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“ The reasonable man adapts himself to the world.

The unreasonable one persists in trying to adapt the world to himself.

Therefore, all progress depends on the unreasonable man.”

George Bernard Shaw

“ If you don’t have any shadows you’re not in the light.”

“ So there’s nothing more provocative than taking a genre that

everybody who’s cool hates - and then making it cool.”

Lady Gaga



Abstract

Computational image reconstruction is generally an inverse procedure which helps

to recover the original information in a scene. Various imaging techniques have

been developed to extract certain kinds of information for applications in different

fields. The focus of this thesis is to improve two elegant and powerful methods

among those approaches, namely, photometric stereo and single-pixel imaging, into

a more practical and applicable phase.

With the advances in modern imaging technology, 3D information is playing an

increasingly significant role in real-world applications, from robotic vision, man-

ufacturing, entertainment, and biology to security. While an immense amount of

research has been conducted over the last few decades, the requirement of generat-

ing a rapid and accurate estimation of scene depth information with a cost-efficient

system remains challenging. In the first work, we developed an inexpensive com-

putational camera system allowing fast 3D reconstruction of objects based on the

principle of photometric stereo. By analysing the estimated 3D data of various

objects, we noticed good quantitative agreement with the known reference ob-

ject with a wide viewing angle. With a low-cost accessory, our system provides

a simplified reconstruction routine alongside a high efficiency, which extends its

portability and capability for practical applications.

Single-pixel imaging is an emerging paradigm which utilises spatial correlation of

light with a single-pixel detector to form an image. It provides an alternative

strategy to conventional imaging techniques which reply on a pixelated sensor

for spatial resolution. In the second work, we combined photometric stereo with



single-pixel imaging to evolve a new 3D imaging system with an efficient real-

time sampling scheme. By utilising a high-speed structured illumination and four

single-pixel detectors, multiple images of a scene with different shading profiles

were able to be reconstructed with perfect pixel registration for depth estimation,

empowering 3D imaging of dynamic scene. A compressive strategy, known as

evolutionary compressed sensing, was further employed to improve the frame rate

of 3D single-pixel video at an expense of only a modest reduction in image quality.

This system represents a step-forward towards real-time 3D single-pixel imaging.

By using single-pixel imaging technique, it offers a feasible solution for situations

that are costly or constrained with conventional pixelated camera sensor, for in-

stance, near-infrared (NIR) imaging and fluorescence imaging through multimode

fibres. However, the signal-to-noise ratio (SNR) scales poorly when increasing the

single-pixel imaging resolution. In the last work, we developed a NIR single-pixel

imaging system with micro-scanning, an optimisation approach that generates a

higher-resolution image while maintaining the SNR of the lower-resolution images

where it is derived from. With the use of sunlight and an infrared heat lamp as

the illumination sources and a set of NIR bandpass filters, our system indicated a

well capability of revealing the water absorption underneath the surfaces of plant

leaves and fruits compared to an expensive pixelated InGaAs camera. Additional

efforts were devoted to further improve the image quality of a modified single-pixel

imaging system that allows visible and NIR dual-band detection simultaneously.
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Chapter 1

Introduction

1.1 Preamble

The human eye is a complex optical system which detects and interprets informa-

tion from visible light in the surrounding environment to provide visual perception.

A tremendous amount of effort in the past centuries has been aimed to replicate

its functionality of perceiving colours and depth in intricate detail. Based on the

structure characteristics of our eyes, a typical two-dimensional imaging system

generally consists of a cornea-like lens to form an image by focusing the rays of

light, a pupil-like aperture to restrict the amount of light that gets through, and

a retina-like device which contains the photosensitive material.

Since the earliest known attempt of imaging began in 1021 with use of a small hole

in one side of a dark room in Iraq [1], imaging system technology has gone through

some momentous phases. The first phase of the technology began with camera ob-

scura in 1550, which used a simple lens to focus light from an external scene onto a

wall or a drawing board inside a light-proof box, tent or room so the image can be

traced[2]. This technology migrated to chemical-based imaging in 1826 when the

first successful sun-picture was made in France [3]. Silver chemistry, with which

light is focused through a lens to reduce silver ions to silver metal to create an

1
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image [4], is the most common form of chemical imaging technology. In 1884, film

was developed to replace the photographic glass plate [5]. The next phase in the

evolution of imaging system technology was digital imaging, when electronics had

started moving away from vacuum tubes to small transistors since 1920s [6]. In

1969, the charge-coupled device (CCD) was conceived by Boyle and Smith to gen-

erate an image by counting the number of light photons falling onto a silicon chip

[7]. This allowed optical image data to be transformed into an electronic format

for digital processing. Complementary metal-oxide-semiconductor (CMOS) tech-

nology was later developed in 1970s as a competitive digital imaging solution to

CCD [8]. Both technologies are based on arrays of pixel sensors to gather photons

of light and convert them into a visible image, but with different schemes of cap-

turing the electrical data [9]. Thanks to tremendous advances in semiconductor

and electronic component technology, the processing power of computers has been

growing at a blazing rapid rate. This has led imaging system technology to step

into the current phase, computational imaging, in which various image processing

approaches have been implemented to further enhance the capabilities of digital

imaging systems and overcome their limitations.

In particular, three dimensional (3D) computational imaging, a technique to re-

trieve the depth information of a 3D object, has become available and popular

in a wide range of disciplines, for instance, prototyping, object recognition, robot

navigation, visualisation and animation [10]. However, the requirements of many

3D imaging systems, which involve high accuracy, fast estimation, low cost, porta-

bility and flexibility, are still quite challenging.

To respond to the challenge, my colleagues and I firstly developed a cost-efficient

and portable 3D imaging system that allows fast and accurate estimation of ob-

ject’s depth information in a scene, as presented in chapter 2. Photometric stereo,

a technique for measuring the surface normals of objects from a set of 2D im-

ages taken with a fixed viewpoint and different lighting conditions [11], was im-

plemented in our system by utilising a consumer digital camera and a low-cost
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accessory to provide a simply and efficient 3D reconstruction routine. A quanti-

tative analysis was made on the acquired 3D data by comparing to the reference

3D information of objects, showing a good agreement.

Comparing to conventional digital imaging techniques, single-pixel imaging, which

obtains spatial information of an object by sampling the scene through a set of

microstructured illumination masks [12, 13], is becoming a remarkable alterna-

tive with the advent of single-photon-sensitive detectors, high-speed micro-electro-

mechanical-systems(MEMS) devices, super-fast data acquisition(DAQ) equipments

and high-performance computers. By combining photometric stereo and single-

pixel imaging, we then derived a modified 3D imaging system that provides a

perfect pixel-registration among 2D images captured with different shadows fea-

tures, as shown in chapter 3. A compressive sensing algorithm was applied in the

system to speed up the processing rate of continuous 3D reconstruction of a scene

exhibiting dynamic behaviours.

One significant advantage of single-pixel imaging is that it allows one to use ultra-

high sensitive light sensors to explore spectral bands beyond visible wavelength

for imaging by avoiding conventional silicon-based sensor arrays in digital cam-

eras which exhibit no sensitivity at wavelengths exceeding 1000nm [14]. In chapter

4, a near-infrared(NIR) single-pixel imaging system is demonstrated with a micro-

scanning approach employed to improve the signal-to-noise ratio(SNR) when in-

creasing the imaging resolution. Results of plant leaves and fruits imaged under

the sea-level sun and a heat lamp at different NIR spectral bands with both our

system and an expensive commercial InGaAs infrared camera are compared visu-

ally with both showing good capability for revealing water absorption underneath

the surface. Chapter 5 interprets a fine-adjusted dual-band single-pixel imaging

system with some other attempts carried out to improve its SNR performance.

In this chapter, I shall first give a brief review to some of the widely used con-

ventional 3D optical imaging approaches, in which particular attention has been
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placed on photometric stereo. Then the single-pixel imaging technique that can

acquire images without the need of a pixelated sensor will be introduced, along

with some previous research which inspired the imaging systems that are presented

in this thesis.

1.2 Conventional 3D optical imaging techniques

The depth information of a three dimensional scene always get lost when capturing

from a conventional camera perspective due to its two dimensional receptive field.

Retrieval of this lost information has been particularly crucial in recent decades

on account of a rapidly growing demand for 3D content in the field of robotics,

medicine, entertainment, etc. Based on this background, various methods have

been developed for 3D shape capturing. Here we will review some of the commonly

used conventional 3D optical techniques with non-contact measurements.

1.2.1 Interferometry

On the smallest scale, interferometry is an extensively utilized optical approach

for surface depth measurement on 3D structures. The principle of interferometry

is based on the interference phenomenon that two waves (usually light, radio or

sound waves) with the same intensity and frequency traversing the same space

will be superimposed to form a resultant wave with an amplitude equalling to the

sum of the amplitudes that are produced by these two waves separately [15, 16].

To put it concretely, if the two merging waves are in phase, the amplitude of the

new wave will increase significantly (constructive interference), whilst if they are

out of phase, the amplitude will be decreased (destructive interference).
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When the two waves are spatially extended, we can observe the variations over a

surface area with alternating regions of bright and dark bands, known as interfer-

ence fringes. Phase differences between two waves occur when travelling different

optical path lengths caused by the shape differences between a test surface and a

reference one. By analysing the interference patterns, the path length differences

can be determined, by which the surface relief of test object can be computation-

ally extracted. Based on the wavelength of the incident waves, interferometry can

provide a height measurement of 3D structures with surface profiles varying from

a few nanometres to several centimetres [17, 18]. As a non-contact measuring

method, it avoids the risk of damage or deformation of the test surface. With

the employment of lasers and optical fibres [19], interferometry is able to provide

dynamic surface measurements with high resolution and outstanding accuracy on

the order of a small fraction of the wavelength of light used.

1.2.2 Structured Illumination

Structured illumination is a reliable contactless technique, initially developed for

microscopy applications, which enables 3D feature extraction of an object using

full-field illumination optics. Having a calibrated projector-camera pair with a

known distance, a set of mathematically constructed light patterns are sequen-

tially illuminated onto an object and a set of images are synchronously captured

by the camera (or cameras). If the object surface is planar without any topo-

graphic variation, the pattern shown in the corresponding image will be the same

as the projected light pattern. However, if the surface of the object is non-planar,

the pattern in the captured image will appear to be distorted with locally varying

displacements caused by the geometry of the object [20]. Based on the displace-

ment of projected patterns, it enables an exact retrieval of the 3D coordinates of

each point on the object surface following the principle of geometric triangulation.
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The structured light patterns can be generated by either a laser with the appro-

priate optics or a digital projector manipulated by a computer. As the intensity

value of each light pattern is generally not required and only its geometric displace-

ment is used in this approach, the surface measurement is largely independent of

the object’s optical properties, such as the colour and the reflectance. There is

another 3D measurement approach with structured illumination based on the de-

tected light intensities, which will be covered later on in section 1.3. Depending on

the optical resolution of projected patterns, structured illumination can provide

3D surface profile measurements with an error of millimetres [21–23].

1.2.3 Stereo vision

In addition to the aforementioned methods, stereo vision, also known as stereopsis

or stereoscopic vision, is another widely performed 3D approach that deduces the

spatial shape and position of an object through parallax between the corresponding

pixels from two (or more) images of the object as observed from slightly different

viewpoints [24, 25]. Due to noise and image structure, the most difficult and time-

consuming procedure in a stereo vision system is the registration of the images, or

more precisely, the identification of corresponding pixels. Once the correspondence

for each pixel is determined, the object’s 3D information can be calculated directly

using the principle of triangulation.

To simplify the correspondence search problem, a geometric limitation known as

the epipolar constraint is generally applied in most stereo systems [26, 27], which

narrows the search space for each pixel in one image from two-dimensions into

a one-dimensional line (epipolar line) in the other one by ensuring the optical

axes of the cameras are parallel and the images are captured at the same height

of focal points with the same focal length. With this standard stereo geometry,

those lines follow along the horizontal scan lines of the images, where the matching

process can be handled efficiently. For stereo systems with an arbitrary camera
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setup, a transformation process known as image rectification can be employed

to perfect camera alignment [28–30]. There have been numerous algorithms with

further constraints utilised for tackling the correspondence problem in stereo vision

[31–33], the outcomes of which are different in terms of accuracy, robustness and

computational requirements.

1.2.4 Photometric stereo

Among all kinds of cues that can be used to reconstruct 3D geometry, it is possible

to infer shape from the shading on a surface. This is based on the fact that

following the surface normal changes across an object, the apparent brightness

varies on the basis of the angle between the local surface orientation and the

incident illumination. The technique that extracts 3D information of an object

from the intensity variation is known as shape from shading [34]. Most algorithms

for this technique [35–37] assume that the object surface is of a uniform albedo

and reflectance and rely on large data training to recover the 3D shape from a

single 2D image.

To make this approach more powerful and reliable, multiple light sources are used

separately to obtain different images of an object, with the same position in each

image corresponding to the same surface point. This approach, pioneered by

Woodham in 1980 [11], is known as photometric stereo, in which the role of light

sources analogous to the cameras placed at different locations in traditional stereo

[38]. It requires no hypothesis of the surface smoothness and enables satisfactory

accuracy with reasonable computational cost.

There has been a lot of research effort put forth in improving the performance of

3D reconstruction using photometric stereo since it was proposed. Technically it is

adequate to use two light sources for photometric stereo with known surface albedo,

but using more than three can minimise the shadow effect in sampled images [39].

For general diffuse reflectance, Okatani and Deguchi [40] pointed out that there
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exists a set of the surface normals for which the relation between the surface nor-

mal and the orientation of the 3-vector formed by the image brightness triplet is

guaranteed to be one-to-one. With images of an object obtained under unknown

lighting conditions, Basri, Jacobs and Kemelmacher [41] recovered the surface nor-

mals based on the finding that general lighting conditions for Lambertian objects

can be represented using low order spherical harmonics. To enhance the resolution

of photometric stereo, Tan et al. [42] demonstrated a method to recover the sub-

pixel surface geometry by acquiring the distribution of surface normals along with

the surface convexity of each pixel and then spatially arranging the normals among

pixels in accordance with the consistency and simplicity constraints on the sur-

face structure. A self-calibrating approach for photometric stereo was introduced

by Shi et al. [43] which analyses colour and intensity profiles in the RGB and

irradiance-time domains to automatically resolve both the camera’s radiometric

response function and the unknown lighting directions and intensities. Hansen et

al. [44] presented an photometric stereo algorithm that reduces the effects of shad-

ows in the 3D reconstruction without foreknowing the precise shadow boundaries

in images by making use of both visible and near-infrared light sources. Wu et al.

[45] demonstrated a robust photometric stereo method which employs advanced

convex optimization techniques to handle shadows and specularities in the images

and provide highly accurate estimates of surface orientations. By making use of

a reference model to estimate the illumination parameter of each image, Sun et

al. [46] proposed a fast 3D face reconstruction algorithm with a combination of

classical photometric stereo and lighting calibration.

1.3 Single-pixel Imaging

In conventional imaging systems, a sensor array is generally required to capture a

2D image of a scene by collecting light focused through an optical lens. An alter-

native approach, known as single-pixel imaging [12, 47], replaces the multi-pixel
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sensor with a single photosensitive detector as the imaging device by utilising a

spatial light modulator (SLM) to provide either time-varying, structured detection

of the scene or time-varying, structured illumination onto the scene. The final im-

age is retrieved by correlating the recorded intensity signal with the corresponding

structured illumination. This technique is closely related to ghost imaging [48, 49],

which yields an image of an object by combining information from two detectors:

a conventional detector with a pixlated sensor that records a light field that has

never interacted with the object to be imaged, and a single-pixel detector that

collects a field that has interacted with the object.

1.3.1 Single-pixel imaging theory

Figure 1.1: Schematic representation of a single-pixel imaging system. By
using focusing optics, light is collimated to illuminate an object which is focused
onto a SLM. By changing the masks or coded apertures on a electronically
controlled SLM, the intensity of transmitted light will be different each time.
The partially transmitted light was then focused onto a single-pixel detector
which measures the aggregate power of the light. By analysing the correlation
between measured signals and the corresponding masks, a 2D image of the

object is then reconstructed.

A typical single-pixel imaging system consists of a light source, focusing optics, a

SLM and a single-pixel detector as illustrated in Fig. 1.1. Light scattered from

an illuminated object is focused by a lens onto a SLM, which selectively passes

light onto the single-pixel detector. With a known set of binary-coded patterns

displayed on the SLM and the measured signal from the detector for each pattern,

an image of the object can be reconstructed. For a N -pixel image, single-pixel
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measurements for a sequence of M N -element light patterns can be presented in

a matrix form as follow:

I = φX (1.1)

where I is a M -element column vector, φ is a M x N matrix representing the

pattern set, and X is a N -element column vector representing the pixels in the

image. The size of φ varies based on the type of patterns displayed on the SLM

[12]. For a well-defined measurement matrix φ [50], image X can be recovered

using the inverse matrix equation:

X = φ−1I (1.2)

1.3.2 Computational imaging systems with single-pixel de-

tectors

Compared to conventional imaging techniques using sensor arrays, single-pixel

imaging is a remarkable alternative with several advantages. The high sensitiv-

ity of single-pixel detectors enables this technique to employed in low-light-level

imaging applications [51, 52]. It also provides a simple and reliable way of mea-

suring the spatial distribution of multiple physical dimensions of a scene. Ref.[53]

proposed an optical system that performs polarimetric imaging with a single-

pixel detector. Ref.[54] demonstrated a full-colour imaging system using three

spectrally-filtered single-pixel detectors. Ref.[55] introduced the design of a time-

of-flight range system for acquiring 2D depth maps of piecewise-planar scenes

using a single time-resolved photodetector. Ref.[56] employed several single-pixel

detectors in different locations to retrieve the 3D information of an object based

on shape from shading. Ref.[57] presented a framework for digital holography by

combining phase-shifting interferometry with single-pixel imaging. Furthermore,
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single-pixel detectors can offer a significantly broader spectral range than conven-

tional silicon-based cameras, extending the imaging technique to different spectral

regions [58].

