-out electronics. The read-out is achieved 

by introducing the device in a microwave feed line and through the resonant frequency of 

the LC circuit as shown in the figure below. The absorption of a photon will cause the 

resonance centre frequency to shift to lower values and the resonance dip to decrease in 

depth. A crucial advantage of MKIDs is that they are easy to multiplex via a single 

microwave feed line and are thus scalable to large arrays.  
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Fig. 2.14: MKID operation principle. A: Incident photons break Cooper pairs creating 

quasiparticles. B: By embedding a superconducting thin film device in a resonance circuit, 

it is possible to read out changes in the complex surface impedance and frequency division 

multiplexing can be achieved by coupling many resonator circuits to a single transmission 

feedline. C: Measured transmission from contact 1 to 2 in resonator circuit shown in B. The 

blue line represents the equilibrium situation and the red line the situation after photon 

absorption [89]. 

2.6.1 Performance Parameters for MKIDs 

Noise Equivalent Power (NEP): Noise equivalent power (NEP) is an important parameter 

to measure the sensitivity of MKID detectors. In thermal equilibrium, the sensitivity of 

kinetic inductance detectors is limited by the random generation and recombinations of 

quasiparticles due to thermal noise. The generation-recombination noise equivalent power 

NEPG-R can be expressed as [89]: 

                         𝑁𝐸𝑃𝐺−𝑅 =
2∆

𝜂𝑞𝑢𝑎𝑠𝑖
√

𝑁𝑞𝑝

𝜏𝑞𝑝
∝ exp (−

Δ

𝑘𝐵𝑇
)                                                   (2.14) 

Here, Nqp denotes the number of quasiparticles and 𝜏𝑞𝑝 is the quasiparticle life time. Since, 

theoretically, both Nqp and   𝜏𝑞𝑝 follow exponential dependency with temperature,  𝑁𝐸𝑃𝐺−𝑅 

also follow similar scaling  with temperature. For applications in next generation far infrared 

astronomoy projects , a NEP of the order of 10^-19 is required. On the other hand, for passive 

teraherz imaging, a NEP ~10^-15 is sufficient [87].  
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Energy Resolution: For any photon detector which works on the concept of creation of 

quasiparticles upon absorption of photons, there is a fundamental limit on the energy 

resolution of the device called the Fano Limit. This limit arises because the number of 

quasiparticles created by absorbing a photon is a noisy process. Due to this noise or 

fluctuation, for a monochromatic incident signal, a gaussian like signal is generated instead 

of a sharp delta function like peak. The full width half maximum of this peak defines the 

energy resolution of the detector system. The following equation describes the energy 

resolution of MKID [89]: 

Δ𝐸 = 2.355√𝐸𝑝ℎ𝑜𝑡𝑜𝑛Δ𝐹𝜂𝑞𝑢𝑎𝑠𝑖
−1                                                                                  (2.15) 

Here, F is the Fano factor and Δ denotes the energy gap. Since energy lower than this value 

cannot be detected by the specific detector, the relative energy resolution is defined by, 

  R=E/ 𝛥𝐸                                                                                                                        (2.16) 

(E is energy of incident photons) 

2.6.2 Base material for MKID  

Since its first demonstration in 2003, there have been considerable research efforts made to 

develop microwave kinetic inductance detectors (MKIDs). This technology is widely 

employed in ground based astronomy and is under consideration for many other domains. 

In the first instance, thin Al films were used to fabricate MKIDs [90]. Recently, TiN has 

shown to have several advantageous properties in comparison to Al. The main benefit of 

TiN thin film is its tunable superconducting property, as the Tc of the sub stoichiometric TiN 

film can be tuned by changing its N2 content (in the range of 0.5 K < Tc< 5 K). Hence, we 

can design the film property according to the desired frequency range to be detected or the 

operating temperature of the device [91].  Also, higher room temperature resistivity of TiN 

leads to higher kinetic inductance, which allows for much more straightforward and compact 

designs of lumped-element MKID devices (assuming the thicknesses of the superconducting 

thin films is much smaller than their London penetration depths; the correlation between  

kinetic inductance and room temperature sheet resistance can be interpreted from the 

following equation: 𝐿𝑘 =
ℏ𝑅𝑠

𝜋Δ(0)
  [92]).  
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2.6.3 Application of MKIDs 

MKIDs enable the detection of single photons for the frequencies ranging from infrared to 

x-ray with high time resolution (~ µs) and with simultaneous energy resolution. They are 

gaining importance in millimetre wave astronomy. MKIDs do not suffer from the read noise 

or dark current like CCDs (charge coupled devices) or other standard detector for optical 

astronomy.  The following Fig. 2.15 shows an image of an IRAM 30 m telescope located in 

Spain where there is an ongoing project of MKID based detector installations in this 

telescope. MKIDs can also provide a low noise, high sensitivity alternative in the field of 

passive terahertz imaging. There is a huge commercial market for terahertz imaging related 

applications. (Applications of terahertz imaging include defence assessment, the analysis of 

sub-surface features in historical art works, biomedical imaging, remote sensing in automatic 

navigation systems, etc. [93], [94]) Rowe has reviewed the comparison between the key 

specifications and the performance parameters of MKID based camera and other available 

terahertz imaging systems [95]. 
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Fig. 2.15: Applications of MKIDs: (a) IRAM 30 m telescope located in Spain, there is an 

ongoing project of KID based detector installation (b) Passive terahertz imaging.  

2.7 Summary 

Detection of single photon is a crucial technology for many real life applications including 

quantum information processing, astronomy, remote sensing, deep space communication or 

biotechnology. Two superconducting device technologies (superconducting nanowire single 

photon detectors [SSPDs/SNSPDs]) and microwave kinetic inductance detectors (MKIDs) 

have the potential to outperform other existing technologies and offer scalability to large 

arrays due to their unique properties. Superconducting thin films are critical for the 
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development of high efficiency superconducting detectors. In this thesis, we have studied 

optimisation of NbTiN & NbN thin film growth for SNSPD fabrication. After that, 

amorphous superconducting thin films have been explored (with an emphasis on MoSi) for 

the same purpose. Finally, we have investigated TiN as a potential high transition 

temperature base material for MKIDs for passive Terahertz imaging.  
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Chapter 3 

Experimental Methods 

In this chapter, we describe the experimental methods which have been employed to deposit 

and characterise superconducting thin films for this study. A newly installed ultra-high 

vacuum sputter deposition system has been used for the purpose of growth and process 

optimisation of superconducting thin films (Section 3.1). An atomic layer deposition tool 

has been used to grow TiN films (Section 3.1). Superconducting properties of the films have 

been characterised in a cryogen free thin film testing set-up (Section 3.2). Structural and 

optical properties have been analysed using high resolution scanning transmission electron 

microscopy (Section 3.4) and variable angle spectroscopic ellipsometry (Section 3.5).  

3.1 Thin Film Growth 

Thin films can be grown by various techniques such as atomic layer deposition, sputtering, 

electron beam evaporation, chemical vapour deposition or ion-implantation etc [1], [2]. 

Among these methods, sputtering is the most used technique for superconducting thin film 

growth for the purpose of nanoscale device applications. Magnetron sputtering can be used 

to grow all the materials we are interested in for superconducting detector fabrication, i.e. 

refractory metal nitrides (NbN, NbTiN or TiN) or TM based amorphous alloys (MoSi, MoGe 

or WSi). That is why we have used an ultra-high vacuum load-locked sputter deposition 

system for superconducting thin film growth. The atomic layer deposition (ALD) technique 

has also been explored to deposit superconducting TiN films.  

3.1.1 Sputter Deposition System 

A schematic of a sputter deposition process is shown in Fig. 3.1. During sputter deposition, 

a high voltage is applied between the cathode (target) and anode. This ignites a glow-

discharge plasma. Positively charged plasma ions collide with the target leading to the 

erosion of target particles. These target atoms are deposited on the substrate forming a thin 

film. An inert gas (Ar is most widely used) is used as the medium for plasma generation. Ar+ 

ions have a very small mean free path (~ 52 nm under standard temperature and pressure). 

So, a magnetic field across the target is maintained in order to enhance the number of high 

energy ions bombarding the target. This traps secondary electrons in the discharge for a 

longer duration, increasing the probability of ionising argon during their travel from cathode 

to anode [3]. 
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Fig. 3.1 Thin film growth by the sputter deposition in a vacuum chamber: During the 

deposition, a high voltage (By DC or RF power supply) is applied between the target 

(Cathode) and the ground and a plasma is ignited in the process chamber; being trapped close 

to the magnetron, high energy plasma ions collide with the target and ejected target material 

atoms are deposited on the substrate.  

               

A new sputter deposition system has been installed in the James Watt Nanofabrication 

Centre, University of Glasgow in April 2014. The system was manufactured by Plassys 

Bestek, France (http://www.plassys.com). Here, we have presented the detailed description 

of the sputter deposition system. 
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                             Fig. 3.2 Plassys VI Sputter deposition system.  

 

 

 

          Fig. 3.3 Technical drawing of the cross-section of the deposition system. 

Figure 3.2 shows an image taken from the front of the system. The instrument has a 340 litre 

sputtering chamber made of electro polished stainless steel. The main process chamber is 

400 mm high and has an inner diameter of 600 mm. The substrate holder is attached to the 
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removable top plate of the chamber. This plate is linked to an electrical hoist which may be 

used to lift and swivel the substrate holder away from the chamber. The hoist is secured with 

an atmospheric pressure membrane switch. The bottom plate of the chamber is equipped 

with a cluster of cathodes. There are five confocal magnetron sputter guns (manufactured by 

Meivac USA). Each gun can accommodate a 3'' diameter sputter target with 0.25'' or 0.125'' 

thickness. Cathodes are tilted by 5°with respect to the vertical axis of the chamber. All the 

guns are connected to a power supply (three of them are connected to DC supply and two 

are to RF supply). A switching arrangement in the power supply allows safe and rapid 

interchange between sputter guns. (RF sputtering is very useful to remove charge 

accumulated on the dielectric or non-conducting target materials.)  The power supplies are 

configured to enable co-sputtering from two or more sputter targets simultaneously. All the 

cathodes are supplied with cooling water to reduce the temperature rise due to the heat 

generation during sputtering. The sputtering chamber also has a view port covered with 

protective glass.  

 

 

               

Fig. 3.4 (a): Main process chamber of the deposition system (b): Targets and the sputter gun 

inside the chamber. 

The substrates are inserted into the system through a load lock mounted on the left side of 

the chamber. The substrate carrier has an adapter mount for up to nine 10 mm x 10 mm or 
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15 mm x 15 mm square samples. A specific substrate carrier made of molybdenum is to be 

used when substrates need to be heated. The load lock is a stainless steel chamber with a 

hinged top lid and viewport. A transfer valve separates the main process chamber from the 

load lock, allowing the sputter chamber to be kept at high vacuum at all times and to prevent 

contamination. Before being transferred to the main chamber, the substrates can be cleaned 

with argon plasma in the load lock. A motor driven, magnetically coupled transfer arm is 

used to insert the samples in the chamber and to transfer the samples back to the load lock 

at end of film growth.  

 

                          

                                  

Fig. 3.5: (a) Liquid nitrogen trap. (b): Substrate heater glowing (note: the lower image is a 

reflection).        

The substrate holder is mounted on a magnetically coupled feedthrough. Its distance from 

the magnetron cathodes can be adjusted by a motorised controller. The target-substrate 

distance can be adjusted over a range of 10 cm. According to the specifications provided by 

the system manufacturer, at a distance of 100 mm the film growth is most uniform over a 

large area (maximum wafer diameter 150 mm). The substrate holder can be rotated up to a 

speed of 200 rpm during thin film deposition to provide better uniformity. There is a PID 

controlled resistive heater attached to the holder, which can heat the substrates up to 800°C. 

The heater has a factory calibrated thermocouple to measure the substrate temperature. 
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Besides substrate heating, this deposition system also has the capability of cooling substrates 

before film growth. The process chamber is connected to a liquid N2 trap mounted on a 

flange. This trap is manually filled before film deposition. The substrate carrier is transferred 

from the main chamber to an elevator mounted on the base plate. This motor driven elevator 

pushes the substrate carrier against the LN2 trap to cool it down. Once the carrier has been 

cooled down, it is transferred to the substrate holder. A magnetically coupled transfer arm 

will move the substrate from the LN2 position to the deposition position inside the main 

chamber. 

The sputtering chamber is connected to two high vacuum pumping assemblies (viz. cryo and 

turbo pumping system). Pumping ports are mounted on the sidewall of the chamber. They 

maintain an ultra-high vacuum (with a base pressure of less than 5 X 10^-9 Torr) in the 

process chamber. [Oxford Instruments model 8/8LP cryo pump, pumping speed: 1500 l/sec 

for Air, 4000 l/s for H2O water cooled compressor; Edwards model STPA 803c turbo pump, 

pumping speed: 800 l/sec.] The base pressure of the chamber is monitored through a hot-

filament ionisation gauge (manufactured by Kurt-J-Lesker).  

The instrument is connected to four gas lines (Ar, N2, O2 and CH4). Each line is equipped 

with a digitally controlled mass flow controller and a pneumatic stop valve. During the 

execution of any process in the chamber, the cryo pump line is closed with a gate valve 

(Mode CF 200) as reactive gases are not safe for cryo pumping and the turbo pump is 

throttled with a butterfly valve (VAT model 612). The position of this throttle valve, along 

with the flow rate of incoming gas, controls chamber pressure during any process.  

The following table gives an overview of the sputter targets we have used for thin film 

deposition in our instrument. 
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                        Table 3.1 Detailed Descriptions of the Sputter Targets  

 

 

3.1.2 Atomic Layer Deposition System 

ALD is a chemical reaction based deposition technique. During the ALD process, chemical 

precursors (usually of gaseous phase) are pulsed in sequentially inside a reaction chamber. 

These precursors undergo self limiting chemical reactions on the surface of the substrate 

leading to the formation of thin film. Inductively coupled plasma may be ignited in the 

process chamber using some reactive gases (e.g. N2 or H2) to assist the film growth. The 

substrate can be heated to promote the chemical reaction. At the end of each pulse step, the 

reaction chamber is purged with argon to clean remaining precursors and reaction by-

products [4]. 

Material Mode of Power 
Supply 

Purity Manufacturer  Thickness 

Niobium DC 99.95%  Materion 
Microelectronics 
and services  

0.250’’  

Titanium DC 99.995% International 
Advanced 
Materials  

0.250’’ 

Molybdenum DC 99.99% International 
Advanced 
Materials 

0.250’’ 

Silicon RF 99.999% Kurt J. Lesker 
Company Ltd. 

0.250’’ 

Germanium RF 99.99% International 
Advanced 
Materials 

0.250’’ 
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Fig. 3.6: Schematic diagram of the process chamber of Atomic layer deposition (ALD): 

formation of thin film by surface limiting chemical reaction on the substrate surface.  

