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Abstract

Modelling the structure of social-technical systems as a basis for informing software system
design is a difficult compromise. Formal methods struggle to capture the scale and com-
plexity of the heterogeneous organisations that use technical systems. Conversely, informal
approaches lack the rigour needed to inform the software design and construction process or

enable automated analysis.

We revisit the concept of responsibility modelling, which models social technical systems
as a collection of actors who discharge their responsibilities, whilst using and producing
resources in the process. In this thesis responsibility modelling is formalised as a structured
approach for socio-technical system specification and modelling, with well-defined semantics

and support for automated structure and validity analysis.

We provide structured definitions for entity types and relations, and define the semantics of
delegation and dependency. A constraint logic is introduced, providing simple specification
of complex interactions between entities. Additionally, we introduce the ability to explicitly
model uncertainty. To support this formalism, we present a new software toolkit that supports

modelling and automatic analysis of responsibility models in both graphical and textual form.

The new methodology is validated by applying it to case studies across different problem
domains. A study of nuclear power station emergency planning is validated by comparison
to a similar study performed with earlier forms of responsibility modelling, and a study of
the TCAS mid-air collision avoidance system is validated by evaluation with domain experts.
Additionally, we perform an explorative study of responsibility modelling understanding and

applicability through a qualitative study of modellers.
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Chapter 1
Introduction

“It is very important to use a modelling language which is well-understood, both
by its authors and by its users. This points towards the disciplined use of small,
expressive, languages that have a formal semantics, that are implemented with a
high-degree of integrity, and which employ constructs that naturally support the

modelling idiom.” Collinson et al. [32]

1.1 Motivation

Social-technical systems models which capture technical, human and organisational concerns
are recognised as an important element of software development [11], but modelling and
analysing them is often a difficult compromise. These systems involve complex interactions
between humans, machines and the environment around the system. They cannot be treated
purely as technical problems or as human factors issues, as complex interactions between
technical elements and human elements are vital to their correct understanding [11]. Such
systems generally feature multiple system goals and multiple ways for achieving these
goals; the design and implementation of socio-technical systems requires techniques that can
effectively balance competing goals while accurately modelling both human and technical

elements.

Large-scale social-technical systems are becoming increasingly prevalent as purely manual
or paper-based processes are updated to take advantage of computing capabilities. Many
of these projects suffer embarrassing delays, cost overruns or complete failure due to poor
requirements specification. Other systems are completed but fail to provide key functionality
or fail to integrate with existing operational procedures. For example, consider the United
States’s ‘HealthCare.gov’ integrated healthcare system project, which failed to integrate a

range of state-level, Federal and private-sector organisations [30] or the TAURUS trading
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system for the London Stock Exchange, which at one point consisted of seventeen different

system designs [46].

In addition, the complexity of these systems can often lead to serious and unexpected failures.
While these failures can ultimately be traced to poor specification or understanding of the
requirements, a system may appear to be completed successfully according to well-specified
requirements, only to later fail in stressed conditions not envisioned by the system designers.
For example, the crash of Air France Flight 447 in difficult weather conditions can be
considered a failure of the combined socio-technical system of the pilots and the aircraft’s
fly-by-wire system, rather than as an individual failure by the pilots or the technical system
alone [153].

Formal approaches to requirements elicitation and system modelling such as Z [144] or
Communicating Sequential Processes (CSP) [78] can provide many useful benefits, such as
a clear and unambiguous syntax and a wide range of tool support such as model checking
or vulnerability analysis. However, their choices of formalism rarely include concepts that
specifically address human and organisational concerns, so modelling social elements is

difficult, unnecessarily complex and sometimes impossible.

Alternatively, less formal methodologies can be used, such as Soft Systems Methodology
[26] or i* [203]. Approaches such as goal-oriented modelling or systems-theoretic techniques
allow reasoning over the full scope of social-technical systems, capturing both social and
technical issues. These approaches can however cause problems at the development stage, as
they are open to subjective interpretation. Comparisons between different system versions or
levels of abstraction are also difficult, as the ambiguity inherent to the approach can lead to

inconsistency.

Responsibility modelling is an informal approach to requirements gathering and systems
analysis built around the concept of responsibilities that should be discharged. These respon-
sibilities are assigned to actors and may depend upon or produce resources. Proponents of
responsibility modelling argue that responsibilities are a more natural abstraction of system
behaviour than goals or tasks [40]. Additionally, the concept of obligations (upon actors)

provides a richer model of user behaviour compared to similar goal-based approaches.

However, responsibility modelling remains a semi-structured approach. There is no consistent
notation, formal rules for transformation of models or well defined semantics over complex
issues such as delegation of responsibilities. This makes providing effective tool support

difficult and prevents consistent application of the technique.

These limitations make the effective use of responsibility modelling difficult. Inconsistent
notations make understanding models difficult, and the unclear semantics of important features
makes them impossible to analyse consistently. However, responsibility modelling’s strengths

such as its wide range of abstraction, intuitive underlying concepts and breadth of application
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could prove effective if its current shortcomings are addressed.

1.2 Thesis Statement

In order to provide effective and structured analysis of socio-technical systems, responsibility
modelling can be formalised with well-defined semantics that retain its abstractive power and
ease-of-use, enabling significant amounts of model analysis to be automated and allowing

new forms of analysis.

A formalised variant of responsibility modelling can act as an effective compromise, combin-
ing much of the useful rigour of formal methods while maintaining the scope and flexibility
of usage of more informal approaches. Effective tool support becomes possible, allowing
for a range of automatic analyses such as completeness, validity and overload checking.
Models can be created at multiple levels of abstraction and can be directly related by model
transformations and discharge checking. Ambiguity is reduced, especially over complex actor
relationships, which allows the technique to be more consistently applied using a well-defined

process.

1.3 Research Questions

In order to fully elaborate formalised responsibility modelling we propose the following

research questions:
Q1 - Can responsibility modelling be formalised in a consistent manner?

Q2 - Can automatic analysis techniques and tooling be developed for formalised responsibility

modelling?

Q3 - Can formalised responsibility modelling be applied consistently and without specialist

knowledge?

04 - Does formalised responsibility modelling provide easier or more detailed analysis than

previous responsibility modelling approaches?

Q5 - Does the application of formalised responsibility modelling produce models and results

that are comparable to domain-specific approaches or expert analysis?

Question 1 addresses the core of the thesis - is it possible for responsibility modelling to be
defined in a consistent, well-structured manner? A more formal definition can add valuable
rigour, but poorly constructed formalisms can limit the flexibility of a technique or lead
to unresolvable inconsistencies. We will show that such a formalisation is possible while

maintaining the key advantages of the responsibility modelling approach.
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Question 2 emphasises one of the core claims of the thesis - that the formalisation of re-
sponsibility modelling will allow for automated analysis of models, and a key part of this
is effective tool support. We will define multiple forms of analysis that can be completely
or partly automated, and present a toolkit that enables modelling and analysis using these

techniques and evaluate their efficacy in comprehending socio-technical system structure.

Question 3 covers the reproducibility of the technique. Many social-technical modelling and
analysis techniques are highly subjective, with the results of the analysis dependent on the
skill and background of the analyst. By defining modelling and analysis processes we aim to

show that this technique can be applied with a significantly lower level of subjectivity.

Question 4 addresses the value of formalised responsibility modelling as an analysis technique.
The value of responsibility modelling is already well argued in the literature, so we show
that formalisation extends the technique with additional levels of analysis, while maintaining
the strengths of traditional responsibility modelling. In particular, we demonstrate the value
of automated analysis, which enables practical analysis of larger models and increases the

consistency of results.

Question 5 considers a more ambitious claim - that the results of responsibility modelling
(a general-purpose modelling technique) can be broadly comparable to the results of expert
analysis or the application of specialised, domain specific techniques. Proving or disproving
such a claim in general is impractical due to the range of potential techniques and domains,
but we will examine the application of responsibility modelling in several problem areas and

draw limited conclusions.

1.4 Research Contributions

Important contributions to the field of research in this thesis include:
A methodology for iterative modelling and evaluation of case studies

Many case studies of socio-technical modelling methods struggle to demonstrate effective
validation of their models, which potentially undermines confidence in the results and impli-
cations from these studies. We present a new iterative modelling and evaluation methodology
that draws on action research and design science to provide an effective process for iteratively

developing models while evaluating them against different data sources.
Formal definitions of core responsibility modelling concepts

In previous research the set of responsibility modelling entities and relationships has varied
substantially from paper to paper, in both the types used and the meaning of each type. We
select a minimal set of basic entities and relations that retains the full expressiveness of

existing approaches, while simplifying the range required. We provide concrete definitions for
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each of these, and demonstrate how they can be used to construct more complex interactions.
This is accompanied by a methodological discussion of difficult modelling issues, such as

levels of abstraction and scope.
Extensions to existing responsibility modelling notation

With the core primitives defined it becomes possible to develop modular extensions to the
notation with additional features and functionality. We define a satisfaction logic that allows
for the specification of complex relations between entities, incorporating common socio-
technical concepts such as fallback modes and redundancy. Support is added for explicitly
modelling uncertainty and indicating where lack of information may limit analysis. Formally
defined transformations are provided for common model changes such as the delegation of

responsibilities.
Tool support for construction and analysis of responsibility models

Introducing formally defined semantics to responsibility modelling allows for substantial
automated analysis, but this requires proper tool support. We have developed a software
toolkit that supports graphical creation and editing of responsibility models, and provides
automated analysis on these models. These analysis techniques include criticality detection,
overload analysis and reliance checks, enabling broader and more consistent analysis of

responsibility models.
A comparative case study of formalised and unformalised responsibility modelling

We provide direct comparison of formalised responsibility modelling against an early version
of the technique by re-examining a case study of the Hunterston Nuclear Power Stations
Off-Site Emergency Plan, which had previously been studied with responsibility modelling
by the InDeED consortium. Our analysis of this case study identifies the same core issues
as the previous study, but additionally detects several potential vulnerabilities that were not

previously detected.
Application and evaluation of responsibility modelling in the aviation domain

We perform a study on the use of responsibility modelling in aviation by modelling, analysing
and evaluating the TCAS aircraft collision warning system using responsibility modelling and
evaluating these results with domain experts. This provides two main contributions; firstly,
demonstrating the use of responsibility modelling in a new domain; secondly, evaluating
the correctness, understandability and relevance of responsibility modelling to experts in a

particular domain.
Qualitative evaluation of responsibility usage by non-expert users

We conduct a user study asking participants to construct a responsibility model of a simple
socio-technical system, and analyse the resulting models and evaluate participants’ use and

understanding of responsibility modelling. This study identifies responsibility modelling



1.5. Thesis Structure 6

concepts found difficult by users and examines common characteristics in the application of
responsibility modelling. Additionally, users’ recommendations for extensions to responsi-
bility modelling are presented and analysed. This is (to the best of our knowledge) the first

evaluation of responsibility modelling involving non-expert users.

1.5 Thesis Structure

This dissertation continues in Chapter 2 with a survey of related work in social-technical
systems modelling and analysis, including both formal and informal approaches and earlier
versions of responsibility modelling. This includes a range of techniques from the systems

modelling, requirements engineering and safety analysis fields.

Chapter 3 discusses modelling and evaluation methodologies in socio-technical systems re-
search, and proposes a new case-study based modelling and evaluation methodology based on
a synthesis of existing work. This methodology provides a structured approach to constructing
models based on iterative rounds of modelling and evaluation using different sources of

information.

The core concepts and notation of formalised responsibility modelling are then introduced
in Chapter 4, which provides well-defined semantics and logics for responsibility modelling
entities and relationships. In addition, it defines several extensions to the previous state-of-
the-art in responsibility modelling, including explicit uncertainty and a satisfaction logic for
expressing complex relationships. Important modelling issues are also discussed, and the

formalised notation is demonstrated in several worked examples.

This is followed by Chapter 5, which introduces several semi-formal analysis methodologies
and discusses automated analysis techniques. In addition, it presents new tool support for
constructing and analysing formalised responsibility models. A series of automated analysis
methods are defined and their applications discussed, and semi-formal techniques are explored

to provide broader analysis.

Two cases studies follow, showing the strengths and weaknesses of formalised responsibility
management in different settings. Chapter 6 provides a comparison to previous responsibility
modelling techniques by re-examining the Hunterston off-site emergency plan previously
analysed by the InDeED project. Chapter 7 applies responsibility modelling to the TCAS air
collision avoidance system, and assesses the conclusions reached and the understandability of

responsibility modelling through evaluation with domain experts.

Chapter 8 describes a user study to examine the use of responsibility modelling by non-expert
modellers. Experimental participants constructed a responsibility model of a simple socio-

technical system, and their understanding, application and experiences using the technique
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are analysed. Finally, overall conclusions and suggestions for future research appear in
Chapter 9.



Chapter 2

Survey

2.1 Introduction

This chapter provides a comprehensive overview of relevant research in socio-technical
modelling and analysis. This includes material from system modelling, safety analysis,
software engineering and formal logics, representing the wide theoretical and practical

underpinnings of socio-technical techniques.

As aresult, this survey includes material from a wide range of different backgrounds, and from
the early origins of software and systems engineering to the present day. A broad overview of
each technique or concept is provided, with a particular focus on the published demonstration
and evaluation of techniques via examples or case studies. Additionally, the functionality of

tool support for these methodologies is considered where such tooling exists.

Firstly, the chapter begins by examining the origins of the term ‘socio-technical system’ and
the underlying philosophy of socio-technical systems design, and discusses the relationship
between the narrow field of socio-technical research and the broad range of methods that can
be applied to socio-technical problems. This provides the context and terminology in which

the remainder of the survey is situated.

The chapter continues by considering early software development and the emergence of
requirements engineering as a field of research, as well as early requirements engineering
techniques. This provides an understanding of the core issues in the modelling of software and
socio-technical systems and shows the roots of modern methods. This is followed by a brief
examination of formal methods and their suitability for modelling socio-technical systems.
The complexity of such methods often renders them unsuitable for wide-scale use, but their
power and rigour highlight the advantages of more structured modelling. Recent requirements
engineering techniques such as goal-oriented and agent-based modelling techniques are then

covered, representing the current standard in requirements-driven system modelling.
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Technique Era Core Concept Applications

MORT 1970s | Risk Trees Safety Analysis

HAZOPs 1970s | Process Deviation Risk Analysis

SREM 1970s | - Requirements Engineering

SSADM 1980s | - Systems Analysis & Design

zZ 1980s | Set Theory Formal Specification

Soft Systems Methodology | 1980s | Holistic Systems Theory | Process Improvement, Systems Analysis

i* 1990s | Agent-based modelling | Requirements Engineering, Process Improvement
KAOS 1990s | Goal-based modelling Requirements Engineering

BPMN 2000s | Data Flow Process Improvement, Systems Design
SysML 2000s | Systems-of-Systems System Requirements & Design

STAMP 2000s | Systems Theory Safety Analysis

Responsibility Modelling | 2000s | Responsibilities Requirements Engineering, System Analysis
Timebands 2000s | Variable Timing Performance Timing

FRAM 2010s | Functional Resonance Safety Analysis

Figure 2.1: Overview of techniques examined

We move on to consider business process modelling and system-of-systems modelling; both
demonstrate techniques for modelling large, real-world systems with a strong focus on socio-
technical components. We also examine several structured safety analysis techniques, which
provide tools for modelling and analysing complex systems with a particular consideration of

human elements.

Soft Systems Methodology is examined as an exemplar of holistic systems thinking ap-
proaches, and deontic logic and the Timebands approach are investigated as suitable formali-

sations for modelling obligations and temporal behaviour respectively.

Finally, the chapter ends by exploring the full history of responsibility modelling, beginning
with the use of responsibilities as a concept for requirements elicitation before covering
graphical techniques for modelling individual responsibilities. The chapter concludes with a
comprehensive examination of responsibility modelling as a technique for the specification
and analysis of socio-technical systems. An overview of the main techniques covered is

shown in Figure 2.1.

2.2 Socio-technical systems

Baxter and Sommerville [11] define a socio-technical system as ‘describ[ing] systems that
involve a complex interaction between humans, machines and the environmental aspects of the
work system’. This draws on the origins of the term ‘socio-technical’ in early work by Emery
and Trist, starting in the 1950s. Trist [184] provides an overview of their early work, which
began at the Tavistock Institute. Researchers there performed action research investigations
of working practices in coal mines, and examined how changes in technology and machinery
had led to the elimination of social collaboration in the working environment, but which had

recently been reintroduced along with new equipment. Inspired by this they sought to develop
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a theory of work organisations that combined these social and technological factors - socio-
technical systems theory. Trist’s focus is explicitly on work organisations, and specifically
the self-organisation of workers and the relationship between workers and management in
blue-collar occupations. This holistic view of work structure achieved international success
through the 1960s and 1970s, but began to decline in the 1980s due to changes in the business
climate [129]. Instead, several socio-technical researchers found a niche using socio-technical
frameworks in projects to deploy new computer systems in organisations. However, Baxter
and Sommerville describe these approaches as ‘philosophies’, rather than as structured

engineering methods.

Badham et al. [8] also trace the origins of socio-technical theory emerging from analysis of
worker participation in industry. They provide a definition of ‘open socio-technical systems’

which are

e Systems with interdependent parts.
e Open systems that adapt and pursue goals in external environments.

e Systems that possess an internal environment made up of separate but interdependent

technical and social subsystems.
e Systems that have equifinality - goals can be achieved by different means.

e Systems where performance depends on joint optimisation of the technical and social

subsystems

They describe socio-technical systems thinking as a framework that represents organisations
as purposeful systems, and that emphasises the importance of understanding social roles
and technical variance when analysing or re-designing systems. This framework is used for
purposes such as work re-design, process re-engineering and computer-supported work. They
also note that the general field of socio-technical theory is divided, with differences between
research groups over issues such as the level of involvement of workers in socio-technical

research projects and the level of autonomy implied by equifinality.

In the same volume Hendrick [74] defines a socio-technical view of systems as ‘viewing
organisations as open systems engaged in transforming inputs into desired outcomes’. Such
a system consists of three major components - the technological system, the personnel sub-
system and the relevant external environments. In this view, the technological and personnel
subsystems are mutually interdependent and operate under joint causation, both being affected

by events in the environment.

Herrmann and Loser [75] define socio-technical processes as ‘comprising the interdependen-

cies between persons, especially the mutually dependent activities of multiple persons’, with
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socio-technical systems also having ‘a technical side where artifacts, like computer systems in
computer science, are relevant.” Unusually, this definition allows for socio-technical processes

that contain no technical elements.

Baxter and Sommerville [11] also note that socio-technical research exists in at least four

different research communities:

1. Researchers in work, workplaces and working conditions. This includes the early
origins of socio-technical systems theory, and aims to produce a more humanistic and

successful workplace.

2. Researchers in information systems. Information systems are large-scale systems
that support organisational and community work, and so socio-technical issues are

significant.

3. Researchers in computer-supported cooperative work (CSCW). This considers the

details of work and the interactions between working practices and computer systems.

4. Researchers in systems engineering. This community studies the relationship between

human interactions, organisational structure and systems failure.

They also note that there is little overlap and collaborative work between these distinct
communities, with research and reviews in each community showing little awareness of the
others. Additionally, there is ‘considerable variation’ in the exact meaning of the term ‘socio-
technical system’, with a particular divide between its origins in organisational psychology
and its adoption in management science and information modelling. This contributes to
the fragmented nature of socio-technical systems research; socio-technical studies draw on
methodologies and concepts from a wide range of fields, and similar concepts appear under a

range of different names in different areas.

The boundaries of socio-technical systems research are not well defined, especially given
the existence of multiple, generally unrelated fields of socio-technical study. In particular,
the term ‘socio-technical system’ is often used to describe systems that match the definitions
given above, but without the philosophical implications arising from the term’s origins in

participatory work studies.

Baxter and Sommerville define a discipline of ‘Socio-technical systems engineering’, which
encompasses the fourth of their listed research communities. They note that failures in
large, complex systems are not primarily failures of technology, but fail because they are
unable to prepare systems for the social and organisation complexity of their environment
- which manifests as problems such as poor requirements specification and ineffective user

interactions. This can be addressed by integrating the socio-technical perceptive into systems
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engineering, although it is important this occurs throughout the entire lifecycle of a project
and is not just used to define requirements at the start and analyse the finished system at the

end.

Baxter and Sommerville go on to identify five important research areas in socio-technical
systems engineering (STSE): STSE processes, modelling and abstraction, integrated human-
centric design, organisational learning and global systems. For modelling and abstraction
they note the shortcomings of current modelling techniques and abstractions, which are not
sufficient or intuitive enough to capture socio-technical behaviour. Additionally, they pose the
general question of whether organisational modelling can actually deliver useful information
for the purpose of socio-technical design. For global systems they note that STSE approaches
almost universally assume the context of a single integrated organisation, whereas many

systems are actually multi-organisational and geographically scattered.

Outside of specific research into socio-technical systems development itself, many research
areas show either the influence of socio-technical thinking or provide methods and tech-
niques that support the development and analysis of socio-technical systems. Requirements
engineering is often concerned with the specification of complex socio-technical systems;
most requirements engineering methods incorporate techniques for capturing socio-technical
activities, and many case studies are set in socio-technical domains. Similarly, contemporary
safety and security analysis techniques explicitly contain complex models of socio-technical
interaction, acknowledging that the technical aspects of safety cannot be separated from the
human and organisational factors surrounding their operation. Both these disciplines provide
techniques for modelling (and abstracting) socio-technical systems; in this sense, there is
considerably more research on socio-technical modelling occurring outside the field than

directly within.

2.3 Early requirements engineering

Kotonya and Sommerville [102] describe requirements engineering as ‘[a term] to cover all of
the activities involved in discovering, documenting and maintaining a set of requirements for
a computer-based system’. Problems in requirements engineering can include systems that
are under-specified (requirements are vague or missing) or over-specified (requirements are
too detailed, restricting implementation choice or limiting flexibility); systems that include
contradictory, ambiguous or unachievable requirements and systems where the achievement

of requirements cannot be accurately assessed.

The difficulty of accurately constructing requirements (and successfully mapping them to
designs and implementations) for software systems is not a newly identified problem, even

as solutions continue to be sought. The term ‘requirements engineering’ was in use from
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the mid-1970s [196], as large scale projects encountered problems with their requirements.
For example, in 1976 Bell and Thayer [15] reported an analysis of problems occurring with
software requirements. They had been commissioned by the United States government to
investigate this issue in order to improve the software engineering processes of large military
projects. They examined both small-scale projects (a two-month exercise set for graduate
students) and a large scale project (a one-million instruction component of missile defence
software). Formally submitted problem reports were studied to identify the frequency and

category of requirements problems.

Both cases had what the authors considered large amounts of identified problems. Approxi-
mately one reported error per page of requirements was detected in the small project, and one
error per two pages in the large project. In both cases these are likely to be underestimates,
as they do not include problems addressed informally, or minor issues left unreported. Both
projects also had similar types of problem - primarily requirements deemed incorrect by
developers, followed by incomplete specifications and unclear requirements (although the

proportion of unclear requirements tended to decrease rapidly as projects developed).

In particular, the authors note that a number of requirements problems in the missile defence
system could result in a non-responsive system - opening a large gap in the strategic defence
of the United States during the middle of the Cold War. Drawing from their experience, the
authors then recommend additional effort on identifying requirements problems early in the
development process, and note that requirements problems appear universal across a wide

range of systems.

The consensus that requirements problems are a significant and pervasive cause of soft-
ware failure has been established by decades of further empirical study; for example, Van
Lamsweerde [187] reports on multiple large-scale industrial surveys reporting that in failed

projects around the half the issues were attributed to requirements.

Early work addressing these requirements problems led to the development of SREM - the
Software Requirements Engineering Methodology [5]. This approach is based around the
notion of bottom-up design - that systems operate by coordinating low-level elements, while
requirements are normally specified top-down by decomposing abstract functions. This, it is
argued, leads to inconsistency and significant effort in transforming the requirements into a

useful form.

SREM consists of two main elements - R-nets for expressing functionality, and the RSL
(Requirements Specification Language) markup language for meta-requirements and analysis.
R-nets are essentially state machines - diagrams consisting of transformations, path selections
etc. Evaluation is performed by considering possible paths through the R-net, and this can be

used to obtain values for performance and accuracy requirements.

RSL can be used for a wide range of additions to the R-nets. They can be used to describe
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elements, specify transformation or establish constraints on the system. These statements are
fully machine-readable, and hence enable automatic analysis. Refinement of top-level goals

can be automatically checked and data flow consistency can be checked.

SREM is representative of many requirements engineering methods of the period, in that
the notation employed lacks support for refining detailed specifications from higher-level
objectives. Additionally, SREM’s support for expressing non-functional requirements is
extremely limited. The state machine structure is suitable for a number of project types,
especially real-time systems; however, it is not suited to expressing the context of complex

systems involving human elements.

By the 1980s, a wide range of requirements engineering methods were in use, based on a
range of approaches. In a review, Roman [151] identifies six different approaches - state
machines, dataflow models, stimulus-response paths, communicating concurrent processes,
functional composition and data-oriented models. Recent research had also identified the
need for broader coverage than earlier approaches. The need to model both the environment
around the system as well the system itself had been determined, while the difficulty of
expressing non-functional requirements was well known. Also noteworthy was the beginning
of movement away from the ‘waterfall’ approach of fixed steps of development - rapid
prototyping was showing some benefits, and required changes to requirements engineering

approaches.

In conclusion to the review, Roman identifies the core shortcomings in requirements engi-
neering as a lack of formalisation. Non-functional requirements still lacked a theoretical
foundation to match functional requirements; higher levels of automation were clearly de-
sirable, but this required more formality. Methods for formally capturing the full lifecycle
(including user interaction and maintenance) were still lacking, and the fragmented nature of

the field led to much duplication of research work.

Requirements engineering would often be integrated into full-cycle development methods, as
part of an increased focus on traceability and integrated development. For example, SSADM
(Structured Systems Analysis and Design Method) [44] was a UK government approved
methodology introduced in the mid 1980s incorporating techniques for problem definition

and requirements specification.

SSADM can be initiated with a feasibility phase, although this is optional and was only intro-
duced in later versions of the methodology. The feasibility stage is focused on analysing the
current system(s) and the operational context to identify problems or areas for improvement,
rather than working to pre-specified goals. For this, two types of modelling are used - data
flow diagrams and logical data structure diagrams; these modelling approaches are key to the
entire SSADM technique. SSADM uses standard data flow diagrams (Figure 2.2), illustrating

data flow between processes and datastores; logical data structure diagrams are more general,
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Figure 2.2: SSADM Data-flow diagram for the meeting scheduler described by van Lam-
sweerde et al. [188]

and are essentially entity-relationship diagrams.

The core ‘specification of requirements’ phase proceeds in much the same way. Initially, data
flow diagrams should be constructed, based on the view of the current system. This should
produce a set of required functions, as well as any potential problems. Meanwhile security
and control requirements (essentially, NFRs) should be specified separately. Both these
steps are then combined with more abstract requirements generated earlier to produce a draft
requirements list. This is likely to produce several different potential ‘system specifications’;
discussion with users and the production of high-level dataflow diagrams should allow these
to be reduced to a particular system option. The requirements section continues by producing
highly detailed dataflow diagrams, catalogues of commonly used functions, logical data
diagrams etc. This leads to the lack of a clear division between requirements and design,

aiming to ensure the feasibility of requirements at an early stage.

2.4 Formal approaches

Structured requirements engineering techniques such as SSADM provided clear methodolo-

gies and notations for designing and analysing systems, but confidence in the final result was
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simply based on confidence that each step of the methodology had been followed correctly. It
was not possible to ‘prove’ the correctness of the results, either in terms of internal consistency

or the relations between the specification and the implementation.

The desire for more powerful requirements specification techniques was met by the use of
formal specification methods such as Z [90] [171], and VDM [95]. These approaches use
formal semantics and defined rules or laws to specify allowable system states and behaviour.
These approaches are more complicated and time-consuming than structured or informal
techniques and so are not necessarily advantageous for systems considered to be low-risk;
however, they are useful for problems of great technical complexity, and are almost universally

used for (safety) critical systems [19].

The Z notation is a model-based notation for system modelling; systems are represented by
defining a state, and a range of operations that can modify that state. Z is underpinned by set
theory and first-order logic. While initially intended as a ‘pen and paper’ notation a wide
range of tools have been developed to support Z, allowing much of the formal reasoning

(decomposition, correctness proofs etc.) to be automated [90].

Core features in Z include set definitions and operations (for defining variables and types),
standard logical operators (for conditions on state operations), relations and functions (for
modelling complex data relationships and transformations) and sequences (for ordered data
types). The notation is extensible, and many additional features are available in different
versions of the notation. Models are constructed by defining states and transitional operations

on those states. An example of the Z notation is shown in Figure 2.3.

When applied to requirements engineering, Z allows clear, unambiguous and concise statement
of requirements and specifications. Requirements can then be reasoned over using formal logic
so that system-wider properties can be checked. [144]. The resulting formal specifications
require a good level of mathematical or logical background to understand, but the formal
elements should be accompanied by natural language descriptions. Z specifications are not in
themselves executable, but guidelines exist for semi-automated conversion of Z statements

into high-level programming languages.

While offering many advantages when used on the right types of projects, Z and similar
notations do have disadvantages. They are understandable by relatively few stakeholders, and
it is possible for the formal and natural language descriptions to be contradictory [11]. The
scope for Z application is limited; it is not really suitable for modelling the complexities of
human behaviour, such as in social-technical systems. Modelling such systems using Z is
possible, but difficult - the inherent imprecision of social actions is not easily expressed using

Z concepts such as types and logical predicates.

More recently, Collinson et al. [32] propose a contemporary simulation model language called

Core Gnosis, which is intended to model large-scale information systems. Core Gnosis draws
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__State
invitees : P PARTICIPANT
initiator : P PARTICIPANT
meeting : P DATE
exclusionSet : P DATE
preferenceSet : P DATE

__SetPrefs
AState
excludedDates? : P DATE
preferencedDates? : P DATE
agent? : PARTICIPANT

agent € invitees
exclusionSet’ = exclusionSet U excludedDates?
preferenceSet’ = preferenceSet U preferencedDates?

Figure 2.3: Z state declaration and SetPrefs model operation for the meeting scheduler
described by van Lamsweerde et al. [188]

on formal process calculi such as SCRP [31]. Its core entities are processes, resources and
locations; these are used to produce executable models that use stochastic elements to simulate

system behaviour.

Core Gnosis 1s demonstrated using a boat docking example - boats arrive and must be assigned
a berth and crew from a small supply. Resources can be located, such as creating ‘secure’
berths for certain types of boats. While nominally a real world example, this scenario is ide-
alised such that it represents a classic resource allocation problem and the wider applicability

of the technique is uncertain.

Once written, Core Gnosis models can be translated into the LSCRP process calculus (a
restricted subset of Core Gnosis must be used, but Collinson et al. [32] argue that all important
elements are captured). This in theory allows Core Gnosis to act as an entry point to formal
modelling, providing the power of process calculi while being simpler to write and more
broadly applicable. However, the core primitives remain only really suitable for systems
where correct operation (according to the process specification) can be guaranteed, hence

limiting its wider application.
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2.5 Goal-oriented approaches

The inability of formal specification languages to model higher-level concepts inspired the
development of several approaches that used goals as the main focus of their methodology.
Dardenne et al. [36] first proposed a ‘Goal-directed’ approach to address problems with
existing techniques for requirements acquisition, the initial step of developing a requirements
specification. They identified several gaps in the requirement modelling tools of the time,
which the goal-directed approach would address. At the time, most specification methods
focused almost exclusively on functional requirements, which meant that non-functional
requirements had to be recorded purely as free text, or forcing non-functional requirements
to be modified in order to fit the available language constructs. Additionally, the formal
specification languages were intended primarily for use by system designers, and therefore
produced highly technical models. These models could not be understood by clients and
stakeholders, which limited the ability to discuss and reason over design decisions. The authors
created an specification language known as KAOS (Knowledge Acquisition in autOmated

Specification) to address this.