Despite those advantages, large amounts of illumination patterns are required to

reconstruct high-quality images with single-pixel imaging using traditional sam-

pling methods. These methods fall under the classical Nyquist sampling theorem

which states that in order to accurately reproduce a signal it should be periodi-

cally sampled at least twice the highest frequency contained in the signal [59]. The

full measurement under this sampling scheme is memory demanding and requires

long acquisition time [60]. One way to address this issue is to increase the pattern

switching speed on the SLM. Significant amount of effort has been invested in the

area of SLMs, including ones based on micro-electromechanical systems (MEMS)

[61], digital micromirror devices (DMD) [62], and liquid crystal on silicon (LCOS)

[63]. Single-pixel imaging speed can also be increased by applying a novel sampling

theorem called the compressed sensing (CS), which exploits the fact that natural

images tend to be sparse in the discrete cosine transform (DCT) domain, in other

words, many images can be well-approximated by only a small number of non-

zero expansion coefficients in terms of a suitable basis [12, 64–66]. By performing

single-pixel imaging with compressive sensing, images can be retrieved with far

fewer measurements than that established by the Nyquist limit.

1.4 Conclusion

In this chapter I have presented a brief historical overview of the development

of imaging system technology and the principle of some widely used conventional

3D optical imaging technologies including interferometry, structured illumination,

stereo vision and photometric stereo. Among those imaging technologies, pho-

tometric stereo was applied in our fast 3D reconstruction system due to the ad-

vantage that it can provide a simple and efficient reconstruction routine with a
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low-cost hardware. Chapter 2 will summarise the experimental setup and method-

ology. I will explain the mathematical model and the computational program that

we have developed for building up this 3D camera system.

Besides those conventional imaging methods, I have also reviewed an alterna-

tive imaging approach, known as single-pixel imaging, which uses a single pho-

tosensitive detector as the imaging device instead of a multi-pixel sensor in a

conventional camera. In chapter 3 I will demonstrate a modified 3D imaging sys-

tem by combining photometric stereo with single-pixel imaging to provide perfect

pixel-registration and a capability of 3D imaging of scenes exhibiting dynamic

behaviour in real-time. A big advantage of using single-pixel imaging technique

is that it can be readily extended to other wavelengths with the use of exotic

detectors that would be impossible or prohibitively expensive in a conventional

digital camera. Chapter 4 will present a near-infrared (NIR) single-pixel imag-

ing system with an indium-gallium-arsenide (InGaAs) amplified photodetector. A

micro-scanning method and Hadamard matrices for improving the image signal-

to-noise ratio (SNR) will be introduced. The results of imaging different objects

with a set of NIR bandpass filters using our system will be given to indicate its

ability of detecting water absorption underneath the surface of plant leaves and

fruits. In chapter 5 I will demonstrate a visible (VIS) and NIR dual-band single-

pixel imaging system with three optimisation approaches that have been applied

or tested for further improving the NIR image quality. Chapter 6 will summarise

the results of this thesis and give a brief description of the future work that could

be undertaken.



Chapter 2

A Fast 3D Camera System using

Photometric Stereo

2.1 Introduction

Three-dimensional (3D) imaging is a heavily explored research field that supports

applications in a wide range of disciplines, such as face recognition and robot

navigation. Various approaches have been developed for performing 3D imaging,

each with different strengths and drawbacks depending on the specific application.

This chapter will focus on the use of photometric stereo, an imaging technique that

allows depth and surface orientation to be estimated by using multiple 2D images

of a static object obtained from a fixed viewing point, under different illumination

directions. Compared to other 3D approaches such as geometry modelling and

3D scanning, a big advantage of using photometric stereo is that it has a simple

and efficient reconstruction routine. In this work, I will demonstrate a 3D camera

system with a low-cost accessory allowing fast 3D reconstruction of static objects

using photometric stereo. The results of imaging a selection of objects with varying

geometric complexity using our camera system will be presented.

13
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2.1.1 Contributions

The idea of utilising multiple light sources as a camera accessory to recover 3D

images was the result of discussions among myself, Miles Padgett, Matt Edgar

and Graham Gibson. The design and development of the lighting system was

undertaken by myself with the help of Graham Gibson and Matt Edgar. The

design of the fast surface gradient calculation method and subsequent 3D image

reconstruction was fulfilled by myself. Many of the test objects used for this

experiment were designed and 3D printed by myself. Qualitative and quantitative

assessment of the 3D imaging system was undertaken by myself with support from

Matt Edgar.

2.2 Analysis of surface reflection property

Given a light source, an object, and a detector, a reflectance model can be used to

describe the intensity and spectral components of the reflected light from the ob-

ject surface to the detector. Both the intensity and spectral composition of the re-

flected light are determined by the attributes of the light source and the properties

of the object surface. By utilising multiple light sources with corresponding reflec-

tion models, photometric stereo enables the estimation of the three-dimensional

shape of an object from 2D pictures. In this chapter, I shall present a fast 3D

reconstruction system using a commercial digital single-lens reflex (DSLR) camera

and a customised low-cost lighting accessory.

2.2.1 Specular and diffuse reflection

For a non-luminous object being imaged, the detected intensity can be the result

of different types of surface reflection: specular and diffuse. Specular reflection is

the type of reflection that occurs on smooth surfaces such as mirrors or a calm
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Figure 2.1: Specular and diffuse reflection from an object surface. (a) Light
reflects from a smooth and flat surface will have the same angle as they arrive.

(b) Light reflects from a rough surface will scatter in all directions.

body of water, whereas diffuse reflection is caused by rough surfaces, such as

paper or fabric. Microscopically the smoothness or roughness of an surface has an

enormous influence upon the subsequent reflection of a beam of light. Figure 2.1

exhibits the resultant reflection of two beams of light incident upon a smooth and

a microscopically rough surface. A beam of light can be described as a bundle of

individual light rays travelling parallel to each other. Figure 2.2 gives an example

of specular and diffuse reflectance for a spherical object under identical lighting

conditions.

Figure 2.2: An example of specular and diffuse reflection for a spherical object
under identical lighting conditions. (a) It shows the image result of a smooth
surface with specular reflection. (b) It shows the image result of a rough surface

with diffuse reflection.

In particular, the diffuse component provides intensity information about every

surface on the object, whereas the specular component occurs on comparatively
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fewer surface where the normal subtends an equal angle between the illumina-

tion and the detection. For this application, we want to reconstruct 3D shape

from as much of the object as possible, therefore we are generally interested in

the diffuse component of the measured reflected intensity. This can be achieved

experimentally by choosing objects that exhibit diffuse reflection properties, or by

isolating the specular component, for example by using crossed polarisers in the

illumination and detection.

2.2.2 Lambertian reflectance model

A light source reflected from an object surface in the direction of a detector results

in an image of the object surface.The intensity of each pixel in the image is strongly

related to the reflectance properties of the corresponding point on the surface. In

the field of computer vision, various reflectance models have been developed to

enable the rendering of a 3D surface in a 2D space. In general, the appearance of

a diffuse object with a specular varying reflection may be modelled as [67]:

IP =
k∑

i=1

ρti,P [fi(nP , LP , v)], (2.1)

where IP is the pixel intensity at point p;

k is a fixed value of a linear combination of k basis materials;

ρt is a reflection coefficient that varies on the surface;

fi is any reflectance map as a function of the viewing direction v;

nP is the surface normal at that point;

LP is the incident illumination field.

One of the most basic reflection models is the Lambertian model, which simplifies

the reflectance property of an object surface and is often used as a first order

approximation. Other non-Lambertian models are significantly more complicated

and far harder to cope with.
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A Lambertian surface is defined as an ideal diffusely reflecting surface, the concept

of which was first introduced by Lambert [68]. The appearance of a Lambertian

surface on a detector will look equally bright from any viewing direction. In other

words, the luminance of such a surface is isotropic, and the reflected intensity is

independent of the viewing direction but dependent on the light source orientation.

A linear Lambertian reflectance model can be represented as follows:

I(~i) = λ(~i)~n(~i) ·~l, (2.2)

where I(~i) is the image;

λ(~i) is the albedo on the object surface;

~n(~i) is the object’s surface normal;

~l is the light source and ~l/|~l| is the light source direction.

This model is also known as Lambert’s cosine law because the image depends on

the cosine of the angle θ between the direction of the incident light and the surface

normal (see Figure 2.3). To use this model it assumes the following:

• the object surface is a Lambertain surface and its reflectance function is

uniform;

• based on the object size, the distance between the detector and the object

is long enough to consider the image system as an orthographic projection;

• both attached and cast shadows are ignored in the model;

• only the incident light on the front of the object surface is considered here,

the incident light on the back of the surface is blocked by the object and is

hence not considered;

• the illumination from the light source is assumed as incessant and uniform

over the front of the surface.
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Figure 2.3: Lambertian Reflectance Geometry. θ is the angle between the
incident light source ~L and the surface normal ~N .

The Lambertian reflectance model has been widely used to describe diffuse reflec-

tion over various object surfaces, for instance, cotton cloth, plastic toys, matte

painting and paper, even human faces [69]. This model has also been employed in

our 3D camera system.

2.2.3 Shape from shading

Giving that we are assuming a Lambertian reflectance model, the intensity of each

point in a 2D image can be determined by geometrical features of the object surface

in the scene and the known incident light source. The approach that retrieves 3D

information from this 2D intensity image is called shape from shading (SFS),

first introduced by Horn [70–75]. To use this approach with a single image, the

reflectance properties of the object surface is assumed. The brightness of the

object surface is associated with the specified orientation at each point (x, y, z) in

gradient space. A reflectance map, R(p, q), is used to describe this relationship,

where the surface gradient is given conveniently by the first partial derivatives of

z with respect to the corresponding x and y:

(p, q) = (
∂z

∂x
,
∂z

∂y
), (2.3)
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The reflectance map, defined in gradient space, provides an uncomplicated repre-

sentation of the inherent constraint in single image brightness measurement. With

a known brightness map I(x, y) on the surface of an object, It restricts the possi-

bility of what the surface orientation at certain point of the object might be. The

connection between the reflectance map R(p, q) and the brightness map I(x, y)

can be represented by the image-irradiance equation:

R(p, q) = I(x, y), (2.4)

This equation has two unknown variables (p, q), which results in the non-uniqueness

of the solution. In other words, a contour of R(p, q) can have the same brightness

map. More constraints are needed. One method to solve this problem is to start

at a single point in the image where the surface orientation is known, then grow a

solution by moving to its nearest neighbour point along the contour. An extension

of SFS approach is to employ multiple images rather than one image.

2.3 Photometric stereo model

The appearance of an object in an image results from the effects of illumination,

object orientation, object shape and its reflectance. With a static object, the cor-

responding surface orientation can be calculated by analysing the object images

under different illumination directions, as shown in Figure 2.4 [76]. Photometric

stereo, first introduced by Woodham [11], allows depth and surface orientation to

be estimated from multiple images of a static object taken from the same view-

point, but under different illumination directions. Fundamentally, photometric

stereo, which is simple and concise for Lambertian surfaces, enables 3D recon-

struction of an object by analysing differences of the intensity distribution in im-

ages that are captured from at least three different illumination directions [77].
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Figure 2.4: Principle of photometric stereo. a) If the surface of an object is flat
and normal to the camera lens, images captured under axis lighting directions
1 and 2 will show the same light intensity of the object. b) If the surface of
an object is uneven, images captured under axis lighting directions 1 and 2 will

show different light intensities.

This approach requires some control of the lighting environment, without posi-

tion changes of either object nor camera. Compared to SFS with single image,

photometric stereo does not require any assumption of the surface smoothness.

Each image defines a unique set of possible surface orientations along with its own

reflectance map. Theoretically, three illumination directions are sufficient to ob-

tain the surface normals, however to ensure that at least three intensity values are

measured at any pixel in all acquired images and to minimise the shadow effect at

certain regions, our 3D imaging system has utilized four light sources at different

illumination directions.

2.3.1 Classic mathematical calculation model

According to Eq.2.2, we can transfer the Lambertian surface model into a matrix

format. The intensity of a pixel in an image can be expressed as follow,
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In(x, y) = λ (Ln ·N), (2.5)

where In(x, y) is the image intensity at the point (x, y);

λ(~i) is the surface albedo at the given point (x, y);

Ln is the unit illumination vector pointing from the surface to the light

source, Ln = (lx, ly, lz)n;

N is the surface normal unit vector of the object at the given point (x, y).

In our system four light sources with illumination vectors L1, L2, L3, L4 are

utilised to determine the surface orientation. Thus the equation 2.5 can be written

in matrix notation as


I1

I2

I3

I4


= λ ·


lx1 ly1 lz1

lx2 ly2 lz2

lx3 ly3 lz3

lx4 ly4 lz4


·


nx

ny

nz

 , (2.6)

which equals to I = λ · L ·N. Given that the illumination vectors L1, L2, L3, L4

are non-coplanar, L is non-singular thus its inverse matrix L−1 exists, and for any

point (x, y) the unit surface normal can be calculated via

N = (1/λ) L−1 · I, (2.7)

S = L−1 · I = λ ·N, (2.8)

where S can be used to calculate the surface gradient components (p, q). From the

surface normals calculated at each pixel, it is possible to determine the gradient

between adjacent pixels from which we obtain the surface geometry by integration.
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2.3.2 Fast surface gradient calculation model

Assuming that the detector and the light sources were relatively far away from the

object surface comparing to the size of the object, I proposed an improved model

to calculate the surface gradient (see Figure 2.5). The detector(camera) is set as

the origin of coordinates and four same-type light sources are fixed surrounding

it with the same distance, two of which are on x-axis and the other two are on

y-axis.

Figure 2.5: Alternative method of gradient calculation. Four light sources
~L1, ~L2, ~L3, ~L4 are used to provide illumination consecutively while the object
images are collected via the detector(camera). The surface normal of the object
can be calculated quickly by comparing the image intensities between ~L1 and

~L3, ~L2 and ~L4.

For our lighting system we have four sources located as follows:

~L1 (0, yL, zL),

~L2 (−xL, 0, zL),

~L3 (0, −yL, zL),

~L4 (xL, 0, zL),

and the surface normal at any point is described by: ~N(dx, dy, dz). Therefore
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we can write the intensity measured by the fixed camera for any surface point,

resulting from each lighting vector as:



IL1 = ~L1 · ~N = 0 ∗ dx + yL ∗ dy + zL ∗ dz

IL2 = ~L2 · ~N = (−xL) ∗ dx + 0 ∗ dy + zL ∗ dz

IL3 = ~L3 · ~N = 0 ∗ dx + (−yL) ∗ dy + zL ∗ dz

IL4 = ~L4 · ~N = xL ∗ dx + 0 ∗ dy + zL ∗ dz

. (2.9)

If we compare the image intensities between ~L1 (top) and ~L3 (bottom), ~L2 (left)

and ~L4 (right),



IL1 − IL3 = (0 ∗ dx + yL ∗ dy + zL ∗ dz)− (0 ∗ dx + (−yL) ∗ dy + zL ∗ dz)

= 2 yL ∗ dy

IL1 + IL3 = (0 ∗ dx + yL ∗ dy + zL ∗ dz) + (0 ∗ dx + (−yL) ∗ dy + zL ∗ dz)

= 2 zL ∗ dz

IL4 − IL2 = (xL ∗ dx + 0 ∗ dy + zL ∗ dz) − ((−xL) ∗ dx + 0 ∗ dy + zL ∗ dz)

= 2xL ∗ dx

IL4 + IL2 = (xL ∗ dx + 0 ∗ dy + zL ∗ dz) + ((−xL) ∗ dx + 0 ∗ dy + zL ∗ dz)

= 2 zL ∗ dz

,

and then 
IL1 − IL3

IL1 + IL3

=
yL ∗ dy

zL ∗ dz
=

dy

dz
∗ yL
zL

IL4 − IL2

IL4 + IL2

=
xL ∗ dx

zL ∗ dz
=

dx

dz
∗ xL
zL

.

Since xL, yL, zL and IL1 , IL2 , IL3 , IL4 are known,


dx

dz
=
IL4 − IL2

IL4 + IL2

∗ zL
xL

dy

dz
=
IL1 − IL3

IL1 + IL3

∗ zL
yL

.
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When ~L1, ~L2, ~L3, ~L4 are the unit normal vectors,

~L1 (0, 1, 1),

~L2 (−1, 0, 1),

~L3 (0, −1, 1),

~L4 (1, 0, 1),

and then 
dz

dx
=
IL4 + IL2

IL4 − IL2

dz

dy
=
IL1 + IL3

IL1 − IL3

. (2.10)

This simplifies the complexity of calculation for the surface gradient of the object.