We have used a FlexAL®II ALD system manufactured by Oxford Instruments for TiN thin 

film deposition. This system is integrated into a cluster tool installed in the James Watt 

Nanofabrication Centre, University of Glasgow. The system can accommodate a wafer size 

with a diameter of up to 200 mm (8”). There is a load lock attached to the main process 

chamber, which allows substrate transfer without venting the main chamber. To increase the 

efficiency of the deposition process, the wafer carrier can be electrically heated up to a 

temperature of 500°C. The temperature of the substrate is monitored with the help of a PLC 

controller during the deposition.  The main chamber is pumped with the help of a turbo 

pump. An inductively coupled plasma source (ICP 65) has been used in this system to 

generate plasma during film deposition (a RF generator and AMU has served the purpose of 

power supply). There is a precursor delivery module adjacent to the system to deliver 

necessary precursors for the film growth. The flow of the precursors is controlled by 

pneumatic valves. 
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Fig. 3.7: Atomic layer deposition chamber as a part of the cluster tool installed in the James 

Watt Nanofabrication Centre, University of Glasgow, manufactured by Oxford Instruments.  

3.2 Cryogen free Thin Film Testing Station1 

Until the end of last century, the most common method for cooling down a superconducting 

sample was to immerse it in liquid helium. Usually, liquid helium is stored in a cryogenic 

storage dewar, but no dewar can provide perfect thermal insulation. Thus, the cryogenic 

liquid slowly boils away and the liquid helium storage needs to be refilled regularly. This 

makes the use of liquid helium dewars very expensive. Moreover, regular use of liquid 

helium may lead to several safety hazards, and this demands trained personnel for proper 

use. Recently developed refrigeration systems based on closed cycle cooling offer a solution 

to this problem. Over the past decade, commercially available closed cycle cryo-coolers have 

improved it to a large extent so far as attainable base temperature is concerned.  

 A closed cycle cryostat has been developed to measure the superconducting transition 

temperature of the thin films. This thin film testing system is based on a Sumitomo 

RDK101D coldhead and a Sumitomo CNA-11C compressor unit.  The compressor and the 

coldhead are connected with a two way gas line. This system runs through a 13 A electrical 

outlet (with 1 kW power consumption) and requires only air cooling. The operation of this 

cold head is based on Gifford-McMahon (GM) closed cycle cooling. High purity helium is 

                                                           
1 The cryogen-free thin film testing set up was designed by the author and built up by Kleanthis 

Erotokritou as a part of his master thesis. 
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circulated through the cold head and compressor. The cyclic operation of the GM cryo- 

cooler consists of 4 steps [5].  

Step 1: At first, the high pressure inlet valve is open. The displacer is moved to the top of 

the coldhead. The gas flows through the regenerator to the bottom of the coldhead. The 

regenerator absorbs heat from the gas, reducing its temperature. This gas, in turn, reduces 

the temperature of the coldhead.  

Step 2: The high pressure valve is then closed and the low pressure valve is opened with the 

position of the displacer fixed at the top. Part of the gas flows through the regenerator to the 

low pressure side of the compressor. Thus, gas in the cold head expands. This expansion 

cools down the gas further.  

Step 3: The displacer is moved to the bottom of the coldhead forcefully (using a motor). 

This forces the cold gas to pass the regenerator while taking up heat from the regenerator. 

Gas flows to the low pressure outlet valve.  

Step 4: The outlet valve is then closed and the inlet valve is opened with the displacer at a 

fixed position. The gas, now in the hot end of the coldhead, is compressed and heat is 

released to the surroundings. At the end of this step, we are back to Step 1. 

Sub-helium temperature can easily be achieved by building multi stage cryo-coolers. As 

shown in the following figure, the coldhead we have used has two stages: One warmer stage 

and another colder stage which reach a base temperature of ~3-4K during cool-down.  
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Fig. 3.8: (a) Heat flow diagram of Gifford-McMahon (GM) cryo-cooler. (b) Sumitomo 

RDK101D coldhead. (c) Sumitomo CNA-11C compressor unit. 

In the thin film testing set-up, we aim to measure the resistance of eight samples at a time 

(using four pogo pins for each sample) as a function of temperature. The samples are 

mounted on the 4 K stage, which is the second stage (or the sample stage) of the cryo-cooler. 

As shown in the figure below, we have placed a circular metal disc at 4 K stage of the 

a 

b 
c 
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coldhead. Around this disc there are 8 rectangular holes with steps at their boundary to place 

pogo pin holders (as shown in Figure 3.10(a)). In each holder (made of Tufnol laminated 

plastic) we have inserted four pogo pins by press fitting. On the top of this, we placed another 

circular metal disc. This disc has eight slots to accommodate eight 15 mm x 15 mm square 

samples (Figure 3.10(b)). Our samples (thin films sputtered on different substrates) are to be 

placed in these slots. An insulating carrier is used for this purpose to avoid shortage between 

the edge of samples and the metal stage. This disc is to be placed on the metal stage with 

pogo pins in such a way that all the pogo pins can touch the samples. Oxygen-Free High 

Conductivity (OFHC) copper has been used for these metallic parts as it has a very high 

thermal conductivity. 

 

 

       

                Fig. 3.9: Block diagram of the cryogen free thin film testing set up. 
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The coldhead needs to be encapsulated in a vacuum can and sealed off before cool-down 

because cold surfaces act as a trap for any residual gases remaining inside the chamber after 

the cool-down, and this can lead to a serious hazard. We have attached a hexagonal base at 

the bottom of the cold head (Fig. 3.10 (c)). A vacuum can with commercially available O-

rings and flanges have been placed over the hexagonal base. Before every cool-down, the 

system has been pumped down and sealed off using an isolation valve.  
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Fig. 3.10: Different parts of the cryogen free Tc testing set up. (a): Metal disc placed on the 

4 K stage of the coldhead, pogo pins are press fitted in the insulating holders. (b) Metal disc 

to hold the samples (Both the discs are made of oxygen free high conductivity copper). (c) 

Radiation shields made of gold plated aluminium.  
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One of the primary requirements for our cryostat design is to reach a stable base temperature 

of below 4 K for a long period of time so that it can be employed in the electrical 

characterisation of superconducting thin films. For that purpose, it is necessary to reduce the 

heat load in the cryostat as much as possible. Radiative heat load can be a significant problem 

in reaching very low temperatures due to the huge difference between ambient temperature 

and temperature in the coldhead. Therefore, we have mounted a radiation shield on the 40 K 

stage of the cold head. Metals with highly reflective surfaces can be used for this purpose 

since these have very low radiation emissivity. Emissivity can be further reduced by 

polishing the metals’ surfaces. We have used gold plated aluminium for the radiation shield. 

 

For the electronics read-out we have used an isolated voltage source (SRS SIM928) in series 

with a resistor to provide a constant amount of current through the outer pair of pogo pins at 

each individual sample. At the same time, we have measured the voltage difference across 

each sample with the help of an inner pair of pins as a function of cryostat temperature (four 

point resistance measurement). We have introduced a programmable Labjack switch which 

is connected to a computer through a RS-232 cable. The purpose of the Labjack is to record 

the applied current and measure potential difference values across each sample and then 

calculate their individual resistance by the use of a home built Python program. Additionally, 

an electronic switching circuit (relay) is connected through the Labjack to the computer in 

order to swap between the connected samples. The isolated voltage source, digital voltmeter 

and temperature sensors are installed in an SRS SIM900 mainframe.  

 

For temperature measurement, we have used a silicon diode thermometer manufactured by 

Lake Shore which can be used in a cryogenic environment. The thermometer is attached to 

the 4 K stage of the coldhead. Since the accuracy of temperature measurement is crucial for 

this set-up, this thermometer is individually calibrated by the manufacturing company. It is 

calibrated from 1.4 K to 325 K with a tolerance of ±12 mK. The calibrated curve has been 

loaded to the SRS temperature sensor by a Python program. In order to connect the pogo 

pins of each sample to the electronic controlling circuit, we have used twisted pairs of a 110 

micrometre diameter polyester insulated constantan wire. This wire was chosen mainly due 

to the fact that low thermal conductivity of constantan would help to decrease conductive 

heat load on the system. These wires connect the pogo pins and the hermetically sealed 
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electrical connectors attached to the rectangular panels of the hexagonal base of the cryostat. 

Through the Python program, we can monitor and record R versus T data of superconducting 

thin films during cool-down or warming up.  

 

Fig. 3.11: Resistance versus Temperature curve of a superconducting thin film measured in 

the thin film testing set up. 

3.2.1 Measurement of Critical Current Density2 

Towards the end of this study, we have modified the programming of the thin film testing 

system so that we can measure the critical current density of superconducting thin films at 

the base temperature of the cryostat (~3 K) which have been deposited in our system. We 

have designed a mask to pattern a nanostrip on the thin films. The following figure 3.12 

shows the design of the mask.  The strip is 6 µm wide and 300 µm long. It is connected to 

four contact pads in such a way that if we place the patterned sample in the sample holder 

of the above described Tc testing set-up, the pogo pins with connect contact pads and the 

                                                           
2 The photolithography mask for critical density measurement was designed by Umberto Nasti and the 

modification in the programming has been done by Christopher Gough as a part of his 1st year 

postgraduate research project. 
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current-voltage characteristic of the nanostrip can be measured using a SIM 970 voltmeter 

and a SIM 928 voltage source. 

 

                                            

                                                                         (a) 

             

                                                                    (b) 

Fig. 3.12: Mask used to pattern the nanowire on the superconducting thin film to measure 

critical current density.  

3.3 Thickness Measurement  

The sputter deposition tool which has been used for the growth of superconducting materials 

does not have any real time thickness monitor inside its chamber. However, an accurate 

estimation of film thickness and growth rate is essential for each process. Hence, we had to 

measure the thickness of the films after deposition. Initially, while executing the process 
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optimisation for different materials, we followed a simple process to measure thickness. 

Before deposition, we drew a line across the substrate with an ink gel pen. After that, the 

substrate is inserted into the chamber and film is deposited on the top of it. At the end of 

deposition cycle, we etched the ink with acetone. Finally, the step created in the etch process 

can be scanned in atomic force microscopy (AFM). From this AFM scan, we can measure 

the thickness of the film.  

Later on, several films have been analysed in high resolution transmission electron 

microscopy (HRTEM) and variable angle spectroscopic ellipsometry (VASE). We have 

extracted film thickness from these techniques and compared it with AFM measurements.  

 

 

Fig. 3.13: Thickness measurement: (a) Step created by making a cross mark on the substrate 

with help of an ink pen prior to film growth and etching the film in acetone after deposition. 

(b) AFM scan across the step created. (c) Thickness measurement from the step profile. 

3.4 Transmission Electron Microscopy3 

We have analysed chemical composition and structural characteristics of superconducting 

thin films in high resolution transmission electron microscopy (HRTEM). The transmission 

electron microscope facilities available in the School of Physics and Astronomy, University 

of Glasgow (JEOL ARM200cF and FEI Tecnai T20 microscope) have been used for this 

                                                           
3 Transmission electron microscopy analysis has been carried out in collaboration with the research 

group led by Dr. Ian MacLaren, School of Physics and Astronomy, University of Glasgow. 
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purpose. Before the HRTEM analysis, electron transparent cross sections have been prepared 

using a dual beam focussed ion beam (FIB) system [6].  

3.4.1 Sample Preparation for HRTEM Analysis  

 At the beginning of the sample preparation, a conductive layer is deposited on the top of the 

film as a protection against the potential damage during FIB processing. For our samples, 

Gold has been used as the protective layer. After that, the sample is inserted in the FIB 

system. A metal strip (Pt for our films) is deposited on the region of interest using ion beam 

(Fig. 3.14 (b)). Then, material surrounding the region of interest is removed with the help of 

a focussed ion beam. As shown in Fig. 3.14 (c), a large stair-step FIB trench is cut on one 

side of the area of interest and a rectangular trench is made on the other side. After this 

step, the sample holder is tilted to an angle of >45° and then the bottom, left side and a 

portion of the right side of the specimen is cut so that the sample is partially released. Then, 

the holder is tilted back to its original position and the specimen is thinned to electron 

transparency. For HRTEM analysis, a final thinning is performed at an angle of ∼1–2° with 

respect to the plane of the sample surface. The thinnest portion of the sample lies in the area 

of interest for HRTEM analysis (usually ~50 nm).  Finally, a micromanipulator is used to 

lift the sample cross section from the trench and transfer to a copper TEM mesh grid (Fig. 

3.14 (d)). 
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Fig. 3.14: Sample preparation for high resolution transmission electron microscopy analysis. 

(a) Area of interest on the sample. (b) Metal strip (Pt) deposited on the area of interest. (c) 

Material removed surrounding the area of interest to create trench so that (d) Electron 

transparent thin sample cross section is lifted to TEM grid through a micromanipulator. 

3.4.2 Working principle of Transmission Electron Microscopy 

In transmission electron microscopy, a high energy electron beam is used to analyse material 

properties of samples. Due to a smaller wavelength of electron beam (3.7 pm for a 100 keV 

electron beam), it is possible to obtain a much higher resolution with TEM in comparison to 

an optical microscope. In our set up, JEOL ARM200cF has a cold field emission gun and 

Tecnai T20 uses a LaB6 filament as the electron source [7]. 
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Fig. 3.15: Basic schematic diagram of transmission electron microscopy demonstrating its 

working principle. 
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As shown in the above figure, the electron source of the microscope generates a high energy 

electron beam. A two stage condenser lens system is used to focus the electron beam on the 

sample. There is an aperture immediately after the condenser lens system.  The ‘brightness’ 

of the image is controlled by the condenser system. The objective lens forms an inverted 

image (with a small degree of magnification) of the sample by focussing the transmitted 

electron beam in a virtual image plane. The focal length of the lens can be changed by 

adjusting the current passing through the electromagnetic coil that makes up the objective 

lens.  An objective aperture may be inserted to select electrons which will form the image 

(selecting specific diffraction spots for dark field imaging). The projection system forms a 

magnified image in the recording device.  The magnification of the microscope can vary 

from a few hundred to several hundred thousand depending on the setting of the strength of 

the projector lenses.  

By adjusting the projection lens system, we can also image the diffraction pattern formed 

due to the interaction between the electron beam and the sample at the back focal plane of 

the objective lens. The diffraction pattern can reveal much useful information about the 

structural properties of the sample under investigation.  
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Fig. 3:16: Diffraction pattern recorded in transmission electron microscopy: (a) Diffused 

rings amorphous materials (Diffraction pattern recorded from amorphous MoSi films grown 

by our group). (b) Diffuse patterns with polycrystalline grains (Polycrystalline Zr/Ni/Cu-

based alloy, Image taken from http://www.ammrf.org.au/myscope/images/tem/diffraction-

sad.jpg) (c) Single crystalline diffraction pattern (Zone axis diffraction pattern of austenite 

crystal, Image taken from https://commons.wikimedia.org/wiki/File:Austenite_ZADP.jpg).   

 

http://www.ammrf.org.au/myscope/images/tem/diffraction-sad.jpg
http://www.ammrf.org.au/myscope/images/tem/diffraction-sad.jpg
https://commons.wikimedia.org/wiki/File:Austenite_ZADP.jpg
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3.5 Variable Angle Spectroscopic Ellipsometry (VASE) 

The optical properties of superconducting thin films have been analysed by variable angle 

spectroscopic ellipsometry techniques. A J K Woollam’s spectroscopic ellipsometer 

(spectral range: 270 nm to 2200 nm, Si/AlGaAs detector) has been used for this study. 