KAOS modelling operates on three levels - meta, domain and instance. The meta-model
describes a set of rules and standard relationships for constructing KAOS models. The
domain model is the main level used for requirements elicitation and is used in the KAOS
goal-directed elaboration process. Instance models represent the overall system view from the
domain model instantiated with actual actors and systems. In order to obtain the full strength
of the formalisation both the domain and instance models must obey the constraints set in the

standard meta-model.

First-order objects in a KAOS model include entities, events and agents, alongside multiple
types of goals. Entities are used to model any autonomous objects in the system domain at
any level of abstraction; agents differ from entities in that they can process actions and have
choice on their behaviour. These are linked by relationships such as responsibilities, wishes,
inputs/outputs and conflicts. While sometimes represented graphically (Figure 2.4), KAOS
models are formally represented in a specification language (Figure 2.5) that is similar to

contemporary formal languages like Z.

The KAOS specification language uses concepts, relationships and attributes; these can be
related as parts of a formula, which itself can be asserted using state-temporal logic (assertions
may hold in past, present or future system states). At the acquisition (system modelling)
level the abstract concepts of the specification language are partially instantiated, introducing
new primitives such as events, actions and agents. These are instances of concepts, while
relationships include inheritance and forms of composition. At this level, the details of goals
and constraints are expressed using logical operators such as implication, boolean algebra and

universal and existential quantifiers.
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Figure 2.4: Fragment of KAOS meta-model (from [36])
Reproduced by permission of Elsevier

The graphical notation provides an overview of the model, but the majority of important
details can be only be represented in the textual temporal logic. It is unclear whether graphical
and logical representations of the same system need to be equivalent; case studies tend to only

use the specification language [189].

The standard KAOS requirements acquisition method consists of seven steps. The first
step is to identify the goal structure, by decomposing high-level system goals into more
primitive goals that can later be operationalised (converted to constraints on a system state).
Secondly, the potential agents in the system should be analysed to ascertain their capabilities
for controlling the system. This is followed by the operationalisation of goals, where goals

are converted into constraints on the system state that can be manipulated by system agents.

By this stage new objects and actions may well have been introduced into the model, especially
during the operationalisation process. As a result, the fourth step is to refine and re-analyse
the set of objects and actions within the system to include new objects and new actions on
existing objects. The refinement carried out at the fourth stage may itself lead to model
changes that mean the previously defined constraints may no longer hold, so the fifth step is

to refine the constraints, strengthening objects where necessary.

This is followed by the analysis of potential responsibility assignments - the identification of
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Relationship Borrowing
Links Borrower {Role Borrows, Card 0:N}
Book Copy {Role Borrowed By, Card 0:1 }
9% Borrowers may have no copy borrowed, and may borrow several copies at same
time; copy may not be borrowed, and may be borrowed at most one borrower %
Invariant (V lib: Library, bor: Borrower, bc: BookCopy)
[Borrowing(bor,bc) A be € lib =
be € lib.checkedOut A <) Requesting (bor,bc)]
(V 1ib: Library, bc: Book Copy)
[bc € lib.checkedOut =
(d bor: Borrower) Borrowing (bor,bc)]

Figure 2.5: Sample of KAOS specification language (adapted from [36])

the range of agents that have suitable capabilities to enforce the constraints. The aim here is
to identify all the possibilities and hence formalise the different design options. Finally, the
model is completed by selecting the optimal assignment of constraints to agents, taking into
account issues such as load and agent reliability. Once complete, the model should represent
a system design that meets the original project goals at a suitable level of abstraction to begin

implementation.

Tool support for KAOS was provided by the GRAIL environment [37], which provided a
hybrid graphical and textual representation editor, multi-user concurrent editing and limited
support for integration with other CASE tools. Models could be constructed either visually or
textually, although formal assertions could only be edited in text form. The initial version of

GRAIL only provided for creation and editing of models, and could not perform any analysis.

Later versions of GRAIL provided some level of automated analysis [38], although it is
unclear what specific analysis methods were implemented. Notably, some functionality was
added for capturing source material such as interviews, so that specified goals and entities
could be traced back to their origins. GRAIL was eventually succeeded by the Objectiver
commercial toolkit [150], which is primarily a cosmetic update to GRAIL without significant

additional functionality.

A large number of extensions and variations to KAOS have been published, often attempting

to integrate other analysis concepts or methods with core KAOS [73, 101, 131].

Nakagawa et al. [131] developed a tool that converts KAOS specifications into the VDM++
formal specification language. Goals and requirements are not directly converted, as the tool
operates on the derived elements: operationalised constraints and entities. The KAOS pre- and
post- conditions are used to generate corresponding VDM++ input and output specifications
and hence the actual body of the function specification must be completed manually. The
converted version can be used with a wide range of VDM++ tools, enabling additional forms

of analysis such as verification of the specification using test cases.
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Koliadis and Ghose [101] proposed a methodology called GoalBPM, which links KAOS
with business process management models to improve the control and traceability of process
evolution. Firstly, models of the relevant system are constructed in both the Business Process
Modelling Notation (BPMN) ! and KAOS. Relationships between the two models are then
established by creating traceability and satisfaction links. Traceability links are made between
BPMN activities and KAOS goals that affect that activity; satisfaction links between processes
and goals indicate that the process must meet the linked goal. The trajectories of the BPMN
model are then analysed, determining all possible paths through the system and their state on
completion. These paths can then be traced through with links to the KAOS goals, allowing
the performance of each path to be rated based on the satisfaction of goals. This allows
refinements to be made to the business processes, although the process of creating a linked

goal model requires significant effort.

Heaven and Finkelstein [73] produced a Unified Modelling Language (UML) profile for
KAOS, providing mappings between the outer layer of KAOS and corresponding UML
representations. Conversions for the KAOS temporal logic are not provided, but the authors
suggest either mapping into Object Constraint Language [191] expressions or tagging objects
with logic expressed in natural language. This conversion allows the use of KAOS for early-
phase requirements to be integrated into the wider development process and enables low-level
requirements to be traced back to goals. A demonstrative case study of a light rail train control
system is used to show that the full range of KAOS constructs can be captured in UML.

In comparison to the large number of publications on tooling and extensions there are
relatively few examples of KAOS case studies and evaluations in the published literature.
The original authors of KAOS published a case study in which they performed requirements
elaboration for a meeting scheduler [189]. This was intended as a exploratory exercise
(although based on actual scenarios), and the authors combined the roles of client, domain
expert and requirements analyst together. This allowed them to provide a wide-ranging view
of the elaboration process, but does not reflect real-world use of these techniques. Their case
study acts more as a worked example of the methodology than as a genuine application of the
technique; it is a helpful guide to using KAOS, but provides limited insight into general usage.
However, some weaknesses in the KAOS method are identified, including the inability to
capture non-functional requirements such as usability and the need to formulate (and change

if necessary) assumptions to model different versions of the system.

A study by Duboc et al. [47] described the use of KAOS to elicit the scalability requirements
for a large financial transaction analysis system. This system scans large amounts of transac-
tions and aims to detect unusual behaviour that could be fraudulent. A KAOS goal model was

constructed for the system and constraints were set on performance (time to complete) and

'For more detail on BPMN, see Section 2.7
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range (size of data input). The authors report a balance of advantages and disadvantages for
this approach: they praise the traceability and responsibility relations required for KAOS, but
criticise the lack of support in KAOS for ranged values and variations in assumptions over
time. Generally, it is unclear if their application of KAOS provides analysis that is distinct

from their domain knowledge.

Generally, KAOS fails to fully address the authors’ own concerns over the inability of
requirements models to be understood by wider system stakeholders, although the well-
written and detailed guide to applying the technique effectively encourages standardisation
and reproducibility. As such, KAOS does not offer a simpler or less formal requirements

process, but does provide considerably more flexibility for capturing higher-level concepts.

2.6 Agent-oriented approaches

In the mid 1990s Yu [203] argued that existing requirements engineering approaches were fail-
ing to address the ‘early phase’ of requirements engineering. These early- phase requirements
engineering activities include analysis of organisational goals, consideration of alternative
processes and systems and addressing the interests of stakeholders - which Yu describes as

the ‘whys’ of the requirements.

Yu argues that early-phase requirements engineering provides numerous advantages, including
promoting a greater understanding of the problem domain (and hence removing a common
cause of failure), addressing the increasing need for organisational integration and inter-
operability and the ability to trace systems requirements back to the original organisation
goals. These activities were generally performed in an informal manner, without a concrete
methodology or tool support, as existing techniques were aimed primarily for later stages of

requirements engineering.

To address this, the 1* framework was created. The core concept behind i* is that of intent,
which draws heavily on previous work by Yu [201]. In that paper it is argued that the
common concept of treating requirements as meeting some system-wide goals is inaccurate,
as individual agents within an organisation have different aims and objectives. Instead,
systems can be thought of as a series of interactions between agents, who participate in order
to meet their own goals. A mathematical logic for formalising these inter-agent dependencies
was developed, and these relationships can be analysed to identify potential problems such as

the violation of constraints.

1* analysis begins by considering the intentional relationships between actors. Actors depend
on others to complete tasks, provide resources and to achieve goals. These relationships
can be expressed in a ‘Strategic Dependency’ (SD) model, an example of which is seen in

Figure 2.6. SD models portray processes as agent relationships, rather than tasks or flows of
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Figure 2.6: Example i* Strategic Dependency Model (redrawn from [203])

entities. This enables new forms of analysis at this level, such as opportunity (the ability to
delegate/transfer goals entirely) and vulnerability (determining where actors rely on others to

meet their goals).

The SD model provides a view of the external relationships between actors. Yu also argues
that in early-phase requirements engineering it is often beneficial to study why actors act
in the way they do and how their interests can be addressed. This can be determined using
‘Strategic Rationale’ (SR) models (see Figure 2.7), which use the same core entities as SD
models, but decompose the internal intent of the actors. As a result, it is possible to model the

internal interests of stakeholders and their attitudes towards different alternative systems.

Once routines to meet goals are specified in a SD model they can be assessed for workability
and viability. The ‘workability’ of elements in this routine can be examined in turn and used
to assess the workability of the routine as a whole. If it is not possible to accurately assess an
element then that is a sign that the element should be further refined. These properties are
evaluated by using a formal propagation algorithm, but the workability or viability of leaf

elements must be assessed manually.
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Figure 2.7: Example i* Strategic Rationale Model (redrawn from [203])

While workability assesses only the possibility of completion, viability assesses both the
possibility and desirability of a routine. i* also incorporates the notion of soft goals - goals
which are used to express desirable characteristics of a system rather than core functional
requirements. For example, a financial transaction system should process credit card orders
(a goal) and should ideally do so quickly (a softgoal). Potential routines can therefore be
assessed on how many of these desirable requirements they meet and which actors benefit

most from a particular design decision.

This emphasises the early-phase nature of i* - it is a technique intended to assess conflicting
interests and consider high-level design alternatives, and is not a technique for modelling
system designs themselves. The efficacy of i* is demonstrated in later papers, which provide

a number of detailed case studies and a developed modelling methodology.

Yu and Liu [204] extended i* to address trustworthiness. Trust is considered as a special
case of a non-functional requirement, and is hence modelled using a set of softgoals. The
core i* set of entities is not expanded; instead, sample models are provided for standard trust

relationships such as enforceable purchases and third-party assurance.

More elaborate trust relationships are demonstrated using several worked examples of a card
payment system. Design variations are evaluated by considering their positive or negative

contributions to softgoals. Potential attacks on the system are represented as tasks that
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contribute negatively to security and trust softgoals. These relationships can be labelled
with an indication of satisfaction (satisfied, denied, weakly satisfied etc.) which enables
the viability of the overall system to be determined using the same propagation system as

workability and viability.

As the 1* core is itself not modified, this extension is more of a meta-model or extended case
study than an expansion of the technique itself. The subjectivity and lack of operationalisation
in assessing the trustworthiness of system components mean that this form of trust analysis
is primarily suited to system scoping and early-stage design rather than modelling specific

designs or existing systems.

Liu et al. [112] produced a more elaborate extension to i* by developing a framework for
security and privacy requirements specification and analysis. They also propose a seven-step

methodology that runs alongside the conventional i* entity identification process.

This methodology begins by identifying and analysing potential attackers, using the i* gener-
ated set of actors. All actors are initially considered possible attackers, and are considered
in turn by analysing their resources and capabilities to determine potential attacks. This is
followed by dependency analysis, which replaces actors in the SD model one-by-one with

attackers, and traces the dependency violations to determine the reach of such an attack.

This process identifies particularly vulnerable elements of the system, so the analysis continues
by identifying the different ways attackers could exploit these points. Means-ends analysis
is then used to suggest countermeasures to these exploits, although it may be necessary to
repeat the process to assess the security of these new countermeasures. Once complete, this
methodology produces a detailed system model of potential threats and defences, which can be
discussed and alternatives evaluated as with traditional i*. A refinement of the goal-labelling
approach (from Yu’s original paper [203]) is shown, which allows significant reduction of
the solution space of possible systems by labelling links on multiple criteria and then sorting

based on the relative priorities of the criteria.

Additionally, Liu et al. suggest that property verification can be carried out using the Alloy
language [89] and its associated tools. They provide a partial translation of core i* entities
into the Alloy language, and hence argue that rewriting i* models as Alloy specifications is
practical. Once rewritten, models can be checked using the Alloy Analyser which can validate

properties or produce counterexamples.

i* can also be integrated with other modelling techniques, both in software engineering and
systems thinking more generally. For example, Gordijn et al. [68] propose a methodology that
combines i* with the e*value economic modelling technique. The combination is intended to
be used to evaluate e-services: alternative business models or structures can be considered

based on profitability.
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The two techniques are interlocked - an i* SD model is used to produce an e*value actor
model, and the i* SR model is used to produce an e*value activity model. The e*value models
are used to generate estimates of costs and revenues attributable to the various actors in the
service model. The results of this analysis is then used to label the i* goals produced earlier.
The labels are then propagated, and the acceptability of the model for different actors can
be determined as before. If the particular structure does not ensure sufficient satisfaction for

enough actors then the design process can be iterated until suitable alternatives are found.

i* has also been integrated into a full lifecycle approach, in the form of Tropos [20]. Tropos
is a methodology for Agent-Oriented Programming that spans early-requirements to imple-
mentation. Conceptually, it seeks to address the same root issues as i* - the lack of attention
and support for early-phase requirements engineering in software engineering processes, as
well as the inability to link with later stages. Bresciani et al. [20] argue that conventional
object-oriented methodologies lack documented evidence in this early-phase, citing as an

example the use of UML, which begins at the use-case level.

Tropos begins with two requirements analysis phases - early and late. Both these phases are
built around goal diagrams, which are essentially carbon copies of i* SR models. In early
requirements analysis, they are used to describe the intentions and dependencies of actors,
exactly as in i*. For late requirements analysis, the diagrams are restructured by introducing
the system under development as an explicit actor. The new model is then used to assess

softgoal satisfaction etc. , as per i*.

Architectural design of the system is carried out by decomposing actors and goals from
the previous stages, and generating extended actor diagrams for the various subsections of
the system. The relevant capabilities actors need to meet all their goals are identified, and
hence a set of requirements for each sub-section of the system is produced. These can then
be modelled in conventional UML approaches (activity diagrams, sequence diagrams etc.)
which allows development either using specific agent-oriented platforms or conventional

programming languages.

Despite the wide academic interest in i*, there are very few reported case studies in the
literature. This lack of (reported) industrial application is explicitly mentioned by Maiden
et al. [119], who report a series of projects using i* they carried out for Eurocontrol (the

pan-European air traffic control body).

Maiden et al. developed a large-scale requirements process called RESCUE for Eurocontrol
that included i* as one of four main elements - i* is used (as a follow-on from context
models) to determine and elaborate system goals and rationale as well as establishing system

boundaries. The RESCUE methodology was then applied in three air-traffic control projects.

In the CORA-2 project, i* Strategic Dependency models were used to determine the system

requirements and to examine the system boundaries. The final SD model consisted entirely
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of goal and resource dependencies and was highly centralised, with more than 90% of
dependencies involving the new CORA software. These design decisions were identified as
originating in the routines and mindset of the analyst that modelled them. Dependencies were
adapted directly from information flows (leading to high resource-goal dependencies), while
the project team were focused on the development of CORA as a software system, rather than
on its integration with the wider user environment (leading to the centralised model). The use
of i* helped to identify these examples of closed thinking, but the report also emphasises the

high level of subjectivity and ‘systems view’ in the i* modelling approach.

In contrast, an i* model for the DMAN aircraft scheduling system showed that while the
new system under development was involved in a majority of dependencies there were also
substantial dependencies between non-system agents (Maiden et al. attribute this to a clear

project focus on the social-technical aspect).

In addition to describing the industrial use of i*, a series of recommendations based on this
experience are presented. These include useful applications of i* (such as heuristics for
determining the system boundary), techniques for communicating i* to stakeholders (free
text and tables) and suggestions for future work (such as developing superior tool support
). The authors also reflect generally on the effectiveness of i* in industrial environments.
They report that i* models (Strategic Rationale models in particular) are large and difficult to
manage and time consuming to develop. They also highlight areas where SR modelling is
particularly effective - use case discovery, soft-goal contributions and dependencies between
use cases. As a result, they recommend continued but more selective use of SR models in the

development process, focusing on areas that i* can model but use cases cannot.

Many i* extensions in the literature are essentially meta-models for particular problem
domains, demonstrated through small case studies [112, 204]. As a result, these meta-models
are rarely assessed independently, and hence their effectiveness is not easily assessed. A study
by Strohmaier et al. [180] investigated the use of patterns to improve i* modelling. This study
consisted of creating abstract i* models for specific types of system (such as a generic model
of a collaborative editing system) and then using these models as a building block towards
modelling real systems. The study found that there was no development speed advantage
in using generic models, and using these patterns increased the size of models (potentially

increasing model coverage, but also adding complexity).

Pastor et al. [140] carried out a similar study on core i* to assess the methodology on a number
of criteria generated from previous studies of agent-oriented methodologies. Their study
consisted of three small development groups (one with a modelling background, one with a
programming background and one with an 1* background) who each used i* to separately
model three different business processes, all drawn from an industrial partner. Once the

modelling was completed, the groups were asked to rate i* on given criteria and discuss their
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reasoning.

1 was well rated for the wideness of its applicability in different domains, and the expres-
siveness of the technique, especially with regards to organisational structures. The evaluators
were generally sceptical of i*’s opportunities for refinement (due to a lack of abstract primi-
tives), repeatability (due to inconsistency in the notation in the literature), ability to handle
complexity (because of the lack of decomposition and multi-level models) and traceability
(because of the lack of guidelines when deriving SR models from SD models). i* was poorly
rated for modularity (again due to the lack of abstraction layers), reusability (models cannot
be reused in part, due to lack of modularity) and scalability (once again, due to the lack
of multiple layers and modularisation). Pastor et al. hence highlight the lack of granularity
and refinement as key extension points for i*, and suggest that Viewpoints (as discussed in
Section 2.9) may provide a suitable solution. These criticisms of 1* reflect the tendency for
1* to be integrated with other techniques, such as with different varieties of business process

modelling or in the Tropos development lifecycle, rather than be used by itself.

Overall, i* provides an expressive and widely applicable modelling technique that is limited
by the lack of features for large-scale modelling, such as composition and modularity. The
underlying concept of actor relationships provides a clear contrast with earlier requirement-
or goal-based models, enabling a flexible and broadly applicable approach. However, i* lacks
support for effective large-scale and multi-level modelling due to the absence of features
such as entity composition. Additionally, several important areas of the methodology such
as workability analysis and mappings between SR and SD diagrams are subjective or poorly

described, which limits the rigour of modelling and analysis.

2.7 Business Process Modelling

Commercial and business systems and processes are commonly given as examples of social-
technical systems [181] and a wide range of methodologies and approaches have been

developed to suit this particular problem domain.

These approaches can be broadly divided into two categories - business modelling and
business process modelling [67], which reflect two different use cases for modelling. Business
modelling is concerned with profit and loss, stakeholders and the objectives of the business -
models of this type include concepts such as value and contract; they essentially express the

different commercial opportunities on offer.

In contrast, business process models express how different services will actually be provided
and operate. They can be used to define an implementation, either for standardisation or for
further analysis. They focus primarily on the internal actions within an organisation, with

contact with the outside world generally limited to the request or delivery of a service. They
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are often similar to workflow diagrams, describing the steps and internal interactions used to

deliver a result.

In a business modelling scheme such as e3value, business activity is defined in terms of value
exchanges. Entities expose services (known here as value activities) with value ports/interfaces
that define inputs and outputs in terms of their commercial value. This specifies the reciprocal
nature of the services provided (benefits are provided in exchange for an expected return of
value), although not any details about the relative values in the transaction. These approaches
can be seen as defining a series of interfaces to a business; details of the interface are not

provided, but the basic set of potential commercial transactions is expressed.

Aguilar-Savén [4] presents a comprehensive survey of approaches to business process mod-
elling. It is highlighted that business process models may be created for a range of reasons,
and that different motivations benefit from different approaches to modelling. Business
processes may be modelled in order to develop software for them, or to automate the process
in some other way - this requires modelling approaches that are diagrammatic (for ease of
use and understanding) and unambiguous. Alternatively, process models may be created with
the aim of refining or optimising the process under investigation. This benefits from models
that can be executed or can be used with simulation tools to evaluate potential changes to the
process. These may be more complex, and data capture to allow effective simulation is likely

to be time consuming.

In their survey, Aguilar-Savén examines around ten different business process modelling
techniques and categorises them based on their suitability for different purposes and the
static/dynamic nature of the model. In this categorisation the approaches cluster into two
main groups. Firstly, there are a range of static approaches that are primarily descriptive.
This includes a number of graphical approaches such as flowcharts and activity diagrams.
These approaches are easy to use and generally well understood, but may use incomplete or

inconsistent notations.

The second group of approaches are more structured and have support for evaluating dynamic
behaviour. These include a wide range of techniques with their origins in computing science
and software engineering, such as UML [152] and petri nets [130]. Other techniques here
such as GRAI (Graph with Results and Activities Interrelated) [27] instead originate from
general business or the manufacturing industries. These techniques are highly suited to

guiding software implementation, but they are complex and time-consuming.

The fragmented nature of this range of languages has a number of clear disadvantages, such
as inconsistent levels of tool support, lack of compatibility due to different notations, lack
of a common language used by both business and technology etc. As a result, a number
of stakeholders jointly produced the Business Process Modelling Notation (BPMN) [195],

a unified notation intended to be usable for both technology implementation and system
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Figure 2.8: BPMN model of the meeting scheduler described by van Lamsweerde et al. [188]

Initiator

analysis.

The BPMN has a small range of core elements. Flow objects are the main entities, and consist
of events, activities and gateways. Events represent some occurrence during the process, and
generally are either triggered by a cause or impact on some result. Activities represent any
subprocess or piece of work. Gateways are used to make decisions and otherwise manipulate

the flow of the process.

These objects are linked by three types of connections. Sequence flow is the standard link,
and represents the order of activities within the process. Message flow is used to represent
communication between separate participants (such as different business sections, or with
external actors). Finally, associations offer a generic link that can be used for input/output or
other miscellaneous purposes.

Organisational divisions are captured using either pools or lanes. A pool represents a distinct
process participant, and communication between different pools is performed using messages.
Lanes represent internal divisions within a participant, such as different divisions within
a company. No messages can be used within lanes, so only sequence flow can be used.
The choice of pools or lanes does retain a level of subjectivity, primarily the degree of
separation between participants (consider the common use of an ‘internal market’ within large

organisations). An example using pools is shown in Figure 2.8

In order to meet the needs of business analysis, BPMN models can be converted to executable
form [137]. A mapping is provided for converting BPMN models into the Business Process
Execution Language (BPEL4WS). The notation also allows extension through the use of
artifacts, which provide additional model detail without affecting the basic structure of the

diagram. These artifacts can be added based on context, such as from relevant domain-specific
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libraries [195].

As with other methodologies, there are relatively few published cases studies describing the
use of BPMN. Muehlen and Ho [128] report on their work with a truck repair and maintenance
firm to optimise their processes and perform task reengineering. They found that BPMN
models were surprisingly well understood by the firm’s workers, allowing easier and quicker
feedback on proposed changes. The authors also made modifications to the standard BPMN
constructs to improve the expressive power and ease of understanding of BPMN models, such

as allowing activities featuring collaboration to cross lanes.

Kirchberg et al. [99] demonstrate the use of BPMN to model the typical academic paper
review and submission systems. They present eight different BPMN model fragments, each
representing part of the wider paper review system. These show the use of BPMN for a realistic

system, but do not take advantage of its capabilities for analysis or process reengineering.

In a more general study, Recker et al. [149] conducted a series of semi-structured interviews
with BPMN users, testing a number of propositions regarding BPMN that they had defined
based on ontological studies. Issues regarding the lack of suitable modelling constructs in
BPMN (for state, history and structure) were generally not considered important by users
- they tended to use BPMN for high-level modelling and stakeholder discussions and felt
that the missing constructs would be more useful at lower levels. Ontological analysis also
identified that the similar types of construct in BPMN (pools and lanes, or the different
types of events) would lead to confusion. In contrast, users did not consider this a problem
and praised the breadth of modelling options available. However, the authors note that all
participants used BPMN alongside other tools, allowing weaknesses or shortcomings in
BPMN to be offset by other methods.

2.8 Systems of Systems modelling

The Systems of Systems concept is defined by several authors as referring to large-scale
collaborative systems where discrete sub-elements operate with some level of independence.
Maier [120] defines a system of systems as a system itself consisting of systems that obey
two properties: operational independence (the subsystems can operate independently) and
managerial independence (the subsystems are operated independently while remaining part
of the SoS). It is this second property that provides special complexity: central control is not

absolute and the SoS must be prepared for variation in the performance of individual systems.

The need to model large-scale, multi-level systems and systems of systems (SoSs) has led to

the development of specific techniques for systems integration such as SysML [71].

SysML [71] is an extension to the UML (specifically, UML 2.0) intended to provide tools for
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Figure 2.9: SysML Block Definition Diagram showing requirements satisfaction, composition
and refinement

systems modelling as part of the wider UML framework. While core UML is very widely
used it lacks several important capabilities for modelling broader systems due to its focus
on ‘software systems’. These include very limited support for modelling physical elements
of systems and limited support for hierarchical structures. Consequentially there is limited

support for explicitly modelling or validating requirements.

SysML addresses these issues by adding additional elements into UML, including new
diagrams. SysML therefore consists of these additions plus a subset of re-used UML features,
although in effect any UML construct can be used in SysML if required. However, the
core methodology of SysML is defined as four ‘pillars’ of modelling - structure, behaviour,

requirements and parametrics.

Requirements are specified by a completely new Requirements Diagram. A << requirement >>
stereotype is extended from << class >> and contains a special shall statement that contains
a textual description of the requirement. Relationships are defined to derive sub-requirements
and to mark model elements as satisfying requirements. Rationales can also be added as tags to
explain certain elements. System structure is primarily modelled by the use of << blocks >>,
which are an extension of UML’s << structured >>. Blocks are collections of parts (of any
type) with connections that allow communication. Blocks have associated ports, which act as
input/output channels and so allow systems to built up from individual blocks. At the package
level the representation of blocks is black-box, possibly augmented with a parts listing or set
of constraints. Block Definition Diagrams provide an internal view of blocks (which may
themselves consist of sub-blocks) allowing for their creation and editing. An example is

shown in Figure 2.9.

Parametrics (in the form of a Parametric Diagram) are used to define constraints on the system
by the use of constraint blocks. Constraint blocks are associated with system blocks, and
can define constraints on properties and values of that block. These constraints can be both
environmental (such as limiting the range of inputs or defining physical laws) and internal

(such as restricting certain output values from a block).
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For system behaviour, standard UML approaches such as use cases and sequence diagrams are
re-used. Activity diagrams are also used, but have been extended from UML with additional

features for probabilistic techniques and improved decomposition.

In an evaluation, Herzog and Pandikow [76] analyse SysML to identify strengths and weak-
nesses. Overall they welcome the development of an systems engineering based extension to
UML, and conclude that no major issues have been raised against SysML. However, they do
note several minor concerns about the language. The flexibility of UML means that SysML
models can vary widely in the level of abstraction and the concepts used to model systems
- it is possible for critical parts of a system to be effectively hidden in the specification of a

low-level element.

Additionally, they emphasise the importance of effective tool support and the establishment
of a wider infrastructure around SysML,; at the time of their evaluation (soon after the launch

of the notation) this was limited.

Several researchers have expanded SysML to produce executable or analysable models from
standard SysML diagrams. Huang et al. [81] aim to create simulation models directly from
SysML using standard OMG (Object Management Group) tools and standards. Their process
begins as normal by creating a domain model of the system in SysML using a block definition
diagram. They then build another block definition diagram containing an abstract model
of the simulation system - blocks such as queues, entities and processes are defined here.
The blocks in the simulation model are linked back to the domain model using the SysML

relationships generalisation and association.

Once these two corresponding models are created they are exported in the standard XMI
file representation. This file is then further processed using XML tools to produce a format
suitable for import into a system modelling package (Huang et al. use eM-Plant). It is unclear
how much of this process requires manual intervention, and how much could be automated;
additionally, it is unclear whether the simulation meta-model is suitably generic, or if it must

also be modified depending on the choice of simulation software target.

Jarraya et al. [91] demonstrate a conversion of SysML activity diagrams into Markov chains
that can be analysed using PRISM model checker [77]; they also extend activity diagrams to
include time constraints. Firstly, the relevant system elements must be modelled in a SysML
activity diagram. The two main areas that can be analysed using PRISM are probabilities
and timing, and so they should be expressed in the diagram - probabilities using the standard
SysML notation of labelling edges for decision nodes; timing is expressed using a simple
extension of SysML that allows activities to be annotated with times that are either fixed (x
time units) or equiprobable intervals ([a,b] implies the action will take at least a time units, at

most b time units).

The transformation of the SysML model is performed using an algorithm that effectively



2.9. ‘Soft’ approaches 34

converts threads within the activity diagram into reactive modules that can be interpreted
by PRISM; an algorithm is provided for this, but implementation details are not specified.
Once the PRISM-readable version is produced, properties of the system can be checked by
specifying them in the PTCL logic and testing them with the model checker. The probabilities
of reaching specific states in the system can be assessed, as can the probability of completing

activities within a specified time.

2.9 ‘Soft’ approaches

Systems engineering is a well-established discipline that aims to analyse, control and man-
age complex engineering systems. Traditionally, systems engineering is concerned with a
relatively narrow definition of ‘system’ - typically a large process system (e.g. a chemical
plant or steelworks) or an engineering development project (ranging from a space program
to the development of a new railway carriage) [26]. Understandably, techniques intended
to manage these types of systems were often not suitable for systems exhibiting substantial

social-technical aspects.

This inspired the development of Soft Systems Methodology (SSM) [26], intended to provide
a ‘soft’ form of systems engineering. The developers of SSM noted that classical systems
engineering was designed to manage systems that that had well defined requirements; when
the outputs were clear a system could be constructed to deliver them. However, in systems
more generally this may not be the case - requirements may be more abstract, or system
stakeholders may feel improvements are needed, but be unsure exactly what. SSM aims
to provide a system for reasoning about such systems, enabling definition and analysis. In
this regard, it shows many similarities to early-phase requirements engineering, although its

application is more general.

SSM retains a high level of flexibility (and variance) as an analysis tool; it is a system for
analysis, rather than a process per se. However, it has eventually converged on a set of analysis

methods and modelling techniques that can be considered standard.

Initially, the system(s) to be analysed must be defined. This is likely to include both overarch-
ing systems such as ‘the organisation as a system’, as well as subsystems of relevant interest.
Once chosen, these systems should be specified in terms of a root definition. The elements of
the definition can be specified using the CATWOE acronym - customers, actors, transforma-
tion process, Weltanschauung (worldview), owner and environment. Fundamentally, the root

definition should express the systems as a process set in a worldview that provides meaning.