In this model, instead of calculating the surface gradient of the object at each

point in the images one by one with Eq.2.6, we can quickly get a full surface

gradient map of the object by comparing the intensities of all the points in the

images at the same time with Eq.2.10. Both the classical and this fast calculation

model have been applied on our camera system separately, and they have worked

as well as each other when dealing with relatively-low resolution images due to our

high-performance system hardware. When analysing with super-high resolution

images, this new gradient calculation model has showed an improvement of the

image process efficiency.

2.4 Experimental set-up

The 3D camera system was composed of a commercial DSLR camera (Canon EOS

5D MarkII), four white LEDs (Luxeon Rebel) surrounding a 50mm focal camera

lens, fixed at a distance of 330 mm through aluminium spokes, a controller board

(Arduino Uno) to enable USB control of the illumination time and direction, and

a laptop running our program (on LabVIEW 2010) to communicate with the

controller board and obtain real-time 2D images captured by the camera (see Fig.

2.6).
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Figure 2.6: 3D camera system set-up. Schematic diagram of system consisting
of four LEDs fixed around the camera lens and linked to a electronic controller
board. Each object was placed normal to the camera lens. Both the camera

and controller board were wired to a laptop controlled by our program.

Based on the camera type and software version, certain drivers and virtual in-

struments (VIs) were installed to connect and control the camera through the

program. The camera was set with manual focus mode and controllable shutter

speed, aperture value and film speed(ISO) to adapt different scenes. To make sure

the camera captures each image under the corresponding light in rapid sequence,

the Arduino board was set to keep each light on for 100ms in the sequence: top,

left, bottom, right. The lights were set all on at the start for the system to target

the object in the scene. Once the image capture signal was trigged, three of these

four lights will be turned off based on the direction setting and the images were

collected. Fig. 2.7 shows the control back panel of the 2D image collection section.

Starting from the top left in this figure, the Arduino resource VI is the controller

of the four LEDs to make sure each time only one light is switched on for a short

term. The camera components are set to grab an image after each light switch

and send it to the Images3D Info VI for calculating the gradient map.
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2.5 Image acquisition

Figure 2.8: The control front panel of the program. (a) The Camera Control
tab displays the live view from the camera with a controllable size of the region
in the scene. The red cross point in the viewing area is set as the start point of
reconstruction. (b) The 2D Images tab shows the four images captured under
four different illumination directions. The Cam Info tab contains the manual

setting information of the camera parameter used for calibration.
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During the experiment, the background of each scene was set to be black, which

helped to extract the object from it. A further threshold intensity value was used

to reduce the black background noise. As the captured area from the camera was

much larger than our need and to minimize computer memory requirements, the

images were subsequently resized and down-sampled to 360 x 360 pixels before 3D

image reconstruction was performed. The object position, the camera perspective,

and the light positions for all images were static and known in advance. To

calculate the gradient map of the object, a start point was chosen from the image

that has the highest intensity value when all four LEDs were turned on at the

start. As shown in Fig. 2.8 (a), the cross point of two red lines in the live view

area indicates the start point for the calculation of gradient map. Once the object

and camera were aligned, image acquisition was then triggered at the front control

panel of the program, initiating the four LEDs to turn on successively, based on

the setting and synchronized with a short camera exposure (in total less than

1 second). This procedure generated four similar 2D images of the object (see

Fig. 2.8 (b)), each with different shading properties determined by the lighting

environment of the time.

The software reconstruction pipeline is shown in Fig. 2.9. The intensities from

those 2D images were used as the initial input, the value at each pixel in these

images was compared and the maximum intensity was obtained to provide the red,

green and blue (RGB) intensity values for each pixel. This provided the colour

information of the scene, which was later used for mapping the 3D object texture

(see Fig. 2.10). Areas that had a lower intensity value than the threshold value

were identified as the background with a black colour reset. With the known

coordinates, Ln, of four LEDs and the corresponding object intensity value on

each pixel In, the object’s surface normal N was then calculated via Eq. 2.6 or

Eq. 2.10.

Based on the surface normal of each pixel, the gradients between adjacent pixels

were calculated to obtain the surface geometry by integration, starting from the
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Figure 2.9: 3D Reconstruction pipeline. The reconstruction program executes
following the sequence: image input, image segmentation, extraction of surface

normal, gradient map, height map, and height map with texture.

Figure 2.10: 3D height map. The height map on the left is untextured, in
which the colour at each pixel represents its height value. The height map on
the right is a textured height map with the real RGB value being mapped on

top of it.
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start point that was chosen from previous procedure to the outermost pixels of the

object’s surface. The surface height at a pixel point could be approximated with

the gradient of the surface and the height of its nearest-neighbour point. Since

each pixel point corresponded to the measured gradient data and had more than

one nearest-neighbour point, the gradient of the surface used was the mean value

of the gradients at every two contiguous points, and the surface height at each

pixel point was replaced by the mean of the values counted from all its nearest-

neighbour pixel points. The relative height value at each pixel was estimated

one by one, after the gradient map had been calculated. The pixel points of an

object could be categorized into certain two types: the internal pixel point and

the boundary pixel point. When a pixel was an internal point, the reconstructed

height value was set to the mean calculated from all its nearest neighbours; when

a pixel was a boundary point, the measured gradient data at the point was then

assumed to be accurate [76].

2.6 Quantitative and qualitative analysis

Four different-shape objects were designed (with SketchUp) and 3D printed (with

Cura) as the initial trial set for 3D reconstruction with the camera system: an arc,

a cube, a flat ramp and a hemisphere (see Fig. 2.11). The height of each object

was set as 50 mm. The length of the arc and the ramp, along with the diameter of

the hemisphere was set as 100 mm. They were all painted with a matt white spray

to create a Lambertian surface. Fig. 2.12 exhibits the 3D reconstruction results of

these objects. Owing to the constraints of the position between the camera and

the object, it was unable to estimate the height value of the cube as its side faces

were hidden from the perspective of the camera and each point at the front face

has the same intensity value.

To test the accuracy and robustness of our 3D imaging system we then selected

three different objects with varying geometric complexity: the hemisphere, the arc,
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Figure 2.11: Four objects designed with the same height of 50 mm using
software SketchUp: an arc, a cube, a flat ramp (with a length of 100 mm) and

a hemisphere.

Figure 2.12: 3D reconstruction results of four different shape objects with a
Lambertian surface using our camera system: (a) an arc, (b) a cube, (c) a flat
ramp, (d) a hemisphere. It was unable to estimate the height value of the cube

due to the constraints of the position between the camera and the object.

and a plastic mannequin head. The mannequin head is made from polystyrene

with a smooth surface which can be considered as a Lambertian surface. It was

measured to have a height (from ear to nose tip) of 160 mm.

In our experiment, the distance between the top front point of each object and

the camera lens was set as 900 mm. Four white LEDs (positioned on the top, left,

bottom, and right of the camera) were fixed to surround the lens, maintaining

at a distance of 330 mm from the its center. For each of those objects tested in
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Figure 2.13: 3D Reconstruction process of objects: a hemisphere, an arc,
and a mannequin head. Images aligned from top to bottom are: object images
under uniform light conditions, images captured with four different illumination

directions, object gradient maps dx/dz and dy/dz.

a dark black background environment, four images were acquired with different

reflected intensity distributions, corresponding to the distinct lighting conditions.

The viewing scene were cropped into a 360 × 360 pixel image (corresponding

to 320 mm × 320 mm virtual size). Those images were applied to calculate the

gradients of each pixel which were then used to estimate the height map of the

object surface. The colour value was later mapped onto the height map using the

aforementioned approach (see Fig. 2.13 and Fig. 2.14).

The reconstructed height map of each object was compared with a reference height

map to provide a general analysis of the 3D reconstruction quality of our camera
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Figure 2.14: 3D reconstruction results of three objects: a hemisphere, an arc,
and a mannequin head. Images from top to bottom are the 3D shape of objects

captured from the left, center, and right directions.

system. For the arc and the hemisphere, the reference height map was obtained

from the stereolithography (STL) files that I used to design them, whereas the

mannequin head reference data was obtained from an expensive separately cal-

ibrated commercial stereo-photogrammetric system employing 4 high-resolution

cameras (see Fig. 2.15) which represented state of the art and the 3D reconstruc-

tion process was time-consuming. For comparison, the size of measured data was

scaled appropriately to map the length and width with the reference data, and

the measured height map was normalised and scaled to map the maximum height
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value of the reference data, which was 160mm.

Figure 2.15: Mannequin head height map comparison: (a) The realigned ref-
erence height map with a known maximum value of 160mm. (b) The measured
height map normalised and scaled to match the maximum height value of the
reference data. (c) The difference map of the height value at each pixel between

(a) and (b). The unit of the scale bar is millimetre.

As shown in Table 2.1, we presented the standard deviation of the differences

between our measured height data and the reference height data by using the root

mean square error (RMSE) and the normalized root mean square error (NRMSE),
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referring to the variation of the RMSE [78]. The RMSE and NRMSE, correspond-

ingly are defined as [79]:

RMSE =

√√√√( 1

n

n∑
i=1

d2i
)
, (2.11)

NRMSE =
RMSE

xmax − xmin

, (2.12)

where n is the number of data pairs;

di is the difference between measured values and reference values;

(xmax − xmin) is the range of measured values.

Table 2.1: Deviations between measured values and true values

Object Height(mm) Scale Factor RMSE (mm) NRMSE
Hemisphere 50 2.66 2.76 5.53%

Arc 50 3.14 2.65 5.32%
Head 160 2.02 15.60 9.76%

The RMSE is one of the most widely used statistical indicator for assessing re-

constructed image quality by measuring the differences between the reconstructed

images with the ground truth, and the NRMSE is used to compare the accuracy

between those images which may have different units and ranges [80, 81]. The

value of NRMSE is commonly expressed as a percentage, where a lower value in-

dicates less variance and hence higher accuracy. We noted close agreement for

the two 3D printed objects with relatively low geometric complexity, the hemi-

sphere and the arc, with the NRMSE of 5.53% and 5.32%, respectively. A higher

NRMSE of 9.76% was observed for the mannequin head. We noticed that the

regions of the object contributing most to the overall RMS error were areas of

sharp edges or where the surface normal was in a direction perpendicular to the

camera perspective.

Moreover, we did a simple test on our 3D camera system with different human

faces as the imaging subjects, to roughly validate its capabilities for potential

applications of practical affairs, such as human facial recognition. Before any data
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Figure 2.16: 3D reconstruction of a human face using our camera system. (a)
Object. (b) 2D Image input. (c−1) dx/dz. (c−2) dy/dz. (d) Images of 3D

reconstructed result.

was collected an ethics approval was gained from the Research Ethics Committee at

University of Glasgow and a consent form for publication of reconstructed images

was signed by each participant. Fig. 2.16 presented one of 3D reconstruction

results of a human face. As there was no reference data for each individual human

face, the quality of 3D reconstructed result was simply assessed visually and the

images were only used for demonstrating the possibility of creating the 3D model

of a real human face with our camera system.

In addition to reconstructing 3D images with a low-cost camera accessory and

photometric stereo software, it was feasible to simultaneously construct pairs of

2D images representing slightly different perspectives of an object that would be

viewed by our eyes, whose typical separation is around 60mm, since we calculated

the height map of the object (see Fig. 2.17). By using those paired 2D images

fetched from the textured height map, a movie was then generated by displaying
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each pair simultaneously and could be displayed on a 3D-enabled TV screen for

viewing. The 3D-enabled TV operates by superimposing the paired images in the

movie with each having a different polarisation, and the viewer wears polarising 3D

glasses to separate the left and right image for each eye. It is quite remarkable that

our relatively low-cost 3D camera system is capable of providing such realistic 3D

images of objects and faces for a wide range of viewing angles, despite the camera

and the subject remaining fixed during the acquisition.

Figure 2.17: An image-pair acquired from textured 3D height map of an object
with slightly different perspectives. The pair was superimposed and displayed
on 3D-enabled TV screen with each having a different polarisation. Viewers
wearing polarising 3D glasses were able to observe the displayed object in a 3D

form.

As well as being used for scientific research, the 3D photometric stereo system was

further used at several events for science outreach, to demonstrate the technology

and help engage the public in the field of optics and imaging. A customised 3D

photo-booth was built by Matt Edgar and Graham Gibson to house the equipment

and attract member of the public. This formed the basis of the Creative Cameras

exhibit at the Royal Society Summer Science Exhibition, which myself and col-

leagues helped to deliver. The associated short-film about our exhibit has become

the most watched video with over 100,000 views, thus highlighting the impact
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of the research. The results shown at those exhibitions confirmed the capability

of our camera system to 3D reconstruct human faces under realistic workplace

conditions.

2.7 Conclusion

To summarise, we have developed a fast camera system with a low-cost accessory,

which utilises an Arduino controller board to associate with four white LEDs and

laptop, to enable an efficient computer algorithm to reconstruct 3D images. A

photometric stereo method uses multiple 2D images that are captured from a

single viewing perspective with different illumination directions to estimate the

depth and surface orientation of an object.

Compared to other 3D imaging methods such as 3D-scanning, it comes with a

number of benefits, such as simplifying the reconstruction routine with a high

efficiency. We analysed our reconstructed 3D results of different objects with var-

ious geometric complexity, noticing good quantitative agreement with the known

reference object with a wide viewing angle. We also observed an increased error

at regions of large gradients, where the surface normals were approaching a direc-

tion perpendicular to the camera perspective, such as shape edges, showing some

limitation of our 3D camera system. Further improvements could be made by op-

timising the reconstruction algorithm in order to provide better height estimates

at those regions and finding an efficient solution to eliminate the inner shadow

effect.

We tested the 3D camera system at various science exhibitions which proved its

potential capabilities for applications to practical affairs. Our inexpensive 3D

camera system could be used at places that require fast 3D information collection,

such as the security check at airports, or perhaps at retail clothing outlets for
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personalising the browsing experience whilst shopping. It could also be applied to

schools for education purpose due to the low-cost components.



Chapter 3

Real-time 3D Imaging with

Single-Pixel Detectors

3.1 Introduction

As described in the previous chapter, photometric stereo is a well-established, and

in some cases a convenient 3D imaging technique. Importantly, traditional 3D

imaging systems using this approach demand that the scene remains completely

static whilst the lighting condition changes during acquisition in order to prevent

pixel matching errors, which narrows its extendibility to real-time applications.

Whilst a variety of strategies [82–85] were devised to improve the 3D reconstruction

accuracy of different 3D shapes with photometric stereo, it seems that there have

been relatively less research on eliminating the underlying problems associated

with sequential acquisitions.

The use of spectral multiplexing is one state-of-the-art method to reduce pixel

matching errors, which captures the scene with an imaging system configured

to measure multiple spectral channels. With this approach, the system utilises

two cameras aligned co-axially with a beam splitter and spectrally filtered using

two different bespoke dichroic filters, in conjunction with three bright LED light

40
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sources with unique spectral profiles fixed at separated locations. The two filters

separate the visible spectrum into six non-overlapping bands. By analysing those

six-channel photographs, it captures per-pixel photometric normals and full colour

reflectance synchronously, without requiring time-varying illumination. More de-

tails can be found in [86]. However, this approach still needs to match images

from those two cameras, and reconstruction bias appears as a result of spectral

variations for scenes with distinct materials, for instance, human faces.

In this chapter, we present a revised 3D imaging system that combines photometric

stereo with a single-pixel imaging technique to tackle the matter of pixel registra-

tion among images. Furthermore, one of the compressive strategies, known as the

evolutionary compressed sensing algorithm, was employed in our system to enable

3D reconstruction of scenes exhibiting dynamic behaviour in real-time. Samples

of video frames with different moving objects obtained at various image resolu-

tions and compression ratios are presented to demonstrate our system’s ability to

perform 3D imaging in real time.

3.1.1 Contributions

The work in this chapter was performed by myself and Matt Edgar with help

from Graham Gibson, Baoqing Sun, Neal Radwell and Miles Padgett. The 3D

single-pixel system was devised, partially 3D printed and assembled by myself and

Graham Gibson. The evolutionary compressed sensing algorithm was conceived

by Neal Radwell, optimised and deployed into our system by myself and Matt

Edgar. The discussion on real-time video using 3D single-pixel imaging was a

result of collaboration between myself, Matt Edgar and Miles Padgett.
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3.2 Computational single-pixel imaging

Figure 3.1: (a) Computational single-pixel imaging with structured detection:
light reflected from an object surface is focused through a camera lens onto a
digital micromirror device (DMD) which displays a set of different patterns.
Different amounts of projected light are collected by a single-pixel detector and
used to deduce an image of the object. (b) Computational single-pixel imaging
with structured illumination: a set of structured light patterns are projected
from a DMD and focused through a camera lens onto a scene. A single-pixel

detector collects light from the illuminated scene to deduce an image.

As an alternative to conventional multi-pixel imaging approaches, a single-pixel

imaging technique [12, 87, 88] enables a scene to be captured, illuminated by a

uniform light field, with a single-pixel detector as the imaging device that measures

the correlations between the collected light and a set of patterns. An optical

single-pixel imaging system generally consists of an illumination source, a light

detection unit and a spatial light modulator (SLM) that provides either time-

varying, structured detection of an image, or by providing time-varying, structured

illumination onto a scene (see Figure 3.1). To combine photometric stereo with

single-pixel imaging, the SLM provides the spatial resolution and hence perspective

to the scene, whereas the position of the detector has the same effect as the

illumination source in a conventional photometric stereo system. This provides
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a novel scheme for recovering multiple illuminations using only one physical light

source and several single-pixel detectors. Thus, a structured illumination approach

was chosen for this photometric stereo computational imaging system.