Ellipsometry is a nondestructive optical characterisation technique. It measures the state of 

polarisation of the incident light while being reflected (or transmitted) by the sample surface. 

Optical properties of the sample determine how it influences the incident electromagnetic 

radiation [8], [9].  

 

 

 

Fig. 3.17: Variable Angle Spectroscopic Ellipsometry (VASE): a linearly polarised light is 

incident on the sample surface and a change in the state polarisation upon reflection off of 

the sample is measured with the help of the analyser and the photo detector. 

As shown in the above figure, during the ellipsometric analysis, a linearly polarised light is 

directed on the sample at a user defined angle of incidence. A monochromator is attached to 

the source. After being reflected at the sample surface, the polarisation of light changes and, 

in general, it becomes elliptically polarised. This change in the state of polarisation is 

analysed by the second polariser (called ‘analyser’) and a photodetector.  From the signal 

detected after the analyser, ellipsometry measures the ratio of the Fresnel reflection co-

efficients for the p and s polarised components as shown in the following equation.  
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              𝜌 =
𝑟𝑝

𝑟𝑠
= tan (𝜓)exp (𝑖𝛥𝑣)                                                                            (3.1) 

The above equation is the fundamental equation of ellipsometry. Here, rp and rs denote the 

Fresnel reflection co-efficient for the p and s polarised components. tan (𝜓) and  𝛥𝑣 are the 

amplitude change and phase shift of the incident light upon reflection. (p polarised light 

denotes light polarised parallel to the plane of incidence and s polarised light denotes light 

polarised perpendicular to the plane of incidence.) Measured data is usually expressed as a 

function of 𝜓 and 𝛥𝑣 as shown in equation 3.1. The angle of incidence is usually kept close 

to the Brewster angle so that the measured ratio can be maximised.  

To retrieve important information (e.g. thickness, refractive index, etc.) from the 

ellipsometric measurement, we need to construct a model which is suitable for the sample 

which is being measured. After constructing the model, we take the help of different fitting 

algorithms of the analysis software provided with the instrument (WVASE32 version 3.840) 

to fit the theoretical model with the 𝜓 and Δ𝑣  measurement data. It is to be noted that 

ellipsometric measurement strongly depends on the modelling as we cannot extract useful 

optical or physical parameters only from the measured data. For the superconducting thin 

films we have used a combination of Drude and Lorentz oscillator models to describe their 

optical properties.  

3.6 Nanowire patterning of superconducting thin films 

The transport properties, including the temperature dependence of the critical current density 

of amorphous superconducting thin films, have been measured from the low temperature 

measurements of nanowires patterned on the films. Electron beam lithography (EBL) and 

reactive ion etching (RIE) have been used for this purpose.  Here, we have given a brief 

overview of the fabrication procedure which has been followed to fabricate the nanowires.  

At the beginning, amorphous MoSi film (~ 10 nm thick) is grown on the top of the silicon 

substrate. Then, ZEP 520 A (a positive tone electron beam resist) is spun at 4000 rpm for 60 

seconds and baked for four minutes (leading to a thickness of 110 nm). EBL is used to define 

the patterns for alignment markers and contact pads. A Vistec VB6 UHR EHF EBL tool at 

100 keV has been used for all the EBL patterning. Then the chip is developed in Oxylene (at 

23°C temperature), leaving only the unexposed resist. 15nm Ti and then 75 nm Au is 

deposited on the device by electron beam evaporation. The Ti layer works as an adhesive 

layer between the Au layer and the Si substrate. The resist along with the unwanted Au is 
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removed by putting the chip in a 1165-Stripper solvent overnight. After that, the nanowires 

are patterned over the thin film. A second round of the EBL process is performed in a similar 

way to steps 2–4 to create the pattern. Reactive Ion Etching (RIE) removes the thin film 

unshielded by the resist (CF4 gas). The remaining resist is stripped using Shipley 1165 

microposit remover. 

             

Fig. 3.18: Nanowire fabrication: 1:  Deposition of superconducting thin film on Silicon 

substrate. 2. Spinning of ZEP 520 A (a positive tone electron beam resist) at 4000 rotations 

per minute (rpm) for 60 seconds and baked for four minutes. 3. Exposure to the electron 

beam to define patterns for contact pads and alignment markers. 4. Development in Oxylene 

(at 23°C temperature) for 60 seconds. 5. Deposition of 15 nm Ti and then 75 nm Au using 

electron beam evaporation. 6. Removal of resist along with the unwanted Au by putting the 

chip in 1165-Stripper solvent overnight. 7-9. Nanowire patterns are defined using a second 

round of EBL. 10. Reactive Ion Etching (RIE) removes the thin film unshielded by the resist 

(CF4 gas). 11. The remaining resist is stripped using Shipley 1165 microposit remover. 
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Chapter 4 

Optimisation of Niobium (Nb), Niobium Nitride 

(NbN) and Niobium Titanium Nitride (NbTiN) Thin 

Film Growth 

Since the fabrication of superconducting nanowire single photon detectors (SNSPDs) begins 

with superconducting thin film deposition, the quality of the films plays a vital role 

determining device performance. Nb based refractory metal nitrides (NbN & NbTiN) are the 

most widely used traditional thin film material for SNSPD applications. In this chapter, the 

growth and optimisation of NbTiN thin films have been reported (Section 4.2). Structural 

and optical characterisation of NbTiN films have also been discussed (Section 4.4 & 4.5). 

The acceptance test of the sputter deposition system (Section 4.1) and the process developed 

for NbN has been reported (Section 4.3). The chapter concludes with a short discussion on 

the SNSPD device fabrication based on the films deposited following the optimised process 

described in this chapter (Section 4.6).  

4.1 Acceptance test of sputter deposition system  

Immediately after the installation of the sputter deposition system, we started with the 

optimisation of thick superconducting niobium film. A 300 nm thick niobium film was 

deposited in our sputtering system (at 0.2 Pa chamber pressure, 0.9 A discharge current) and 

transition temperature was measured in the thin film testing set-up. The following figure 

presents resistance versus temperature data (Fig. 4.1). The film has a transition temperature 

of 9.1 K, which is close to the transition temperature of bulk niobium. This was a part of the 

acceptance test for the sputter deposition system.4  

                                                           
4 In the literature, there are several definitions of Tc. We define it as the temperature at which 

resistance of the film disappears or falls to zero in the R vs. T curve. 



74 

 

 

 

 

Fig. 4.1: Resistance versus Temperature curve of 300 nm thick niobium film deposited on a 

silicon substrate (zoomed in view) demonstrating a Tc of 9.1 K. 

It is observed from the R vs T curve (Fig. 4.2) that resistance of the niobium film steadily 

decreases with temperature during the cool-down process. Hence, the film is purely metallic 

in nature. The residual resistivity ratio (RRR) of the film is 4.4.  
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Fig. 4.2: Resistance versus Temperature curve of 300 nm thick niobium film deposited on a 

silicon substrate.  

4.2 Niobium Titanium Nitride Growth and 
Characterisation 

As discussed in the Section 2.4 of Chapter 2, the fabrication process of a superconducting 

nanowire single photon detector (SNSPD) initiates with superconducting thin films growth. 

For the operation of an SNSPD, ultrathin superconducting films (with a thickness of < 10 

nm) are required which can be cooled down below their transition temperatures using a 2 

stage cryo-coolers (to avoid expensive and hazardous cryogenic liquids). Gol'tsman et al. 

used NbN film in their initial SNSPD devices [1]. Until now, NbN & NbTiN are the most 

extensively used base materials for SNSPD fabrication (due to their higher bulk critical 

temperature and shorter coherence length) [2]. Hence, we have started our thin film 

optimization with NbTiN and NbN.  

4.2.1 Choice of substrate and deposition conditions 

At first, NbTiN film growth has been optimised in terms of desirable thickness, uniformity 

and superconducting properties. As was stated earlier in Section 2.4 of Chapter 2, since the 
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lattice parameters of MgO or sapphire are very close to that of NbTiN, they have been widely 

used as substrates for NbN or NbTiN based SNSPDs. However, this limited choice of 

substrates restricts the potential application of SNSPDs. That is why we chose silicon as our 

substrate for optimisation. Silicon is an attractive substrate material for various applications 

at telecommunication wavelength. It also has an advanced and mature fabrication 

technology. Single side polished silicon wafers with <001> crystalline direction have been 

diced into 15 mm x 15 mm sized substrates and have been used for NbN & NbTiN growth 

optimisation. 

Before deposition, the substrates have been cleaned in an ultrasonic bath with RO water, 

acetone and IPA for 5 minutes. Then, the substrates are inserted in the loadlock of the sputter 

deposition tool. Prior to the film deposition, substrates were etched into the loadlock with 

argon plasma for 2 minutes. After that, they are transferred to the main chamber with the 

automated transfer arm. NbTiN films are grown by the co-sputtering of confocal Nb and Ti 

targets in an argon environment and introducing a small amount of nitrogen in the chamber 

as the reactive gas. The distance between the substrate and the target is kept at 100 mm. The 

substrate holder was rotated at a speed of 60 rpm during deposition for better uniformity of 

the film growth. While executing the deposition process, the cryo gate valve of the chamber 

is closed. The turbo pump is throttled with a butterfly valve to maintain the desired pressure 

in the chamber.  

4.2.2 Choice between Current and Voltage Controlled Deposition 

Thin film growth process in DC magnetron sputtering can be controlled by the constant 

current mode, constant voltage mode or constant power mode. Yagoubov et al. [3] have 

discussed a potential approach to monitoring the NbN sputtering process and avoiding the 

hysteresis formation. According to their study, if NbN (or NbTiN) films are sputtered at a 

constant voltage or power mode, there is a possibility of the formation of a hysteresis loop 

in the I-V curve due to the unstable state of the discharge plasma. Fig. 4.3 depicts such a 

curve (I-V curve during reactive sputtering of NbN in the constant voltage mode).  
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Fig. 4.3: Current versus Voltage curve of the plasma during the reactive sputtering of NbN 

in the constant voltage mode as reported by Yagoubov et al. [3]. 

It is to be noted that besides deposited material, reactive nitrogen also reacts with the Nb 

(and Ti in case of NbTiN growth) target to form NbN there. At low discharge voltages and 

when the sputtering rate is very low, nitrogen mainly reacts with the target. Hence, the target 

becomes totally covered with NbN. As discharge voltage gradually increases, the sputtering 

rate of NbN on the substrate increases. At a certain critical voltage, the sputtering rate of the 

target becomes higher than the rate of formation of NbN on the target. Thus, the NbN layer 

on the target surface is partially eroded. The sputtered Nb atoms absorb more nitrogen 

leading to a further decrease of the NbN formation on the target surface and, hence, the target 

is further depleted of NbN. Since Nb has a larger secondary electron emission factor than 

that of NbN, discharge current rises sharply and discharge characteristics approach the I-V 

curve of pure argon. Then, if discharge voltage is afterwards gradually reduced, the nitrogen 

will still be almost completely absorbed by the sputtered niobium to form NbN on the 

substrate. But at a critical point, the target sputtering rate decreases to such an extent that 

NbN deposition on the target surface is renewed. As a result, the current drops abruptly, and 

the target is instantly coated with NbN.  

Let us now consider the I-V characteristics under constant current mode (Fig. 4.4). It clearly 

shows that there is no hysteresis in the curve. This is due to the fact that discharge voltage is 

compensated once it is deviated from the equilibrium position. If the sputtering rate 

increases, an additional part of the target surface is depleted of NbN leading to decrement in 
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nitrogen partial pressure. This will reduce discharge voltage (since the presence of nitrogen 

enhances impedance of argon plasma in the discharge). Hence, the sputtering rate returns to 

its initial value. The converse will occur if the sputtering rate decreases. Hence, it is possible 

to obtain a one-to-one correspondence between discharge voltage and nitrogen flow at 

constant current mode operation. Therefore, the change in discharge voltage due to the 

introduction of nitrogen into the chamber may be used as a suitable parameter to control 

nitrogen partial pressure in the system.                             

                                   

                                                     

Fig. 4.4: Current-Voltage curve when NbN is deposited in constant current stabilisation 

condition [3]. 

Later on, many other groups (for instance Marsili et al., Matsunaga et al., etc.) have utilised 

this concept to optimise NbN or NbTiN thin film deposition in reactive sputtering [4], [5]. 

In this study, we have also used a constant current controlled approach. 

 

4.2.3 Characterisation of Plasma 

At the beginning of the film growth, we have explored the target voltage vs nitrogen flow 

curve of niobium plasma in order to set a starting value of nitrogen flow for optimisation. 
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To determine this curve, 18 sccm of argon has been introduced in the process chamber and 

the throttle valve was set at 75° (setting total chamber pressure at 0.14 Pa).   At first, the Nb 

target has been pre-sputtered for 5 minutes, keeping the shutters closed to remove any 

contamination on the target surface.  Then, Nb target was sputtered with a 0.9 A discharge 

current and nitrogen was introduced into the chamber. A flow rate of N2 has been increased 

at a step of 0.5 sccm. For each nitrogen flow target, a voltage has been recorded once plasma 

is stabilised. After the target had become totally covered with nitrogen (operating above the 

hysteresis portion of the curve), the downward portion of the hysteresis curve has been 

determined by decreasing the N2 flow in 0.5 sccm steps. Fig. 4.5 shows the target voltage 

versus N2 flow curve. A 5 sccm nitrogen flow was chosen as the starting point (midpoint of 

hysteresis region of the curve) for the NbN or NbTiN growth optimisation. As discussed in 

the previous section – and suggested by Vaneldik et al. or Glowacka et al. – target voltage 

is an indicator of the state of nitridation of the target, and consequently also of the film 

stoichiometry. The mid-point of the top elbow of the hysteresis curve can be a good starting 

point for optimisation (5 sccm) [6], [7]. 

 

 

Fig. 4.5: Characterisation of plasma: Target voltage versus nitrogen glow curve for niobium 

target. 
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4.2.4 Optimisation of Process Parameters 

We started the optimisation with bulk NbTiN film growth. Nb target has been sputtered with 

a discharge current of 0.9 A and Ti has been sputtered with a 0.450 A current. The discharge 

current has been chosen in such a way that composition of the film would have been around 

80% Nb and 20% Ti by weight. 100 nm thick NbTiN films have been grown at various 

chamber total pressure. (Chamber total pressure is varied by controlling argon flow in the 

process chamber keeping the throttle valve at a fixed angular position of 75° keeping 

nitrogen flow fixed at 5 sccm.) Fig. 4.6 shows the variation of Tc with total argon flow in the 

chamber. All the depositions have been done at room temperature. Both the Nb and Ti targets 

were pre-sputtered prior to deposition for 5 minutes to stabilise the deposition conditions. 

The substrate holder has been rotated with a speed of 60 rpm. 

 

 

Fig. 4.6: Superconducting transition temperature of 100 nm thick NbTiN films deposited on 

unheated silicon substrates by co-sputtering from Nb and Ti target in an Ar/N2 environment 

as a function of different argon flow rates. 
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From the Fig. 4.6 it can be clearly seen that a maximum Tc of 15.1 K is achieved if NbTiN 

is grown with 18 sccm Ar and 5 sccm N2. (This corresponds to a total chamber pressure of 

0.14 Pa.) A deposition time of 6 minutes has been used to deposit 100 nm thick films.  

 

             

Fig. 4.7: Normalised Resistance versus Temperature of 100 nm thick NbTiN film deposited 

at various nitrogen flows keeping the total chamber pressure constant at 0.14 Pa. 