Once defined, the systems need to be modelled in a series of steps. These are focused around
the transformation process; setting the specific task, obtaining resources and assessing the

output. This is intended as an iterative process, with several models produced, often at
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Figure 2.10: SSM System model of the meeting scheduler described by van Lamsweerde et al.
[188]

different layers of abstraction. For example, additional constraints could be added, or it
may be necessary to monitor performance. Classically, a two-level performance monitoring
system is used based on the 3 ‘E’s : efficacy, efficiency and effectiveness (as shown in Figure
2.10). The end result of this modelling process is essentially a (sub)task diagram, showing the

necessary steps without explicitly specifying implementation details.

SSM commonly uses three standard analysis types - named Analyses 1, 2 and 3. Analysis 1
is an analysis of system roles both within the system under analysis and the roles of those
conducting the study. This analysis should identify clients (who are commissioning the
analysis), problem-solvers (who wish to change the system) and problem owners (system
stakeholders).

Analysis 2 is a study of social elements within the system. A model of roles, social norms
and values is used; techniques for this are not specified, but the aim is to consider the social

interactions (influenced by norms and values) within the system.

Finally, Analysis 3 covers political issues; more specifically, how power is distributed within
the system. Power may be formal (through management structures etc.) or informal (reputa-
tional, or via a network of contacts etc.). Analysing the power structures and relationships

will give a clearer view of the system, although again no set methodology is provided.
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SSM is often used as an initial step for problem definition and exploration before using ‘harder’
methods for later steps [142]. Design and analysis methods often assume the existence of a

well-defined problem and an agreed solution, which can be obtained by the use of SSM.

The flexibility of SSM provides wide applicability, but at the cost of consistency and rigour.
As a explorative modelling tool SSM is effective at identifying the core elements of a system,
including important social concepts that would not be captured by conventional systems
modelling approaches. Additionally, the generic nature of SSM means that it can be applied to
almost any system, regardless of the underlying paradigm. However, the ‘standard’ analysis
methods are poorly defined and highly subjective; they identify potentially important system

issues, but do not provide a structured approach for investigating them.

Finkelstein et al. [59] propose the use of Viewpoints as a technique to unify different ap-
proaches in systems development. In systems development, different participants may use
notably different views of the system during their activities - managers may see the system in
terms of personnel organisation, planners may use state machines and developers use block
diagrams or petri nets. This breadth of representations cannot easily be captured within one
modelling notation or schema, but it is often desirable to be able to consider the system as a

whole.

Viewpoints act as a framework that can be used to collect together different system views. A
viewpoint consists primarily of a work plan and a specification, written in some representation
style. For example, a developer may have a viewpoint represented as block diagrams; the
specification consists of the block diagrams for the relevant parts of the system, and the work

plan is the developer’s role in implementing and integrating their part of the system.

Viewpoints can be linked where it is necessary to check the consistency of the system. This is
clearly easiest when viewpoints share a representation style, such as when developing sub-
system components. However, the viewpoint structure also allows links between viewpoints
of different styles - in this case, it can be asserted that two viewpoints need to be consistent,

but the actual process of checking requires careful manual comparison.

Viewpoints also lend themselves to meta-construction - a system development approach
can be specified using viewpoints, with new viewpoints created dynamically to represent
development activities. When this approach is used a wide range of consistency checks are

generated, offering a clearer development strategy.

The viewpoint approach is not by itself a development approach or modelling language; it is
a framework for structuring processes in a way that encourages modularity and consistency.
Complex system elements can be encapsulated away as specific viewpoints, while remaining
linked to and defined by a higher-level system view. In particular, collaboration is encouraged
by this approach, as sub-system links are easily defined without requiring knowledge of the

implementation details, and checks can be delegated to specialists that are familiar with both
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Figure 2.11: Simplified MORT logic tree (abstracted from [94])
Reproduced by permission of The Noordwijk Risk Initiative Foundation

notations.

2.10 Safety Analysis

Systems analysis draws on a wide range of techniques and concepts originally developed for
use in safety analysis and accident investigation. In this context, methodologies focus on
analysing failures - either to investigate after an accident has occurred, or to prevent them
from occurring in the first place. Common techniques in safety analysis include cause-and-
effect based techniques such as MORT [94], FMEA [23], and HAZOPS [182] as well as
systems-based approaches such as STAMP [109] and FRAM [80].

The MORT (Management Oversight and Risk Tree) [94] methodology is a logic tree approach
for accident analysis, drawing on lessons learnt from the use of fault trees [190]. The
core of MORT is a tree model (see Figure 2.11) , which models a wide range of technical,
organisational and mechanical elements of a generic industrial process. This graph of elements
is used in conjunction with a set of standard questions to analyse potential contributory factors
to an accident. By working through the various branches of the tree each relevant part of the

wider system is examined, and sections that are ‘less than adequate’ can be identified.
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The analysis itself focuses on the concept of an accident as an unintended energy transfer.
While this extra energy may originate in some specific system sub-element, MORT analysis
aims to determine how and if such extra energy will be effectively dissipated or redirected.
Unlike many earlier accident approaches, both process elements and structural/managerial

elements must be considered as a contributory factors if an accident occurs.

The MORT approach employs standard analysis questions and a meta-model to reduce the
potential for subjectivity. However, other analysts such as Johnson [93] argue that MORT is
highly subjective, as particular scenario conditions can be attributed to different branches of

the fault tree depending on the arbitrary choices of the analyst.

The scale and breadth of coverage of the MORT meta-model potentially comes at the cost
of the analysis being more time consuming; Johnson [94] suggests that simple events can
be analysed very quickly, although this may require subjectivity in choosing which parts of
the model to focus on. Additionally, the core meta-model is designed to address a traditional
industrial process, and so modification to the approach would be required to utilise it for

information- or organisation-based scenarios.

An early systematic approach to systems analysis is the FMEA (Failure Modes and Effect
Analysis) methodology, which is used to analyse system safety by evaluating the potential

ways system components can fail [23].

Most applications of FMEA are applied at one level of the system (usually the lowest / most
detailed). All components of the system at this level are identified, and the potential failure
modes of each item is recorded. Failure modes are broad classifications of unintended item
behaviour (e.g. a water pump may fail entirely, reduce in output, start at the wrong time etc.),
and each failure mode may be caused by several different failure causes (specific faults, such

as worn-out valve, microprocessor failure etc.).

Once the failure modes are identified, the consequences of this type of failure are estimated,
both on directly related elements and on the wider system. This results in the production of
a comprehensive document describing the likely failures of the system, and can be used for
risk assessment or to consider countermeasures for common failings. FMEA is an efficient
approach for analysis when component failures have clear consequences on system perfor-
mance; it is generally not suited to complex systems that involve collaborating subsystems,
or where the system must be analysed at multiple layers of abstraction, as the quantity of

detailed information required becomes unmanageable.

The FMECA (Failure Modes, Effects and Critically Analysis) extends FMEA by also consid-
ering the severity and likely frequency of each failure mode. The combination of these two
factors allows the creation of a ‘criticality’ score reflecting the potential impact of the failure,

allowing the identification of the most serious system vulnerabilities for remedial action.
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Safety cases [16] are a widely used method [17] for presenting evidence of system safety.
In a safety case, a claim is made about some system, asserting the correctness of some
attribute. The case is structured so that an argument is presented to validate the claim; the
argument is created by providing appropriate evidence, which is linked back to the claim using
inference rules. Arguments can constructed in a wide range of ways. Deterministic arguments
include exhaustive testing or mathematical proofs (e.g. railway signalling). Alternatively,
arguments can be probabilistic, based on statistical analysis and testing runs (e.g. mean time
to component failures). More abstract claims may require a qualitative argument, aiming to

show that procedures or processes meet the claim (e.g. ISO9000 compliance).

The HAZOP (Hazard and Operability Study) [182] is a long-established method for safety
analysis of processes. The technique was originally developed by ICI in the 1960s and 1970s
to analyse chemical plants but is now widely used in a large variety of fields.

HAZOP studies examine a system by considering the processes and subsystems within it.
This necessarily requires the system to be specified in sufficient detail for subsystems to
be revealed, but HAZOPs can be applied to both existing and proposed systems. Once the
subelements have been identified a set of guide words is used to identify potential deviations
from normal operation; for example an increase in temperature or late arrival of information.
The set of guide words often varies depending on context, consisting of both general and

domain-specific examples.

The analysis is carried out by examining each combination of process element and guideword
in turn. Many elements will offer no risk or operate safely up to very high tolerances, and
these can be marked as ‘no further action’. Elements that have only limited safety tolerances
or offer no protection against certain deviation should be referred for further analysis and are

generally prioritised by the likelihood of said deviation.

Applying this guideword approach in full on every subsystem is generally impractical, due to
the exponential number of guideword-process item combinations. HAZOP guides emphasise
the importance of using a skilled team to perform the analysis who can significantly reduce

the time taken by disregarding unnecessary combinations.

HAZQP inspired guidewords have been widely adopted into other methodologies. For
example, they have been used as part of ‘risk clauses’ in responsibility modelling [115],
hazards in Systems of Systems modelling [114] and trust analysis in e-government systems

[6].
Leveson [109] created the STAMP (Systems Theoretic Accident Model and Processes)

modelling technique, which differs from other accident analysis approaches by using a
systems-theoretic approach to analysis. This approach does not identify single points of

failure or accident causes, but considers the interactions of the combined system elements.
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STAMP is built around three core conceptual areas: constraints, emergence and process. The
fundamental concept within the STAMP model is a constraint. Constraints are restrictions
placed upon layers of the system by layers above them in an attempt to control their behaviour.
Leveson argues that constraints can model all system levels, even at the component level.
Mechanical failures can be seen as failures to constrain the manufacturing or maintenance

processes.

The emergence and hierarchy concept embodies the view that safety cannot be assessed by
looking at individual layers of the system - safety is an emergent property of the system as a
whole. In this view, safety can only be obtained by some form of control structure that crosses

system levels, and this control process is a key area of analysis for STAMP.

The third core STAMP concept is the process logic or ‘process under control’ model. This is
a general model of process operation which can be instantiated for different systems. The
model consists of the controlled process (the operative part of the system or sub-system),
the controller(s) (which may be human agents or automated systems) and the actuators and
sensors used by the controllers to measure and manipulate the process. This model allows
the structure of process control to elaborated, and can be used to identify a wide range of

common vulnerabilities.

Leveson demonstrates the technique by a detailed analysis of a failed Milstar satellite launch.
The analysis incorporates the core STAMP concepts by dividing the overall launch into
subsystems (Launch Operations, Software Development etc.) and identifying constraints that
were violated and associated process model mistakes or control flaws. However, no defined
methodology is given in the paper and there is no description of how to identify violated
constraints or control flaws. The case study demonstrates that the approach can produce a
comprehensive result when applied by an expert in both the STAMP approach and the subject
matter, but it is not at all clear that STAMP could be effectively applied by other analysts
using the published details as a guide. Additionally, STAMP appears to act more as a method
for structuring information (in constraint-control-process tuples) rather than a direct technique

for accident investigation or system analysis that can elicit new insights.

Accident analysis methods typically draw cause-effect relations, attempting to trace back
steps to identify the origins of a failure. In contrast, the FRAM (Functional Resonance
Analysis Method) technique by Hollnagel [80] aims to address situations where systems may

be intractable and depend on complex linked processes (the ‘second cybernetics’).

The FRAM approach is underpinned by four principles. The equivalence of failures and
successes states that both correct and incorrect outcomes arise from the same starting point,
so it is not possible to identify obviously ‘incorrect’ actions without hindsight. The concept of
approximate adjustments highlights the great variability of human performance, and argues

that is not a negative but a positive, as it allows under-specified processes to operate correctly.
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Emergence represents situations where cause-effect relationships cannot be determined due
to a lack of information or excessive complexity; resonance refers to potential amplifications

of multiple small performance deviations.

The FRAM method seeks to identify what is required for activities to ‘go right’ rather than
what caused them to fail. The method starts by identifying the functions within a system (here
functions refer to activities performed in an attempt to meet some goal). Functions are defined
in terms of inputs/outputs, resource consumption, control, timing and preconditions. FRAM
functions sit individually and are not explicitly interlinked in the style of most task-based

models; functions are analysed individually and only linked when the model is instantiated.

Once identified, functions should be assessed for their variability (variance in their outputs).
This can be approximated by qualitatively considering the timeliness and precision of the
function’s output. Alternatively, a more elaborate analysis can use HAZOPS-style failure
modes on properties such as duration, sequence or speed. Once the inherent variability of
function outputs is determined the next step is to evaluate the effects of variable inputs on the

variability of function outputs.

This again adopts a HAZOPS-like approach, with function inputs potentially being too early,
too late, imprecise etc. Most inputs are affected by variability in the same way, with late, early
or imprecise inputs increasing variability, and on-time and precise inputs reducing variability.
However, there are some exceptions such as the early arrival of resources having no effect on
variability of the output. In contrast to some other analysis techniques, there is no separation
of tasks and actors in FRAM - each function in the system has the actors involved explicitly

included in the function description.

Once this analysis is complete, measures can be taken to reduce the variability of the system,
and traditional techniques such as hazard prevention and protection can be applied. However,
FRAM also offers a new resolution technique - dampening of variability. When much of the
performance variability is caused by interactions (functional resonance) between different
elements of the system, the introduction of additional checks and safeguards can reduce
the chance of performance variations propagating throughout the system, providing more

consistent performance.

Hollnagel [80] provides three worked examples, covering healthcare, finance and transporta-
tion. As expected, these examples closely follow the methodology as previously outlined.
Functions are constructed by identifying a key point in the process of the system, and then
specifying the functions needed to produce the inputs and consume the outputs of that point,

continuing until the functions become trivial or out of scope.

The instantiation of the model involves producing a diagram showing the functions ‘wired’
together with corresponding inputs, outputs and other signals. This does not provide any

formal underpinning to the system model, but instead serves as another way of visualising
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the intricacies of the system and hence improving understanding. Analysis of potential
vulnerabilities in the system comes primarily from the details of the function specifications

rather than from the instantiated connections.

FRAM was explicitly intended to not rely on some form of internal world model, as such
models within methodologies are argued to constrain thinking [117]. The system specific
model created by performing FRAM on a scenario is not quantified; interrelations between
functions are recorded but their magnitudes are not. As such is not an approach that lends
itself to automated analysis or definite statements on cause and effect. Instead it acts as a way
of structuring information on a system while still requiring domain knowledge to produce

useful analysis.

Overall, the investigation of safety analysis techniques shows the difficulty of balancing
modelling and analysis detail with ease of use and time-effectiveness. The advantages of
structured analysis techniques such as the standard questions of MORT and HAZOPs, and the
meta-models of STAMP and MORT are clear - they reduce the subjectivity of the analysis
process and provide a guide for the inexperienced analyst to apply. However, the structured
approach demonstrated in these techniques has significant disadvantages - the structure may
limit the wider applicability of a technique (such as the underlying process model in MORT) or
require an intractably large amount of time to exhaustively apply (such as HAZOP keywords).
In contrast, concepts such as systems theory and functional resonance provide a useful way
to reason about a system, but have inherent subjectivity that makes consistent analysis more
difficult.

2.11 Deontic logic

Deontic logic is the logic of obligations and permission, and is considered by Meyer et al. [125]
as a formal underpinning for system modelling. Deontic logic has operators for permission,
obligation and prohibition, making it potentially useful for modelling a wide range of social-
technical agent relationships. Early computational applications of deontic logic included its
use for formal legal models as well as for system specification, where it was used to separate
the permission (or prohibition) to perform an action from the actual effects of the action,
allowing better modelling of fault-tolerant systems [124]. However, most forms of deontic
logic contain paradoxes (which are internally consistent, but paradoxical when applied to
real-world examples), so either special care must be taken when translating real specifications
or a custom variant of the logic should be used [125]. For example, Chisholm’s Paradox
highlights the formal inconsistency between "ought-to-be" and "ought-to-do" statements. In
standard deontic logic it is impossible to assert both that an understandable event should not

happen, that the response to this event should vary based on how undesirable it is, and that
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the undesirable event does actually happen. This set of occurrences is perfectly plausible

(consider any emergency response system) but impossible to consistently formulate.

Cholvy et al. [29] used deontic logic to specify different forms of responsibility (see Section
2.13.1 for a discussion of the forms), where Standard Deontic Logic (SDL) is used as a natural

formalisation for the duties agents hold towards each other.

Letier and Heaven [106] use deontic logic to extend labelled transition systems (LTSs) to
refine the model events - enabling the distinction between obligation and permission lacking in
standard LTSs. LTSs are system models consisting of concurrent components, each of which
is an event-driven state machine. With conventional LTSs, events are ‘forced’ to occur by
‘maximal process’ assumptions that emphasise the machine over the environment; this assump-
tion fails to hold in most requirements modelling scenarios, where the machine/environment

boundary is indistinct and global assumptions impede modularity of design.

To address this, LTSs are extended to include transient states - states which must be left if at
all possible. This enables ‘forced’ events to be modelled as transitions from a transient state
in a way that allows modular decomposition. It is then possible to formally check if agents
are capable of achieving their goals. This process involves deriving a satisfying interface and
then back-propagating from error states to determine if they can be avoided by the actions of
the agent. When combined by previous work by the same authors [107] this allows easier

analysis of models derived from higher-level approaches such as KAOS.

Padmanabhan et al. [138] propose the use of deontic logic to model business processes;
in particular, they wish to address the contractual relationships that exist between partners.
They construct a system of logic using actions (‘bring about’), directed obligations and
proclamations as primitives and augmented with standard axioms. Proclamations are in effect
public, generalised obligations and can be used to capture multi-agent commitments without

the need for a dedicated primitive.

Additionally, Padmanabhan et al. propose extending i* by introducing a deontic dependency
(at the SD level); it appears that this is intended to capture obliged behaviour, as the description

is unclear if other deontic operators (permitted / forbidden) can be used instead.

Deontic logic conceptually appeals as an ideal formal underpinning for social-technical
modelling; the concept of modelling systems in terms of actions between agents is an intuitive
one. In particular, this concept fits very well with agent-based modelling. Despite this, most
applications of deontic logic are focused on purely mathematical extensions or on small,
state-machine like systems; Padmanabhan et al. [138] works on combining deontic logic
with agent-based modelling but this provides no advantages for the modeller as areas such as

logic-based model checking are not examined.
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2.12 Timebands

Burns and Baxter [24] aimed to address the insufficient treatment of time in system modelling;
time is normally treated as a ‘flat’ concept that does not provide layers of abstraction. As a
result, temporal elements are often either underspecified (consider any action that must be
performed ‘immediately’) or specified to unnecessary detail (the distinction between a 0.01s

and 0.02s reaction time is superfluous in most human interactions).

To address this, they propose the idea of ‘timebands’ - bands that represent a certain level of
time. Bands are defined by their granularity (the scale of a meaningful unit of time within the
band) and their precision (in terms of distinguishing events within the band). For example,
an airline schedule could be modelled using a band with granularity fifteen minutes, and
precision one minute (as relevant events such as take-off and landing take ~15 minutes, but

delays are counted to the minute).

Two types of occurrences may occur within a timeband. Events are occurrences that occur
in negligible time with respect to the granularity of the timeband - they are effectively
instantaneous within the context of the timeband. Activities are occurrences that have a
duration that can be expressed in terms of the granularity of the timeband. Within a band it is
possible to set precedence relations - constraints that indicate that one event or activity must

occur before another can start.

Multiple timebands can exist, and occurrences can be mapped between different bands.
Occurrences can be represented as events at more abstract timebands, and then by activities
in the more granular bands. Likewise, activities may become events as timebands become
broader. For example, the take-off of an aircraft is clearly an activity in a timeband for
modelling that particular flight, but would be treated as an event in a timeband modelling the

weekly performance of the airport.

This initial version of timebands provides a useful technique for modelling the temporal
behaviour of systems, especially across systems that involve order of magnitude differences in
temporal resolution. Separation of concerns becomes possible (both human interactions and
transistor-level performance can be modelled using the same methodology) while elements
at different bands can still be related to each other. It is unclear if this approach can support
formal techniques such as verification of inter-band relationships, but the core concept is

intuitive and addresses a genuine shortcoming in many other modelling approaches.

Having outlined the concept of timebands effort moved on to producing a working implemen-
tation. Baxter et al. [13] report on using timebands to model a hospital intensive care unit;

their model was implemented using constraint logic programming.

Initially, they began by modelling a single timeband, which featured a series of alarms in the

care unit. Upon executing the model the time taken to address these alarms was considerably
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less than appeared realistic. This was traced back to vagaries in the specification of the model
- activities were not explicitly ordered, and so the model was able to obtain a significant

speedup by (impossible in practice) parallelisation of activities.

Upon implementing a second timeband to run in parallel, the time taken to resolve the
incidents was again faster than expected. This time the problem originated in the actor model
of the system - actors were specified independently in each band, so it was entirely possible
for one (real) actor to be performing two actions simultaneously, once in each timeband.
This problem appeared difficult to resolve, as the authors did not attempt to eliminate the

duplication of actors, but instead ran each band separately and combined the results.

At this stage some of the classic modeling problems become apparent. Useful analysis
techniques appear to be in reach - in this case, the ability to determine the time needed to
perform activities. However, implementing these approaches in a suitable formal logic is often
difficult, as the problems with parallel activities show. Unfortunately, few implementation
details are given, but it seems likely that each timeband system must be modelled manually;
there is no timeband to constraint logic compiler mentioned. It is therefore not clear that the

conversion process is cost-effective.

Finally, the formalisation of timebands is taken to its logical conclusion by Wei et al. [193].
Rather than attempting to build a timebands model in an existing system of logic they instead

develop a new formal logic specifically defined to implement timebands.

This new logic (called TCSP,,) is primarily derived from the classic Communication Sequential
Processes (CSP) logic, with some similarity to the pre-existing timed CSP. The key extension
over timed CSP is the ‘miracle’; the non-executable top element of the ordering. This
abstraction breaks some of the rules of classic CSP, but allows increased modelling flexibility
(as argued in previous work by Wei et al. [192] ). Much of the paper is spent defining
the various properties of this new logic, with a comparatively short section on timebands

themselves.

To demonstrate the modelling power of this new logic the authors turn to the classic mine-
pump case study [193]. This is a classic problem from the dependable systems and formal
methods fields, where the necessity to pump out water from mineshafts must be balanced
against the need to maintain safe air levels (due to emissions from the pumps). This leads to the
construction of a relatively simple timeband model of mine operations, although assumptions
do have be made that the speed of water and carbon dioxide change can be consistently within

an order of magnitude (so that events always fit in the same timeband).

Having constructed this model, the authors wish to move onto automated verification. How-
ever, the extensions to CSP (in particular, the miracle) mean that TCSP,, cannot be verified
by existing theorem provers or model checkers. The FDR model checker lacks support for

timed CSP and theorem provers are described as too time consuming. Timed automata are
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suggested as a better fit for TCSP,,, but the implementation required is described as a ‘massive
amount of work’. Instead, a manual conversion is made to a corresponding timed automata
model (lacking some of the temporal precision of the timeband model) which is used with the
UPPAAL model checker [105] to prove some useful safety properties. Given the complete
conversion to timed automata, is appears that no direct benefits can be obtained by the use of
TCSP,,-formalised timebands.

However, by this stage of formalisation the Timebands approach no longer demonstrates a
clear socio-technical approach; it has become another new process logic, using the classic
process logic examples and lacking any suitable tool support. From a social-technical
perspective it appears complex and overly formal, requiring substantial formal methods skill
to apply effectively. This highlights the difficulty in determining the optimal level of formality
for modelling socio-technical systems; there are clear advantages in analytical power that
can be obtained by increased formalisation, but this should not come at the cost of excessive

modelling complexity or the lack of wide applicability.

2.13 Responsibility Modelling

2.13.1 Responsibility origins

As outlined in the introduction to this thesis, responsibility has been proposed by several
authors as a basis for modelling socio-technical systems [40, 166, 179]. These techniques
have links to many of the other methods discussed in this literature review. Further, Cholvy
et al. [29] note that responsibility can have three different meanings (causing something (bad)
to happen either by action or inaction; liability, blame or credit for an occurrence; the power
to make (potentially justifiable) decisions), each of which can have greater or lesser emphasis

in different responsibility modelling notations and methods.

The first and second meanings broadly correspond to causal and consequential responsibility
as used elsewhere in the literature (e.g. [39]); the third meaning is more abstract, but widely
used in normal language. While they are not able to completely formalise responsibility, the
authors are able to further subdivide these three meanings (into concepts such as responsibility

by fault, responsibility for agency etc.) and construct representations of them in deontic logic.

Feather [55] developed a system specification language called Gist. This paper is, as far as
we are aware, the first use of the concept of responsibilities in requirements specification or
system analysis. In Gist, systems are specified by defining all possible transitions (or deltas)
within a system and then generating the ‘set of acceptable histories’, a set of all paths through
the system that meet certain constraints. Constraints are enforced by pruning branches of

the full set of histories that fail to meet the constraint. This naive version of the approach is
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limited as the order of evaluation may arbitrarily limit the options of a system agent; different
results can be obtained by considering agents in different order - such as in the case where

two agents must not both choose the same option.

This is addressed by defining an agent or agents as responsible for a certain constraint. This
responsibility means that an agent may not make any choice that will lead to a state where
the constraint is violated. Unassigned constraints are implicitly treated as the responsibility
of all actors. Shared responsibilities are however only weakly defined, as the logical system
proposed cannot differentiate between joint responsibility (AND relationship) and separate

responsibility (OR relationship) when multiple actors hold the same constraints.

Responsibilities were also used for system design by Wirfs-Brock and Wilkerson [198]; their
focus was on using the concept of responsibility as the core idea when designing the structure
of classes in object-oriented software design (once requirements had been agreed), rather than

using them them for requirements capture itself.

The initial version of the ORDIT methodology [18] used responsibilities as an intermediate
step to aid in reasoning about the more concrete elements of the approach; in particular
they were used to decide between different types of relationships between agents. Strens
and Dobson [178, 179] expand significantly on the use of responsibilities within the ORDIT
approach. Responsibilities are identified as a potential ‘boundary object’ - a conceptual view
of the system that can be understood in both a technical context (for system implementation)
and an organisational context (for evaluation and discussion of the model). Responsibilities
are treated as being held by some agent; much of the paper is devoted to the issue of
handling the delegation of responsibilities between agents. This is resolved by distinguishing
between functional obligations (which are linked to requirements in the system design) and

organisational obligations (which arise when tasks are delegated to other agents).

Strens and Dobson [179] further expanded this structure into a three-level system model; in
descending level of abstraction these are responsibility/agency, obligation/role and activity/a-
gent views. However, the paper explicitly excludes resources and actions from this approach
and instead argues that these should be modelled separately using data and process models.
As a result, the approach is not able to capture certain system aspects, such as responsibilities

that require resource availability to be completed.

Harper and Newman [70] proposed a simple design heuristic using responsibilities, intended
as a counterpart to more elaborate methodologies such as ORDIT. They investigated system
rejection, and identified clashes over perceived responsibilities to be a major cause of rejection.
As part of a case study they modelled (in a semi-formal manner) the responsibilities of staff
in a large multinational organisation. This model was created after ethnographic study, and
identified a number of non-formalised processes that staff felt responsible for. Concurrently a

new data management system was being installed, and the authors correctly predicted system
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rejection by highlighting the lack of support for these perceived responsibilities in the new
system. As far as we are aware this is the first work to use the concept of responsibilities for

socio-technical analysis, rather than strictly for modelling.

As part of the large DIRC (Interdisciplinary Research Collaboration in Dependability) project
Dobson and Sommerville [43], Dobson and Martin [41] & Dobson [40] examined the use of
roles as a basis for system modelling and argue that roles are really sets of linked responsibility
relationships. They consider a responsibility to be a relationship between two roles (one
holding the responsibility and the other giving or issuing the responsibility) to perform some
task or maintain some condition where the holder is responsible (in some way) to the giver. In
this view responsibilities cannot be treated on their own, as all responsibilities must inevitably

have both holders and givers.

Responsibilities can be of different types, and the authors identify two main types. Conse-
quential responsibilities require an agent to answer for or justify some action or occurrence,
while causal relationships require an agent to perform activities to realise or prevent some
event. Sommerville [167] argues that it is generally not possible to delegate consequential

responsibilities, while causal responsibilities often are delegated by the original holder.

Dobson and Martin argue that correctly identifying and understanding the type of respon-
sibility is vital to prevent vulnerabilities, as wrongly defining a causal relationship as a
consequential relationship can easily lead to key actions not being performed. Overall, it is
argued that the one-sided view of roles leads to substandard system designs, and that better

results are obtained by considering roles as relationships between two entities.

Dobson also introduces the concept of conversations, which can be used to differentiate
between different roles held by the same actor. This can help to identify cases where an
actor holds conflicting responsibilities (consider a doctor in general practice who holds a
responsibility to treat patients, but also a responsibility to minimise the costs of his business)

by treating each set of responsibilities between an actor and another entity as a discrete role.

These themes are developed in further work by Dobson and Martin [42], who produce
several standard or meta-models of responsibility for common processes. These models
contain subresponsibilities (e.g. allocation, procurement, dispatch in the case of resource
management), agents, resources and communication channels. Particular focus is paid to
processes that cross organisational boundaries, as this can easily lead to confusion or dispute
over responsibility. The responsibility meta-models can be operationalised by dividing them
according to actual or potential organisation boundaries; this allows analysis of potential
communication problems in current situations as well as ‘what-if” analysis of alternate options.
The concept of conversations is also employed here and is used to identify a set of potential

failure modes.
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Figure 2.12: Decomposition of a responsibility, showing processes and actors (from [166])
Reproduced by permission of Springer.

2.13.2 Graphical Models of Responsibility

Sommerville [166] introduced the first methodology for explicitly modelling responsibilities.
In this approach, responsibilities are decomposed into abstract goals and concrete processes,
which are assigned to agents. Goals can be achieved by producing the appropriate evidence,
and evidence is generated as a result of processes. These concepts are represented using a

graphical notation, as demonstrated by the example in Figure 2.12.

The set of relationships between agents and processes is complex. Firstly, a distinction is
drawn between causal and consequential responsibility. As well as differentiating between
performing actions and justifying actions it is argued that consequential responsibility is
normally associated with goals and abstract processes (e.g. a building supervisor is responsible
for security), while causal responsibility is associated with concrete processes (e.g. a janitor
is responsible for locking the front doors at night) and evidence. Additionally, the notation
distinguishes between normal and exceptional causal responsibility, hence allowing modelling

of fall-backs and emergency procedures.

Six different types of responsibility vulnerability are identified, which can be used to analyse
a scenario once a responsibility model has been constructed. These include issues of unas-
signment, duplication of duties, uncommunicated assignment, lack of resources, overload
and fragility. Some of these issues can be identified easily (assignment problems, lack of
resources) while some are more complex. Fragility, for example requires an analysis of the

entire model to identify which tasks are most critical, and which of these critical tasks do not
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have fallback tasks or multiple agents capable of discharging them.

The authors also discuss in some detail the role of authority, in the form of some entity that
is able to judge if a responsibility has been or can be discharged. They hence identify two
additional vulnerabilities arising from this - lack of authority (where an agent relies on other
agents they do not control) and conflicting authorities (where an agent is responsible to some

agent for some process, but is generally managed by another).

Sommerville demonstrates this technique using a hospital bed management system case study.
The process focuses on modelling individual, high-level responsibilities in detail, rather than
attempting to link related responsibilities. Typically, a responsibility is refined into several
processes with accompanying evidence. Notably, it is recommended to separately model
consequential and causal responsibility relationships (to reduce clutter and complexity) and
only integrate them into one version after any conflicts or inconsistencies are resolved. It is
also suggested that alternative notations may be used for some stages of the modelling, such

as using BPMN to construct a workflow diagram for causal responsibilities.

Sommerville [167] also proposes a pattern-based approach to responsibilities. A standard
template is provided, which lists potential responsibility properties. Standard fields include
descriptions of the responsibility and a description of the context; several new definitions are
also used. Responsibilities can be classified in terms of their activities and their approach, giv-
ing a classification such as {Rule-based, Monitoring}. For this, three types of implementation
strategy and three types of activity are defined. Other fields include pre- and post-conditions

on the overall state of the system, as well as workflow models where appropriate.

Increased emphasis is also placed on modelling the workflows of causal responsibilities
and several examples are stated in the BPMN notation. These models are not intended to
describe specific workflows such as those of a particular organisation; they are intended to
be reasonably generic, allowing them to be used in a range of situations. As such, they are
proposed as another aid to thinking about the design process, rather than a design solution
themselves.