In general, the total amount of time for reconstructing an image with single-pixel

imaging is determined by the speed of signal acquisition together with sampling

size required. To improve the imaging efficiency in our system, certain strate-

gies were employed to increase the data collection speed as well as to reduce the

measurement times.

3.2.1 Light projection with a digital micro-mirror device

To obtain an image of a scene with a single-pixel detector typically requires at least

the same amount of sampling as the number of desired pixels in the image. With

a fixed image resolution, the reconstruction time depends on the speed of data

collection. Scanning rate is an important aspect that effects the data collection

efficiency. Different scanning rates in a single-pixel imaging system can be achieved

by using different types of SLM with varying structures and working principles. To

maximise the scanning rate, a fast-pattern switching speed of SLM was employed

in our single-pixel system.

By definition, an SLM is any sort of electro-optic unit that can be used to modulate

certain properties of light waves in space and time, for instance, the amplitude,

phase, or polarization [89]. It’s a critical structural component for most applica-

tions in optical signal processing and optical computing. Based on the information-

bearing element, either an electrical or optical signal, SLM devices can be classified

into two types: namely, the electrically activated SLM (EA-SLM) and the optically

activated SLM (OA-SLM) [90]. In this system, we employed an EA-SLM device

due to its capability of interfacing with electronic components in an electro-optic

system with fast response. More specifically, we used a Texas Instruments Digital

Light Processing (DLP) unit [91], a display device that consists of electronic logic
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circuits, digital memory, and an optical semiconductor chip (OSC) known as a

digital micro-mirror device (DMD), to perform the structured light projection.

Figure 3.2: (a) An illustration of DMD mirrors with on and off states: when
a micro-mirror reflects light towards the lens onto the scene, it corresponds to
an ”on” state. When a micro-mirror reflects light towards a different direction
rather than the lens, it corresponds to an ”off” state. (b) An illustration of a
modulated light pattern on a DMD. The bright regions on the DMD represent

the ”on” state, and the dark ones represent the ”off” state.

A DMD is a reflective SLM with its surface made up of thousands of microscopic

metal mirrors in a form of a 2D rectangular array [92, 93]. It was originally devel-

oped in 1987, then diffusely applied in traditional display applications and optical

modulation systems [94–96]. The mirrors on a DMD are controlled individually,

through a ‘1’ or ‘0’ signal stored in its underlying memory cell, to rotate at a

certain angle (+12 or -12 degrees), corresponding to an ‘on’ or ‘off’ state. As

shown in Fig. 3.2, when a mirror is in an ‘on’ state, light coming from the pro-

jector light source will be reflected towards the lens to make a corresponding area

appear bright on the screen. While in an ‘off’ state, light reaching this mirror will

be reflected towards reverse angle, resulting in the corresponding area to be black

on the screen. A prime attribute of DMD is that it can provide structured illu-

mination at a high speed rate of up to 22.727 kHz. Furthermore, the operational
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bandwidth of DMD can reach from 300nm to 2µm, which enables its potential

extension outside the scope of visible wavelength, for instance, the near-infrared

wavelength, in which area most traditional imaging techniques are much more

expensive and difficult to employ.

A computational imaging system using a single-pixel detector and a DMD can

be regarded as having three main processes: scanning, sampling and processing.

The imaging efficiency changes depending on the arrangement and optimisation

between these processes. Besides a high projection speed and a wide operational

bandwidth, another important advantage of using DLP is that it provides a trig-

ger signal in reference to the structured illumination to enable synchronisation

measurements between scanning and sampling, which provides stable parallel pro-

cedures to enable a faster collection rate. More specifically, when each pattern on

a DMD gets projected, there will be a trigger signal released from the DLP control

circuit, being sent to the data acquisition (DAQ) device. With this signal input,

the DAQ device will start to acquire light intensity data from the single-pixel

detector(s). A certain number of data acquisitions is acquired after each trigger

signal, which is determined by the total number of detectors, the projection time

of each pattern, and the data acquisition rate of the DAQ device.

3.2.2 Structured illumination with Hadamard patterns

Besides scanning rate, the scanning method is another aspect that effects the total

image acquisition time. In single-pixel imaging, scanning efficiency varies between

different methodologies based on the amount of signal collection that is required

to generate an image in each method. One basic scanning approach is raster

scanning[97, 98], which typically generates a frame of the scene by scanning pixel

by pixel from the top left to the bottom right (see Fig. 3.3).

A significant advantage of using raster scanning is that it is possible to selec-

tively erase and modify certain image area as each pixel is scanned independently.
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Figure 3.3: One basic illumination method: Raster scanning. It scans the
scene pixel by pixel typically from left to right, top to bottom. Each pixel is

scanned independently as only one pixel is illuminated at a time.

However, the illumination efficiency with this approach decreases when the image

resolution increases and the sampling data of each pixel is spatially discrete which

increases the noise level in the final image. Ref. [99] experimentally demonstrated

a single-pixel imaging system with raster scanning which suffers a high noise level

comparing to other methods.

Instead of raster scanning, an alternative approach, also known as pattern il-

lumination, is to scan multiple pixels simultaneously instead of one pixel each

time, which can help to improve the signal-to-noise ratio of each measurement,

if the system is detector noise limited. Fig. 3.4 illustrates a single measurement

of multi-pixel scanning with a random illumination pattern. As there is more

light illuminates onto the scene, the ratio of useful signal collected by the detector

increases.
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Figure 3.4: Illustration of a single measurement of multi-pixel scanning with
a random illumination pattern. More than one region/pixel area of the scene
is illuminated each time based on the light pattern, in which case the signal
collected by the single-pixel detector will have a higher ratio of useful signal

than the noise.

To obtain an image S of N × N pixel resolution with pattern scanning follows the

equation: 

P1

P2

:

P(m−1)

Pm


� S(N×N) =



B1

B2

:

B(m−1)

Bm


, (3.1)

where Pm is a row vector of the mth pattern that is used to project on the scene,

and each pattern contains the same amount of pixels as the image, which means

Pm = [pm1, pm2, ..., pm(N×N)] ;
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S(N×N) is a matrix of image S with N x N pixels


s11 ... s1n

: ... :

sn1 ... snn

 and here

we set A� S(N×N) = AS = A



s11

s12

:

s21

:

sn(n−1)

snn


;

Bm is a scalar that represents the detected light intensity value with the

mth illumination pattern;

� is an operational symbol that we define to implement the operation:

Pm � S(N×N) = pm1s11 + pm1s11 + ...+ pm(N×N)snn = Bm.

Since the illumination patterns that we used only have black and white blocks

representing the off and on states of mirrors (equal to 0 and 1), this equation will

have the form:



1 0 ... 1 1

1 0 ... 0 1

: : ... : :

1 0 ... 0 1

0 1 ... 1 0





s11

s12

:

s21

:

sn(n−1)

snn


=



B1

B2

:

B(m−1)

Bm


, (3.2)

PS = B (3.3)
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This approach could be time-consuming if the illumination patterns are randomly

selected, as there will be overlapping information among those patterns which

would increase the amount of sampling that is required to form an image. Since

there are N x N unknown pixels in image S, the minimum amount of patterns m

that are required to solve this equation is N x N, which makes P a square matrix.

According to Eq.3.3, if P is an invertible matrix (which means its inverse matrix

P−1 exists), then we can get

S = P−1B (3.4)

To minimise the computational complexity of this equation and reduce measure-

ment redundancy, the set of patterns P should be orthogonal, in which case

P TP = PP T = I (3.5)

where P T is the transpose of P , and P T = P−1;

I is the identity matrix and In =



1 0 ... 0 0

0 1 ... 0 0

: : ... : :

0 0 ... 1 0

0 0 ... 0 1


n×n

.

In our system, we chose to use Hadamard matrices [100] to construct the pat-

terns to be applied as structured illumination, which simplifies the complexity of

calculation and reduces the measurement redundancy.

In mathematics, a Hadamard matrix is a type of square matrix with its rows are

mutually orthogonal [100–103]. The elements of a Hadamard matrix are either -1

or +1, and its equivalent definition can be given by
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HnH
T
n = HT

nHn = nIn,

where Hn is a Hadamard matrix of order n. Typically the order of a Hadamard

matrix n should be 1, 2, or 4i where i is a positive integer (see Fig. 3.5). The

transpose of a Hadamard matrix, HT
n , is still a Hadamard matrix. In a Hadamard

matrix H, any two columns, the same as any two rows, are orthogonal, and its

inverse matrix H−1 = 1
n
HT .

The Hadamard matrices that we used in our system are constructed following the

method that was proposed by Sylvester [104], also known as Walsh matrices [105],

where

H1 =
[
1
]

H2 =

1 1

1 −1



H2n =

H2n−1 H2n−1

H2n−1 −H2n−1


The Hadamard matrices constructed from this approach have some particular

properties. Each single matrix is symmetric, in which case H = HT . The elements

in the first row and the first column of each Hadamard matrix are all positive (+1),

while the ones in the rest rows and the rest columns are half positive (+1) and

half negative (-1).

To make sure the patterns derived from each row of a Hadamard matrix are enough

to cover all image pixels, we only chose Hadamard matrices of order 22k, then

reshaped each row (or column) into a 2k x 2k 2D pattern array based on the image

resolution. Therefore a Hadamard matrix in the order of 22k was transferred into

a complete set of 22k (2k x 2k) structured illumination patterns in 2D, which were



Chapter 3. Real-time 3D Imaging with Single-Pixel Detectors 51

displayed one after another. In our experiment, a 1024 x 1024 Hadamard matrix

was used to generate 1024 of 32 x 32 Hadamard derived illumination patterns to

modulate the light source for acquiring an image with 32 x 32 pixel resolution.

By analogy, we also generated a set of 4096 64 x 64 Hadamard derived patterns

and a set of 16384 128 x128 Hadamard derived patterns for obtaining images with

corresponding pixel resolutions.

Figure 3.5: A Sylvester’s Hadamard matrix set with orders of 2n (n ≥ 1).

The pattern coding with Hadamard matrix is based on the theory of combining

weighing. For an image with m pixels, the theoretical SNR improvement of using

a Hadamard matrix of order n = m called optimum chemical balance weighing

deisign is
√
n, as each pixel will be weighed n times [106–108].

3.2.3 Differential signal acquisition approach

One issue of employing Hadamard patterns on DLP is that the elements in those

pattern arrays are either ”+1” or ”-1”, while the DLP can only generate black
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or white illumination blocks (equals to 0 and 1) on the scene. To solve this, a

differential signal acquisition approach was proposed.

Instead of using the absolute intensity value of signal from each pattern to recon-

struct the 2D image, we projected each structured pattern followed by its inverse

where the black pixels became white and the white ones turned into back, and

adopted the differential intensity value from those pattern pairs to replace the sig-

nal value for each corresponding Hadamard derived pattern (see Fig. 3.6). By em-

ploying this differential signal acquisition approach, the effective elements of each

illumination pattern are either +1 or -1, rather than 0 or 1. In addition to this,

another benefit of using this approach is that it helped to remove the background

signal noise compared to the method of single-pattern projection. However, this

improvement of signal to noise ratio is at the cost of overall illumination efficiency

since it doubled the amount of projection patterns.

Figure 3.6: Illustration of a structured illumination pattern and its inverse.
Pattern P1 and −P1 are a pair of inverse illumination patterns. S1 and S∗

1 are
the light intensity values received from the single-pixel detector based on pattern
P1 and −P1. The differential signal value SD1, equalling to the subtracting of

S1 and S∗
1 , is used to represent the signal value with pattern P1.
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3.3 3D imaging system with single-pixel

detectors

In addition to 2D reconstruction, 3D image reconstruction can also be produced

by using single-pixel imaging technique. Rather than using only one single-pixel

detector, four detectors are employed in the system at different locations, each

producing a 2D image of the same scene simultaneously. It is realised that all

these images have the same shape but containing different intensity distributions

which are determined by the surface normal of the object and the detecting vectors.

With the knowledge of the intensity distributions in these four images together

with the relevant detector’s location, a 3D profile of the object can be derived

by following the photometric stereo approach that we discussed in the previous

chapter.

3.3.1 Experimental setup

Before assessing the 3D video quality of our 3D single-pixel imaging system, we

first tried to 3D reconstruct a static object. The system, as illustrated in Fig. 3.7,

contained a high-speed DLP device, a camera lens with 24mm focal length attached

in front of the DLP, and four spatially separated photodetectors (PDs) in fixed

locations around the lens. A 3W white LED was used to illuminate the DMD chip

and encoded into binary light fields. A silver-coated mirror was adjusted manually

inside a 3D-printed mount so that the LED light was reflected at an angle of 24

degrees inclination to the normal and 45 degrees around the normal towards the

DMD chip, in which case the illumination patterns on the DMD passed through

the lens and were projected right onto the scene. As light intensity scattered from

the 3D object is relatively low, a camera lens was placed in front of each detector

to increase its numerical aperture.
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The DLP that we used in the system is a Hi-Speed V-7000 DLP from Vialux,

which contains a micro-mirror array of 1024 x 768 elements and an operation

circuit programmed through the Accessory Light modulator Package(ALP) 4.2

controller tool with LabVIEW and connected to the computer via a USB interface.

Its usable spectral range covers all wavelengths from 350nm to 2500nm, and the

maximum array switching speed can go up to 22,727 Hz (we defined it at 22 kHz

in our system). In our experiment, only the central 768 x768 region of the DMD

was used. Each pattern set was pre-loaded on the ALP in sequence.

Figure 3.7: Illustration of 3D single-pixel experimental setup. A white LED, a
fast DMD and a camera lens were combined to deliver structured illumination on
the scene. Each photomultiplier tube transformed light scatted by the object
to an intensity value of the scene corresponding to the patterns, which was
processed by a computer to generate a 2D image via a structured scanning
approach. Then a 3D image was reconstructed by combining those 2D images

based on photometric stereo.

The first set of detectors we used were Thorlabs PDA100A-EC silicon amplified

photodetectors (PDAs). The intensity signals we obtained from them were not

strong enough to generate 2D images with a good quality, which consequently

lowered the 3D reconstruction qualities.
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Figure 3.8: 3D imaging system components: a. Photomultiplier tube; b.
Linear polariser sheet; c. Camera lens; d. 3D printed holder and mount with
a silver mirror adjusted inside; e. White LED; f. DLP device; g. Customised

electric controlling board; h. DAQ device.

To enhance the signals, we replaced them with Thorlabs PMM02 photomultiplier

tubes(PMTs), which are able to detect faint optical signals from weakly emitting

sources. The response spectrum of this type of PMT is between 280nm and 850nm

with a peak value at 420 nm, and its response speed is significantly faster than
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the PDA’s 2.4 MHz. The parameters of both PMTs and LED were set through a

customised electric controlling board beforehand (see Fig. 3.8).

The object we tested in our experiment was a polystyrene skull model and the sur-

face was nearly Lambertain but also produces a component of specular reflected

intensity which can easily saturate the detected signals and lead to poor recon-

struction quality. It is well known that light that has been specularly reflected

retains its polarization, while light that has been multiply scattered loses its po-

larization [109]. Therefore, to get rid of the specular reflection from the scene,

some cross polarisers were applied in our system. A linear polariser sheet was at-

tached in front of each PMT at a particular orientation, e.g. transmitting vertical

polarisation, with another polariser placed on the projection lens and orientated

orthogonally, e.g. transmitting horizontal. The use of crossed-polarisers isolates

specular reflections at the expense of detected intensity.

Figure 3.9: Signal acquisition procedure. For each projected pattern, there
are N times signal collection, where N is related to DAQ speed, the number of

detectors, and the exposure time of each pattern.

Once a pattern was on display, an order from the computer was sent to a data

acquisition board to collect signals from PMTs. The device used in this experiment

was a National Instrument portable USB DAQ (NI USB-6221) with a maximum
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acquisition rate of 250 kHz for all channels. Depending on the signal acquisition

rate, the number of channels used, and the exposure time required for each pattern,

the number of measurements obtained for each pattern could be more than one,

which allows averaging to be performed to reduce noise (see Fig. 3.9).

In our system, there were four PMT detectors connected to the DAQ device with

each having a sample speed of (250/4)=62.5 kHz. Each illumination pattern was

set to display for 50 µs (5 x 10−5 s). In which case, there were (62.5 x 103 x 5

x 10−5) ≈ 3 times of signal collection for every single pattern and the mean was

used as its signal intensity value.

To obtain a 32 × 32 pixel resolution 2D image with our single-pixel system

following the differential signal acquisition approach, 1024 (32 x 32) structured

Hadamard patterns plus the same amount of the inverse patterns were required,

which added up to a total amount of 2048 patterns. With the DMD we used, it

took the system at least 2048/(22 x 103) ≈ 0.09s for deducing such an image. By

analogy, it took ∼ 0.37s (8192/(22 x 103)) and 1.49s (32768/(22 x 103)) for our

single-pixel system to gain a 64 x 64 2D image and a 128 x 128 2D image. After

generating those 2D images, some additional computational time was needed for

our single-pixel system to perform 3D reconstruction.