After that, the total chamber pressure has been fixed at 0.14 Pa and 100 nm thick NbTiN 

film was deposited at different nitrogen flow rates when other deposition parameters were 

kept unchanged. As it can be seen from the Fig. 4.7, a maximum Tc of 15.1 K can be achieved 

from a film grown with 5 sccm N2 flow. We have also checked the influence of other 

deposition parameters (e.g. Nb:Ti ratio or substrate holder rotation) on superconducting 

property of the film. The above mentioned process parameters give an optimum Tc for 100 

nm thick NbTiN film deposited at room temperature.  
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4.2.5 Process Optimisation for ultrathin NbTiN Films (thickness <10 nm)   

As mentioned in Chapter 2, decreasing film thickness results in the degradation of 

superconducting and electrical properties of thin films. To explore this thickness 

dependence, NbTiN films ranging from 100 to 5.5 nm in thickness were deposited on silicon 

substrates under the same optimised deposition conditions. The thickness of the films has 

been reduced by decreasing the deposition time.  

 
 

           Table 4.1: Optimised Recipe for NbTiN Deposition 

Nb 0.9 A (356 W, 398 V) 

Ti 0.450 A (179 W, 399 
V) 
 

Target 
Substrate 
Distance 

100 mm 

Substrate 
Holder 
Rotation 

60 Rotation per 
minute 

Ar Flow 18 sccm 

N2Flow 5 sccm 

Throttle 
Position 

75° 

Chamber 
Pressure 

0.14 Pa 
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Fig. 4.8: Variation of superconducting transition temperature of NbTiN films with film 

thickness. 

Fig. 4.8 shows that Tc sharply degrades as the film thickness decreases below 10 nm. For a 

5.5 nm thick film, we have obtained a Tc of 7.3 K with an RRR of 0.88. The deposition rate 

of this process was 0.275 nm/sec, meaning it took 20 seconds of deposition time to grow a 

5.5 nm thick film. The substrate temperature during thin film deposition has been found to 

be a crucial factor influencing the superconducting properties of NbTiN films since the 

crystalline structure of thin films changes with deposition temperature. There is a resistive 

heater in our sputter deposition tool attached to the deposition stage which can heat the 

substrates up to 800°C. A substrate holder made of molybdenum has been used for this 

purpose. 5.5 nm thick NbTiN films have been deposited at various substrate temperatures 

and a significant improvement of Tc has been observed as a result of substrate heating.  If 

we heat the substrate to 800°C for 20 minutes before deposition, the Tc improves to 10.4 K 

(with RRR= 0.91). Higher RRR indicates that films deposited on a heated substrate are more 

metallic and have better crystalline quality and a larger grain size.  
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Fig. 4.9: Effect of substrate heating: substrate heating improves the superconducting 

property of NbTiN films. Tc of 5.5 nm thick NbTiN film increases from 7.2 K to 10.4 K. 

As we can see from Fig. 4.9, films grown on heated substrates have lower sheet resistance 

and higher Tc. As stated in Section 2.3.2 of Chapter 2 and according to Thornton’s structure 

zone model, films deposited at room temperature have poor crystalline structures (Zone 1). 

When films are grown on a heated substrate, improved crystalline structures can be observed 

consisting of columns having tight grain boundaries between them (Zone 2). In the following 

Section 4.3, we have verified through transmission microscopy analysis that substrate 

heating improves structural properties of the NbTiN films.  

In order to verify how the crystalline property of substrates influences the superconducting 

property of NbTiN films, we have deposited a 5.5 nm thick film following the same 

optimised recipe on a silicon on insulator substrate (a popular substrate for integrated 

quantum photonics). As it can be seen from the Fig. 4.10, the film deposited at room 

temperature demonstrates a clear degradation of the transition temperature (6.3 K Tc, 0.9 K 

less than the film deposited on the standard silicon substrate). For the films deposited on the 

heated substrate, superconducting properties improve and the difference in the Tc decreases 
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to 0.2 K. Hence, it can be inferred that due to its polycrystalline nature, superconducting 

properties of NbTiN can be highly influenced by substrates.  

 

Fig. 4.10: Superconducting property of 5.5 nm thick NbTiN film deposited on silicon and 

silicon on insulator (SoI) substrates with and without heating.       
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4.2.6 Comparison with Theoretical Models 

 

Fig. 4.11: Comparison of the superconducting properties of NbTiN films with theoretical 

models: (a) Simonin model fit with Tc versus 1/d curve [Tc=Tco(1-dc/d)]; Tco=15.76 K ± 0.3 

and dc = 2.92 ± 0.2 nm. (b) Tcd vs Rs curve with its fit to the universal scaling law proposed 

by Ivry [Tcd=ARs
-B ]; A= 31408 and B=0.83 ± 0.1. 

To explore the correlation between the superconducting property and material parameters 

we have compared the Tc measurement data of the NbTiN films with the theoretical models 

described in Section 2.3.1 of Chapter 2. Fig. 4.11 (a) shows how the Simonin model fits with 

the Tc versus 1/d data. All the data points fit with the model with the fitting parameter 

Tco=15.76 K ± 0.3 and dc = 2.92 ± 0.2 nm. The fitted value of Tco is close to the bulk transition 

temperature of NbTiN reported in the literature (17 K). Fig. 4.11 (b) demonstrates how the 

universal scaling law proposed by Ivry et al. fits with the NbTiN measurement data. A= 

31408 and B=0.83 ± 0.1 have been used as the optimised value of the fitting parameters to 

fit the scaling law with the NbTiN growth data.  As mentioned by Ivry et al., for 

polycrystalline materials, the free parameter B assumes a value which is expected to be less 

than one.  

4.3 Process optimisation for Niobium Nitride growth 

We emphasised on NbTiN as the refractory metal nitride material for optimisation since it 

has few advantages. Due to its polycrystalline nature, NbTiN is more forgiving towards 

lattice mismatched substrates (e.g. Silicon). Based on the optimised recipe for NbTiN, we 

have designed a recipe for NbN. In this process, we have sputtered from the Nb (instead of 

co-sputtering Nb & Ti) target introducing a fixed amount of nitrogen flow in the argon 
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plasma environment. As shown in Fig. 4.12, 5.5 nm thick NbN film deposited on silicon 

substrate shows a Tc of 7 K when the film is deposited at room temperature.  

                

 

Fig. 4.12: R versus T curve of 5.5 nm thick NbN film grown on silicon substrate following 

the process described in table 3.2 . 

                            Table 4.2: Optimised Recipe for NbN Deposition 

 

 

 

 

 

Nb 0.9 A (356 W, 398 V) 

Target 
Substrate 
Distance 

100 mm 

Substrate 
Holder 
Rotation 

60 Rotation per 
minute 

Ar Flow 18 sccm 

N2Flow 5 sccm 

Throttle 
Position 

75° 

Chamber 
Pressure 

0.14 Pa 
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4.4 High resolution scanning transmission electron 
microscopy analysis 

We have analysed a specific selection of NbTiN films in high resolution TEM. Samples have 

been prepared for TEM analysis following the process described in Section 3.4 of Chapter 

3. A JEOL ARM200cF microscope has been used for this analysis. Fig. 4.13 shows the TEM 

images (400 KX) of a 6.5 nm thick NbTiN film deposited at room temperature and at 800°C. 

The ordered structure of the crystalline silicon substrate is seen on the left hand side of the cross 

section image. Between the film and the substrate, there is a native oxide layer. The cross section 

also shows epitaxial growth of films with a smooth and sharp interface. We have measured the 

thickness of the layers at several locations for both the films. NbTiN and native oxide layers 

have a thickness of 6.7 nm (± 0.2 nm) and 2.5 nm (± 0.3 nm) respectively. Line profile analysis 

of digital micrograph software has been used to extract thickness of all the layers. As can be seen 

from the line profiles for the film deposited at room temperature and the film deposited on the 

heated substrate, the substrate heating does not affect film thickness or deposition rate. 

                                                                                                                                        
 

 

 

Fig .4.13 TEM cross-section image of a 6.5 nm thick NbTiN film deposited at room 

temperature. 

 

Silicon Substrate  

NbTiN Film 

Native Oxide Layer 
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Fig. 4.14: Line profile analysis and thickness measurement of the room temperature 

deposited NbTiN film from image shown in the Fig. 4.13.  

 

Fig. 4.15: TEM cross-section image of 6.5 nm thick NbTiN film deposited on the substrate 

heated at 800°C.  
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Fig. 4.16: Line profile analysis and thickness measurement of NbTiN film deposited on the 

heated substrate from image shown in the Fig. 4.15 . 

The following figure shows the fast Fourier transform (FFT) views extracted from different 

selected areas of the image. The area selected is marked by a red square.  

 

                                                    

(a)                                                                                              (b) 

Fig. 4.17: Fast Fourier transform (FFT) view extracted from the selected area of the TEM 

images. (a) FFT view of film deposited on the heated substrate. (b) FFT view of film 

deposited at room temperature (selected areas of the images are marked by the red square). 

As we see from the FFT view of the films, substrate heating improves structural quality of 

the films. For the film deposited at room temperature, no proper ordering is observed in the 

FFT pattern. Hence, we can say that film deposited at room temperature is quite disordered. 
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However, for the film deposited on a heated substrate, we can see a clear improvement in 

structural ordering. This improved crystalline quality can explain the enhanced 

superconducting transition temperature of NbTiN films when deposited on a heated 

substrate. 

We have also carried out stoichiometric analysis of the films using the energy dispersive x-

ray spectrometer (EDX) detector attached inside the TEM. Fig. 4.18 shows the x-ray 

spectrum of the film deposited at room temperature. While passing through the sample, the 

electron beam may eject an electron from an inner shell of the sample atom, creating a hole 

where the electron was situated. An electron from an outer shell then fills the hole, and the 

difference in energy between the higher energy shell and the lower energy shell is released 

in the form of an x-ray photon. As the energy of the x-ray photon is characteristic of the 

difference in energy between the two shells, and of the atomic structure of the element from 

which it is emitted, this allows the elemental composition of the specimen to be measured.    

As we see from the x-ray spectrum, there are strong peaks indicating the existence of silicon, 

copper (used as sample mount during TEM analysis), niobium and titanium. In EDX 

analysis, it is easier to detect heavier elements. On the other hand, it is very difficult to detect 

lighter elements (such as N or O or C) which may play a crucial role in controlling 

superconducting properties of the thin film samples. As nitrogen is a light element, it is hard 

to get a proper signal regarding nitrogen although we can locate its existence on the extreme 

left side of the spectrum.  There is no indication of oxygen or carbon impurities in the 

spectrum. However, this may be due to the limitation of EDX analysis.  
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Fig. 4.18: Energy dispersive x-ray (EDX) spectrum recorded from the 6.5 nm thick NbTiN 

film during HRTEM analysis; the peaks of the spectrum indicate the existence of Nb, Ti, Pt 

(deposited as capping during the FIB cross-section) and Si (Substrate). 

4.5 Measurement of optical constants for NbN & NbTiN  

Accurate measurement of optical constants is crucial to the simulation of optical absorption 

in SNSPDs and is a key to integrating these devices with complex optical structures (such 

as cavities, nanoantennas and waveguides). The complex refractive index of NbN & NbTiN 

films (deposited following the optimised recipe) has been evaluated at room temperature 

using a J.A. Woollam & Co. VASE (variable angle spectroscopic ellipsometry) instrument. 

We used plasma-enhanced chemical vapour deposition (PECVD) to deposit a 390 nm thick 

layer of SiO2 on several silicon substrates. 5.5 nm thick NbN & NbTiN films have been 

grown on the top of that at room temperature.  

Spectral range of the VASE measurement is from a 270 nm to 2200 nm wavelength (with a 

wavelength resolution of 10 nm). Since both the films are optically absorbing all over the 

measurement range, it could be difficult to find a unique solution for both the film thickness 

and optical parameters due to strong correlations between them. This is why a transparent 

layer of SiO2 has been added between the NbN or NbTiN films and substrates. The SiO2 

layer underneath the thin films helps to break parameter correlation between optical 

constants and film thickness by interference enhancement during the VASE measurement 

[8]. The data obtained from ellipsometric measurement has been modelled with a 

combination of several Lorentz oscillators.  In the following figures, we have shown 

refractive index (n) and extinction co-efficient (k) measured from 5.5 nm thick NbN and 

NbTiN films. It can be clearly seen that NbTiN film has a higher extinction co-efficient 
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(~10% higher at 1550 nm) than that of NbN film. In a previous study, Anant et al. have 

reported optical constants of 12 nm thick NbN film [9]. Their measured values of n & k at 

1550 nm were 5.23 and 5.82, which is ~1.5 times higher than our measured value (4.22 and 

3.50). This higher value might be due to thicker films they used for VASE measurements. 

 

                                        

 

 

                                             

Fig. 4.19: Complex refractive index measurement of 5.5 nm thick NbTiN and NbN films 

using variable angle spectroscopic ellipsometry (VASE) (Both the films have been grown at 

room temperature on the silicon substrate). 
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4.6 Device fabrication5 

The NbTiN films optimised in this chapter have been used for multi-pixel SNSPD array 

fabrication by Dr Alessandro Casaburi. Fig. 4.20 demonstrates a 4 pixel array (60 X 60 um2) 

fabricated based on NbTiN film being deposited following the optimised recipe described in 

Table 4.1. 7 nm thick films were deposited on Si/SiO2 based DBR substrates at room 

temperature for device fabrication. After fabrication, the device shows a Tc of 8 K. Fig. 4.20 

(b) shows current versus voltage characteristic curves of all the four pixels measured at 3.6 

K. It can be seen that one pixel has a critical current (Ic) of 44 µA while others show Ic 

between 50-54 µA. At 1550 nm, the best performing pixel has shown 35% system detection 

efficiency at 1 kHz dark count rate.  

 

Fig. 4.20: Superconducting device fabrication based on the films grown following the 

optimised process described in this chapter: (a) SEM image of a 4 pixel array (60 X 60 µm2) 

fabricated based on 7 nm thick NbTiN film. (b) R(T) curve of the device indicating a Tc of 8 

K (c) Current-Voltage curves of all the four pixels measured at 3.6 K. (d) System Detection 

Efficiency versus dark counts measured at 1550 nm. 

                                                           
5 SNSPD device fabrication based on NbTiN thin film and its characterisation has been performed by 

Dr. Alessandro Casaburi. 
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4.7 Summary 

In this chapter, we have reported the growth and optimisation of refractory metal nitrides 

with an emphasis on NbTiN. Following the optimised process, a Tc of 7.2 K has been 

achieved for a 5.5 nm thick NbTiN film grown on a silicon substrate. When we heat the 

substrate up to 800°C, a NbTiN film with the same thickness shows a transition temperature 

of 10.4 K. Higher Tc and a lower sheet resistance of the films grown on the heated substrate 

indicate that films deposited at higher temperatures have larger grains and better crystalline 

structures. Comparison of Tc measurement data with the theoretical models (Ivry and 

Simonin) indicates polycrystalline nature of NbTiN films. HRTEM analysis shows that film 

thickness or deposition rate is independent of substrate temperature and the structural 

property of the thin films improves with substrate heating. Elemental mapping using EDX 

analysis confirms that composition of the films consists of Nb, Ti and N2 as expected.  
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Chapter 5 

Amorphous Superconducting Thin Films: 

Molybdenum Silicide (MoSi) and Molybdenum 

Germanium (MoGe) 

The crystalline nature of NbN or NbTiN makes the substrate choice for SNSPD very limited, 

which sometimes restricts their range of applications. So, amorphous superconducting films 

like MoSi or MoGe can be very useful for superconducting detector applications. 