Three main advantages are claimed for using this approach: contingency plans are more easily
formulated; responsibility assignment is less error-prone; workflows can be combined with
assignment models for vulnerability analysis. However, it is unclear how these benefits are
specifically obtained by using generic patterns, rather than individually modelling relevant
responsibilities. Benefits in reusability and standardisation may outweigh any lack of precision,

but this argument is not made explicitly.

This form of responsibility modelling is put in practice by Ramduny-Ellis and Dix [148] who
provide a worked example and a series of reflections. They broadly follow the approach

outlined in Sommerville [166], although they do not make use of responsibility patterns.
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The modelling itself is straightforward, but interesting side issues are raised. Once again,
delegation and conflicts of responsibility are noted as complex issues, such as the conflict
between producing an artifact quickly and producing it to a high quality. Of particular concern
are the risks of ‘buck passing’ when responsibilities are delegated. It is argued that while
delegation is primarily intended to be causal in practice this often amounts to the delegation
of consequential responsibility as well. As a solution it is suggested that either systems are
effectively subdivided to compensate for small failures, or that processes should be ‘owned’
throughout by specific individuals.

Interestingly, all analysis of responsibility modelling in this period focused on modelling
existing systems, primarily to identify vulnerabilities. As such, the methodologies suggested

may be less suitable for modelling new systems or variations of existing systems.

2.13.3 Responsibility Modelling

Storer and Lock [175] expanded previous work on responsibility modelling to produce a
modelling system capable of representing a social-technical system using responsibilities
as the core entity. In contrast to earlier work that focused on modelling individual respon-
sibilities in detail this form of responsibility modelling encompasses whole systems, using

responsibilities and associated agents and resources.

Responsibilities are defined as either objectives or processes. These objectives and processes
are termed responsibility targets, and can be held by human or automated agents. Processes
are well-defined procedures that can be followed by the assigned agent, while objectives
are desirable conditions that should be maintained or reached by their assigned agents. The
responsibility for processes can be freely assigned, but it is not possible to assign objectives
to automated agents. When responsibilities are assigned there exists a responsibility authority,

which created the responsibility and holds overall responsibility for it.

Responsibilities can be further decomposed by the agents that hold them. This creates
subresponsibilities, which can be held by the original agent or later delegated. They are
constraints on the decomposition process: objectives can be freely decomposed to produce

subprocesses or subobjectives, but processes can only be decomposed into subprocesses.

Fundamental to this version of responsibility modelling is the idea of delegation. Initially,
responsibilities are linked to the agent that created them; that agent is required to discharge the
responsibility but is accountable only to itself. However, responsibilities are usually delegated
to other agents. In this case another agent becomes obliged to discharge that responsibility,
and is held accountable for this by the previous responsibility holder who now acts as an

authority. The delegation process is restricted such that only the creator of the responsibility
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can delegate it; this prevents the hierarchy of accountability being broken by an agent that

delegates away responsibilities while remaining accountable for them.

Agents can be either human, technical systems or organisations; as mentioned, technical
agents can only be assigned to responsibilities that can be discharged using defined processes.
Agents can be structured in a hierarchy of superiors and subordinates, allowing analysis of

potential organisational conflicts.

Interrelations and dependencies may exist between responsibilities, especially when fine-
grained decomposition is applied. To support this, processes can be linked using follows
relationships, stating that one process may not begin unless a prior process has already
completed. Additionally, a special process subtype decision exists, which can be used to

select the appropriate choice of process to implement depending on some condition.

More complex relations between responsibilities can be expressed using information flows
or resources. Processes may exchange information artifacts by means of messages; these
messages are outputted by a process to the other processes that follow it. Processes can

depend on such information artifacts as inputs without which the process will not complete.

Resources provide a more general framework for treating responsibility requirements: infor-
mation artifacts and agents can both be treated as specific types of resource. Resources are
allocated to one or more agents to provide them with capability; no relationships between
resources and responsibilities are provided, so it is unclear how the necessary set of resources

can be determined for any specific process.

Sommerville et al. [168] contains a more detailed definition of a responsibility model. In this
version there are only two top-level entities - Resources and Responsibilities, with agents
being treated as a specialism of resources, which can themselves be further classified as

organisational, technical or human.

Notably, this version also includes several homogeneous relationships that do not appear
in other versions of responsibility modelling. Processes (but not objectives) can ‘follow’
other processes, indicating task ordering and a temporal model of activity. Agents can be
subordinate to other agents, allowing for explicit representation of organisational hierarchies.
Organisations can also be defined as being compositions of other agents, again allowing
explicit representation of organisational structures. Additionally, several model transforma-
tions are defined - equivalences are provided for delegation, decomposition and allocation.
However, while definitions are given for these relationships and transformations they are not

explained in any level of detail, and the exact semantic meaning of many of them is unclear.

Lock et al. [116] provide a summary of responsibility modelling, as well as presenting
a graphical notation for responsibility models. They present a simplified version of the
notation, with the difference between processes and objectives removed and resources used to

implement all preconditions on the discharge of responsibilities.
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Figure 2.13: Entity and relationship types (from [116])
Reproduced by permission of Tim Storer.

This version of the responsibility model uses only three core entity types and five types of
relationship, as indicated in the key to the graphical notation (Figure 2.13). All of these are
drawn from the previous work [175] with the exception of the Association relationship: this
relationship acts a catch-all for interactions not covered by the model and is simply a free-text

description for links between entities.

HAZOPs-derived keywords are used for analysis. Some keywords are intended for analysis of
specific entities (such as early/late on resources), while some appear more suited to analysing
the system as a whole (such as insufficient information flow or insufficient management).
Interestingly, none of the provided keywords appear suitable for analysing relationships despite
the wide range of potential failures occurring in responsibility assignment or organisational

hierarchies.

Additionally, the use of standard questions is recommended as an aid to the construction of
responsibility models. The questions suggested focus primarily on identifying the information

necessary to complete responsibilities and how this information flows between agents.

Information requirements are the main focus of Sommerville et al. [169] which highlights
a number of difficulties in determining the requirements for complex information systems,
especially when they are produced by assembling pre-existing (COTS) system elements. In
particular, conventional requirements capture methods may identify a type of information to
be recorded but fail to consider that different users of this information may require different
views. For example, in a hospital it is clearly important to capture information on patient
outcomes; however, the definition of ‘patient outcomes’ and exactly what information should

be captured differs between medical staff and the hospital management.



2.13. Responsibility Modelling 54

To address this, responsibility modelling is recommended as a method for early stage require-
ments engineering, as responsibilities provide a natural notion for capturing organisational
activity. An outline is given of how such models should be constructed, using a combination
of document analysis (of process descriptions, business plans etc.), stakeholder interviews

and ethnographic study.

Standard questions are once again recommended for considering information requirements
(adopted almost directly from Lock et al. [116]) and augmented with worked examples. The
examples highlight the range and also the subjectivity of this approach - some insights appear
obvious from the context (emergency planning requires a map of the area) while others have
been carefully refined from considering the model (late evacuation information means that

police officers must be briefed in the field by radio, but radio controllers will be very busy).

The process is completed by then translating the information requirements needed to complete
these responsibilities into functional requirements for an information management system.
No defined process or methodology is provided for this step, but examples indicate a focus on
ensuring high availability of information (degraded records are better than nothing) and stress

linking these functional requirements back to their original responsibility-based purpose.

Finally, Sommerville et al. [169] conclude with a self-evaluation of responsibility modelling,
arguing that it works as an effective tool for requirements elaboration and discussion with
stakeholders. The intuitiveness of the concept of a ‘responsibility’ is argued to be accessible
when discussing with system actors and stakeholders, as well as being broad enough to cover
a wide range of social-technical systems and a wide range of abstraction levels. It is also
suggested that responsibility modelling can be used in combination with other techniques,
such as using responsibility modelling for early stage engineering before elaborating with

goal- or viewpoint- based approaches.

The responsibility modelling notation was later revised by Storer and Lock [176], which
provides a further simplified set of entities and semantics (similar to, but not exactly matching
those in Lock et al. [116]). The modelling environment has been simplified, such as by
replacing information artifacts completely by resources while the concept of process flows
is eliminated entirely. Figure 2.14 shows an example responsibility model using a notation

similar but not identical to that defined by Storer and Lock.

The semantics of responsibility modelling are formalised by expressing them as Z specifica-
tions that define entity types and relationships. However, the specifications do not include any
dynamic rules; the behaviour of relationships under transformations is not specified. As a
result, the semantics can only be enforced if the responsibility model is completely static: the
behaviour of entities and relationships when the model is modified (such as by delegating a
responsibility) is not defined. At this stage, the authors report that they were still attempting

to formalise the approach is a consistent manner; their aim was to settle on agreed semantics
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for a subset of the notation before moving onto more difficult areas.

While most of the paper focuses on redefining and streamlining existing concepts the issue of
shared responsibilities is significantly expanded. Responsibilities assigned to multiple agents
can be explicitly serial or parallel; either requiring one agent out of several or requiring full
and joint action. Serial assignments can be further specified by defining the conditions for
changing from primary to secondary agents - such handovers of responsibility can occur due

to unavailability, overload or privilege escalation.

Several case studies and investigations were carried out using graphical responsibility mod-
elling. Sommerville et al. [170] investigated flood management schemes in Northern England,
which were under review after a series of large floods several years earlier. Unexpectedly,
floods quickly reached important civic buildings such as the fire and police headquarters,
which required fallbacks to offsite control and impeded communications. Sommerville et al.
focus primarily on the evacuation processes during this incident - this involves escorting
people from areas at risk of flooding to safer ground (in contrast to search and rescue, which

involves removing those already in danger).

By creating small responsibility models they identified important information resources

that were shared by multiple responsibilities assigned to multiple actors but were not kept
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updated and synchronised. As a result, actions taken by one organisation to aid another (e.g.
ambulances dispatched to assist the fire brigade) were unsuccessful, as they were directed to
the wrong locations. Responsibility analysis of the high-level evacuation plan also noted the
existence of a fundamental responsibility ‘Collect Evacuee Information’ that was not formally
assigned to any agents. While clearly vital to the plan, all organisations involved assumed that

this information would already be available without considering how it would be gathered.

Lock et al. [115] apply similar techniques to the 2007 Scottish elections, which were notably
the first major UK elections to use an e-counting system. This involved paper ballots being
filled out by voters which where then optically scanned and counted using recognition software.
By constructing responsibility models they were able to identify a number of vulnerabilities

and social issues, many of which had actually occurred in practice.

Analysis of the resources involved identified an interesting scenario where agents that did not
have any direct links were in fact utilising the same resource. The optical scanning machines
were being maintained (and often modified) by supplier’s technicians; meanwhile, observers
of the political parties were observing the machines and trying to produce an unofficial count
of votes. The technicians would therefore focus on their basic role of keeping the machines
operational, without realising this could raise concerns with the observers that the counting

was being manipulated.

Hazard keyword analysis also identified problems with responsibilities being discharged too
quickly. As the e-counting system was new, local authority staff had trained in its usage, and
become quite proficient. In contrast, party officials had almost no experience of the system
and so took much more time to understand its outputs. As a result, problems arose in the
adjudication process, where the meaning of unclear votes is decided. Council staff quickly
determined the meaning of these votes and processed them through the system, often before
party officials had an opportunity to examine the ballots themselves and potentially challenge
their intent. This problem was exacerbated by the system design that meant it was it was only

possible to return to the previous ballot, and not go any further back.

Generally, responsibility modelling at this time was focused on arguing for the advantages
of responsibilities as a modelling concept and creating an initial fully-featured modelling
language. While broad in terms of concepts, this notation was not consistent and never fully
formalised; different papers presented different views and different uses for the approach.
This lack of formality limited strong methodological approaches in case studies: useful
insights were generally obtained, but much of this may well have been possible with domain

knowledge alone.
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2.14 Conclusion

This chapter examined different techniques that can be applied to socio-technical modelling
and analysis. These techniques come from a wide range of backgrounds, ranging from formal

methods and safety analysis to organisational analysis and dependency engineering.

The techniques face a number of different challenges. Some focus on addressing the scale of
modern systems, addressing large organisations and inter-operating systems. Some handle
complexity - the need for precise definitions of complex, specific events and process. Others
address the need for abstraction - methods that are broad enough to cover the important
aspects of a system without being restricted by unnecessary or unknown details. More still
target the reasoning behind systems, focusing less on how systems operate and more on why

they are set up in their current form.

The broad range of techniques also highlight the strengths and weaknesses of particular
approaches. Formal methods offer rigorous checks and analysis that other approaches cannot
match, but their complexity can make them expensive to produce and unintelligible to many
users. Requirements engineering and business process models provide flexible and often
intuitive approaches, but with limited analytical power. Similarly, the inherent flexibility of
holistic approaches such as SSM is both a strength and a weakness, allowing wide applicability
while causing severe subjectivity in analysis. Safety analysis techniques show well-structured
approaches to analysis that don’t require the complexity of formal methods, but their applica-
bility outside of specific domains is unclear. Throughout all these methods there is a clear
lack of effective validation and testing, with limited evidence of the effectiveness of many

techniques.

As a result, different methodologies are suited to different applications and different problem
domains. Technical systems and well-defined process are suitable for more formal methods,
where the extra rigour can deliver useful analysis. Systems with uncertain behaviour benefit
more from more abstract methods, which capture and model the relevant elements without the
assumptions and over-precision needed by other techniques. There is no unifying methodology
of socio-technical modelling - the choice of methodology is dependent on the problem domain,
the modeller’s knowledge of the system and the intended outputs of the modelling and analysis
effort.

While no one technique can be universally applied, responsibility modelling does offer a
methodology with wide application. The concept of responsibility is abstract enough to
capture broad influences such as social pressures and legislation but can also be used to
intuitively capture details of low-level processes. This combination of abstract and concrete
responsibilities also allows effective modelling of the reasoning and justification for partic-

ular system choices. However, the technique is currently informal, without a fully defined
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semantics; this limits reproducibility and prevents tool support and formal checks or analysis.
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Chapter 3

Research Methodology

3.1 Introduction

The scale and complexity of socio-technical systems has significant implications for their
study and evaluation. The characteristics of socio-technical systems, as described at the start of
Chapter 2, mean that it is rarely possible to perform controlled and reproducible experiments
in the classic scientific style [156] as the resources required to construct and test multiple
variations of a large system are beyond the reach of most research projects. Additionally, it is
difficult to separate out the benefits gained from the experience of constructing a particular
system from the benefits of applying any methodology. Attempting to control specific
variables is also difficult, as socio-technical projects cannot usually be isolated from the
context they operate in. Therefore a tension exists in socio-technical research: in order for
a project to be realistic and representative of the real world it should ideally be an existing
project that is subject to scientific observation, but in order for a project to be adequately
protected from confounding variables it should be a specially constructed and controlled

study.

These problems all apply to socio-technical modelling and analysis. Models cannot be
effectively verified or evaluated if the socio-technical system cannot be accurately measured
or subjected to testing and examination; predictions made or issues identified by analysis

cannot simply be verified by changing the system and observing the resultant behaviour.

Popper [143] suggests that attempting to prove a model or theory as universally true is
unproductive, and that instead validation efforts should focus on increasing confidence in the

model by a series of empirical tests.

This argument may initially seem to only apply to individual models, rather than to the more
general problem of modelling techniques. However, the two are very tightly coupled. Firstly,

a Popperian view of modelling techniques can see individual socio-technical models as the
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outputs of a socio-technical modelling technique, and so evaluating the models provides an
empirical test of the modelling technique. Secondly, evaluating techniques in the abstract
is difficult, and so many studies indirectly evaluate techniques either by comparing them to

others, or by providing demonstration or case studies in the form of individual models.

Naylor et al. [132] aim to combine these varying stances on modelling validation by suggesting
a three-step process of verification. Firstly, a list of hypotheses about the system that are
represented in the model must be constructed, using the best information available to the
researcher. Secondly, these hypotheses should be individually tested in an attempt to verify
them as well as possible. For many hypotheses this may be difficult due to a lack of empirical
evidence, but it is not necessary to abandon hypotheses merely because they cannot be tested.
Thirdly, the ability of the model to predict the behaviour of the modelled system must be
tested. This may consist of making forecasts of future predicted behaviour, or by comparing
the predictions of the model from previous information against the actual outcomes. In

particular, they stress the use of good statistical tests on numerical data.

An accompanying critique emphasises the importance of understanding the purpose of any
specific model, as simulation models are generally used when other techniques are not suitable,
such as when modelling interactions between many processes. This makes the analysis more
specific - does the model fulfil the purpose for which it was created? If it doesn’t, the
underlying hypotheses are refined, and so the modelling and verification steps are combined

as an iterative process.

These challenges appear in most forms of research attempting to understand complex struc-
tures of human organisation and interaction; there are significant similarities to many areas of
the social sciences, and socio-technical systems thinking itself emerged as a social science
framework or philosophy. This leads researchers to mainly apply qualitative methods such as
case studies and interviews, rather than attempt to construct complex quantitative experiments.
These similarities also lead to the common adoption of research approaches and frameworks
that are inspired by other disciplines outside the natural sciences, such as action research

[197] and design science research [141].

It can also be difficult to determine which metrics define a ‘good’ socio-technical model or
modelling technique. Accuracy may appear to be the most obvious property that defines a
good socio-technical model, but accuracy can be difficult to judge - for example, is it the
representation of the system in the model or the results generated from the model that should
be tested for accuracy? It is also not clear exactly what the accuracy of the model would
be tested against, as each instance of a socio-technical problem has subtly different factors
and implications. An alternative approach is to assess models on some usefulness function,
attempting to judge how well they assist in the performance of some analysis, improvement

or validation task. This reflects the multiple uses for which different models and modelling
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techniques may be applied (for example, the differences between using a model for risk
analysis and using it for process improvement), but at the cost of generality as the usefulness
of the model in another context cannot be easily inferred. Assessing in terms of usefulness
is also subjective, as it reflects the intentions of the model user; for example, a model that
identifies security risks that require greater investment is unlikely to considered useful by
a manager who wishes to cut costs, even if the risk identification is accurate. This makes
effective evaluation of socio-technical models and techniques difficult - the purpose, criteria

and metrics that they should achieve are all varied or unclear.

This chapter explains the research methodology of this thesis, in the context of research
methodologies in socio-technical systems in general. This encompasses research structure
as well as individual research and evaluation techniques. The remainder of this chapter
is structured as follows. Section 3.2 surveys the research methodologies and validation
techniques of the papers previously studied in our literature review and identifies a consistent
lack of methodological validation techniques. Section 3.3 discusses metrics for assessing

socio-technical methodologies - what characteristics make a good model or a useful technique?

Section 3.4 considers research philosophies and their application to socio-technical study; in
particular, the arguments for against positivism and realism are explored. Section 3.5 examines
two research frameworks that often are applied in information science and socio-technical
modelling - design science and action research, and explores the differences and similarities
between them. Section 3.6 discusses case studies and interviews - two of the most common
validation methods in information modelling, with a particular focus on their application
to socio-technical problems. Section 3.7 then provides a comprehensive description and
discussion of the case study-based validation methodology that we apply in Chapters 6 and 7.

Finally, Section 3.8 provides an overview of the chapter.

3.2 Evaluation approaches in socio-technical analy-

SIS

A survey of the evaluation strategies described for each of the methods reviewed in Chapter
2 was undertaken. The purpose of the survey was to establish which methods were used in
practice for evaluating socio-technical modelling methods. The results of this survey were
used to inform the selection of an evaluation strategy for the current research. An overview of

the socio-technical methods examined and evaluation strategies used is provided in Table 3.1.

Yu’s original paper on i* does not include an evaluation of the technique [203], although
reference is made to a case study by Briand et al. [22] using a variation of the actor-dependency

notation. This involved a study of maintenance processes at the NASA Software Engineering
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Modelling Method Main Evaluation Strategy

* Case studies

KAOS Worked examples

Responsibility Modelling | Case studies with comparison

MORT Collection of case studies

HAZOPS Extensive use / Comparisons to other techniques
STAMP Worked examples

Figure 3.1: Modelling methods and evaluation strategies

Laboratory, using an existing audit methodology developed by Briand et al. [21] and adapted
to use actor-dependency models. This provides a structured approach for examining the
maintenance processes, but the construction of the actor-dependency model does not appear
to follow any defined methodology. Validation of the model was performed by interactions
with stakeholders during the process improvement process. Similarly, the extension of i*
to model trust by Yu and Liu [204] demonstrates the new features using examples drawn
from a case study. However, the efficacy of neither the model or the extension are evaluated.
Furthermore, there is no structured evaluation of the methodology in papers discussing i*
security analysis [112], e-service design [68] or in Yu’s own thesis [202], which all use case

studies for demonstration.

No validation is described in the original KAOS paper [36] of either the applicability or
usefulness of the notation, although a well-structured methodology for using the technique
is presented. The classic KAOS meeting scheduler case study [189] mentions the use of
operational scenarios for validation purposes, but gives no real details of how these were
applied. They note several elements of the problem domain that they were not able to model,
without a discussion of how that effects the accuracy of the model. Extensions of KAOS
such as mappings to BPM [101] and to VDM [131] are also unvalidated. An application of
KAOS to scalability requirements [47] provides some evaluation of the technique based on

comments from domain experts, but does not appear to use a structured methodology.

Sommerville et al. [169] present a set of criteria for evaluating requirements engineering
techniques and use these to informally assess their responsibility modelling method. Else-
where responsibility modelling is either presented without reference to validation [175] or
is demonstrated using case studies that are validated against system operation and previous
events [170].

In the field of safety-critical systems the need for validation is more apparent. The MORT
[94] method drew on existing knowledge from fault trees techniques, and was evaluated
through a collection of case studies of previous accidents. The evaluation compared the set of
contributing factors to accidents identified through MORT with those identified by existing

techniques used in accident reports and found that MORT detected all contributing factors
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identified by previous methods as well as detecting additional contributory factors. However,
the details of the specific case studies and existing techniques chosen for comparison are
not stated, which obstructs reproducibility and potentially reduces the generalisability of the
study. The HAZOPs method has been tested by decades of application in the industrial sector
[182]; Dunjo et al. [48] report in their HAZOPs literature survey that validation of HAZOPs
was mainly carried out by comparison with other techniques and the reporting of industrial
experience. For example, Hoepftner [79] compared HAZOPs to fault trees and FMEA, while
Sweeney [183] provides insights from many years of experience applying HAZOPs in a

chemical company.

STAMP [109] is a safety analysis technique drawing on system theory; the original paper
demonstrates the technique and notation through a case study, but does not validate either
the case study or the technique itself - occasional references are made to a NASA incident
report, but these are primarily used as a data source, rather than as validation. FRAM likewise
provides demonstration of the technique through worked examples [80], but does not validate
it. This lack of validation in systematic accident models was the subject of a study by
Underwood and Waterson [186]. They study the STAMP, FRAM and Accimap techniques,
and identify a lack of formal validation and evaluation of usability and reliability across all
three techniques. They note the use of case studies to obtain empirical validation of systemic

accident models, but state that this is still ‘far from extensive’.

The lack of a consistent approach to model and modelling validation is clear; many models
and techniques are not validated at all, while case study demonstration and validation is by far
the most common method used to establish confidence in models and techniques. Different
variations of case study validations are used, ranging from demonstrations of the technique,
validation based on the modeller’s own experience and to more elaborate studies where models
are produced and then validated against previous system deployments and incidents or are

compared to the results of other, more established analysis techniques.

None of the studies cited directly attempt to argue the validity of their technique from first
principles, instead relying on more indirect forms of proof or confidence. This structure
broadly corresponds to the three-step process of Naylor et al. [132] : firstly a general un-
derlying framework or philosophy for the technique is constructed, generally using existing
research (such as systems theory in STAMP, or the concept of responsibilities in responsibility
modelling); secondly, a general argument is made as to why that underlying concept is useful
(such as the emergent properties of system theory, or the intuitiveness of responsibilities);

thirdly, examples and case studies are used to show the technique can be used effectively.

These studies contain many subjective elements that limit confidence in the correctness of
the models or techniques; in particular, the choice of case studies can hide the weakness

of methods in particular areas, and few methods are systematically deployed by modellers
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other than the method’s creators. However, validation and verification in the socio-technical
space is an inherently difficult problem and incremental increases in confidence are the best

validation strategy available.

3.3 Criteria & Metrics

Baxter and Sommerville [11] note that socio-technical methods are rarely evaluated for their
efficacy, and that reports of successful use are ‘comparatively scarce’. They also argue that an
important barrier to assessing the success of socio-technical methods and projects is a lack of
suitable evaluation criteria, especially considering the social aspects of systems, and that the

wide range of stakeholders leads to multiple different viewpoints on ‘success’.

Sargent [154] provides a contemporary overview of verification and validation methods for
simulation models. They describe a wide range of validation techniques, which vary in
complexity from simple visual displays to complex statistical tests. Validation techniques that

are suitable for socio-technical problems include:

e Comparison to other models - the results and outputs are compared to those of other

models that are already accepted as valid

e Event validity - Simulating events in the model delivers similar results to real-world

events

e Face validity - asking knowledgeable system experts to assess the reasonability and

accuracy of the model

e Historical data collection - historical results (that were not used to design the model)

can be used to test model predictions

e Predictive validation - the model is used to forecast system behaviour, which can then

be observed

e Turing Tests - experts are presented with a scenario and two different results, and asked

to determine which result comes from the model and which from the real system

Not all techniques can be applied to particular socio-technical problems. In particular, socio-
technical models may focus on the behaviour of a system under specific circumstances which
may not regularly occur in normal operation (indeed, analysing such unusual circumstances is
a common use case for socio-technical modelling). This severely limits the use of predictive

validation and reduces the amount of data available for historical predictions. Expert-based
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analyses such as face validity checks are more widely applicable as long as access to experts

is available, and model comparison is highly useful in well-studied domains.

Sommerville et al. [169] provide a list of potential criteria for evaluating requirements engi-
neering methods as part of their work on responsibility modelling, although their technique

overlaps heavily with socio-technical analysis. These are:

e Naturalness: Can stakeholders (without experience of the technique) understand the

models?
e Applicability: Can the method be applied across a wide range of domains?
e Scalability: Can the approach scale to model large, real-world systems?

e User involvement: Have end-users been involved in the development of the notation

and the models?

e Complementarity: Does the method compliment other techniques?

None of these criteria directly address either the ability of a technique to produce accurate
representations or the usefulness of models for a particular intended purpose; they address
secondary characteristics of the technique such as usability and breadth. However, there are
clear advantages from using techniques that meet these criteria. For example, scalability is
vital for any model intending to capture a large-scale system, while complementary methods
are necessary for any technique being deployed as a part of a larger project lifecycle. Con-
versely, a method meeting very few or none of these criteria is unlikely to be of practical use,

regardless of the intended purpose.

Costello and Dar-Biau [34] suggest a set of metrics for requirements engineering based on
a lifecycle approach, addressing such issues as volatility of requirements, traceability of
requirements and detection of defects. These metrics are intended for assessing full require-
ments engineering processes, rather than modelling notations or single-stage methodologies
and so their applicability to the specific area of socio-technical models is somewhat limited.
However, it is clear that for a socio-technical modelling technique to be of use in requirements

engineering it should support the overall process in meeting these types of metrics.

Three of these metrics are particularly relevant to socio-technical modelling. Requirements
traceability requires the ability to trace individual requirements to both their high-level
rationale and their lower-level specialisations or implementations. Socio-technical modelling
techniques can support this by providing explicit mechanisms for relationships such as
decomposition, specialisation and abstraction, and by enabling references to source documents.
Requirements completeness requires the ability to determine and specify requirements at

multiple levels of detail, and to indicate when the appropriate level of abstraction has been
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reached. This requires modelling techniques that are capable of handling these multiple
levels of abstraction and that can easily match high- and low- level details. Finally, integrated
progress requires processes and tools that can operate collaboratively with common structure
and terminology; in socio-technical modelling terms this corresponds to Sommerville et al.
[169]’s ‘Complementarity’.

3.4 Research Philosophy

Philosophy of science is concerned with the underpinning foundations of science, such as
defining what activities can formally be defined as science, analysing different forms of
scientific reasoning and considering the nature of scientific truth. Many of these topics are still
subject to significant debate amongst philosophers without a clear resolution, and generally
not considered relevant to the day-to-day conduct of scientific research [136]. However,
there are two main areas of research philosophy that are particularly relevant to the study
of socio-technical systems, and that may influence a researcher’s choice of approach and
methods. These are the debates around positivism, especially outside of the natural sciences
(often contrasted with interpretivism) and the distinction between realist and anti-realist

interpretations of scientific theories.

Positivism is a school of thought that argues that (completely certain) knowledge can only
be based on natural phenomena and hence that observations of such phenomena form the
only valid basis for scientific knowledge. In this sense, positivism draws from empiricism,
where scientific observations are the only acceptable base for scientific theories. As such,
they reject the role of intuition and a priori (based on entirely on logical reasoning) arguments.
Positivism and its variants are implicitly are accepted and applied in most scientific research.
However, classical positivism has several vulnerabilities. For example, mathematical proofs
do not rely on any observations of experience; they are purely a priori arguments. Positivism
would therefore imply that mathematical proofs are not scientific, but mathematics is almost

universally accepted as a science.

In philosophy of science, critiques of positivism have lead to the development of new theories,
such as post-positivism which attempt to retain the desirable features of positivism while
acknowledging its original shortcomings. Post-positivism acknowledges that scientific re-
search is not truly neutral, and that characteristics of the research or researcher can influence
the observed evidence. An important contribution is Popper’s [143] argument in favour of
falsification as opposed to verifiability, which addresses the problem of theorising about
unobservable or unmeasurable phenomena. Post-positivists still favour obtaining scientific

evidence by conventional experimentation, but acknowledge that other approaches may also
be valid.
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In the applied and social sciences positivism can be considered to be opposed by anti-
positivism, which critiques the use of the classic scientific method in these fields. This suggests
that social behaviour is inherently subjective, and can only be understood in conjunction
with theories and concepts. This makes it impossible to collect scientific evidence and then
construct a theory that explains this behaviour; the evidence can only be understood and

analysed in a certain context.

A related debate surrounds the topic of realism - whether or not scientific theories attempt
to explain the objective truth of their subjects, or instead should be treated only as effective
predictions. In particular, this debate applies most strongly where certain aspects of a
scientific theory are not directly observable. For example, in the Standard Model of particular
physics protons and neutrons are formed of quarks; elementary particles that cannot exist
independently. A realist interpretation of the Standard Model argues that particles really are
made of quarks, even though this cannot be directly observed; an anti-realist interpretation
suggests that the theory of quarks is simply a mathematical model that very accurately predicts
the behaviour of particles - it is irrelevant as to whether this is ‘true’, as long as the model

proves effective in prediction.

The realism debate ranges across a wide spectrum. Many definitions of realism admit the
possibility that scientific theories may not be objectively true; for example, it is now clear
that classical models of the atom such as the ‘plum pudding’ model are false, and that there
is no reason not to believe that currently accepted true theories will become obsolete in the
future. However, most realists would argue that the development of an objectively true theory
is possible, even if present theories are not. An extreme form of anti-realism, instrumentalism,

argues that there can be no truth beyond what is observable [136].

Particularly relevant to socio-technical studies is the recent concept of model-dependent
realism, as stated by Hawking and Mlodinow [72]. Considering the increased use of scientific
modelling, they argue that reality is considered by using observations to construct rules and
theories, which construct models. Situations may arise where multiple models accurately de-
scribe the same phenomena; for example, both Newtonian and Einsteinian physics accurately
describe low-speed motion. Conversely, a model may not accurately match all observations
within its applicability; for example, the Standard Model predicts that the universe should
consist of equal amounts of matter and anti-matter, but the observable universe is believed to

consist disproportionately of matter.