3.3.2 Results

In one experiment a static object was used, in this case a polystyrene toy skull

(see Fig. 3.10), and imaged with the system at 32 x 32, 64 x 64, and 128 x 128

pixels respectively, as shown in Fig. 3.11. The total frame rates, including data

acquisition and reconstruction are also provided.

As employed in other single-pixel imaging work, Hadamard matrices were chosen as

the sampling basis to provide structured illumination. For this type of scanning

approach, where the illumination power is spread across the entire DMD, the
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detection SNR for Hadamard scanning compares better than raster scanning, since

the available intensity is (N/2 -1) times greater [110].

Figure 3.10: A structured light pattern projected onto the front and side of a
skull through the camera lens. The size of skull was 80mm in length, 60mm in

width and 80mm in depth

For 3D reconstruction at those three resolutions with the differential signal acqui-

sition approach, it took our single-pixel system respectively 0.11s (32 x 32), 0.42s

(64 x 64), 2s (128 x 128) in total each time. The 3D reconstruction frame-rate, as

expected, was reduced when increasing the image resolution which improved the

image quality.

After the first investigation, we then tested a moving object with real-time 3D

reconstruction. In Fig. 3.12, a sample of video frames are shown, containing

a moving skull, 3D reconstructed with our single-pixel system, at 64 x 64 pixel

resolution with a frame rate of ∼ 2.4Hz. It employed a full set of 4096 illumination

pattern pairs derived from a Hadamard matrix. As shown in the figure, the skull

was only physically rotated in a horizontal direction. Since the 3D shape of the

skull was calculated, the rendered 3D model could be orientated arbitrarily and in
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this demonstration was rotated in the vertical direction at an angle range of -45

to 45 degrees in the meantime. Compared to the previous research in Ref. [56],

our system enabled 3D single-pixel imaging in a video rate.

Figure 3.11: Comparison of 3D reconstructions of a static object using struc-
tured illumination at different image resolutions. With illumination resolutions
of 32x32, 64x64, and 128x128 generated from Hadamard structured pattern
pairs, the corresponding video sample rate of the 3D reconstructed skull with

our system are: 8.7Hz, 2.4Hz, and 0.5Hz.
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3.4 Evolutionary compressed sensing

To improve the video sample rate of 3D reconstructed moving objects while re-

maining a high image quality, we then experimented to apply compressive sensing

algorithms into our system.

Figure 3.13: Pattern rearrangement with compressive sensing algorithm: (a)
before reordering the illumination patterns; (b) rearranged illumination patterns

based on its corresponding signal intensity.

In choosing the optimal strategy we noted that typical images could be represented

by a subset of Hadamard patterns instead of a complete pattern set, and contin-

uing adjacent frames were practically coincident to each other with only slight

variations. Therefore, we rearranged the Hadamard pattern pairs based on their

corresponding mean signal intensities from those four detectors, and utilized only
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a certain amount of the top-ranking patterns to form the 2D images instead of us-

ing all of them. By using this approach, 90% of the subset of illumination patterns

were chosen from the top-ranking rearranged pattern set, while the other 10% were

randomly selected from the remainder of the complete pattern to adjust the slight

variations between adjacent frames, as shown in Fig. 3.13. Following that, images

generated with those pattern subsets were combined with photometric stereo to

obtain 3D images. This strategy with selection of a subset of Hadamard patterns

is a compromised approach to maintain a high frame-rate without decreasing the

spatial resolution.

Table 3.1: Relative RMS error comparison at 128x128 pixel resolution with
five different compression ratios.

128x128 3D single-pixel imaging with compressive sensing

Patterns Used 12.50% 25% 50% 75%
100%

(Ground truth)

Relative RMS Error 3.586 3.443 2.229 1.571 0

With implementation of this compressive sensing algorithm, we reconstructed an

object at 128 x 128 pixel resolution by using five different amounts of struc-

tured pattern pairs: 16384 pattern pairs, 12288 pattern pairs, 8192 pattern pairs,

4096 pattern pairs, and 2048 pattern pairs, which were equivalent to 100% (zero-

compression), 75%, 50% 25% and 12.5% compression ratio (see Fig. 3.14), and we

compared the relative root-mean square (RMS) errors of the height values in those

3D reconstructed objects with the one using zero-compression (see Table 3.1). The

3D reconstructed object with zero-compression in this figure is the same as the 3D

reconstruction of 128x128 pixel resolution in Fig. 3.13. The result showed that the

RMS error of the object height value, as expected, increased when using less pat-

tern pairs (higher compression), while the video sample rate was correspondingly

improved.
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3.5 Real-time video from a 3D single-pixel

computational imaging system

Fig. 3.15 shows a video clip of a moving skull at 64x64 pixel resolution with

compressive sensing in one second. Each frame was produced based on 1024 illu-

mination patterns (25% compression ratio), which was equal to the same amount

of patterns for a zero-compression 32 x 32 pixel resolution 3D image reconstruc-

tion. The frame rate of this 3D video was 7.6Hz, approximately 4 times faster

than the zero-compression 64 x 64 pixel resolution one.

We also experimented 3D reconstructed a moving skull at 128x128 illumination

resolution by using 4096 Hadamard patterns (25% compression ratio). The video

frame rate was increased to 0.9Hz, as seen in Fig. 3.16. The object was physically

rotated in a horizontal direction whilst the 3D reconstructed model was set to

rotate in the vertical direction at an angel range of [-30, 30], since we were fully

aware of the height map of the skull. We noticed that the frame rate in this video

was restrained due to the fact that the 3D reconstruction process at 128 x 128 pixel

resolution started to play an important role in overall time performance when the

2D reconstruction time decreased with the compressive sensing algorithm.

Furthermore, to have a quick test on our system robustness, we replaced the skull

with a smaller object which were made with a different material. In Fig. 3.17, it

demonstrates a 10-second real-time video clip of a rotating Santa toy which was

reconstructed at 128x128 illumination resolution at a frame rate of 0.9Hz by using

4096 Hadamard patterns (25% compression ratio). The result showed that our

system had a characteristic of good robustness.

During the experiment, we noted that with the displayed patterns being reduced

exponentially the corresponding imaging rates were not increased proportionally.

We then recorded the elapsed time of full pattern display, 2D reconstruction, and
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3D reconstruction respectively at those three different resolutions, with results

shown in Fig. 3.18.

Figure 3.18: Elapsed-time comparison without compressive sensing algorithm
at three different resolutions: 32x32, 64x64, 128x128. Each pattern was dis-
played for 50ms following by displaying its inverse as well. The corresponding
total pattern display time, its 2D reconstruction time, and 3D reconstruction

time were recorded respectively.

The result indicated that the total elapsed time of 2D and 3D reconstruction

become noticeable when increasing the image resolution. By employing the com-

pressive sensing algorithm, the time required for both pattern display and 2D

reconstruction was decreased due to the smaller amount of illumination patterns.

However, the time for 3D reconstruction remained unchanged as the illumination

resolution was still the same, which limited the total compression rate. One possi-

ble method to improve the 3D reconstruction efficiency of our system in the future

is to perform the 3D reconstruction operation with a dedicated high-performance

GPU instead of the computer’s CPU.
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3.6 Conclusion

In conclusion, we have experimentally demonstrated a video-rate 3D imaging sys-

tem based on photometric stereo which exhibited perfect pixel registrations by

utilising four single-pixel detectors with a high-speed structured illumination. In-

stead of using raster scanning or light projection with random patterns, we em-

ployed structured illumination patterns derived from Hadamard matrices which

improved the image SNR and the system sampling efficiency. A differential sig-

nal acquisition approach was introduced to eliminate the illumination background

noise. As an extension of the previous work in Chapter 2, we have now shown

continuous operation for 3D image reconstruction at illumination resolutions of

32x32, 64x64 and 128x128 pixels, with video frame rates of 8.7 Hz, 2.4 Hz, and

0.5 Hz, respectively.

In additional, we made use of a compressive sensing algorithm to speed-up the

system sampling rate. In place of using a full illumination pattern set, we rear-

ranged the Hadamard pattern pairs based on the corresponding signal intensities

and only chose a certain amount of top-ranking pairs to generate the 2D images.

For dynamic scenes the noise introduced randomly affects each image used for

photometric stereo, which in some circumstances could be advantageous. This

approach increased the frame rate at the expense of only a modest reduction in

image quality, as evidenced by a quantitative analysis. For 3D reconstruction with

64x64 and 128x128 illumination resolution, a 25% compression ratio provided an

increment of the video frame rates to ∼8 Hz and ∼1 Hz respectively, comparing

to ∼2.4 Hz and ∼0.5 Hz with full pattern set sampling. We noted that with

128x128 illumination resolution, the total computational time for 2D and 3D im-

age reconstruction, as performed on an octa-core processor, placed a limit on the

achievable frame rate. Further improvement could be achieved by operating the

3D reconstruction on a dedicated high-performance GPU.
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Since our 3D single-pixel imaging system does not rely on a pixelated camera

sensor and the operational bandwidth of the DMD device extends beyond the

visible (VIS) range, it can be readily extended to other wavelengths where tra-

ditional camera technology is prohibitively expensive, such as the near-infrared

(NIR) wavelength.



Chapter 4

NIR Single-Pixel Imaging with

Micro-Scanning

4.1 Introduction

Following up with the 3D single-pixel imaging experiment in chapter 3, the single-

pixel detector was replaced with an Indium-Gallium-Arsenide (InGaAs) detector,

sensitive to shortwave infrared wavelengths (800nm-1800nm). Importantly how-

ever, the increased detector noise compared to silicon counterparts, in addition

with scarcity of high-power sources at non-visible wavelengths, limits the per-

formance of the computational imaging system in application. This has led to

the development of novel scanning strategies and reconstruction algorithms to im-

prove the resulting image quality, the topic of which forms the basis of this chapter.

Micro-scanning, sometimes termed super-sampling, is a well established method to

recover higher-resolution images from a set of lower-resolution acquisitions [111].

In this work, we employed this optimisation approach to sample the spatial prop-

erties of an image at a moderate resolution, from which a higher-resolution image

can be recovered using an iterative or inversion algorithm. We imaged different

71
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objects by using various NIR bandpass filters to detect hidden information un-

derneath the surface for potential practical applications. We also compared our

imaging system with an expensive commercial InGaAs NIR camera, which indi-

cates a reasonably well capability of revealing the water absorption underneath

the surface of plant leaves and fruits.

4.1.1 Contributions

The work carried out in this chapter stems from a collaboration between Miles

Padgett, Graham Gibson, Matt Edgar and myself. The design and development

of the experimental hardware used to perform this experiment was the result of my-

self, with support from Graham Gibson and Matthew Edgar. The micro-scanning

strategy was first experimentally demonstrated by Mingjie Sun, and subsequently

incorporated within this system by myself and Matthew Edgar. I performed the

experiments and analysed the results.

4.2 NIR single-pixel detection

As we described in Chapter 3, the wide operational bandwidth of DMD and single-

pixel detectors enable the application of computational imaging schemes beyond

visible wavelengths. In this chapter, we are focused on 2D single-pixel imaging at

shortwave infrared wavelengths.

Instead of using four VIS single-pixel detectors and a white LED in the 3D imag-

ing system, we displaced with one InGaAs NIR detector and an infrared light

source. To protect the DMD from being over-heated by the infrared light source,

we chose to perform single-pixel imaging with structure detection over structured

illumination, in which case the light were irradiated to the scene first and then

reflected to the DMD. The DAQ sample speed for the NIR detector was 250 kHz
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and the DMD display time for each pattern was still 50 us. Consequently, there

were (250 x 103 x 5 x 10−5) ≈ 12 times of signal collection for every single pattern

and the mean was used as its signal intensity value. We applied a set of NIR

bandpass filters before the detector to examine if certain information underneath

the object surface were easier to be observed at some NIR wavelength range, for

instance, the overripe or rotten portions of fruits. A micro-scanning algorithm was

also employed to improve the image quality.

4.2.1 Experimental setup of NIR imaging system

Figure 4.1: 2D single-pixel NIR imaging system setup: a. InGaAs NIR detec-
tor; b. Wire grid polariser on glass substrate fixed on a metal board; c. Camera
lens; d. 3D printed holder and mount with a silver mirror adjusted inside; e.

IR heat lamp; f. DLP device; g. DAQ device.

The system setup is show in Fig. 4.1. A 50 mm x 50 mm wire grid polariser

on glass substrate (Thorlabs) with a spectral range of 250 nm - 4000 nm and a

high radiation threshold was fixed on a black metal board placed in front of an

infrared (IR) light source together with a polariser sheet attached behind a 50mm
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focal camera lens at a relatively perpendicular direction to remove the specular

reflection.

Figure 4.2: The spectral power distribution of infrared heat lamp R125 [112].

Figure 4.3: PDA20CS InGaAs detector spectral response curve [113].

A lens tube filter holder was mounted in front of the detector allowing differ-

ent bandpass filters to get changed easily. The illumination source we adopted

in the system was an IR heat lamp (Philips R125), 175W, with the spectral

power distribution shown in Fig. 4.2 [112]. And the NIR detector we chose was
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a (Thorlabs) PDA20CS - InGaAs Switchable Gain Amplified Detector, 10 MHz

BW(bandwidth), with a spectral response curve shown in Fig. 4.3 [113].

4.2.2 NIR comparison with and without using polarisers

In one experiment an apple was imaged with and without the use of crossed po-

larisers to investigate the role of specular reflections and the influence on the signal

to noise ratio in the image reconstruction.

Figure 4.4: NIR outcomes comparison with and without polariser at a detec-
tion resolution of 64 x64. Image (a) without polariser and (b) with polariser
were captured with no bandpass filter and no averaging. Image (c) without
polariser and (d) with polariser were obtained with an NIR bandpass filter of

1000 ±5 nm and 10-frame averaging.



Chapter 4. NIR Single-Pixel Imaging with Micro-Scanning 76

In this experiment the Hadamard basis was used to scan the image, as described

in last chapter. In addition, an IR bandpass filter of 1000 ±5 nm (a wavelength

range with the highest spectral power from the lamp) was attached in front of the

detector to obtain images with 10-frame averaging. The outcomes were compared

and shown in Fig. 4.4. It is worth to mention that, in all the NIR single-pixel

imaging experiments, we used full Hadamard patterns for the image reconstruction

rather than selecting the top-ranking subset as we did in the last chapter. This

is because the purpose of the NIR single-pixel imaging experiments was to get a

good quality image rather than increasing the frame rate, and by using only the

top-ranking subset it would lower the image quality.

From the results, we noticed that although using the polarisers removed the

specular reflection, it also reduced the light that projected onto the scene (see

Fig. 4.4(a), (b)). With an extra bandpass filter (e.g. 1000 ±5 nm), the amount of

light reached to the detector was too small to form a good image, even after image

averaging (see Fig. 4.4(c), (d)). For this reason, it was determined that the use of

crossed linear polarisers to isolate specular reflections led to a dramatic reduction

in the detected intensity and thus could not be used in this system.

4.2.3 NIR imaging with bandpass filters

We then tested some objects by employing a set of different NIR bandpass filters

without the polarisers at the same resolution of 64 x 64. The filter set (Thorlabs

FKB-IR-10) included 10 different bandpasses: 850 ± 5 nm, 900 ± 5 nm, 1000 ± 5

nm, 1100 ± 5 nm, 1200 ± 5 nm, 1300 ± 6 nm, 1400 ± 6 nm, 1500 ± 6 nm, 1550

± 6 nm, and 1600 ± 6 nm. Two infrared heat lamps were set on the left and right

side of the DMD to provide the illumination. Images acquired after each bandpass

filter was averaged 100 times to generate a better image with reduced noise. The

outcomes of imaging an apple with the filter set are shown in Fig. 4.5. In this case

it was necessary to average 100 frames in order to improve the image SNR. This
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led to the development of alternative sampling strategies to enhance the system

performance.

Figure 4.5: NIR imaging of an apple with a set of 10 bandpass filters at a
detection resolution of 64 x 64. No polariser was assembled here to increase
the intensity of the light received by the detector. Image (01) was captured
without using any bandpass filter. From image (02) to image (11), each one
was obtained with the use of a different NIR bandpass filter as shown in the

figure and 100-frame averaging.
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4.3 Micro-scanning imaging

Figure 4.6: The trade-off between image resolution and signal-to-noise (SNR)
in single-pixel imaging.

For any single-pixel imaging system employing a DMD as the spatial light modu-

lator, the number of micro-mirrors used to scan a ’pixel’ in the image, determines

the light intensity variation that the detector must measure. Consequently, for a

detector having fixed amplitude noise, there is an inherent relationship between

the maximum image resolution and the reconstruction SNR [114–116]. In other

words, images of lower resolution have higher SNR than images of higher reso-

lutions. Fig. 4.6 illustrates the change in the reflected intensity for two different

scanning resolutions. The trade-off between the image resolution and its SNR put a

restriction in further single-pixel applications. One approach to improve this is the

adoption of differential signal acquisition as demonstrated in 3.2.3. In this system,

we also employed an optimization approach called micro-scanning [111, 117–121],

capable of retrieving high-resolution (HR) images from images acquired at a lower-

resolution (LR) with favourable SNR. The principle of this approach is similar to

the one of super-resolution structured illumination microscopy [122].
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Figure 4.7: The micro-scanning approach. (a) the object. (b) the modification
of Hadamard patterns. (c) the LR images generated through the pattern sets.

(d) the NIR HR image yielded via LR images.