Amorphous films do not set strict requirements on substrate choice as there is no issue of 

lattice matching. This chapter describes the growth, characterisation and optimisation of 

amorphous MoSi and MoGe thin films deposited by co-sputtering in an Ar plasma 

environment (Sections 5.1 and 5.2). The correlation between superconducting transition 

temperature (Tc), sheet resistance (Rs) and thickness of the films has been compared to 

several theoretical models for disordered superconducting films (Section 5.3).  

Superconducting and optical properties of amorphous materials must be very sensitive to 

short (up to 1 nm) or medium-range order (~1-3 nm) in the atomic structure. Fluctuation 

electron microscopy (FEM) studies (an HRTEM analysis technique) showed that the films 

assumed an A15 like medium-range order. Electron energy loss spectroscopy (EELS) 

indicates that the film stoichiometry was close to Mo83Si17, which is consistent with reports 

that many other A15 structures with the nominal formula A3B show a significant non-

stoichiometry with A:B > 3:1 (Section 5.4).  Optical properties from ultraviolet (270 nm) to 

infrared (2200 nm) wavelengths were measured via variable angle spectroscopic 

ellipsometry for 5 nm thick MoSi films and have been compared with the optical properties 

of polycrystalline NbN and NbTiN (Section 5.5). 

5.1 Molybdenum Silicide deposition  

Molybdenum silicide (MoSi) films have been grown on various substrates in the sputter 

deposition system (Chapter 3.1). We have co-sputtered from confocal molybdenum (Mo) 

and silicon (Si) targets in an argon plasma environment. The distance between the targets 

and the substrate is kept at 100 mm. The substrate holder has been rotated at a speed of 60 

rotations per minute during the deposition for better uniformity of the film growth.  At the 

beginning of each deposition cycle, 30 sccm of Argon was introduced into the process 

chamber keeping the throttle valve fixed at 80o (setting the total chamber pressure at 0.2 Pa). 

Film growth has been initially optimised on a silicon substrate.  
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We have sputtered from the Mo target with a DC power supply at a constant current mode 

and silicon target with an impedance matched RF power supply. At first, the discharge 

current of the Mo target was fixed at a specific value. Then, the RF power of Si targets was 

varied keeping other deposition conditions unchanged to tune the composition of the MoSi 

films. Prior to each sample deposition, both the targets were pre-sputtered keeping the 

shutters closed for one minute to stabilise the deposition conditions. After that, the same 

process had been repeated at several fixed discharge current values for the Mo target, 

keeping other chamber parameters unchanged. 

Fig. 5.1(a) summarises the variation of Tc of 20 nm thick MoSi films deposited on silicon 

substrates as a function of applied power at the Si target for several different Mo discharge 

currents. Deposition time was adjusted for each deposition cycle in such a way that the film 

thickness remains constant. All the depositions were carried out at room temperature. Fig. 

1(b) shows the normalised resistance versus temperature curves for the 20 nm thick MoSi 

films deposited with a 0.3 A discharge current applied at a Mo target. Both the figures 

indicate that an optimal film composition has been achieved, with a Tc of 7.3 K (and an RRR 

of 0.95) for a 0.3 A Mo target discharge current and 125 W Si target RF power. Later on, 

the influence of other chamber variables (e.g. substrate holder rotation etc.) on film property 

was also checked, which indicates that these deposition parameters are optimum in terms of 

film quality. For this optimised growth condition, the film deposition rate was 0.122 nm/sec, 

meaning that 2 minutes and 45 seconds of deposition time was used to grow the 20 nm thick 

film.  
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Fig. 5.1: MoSi growth optimisation.  a) Tc of 20 nm thick MoSi films deposited on a silicon 

substrate as a function of power applied at the silicon target. b) Normalised Resistance versus 

Temperature Curve of 20 nm thick MoSi films deposited with a 0.3 A discharge current 

applied at Mo target of the deposition system.   

 

 

 

 

 

 

~ Mo83Si17 
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The details of the optimised recipe for MoSi thin film deposition is as follows:  

                                  Table 5.1 Optimised Recipe for MoSi growth 

Mo 0.3 A (105 W, 400 V) 

Si 125 W 

Target Substrate 
Distance 

100 mm 

Substrate Holder 
Rotation 

60 Rotation per minute 

Ar Flow 30 sccm 

Throttle Position 80° 

Chamber Pressure 0.2 Pa 

 

As discussed in the Section 2.5 of Chapter 2, few nm thick ultrathin (<10 nm) 

superconducting films are required for SNSPD fabrication. Otherwise, superconducting 

detectors will not be able to generate an output signal upon photon absorption. Fig. 5.2 shows 

the variation in the superconducting transition of MoSi films with film thickness (Here, all 

the films have been grown following the optimised recipe described in Table 5.1). A 5.5 K 

Tc (RRR= 0.8) is obtained from a 5 nm thick film. RRR increases with film thickness. Thinner 

films also have a greater sheet resistance as expected.   
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Fig. 5.2: R versus T curve of MoSi film with three different thicknesses deposited at room 

temperature on a silicon substrate. 

5.2 Optimisation of Molybdenum Germanium thin film 
growth 

MoGe is another amorphous TM based superconducting material which can be used for 

SNSPD fabrication. Deposition of MoGe superconducting thin films has also been optimised 

following a similar process as MoSi. MoGe films have been co-sputtered from confocal Mo 

and Ge targets in the argon plasma environment of the UHV deposition system. The distance 

between the targets and the substrate is kept at 100 mm. We introduced 30 sccm of argon in 

the process chamber keeping the butterfly throttle valve fixed at 80° (total chamber pressure: 

0.2 Pa). Molybdenum target have been sputtered with a DC power supply at a constant 

current mode and germanium target with an impedance that matched the RF power supply. 

The discharge current of Mo target was fixed at a specific value. Then, the RF power of the 

Ge target has been varied while other deposition conditions are kept unchanged to tune the 

composition of MoGe films.  
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 Fig. 5.3: Optimisation of MoGe thin film growth: a) Tc of 30 nm thick MoGe films deposited 

on a silicon substrate as a function of power applied at the germenium target. b) Normalised 

Resistance versus Temperature Curve of 30 nm thick MoSi films deposited with a 0.3 A 

discharge current applied at Mo target of the deposition system.   

.  
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Fig. 5.4: R versus T curve of MoGe films with three different thicknesses deposited at room 

temperature. 

The above Fig. 5.3 shows the normalised resistance versus temperature curve of 30 nm thick 

MoGe film deposited on a silicon substrate at room temperature for various values of RF 

power applied at the Ge target. 2 minutes and 40 seconds (160 seconds) of deposition time 

was used when we deposited with a 0.3 A of discharge current at the Mo target. Before 

deposition, both Mo and Ge targets were pre-sputtered for one minute with the shutter 

closed. Fig. 5.3 shows we get a Tc of 6.6 K (with RRR 0.95) if we deposit a 30 nm thick 

MoGe film with a 0.3 A discharge current at a Mo target and 50 W RF power at a Ge target.  

                             Table 5.2 Optimised Recipe for MoGe Growth 

Mo 0.3 A (105 W, 400 V) 

Ge 50 W 

Target Substrate 
Distance 

100 mm 

Substrate Holder 
Rotation 

60 Rotations per 
minute 

Ar Flow 30 sccm 

Throttle Position 80° 

Chamber Pressure 0.2 Pa 
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Fig. 5.4 demonstrates how superconducting properties of MoGe films degrade with film 

thickness. If we compare with MoSi, we can clearly see that the Tc of MoGe films decreases 

much more sharply with thickness. From an 8 nm thick MoGe film we have measured a 5.2 

K Tc whereas even for a 5 nm thick MoSi film a 5.5 K Tc has been achieved. Hence, MoSi 

is more advantageous as a base material for high performance SNSPDs which can be 

operated at a temperature of >2 K using relatively cheap, less complex closed-cycle 

cryogenic systems. 

5.3 Variation of transition temperature with film thickness 
and comparison with theoretical models 

To better understand the interplay between superconducting properties and empirical 

material parameters, a variation of the Tc of MoSi films with sheet resistance and thickness 

has been compared with the theoretical models (Section 2.5, Chapter 2). 

 

 

Fig. 5.5: Variation of superconducting transition temperature with film thickness and 

comparison with theoretical models: a) Simonin model fit for Tc versus 1/d curve [Tc=Tco(1-

dc/d)] ;Tco=7.5±0.2 K & dc=1.46±0.2 nm b) Tc versus Rs curve and its fit with Finkel’stein 

model [
Tc

Tco
=exp(γ)[

1+𝑋

1−𝑋
]
1

√2𝑟
⁄

]; Tco=7.8 K & γ=7.66±0.1 c) Tcd vs Rs curve with its fit to the 

universal scaling law proposed by Ivry [Tcd=ARs
-B ] ; A=29436 & B=1.14 ±0.1.  
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Fig. 5.5(a) shows Tc vs 1/d plot and how equation 2.11 (Simonin Model) is fitted with the 

data [1]. The data point related to 20 nm thick film (thickest of the set) deviates from the fit. 

The rest of the data set fits well with a least squares fit using Tco=7.5±0.2 K and dc = 1.46  ± 

0.2 nm. These values are in good agreement with literature. Critical thickness is related to 

BCS interaction potential by dc= 2a/N(0)VBCS. From Osofsky et al., we  get for MoSi 

N(0)VBCS= 0.086 and a ~0.06 nm. Hence, dc ~1.4 nm [2].  

In Fig. 5.5(b) we have compared the Tc vs Rs plot of the MoSi films we have grown with 

Finkel’stein model (equation 2.10) [3]. The fit was obtained by optimising Tco and γ. The Tc 

data fits in Finkel’stein model with Tco=7.8 K and γ= 7.66 ±0.1. Such a high value of fitting 

parameter γ is an indication of a strongly disordered film. (For amorphous MoGe, Graybeal 

et al. have reported a value of 8.2 for the same parameter [4].) This means that the 

suppression of superconductivity due to the fluctuation of Cooper pairs can be neglected 

because of the amorphous nature of the film.  

From these values of Tco and γ we obtain a mean scattering time of 𝜏= 4.61 X 10-16 sec (as 

we saw in the equation 2.10, γ=Ln[ħ 𝜏𝑇𝑐𝑜𝑘𝐵
⁄ ]). For the 5 nm thick MoSi film, the measured 

resistivity is 235.2 μΩ cm.  Using this value of mean scattering time, we can estimate an 

electron density    ne=3.24 X 1022 /cm3 (𝜎 = 𝑛𝑒(
𝑒2

𝑚𝑒
⁄ )𝜏), diffusion constant D = 0.21 X 

10-4 m2/sec(𝐷 =
𝜇𝑘𝐵𝑇

𝑒
) and a mean free path of 0.2 nm (assuming free electron mass equals 

the rest mass of the electron). The free electron density is about 10 times lower than that of 

the NbN reported in literature (for 6 nm NbN 1.26 X1023 /cm3 [5]) as expected for MoSi. 

Ioffe-Regel parameters (kfl) calculated based on a free electron model [𝑘𝑓𝑙 =

ħ(3𝜋2)
2

3𝑛𝑒

−
1

3(𝑒−2𝜌𝑛
−1)] gives a value of 5.25, which is another indication of a 

homogeneously disordered film. However, our estimated value of kfl is slightly higher in 

comparison to the measurements of IR parameters which have been reported for strongly 

disordered films in literature (2.6 for 5 nm thick TiN [6]). This higher value may be due to 

inaccuracy in the approximation of electron density from our data fit (we have not measured 

it directly). Also, Graham et al. have shown that for some amorphous materials, a metal-

insulator transition may be observed at a much higher value (around kfl~ 5.2 for indium 

oxide) [7]. Instead of kfl ~ 1, they proposed kfl~ 𝜋 as the Ioffe-Regal criteria. We also note 
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in the following table that both the free electron concentration and Ioffe-Regel parameter 

show a slowly increasing trend with film thickness.  

 

 

 

 

 

 

Although comparison of Tc versus Rs data with the Finkel’stein model has given realistic 

values for various physical parameters of MoSi films, this model was actually initially 

proposed for two-dimensional films (film thickness below the mean free path of the 

electron). For films having a thickness larger than their mean free path (which is the case 

here) it includes a correction factor in the expression on mean scattering time 𝜏∗ = (𝑑/𝑙)2𝜏 

; for film thickness d=5 nm, assuming a mean free path of l= ~0.2 nm, we obtain 𝜏 =0.1844 

X 10-16 sec and D=0.0084 X 10-4  m2/sec. This value of the diffusion co-efficient is much 

smaller than the value reported in literature [8]. Therefore, we did not take into consideration 

the correction factor here. Extraction of selected physical parameters from alternate 

measurements and comparing them may be helpful for more accurate modelling.   

Fig. 5.5 (c) depicts how the university scaling law (proposed by Ivry et al.) fits to the MoSi 

growth data [9]. Values of the fitting parameters are A=29435 and B= 1.14±0.1. As discussed 

by Ivry et al., for amorphous films, B is higher than one.  

One can see a clear and accurate trend if we plot Tcd as a function of Rs (Fig. 5.5 (c)).  For 

amorphous films, dependence on sheet resistance dominates over the thickness dependence. 

That is why the data points corresponding to the thickest film deviates from the Simonin 

model fit. At the same time, the Finkel’stein model fits quantitatively with all the data points. 

Universal scaling law takes into consideration both the effects of sheet resistance and 

thickness. Hence, it provides a far more accurate fit for our MoSi data. A higher value of the 

fitting parameter B also indicates the amorphous nature of the film and the dominating sheet 

resistance dependence.  

Table 5.3: Free Electron Concentration n , Ioffe-Regel parameter (kfl) and Tc 

of MoSi film with four different thicknesses, d 

d (nm) Tc (k) n (1022/ cm3) kfl 

5 5.5 3.24 5.25 

6 5.8 3.36 5.34 

8 6.15 3.46 5.49 

10 6.4 3.49 5.54 
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5.4 Influence of variations in deposition conditions and 
choice of substrate 

We have also explored the effects of various small modifications in the deposition conditions 

on the superconducting properties of amorphous MoSi films. Bosworth et al.  showed that 

substrate cooling may promote amorphous character in superconducting MoSi films and 

hence enhance their superconducting characteristics [10]. We have cooled a silicon substrate 

under the liquid nitrogen trap (77 K) of our deposition system for three hours and then 

immediately deposited a 10 nm thick MoSi film on it. Fig. 5.6 shows that the film deposited 

on the cooled substrate has a sheet resistance slightly lower than that of the film deposited 

at room temperature. The film deposited on the cooled substrate has a slightly lower Tc 

(~0.2K < room temperature deposited film) however the film deposited at a low temperature 

shows a sharper superconducting transition (transition width of 55 mK) in comparison to the 

film grown at room temperature (376 mK transition width). This narrower transition can be 

explained by an improvement in film homogeneity due to deposition on a liquid nitrogen 

cooled substrate.  In our chamber, the target-substrate distance is large (100 mm). So, there 

is unlikely to be significant radiative heating of the substrate holder during deposition. 