Hawking and Mlodinow argue that it if there are multiple models that agree with observations,
then there is no purpose to examining which is objectively true. The idea of objective truth
is not completely rejected, but it is acknowledged that it may be impossible to determine.
Therefore, scientific models should be judged on how accurately they predict phenomena and

match existing observations, without considering whether they are ‘true’.
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A certain level of anti-realism is implicit in most socio-technical research. A socio-technical
model (such as a responsibility model or a STAMP instantiation) is clearly not intended to be
a literally true depiction of a system; it is an abstraction constructed to gain an understanding,
present the important features or enable an analysis. In socio-technical analysis the aim is to
make accurate and useful predictions, such as determining the potential causes of a failure
or the performance of a sub-system. The principles of this analysis are based ultimately on
knowledge obtained from observation; for example, an abstract concept such as the overload
of a system is derived from observations that systems often fail when handling an excessive
number of tasks. These principles should then hold predictive power, and further studies can
test whether or not the predictions are in correspondence with the observed behaviour of a

wider range of system.

Overall, most socio-technical and information science research can be considered to adopt
a broadly post-positivist approach. The scientific method is adopted, and the interpretivist,
subjective approach is broadly rejected. Individual studies or observations can certainly be
subject to bias and subjectivity, and different interpretations can produce different results.
However, a synthesis of studies can still meet the scientific standard. An approach similar to
model-based realism is implicit; models and rules for behaviour are constructed and tested,
and it is acknowledged that multiple techniques can provide similar predictive power, although
certain techniques may be more effective in certain domains or when considering certain

behaviours.

This philosophy has implications for the choice of research methods in socio-technical
study. The level of interpretation required should be strictly limited; this encourages the use
of experiments where possible and case studies (performed in an objective way, focusing
on the observed facts) where not, alongside the use of simulations and model predictions
[63]. Methods that grant the researcher subjectivity should be avoided. The difficulty of
experimentalism in socio-technical systems of non-trivial size has already been discussed, so
techniques that allow the impartial observation of socio-technical systems (such as participant

interviews, direct observation, case studies through document analysis etc.) are optimal.

3.5 Research Frameworks

As discussed earlier, the conventional experimentation-based scientific method is usually
impractical for studying socio-technical systems, due their scale and complexity. Instead,
other research frameworks offer principles and methodologies that are more suited to research
where elements of the system cannot be controlled, and where the process of performing
a study is itself part of the research outcomes. Two particularly relevant frameworks are

action research [123] (a dynamic approach that blends the roles of researcher and research



3.5. Research Frameworks 69

participant) and design science [141] (a methodology that focuses on the construction and

evaluation of a specific artifact).

3.5.1 Action Research

Action research is a research framework that combines the roles of researcher and participant;
research is carried out about some problem, while the problem is actively addressed as the
research is ongoing. As a consequence the nature of the problem may change during the
duration of the research. In particular, it is often used by professionals for investigation and
improvement of their own working practices [134]. This breaks down the traditional divide
between research (attempting to understand the problem) and action (trying to fix the problem,
usually based on a body of research-based evidence) [197]. Inquisitive research is performed
with the direct intent of causing change using an iterative cycle such as Observe, Reflect, Plan,
Act, Evaluate [123].

This leads to a dynamic structure of research where ideas are quickly generated and then tested
by applying them directly to the problem and analysing the resulting changes. Action research
is not tied to any specific set of methodological techniques; different research methods and
techniques can be applied within the framework of action research. Action research is by
definition highly subjective and often unreproducible; defences to the validity of action
research range from the use of ‘validation meetings’ with other participants/researchers [123]
to Marxist theory rejections of universal truths [197]. Action research (particularly in the
context of information systems) functions similarly to consulting, which raises practical and

ethical issues [9].

This form of ‘classical’ action research is the most common in information systems research.
Supporters of action research such as Baskerville and Wood-Harper [10] make strong argu-
ments for its widespread use: ‘“Where a specific new methodology or an improvement to a
methodology is being studied, the action research method may be the only relevant method
presently available’. However, the acceptance of action research in computing is still widely
debated [134]. ‘New action research’ is common in other fields, and places greater emphasis
on the individual and moral outcomes of the research process, and less on delivering broader

contributions to the body of knowledge [134].

There is a long history of action research being linked with socio-technical systems - Mumford
[129] states ‘The story of socio-technical design is closely allied with action research’,
although this link is more philosophical (both action research and early socio-technical studies
were concerned with a participatory approach to change, especially in industry) rather than

implying consistent use as a methodology.
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3.5.2 Design Science

Oates [134] defines the ‘Design and Creation’ research strategy (also known as design science),
where the purpose of the research is to create an artifact. Artifacts can be systems such as
computer programs, but also instances such as system models. Additionally, methods and
methodologies can themselves be treated as artifacts and the development of methodologies
falls under the design and creation paradigm. A typical design science project may consist of

five iterative steps:

e Awareness: the recognition of a problem or opportunity to be addressed

Suggestion: the leap to having an initial idea to address the problem

Development: the implementation of of the idea and construct of an artifact

Evaluation: the assessment of the value and worth of the artifact

Conclusion: the consolidation of the research, and examination of unexpected results

Similar structures are used throughout design science; Peffers et al. [141] study seven different
papers that propose broadly comparable processes and objectives, before constructing their
own process that consists of six steps: Problem Identification, Solution Objectives, Design and
Development, Demonstration, Evaluation and Communication. Notably, their process differs
by suggesting that research need not start at the first of these steps - for example, observing
a useful solution in practical deployment may lead to a post-hoc analysis of its origins and
development process. They also observe a surprising lack of application of design science in
information science domains such as requirements engineering, which they attribute at least

partially to the lack of well-defined methodologies.

In design science, the evaluation of the artifact can be contentious, and varies between
disciplines. In computing science, artifacts may not be subject to rigorous evaluation - the
aim is demonstrate a proof of concept that justifies the initial idea, and the testing of the
proof of concept may not be considered interesting. Alternatively, ‘proof by demonstration’
evaluation involves limited evaluation of the artifact, where a suitable evaluation technique
is used but on a limited scale. For example, a model may be tested using a small example
that is not as complex as real-world scenarios, or evaluated by academics and students rather
than actual users. In contrast, information science researchers place more importance on

real-world evaluation, such as case studies or action research.

Despite coming from different backgrounds there are clear similarities between action research
and design science. Jarvinen [92] compares the fundamental characteristics of design science

and action research, and notes a very high similarity between both approaches. For example,
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both focus on action (or building) and evaluation, both generate knowledge that benefits
practice and both focus on assessing products and changes in terms of utility. In contrast,
Iivari and Venable [85] label action research and design science as ‘decisively dissimilar’.
They note the significant ontological and epistemological complexity within action research,
which is discussed less frequently in regards to design science. They also note that action
research is often carried out in order to understand existing reality, while design science by
definition seeks to produce new and innovative solutions. While there is significant scope for
action research and design science to be used together for mutual benefit, they conclude that

many similarities are superficial and they remain clearly distinct approaches.

3.6 Research Methods

Evaluation of models and modelling techniques require evidence to assess the accuracy or
utility of the model or techniques. The most common way to obtain such evidence in socio-
technical modelling is to conduct a case study - an examination or application in a specific
problem domain. Numerous methods can be used to gather information for a case study,
including analysis of records and documents, direct observation of the system and interviews
with system participants and stakeholders. Interviews are particularly notable as they can be
used both to gather information for a case study and for evaluating case studies, such as by

presenting models to domain experts.

3.6.1 Case Studies

Yin [200] defines a case study as an inquiry based on two main points:

e A case study investigates a complex contemporary phenomena within its real-life
context, especially when the boundaries between phenomena and context are not clearly

evident.

e A case study copes with the distinctive situation where there will be many more
variables of interest than data points, and hence relies on multiple sources of evidence

with data needed to converge in a triangulating fashion.

In particular, case studies are useful where ‘the investigator has little control over events’
[200] and where an experimental approach is impractical, which fits well with the scale
problems of socio-technical analysis. Yin writes with regard to the use of case studies within
the social sciences, where the aim is to investigate some scenario, and either explore, describe

or explain it. Oates [134] notes that in computing science disciplines the term ‘case study’ is
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often used to mean the application of a particular technique or method to a particular scenario,
often not representative of real-world activities. This is in contrast to the more widespread
use of case study research, which examines the complexities of real-world issues. Many
case studies in requirements engineering and systems analysis fit this narrower definition,
where a model of a system is produced without attempting to compare it to real-world
practice. Instead, the production of the model (often accompanied by some form of analysis
of vulnerabilities, design options or a discussion about the application of the technique) is

intended to demonstrate the technique and show it can be applied in that particular context.

Oates [134] further distinguishes between three types of case studies:

e Exploratory case studies, which are used initially to identify areas of research for further

study

e Descriptive case studies, which provided detailed analysis and a narrative around the

context of the study

e Explanatory case studies, which seek to identify the causes and factors that cause

particular outcomes

Critiques of case study research contend that case studies cannot be generalised beyond a
single example, and state that they should be used only as the initial part of a study [1].
Flyvbjerg [61] aims to rebuke this and several other common misconceptions about case
studies. He emphasises that single case studies are perfectly capable of falsifying pre-existing
theories, and that case studies contribute to widening the body of scientific knowledge.
Flyvbjerg also attempts to rebut the potential subjective bias of case studies by demonstrating
that published case studies tend to focus on falsification, rather than validation. Ragin [147]
notes that small-scale studies provide the flexibility to reconsider and adapt based on the

experience of the study, which may be lost in larger research.

A common feature in case studies is the use of ‘archival analysis’ [200] , where analysis is
performed by studying existing documents and data sources without directly observing events
or communicating with the individuals involved. Case studies may use archival analysis
techniques for a significant proportion of their content - this may range from the use of
documentation to define initial hypothesis and points of interest, or documentation may be
used to construct an elaborate world view or model that is then examined by participants
or compared to direct observations. Oates [134] notes the advantages of document analysis
as information can be obtained quickly and easily, and can provide information that would
not otherwise be available (for example, historical details). However, official documents can
be particularly vulnerable to large differences between documentation and reality. Wohlin

et al. [199] notes that archival data consists of materials that were not initially intended for
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research use and may be of variable quality, although more direct forms of information also

have disadvantages.

There are also overlaps between case study research and action research - both involve a
careful examination of a particular system, generally with the hope of generalising results
more widely. Action research differs from case study research in that action research also
involves the process of making change within the system as part of the research process, while

case studies are purely observational [199].

3.6.2 Interviews

In interview-based data collection participants are asked a series of questions about the area
of research. Tightly structured interviews (like face-to-face surveys) may collect primarily
quantitative results, but interviews can also be primarily qualitative in nature. This allows them
to generate ‘rich’ or ‘compelling’ data drawing on the personal experiences of the participant,
and is ideal for illustrative examples [66]. In particular, this can capture subtle nuances that
would not be detected by bulk collection techniques, and can be used to understand why
individuals act or feel in a particular way (rather than just how they act). However, care must
be taken that individual accounts are not overgeneralised or assumed to represent an entire
group.

Interviews are classically grouped into three types: open, semi-structured and structured,
referring to the level of pre-planned structure enforced on the interview by the researcher. In
case study research it is common to use semi-structured interviews in preference to open or
structured interviews [199]. According to Gillham [66], the semi-structured interview has

these defining characteristics:

the same questions are asked to all participants

the form and type of questions are developed to ensure focus

prompts are used to cover areas that are not spontaneously addressed

participants are interviewed for broadly the same time

questions are open, without leading the participant

probes are used to elicit additional comment from the participant

Semi-structured interviews generally consist of a series of open questions that cover the
relevant areas of interest, combined with short prompts that correspond to sub-areas covered

by that question. Participants may naturally cover all areas of interest in their response to the
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main question; if they do not, the interviewer uses these prompts to redirect the participant
to the missing sub-area. This requires the interviewer to have evaluated the relevant areas in
preparation before the interview in order to ensure the correct coverage, ideally by means of a

pilot study. Analysis of the interview results is performed after transcription.

Semi-structured interviews provide a balance between the breadth of open interviews and
the consistency of structured interviews; this can provide the benefits of easier analysis
and consistent coverage associated with structured interviews, while retaining much of the
richness of unstructured interviews. However, they require a significant time investment in
both interview development (question and focus) and post-interview analysis (transcription
and evaluation) and can be reliant on the skill and experience of the interviewer to obtain

useful results.

3.7 Evaluation Methodology

The primary contribution in this thesis is the development of a formalised responsibility
technique, with an updated notation and significantly expanded automatic and semi-automatic
analysis techniques. We evaluate the extent of this contribution through two case studies and
one explorative study of modellers. These experiments are used to assess the extent to which
formalisation eases the modelling process and provides more consistent results. The focus
of these studies is to identify the strengths and weaknesses of the formalised responsibility
modelling notation and the related analysis techniques. These are both intrinsic features of
responsibility modelling, and represent both its most significant elements and the hardest
elements to adapt if they are proven unsuitable. In contrast, the procedure and style for
constructing models is only of secondary importance, as this can be substantially modified

without changing the core of the technique (and will vary between individual modellers).

Several areas of the modelling and analysis techniques are particularly important, and these are
the primary focus of our studies. The modelling notation should be flexible enough to capture
the full range of socio-technical behaviour without becoming overly convoluted or unintuitive.
However, it should also be powerful enough to capture the detail of complex responsibility
structures where necessary. Similarly, they should also be relatively easy to comprehend and
construct without requiring a full understanding of the underlying semantics. The analysis
techniques need to present consistent results that broadly correspond to real-world problems
or that are supported by domain-specific analysis methodologies; these results should also be

able to be interpreted effectively without requiring excessive domain knowledge.
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3.7.1 Research Strategy

Our evaluation of formalised responsibility modelling consists of three studies - two case
studies (featuring the modelling and evaluation of a specific domain) and one hybrid case study
/ empirical evaluation (participants model a specific domain, and then discuss and evaluate
responsibility modelling as a technique). Each study evaluates particular characteristics and

applications of responsibility modelling, while also demonstrating its use in a specific domain.

The first case study re-examines a problem previously modelled by the InDeED consortium
using a previous version of responsibility modelling - the Hunterston Nuclear Power Sta-
tions Off-Site emergency plan. The primary aim of this study is to compare the results of
formalised responsibility modelling against the existing state-of-the-art, and demonstrate that
the revised technique is at least as effective. Additionally, we show that the extensions in our
technique (in particular, the automatic analysis techniques) provide additional insight that

earlier responsibility modelling did not.

The second case study models a specific problem domain (the TCAS aircraft collision
avoidance system) and then examines the resulting model with domain experts. This study
has two main purposes - firstly, an examination of how well responsibility models can be
understood by domain experts and used to elicit comments and design changes; secondly, an
evaluation of the accuracy and utility of responsibility modelling analysis results by domain

experts.

The third study aims to investigate the usefulness of formalised responsibility as a constructive
technique by requiring non-expert participants to construct responsibility models of a specific
domain. Responsibility modelling (like many similar socio-technical modelling techniques)
has rarely been applied by modellers other than the creators of the technique; this study exam-
ines whether responsibility modelling is an understandable and effective enough technique to

be applied successfully without specific experience with the technique.

3.7.2 Case Study Methodology

The research methodology used for the case studies in this thesis is broadly similar to
that in previous responsibility modelling approaches such as Sommerville et al. [169]. In
their studies, three main techniques are used to elicit information about the problem domain -
document analysis, stakeholder interviews and field observations, which each provide different
perspectives. Document analysis allows effective elicitation of planned responsibilities
(expected behaviour and planned duties), while field observations provide a clearer view of
operational responsibilities that may not be formally defined but emerge in response to events.
Stakeholder interviews provide a mix of both, indicating how formally defined responsibilities

meet with operational reality.
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The purpose of these case studies is two-fold: the case studies should demonstrate that
responsibility modelling can be effectively applied (in that it can accurately model a range
of domains) and demonstrate that it can produce useful analysis and modelling insights for
real-world situations. These two outcomes are interlinked - analysis results can only be
valid if the model is an accurate (if abstract) representation of the problem system, but the
accuracy of a model is itself best tested by considering the model’s outputs. This requires a
methodology that is able to validate some of the outputs of the modelling process in order to

gain confidence that the other, novel outputs of the modelling are valid.

To address this, our methodology requires the use of different information sources; models
are constructed based on one category of domain information and are then validated using
a different source of information. There are no particular constraints on what types of
information can be used at each stage, but we generally begin by using definition documents
(manuals, guides, specifications etc.). These types of documents have the advantages of being
generally easy to obtain (often being in the public domain), containing substantial detail and

describing the ‘by the rules’ operation of the system.

Having acquired suitable documents we begin by constructing a responsibility model repre-
senting the systems described in the documents. It is important that the model is constructed
as much as possible based on the selected source documents, rather than using other resources
or relying on the modeller’s own background knowledge. This aims to limit the subjectivity
of the modelling process, improving reproducibility and ensuring that analysis results can be

linked back to the original sources.

Having constructed an initial model we then move to validate it by using other sources
of information. A wide range of sources can be used depending on the particular domain
- stakeholder interviews, field observations, incident reports and academic studies are all
possible choices for validation. The use of data generation methods at this stage provides
method triangulation [134], which increases confidence and validity in the results of the study.
Validation can be performed either interactively or non-interactively. Interactive validation
involving domain experts provides the broadest range of validation options, as it can be used
to validate either the model itself (by inspecting and discussing it) or the analysis results from
the model (by discussing the accuracy and relevance of the results). This tests the model’s
face validity (according to Sargent [154]) and may provide useful comments and critiques for

further revisions to the model.

Non-interactive validation is generally limited to comparing the results of model analysis with
analysis results and reported behaviour from other sources, although it may be possible to
compare the model with organisational charts or other types of model. This corresponds to
the third step of Naylor et al. [132]’s validation process, by testing the model’s output against

previous occurrences, as well as Sargent’s notion of historical data collection.
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Validation should be used to gain confidence in the model, and to make any necessary changes
in light of the extra evidence. Analysis of the model should be performed at each stage of
the case study, firstly using the initial model derived from document analysis and then using
each revised model. If the model is valid, the concerns, vulnerabilities and incidents reported
in secondary sources should match those raised from analysing the model. This provides
confidence and suggests that non-replicated analysis results are also valid. If the results of
analysis do not match those in the secondary sources but are not contradicted by them then
the situation is unclear, as they may represent issues not previously detected, or they might
simply be inaccurate results created by an unrepresentative model. Contradictions between
modelling results and the actual system may represent the gap between the ‘on paper’ and
real-world definitions of the system rather than flaws in the modelling process. However,
consistent contradictions between modelling results and reported issues may mean that the

model has not correctly captured the behaviour of the subject.

This form of case study approach does not necessarily tend towards a clear moment of
conclusion. Multiple rounds of model revision and validation may be performed, leading
to an iterative cycle of increasing confidence in the validity of the model. This cycle may
be brought to an end due to diminishing returns at each iteration; alternatively, it might be
halted by a lack of new sources to validate it. The experience of performing the modelling and
evaluation process can be as valuable as any concrete end results (a finished model, results
of analysis etc.) and the final write-up of the study should provide a clear narrative of the

learning points for both the modelling technique and the domain being modelled.

This methodology can broadly be classified as design science or design and creation, although
there are some significant differences. The initial stages of design and creation are of
considerably lesser importance in our methodology; the awareness and suggestions stages are
reduced essentially to the decision as to whether or not the technique is a suitable fit for the
specific problem domain and that there is potentially some interesting behaviour to be studied.
The development and evaluation stages are more tightly linked; in the design and creation
framework the five steps are not necessarily carried out in order and are often iterative - in
our methodology the development and evaluation must be carried out in that order, although
the pairing is highly iterative. Compared to classical computing science this technique puts
greater emphasis on the use of evaluation methods that correspond to real-world behaviour,

and encourages the validation of the model using a range of techniques.

Although our methodology is not a direct application of action research it also takes several
strong inspirations from that framework. Our methodology does not adopt a strong separation
between model construction and model analysis, as both feed strongly into each other. Model
construction itself often provides insight into the target system, while analysis detects uncer-
tainties and ambiguities in the model that should be quickly corrected. Like action research,

our methodology produces research outcomes at each stage of the modelling and analysis
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process, rather than generating only final results at the last step. Likewise, the iterative
modelling and analysis steps enables a process of continuous improvement where research
can continue as long as new results are achieved; this iterative approach and flexibility is

fundamental to action research.

The methodology described here is used to validate individual responsibility models of
specific domains. However, responsibility modelling itself is also a (very abstract) model,
representing a generic system of responsibilities, actors and resources. Certain aspects of
responsibility modelling can be considered as model outputs that should be validated, such as
the warnings generated by the use of analysis techniques. These results underpin a core part
of the responsibility modelling methodology, and it is important that sufficient confidence in
their relevance can be obtained. In the context of design science the responsibility modelling
methodology, notation and analysis techniques can all be treated as research artifacts, and

should therefore be subject to a structured process of evaluation.

However, we do not seek to validate responsibility modelling in general using a similar
technique to this methodology. Firstly, the usefulness and applicability of responsibility
modelling in general has already been argued and demonstrated by previous researchers, from
which our formalisation directly follows. Secondly, attempting to apply a structured validation
approach to such an abstract system model is impractical, as it is not possible to observe a
real-world responsibility structure without also capturing abstraction-breaking detail; other
validation techniques such as comparisons to other modelling methods are more practical.
Instead, performing structured validation of individual responsibility models has the indirect
effect of increasing (or decreasing) confidence in responsibility modelling as a whole, and in
particular its ability to be applied in particular domain areas. We adopt this strategy in addition
to other potential approaches to avoid some of the classic problems arising from ‘proof by
demonstration’ evaluations that attempt to directly evaluate design methodologies but are
rendered invalid by failing to address the true scale of real-world problems or to sufficiently

involve actual practitioners or domain experts.

3.7.3 Threats to Validity

This type of methodology is subjective, and naturally induces threats to validity. During an
iterative modelling process it is inevitable that shortcomings in the model will be detected
and corrected. However, if handled inappropriately this can lead to flaws essentially being
hidden, giving a false appearance of the final model as error-free. This should be mitigated
against by documenting the changes made during each cycle of modelling and analysis, and
by publishing not just the final model, but the working versions used at each stage. Conversely,
a study that does not detect any interesting problems may be considered unproductive and

uninteresting, as it appears that the modelling and analysis technique has failed to deliver any
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results. In these cases, a comprehensive discussion of the modelling process and the multiple

stages of elaboration remains an important contribution.

It is also important to distinguish between mistakes in performing the modelling process (such
as mis-interpretation of a document section) and inherent flaws in the modelling technique or
notation. Model changes to correct mistakes in the light of new evidence are to be expected,
but are different from making changes due to the modelling notation’s inability to capture
a particular type of behaviour. Again, the modeller should be as explicit as possible when
describing their changes, and changes made without justification should be treated with
scepticism. Socio-technical analysis methods suffer from a general problem that there is a
tight coupling between modelling experience and domain experience, and it may not be clear
if insights are derived directly from the modelling process or from general knowledge of
the domain. This is partly addressed by the methodology’s focus on using specific source
materials at each stage, which tightens the focus and limits the temptation to build a general
model from background knowledge. Deviations from this should carefully controlled, and

based on a genuine expressed need, such as an absence highlighted in a stakeholder interview.

3.8 Conclusion

Numerous techniques and notations for modelling socio-technical have been developed, and
the literature contains a rich range of works based on different conceptual backgrounds and
different intended problem domains and modelling outcomes. However, validation of such
models remains an important problem. The difficulty of testing models that simulate or
predict complex, uncontrollable or unreproducible behaviour has been acknowledged for
more than fifty years. From first principles it is argued that validation techniques should
attempt to increase confidence in the accuracy and usefulness of models for their specific
intended purposes; the metrics used to judge the quality of a model follow from that purpose,
although the overall validation methodology should be clearly defined.

A survey of modelling and validation methodologies in socio-technical modelling, require-
ments engineering and safety analysis has revealed a lack of any consistent application of a
formally defined validation methodology, while many publications make no use of validation
techniques at all. However, many of those that do implicitly use the same informal validation
approach - demonstration of the technique by the creation of a model of a particular system or
problem domain, sometimes augmented by comparative analysis of the model. This represents
an unfortunate gap in the rigour of socio-technical modelling - while the ‘demonstration by
case study’ validation method has many positive qualities it should not be applied without a

suitable understanding of its strengths and weaknesses.

Based on two common research frameworks (action research and design science) and utilising
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some of the most common data sources in socio-technical research (interviews, case studies
and document analysis) we propose and define a methodologically sound process for evaluat-
ing socio-technical models. This methodology focuses on iteratively increasing the confidence
in models by continuously analysing and revising models based on the acquisition of new
sources of domain information. The acquisition of new information is carefully structured
to enable both model evaluation and model development to be conducted using the same
information; the modeller must explicitly discuss which parts of the model are supported
by the information and which require modifications. Accuracy gaps between the model and
reality are a natural part of any complex model, especially in early stages or when working
with data sources of limited accuracy, so openness and explicitness in the methodology forces
careful discussion of whether these shortcomings are flaws in the model or flaws in the
information. As an iterative process the model should tend towards increasing fidelity as
more sources of information are obtained - if the reverse is true then it is clear that either the

modeller or the modelling technique is failing, and the resulting model is not valid.

We apply this methodology in our case studies of formalised responsibility modelling in
Chapters 6 and 7. We do not attempt to define a methodology for validating modelling
techniques themselves (such as responsibility modelling), which is a more abstract problem
than validating a specific instance model. Instead, we seek to show the general validity of
formalised responsibility modelling by demonstrating that it can produce valid and useful

models across a range of problem domains.
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Chapter 4

Notation & Semantics

4.1 Introduction

Previous versions of responsibility modelling differed greatly in their notation and semantics,
both in terms of visual and textual representation as well as in the selection of entities and
relationships available. The technique was still in its early stages of development, with

individual authors seeking variants more suited to their interests and applications.

These variations make applying responsibility modelling in a consistent way difficult, as
no two papers present a unified methodology or notation. Additionally, certain difficult
issues of semantics are overlooked or set aside, such as the complexities of delegating
responsibilities or the behaviour of relationships when models are transformed. As well as
limiting reproducibility and consistency, these shortcomings make providing meaningful tool

support and automated analysis difficult.

Some of these issues can be addressed by increasing rigour and standardising the existing
notation, or by small changes and expansions to existing concepts. However, some ambiguities
in existing responsibility modelling approaches require the introduction of new features to
the technique in order to allow precise definitions of complex behaviour and provide the

associated benefits of more formal analysis.

While formalised, responsibility modelling retains its flexibility across different system
domains and levels of abstraction. Responsibility models are models of the structure of
a socio-technical system; in particular, the structure of inter-related responsibilities that
should be discharged. We define a responsibility model as a set of responsibilities, resources
and actors linked by relations to form a system or systems that aim to discharge a set of
responsibilities. As structural models, they do not include specific details about individual
responsibilities, such as the physical details of implementation or precise details of their

timing. Instead, they show how responsibilities are linked to actors, resources and other
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responsibilities. Formalised responsibility modelling is not intended to be a replacement for
low-level analysis or domain-specific modelling techniques, as it not designed to capture
details below the responsibility level; it is instead intended to model and analyse large-
scale socio-technical systems in order to understand the implications of interactions and

dependencies between responsibilities.

This chapter will present a well-defined semantics, together with consistent graphical and
textual notations for responsibility modelling. We define the semantics using the Eclipse
Modelling Framework’s Meta-Object Facility [50]. We begin by formalising definitions and
representations for the core set of primitive entities and relationships. Differences between
the formalisation presented here and other responsibility modelling approaches such as Lock

et al. [116] and Sommerville et al. [170] are also discussed.

The next step is the introduction of a constraint or specification language, which allows for
the precise description of complex relationships. A significant advance is provided by the
introduction of explicit uncertainty - a notation for capturing uncertainty (lack of domain
knowledge or inherent randomness) allows modellers and analysts to differentiate between
unspecified areas due to simplification or scope reduction and areas where full specification is

not possible.

Formalised responsibility modelling incorporates mechanisms for assessing the timeliness
of responsibility discharge and techniques for modelling multi-layered domains as well as
defining possible model transformations. Finally, two examples demonstrate the use of both

basic and advanced modelling features in socio-technical domains.
[An earlier version of the initial parts of this chapter was published as:

Robbie Simpson and Tim Storer. Formalising Responsibility Modelling for Automatic
Analysis. Lecture Notes in Business Information Processing, 231:125-140, 2015. doi:
10.1007/978-3-319-24626-010 ]

4.2 Meta-Model

The structure of responsibility modelling is formally defined using the Eclipse Modelling
Framework’s [50] Ecore meta-modelling system, as shown in Figure 4.1. Ecore is an im-
plementation of the Object Management Group’s EMOF (Essential Meta-Object Facility)
standard [135], which provides a domain-specific language for defining meta-models, pro-
ducing a type system and rules for interactions between objects. Ecore is used to produce a
definition of responsibility modelling’s semantics and to generate a skeleton of Java classes

representing the meta-model, which aids the development of tool support.
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Figure 4.1: Ecore / EMOF Meta-model for responsibility modelling

The different objects within responsibility modelling (responsibilities, actors and resources)
are represented in the meta-model as entities. Properties common to all are defined in a
generic entity type, while responsibilities, actors and resources are each implemented as
specific types extended from the original entity type. All the standard entity types (Resource,

Actor, Responsibility) are contained within a higher-level Scenario entity.

Similarly, relations are first defined with a general relations type, while each particular variant
of relation is defined as a specific class in one-to-many associations with the appropriate
entities. This enforces constraints on the possible relations between different types of entity;
for example, it is impossible for an actor to be part of a production relation. Relations are

always bi-directional - each entity has full knowledge of all the relations it forms part of.

4.3 Primitive Entities

The core of the responsibility modelling language is a set of three primitive entities: responsi-
bilities, actors and resources. Previous versions of responsibility modelling have included
special subdivisions of these three entity types. For example, Lock et al. [116] differentiates
between physical resources and information resources and between human agents and organi-
sation agents; other papers distinguish human actors and automated actors. Other entities have

also been introduced - Sommerville [166] refines responsibilities into goals that are satisfied
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by following processes.

We have chosen to use the smallest possible set of entities in our formulation of responsibility
modelling. Limiting the number of core primitives should increase the ease of understanding
the technique and greatly simplifies the operation of automated analysis and tool-supported
modelling. Removing the specialised entity types may shift some effort from the modelling
phase to the analysis phase, as there are valid reasons to treat different types of actors or
resources differently, such as distinguishing between human actors and machine actors when
considering load or dependency. However, these distinctions are not absolute, and some level
of extra consideration when analysing would always be required. Assumptions made about
the types of entities may not always hold; for example, information resources may not always
be easily transferable (consider heavy boxes of files) and human actors may be instructed to

only follow very tightly defined routines.

Choosing to remove the additional, separate entity types (goals and processes) has only
limited effects on the expressiveness of the technique, as they can often be represented using
just responsibilities. Many goals can be simply rephrased as responsibilities, and drawing a
clear distinction between goals and responsibilities is difficult - an abstract responsibility such
as a policeman ‘upholding the law’ is clearly a goal, but is also definitely a responsibility.
Processes are a less natural fit for responsibilities, as the concept of responsibilities applies
less clearly to small, well-defined tasks. However, the notation remains suited to modelling
them; an approach that responsibility modelling papers after Sommerville [166] took, despite

the reduction in intuitiveness.

Entities can be represented in either a graphical or textual form. Figure 4.2 provides a simple
example of the graphical notation for entities, produced using a responsibility modelling
toolkit. Figure 4.3 shows the textual representation. The graphical model also uses the basic
relationship types, which are described in detail in Section 4.4; these relationships have been

removed from the textual model for clarity.

4.3.1 Responsibilities

Responsibilities are the core concept in a responsibility model of a socio-technical system.
The modelling language in this thesis adopts the definition of a responsibility provided
by Sommerville et al. [169], as an abstraction to describe behaviours in a socio-technical
system as a duty or obligation that should be discharged by actors in that system. Therefore
in responsibility modelling the behaviour of a system is characterised by the discharge of

responsibilities (both successful and unsuccessful) by system actors.