Figure 4.7 demonstrates the reconstruction of a 16 x 16 HR image using micro-

scanning from four 8 x 8 LR images acquired from the NIR detector. In the

system, we utilised the central square region of the DMD, consisting of 768 x768

micro-mirrors, to display the patterns. Each detection block in the pattern (equal

to an individual pixel) was represented by a group of micro-mirrors. For a 8

x 8 image, each pixel comprised 96 x 96 micro-mirrors in a square region. To

modify the pattern set, each detection block in the patterns was then shifted half

a pixel in the central square region of the DMD three times, respectively on the

x-axis, the y-axis, and the x & y axes (see Fig. 4.7(b)). More to the point, all the

patterns were shifted 48 micro-mirrors right on the x-axis, top on the y-axis, and

top-right on the x & y axes by turns. This generated four 8 x 8 NIR LR images

including the original one, with each containing different spatial information (see

Fig. 4.7(c)). By re-mapping those LR images on a 16 x 16 pixel grid and averaging
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the overlapped values at each grid, a 16 x 16 HR image was then reconstructed

(see Fig. 4.7(d)).

Figure 4.8: Micro-scanning HR image pixel reconstruction. The re-mapped
LR image pixel values at the HR pixel grid were averaged to represent the HR

image pixels.

Figure 4.8 illustrates the computing of a HR image with four LR images. Each

coloured region corresponds to an individual LR image pixel. I1, I2, I3, and I4

represent the measured pixel intensities in those LR images. The intensity value

at the central pixel gird on the high-resolution grid Ic is calculated by

Ic =
1

4
(I1 + I2 + I3 + I4) (4.1)

Each pixel in the HR image is generated from a specific combination of the LR

pixels. Taking no account of signal noises, the reconstructed HR image of using

this micro-scanning approach is mathematically equivalent to the convolution of

the standard HR image that obtained with a normal Hadamard pattern set (the

image resolution equals to the size of the pattern) with a kernel κer, where
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κer =
1

16


1 2 1

2 4 2

1 2 1

 (4.2)

As this image reconstruction approach involves is analogous to smoothing adjacent

pixels, the resulting HR image suffers from a moderate reduction in resolution

than had the scene been scanned at a higher resolution. However, it provides a

significantly improvement of the image SNR comparing to the standard method

as the HR image with micro-scanning inherits the higher SNR from its lower-

resolution images. Figure 4.9 demonstrates a comparison of SNR between two

sets of 64 x 64 NIR images reconstructed with and without using micro-scanning.

Here we calculated the SNR using [123, 124] :

SNR =
µ

σ
(4.3)

where µ is the signal mean and σ is the standard deviation of the noise.

Figure 4.9: SNR comparison of images with and without using micro-scanning.
(a) The SNR of 20 NIR 64 x 64 images reconstructed without using micro-
scanning equals to 18.239. (b) The photographed object. (c) The SNR of 20
NIR 64 x 64 images reconstructed using micro-scanning improved to 27.365.
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For both methods in Fig. 4.9 (a) and (c), we each generated 20 NIR 64 x 64 images

[125], and then calculated the average of the mean value at each pixel in those

images as µ and the average of the standard deviation of each pixel among those

images as σ. The results showed an improvement of SNR with micro-scanning

when reconstructing the same resolution images.

4.4 NIR micro-scanning imaging with solar ra-

diation

In another experiment, on a clear day, solar radiation was used to illuminate a

scene with more power at SWIR wavelengths than the incandescent bulb used in

the laboratory. The same set of NIR bandpass filters, as mentioned in 4.2.3, was

employed in front of the detector separately. Figure 4.10 exhibits the imaging

outcomes of four different fruits obtained under the sunlight at a resolution of 128

x 128 using micro-scanning with 50-frame averaging. The reason for employing 50

times frame averaging in this experiment was that the intensity of light passing

through each NIR bandpass filter was too low compared to the environment noise.

By doing the averaging increased the SNR, which was explained in 5.4.1.

From those images, we noticed that with the 1400 ± 6 nm bandpass filter all four

objects were unable to be detected. The spectral power distribution of the sun

arriving on the surface of the earth was then explored [126–129].
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Figure 4.11: The spectral irradiance emitted by the sun [129]. As labelled,
the brown spectrum is what hits at the top of the Earth’s atmosphere, the grey
curve is the spectrum distribution from an ideal 5250 ◦C blackbody, and the

multicoloured spectrum is the radiation at sea level.

Figure 4.11 shows the solar irradiance spectrum above the Earth’s atmosphere

and at surface(/sea level) [129]. The distribution of sunlight outside atmosphere

is close to an ideal 5250 ◦C blackbody spectrum, where a blackbody is an ideal

emitter that absorbs all incident electromagnetic radiation and has a spectrum

based solely on its temperature, regardless of the body’s shape or composition

[130, 131]. However, gases contained in the atmosphere can absorb sunlight at

certain wavelength bands, which results in a filtered solar irradiance spectrum at

sea level. Among those gases, water vapour is the most effective gas that absorbs

a lot of IR light at specific wavelengths [129, 132, 133].

Based on that, we then mapped those reconstructed fruits images with the sea-

level solar radiation distribution, which explained the outcomes with the 1400

± 6 nm bandpass filter (see Fig. 4.12 and Appendix A). Furthermore, the wave
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range near 1400 nm was chosen to detect the water uptake in plant leaves and the

overripe or rotten portions of fruits together with the IR heat lamp as mentioned

in 4.2.1. Figure 4.13 presents two 128 x 128 NIR micro-scanning images using the

heat lamp and a wider NIR bandpass filter of 1400 ± 35 nm for water detection in

plant leaves. By comparing those NIR images, the water absorption regions could

be detected.

Figure 4.13: Water detection with a 1400 ± 35 nm NIR bandpass filter and 50
times averaging at 128 x128 resolution. The dark areas of the plant leaves in (a)
and (b) reveal the internal water absorption distribution. The region marked

with a red colour in (b) shows water drops near the edge of leaves.

4.5 InGaAs NIR imaging comparison

To roughly evaluate the NIR imaging quality of our InGaAs single-pixel camera

system, we compared the outcomes of imaging several objects at a resolution of

128 x 128 with the ones captured from an expensive commercial InGaAs camera,

a Goldeye G-008, which has a maximum frame rate of 344 fps. The factor of frame

rate and exposure time was not a big consideration in this comparison.
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Figure 4.14: The spectral sensitivity range of GoldEye G-008 InGaAS camera:
900 nm to 1700 nm [134].

The short wave infrared spectrum (SWIR) of this Goldeye camera is fitted with

a QVGA (Quarter Video Graphics Array) InGaAs sensor of 320 x 256 pixels, 30

µm per pixel size, making its spectral sensitivity reach from 900 to 1700 nm as

shown in Fig. 4.14 [134].

For comparison, we imaged each object with and without the 1400 ± 35 nm band-

pass filter by using both cameras at the same time. With the single-pixel camera,

we captured the scene at a resolution of 128 x 128 by using micro-scanning. With

the Goldeye camera, a larger area of the scene was photographed at a resolution

of 320 x 256 and a region of 128 x 128 was later segmented to match the view

from the single-pixel camera. One of the outcomes is shown in Fig. 4.15, in which

both cameras were capable of detecting the water distribution underneath object’s

surface and the image quality with Goldeye G-008 was unsurprisingly better with

a specialized adjustable focus lens.
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Figure 4.15: InGaAs NIR imaging comparison between the single-pixel camera
and Goldeye G-008. Image (a) and (c) were captured by our signal-pixel camera
at a resolution of 128 x 128 using mirco-scanning. There was no image averaging
applied on image (a), but 100 averaging on image (c). The frame rates for image
(a) and (c) were 0.67 Hz and 0.0067 Hz. Image (b) and (d) were captured with
the Goldeye G-008 at a region of 128 x 128 which matched the view from the
single-pixel camera. There was no image averaging applied on image (b) and (d)
and both of them had a frame rate of 10 Hz. Image (a) and (b) were captured
without using any bandpass filter, and image (c) and (d) were captured with a

1400 ± 35 nm bandpass filter.

4.6 Conclusion

In this chapter, we have demonstrated a NIR single-pixel imaging system by utilis-

ing an InGaAs amplified photodetector. To overcome one of the main limitations in

single-pixel imaging, where the SNR of reconstructed image decreases with increas-

ing resolution, an optimisation method known as micro-scanning was employed in

our system. This approach combines multiple lower resolution images acquired
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with a modified set of patterns to generate a higher-resolution image, while main-

taining the SNR of the lower resolution ones. By comparing images reconstructed

using micro-scanning with the ones obtained from conventional sampling at a same

resolution, it showed a significant improvement of the SNR of the micro-scanning

images with a modest reduction in the contrast of high spatial frequencies.

We then imaged different objects with a set of NIR bandpass filters by making

use of sunlight as the illumination source and figured out that light at specific

IR wavelengths would normally be absorbed completely by water vapour in the

atmosphere, for instance, light near the 1400 nm wavelength. Based on that, we

chose a 1400 ± 35 nm bandpass filter to detect the water distribution underneath

the surface of plant leaves and fruits with a heat lamp, which leaded to potential

applications for detecting the overripe or rotten portions of fruits. We also roughly

compared our NIR single-pixel imaging system with a much more expensive com-

mercial InGaAs camera Goldeye G-008, in which both cameras demonstrated the

capability of revealing the water distribution underneath object’s surface and the

Goldeye camera showed an unsurprisingly better image quality with a specialized

adjustable focus lens. Further improvement of the imaging system was made and

presented in the next chapter.



Chapter 5

Additional Improvements of

Single-Pixel System with VIS and

NIR Dual-Band Detection

5.1 Introduction

In this chapter, the single-pixel imaging system was modified to perform visible

(VIS) and near-infrared (NIR) dual-band detection simultaneously with double

light paths by making use of the DMD more efficiently. The NIR images of various

fruits obtained at different IR bands were compared with the ones captured from

the VIS detector and a reference colour camera to gain a better understanding

of the information beneath the surfaces. Besides differential signal acquisition

and micro-scanning, some other approaches have also been applied or tested in

our system to improve the SNR of single-pixel images. Among those methods,

single averaging and randomization of pattern sequence, as used in our system,

will be briefly explained and exemplified here. A regularisation approach based

on minimising the spatial curvature of the reconstructed image will be presented

with further improvement planned in the future work.

90
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5.1.1 Contributions

The work that follows was undertaken by myself with help from Matt Edgar. The

dual-band detection system was partially 3D printed and structured by myself.

The data collection of different fruits was performed by myself. The idea of utilising

a regularisation approach for optimising the reconstructed image was the result of

discussions among Miles Padgett, Matt Edgar and myself.

5.2 Dual-band imaging modification

Figure 5.1: Dual-band imaging modification. (a) The propagation paths of
light reaching from DMD to two detectors. (b) Modified single-pixel imaging
system setup with VIS and NIR dual-band detection. An industrial colour
camera was placed under the lens for the DMD to provide a reference image.

In most single-pixel imaging systems, the micro-mirrors on an energized DMD

rotate at either +12 or -12 degrees to represent an ’on’ or ’off’ state, as mentioned

in section 3.2.1. In this circumstance, only half of the light(’on’) reflected from

the DMD is used, the other half which is reflected towards the reverse angle (’off’)

is perceived as the unwanted one and wasted, even though both parts contain the
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same amount of information as each other with the differential signal acquisition

approach (see section 3.2.3). To take advantage of both parts of the light, we mod-

ified the system with two adjusted mirrors facing towards two detectors by which

it created double light paths for enabling dual-band detection simultaneously as

shown in Figure 5.1(a).

Figure 5.1(b) demonstrates the modified system setup with VIS and IR detec-

tion. The VIS detector we chose was a silicon switchable gain detector, Thorlabs

PDA100A-EC, for light signals over 400 to 1100nm wavelength range. A short-

pass (SP) filter, Comar 716GK25, was fitted in front of the VIS detector to limit

its detectable signal range to 400-716nm. The NIR detector we selected was an

InGaAs switchable gain detector, Thorlabs PDA20CS, for light signals over 800

to 1800nm wavelength range. With each detector, a micro-scanning approach was

applied to generate an image with a resolution of 128 x 128. An industrial colour

camera (CC), JAI GO-5000-USB with 5MP and 62fps was placed under the lens

that focuses light onto the DMD. It was used to provide a colour image of the

scene as the reference for the reconstructed VIS and NIR single-pixel images.

Figure 5.2: Experimental images of a piece of painting with different layers
of acrylic colour. The CC produced a colour image of the painting and the
VIS detector generated a 128 x 128 monochrome image of the painting. The
NIR detector obtained a 128 x 128 monochrome image of hidden information

underneath the surface of the painting.
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Figure 5.2 gives a simple demonstration of different imaging results from the sys-

tem on a piece of painting with various layers of acrylic colour. Both the industrial

colour camera and the visible light detector captured an surface image of the paint-

ing. The reconstructed image from the NIR light detector showed the hidden words

printed under the surface painting, which revealed the penetration capability of

IR light with certain painting material.

5.3 Single-pixel dual-band detection with fruits

Figure 5.3: Single-pixel VIS and NIR imaging results of a ripe avocado with
no signal averaging. By comparing the degree of shade in those images, the

yellow region of the avocado was likely to be a rotten area with water.
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Given an object, the degree of penetration revealed in a reconstructed single-pixel

NIR image usually depends on the wavelength range of IR signals. To explore

the hidden structure underneath the surface, we generated the NIR images with

various fruits by utilising different bandpass filters, and compared it with the VIS

and CC images. Figure 5.3 exhibits the imaging results of a ripe avocado with VIS

and NIR detection at a resolution of 128 x 128 with no averaging. Based on the

different degrees of shade in the yellow region among those images (due to water

absorption), it revealed a potential rotten area of the avocado. This area was later

proven to be a rotten area after peeling off its skin.

5.4 Additional methods for improving the SNR

of single-pixel images

With single-pixel imaging, the cost of SNR when increasing the image resolution

restricts its application in various fields. Diverse methods have been developed to

improve it. Besides differential signal acquisition and mirco-scanning, here we will

briefly demonstrate three other approaches that have been adopted or tested in

our system to reduce the noise level.

5.4.1 Signal averaging

One major element from the single-pixel system hardware that contribute to the

total noise is the circuit noise within the detector and the analog-to-digital con-

verter (ADC). With a high-resolution detector and ADC, the effects of noise in

the system will be shown, which leads to uncertainty in every measurement result.

To increase the strength of a measured signal relative to this type of noise, signal

averaging have been used in our system. Given N successive sets of measured

signals Si with noise, the averaged value Savg can be calculated as follows:
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Savg =
1

N

N∑
i=1

Si (5.1)

Figure 5.4: NIR imaging results of an apple using different averaging val-
ues. The CC images were adjusted as the reference to compare with the VIS
& IR single-pixel images at a resolution of 128x128 with micro-scanning. By
increasing the number of averaging with the NIR signals, the effects of noise

were deduced in the imaging results.

The more successive measurements included in the signal averaging will result in

more reduction of the noise with longer settling time. Figure 5.4 demonstrates the

improvement of IR imaging results by increasing the amount of frame averaging,

where the NIR light level went down after passing through each bandpass filter
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and the hardware noise became obvious. More imaging results of different fruits

are shown in Appendix B. By visually comparing those images, it is obvious that

the SNR in a high-noise reconstructed image can be improved by employing frame-

averaging in our single-pixel system.

5.4.2 Randomisation of pattern sequence

A potential noise of using signal averaging in single-pixel imaging can be produced

by the fluctuation intensities of the light source with a typical frequency of 50 Hz

or 60 Hz, which could result in fixed discrepancies between individual patterns in

a set.

Figure 5.5: NIR imaging results with and without randomisation. Both NIR
single-pixel images (a) and (b) were obtained through a 1400 ± 35 nm bandpass

filter at a resolution of 128x128 using micro-scanning and 20 averaging.

To reduce the impact of this noise, we have randomised the order of illumination

patterns in the Hadamard set every time so each pattern was tended to have an

equal opportunity under the light of all fluctuating intensities. Figure 5.5 shows a

comparison of the NIR imaging results generated with and without randomising

the pattern sequence during signal averaging. For each image, we calculated the

SNR using [135, 136]:
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SNR =
Pf − Pb

[(δf + δb)/2]
(5.2)

where Pf and Pb are, respectively, the average intensities of the image feature and

the image background, δf and δb are, correspondingly, the standard deviations of

the intensities of the image feature and the image background. Here we chose a

region highlighted by a yellow square to represent the image feature and a same-

size region highlighted by a red square to represent the image background for

calculation. By comparison, the image obtained with randomisation of pattern

sequence showed a better SNR than the one without using it.

5.4.3 Regularisation

Typical images of objects tend to exhibit strong correlations between adjacent

pixels. Besides signal averaging and randomisation of pattern sequence, we have

further tested to improve the image SNR with a regularisation approach based on

minimisation of the image spatial curvature. In this approach, the intensity value

of each individual pixel was kept changing with randomised noise level until the

program finds a derived image with the lowest value of the cost function, C, given

by [137–139]

C =
χ2

N
+ λR, (5.3)

and C is subject to χ2/N ≤ 1. In this equation, the first term (χ2/N) corresponds

to degree of discrepancy between the measured signals (Sm) and the predicted

signals (Sp) based on the estimated noise level in the measurements. χ2 is given

by

χ2 =
N∑
i=1

[
Smi
− Spi

δ

]2
(5.4)
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where N is the total number of measurements and δ is the standard deviation of

estimated noise in the measurements. The second term (λR) corresponds to the

level of total curvature squared in the estimated reconstruction and R is given by

R =

[
n∑

j=1

(∣∣∣∣d2Ijdx2

∣∣∣∣+

∣∣∣∣d2Ijdy2

∣∣∣∣)
]2

(5.5)

where n is the total number of pixels in the image and Ij is the intensity value of

pixel j. λ is an empirical factor to balance the importance of both terms. It was

manually adjusted through experience to prevent the program over-smoothing the

image.