Hence, even the films we deposited at room temperature are amorphous. (Later on, we 

checked this fact using TEM observation.) 
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 Fig. 5.6: Effect of substrate cooling on the superconducting transition in MoSi Films: R vs 

T curves of 10 nm thick MoSi films deposited at room temperature and deposited on a liquid 

N2 cooled substrate. 

We have also investigated the effect of various substrates on the superconducting properties 

of MoSi films. 10 nm thick MoSi films were grown on 3 different types of substrates 

following the same optimised deposition parameters. Resulting superconducting properties 

are shown in Table 5.4.  

 

Table 5.4: Superconducting Transition Temperature and RRR of 10 nm thick MoSi 

Film grown on various substrates 

Substrates    Tc  RRR 

Silicon  6.4 0.8 

SOI 6.32 0.83 

HF-Treated 
Silicon 

6.22 0.85 
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Fig. 5.7: R(T) curve of 10 nm thick MoSi films grown on three different kinds of substrate.  

As we have discussed in Section 3.1 of Chapter 3, we can accommodate wafer sizes up to a 

6 inch (150 mm) diameter in the substrate holder of our sputter deposition system. So, it is 

possible to deposit superconducting thin films on large area wafers for the fabrication of 

large area focal plane arrays or complex superconducting quantum photonic circuits. The 

substrate carrier has an adapter mount which can accommodate nine 10 mm x 10 mm or 15 

mm x 15 mm substrates (as shown in Fig. 5.8 (a)) in each deposition cycle. To determine 

how the superconducting properties change if we deposit a thin film on a large area wafer, 

we deposited 10 nm MoSi films on all the nine positions of the substrate holder and examined 

the Tc of three films which were positioned diagonally across the holder. From Fig. 5.8 (b) 

it is evident that the Tc of these three films differs by only ± 0.15 K with a mean Tc of 6.3 K. 

It indicates that large area deposition in our system is quite uniform.  
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                                                                   (a) 

                                               

                                          

 

                                                                           (b) 

Fig. 5.8: Large area deposition. (a) Normalised resistance versus temperature curve of three 

10 nm thick MoSi films which were positioned diagonally across the substrate holder. (b) 

Photograph of substrate holder with the adapter.  

During the process of optimisation, to prevent possible degradation of MoSi films due to 

surface oxidation, a thin capping layer of amorphous silicon (~ 4 nm) was deposited on the 
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top of the film. During the device fabrication process, environmental contact may affect the 

superconducting property of the films by surface oxidation. For this reason, we have used a 

protective silicon capping layer which was deposited on the MoSi film in the same chamber 

without breaking the vacuum.  

 

               

Fig. 5.9: Effect of Silicon Capping Layer: Normalised Resistance versus Temperature curve 

of 20 nm thick MoSi films (One film with a silicon capping layer and the other film without 

any capping layer). 

As we can observe from the above figure, the Tc of a 20 nm thick MoSi film with an Si 

capping layer is almost the same as that of the MoSi film without any Si capping layer. They 

differ by 0.1 K, which may be ignorable for SNSPD applications. Later on, during device 

fabrication, we checked that the SNSPD devices that were fabricated from MoSi films 

without any protective capping layer do not work at all due to the degradation in 

superconducting properties during fabrication and atmospheric exposure.           

From the measurements carried out in this section, it can be seen that slight modification of 

optimised deposition conditions (e.g. substrate cooling or HF treatment of substrates) may 
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measurably affect superconducting properties of amorphous films in various ways. It can be 

predicted that these small changes in the deposition process influence the short range 

structural ordering of the amorphous film. Based on resistivity measurements, Bieger et al. 

have shown that the superconducting properties of amorphous materials are quite sensitive 

to short range order [11]. That is why it is crucial to carry out a proper investigation of the 

local structural ordering of amorphous MoSi films although preferably with more direct 

methods.  In the crystalline state, Mo3Si assumes an A15 structure and has a very low bulk 

Tc (~1.3 K) [12]. Lattice disorder enhances its superconducting properties [13], [14]. 

Amorphous MoSi has a bulk Tc of around 7.5 K [15]. The effect of material properties on 

the superconducting transition temperature can be described by McMillan’s Parameter 

(given by λM=
𝑁(0)<𝐽2>

𝑀<𝑤2>
 ; where N(0) is the density of states at the Fermi level, < 𝑤2 > 

denotes average phonon frequency, M is ion mass and < 𝐽2 > is the average electron-phonon 

coupling matrix ) [16]. McMillan proposed the following numerical relationship between Tc 

and λ based on generalised BCS theory. 

 

                                     Tc= ]
)62.01(

)1(04.1
exp[

45.1 *
MM

MD








                                            (5.1) 

 

A15 structured crystalline alloys like Mo3Si or Mo3Ge which have very low bulk Tc have a 

low density of states. Lattice disorder increases Tc due to an enhancement in N(0) and the 

weakening of the phonon mode. The electron-phonon coupling matrix  < 𝐽2 >   is a function 

of structure factor. Hence, any modification in short range structural order or ‘amorphous’ 

nature will change it and influence the McMillan’s parameter and the superconducting 

properties.    

5.5 High resolution scanning transmission electron 
microscopy analysis of structure and composition6 

We have analysed the atomic structure and composition of MoSi films with the help of 

advanced high resolution transmission electron microscopy (TEM) techniques. A standard 

                                                           
6 High resolution scanning transmission electron microscopy analysis has been carried out in 

collaboration with Professor Ian MacLaren and Alastiar Doye (School of Physics and Astronomy, 

University of Glasgow).  
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focussed ion beam (FIB) technique has been used to prepare samples for TEM analysis.  The 

following figure shows a TEM image (600 KX magnified) of a 5.5 nm thick MoSi film 

without a Si capping layer.  

 

 

                 Fig. 5.10: Cross section of 5.5 thick MoSi Film without any Si cap. 

 

                                                 
 

    Fig. 5.11: FFT View of the selected area of the film (marked by a red line in Fig. 5.10).  

 

Silicon Substrate  

MoSi Thin Film  
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The ordered structure of crystalline silicon substrate is seen in the lower left hand region of 

the image. Since it is high resistivity silicon, the substrate does not have a native oxide layer. 

The cross section also shows the epitaxial growth of films with a flat surface and sharp 

interface. The FFT view extracted from a selected area of the film (marked by the red square 

in the figure) shows an amorphous ring. Since this FFT view was extracted from the TEM 

image, with the help of an image processing software package, it looks very noisy. We have 

measured film thickness at several locations by using line profile analysis. Figure 5.12 shows 

the line profile extracted from the blue coloured rectangular box marked in the figure 5.10. 

It seems our deposition is quite uniform and thickness of the film measured from line profile 

analysis is 5.5 ± 0.2 nm. 

 

 

Fig. 5.12: Line profile analysis and thickness measurement of the MoSi film without any Si 

cap. 
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                               Fig. 5.13: Cross section of 5.5 nm MoSi film with a Si Cap.  

                                 

(a)                                                                                         (b) 

 

Fig. 5.14: (a) Annular dark field image of 5.5 thick MoSi film with a Si Cap. (b) FFT view 

of the selected area (marked by red) of the same film. 

Figure 5.13 shows the cross section of a 5.5 nm thick MoSi film with a silicon capping layer. 

Here also, the FFT view confirms the amorphous nature of the film. However, in the high 

resolution TEM image it is difficult to differentiate between the silicon capping layer and 

the film as both the layers are amorphous (meaning there is no proper structure or orders in 

the two layers). But, in the annular dark field (ADF) image shown above (Fig.5.14), we can 

clearly see the MoSi film and silicon capping layer on the top of it. Both the layers show a 

MoSi Thin Film  

Silicon Substrate  

Si Capping Layer  



116 

 

 

 

sharp edge and maintain a uniform thickness showing consistent film deposition in our 

system.  

 

 

                       

Fig. 5.15: Diffraction patterns recorded from the plan view image of 5 nm thick MoSi film 

deposited on a SiN membrane.  

We have also deposited a selection of 5 nm thick MoSi thin films on a SiN membrane (200 

nm thick) and imaged them in a Technai T20 TEM. Fig. 5.15 shows the diffraction patterns 

we recorded from the plan view image of the films. The images in the figure (b), (c) and (d) 

show diffraction patterns obtained from different regions of a 5 nm thick MoSi film 
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deposited without any Si capping layer. Figure (a) shows the diffraction pattern when a 

selected area aperture is inserted in the TEM. Hence, these images clearly show the 

amorphous nature of MoSi film. Our optimised recipe thus promotes the amorphous nature 

of MoSi thin films. 

As we have stated in Section 5.3, the superconducting properties of amorphous materials 

must be very sensitive to short or medium range ordering. We have employed the Fluctuation 

Electron Microscopy (FEM) technique to explore local structural ordering of MoSi films. 

FEM is a diffraction based analysis to investigate the medium range ordering (~1-3 nm) in 

the atomic structure of disordered materials. This method was initially proposed by Gibson 

and Treacy [17]. In this technique, a small sample volume was scanned with a probe size of 

the order of 1-2 nm, and a large data set of diffraction patterns were collected (thousands of 

diffraction patterns). We have carried out this analysis in a JEOL ARM200F microscope 

using the Medipix-3 camera. The illumination of the microscope was adjusted by turning the 

objective lens off and working in the aberration-corrected Lorentz mode to produce small 

probe convergence angles to increase resolution in reciprocal space.  

In this analysis, a qualitative idea about short or medium range ordering (SRO/MRO) in the 

sample can be achieved from the fluctuations in the diffracted intensity. The magnitude of 

such fluctuations is measured by computing the normalised variance of the diffracted 

intensity. 

        𝑉(𝑘𝑠, 𝑟) =
<𝐼2(𝑟,𝑘𝑠)>

<𝐼(𝑟,𝑘𝑠)>2 − 1                                                                                          (5.2) 

Here, ks is the scattering vector and r denotes the position in sample space.   

In the following figure 5.16, we have shown the diffraction pattern recorded from the MoSi 

film. The speckle ring indicates the existence of nano crystalline structures embedded in the 

amorphous film. The variance of all the diffraction patterns from the central portion of the 

film was calculated as a function of q=2pkr (kr denotes the interplaner distance in reciprocal 

lattice space) using the method described by Hart et al. [18]. As we can see in the figure 

5.17, the variance plot of the MoSi film has several small and large peaks. A small peak 

occurs at a q value of around 1.8 Å-1, while larger peaks are visible at ~2.85 Å-1 and ~4.6 Å-

1. We have compared these peak locations with diffraction peaks of A15 structured Mo3Si 

(shown in the same figure). The similarity between them clearly indicates that our films 

consist of A15-like nanoscale structures over a short range evolving to a long range disorder.  
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Fig. 5.16: Speckle pattern indicating the existence of short or medium range order in the 

MoSi film. 

 

                       

 

Fig. 5:17: Variance plot of diffracted intensity obtained from the FEM analysis of 5 nm thick 

MoSi film, peaks of the variance plot match with the diffraction peak of Mo3Si crystal 

structure.   
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Fig. 5.18: Model of A15 crystal structure: in the cubic unit cell, 2 Si atoms (Red) occupy 

(0,0,0) and (1/2,1/2,1/2) positions whereas 6 Mo atoms (Green) are situated at (1/4,0,1/2); 

(1/2,1/4,0); (0,1/2,1/4); (3/4,0,1/2); (1/2,3/4,0); and (0,1/2,1/4)  positions. 

The chemical composition of the films has been investigated through electron energy loss 

spectroscopy spectrum imaging (EELS-SI). This analysis was also performed using the 

JEOL ARM200F microscope that is equipped with a cold field emission gun and operated 

at 200 kV. This microscope is fitted with a probe aberration corrector and a Gatan GIF 

Quantum ER spectrometer/energy filter. The probe convergence semi-angle was 29 mrad 

(with a probe current of 400 pA) and the spectrometer acceptance semi-angle was 36 mrad. 

All the acquisitions were carried out in DualEELS mode. The energy range for the high loss 

EELS spectrum was fixed in such way that it includes both Si-K and Mo-L2,3 edges. The 

resulting data has been analysed using the Elemental Quantification plugin of Digital 

Micrograph software. The cross sections for EELS quantification were the Hartree-Slater 

cross sections provided by Gatan. In the following Figure 5.19, we have shown the elemental 

quantification map of Mo and Si (scan area indicated by a black box). Also, we have shown 

the atomic percent of Mo and Si in a line trace from the substrate into the film.  It is clearly 

seen that the Mo content in the film peaks at the centre at about 83%, with a little excess Si 

being found at the surface.   
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Fig. 5.19: Investigating the composition of uncapped co-sputtered MoSi films via Electron 

Energy Loss Spectroscopy (EELS): (a) dark field image of the Focused Ion Beam (FIB) 

cross section of MoSi film, with the scan area indicated by the black box (coloured elemental 

map shows the silicon substrate, MoSi film and gold layer deposited on top of the film). (b) 

Averaged elemental percentage composition from bottom to top (substrate across the film). 

Hence, we can say that in contrast to the existence of A15 nano structures (as shown by FEM 

analysis), the composition of the film is closer to 83:17 rather than 75:25. As shown by 

Nunes et al. and Aindow et al., this small variation in composition is quite common in A15 

structured materials [19], [20]. This may be due to either a significant vacancy in the 

population on the corner of B (Si) sites of A3B (Mo3Si) structure or alternatively substitution 

of A (Mo) atoms on some of the B (Si) sites.    

5.6. Measurement of optical constants for MoSi 

Optical constants of two of our MoSi films have been measured at room temperature using 

the VASE. Following the same process used in the case of nitride films, a 390 nm thick layer 

of SiO2 has been deposited on silicon substrates. Two 5 nm thick MoSi films have been 

grown on the top of them.  For one MoSi film, we have grown a protective Si capping layer 

(~4 nm thick) on top of it.  
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In the following figure 5.20, we have shown the optical constants evaluated from a 5 nm 

thick MoSi film and a 5 nm film thick MoSi film with a Si capping layer. The presence of 

the Si capping layer slightly enhances the extinction co-efficient. The enhancement of 

absorption co-efficient due to the Si capping layer is more pronounced at λ< 600 nm. This 

wavelength range is well above the gap energy of Si, so the Si is acting as an additional 

absorbing layer. Over the IR range, a slight enhancement in k for the Si capping is still 

noticeable.  We have also compared these measurements with VASE measurements carried 

out on 5.5 nm thick polycrystalline NbN and NbTiN thin films. It can be easily seen that 

MoSi films have a much higher extinction coefficient (k) in comparison to NbN or NbTiN 

over the whole spectral range, which means that at any specific wavelength the MoSi thin 

films are more favourable in terms of optical absorption. We can also see that the k(λ) curve 

of MoSi shows a continuous sharp increase even in the higher wavelength region (1500nm 

-2200nm). But for NbN or NbTiN, k(λ) shows a saturation and very slow increment in that 

wavelength region. Hence, MoSi can serve as a more suitable material for mid-infrared 

SNSPDs in terms of optical properties.  
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Fig. 5.20:  Complex refractive index measurement for uncapped and capped MoSi films 

using variable angle spectroscopic ellipsometry (VASE) and comparison with optical 

constants (index of refraction n and extinction co-efficient k) measurements of NbN and 

NbTiN films. a) n & k data for a 5 nm MoSi film. b) n & k data for a 5 nm thick MoSi film 

with 5 nm Si cap. c) extinction co-efficient measurement of MoSi film with Si cap, MoSi 

film without a Si cap, NbN film and NbTiN film. d) refractive index measurement of MoSi 

film with Si cap, MoSi film without a Si cap, NbN film and NbTiN film.  