Responsibilities can represent behaviour at a range of levels of abstraction, from high level

duties (example: maintain law and order) through to specific implementation strategies
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Student

Lecturer

_— Set new Exam

e

Sit Exam

e

Prepare Exam Hall

Exam Papers __,..--""7

Figure 4.2: Responsibility model for a university exam: The Exam Papers resource is produced
and consumed; the Sit Exam responsibility is dependent on both the actor Student and the
responsibility Prepare Exam Hall. The Prepare Exam Paper responsibility both requires the
Lecturer and is held by them.

Sit Exam:: Responsibility
Set new Exam:: Responsibility
Prepare Exam Hall:: Responsibility

Exam Papers:: Resource

Student:: Actor
Lecturer:: Actor

Figure 4.3: Textual responsibility model for entities in university exam
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(example: complete charge sheet). However, there is a separation of concern between the
responsibilities that must be discharged (and the conditions under which a responsibility is

considered to be discharged) and the manner in which the discharge takes place.

Graphically, responsibilities are represented by simple rectangles with the name written inside.

Textually, they are represented in the form NAME:: Responsibility.

4.3.2 Actors

Actors are entities within the system that are able to discharge responsibilities. Actors in
responsibility modelling do not necessarily represent individual people in the real world;
actors can flexibly represent roles defined within the system. These roles may represent
individual positions (‘Head of Security’), computational or technical systems (‘Payment

Processing Software’, ‘Mechanical Deadlocks’) or organisations (‘Police Scotland’).

In many modelling cases it is not necessary to know which actual individuals fit these roles;
it is often enough to simply know the role is filled. However, there is nothing stopping
one individual or organisation filling multiple roles in the same system, which can lead to
vulnerabilities. As a result, it can be necessary to analyse or constrain the allocation of roles;

options for doing so are discussed later in Chapter 5.

Graphically, actors are represented as stick-figure characters with their name attached. Textu-
ally, they are represented in the form NAME:: Actor.

4.3.3 Resources

Resources represent any objects that are produced or consumed by or within the socio-
technical system. Resources can be physical items or digital information; they can also

represent more abstract concepts such as authorisations and goodwill.

Resources are either available or unavailable, depending on the current state of the system.
They do not have quantities; either a sufficient amount of the resource exists or it does not.
Likewise, the quality of resources is not specified - the resource is either of sufficient quality
and sufficient size (and so is available) or of insufficient quality or size (and hence unavailable).
This simplifies modelling by removing the need to specify the output levels or productivity of

processes.

Graphically, resources are represented as rounded ovals with their name written inside.

Textually, they are represented in the form NAME:: Resource.
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Lecturer => Set new Exam
Lecturer —-> Set new Exam

Set new Exam —-> Exam Papers
Exam Papers —-> Sit Exam
Student -> Sit Exam

Prepare Exam Hall -> Sit Exam

Figure 4.4: Textual responsibility model showing relationships, using the entities defined in
Figure 4.2

4.4 Relations

The core entity types can be linked using five kinds of relationships. Resources can be
produced or consumed by responsibilities; responsibilities can require the discharge of other

responsibilities or require certain actors; actors can hold responsibilities.

These five relationship types broadly correspond to those used in previous versions of respon-
sibility modelling. The main difference is the introduction of the ‘holds’ relationship between
actors and responsibilities; previously, a ‘responsible for’ relationship was used that combines
elements of both ‘holds’ and ‘requiredActor’. This distinction emphasises the different ways
an actor can be linked to a responsibility; they can be required on a practical level to complete
the responsibility in some way (‘requiredActor’) or hold some authority or accountability
over it (‘holds’). These two variations are not mutually exclusive, and are discussed further in
Section 4.4.2.

Figures 4.2 & 4.4 show the graphical and textual representations of relationships, respectively.
Graphically, all relationships share the same basic arrow representation, with the exact
relationship type being determined by the two entities linked and the direction of the arrow.
For example, a link between a resource and a responsibility leading from the resource to
the responsibility is a consumption relationship, while a link in the opposite direction is a
production relationship. The sole exception is the difference between the ‘holds’ and ‘required
actor’ relationships; these both share the same direction, so ‘holds’ is indicated by the use of
an unfilled arrow head. Textually, all relationships use the same dash and right angle bracket

notation (->) with the exception of holds, which uses an equals and right angle bracket (=>).
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4.4.1 Production & Consumption

Resources are produced or consumed by responsibilities; a responsibility requiring resources
cannot be successfully discharged if the required resources are not available. Resources
cannot be directly created by actors, as the responsibility reflects the duty, obligation or intent

behind the resource creation activity.

Resources are successfully produced if a responsibility that produces them is successfully
discharged. Additionally, resources without any producing responsibilities are by default
available. When produced, resources are in effect available immediately and there is no con-
cept of waiting for production to complete; this is a consequence of responsibility modelling’s

temporal model, which is covered in Section 4.8.

Resource consumption by responsibilities indicates that those resources is required to complete
the responsibility. The alternative description ‘required resource’ offers a clearer descrip-
tion of the underlying behaviour, as resources that are consumed by one responsibility are
still available for consumption by other responsibilities; as available resources are always
considered to exist in sufficient quantities it is not possible to use up the entire capacity of a

resource.

4.4.2 Actor Assighnment

Relationships between actors and responsibilities can take two distinct forms, although in
many cases both forms apply. Firstly, actors can be required for a responsibility to be
discharged - the activity of the actor is in some way necessary for the responsibility to be
met. Secondly, an actor can be accountable or ‘responsible’ for a responsibility, but not be
required to play an active role in its discharge. The first relationship is formulated as the
‘requiredActor’ relationship, while the second is represented by the ‘holds’ relationship. This
is akin to the notion of the cause & answerability / accountability definitions of responsibility
by Cholvy et al. [29].

Where a responsibility is linked to an actor by a ‘requiredActor’ relationship it is necessary
for the actor to be active in order for the responsibility to be discharged; if the actor is disabled

in any circumstance it is not possible to complete the responsibility.

When an actor is linked to a responsibility with a ‘holds’ relationship (and is not also linked by
‘required actor’) the actor is not necessary for the completion of the responsibility - if the actor
is disabled the responsibility continues as before. However, if this leaves the responsibility not
being held by any actors then there is a risk of organisational confusion, as the responsibility

is required to occur without any particular actor being accountable for a failure to discharge it.
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These two relationships are closely related, and in the majority of cases both types of rela-
tionship will exist. Most versions of responsibility modelling use the assignment of actors
to responsibilities in the sense of the definition given in Lock et al. [115] : ‘A duty, held by
some agent, to achieve, maintain or avoid some given state... It also encompasses aspects of
accountability’. Modelling in this style can easily be achieved by always using both forms of

relationship together and only using them individually in special cases.

This separation of the active role and the accountability role is not new. Sommerville et al.
[170] use a notation where delegation of responsibilities transfers the active element (which
they term ‘responsible for’) to a new actor, while the original (or creating) actor remains
an ‘authority’ for the responsibility (who decides if the responsibility has been correctly

discharged, and is some way accountable for the result).

The ability to separate the two relationships becomes most useful when considering fairly
abstract responsibilities. For example, in the British government each department is headed
by a senior minister, who is the public face of the department is accountable to the public
and her party colleagues. The actual operations of the department are carried out by civil
servants, the most senior of which is the Permanent Secretary. In practice this means the
minister ‘holds’ the responsibilities of the department (as they take the credit or blame, but
the department can function perfectly well without them) while the Permanent Secretary is a
‘requiredActor’ (without them the management of the department is severely impaired, but

they hold no public responsibility for the department’s actions).

4.4.3 Required Responsibilities

Responsibilities can also require other responsibilities to be successfully discharged; the
requiring responsibility can only be discharged if the required responsibility is also discharged.
There is natural overlap between this ‘required responsibility’ relationship and the more
general pattern of a responsibility producing a resource, which is then required by another
responsibility. The resource creation and consumption pattern is best suited to cases where the
resource is meaningful, such as when it can be produced in multiple ways or when its presence
is audited by another responsibility. In other cases the ‘required responsibility” relationship is
more suited, as it does not require the creation of potentially unnecessary extra resources. For
example, modelling with a resource is suited to situations where a responsibility produces a
notification of success (an alert, a report etc.), while directly using a required responsibility
relation is suited to situations where the success of a previous responsibility must be taken on

trust, without notification.

The notion of a required responsibility is similar to but distinct from the previous concept of
sub-responsibility. In Storer and Lock [175], decomposition is formally defined as a transfor-

mation on an existing responsibility that replaces it with a set of sub-responsibilities which
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remain bound by the same relationships as the original responsibility. Later, Sommerville
et al. [169] features decomposition where the original responsibility remains intact; this
represents refinement and composition rather than full transformation and replacement. The
first meaning of sub-responsibilities is really a model transformation, which will be defined in
Section 4.10.

The notion of the ‘required responsibility’ is closer to the second meaning, but some differ-
ences remain. In classic responsibility modelling, a sub-responsibility relationship indicates
that the sub-responsibility is required to complete the original responsibility, and this is true of
‘required responsibility’. However, it also indicates that the sub-part is a component or integral
part of the original responsibility; in effect, it is a element of the original responsibility that
has been chosen to specify in detail rather than abstract away, usually because it features some
interesting behaviour or requires specific actors or resources. This provides very little extra
expressiveness (as the meaning of a sub-responsibility varies between different contexts, and
so little can be inferred) while not allowing the direct modelling of responsibilities that are

interrelated but not sub-parts of each other.

This is not true of the ‘required responsibility’ relationship defined here, which merely
indicates the need for the responsibility without implying that it is part of the original
responsibility. For example, the responsibility of a voter to ‘Vote in election’ requires that
candidates discharge the responsibility ‘Stand for election’ so that there are candidates to
vote for; however, standing for election is clearly not a sub-unit of voting in an election. This
provides extra flexibility in specifying interrelated responsibility, while the expression of

explicit decomposition is discussed in Section 4.10.

4.5 Delegation, Supervision & Dependency

In many socio-technical systems responsibilities are initially held by an actor that then
delegates away some or all of these responsibilities. This often involves the refinement and
decomposition of high-level responsibilities - the original actor holds the top responsibility,

and the various lower-level responsibilities that contribute to it are held by different actors.

In previous versions of responsibility modelling this would be modelled using sub-responsibilities.
By default, sub-responsibilities would be assigned to the same actor as the main responsibil-
ity. If a sub-responsibility is explicitly assigned to a different actor, then that responsibility
has been delegated. A different approach is adopted in this formalisation of responsibility
modelling, as requiring a responsibility does not necessarily imply that that responsibility
composes part of another. If explicit decomposition is desired, a model transformation is

performed instead (see Section 4.10).
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As a result decompositions of responsibilities are not declared explicitly in formalised re-
sponsibility models. Rather than modelling ‘as defined’ hierarchical responsibility and actor
relationships it instead models ‘in practice’ structures. Previously, implicit supervisory re-
lationships could be identified by locating sub-responsibilities that had been delegated - the
discharge of the original responsibility requires the discharge of the sub-responsibilities, and
so the actor holding the original responsibility is dependent on the success of the actors hold-
ing the sub-responsibilities. The use of sub-responsibilities implies a hierarchical organisation
structure within the system, and so this could be considered an example of senior actors
supervising junior actors. In many socio-technical systems this can enable useful analysis, as
the hierarchical model generated by considering sub-responsibilities may well differ from the

formal managerial structure, for example.

However, this approach can be limiting, especially in multi-organisation systems that embody
Systems-Of-Systems like behaviour [114]. In this context the hierarchical concept of supervi-
sion is inappropriate - the relationships between actors are not hierarchical, and instead reflect
collaborative or contract-based agreements. The underlying meaning of the relationship is
the same - an actor can only complete their objectives with the support of other actors, so
there are clear benefits to some form of oversight or supervision. We call this implication

‘dependency’, which is effectively a generalisation of the original ‘supervision’ concept.

Dependency occurs in any case where an actor directly or indirectly relies upon another actor.
Dependency can occur directly via actors (an actor holds a responsibility that requires another
responsibility to be successfully discharged) or indirectly via resources or responsibilities
(an actor holds a responsibility that requires a resource or responsibility, and this other entity
requires a different actor to be discharged). Dependency relations can be very deep and
difficult to detect by simple inspection - the actor depended on may exist at the far end of a

long chain of resource and responsibilities.

4.6 Constraint Language

Entity relationships provide the basic building blocks for constructing responsibility models,
and can be used to express complex interdependencies such as delegation. However, the exact

semantics of relationships can become unclear and limiting in more complex cases.

For example, it may be necessary to model a situation where two actors are in an Required
Actor relationship with a responsibility. Does this mean that both actors are necessary to
discharge the responsibility, or that either actor can do it alone? Both of these are perfectly
plausible scenarios, but using just relationships alone cannot distinguish between the two

different cases. We might also wish to indicate that one actor is the default and that the second
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actor only intervenes if the first is unavailable; again, this cannot be clearly expressed using

only sets of relationships.

Other scenarios involving multiple interacting entities are also impractical to model. Many
systems feature elements where responsibilities can be discharged if a certain threshold of
entities are successful - for example, a voting circuit such as used in safety-critical systems. A
small-scale threshold problem can be modelled using the existing notation by pairing together
individual elements as sub-responsibilities, but this quickly leads to a complex model as the

number of entities increases.

Fundamentally, the additive nature of conventional relationships helps comprehension and
ease of modelling, but does not allow the specification of many common and significant parts
of socio-technical systems. We therefore propose a constraint language of responsibility
which allows the specification of satisfaction criteria; complex relationship details and pre-
requisites for entities can be specified in a predicate logic. By default, all relationships
maintain their classical meanings and priorities, but exact definitions can be given for shared

responsibilities and alternative discharge options where required.

A responsibility is discharged or a resource produced if all related entities are available;
for example, a responsibility is successfully discharged if all required actors are active, all
required resources available and all required responsibilities discharged (a logical conjunction
of all required entities). However, the constraint logic allows for specification of more complex
scenarios. All types of relation can be augmented with constraint logic, with the exception of
‘holds’, which represents accountability and authority rather than the functional requirements

of the other types.

Figure 4.5 shows an example of a model defined using satisfaction criteria. In this example, a
shipbuilder can produce a vessel either by designing the ship themselves, or by buying in pre-
existing plans. The resource and actor requirements take their default condition of conjunction,
as expressed by the & operator. Specifying the either-or nature of the different design requires
the use of the Il operator to distinguish the OR relation, and the use of parenthesis to limit the

operator to the appropriate items.

More generally, any combination of AND and OR relationships can be specified and bracketed
using parenthesis to any necessary depth. The criteria are evaluated left-to-right and top-down,
subject to bracketing. This allows for the modelling of complex combinatorial relationships,

including threshold cases like voting circuits.

When no satisfaction criteria are explicitly defined, a conjunction of all the defined relation-
ships is assumed. For example, in the ship building case without the given satisfaction criteria

for Produce Hull, the diagram would be interpreted as a conjunction of all the related entities:

Produce Hull:: Shipbuilder Active & Steel Exists & DesignShip Discharged & Bought-in

Plans Exists
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—

Produce Hull

Design Ship Bought-in Plans

Produce Hull:: Shipbuilder Active & Steel Exists & (DesignShip Discharged || Bought-in
Plans Exists)

Shipbuilder

Figure 4.5: Example responsibility model showing constraint logic satisfaction criteria

This form of constraints allows specification of different options for satisfying responsibilities.
However, it does not specify the ordering or likeliness of a particular technique being used;
it can specify a choice of two options, but not distinguish between the ‘normal’ option and
the ‘emergency’ option. This limits the precision of analysis techniques based on assessing
the number of relationships an entity is involved in - an actor required in many fall-back
cases (such as the emergency services) may appear to have a crushing load, when in reality
it is highly unlikely that they will be required by all responsibilities at once. Assessing the
maximum possible load on an entity is still a useful technique, but it is also beneficial to

capture scenarios where there is a sudden increase in demand.

This is supported by extending the constraint logic to incorporate ranked priorities. For
example, the shipbuilding example can be amended to specify that designing the ship in-house
is the preferable option, and that plans will only be bought in if that responsibility cannot be
discharged:

Produce Hull:: Shipbuilder Active & Steel Exists & ([1] DesignShip Discharged || [2]
Bought-in Plans Exists)

The [n] notation indicates that the different discharge options have a specific order, with
lower-numbered options being preferable to higher-numbered options. This replaces the
standard ‘joint and equal’ format of requirements, and so allows for more nuanced evaluations
of the load on different entities. Entities that are required as a second or third priority option

clearly receive less load than those required as a first option, which can be reflected in analysis
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Figure 4.6: Syntax diagram for the constraint language

techniques. The exact treatment may vary depending on the analysis technique and context;
in some cases it may be sensible to discount the load from low priority relationships entirely,
while in other cases weighting down the low priority relationships on a sliding scale may be

more appropriate.

The syntax diagram in Figure 4.6 provides a formal representation of the constraint language

grammar, incorporating explicit uncertainty as described in the next section.

4.7 ‘? - Explicit Uncertainty

Most socio-technical modelling techniques make the implicit assumption that their models are
a complete representation of a problem domain - details may be abstracted, but all possible
scenarios can be covered by them. This assumption requires the modeller to have a perfect
understanding of the domain, which is impractical in the vast majority of cases. Such a strong
assumption can be supported when modelling very tightly defined problems (for example,
interlocks in safety-critical systems) but not in the wider body of socio-technical systems. This

leads to a variety of potential shortcomings in modelling. In order to produce a fully-defined
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model the modeller may focus on very specific parts of a system that can be effectively
captured, which can neglect the overall socio-technical context of the system. Alternatively,
complex details may be overlooked in modelling in favour of producing a complete model,
but this missing detail weakens the conclusion of any analysis. Finally, attempting to produce
a model that is both fully detailed and that covers the full scope of the problem is likely to

result in an intractably complex model.

Generally, any model of a system will feature two types of uncertainty [100]. Epistemic
uncertainty is uncertainty ‘about the world’ - uncertainty caused because the modeller does
not have enough knowledge about the problem to specify it exactly. This type of uncertainty
can (in theory) be eliminated or greatly reduced by acquiring more information about the

domain - more precise measurements, longer observations, more source materials and so on.

Epistemic uncertainty may also occur when a modeller deliberately limits the information
they use when constructing a model - for example choosing to ignore edge cases in order to
produce a simpler but less accurate model. A similar uncertainty is introduced when models
are refined to produce sub-components. Sometimes elements are refined completely, such
that the element is composed entirely of the related sub-parts. In other cases, the sub-parts
reflect only part of the original element - usually elements that are of special interest to the
modeller. In the first case it is possible to determine the validity of the original element by
considering the subelements; in the second case there are factors influencing completion that
have not been explicitly modelled. As a result, not performing complete refinement introduces

epistemic uncertainty by leaving some of the model behaviour undefined.

The second form of uncertainty is aleatory uncertainty - uncertainty ‘in the world’. This arises
where there is an inherent randomness in the system being modelled that cannot be eliminated
by defining the system in more detail. This can occur because of fundamental physical or
social reasons (no system can exactly measure both the position and velocity of an object)
or because the information required is outside the agreed scope of the system. In particular,
aleatory uncertainty can occur in socio-technical modelling where different viewpoints of
the system (actor interviews, system documents, ethnographic studies etc.) give inconsistent
results; this indicates that there is uncertainty within the system itself, which clearly cannot
be resolved by more measurement. The inconsistency leads to unpredictability in the system

operation.

These two forms of uncertainty arise from different causes, but their effects on the modelling
and analysis of socio-technical systems are very similar. The difference between the two
types has been long discussed, and it has been argued that they are essentially the same [100].
Both introduce a level of imprecision to system models, and hence limit the confidence and
accuracy of analysis implications derived from those models. Once a model is constructed,

the two types of uncertainty are effectively indistinguishable, as they both produce the same
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results. The difference occurs primarily at the modelling phase - epistemic uncertainty can be

minimised by more extensive study of the domain, but aleatoric uncertainty is irresolvable.

Explicit handling of uncertainty is rare in socio-technical modelling techniques, despite socio-
technical systems often containing high levels of uncertain behaviour. A notable exception
to this is the ‘SeeMee’ modelling method [75] which allows for the explicit expression of
‘vagueness’ within models. This notation enables explicit statement of incompleteness for
abstraction purposes as well as due to a lack of detail about the system or a lack of confidence
about the modeller’s understanding of the system, and can be applied both to the definitions
of entities and to relations between those entities. However, vagueness is discussed only in
terms of the modeller’s understanding of the world (epistemic uncertainty) and SeeMee does

not appear to support explicit expression of aleatory uncertainty.

Both forms of uncertainty can be explicitly expressed in responsibility models by extending the
constraint logic. By default, any set of satisfaction criteria completely define the corresponding
responsibility, and there is no uncertainty or randomness explicitly modelled. (However,
this does not exclude the possibility of the model being inaccurate due to errors in the
modelling process) If a responsibility does feature uncertainty (either epistemic or aleatoric)
this can be explicitly specified by including the symbol <?> in the satisfaction criteria for the

responsibility incorporating the uncertainty. For example:

Protect Military Base:: SecureGates Discharged & CheckForTunnels Discharged & AirSpaceSe-
cured Discharged & <?>

states that the modeller is aware there are other failure cases than the three dependent
responsibilities listed, but is either unable or unwilling to explicitly model all of them. This is
primarily aleatory uncertainty - more elaborate modelling can include more forms of safety

checks, but providing exhaustive security is ultimately impossible.
In contrast, consider attempting to model counter-terrorism activity in the UK:
Intercept Terrorist Communications: GCHQ Active & <?>

It is clear that GCHQ (the UK’s signal intelligence division) is involved, but it is very difficult
to be any more specific given publicly available information. There are certainly additional
requirements needed to satisfy this responsibility in practice (international collaboration,
listening equipment, cryptographic backdoors etc.) but it is impossible to specify these
accurately. As a result, the best modelling compromise is to specify only the elements that is

it possible to be certain about, and to use <?> to indicate the substantial epistemic uncertainty.

Introducing uncertainty to a responsibility also changes the way that the discharge of a
responsibility can be evaluated. The presence of uncertainty indicates that the modeller or
analyst cannot perfectly predict whether or not the responsibility is discharged; they may
be able to determine cases where the responsibility will definitely succeed or definitely fail,
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but may not be able to generalise across all occurrences. This introduces the concept of

‘conditional’ success, where the final result rests solely on the modelled uncertainty.

For example, consider a model of the responsibility for safely storing some important docu-

ments:
SafeStorage:: DocumentsUndamaged Discharged & <?>

In this fragment, it is defined that the documents being undamaged is a necessary (but
not sufficient) criteria for success. The responsibility will definitely not be discharged if
the documents are damaged, but may also not be discharged in some other case (e.g. the
documents could be stolen) as encapsulated by the explicit uncertainty. This leaves two
possible outcomes for the responsibility - it can definitely fail to be discharged (damaged
documents) or achieve ‘conditional success’ - it will not fail based on the information available

to the model, but success is not guaranteed.
Conversely, a responsibility may have defined success criteria but undefined failure criteria:
EmergencySurgery:: PatientAlive Discharged || <?>

In medical surgery on a critically injured patient the responsibility may be considered a
success if the patient lives, regardless of any side effects or complications - the severity of
the injury means that any survival is a success. However, the death of a patient does not
necessarily reflect a failure on behalf of the doctor or health organisation; despite their best
efforts some fatalities are inevitable. Of course, it is still possible for the operation to be a
failure in a particular case if the patient dies due to avoidable negligence. In this case, the
responsibility accurately represents the two possible outcomes - either success (the patient
lives) or ‘conditional success’ (success depends on individual medical details that are not
modelled).

This extension allows for clear specification of uncertainty and incompleteness, but only when
the modeller is able to acknowledge the existence of this uncertainty. It does not address the
‘unknown unknowns’ - uncertainties that are not recognised during the model process. The
strength of the extension is its ability to capture the ‘known unknowns’, allowing the modeller
to document areas of uncertainty, rather than forcing them to make unjustifiable assumptions

of perfect information and predictability.

Incorporating explicit uncertainty into modelling also changes the analysis that can be per-
formed on these models. Without uncertainty the model is assumed to be a complete (subject
to some assumptions) representation of the problem domain, and hence assertions and proofs
made on the model can be directly transferred to the underlying domain. This is no longer
true in responsibility modelling, as it is explicitly acknowledged that the model contains
uncertainty. Consequently, responsibility models can be used to identify vulnerabilities in

the responsibility structure of the socio-technical system, but cannot be used to assess the
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robustness of the system with respect to underlying implementation details.

Based on this, analysis can produce three possible results. If it is possible to identify an
undischargable responsibility in any model, then it can be stated that the system may fail
due to a responsibility vulnerability. If no undischarged responsibilities exist, and no <?> is
present then the system will not fail due to vulnerabilities in the responsibility structure and it

can be stated that there is no undefined behaviour that could cause it to fail.

If there are no undischarged responsibilities, but <?> is present then it can be stated that the
system will not fail due to the responsibility structure. It is not possible to claim definitively
if the system will work due to the undefined behaviour indicated by <7>, but it is safe to say
that there will be no vulnerabilities caused by the system structure proposed and modelled.
Of course, unmodelled implementation details may cause the system to fail in practice. The
advantage of formalised responsibility modelling is to isolate and be explicit about the areas

of the model that could represent potential failures.

4.8 Temporal Behaviour

Previous responsibility modelling research has adopted an informal approach to incorporating
temporal behaviour in modelling. Responsibilities are discharged, resources are produced and
consumed etc. without defining how long it takes for these actions to occur, or the order in
which they occur. As a result, it is not possible to incorporate in a responsibility model the
concept of ‘timeliness’ of action - the action will occur at some point, but it is not possible to

determine when.

Temporal behaviour is only implied by the domain context - a responsibility to rescue evacuate
flooded houses should happen before the inhabitants drown; however, this becomes difficult
to interpret when a model features activities that are clearly at different orders of magnitude in
duration or response time. Additionally, this complicates the analysis of dependencies between
entities. The discharge of a responsibility may rely on a resource, and this resource may be
produced by another responsibility. This implies a temporal ordering - firstly the resource
production responsibility must be discharged, and only then can the resource consuming
responsibility operate. The resource production responsibility has a clear potential to delay
the consuming responsibility and hence the overall function of the system, but the temporal

model of responsibility modelling lacks a defined semantics to interpret this.

Later work on responsibility modelling recognised the benefits of this form of analysis.
HAZOP-style keywords were introduced to the methodology and the temporal keywords
Early, Late & Never feature significantly. These keywords are used (such as in Lock et al.
[115]) to analyse the consequences and severity of variations in the timeliness of responsibility

discharge. The lack of any underlying semantics for timeliness means that the analysis is not
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directly performed on the model; the analyst applies the keywords to the list of entities and
uses their understanding of the domain to predict the likely impact. A further disadvantage is
that it is difficult to assess cascade effects across whole responsibility models rather than just

single responsibilities.

To address this, formalised responsibility modelling adopts a single time frame within which
responsibilities are discharged. This approach is similar to the concept of ‘epoch time’ used
by the BAN logic [25], where time is divided simply into the past and present. Burrows
et al. [25] argue that such an approach simplifies the modelling of problems without losing
significant modelling precision. Under this formalism, a resource produced by a responsibility
will be produced ‘eventually’, but it could take an unlimited amount of time. Similarly, a
responsibility missing a required resource will ‘eventually’ fail in some circumstance where
the resource is called upon - but the socio-technical system could operate for its entire lifetime
without the failure actually occurring. This representation in the responsibility model does
not represent direct failures but potential vulnerabilities which may never actually occur in

practice.

A useful analogy is to the clock cycle of an integrated circuit. The chip is configured
to perform various calculations and determine results by using various intermediate steps
implemented with simple logic gates. Different routes through the chip take different times to
complete; reading output values before the clock cycle ends may provide inaccurate results.
Setting the correct clock cycle guarantees that all calculations will have been completed and
results propagated correctly. Responsibility modelling is similar - after some arbitrarily long
time period the system will operate as modelled, but expecting results too quickly is risky -
sometimes the system will operate exactly as expected, but at other times incomplete activities

will not function as intended.

This approach to timing offers a number of useful simplifications. As bounds are not placed
on the time needed to discharge responsibilities or produce resources the problem of race
conditions is eliminated - required entities are either ready in time or never available at
all. It is not necessary to carefully evaluate the discharge speed of entities, instead only
judging if the time taken is acceptable or unacceptable. It provides a meaningful semantics for
actors holding multiple responsibilities - they will ensure that responsibilities are eventually
completed, but this does not mean that they are working on all the responsibilities at once.
Similarly, with shared responsibilities there is no need to know which actor(s) are discharging

the responsibility - only that it will be eventually discharged.

The analysis methods are unaffected by this paradigm, as they are based on structural rather
than temporal principles. Some HAZOPs-type keywords do invoke temporal behaviour,
such as Early/Late discharge of responsibilities. In these cases, the timeliness (or not) of

responsibility discharge is local to other responsibilities in the system, rather than absolute.
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Responsibility modelling has not previously used strict definitions of time, and this relativity

has always been implicit when performing this type of analysis.

4.9 Instantiation

Responsibility models are abstract representations of a particular system, even though they
are constructed in the context of a specific instance. For example, the model of flood response
in Sommerville et al. [170] is based specifically on the city of Carlisle, but the entities used in
the model remain generic - ‘Fire Brigade’ rather than ‘Cumbria Fire’ or specifying a particular
fire station. Likewise, a responsibility is defined as ‘Establish Reception Centres’, rather than

‘Establish City Hall reception centre’ or ‘Establish reception centre at University of Cumbria’.

This abstraction can be useful in hiding unimportant or irrelevant aspects of implementation -
for example, the overall structure of flood response does not depend on the particular order
in which streets are evacuated. It is also provides a degree of flexibility in the analysis of
different scenarios; for example, operational changes to implementation details may not

require corresponding changes to the responsibility model.

However, excessive use of abstraction can hide specific details that may be important. For
example, an emergency plan may span an area that has several different police forces or fire
brigades; if only the generic actor is used, then it is unclear which force (all of them?; some
of them?; just one?) is responsible for assuming the responsibilities of that actor. In particular,
there might be complex interactions between linked entities - one police force responsible for

urban reception centres and another responsible for rural reception centres, for example.

More generally, this relationship between different levels of abstraction of responsibility
structure can be useful for modelling insight and analysis. Socio-technical systems can be
defined at multiple levels, and the interactions and mappings between these levels represent a
significant amount of the system’s complexity (such as Leveson [109]’s concept of a hierarchy
of levels). Many important questions about such systems can be answered by considering
the links between views of the system at different abstraction levels - for example, whether a
proposed government program is compatible with the current law, or whether a fully developed

software system actually matches the original requirements.

To enable this the concept of instantiation is introduced - the idea that one responsibility
model can contain entities at different levels of abstraction. Each level (or layer) of the model
can contain the full range of entities and can be linked across levels by realisation relations -
uni-directional relationships that indicate that the source entity is a specialisation or concrete
example of the target entity. This allows modellers to explicitly indicate implementation
details where relevant, without affecting the semantics of the general model. Instantiation

allows mappings between all types of entities for both abstract and specific cases.
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Currently, these relationships serve a descriptive and indicative function, and do not affect
the results of any formal analysis. As a result, they are best used to visualise potential
implementation options (such as for discussion with stakeholders) or to assist with manual
evaluation and analysis (such as displaying instance-level actors for use with role analysis).
Automatic analysis techniques using these relations are certainly possible, but are rendered
difficult by ambiguities in parts of the relation semantics and hence are reserved for future

work.

4.10 Transformations

As part of the modelling process it is often necessary to refine and expand an existing
responsibility model. In many cases modellers may wish to modify one part of an existing
model (such as to model a particular aspect in more detail) without deliberately changing the
rest of the model. This can be complex when the parts to be modified are linked by relations
to other entities, potentially leading to unintended effects on other parts of the model. The
need for a consistent way to perform these changes was recognised by Sommerville et al.
[168], who provided ‘Operations’ that allowed the delegation, decomposition and reallocation
of responsibilities. These are similar to the concept of refactoring in software engineering
[62], as the intent is to perform a specific change to one part of a model without affecting the

model as a whole.

In order to provide a simple and consistent approach to such model changes axiomatic
transformations are defined - transformations that do not affect parts of the model other than
those being explicitly modified. Using these transformations allows modellers to change
specific parts of the model with the confidence that their changes will not unintentionally

affect other, unrelated areas of the model.