Figure 5.6: NIR imaging results before and after regularisation. Both images
(a) and (b) were obtained through a 1000 ± 5 nm bandpass filter at a resolution

of 64x64 using micro-scanning with no averaging.

In Figure 5.6, it shows a comparison of the NIR imaging results of an apple before

and after employing the regularisation optimisation. By increasing the number

of iteration steps, gradual image noise reduction was observed. However, with

this approach, λ needs to be readjusted artificially each time based on the prior

knowledge of the imaging object to avoid distortion caused by over-smoothing

regularisation.
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5.5 Conclusion

In conclusion, we have shown a modified single-pixel system with VIS and NIR

dual-band detection by making use of the DMD more productively. The imaging

results of various fruits obtained from the NIR detector at different IR bands were

compared with the images from the VIS single-pixel detector and the ones from

a reference colour camera to conclude a better understanding of the overripe or

rotten regions hidden under the surface of those fruits.

In this chapter, we have also demonstrated three optimisation approaches that had

been applied or tested in our systems for improving the NIR image SNR. In those

approaches, signal averaging helped to increase the strength of measured signals

over the hardware noise with a trade-off of longer settling time. By randomising

the pattern sequence of each time, we were able to reduce the noise caused by

the fixed illumination discrepancies between individual patterns. A regularisation

approach based on minimising the image spatial curvature was tested to reduce

the image noise. It’s been observed that increasing the number of iterations of

the best solution for the cost function lowered the noise level in the resulting

image. Further work would be performed on optimising the cost function with a

self-adjusting λ value.



Chapter 6

Conclusion and Future Work

Computational imaging is a highly active interdisciplinary research field which

aims to enhance and extend the capabilities of traditional imaging devices and

solutions. Numerous techniques have been proposed to extract different types

of information from an imaged scene. In this thesis, the work has been focused

on investigating practical applications of imaging systems utilising two of those

computational imaging techniques, photometric stereo and single-pixel imaging.

Photometric stereo is an 3D imaging technique that captures the shape of a 3D

solid object based on several images of a scene including the object taken from a

fixed viewpoint under different illumination conditions. Typically, it recovers the

object’s surface gradients by estimating the surface normal vectors from the shad-

ing information in those images, measured as pixel intensities by a digital camera,

and then integrates the gradient field to determine the 3D shape. Based on this

approach, we have developed a fast 3D camera system with a low-cost accessory

consisting of four white LEDs controlled by an Arduino board. Besides the typical

calculation procedure, I have proposed a fast surface gradient calculation model

to reduce the computing complexity. By comparing the 3D reconstructions on a

selection of objects with the known reference data, our camera system has shown

a reasonable level of accuracy in estimating the depth information. With further

100
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tests at several public exhibitions, our inexpensive 3D camera system has demon-

strated its capability of providing realistic 3D images of objects and faces on a

3D-enabled TV with a wide range of viewing angles, despite both the camera and

the subject staying static during the image acquisition. We have also observed an

increased estimation error at regions where the surface normals were pointing to-

wards a direction perpendicular to the camera perspective. Further improvements

can be made by optimising the depth estimation at those regions and recovering

the information at obstructed surface areas.

In general, 3D imaging system using photometric stereo requires the scene to re-

main still whilst acquiring images under different lighting conditions in order to

prevent significant distortion in 3D reconstructed images caused by pixel-matching

errors, which limits its applicability to real-time applications. To tackle this limi-

tation, we then introduced a revised 3D imaging system by combining photometric

stereo with single-pixel imaging, allowing continuous operation for 3D reconstruc-

tion of dynamic scenes. Single-pixel imaging is an emerging technique that enables

images to be generated by using a simple detector which have only one pixel to

sense light rather than millions of pixels by conventional digital cameras. By mak-

ing use of a fast DMD to provide a set of micro-structured light patterns onto

the scene and four single-pixel detectors in different spatial locations to record the

signals associated to each pattern simultaneously, our system can obtain four im-

ages of a scene containing different shading profiles to perform photometric stereo

without pixel-matching error.

Comparing to projecting totally random patterns or using raster scanning, we

chose a set of patterns derived from orthogonal Hadamard matrices to perform

the structured illumination in our system, which improved the image SNR along

with the sampling efficiency. With Hadamard patterns, each element is either

‘+1’ or ‘-1’ rather than ‘0’ or ‘1’ which are respectively represented by the black

or white illumination blocks on the scene. To solve this, a differential signal

acquisition approach was employed, in which the differential intensity value from
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each black and white illumination pattern and its inverse was used to correspond

to the Hadamard pattern. Under the restriction of a finite modulation rate of

the DMD, an evolutionary compressed sensing strategy was employed in our 3D

single-pixel system to further improve the imaging speed by reducing the number

of sampling for recovering an image. Instead of a complete pattern set, a subset of

Hadamard patterns were chosen based on the ranking of the corresponding signal

intensities to represent the images. By comparing the 3D reconstruction results

at the same image resolution with different compression ratios, we have shown an

increase of the frame rate when using a smaller subset of the Hadamard patterns

at the cost of only a modest reduction in image quality.

As a remarkable alternative to conventional imaging techniques, single-pixel tech-

nique is promising for applications to explore unusual spectral bands for imaging

with a highly sensitive light sensor. With an InGaAs detector, we developed a NIR

single-pixel imaging system trying to expose the hidden information underneath

surfaces of plant leaves and fruits. To improve the SNR when increasing the image

resolution with single-pixel imaging, a micro-scanning approach was applied in our

system, which produces a high resolution image with a deduced noise level by com-

bining a set of lower resolution images based on modified Hadamard patterns. For

a given resolution, images reconstructed with and without using mirco-scanning

require the same total amount of Hadamard patterns. However, the image SNR

can be improved significantly by using this approach at the expense of a modest

reduction in the contrast of high spatial frequencies. By imaging different objects

through a set of NIR bandpass filters with the sunlight at sea level, we have noticed

that light near the 1400 nm wavelength was fully absorbed by the water vapour in

atmosphere, based on which we then chose an IR lamp as the light source and a

bandpass filter around this wavelength to detect the water information underneath

surfaces of plant leaves and fruits. We have also had a rough comparison of the

imaging results between our system and an expensive InGaAs camera, in which

both showed the capability of water detection with leaves and fruits.
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As both micro-scanning technique and evolutionary compressed sensing approach

require no extra hardware in single-pixel imaging system, further research can be

carried on by combining those two methods in our system to optimise the imaging

quality together with a better efficiency.

Instead of using only one detector, we have modified our single-pixel imaging sys-

tem by taking advantage of the light from both reflection arms of the DMD with

two detectors, one for visible light and the other for light in the NIR spectrum,

enabling dual-band imaging. Besides averaging detected signal and randomising

pattern sequence, we have also tried to improve the image SNR with a regular-

ization technique based on minimisation of the image spatial curvature. Further

investigation can be undertaken to improve this method and combine it with the

evolutionary compressed sensing technique in single-pixel imaging. Our dual-band

single-pixel system can also be combined with a telescope to invest the influence

of atmospheric dispersion and atmospheric turbulence on long-distance imaging.



Appendix A

Extra NIR Single-Pixel Imaging

Data of Different Objects

Effects of atmospheric absorption of radiation on sea-level solar NIR imaging at a

resolution of 128 x 128 with micro-scanning and 50-frame averaging:

104
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Appendix B

Extra Data of Single-Pixel

Dual-Band Detection

Images from the industrial colour camera (CC) are adjusted as the reference to

compare with the VIS & IR single-pixel images at a resolution of 128x128 with

micro-scanning. By increasing the number of averaging with the NIR signals, the

noise level in the imaging results has been deduced.

108
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Figure B.1: NIR imaging results of avocados using different averaging values.
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Figure B.2: NIR imaging results of bananas using different averaging values.
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Figure B.3: NIR imaging results of a pomegranate using different averaging
values.



Bibliography

[1] F. S. Pavone and P. J. Campagnola. Second harmonic generation imaging.

Taylor & Francis, 2013.

[2] H. Gernsheim and A. Gernsheim. The History of Photography from the

Earliest Use of the Camera Obscura in the Eleventh Century up to 1914.

Oxford University Press, 1955.

[3] H. Gernsheim. The 150th anniversary of photography. History of photogra-

phy, 1(1):3–8, 1977.

[4] B. Newhall. Latent image: the discovery of photography, volume 54. Dou-

bleday, 1967.

[5] B. Coe. George Eastman and the early photographers. Hodder Wayland,

1973.

[6] M. D. McFarlane. Digital pictures fifty years ago. Proceedings of the IEEE,

60(7):768–770, 1972.

[7] M. Tripsas and G. Gavetti. Capabilities, cognition, and inertia: Evidence

from digital imaging. Strategic management journal, pages 1147–1161, 2000.

[8] T. Makimoto. The age of the digital nomad: Impact of cmos innovation.

IEEE Solid-State Circuits Magazine, 5(1):40–47, 2013.

[9] R. Hain, C. J. Kahler, and C. Tropea. Comparison of ccd, cmos and inten-

sified cameras. Experiments in fluids, 42(3):403–411, 2007.

112



Bibliography 113

[10] L. Quan. Image-Based Modeling. Springer, 2010.

[11] R. J. Woodham. Photometric method for determining surface orientation

from multiple images. Optical engineering, 19(1):191139–191139, 1980.

[12] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly,

and R. G. Baraniuk. Single-pixel imaging via compressive sampling. IEEE

Signal Processing Magazine, 25(2):83, 2008.

[13] S. Rout and S. Sonkusale. Active Metamaterials: Terahertz Modulators and

Detectors. Springer, 2017.

[14] N. Marin and J. M. Buszka. Alternate light source imaging: forensic pho-

tography techniques. Routledge, 2013.

[15] A. A. Michelson. Recent advances in spectroscopy. Nobel Lecture, 12:1–13,

1907.

[16] M. Hill, C. OMahony, H. Berney, P. J. Hughes, E. Hynes, and W. A. Lane.

Verification of 2-d mems model using optical profiling techniques. Optics

and lasers in engineering, 36(2):169–183, 2001.

[17] W. H. Steel. Interferometry, volume 1. CUP Archive, 1983.

[18] P. Hariharan. Basics of Interferometry. Academic Press, 2010.

[19] P. Hariharan. Optical interferometry. Academic press, 2003.

[20] Jason Geng. Structured-light 3d surface imaging: a tutorial. Advances in

Optics and Photonics, 3(2):128–160, 2011.

[21] D. Scharstein and R. Szeliski. High-accuracy stereo depth maps using struc-

tured light. In Computer Vision and Pattern Recognition, 2003. Proceedings.

2003 IEEE Computer Society Conference on, volume 1, pages I–195. IEEE,

2003.



Bibliography 114

[22] F. Pipitone and R. Hartley. A structured light range imaging system using a

moving correlation code. In 3D Data Processing, Visualization, and Trans-

mission, Third International Symposium on, pages 931–937. IEEE, 2006.

[23] M. Gupta, A. Agrawal, A. Veeraraghavan, and S. G. Narasimhan. Structured

light 3d scanning in the presence of global illumination. In Computer Vision

and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 713–720.

IEEE, 2011.

[24] L. Iocchi and K. Konolige. A multiresolution stereo vision system for mobile

robots. In New Trends in Robotics Research, AIIA’98 Workshop on, pages

317–321. AIIA, 1998.

[25] E. Keppel. Approximating complex surfaces by triangulation of contour

lines. IBM Journal of Research and Development, 19(1):2–11, 1975.

[26] E. Izquierdo. On the epipolar geometry in stereo vision. In Proceeding

Third International Conference on Approximation and Optimization in the

Caribbean, Puebla, Mexico, 1995.

[27] R. A. Hamzah and H. Ibrahimi. Literature survey on stereo vision disparity

map algorithms. Journal of Sensors, 2016, 2015.

[28] A. David and P. Jean. Computer vision: a modern approach. Prentice Hall,

pages 654–659, 2002.

[29] L. E. Kruger, C. Wohler, A. Wurz-Wessel, and F. Stein. In-factory calibra-

tion of multiocular camera systems. In Photonics Europe, pages 126–137.

International Society for Optics and Photonics, 2004.

[30] D. Chrysostomou and A. Gasteratos. Three-dimensional scene reconstruc-

tion: A review of approaches. Depth Map and 3D Imaging Applications:

Algorithms and Technologies: Algorithms and Technologies, page 142, 2011.



Bibliography 115

[31] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A com-

parison and evaluation of multi-view stereo reconstruction algorithms. In

Computer vision and pattern recognition, 2006 IEEE Computer Society Con-

ference on, volume 1, pages 519–528. IEEE, 2006.

[32] H. Hirschmuller and D. Scharstein. Evaluation of cost functions for stereo

matching. In Computer Vision and Pattern Recognition, 2007. CVPR’07.

IEEE Conference on, pages 1–8. IEEE, 2007.

[33] R. A. Hamzah and H. Ibrahim. Literature survey on stereo vision disparity

map algorithms. Journal of Sensors, 2016, 2015.

[34] B. K. P. Horn and M. J. Brooks. Shape from Shading. MIT Press, Cambridge,

MA, USA, 1989.

[35] D. Nandy and J. Ben-Arie. Shape from recognition: a novel approach for

3-d face shape recovery. Image Processing, IEEE Transactions on, 10(2):

206–217, 2001.

[36] S. Romdhani and T. Vetter. Estimating 3d shape and texture using pixel in-

tensity, edges, specular highlights, texture constraints and a prior. volume 2,

pages 986–993. IEEE, 2005.

[37] M. Song, D. Tao, X. Huang, C. Chen, and J. Bu. Three-dimensional face

reconstruction from a single image by a coupled rbf network. Image Pro-

cessing, IEEE Transactions on, 21(5):2887–2897, 2012.

[38] K. Lee and C. Kuo. Shape reconstruction from photometric stereo. In

Computer Vision and Pattern Recognition, 1992. Proceedings CVPR’92.,

1992 IEEE Computer Society Conference on, pages 479–484. IEEE, 1992.

[39] T. Malzbender, B. Wilburn, D. Gelb, and B. Ambriscol. Surface enhance-

ment using real-time photometric stereo and reflectance transformation.

Rendering techniques, 2006:17th, 2006.



Bibliography 116

[40] T. Okatani and K. Deguchi. On uniqueness of solutions of the three-light-

source photometric stereo: Conditions on illumination configuration and

surface reflectance. Computer Vision and Image Understanding, 81(2):211–

226, 2001.

[41] R. Basri, D. Jacobs, and I. Kemelmacher. Photometric stereo with general,

unknown lighting. volume 72, pages 239–257. Springer, 2007.

[42] P. Tan, S. Lin, and L. Quan. Subpixel photometric stereo. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 30(8):1460–1471, 2008.

[43] B. Shi, Y. Matsushita, Y. Wei, C. Xu, and P. Tan. Self-calibrating photo-

metric stereo. In Computer Vision and Pattern Recognition (CVPR), 2010

IEEE Conference on, pages 1118–1125. IEEE, 2010.

[44] M. F. Hansen, G. A. Atkinson, L. N. Smith, and M. L. Smith. 3d face

reconstructions from photometric stereo using near infrared and visible light.

Computer Vision and Image Understanding, 114(8):942–951, 2010.

[45] L. Wu, A. Ganesh, B. Shi, Y. Matsushita, Y. Wang, and Y. Ma. Robust pho-

tometric stereo via low-rank matrix completion and recovery. In Computer

Vision–ACCV 2010, pages 703–717. Springer, 2011.

[46] Y. Sun, J. Dong, M. Jian, and L. Qi. Fast 3d face reconstruction based on

uncalibrated photometric stereo. Multimedia Tools and Applications, pages

1–16, 2013. doi: 10.1007/s11042-013-1791-3.

[47] M. J. E. Golay. Multi-slit spectrometry. JOSA, 39(6):437–444, 1949.

[48] J. H. Shapiro. Computational ghost imaging. Physical Review A, 78(6):

061802, 2008.

[49] Y. Bromberg, O. Katz, and Y. Silberberg. Ghost imaging with a single

detector. Physical Review A, 79(5):053840, 2009.



Bibliography 117

[50] M. Harwit and N. J. A. Sloane. Hadamard Transform Optics. Academic

Press, 1979.

[51] M. I. Kolobov and C. Fabre. Quantum limits on optical resolution. Physical

review letters, 85(18):3789, 2000.

[52] B. J. Lawrie and R. C. Pooser. Toward real-time quantum imaging with a

single pixel camera. Optics express, 21(6):7549–7559, 2013.

[53] V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis.

Single-pixel polarimetric imaging. Optics letters, 37(5):824–826, 2012.

[54] S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J.

Padgett. Fast full-color computational imaging with single-pixel detectors.

Optics express, 21(20):23068–23074, 2013.