 

5.7 Transport properties of patterned superconducting 
MoSi nanowires7  

Along with the superconducting transition temperature, the critical current (Ic) is also another 

crucial parameter influencing the performance of superconducting devices. Typically, an 

optimal operation point for an SNSPD is set by the application of a bias current just below 

the critical current value of the specific device at the given operating temperature. Hence, 

                                                           
7 All the nanowire patterning and low temperature transport measurements have been performed by 

Luke Baker 
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higher critical current density (jc) is desirable for high sensitivity, low noise photon 

detection. In this section, the temperature dependence of critical current density has been 

explored in the nanowires patterned from MoSi thin films. A 10 nm thick MoSi film has 

been patterned into nanowires of various widths from 200 nm to 2 m using a two-step EBL 

process. Methods used for nanowire fabrication has been discussed in Section 3.6 of Chapter 

3. Transport properties of MoSi nanowires have been investigated in a pulsed tube cooler 

based closed cycle-cryostat. The base operating temperature of the cryostat is 3.5 K.  

 

Fig. 5.21: Current- Voltage curve recorded from the 390 nm wide nanowire measured at 4 

K . 

I-V curves of the device have been recorded using a 4 point measurement setup. A Keithley 

238 current source has been used to bias the device. The device is connected to the 

measurement circuit by SMA coaxial cables. While recording current-voltage 

characteristics, the compressor of the cryostat was turned on and off, allowing the cryostat 

temperature to vary between 3.5 K – 6.5 K. The cryostat took 2 minutes and 35 seconds to 

warm up from the base temperature to 6.5 K. Fig. 5.22 (a) shows the variation of critical 

current with nanowire width at three different measurement temperatures. Critical current is 

increasing with wire width as expected. Critical current density has been calculated using a 

cross section area of each nanowire. Fig. 5.23 depicts the variation of critical current density 
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with measurement temperature for different wire widths. Scanning Electron Microscopy 

(SEM) has been used to measure the accurate wire width after fabrication. The 2003 nm 

wide wire shows a critical current density of 0.36 MA/cm2 at 3.6 K.  

Critical current versus temperature data of MoSi nanowires have been fitted to the equation 

(2.7) and (2.8) described in Chapter 2 using 𝐼𝑐(0), 𝑇𝐶 and 2∆(0) as the fitting parameters. 

Table 5.5 shows the values of energy gap obtained from the curve fitting.  

    

Table 5.5: Transition Temperature (Tc), Critical Current measured at 4K (Ic(4K)), the 

extracted critical current at 0 K (Ic(0)) and Superconducting energy gap 𝟐∆(𝟎) 

Nanowire 
Width (nm) 

Tc (K) 

[Measured] 

Ic(0) (µA) 

[Extracted] 

𝟐∆(𝟎) (meV) 

[Extracted] 

Ic (uA) at 4K 

[Measured] 

2003 
 

6.23 

 

79.60 ±0.16 

 

1.868 ± 0.001 69.89 

 

957 
 

6.26 

 

33.95±0.2 

 

1.868 ± 0.002 29.75 

458 
 

6.15 14.81±0.05 

 

1.856 ± 0.001 12.77 

364 
 

5.99 

 

12.051±0.04 

 

1.798 ± 0.001 10.22 

264 
 

5.94 

 

7.91±0.06 

 

1.788 ± 0.001 6.71 

173 5.94 4.07±0.02 

 

1.766 ± 0.001 3.41 
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Fig. 5:22: Transport measurement of nanowires patterned in a 10 nm thick MoSi thin film. 

(a) Variation of critical current with nanowire width at five different temperatures. (b) and 

(c) Variation of transition temperature and superconducting energy gap with nanowire width.  
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It is evident that all the nanowires (2003-173 nm width) show a similar trend of 

superconducting transport properties. Tc is slightly depressed with decreasing wire width 

(from 6.23 K to 5.94 K). Fig. 5.22 (b) and 5.22 (c) demonstrate how Tc and the values of 

superconducting energy gap obtained through the curve fitting vary over the nanowire width. 

Though critical current decreases consistently with wire width (as expected), all the 

nanowires show a common trend of variation in critical current density with temperature 

(Fig. 5.23). Also, at any specific measurement temperature, there is a slow reduction in 

critical current density values of the nanowires with decreasing wire width. The nanowire of 

2003 nm width shows a critical current density of 0.36 MA/cm2 measured at 3.6 K. The 

thinnest nanowire (173 nm wide) shows a comparatively lower Jc of 0.2 MA/cm2. This 

deviation along with the fluctuation in values of Jc in the rest of the nanowires can be 

explained by inhomogeneity caused during the nanowire fabrication.  Close SEM inspection 

indicates the edges of the nanowires may be damaged with redeposition of etch debris and 

e-beam resist which would lead to a reduction in the superconducting cross section. This 

effect would be strongest (proportionately to the width) in the narrowest wires. The 

superconducting energy gaps of the nanowires based on our thin films are much smaller than 

the bulk energy gap of MoSi (~ 2.26 meV) reported in the literature. The wire width > 458 

nm 2Δ(0) assumes a value of ~ 1.87 meV; for the 173 nm wide nanowire, it drops to 1.77 

meV.  
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Fig. 5.23: Critical current density versus temperature curve of MoSi nanowires with widths 

ranging from 90 nm to 2003 nm (widths of the nanowires have been corrected from SEM 

inspection). 

              

Lita et al. [15] have reported a critical current density of ~1.3 MA/cm2 at 250 mK for a 1μm 

wide nanowire patterned on a 6.3 nm thick MoSi film. Korneeva et al. [21], [22] have shown 

critical current density varies from 1.1-2.5 MA/cm2 for nanowire patterned meander devices 

on 4 nm thick MoSi films measured at 1.7 K. In comparison, the lower critical current 

densities observed in the nanowires fabricated from our film can be explained by a higher 

measurement temperature range.  
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             Table 5.6: Comparison of Critical Current density data with previous reports  

Operating 
Temperature (K) 

Film Thickness 
(nm) 

Critical 
Current 
Density 
(MA/cm2) 

 

 3.6 10 0.36 (for 2003 
nm wide 
nanowire) 

Our  Study 

0.250 6.3 1.3 Lita et al.  

1.7 4 1.1-2.5 Korneeva et al.  

 

5.8 Summary 

In this chapter, growth and optimisation of amorphous MoSi thin films have been explored 

in terms of the desirable superconducting properties for SNSPD fabrication. The variation 

of superconducting properties with sheet resistance and film thickness has been compared 

with several theoretical models. The material parameters extracted from these models concur 

with the amorphous and homogeneously disordered nature of these films.   

FEM analysis shows that the films deposited in accordance with the optimised growth recipe 

(leading to the maximum Tc) assume an A15-like structure over the range of a few atomic 

spacings while there is no long range crystallographic order. Electron energy loss 

spectroscopy (EELS) analysis was also performed, indicating the film stoichiometry was 

close to Mo83Si17.This indicates that some Si sites in the Mo3Si A15 structure may be vacant. 

Moreover this stoichiometry differs from the compositions reported by other groups 

studying this material as a candidate for SNSPD fabrication: Mo80Si20 or Mo75Si25. The 

measurement of the complex refractive index shows that MoSi films have a higher extinction 

co-efficient in comparison to NbN and NbTiN films. Hence, MoSi is a more advantageous 

material in terms of optical absorption.  
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Chapter 6 

Titanium nitride (TiN) Growth for Microwave 

Kinetic Inductance Detector Applications 

Microwave Kinetic Inductance Detector (MKID) is a cryogenic detector technology which 

is quickly gaining importance in the field of astronomical instruments. The main advantages 

of MKIDs are that they are simple to fabricate and easy to multiplex into a large detector 

array using the concept of frequency domain multiplexing [1]. As stated in Section 2.6 of 

Chapter 2, basic operating principle of any MKID device is to measure the change in the 

complex impedance of the superconducting film upon photon absorption. Any photon with 

an energy of h𝜈 >2Δ if absorbed will break the Cooper pairs resulting in an increase in the 

kinetic inductance (Lk). This change in Lk is very small; so we need to pattern the 

superconducting films in to a high quality factor microwave resonance circuit to detect this 

variation.  

Traditionally, MKIDs have been fabricated into superconducting quarter-wavelength or 

half-wavelength resonator elements capacitive coupled to a co-planar feed line. The change 

in kinetic inductance is detected from the resulting shift in the resonant frequency of the 

resonant circuit. This approach requires the quasi-particles generated by photon absorption 

to be concentrated at the high current density region of the circuit. This can be achieved by 

antenna coupling or quasi-particle trapping. For the detectors to work at a terahertz 

frequency range (approximately 0.3 to 3 THz or 1 mm to 100 µm in terms of wavelength), 

where antenna coupling can introduce a significant loss of efficiency, then a direct 

absorption method needs to be considered. The concept of Lumped Element KID (LEKID) 

has been proposed to solve this problem of coupling terahertz radiation to kinetic inductance 

detectors. In this design, there is no requirement of antenna coupling or quasi-particle 

trapping [2], [3].  

We have explored the potential of TiN as an alternate base material for superconducting 

lumped element kinetic inductance detector (LEKID) fabrication. Titanium nitride (TiN) has 

been demonstrated to work as a useful material for MKIDs [4]. It offers several advantages 

over the more traditionally available material (e.g. Al) for this purpose. The superconducting 

property of TiN is tuneable with the nitrogen content of the film. So, we can engineer 

detector material accordingly to our need. TiN also has higher normal state resistivity. There 
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is less possibility of formation of surface oxide on the top of TiN film. Moreover, due to its 

higher Tc, TiN based MKID devices can be operated at a comparatively higher base 

temperature which is within the reach of modern close cycle cryogenic cooling technology.   

6.1 Optimisation of TiN thin film growth in sputter 
deposition system 

TiN thin films have been grown by reactive sputtering (Chapter 3.1.1). Double sized 

polished high resistivity silicon wafers have been used as substrates for this purpose. TiN 

films are deposited by the sputtering of Ti targets and by introducing a small amount of 

nitrogen into the chamber as the reacting gas. The distance between the substrate and the 

target is kept at 100 mm. We introduced 18 sccm of argon into the chamber with a fixed 

position of the throttle valve (75°). The following Fig. 6.1 shows the R versus T curve of 90 

nm thick TiN film grown with several nitrogen flows. It can be seen that a Tc of 2.9 K can 

be achieved if we grow the film with a 10 sccm N2 flow. When the substrate is heated up to 

500°C before deposition, a 4 K Tc can be achieved. For these deposition parameters, a 

deposition time of 40 minutes was required to grow the 90 nm thick films (meaning the 

deposition rate was 2.25 nm/minute). Before deposition, we have cleaned the substrates in an 

ultrasonic bath with RO water, acetone and IPA for 5 minutes. Also, the substrates have been 

etched with diluted hydro fluoric (HF) acid immediately prior to film growth in order to remove 

the native silicon oxide layer grown on the top of the substrate. The film grown on the heated 

substrate has less sheet resistance indicating a larger grain size and improved structural property 

of the film grown at higher temperature.  

 

                                     Table 6.1 Recipe used for sputtered TiN growth 

Ti: 0.6 A (238 W, 397 V when deposited at room 
temperature; 242 W, 404 V after heating 
substrate) 

Ar Flow 18 sccm 

Total Pressure 0.18 Pa 

Target Substrate Distance 100 mm 

Substrate Holder Rotation 60 rpm 
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Fig. 6.1: R(T) Curve of 90 nm thick TiN films deposited in the sputter deposited system.   

6.2 TiN thin film growth in Atomic Layer Deposition 
system 

We have also grown TiN films in the atomic layer deposition (ALD) system installed in our 

clean room. At the beginning of film growth, substrates are inserted into the process chamber 

and pumped down with the help of a turbo and a roughing pump. After that, the substrates 

are pre-heated at a temperature of 350°C for 30 seconds. During the pre-heating, 100 sccm 

of N2 and 200 sccm of Ar has been introduced in the chamber and the total chamber pressure 

has been kept at 200 mTorr. TiN films are grown by using TDMAT (tetrakis dimethylamino 

titanium, Ti(N(CH3)2)4) as the precursor and H2/N2 plasma as the reactant gas. Each 

deposition cycle consists of 1 second of exposure to precursors, 5 seconds of purging, 15 

seconds of exposure to reactive gas and plasma and finally 10 seconds of post plasma 

purging. TDMAT has been delivered from a remote reservoir. 20 sccm of Ar has been used 

as the carrier gas. The Ar purge flow rate has been fixed at 200 sccm. The following table 

6.2 describes the process parameters which have been used for the TiN growth in ALD.  
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      Table 6.2 Recipe used for TiN growth in Atomic Layer Deposition (ALD) 

Pre-Heat (at 350oC) 100 sccm N2 , 200 sccm Ar Purge;  
Chamber Pressure: 200 mTorr  Duration: 30 
seconds 

Pressure Set up  

TDMAT Dose 200 sccm Ar Purge, 20 sccm Ar Carrier;  
Chamber Pressure: 40 mTorr Duration: 
1 seconds 

TDMAT Purge 200 Sccm Ar Purge, 20 Sccm Ar Carrier; 
Chamber Pressure: 40 mTorr Duration:  
5 seconds 

Plasma Gas stabilisation 5 sccm H2, 15 or 30 sccm N2, 
200 sccm Ar Purge, 20 sccm Ar Carrier; 
Chamber Pressure: 10 mTorr Duration: 
5 seconds 
 

H2/N2 Plasma 5 sccm H2, 30 or 15 sccm N2, 
200 sccm Ar Purge, 20 sccm Ar Carrier; 
Chamber Pressure: 10 mTorr Duration:  
5 seconds 
Plasma Power: 200 W  Duration: 
15 seconds  
 

Post Plasma Purge 200 sccm Ar Purge, 200 sccm Ar Carrier; 
Chamber Pressure: 40 mTorr Duration: 
10 seconds 
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Fig. 6.2: R(T) Curve of 30 nm thick TiN films deposited in the atomic layer deposition 

system (Nitrogen flow rate in the reactive plasma has been varied). 