These axioms define rules for modifying entities that preserve their relations with other entities
by providing instructions on how to convert each type of relation involving the entity under
the particular transformation. Some transformations are reversible, but others are not; this
depends on whether information regarding the responsibility structure can be preserved by

the transformation.

We define these transformations for decomposition, aggregation and delegation; the realloca-
tion defined by Sommerville et al. [168] has effectively the same semantics as delegation in

formalised responsibility modelling.

Responsibilities can be substituted by decomposing them in full into sub-responsibilities
or by aggregating them into higher-level responsibilities; it should be possible to make this
transformation on individual responsibilities while leaving the rest of the model unchanged.

However, the responsibilities being decomposed or aggregated may be linked to other entities
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For responsibilities R, S, R1, R2, Resource X and Actor A; where responsibility R is
decomposed into responsibilities R1 & R2 the axiomatic transformation for each type of
relation affecting the decomposed responsibility R:

Relation Declarative Notation Constraint Notation
Production R>X<Rl->X,R2->X X:: R X:: R1 &R2
Consumption X>R&X->RI,X->R2 |R: X< RI1: X, R2:: X

Reqd. Responsibility | R->S < R1->S,R2->S S::R< S:: R1 &R2
Required Actor A>R<A->RI,A->R2 |R:: A< R1:: A R2:: A
Holds A=>R < A=>R1,A=>R2 n/a

Table 4.1: Transformation of relations under decomposition

For responsibilities R, S, T, R1, R2, Resources X, Y and Actors A, B; where the responsibili-
ties R1 & R2 are aggregated into responsibility R the axiomatic transformation for each type
of relation affecting the aggregated responsibilities R1 & R2:

Relation Declarative Notation Constraint Notation
Production R1 >X,R2>Y=R->X,R->Y | X::Rl,Y:R2=X::R,Y: R
Consumption X->Rl,Y>R2=X->R,Y->R R1: X,R2: Y=R: X &Y

Reqd. Responsibility | R1->S,R2->T=R->S,R->T S::RI, T:R2=S::R&S

Required Actor A->R1,B->R2=A->R,B->R R1:: AJR2:: B=R:: A& B

Holds A=>R],B=>R2=A=R,B=R n/a

Table 4.2: Transformation of relations under aggregation

by relations, and so these relations must be modified to refer to the new responsibilities. Table

4.1 shows the transformation rules for decomposition.

As shown in the table, all relations involving a responsibility that is to be decomposed
are transferred jointly and equally to the resulting new responsibilities. Decomposition
itself cannot be used to divide up operations such as resource production - a decomposition
of responsibility structure does not affect the mechanics of actually producing a resource.
Decomposition is fully reversible as long as the definition is strictly followed; but is only
valid if the decomposed responsibilities share the same exact set of related entities. If they
do not (for example, the responsibility R2 has been modified to produce a different resource
from responsibility R1) then the transformation is not reversible, as it would be impossible to

distinguish the differences in resource production once they were combined.

More generally it is possible to aggregate multiple responsibilities into one larger responsi-
bility. However, this process is not reversible - the original responsibilities can no longer be
distinguished once they have been merged, and this makes it impossible to divide them up

according to the original structure. Table 4.2 shows the transformation rules for aggregation.

Aggregation behaves similarly to decomposition, with the new aggregate responsibility

replacing the original responsibilities in all relations and the aggregate responsibility consisting
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of a conjunction of all the original responsibilities.

Decomposition and aggregation have relatively limited effects on the wider model, such as
increasing the measured load on an actor when their responsibilities are decomposed into
more numerous responsibilities. Important changes can occur when the model is rationalised
or adapted after performing decomposition or aggregation - for example, a resource produc-
tion responsibility that is decomposed may then have different constraints defined for each
responsibility, which will affect the likelihood of the resource being successfully produced.

However, these changes do not occur directly as a result of the decomposition.

For delegation of responsibilities the ‘holds’ relation is transferred from the old actor to the
new actor, and all other relations between the actor and responsibility remain the same. This
leaves no explicit link between the old actor and the new actor; if the old actor is only linked
to a responsibility by a holds relation it is possible to make a ‘clean break’ by delegating
it away. This reflects the new structure of relations in formalised responsibility modelling -
required Actor relations indicate a functional requirement between the responsibility and the
actor and so cannot be changed by delegation; delegation can only change the accountability

indicated by the holds relation.

The implications of delegation arise when these existing relations are not compatible with
the change of structure, or where this change exposes vulnerabilities. For example, if the
delegated responsibility is required for another responsibility still held by the original actor
then this has the effect of creating a dependency between the old actor and the new actor,
which can lead to a vulnerability. This type of vulnerability can be detected by reliance

analysis.

4.11 Applications

Responsibility modelling can be applied at two main levels - requirements analysis and system
analysis. When used at the requirements level, responsibility modelling can produce sets
of responsibilities, resources and relevant actors based on business requirements, regulation
and legal requirements and technical proposals. At the requirements level the model may
consist of unrelated fragments that are not directly linked - for example, there may be a
legal requirement for a pilot to sign-off on a cargo manifest, and a business requirement for
cargo containers to be scanned as they loaded onto the aircraft. These two requirements are

completely separate, but are both in the scope of an aircraft cargo management system.

At the requirements stage, models can be used to visualise the problem domain, identify
potential flaws in the stated requirements and engage with stakeholders. Incompleteness
is natural at this level of modelling, and responsibility modelling can be used to discuss

and examine issues of concern. This is similar to the original motivation for responsibility
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modelling; the changes made during formalisation do not significantly reduce the ability
to use responsibility modelling as technique for informal discussion and analysis. At this
stage, automated analysis techniques can be used and can deliver some useful results (such as
highlighting areas of the requirements that are too vague), but their results require additional

interpretation to detect false warnings that will be resolved during later development.

At the system analysis level the responsibility modeller should aim for completeness. By this
stage of development the system scope and model structure should be decided, and hence any
ambiguity or omissions in the responsibility model represent ambiguities and omissions in the
system structure itself. Separated or unattached sections indicate a lack of integration within

the system, or that certain elements are not related to the core duties of the system.

Many process and structure models (in all types of domains) contain unformalised behaviour
that is nonetheless implied or referred to by the formal element of the model. This may
be an explicit decision to keep parts of the system out of scope or may reflect uncertainty
over the use of that part in practice. In some models these unformalised elements are clearly
signposted; however, many models do not distinguish them clearly. This opens up the
possibility of inconsistent application of the model and important elements left undone due to
their non-formalised nature. Responsibility modelling can clearly identify non-formalised
or ambiguous formalised elements, allowing clear discussion of potential issues. Equally,
where these variations are not pertinent to a discussion responsibility modelling provides for

convenient abstraction.

Responsibility modelling is especially appealing when comparing deployments or implemen-
tations against the theoretical standard. The complexity and variation of social-technical
systems means that many real systems vary significantly from their conceptual model, but
these differences may not be modelled. As a result, analysis is often performed on abstract
models of the system that do not represent real-world usage, leading to analysis that does not

capture actual behaviour and provides a false sense of security.

Responsibility modelling can potentially alleviate this by allowing both high-level and
implementation-level models of the system to be produced using the same notation, which will
allow easier comparison of the two views. Ideally, these multiple views of the system could
be mapped together, allowing direct checking of the implementation against requirements.
However, there are ambiguities in the potential semantics of this relationship, which are

discussed in Section 9.5.

4.12 Modelling Examples

This section illustrates the use of responsibility models to construct representations of the

structure of socio-technical systems. First a basic model of the meeting scheduler system
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Figure 4.7: Labelled key to formalised responsibility modelling notation

(as defined by van Lamsweerde et al. [189]) is used to introduce examples of the notation,
before considering a more complex model of the Scrum agile development team structure
described by Schwaber and Beedle [155]. These examples are used to demonstrate the
modelling notation and elements of the constraint language and show how they can be used to
model systems of moderate complexity. Some informal evaluation is performed, but formal
analysis is not demonstrated here and is the subject of Chapter 5. A recap of the formalised

responsibility modelling notation is shown as a labelled diagram in Figure 4.7.

4.12.1 Meeting Scheduler

The meeting scheduler as defined by van Lamsweerde et al. [188] is a common socio-technical
case study, and has been modelled using KAOS [189] and i* [202]. Figure 4.8 shows a

responsibility model of the scheduler using graphical responsibility modelling notation.

The Meeting Scheduler System is intended to support the organisation of meetings. Meetings
are arranged in the following way. A meeting initiator asks potential attendees to list dates
within some range that they would prefer to attend a meeting (the preference set) and dates
where they cannot attend (the exclusion set). Additional preferences may be expressed by
attendees, such as requirements for special equipment or choices about the meeting location.
A proposed meeting date should belong to as many preference sets as possible, and not be a

member of the exclusion sets; if this cannot be achieved, a date conflict has occurred.

The model proposes a system structure containing four distinct roles. The meeting initiator
is responsible for defining the list of participants and initially setting up the meeting; the
meeting scheduler system then performs the practicalities, such as determining the time and
location. Meeting participants provide their availability times, expressed as the preference
set and exclusion set, and can also specify equipment requirements. Additionally, important

participants can also specify their preferences for the location.
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The particular version of the system described by this model contains some important sub-
tleties. Of the three types of information that participants (either normal or important) can
provide only one of them is held by the corresponding actor. This implies that there is
no obligation that participants provide information other than timing information; this is
consistent with the definition that states that providing these types of information is optional.
However, responsibilities of the meeting scheduler (specifically, Choose Location) depend
on the availability of expressed location preferences and equipment needs, and so would not
be discharged if no preferences are provided. This problem is not addressed in the original
definition - it is unclear how the location is determined, and if factors other than preferences

are taken into account.

The Meeting Scheduler System also holds no responsibilities itself, and is merely the required
actor for the responsibilities that are held by others to be discharged. This expresses a
particular view of system deployment - the scheduler is a piece of software, and therefore
cannot be held to the same standards of accountability as a human or an organisation. However,
this means that a responsibility failure due to the scheduler cannot be traced or attributed
at all, which may be unsatisfactory. Alternatively, the scheduler could be provided with
‘holds’ relations, which would allow failures to be directly attributed (although this may not
be meaningful, for the reasons mentioned earlier). Another option would be to introduce an
additional actor, the system developer or maintainer, which could hold a responsibility for

ensuring the scheduler operates correctly.

This example also demonstrates some of the difficulties in effectively dividing up responsibili-
ties in manageable units. ‘Choose Date’ and ‘Choose Location’ are both sub-responsibilities
of ‘Arrange meeting’, which initially appears to be a sensible division of two important
parts of arranging a meeting, given that they both require different sources of information.
However, both responsibilities are really dependent on the same resource and are irreversibly
interlinked - the availability of certain locations is presumably time dependent, so separately
selecting time and location (as this model describes) could lead to arranging meetings where
the location is unavailable. At this level of abstraction the use of two separate responsibilities
does not indicate that the selection of date and location must be completely independent (the
actual logic for selection is not defined), but does also not specify that they must be connected

(which is necessary to avoid potential conflicts).

The role-based nature of actors is also clearly demonstrated in this model. The separate
responsibilities for Meeting Participant and Important Participant do not imply that individuals
who are important participants cannot provide timing information and state equipment needs;

such a real-world individual fulfils two responsibility modelling roles.
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i

4.12.2 Scrum

The Scrum process is an agile development framework for software development [155]. Scrum
is an iterative process, where the product is developed in a series of sprints, and requirements
are expressed by a product owner. Additionally, the Scrum team lacks a hierarchy and does
not contain managers or assigned roles and groupings. Instead all team members take part
in all Scrum activities, which are overseen by a Scrum Master who acts as a facilitator. Our

model of the responsibilities in the Scrum process are illustrated in Figure 4.9.

The figure shows that work is organised around responsibilities for planning, undertaking and
reviewing a sprint. The iterative structure of the responsibilities (and thus the overall process)

is evident in the model, in contrast to more linear models of development.

Additionally, the model shows that Scrum is a collaborative process where all roles collaborate
in many different responsibilities in different ways. For example, Developers operate in
collaboration with the Scrum Master and Product Owner for Sprint Planning, in which the set
of objectives for the next Sprint is decided. Similarly, all actors collaborate in the conduct of
the Retrospective and Sprint Review, although they each perform different elements of the

process.

Note that this example demonstrates that actors are roles, not individuals; in Scrum, it is
common for the Scrum Master to also be a Developer. As a result, extra care (ideally aided by
tool support) is necessary when considering the risk of overload, as one actual individual or

organisation may be acting in a number of different roles.

The model also shows the difference between being required for a responsibility and being
responsible for it. In most cases, actors are both required by and responsible for (holding)

certain responsibilities. For example, the Product Owner is required to complete the Sprint
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Review, and is also accountable for its success or failure. However, some other responsibilities
are only held by one actor. For example, the Scrum Master is the sole actor to hold Sprint
Planning and Retrospective; this indicates they they alone hold ultimate responsibility for
ensuring its completion. These responsibilities still require other actors to be successfully
completed, and so the Scrum Master must rely on the Product Owner and Developer in order
to fulfil their duties.

A responsibility can be decomposed in order to understand how agents collaborate to discharge
the overall responsibility. Figure 4.10 illustrates how the Sprint responsibility is decomposed
to show the assignment of sub responsibilities. The Developers retain responsibility for
undertaking development of new features or remedy of features, as prioritised during the
Daily Scrum. However, the Scrum Master takes responsibility for coordinating the Daily
Scrum. The exact division of responsibilities within the Daily Scrum may be identified by

further refinement if desired.

The figure also illustrates the modelling of heterogeneous human, organisational and technical
components consistently as agents with responsibilities. The development team is an organi-
sational agent consisting of several (unidentified) developers. Responsibility for integration
testing is delegated to a Continuous Integration Environment, a software application that is

configured to monitor for changes to the target system’s code base.

The decomposed model is consistent with the overall model presented in Figure 4.9. Resources
that are inputs and outputs to the Sprint responsibility (Sprint Backlog and Done Increment
respectively) are similarly represented as boundary elements for the decomposed diagram.
Similarly, the agents that hold the overall responsibility for the Sprint (Developer and Scrum
Master) are present in the decomposed diagram. The Continuous Integration environment does
not hold responsibility for conducting the overall Sprint, so only appears in the sub-diagram
in association with its specific responsibilities. Depending on the modeller’s preference and
the target audience, these refinements can either be presented separately, or used to expand

the core responsibility model.



4.12. Modelling Examples 110

This initial model of Scrum can also be expanded to describe more complex behaviour using
the new additions to the responsibility modelling notation. For example, Development is
currently discharged and features and issues produced as long as the developer is active and
daily objectives are available. This is an idealised representation of software development, as
numerous reasons can lead to seemingly well-planned development failing to complete. We
can explicitly model this by introducing uncertainty into the definition of Development, with

the following satisfaction criteria:
Development:: Developer Active & Daily Objectives Exists & ?

In this version of the system the activity of the developer and availability of the objectives are
still necessary to successfully discharge development, but they are not necessarily sufficient -
this definition of Development can still fail, even when both requirements are correct. This
then weakens the strength of claims that can be made about the system as a whole, as it is no

longer possible to guarantee complete and successful discharge of all responsibilities.

Additionally, responsibilities can also be augmented with constraint logic to indicate more
complex relations. Currently, the Daily Scrum requires two resources - Sprint Backlog
(representing work remaining) and Issues (representing new problems that have been detected),
which are then used to plan the objectives for the next phase. However, there are situations
where only one of these inputs may be required - for example, when no issues are raised
during a particular day’s development. As currently expressed in the model this could lead to
inappropriate failures - the scrum is dependent on Development (which produces the Issues),
but it might in practice be possible to perform a scrum without associated development (such
as if dividing up a backlog). Instead, the Daily Scrum responsibility could require one of
either Sprint Backlog or Daily Objectives, and this can be expressed with the following

constraint logic:
Daily Scrum:: Developer Active & (Sprint Backlog Exists || Issues Exists)

This version more accurately describes certain edge cases by still discharging successfully
when one resource is unavailable. However, it now means that the Scrum always succeeds as
long as the developer is active and one resource is available, while there are some scenarios
where this might be inappropriate (such as when there are live issues discovered by developers,
but the Scrum Master forgets to discuss them). In effect, removing ‘false failures’ may now
introduce ‘false successes’. This highlights the difficulty of producing models that are both
suitably abstract and suitably accurate - specifying the organisational processes in exact
detail is complex and potentially contradictory, but more abstract models may provide system

definitions that deviate from the intended reality.

This section focused on the initial modelling of scenarios, and simple analysis by inspection
of the models’ structure. A key contribution of formalised responsibility modelling is that it

enables more rigorous and complex analysis to be performed, based on an understanding of
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the formal semantics. This type of analysis is discussed further in the following chapter.

4.13 Conclusion

This chapter has presented a consistent definition of responsibility modelling by formally
defining the semantics of entities and relations. Entities retain the same meanings as in
previous responsibility modelling systems, but with slight changes to the notation. Relations
are restructured to provide clearer modelling - sub-responsibilities are generalised into required
resource relationships, and actor assignment is separated into two distinct relations - the
required actor relation (which models the direct need for a particular actor) and the holds
relation (which models the responsibility / accountability relationship). These changes
lead to a reworking of traditional responsibility modelling concepts such as delegation and

dependency.

The inability of responsibility modelling to handle complex relations between entities is
addressed by the introduction of satisfaction criteria - a simple logic for expressing additional
details in relations where appropriate. This allows explicit modelling of common relations

such as alternative implementation options and fallback systems.

This logic is then used to introduce an explicit method for capturing uncertainty in models.
Socio-technical system models often make the assumption that they completely represent the
underlying problem domain, even if requirements capture has left some parts of the model
partly or completely unspecified. By tagging any entity with an uncertainty marker these
gaps can be identified and modelled, distinguishing between intentional and unintentional
uncertainty. In addition, this explicit uncertainty redefines analysis by identifying areas where

modelling cannot accurately analyse the system due to a lack of certainty.

The temporal nature of responsibility modelling is also more carefully examined. Models
have always featured implicit temporal elements (a resource must be produced before it can be
consumed), but the detailed meaning was left undefined. We therefore define the principle that
responsibilities are ‘eventually’ discharged - that responsibilities must be completed within an
arbitrary time period appropriate to the problem scenario. This eliminates the need for careful
evaluation of discharge times and removes the potential for race conditions. Transformations
are also defined for common modelling changes to eliminate unintentional effects on other

parts of the model.

Short analyses of methodological issues such as model scope and abstraction are given, before
this chapter concludes by demonstrating the full range of the revised notation in small-scale

worked examples of a meeting scheduling system and the Scrum agile development process.



112

Chapter 5

Analysis

5.1 Introduction

In the previous chapter we presented a consistent, formalised notation for responsibility
modelling. However, modelling socio-technical systems is a means to an end, rather than
a complete task in itself. Socio-technical models are used to analyse systems on criteria
including safety, security, performance and usability [13, 109, 112, 181]. In previous respon-
sibility modelling studies, analysis has consisted of informal or semi-formal inspections of
the model and semi-formal analysis using guidewords. The key advantage of formalising
responsibility modelling is that analysis can be performed on a much more structured basis,

and that different forms of analysis can be automated according to set rules.

This chapter describes both formal and informal analysis techniques developed during this
research. Firstly, the RESME toolkit is introduced and described. This Eclipse-based toolkit
provides a graphical interface for the creation, editing and analysis of responsibility models; in
particular, it provides full support for automatic analysis techniques. Formal analysis consists
of five different automated techniques: overload detection to identify overstressed actors;
assignment checks to locate unheld responsibilities and unproduced resources; reliance analy-
sis to identify inter-dependencies between different actors holding related responsibilities;
criticality analysis to identify the most vulnerable single points of failure and full discharge
analysis, which evaluates the discharge and production of entities according to specified

satisfaction criteria.

The informal approaches are the use of patterns and anti-patterns to recognise responsibility
structures and potential vulnerabilities and the identification of common modelling problems.
Additional semi-formal approaches include role analysis to identify potential overloads and
conflicts of interest caused by one individual holding multiple actor roles and the use of

what-if analysis to selectively disable certain model entities and examine the knock-effects on



5.2. RESME Toolkit 113

other parts of the model.

5.2 RESME Toolkit

Tool support is desirable for modelling of non-trivial systems, allowing for the automatic or
semi-automatic application of analysis and proof techniques that would be time-consuming
and impractical to perform by hand [203]. Previously, responsibility models were constructed
with general purpose imaging programs (e.g. [12, 169]) or with the aid of plugins to general
purpose modelling tools such as Microsoft Visio (e.g. [174]). These plugins included a
definition of the graphical notation, providing consistency, but did not enable any form of

automated analysis.

To address this we have developed the RESME toolkit [157] to support the construction
and analysis of formalised responsibility models. This toolkit provides a user interface for
graphically constructing new responsibility models and then applying a range of automated

analysis techniques. The user interface of the toolkit is shown in Figure 5.1.

The RESME toolkit is used as the primary mechanism for implementing automated analysis,
and is used to both construct and present responsibility models for the case studies in the
following chapters. Given the importance of the tool in these case studies, this section provides

an overview of the key features, interfaces and implementation details of the RESME toolkit.

The RESME toolkit is implemented using the Eclipse Sirius framework [49] and the Eclipse
Modelling Framework (EMF) [50] . The EMF is used to model the underlying data structures
(entities and relations) and generate corresponding Java code from this model; the generated
classes from this process are then extended with hand written functions that perform model-
wide analysis. It also provides a cross-platform XML representation of user-generated
responsibility models. Sirius provides a standard graphical editor for EMF models which
enables the visual representation of models and simple drag-and-drop editing; complex editing
details and model validation is performed by customised rules defined in the Acceleo [51]
model transformation language. Finally, the ANTLR [139] parser system is used to define
and parse the satisfaction criteria logic, with evaluation performed by native Java code.

This toolkit is implemented as Eclipse plugins grouped into an Eclipse feature, which allows
easy deployment using the Eclipse update-site mechanism. This allows the toolkit to be
installed into any existing Eclipse installation without the need to manually configure depen-
dencies or settings. A ready-to-deploy package of the toolkit is hosted as an Eclipse update

site [163] and the full source code and version history is available as a GitHub project [157].

Models can be constructed and edited graphically, with all standard entity and relation types

supported. In addition, several special purpose entities and relations have been added to
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Figure 5.1: Analysis in the RESME toolkit, showing reliance, overload and selectively
disabled responsibilities

support modelling extensions developed for specific case studies. Models are constructed
by first dragging entities from the toolbar and placing them in the main modelling screen;
relations can then be added by selecting the appropriate relation type from the toolbar and
then selecting the two entities to be linked. Details for each entity can be viewed and edited
using a tabbed detail browser. The visual layout of the model is purely for aesthetic purposes.
The automated layout system is usually capable of producing an uncluttered diagram, or
a user may apply their own manually. Alternative tree and table representations are also
available, which provide a clear way of viewing entities but obscure the source and destination

of relations.

Large responsibility models can be complex and confusing, and so the toolkit offers several
tools to make them easier to understand. Extensions to the basic set of entities and relations
can be toggled on and off using layers; when a layer is disabled any entities or relations of
that type are removed from the diagram and from the toolbar, but remain unchanged in the

underlying model.

Models can also be structured using sections, which are used to display and edit specific parts
of the system. Sections can contain any number of entities and relations, but due to tooling
restrictions, each entity can only be within one section. These sections can be displayed
separately using Section diagrams and changes made in section diagrams are automatically
transferred to the underlying model and the main responsibility diagram. This enables

visualisation of model sub-areas, and can also be used to construct a model incrementally out
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of sections. The use of sections is purely to divide up visual representations of the model, and

does not divide the model itself - for this entirely separate model files should be used.

RESME also provides partial support for realisation relationships and multi-level modelling
via the instance layer. This enables the addition of instance actors to the model, which can be
linked to normal actors using realisation relations. This relation indicates that the instance
actor is a implementation of or special case of the original actor. The more general concept of

instantiation across all entity types is not supported in the current release.

Satisfaction criteria can be specified for any entity using the properties view. Satisfaction
criteria are not visually represented - any existing relations remain displayed, and new links
introduced only in satisfaction criteria are not displayed. Likewise, local forms of analysis
are not affected by specifying satisfaction criteria, and still operate based on the standard
definitions of relations. Satisfaction criteria are used to modify the results of satisfaction
analysis, which uses a naive evaluator by default (all required entities must be available, and
there are no additional requirements); each entity that has custom satisfaction criteria defined

uses these in place of the default.

Explicit uncertainty in satisfaction criteria is handled by the generation of warnings on each
entity containing uncertainty. The effects of this uncertainty are not automatically analysed,
but instead draw the attention of the modeller to the entities they need to examine. This
provides a quick overview of potential sources of wider system uncertainty, but requires the
modeller to manually consider the effects of uncertainty propagating throughout the model,

which may induce additional vulnerabilities.

5.3 Automatic Analysis Methods

The existence of a formal structure for responsibility modelling enables wide ranging anal-
ysis to be performed automatically and semi-automatically on models that adhere to the
formal structure. This section presents five distinct analysis techniques that benefit from this
formalisation or that would not be feasible without the use of computerised tool support.
These techniques include both methods that rely on local analysis (such as analysing the
direct relations of an entity) and methods that analyse the model (such as the identification of
critical points of failure). These techniques are static analysis methods that identify potential

vulnerabilities by analysing the structure of a responsibility model.

For each technique the motivation and basic principles are introduced, the main applications
described, common results discussed and results that may require special interpretation
considered. The identification of potential vulnerabilities by automatic analysis may indicate

either a flaw in the actual domain or a flaw in the model, so care must be taken to fully
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understand the implications of any result. This section defines and introduces these methods;

we leave validation to case studies in later chapters.

Sommerville [166] discussed eight different forms of responsibility vulnerability in an infor-
mal manner, six of which have corresponding automatic analysis techniques in formalised
responsibility modelling. Unassignment of actors and lack of resources are directly imple-
mented, as is overload. Sommerville’s ‘fragility’ is essentially identical to our concept of
criticality - identifying the most vulnerable parts of a system. Sommerville’s ‘lack of authority’
can be analysed using formalised responsibility modelling’s reliance analysis, as can their
concern over conflicting authorities for actors. Duplication of duties and uncommunicated
assignment are the only analysis forms that are not automated; these are difficult to identify

automatically because they are not directly represented in the responsibility structure.

All these forms of analysis are supported by the RESME toolkit. Local (overload, assignment,
reliance) checks are performed by validating the model file (invoking validation applies all
local checks to all entities simultaneously) while global (criticality, discharge) checks are
triggered by selecting the appropriate analysis method from the toolbar and applying it to the
model. In both cases the results of the analysis are presented in the standard Eclipse format
as warnings or information points; these are shown as icons with tooltips on the graphical

representation of each entity, and are listed in full in the Problems view.

5.3.1 Overload

Failures in socio-technical systems can occur when parts of the system are stressed or
overloaded - in particular, individuals and organisations may struggle when attempting to
deal with unexpectedly large or complex tasks, or simply because they have to handle more
duties than they can give full attention to. For example, Adams et al. [2] describe how
pilots lost situational awareness when attempting to process multiple tasks simultaneously.
Adler and Benbunan-Fich [3] show that increased multitasking leads to a significant loss
in task accuracy. These overloaded actors could be relieved by assigning some of their
responsibilities elsewhere, or by providing them with additional resources, but only if they

are correctly identified.

Thresholds can be set to determine potentially overloaded actors that are required for an
excessive amount of responsibilities, potentially leading to degraded operation. Overload on
actors indicates either a risk due to multiple significant responsibilities potentially requiring to
be discharged simultaneously or due to the actor being required to oversee or supervise a large
number of responsibilities. The thresholds for these types of risk are generally quite different
- discharging more than 2 or 3 responsibilities simultaneously is likely to lead to problems

as discharging tasks simultaneously requires more effort than the total of discharging them
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Figure 5.2: Example responsibility model demonstrating overload

separately [97], while an actor may be able to manage substantially more responsibilities if

they are less complex or do not require direct action.

This makes the concept of overload in responsibility modelling more complex than in a
task- or process-based modelling system. Actors may be overloaded if they are required to
discharge multiple responsibilities concurrently, as in task-based modelling. However, actors
may also be overloaded if they are required for a large number of distinct responsibilities,
even if they play only a minor role in the discharge of these responsibilities. This ‘cognitive’
overload occurs as actors are required to continuously track and evaluate the responsibilities
for which they are required. The abstraction inherent to the concept of responsibilities means
that this distinction cannot be formally analysed, and so these two distinct forms of overload

are represented as one metric.

Formally, an actor is overloaded if they are required for a number of responsibilities above
a set threshold, which was initially set to four. This value was selected to exclude actors
holding several responsibilities from being declared overloaded in order to avoid excessive
false positives. The reliability of this metric is improved by modelling responsibilities at

consistent levels of abstraction to ensure that the effective loads are comparable.

Figure 5.2 shows a simple responsibility model for teaching responsibilities within a university.
The Lecturer is required for six different responsibilities, while the Teaching Assistant is
only required for two. As a result, the Lecturer is an overloaded actor, as the number
of responsibilities they are required for is above the threshold. The fact that two of the
responsibilities are shared (they require both the Lecturer and the Teaching Assistant) does
not affect the results of overload analysis, as is not possible at the responsibility level to

determine how the effort of these responsibilities is divided.

The generation of an overload warning is not definite evidence of a vulnerability, but a warning
sign that requires further investigation. A model is likely to feature responsibilities across

different scales and different levels of importance, and holding a large number of ‘small scale’
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responsibilities need not be more demanding than holding fewer, larger responsibilities.

This can be addressed by specifying the load value of responsibilities - representing the
amount of attention and effort required to discharge them. By default, all responsibilities have
a standard load value of 1; load values are relative to other responsibilities, so increasing the
load to 3 indicates a responsibility that places three times the standard load on its respective
actors. This has a corresponding effect on overload warnings; it is easily possible for an actor
holding one responsibility to be overloaded if that responsibility has a particularly high load

value.

However, care should be taken not to over-specify responsibility loads. The load value is
a broad representation of the complexity of the responsibility, not an exact specification of
the time taken or resources required. Overload detection is an advisory warning, and so
minute differences in load make little difference; differences in load values are best used
for responsibilities that have appreciable differences in complexity within the context of the

model.

Overload detection is most effective when a model of a problem domain represents responsi-
bilities and actors at the same level of abstraction. For example, a police force is responsible
for maintaining law and order, whereas a traffic officer who is a member of that police force
is responsible for enforcing traffic laws. Misleading results can occur if these two levels of
abstraction are mixed. For example, a police service could be modelled as being responsible
for the traffic laws, investigating cyber crime, responding to emergency calls, etc. Overload
analysis would consider the police service overloaded, whereas in practice this is an effect of
inappropriate mixing of abstractions. This is best addressed by aiming to maintain the same
level of abstraction across the entire model, but like all forms of automated analysis a certain

level of human judgement is required to interpret the results.

5.3.2 Unassignment

The correct operation of a system depends on the availability of resources and actors - the
failure to produce resources via the discharge of responsibilities is a vulnerability within the
model of the system. A full analysis of resource production or responsibility discharge can be
complex, especially when complex satisfaction constraints are defined. However, a subset of

potential vulnerabilities can be detected using unassignment checks.

Unassignment warnings are generated for each resource that does not have an associated
Production relation, and for each responsibility that does not have a Required Actor relation.
Relations to disabled entities are excluded, but no other checks are made as to the viability of

the related entities.
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Figure 5.3 shows a partial responsibility model for assessing university students. Grading
students requires a Lecturer, Exam Marks and Coursework Marks. Unassignment warnings
are generated for Mark Coursework and Exam Marks; Mark Coursework has no Required
Actors, while Exam Marks is not produced by any responsibility. However, no warning is
generated for Coursework Marks, as these are produced by Mark Coursework, even though
Mark Coursework itself is subject to a warning. Unassignment checks are local to each entity,
and do not check further than their direct relations. Instead, a full-system wide analysis can

be performed using discharge detection.