[55] Ahmed A. Kirmani, A. Colaço, F. N. C. Wong, and V. K. Goyal. Exploiting

sparsity in time-of-flight range acquisition using a single time-resolved sensor.

Optics Express, 19(22):21485–21507, 2011.

[56] B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman,

and M. J. Padgett. 3d computational imaging with single-pixel detectors.

Science, 340(6134):844–847, 2013.

[57] P. Clemente, V. Durán, E. Tajahuerce, P. Andrés, V. Climent, and J. Lancis.

Compressive holography with a single-pixel detector. Optics letters, 38(14):

2524–2527, 2013.

[58] W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M.

Mittleman. A single-pixel terahertz imaging system based on compressed

sensing. Applied Physics Letters, 93(12):121105, 2008.

[59] F. J. Taylor. Principles of signals and systems. McGraw-Hill Singapore,

1994.



Bibliography 118

[60] B. I. Erkmen and J. H. Shapiro. Signal-to-noise ratio of gaussian-state ghost

imaging. Physical Review A, 79(2):023833, 2009.

[61] Jonathan J. Dunayevsky and D. M. Marom. Mems spatial light modula-

tor for spectral phase and amplitude modulation. In Optical MEMS and

Nanophotonics, 2011 International Conference on, pages 133–134. IEEE,

2011.

[62] D. Dudley, W. M. Duncan, and J. Slaughter. Emerging digital micromirror

device (dmd) applications. In Micromachining and Microfabrication, pages

14–25. International Society for Optics and Photonics, 2003.

[63] W. P. Bleha and L. A. Lei. Advances in liquid crystal on silicon (lcos) spatial

light modulator technology. In SPIE Defense, Security, and Sensing, pages

87360A–87360A. International Society for Optics and Photonics, 2013.

[64] D. L. Donoho. Compressed sensing. IEEE Transactions on information

theory, 52(4):1289–1306, 2006.

[65] E. J. Candès and M. B. Wakin. An introduction to compressive sampling.

IEEE signal processing magazine, 25(2):21–30, 2008.

[66] J. Ma. Single-pixel remote sensing. IEEE Geoscience and Remote Sensing

Letters, 6(2):199–203, 2009.

[67] A. Hertzmann and S. M. Seitz. Example-based photometric stereo: Shape

reconstruction with general, varying brdfs. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 27(8):1254–1264, 2005.

[68] J. H. Lambert. Photometria: sive de mensvra et gradibvs lvminis, colorvm

et vmbrae. sumptibus vidvae E. Klett, typis CP Detleffsen, 1760.

[69] M. Oren and S. K. Nayar. Generalization of lambert’s reflectance model. In

Proceedings of the 21st annual conference on Computer graphics and inter-

active techniques, pages 239–246. ACM, 1994.



Bibliography 119

[70] B. K. P. Horn. Shape from shading: A method for obtaining the shape of a

smooth opaque object from one view. 1970.

[71] B. K. P. Horn. The psychology of computer vision chapter“obtaining shape

from shading information”, 1975.

[72] B. K. P. Horn. Understanding image intensities. Artificial intelligence, 8(2):

201–231, 1977.

[73] V. S. Ramachandran. Perception of shape from shading. Nature, 1988.

[74] R. Zhang, P. Tsai, J. E. Cryer, and M. Shah. Shape-from-shading: a survey.

IEEE transactions on pattern analysis and machine intelligence, 21(8):690–

706, 1999.

[75] K. Ikeuchi and B. K. P. Horn. Numerical shape from shading and occluding

boundaries. Artificial intelligence, 17(1-3):141–184, 1981.

[76] Y. Zhang, G. M. Gibson, R. Hay, R. W. Bowman, M. J. Padgett, and M. P.

Edgar. A fast 3d reconstruction system with a low-cost camera accessory.

Scientific reports, 5, 2015.

[77] M. J. Chantler and J. Wu. Rotation invariant classification of 3d surface

textures using photometric stereo and surface magnitude spectra. In British

Machine Vision Conference (BMVC), pages 1–10. British Machine Vision

Association, 2000.

[78] R. J. Stone. Improved statistical procedure for the evaluation of solar radi-

ation estimation models. Solar Energy, 51(4):289–291, 1993.

[79] K. Tong and M. H. Granat. A practical gait analysis system using gyro-

scopes. Medical engineering & physics, 21(2):87–94, 1999.

[80] F. Gao, K. Shi, and S. Li. Computational Methods for Molecular Imaging.

Lecture Notes in Computational Vision and Biomechanics. Springer Inter-

national Publishing, 2015. ISBN 9783319184319.



Bibliography 120

[81] R. J. Stone. Improved statistical procedure for the evaluation of solar radi-

ation estimation models. Solar energy, 51(4):289–291, 1993.

[82] I. Horovitz and N. Kiryati. Depth from gradient fields and control points:

Bias correction in photometric stereo. Image and Vision Computing, 22(9):

681–694, 2004.

[83] C. H. Esteban, G. Vogiatzis, and R. Cipolla. Multiview photometric stereo.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(3):

548–554, 2008.

[84] T. Kuparinen and V. Kyrki. Optimal reconstruction of approximate planar

surfaces using photometric stereo. IEEE transactions on pattern analysis

and machine intelligence, 31(12):2282–2289, 2009.

[85] M. Chandraker, J. Bai, and R. Ramamoorthi. On differential photometric

reconstruction for unknown, isotropic brdfs. IEEE transactions on pattern

analysis and machine intelligence, 35(12):2941–2955, 2013.

[86] G. Fyffe and X. Yu andP. Debevec. Single-shot photometric stereo by spec-

tral multiplexing. In Computational Photography (ICCP), 2011 IEEE In-

ternational Conference on, pages 1–6. IEEE, 2011.

[87] J. H. Shapiro. Computational ghost imaging. Physical Review A, 78(6):

061802, 2008.

[88] Y. Bromberg, O. Katz, and Y. Silberberg. Ghost imaging with a single

detector. Physical Review A, 79(5):053840, 2009.

[89] T. S. Francis and X. Yang. Introduction to optical engineering. Cambridge

University Press, 1997.

[90] T. S. Francis and Suganda S. Jutamulia. Optical pattern recognition. Cam-

bridge University Press, 1998.



Bibliography 121

[91] A. R. Jha. MEMS and nanotechnology-based sensors and devices for com-

munications, medical and aerospace applications. CRC Press, 2008.

[92] L. J. Hornbeck. From cathode rays to digital micromirrors: A history of elec-

tronic projection display technology. Texas Instruments Technical Journal,

15(3):7–46, 1998.

[93] L. A. Yoder, W. M. Duncan, E. M. Koontz, J. So, T. A. Bartlett, B. L. Lee,

B. D. Sawyers, D. Powell, and P. Rancuret. Dlp technolgy: applications

in optical networking. In International Symposium on Optical Science and

Technology, pages 54–61. International Society for Optics and Photonics,

2001.

[94] Y. Lu and S. Chen. Direct write of microlens array using digital projection

photopolymerization. Applied Physics Letters, 92(4):041109, 2008.

[95] Y. Ren, M. Li, K. Huang, J. Wu, H. Gao, Z. Wang, and Y. Li. Experimen-

tal generation of laguerre-gaussian beam using digital micromirror device.

Applied optics, 49(10):1838–1844, 2010.

[96] T. Ota, S. Kawata, T. Sugiura, M. J. Booth, M. A. A. Neil, R. Juskaitis,

and T. Wilson. Dynamic axial-position control of a laser-trapped particle

by wave-front modification. Optics letters, 28(6):465–467, 2003.

[97] P. Mertz and F. Gray. A theory of scanning and its relation to the char-

acteristics of the transmitted signal in telephotography and television. Bell

Labs Technical Journal, 13(3):464–515, 1934.

[98] J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal. Adaptive optics

for vision science: principles, practices, design and applications, volume 171.

John Wiley and Sons, 2006.

[99] T. Sun and K. Kelly. Compressive sensing hyperspectral imager. In Com-

putational Optical Sensing and Imaging, page CTuA5. Optical Society of

America, 2009.



Bibliography 122

[100] J. Hadamard. Resolution dune question relative aux determinants. Bull.

sci. math, 17(1):240–246, 1893.

[101] K. J. Horadam. Hadamard matrices and their applications. Princeton uni-

versity press, 2007.

[102] A. Hedayat and W. D. Wallis. Hadamard matrices and their applications.

The Annals of Statistics, 6(6):1184–1238, 1978.

[103] J. Williamson. Hadamards determinant theorem and the sum of four squares.

Duke Math. J, 11(1):65–81, 1944.

[104] J. J. Sylvester. Lx. thoughts on inverse orthogonal matrices, simultaneous

signsuccessions, and tessellated pavements in two or more colours, with ap-

plications to newton’s rule, ornamental tile-work, and the theory of numbers.

The London, Edinburgh, and Dublin Philosophical Magazine and Journal of

Science, 34(232):461–475, 1867.

[105] K. G. Beauchamp. Walsh functions and their applications, volume 3. Aca-

demic press, 1975.

[106] K. W. Busch and M. A. Busch. Multielement detection systems for spectro-

chemical analysis. John Wiley & Sons, 1990.

[107] T. Beth, D. Jungnickel, and H. Lenz. Design theory, volume 69. Cambridge

University Press, 1999.

[108] M. Ye, H. Ye, and G. Yan. Hadamard transform sample matrix used in

compressed sensing super-resolution imaging. In International Conference

on Intelligent Robotics and Applications, pages 796–807. Springer, 2017.

[109] S. A. Burns, A. E. Elsner, M. B. Mellem-Kairala, and R. B. Simmons. Im-

proved contrast of subretinal structures using polarization analysis. Inves-

tigative ophthalmology & visual science, 44(9):4061–4068, 2003.



Bibliography 123

[110] A. Hertzmann and S. M. Seitz. Example-based photometric stereo: Shape

reconstruction with general, varying brdfs. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 27(8):1254–1264, 2005.

[111] P. Milanfar. Super-resolution imaging. CRC press, 2010.

[112] Philips. Philips Infrared Heat Lamps. URL http://images.100y.com.tw/

pdf_file/21-PHILIPS-InfraredHeatLamp.pdf. Accessed: 2015-11-20.

[113] Thorlabs. PDA20-(CS) InGaAs Switchable Gain Detector User Guide.

https://www.thorlabs.com/drawings/b03118b3426174f7-74EA272D\

-E7D7-6548-EB30876F13602720/PDA20CS-Manual.pdf. Accessed: 2016-

01-10.

[114] P. A. Jansson. Deconvolution of images and spectra. Courier Corporation,

2014.

[115] L. Reimer. Scanning electron microscopy: physics of image formation and

microanalysis. 2000.

[116] A. L. Baert, K. J. Johnson, and E. Bache. Imaging in pediatric skeletal

trauma: techniques and applications. Springer Science and Business Media,

2007.

[117] R. C. Hardie, K. J. Barnard, and R. Ordonez. Fast super-resolution with

affine motion using an adaptive wiener filter and its application to airborne

imaging. Optics express, 19(27):26208–26231, 2011.

[118] R. C. Hardie and K. J. Barnard. Fast super-resolution using an adaptive

wiener filter with robustness to local motion. Optics express, 20(19):21053–

21073, 2012.

[119] M. Sun and K. Yu. A sur-pixel scan method for super-resolution reconstruc-

tion. Optik-International Journal for Light and Electron Optics, 124(24):

6905–6909, 2013.

http://images.100y.com.tw/pdf_file/21-PHILIPS-InfraredHeatLamp.pdf
http://images.100y.com.tw/pdf_file/21-PHILIPS-InfraredHeatLamp.pdf
https://www.thorlabs.com/drawings/b03118b3426174f7-74EA272D\-E7D7-6548-EB30876F13602720/PDA20CS-Manual.pdf
https://www.thorlabs.com/drawings/b03118b3426174f7-74EA272D\-E7D7-6548-EB30876F13602720/PDA20CS-Manual.pdf


Bibliography 124

[120] G. Carles, J. Downing, and A. R. Harvey. Super-resolution imaging using a

camera array. Optics letters, 39(7):1889–1892, 2014.

[121] M. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett.

Improving the signal-to-noise ratio of single-pixel imaging using digital mi-

croscanning. Optics express, 24(10):10476–10485, 2016.

[122] P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson.

Super-resolution video microscopy of live cells by structured illumination.

Nature methods, 6(5):339–342, 2009.

[123] D. J. Schroeder. Astronomical optics. Academic press, 1999.

[124] J. T. Bushberg and J. M. Boone. The essential physics of medical imaging.

Lippincott Williams and Wilkins, 2011.

[125] A. Rose. Vision: human and electronic. Springer Science and Business

Media, 2013.

[126] E. V. Appleton. Departure of long-wave solar radiation from black-body

intensity. Nature, 156(3966):534–535, 1945.

[127] M. Iqbal. An introduction to solar radiation. Elsevier, 2012.

[128] ASTM. Standard. G173-03 (reapproved 2012), standard tables for reference

solar spectral irradiances: Direct normal and hemispherical on 37 tilted

surface. West Conshohocken, PA: ASTM International, 2012.

[129] R. A. Rohde. Solar radiation spectrum. Global Warming Art, 9, 2007.

[130] M. Planck. The theory of heat radiation. Courier Corporation, 2013.

[131] M. Massoud. Engineering thermofluids. Springer, 2005.

[132] T. P. Ackerman and G. M. Stokes. The atmospheric radiation measurement

program. Physics Today, 56(1):38–44, 2003.



Bibliography 125

[133] G. W. Petty. A first course in atmospheric radiation. Sundog Pub, 2006.

[134] Allied Vision. Goldeye Datasheet G-008. https://www.alliedvision.com/

en/products/cameras/detail/Goldeye/G-008/action/pdf.html. Ac-

cessed: 2016-02-16.

[135] R. N. Bryan. Introduction to the science of Medical Imaging. Cambridge

University Press, 2009.

[136] B. Redding, M. A. Choma, and H. Cao. Speckle-free laser imaging using

random laser illumination. Nature photonics, 6(6):355–359, 2012.

[137] I. B. Vapnyarskii. Lagrange multipliers. Hazewinkel, Michiel, Encyclopedia

of Mathematics, Springer, ISBN, pages 978–1, 2001.

[138] M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J.

Mitchell, S. S. Welsh, and M. J. Padgett. Simultaneous real-time visible and

infrared video with single-pixel detectors. Scientific reports, 5:10669, 2015.

[139] L. Mertens, M. Sonnleitner, J. Leach, M. Agnew, and M. J. Padgett. Image

reconstruction from photon sparse data. Scientific reports, 7, 2017.

https://www.alliedvision.com/en/products/cameras/detail/Goldeye/G-008/action/pdf.html
https://www.alliedvision.com/en/products/cameras/detail/Goldeye/G-008/action/pdf.html

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	List of Publications
	1 Introduction
	1.1 Preamble
	1.2 Conventional 3D optical imaging techniques
	1.2.1 Interferometry
	1.2.2 Structured Illumination
	1.2.3 Stereo vision
	1.2.4 Photometric stereo

	1.3 Single-pixel Imaging
	1.3.1 Single-pixel imaging theory
	1.3.2 Computational imaging systems with single-pixel detectors

	1.4 Conclusion

	2 A Fast 3D Camera System using Photometric Stereo
	2.1 Introduction
	2.1.1 Contributions

	2.2 Analysis of surface reflection property
	2.2.1 Specular and diffuse reflection
	2.2.2 Lambertian reflectance model
	2.2.3 Shape from shading

	2.3 Photometric stereo model
	2.3.1 Classic mathematical calculation model
	2.3.2 Fast surface gradient calculation model

	2.4 Experimental set-up
	2.5 Image acquisition
	2.6 Quantitative and qualitative analysis
	2.7 Conclusion

	3 Real-time 3D Imaging with Single-Pixel Detectors
	3.1 Introduction
	3.1.1 Contributions

	3.2 Computational single-pixel imaging
	3.2.1 Light projection with a digital micro-mirror device
	3.2.2 Structured illumination with Hadamard patterns
	3.2.3 Differential signal acquisition approach

	3.3 3D imaging system with single-pixel   detectors
	3.3.1 Experimental setup
	3.3.2 Results

	3.4 Evolutionary compressed sensing
	3.5 Real-time video from a 3D single-pixel   computational imaging system 
	3.6 Conclusion

	4 NIR Single-Pixel Imaging with Micro-Scanning
	4.1 Introduction
	4.1.1 Contributions

	4.2 NIR single-pixel detection 
	4.2.1 Experimental setup of NIR imaging system
	4.2.2 NIR comparison with and without using polarisers
	4.2.3 NIR imaging with bandpass filters

	4.3 Micro-scanning imaging
	4.4 NIR micro-scanning imaging with solar radiation
	4.5 InGaAs NIR imaging comparison
	4.6 Conclusion

	5 Additional Improvements of Single-Pixel System with VIS and NIR Dual-Band Detection
	5.1 Introduction
	5.1.1 Contributions

	5.2 Dual-band imaging modification 
	5.3 Single-pixel dual-band detection with fruits
	5.4 Additional methods for improving the SNR of single-pixel images
	5.4.1 Signal averaging
	5.4.2 Randomisation of pattern sequence
	5.4.3 Regularisation

	5.5 Conclusion

	6 Conclusion and Future Work
	A Extra NIR Single-Pixel Imaging Data of Different Objects
	B Extra Data of Single-Pixel Dual-Band Detection
	Bibliography