Fig. 6.2 presents the Tc measurement of the 30 nm thick TiN films deposited following the 

process described in Table 6.2. Two different N2 flow rates in the reactive plasma have been 

used during TiN film growth. As it can be seen from the above figure, for the film grown 

with 30 sccm N2, a 2.4 K Tc can be obtained.  In this recipe, a total of 240 minutes (4 hours) 

of deposition time was used to grow a 30 nm thick TiN film (meaning the film deposition 

rate was 0.125 nm/minute). 

A set of thicker TiN film (60 nm)  grown by the ALD process have shown reduced Tc (2.2 

K) which is contrary to the common trend found in the literature for TiN films [5]. This 

anomalous behaviour may be explained by growth of impurities from the precursor in the 

film as the film thickness is increased, degrading the superconducting properties.   
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6.3 Transmission Electron Microscopy analysis 

The structural properties of the TiN films have been analysed in HRTEM. Samples have 

been prepared for TEM analysis following the process described in Section 3.4.1 of Chapter 

3. A JEOL ARM200cF microscope has been used for this analysis. Fig. 6.3 shows the TEM 

images (400 KX) of 30 nm thick TiN film deposited in the atomic layer deposition system. Since 

high resistivity silicon has been used as the substrate and all the substrates were processed with 

HF dip before the film growth, there is no native oxide layer between the film and the substrate. 

The TEM image also demonstrates a smooth film substrate interface indicating the uniformity 

of film growth. Film thickness has been measured at several locations with help of line profile 

analysis. TiN film has a thickness of 31.9 (± 0.2 nm) nm.  

  

                                                  

Fig. 6.3: TEM cross section image of 30 nm thick TiN film deposited in the ALD system. 
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Fig. 6.4: Higher magnification view of the TEM cross section image of 30 nm thick TiN 

Film deposited in the ALD system showing the columnar structure and tight grain 

boundaries.  

 

 

 

Fig. 6.5: Line profile analysis and thickness measurement of TiN film deposited in ALD 

(cross section has been shown in Fig. 6.4). 
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(a)                                                                                                (b) 

 

 

Fig. 6.6: Structural properties of ALD deposited TiN film: (a) FFT view extracted from the 

area marked by the red square in Fig. 6.5; (b) Convergent beam electron diffraction image 

of the TiN film.  

Both Fig. 6.3 and Fig. 6.4 show columnar film growth and tight grain boundaries (grains 

have a horizontal dimension of ~ 15 -20 nm). In Fig. 6.6 (a), an FFT view extracted from the 

area marked by the red square in Fig. 6.4 has been shown. Though the image is very noisy, 

the existence of structural order can be seen. In Fig. 6.6 (b), we have shown a convergent 

beam electron diffraction pattern recorded the TiN film. Fig. 6.7 shows a cross section image 

of 90 nm thick TiN film grown on a heated substrate in the sputter deposition system. The 

line profile indicates a thickness of 87.5± 0.3 nm. The crystalline structure and large grains 

of the sputter deposited film can be observed from the TEM image. 
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Fig. 6.7: TEM cross section image of 90 nm thick TiN Film deposited in the sputter 

deposition system. 

 

 

 

Fig. 6.8: Line profile analysis and thickness measurement of TiN film deposited in the 

sputter system (cross section has been shown in Fig. 6.7). 
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The following figure (Fig. 6.9) shows the chemical composition analysis of the ALD 

deposited TiN thin film. The elemental mapping clearly indicates that the film consists of 

titanium and nitrogen. We have also shown a mapping of oxygen over the sample. It reveals 

that though there are oxygen impurities in the substrate as expected, there is no noticeable 

oxygen contamination in the film.  

 

 

                                       

(a)                                                                                                      (b) 

 

 

                                              

                                                                            (c) 

Fig. 6.9: Composition analysis of 30 nm thick TiN Film deposited in atomic layer deposition 

system: (a) Ti map. (b) N2 map. (c) O2 map.  
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6.4 Device fabrication and testing8 

MKID devices have been fabricated based on the TiN thin films deposited following the 

optimised recipes described in this chapter. The device fabricated based on the 90 nm thick 

sputter deposited film showed a resonance. However, the resonance curve of the device was 

unresponsive to any optical radiation. On the other hand, the device fabricated from 30 nm 

thick ALD deposited film has shown a proper response. As shown in the following figure, 

the resonant frequency of the MKID device shifts towards left with the increase in optical 

power while the depth of the resonance decreases. Fig. 6.10 demonstrates the design and the 

optical microscope image of the device.  

 

 

 

Fig. 6.10: Design and optical microscope image of the MKID device fabricated from the 30 

nm thick ALD deposited TiN film.  

 

 

 

                                                           
8 MKID device fabrication and low temperature characterisation have been performed by Dr. Dmtry 

Morozov using facilities at the University of Cardiff. 
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Fig. 6.11: Low temperature characterisation of the MKID device: (a) Resonance curve of the 

device with different blackbody radiation. (b) Optical NEP of the phase response of the 

device at Tbase = 230 mK. 

(a) 

(b) 



143 

 

 

 

From the Fig. 6.11 (a), it is clear that the device is responsive to blackbody radiation. At the 

lowest blackbody temperature (8.16 K), the resonant frequency of the device is 2.0812 GHz. 

The internal quality factor of the device is 21783.22. Base temperature of the device is 

maintained below 0.3 K. Fig. 6.11 (b) shows optical NEP data of phase response of the 

device at a 350 mK temperature. It is of the order of ~10^-15. As stated in Chapter 2, this 

NEP value is sufficient for the application in passive terahertz imaging.  

6.5 Summary 

In this chapter, optimisation of TiN thin film growth for MKID applications has been 

reported. 30 nm thick ALD deposited film has shown a Tc of 2.4 K and 90 nm thick sputter 

deposited film has shown a maximum Tc of 4 K. The deposition rate of the ALD process is 

much slower (~18 times) in comparison to the sputter deposition. HRTEM analysis reveals 

that TiN films are highly crystalline in nature with large grain size. A prototype MKID 

device has been fabricated from the TiN film that was grown following recipes described in 

this chapter. The difference in the optical response of devices fabricated from the sputtered 

and ALD deposited films is still unknown, but a slower deposition rate and higher uniformity 

of ALD films can be a crucial reason behind this.  
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Chapter 7 

Conclusion and Outlook  

7.1 Summary of Thesis Work 

 

In this thesis, we have carried out an extensive study on the growth and optimisation of 

superconducting thin films for next generation superconducting detector applications. Thin 

films have been grown in a newly installed load-locked ultra-high vacuum sputter deposition 

system and new atomic layer deposition unit in the James Watt Nanofabrication Centre at 

the University of Glasgow. A cryogen free low temperature testing set-up has been built to 

characterise superconducting properties of thin films.   

At the beginning of this thesis, we started with the acceptance test of the sputter deposition 

system (a Tc of 9.1 K has been reported for a 300 nm thick Nb film). NbN and NbTiN are 

the most extensively used conventional thin film materials for SNSPD application. We have 

optimised NbTiN thin films in terms of superconducting properties. Films have been grown 

by the co-sputtering of Nb and Ti in an Ar environment. Nitrogen has been used as the 

reactive gas. The amount of nitrogen in the chamber has been controlled by the throttle valve 

position and the mass flow controller determining incoming gas flow. A Tc of 7.2 K has been 

demonstrated by our optimised recipe for a 5.5 nm thick NbTiN film grown on a silicon 

substrate at room temperature. When we heat the substrate up to 800°C during deposition, a 

NbTiN film with the same thickness shows a transition temperature of 10.4 K.  High 

resolution transmission electron microscopy (HRTEM) analysis demonstrates the 

polycrystalline nature of the NbTiN thin films. It also shows that substrate heating improves 

the superconducting properties of the films.   

The lattice-matching requirements between NbN or NbTiN films and the substrate create a 

major constraint on high efficiency SNSPD fabrication or in integrating SNSPDs in complex 

circuits. Amorphous superconducting materials such as MoSi, MoGe or WSi offer a 

potential solution to this problem. Amorphous films do not set strict requirements on 

substrate choice as there is no issue regarding lattice matching.  In Chapter 5, we have 

presented optimisation of MoSi film growth and demonstrated a Tc of 5.5 K for a 5 nm thick 

film. A comparison of Tc measurement between MoGe and MoSi thin films indicates that 
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MoSi is a more suitable material for SNSPDs which can be operated at an elevated 

temperature. By comparing our transition temperature measurement data with several 

theoretical models (Finkel’stein, Simonin and Ivry) we find that the room temperature sheet 

resistance is strongly linked to the resulting Tc of the amorphous film. We have employed 

advanced TEM techniques, including FEM, to reveal that the film consists of a short range 

nano crystalline structure which is similar to an A15 Mo3Si structure. Based on the sputter 

deposition rates, the composition of the film is closer to 83:17 than 75:25. This is typical of 

A15 structures and could be due to either a significant vacancy population on the corner of 

B (Si) sites of an A3B (Mo3Si) structure or alternatively due to the substitution of A (Mo) 

atoms on some of the B (Si) sites.  VASE studies have also been carried out to determine the 

complex refractive index of uncapped and Si capped MoSi films. This data is critically 

important for integrating MoSi SNSPDs into advanced optical structures such as waveguides 

and cavities, and it can also be crucial for tailoring devices to specific wavelengths in the 

future. The refractive index properties of MoSi have been compared with NbTiN and NbN, 

indicating that MoSi has superior optical absorption at mid infrared wavelengths.  Finally, 

transport properties including critical current and its dependence on temperature have been 

evaluated after nanowire patterning (in range of 2003 nm width down to 173 nm width) in a 

10 nm thick film. The critical current density measured at 3.6 K (in the range 0.36 to 0.2 

MA/cm2, diminishing with wire width) indicates nanowires are suitable for SNSPD 

operation at an elevated temperature (> 2 K). This study has implications for the optimisation 

of MoSi films for next generation SNSPDs, for the realisation of uniform large area SNSPD 

focal plane arrays and for the integration with advanced optical architectures such as 

quantum photonic waveguide circuits.  

To date, we have reported a low temperature photoresponse map recorded at 350 mK 

(corresponding to a maximum system detection efficiency of approximately 5% at a 1550 

nm wavelength under the perpendicular illumination condition) from a waveguide integrated 

SNSPD fabricated on a 10 nm thick MoSi thin film deposited at the University of Cambridge 

with a similar composition (Mo83Si17) [1]. Presently, the optical response of full SNSPD 

devices fabricated based on the MoSi films that have been optimised in this study are being 

explored. 

In Chapter 6, we have described the process optimisation of TiN thin film growth for MKID 

applications. Two different deposition techniques (sputtering and atomic layer deposition) 

have been used to grow TiN films. Hydro fluoric (HF) acid cleaned, double side polished 

silicon substrate has been used for the film growth. For the sputtered deposited films, a Tc of 



147 

 

 

 

2.9 K has been achieved for the 90 nm thick film grown at room temperature. Substrate 

heating during deposition enhances Tc up to 4 K.  A 30 nm thick TiN film in the ALD system 

deposited following the optimised process shows a Tc of 2.4 K. HRTEM analysis shows that 

ALD deposited films are uniform. Their cross-section images exhibit columnar film 

structure and tight grain boundaries (with a grain size of ~ 15 -20 nm). Sputtered deposited 

films also show a crystalline structure. Elemental mapping using TEM shows the existence 

of Ti and N2 in the TiN thin film samples. The existence of oxygen impurities can be 

observed in the silicon substrate. However, there is no noticeable oxygen contamination in 

the TiN thin film samples.  

7.2 Outlook  

Since the initial demonstration of SNSPD and MKID technology, there has been a 

considerable amount of effort made to improve the optimisation of superconducting thin film 

materials for specific superconducting detector applications. For SNSPDs, amorphous 

superconductors have evolved as potential alternatives to substitute traditional materials like 

NbN or NbTiN. In case of MKID, TiN based devices have shown promising results. My 

view on the further lines of research in this area has been summarised below.   

A combination of deposition technique consisting of ALD and sputtering can be useful to 

enhance the uniformity of superconducting thin film growth. Thin film growth in the ALD 

chamber is very slow (~few Å/minute) and uniform. At first, a seed layer of a few nm thick 

film can be grown using the atomic layer deposition system. Immediately after that, samples 

can be taken out of the ALD chamber and inserted in the sputter deposition system.  In the 

sputter system, the same material can be sputtered until the desired thickness is reached. The 

ALD deposited layer will help to promote uniformity and crystalline structure of the thin 

film.  

A bilayer of amorphous and polycrystalline superconducting thin film can be used as a base 

material for SNSPDs. As discussed by Ivry et al. [2], both crystalline metal nitrides and 

amorphous alloys have certain material properties which promote the specific performance 

parameters of SNSPDs (e.g. NbN based devices are much faster with <35 ps timing jitter 

and < 3ns reset timing; on the other hand, WSi based detectors show over 90% system 

detector efficiency). Use of a hybrid thin film system consisting of both crystalline and 

amorphous material can be a novel approach to optimising performance parameters of 

SNSPDs.  
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Two-dimensional materials have recently gained huge interest in the scientific community 

due to their unique properties.  These materials have many exceptional applications in real 

life [3]. Although the theoretical aspects of two-dimensional superconductivity are being 

explored since past several decades, it remains extremely challenging to fabricate two-

dimensional superconducting material. Due to recent advances in nanofabrication 

(especially after the discovery of graphene), the experimental investigation of 2D 

superconductors is going to be an important field of research. Ugeda et al. have shown that 

NbSe2 remains even in single atomic layer form and shows a Tc of 1.9 K (whereas its bulk 

Tc is 7.2 K) [4]. Further exploration of superconducting properties in novel 2D materials may 

lead to new concepts in superconducting detector technology.   

The performance of superconducting detectors strongly depends on cryogenic technology. 

At present, a base temperature at least below 2 K is required for the operation of high 

efficiency SNDPDs. The fabrication of detectors based on the materials with higher 

transition temperatures may elevate the operating temperature of detectors. MgB2 has a bulk 

Tc of 39 K (discovered in 2001) [5]. In recent years, there have been consistent efforts to 

fabricate nanowire based superconducting devices from MgB2. Arpaia et al. have reported 

photoresponse of nanowires fabricated based on YBCO (a high temperature superconductor) 

[6]. However, it is extremely challenging to fabricate uniform nanoscale devices on these 

high Tc materials since they have complicated structural properties and are frequently 

degraded during nanopatterning. Exploration of nanofabrication techniques and 

superconducting properties of these materials may provide some new solution to the issues 

of cooling power related to the operation of SNSPDs. 

One of main disadvantage of the SNSPD is that its needs to be packaged in a complicated 

cryogenic system which demands a lot of space and cooling power. Recently, there is some 

research being done regarding the miniaturisation of cryo-coolers and the packaging of 

SNSPDs into them [7], [8]. Since the base temperature of these smaller cryo-coolers is 

comparatively high (~4.2 K) SNSPD devices which show excellent performance at lower 

temperatures may not show high efficiency if integrated into such a system. It would be 

interesting to optimise thin films for such a specific device operating temperature.  

Since the past few years, several groups are investigating the detection process of SNSPD 

devices and the hotspot growth mechanism in different superconducting materials [9], [10]. 

Further exploration on the microscopic process involved in the photon detection by SNSPDs 

will give us a sound understanding of how material parameters influence superconducting 
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detector properties. This will also be useful for optimizing superconducting materials for any 

specific detector application. 
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