In most cases, unassignment indicates that the resource cannot be produced or the responsi-
bility cannot be discharged; this can reflect an issue in the modelling process (an attempt to
limit the model scope, or an entity missed out) or an oversight in the actual system, such as an

undocumented process or an assumption of constant availability.

5.3.3 Reliance

Interactions and interdependency occur routinely between actors in socio-technical systems.
Actors can share certain responsibilities, where multiple actors must collaborate in order to
achieve a common goal. These types of relationship are observed in a responsibility model by

looking at the requirements for a particular responsibility.

However, a more subtle form of interdependency occurs when an actor indirectly relies upon
another in order to be able to discharge their own responsibilities. For example, an actor may
hold a responsibility that requires a resource in order to be discharged, and so the actor’s
responsibility can only be discharged if the resource is successfully produced. If the resource
is produced through the discharge of a responsibility held by a different actor, the original
actor relies on the second actor. Without them the original actor cannot discharge its own
responsibilities. This places actors in a difficult position - their own success in discharging

responsibilities can be reliant on those they have no direct control over.
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Figure 5.4: Reliance example - the Student relies on the Lecturer

In particular, this dependency produces problems when entities hold responsibilities where
the activity of the work is performed completely by another agent. This can easily occur
when there is uncertainty about the responsibilities of particular agents, or where work is
delegated away. For example, drivers may blame the local authorities for the state of the
roads, even if these are trunk roads managed by central government. In such a case it can
be said that the local authority holds a responsibility to manage the roads, which itself can
be refined into local roads (requiring the local authority) and major roads (requiring central
government). As a result, the local authority is dependent on central government to discharge

its responsibilities, but has no ability to influence them.

Despite this, dependency is a core part of most large systems. Where dependency relationships
match organisational hierarchies or contractual obligations the system has the required control
mechanisms to successfully discharge its responsibilities. Dependency only leads to vulner-
abilities where there is a mismatch between the relationships implied by the responsibility

structure and the actual relationships within the system.

Reliance analysis generates a corresponding set of actors for each actor within a responsibility
model. This set contains all other actors that are directly or indirectly required by the
responsibilities held by the original actor; this includes both direct relations (i.e. a required
Actor relation) and indirect relations (where a responsibility requires another entity, which

directly or indirectly relies on another actor).

Figure 5.4 shows an example model displaying the use of reliance analysis. A Student holds
the responsibility to Sit an Exam, but to discharge this they need the Exam Paper resource.
This resource is produced by the responsibility Write Exam, which is held by a Lecturer. The
Lecturer is required by a responsibility that is indirectly required by a responsibility held
by the Student, so the Student therefore relies on the Lecturer. Without the Lecturer there
would be no Exam Paper to be sat, and so the Student would be unable to discharge their

responsibility.

This form of reliance can be a source of potential vulnerabilities. Actors can be placed in a
situation where they are held accountable for responsibilities that they cannot discharge by
themselves; they are expected to discharge their own responsibilities regardless of the necessity

of external support. This is particularly problematic where reliance crosses organisational
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Figure 5.5: Example responsibility model annotated with criticality scores

boundaries, as this leaves actors without the ‘soft influence’ on others that they have by virtue

of being within the same organisation [166].

The set of actors relied upon can be compared to management structures. If an actor relies on
another actor that they manage or supervise it is more reasonable to blame them for failings
than if they have no control over the second actor. For example, the manager of a team is
likely to rely on the members of their team in order to discharge all their responsibilities, but
they have the authority to ensure that the team members act as required. If an actor relies on
others over whom they have no authority there is little the actor can do to ensure that what
they require is done, and the appearance of such relationships is a sign that the model lacks an

appropriate authority structure.

5.3.4 Criticality

Two forms of analysis are also possible which operate across the entire model. Criticality
analysis detects the most critical entities - those that contribute the most to the system and

would cause the highest number of responsibility failures if they were non-functional.

Criticality is calculated by identifying the number of responsibilities that depend on an entity
in order to be discharged, such as needing a resource or requiring other responsibilities. This
is calculated by traversing the graph of all entities in the model. The criticality score of a
responsibility is the sum of the criticality score of all entities that depend on it. The criticality
score indicates the number of other responsibilities that would not be discharged if the critical

entity was unavailable.
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Figure 5.5 shows a responsibility model of serving food in a restaurant, annotated with the
criticality score of each entity. The most critical actors are the Waiter and Customer (tied
with a score of 3 each), the most critical actor resource is the Order and the the most critical
responsibility is Take Order. Criticality scores are calculated by evaluating the dependencies
of each responsibility; for example, Cook Meal is required for Enjoy Meal (which gives
Cook Meal a criticality score of 1), Order is required for Cook Meal which is itself required
for Enjoy Meal (giving Order a criticality score of 2) and so on. Criticality considers only
required entities and not Holds relations, so the Restaurant Manager has a score of 0, as they

hold a responsibility but are not required by it.

In practice, there are two main cases of criticality. Firstly, an entity may receive a high
criticality score because it is at the start of a chain - for example, the first resource in a
complex production/consumption process, or the root responsibility at a chain of dependencies.
Alternatively, a high criticality score may arise simply when an entity is directly involved in a

large number of relations.

In either case, the critical entity warning can be used to identify the need for fault-tolerance
and redundancy in the system. In a long chain of entities, this redundancy can be provided by
allowing for multiple ways to initiate the process (eliminating a single point of failure at the
start), and by multiple routes throughout the chain (preventing the chain from failing part way
through). If a single entity is involved with a large number of relations this can be addressed
by transferring some of their relations to other entities where possible. Alternatively, the
entity itself can be made more redundant - for example, responsibilities can be replaced with

primary and alternate modes, and actors can be augmented with automated fallback systems.

Criticality analysis relies on a consistent level of detail and abstraction in a model. Each
responsibility is considered to have the same level of importance, so a cluster of specific
responsibilities is considered more critical than a single overarching responsibility. If one
part of the model is specified in more low-level detail than another then the low-level part
of the model will contain a higher density of entities, and hence receive a higher criticality
score. This can be partially addressed by breaking the model down into sub-models and
analysing each one separately; this requires very careful construction in order to avoid ignoring

interactions between the different sub-models.

5.3.5 Discharge

The second form of model-wide analysis is responsibility discharge detection, which is
augmented with the constraint language described in Section 4.6. By default, responsibilities
are considered to be successfully discharged if all required elements (the entities to which

they are linked by relations) are active. However, sometimes the discharge criteria for a
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responsibility are more complicated. A responsibility may for example be dischargable by
either one of two separate actors, or may rely on the availability of a subset of different
resources. In these cases, the more complex behaviour can be expressed using the constraint

language.

When discharge analysis is performed, initial checks are made on entities without complex
constraints to determine if they can be discharged. After this, the constraints defined on
complex entities are evaluated by a constraint parser, and responsibilities that fail to discharge
are indicated. If combined with the selective disabling of model elements this technique allows
for an effective analysis of system failure modes. This allows for the examination of fault
tolerance and redundancy within the system, and further automation allows the most serious
points of failure to be determined by checking the number of undischarged responsibilities

caused when each object in the system is disabled.

5.4 Modelling Problems

Responsibility models may exhibit certain characteristics that are potentially indicative of
mistakes in the modelling process, such as missing relations or complex responsibility
structures. Understanding these common problems allows the identification and correction
of such mistakes easily and in a consistent manner. These problems are akin to the software
engineering concept of ‘bad smells’ - indicators of poor software design practice that may
cause difficulties in the future [14]. In systems modelling, bad smells in a model may represent
a mistake or a non-optimal modelling choice, but they may also represent a genuine problem or
uncertainty in the problem domain. It is therefore important to fully understand any apparent
problem before addressing it, as changing a model so that is ‘correct’ may actually make it
less representative of the system it is attempting to describe. In this section, several common
modelling problems that may be indicative of either poor modelling or issues in the actual
system are described and evaluated. These problems have been observed in the construction

of responsibility model for this thesis, as well as in previous responsibility modelling studies.

Ideally, all responsibilities in a model should be at a broadly similar level of abstraction.
This helps to make the scope of the model clear, and makes analysis more meaningful, as
responsibilities are more likely to be of similar effort and importance. However, it is common
for responsibility models to have varying levels of abstraction. This is not inherently a problem,
but can indicate several potential causes that require investigation. Firstly, inconsistent
abstraction levels may simply represent an example of confused modelling, where the modeller
has inadvertently mixed levels of detail without due cause. In this case, a restructuring of the

model will provide greater consistency and improve the reliability of analysis results.

Alternatively, confusion around levels of abstraction may represent actual inconsistencies
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or wide variance in the domain itself, or at least in the sources of information used to build
the model. This may arise from combining sources that take different views of the system
(such as operational records vs. regulatory requirements) or because individual sources cover
wide-ranging areas and focus in more detail on specific topics. In this case, the inconsistency
in the model is inherent to the representation of the system and cannot easily be eliminated;
instead, the multi-level structure of the model should be taken into account when performing

analysis.

Issues around the abstraction of responsibilities can also have implications for actors. Actors
that appear to hold large numbers of responsibilities may only do so because the responsibili-
ties they hold have been decomposed to a high level of detail compared to other responsibilities
in the same model. This can potentially be addressed by restructuring the responsibilities as
mentioned above; if this structure arises because of complexities in the domain the only option
is to carefully consider the results of actor analysis, especially when drawing comparisons

between actors that may have responsibilities modelled at different levels of abstraction.

The distinction between the ‘holds’ relation and the ‘required actor’ relation can potentially
lead to confusion; in particular, actor-responsibility relationships that use one but not the
other. Each possible combination represents a different type of interaction; ‘holds’ indicates
accountability and duty; ‘required actor’ indicates practical need and both ‘holds’ and ‘re-
quired actor’ indicates both practical participation and accountability. Each option has its
uses, and this may be informed by the information used to construct the model. For example,
a model based on the implementation of a system (using procedures, staff interviews, field
observations etc.) is likely to feature more uses of ‘required actor’ and fewer of ‘holds’, as
these sources focus on practical details. In contrast, a system based on higher-level sources
(specifications, regulations, organisational structures etc.) may contain more ‘holds’ relations,
and may lack ‘required actor’ relations where the details of how a specification or regulation

should be met are not described.

Some responsibilities or resources may appear underspecified; for example, a resource that
is not produced or a responsibility that has no required actors. This may occur for at least
three different reasons. Firstly, the entity might be described with deliberately vague detail in
order to avoid unnecessarily extending the scope of a system, such as a resource that is simply
assumed to always be available to avoid showing the details of its production. Secondly, the
entity might not have a clear and practical definition in the problem domain, such as fairly
abstract legal requirements that organisations might hold, but where the details of how such
obligations would be ensured in practice is unclear. Thirdly, it may simply be an oversight by

the modeller.
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5.5 Patterns

Responsibility models are models of socio-technical system structures. These structures may
be formal or informal, and may or may not cross conventional organisational boundaries [42].
The complexity of socio-technical systems in breadth and scope may initially imply that there
is little commonality between different systems, and that each responsibility model must be
constructed and analysed independently from any others. However, common structures often
appear across different domains and systems, and the recognition of these structures allows

for effective model and system analysis.

These patterns represent common structures in responsibility models - akin to design patterns
in other forms of engineering. Software design patterns originated as a method for addressing
common problems with a standard but adaptable solution to small-scale design problems
[64]. Socio-technical design patterns have been studied in other contexts, such as Martin and
Sommerville [121]’s ethnomethodologically-based patterns of work and Storer et al. [177]’s

patterns of information security.

When used to analyse existing systems, patterns provide a library of structures that allow
analysts to quickly identify features of the model and get insight to the vulnerabilities of
that structure. When used for requirements engineering patterns provide simple structures
with well-known strengths and weaknesses and guidance as to what contexts that structure is

suitable or not suitable for.

This section defines and analyses common patterns for multi-agent co-ordination - a common
activity in socio-technical systems [35], and a disproportionate source of potential vulnerabili-
ties due to the common complexity and ambiguity of human communication, especially across
organisational boundaries [170]. These definitions can be used to recognise and understand
co-ordination within a system, and demonstrate the efficacy of the pattern analysis technique,

which can be potentially extended to many other types of structure.

As models of organisational structures, responsibility models often feature implicit and
explicit examples of multi-agent co-ordination. This co-ordination is required to meet some
common goal, or to operate effectively as part of a (possibly virtual) organisation. While
there are significant differences between different types of organisation at an abstract level
there are very few distinct forms of co-ordination. Mintzberg [126] suggests that there are
just five basic forms of co-ordination - ultimately, co-ordination is either ad-hoc at a flat level,
or intermediated by some system or actor. Each abstract type of co-ordination has strengths

and weaknesses, which lead to particular types of vulnerabilities in the actual system.

Explicit co-ordination generally takes the form of one of three patterns: a hierarchy, a co-
ordinator or a co-ordination team. Both the hierarchy and the co-ordinator patterns are

variations of Mintzberg’s ‘Direct Supervision’, and the co-ordination team is equivalent to
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Figure 5.6: Co-ordination patterns

‘Mutual Adjustment’. Implicit co-ordination occurs when multiple actors are assigned to the
same responsibility; potential vulnerabilities arise when co-ordination may be necessary but
1s not specified, such as between actors working in a long production-consumption chain.
Mintzberg’s three other co-ordination forms all represent types of implicit co-ordination.
Figure 5.6 shows responsibility models of the three types of explicit co-ordination, using

resource production/consumption as the shared work.

In the hierarchy pattern, actors are linked by the chain of actors above them - at some level
these chains meet either by being supervised by the same superior actor, or by sharing a com-
mon responsibility. This structure provides weak co-ordination and loses power as it scales.
Automatic analysis of this responsibility structure shows that dependency links are broken as
low-level staff do not hold any responsibility for co-ordinating their activities; instead, senior
management staff perform high-level co-ordination but rely on middle management below
them, who are themselves reliant on the low-level staff. Middle managers are particularly at
risk of overload if they manage large numbers of low-level actors. Additionally, this pattern
creates critical actors that act as single points of failure - if a top-level actor fails large numbers
of lower-placed actors will fail to co-ordinate. However, the hierarchy minimises load on
lower-level actors by reducing their communication overload and also minimises the number

of actor roles required.

In the co-ordinator pattern, actors with shared responsibilities communicate via an explicit
third-party actor, the co-ordinator. The co-ordinator acts as a proxy, relaying communications
between the other actors. When there are too few co-ordinators compared to other actors, this
pattern shares the same strengths and weaknesses as hierarchy. When used more substantially,
the co-ordinator pattern leads to a decentralised system that scales effectively and can retain

robust communication. However, additional resources are required to provide the extra
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co-ordinators, and communicating with multiple co-ordinators may overload actors. The
co-ordination pattern places (potentially multiple layers of) co-ordinators directly above
frontline staff, making each co-ordinator directly reliant on those actors. If co-ordinators hold
responsibilities for excessive numbers of projects or staff then they face the same overload

problem as middle managers in a hierarchy.

In the co-ordination team pattern actors with shared responsibilities do not use a separate
co-ordinator and instead together form a co-ordination group with shared responsibility. In
comparison to the co-ordinator pattern, this approach reduces the amount of actors required
while retaining communication at the individual rather than the hierarchical level. It is
counter-indicated when the co-ordination group would be excessively large, or where one
actor would be part of multiple groups - in both cases it becomes impractical for effective
communication to occur. In a co-ordination team actors communicate directly with each other
without any intermediate layers. This increases the number of responsibilities held by each
actor, potentially leading to overload. Additionally, this is the only pattern where co-operating

actors directly rely on each, rather than having this link removed by intermediation.

A wide range of other pattern definitions are possible. For example, there are patterns apparent
in resource management (assembly line, pooled resources, information alerts), responsibility
delegation (matrix management structures, managerial hierarchies, team working) and inter-

related responsibilities (check and audit, iterative processes, checklists etc.)

5.6 Actor Roles

In responsibility modelling actors represent roles, rather than actual individuals or organi-
sations. One role might be fulfilled by several different organisations (an emergency first
responder may be from the police, fire or ambulance services), while one organisation might
fulfil multiple roles (a GP simultaneously fills the roles of medical advisor, NHS contractor
and small business owner). This complexity in actor roles was recognised in Lock et al. [116],
where the ‘Act As’ relationship was introduced to provide a link between individuals and
roles (for example, ‘Bob acts as an administrator’). Unfortunately, neither a formal definition

or an illustrative example were provided.

However, this approach risks muddying the definition of actors by introducing both roles and
the agents performing the roles in the same model. This would require introducing more
types of entities and relations, with a corresponding increase in model complexity. Given
that role allocations are ultimately an implementation detail (the responsibility model is a
general, abstracted view of the system, while role allocations may vary according to particular

circumstances) it is best not to include them directly in the model. Alternatively, if directly
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modelling actors is essential then it is possible to remove the roles and model entirely in terms

of actual actors, accepting the reduction in generality that this entails.

Despite this, there are clear advantages to studying the relationships between actor roles and
those fulfilling them. Conflicts of interest can arise if two seemingly separate roles are filled
by the same actor - consider a regulator who also owns a business in their area of regulation.
Simplistic versions of actor load analysis can also be subverted by actors holding multiple
roles - two individual roles may each have manageable loads, but if performed by the same

actor the combined load becomes excessive.

In addition, the ability of actors to fulfil multiple roles also impacts on criticality analysis
and vulnerability detection. Individual roles may may not be critical to the system, but a
combination of roles occupied by the same actor could be. Likewise, disabling all roles played

by an actor may cause the system to fail, but disabling only one role will not.

A low-effort technique to study this is to introduce an additional, optional phase of actor
analysis. In this phase, mappings are constructed between roles and actors, which indicate
which actors fulfil which roles. In conjunction with the criticality and load values for the roles
(produced by the toolkit) this can quickly be used to determine potential vulnerabilities in
terms of actors. If it is necessary to examine the effectiveness of actors failing to discharge
multiple roles then simply disable all roles they currently hold, and perform analysis as normal.
By constructing a simple table of mappings between roles and actual actors it is possible to
perform this analysis with relative ease and without relying on specific tool support. This is
similar to Lock et al. [116]’s ‘Act As’ relationship, but separating the mapping of roles and

actors from the model itself simplifies the semantics of the relationship.

When constructing the model, modellers can also place constraints on role allocation that
should be checked during this process. For example, they can constrain the role of the
regulator and the regulated person such that no individual can hold both roles. By explicitly
identifying potential sources of vulnerabilities at the time of modelling it becomes extremely
simple to detect them once the model is instantiated with actors. Again, this can provide
useful warnings without the need to extend the responsibility notation and add additional

complexity.

5.7 What-If Analysis

One use of socio-technical analysis is the evaluation of potential failures, and the effects
that failures of individual components and subsystem have on the overall system. This type
of evaluation can help to detect and correct vulnerabilities in a deployed system, or can
be used to incorporate more redundancy into requirements or a system design. In many

socio-technical methodologies this is obtained by performing a static analysis of the system
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Figure 5.7: Responsibility model showing selectively disabled entities

(e.g. workability analysis in i* [202] or process analysis in STAMP [109]) - evaluating the
structure and details of the model, and identifying single points of failure and potentially
stressed elements; formalised responsibility modelling’s automatic analysis techniques work

in this way.

However, additional insight can be obtained by using dynamic analysis - modifying the model
to represent particular scenarios or failure states, and then analysing how the model operates
in these degraded conditions. This may involve re-applying static analysis techniques in
the new situation, or evaluating the satisfaction of entities under the new conditions. To
enable this form of ‘what-if” analysis the RESME toolkit allows for the selective enabling
and disabling of individual entities and relations; this has the effect of temporarily removing
them from the semantic model while they remain visible (but clearly disabled) in the visual
model. Model elements (both relations and entities) can be selectively enabled and disabled
by double-clicking on them - disabling an element has the effect of removing it from the

model for the purposes of analysis, which is visually indicated by greying-out the element.

Figure 5.7 shows a simple responsibility model of purchases in a supermarket. Two of the
entities in this model have been disabled (as indicated by the italic text on the label, the grey
border on the entities and the broken lines on their relations) - the resource Cash and the actor
Shop Assistant. Visually, certain effects of these disabled entities are apparent - for example,
the responsibility Check for Shoplifting cannot be discharged. However, more interesting
results can be obtained by comparing the results of automated analysis run before and after
the entities are disabled. In this example the most critical actor changes as a result of the
disabled entities; with all entities enabled the most critical actor is the Shop Assistant with a
score of three, while once disabled the most critical actor is now the Customer, with a score
of two.
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This process allows for ‘what-if” analysis to be used much more widely than in notations
where manual copies and variations of the model must be made for each change. As the
responsibility model is formally defined and tool-supported, the state of the model updates
immediately as each entity is disabled, and analysis can be quickly re-run to understand the

implications of the change to the system.

‘What-if” analysis can be performed with two main strategies. Firstly, the disabling of
individual entities or small groups of entities allows for the simulation of the failure of specific
subsystems or actors, and can be used to test the resilience of the system against small,
individual failures. These can be combined into larger and larger sets of failures, allowing
the system to be tested to destruction. Conversely, this can also be used to detect potentially
over-engineered systems - if multiple sub components can be disabled without compromising

the wider system then the level of redundancy provided may be overspecified.

Alternatively, ‘what-if” analysis can be used to reproduce known failure cases or incidents.
Initially, these can be used to calibrate and validate the model as an accurate representation of
the actual domain. Running the model with the appropriate failed elements disabled should
produce a result that is broadly similar to the results of the incident - a large difference
between the simulated result and the actual result shows a lack of fidelity in the model. Once
confidence has been established in the model it can then be used to predict the consequences of
incidents, which is particularly useful when considering changes to alleviate future problems.
Additional safeguards and preventative systems can be added to the model and the incident
reconstructed, allowing the model to predict whether or not the changes will eliminate (or

reduce the severity of) similar incidents in the future.

5.8 Conclusion

In this chapter we have presented a comprehensive package of analysis techniques for for-
malised responsibility modelling. By utilising the consistent definitions of entities and
relations provided by formalised responsibility modelling we are able to define automated
analysis techniques to quickly detect potential vulnerabilities in a model. Overloaded actors,
resource production, points of failure and implicit organisational structures can all be detected
automatically. Additionally, the use of satisfaction criteria allows for the detailed specification
of the success requirements for individual entities, allowing model-wide evaluation of the
success or failure of the system. A guide is provided to common model ‘problems’, which
examines whether potentially concerning elements in models represent genuine problems
with the model, or are in fact signs of unusual or incomplete definition in the socio-technical

system itself.

Common traits in models also allow for the definition of patterns, which use responsibility
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structures to provide insights into the strengths and weaknesses of the underlying system.
Role analysis enables the investigation of the complex relationship between responsibility
modelling actors and individual people or organisations, who may often act in more than one
actor role. Structured and semi-formal techniques enable more insightful and probing analysis.
‘What-if” analysis allows the simulation of individual entity failures to examine the impact
on the operation and redundancy of the system. The majority of formal and semi-formal
techniques are implemented in our RESME toolkit, which also provides easy-to-use graphical
creation and editing of responsibility models.
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Chapter 6

Case Study - A Re-Engineered
Responsibility Modelling Study

6.1 Introduction

This chapter analyses a case study that was previously studied by conventional responsibility
modelling. We have chosen the Hunterston emergency plan study, as previously analysed by
the InDeED consortium [86] and validated against field exercises. The core of this study is
the Hunterston Nuclear Power Stations Off-Site Emergency Plan [133]. This case study was
chosen for two reasons: firstly, to evaluate whether formalised responsibility modelling is
consistent with the original responsibility modelling approach; secondly, to investigate the
advantages of the new approach by performing a more structured analysis, emphasising the
value of tool support and the iterative and dynamic aspects of the analysis enabled by formal

semantics.

By law in the UK, a local government authority area that contains a nuclear power station must
produce an Off-Site Emergency Plan to collate the emergency arrangements of the various
agencies that would respond to a radiation incident at the nuclear plants [185]. The Off-Site
Emergency Plan for the Hunterston Nuclear Power Stations in North Ayrshire [133] is the
subject of our analysis. The plan details the agencies involved, the communication between
them and many of the actions taken in the surrounding area; it does not describe the actual
process of emergency action at the site itself, which is the internal responsibility of the site

OwWner.

By analysing this document, we show the utility of formalised responsibility modelling in a

number of ways. These include:

e showing that responsibility models can be used to effectively represent complex scenar-

ios (the plan runs to over 100 pages)
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e showing that construction and analysis of responsibility models does not require domain-
specific knowledge (we have no special knowledge of nuclear power or emergency

planning)

e demonstrating that automatic analysis methods can provide insights as to the structure

of the responsibilities in a system

e showing that our updated responsibility modelling is compatible with previous ap-

proaches, while offering useful new features

This scenario was previously studied by the InDeED Project, which developed the first forms
of responsibility modelling. We have obtained copies of their models, observations and initial
analysis. As a result, this study can be compared with theirs, which both validates our models
and allows comparison between the two different techniques. The InDeED models were not
externally validated or evaluated; the comparison allows for relative validation against the
previous state-of-the-art but does not make claims about the inherent quality of the models

and analysis.

Models produced and notes referenced during this study are available online in two GitHub
repositories: [158] contains the responsibility models themselves (in the file format of the
RESME toolkit), while [87] contains the model (in Visio format) and observational notes

from InDeED’s previous study.

The remainder of this chapter is laid out as follows. Section 6.2 provides the relevant
background material for this study. This includes details on the Hunterston power complex
and organisations involved in the emergency response, as well as discussing the scope and
content of the Off-Site Emergency Plan itself. Section 6.3 presents the modelling process and
its results. This includes an overview of the modelling procedure and comments on particularly
interesting parts of the model, as well as challenges encountered during the process. Section
6.4 describes our analysis of the constructed model, based on both informal observation and
automated analysis. Potential vulnerabilities in the emergency plan are examined, and the
effectiveness of the approach is considered. Sections 6.5, 6.6 & 6.7 compare the results of
our analysis with the earlier InDeED Project work, an updated version of the emergency plan
and against observations obtained from emergency planning exercises. In Section 6.8 the
dynamic features of the responsibility modelling toolkit are used to re-run elements of the
field exercises and identify problems that arise. Finally, Section 6.9 provides a final overview

and conclusion.
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Figure 6.1: Map showing the location of the Hunterston site (circled) and surrounding
communities
Map (©)OpenStreetMap contributors, available under the Open Database License

6.2 Background

The Hunterston nuclear power complex consists of two separate facilities - Hunterston A, a
now-closed Magnox nuclear power station and Hunterston B, a currently operational AGR
(Advanced Gas Cooled Reactor) nuclear power station. Hunterston is located on the Ayrshire
coast in western Scotland approximately 30 kilometres from the city of Glasgow, as illustrated

in Figure 6.1.

The Hunterston power stations are of two distinct generations. Hunterston A was commis-
sioned in 1964 and decommissioned in 1990. While no longer operational, decommissioning
and maintenance work continues by British Nuclear Group. The adjacent Hunterston B was
commissioned in 1976 and is currently (as of 2016) operational. It is operated by EDF Energy
(formally British Energy Generation UK). Both sites contain hazardous nuclear material

capable of causing significant harm to the surrounding population.

Hunterston is located just off the A78 road in North Ayrshire. The Clydeport coal terminal
and Largs-Glasgow railway line are within 1km of the site to the north-east. To the south
is the small town of West Kilbride, with the larger multi-town conurbation of Ardrossan,

Saltcoats and Stevenson a short distance further. The town of Largs lies to the north.
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The Off-Site Emergency Plan is a legally required document, produced by North Ayrshire
Council on behalf of the Strathclyde Emergencies Coordinating Group (a umbrella group
consisting of emergency services, NHS bodies, local authorities etc.). The exact meaning of
the term ‘off-site emergency’ is not defined in this document, although several examples are
given (significant release of airborne radioactivity, discharge of radioactive material likely
to cause a hazard to the public). A similar document prepared for Wylfa power station by
the Isle of Anglesey Council provides the clearer definition: ‘A hazardous condition which
results, or is likely to result in the need to consider urgent countermeasures to protect the

public outside the site security fence from a radiological hazard’ [88].

The document can broadly be divided into three parts. Firstly, the process for declaring
an off-site emergency, and informing all relevant organisations. Secondly, the actions to
be taken in the surrounding area during and immediately after the incident - evacuating
local residents, activating roadblocks, informing the media etc. Thirdly, a description of
the roles and responsibilities of the participating agencies (which includes much of what
appears in the previous sections, but with some additions, deletions and inconsistencies).
Much of the content consists of responsibilities that are broadly inter-agency in nature, such
as co-ordination between the emergency services and the local authority, although the third
section provides significant detail on specific, non-cooperative tasks. No detail is provided on
emergency action on the site itself; only reactions and associated work in the surrounding

area.

The particular version of the document used in this study is dated March 2006. There are two
main reasons for using this version, rather than the most up-to-date. Firstly, our 2006 copy
is significantly less redacted than the publicly available current version, and so allows us to
perform a fuller analysis given the security restrictions on this type of material. Secondly, but
more importantly, it is this version that was subject to analysis performed by the InDeED
consortium, using an earlier version of responsibility modeling. We have performed our
modeling separately, without consulting the original models until the analysis stage; we
intend to show that our technique provides comparable analysis with the potential for more
detailed evaluation. Additionally, it is possible to check any detected vulnerabilities with the
current version, which may indicate the effectiveness of responsibility analysis compared to

the regular document review process.

The roles and responsibilities section of the plan lists 16 different participating agencies.
Some agencies are mentioned in the process-based sections of the plan, but not listed in
the set of agencies (a potential vulnerability that will be examined in Section 6.4). The
main stakeholders are the site operators (British Nuclear Group, British Energy Generation
UK), emergency services (NHS Ayrshire & Arran, Strathclyde Police, Scottish Ambulance
Service) and government authorities (North Ayrshire Council, Scottish Executive, HM Nuclear

Installations Inspectorate).
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6.3 Initial Modelling

In order to model a scenario of this size subdivision of the problem is required. Firstly the
sections of the emergency plan referring to specific sets of responsibilities were modelled. In
practice, these were split by chapter, as each chapter of the report broadly describes a self-
contained set of responsibilities. The details of each chapter were used to produce submodels
describing these activities. Generally the content of these models corresponds directly to the
chapter title, with the occasional exception (such as Chapter 7, ‘Key Locations’ corresponding
to a model describing the establishment of various field sites). These exceptions generally
arose when a chapter contained both information for reference and planned action - the
title would correspond to the reference information, but it is the planned action that can be
modelled.

For clarity and brevity, certain trivial responsibilities have been omitted such as ‘Send
representative to NAECC’ (the emergency co-ordination centre), and such agents will not
appear if they are only planned to attend, and not to perform any substantive action. Certain
abstract responsibilities (for example, ‘discharge legal requirements’) have also been omitted,
as they are too imprecise to analyse. Likewise, ‘standard responsibilities’ have been omitted
if they restate normal day-to-day activity (for example, the NHS running hospitals). These
responsibilities are unlikely to play an important role in the discharge of the system, and their

omission simplifies the modelling and analysis process.

Additionally, it is important to emphasise that the model focuses on representing the off-site
aspects of the emergency; the Off-Site Emergency Plan occasionally features aspects of
on-site emergency planning, which have not been included. This effectively excludes certain
agencies. For example, the Fire Service plays a vital role in dealing with the emergency

on-site, but is described as having only advisory duties with regards to the off-site aspects.

Within each chapter, we first aimed to identify the relevant responsibilities. These were
generally actions to be performed or processes to be followed. We have not attempted to
model more abstract responsibilities (public duties, legal requirements) as the model concerns
responsibilities described in this document, which generally contains specific contextual
actions rather than overarching duties. Having identified responsibilities, corresponding actors
and resources were determined. In most cases this was straightforward, as the clear language
of the plan contained the required information. The main issue was identifying the difference
between responsibilities that required an organisation in general (e.g. Strathclyde Police) and
responsibilities that required a specific part of an organisation (e.g. the ‘Incident Commander’,
who in most circumstances is a senior officer of Strathclyde Police). The division in chapters
led to submodels being of a manageable size (4-10 responsibilities). A typical submodel is
shown in Figure 6.2. This submodel is accessible as ‘Rest Centre.responsibilitymetamodel’ in

[158], as are all other submodels.
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